WorldWideScience

Sample records for cell compartmentation

  1. Compartmentalized storage tank for electrochemical cell system

    Science.gov (United States)

    Piecuch, Benjamin Michael (Inventor); Dalton, Luke Thomas (Inventor)

    2010-01-01

    A compartmentalized storage tank is disclosed. The compartmentalized storage tank includes a housing, a first fluid storage section disposed within the housing, a second fluid storage section disposed within the housing, the first and second fluid storage sections being separated by a movable divider, and a constant force spring. The constant force spring is disposed between the housing and the movable divider to exert a constant force on the movable divider to cause a pressure P1 in the first fluid storage section to be greater than a pressure P2 in the second fluid storage section, thereby defining a pressure differential.

  2. Compartmentation and equilibration of abscisic acid in isolated Xanthium cells

    International Nuclear Information System (INIS)

    Bray, E.A.; Zeevaart, J.A.D.

    1986-01-01

    The compartmentation of endogenous abscisic acid (ABA), applied (+/-)-[ 3 H]ABA, and (+/-)-trans-ABA was measured in isolated mesophyll cells of the Chicago strain of Xanthium strumarium L. The release of ABA to the medium in the presence or absence of DMSO was used to determine the equilibration of ABA in the cells. It was found that a greater percentage of the (+/-)-[ 3 H]ABA and the (+/-)-trans-ABA was released into the medium than of the endogenous ABA, indicating that applied ABA did not equilibrate with the endogenous material. Therefore, in further investigations only the compartmentation of endogenous ABA was studied. Endogenous ABA was released from Xanthium cells according to the pH gradients among the various cellular compartments. Thus, darkness, high external pH, KNO 2 , and drought-stress all increased the efflux of ABA from the cells. Efflux of ABA from the cells in the presence of 0.6 M mannitol occurred within 30 seconds, but only 8% of the endogenous material was released during the 20 minute treatment

  3. Pathways and Subcellular Compartmentation of NAD Biosynthesis in Human Cells

    Science.gov (United States)

    Nikiforov, Andrey; Dölle, Christian; Niere, Marc; Ziegler, Mathias

    2011-01-01

    NAD is a vital redox carrier, and its degradation is a key element of important regulatory pathways. NAD-mediated functions are compartmentalized and have to be fueled by specific biosynthetic routes. However, little is known about the different pathways, their subcellular distribution, and regulation in human cells. In particular, the route(s) to generate mitochondrial NAD, the largest subcellular pool, is still unknown. To visualize organellar NAD changes in cells, we targeted poly(ADP-ribose) polymerase activity into the mitochondrial matrix. This activity synthesized immunodetectable poly(ADP-ribose) depending on mitochondrial NAD availability. Based on this novel detector system, detailed subcellular enzyme localizations, and pharmacological inhibitors, we identified extracellular NAD precursors, their cytosolic conversions, and the pathway of mitochondrial NAD generation. Our results demonstrate that, besides nicotinamide and nicotinic acid, only the corresponding nucleosides readily enter the cells. Nucleotides (e.g. NAD and NMN) undergo extracellular degradation resulting in the formation of permeable precursors. These precursors can all be converted to cytosolic and mitochondrial NAD. For mitochondrial NAD synthesis, precursors are converted to NMN in the cytosol. When taken up into the organelles, NMN (together with ATP) serves as substrate of NMNAT3 to form NAD. NMNAT3 was conclusively localized to the mitochondrial matrix and is the only known enzyme of NAD synthesis residing within these organelles. We thus present a comprehensive dissection of mammalian NAD biosynthesis, the groundwork to understand regulation of NAD-mediated processes, and the organismal homeostasis of this fundamental molecule. PMID:21504897

  4. Phylum Verrucomicrobia representatives share a compartmentalized cell plan with members of bacterial phylum Planctomycetes

    Directory of Open Access Journals (Sweden)

    Romeo Tony

    2009-01-01

    Full Text Available Abstract Background The phylum Verrucomicrobia is a divergent phylum within domain Bacteria including members of the microbial communities of soil and fresh and marine waters; recently extremely acidophilic members from hot springs have been found to oxidize methane. At least one genus, Prosthecobacter, includes species with genes homologous to those encoding eukaryotic tubulins. A significant superphylum relationship of Verrucomicrobia with members of phylum Planctomycetes possessing a unique compartmentalized cell plan, and members of the phylum Chlamydiae including human pathogens with a complex intracellular life cycle, has been proposed. Based on the postulated superphylum relationship, we hypothesized that members of the two separate phyla Planctomycetes and Verrucomicrobia might share a similar ultrastructure plan differing from classical prokaryote organization. Results The ultrastructure of cells of four members of phylum Verrucomicrobia – Verrucomicrobium spinosum, Prosthecobacter dejongeii, Chthoniobacter flavus, and strain Ellin514 – was examined using electron microscopy incorporating high-pressure freezing and cryosubstitution. These four members of phylum Verrucomicrobia, representing 3 class-level subdivisions within the phylum, were found to possess a compartmentalized cell plan analogous to that found in phylum Planctomycetes. Like all planctomycetes investigated, they possess a major pirellulosome compartment containing a condensed nucleoid and ribosomes surrounded by an intracytoplasmic membrane (ICM, as well as a ribosome-free paryphoplasm compartment between the ICM and cytoplasmic membrane. Conclusion A unique compartmentalized cell plan so far found among Domain Bacteria only within phylum Planctomycetes, and challenging our concept of prokaryote cell plans, has now been found in a second phylum of the Domain Bacteria, in members of phylum Verrucomicrobia. The planctomycete cell plan thus occurs in at least two

  5. Nuclear matrix and structural and functional compartmentalization of the eucaryotic cell nucleus.

    Science.gov (United States)

    Razin, S V; Borunova, V V; Iarovaia, O V; Vassetzky, Y S

    2014-07-01

    Becoming popular at the end of the 20th century, the concept of the nuclear matrix implies the existence of a nuclear skeleton that organizes functional elements in the cell nucleus. This review presents a critical analysis of the results obtained in the study of nuclear matrix in the light of current views on the organization of the cell nucleus. Numerous studies of nuclear matrix have failed to provide evidence of the existence of such a structure. Moreover, the existence of a filamentous structure that supports the nuclear compartmentalization appears to be unnecessary, since this function is performed by the folded genome itself.

  6. Compartmentalized human immunodeficiency virus type 1 originates from long-lived cells in some subjects with HIV-1-associated dementia.

    Science.gov (United States)

    Schnell, Gretja; Spudich, Serena; Harrington, Patrick; Price, Richard W; Swanstrom, Ronald

    2009-04-01

    Human immunodeficiency virus type 1 (HIV-1) invades the central nervous system (CNS) shortly after systemic infection and can result in the subsequent development of HIV-1-associated dementia (HAD) in a subset of infected individuals. Genetically compartmentalized virus in the CNS is associated with HAD, suggesting autonomous viral replication as a factor in the disease process. We examined the source of compartmentalized HIV-1 in the CNS of subjects with HIV-1-associated neurological disease and in asymptomatic subjects who were initiating antiretroviral therapy. The heteroduplex tracking assay (HTA), targeting the variable regions of env, was used to determine which HIV-1 genetic variants in the cerebrospinal fluid (CSF) were compartmentalized and which variants were shared with the blood plasma. We then measured the viral decay kinetics of individual variants after the initiation of antiretroviral therapy. Compartmentalized HIV-1 variants in the CSF of asymptomatic subjects decayed rapidly after the initiation of antiretroviral therapy, with a mean half-life of 1.57 days. Rapid viral decay was also measured for CSF-compartmentalized variants in four HAD subjects (t(1/2) mean = 2.27 days). However, slow viral decay was measured for CSF-compartmentalized variants from an additional four subjects with neurological disease (t(1/2) range = 9.85 days to no initial decay). The slow decay detected for CSF-compartmentalized variants was not associated with poor CNS drug penetration, drug resistant virus in the CSF, or the presence of X4 virus genotypes. We found that the slow decay measured for CSF-compartmentalized variants in subjects with neurological disease was correlated with low peripheral CD4 cell count and reduced CSF pleocytosis. We propose a model in which infiltrating macrophages replace CD4(+) T cells as the primary source of productive viral replication in the CNS to maintain high viral loads in the CSF in a substantial subset of subjects with HAD.

  7. Compartmentalized human immunodeficiency virus type 1 originates from long-lived cells in some subjects with HIV-1-associated dementia.

    Directory of Open Access Journals (Sweden)

    Gretja Schnell

    2009-04-01

    Full Text Available Human immunodeficiency virus type 1 (HIV-1 invades the central nervous system (CNS shortly after systemic infection and can result in the subsequent development of HIV-1-associated dementia (HAD in a subset of infected individuals. Genetically compartmentalized virus in the CNS is associated with HAD, suggesting autonomous viral replication as a factor in the disease process. We examined the source of compartmentalized HIV-1 in the CNS of subjects with HIV-1-associated neurological disease and in asymptomatic subjects who were initiating antiretroviral therapy. The heteroduplex tracking assay (HTA, targeting the variable regions of env, was used to determine which HIV-1 genetic variants in the cerebrospinal fluid (CSF were compartmentalized and which variants were shared with the blood plasma. We then measured the viral decay kinetics of individual variants after the initiation of antiretroviral therapy. Compartmentalized HIV-1 variants in the CSF of asymptomatic subjects decayed rapidly after the initiation of antiretroviral therapy, with a mean half-life of 1.57 days. Rapid viral decay was also measured for CSF-compartmentalized variants in four HAD subjects (t(1/2 mean = 2.27 days. However, slow viral decay was measured for CSF-compartmentalized variants from an additional four subjects with neurological disease (t(1/2 range = 9.85 days to no initial decay. The slow decay detected for CSF-compartmentalized variants was not associated with poor CNS drug penetration, drug resistant virus in the CSF, or the presence of X4 virus genotypes. We found that the slow decay measured for CSF-compartmentalized variants in subjects with neurological disease was correlated with low peripheral CD4 cell count and reduced CSF pleocytosis. We propose a model in which infiltrating macrophages replace CD4(+ T cells as the primary source of productive viral replication in the CNS to maintain high viral loads in the CSF in a substantial subset of subjects with HAD.

  8. [Compartmentalization of the cell nucleus and spatial organization of the genome].

    Science.gov (United States)

    Gavrilov, A A; Razin, S V

    2015-01-01

    The eukaryotic cell nucleus is one of the most complex cell organelles. Despite the absence of membranes, the nuclear space is divided into numerous compartments where different processes in- volved in the genome activity take place. The most important nuclear compartments include nucleoli, nuclear speckles, PML bodies, Cajal bodies, histone locus bodies, Polycomb bodies, insulator bodies, transcription and replication factories. The structural basis for the nuclear compartmentalization is provided by genomic DNA that occupies most of the nuclear volume. Nuclear compartments, in turn, guide the chromosome folding by providing a platform for the spatial interaction of individual genomic loci. In this review, we discuss fundamental principles of higher order genome organization with a focus on chromosome territories and chromosome domains, as well as consider the structure and function of the key nuclear compartments. We show that the func- tional compartmentalization of the cell nucleus and genome spatial organization are tightly interconnected, and that this form of organization is highly dynamic and is based on stochastic processes.

  9. The cell cycle of the planctomycete Gemmata obscuriglobus with respect to cell compartmentalization

    Directory of Open Access Journals (Sweden)

    Fuerst John A

    2009-01-01

    Full Text Available Abstract Background Gemmata obscuriglobus is a distinctive member of the divergent phylum Planctomycetes, all known members of which are peptidoglycan-less bacteria with a shared compartmentalized cell structure and divide by a budding process. G. obscuriglobus in addition shares the unique feature that its nucleoid DNA is surrounded by an envelope consisting of two membranes forming an analogous structure to the membrane-bounded nucleoid of eukaryotes and therefore G. obscuriglobus forms a special model for cell biology. Draft genome data for G. obscuriglobus as well as complete genome sequences available so far for other planctomycetes indicate that the key bacterial cell division protein FtsZ is not present in these planctomycetes, so the cell division process in planctomycetes is of special comparative interest. The membrane-bounded nature of the nucleoid in G. obscuriglobus also suggests that special mechanisms for the distribution of this nuclear body to the bud and for distribution of chromosomal DNA might exist during division. It was therefore of interest to examine the cell division cycle in G. obscuriglobus and the process of nucleoid distribution and nuclear body formation during division in this planctomycete bacterium via light and electron microscopy. Results Using phase contrast and fluorescence light microscopy, and transmission electron microscopy, the cell division cycle of G. obscuriglobus was determined. During the budding process, the bud was formed and developed in size from one point of the mother cell perimeter until separation. The matured daughter cell acted as a new mother cell and started its own budding cycle while the mother cell can itself initiate budding repeatedly. Fluorescence microscopy of DAPI-stained cells of G. obscuriglobus suggested that translocation of the nucleoid and formation of the bud did not occur at the same time. Confocal laser scanning light microscopy applied to cells stained for membranes as

  10. DNA precursor compartmentation in mammalian cells: distribution and rates of equilibration between nucleus and cytoplasm

    International Nuclear Information System (INIS)

    Leeds, J.M.

    1986-01-01

    A rapid nuclear isolation technique was adapted in order to examine the question of DNA precursor compartmentation in mammalian cells. By using this method a reproducible proportion of the cellular nucleotides remained associated with the isolated nuclei. Examination, at several different cell densities, of exponentially growing HeLa cells showed that the nuclei contained a constant but distinct proportion of each dNTP. The nuclear dATP and dTTP concentrations were equal at all densities examined even though the dTTP pool was 150% of the dATP whole-cell pool. The nuclear portion of the whole-cell pools was roughly equal to the volume occupied by the nucleus. The nuclear-cytoplasmic dNTP pool distribution did not change throughout the cell cycle of synchronized Chinese hamster ovary (CHO) cells. The rates at which either radiolabeled cytidine or deoxycytidine equilibrated with the nuclear and whole-cell dCTP pools of G1 and S phase CHO cells were compared. Experiments comparing the labeling kinetics of 3 H-thymidine in G1, S phase, and exponentially growing cells revealed that the S phase dTTP pool equilibrated with exogenously added thymidine faster than the G1 phase pool. The rate of equilibration in exponentially growing cells appeared to be a combination of that seen in G1 and S phases. A linear rate of 3 H-thymidine incorporation into DNA occurred at the same rate in S phase and exponentially growing cells

  11. Bystander effects and compartmental stress response to X-ray irradiation in L929 cells.

    Science.gov (United States)

    Temelie, Mihaela; Stroe, Daniela; Petcu, Ileana; Mustaciosu, Cosmin; Moisoi, Nicoleta; Savu, Diana

    2016-08-01

    Bystander effects are indirect consequences of radiation and many other stress factors. They occur in cells that are not directly exposed to these factors, but receive signals from affected cells either by gap junctions or by molecules released in the medium. Characterizing these effects and deciphering the underlying mechanisms involved in radiation-induced bystander effects are relevant for cancer radiotherapy and radioprotection. At doses of X-ray radiation 0.5 and 1 Gy, we detected bystander effects as increased numbers of micronuclei shortly after the treatment, through medium transfer and by co-cultures. Interestingly, bystander cells did not exhibit long-term adverse changes in viability. Evaluation of several compartmental stress markers (CHOP, BiP, mtHsp60, cytHsp70) by qRT-PCR did not reveal expression changes at transcriptional level. We investigated the involvement of ROS and NO in this process by addition of specific scavengers of these molecules, DMSO or c-PTIO in the transferred medium. This approach proved that ROS but not NO is involved in the induction of lesions in the acceptor cells. These results indicate that L929 cells are susceptible to stress effects of radiation-induced bystander signaling.

  12. Metabolic Compartmentation – A System Level Property of Muscle Cells

    Directory of Open Access Journals (Sweden)

    Theo Wallimann

    2008-05-01

    Full Text Available Problems of quantitative investigation of intracellular diffusion and compartmentation of metabolites are analyzed. Principal controversies in recently published analyses of these problems for the living cells are discussed. It is shown that the formal theoretical analysis of diffusion of metabolites based on Fick’s equation and using fixed diffusion coefficients for diluted homogenous aqueous solutions, but applied for biological systems in vivo without any comparison with experimental results, may lead to misleading conclusions, which are contradictory to most biological observations. However, if the same theoretical methods are used for analysis of actual experimental data, the apparent diffusion constants obtained are orders of magnitude lower than those in diluted aqueous solutions. Thus, it can be concluded that local restrictions of diffusion of metabolites in a cell are a system-level properties caused by complex structural organization of the cells, macromolecular crowding, cytoskeletal networks and organization of metabolic pathways into multienzyme complexes and metabolons. This results in microcompartmentation of metabolites, their channeling between enzymes and in modular organization of cellular metabolic networks. The perspectives of further studies of these complex intracellular interactions in the framework of Systems Biology are discussed.

  13. Compartmentalization today

    Science.gov (United States)

    Kevin T. Smith

    2006-01-01

    For more than 30 years, the compartmentdization concept has helped tree care practitioners and land managers interpret patterns of decay in living trees. Understanding these patterns can help guide the selection of treatments that meet the needs of people and communities while respecting the underlying tree biology. At its simplest, compartmentalization resists the...

  14. cGMP Signaling in the Cardiovascular System—The Role of Compartmentation and Its Live Cell Imaging

    Science.gov (United States)

    Bork, Nadja I.; Nikolaev, Viacheslav O.

    2018-01-01

    The ubiquitous second messenger 3′,5′-cyclic guanosine monophosphate (cGMP) regulates multiple physiologic processes in the cardiovascular system. Its intracellular effects are mediated by stringently controlled subcellular microdomains. In this review, we will illustrate the current techniques available for real-time cGMP measurements with a specific focus on live cell imaging methods. We will also discuss currently accepted and emerging mechanisms of cGMP compartmentation in the cardiovascular system. PMID:29534460

  15. An improved single cell ultrahigh throughput screening method based on in vitro compartmentalization.

    Directory of Open Access Journals (Sweden)

    Fuqiang Ma

    Full Text Available High-throughput screening is a key technique in discovery and engineering of enzymes. In vitro compartmentalization based fluorescence-activated cell sorting (IVC-FACS has recently emerged as a powerful tool for ultrahigh-throughput screening of biocatalysts. However, the accuracy of current IVC-FACS assays is severely limited by the wide polydispersity of micro-reactors generated by homogenizing. Here, an improved protocol based on membrane-extrusion technique was reported to generate the micro-reactors in a more uniform manner. This crucial improvement enables ultrahigh-throughput screening of enzymatic activity at a speed of >10⁸ clones/day with an accuracy that could discriminate as low as two-fold differences in enzymatic activity inside the micro-reactors, which is higher than similar IVC-FACS systems ever have reported. The enzymatic reaction in the micro-reactors has very similar kinetic behavior compared to the bulk reaction system and shows wide dynamic range. By using the modified IVC-FACS, E. coli cells with esterase activity could be enriched 330-fold from large excesses of background cells through a single round of sorting. The utility of this new IVC-FACS system was further illustrated by the directed evolution of thermophilic esterase AFEST. The catalytic activity of the very efficient esterase was further improved by ∼2-fold, resulting in several improved mutants with k(cat/K(M values approaching the diffusion-limited efficiency of ∼10⁸ M⁻¹s⁻¹.

  16. Compartmentalized Human Immunodeficiency Virus Type 1 Originates from Long-Lived Cells in Some Subjects with HIV-1–Associated Dementia

    Science.gov (United States)

    Schnell, Gretja; Spudich, Serena; Harrington, Patrick; Price, Richard W.; Swanstrom, Ronald

    2009-01-01

    Human immunodeficiency virus type 1 (HIV-1) invades the central nervous system (CNS) shortly after systemic infection and can result in the subsequent development of HIV-1–associated dementia (HAD) in a subset of infected individuals. Genetically compartmentalized virus in the CNS is associated with HAD, suggesting autonomous viral replication as a factor in the disease process. We examined the source of compartmentalized HIV-1 in the CNS of subjects with HIV-1–associated neurological disease and in asymptomatic subjects who were initiating antiretroviral therapy. The heteroduplex tracking assay (HTA), targeting the variable regions of env, was used to determine which HIV-1 genetic variants in the cerebrospinal fluid (CSF) were compartmentalized and which variants were shared with the blood plasma. We then measured the viral decay kinetics of individual variants after the initiation of antiretroviral therapy. Compartmentalized HIV-1 variants in the CSF of asymptomatic subjects decayed rapidly after the initiation of antiretroviral therapy, with a mean half-life of 1.57 days. Rapid viral decay was also measured for CSF-compartmentalized variants in four HAD subjects (t1/2 mean = 2.27 days). However, slow viral decay was measured for CSF-compartmentalized variants from an additional four subjects with neurological disease (t1/2 range = 9.85 days to no initial decay). The slow decay detected for CSF-compartmentalized variants was not associated with poor CNS drug penetration, drug resistant virus in the CSF, or the presence of X4 virus genotypes. We found that the slow decay measured for CSF-compartmentalized variants in subjects with neurological disease was correlated with low peripheral CD4 cell count and reduced CSF pleocytosis. We propose a model in which infiltrating macrophages replace CD4+ T cells as the primary source of productive viral replication in the CNS to maintain high viral loads in the CSF in a substantial subset of subjects with HAD

  17. Purkinje Cell Compartmentation in the Cerebellum of the Lysosomal Acid Phosphatase 2 Mutant Mouse (Nax - Naked-Ataxia Mutant Mouse)

    Science.gov (United States)

    Bailey, Karen; Rahimi Balaei, Maryam; Mannan, Ashraf; Del Bigio, Marc R.; Marzban, Hassan

    2014-01-01

    The Acp2 gene encodes the beta subunit of lysosomal acid phosphatase, which is an isoenzyme that hydrolyzes orthophosphoric monoesters. In mice, a spontaneous mutation in Acp2 results in severe cerebellar defects. These include a reduced size, abnormal lobulation, and an apparent anterior cerebellar disorder with an absent or hypoplastic vermis. Based on differential gene expression in the cerebellum, the mouse cerebellar cortex can normally be compartmentalized anteroposteriorly into four transverse zones and mediolaterally into parasagittal stripes. In this study, immunohistochemistry was performed using various Purkinje cell compartmentation markers to examine their expression patterns in the Acp2 mutant. Despite the abnormal lobulation and anterior cerebellar defects, zebrin II and PLCβ4 showed similar expression patterns in the nax mutant and wild type cerebellum. However, fewer stripes were found in the anterior zone of the nax mutant, which could be due to a lack of Purkinje cells or altered expression of the stripe markers. HSP25 expression was uniform in the central zone of the nax mutant cerebellum at around postnatal day (P) 18–19, suggesting that HSP25 immunonegative Purkinje cells are absent or delayed in stripe pattern expression compared to the wild type. HSP25 expression became heterogeneous around P22–23, with twice the number of parasagittal stripes in the nax mutant compared to the wild type. Aside from reduced size and cortical disorganization, both the posterior zone and nodular zone in the nax mutant appeared less abnormal than the rest of the cerebellum. From these results, it is evident that the anterior zone of the nax mutant cerebellum is the most severely affected, and this extends beyond the primary fissure into the rostral central zone/vermis. This suggests that ACP2 has critical roles in the development of the anterior cerebellum and it may regulate anterior and central zone compartmentation. PMID:24722417

  18. Modulation of cytokine release by differentiated CACO-2 cells in a compartmentalized coculture model with mononuclear leucocytes and nonpathogenic bacteria

    DEFF Research Database (Denmark)

    Parlesak, Alexandr; Haller, D.; Brinz, S.

    2004-01-01

    To further investigate the interaction between human mononuclear leucocytes [peripheral blood mononuclear cells (PBMC)] and enterocytes, the effect of a confluent layer of differentiated CACO-2 cells on cytokine kinetics during challenge with bacteria in a compartmentalized coculture model...... cells when leucocytes were stimulated directly with bacteria. This suppression was not paralleled by changes in the production of IL-10, IL-6 and transforming growth factor (TGF)-beta. When the bacteria were applied apically to the CACO-2 cell layer, the production of TNF-alpha, IL-12, IL-1beta, IL-8......, IL-6, IL-10, TGF-beta and interferon-gamma was pronouncedly lower as compared to the bacterial stimulation of leucocytes beneath the CACO-2 cells. In the latter experiments, IL-6, IL-8 and TNF-alpha were the cytokines being mostly induced by apical addition of E. coli. Quantitative mRNA expression...

  19. Novel therapeutic strategies to target leukemic cells that hijack compartmentalized continuous hematopoietic stem cell niches

    NARCIS (Netherlands)

    Hira, Vashendriya V. V.; van Noorden, Cornelis J. F.; Carraway, Hetty E.; Maciejewski, Jaroslaw P.; Molenaar, Remco J.

    2017-01-01

    Acute myeloid leukemia and acute lymphoblastic leukemia cells hijack hematopoietic stem cell (HSC) niches in the bone marrow and become leukemic stem cells (LSCs) at the expense of normal HSCs. LSCs are quiescent and resistant to chemotherapy and can cause relapse of the disease. HSCs in niches are

  20. Novel therapeutic strategies to target leukemic cells that hijack compartmentalized continuous hematopoietic stem cell niches.

    Science.gov (United States)

    Hira, Vashendriya V V; Van Noorden, Cornelis J F; Carraway, Hetty E; Maciejewski, Jaroslaw P; Molenaar, Remco J

    2017-08-01

    Acute myeloid leukemia and acute lymphoblastic leukemia cells hijack hematopoietic stem cell (HSC) niches in the bone marrow and become leukemic stem cells (LSCs) at the expense of normal HSCs. LSCs are quiescent and resistant to chemotherapy and can cause relapse of the disease. HSCs in niches are needed to generate blood cell precursors that are committed to unilineage differentiation and eventually production of mature blood cells, including red blood cells, megakaryocytes, myeloid cells and lymphocytes. Thus far, three types of HSC niches are recognized: endosteal, reticular and perivascular niches. However, we argue here that there is only one type of HSC niche, which consists of a periarteriolar compartment and a perisinusoidal compartment. In the periarteriolar compartment, hypoxia and low levels of reactive oxygen species preserve the HSC pool. In the perisinusoidal compartment, hypoxia in combination with higher levels of reactive oxygen species enables proliferation of progenitor cells and their mobilization into the circulation. Because HSC niches offer protection to LSCs against chemotherapy, we review novel therapeutic strategies to inhibit homing of LSCs in niches for the prevention of dedifferentiation of leukemic cells into LSCs and to stimulate migration of leukemic cells out of niches. These strategies enhance differentiation and proliferation and thus sensitize leukemic cells to chemotherapy. Finally, we list clinical trials of therapies that tackle LSCs in HSC niches to circumvent their protection against chemotherapy. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Droplet Microfluidics for Compartmentalized Cell Lysis and Extension of DNA from Single-Cells

    Science.gov (United States)

    Zimny, Philip; Juncker, David; Reisner, Walter

    Current single cell DNA analysis methods suffer from (i) bias introduced by the need for molecular amplification and (ii) limited ability to sequence repetitive elements, resulting in (iii) an inability to obtain information regarding long range genomic features. Recent efforts to circumvent these limitations rely on techniques for sensing single molecules of DNA extracted from single-cells. Here we demonstrate a droplet microfluidic approach for encapsulation and biochemical processing of single-cells inside alginate microparticles. In our approach, single-cells are first packaged inside the alginate microparticles followed by cell lysis, DNA purification, and labeling steps performed off-chip inside this microparticle system. The alginate microparticles are then introduced inside a micro/nanofluidic system where the alginate is broken down via a chelating buffer, releasing long DNA molecules which are then extended inside nanofluidic channels for analysis via standard mapping protocols.

  2. Compartmental distribution of radiotracers

    International Nuclear Information System (INIS)

    Robertson, J.S.; Colombetti, L.G.

    1983-01-01

    This book examines the use of radioisotopes in medical diagnosis. Topics considered include compartmental analysis, data processing in nuclear medicine, historical aspects, basic principles, mathematical methods, the application of computers in obtaining numerical solutions to compartmental models, the SAAM and CONSAM programs, some statistical principles in compartmental analysis, and applications

  3. Compartmental distribution of radiotracers

    International Nuclear Information System (INIS)

    Roberton, J.S.

    1983-01-01

    Emphasizes applications of compartmental analysis in physiology, pharmacology, and other areas of biology and medicine. Details of computer methods and applications of statistical principles as they apply to compartmental analysis are presented. Of special interest is a step-by-step discussion of Berman's SAAM program in modeling at several different levels of difficulty. Extensive references and sources of additional information in mathematical methods and in applications to specific problems are provided. Contents: Historical Development. Basic Principles, Mathematical Methods. Application of Computers for Obtaining Numerical Solutions to Compartmental Models. Use of Computers in Compartmental Analysis: SAAM and CONSAAM Programs. Some Statistical Principals in Compartmental Analysis. Applications. Index

  4. The candidate phylum Poribacteria by single-cell genomics: new insights into phylogeny, cell-compartmentation, eukaryote-like repeat proteins, and other genomic features.

    Directory of Open Access Journals (Sweden)

    Janine Kamke

    Full Text Available The candidate phylum Poribacteria is one of the most dominant and widespread members of the microbial communities residing within marine sponges. Cell compartmentalization had been postulated along with their discovery about a decade ago and their phylogenetic association to the Planctomycetes, Verrucomicrobia, Chlamydiae superphylum was proposed soon thereafter. In the present study we revised these features based on genomic data obtained from six poribacterial single cells. We propose that Poribacteria form a distinct monophyletic phylum contiguous to the PVC superphylum together with other candidate phyla. Our genomic analyses supported the possibility of cell compartmentalization in form of bacterial microcompartments. Further analyses of eukaryote-like protein domains stressed the importance of such proteins with features including tetratricopeptide repeats, leucin rich repeats as well as low density lipoproteins receptor repeats, the latter of which are reported here for the first time from a sponge symbiont. Finally, examining the most abundant protein domain family on poribacterial genomes revealed diverse phyH family proteins, some of which may be related to dissolved organic posphorus uptake.

  5. Communication Between the Cell Membrane and the Nucleus: Role of Protein Compartmentalization

    Energy Technology Data Exchange (ETDEWEB)

    Lelievre, Sophie A; Bissell, Mina J

    1998-10-21

    Understanding how the information is conveyed from outside to inside the cell is a critical challenge for all biologists involved in signal transduction. The flow of information initiated by cell-cell and cell-extracellular matrix contacts is mediated by the formation of adhesion complexes involving multiple proteins. Inside adhesion complexes, connective membrane skeleton (CMS) proteins are signal transducers that bind to adhesion molecules, organize the cytoskeleton, and initiate biochemical cascades. Adhesion complex-mediated signal transduction ultimately directs the formation of supramolecular structures in the cell nucleus, as illustrated by the establishment of multi complexes of DNA-bound transcription factors, and the redistribution of nuclear structural proteins to form nuclear subdomains. Recently, several CMS proteins have been observed to travel to the cell nucleus, suggesting a distinctive role for these proteins in signal transduction. This review focuses on the nuclear translocation of structural signal transducers of the membrane skeleton and also extends our analysis to possible translocation of resident nuclear proteins to the membrane skeleton. This leads us to envision the communication between spatially distant cellular compartments (i.e., membrane skeleton and cell nucleus) as a bidirectional flow of information (a dynamic reciprocity) based on subtle multilevel structural and biochemical equilibria. At one level, it is mediated by the interaction between structural signal transducers and their binding partners, at another level it may be mediated by the balance and integration of signal transducers in different cellular compartments.

  6. The role of extracellular conductivity profiles in compartmental models for neurons: particulars for layer 5 pyramidal cells.

    Science.gov (United States)

    Wang, Kai; Riera, Jorge; Enjieu-Kadji, Herve; Kawashima, Ryuta

    2013-07-01

    With the rapid increase in the number of technologies aimed at observing electric activity inside the brain, scientists have felt the urge to create proper links between intracellular- and extracellular-based experimental approaches. Biophysical models at both physical scales have been formalized under assumptions that impede the creation of such links. In this work, we address this issue by proposing a multicompartment model that allows the introduction of complex extracellular and intracellular resistivity profiles. This model accounts for the geometrical and electrotonic properties of any type of neuron through the combination of four devices: the integrator, the propagator, the 3D connector, and the collector. In particular, we applied this framework to model the tufted pyramidal cells of layer 5 (PCL5) in the neocortex. Our model was able to reproduce the decay and delay curves of backpropagating action potentials (APs) in this type of cell with better agreement with experimental data. We used the voltage drops of the extracellular resistances at each compartment to approximate the local field potentials generated by a PCL5 located in close proximity to linear microelectrode arrays. Based on the voltage drops produced by backpropagating APs, we were able to estimate the current multipolar moments generated by a PCL5. By adding external current sources in parallel to the extracellular resistances, we were able to create a sensitivity profile of PCL5 to electric current injections from nearby microelectrodes. In our model for PCL5, the kinetics and spatial profile of each ionic current were determined based on a literature survey, and the geometrical properties of these cells were evaluated experimentally. We concluded that the inclusion of the extracellular space in the compartmental models of neurons as an extra electrotonic medium is crucial for the accurate simulation of both the propagation of the electric potentials along the neuronal dendrites and the

  7. Compartmentalization of GABA synthesis by GAD67 differs between pancreatic beta cells and neurons

    DEFF Research Database (Denmark)

    Kanaani, Jamil; Cianciaruso, Chiara; Phelps, Edward A

    2015-01-01

    of the two non-allelic isoforms GAD65 and GAD67 to vesicular membranes is important for rapid delivery and accumulation of GABA for regulated secretion. While the membrane anchoring and trafficking of GAD65 are mediated by intrinsic hydrophobic modifications, GAD67 remains hydrophilic, and yet is targeted...... to vesicular membrane pathways and synaptic clusters in neurons by both a GAD65-dependent and a distinct GAD65-independent mechanism. Herein we have investigated the membrane association and targeting of GAD67 and GAD65 in monolayer cultures of primary rat, human, and mouse islets and in insulinoma cells. GAD......65 is primarily detected in Golgi membranes and in peripheral vesicles distinct from insulin vesicles in β-cells. In the absence of GAD65, GAD67 is in contrast primarily cytosolic in β-cells; its co-expression with GAD65 is necessary for targeting to Golgi membranes and vesicular compartments. Thus...

  8. A Compartmental Model for Computing Cell Numbers in CFSE-based Lymphocyte Proliferation Assays

    Science.gov (United States)

    2012-01-31

    the case (e.g., there is no containment relationship between B2 and B3). 21 A more general approach, based upon the premises of information theory...various experimental conditions, with an eye toward additional constitutive relationships linking molecular and/or subcellular functions to population...correlation between collaterally consanguineous cells on lymphocyte population dynamics, J. Math. Biol., 59 (2009), 255–285. [34] D.A. Fulcher and S.W.J

  9. Active Dendrites and Differential Distribution of Calcium Channels Enable Functional Compartmentalization of Golgi Cells.

    Science.gov (United States)

    Rudolph, Stephanie; Hull, Court; Regehr, Wade G

    2015-11-25

    Interneurons are essential to controlling excitability, timing, and synaptic integration in neuronal networks. Golgi cells (GoCs) serve these roles at the input layer of the cerebellar cortex by releasing GABA to inhibit granule cells (grcs). GoCs are excited by mossy fibers (MFs) and grcs and provide feedforward and feedback inhibition to grcs. Here we investigate two important aspects of GoC physiology: the properties of GoC dendrites and the role of calcium signaling in regulating GoC spontaneous activity. Although GoC dendrites are extensive, previous studies concluded they are devoid of voltage-gated ion channels. Hence, the current view holds that somatic voltage signals decay passively within GoC dendrites, and grc synapses onto distal dendrites are not amplified and are therefore ineffective at firing GoCs because of strong passive attenuation. Using whole-cell recording and calcium imaging in rat slices, we find that dendritic voltage-gated sodium channels allow somatic action potentials to activate voltage-gated calcium channels (VGCCs) along the entire dendritic length, with R-type and T-type VGCCs preferentially located distally. We show that R- and T-type VGCCs located in the dendrites can boost distal synaptic inputs and promote burst firing. Active dendrites are thus critical to the regulation of GoC activity, and consequently, to the processing of input to the cerebellar cortex. In contrast, we find that N-type channels are preferentially located near the soma, and control the frequency and pattern of spontaneous firing through their close association with calcium-activated potassium (KCa) channels. Thus, VGCC types are differentially distributed and serve specialized functions within GoCs. Interneurons are essential to neural processing because they modulate excitability, timing, and synaptic integration within circuits. At the input layer of the cerebellar cortex, a single type of interneuron, the Golgi cell (GoC), carries these functions. The

  10. Compartmentalized Metabolic Engineering for Artemisinin Biosynthesis and Effective Malaria Treatment by Oral Delivery of Plant Cells.

    Science.gov (United States)

    Malhotra, Karan; Subramaniyan, Mayavan; Rawat, Khushboo; Kalamuddin, Md; Qureshi, M Irfan; Malhotra, Pawan; Mohmmed, Asif; Cornish, Katrina; Daniell, Henry; Kumar, Shashi

    2016-11-07

    Artemisinin is highly effective against drug-resistant malarial parasites, which affects nearly half of the global population and kills >500 000 people each year. The primary cost of artemisinin is the very expensive process used to extract and purify the drug from Artemisia annua. Elimination of this apparently unnecessary step will make this potent antimalarial drug affordable to the global population living in endemic regions. Here we reported the oral delivery of a non-protein drug artemisinin biosynthesized (∼0.8 mg/g dry weight) at clinically meaningful levels in tobacco by engineering two metabolic pathways targeted to three different cellular compartments (chloroplast, nucleus, and mitochondria). The doubly transgenic lines showed a three-fold enhancement of isopentenyl pyrophosphate, and targeting AACPR, DBR2, and CYP71AV1 to chloroplasts resulted in higher expression and an efficient photo-oxidation of dihydroartemisinic acid to artemisinin. Partially purified extracts from the leaves of transgenic tobacco plants inhibited in vitro growth progression of Plasmodium falciparum-infected red blood cells. Oral feeding of whole intact plant cells bioencapsulating the artemisinin reduced the parasitemia levels in challenged mice in comparison with commercial drug. Such novel synergistic approaches should facilitate low-cost production and delivery of artemisinin and other drugs through metabolic engineering of edible plants. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  11. In vivo osteogenic differentiation of stem cells inside compartmentalized capsules loaded with co-cultured endothelial cells.

    Science.gov (United States)

    Correia, Clara R; Santos, Tírcia C; Pirraco, Rogério P; Cerqueira, Mariana T; Marques, Alexandra P; Reis, Rui L; Mano, João F

    2017-04-15

    Capsules coated with polyelectrolytes and co-encapsulating adipose stem (ASCs) and endothelial (ECs) cells with surface modified microparticles are developed. Microparticles and cells are freely dispersed in a liquified core, responsible to maximize the diffusion of essential molecules and allowing the geometrical freedom for the autonomous three-dimensional (3D) organization of cells. While the membrane wraps all the instructive cargo elements within a single structure, the microparticles provide a solid 3D substrate for the encapsulated cells. Our hypothesis is that inside this isolated biomimetic 3D environment, ECs would lead ASCs to differentiate into the osteogenic lineage to ultimately generate a mineralized tissue in vivo. For that, capsules encapsulating only ASCs (MONO capsules) or co-cultured with ECs (CO capsules) are subcutaneously implanted in nude mice up to 6weeks. Capsules implanted immediately after production or after 21days of in vitro osteogenic stimulation are tested. The most valuable outcome of the present study is the mineralized tissue in CO capsules without in vitro pre-differentiation, with similar levels compared to the pre-stimulated capsules in vitro. We believe that the proposed bioencapsulation strategy is a potent self-regulated system, which might find great applicability in bone tissue engineering. The diffusion efficiency of essential molecules for cell survival is a main issue in cell encapsulation. Former studies reported the superior biological outcome of encapsulated cells within liquified systems. However, most cells used in TE are anchorage-dependent, requiring a solid substrate to perform main cellular processes. We hypothesized that liquified capsules encapsulating microparticles are a promising attempt. Inspired by the multiphenotypic cellular environment of bone, we combine the concept of liquified capsules with co-cultures of stem and endothelial cells. After implantation, results show that co-cultured capsules

  12. Activation of PKA in cell requires higher concentration of cAMP than in vitro: implications for compartmentalization of cAMP signalling.

    Science.gov (United States)

    Koschinski, Andreas; Zaccolo, Manuela

    2017-10-26

    cAMP is a ubiquitous second messenger responsible for the cellular effects of multiple hormones and neurotransmitters via activation of its main effector, protein kinase A (PKA). Multiple studies have shown that the basal concentration of cAMP in several cell types is about 1 μM. This value is well above the reported concentration of cAMP required to half-maximally activate PKA, which measures in the 100-300 nM range. Several hypotheses have been suggested to explain this apparent discrepancy including inaccurate measurements of intracellular free cAMP, inaccurate measurement of the apparent activation constant of PKA or shielding of PKA from bulk cytosolic cAMP via localization of the enzyme to microdomains with lower basal cAMP concentration. However, direct experimental evidence in support of any of these models is limited and a firm conclusion is missing. In this study we use multiple FRET-based reporters for the detection of cAMP and PKA activity in intact cells and we establish that the sensitivity of PKA to cAMP is almost twenty times lower when measured in cell than when measured in vitro. Our findings have important implications for the understanding of compartmentalized cAMP signalling.

  13. Protocell design through modular compartmentalization.

    Science.gov (United States)

    Miller, David; Booth, Paula J; Seddon, John M; Templer, Richard H; Law, Robert V; Woscholski, Rudiger; Ces, Oscar; Barter, Laura M C

    2013-10-06

    De novo synthetic biological design has the potential to significantly impact upon applications such as energy generation and nanofabrication. Current designs for constructing organisms from component parts are typically limited in scope, as they utilize a cut-and-paste ideology to create simple stepwise engineered protein-signalling pathways. We propose the addition of a new design element that segregates components into lipid-bound 'proto-organelles', which are interfaced with response elements and housed within a synthetic protocell. This design is inspired by living cells, which utilize multiple types of signalling molecules to facilitate communication between isolated compartments. This paper presents our design and validation of the components required for a simple multi-compartment protocell machine, for coupling a light transducer to a gene expression system. This represents a general design concept for the compartmentalization of different types of artificial cellular machinery and the utilization of non-protein signal molecules for signal transduction.

  14. Compartmental study of biological systems

    International Nuclear Information System (INIS)

    Moretti, J.L.

    1975-01-01

    The compartmental analysis of biological system is dealt with on several chapters devoted successively to: terminology; a mathematical and symbolic account of a system at equilibrium; different compartment systems; analysis of the experimental results. For this it is pointed out that the application of compartmental systems to biological phenomena is not always without danger. Sometimes the compartmental system established in a reference subject fails to conform in the patient. The compartments can divide into two or join together, completely changing the aspect of the system so that parameters calculated with the old model become entirely false. The conclusion is that the setting up of a compartmental system to represent a biological phenomenon is a tricky undertaking and the results must be constantly criticized and questioned [fr

  15. A Division-Dependent Compartmental Model for Computing Cell Numbers in CFSE-based Lymphocyte Proliferation Assays

    Science.gov (United States)

    2012-02-12

    other parameterizations, this is not universally the case (e.g., there is no containment relationship between B2 and B3). 17 A more general approach...hope to examine how the estimated parameters change under various experimental conditions, with an eye toward additional constitutive relationships ...Duffy and V. Subramanian, On the impact of correlation between collaterally consanguineous cells on lymphocyte population dynamics, J. Math. Biol

  16. Studies in the compartmentalization of trace elements in the blood of patients with sickle cell anaemia using PIXE technique

    International Nuclear Information System (INIS)

    Ojo, J.O.; Oluwole, A.F.; Durosinmi, M.A.; Arsed, W.; Akanle, O.A.; Spyrou, N.M.

    1993-01-01

    Concentrations of trace elements in the whole blood, plasma and erythrocytes of 77 individuals (20 carrying the HbSS genotype, 21 with HbAS and 36 with HbAA) were determined using a PIXE facility employing a 2 MeV proton beam. Up to 16 elements were detected in some or all of the samples. The skewness of elemental distribution was measured for each element in the three bloodflow compartments. Most of the essential elements, apart from selenium were distinctly packed in either the erythrocytes or the plasma. Results of the t-test employed to compare elemental values between sickle cell subjects and matched controls show similar patterns in the three compartments for some of the elements. The results are compared with previous work using INAA. (orig.)

  17. Shedding light on cell compartmentation in the candidate phylum Poribacteria by high resolution visualisation and transcriptional profiling

    KAUST Repository

    Jahn, Martin T.

    2016-10-31

    Assigning functions to uncultivated environmental microorganisms continues to be a challenging endeavour. Here, we present a new microscopy protocol for fluorescence in situ hybridisation-correlative light and electron microscopy (FISH-CLEM) that enabled, to our knowledge for the first time, the identification of single cells within their complex microenvironment at electron microscopy resolution. Members of the candidate phylum Poribacteria, common and uncultivated symbionts of marine sponges, were used towards this goal. Cellular 3D reconstructions revealed bipolar, spherical granules of low electron density, which likely represent carbon reserves. Poribacterial activity profiles were retrieved from prokaryotic enriched sponge metatranscriptomes using simulation-based optimised mapping. We observed high transcriptional activity for proteins related to bacterial microcompartments (BMC) and we resolved their subcellular localisation by combining FISH-CLEM with immunohistochemistry (IHC) on ultra-thin sponge tissue sections. In terms of functional relevance, we propose that the BMC-A region may be involved in 1,2-propanediol degradation. The FISH-IHC-CLEM approach was proven an effective toolkit to combine -omics approaches with functional studies and it should be widely applicable in environmental microbiology.

  18. Compartmentalizing the embryo

    Science.gov (United States)

    Ile, Kristina E.; Renault, Andrew D.

    2013-01-01

    Lipid phosphate phosphatases (LPPs) are a class of enzymes that can dephosphorylate a number of lysophopholipids in vitro. Analysis of knockouts of LPP family members has demonstrated striking but diverse developmental roles for these enzymes. LPP3 is required for mouse vascular development while the Drosophila LPPs Wunen (Wun) and Wunen2 (Wun2) are required during embryogenesis for germ cell migration and survival. In a recent publication we examined if these fly LPPs have further developmental roles and found that Wun is required for proper tracheal formation. In particular we highlight a role for Wun in septate junction mediated barrier function in the tracheal system. In this paper we discuss further the possible mechanisms by which LPPs may influence barrier activity. PMID:23221483

  19. Passive Noise Filtering by Cellular Compartmentalization.

    Science.gov (United States)

    Stoeger, Thomas; Battich, Nico; Pelkmans, Lucas

    2016-03-10

    Chemical reactions contain an inherent element of randomness, which presents itself as noise that interferes with cellular processes and communication. Here we discuss the ability of the spatial partitioning of molecular systems to filter and, thus, remove noise, while preserving regulated and predictable differences between single living cells. In contrast to active noise filtering by network motifs, cellular compartmentalization is highly effective and easily scales to numerous systems without requiring a substantial usage of cellular energy. We will use passive noise filtering by the eukaryotic cell nucleus as an example of how this increases predictability of transcriptional output, with possible implications for the evolution of complex multicellularity. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Compartmentation of metals in foliage of Populus tremula grown on soils with mixed contamination. II. Zinc binding inside leaf cell organelles.

    Science.gov (United States)

    Vollenweider, Pierre; Bernasconi, Petra; Gautschi, Hans-Peter; Menard, Terry; Frey, Beat; Günthardt-Goerg, Madeleine S

    2011-01-01

    The phytoextraction potential of plants for removing heavy metals from polluted soils is determined by their capacity to store contaminants in aboveground organs and complex them safely. In this study, the metal compartmentation, elemental composition of zinc deposits and zinc complexation within leaves from poplars grown on soil with mixed metal contamination was analysed combining several histochemical and microanalytical approaches. Zinc was the only heavy metal detected and was stored in several organelles in the form of globoid deposits showing β-metachromasy. It was associated to oxygen anions and different cations, noteworthy phosphorous. The deposit structure, elemental composition and element ratios indicated that zinc was chelated by phytic acid ligands. Maturation processes in vacuolar vs. cytoplasmic deposits were suggested by differences in size and amounts of complexed zinc. Hence, zinc complexation by phytate contributed to metal detoxification and accumulation in foliage but could not prevent toxicity reactions therein. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Compartmentation of metals in foliage of Populus tremula grown on soils with mixed contamination. II. Zinc binding inside leaf cell organelles

    Energy Technology Data Exchange (ETDEWEB)

    Vollenweider, Pierre, E-mail: pierre.vollenweider@wsl.c [Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Bernasconi, Petra [Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Environmental Protection Office (AfU), Aabachstrasse 5, 6300 Zug (Switzerland); Gautschi, Hans-Peter [Centre for Microscopy and Image Analysis (CMI), University of Zurich, Gloriastrasse 30, 8006 Zuerich (Switzerland); Menard, Terry; Frey, Beat; Guenthardt-Goerg, Madeleine S. [Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zuercherstrasse 111, 8903 Birmensdorf (Switzerland)

    2011-01-15

    The phytoextraction potential of plants for removing heavy metals from polluted soils is determined by their capacity to store contaminants in aboveground organs and complex them safely. In this study, the metal compartmentation, elemental composition of zinc deposits and zinc complexation within leaves from poplars grown on soil with mixed metal contamination was analysed combining several histochemical and microanalytical approaches. Zinc was the only heavy metal detected and was stored in several organelles in the form of globoid deposits showing {beta}-metachromasy. It was associated to oxygen anions and different cations, noteworthy phosphorous. The deposit structure, elemental composition and element ratios indicated that zinc was chelated by phytic acid ligands. Maturation processes in vacuolar vs. cytoplasmic deposits were suggested by differences in size and amounts of complexed zinc. Hence, zinc complexation by phytate contributed to metal detoxification and accumulation in foliage but could not prevent toxicity reactions therein. - Zinc contaminants translocated to symplast of aged leaves were detoxified by phytic acid ligands.

  2. Compartmentation of metals in foliage of Populus tremula grown on soils with mixed contamination. II. Zinc binding inside leaf cell organelles

    International Nuclear Information System (INIS)

    Vollenweider, Pierre; Bernasconi, Petra; Gautschi, Hans-Peter; Menard, Terry; Frey, Beat; Guenthardt-Goerg, Madeleine S.

    2011-01-01

    The phytoextraction potential of plants for removing heavy metals from polluted soils is determined by their capacity to store contaminants in aboveground organs and complex them safely. In this study, the metal compartmentation, elemental composition of zinc deposits and zinc complexation within leaves from poplars grown on soil with mixed metal contamination was analysed combining several histochemical and microanalytical approaches. Zinc was the only heavy metal detected and was stored in several organelles in the form of globoid deposits showing β-metachromasy. It was associated to oxygen anions and different cations, noteworthy phosphorous. The deposit structure, elemental composition and element ratios indicated that zinc was chelated by phytic acid ligands. Maturation processes in vacuolar vs. cytoplasmic deposits were suggested by differences in size and amounts of complexed zinc. Hence, zinc complexation by phytate contributed to metal detoxification and accumulation in foliage but could not prevent toxicity reactions therein. - Zinc contaminants translocated to symplast of aged leaves were detoxified by phytic acid ligands.

  3. Compartmental modeling and tracer kinetics

    CERN Document Server

    Anderson, David H

    1983-01-01

    This monograph is concerned with mathematical aspects of compartmental an­ alysis. In particular, linear models are closely analyzed since they are fully justifiable as an investigative tool in tracer experiments. The objective of the monograph is to bring the reader up to date on some of the current mathematical prob­ lems of interest in compartmental analysis. This is accomplished by reviewing mathematical developments in the literature, especially over the last 10-15 years, and by presenting some new thoughts and directions for future mathematical research. These notes started as a series of lectures that I gave while visiting with the Division of Applied ~1athematics, Brown University, 1979, and have developed in­ to this collection of articles aimed at the reader with a beginning graduate level background in mathematics. The text can be used as a self-paced reading course. With this in mind, exercises have been appropriately placed throughout the notes. As an aid in reading the material, the e~d of a ...

  4. A Laminin-2, Dystroglycan, Utrophin Axis is Required for Compartmentalization and Elongation of Myelin Segments

    OpenAIRE

    Court, Felipe A.; Hewitt, Jane E.; Davies, Kay; Patton, Bruce L.; Uncini, Antonino; Wrabetz, Lawrence; Feltri, M. Laura

    2009-01-01

    Animal and plant cells compartmentalize to perform morphogenetic functions. Compartmentalization of myelin-forming Schwann cells may favor elongation of myelin segments to the size required for efficient conduction of nerve impulses. Compartments in myelinated fibers were described by Ramon-y-Cajal and depend on periaxin, mutated in the hereditary neuropathy Charcot-Marie-Tooth 4F. Lack of periaxin in mice causes loss of compartments, formation of short myelin segments (internodes) and reduce...

  5. Compartmentation of glycogen metabolism revealed from 13C isotopologue distributions

    Directory of Open Access Journals (Sweden)

    Marin de Mas Igor

    2011-10-01

    Full Text Available Abstract Background Stable isotope tracers are used to assess metabolic flux profiles in living cells. The existing methods of measurement average out the isotopic isomer distribution in metabolites throughout the cell, whereas the knowledge of compartmental organization of analyzed pathways is crucial for the evaluation of true fluxes. That is why we accepted a challenge to create a software tool that allows deciphering the compartmentation of metabolites based on the analysis of average isotopic isomer distribution. Results The software Isodyn, which simulates the dynamics of isotopic isomer distribution in central metabolic pathways, was supplemented by algorithms facilitating the transition between various analyzed metabolic schemes, and by the tools for model discrimination. It simulated 13C isotope distributions in glucose, lactate, glutamate and glycogen, measured by mass spectrometry after incubation of hepatocytes in the presence of only labeled glucose or glucose and lactate together (with label either in glucose or lactate. The simulations assumed either a single intracellular hexose phosphate pool, or also channeling of hexose phosphates resulting in a different isotopic composition of glycogen. Model discrimination test was applied to check the consistency of both models with experimental data. Metabolic flux profiles, evaluated with the accepted model that assumes channeling, revealed the range of changes in metabolic fluxes in liver cells. Conclusions The analysis of compartmentation of metabolic networks based on the measured 13C distribution was included in Isodyn as a routine procedure. The advantage of this implementation is that, being a part of evaluation of metabolic fluxes, it does not require additional experiments to study metabolic compartmentation. The analysis of experimental data revealed that the distribution of measured 13C-labeled glucose metabolites is inconsistent with the idea of perfect mixing of hexose

  6. Intracellular compartmentalization of skeletal muscle glycogen metabolism and insulin signalling

    DEFF Research Database (Denmark)

    Prats Gavalda, Clara; Gomez-Cabello, Alba; Vigelsø Hansen, Andreas

    2011-01-01

    The interest in skeletal muscle metabolism and insulin signalling has increased exponentially in recent years as a consequence of their role in the development of type 2 diabetes mellitus. Despite this, the exact mechanisms involved in the regulation of skeletal muscle glycogen metabolism...... and insulin signalling transduction remain elusive. We believe that one of the reasons is that the role of intracellular compartmentalization as a regulator of metabolic pathways and signalling transduction has been rather ignored. This paper briefly reviews the literature to discuss the role of intracellular...... compartmentalization in the regulation of skeletal muscle glycogen metabolism and insulin signalling. As a result, a hypothetical regulatory mechanism is proposed by which cells could direct glycogen resynthesis towards different pools of glycogen particles depending on the metabolic needs. Furthermore, we discuss...

  7. Compartmentalization of Aquaporins in the Human Intestine

    Directory of Open Access Journals (Sweden)

    Rajendram V. Rajnarayanan

    2008-06-01

    Full Text Available Improper localization of water channel proteins called aquaporins (AQP induce mucosal injury which is implicated in Crohn’s disease and ulcerative colitis. The amino acid sequences of AQP3 and AQP10 are 79% similar and belong to the mammalian aquaglyceroporin subfamily. AQP10 is localized on the apical compartment of the intestinal epithelium called the glycocalyx while AQP3 is selectively targeted to the basolateral membrane. Despite the high sequence similarity and evolutionary relatedness, the molecular mechanism involved in the polarity, selective targeting and function of AQP3 and AQP10 in the intestine is largely unknown. Our hypothesis is that the differential polarity and selective targeting of AQP3 and AQP10 in the intestinal epithelial cells is influenced by amino acid signal motifs. We performed sequence and structural alignments to determine differences in signals for localization and posttranslational glycosylation. The basolateral sorting motif “YRLL” is present in AQP3 but absent in AQP10; while Nglycosylation signals are present in AQP10 but absent in AQP3. Furthermore, the C-terminal region of AQP3 is longer compared to AQP10. The sequence and structural differences between AQP3 and AQP10 provide insights into the differential compartmentalization and function of these two aquaporins commonly expressed in human intestines.

  8. A Network Thermodynamic Approach to Compartmental Analysis

    Science.gov (United States)

    Mikulecky, D. C.; Huf, E. G.; Thomas, S. R.

    1979-01-01

    We introduce a general network thermodynamic method for compartmental analysis which uses a compartmental model of sodium flows through frog skin as an illustrative example (Huf and Howell, 1974a). We use network thermodynamics (Mikulecky et al., 1977b) to formulate the problem, and a circuit simulation program (ASTEC 2, SPICE2, or PCAP) for computation. In this way, the compartment concentrations and net fluxes between compartments are readily obtained for a set of experimental conditions involving a square-wave pulse of labeled sodium at the outer surface of the skin. Qualitative features of the influx at the outer surface correlate very well with those observed for the short circuit current under another similar set of conditions by Morel and LeBlanc (1975). In related work, the compartmental model is used as a basis for simulation of the short circuit current and sodium flows simultaneously using a two-port network (Mikulecky et al., 1977a, and Mikulecky et al., A network thermodynamic model for short circuit current transients in frog skin. Manuscript in preparation; Gary-Bobo et al., 1978). The network approach lends itself to computation of classic compartmental problems in a simple manner using circuit simulation programs (Chua and Lin, 1975), and it further extends the compartmental models to more complicated situations involving coupled flows and non-linearities such as concentration dependencies, chemical reaction kinetics, etc. PMID:262387

  9. Human-specific subcellular compartmentalization of P-element induced wimpy testis-like (PIWIL) granules during germ cell development and spermatogenesis

    NARCIS (Netherlands)

    Gomes Fernandes, Maria; He, Nannan; Wang, Fang; Van Iperen, Liesbeth; Eguizabal, Cristina; Matorras, Roberto; Roelen, Bernard A J; Chuva de Sousa Lopes, Susana M

    2018-01-01

    STUDY QUESTION: What is the dynamics of expression of P-element induced wimpy testis-like (PIWIL) proteins in the germline during human fetal development and spermatogenesis? SUMMARY ANSWER: PIWIL1, PIWIL2, PIWIL3 and PIWIL4 were expressed in a sex-specific fashion in human germ cells (GC) during

  10. Expression of the Ly-6 family proteins Lynx1 and Ly6H in the rat brain is compartmentalized, cell-type specific, and developmentally regulated

    DEFF Research Database (Denmark)

    Thomsen, Morten Skøtt; Cinar, Betül; Jensen, Majbrit Myrup

    2014-01-01

    regarding the distribution and developmental regulation of these proteins in the brain. We use protein cross-linking and synaptosomal fractions to demonstrate that the Ly-6 proteins Lynx1 and Ly6H are membrane-bound proteins in the brain, which are present on the cell surface and localize to synaptic...... demonstrate that Lynx1 and Ly6H are expressed in cultured neurons, but not cultured micro- or astroglial cultures. In addition, Lynx1, but not Ly6H was detected in the CSF. Finally, we show that the Ly-6 proteins Lynx1, Lynx2, Ly6H, and PSCA, display distinct expression patterns during postnatal development...

  11. The Role of a Platelet Lysate-Based Compartmentalized System as a Carrier of Cells and Platelet-Origin Cytokines for Periodontal Tissue Regeneration.

    Science.gov (United States)

    Babo, Pedro S; Cai, Xinjie; Plachokova, Adelina S; Reis, Rui L; Jansen, John A; Gomes, Manuela E; Walboomers, X Frank

    2016-10-01

    Currently available clinical therapies are not capable to regenerate tissues that are lost by periodontitis. Tissue engineering can be applied as a strategy to regenerate reliably the tissues and function of damaged periodontium. A prerequisite for this regeneration is the colonization of the defect with the adequate cell populations. In this study, we proposed a bilayered system composed of (1) a platelet lysate (PL)-based construct produced by crosslinking of PL proteins with genipin (gPL) for the delivery of rat periodontal ligament cells (rat-PDLCs); combined with (2) an injectable composite consisting of calcium phosphate cement incorporated with PL-loaded poly(d, l-lactic-co-glycolic acid) microspheres. This system was expected to promote periodontal regeneration by the delivery of adequate progenitor cells and providing a stable system enriched with adequate cytokines and growth factors for the orchestration of tissue regrowth in periodontal defects. The bilayered system was tested in a three-wall intrabony defect in rats and the healing of periodontal tissue was assessed 6 weeks after surgery. Results showed that the bilayered system was able to promote the regrowth of functional periodontal tissues, both with (cells + gPL) and without the loading of PDLCs (gPL). Significant connective tissue attachment (45.0 ± 15.0% and 64.0 ± 15.0% for gPL and cells + gPL group, respectively) and new bone area (33.8 ± 21% and 21.3 ± 3% for gPL and cells + gPL group, respectively) were observed. Nevertheless, rat PDLCs delivered with gPL construct in the defect area were hardly visible 6 weeks after surgery and did not contribute for the regeneration of new periodontal tissue. Overall, our findings show that the bilayered system promotes the stabilization of PL proteins on the root surface and has a positive effect in the repair of periodontal tissues both in quality and in quantity.

  12. Human-specific subcellular compartmentalization of P-element induced wimpy testis-like (PIWIL) granules during germ cell development and spermatogenesis.

    Science.gov (United States)

    Gomes Fernandes, Maria; He, Nannan; Wang, Fang; Van Iperen, Liesbeth; Eguizabal, Cristina; Matorras, Roberto; Roelen, Bernard A J; Chuva De Sousa Lopes, Susana M

    2018-02-01

    What is the dynamics of expression of P-element induced wimpy testis-like (PIWIL) proteins in the germline during human fetal development and spermatogenesis? PIWIL1, PIWIL2, PIWIL3 and PIWIL4 were expressed in a sex-specific fashion in human germ cells (GC) during development and adulthood. PIWILs showed a mutually exclusive pattern of subcellular localization. PIWILs were present in the intermitochondrial cement and a single large granule in meiotic GC and their expression was different from that observed in mice, highlighting species-differences. In mice, PIWIL proteins play prominent roles in male infertility. PIWIL mouse mutants show either post-meiotic arrest at the round spermatid stage (PIWIL1) or arrest at the zygotene-pachytene stage of meiosis I (PIWIL2 and PIWIL4) in males, while females remain fertile. Recent studies have reported a robust piRNA pool in human fetal ovary. This is a qualitative analysis of PIWILs expression in paraffin-embedded fetal human male (N = 8), female gonads (N = 6) and adult testes (N = 5), and bioinformatics analysis of online available single-cell transcriptomics data of human fetal germ cells (n = 242). Human fetal gonads from elective abortion without medical indication and adult testes biopsies were donated for research with informed consent. Samples were fixed, paraffin-embedded and analyzed by immunofluorescence to study the temporal and cellular localization of PIWIL1, PIWIL2, PIWIL3 and PIWIL4. PIWIL1, PIWIL2 and PIWIL4 showed a mutually exclusive pattern of subcellular localization, particularly in female oocytes. To our surprise, PIWIL1 immunostaining revealed the presence of a single dense paranuclear body, resembling the chromatoid body of haploid spermatocytes, in meiotic oocytes. Moreover, in contrast to mice, PIWIL4, but not PIWIL2, localized to the intermitochondrial cement. PIWIL3 was not expressed in GC during development. The upregulation of PIWIL transcripts correlated with the transcription of markers

  13. Compartmentation of metals in foliage of Populus tremula grown on soils with mixed contamination. I. From the tree crown to leaf cell level

    International Nuclear Information System (INIS)

    Vollenweider, Pierre; Menard, Terry; Guenthardt-Goerg, Madeleine S.

    2011-01-01

    In order to achieve efficient phytoextraction of heavy metals using trees, the metal allocation to aboveground tissues needs to be characterised. In his study, the distribution of heavy metals, macro- and micronutrients and the metal micro-localisation as a function of the leaf position and heavy metal treatment were analysed in poplars grown on soil with mixed metal contamination. Zinc was the most abundant contaminant in both soil and foliage and, together with cadmium, was preferentially accumulated in older foliage whereas excess copper and lead were not translocated. Changes in other element concentrations indicated an acceleration in aging as a consequence of the metal treatment. Excess zinc was irregularly accumulated inside leaf tissues, tended to saturate the veins and was more frequently stored in cell symplast than apoplast. Storage compartments including metabolically safe and sensitive subcellular sites resulted in sizable metal accumulation as well as stress reactions. - Within foliage of poplars growing on contaminated soils, Zinc was stored at metabolically safe as well as sensitive subcellular sites, ensuring sizable bioaccumulation but also causing injuries.

  14. Compartmentation of metals in foliage of Populus tremula grown on soils with mixed contamination. I. From the tree crown to leaf cell level

    Energy Technology Data Exchange (ETDEWEB)

    Vollenweider, Pierre, E-mail: pierre.vollenweider@wsl.c [Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Menard, Terry; Guenthardt-Goerg, Madeleine S. [Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zuercherstrasse 111, 8903 Birmensdorf (Switzerland)

    2011-01-15

    In order to achieve efficient phytoextraction of heavy metals using trees, the metal allocation to aboveground tissues needs to be characterised. In his study, the distribution of heavy metals, macro- and micronutrients and the metal micro-localisation as a function of the leaf position and heavy metal treatment were analysed in poplars grown on soil with mixed metal contamination. Zinc was the most abundant contaminant in both soil and foliage and, together with cadmium, was preferentially accumulated in older foliage whereas excess copper and lead were not translocated. Changes in other element concentrations indicated an acceleration in aging as a consequence of the metal treatment. Excess zinc was irregularly accumulated inside leaf tissues, tended to saturate the veins and was more frequently stored in cell symplast than apoplast. Storage compartments including metabolically safe and sensitive subcellular sites resulted in sizable metal accumulation as well as stress reactions. - Within foliage of poplars growing on contaminated soils, Zinc was stored at metabolically safe as well as sensitive subcellular sites, ensuring sizable bioaccumulation but also causing injuries.

  15. Compartmental modeling approach to the radiation dosimetry of radiolabeled antibody

    International Nuclear Information System (INIS)

    Zanzonico, P.B.; Bigler, R.E.; Primus, F.J.; Alger, E.; DeJager, R.; Stowe, S.; Ford, E.; Brennan, K.; Goldenberg, D.M.

    1986-01-01

    Essential for the calculation of absorbed doses from systemically administered radiolabled antibody is the determination of the total number of nuclear transformations in specified source regions. Compartmental analysis (using biodistribution data augmented with a priori physiological information), unlike simply integrating empirical time-activity curves, may enable one to calculate the cumulated activity in unsampled as well as sampled source regions. These may include microscopic source regions (e.g. the intracellular space, cell surface, and extracellular space) important for microdosimetry calculations. Of particular importance is the interaction between the anti-tumor antibody and the tumor antigen. 30 references, 9 figures, 2 tables

  16. A compartmentalized out-of-equilibrium enzymatic reaction network for sustained autonomous movement

    NARCIS (Netherlands)

    Nijemeisland, M.; Abdelmohsen, L.K.E.A.; Huck, W.T.S.; Wilson, D.A.; van Hest, J.C.M.

    2016-01-01

    Every living cell is a compartmentalized out-ofequilibrium system exquisitely able to convert chemical energy into function. In order to maintain homeostasis, the flux of metabolites is tightly controlled by regulatory enzymatic networks. A crucial prerequisite for the development of lifelike

  17. Advanced compositional gradient and compartmentalization analysis

    Energy Technology Data Exchange (ETDEWEB)

    Canas, Jesus A.; Petti, Daniela; Mullins, Oliver [Schlumberger Servicos de Petroleo Ltda., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    Acquisition of hydrocarbons samples from the reservoir prior to oil or gas production is essential in order to design production strategies and production facilities. In addition, reservoir compartmentalization and hydrocarbon compositional grading magnify the necessity to map fluid properties vertically and laterally in the reservoir prior to production. Formation testers supply a wealth of information to observe and predict the state of fluids in hydrocarbon reservoirs, through detailed pressure and fluid analysis measurements. With the correct understanding of the state of fluids in the reservoirs, reserve calculations and adequate development plans can be prepared. Additionally, flow barriers may then be revealed. This paper describes a new Downhole Fluid Analysis technology (DFA) for improved reservoir management. DFA is a unique process that combines new fluid identification sensors, which allow real time monitoring of a wide range of parameters as GOR, fluid density, viscosity, fluorescence and composition (CH{sub 4}, C2- C5, C6 +, CO{sub 2}), free gas and liquid phases detection, saturation pressure, as well WBM and OBM filtrate differentiation and pH. This process is not limited to light fluid evaluation and we extended to heavy oil (HO) reservoirs analysis successfully. The combination of DFA Fluid Profiling with pressure measurements has shown to be very effective for compartmentalization characterization. The ability of thin barriers to hold off large depletion pressures has been established, as the gradual variation of hydrocarbon quality in biodegraded oils. In addition, heavy oils can show large compositional variation due to variations in source rock charging but without fluid mixing. Our findings indicates that steep gradients are common in gas condensates or volatile oils, and that biodegradation is more common in HO than in other hydrocarbons, which generate fluid gradients and heavy ends tars near the OWC, limiting the aquifer activity and

  18. The human NAD metabolome: Functions, metabolism and compartmentalization

    Science.gov (United States)

    Nikiforov, Andrey; Kulikova, Veronika; Ziegler, Mathias

    2015-01-01

    Abstract The metabolism of NAD has emerged as a key regulator of cellular and organismal homeostasis. Being a major component of both bioenergetic and signaling pathways, the molecule is ideally suited to regulate metabolism and major cellular events. In humans, NAD is synthesized from vitamin B3 precursors, most prominently from nicotinamide, which is the degradation product of all NAD-dependent signaling reactions. The scope of NAD-mediated regulatory processes is wide including enzyme regulation, control of gene expression and health span, DNA repair, cell cycle regulation and calcium signaling. In these processes, nicotinamide is cleaved from NAD+ and the remaining ADP-ribosyl moiety used to modify proteins (deacetylation by sirtuins or ADP-ribosylation) or to generate calcium-mobilizing agents such as cyclic ADP-ribose. This review will also emphasize the role of the intermediates in the NAD metabolome, their intra- and extra-cellular conversions and potential contributions to subcellular compartmentalization of NAD pools. PMID:25837229

  19. Compartmentation of redox metabolism in malaria parasites.

    Directory of Open Access Journals (Sweden)

    Sebastian Kehr

    Full Text Available Malaria, caused by the apicomplexan parasite Plasmodium, still represents a major threat to human health and welfare and leads to about one million human deaths annually. Plasmodium is a rapidly multiplying unicellular organism undergoing a complex developmental cycle in man and mosquito - a life style that requires rapid adaptation to various environments. In order to deal with high fluxes of reactive oxygen species and maintain redox regulatory processes and pathogenicity, Plasmodium depends upon an adequate redox balance. By systematically studying the subcellular localization of the major antioxidant and redox regulatory proteins, we obtained the first complete map of redox compartmentation in Plasmodium falciparum. We demonstrate the targeting of two plasmodial peroxiredoxins and a putative glyoxalase system to the apicoplast, a non-photosynthetic plastid. We furthermore obtained a complete picture of the compartmentation of thioredoxin- and glutaredoxin-like proteins. Notably, for the two major antioxidant redox-enzymes--glutathione reductase and thioredoxin reductase--Plasmodium makes use of alternative-translation-initiation (ATI to achieve differential targeting. Dual localization of proteins effected by ATI is likely to occur also in other Apicomplexa and might open new avenues for therapeutic intervention.

  20. Nuclear Pore-Like Structures in a Compartmentalized Bacterium.

    Directory of Open Access Journals (Sweden)

    Evgeny Sagulenko

    Full Text Available Planctomycetes are distinguished from other Bacteria by compartmentalization of cells via internal membranes, interpretation of which has been subject to recent debate regarding potential relations to Gram-negative cell structure. In our interpretation of the available data, the planctomycete Gemmata obscuriglobus contains a nuclear body compartment, and thus possesses a type of cell organization with parallels to the eukaryote nucleus. Here we show that pore-like structures occur in internal membranes of G.obscuriglobus and that they have elements structurally similar to eukaryote nuclear pores, including a basket, ring-spoke structure, and eight-fold rotational symmetry. Bioinformatic analysis of proteomic data reveals that some of the G. obscuriglobus proteins associated with pore-containing membranes possess structural domains found in eukaryote nuclear pore complexes. Moreover, immunogold labelling demonstrates localization of one such protein, containing a β-propeller domain, specifically to the G. obscuriglobus pore-like structures. Finding bacterial pores within internal cell membranes and with structural similarities to eukaryote nuclear pore complexes raises the dual possibilities of either hitherto undetected homology or stunning evolutionary convergence.

  1. Human Lsg1 defines a family of essential GTPases that correlates with the evolution of compartmentalization

    Directory of Open Access Journals (Sweden)

    Scheffzek Klaus

    2005-10-01

    Full Text Available Abstract Background Compartmentalization is a key feature of eukaryotic cells, but its evolution remains poorly understood. GTPases are the oldest enzymes that use nucleotides as substrates and they participate in a wide range of cellular processes. Therefore, they are ideal tools for comparative genomic studies aimed at understanding how aspects of biological complexity such as cellular compartmentalization evolved. Results We describe the identification and characterization of a unique family of circularly permuted GTPases represented by the human orthologue of yeast Lsg1p. We placed the members of this family in the phylogenetic context of the YlqF Related GTPase (YRG family, which are present in Eukarya, Bacteria and Archea and include the stem cell regulator Nucleostemin. To extend the computational analysis, we showed that hLsg1 is an essential GTPase predominantly located in the endoplasmic reticulum and, in some cells, in Cajal bodies in the nucleus. Comparison of localization and siRNA datasets suggests that all members of the family are essential GTPases that have increased in number as the compartmentalization of the eukaryotic cell and the ribosome biogenesis pathway have evolved. Conclusion We propose a scenario, consistent with our data, for the evolution of this family: cytoplasmic components were first acquired, followed by nuclear components, and finally the mitochondrial and chloroplast elements were derived from different bacterial species, in parallel with the formation of the nucleolus and the specialization of nuclear components.

  2. Diversity in the dynamical behaviour of a compartmentalized programmable biochemical oscillator.

    Science.gov (United States)

    Weitz, Maximilian; Kim, Jongmin; Kapsner, Korbinian; Winfree, Erik; Franco, Elisa; Simmel, Friedrich C

    2014-04-01

    In vitro compartmentalization of biochemical reaction networks is a crucial step towards engineering artificial cell-scale devices and systems. At this scale the dynamics of molecular systems becomes stochastic, which introduces several engineering challenges and opportunities. Here we study a programmable transcriptional oscillator system that is compartmentalized into microemulsion droplets with volumes between 33 fl and 16 pl. Simultaneous measurement of large populations of droplets reveals major variations in the amplitude, frequency and damping of the oscillations. Variability increases for smaller droplets and depends on the operating point of the oscillator. Rather than reflecting the stochastic kinetics of the chemical reaction network itself, the variability can be attributed to the statistical variation of reactant concentrations created during their partitioning into droplets. We anticipate that robustness to partitioning variability will be a critical challenge for engineering cell-scale systems, and that highly parallel time-series acquisition from microemulsion droplets will become a key tool for characterization of stochastic circuit function.

  3. The 4D Nucleome: Genome Compartmentalization in an Evolutionary Context.

    Science.gov (United States)

    Cremer, T; Cremer, M; Cremer, C

    2018-04-01

    4D nucleome research aims to understand the impact of nuclear organization in space and time on nuclear functions, such as gene expression patterns, chromatin replication, and the maintenance of genome integrity. In this review we describe evidence that the origin of 4D genome compartmentalization can be traced back to the prokaryotic world. In cell nuclei of animals and plants chromosomes occupy distinct territories, built up from ~1 Mb chromatin domains, which in turn are composed of smaller chromatin subdomains and also form larger chromatin domain clusters. Microscopic evidence for this higher order chromatin landscape was strengthened by chromosome conformation capture studies, in particular Hi-C. This approach demonstrated ~1 Mb sized, topologically associating domains in mammalian cell nuclei separated by boundaries. Mutations, which destroy boundaries, can result in developmental disorders and cancer. Nucleosomes appeared first as tetramers in the Archaea kingdom and later evolved to octamers built up each from two H2A, two H2B, two H3, and two H4 proteins. Notably, nucleosomes were lost during the evolution of the Dinoflagellata phylum. Dinoflagellate chromosomes remain condensed during the entire cell cycle, but their chromosome architecture differs radically from the architecture of other eukaryotes. In summary, the conservation of fundamental features of higher order chromatin arrangements throughout the evolution of metazoan animals suggests the existence of conserved, but still unknown mechanism(s) controlling this architecture. Notwithstanding this conservation, a comparison of metazoans and protists also demonstrates species-specific structural and functional features of nuclear organization.

  4. Field Testing of Compartmentalization Methods for Multifamily Construction

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K. [Building Science Corporation, Westford, MA (United States); Lstiburek, J. W. [Building Science Corporation, Westford, MA (United States)

    2015-03-01

    The 2012 International Energy Conservation Code (IECC) has an airtightness requirement of 3 air changes per hour at 50 Pascals test pressure (3 ACH50) for single-family and multifamily construction (in climate zones 3–8). The Leadership in Energy & Environmental Design certification program and ASHRAE Standard 189 have comparable compartmentalization requirements. ASHRAE Standard 62.2 will soon be responsible for all multifamily ventilation requirements (low rise and high rise); it has an exceptionally stringent compartmentalization requirement. These code and program requirements are driving the need for easier and more effective methods of compartmentalization in multifamily buildings.

  5. Human Immunodeficiency Viruses Appear Compartmentalized to the Female Genital Tract in Cross-Sectional Analyses but Genital Lineages Do Not Persist Over Time

    OpenAIRE

    Bull, Marta E.; Heath, Laura M.; McKernan-Mullin, Jennifer L.; Kraft, Kelli M.; Acevedo, Luis; Hitti, Jane E.; Cohn, Susan E.; Tapia, Kenneth A.; Holte, Sarah E.; Dragavon, Joan A.; Coombs, Robert W.; Mullins, James I.; Frenkel, Lisa M.

    2013-01-01

    Background. Whether unique human immunodeficiency type 1 (HIV) genotypes occur in the genital tract is important for vaccine development and management of drug resistant viruses. Multiple cross-sectional studies suggest HIV is compartmentalized within the female genital tract. We hypothesize that bursts of HIV replication and/or proliferation of infected cells captured in cross-sectional analyses drive compartmentalization but over time genital-specific viral lineages do not form; rather viru...

  6. Compartmentalization and Transport in Synthetic Vesicles

    Directory of Open Access Journals (Sweden)

    Christine eSchmitt

    2016-02-01

    Full Text Available Nano-scale vesicles have become a popular tool in life sciences. Besides liposomes that are generated from phospholipids of natural origin, polymersomes fabricated of synthetic block copolymers enjoy increasing popularity, as they represent more versatile membrane building blocks that can be selected based on their specific physicochemical properties, like permeability, stability or chemical reactivity.In this review, we focus on the application of simple and nested artificial vesicles in synthetic biology. First, we provide an introduction into the utilization of multi-compartmented vesosomes as compartmentalized nano-scale bioreactors. In the bottom-up development of protocells from vesicular nano-reactors, the specific exchange of pathway intermediates across compartment boundaries represents a bottleneck for future studies. To date, most compartmented bioreactors rely on unspecific exchange of substrates and products. This is either based on changes in permeability of the coblock polymer shell by physicochemical triggers or by the incorporation of unspecific porin proteins into the vesicle membrane. Since the incorporation of membrane transport proteins into simple and nested artificial vesicles offers the potential for specific exchange of substances between subcompartments, it opens new vistas in the design of protocells. Therefore we devote the main part of the review to summarize the technical advances in the use of phospholipids and block copolymers for the reconstitution of membrane proteins.

  7. Compartmentalization of prostaglandins in the canine kidney

    International Nuclear Information System (INIS)

    Morgan-Boyd, R.L.

    1986-01-01

    The kidney has been shown to synthesize all of the naturally occurring major prostaglandins which may be restricted to a discrete part of the kidney where their actions are physiologically important, such as the vascular compartment and the tubular compartment. In order to examine this concept of compartmentalization, the authors conducted a series of experiments to determine whether PGl 2 , measured as 6-keto-pGF/sub 1α/, produced in the kidney is restricted to the renal vascular compartment or whether it also has access to the tubular compartment. Experiments were performed in the pentobarbital-anesthetized dog. Increasing pre-glomerular levels of 6-keto-PFG/sub 1α/ caused marked increases in both the urinary excretion and the renal venous outflow to 6-keto-PGF/sub 1α/. When 3 H-6-keto-PGF/sub 1α/ was co-infused with inulin into the renal artery, 33% of the radioactivity and 23% of the inulin was recovered on first pass. With infusion of 3 H-PGl 2 and inulin, 20% of the radioactivity and 28% of the inulin reached the urine on first pass. Radioactive PGl 2 appeared to be less filterable at the glomeruli than either 3 H-6-keto-PGF/sub 1α/ or inulin. In the final set of experiments, in which dogs were prepared for a ureteral stopped-flow study, the PGE 2 /U/P/sub In/ ratio a peak was observed proximal to the Na + plateau but distal to the Na+ nadir. In light of the results from the stopped-flow study and the intrarenal infusion studies, they conclude that PGE 2 synthesized in the kidney enters both the renal and tubular compartments. In contrast, they find that 6-keto-PGF/sub 1α/ of renal origin enters only the renal origin enters only the renal vascular compartment and not the tubular compartment

  8. Dynamic of CSF and serum biomarkers in HIV-1 subtype C encephalitis with CNS genetic compartmentalization-case study.

    Science.gov (United States)

    de Almeida, Sergio M; Rotta, Indianara; Ribeiro, Clea E; Oliveira, Michelli F; Chaillon, Antoine; de Pereira, Ana Paula; Cunha, Ana Paula; Zonta, Marise; Bents, Joao França; Raboni, Sonia M; Smith, Davey; Letendre, Scott; Ellis, Ronald J

    2017-06-01

    Despite the effective suppression of viremia with antiretroviral therapy, HIV can still replicate in the central nervous system (CNS). This was a longitudinal study of the cerebrospinal fluid (CSF) and serum dynamics of several biomarkers related to inflammation, the blood-brain barrier, neuronal injury, and IgG intrathecal synthesis in serial samples of CSF and serum from a patient infected with HIV-1 subtype C with CNS compartmentalization.The phylogenetic analyses of plasma and CSF samples in an acute phase using next-generation sequencing and F-statistics analysis of C2-V3 haplotypes revealed distinct compartmentalized CSF viruses in paired CSF and peripheral blood mononuclear cell samples. The CSF biomarker analysis in this patient showed that symptomatic CSF escape is accompanied by CNS inflammation, high levels of cell and humoral immune biomarkers, CNS barrier dysfunction, and an increase in neuronal injury biomarkers with demyelization. Independent and isolated HIV replication can occur in the CNS, even in HIV-1 subtype C, leading to compartmentalization and development of quasispecies distinct from the peripheral plasma. These immunological aspects of the HIV CNS escape have not been described previously. To our knowledge, this is the first report of CNS HIV escape and compartmentalization in HIV-1 subtype C.

  9. Network thermodynamic approach compartmental analysis. Na+ transients in frog skin.

    Science.gov (United States)

    Mikulecky, D C; Huf, E G; Thomas, S R

    1979-01-01

    We introduce a general network thermodynamic method for compartmental analysis which uses a compartmental model of sodium flows through frog skin as an illustrative example (Huf and Howell, 1974a). We use network thermodynamics (Mikulecky et al., 1977b) to formulate the problem, and a circuit simulation program (ASTEC 2, SPICE2, or PCAP) for computation. In this way, the compartment concentrations and net fluxes between compartments are readily obtained for a set of experimental conditions involving a square-wave pulse of labeled sodium at the outer surface of the skin. Qualitative features of the influx at the outer surface correlate very well with those observed for the short circuit current under another similar set of conditions by Morel and LeBlanc (1975). In related work, the compartmental model is used as a basis for simulation of the short circuit current and sodium flows simultaneously using a two-port network (Mikulecky et al., 1977a, and Mikulecky et al., A network thermodynamic model for short circuit current transients in frog skin. Manuscript in preparation; Gary-Bobo et al., 1978). The network approach lends itself to computation of classic compartmental problems in a simple manner using circuit simulation programs (Chua and Lin, 1975), and it further extends the compartmental models to more complicated situations involving coupled flows and non-linearities such as concentration dependencies, chemical reaction kinetics, etc.

  10. Drivers of compartmentalization in a Mediterranean pollination network

    DEFF Research Database (Denmark)

    Gonzalez, Ana M. Martin; Allesina, Stefano; Rodrigo, Anselm

    2012-01-01

    We study compartmentalization in a Mediterranean pollination network using three different analytical approaches: unipartite modularity (UM), bipartite modularity (BM) and the group model (GM). Our objectives are to compare compartments obtained with these three approaches and to explore the role...... of several species attributes related to pollination syndromes, species phenology, abundance and connectivity in structuring compartmentalization. BM could not identify compartments in our network. By contrast, UM revealed four modules composed of plants and pollinators, and GM four groups of plants and five...... of pollinators. Phenology had a major influence on compartmentalization, and compartments (both UM and GM) had distinct phenophases. Compartments were also strongly characterized by species degree (number of connections) and betweenness centrality. These two attributes were highly related to each other...

  11. Micro-compartmentalized cultivation of cyanobacteria for mutant screening using glass slides with highly water-repellent mark

    Directory of Open Access Journals (Sweden)

    Sayuri Arai

    2014-12-01

    Full Text Available Photosynthetic microorganisms such as cyanobacteria have attracted attention for their potential to produce biofuels and biochemicals directly from CO2. Cell isolation by colony has conventionally been used for selecting target cells. Colony isolation methods require a significant amount of time for cultivation, and the colony-forming ratio is potentially low for cyanobacteria. Here, we overcome such limitations by encapsulating and culturing cells in droplets with an overlay of dodecane using glass slides printed with highly water-repellent mark. In the compartmentalized culture, the oil phase protects the small volume of culture medium from drying and increases the CO2 supply. Since a difference in cell growth was observed with and without the addition of antibiotics, this compartmentalized culture method could be a powerful tool for mutant selection.

  12. Study of compartmentalization in the visna clinical form of small ruminant lentivirus infection in sheep

    Directory of Open Access Journals (Sweden)

    Ramírez Hugo

    2012-01-01

    Full Text Available Abstract Background A central nervous system (CNS disease outbreak caused by small ruminant lentiviruses (SRLV has triggered interest in Spain due to the rapid onset of clinical signs and relevant production losses. In a previous study on this outbreak, the role of LTR in tropism was unclear and env encoded sequences, likely involved in tropism, were not investigated. This study aimed to analyze heterogeneity of SRLV Env regions - TM amino terminal and SU V4, C4 and V5 segments - in order to assess virus compartmentalization in CNS. Results Eight Visna (neurologically affected sheep of the outbreak were used. Of the 350 clones obtained after PCR amplification, 142 corresponded to CNS samples (spinal cord and choroid plexus and the remaining to mammary gland, blood cells, bronchoalveolar lavage cells and/or lung. The diversity of the env sequences from CNS was 11.1-16.1% between animals and 0.35-11.6% within each animal, except in one animal presenting two sequence types (30% diversity in the CNS (one grouping with those of the outbreak, indicative of CNS virus sequence heterogeneity. Outbreak sequences were of genotype A, clustering per animal and compartmentalizing in the animal tissues. No CNS specific signature patterns were found. Conclusions Bayesian approach inferences suggested that proviruses from broncoalveolar lavage cells and peripheral blood mononuclear cells represented the common ancestors (infecting viruses in the animal and that neuroinvasion in the outbreak involved microevolution after initial infection with an A-type strain. This study demonstrates virus compartmentalization in the CNS and other body tissues in sheep presenting the neurological form of SRLV infection.

  13. Compartmental architecture and dynamics of hematopoiesis.

    Directory of Open Access Journals (Sweden)

    David Dingli

    Full Text Available BACKGROUND: Blood cell formation is maintained by the replication of hematopoietic stem cells (HSC that continuously feed downstream "compartments" where amplification and differentiation of cells occurs, giving rise to all blood lineages. Whereas HSC replicate slowly, committed cells replicate faster as they become more differentiated. METHODOLOGY/SIGNIFICANT FINDING: We propose a multi-compartment model of hematopoiesis, designed on the principle of cell flow conservation under stationary conditions. Cells lost from one compartment due to differentiation are replaced by cells from the upstream compartment. We assume that there is a constant relationship between cell input and output in each compartment and fix the single parameter of the model using data available for granulocyte maturation. We predict that approximately 31 mitotic events separate the HSC from the mature cells observed in the circulation. Besides estimating the number of compartments, our model allows us to estimate the size of each compartment, the rate of cell replication within each compartment, the mean time a given cell type contributes to hematopoiesis, the amplification rate in each compartment, as well as the mean time separating stem-cell replication and mature blood-cell formation. CONCLUSIONS: Despite its simplicity, the model agrees with the limited in vivo data available and can make testable predictions. In particular, our prediction of the average lifetime of a PIG-A mutated clone agrees closely with the experimental results available for the PIG-A gene mutation in healthy adults. The present elucidation of the compartment structure and dynamics of hematopoiesis may prove insightful in further understanding a variety of hematopoietic disorders.

  14. Compartmentation and complexation of metals in hyperaccumulator plants

    Directory of Open Access Journals (Sweden)

    Barbara eLeitenmaier

    2013-09-01

    Full Text Available Hyperaccumulators are being intensely investigated. They are not only interesting in scientific context due to their strange behaviour in terms of dealing with high concentrations of metals, but also because of their use in phytoremediation and phytomining, for which understanding the mechanisms of hyperaccumulation is crucial. Hyperaccumulators naturally use metal accumulation as a defence against herbivores and pathogens, and therefore deal with accumulated metals in very specific ways of complexation and compartmentation, different from non-hyperaccumulator plants and also non-hyperaccumulated metals. For example, in contrast to non-hyperaccumulators, in hyperaccumulators even the classical phytochelatin-inducing metal, cadmium, is predominantly not bound by such sulfur ligands, but only by weak oxygen ligands. This applies to all hyperaccumulated metals investigated so far, as well as hyperaccumulation of the metalloid arsenic. Stronger ligands, as they have been shown to complex metals in non-hyperaccumulators, are in hyperaccumulators used for transient binding during transport to the storage sites. This confirmed that enhanced active metal transport, and not metal complexation, is the key mechanism of hyperaccumulation. Hyperaccumulators tolerate the high amount of accumulated heavy metals by sequestering them into vacuoles, usually in large storage cells of the epidermis. This is mediated by strongly elevated expression of specific transport proteins in various tissues from metal uptake in the shoots up to the storage sites in the leaf epidermis. However, this mechanism seems to be very metal specific. Non-hyperaccumulated metals in hyperaccumulators seem to be dealt with like in non-hyperaccumulator plants, i.e. detoxified by binding to strong ligands such as metallothioneins.

  15. Regulation of NAD+ metabolism, signaling and compartmentalization in the yeast Saccharomyces cerevisiae

    Science.gov (United States)

    Kato, Michiko; Lin, Su-Ju

    2014-01-01

    Pyridine nucleotides are essential coenzymes in many cellular redox reactions in all living systems. In addition to functioning as a redox carrier, NAD+ is also a required co-substrate for the conserved sirtuin deacetylases. Sirtuins regulate transcription, genome maintenance and metabolism and function as molecular links between cells and their environment. Maintaining NAD+ homeostasis is essential for proper cellular function and aberrant NAD+ metabolism has been implicated in a number of metabolic- and age-associated diseases. Recently, NAD+ metabolism has been linked to the phosphate-responsive signaling pathway (PHO pathway) in the budding yeast Saccharomyces cerevisiae. Activation of the PHO pathway is associated with the production and mobilization of the NAD+ metabolite nicotinamide riboside (NR), which is mediated in part by PHO-regulated nucleotidases. Cross-regulation between NAD+ metabolism and the PHO pathway has also been reported; however, detailed mechanisms remain to be elucidated. The PHO pathway also appears to modulate the activities of common downstream effectors of multiple nutrient-sensing pathways (Ras-PKA, TOR, Sch9/AKT). These signaling pathways were suggested to play a role in calorie restriction-mediated beneficial effects, which have also been linked to Sir2 function and NAD+ metabolism. Here, we discuss the interactions of these pathways and their potential roles in regulating NAD+ metabolism. In eukaryotic cells, intracellular compartmentalization facilitates the regulation of enzymatic functions and also concentrates or sequesters specific metabolites. Various NAD+-mediated cellular functions such as mitochondrial oxidative phosphorylation are compartmentalized. Therefore, we also discuss several key players functioning in mitochondrial, cytosolic and vacuolar compartmentalization of NAD+ intermediates, and their potential roles in NAD+ homeostasis. To date, it remains unclear how NAD+ and NAD+ intermediates shuttle between different

  16. Regulation of NAD+ metabolism, signaling and compartmentalization in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Kato, Michiko; Lin, Su-Ju

    2014-11-01

    Pyridine nucleotides are essential coenzymes in many cellular redox reactions in all living systems. In addition to functioning as a redox carrier, NAD(+) is also a required co-substrate for the conserved sirtuin deacetylases. Sirtuins regulate transcription, genome maintenance and metabolism and function as molecular links between cells and their environment. Maintaining NAD(+) homeostasis is essential for proper cellular function and aberrant NAD(+) metabolism has been implicated in a number of metabolic- and age-associated diseases. Recently, NAD(+) metabolism has been linked to the phosphate-responsive signaling pathway (PHO pathway) in the budding yeast Saccharomyces cerevisiae. Activation of the PHO pathway is associated with the production and mobilization of the NAD(+) metabolite nicotinamide riboside (NR), which is mediated in part by PHO-regulated nucleotidases. Cross-regulation between NAD(+) metabolism and the PHO pathway has also been reported; however, detailed mechanisms remain to be elucidated. The PHO pathway also appears to modulate the activities of common downstream effectors of multiple nutrient-sensing pathways (Ras-PKA, TOR, Sch9/AKT). These signaling pathways were suggested to play a role in calorie restriction-mediated beneficial effects, which have also been linked to Sir2 function and NAD(+) metabolism. Here, we discuss the interactions of these pathways and their potential roles in regulating NAD(+) metabolism. In eukaryotic cells, intracellular compartmentalization facilitates the regulation of enzymatic functions and also concentrates or sequesters specific metabolites. Various NAD(+)-mediated cellular functions such as mitochondrial oxidative phosphorylation are compartmentalized. Therefore, we also discuss several key players functioning in mitochondrial, cytosolic and vacuolar compartmentalization of NAD(+) intermediates, and their potential roles in NAD(+) homeostasis. To date, it remains unclear how NAD(+) and NAD(+) intermediates

  17. Integration through Compartmentalization? Pitfalls of “Poldering” in Bangladesh

    NARCIS (Netherlands)

    Warner, J.F.

    2010-01-01

    The article sketches the history of the Flood Action Plan 20 (FAP-20), an experiment with polder compartmentalization, seeking to integrate flood management, drainage, and irrigation, and make it more democratic in response to the destructive 1987 and 1988 floods in Bangladesh. As a transferred

  18. Macroanatomy of compartmentalization in fire scars of three western conifers

    Science.gov (United States)

    Kevin T. Smith; Elaine Sutherland; Estelle Arbellay; Markus Stoffel; Donald. Falk

    2013-01-01

    Fire scars are visible evidence of compartmentalization and closure processes that contribute to tree survival after fire injury. Preliminary observations of dissected fire scars from trees injured within the last decade showed centripetal development of wound-initiated discoloration (WID) through 2-3 decades of former sapwood in Larix occidentalis and Pseudotsuga...

  19. A Calculus for Modelling, Simulating and Analysing Compartmentalized Biological Systems

    DEFF Research Database (Denmark)

    Mardare, Radu Iulian; Ihekwaba, Adoha

    2007-01-01

    A. Ihekwaba, R. Mardare. A Calculus for Modelling, Simulating and Analysing Compartmentalized Biological Systems. Case study: NFkB system. In Proc. of International Conference of Computational Methods in Sciences and Engineering (ICCMSE), American Institute of Physics, AIP Proceedings, N 2...

  20. Integration through compartmentalization? Pitfalls of 'poldering' in Bangladesh

    NARCIS (Netherlands)

    Warner, J.F.

    2010-01-01

    The article sketches the history of the Flood Action Plan 20 (FAP-20), an experiment with polder compartmentalization, seeking to integrate flood management, drainage, and irrigation, and make it more democratic in response to the destructive 1987 and 1988 floods in Bangladesh. As a transferred

  1. Kinetic compartmental analysis of carnitine metabolism in the dog

    International Nuclear Information System (INIS)

    Rebouche, C.J.; Engel, A.G.

    1983-01-01

    This study was undertaken to quantitate the dynamic parameters of carnitine metabolism in the dog. Six mongrel dogs were given intravenous injections of L-[methyl-3H]carnitine and the specific radioactivity of carnitine was followed in plasma and urine for 19-28 days. The data were analyzed by kinetic compartmental analysis. A three-compartment, open-system model [(a) extracellular fluid, (b) cardiac and skeletal muscle, (c) other tissues, particularly liver and kidney] was adopted and kinetic parameters (carnitine flux, pool sizes, kinetic constants) were derived. In four of six dogs the size of the muscle carnitine pool obtained by kinetic compartmental analysis agreed (+/- 5%) with estimates based on measurement of carnitine concentrations in different muscles. In three of six dogs carnitine excretion rates derived from kinetic compartmental analysis agreed (+/- 9%) with experimentally measured values, but in three dogs the rates by kinetic compartmental analysis were significantly higher than the corresponding rates measured directly. Appropriate chromatographic analyses revealed no radioactive metabolites in muscle or urine of any of the dogs. Turnover times for carnitine were (mean +/- SEM): 0.44 +/- 0.05 h for extracellular fluid, 232 +/- 22 h for muscle, and 7.9 +/- 1.1 h for other tissues. The estimated flux of carnitine in muscle was 210 pmol/min/g of tissue. Whole-body turnover time for carnitine was 62.9 +/- 5.6 days (mean +/- SEM). Estimated carnitine biosynthesis ranged from 2.9 to 28 mumol/kg body wt/day. Results of this study indicate that kinetic compartmental analysis may be applicable to study of human carnitine metabolism

  2. Cellular compartmentation follows rules: The Schnepf theorem, its consequences and exceptions: A biological membrane separates a plasmatic from a non-plasmatic phase.

    Science.gov (United States)

    Moog, Daniel; Maier, Uwe G

    2017-08-01

    Is the spatial organization of membranes and compartments within cells subjected to any rules? Cellular compartmentation differs between prokaryotic and eukaryotic life, because it is present to a high degree only in eukaryotes. In 1964, Prof. Eberhard Schnepf formulated the compartmentation rule (Schnepf theorem), which posits that a biological membrane, the main physical structure responsible for cellular compartmentation, usually separates a plasmatic form a non-plasmatic phase. Here we review and re-investigate the Schnepf theorem by applying the theorem to different cellular structures, from bacterial cells to eukaryotes with their organelles and compartments. In conclusion, we can confirm the general correctness of the Schnepf theorem, noting explicit exceptions only in special cases such as endosymbiosis and parasitism. © 2017 WILEY Periodicals, Inc.

  3. Laboratory of Cell and Molecular Biology

    Data.gov (United States)

    Federal Laboratory Consortium — The Laboratory of Cell and Molecular Biology investigates the organization, compartmentalization, and biochemistry of eukaryotic cells and the pathology associated...

  4. A Novel Method for Performance Analysis of Compartmentalized Reservoirs

    Directory of Open Access Journals (Sweden)

    Shahamat Mohammad Sadeq

    2016-05-01

    Full Text Available This paper presents a simple analytical model for performance analysis of compartmentalized reservoirs producing under Constant Terminal Rate (CTR and Constant Terminal Pressure (CTP. The model is based on the well-known material balance and boundary dominated flow equations and is written in terms of capacitance and resistance of a production and a support compartment. These capacitance and resistance terms account for a combination of reservoir parameters which enable the developed model to be used for characterizing such systems. In addition to considering the properties contrast between the two reservoir compartments, the model takes into account existence of transmissibility barriers with the use of resistance terms. The model is used to analyze production performance of unconventional reservoirs, where the multistage fracturing of horizontal wells effectively creates a Stimulated Reservoir Volume (SRV with an enhanced permeability surrounded by a non-stimulated region. It can also be used for analysis of compartmentalized conventional reservoirs. The analytical solutions provide type curves through which the controlling reservoirs parameters of a compartmentalized system can be estimated. The contribution of the supporting compartment is modeled based on a boundary dominated flow assumption. The transient behaviour of the support compartment is captured by application of “distance of investigation” concept. The model shows that depletion of the production and support compartments exhibit two unit slopes on a log-log plot of pressure versus time for CTR. For CTP, however, the depletions display two exponential declines. The depletion signatures are separated by transition periods, which depend on the contribution of the support compartment (i.e. transient or boundary dominated flow. The developed equations can be implemented easily in a spreadsheet application, and are corroborated with the use of a numerical simulation. The study

  5. Field Testing of Compartmentalization Methods for Multifamily Construction

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K. [Building Science Corporation, Westford, MA (United States); Lstiburek, J. [Building Science Corporation, Westford, MA (United States)

    2015-03-01

    The 2012 IECC has an airtightness requirement of 3 air changes per hour at 50 Pascals test pressure for both single-family and multifamily construction in Climate Zones 3-8. Other programs (LEED, ASHRAE 189, ASHRAE 62.2) have similar or tighter compartmentalization requirements, driving the need for easier and more effective methods of compartmentalization in multifamily buildings. Builders and practitioners have found that fire-resistance rated wall assemblies are a major source of difficulty in air sealing/compartmentalization, particularly in townhouse construction. This problem is exacerbated when garages are “tucked in” to the units and living space is located over the garages. In this project, Building Science Corporation examined the taping of exterior sheathing details to improve air sealing results in townhouse and multifamily construction, when coupled with a better understanding of air leakage pathways. Current approaches are cumbersome, expensive, time consuming, and ineffective; these details were proposed as a more effective and efficient method. The effectiveness of these air sealing methods was tested with blower door testing, including “nulled” or “guarded” testing (adjacent units run at equal test pressure to null out inter-unit air leakage, or “pressure neutralization”). Pressure diagnostics were used to evaluate unit-to-unit connections and series leakage pathways (i.e., air leakage from exterior, into the fire-resistance rated wall assembly, and to the interior).

  6. On the contributions of photorespiration and compartmentation to the contrasting intramolecular 2H profiles of C3 and C4 plant sugars

    Science.gov (United States)

    Youping Zhou; Benli Zhang; Hilary Stuart-Williams; Kliti Grice; Charles H. Hocart; Arthur Gessler; Zachary E. Kayler; Graham D. Farquhar

    2018-01-01

    Compartmentation of C4 photosynthetic biochemistry into bundle sheath (BS) and mesophyll (M) cells, and photorespiration in C3 plants is predicted to have hydrogen isotopic consequences for metabolites at both molecular and site-specific levels. Molecular-level evidence was recently reported (Zhou et al., 2016), but...

  7. Posttranslational protein S-palmitoylation and the compartmentalization of signaling molecules in neurons

    Directory of Open Access Journals (Sweden)

    SEAN I PATTERSON

    2002-01-01

    Full Text Available Protein domains play a fundamental role in the spatial and temporal organization of intracellular signaling systems. While protein phosphorylation has long been known to modify the interactions that underlie this organization, the dynamic cycling of lipids should now be included amongst the posttranslational processes determining specificity in signal transduction. The characteristics of this process are reminiscent of the properties of protein and lipid phosphorylation in determining compartmentalization through SH2 or PH domains. Recent studies have confirmed the functional importance of protein S-palmitoylation in the compartmentalization of signaling molecules that support normal physiological function in cell division and apoptosis, and synaptic transmission and neurite outgrowth. In neurons, S-palmitoylation and targeting of proteins to rafts are regulated differentially in development by a number of processes, including some related to synaptogenesis and synaptic plasticity. Alterations in the S-palmitoylation state of proteins substantially affect their cellular function, raising the possibility of new therapeutic targets in cancer and nervous system injury and disease.

  8. Compartmentalization of B-cell antigen receptor functions

    NARCIS (Netherlands)

    Lankester, A. C.; van Lier, R. A.

    1996-01-01

    Receptor tyrosine kinases (RTK), like the PDGF-receptor, translate information from the extracellular environment into cytoplasmic signals that regulate a spectrum of cellular functions. RTK molecules consist of ligand binding extracellular domains, cytoplasmic kinase domains and tyrosine

  9. Compartmentalized Epidermal Activation of β-Catenin Differentially Affects Lineage Reprogramming and Underlies Tumor Heterogeneity

    Directory of Open Access Journals (Sweden)

    Kai Kretzschmar

    2016-01-01

    Full Text Available Wnt/β-catenin activation in adult epidermis can induce new hair follicle formation and tumor development. We used lineage tracing to uncover the relative contribution of different stem cell populations. LGR6+ and LRIG1+ stem cells contributed to ectopic hair follicles formed in the sebaceous gland upon β-catenin activation, whereas LGR5+ cells did not. Lgr6, but not Lrig1 or Lgr5, was expressed in a subpopulation of interfollicular epidermal cells that were competent to form new hair follicles. Oncogenic β-catenin expression in LGR5+ cells led to formation of pilomatricomas, while LRIG1+ cells formed trichoadenomas and LGR6+ cells formed dermatofibromas. Tumor formation was always accompanied by a local increase in dermal fibroblast density and transient extracellular matrix remodeling. However, each tumor had a distinct stromal signature in terms of immune cell infiltrate and expression of CD26 and CD44. We conclude that compartmentalization of epidermal stem cells underlies different responses to β-catenin and skin tumor heterogeneity.

  10. Compartmentalization of HIV-1 within the female genital tract is due to monotypic and low-diversity variants not distinct viral populations.

    Science.gov (United States)

    Bull, Marta; Learn, Gerald; Genowati, Indira; McKernan, Jennifer; Hitti, Jane; Lockhart, David; Tapia, Kenneth; Holte, Sarah; Dragavon, Joan; Coombs, Robert; Mullins, James; Frenkel, Lisa

    2009-09-22

    Compartmentalization of HIV-1 between the genital tract and blood was noted in half of 57 women included in 12 studies primarily using cell-free virus. To further understand differences between genital tract and blood viruses of women with chronic HIV-1 infection cell-free and cell-associated virus populations were sequenced from these tissues, reasoning that integrated viral DNA includes variants archived from earlier in infection, and provides a greater array of genotypes for comparisons. Multiple sequences from single-genome-amplification of HIV-1 RNA and DNA from the genital tract and blood of each woman were compared in a cross-sectional study. Maximum likelihood phylogenies were evaluated for evidence of compartmentalization using four statistical tests. Genital tract and blood HIV-1 appears compartmentalized in 7/13 women by >/=2 statistical analyses. These subjects' phylograms were characterized by low diversity genital-specific viral clades interspersed between clades containing both genital and blood sequences. Many of the genital-specific clades contained monotypic HIV-1 sequences. In 2/7 women, HIV-1 populations were significantly compartmentalized across all four statistical tests; both had low diversity genital tract-only clades. Collapsing monotypic variants into a single sequence diminished the prevalence and extent of compartmentalization. Viral sequences did not demonstrate tissue-specific signature amino acid residues, differential immune selection, or co-receptor usage. In women with chronic HIV-1 infection multiple identical sequences suggest proliferation of HIV-1-infected cells, and low diversity tissue-specific phylogenetic clades are consistent with bursts of viral replication. These monotypic and tissue-specific viruses provide statistical support for compartmentalization of HIV-1 between the female genital tract and blood. However, the intermingling of these clades with clades comprised of both genital and blood sequences and the absence

  11. The iDuo Bi-compartmental Knee Replacement: Our Early Experience.

    Directory of Open Access Journals (Sweden)

    Peter Jemmett

    2016-12-01

    Our early results suggest that the iDuo knee is a good option for those with isolated bi-compartmental disease and outcome scores are comparable with those reported for the BKA. This bi-compartmental design may bridge the gap between the uni-compartmental and total knee replacement. The choice between monolithic or modular designs remains in debate. We will continue to use this prosthesis for a carefully selected group of patients.

  12. Functional compartmentalization of the human superficial masseter muscle.

    Directory of Open Access Journals (Sweden)

    Rodrigo A Guzmán-Venegas

    Full Text Available Some muscles have demonstrated a differential recruitment of their motor units in relation to their location and the nature of the motor task performed; this involves functional compartmentalization. There is little evidence that demonstrates the presence of a compartmentalization of the superficial masseter muscle during biting. The aim of this study was to describe the topographic distribution of the activity of the superficial masseter (SM muscle's motor units using high-density surface electromyography (EMGs at different bite force levels. Twenty healthy natural dentate participants (men: 4; women: 16; age 20±2 years; mass: 60±12 kg, height: 163±7 cm were selected from 316 volunteers and included in this study. Using a gnathodynamometer, bites from 20 to 100% maximum voluntary bite force (MVBF were randomly requested. Using a two-dimensional grid (four columns, six electrodes located on the dominant SM, EMGs in the anterior, middle-anterior, middle-posterior and posterior portions were simultaneously recorded. In bite ranges from 20 to 60% MVBF, the EMG activity was higher in the anterior than in the posterior portion (p-value = 0.001.The center of mass of the EMG activity was displaced towards the posterior part when bite force increased (p-value = 0.001. The topographic distribution of EMGs was more homogeneous at high levels of MVBF (p-value = 0.001. The results of this study show that the superficial masseter is organized into three functional compartments: an anterior, a middle and a posterior compartment. However, this compartmentalization is only seen at low levels of bite force (20-60% MVBF.

  13. PKA catalytic subunit compartmentation regulates contractile and hypertrophic responses to β-adrenergic signaling

    Science.gov (United States)

    Yang, Jason H.; Polanowska-Grabowska, Renata K.; Smith, Jeffrey S.; Shields, Charles W.; Saucerman, Jeffrey J.

    2014-01-01

    β-adrenergic signaling is spatiotemporally heterogeneous in the cardiac myocyte, conferring exquisite control to sympathetic stimulation. Such heterogeneity drives the formation of protein kinase A (PKA) signaling microdomains, which regulate Ca2+ handling and contractility. Here, we test the hypothesis that the nucleus independently comprises a PKA signaling microdomain regulating myocyte hypertrophy. Spatially-targeted FRET reporters for PKA activity identified slower PKA activation and lower isoproterenol sensitivity in the nucleus (t50 = 10.60±0.68 min; EC50 = 89.00 nmol/L) than in the cytosol (t50 = 3.71±0.25 min; EC50 = 1.22 nmol/L). These differences were not explained by cAMP or AKAP-based compartmentation. A computational model of cytosolic and nuclear PKA activity was developed and predicted that differences in nuclear PKA dynamics and magnitude are regulated by slow PKA catalytic subunit diffusion, while differences in isoproterenol sensitivity are regulated by nuclear expression of protein kinase inhibitor (PKI). These were validated by FRET and immunofluorescence. The model also predicted differential phosphorylation of PKA substrates regulating cell contractility and hypertrophy. Ca2+ and cell hypertrophy measurements validated these predictions and identified higher isoproterenol sensitivity for contractile enhancements (EC50 = 1.84 nmol/L) over cell hypertrophy (EC50 = 85.88 nmol/L). Over-expression of spatially targeted PKA catalytic subunit to the cytosol or nucleus enhanced contractile and hypertrophic responses, respectively. We conclude that restricted PKA catalytic subunit diffusion is an important PKA compartmentation mechanism and the nucleus comprises a novel PKA signaling microdomain, insulating hypertrophic from contractile β-adrenergic signaling responses. PMID:24225179

  14. Analytical properties of a three-compartmental dynamical demographic model

    Science.gov (United States)

    Postnikov, E. B.

    2015-07-01

    The three-compartmental demographic model by Korotaeyv-Malkov-Khaltourina, connecting population size, economic surplus, and education level, is considered from the point of view of dynamical systems theory. It is shown that there exist two integrals of motion, which enables the system to be reduced to one nonlinear ordinary differential equation. The study of its structure provides analytical criteria for the dominance ranges of the dynamics of Malthus and Kremer. Additionally, the particular ranges of parameters enable the derived general ordinary differential equations to be reduced to the models of Gompertz and Thoularis-Wallace.

  15. Membrane Compartmentalization Reducing the Mobility of Lipids and Proteins within a Model Plasma Membrane.

    Science.gov (United States)

    Koldsø, Heidi; Reddy, Tyler; Fowler, Philip W; Duncan, Anna L; Sansom, Mark S P

    2016-09-01

    The cytoskeleton underlying cell membranes may influence the dynamic organization of proteins and lipids within the bilayer by immobilizing certain transmembrane (TM) proteins and forming corrals within the membrane. Here, we present coarse-grained resolution simulations of a biologically realistic membrane model of asymmetrically organized lipids and TM proteins. We determine the effects of a model of cytoskeletal immobilization of selected membrane proteins using long time scale coarse-grained molecular dynamics simulations. By introducing compartments with varying degrees of restraints within the membrane models, we are able to reveal how compartmentalization caused by cytoskeletal immobilization leads to reduced and anomalous diffusional mobility of both proteins and lipids. This in turn results in a reduced rate of protein dimerization within the membrane and of hopping of membrane proteins between compartments. These simulations provide a molecular realization of hierarchical models often invoked to explain single-molecule imaging studies of membrane proteins.

  16. The monitoring of relative changes in compartmental compliances of brain

    International Nuclear Information System (INIS)

    Kim, Dong-Joo; Carrera, Emmanuel; Castellani, Gianluca; Zweifel, Christian; Smielewski, Peter; Pickard, John D; Czosnyka, Marek; Kasprowicz, Magdalena; Lavinio, Andrea; Sutcliffe, Michael P F

    2009-01-01

    The study aimed to develop a computational method for assessing relative changes in compartmental compliances within the brain: the arterial bed and the cerebrospinal space. The method utilizes the relationship between pulsatile components in the arterial blood volume, arterial blood pressure (ABP) and intracranial pressure (ICP). It was verified by using clinical recordings of intracranial pressure plateau waves, when massive vasodilatation accompanying plateau waves produces changes in brain compliances of the arterial bed (C a ) and compliance of the cerebrospinal space (C i ). Ten patients admitted after head injury with a median Glasgow Coma Score of 6 were studied retrospectively. ABP was directly monitored from the radial artery. Changes in the cerebral arterial blood volume were assessed using Transcranial Doppler (TCD) ultrasonography by digital integration of inflow blood velocity. During plateau waves, ICP increased (P = 0.001), CPP decreased (P = 0.001), ABP remained constant (P = 0.532), blood flow velocity decreased (P = 0.001). Calculated compliance of the arterial bed C a increased significantly (P = 0.001); compliance of the CSF space C i decreased (P = 0.001). We concluded that the method allows for continuous monitoring of relative changes in brain compartmental compliances. Plateau waves affect the balance between vascular and CSF compartments, which is reflected by the inverse change of compliance of the cerebral arterial bed and global compliance of the CSF space

  17. Human immunodeficiency viruses appear compartmentalized to the female genital tract in cross-sectional analyses but genital lineages do not persist over time.

    Science.gov (United States)

    Bull, Marta E; Heath, Laura M; McKernan-Mullin, Jennifer L; Kraft, Kelli M; Acevedo, Luis; Hitti, Jane E; Cohn, Susan E; Tapia, Kenneth A; Holte, Sarah E; Dragavon, Joan A; Coombs, Robert W; Mullins, James I; Frenkel, Lisa M

    2013-04-15

    Whether unique human immunodeficiency type 1 (HIV) genotypes occur in the genital tract is important for vaccine development and management of drug resistant viruses. Multiple cross-sectional studies suggest HIV is compartmentalized within the female genital tract. We hypothesize that bursts of HIV replication and/or proliferation of infected cells captured in cross-sectional analyses drive compartmentalization but over time genital-specific viral lineages do not form; rather viruses mix between genital tract and blood. Eight women with ongoing HIV replication were studied during a period of 1.5 to 4.5 years. Multiple viral sequences were derived by single-genome amplification of the HIV C2-V5 region of env from genital secretions and blood plasma. Maximum likelihood phylogenies were evaluated for compartmentalization using 4 statistical tests. In cross-sectional analyses compartmentalization of genital from blood viruses was detected in three of eight women by all tests; this was associated with tissue specific clades containing multiple monotypic sequences. In longitudinal analysis, the tissues-specific clades did not persist to form viral lineages. Rather, across women, HIV lineages were comprised of both genital tract and blood sequences. The observation of genital-specific HIV clades only in cross-sectional analysis and an absence of genital-specific lineages in longitudinal analyses suggest a dynamic interchange of HIV variants between the female genital tract and blood.

  18. Human Immunodeficiency Viruses Appear Compartmentalized to the Female Genital Tract in Cross-Sectional Analyses but Genital Lineages Do Not Persist Over Time

    Science.gov (United States)

    Bull, Marta E.; Heath, Laura M.; McKernan-Mullin, Jennifer L.; Kraft, Kelli M.; Acevedo, Luis; Hitti, Jane E.; Cohn, Susan E.; Tapia, Kenneth A.; Holte, Sarah E.; Dragavon, Joan A.; Coombs, Robert W.; Mullins, James I.; Frenkel, Lisa M.

    2013-01-01

    Background. Whether unique human immunodeficiency type 1 (HIV) genotypes occur in the genital tract is important for vaccine development and management of drug resistant viruses. Multiple cross-sectional studies suggest HIV is compartmentalized within the female genital tract. We hypothesize that bursts of HIV replication and/or proliferation of infected cells captured in cross-sectional analyses drive compartmentalization but over time genital-specific viral lineages do not form; rather viruses mix between genital tract and blood. Methods. Eight women with ongoing HIV replication were studied during a period of 1.5 to 4.5 years. Multiple viral sequences were derived by single-genome amplification of the HIV C2-V5 region of env from genital secretions and blood plasma. Maximum likelihood phylogenies were evaluated for compartmentalization using 4 statistical tests. Results. In cross-sectional analyses compartmentalization of genital from blood viruses was detected in three of eight women by all tests; this was associated with tissue specific clades containing multiple monotypic sequences. In longitudinal analysis, the tissues-specific clades did not persist to form viral lineages. Rather, across women, HIV lineages were comprised of both genital tract and blood sequences. Conclusions. The observation of genital-specific HIV clades only in cross-sectional analysis and an absence of genital-specific lineages in longitudinal analyses suggest a dynamic interchange of HIV variants between the female genital tract and blood. PMID:23315326

  19. Cs-137 accumulation and elimination by Gracilaria caudata alga and Abudefduf saxatilis fish. Compartmental analysis

    International Nuclear Information System (INIS)

    Mattiolo-Marchese, Sandra Regina

    1998-01-01

    From the ecological point of view, 137 Cs is a critical radionuclide because its physical half-life is long (30 years), and it has a high fission yield. Besides, it presents similar characteristics to sodium and potassium, fundamental elements for the living organisms, in great concentration in all cells. This work has as aim to study the 137 Cs accumulation and elimination by the alga Gracilaria caudata and by the fish Abudefduf saxatilis as well as to obtain the transfer constants of the 137 Cs from the water into the organisms. The concentration factor found for the fish was 5.6 +- 0.2 and for the alga, 13.0 +- 0,6. With 7 and 22 days, the fish and alga respectively had already eliminated half of the accumulated radionuclide. The 137 Cs ingestion efficiency by the fish was also studied and it was verified that the fish assimilated only 47.6 % of the cesium content in the food; and within of 4 days it had eliminated more than half of ingested cesium. A compartmental model was proposed to explain the distribution of cesium in the compartments (water - alga and water - fish). Data obtained from the experiments of 137 Cs accumulation and elimination were applied in the Ana Comp Program. This program permits the compartmental analysis, and quantifies the cesium distribution from the sea-water to the organisms, and vice versa, through the transfer constants (k). The Ana Comp Program also allowed to calculate the dose that one would receive by the consumption of fish contaminated by cesium. Levels of 137 Cs from the global fallout in environmental samples, from Sao Sebastiao, northern coast of Sao Paulo, (where the 'Centro de Biologia Marinha da Universidade de Sao Paulo - CEBIMar - USP' is located), were verified. (author)

  20. Synapse-specific and compartmentalized expression of presynaptic homeostatic potentiation

    Science.gov (United States)

    Li, Xiling; Goel, Pragya; Chen, Catherine; Angajala, Varun; Chen, Xun

    2018-01-01

    Postsynaptic compartments can be specifically modulated during various forms of synaptic plasticity, but it is unclear whether this precision is shared at presynaptic terminals. Presynaptic homeostatic plasticity (PHP) stabilizes neurotransmission at the Drosophila neuromuscular junction, where a retrograde enhancement of presynaptic neurotransmitter release compensates for diminished postsynaptic receptor functionality. To test the specificity of PHP induction and expression, we have developed a genetic manipulation to reduce postsynaptic receptor expression at one of the two muscles innervated by a single motor neuron. We find that PHP can be induced and expressed at a subset of synapses, over both acute and chronic time scales, without influencing transmission at adjacent release sites. Further, homeostatic modulations to CaMKII, vesicle pools, and functional release sites are compartmentalized and do not spread to neighboring pre- or post-synaptic structures. Thus, both PHP induction and expression mechanisms are locally transmitted and restricted to specific synaptic compartments. PMID:29620520

  1. Compartmentalization of NO signaling cascade in skeletal muscles

    International Nuclear Information System (INIS)

    Buchwalow, Igor B.; Minin, Evgeny A.; Samoilova, Vera E.; Boecker, Werner; Wellner, Maren; Schmitz, Wilhelm; Neumann, Joachim; Punkt, Karla

    2005-01-01

    Skeletal muscle functions regulated by NO are now firmly established. However, the literature on the compartmentalization of NO signaling in myocytes is highly controversial. To address this issue, we examined localization of enzymes engaged in L-arginine-NO-cGMP signaling in the rat quadriceps muscle. Employing immunocytochemical labeling complemented with tyramide signal amplification and electron microscopy, we found NO synthase expressed not only in the sarcolemma, but also along contractile fibers, in the sarcoplasmic reticulum and mitochondria. The expression pattern of NO synthase in myocytes showed striking parallels with the enzymes engaged in L-arginine-NO-cGMP signaling (arginase, phosphodiesterase, and soluble guanylyl cyclase). Our findings are indicative of an autocrine fashion of NO signaling in skeletal muscles at both cellular and subcellular levels, and challenge the notion that the NO generation is restricted to the sarcolemma

  2. Imaging and compartmental classification of solid pelvic tumours in children

    International Nuclear Information System (INIS)

    Hugosson, C.; Nyman, R.; Jacobsson, B.; Jorulf, H.; McDonald, P.; Sackey, K.

    1996-01-01

    Thirty-five children aged from 1 day to 16 years (median 5 years) with solid pelvic tumours were investigated with US, CT and MR. All three methods gave similar estimates of tumour size. For defining location of the tumours, the pelvis was divided into three midline compartments (anterior, middle and posterior) and a right and left lateral compartment. CT and MR were accurate and equally reliable in determining the tumour location, US was less accurate. Evaluation of confinement to organ of origin was uncertain, regardless of imaging modality. Tissue characteristics with CT and MR did not contribute to the differentiation of the various tumour types, and contrast medium enhancement did not improve the discrimination. Compartmental localization was equally well assessed by CT and MR and, together with sex, was found to correlate with the tumour type. (orig.). With 7 figs., 5 tabs

  3. Compartmental analysis, imaging techniques and population pharmacokinetic. Experiences at CENTIS

    International Nuclear Information System (INIS)

    Hernández, Ignacio; León, Mariela; Leyva, Rene; Castro, Yusniel; Ayra, Fernando E.

    2016-01-01

    Introduction: In pharmacokinetic evaluation small rodents are used in a large extend. Traditional pharmacokinetic evaluations by the two steps approach can be replaced by the sparse data design which may also represent a complicated situation to evaluate satisfactorily from the statistical point of view. In this presentation different situations of sparse data sampling are analyzed based on practical consideration. Non linear mixed effect model was selected in order to estimate pharmacokinetic parameters in simulated data from real experimental results using blood sampling and imaging procedures. Materials and methods: Different scenarios representing several experimental designs of incomplete individual profiles were evaluated. Data sets were simulated based on real data from previous experiments. In all cases three to five blood samples were considered per time point. A combination of compartmental analysis with tumor uptake obtained by gammagraphy of radiolabeled drugs is also evaluated.All pharmacokinetic profiles were analyzed by means of MONOLIX software version 4.2.3. Results: All sampling schedules yield the same results when computed using the MONOLIX software and the SAEM algorithm. Population and individual pharmacokinetic parameters were accurately estimated with three or five determination per sampling point. According with the used methodology and software tool, it can be an expected result, but demonstrating the method performance in such situations, allow us to select a more flexible design using a very small number of animals in preclinical research. The combination with imaging procedures also allows us to construct a completely structured compartmental analysis. Results of real experiments are presented demonstrating the versatility of used methodology in different evaluations. The same sampling approach can be considered in phase I or II clinical trials. (author)

  4. 21 CFR 888.3535 - Knee joint femorotibial (uni-compartmental) metal/polymer porous-coated uncemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint femorotibial (uni-compartmental) metal... Devices § 888.3535 Knee joint femorotibial (uni-compartmental) metal/polymer porous-coated uncemented prosthesis. (a) Identification. A knee joint femorotibial (uni-compartmental) metal/polymer porous-coated...

  5. A new approach to the compartmental analysis in pharmacokinetics: fractional time evolution of diclofenac.

    Science.gov (United States)

    Popović, Jovan K; Atanacković, Milica T; Pilipović, Ana S; Rapaić, Milan R; Pilipović, Stevan; Atanacković, Teodor M

    2010-04-01

    This study presents a new two compartmental model and its application to the evaluation of diclofenac pharmacokinetics in a small number of healthy adults, during a bioequivalence trial. In the model the integer order derivatives are replaced by derivatives of real order often called fractional order derivatives. Physically that means that a history (memory) of a biological process, realized as a transfer from one compartment to another one with the mass balance conservation, is taken into account. This kind of investigations in pharmacokinetics is founded by Dokoumetzidis and Macheras through the one compartmental models while our contribution is the analysis of multi-dimensional compartmental models with the applications of the two compartmental model in evaluation of diclofenac pharmacokinetics. Two experiments were preformed with 12 healthy volunteers with two slow release 100 mg diclofenac tablet formulations. The agreement of the values predicted by the proposed model with the values obtained through experiments is shown to be good. Thus, pharmacokinetics of slow release diclofenac can be described well by a specific two compartmental model with fractional derivatives of the same order. Parameters in the model are determined by the least-squares method and the Particle Swarm Optimization (PSO) numerical procedure is used. The results show that the fractional order two compartmental model for diclofenac is superior in comparison to the classical two compartmental model. Actually this is true in general case since the classical one is a special case of the fractional one.

  6. Compartmentation of sucrose during radial transfer in mature sorghum culm

    Directory of Open Access Journals (Sweden)

    Vietor Donald M

    2007-06-01

    Full Text Available Abstract Background The sucrose that accumulates in the culm of sorghum (Sorghum bicolor (L. Moench and other large tropical andropogonoid grasses can be of commercial value, and can buffer assimilate supply during development. Previous study conducted with intact plants showed that sucrose can be radially transferred to the intracellular compartment of mature ripening sorghum internode without being hydrolysed. In this study, culm-infused radiolabelled sucrose was traced between cellular compartments and among related metabolites to determine if the compartmental path of sucrose during radial transfer in culm tissue was symplasmic or included an apoplasmic step. This transfer path was evaluated for elongating and ripening culm tissue of intact plants of two semidwarf grain sorghums. The metabolic path in elongating internode tissue was also evaluated. Results On the day after culm infusion of the tracer sucrose, the specific radioactivity of sucrose recovered from the intracellular compartment of growing axillary-branch tissue was greater (nearly twice than that in the free space, indicating that sucrose was preferentially transferred through symplasmic routes. In contrast, the sucrose specific radioactivity in the intracellular compartment of the mature (ripening culm tissue was probably less (about 3/4's than that in free space indicating that sucrose was preferentially transferred through routes that included an apoplasmic step. In growing internodes of the axillary branch of sorghum, the tritium label initially provided in the fructose moiety of sucrose molecules was largely (81% recovered in the fructose moiety, indicating that a large portion of sucrose molecules is not hydrolysed and resynthesized during radial transfer. Conclusion During radial transfer of sucrose in ripening internodes of intact sorghum plants, much of the sucrose is transferred intact (without hydrolysis and resynthesis and primarily through a path that includes an

  7. Inositol lipid turnover and compartmentation in canine trachealis smooth muscle

    International Nuclear Information System (INIS)

    Baron, C.B.; Pring, M.; Coburn, R.F.

    1989-01-01

    We established conditions for the study of metabolism and compartmentation of inositol phospholipids in canine trachealis muscle. Unstimulated muscle was incubated with myo-[3H]inositol for 30 min at 37 degrees C which resulted in labeling of the tissue free myo-inositol pool, whereas only a small amount of radioactivity was incorporated into inositol phospholipids or inositol phosphates. After addition of 5.5 microM carbachol, phosphatidylinositol (PI), phosphatidylinositol-4-phosphate (PIP), and phosphatidylinositol-4,5-bisphosphate (PIP2), specific radioactivities increased exponentially, reaching apparent constant values in 180-240 min. Initial rates of increases in PI, PIP, and PIP2 specific radioactivities were 39, 32, and 66 times that measured in unstimulated muscle. Metabolic flux rates (nmol.100 nmol total lipid Pi-1.min-1) during development of force averaged 0.42 +/- 0.09 and during force maintenance averaged 0.14 +/- 0.01. Fractions of total PI, PIP, and PIP2 pools that were linked to muscarinic cholinergic activation were estimated to be 0.97, 0.85, and 0.65, respectively. Initial rates of increase in specific radioactivities and specific radioactivities during carbachol activation were similar in PI, PIP, and PIP2 fast active compartments, suggesting metabolic flux from PI to PIP to PIP2 was in near chemical equilibrium. Turnover times for PI, PIP, and PIP2 fast active compartments were estimated to be 21, 1.6, and 4.0 min, respectively

  8. Compartmental transport model of microbicide delivery by an intravaginal ring

    Science.gov (United States)

    Geonnotti, Anthony R.; Katz, David F.

    2010-01-01

    Topical antimicrobials, or microbicides, are being developed to prevent HIV transmission through local, mucosal delivery of antiviral compounds. While hydrogel vehicles deliver the majority of current microbicide products, intravaginal rings (IVRs) are an alternative microbicide modality in preclinical development. IVRs provide a long-term dosing alternative to hydrogel use, and might provide improved user adherence. IVR efficacy requires sustained delivery of antiviral compounds to the entire vaginal compartment. A two-dimensional, compartmental vaginal drug transport model was created to evaluate the delivery of drugs from an intravaginal ring. The model utilized MRI-derived ring geometry and location, experimentally defined ring fluxes and vaginal fluid velocities, and biophysically relevant transport theory. Model outputs indicated the presence of potentially inhibitory concentrations of antiviral compounds along the entire vaginal canal within 24 hours following IVR insertion. Distributions of inhibitory concentrations of antiviral compounds were substantially influenced by vaginal fluid flow and production, while showing little change due to changes in diffusion coefficients or ring fluxes. Additionally, model results were predictive of in vivo concentrations obtained in clinical trials. Overall, this analysis initiates a mechanistic computational framework, heretofore missing, to understand and evaluate the potential of IVRs for effective delivery of antiviral compounds. PMID:20222027

  9. Adaptive and neuroadaptive control for nonnegative and compartmental dynamical systems

    Science.gov (United States)

    Volyanskyy, Kostyantyn Y.

    Neural networks have been extensively used for adaptive system identification as well as adaptive and neuroadaptive control of highly uncertain systems. The goal of adaptive and neuroadaptive control is to achieve system performance without excessive reliance on system models. To improve robustness and the speed of adaptation of adaptive and neuroadaptive controllers several controller architectures have been proposed in the literature. In this dissertation, we develop a new neuroadaptive control architecture for nonlinear uncertain dynamical systems. The proposed framework involves a novel controller architecture with additional terms in the update laws that are constructed using a moving window of the integrated system uncertainty. These terms can be used to identify the ideal system weights of the neural network as well as effectively suppress system uncertainty. Linear and nonlinear parameterizations of the system uncertainty are considered and state and output feedback neuroadaptive controllers are developed. Furthermore, we extend the developed framework to discrete-time dynamical systems. To illustrate the efficacy of the proposed approach we apply our results to an aircraft model with wing rock dynamics, a spacecraft model with unknown moment of inertia, and an unmanned combat aerial vehicle undergoing actuator failures, and compare our results with standard neuroadaptive control methods. Nonnegative systems are essential in capturing the behavior of a wide range of dynamical systems involving dynamic states whose values are nonnegative. A sub-class of nonnegative dynamical systems are compartmental systems. These systems are derived from mass and energy balance considerations and are comprised of homogeneous interconnected microscopic subsystems or compartments which exchange variable quantities of material via intercompartmental flow laws. In this dissertation, we develop direct adaptive and neuroadaptive control framework for stabilization, disturbance

  10. In or out? On the tightness of glycosomal compartmentalization of metabolites and enzymes in Trypanosoma brucei

    NARCIS (Netherlands)

    Haanstra, Jurgen R.; Bakker, Barbara M.; Michels, Paul A. M.

    Trypanosomatids sequester large parts of glucose metabolism inside specialised peroxisomes, called glycosomes. Many studies have shown that correct glycosomal compartmentalization of glycolytic enzymes is essential for bloodstream-form Trypanosoma brucel. The recent finding of pore-forming

  11. Compartmental models for assessing the fishery production in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Dalal, S.G.; Parulekar, A.H.

    Compartmental models for assessing the fishery production in the Indian Ocean is discussed. The article examines the theoretical basis on which modern fishery sciences is built. The model shows that, large changes in energy flux from one pathway...

  12. Compartmentalization of innate immune responses in the central nervous system during cryptococcal meningitis/HIV coinfection.

    Science.gov (United States)

    Naranbhai, Vivek; Chang, Christina C; Durgiah, Raveshni; Omarjee, Saleha; Lim, Andrew; Moosa, Mahomed-Yunus S; Elliot, Julian H; Ndung'u, Thumbi; Lewin, Sharon R; French, Martyn A; Carr, William H

    2014-03-13

    The role of innate immunity in the pathogenesis of cryptococcal meningitis is unclear. We hypothesized that natural killer (NK) cell and monocyte responses show central nervous system (CNS) compartment-specific profiles, and are altered by antifungal therapy and combination antiretroviral therapy (cART) during cryptococcal meningitis/HIV coinfection. Substudy of a prospective cohort study of adults with cryptococcal meningitis/HIV coinfection in Durban, South Africa. We used multiparametric flow cytometry to study compartmentalization of subsets, CD69 (a marker of activation), CXCR3 and CX3CR1 expression, and cytokine secretion of NK cells and monocytes in freshly collected blood and cerebrospinal fluid (CSF) at diagnosis (n = 23), completion of antifungal therapy induction (n = 19), and after a further 4 weeks of cART (n = 9). Relative to blood, CSF was enriched with CD56(bright) (immunoregulatory) NK cells (P = 0.0004). At enrolment, CXCR3 expression was more frequent among blood CD56(bright) than either blood CD56(dim) (P pos) NK-cell proportions nor CX3CR1(pos) NK-cell proportions. CD56(bright) and CD56(dim) NK cells were more activated in CSF than blood (P < 0.0001). Antifungal therapy induction reduced CD56(dim) NK-cell activation in CSF (P = 0.02). Activation of blood CD56(bright) and CD56(dim) NK cells was diminished following cART commencement (P < 0.0001, P = 0.03). Immunoregulatory NK cells in CSF tended to secrete higher levels of CXCL10 (P = 0.06) and lower levels of tumor necrosis factor α (P = 0.06) than blood immunoregulatory NK cells. CSF was enriched with nonclassical monocytes (P = 0.001), but antifungal therapy restored proportions of classical monocytes (P = 0.007). These results highlight CNS activation, trafficking, and function of NK cells and monocytes in cryptococcal meningitis/HIV and implicate immunoregulatory NK cells and proinflammatory monocytes as potential modulators of cryptococcal meningitis pathogenesis during HIV coinfection.

  13. Compartmental analysis to predict biodistribution in radiopharmaceutical design studies

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Marina F.; Pujatti, Priscilla B.; Araujo, Elaine B.; Mesquita, Carlos H. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: mflima@ipen.br

    2009-07-01

    The use of compartmental analysis allows the mathematical separation of tissues and organs to determinate the concentration of activity in each fraction of interest. Although the radiochemical purity must observe Pharmacopoeia specification (values upper 95%), very lower contains of free radionuclides could contribute significantly as dose in the neighborhood organs and make tumor up take studies not viable in case of radiopharmaceutical on the basis of labeled peptides. Animal studies with a product of Lutetium-177 labeled Bombesin derivative ({sup 177}Lu-BBNP) developed in IPEN-CNEN/SP and free Lutetium-177 developed in CNEA/EZEIZA was used to show how subtract free {sup 177}Lu contribution over {sup 177}Lu-BBNP to estimate the radiopharmaceutical potential as diagnosis or therapy agent. The first approach of the studies included the knowledge of chemical kinetics and mimetism of the Lutetium and the possible targets of the diagnosis/therapy to choose the possible models to apply over the sampling standard methods used in experimental works. A model with only one physical compartment (whole body) and one chemical compartment ({sup 177}Lu-BBNP) generated with the compartmental analysis protocol ANACOMP showed high differences between experimental and theoretical values over 2.5 hours, in spite of the concentration of activity had been in a good statistics rang of measurement. The values used in this work were residence time from three different kinds of study with free {sup 177}Lu: whole body, average excretion and maximum excretion as a chemical compartment. Activity concentration values as time function in measurements of total whole body and activity measurement in samples of blood with projection to total circulating blood volume with {sup 177}Lu-BBNP. Considering the two sources of data in the same modeling a better consistence was obtained. The next step was the statistic treatment of biodistribution and dosimetry in mice (Balb C) considering three chemical

  14. Compartmentalized PDE4A5 Signaling Impairs Hippocampal Synaptic Plasticity and Long-Term Memory.

    Science.gov (United States)

    Havekes, Robbert; Park, Alan J; Tolentino, Rosa E; Bruinenberg, Vibeke M; Tudor, Jennifer C; Lee, Yool; Hansen, Rolf T; Guercio, Leonardo A; Linton, Edward; Neves-Zaph, Susana R; Meerlo, Peter; Baillie, George S; Houslay, Miles D; Abel, Ted

    2016-08-24

    Alterations in cAMP signaling are thought to contribute to neurocognitive and neuropsychiatric disorders. Members of the cAMP-specific phosphodiesterase 4 (PDE4) family, which contains >25 different isoforms, play a key role in determining spatial cAMP degradation so as to orchestrate compartmentalized cAMP signaling in cells. Each isoform binds to a different set of protein complexes through its unique N-terminal domain, thereby leading to targeted degradation of cAMP in specific intracellular compartments. However, the functional role of specific compartmentalized PDE4 isoforms has not been examined in vivo Here, we show that increasing protein levels of the PDE4A5 isoform in mouse hippocampal excitatory neurons impairs a long-lasting form of hippocampal synaptic plasticity and attenuates hippocampus-dependent long-term memories without affecting anxiety. In contrast, viral expression of a truncated version of PDE4A5, which lacks the unique N-terminal targeting domain, does not affect long-term memory. Further, overexpression of the PDE4A1 isoform, which targets a different subset of signalosomes, leaves memory undisturbed. Fluorescence resonance energy transfer sensor-based cAMP measurements reveal that the full-length PDE4A5, in contrast to the truncated form, hampers forskolin-mediated increases in neuronal cAMP levels. Our study indicates that the unique N-terminal localization domain of PDE4A5 is essential for the targeting of specific cAMP-dependent signaling underlying synaptic plasticity and memory. The development of compounds to disrupt the compartmentalization of individual PDE4 isoforms by targeting their unique N-terminal domains may provide a fruitful approach to prevent cognitive deficits in neuropsychiatric and neurocognitive disorders that are associated with alterations in cAMP signaling. Neurons exhibit localized signaling processes that enable biochemical cascades to be activated selectively in specific subcellular compartments. The

  15. Efficient Vaccine Distribution Based on a Hybrid Compartmental Model.

    Directory of Open Access Journals (Sweden)

    Zhiwen Yu

    Full Text Available To effectively and efficiently reduce the morbidity and mortality that may be caused by outbreaks of emerging infectious diseases, it is very important for public health agencies to make informed decisions for controlling the spread of the disease. Such decisions must incorporate various kinds of intervention strategies, such as vaccinations, school closures and border restrictions. Recently, researchers have paid increased attention to searching for effective vaccine distribution strategies for reducing the effects of pandemic outbreaks when resources are limited. Most of the existing research work has been focused on how to design an effective age-structured epidemic model and to select a suitable vaccine distribution strategy to prevent the propagation of an infectious virus. Models that evaluate age structure effects are common, but models that additionally evaluate geographical effects are less common. In this paper, we propose a new SEIR (susceptible-exposed-infectious šC recovered model, named the hybrid SEIR-V model (HSEIR-V, which considers not only the dynamics of infection prevalence in several age-specific host populations, but also seeks to characterize the dynamics by which a virus spreads in various geographic districts. Several vaccination strategies such as different kinds of vaccine coverage, different vaccine releasing times and different vaccine deployment methods are incorporated into the HSEIR-V compartmental model. We also design four hybrid vaccination distribution strategies (based on population size, contact pattern matrix, infection rate and infectious risk for controlling the spread of viral infections. Based on data from the 2009-2010 H1N1 influenza epidemic, we evaluate the effectiveness of our proposed HSEIR-V model and study the effects of different types of human behaviour in responding to epidemics.

  16. Compartmental modelling of the pharmacokinetics of a breast cancer resistance protein.

    Science.gov (United States)

    Grandjean, Thomas R B; Chappell, Mike J; Yates, James T W; Jones, Kevin; Wood, Gemma; Coleman, Tanya

    2011-11-01

    A mathematical model for the pharmacokinetics of Hoechst 33342 following administration into a culture medium containing a population of transfected cells (HEK293 hBCRP) with a potent breast cancer resistance protein inhibitor, Fumitremorgin C (FTC), present is described. FTC is reported to almost completely annul resistance mediated by BCRP in vitro. This non-linear compartmental model has seven macroscopic sub-units, with 14 rate parameters. It describes the relationship between the concentration of Hoechst 33342 and FTC, initially spiked in the medium, and the observed change in fluorescence due to Hoechst 33342 binding to DNA. Structural identifiability analysis has been performed using two methods, one based on the similarity transformation/exhaustive modelling approach and the other based on the differential algebra approach. The analyses demonstrated that all models derived are uniquely identifiable for the experiments/observations available. A kinetic modelling software package, namely FACSIMILE (MPCA Software, UK), was used for parameter fitting and to obtain numerical solutions for the system equations. Model fits gave very good agreement with in vitro data provided by AstraZeneca across a variety of experimental scenarios. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  17. Characterization and subcellular compartmentation of recombinant 4-hydroxyphenylpyruvate dioxygenase from Arabidopsis in transgenic tobacco.

    Science.gov (United States)

    Garcia, I; Rodgers, M; Pepin, R; Hsieh, T F; Matringe, M

    1999-04-01

    4-Hydroxyphenylpyruvate dioxygenase (4HPPD) catalyzes the formation of homogentisate (2,5-dihydroxyphenylacetate) from p-hydroxyphenylpyruvate and molecular oxygen. In plants this enzyme activity is involved in two distinct metabolic processes, the biosynthesis of prenylquinones and the catabolism of tyrosine. We report here the molecular and biochemical characterization of an Arabidopsis 4HPPD and the compartmentation of the recombinant protein in chlorophyllous tissues. We isolated a 1508-bp cDNA with one large open reading frame of 1338 bp. Southern analysis strongly suggested that this Arabidopsis 4HPPD is encoded by a single-copy gene. We investigated the biochemical characteristics of this 4HPPD by overproducing the recombinant protein in Escherichia coli JM105. The subcellular localization of the recombinant 4HPPD in chlorophyllous tissues was examined by overexpressing its complete coding sequence in transgenic tobacco (Nicotiana tabacum), using Agrobacterium tumefaciens transformation. We performed western analyses for the immunodetection of protein extracts from purified chloroplasts and total leaf extracts and for the immunocytochemistry on tissue sections. These analyses clearly revealed that 4HPPD was confined to the cytosol compartment, not targeted to the chloroplast. Western analyses confirmed the presence of a cytosolic form of 4HPPD in cultured green Arabidopsis cells.

  18. The cellular and compartmental profile of mouse retinal glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and ~P transferring kinases.

    Science.gov (United States)

    Rueda, Elda M; Johnson, Jerry E; Giddabasappa, Anand; Swaroop, Anand; Brooks, Matthew J; Sigel, Irena; Chaney, Shawnta Y; Fox, Donald A

    2016-01-01

    The homeostatic regulation of cellular ATP is achieved by the coordinated activity of ATP utilization, synthesis, and buffering. Glucose is the major substrate for ATP synthesis through glycolysis and oxidative phosphorylation (OXPHOS), whereas intermediary metabolism through the tricarboxylic acid (TCA) cycle utilizes non-glucose-derived monocarboxylates, amino acids, and alpha ketoacids to support mitochondrial ATP and GTP synthesis. Cellular ATP is buffered by specialized equilibrium-driven high-energy phosphate (~P) transferring kinases. Our goals were twofold: 1) to characterize the gene expression, protein expression, and activity of key synthesizing and regulating enzymes of energy metabolism in the whole mouse retina, retinal compartments, and/or cells and 2) to provide an integrative analysis of the results related to function. mRNA expression data of energy-related genes were extracted from our whole retinal Affymetrix microarray data. Fixed-frozen retinas from adult C57BL/6N mice were used for immunohistochemistry, laser scanning confocal microscopy, and enzymatic histochemistry. The immunoreactivity levels of well-characterized antibodies, for all major retinal cells and their compartments, were obtained using our established semiquantitative confocal and imaging techniques. Quantitative cytochrome oxidase (COX) and lactate dehydrogenase (LDH) activity was determined histochemically. The Affymetrix data revealed varied gene expression patterns of the ATP synthesizing and regulating enzymes found in the muscle, liver, and brain. Confocal studies showed differential cellular and compartmental distribution of isozymes involved in glucose, glutamate, glutamine, lactate, and creatine metabolism. The pattern and intensity of the antibodies and of the COX and LDH activity showed the high capacity of photoreceptors for aerobic glycolysis and OXPHOS. Competition assays with pyruvate revealed that LDH-5 was localized in the photoreceptor inner segments. The

  19. The subcellular compartmentalization of arginine metabolizing enzymes and their role in endothelial dysfunction

    Directory of Open Access Journals (Sweden)

    Feng eChen

    2013-07-01

    Full Text Available The endothelial production of nitric oxide (NO mediates endothelium-dependent vasorelaxation and restrains vascular inflammation, smooth muscle proliferation and platelet aggregation. Impaired production of NO is a hallmark of endothelial dysfunction and promotes the development of cardiovascular disease. In endothelial cells, NO is generated by endothelial nitric oxide synthase (eNOS through the conversion of its substrate, L-arginine to L-citrulline. Reduced access to L-arginine has been proposed as a major mechanism underlying reduced eNOS activity and NO production in cardiovascular disease. The arginases (Arg1 and Arg2 metabolize L-arginine to generate L-ornithine and urea and increased expression of arginase has been proposed as a mechanism of reduced eNOS activity secondary to the depletion of L-arginine. Indeed, supplemental L-arginine and suppression of arginase activity has been shown to improve endothelium-dependent relaxation and ameliorate cardiovascular disease. However, L-arginine concentrations in endothelial cells remain sufficiently high to support NO synthesis suggesting additional mechanisms. The compartmentalization of intracellular L-arginine into poorly interchangeable pools has been proposed to allow for the local depletion of L-arginine. Indeed the subcellular location of L-arginine metabolizing enzymes plays important functional roles. In endothelial cells, eNOS is found in discrete intracellular locations and the capacity to generate NO is heavily influenced by its localtion. Arg1 and Arg2 also reside in different subcellular environments and are thought to differentially influence endothelial function. The plasma membrane solute transporter, CAT-1 and the arginine recycling enzyme, ASL, co-localize with eNOS and facilitate NO release. This review highlights the importance of the subcellular location of eNOS and arginine transporting and metabolizing enzymes to NO release and cardiovascular disease.

  20. Distribution and compartmental organization of GABAergic medium-sized spiny neurons in the mouse Nucleus Accumbens

    Directory of Open Access Journals (Sweden)

    Giuseppe eGangarossa

    2013-02-01

    Full Text Available The nucleus accumbens (NAc is a critical brain region involved in many reward-related behaviors. The NAc comprises major compartments the core and the shell, which encompass several subterritories. GABAergic medium-sized spiny neurons (MSNs constitute the output neurons of the NAc core and shell. While the functional organization of the NAc core outputs resembles the one described for the dorsal striatum, a simple classification of the NAc shell neurons has been difficult to define due to the complexity of the compartmental segregation of cells. We used a variety of BAC transgenic mice expressing enhanced green fluorescence (EGFP or the Cre-recombinase (Cre under the control of the promoter of dopamine D1, D2, and D3 receptors and of adenosine A2a receptor to dissect the microanatomy of the NAc. Moreover, using various immunological markers we characterized in detail the distribution of MSNs in the mouse NAc. In addition, cell-type specific ERK phosphorylation in the NAc subterritories was analyzed following acute administration of SKF81297 (a D1R-like agonist, quinpirole (a D2R-like agonist, apomorphine (a non-selective DA receptor agonist, raclopride (a D2R-like antagonist, and psychostimulant drugs, including cocaine and d-amphetamine. Each drug generated a unique topography and cell-type specific activation of ERK in the NAc. Our results show the existence of marked differences in the receptor expression pattern and functional activation of MSNs within the shell subterritories. This study emphasizes the anatomical and functional heterogeneity of the NAc, which will have to be considered in its further study.

  1. A Common Decision of Compartmental Models on the Base of Laplace Transform and Retain Function Concept

    International Nuclear Information System (INIS)

    Dimitrov, L.; Tzvetkova, A.; Nikolov, A.

    1997-01-01

    The compartmental models have a variety of applications in the analysis of the transport of radioactive and non-radioactive material in complex systems as atmosphere, hydrosphere, food chains, human body. The analysis of the biokinetic behaviour of the radioactive material into a human body gives a possibility for correct assessment of the dose from internal irradiation. Skrable has given a decision of non-cyclic linear compartmental models in case of a single intake of material in the compartments as an initial condition. The main purpose of our article is to write down a procedure for analysis of a general compartmental model in case of continuous intake of material into the compartments. This procedure is related to retain function concept and had developed on the base of Laplace transform. On the base on the proposed procedure a non-cyclic linear compartmental model decisions are given in case of both a single and a continuous intake. The Laplace images of cyclic and circular linear compartmental model decisions and their originals in some cases are given too. (author)

  2. Heterogeneity and compartmental properties of insulin storage and secretion in rat islets

    International Nuclear Information System (INIS)

    Gold, G.; Landahl, H.D.; Gishizky, M.L.; Grodsky, G.M.

    1982-01-01

    To investigate compartmental properties of insulin storage and secretion, isolated rat islets were used for pulse-labeling experiments, after which proinsulin and insulin were purified rigorously. Processing of proinsulin to insulin neared completion by 3 h without additional loss of either radioactive peptide by cellular or extracellular proteolysis. The amount of labeled hormone rapidly diminished in islets; it was secreted at a higher fractional rate than immunoreactive insulin, resulting in secreted insulin's having a higher specific activity than the average cellular insulin. Newly synthesized insulin, therefore, was secreted preferentially. Changes in the specific activity of secreted and cellular insulin with time were consistent with changes predicted for islets containing 33% of their total insulin in a glucose-labile compartment. Predictions were based on steady-state analysis of a simple storage-limited representation of B cell function. Islets from either the dorsal or ventral part of the pancreas also contained 33% of their total insulin in a glucose-labile compartment. The same compartment was mobilized by 20 mM glucose, 50 mM potassium + 2 mM glucose, or 20 MM glucose + 1 mM 3-isobutylmethylxanthine as indicated by the specific activity ratio of secreted vs. cellular insulin, even though average secretion rates with these stimuli differed by more than threefold. In the absence of calcium, the effectiveness of 20 mM glucose as a secretagogue declined markedly, and the older stored insulin was preferentially mobilized because secreted insulin had a lower rather than a higher specific activity than cellular insulin. Results provide insight into the mechanisms of nonrandom mobilization and secretion of insulin form the B cell

  3. Global identifiability of linear compartmental models--a computer algebra algorithm.

    Science.gov (United States)

    Audoly, S; D'Angiò, L; Saccomani, M P; Cobelli, C

    1998-01-01

    A priori global identifiability deals with the uniqueness of the solution for the unknown parameters of a model and is, thus, a prerequisite for parameter estimation of biological dynamic models. Global identifiability is however difficult to test, since it requires solving a system of algebraic nonlinear equations which increases both in nonlinearity degree and number of terms and unknowns with increasing model order. In this paper, a computer algebra tool, GLOBI (GLOBal Identifiability) is presented, which combines the topological transfer function method with the Buchberger algorithm, to test global identifiability of linear compartmental models. GLOBI allows for the automatic testing of a priori global identifiability of general structure compartmental models from general multi input-multi output experiments. Examples of usage of GLOBI to analyze a priori global identifiability of some complex biological compartmental models are provided.

  4. Glucose 6-phosphate compartmentation and the control of glycogen synthesis

    NARCIS (Netherlands)

    Meijer, Alfred

    2002-01-01

    Using adenovirus-mediated gene transfer into FTO-2B cells, a rat hepatoma cell line, we have overexpressed hexokinase I, (HK I), glucokinase (GK), liver glycogen synthase (LGS), muscle glycogen synthase (MGS), and combinations of each of the two glucose phosphorylating enzymes with each one of the

  5. Macroanatomy and compartmentalization of recent fire scars in three North American conifers

    Science.gov (United States)

    Kevin T. Smith; Estelle Arbellay; Donald A. Falk; Elaine Kennedy Sutherland

    2016-01-01

    Fire scars are initiated by cambial necrosis caused by localized lethal heating of the tree stem. Scars develop as part of the linked survival processes of compartmentalization and wound closure. The position of scars within dated tree ring series is the basis for dendrochronological reconstruction of fire history. Macroanatomical features were described for western...

  6. Meningoencephalitis and Compartmentalization of the Cerebral Ventricles Caused by Enterobacter sakazakii

    Science.gov (United States)

    Kleiman, Martin B.; Allen, Stephen D.; Neal, Patricia; Reynolds, Janet

    1981-01-01

    A necrotizing meningoencephalitis complicated by ventricular compartmentalization and abscess formation caused by Enterobacter sakazakii in a previously healthy 5-week-old female is described. A detailed description of the isolate is presented. This communication firmly establishes the pathogenicity of E. sakazakii. PMID:7287892

  7. Sustainability of a Compartmentalized Host-Parasite Replicator System under Periodic Washout-Mixing Cycles

    Directory of Open Access Journals (Sweden)

    Taro Furubayashi

    2018-01-01

    Full Text Available The emergence and dominance of parasitic replicators are among the major hurdles for the proliferation of primitive replicators. Compartmentalization of replicators is proposed to relieve the parasite dominance; however, it remains unclear under what conditions simple compartmentalization uncoupled with internal reaction secures the long-term survival of a population of primitive replicators against incessant parasite emergence. Here, we investigate the sustainability of a compartmentalized host-parasite replicator (CHPR system undergoing periodic washout-mixing cycles, by constructing a mathematical model and performing extensive simulations. We describe sustainable landscapes of the CHPR system in the parameter space and elucidate the mechanism of phase transitions between sustainable and extinct regions. Our findings revealed that a large population size of compartments, a high mixing intensity, and a modest amount of nutrients are important factors for the robust survival of replicators. We also found two distinctive sustainable phases with different mixing intensities. These results suggest that a population of simple host–parasite replicators assumed before the origin of life can be sustained by a simple compartmentalization with periodic washout-mixing processes.

  8. Analysis of a compartmental model of amyloid beta production, irreversible loss and exchange in humans.

    Science.gov (United States)

    Elbert, Donald L; Patterson, Bruce W; Bateman, Randall J

    2015-03-01

    Amyloid beta (Aβ) peptides, and in particular Aβ42, are found in senile plaques associated with Alzheimer's disease. A compartmental model of Aβ production, exchange and irreversible loss was recently developed to explain the kinetics of isotope-labeling of Aβ peptides collected in cerebrospinal fluid (CSF) following infusion of stable isotope-labeled leucine in humans. The compartmental model allowed calculation of the rates of production, irreversible loss (or turnover) and short-term exchange of Aβ peptides. Exchange of Aβ42 was particularly pronounced in amyloid plaque-bearing participants. In the current work, we describe in much greater detail the characteristics of the compartmental model to two distinct audiences: physician-scientists and biokineticists. For physician-scientists, we describe through examples the types of questions the model can and cannot answer, as well as correct some misunderstandings of previous kinetic analyses applied to this type of isotope labeling data. For biokineticists, we perform a system identifiability analysis and a sensitivity analysis of the kinetic model to explore the global and local properties of the model. Combined, these analyses motivate simplifications from a more comprehensive physiological model to the final model that was previously presented. The analyses clearly demonstrate that the current dataset and compartmental model allow determination with confidence a single 'turnover' parameter, a single 'exchange' parameter and a single 'delay' parameter. When combined with CSF concentration data for the Aβ peptides, production rates may also be obtained. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. A new method to estimate parameters of linear compartmental models using artificial neural networks

    International Nuclear Information System (INIS)

    Gambhir, Sanjiv S.; Keppenne, Christian L.; Phelps, Michael E.; Banerjee, Pranab K.

    1998-01-01

    At present, the preferred tool for parameter estimation in compartmental analysis is an iterative procedure; weighted nonlinear regression. For a large number of applications, observed data can be fitted to sums of exponentials whose parameters are directly related to the rate constants/coefficients of the compartmental models. Since weighted nonlinear regression often has to be repeated for many different data sets, the process of fitting data from compartmental systems can be very time consuming. Furthermore the minimization routine often converges to a local (as opposed to global) minimum. In this paper, we examine the possibility of using artificial neural networks instead of weighted nonlinear regression in order to estimate model parameters. We train simple feed-forward neural networks to produce as outputs the parameter values of a given model when kinetic data are fed to the networks' input layer. The artificial neural networks produce unbiased estimates and are orders of magnitude faster than regression algorithms. At noise levels typical of many real applications, the neural networks are found to produce lower variance estimates than weighted nonlinear regression in the estimation of parameters from mono- and biexponential models. These results are primarily due to the inability of weighted nonlinear regression to converge. These results establish that artificial neural networks are powerful tools for estimating parameters for simple compartmental models. (author)

  10. Heterogeneity and compartmentalization of Pneumocystis carinii f. sp. hominis genotypes in autopsy lungs

    DEFF Research Database (Denmark)

    Helweg-Larsen, J; Lundgren, Bettina; Lundgren, Jens Dilling

    2001-01-01

    . Not all genotypes present in the lungs at autopsy were detected in the diagnostic respiratory samples. Compartmentalization of specific ITS and mtLSU rRNA sequence types was observed in different lung segments. In conclusion, the interpretation of genotype data and in particular ITS sequence types...

  11. The Contradictions and Compartmentalizing the Interactions between Integrated Business Structures: Aspect of Branding

    Directory of Open Access Journals (Sweden)

    Nifatova Olena M.

    2017-04-01

    Full Text Available The article is aimed at identifying contradictions and developing a compartmentalizing as to the interaction between integrated business structures, taking into consideration the branding approach to management. The main specific features and contradictions that arise in the process of integration in the domestic market of mergers and acquisitions have been allocated. The contradictions identified were systematized and substantiated at three economic levels: macro-, meso-, and microeconomic. A compartmentalizing of the business units interaction in a merge or an acquisition process has been proposed. This compartmentalizing takes account of the branding aspect through the introduction of «brands interaction» – cluster interaction, circular interaction, holding interaction, linear interaction, which enhances the scientific view of exploring the problem of business units interaction in the process of the formations becoming integrated. The development of a compartmentalizing as to the interaction between integrated business structures, taking into consideration the branding approach to management, would provide a more effective use of the fundamental nature of branding as synergistic force in terms of the system of integration of business structures at the current stage of development of the national economy. Further development of branding issues in this sphere will have a significant impact on the functioning of the integrated business structures with the participation of Ukrainian companies.

  12. Statistical properties of compartmental model parameters extracted from dynamic positron emission tomography experiments

    International Nuclear Information System (INIS)

    Mazoyer, B.M.; Huesman, R.H.; Budinger, T.F.; Knittel, B.L.

    1986-01-01

    Over the past years a major focus of research in physiologic studies employing tracers has been the computer implementation of mathematical methods of kinetic modeling for extracting the desired physiological parameters from tomographically derived data. A study is reported of factors that affect the statistical properties of compartmental model parameters extracted from dynamic positron emission tomography (PET) experiments

  13. Compartmental Model For Uptake Of 137cs By Pine In Forest Soil ...

    African Journals Online (AJOL)

    A compartmental model of soil to pine tree transfer of 137Cs following the Chernobyl nuclear accident is presented. The model was validated using data collected in 1996 at five sites in Northern Ukraine. The transfer constants of 137Cs between model compartments are estimated using a semi-empirical method.

  14. SYNCHROTRON X-RAY ABSORPTION-EDGE COMPUTED MICROTOMOGRAPHY IMAGING OF THALLIUM COMPARTMENTALIZATION IN IBERIS INTERMEDIA

    Science.gov (United States)

    Thallium (TI) is an extremely toxic metal which, due to its similarities to K, is readily taken up by plants. Thallium is efficiently hyperaccumulated in Iberis intermedia as TI(I). Distribution and compartmentalization of TI in I. intermedia is highes...

  15. Compartmentalization: a conceptual framework for understanding how trees grow and defend themselves

    Science.gov (United States)

    Alex L. Shigo

    1984-01-01

    The purpose of this chapter is to describe a conceptual framework for understanding how trees grow and how they and other perennial plants defend themselves. The concept of compartmentalization has developed over many years, a synthesis of ideas from a number of investigators. It is derived from detailed studies of the gross morphology and cellular anatomy of the wood...

  16. Linear regressive model structures for estimation and prediction of compartmental diffusive systems

    NARCIS (Netherlands)

    Vries, D; Keesman, K.J.; Zwart, Heiko J.

    In input-output relations of (compartmental) diffusive systems, physical parameters appear non-linearly, resulting in the use of (constrained) non-linear parameter estimation techniques with its short-comings regarding global optimality and computational effort. Given a LTI system in state space

  17. Linear regressive model structures for estimation and prediction of compartmental diffusive systems

    NARCIS (Netherlands)

    Vries, D.; Keesman, K.J.; Zwart, H.

    2006-01-01

    Abstract In input-output relations of (compartmental) diffusive systems, physical parameters appear non-linearly, resulting in the use of (constrained) non-linear parameter estimation techniques with its short-comings regarding global optimality and computational effort. Given a LTI system in state

  18. Role of cellular compartmentalization in the trophic transfer of mercury species in a freshwater plant-crustacean food chain.

    Science.gov (United States)

    Beauvais-Flück, Rebecca; Chaumot, Arnaud; Gimbert, Frédéric; Quéau, Hervé; Geffard, Olivier; Slaveykova, Vera I; Cosio, Claudia

    2016-12-15

    Mercury (Hg) represents an important risk for human health through the food webs contamination. Macrophytes bioaccumulate Hg and play a role in Hg transfer to food webs in shallow aquatic ecosystems. Nevertheless, the compartmentalization of Hg within macrophytes, notably major accumulation in the cell wall and its impact on trophic transfer to primary consumers are overlooked. The present work focusses on the trophic transfer of inorganic Hg (IHg) and monomethyl-Hg (MMHg) from the intracellular and cell wall compartments of the macrophyte Elodea nuttallii - considered a good candidate for phytoremediation - to the crustacean Gammarus fossarum. The results demonstrated that Hg accumulated in both compartments was trophically bioavailable to gammarids. Besides IHg from both compartments were similarly transferred to G. fossarum, while for MMHg, uptake rates were ∼2.5-fold higher in G. fossarum fed with the cell wall vs the intracellular compartment. During the depuration phase, Hg concentrations in G. fossarum varied insignificantly suggesting that both IHg and MMHg were strongly bound to biological ligands in the crustacean. Our data imply that cell walls have to be considered as an important source of Hg to consumers in freshwater food webs when developing procedures for enhancing aquatic environment protection during phytoremediation programs. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Foliar or root exposures to smelter particles: Consequences for lead compartmentalization and speciation in plant leaves

    International Nuclear Information System (INIS)

    Schreck, Eva; Dappe, Vincent; Sarret, Géraldine; Sobanska, Sophie; Nowak, Dorota; Nowak, Jakub; Stefaniak, Elżbieta Anna; Magnin, Valérie; Ranieri, Vincent; Dumat, Camille

    2014-01-01

    In urban areas with high fallout of airborne particles, metal uptake by plants mainly occurs by foliar pathways and can strongly impact crop quality. However, there is a lack of knowledge on metal localization and speciation in plants after pollution exposure, especially in the case of foliar uptake. In this study, two contrasting crops, lettuce (Lactuca sativa L.) and rye-grass (Lolium perenne L.), were exposed to Pb-rich particles emitted by a Pb-recycling factory via either atmospheric or soil application. Pb accumulation in plant leaves was observed for both ways of exposure. The mechanisms involved in Pb uptake were investigated using a combination of microscopic and spectroscopic techniques (electron microscopy, laser ablation, Raman microspectroscopy, and X-ray absorption spectroscopy). The results show that Pb localization and speciation are strongly influenced by the type of exposure (root or shoot pathway) and the plant species. Foliar exposure is the main pathway of uptake, involving the highest concentrations in plant tissues. Under atmospheric fallouts, Pb-rich particles were strongly adsorbed on the leaf surface of both plant species. In lettuce, stomata contained Pb-rich particles in their apertures, with some deformations of guard cells. In addition to PbO and PbSO 4 , chemical forms that were also observed in pristine particles, new species were identified: organic compounds (minimum 20%) and hexagonal platy crystals of PbCO 3 . In rye-grass, the changes in Pb speciation were even more egregious: Pb–cell wall and Pb–organic acid complexes were the major species observed. For root exposure, identified here as a minor pathway of Pb transfer compared to foliar uptake, another secondary species, pyromorphite, was identified in rye-grass leaves. Finally, combining bulk and spatially resolved spectroscopic techniques permitted both the overall speciation and the minor but possibly highly reactive lead species to be determined in order to better

  20. Foliar or root exposures to smelter particles: Consequences for lead compartmentalization and speciation in plant leaves

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, Eva [Université de Toulouse, INP, UPS, EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement), ENSAT, Avenue de l' Agrobiopole, 31326 Castanet-Tolosan (France); CNRS, EcoLab, 31326 Castanet-Tolosan (France); Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Université de Toulouse, CNRS, IRD, 14 Avenue E. Belin, F-31400 Toulouse (France); Dappe, Vincent [LASIR (UMR CNRS 8516), Université de Lille 1, Bât. C5, 59655 Villeneuve d' Ascq Cedex (France); Sarret, Géraldine [ISTerre, UMR 5275, Université Grenoble I, CNRS, F-38041 Grenoble (France); Sobanska, Sophie [LASIR (UMR CNRS 8516), Université de Lille 1, Bât. C5, 59655 Villeneuve d' Ascq Cedex (France); Nowak, Dorota; Nowak, Jakub; Stefaniak, Elżbieta Anna [Department of Chemistry, John Paul II Catholic University of Lublin, Al. Kraśnicka 102, 20-718 Lublin (Poland); Magnin, Valérie [ISTerre, UMR 5275, Université Grenoble I, CNRS, F-38041 Grenoble (France); Ranieri, Vincent [CEA-INAC, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Dumat, Camille, E-mail: camille.dumat@ensat.fr [Université de Toulouse, INP, UPS, EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement), ENSAT, Avenue de l' Agrobiopole, 31326 Castanet-Tolosan (France); CNRS, EcoLab, 31326 Castanet-Tolosan (France)

    2014-04-01

    In urban areas with high fallout of airborne particles, metal uptake by plants mainly occurs by foliar pathways and can strongly impact crop quality. However, there is a lack of knowledge on metal localization and speciation in plants after pollution exposure, especially in the case of foliar uptake. In this study, two contrasting crops, lettuce (Lactuca sativa L.) and rye-grass (Lolium perenne L.), were exposed to Pb-rich particles emitted by a Pb-recycling factory via either atmospheric or soil application. Pb accumulation in plant leaves was observed for both ways of exposure. The mechanisms involved in Pb uptake were investigated using a combination of microscopic and spectroscopic techniques (electron microscopy, laser ablation, Raman microspectroscopy, and X-ray absorption spectroscopy). The results show that Pb localization and speciation are strongly influenced by the type of exposure (root or shoot pathway) and the plant species. Foliar exposure is the main pathway of uptake, involving the highest concentrations in plant tissues. Under atmospheric fallouts, Pb-rich particles were strongly adsorbed on the leaf surface of both plant species. In lettuce, stomata contained Pb-rich particles in their apertures, with some deformations of guard cells. In addition to PbO and PbSO{sub 4}, chemical forms that were also observed in pristine particles, new species were identified: organic compounds (minimum 20%) and hexagonal platy crystals of PbCO{sub 3}. In rye-grass, the changes in Pb speciation were even more egregious: Pb–cell wall and Pb–organic acid complexes were the major species observed. For root exposure, identified here as a minor pathway of Pb transfer compared to foliar uptake, another secondary species, pyromorphite, was identified in rye-grass leaves. Finally, combining bulk and spatially resolved spectroscopic techniques permitted both the overall speciation and the minor but possibly highly reactive lead species to be determined in order to

  1. A Residual Approach for Balanced Truncation Model Reduction (BTMR of Compartmental Systems

    Directory of Open Access Journals (Sweden)

    William La Cruz

    2014-05-01

    Full Text Available This paper presents a residual approach of the square root balanced truncation algorithm for model order reduction of continuous, linear and time-invariante compartmental systems. Specifically, the new approach uses a residual method to approximate the controllability and observability gramians, whose resolution is an essential step of the square root balanced truncation algorithm, that requires a great computational cost. Numerical experiences are included to highlight the efficacy of the proposed approach.

  2. Individual optimization of therapeutic applications and dosimetry of radiopharmaceuticals with the help of compartmental analysis

    International Nuclear Information System (INIS)

    Augusto Ciussani

    2007-01-01

    Complete test of publication follows. The successful application of radiopharmaceuticals requires a patient-specific optimization of the activity to be administered, in order to deliver the desired therapeutic dose to the target organ while saving the healthy tissues. For a therapy specifically tailored on the characteristics of the patient, the correct knowledge of the morphology of the regions of interest, of the fractional uptake and of the related kinetics is necessary. Compartmental modelling can represent a powerful and simple tool for deriving the information of interest. In this presentation, the potentiality of compartmental analysis will be illustrated and two applications presented. The first study was conducted in patients with the autonomous functioning thyroid nodule (AFTN) syndrome treated with 131 I at the Ospedale Maggiore Policlinico of Milano (Milano, Italy). In these patients, the great challenge is represented by the healthy lobe surrounding the malignant nodule. A model was developed, where nodule and lobe are considered as separate entities in order to provide distinct dose estimates for the two tissues. The model has been also used for the optimization of the sampling schedule and for interpretation of biokinetic discrepancies observed between the diagnostic tests and the therapeutic application. The second study, carried out at Ospedali Riuniti di Bergamo (Bergamo, Italy), dealt with the application of [ 186 Re]-HEDP (hydroxyethyliden-diphosphonate disodium salt) for palliation of pain due to bone metastases of primary carcinomas. On the basis of the biodistribution studies and of chromatographic measurements, a compartmental model was suggested, taking into account the possible dissociation of the compound after injection into the patient. Also in this case, the compartmental model represents a valuable tool for individual optimization of the therapeutic procedure and for a more precise evaluation of the radiation dose the organs.

  3. A compartmentalized solute transport model for redox zones in contaminated aquifers: 1. Theory and development

    Science.gov (United States)

    Abrams , Robert H.; Loague, Keith

    2000-01-01

    This paper, the first of two parts [see Abrams and Loague, this issue], takes the compartmentalized approach for the geochemical evolution of redox zones presented by Abrams et al. [1998] and embeds it within a solute transport framework. In this paper the compartmentalized approach is generalized to facilitate the description of its incorporation into a solute transport simulator. An equivalent formulation is developed which removes any discontinuities that may occur when switching compartments. Rate‐limited redox reactions are modeled with a modified Monod relationship that allows either the organic substrate or the electron acceptor to be the rate‐limiting reactant. Thermodynamic constraints are used to inhibit lower‐energy redox reactions from occurring under infeasible geochemical conditions without imposing equilibrium on the lower‐energy reactions. The procedure used allows any redox reaction to be simulated as being kinetically limited or thermodynamically limited, depending on local geochemical conditions. Empirical reaction inhibition methods are not needed. The sequential iteration approach (SIA), a technique which allows the number of solute transport equations to be reduced, is adopted to solve the coupled geochemical/solute transport problem. When the compartmentalized approach is embedded within the SIA, with the total analytical concentration of each component as the dependent variable in the transport equation, it is possible to reduce the number of transport equations even further than with the unmodified SIA. A one‐dimensional, coupled geochemical/solute transport simulation is presented in which redox zones evolve dynamically in time and space. The compartmentalized solute transport (COMPTRAN) model described in this paper enables the development of redox zones to be simulated under both kinetic and thermodynamic constraints. The modular design of COMPTRAN facilitates the use of many different, preexisting solute transport and

  4. The Propeptide of the Metalloprotease of Listeria monocytogenes Controls Compartmentalization of the Zymogen during Intracellular Infection▿

    OpenAIRE

    O'Neil, Heather S.; Forster, Brian M.; Roberts, Kari L.; Chambers, Andrew J.; Bitar, Alan Pavinski; Marquis, Hélène

    2009-01-01

    Integral to the virulence of the intracellular bacterial pathogen Listeria monocytogenes is its metalloprotease (Mpl). Mpl regulates the activity and compartmentalization of the bacterial broad-range phospholipase C (PC-PLC). Mpl is secreted as a proprotein that undergoes intramolecular autocatalysis to release its catalytic domain. In related proteases, the propeptide serves as a folding catalyst and can act either in cis or in trans. Propeptides can also influence protein compartmentalizati...

  5. Aspects of astrocyte energy metabolism, amino acid neurotransmitter homoeostasis and metabolic compartmentation

    DEFF Research Database (Denmark)

    Kreft, Marko; Bak, Lasse Kristoffer; Waagepetersen, Helle S

    2012-01-01

    Astrocytes are key players in brain function; they are intimately involved in neuronal signalling processes and their metabolism is tightly coupled to that of neurons. In the present review, we will be concerned with a discussion of aspects of astrocyte metabolism, including energy......-generating pathways and amino acid homoeostasis. A discussion of the impact that uptake of neurotransmitter glutamate may have on these pathways is included along with a section on metabolic compartmentation....

  6. Chloroplast Dysfunction Causes Multiple Defects in Cell Cycle Progression in the Arabidopsis crumpled leaf Mutant

    KAUST Repository

    Hudik, Elodie; Yoshioka, Yasushi; Domenichini, Sé Verine; Bourge, Mickaë l; Soubigout-Taconnat, Ludivine; Mazubert, Christelle; Yi, Dalong; Bujaldon, Sandrine; Hayashi, Hiroyuki; De Veylder, Lieven; Bergounioux, Catherine; Benhamed, Moussa; Raynaud, Cé cile

    2014-01-01

    The majority of research on cell cycle regulation is focused on the nuclear events that govern the replication and segregation of the genome between the two daughter cells. However, eukaryotic cells contain several compartmentalized organelles

  7. Repurposing the Saccharomyces cerevisiae peroxisome for compartmentalizing multi-enzyme pathways

    Energy Technology Data Exchange (ETDEWEB)

    DeLoache, William [Univ. of California, Berkeley, CA (United States); Russ, Zachary [Univ. of California, Berkeley, CA (United States); Samson, Jennifer [Univ. of California, Berkeley, CA (United States); Dueber, John [Univ. of California, Berkeley, CA (United States)

    2017-09-25

    The peroxisome of Saccharomyces cerevisiae was targeted for repurposing in order to create a synthetic organelle that provides a generalizable compartment for engineered metabolic pathways. Compartmentalization of enzymes into organelles is a promising strategy for limiting metabolic crosstalk, improving pathway efficiency, and ultimately modifying the chemical environment to be distinct from that of the cytoplasm. We focused on the Saccharomyces cerevisiae peroxisome, as this organelle is not required for viability when grown on conventional media. We identified an enhanced peroxisomal targeting signal type 1 (PTS1) for rapidly importing non-native cargo proteins. Additionally, we performed the first systematic in vivo measurements of nonspecific metabolite permeability across the peroxisomal membrane using a polymer exclusion assay and characterized the size dependency of metabolite trafficking. Finally, we applied these new insights to compartmentalize a two-enzyme pathway in the peroxisome and characterize the expression regimes where compartmentalization leads to improved product titer. This work builds a foundation for using the peroxisome as a synthetic organelle, highlighting both promise and future challenges on the way to realizing this goal.

  8. Robust global identifiability theory using potentials--Application to compartmental models.

    Science.gov (United States)

    Wongvanich, N; Hann, C E; Sirisena, H R

    2015-04-01

    This paper presents a global practical identifiability theory for analyzing and identifying linear and nonlinear compartmental models. The compartmental system is prolonged onto the potential jet space to formulate a set of input-output equations that are integrals in terms of the measured data, which allows for robust identification of parameters without requiring any simulation of the model differential equations. Two classes of linear and non-linear compartmental models are considered. The theory is first applied to analyze the linear nitrous oxide (N2O) uptake model. The fitting accuracy of the identified models from differential jet space and potential jet space identifiability theories is compared with a realistic noise level of 3% which is derived from sensor noise data in the literature. The potential jet space approach gave a match that was well within the coefficient of variation. The differential jet space formulation was unstable and not suitable for parameter identification. The proposed theory is then applied to a nonlinear immunological model for mastitis in cows. In addition, the model formulation is extended to include an iterative method which allows initial conditions to be accurately identified. With up to 10% noise, the potential jet space theory predicts the normalized population concentration infected with pathogens, to within 9% of the true curve. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Self-concept structure and borderline personality disorder: evidence for negative compartmentalization.

    Science.gov (United States)

    Vater, Aline; Schröder-Abé, Michela; Weißgerber, Susan; Roepke, Stefan; Schütz, Astrid

    2015-03-01

    Borderline personality disorder (BPD) is characterized by an unstable and incongruent self-concept. However, there is a dearth of empirical studies investigating self-concept in BPD. In order to bridge this research gap, the purpose of this study was to apply an in-depth analysis of structural aspects of the self-concept in BPD. We examined the degree of compartmentalization, i.e., a tendency to organize knowledge about the self into discrete, extremely valenced (i.e., either positive or negative) categories (Showers, 1992). We hypothesized and found that BPD patients had the most compartmentalized self-concept structure and a higher proportion of negative self-attributes relative to both a non-clinical and a depressed control group. Moreover, BPD patients rated negative self-aspects as more important than positive ones relative to non-clinical controls. We cannot determine whether causal relationships exist between psychological symptoms and self-concept structure. Moreover, further comparisons to patients with other psychiatric disorders are necessary in order to further confirm the clinical specificity of our results. Our findings indicate that a negative compartmentalized self-concept is a specific feature of BPD. Implications for future research, psychological assessment, and psychotherapeutic treatment are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Accession data for analysed Xestospongia testudinaria metatranscriptomes, supplement to: Jahn, Martin T; Markert, Sebastian M; Ryu, Taewoo; Ravasi, Timothy; Stigloher, Christian; Hentschel, Ute; Moitinho-Silva, Lucas (2016): Shedding light on cell compartmentation in the candidate phylum Poribacteria by high resolution visualisation and transcriptional profiling. Scientific Reports, 6, 35860

    KAUST Repository

    Jahn, Martin T; Markert, Sebastian M; Ryu, Tae Woo; Ravasi, Timothy; Stigloher, Christian; Hentschel, Ute; Moitinho-Silva, Lucas

    2016-01-01

    -CLEM) that enabled, to our knowledge for the first time, the identification of single cells within their complex microenvironment at electron microscopy resolution. Members of the candidate phylum Poribacteria, common and uncultivated symbionts of marine sponges

  11. Metabolic hormones, apolipoproteins, adipokines, and cytokines in the alveolar lining fluid of healthy adults: compartmentalization and physiological correlates.

    Directory of Open Access Journals (Sweden)

    Carlos O Mendivil

    Full Text Available Our current understanding of hormone regulation in lung parenchyma is quite limited. We aimed to quantify a diverse array of biologically relevant protein mediators in alveolar lining fluid (ALF, compared to serum concentrations, and explore factors associated with protein compartmentalization on either side of the air-blood barrier.Participants were 24 healthy adult non-smoker volunteers without respiratory symptoms or significant medical conditions, with normal lung exams and office spirometry. Cell-free bronchoalveolar lavage fluid and serum were analyzed for 24 proteins (including enteric and metabolic hormones, apolipoproteins, adipokines, and cytokines using a highly sensitive multiplex ELISA. Measurements were normalized to ALF concentrations. The ALF:serum concentration ratios were examined in relation to measures of protein size, hydrophobicity, charge, and to participant clinical and spirometric values.ALF measurements from 24 individuals detected 19 proteins, including adiponectin, adipsin, apoA-I, apoA-II, apoB, apoC-II, apoC-III, apoE, C-reactive protein, ghrelin, glucose-dependent insulinotropic peptide (GIP, glucagon-like peptide-1 (GLP-1, glucagon, insulin, leptin, monocyte chemoattractant protein-1, plasminogen activator inhibitor-1, resistin, and visfatin. C-peptide and serpin E1 were not detected in ALF for any individual, and IL-6, IL-10, and TNF-alpha were not detected in either ALF or serum for any individual. In general, ALF levels were similar or lower in concentration for most proteins compared to serum. However, ghrelin, resistin, insulin, visfatin and GLP-1 had ALF concentrations significantly higher compared to serum. Importantly, elevated ALF:serum ratios of ghrelin, visfatin and resistin correlated with protein net charge and isoelectric point, but not with molecular weight or hydrophobicity.Biologically relevant enteric and metabolic hormones, apolipoproteins, adipokines, and cytokines can be detected in the ALF of

  12. Determination of Glucose Utilization Rates in Cultured Astrocytes and Neurons with [14C]deoxyglucose: Progress, Pitfalls, and Discovery of Intracellular Glucose Compartmentation.

    Science.gov (United States)

    Dienel, Gerald A; Cruz, Nancy F; Sokoloff, Louis; Driscoll, Bernard F

    2017-01-01

    2-Deoxy-D-[ 14 C]glucose ([ 14 C]DG) is commonly used to determine local glucose utilization rates (CMR glc ) in living brain and to estimate CMR glc in cultured brain cells as rates of [ 14 C]DG phosphorylation. Phosphorylation rates of [ 14 C]DG and its metabolizable fluorescent analog, 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose (2-NBDG), however, do not take into account differences in the kinetics of transport and metabolism of [ 14 C]DG or 2-NBDG and glucose in neuronal and astrocytic cells in cultures or in single cells in brain tissue, and conclusions drawn from these data may, therefore, not be correct. As a first step toward the goal of quantitative determination of CMR glc in astrocytes and neurons in cultures, the steady-state intracellular-to-extracellular concentration ratios (distribution spaces) for glucose and [ 14 C]DG were determined in cultured striatal neurons and astrocytes as functions of extracellular glucose concentration. Unexpectedly, the glucose distribution spaces rose during extreme hypoglycemia, exceeding 1.0 in astrocytes, whereas the [ 14 C]DG distribution space fell at the lowest glucose levels. Calculated CMR glc was greatly overestimated in hypoglycemic and normoglycemic cells because the intracellular glucose concentrations were too high. Determination of the distribution space for [ 14 C]glucose revealed compartmentation of intracellular glucose in astrocytes, and probably, also in neurons. A smaller metabolic pool is readily accessible to hexokinase and communicates with extracellular glucose, whereas the larger pool is sequestered from hexokinase activity. A new experimental approach using double-labeled assays with DG and glucose is suggested to avoid the limitations imposed by glucose compartmentation on metabolic assays.

  13. In vivo kinematics of a robot-assisted uni- and multi-compartmental knee arthroplasty.

    Science.gov (United States)

    Watanabe, Toshifumi; Abbasi, Ali Z; Conditt, Michael A; Christopher, Jennifer; Kreuzer, Stefan; Otto, Jason K; Banks, Scott A

    2014-07-01

    There is great interest in providing reliable and durable treatments for one- and two-compartment arthritic degeneration of the cruciate-ligament intact knee. One approach is to resurface only the diseased compartments with discrete unicompartmental components, retaining the undamaged compartment(s). However, placing multiple small implants into the knee presents a greater surgical challenge than total knee arthroplasty, so it is not certain that the natural knee mechanics can be maintained or restored. The goal of this study was to determine whether near-normal knee kinematics can be obtained with a robot-assisted multi-compartmental knee arthroplasty. Thirteen patients with 15 multi-compartmental knee arthroplasties using haptic robotic-assisted bone preparation were involved in this study. Nine subjects received a medial unicompartmental knee arthroplasty (UKA), three subjects received a medial UKA and patellofemoral (PF) arthroplasty, and three subjects received medial and lateral bi-unicondylar arthroplasty. Knee motions were recorded using video-fluoroscopy an average of 13 months (6-29 months) after surgery during stair and kneeling activities. The three-dimensional position and orientation of the implant components were determined using model-image registration techniques. Knee kinematics during maximum flexion kneeling showed femoral external rotation and posterior lateral condylar translation. All knees showed femoral external rotation and posterior condylar translation with flexion during the step activity. Knees with medial UKA and PF arthroplasty showed the most femoral external rotation and posterior translation, and knees with bicondylar UKA showed the least. Knees with accurately placed uni- or bi-compartmental arthroplasty exhibited stable knee kinematics consistent with intact and functioning cruciate ligaments. The patterns of tibiofemoral motion were more similar to natural knees than commonly has been observed in knees with total knee

  14. DISTING: A web application for fast algorithmic computation of alternative indistinguishable linear compartmental models.

    Science.gov (United States)

    Davidson, Natalie R; Godfrey, Keith R; Alquaddoomi, Faisal; Nola, David; DiStefano, Joseph J

    2017-05-01

    We describe and illustrate use of DISTING, a novel web application for computing alternative structurally identifiable linear compartmental models that are input-output indistinguishable from a postulated linear compartmental model. Several computer packages are available for analysing the structural identifiability of such models, but DISTING is the first to be made available for assessing indistinguishability. The computational algorithms embedded in DISTING are based on advanced versions of established geometric and algebraic properties of linear compartmental models, embedded in a user-friendly graphic model user interface. Novel computational tools greatly speed up the overall procedure. These include algorithms for Jacobian matrix reduction, submatrix rank reduction, and parallelization of candidate rank computations in symbolic matrix analysis. The application of DISTING to three postulated models with respectively two, three and four compartments is given. The 2-compartment example is used to illustrate the indistinguishability problem; the original (unidentifiable) model is found to have two structurally identifiable models that are indistinguishable from it. The 3-compartment example has three structurally identifiable indistinguishable models. It is found from DISTING that the four-compartment example has five structurally identifiable models indistinguishable from the original postulated model. This example shows that care is needed when dealing with models that have two or more compartments which are neither perturbed nor observed, because the numbering of these compartments may be arbitrary. DISTING is universally and freely available via the Internet. It is easy to use and circumvents tedious and complicated algebraic analysis previously done by hand. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Development and testing of a compartmentalized reaction network model for redox zones in contaminated aquifers

    Science.gov (United States)

    Abrams , Robert H.; Loague, Keith; Kent, Douglas B.

    1998-01-01

    The work reported here is the first part of a larger effort focused on efficient numerical simulation of redox zone development in contaminated aquifers. The sequential use of various electron acceptors, which is governed by the energy yield of each reaction, gives rise to redox zones. The large difference in energy yields between the various redox reactions leads to systems of equations that are extremely ill-conditioned. These equations are very difficult to solve, especially in the context of coupled fluid flow, solute transport, and geochemical simulations. We have developed a general, rational method to solve such systems where we focus on the dominant reactions, compartmentalizing them in a manner that is analogous to the redox zones that are often observed in the field. The compartmentalized approach allows us to easily solve a complex geochemical system as a function of time and energy yield, laying the foundation for our ongoing work in which we couple the reaction network, for the development of redox zones, to a model of subsurface fluid flow and solute transport. Our method (1) solves the numerical system without evoking a redox parameter, (2) improves the numerical stability of redox systems by choosing which compartment and thus which reaction network to use based upon the concentration ratios of key constituents, (3) simulates the development of redox zones as a function of time without the use of inhibition factors or switching functions, and (4) can reduce the number of transport equations that need to be solved in space and time. We show through the use of various model performance evaluation statistics that the appropriate compartment choice under different geochemical conditions leads to numerical solutions without significant error. The compartmentalized approach described here facilitates the next phase of this effort where we couple the redox zone reaction network to models of fluid flow and solute transport.

  16. The kinetics of multi-compartmentalized systems, studied by radioactive tracers

    International Nuclear Information System (INIS)

    Gouveia, A.S. de.

    1978-01-01

    The use of compartmental models to investigate kinetic problems is presented. This use is restricted, however, to linear models. As an application of different methods, the kinetic behaviour of haemaccel labelled with iodine 131 is studied, the interval of the physically viable solutions being established. The existence of a class of solutions is explained as a result of lack of knowledge of a complete data set. The possibility of obtaining a single solution is also discussed. The formalism of the program SAAM (Simulation, Analysis and modelling) now judged very important for the study of multi-compartimental analysis is presented. (I.C.R) [pt

  17. Effects of Air Stacking Maneuver on Cough Peak Flow and Chest Wall Compartmental Volumes of Subjects With Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Sarmento, Antonio; Resqueti, Vanessa; Dourado-Júnior, Mario; Saturnino, Lailane; Aliverti, Andrea; Fregonezi, Guilherme; de Andrade, Armele Dornelas

    2017-11-01

    To assess the acute effects of air stacking on cough peak flow (CPF) and chest wall compartmental volumes of persons with amyotrophic lateral sclerosis (ALS) versus healthy subjects positioned at 45° body inclination. Cross-sectional study with a matched-pair design. University hospital. Persons (N=24) with ALS (n=12) and age-matched healthy subjects (n=12). CPF, chest wall compartmental inspiratory capacity, chest wall vital capacity, chest wall tidal volume and operational volumes, breathing pattern, and percentage of contribution of the compartments to the inspired volume were measured by optoelectronic plethysmography. Compared with healthy subjects, significantly lower CPF (P=.007), chest wall compartmental inspiratory capacity (Pprotocol in the healthy subjects, mainly because of end-inspiratory (P<.001) and abdominal volumes (P=.008). No significant differences were observed in percentage of contribution of the compartments to the inspired volume and end-expiratory volume of both groups. No significant differences were found in chest wall tidal volume, operational volume, and breathing pattern in persons with ALS. Air stacking is effective in increasing CPF, chest wall compartmental inspiratory capacity, and chest wall vital capacity of persons with ALS with no hyperinflation. Differences in compartmental volume contributions are probably because of lung and chest wall physiological changes. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  18. Accession data for analysed Xestospongia testudinaria metatranscriptomes, supplement to: Jahn, Martin T; Markert, Sebastian M; Ryu, Taewoo; Ravasi, Timothy; Stigloher, Christian; Hentschel, Ute; Moitinho-Silva, Lucas (2016): Shedding light on cell compartmentation in the candidate phylum Poribacteria by high resolution visualisation and transcriptional profiling. Scientific Reports, 6, 35860

    KAUST Repository

    Jahn, Martin T

    2016-01-01

    Assigning functions to uncultivated environmental microorganisms continues to be a challenging endeavour. Here, we present a new microscopy protocol for fluorescence in situ hybridisation-correlative light and electron microscopy (FISH-CLEM) that enabled, to our knowledge for the first time, the identification of single cells within their complex microenvironment at electron microscopy resolution. Members of the candidate phylum Poribacteria, common and uncultivated symbionts of marine sponges, were used towards this goal. Cellular 3D reconstructions revealed bipolar, spherical granules of low electron density, which likely represent carbon reserves. Poribacterial activity profiles were retrieved from prokaryotic enriched sponge metatranscriptomes using simulation-based optimised mapping. We observed high transcriptional activity for proteins related to bacterial microcompartments (BMC) and we resolved their subcellular localisation by combining FISH-CLEM with immunohistochemistry (IHC) on ultra-thin sponge tissue sections. In terms of functional relevance, we propose that the BMC-A region may be involved in 1,2-propanediol degradation. The FISH-IHC-CLEM approach was proven an effective toolkit to combine -omics approaches with functional studies and it should be widely applicable in environmental microbiology.

  19. Compartmentalized metabolic network reconstruction of microbial communities to determine the effect of agricultural intervention on soils

    Science.gov (United States)

    Álvarez-Yela, Astrid Catalina; Gómez-Cano, Fabio; Zambrano, María Mercedes; Husserl, Johana; Danies, Giovanna; Restrepo, Silvia; González-Barrios, Andrés Fernando

    2017-01-01

    Soil microbial communities are responsible for a wide range of ecological processes and have an important economic impact in agriculture. Determining the metabolic processes performed by microbial communities is crucial for understanding and managing ecosystem properties. Metagenomic approaches allow the elucidation of the main metabolic processes that determine the performance of microbial communities under different environmental conditions and perturbations. Here we present the first compartmentalized metabolic reconstruction at a metagenomics scale of a microbial ecosystem. This systematic approach conceives a meta-organism without boundaries between individual organisms and allows the in silico evaluation of the effect of agricultural intervention on soils at a metagenomics level. To characterize the microbial ecosystems, topological properties, taxonomic and metabolic profiles, as well as a Flux Balance Analysis (FBA) were considered. Furthermore, topological and optimization algorithms were implemented to carry out the curation of the models, to ensure the continuity of the fluxes between the metabolic pathways, and to confirm the metabolite exchange between subcellular compartments. The proposed models provide specific information about ecosystems that are generally overlooked in non-compartmentalized or non-curated networks, like the influence of transport reactions in the metabolic processes, especially the important effect on mitochondrial processes, as well as provide more accurate results of the fluxes used to optimize the metabolic processes within the microbial community. PMID:28767679

  20. Intracellular Redox Compartmentation and ROS-Related Communication in Regulation and Signaling.

    Science.gov (United States)

    Noctor, Graham; Foyer, Christine H

    2016-07-01

    Recent years have witnessed enormous progress in understanding redox signaling related to reactive oxygen species (ROS) in plants. The consensus view is that such signaling is intrinsic to many developmental processes and responses to the environment. ROS-related redox signaling is tightly wedded to compartmentation. Because membranes function as barriers, highly redox-active powerhouses such as chloroplasts, peroxisomes, and mitochondria may elicit specific signaling responses. However, transporter functions allow membranes also to act as bridges between compartments, and so regulated capacity to transmit redox changes across membranes influences the outcome of triggers produced at different locations. As well as ROS and other oxidizing species, antioxidants are key players that determine the extent of ROS accumulation at different sites and that may themselves act as signal transmitters. Like ROS, antioxidants can be transported across membranes. In addition, the intracellular distribution of antioxidative enzymes may be modulated to regulate or facilitate redox signaling appropriate to the conditions. Finally, there is substantial plasticity in organellar shape, with extensions such as stromules, peroxules, and matrixules playing potentially crucial roles in organelle-organelle communication. We provide an overview of the advances in subcellular compartmentation, identifying the gaps in our knowledge and discussing future developments in the area. © 2016 American Society of Plant Biologists. All Rights Reserved.

  1. Compartmental modeling alternatives for kinetic analysis of pet neurotransmitter receptor studies

    International Nuclear Information System (INIS)

    Koeppe, R.A.

    1991-01-01

    With the increased interest in studying neurotransmitter and receptor function in vivo, imaging procedures using positron emission tomography have presented new challenges for kinetic modeling and analysis of data. The in vivo behavior of radiolabeled markers for examining these neurotransmitter systems can be quite complex and, therefore, the implementation of compartmental models for data analysis is similarly complex. Often, the variability in the estimates of model parameters representing neurotransmitter or receptor densities, association and dissociation rates, or rates of incorporation or turnover does not permit reliable interpretation of the data. When less complex analyses are used, these model parameters may be biased and thus also do not yield the information being sought. Examination of trade-offs between uncertainty and bias in the parameters of interest may be used to select a compartmental model configuration with an appropriate level of complexity. Modeling alternatives will be discussed for radioligands with varying kinetic properties, such as those that bind reversibly and rapidly and others that bind nearly irreversibly. Specific problems, such as those occurring when a radioligand is open-quotes flow limitedclose quotes also will be discussed

  2. Estimation of Caesium-137 Intake in Dicentrarchus Labrax by Using Compartmental Model and Neural Network

    International Nuclear Information System (INIS)

    Yahaghi, E.; Movafeghi, A.; Askari, M. A.; Karimi Diba, G.; Mohammadzadeh, N.

    2012-01-01

    Cs-137 is one of the fission products that is usually released in environment after nuclear accidents. This contamination remains in environment for a long time due to long half life of Cs-137 (30 years) and can enter easily into the human food chain. A two-compartmental model was implemented to describe caesium intake and its distribution in Dicentrarchus Labrax, using a proposed differential equation model. The model included two compartments, the first compartment was the blood and the second one was the tissue. The activity of Cs-137 was undertaken in each compartment by means of a numerical method and the activity of Cs-137 was considered as an input of compartmental equations. We obtained the transfer coefficients between fish tissues by comparing the radiation curves with the actual data. In the light of the differences with the transfer coefficients, the calculation by the COMKAT software was found to be about 2%. Then, we provided the activity curves of Cs-137 and their characteristics (feature extractions) by changing the transfer coefficients and they were utilized to train the neural network. The network was trained for six data groups, and the results of the network testing had about 99% correct response, therefore it can be employed to estimate the transfer coefficients in fish tissue, the salinity range, and the activity of Cs-137 in water.

  3. Engineering of DNA polymerase I from Thermus thermophilus using compartmentalized self-replication.

    Science.gov (United States)

    Aye, Seaim Lwin; Fujiwara, Kei; Ueki, Asuka; Doi, Nobuhide

    2018-05-05

    Although compartmentalized self-replication (CSR) and compartmentalized partnered replication (CPR) are powerful tools for directed evolution of proteins and gene circuits, limitations remain in the emulsion PCR process with the wild-type Taq DNA polymerase used so far, including long run times, low amounts of product, and false negative results due to inhibitors. In this study, we developed a high-efficiency mutant of DNA polymerase I from Thermus thermophilus HB27 (Tth pol) suited for CSR and CPR. We modified the wild-type Tth pol by (i) deletion of the N-terminal 5' to 3' exonuclease domain, (ii) fusion with the DNA-binding protein Sso7d, (iii) introduction of four known effective point mutations from other DNA polymerase mutants, and (iv) codon optimization to reduce the GC content. Consequently, we obtained a mutant that provides higher product yields than the conventional Taq pol without decreased fidelity. Next, we performed four rounds of CSR selection with a randomly mutated library of this modified Tth pol and obtained mutants that provide higher product yields in fewer cycles of emulsion PCR than the parent Tth pol as well as the conventional Taq pol. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Proline accumulation, ions dynamics and sodium root-shoot partition and compartmentation

    Directory of Open Access Journals (Sweden)

    Jesus Emanuel eBojorquez Quintal

    2014-11-01

    Full Text Available Despite its economic relevance, little is known about salt tolerance mechanisms in pepper plants. To address this question, we compared differences in responses to NaCl in two Capsicum chinense varieties: Rex (tolerant and Chichen-Itza (sensitive. Under salt stress (150 mM NaCl over 7 days roots of Rex variety accumulated 50 times more compatible solutes such as proline compared to Chichen-Itza. Mineral analysis indicated that Na+ is restricted to roots by preventing its transport to leaves. Fluorescence analysis suggested an efficient Na+ compartmentalization in vacuole-like structures and in small intracellular compartments in roots of Rex variety. At the same time, Na+ in Chichen-Itza plants was compartmentalized in the apoplast, suggesting substantial Na+ extrusion. Rex variety was found to retain more K+ in its roots under salt stress according to a mineral analysis and microelectrode ion flux estimation (MIFE. Vanadate-sensitive H+ efflux was higher in Chichen-Itza variety plants, suggesting a higher activity of the plasma membrane H+-ATPase, which fuels the extrusion of Na+, and, possibly, also the re-uptake of K+. Our results suggest a combination of stress tolerance mechanisms, in order to alleviate the salt-induced injury. Furthermore, Na+ extrusion to apoplast does not appear to be an efficient strategy for salt tolerance in pepper plants.

  5. A compartmental model of the cAMP/PKA/MAPK pathway in Bio-PEPA

    Directory of Open Access Journals (Sweden)

    Federica Ciocchetta

    2009-11-01

    Full Text Available The vast majority of biochemical systems involve the exchange of information between different compartments, either in the form of transportation or via the intervention of membrane proteins which are able to transmit stimuli between bordering compartments. The correct quantitative handling of compartments is, therefore, extremely important when modelling real biochemical systems. The Bio-PEPA process algebra is equipped with the capability of explicitly defining quantitative information such as compartment volumes and membrane surface areas. Furthermore, the recent development of the Bio-PEPA Eclipse Plug-in allows us to perform a correct stochastic simulation of multi-compartmental models. Here we present a Bio-PEPA compartmental model of the cAMP/PKA/MAPK pathway. We analyse the system using the Bio-PEPA Eclipse Plug-in and we show the correctness of our model by comparison with an existing ODE model. Furthermore, we perform computational experiments in order to investigate certain properties of the pathway. Specifically, we focus on the system response to the inhibition and strengthening of feedback loops and to the variation in the activity of key pathway reactions and we observe how these modifications affect the behaviour of the pathway. These experiments are useful to understand the control and regulatory mechanisms of the system.

  6. Compartmentalized metabolic network reconstruction of microbial communities to determine the effect of agricultural intervention on soils.

    Directory of Open Access Journals (Sweden)

    María Camila Alvarez-Silva

    Full Text Available Soil microbial communities are responsible for a wide range of ecological processes and have an important economic impact in agriculture. Determining the metabolic processes performed by microbial communities is crucial for understanding and managing ecosystem properties. Metagenomic approaches allow the elucidation of the main metabolic processes that determine the performance of microbial communities under different environmental conditions and perturbations. Here we present the first compartmentalized metabolic reconstruction at a metagenomics scale of a microbial ecosystem. This systematic approach conceives a meta-organism without boundaries between individual organisms and allows the in silico evaluation of the effect of agricultural intervention on soils at a metagenomics level. To characterize the microbial ecosystems, topological properties, taxonomic and metabolic profiles, as well as a Flux Balance Analysis (FBA were considered. Furthermore, topological and optimization algorithms were implemented to carry out the curation of the models, to ensure the continuity of the fluxes between the metabolic pathways, and to confirm the metabolite exchange between subcellular compartments. The proposed models provide specific information about ecosystems that are generally overlooked in non-compartmentalized or non-curated networks, like the influence of transport reactions in the metabolic processes, especially the important effect on mitochondrial processes, as well as provide more accurate results of the fluxes used to optimize the metabolic processes within the microbial community.

  7. Compartmentalization of the gut viral reservoir in HIV-1 infected patients

    Directory of Open Access Journals (Sweden)

    Grant Tannika

    2007-12-01

    Full Text Available Abstract Background Recently there has been an increasing interest and appreciation for the gut as both a viral reservoir as well as an important host-pathogen interface in human immunodefiency virus type 1 (HIV-1 infection. The gut associated lymphoid tissue (GALT is the largest lymphoid organ infected by HIV-1. In this study we examined if different HIV-1 quasispecies are found in different parts of the gut of HIV-1 infected individuals. Results Gut biopsies (esophagus, stomach, duodenum and colorectum were obtained from eight HIV-1 infected preHAART (highly active antiretroviral therapy patients. HIV-1 Nef and Reverse transcriptase (RT encoding sequences were obtained through nested PCR amplification from DNA isolated from the gut biopsy tissues. The PCR fragments were cloned and sequenced. The resulting sequences were subjected to various phylogenetic analyses. Expression of the nef gene and viral RNA in the different gut tissues was determined using real-time RT-PCR. Phylogenetic analysis of the Nef protein-encoding region revealed compartmentalization of viral replication in the gut within patients. Viral diversity in both the Nef and RT encoding region varied in different parts of the gut. Moreover, increased nef gene expression (p Conclusion Our results indicated that different HIV-1 quasispecies populate different parts of the gut, and that viral replication in the gut is compartmentalized. These observations underscore the importance of the gut as a host-pathogen interface in HIV-1 infection.

  8. Estimation of guinea pig tracheobronchial transport rates using a compartmental model

    International Nuclear Information System (INIS)

    Velasquez, D.J.; Morrow, P.E.

    1984-01-01

    Mucociliary clearance in the tracheobronchial tree of guinea pigs was examined using monodisperse 7.9 μm MMAD polystyrene particles. Animals were exposed for approximately 1 h by inhalation via an intratracheal tube to aerosols tagged with gold-198 and fluorescent dyes. Following exposure, animals were radioactively monitored and sacrificed at predetermined times. The lungs were removed, freeze-dried, sectioned completely, and examined with a fluorescent microscope. Measurements were made of airway diameters where particles were found. An anatomic model for guinea pig lung morphology was used to assign ranges of airway diameters to five zones, which were incorporated into a compartmental model for lung clearance. Kinetic analysis of particle distributions in the zones led to development of first-order equations describing the compartmental clearance. Rate constants obtained from the kinetic analysis were used to estimate mucociliary transport rates in specific bronchial generations, which ranged from approximately 0.001 mm/min in the distal bronchioles to approximately 8 mm/min in the trachea, and resulted in a calculated 24-h clearance time for tracheobronchial clearance in the guinea pig. No evidence for either bronchial penetration by particles or relatively prolonged bronchial retention of particles was found in this study. 22 references, 3 figures, 3 tables

  9. Utilization of stable isotopes for the study of in vivo compartmental metabolism of poly-insaturate fatty acids

    International Nuclear Information System (INIS)

    Brossard, N.; Croset, M.; Lecerf, J.; Lagarde, M.; Pachiaudi, C.; Normand, S.; Riou, J.P.; Chirouze, V.; Tayot, J.L.

    1994-01-01

    In order to study the compartmental metabolism of the 22:6n-3 fatty acid, and particularly the role of the transport plasmatic forms for the tissue uptake (especially brain), a technique is developed using carbon 13 stable isotope and an isotopic mass spectrometry coupled to gaseous chromatography technique. This method has been validated in rat with docosahexaenoic acid enriched in 13 C and esterified in triglycerides. The compartmental metabolism is monitored by measuring the variation of 22:6n-3 isotopic enrichment in the various lipoprotein lipidic fractions, in blood globules and in the brain. 1 fig., 1 tab., 12 refs

  10. Combined Proteomic and Transcriptomic Interrogation of the Venom Gland of Conus geographus Uncovers Novel Components and Functional Compartmentalization*

    Science.gov (United States)

    Safavi-Hemami, Helena; Hu, Hao; Gorasia, Dhana G.; Bandyopadhyay, Pradip K.; Veith, Paul D.; Young, Neil D.; Reynolds, Eric C.; Yandell, Mark; Olivera, Baldomero M.; Purcell, Anthony W.

    2014-01-01

    Cone snails are highly successful marine predators that use complex venoms to capture prey. At any given time, hundreds of toxins (conotoxins) are synthesized in the secretory epithelial cells of the venom gland, a long and convoluted organ that can measure 4 times the length of the snail's body. In recent years a number of studies have begun to unveil the transcriptomic, proteomic and peptidomic complexity of the venom and venom glands of a number of cone snail species. By using a combination of DIGE, bottom-up proteomics and next-generation transcriptome sequencing the present study identifies proteins involved in envenomation and conotoxin maturation, significantly extending the repertoire of known (poly)peptides expressed in the venom gland of these remarkable animals. We interrogate the molecular and proteomic composition of different sections of the venom glands of 3 specimens of the fish hunter Conus geographus and demonstrate regional variations in gene expression and protein abundance. DIGE analysis identified 1204 gel spots of which 157 showed significant regional differences in abundance as determined by biological variation analysis. Proteomic interrogation identified 342 unique proteins including those that exhibited greatest fold change. The majority of these proteins also exhibited significant changes in their mRNA expression levels validating the reliability of the experimental approach. Transcriptome sequencing further revealed a yet unknown genetic diversity of several venom gland components. Interestingly, abundant proteins that potentially form part of the injected venom mixture, such as echotoxins, phospholipase A2 and con-ikots-ikots, classified into distinct expression clusters with expression peaking in different parts of the gland. Our findings significantly enhance the known repertoire of venom gland polypeptides and provide molecular and biochemical evidence for the compartmentalization of this organ into distinct functional entities

  11. A comprehensive compartmental model of blood glucose regulation for healthy and type 2 diabetic subjects

    DEFF Research Database (Denmark)

    Vahidi, O; Kwok, K E; Gopaluni, R B

    2016-01-01

    We have expanded a former compartmental model of blood glucose regulation for healthy and type 2 diabetic subjects. The former model was a detailed physiological model which considered the interactions of three substances, glucose, insulin and glucagon on regulating the blood sugar. The main...... variations of blood glucose concentrations following an oral glucose intake. Another model representing the incretins production in the gastrointestinal tract along with their hormonal effects on boosting pancreatic insulin production is also added to the former model. We have used two sets of clinical data...... obtained during oral glucose tolerance test and isoglycemic intravenous glucose infusion test from both type 2 diabetic and healthy subjects to estimate the model parameters and to validate the model results. The estimation of model parameters is accomplished through solving a nonlinear optimization...

  12. Savannah River Laboratory DOSTOMAN code: a compartmental pathways computer model of contaminant transport

    International Nuclear Information System (INIS)

    King, C.M.; Wilhite, E.L.; Root, R.W. Jr.

    1985-01-01

    The Savannah River Laboratory DOSTOMAN code has been used since 1978 for environmental pathway analysis of potential migration of radionuclides and hazardous chemicals. The DOSTOMAN work is reviewed including a summary of historical use of compartmental models, the mathematical basis for the DOSTOMAN code, examples of exact analytical solutions for simple matrices, methods for numerical solution of complex matrices, and mathematical validation/calibration of the SRL code. The review includes the methodology for application to nuclear and hazardous chemical waste disposal, examples of use of the model in contaminant transport and pathway analysis, a user's guide for computer implementation, peer review of the code, and use of DOSTOMAN at other Department of Energy sites. 22 refs., 3 figs

  13. A dynamic compartmental food chain model of radiocaesium transfer to Apodemus sylvaticus in woodland ecosystems

    International Nuclear Information System (INIS)

    Toal, M.E.; Copplestone, D.; Johnson, M.S.; Jackson, D.; Jones, S.R.

    2001-01-01

    A study was undertaken to quantify the activity concentrations of 137Cs in Apodemus sylvaticus (the woodmouse) in two woodland sites, Lady Wood and Longrigg Wood, adjacent to British Nuclear Fuels Ltd. (BNFL) Sellafield, Cumbria, UK. A deterministic dynamic compartmental food chain model was also constructed to predict 137Cs activity concentration [Bq kg -1 dry weight (dw)] in A. sylvaticus on a seasonal basis given the activity concentrations in its diet. Within the coniferous woodland site (Lady Wood), significant differences were found between seasons (P x / 2.3 Bq kg -1 dw) being attributed to mycophagy. Fungal concentrations ranged from 2-3213 Bq kg -1 dw. The modelled activity concentrations fell between the confidence intervals of the observed data in four of the six seasonal cohorts sampled. Disparities between predicted and observed activity concentrations are attributed to uncertainties surrounding the fundamental feeding ecology of small mammals

  14. Measurement of renal glomerular filtration rate using labelled substances with compartmental analysis

    International Nuclear Information System (INIS)

    Eberstadt, P.L.

    1981-10-01

    Using a model for the two-compartmental open system and experiments on animals (rabbits and dogs) as well as on human healthy volunteers, an attempt was made to study the advantages and limitations of different radionuclide methods for glomerular filtration rate determination. Labelled compounds used in different combinations were: 3 H-inulin, sup(113m)In-EDTA, 131 I-iothalamate, sup(99m)Tc-DTPA and 14 C-creatinine. The results of the study lead to some working hypotheses concerning the value of creatinine and other labelled substances in the measurement of glomerular filtration rate in clinical practice. The advantages and disadvantages of individual methods summarized in the final report are generally in agreement with the present views of many research workers. Also the hypothesis can be justified that the different labelled compounds which have been studied might be handled independently by the membranes involved but at the long run produce similar homeostatic balance

  15. Geo-environmental zoning using physiographic compartmentalization: a proposal for supporting sustainable decision-making

    Directory of Open Access Journals (Sweden)

    CLAUDIA V.S. CORRÊA

    Full Text Available ABSTRACT The geo-environmental zoning represents an important strategy in the territorial management. However, it requires a logical and structured procedure. Therefore, an approach using physiographic compartmentalization is proposed and applied as case study in a region covered by the topographic maps of São José dos Campos and Jacareí, Brazil. This region has great geological and geomorphological peculiarities, beyond being a place with large human interventions because of its quickly economic growth. The methodology is based on photointerpretation techniques and remote sensing in GIS environment. As a result, seven geo-environmental zones were obtained from a weighted integration by multicriteria analysis of physiographic units with land-use classes. In conclusion, taking into account potentialities and limitations, the proposed approach can be considered able to support sustainable decision-making, being applicable in other regions.

  16. Fatigue in isometric contraction in a single muscle fibre: a compartmental calcium ion flow model.

    Science.gov (United States)

    Kothiyal, K P; Ibramsha, M

    1986-01-01

    Fatigue in muscle is a complex biological phenomenon which has so far eluded a definite explanation. Many biochemical and physiological models have been suggested in the literature to account for the decrement in the ability of muscle to sustain a given level of force for a long time. Some of these models have been critically analysed in this paper and are shown to be not able to explain all the experimental observations. A new compartmental model based on the intracellular calcium ion movement in muscle is proposed to study the mechanical responses of a muscle fibre. Computer simulation is performed to obtain model responses in isometric contraction to an impulse and a train of stimuli of long duration. The simulated curves have been compared with experimentally observed mechanical responses of the semitendinosus muscle fibre of Rana pipiens. The comparison of computed and observed responses indicates that the proposed calcium ion model indeed accounts very well for the muscle fatigue.

  17. [Effect of NaCl stress on ion compartmentation, photosynthesis and growth of Salicornia bigelovii Torr].

    Science.gov (United States)

    Wang, Li-Yan; Zhao, Ke-Fu

    2004-02-01

    Seedlings of Salicornia bigelovii Torr. were treated with different concentrations of NaCl (0, 100, 300, 600 mmol/L). Ion contents, Na(+) subcelluar localization, photosynthetic rate, ultrastructure of chloroplast and other parameters were measured. The data showed both fresh and dry weight of whole plant of Salicornia bigelovii Torr. under salinity were higher than the control. When NaCl concentration is about 300 mmol/L Salicornia bigelovii Torr. grow strongest. The contents of Na(+) and Cl(-) and c(Na)/c(K) in shoots increased with the salinity. Both Na(+) and Cl(-) were mainly transported to shoots. Ion X-ray microanalysis indicated Na(+) was mainly compartmentalized into vacuoles. Photosynthetic rate increased with the salinity under NaCl 100-300 mmol/L, but declined under NaCl 600 mmol/L. Ultrastructure of chloroplast was destroyed by NaCl 600 mmol/L.

  18. Dual regulation of muscle glycogen synthase during exercise by activation and compartmentalization

    DEFF Research Database (Denmark)

    Prats, Clara; Helge, Jørn W; Nordby, Pernille

    2009-01-01

    Glycogen synthase (GS) is considered the rate-limiting enzyme in glycogenesis but still today there is a lack of understanding on its regulation. We have previously shown phosphorylation-dependent GS intracellular redistribution at the start of glycogen re-synthesis in rabbit skeletal muscle (Prats......, C., Cadefau, J. A., Cussó, R., Qvortrup, K., Nielsen, J. N., Wojtaszewki, J. F., Wojtaszewki, J. F., Hardie, D. G., Stewart, G., Hansen, B. F., and Ploug, T. (2005) J. Biol. Chem. 280, 23165-23172). In the present study we investigate the regulation of human muscle GS activity by glycogen, exercise......, and insulin. Using immunocytochemistry we investigate the existence and relevance of GS intracellular compartmentalization during exercise and during glycogen re-synthesis. The results show that GS intrinsic activity is strongly dependent on glycogen levels and that such regulation involves associated...

  19. Estimation of pharmacokinetic parameters from non-compartmental variables using Microsoft Excel.

    Science.gov (United States)

    Dansirikul, Chantaratsamon; Choi, Malcolm; Duffull, Stephen B

    2005-06-01

    This study was conducted to develop a method, termed 'back analysis (BA)', for converting non-compartmental variables to compartment model dependent pharmacokinetic parameters for both one- and two-compartment models. A Microsoft Excel spreadsheet was implemented with the use of Solver and visual basic functions. The performance of the BA method in estimating pharmacokinetic parameter values was evaluated by comparing the parameter values obtained to a standard modelling software program, NONMEM, using simulated data. The results show that the BA method was reasonably precise and provided low bias in estimating fixed and random effect parameters for both one- and two-compartment models. The pharmacokinetic parameters estimated from the BA method were similar to those of NONMEM estimation.

  20. Cerebrospinal fluid analysis in the HIV infection and compartmentalization of HIV in the central nervous system

    Directory of Open Access Journals (Sweden)

    Sérgio Monteiro de Almeida

    2015-07-01

    Full Text Available The nervous system plays an important role in HIV infection. The purpose of this review is to discuss the indications for cerebrospinal fluid (CSF analysis in HIV infection in clinical practice. CSF analysis in HIV infection is indicated for the diagnosis of opportunistic infections and co-infections, diagnosis of meningitis caused by HIV, quantification of HIV viral load, and analysis of CNS HIV compartmentalization. Although several CSF biomarkers have been investigated, none are clinically applicable. The capacity of HIV to generate genetic diversity, in association with the constitutional characteristics of the CNS, facilitates the generation of HIV quasispecies in the CNS that are distinct from HIV in the systemic circulation. CSF analysis has a well-defined and valuable role in the diagnosis of CNS infections in HIV/AIDS patients. Further research is necessary to establish a clinically applicable biomarker for the diagnosis of HIV-associated neurocognitive disorders.

  1. Heterogeneity and compartmentalization of Pneumocystis carinii f. sp. hominis genotypes in autopsy lungs

    DEFF Research Database (Denmark)

    Helweg-Larsen, J; Lundgren, Bettina; Lundgren, Jens Dilling

    2001-01-01

    The extent and importance of genotype heterogeneity of Pneumocystis carinii f. sp. hominis within lungs have not previously been investigated. Two hundred forty PCR clones obtained from respiratory specimens and lung segments from three patients with fatal P. carinii pneumonia were investigated....... Not all genotypes present in the lungs at autopsy were detected in the diagnostic respiratory samples. Compartmentalization of specific ITS and mtLSU rRNA sequence types was observed in different lung segments. In conclusion, the interpretation of genotype data and in particular ITS sequence types...... in the assessment of epidemiological questions should be cautious since genotyping done on respiratory samples cannot a priori be assumed to represent all genotypes present within the lung....

  2. Sequence Stratigraphy of the Dakota Sandstone, Eastern San Juan Basin, New Mexico, and its Relationship to Reservoir Compartmentalization; FINAL

    International Nuclear Information System (INIS)

    Varney, Peter J.

    2002-01-01

    This research established the Dakota-outcrop sequence stratigraphy in part of the eastern San Juan Basin, New Mexico, and relates reservoir quality lithologies in depositional sequences to structure and reservoir compartmentalization in the South Lindrith Field area. The result was a predictive tool that will help guide further exploration and development

  3. Sequence Stratigraphy of the Dakota Sandstone, Eastern San Juan Basin, New Mexico, and its Relationship to Reservoir Compartmentalization

    Energy Technology Data Exchange (ETDEWEB)

    Varney, Peter J.

    2002-04-23

    This research established the Dakota-outcrop sequence stratigraphy in part of the eastern San Juan Basin, New Mexico, and relates reservoir quality lithologies in depositional sequences to structure and reservoir compartmentalization in the South Lindrith Field area. The result was a predictive tool that will help guide further exploration and development.

  4. Recent advances in compartmentalized synthetic architectures as drug carriers, cell mimics and artificial organelles

    DEFF Research Database (Denmark)

    York-Durán, María José; Gallardo, Maria Godoy; Labay, Cédric Pierre

    2017-01-01

    significant research attention and these assemblies are proposed as candidate materials for a range of biomedical applications. In this Review article, the recent successes of multicompartment architectures as carriers for the delivery of therapeutic cargo or the creation of micro- and nanoreactors that mimic...

  5. The construction of next-generation matrices for compartmental epidemic models.

    Science.gov (United States)

    Diekmann, O; Heesterbeek, J A P; Roberts, M G

    2010-06-06

    The basic reproduction number (0) is arguably the most important quantity in infectious disease epidemiology. The next-generation matrix (NGM) is the natural basis for the definition and calculation of (0) where finitely many different categories of individuals are recognized. We clear up confusion that has been around in the literature concerning the construction of this matrix, specifically for the most frequently used so-called compartmental models. We present a detailed easy recipe for the construction of the NGM from basic ingredients derived directly from the specifications of the model. We show that two related matrices exist which we define to be the NGM with large domain and the NGM with small domain. The three matrices together reflect the range of possibilities encountered in the literature for the characterization of (0). We show how they are connected and how their construction follows from the basic model ingredients, and establish that they have the same non-zero eigenvalues, the largest of which is the basic reproduction number (0). Although we present formal recipes based on linear algebra, we encourage the construction of the NGM by way of direct epidemiological reasoning, using the clear interpretation of the elements of the NGM and of the model ingredients. We present a selection of examples as a practical guide to our methods. In the appendix we present an elementary but complete proof that (0) defined as the dominant eigenvalue of the NGM for compartmental systems and the Malthusian parameter r, the real-time exponential growth rate in the early phase of an outbreak, are connected by the properties that (0) > 1 if and only if r > 0, and (0) = 1 if and only if r = 0.

  6. Evaluation of a compartmental model for estimating tumor hypoxia via FMISO dynamic PET imaging

    International Nuclear Information System (INIS)

    Wang Wenli; Nehmeh, Sadek A; O'Donoghue, Joseph; Zanzonico, Pat B; Schmidtlein, C Ross; Lee, Nancy Y; Humm, John L; Georgi, Jens-Christoph; Paulus, Timo; Narayanan, Manoj; Bal, Matthieu

    2009-01-01

    This paper systematically evaluates a pharmacokinetic compartmental model for identifying tumor hypoxia using dynamic positron emission tomography (PET) imaging with 18 F-fluoromisonidazole (FMISO). A generic irreversible one-plasma two-tissue compartmental model was used. A dynamic PET image dataset was simulated with three tumor regions-normoxic, hypoxic and necrotic-embedded in a normal-tissue background, and with an image-based arterial input function. Each voxelized tissue's time activity curve (TAC) was simulated with typical values of kinetic parameters, as deduced from FMISO-PET data from nine head-and-neck cancer patients. The dynamic dataset was first produced without any statistical noise to ensure that correct kinetic parameters were reproducible. Next, to investigate the stability of kinetic parameter estimation in the presence of noise, 1000 noisy samples of the dynamic dataset were generated, from which 1000 noisy estimates of kinetic parameters were calculated and used to estimate the sample mean and covariance matrix. It is found that a more peaked input function gave less variation in various kinetic parameters, and the variation of kinetic parameters could also be reduced by two region-of-interest averaging techniques. To further investigate how bias in the arterial input function affected the kinetic parameter estimation, a shift error was introduced in the peak amplitude and peak location of the input TAC, and the bias of various kinetic parameters calculated. In summary, mathematical phantom studies have been used to determine the statistical accuracy and precision of model-based kinetic analysis, which helps to validate this analysis and provides guidance in planning clinical dynamic FMISO-PET studies.

  7. Cytoplasmic localization of Hug1p, a negative regulator of the MEC1 pathway, coincides with the compartmentalization of Rnr2p–Rnr4p

    Energy Technology Data Exchange (ETDEWEB)

    Ainsworth, William B. [Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803 (United States); Hughes, Bridget Todd; Au, Wei Chun; Sakelaris, Sally [Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Kerscher, Oliver [Biology Department, The College of William and Mary, Williamsburg, VA 23185 (United States); Benton, Michael G., E-mail: benton@lsu.edu [Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803 (United States); Basrai, Munira A., E-mail: basraim@mail.nih.gov [Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States)

    2013-10-04

    Highlights: •Hug1p overexpression sensitizes wild-type cells to DNA damage and hydroxyurea (HU). •Expression of Hug1p in response to HU treatment is delayed relative to Rnr3p. •MEC1 pathway genes are required for cytoplasmic localization of Hug1p. •Hug1p subcellular compartmentalization to the cytoplasm coincides with Rnr2p–Rnr4p. -- Abstract: The evolutionarily conserved MEC1 checkpoint pathway mediates cell cycle arrest and induction of genes including the RNR (Ribonucleotide reductase) genes and HUG1 (Hydroxyurea, ultraviolet, and gamma radiation) in response to DNA damage and replication arrest. Rnr complex activity is in part controlled by cytoplasmic localization of the Rnr2p–Rnr4p subunits and inactivation of negative regulators Sml1p and Dif1p upon DNA damage and hydroxyurea (HU) treatment. We previously showed that a deletion of HUG1 rescues lethality of mec1Δ and suppresses dun1Δ strains. In this study, multiple approaches demonstrate the regulatory response of Hug1p to DNA damage and HU treatment and support its role as a negative effector of the MEC1 pathway. Consistent with our hypothesis, wild-type cells are sensitive to DNA damage and HU when HUG1 is overexpressed. A Hug1 polyclonal antiserum reveals that HUG1 encodes a protein in budding yeast and its MEC1-dependent expression is delayed compared to the rapid induction of Rnr3p in response to HU treatment. Cell biology and subcellular fractionation experiments show localization of Hug1p-GFP to the cytoplasm upon HU treatment. The cytoplasmic localization of Hug1p-GFP is dependent on MEC1 pathway genes and coincides with the cytoplasmic localization of Rnr2p–Rnr4p. Taken together, the genetic interactions, gene expression, and localization studies support a novel role for Hug1p as a negative regulator of the MEC1 checkpoint response through its compartmentalization with Rnr2p–Rnr4p.

  8. Compartmental analysis of the disposition of benzo[a]pyrene in rats.

    Science.gov (United States)

    Bevan, D R; Weyand, E H

    1988-11-01

    We have previously reported the disposition of benzo[a]pyrene (B[a]P) and its metabolites in male Sprague-Dawley rats following intratracheal instillation of [3H]B[a]P [Weyand, E.H. and Bevan, D.R. (1986) Cancer Res., 46, 5655-5661]. In some experiments, cannulas were implanted in the bile duct of the animals prior to administration of [3H]B[a]P [Weyand, E.H. and Bevan, D.R. (1987) Drug Metab. Disposition, 15, 442-448]. Based on these data, we have developed a compartmental model of the distribution of radioactivity to provide a quantitative description of the fate of B[a]P and its metabolites in rats. Modeling of the distribution of radioactivity was performed using the Simulation, Analysis and Modeling (SAAM) and conversational SAAM (CONSAM) computer programs. Compartments in the model included organs into which the largest amounts of radioactivity were distributed as well as pathways for excretion of radioactivity from the animals. Data from animals with and without cannulas implanted in the bile duct were considered simultaneously during modeling. Radioactivity was so rapidly absorbed from the lungs that an absorption phase into blood was not apparent at the earliest sampling times. Using the model of extrapolate to shorter times, it was predicted that the maximum amount of radioactivity was present in blood within 2 min after administration. In addition, considerable recycling of radioactivity back to lungs from blood was predicted by the model. Transfer of radioactivity from blood to liver and carcass (skin, muscle, bones, fat and associated blood) also was extensive. Carcass was modeled as the sum of two compartments to obtain agreement between the model and experimental data. The model accounted for enterohepatic circulation of B[a]P metabolites; data also required that intestinal secretion be included in the model. Quantitative data obtained from compartmental analysis included rate constants for transfer of radioactivity among compartments as well as

  9. Mathematical basis for the measurement of absolute and fractional cardiac output with diffusible tracers by compartmental analysis methods

    International Nuclear Information System (INIS)

    Charkes, N.D.

    1984-01-01

    Using compartmental analysis methods, a mathematical basis is given for the measurement of absolute and fractional cardiac output with diffusible tracers. Cardiac output is shown to be the product of the blood volume and the sum of the rate constants of tracer egress from blood, modified by a factor reflecting transcapillary diffusibility, the transfer fraction. The return of tracer to the blood and distant (intracellular) events are shown to play no role in the solution. Fractional cardiac output is the ratio of the rate constant of tracer egress from blood to an organ, divided by the sum of the egress constants from blood. Predominantly extracellular ions such as sodium or bromide are best suited for this technique, although theoretically any diffusible tracer whose compartmental model can be solved may be used. It is shown that fractional cardiac output is independent of the transfer fraction, and therefore can be measured accurately by tracers which are not freely diffusible

  10. Three-compartmental analysis of effects of D-propranolol on thyroid hormone kinetics

    International Nuclear Information System (INIS)

    Van Der Heijden, J.T.M.; Krenning, E.P.; Van Toor, H.; Hennemann, G.; Docter, R.

    1988-01-01

    Tracer thyroxine (T 4 ), 3,3',5-triiodothyronine (T 3 ), and 3,3',5'-triiodothyronine (rT 3 ) kinetic studies were performed in normal T 4 substituted subjects before and during oral D-propranolol treatment to determine whether changes in thyroid hormone metabolism in a propranolol-induced low-T 3 syndrome result from inhibition of 5'-deiodination or inhibition of transport of iodothyronines into tissues. Data were analyzed according to a three-compartmental model of distribution and metabolism. No changes were observed in size of the three T 4 compartments or in fractional and mass transfer rates of T 4 from plasma to the rapidly (REP) and slowly (SEP) equilibrating pools. Serum T 3 , free T 3 , T 3 plasma pool, T 3 mass transfer rate to REP and SEP, and the T 3 pool masses were all significantly decreased during propranolol to a similar extent as the T 3 plasma production rate (PR). It is concluded that the D-propranolol-induced changes in thyroid hormone metabolism, resulting in a low-T 3 syndrome, are due to inhibition of thyroid hormone deiodination. This is in contrast to the low-T 3 syndrome during caloric deprivation, which results from inhibition of transport of iodothyronines into the liver

  11. Synthesis, characterization and biological activity of symmetric dinuclear complexes derived from a novel macrocyclic compartmental ligand

    Energy Technology Data Exchange (ETDEWEB)

    Mruthyunjayaswamy, B.H.M.; Ijare, Omkar B.; Jadegoud, Y. [Gulbarga University (India). Dept. of Chemistry]. E-mail: bhmmswamy53@rediffmail.com

    2005-07-15

    A phenol based novel macrocyclic binucleating compartmental ligand N,N-bis(2,6-diiminomethyl-4-methyl-1-hydroxyphenyl)malonoyldicarboxamide was prepared. The complexes were prepared by template method by reacting 2,6-diformyl-4-methylphenol, malonoyl dihydrazide and the metal chlorides of Cu(II), Ni(II), Co(II), Cd(II), Zn(II) and Hg(II) in methanol to get a series of dinuclear complexes. The complexes were characterized by elemental analyses, conductivity measurements, magnetic susceptibility data, IR, UV-Vis, ESR, NMR and FAB mass spectral data. The dinuclear nature of the complexes was confirmed on the basis of elemental analyses, magnetic susceptibility, ESR and FAB mass spectral data. The ligand as well as Cu(II), Ni(II), Co(II) and Zn(II) complexes were tested for their antibacterial and antifungal properties against Escherichia coli, Staphyloccocus aureus, Aspergillus niger and Fusarium oxysporum. Magnetic susceptibility measurements of Cu(II), Ni(II) and Co(II) complexes reveal that these complexes exhibit antiferromagnetic coupling behavior due to the presence of two metal ions in close proximity. FAB mass spectrum of the Cu(II) complex gave a clear evidence for the dinuclear nature. The ligand and the complexes were found to be less active against the tested bacteria, but the ligand alone was found active against the fungus Fusarium oxysporum. (author)

  12. Dynamic PET scanning and compartmental model analysis to determine cellular level radiotracer distribution in vivo

    International Nuclear Information System (INIS)

    Smith, G.T.; Hubner, K.F.; Goodman, M.M.; Stubbs, J.B.

    1992-01-01

    Positron emission tomography (PET) has been used to measure tissue radiotracer concentration in vivo. Radiochemical distribution can be determined with compartmental model analysis. A two compartment model describes the kinetics of N-13 ammonia ( 13 NH 3 ) in the myocardium. The model consists of a vascular space, Q 1 and a space for 13 NH 3 bound within the tissue, Q 2 . Differential equations for the model can be written: X(t) = AX(t) + BU( t), Y(t)= CX(t)+ DU(t) (1) where X(t) is a column vector [Q 1 (t); Q 2 (t)], U(t) is the arterial input activity measured from the left ventricular blood pool, and Y(t) is the measured tissue activity using PET. Matrices A, B, C, and D are dependent on physiological parameters describing the kinetics of 13 NH 3 in the myocardium. Estimated parameter matrices in Equation 1 have been validated in dog experiments by measuring myocardial perfusion with dynamic PET scanning and intravenous injection of 13 NH 3 . Tracer concentrations for each compartment can be calculated by direct integration of Equation 1. If the cellular level distribution of each compartment is known, the concentration of tracer within the intracellular and extracellular space can be determined. Applications of this type of modeling include parameter estimation for measurement of physiological processes, organ level dosimetry, and determination of cellular radiotracer distribution

  13. Compartmental analysis and dosimetric aspects applied to cholesterol with 3H labeled

    International Nuclear Information System (INIS)

    Oliveira, Adriano dos Santos

    2015-01-01

    Cardiovascular diseases (CVDs) are one of the major reasons of death around the world according to the World Health Organization (WHO). It is well known that changes in levels of plasma lipoproteins, which are responsible for the transport of cholesterol into the bloodstream, are associated with cardiovascular diseases. For this reason to know the biokinetic parameters of plasma lipoproteins and quantifies them is important to correct and deep understanding about the diseases associated with these disorders. The main aim of this study is to provide a biokinetic model and estimate the radiometric doses for 3 H-Cholesterol, a radioactive tracer widely used in physiological and metabolic studies. The model was based on [Schwartz et al. 2004] about the distribution of cholesterol by the lipoprotein and gastrointestinal model [ICRP 30, 1979]. The doses distribution in compartments of the model and other organs and tissues of a standard adult described in [ICRP 106, 2008] was calculated using MIRD method (Medical Internal Radiation Dose) and compartmental analysis using the computer program Matlab®. The dose coefficients were estimated for a standard phantom man (73 kg) described in [ICRP 60, 1991]. The estimated doses for both model and for other organs were low and did not exceed the highest dose obtained that was in the upper large intestine, as 44,8 μGy these parameters will assist in ethics committee's opinions on the use of works that use the 3 H-cholesterol which radioactive tracer. (author)

  14. PGI2 synthesis and excretion in dog kidney: evidence for renal PG compartmentalization

    International Nuclear Information System (INIS)

    Boyd, R.M.; Nasjletti, A.; Heerdt, P.M.; Baer, P.G.

    1986-01-01

    To assess the concept of compartmentalization of renal prostaglandins (PG), we compared entry of PGE2 and the PGI2 metabolite 6-keto-PGF1 alpha into the renal vascular and tubular compartments, in sodium pentobarbital-anesthetized dogs. Renal arterial 6-keto-PGF1 alpha infusion increased both renal venous and urinary 6-keto-PGF1 alpha outflow. In contrast, renal arterial infusion of arachidonic acid (AA) or bradykinin (BK) increased renal venous 6-keto-PGF1 alpha outflow but had no effect on its urinary outflow. Both urinary and renal venous PGE2 outflows increased during AA or BK infusion. Ureteral stopped-flow studies revealed no postglomerular 6-keto-PGF1 alpha entry into tubular fluid. During renal arterial infusion of [3H]PGI2 and inulin, first-pass 3H clearance was 40% of inulin clearance; 35% of urinary 3H was 6-keto-PGF1 alpha, and two other urinary metabolites were found. During renal arterial infusion of [3H]6-keto-PGF1 alpha and inulin, first-pass 3H clearance was 150% of inulin clearance; 75% of urinary 3H was 6-keto-PGF1 alpha, and only one other metabolite was found. We conclude that in the dog PGE2 synthesized in the kidney enters directly into both the renal vascular and tubular compartments, but 6-keto-PGF1 alpha of renal origin enters directly into only the renal vascular compartment

  15. Linear least squares compartmental-model-independent parameter identification in PET

    International Nuclear Information System (INIS)

    Thie, J.A.; Smith, G.T.; Hubner, K.F.

    1997-01-01

    A simplified approach involving linear-regression straight-line parameter fitting of dynamic scan data is developed for both specific and nonspecific models. Where compartmental-model topologies apply, the measured activity may be expressed in terms of: its integrals, plasma activity and plasma integrals -- all in a linear expression with macroparameters as coefficients. Multiple linear regression, as in spreadsheet software, determines parameters for best data fits. Positron emission tomography (PET)-acquired gray-matter images in a dynamic scan are analyzed: both by this method and by traditional iterative nonlinear least squares. Both patient and simulated data were used. Regression and traditional methods are in expected agreement. Monte-Carlo simulations evaluate parameter standard deviations, due to data noise, and much smaller noise-induced biases. Unique straight-line graphical displays permit visualizing data influences on various macroparameters as changes in slopes. Advantages of regression fitting are: simplicity, speed, ease of implementation in spreadsheet software, avoiding risks of convergence failures or false solutions in iterative least squares, and providing various visualizations of the uptake process by straight line graphical displays. Multiparameter model-independent analyses on lesser understood systems is also made possible

  16. Reservoir compartmentalization and management strategies: Lessons learned in the Illinois basin

    Energy Technology Data Exchange (ETDEWEB)

    Grube, J.P.; Crockett, J.E.; Huff, B.G. [and others

    1997-08-01

    A research project jointly sponsored by the US Department of Energy and the Illinois State Geological Survey focused on the Cypress and Aux Vases Formations (Mississippian), major clastic reservoirs in the Illinois Basin. Results from the research showed that understanding the nature and distribution of reservoir compartments, and using effective reservoir management strategies, can significantly improve recovery efficiencies from oil fields in this mature basin. Compartments can be most effectively drained where they are geologically well defined and reservoir management practices are coordinated through unified, compartment-wide, development programs. Our studies showed that the Cypress and Aux Vases reservoirs contain lateral and vertical permeability barriers forming compartments that range in size from isolated, interlaminated sandstone and shale beds to sandstone bodies tens of feet in thickness and more than a mile in length. Stacked or shingled, genetically similar sandstone bodies are commonly separated by thin impermeable intervals that can be difficult to distinguish on logs and can, therefore, cause correlation problems, even between wells drilled on spacing of less than ten acres. Lateral separation of sandstone bodies causes similar problems. Reservoir compartmentalization reduces primary and particularly secondary recovery by trapping pockets of by-passed or banked oil. Compartments can be detected by comparing recovery factors of genetically similar sandstone bodies within a field; using packers to separate commingled intervals and analyzing fluid recoveries and pressures; making detailed core-to-log calibrations that identify compartment boundaries; and analyzing pressure data from waterflood programs.

  17. Effects of hypoxia on 13NH4+ fluxes in rice roots: kinetics and compartmental analysis

    International Nuclear Information System (INIS)

    Kronzucker, H.J.; Kirk, G.J.D.; Siddiqi, M.Y.; Glass, A.D.M.

    1998-01-01

    Techniques of compartmental (efflux) and kinetic influx analyses with the radiotracer 13NH4+ were used to examine the adaptation to hypoxia (15, 35, and 50% O2 saturation) of root N uptake and metabolism in 3-week-old hydroponically grown rice (Oryza sativa L., cv IR72) seedlings. A time-dependence study of NH4+ influx into rice roots after onset of hypoxia (15% O2) revealed an initial increase in the first 1 to 2.5 h after treatment imposition, followed by a decline to less than 50% of influx in control plants by 4 d. Efflux analyses conducted 0, 1, 3, and 5 d after the treatment confirmed this adaptation pattern of NH4+ uptake. Half-lives for NH4+ exchange with subcellular compartments, cytoplasmic NH4+ concentrations, and efflux (as percentage of influx) were unaffected by hypoxia. However, significant differences were observed in the relative amounts of N allocated to NH4+ assimilation and the vacuole versus translocation to the shoot. Kinetic experiments conducted at 100, 50, 35, and 15% O2 saturation showed no significant change in the K(m) value for NH4+ uptake with varying O2 supply. However, V(max) was 42% higher than controls at 50% O2 saturation, unchanged at 35%, and 10% lower than controls at 15% O2. The significance of these flux adaptations is discussed

  18. Synthesis, characterization and biological activity of symmetric dinuclear complexes derived from a novel macrocyclic compartmental ligand

    International Nuclear Information System (INIS)

    Mruthyunjayaswamy, B.H.M.; Ijare, Omkar B.; Jadegoud, Y.

    2005-01-01

    A phenol based novel macrocyclic binucleating compartmental ligand N,N-bis(2,6-diiminomethyl-4-methyl-1-hydroxyphenyl)malonoyldicarboxamide was prepared. The complexes were prepared by template method by reacting 2,6-diformyl-4-methylphenol, malonoyl dihydrazide and the metal chlorides of Cu(II), Ni(II), Co(II), Cd(II), Zn(II) and Hg(II) in methanol to get a series of dinuclear complexes. The complexes were characterized by elemental analyses, conductivity measurements, magnetic susceptibility data, IR, UV-Vis, ESR, NMR and FAB mass spectral data. The dinuclear nature of the complexes was confirmed on the basis of elemental analyses, magnetic susceptibility, ESR and FAB mass spectral data. The ligand as well as Cu(II), Ni(II), Co(II) and Zn(II) complexes were tested for their antibacterial and antifungal properties against Escherichia coli, Staphyloccocus aureus, Aspergillus niger and Fusarium oxysporum. Magnetic susceptibility measurements of Cu(II), Ni(II) and Co(II) complexes reveal that these complexes exhibit antiferromagnetic coupling behavior due to the presence of two metal ions in close proximity. FAB mass spectrum of the Cu(II) complex gave a clear evidence for the dinuclear nature. The ligand and the complexes were found to be less active against the tested bacteria, but the ligand alone was found active against the fungus Fusarium oxysporum. (author)

  19. Integrated compartmental model for describing the transport of solute in a fractured porous medium. [FRACPORT

    Energy Technology Data Exchange (ETDEWEB)

    DeAngelis, D.L.; Yeh, G.T.; Huff, D.D.

    1984-10-01

    This report documents a model, FRACPORT, that simulates the transport of a solute through a fractured porous matrix. The model should be useful in analyzing the possible transport of radionuclides from shallow-land burial sites in humid environments. The use of the model is restricted to transport through saturated zones. The report first discusses the general modeling approach used, which is based on the Integrated Compartmental Method. The basic equations of solute transport are then presented. The model, which assumes a known water velocity field, solves these equations on two different time scales; one related to rapid transport of solute along fractures and the other related to slower transport through the porous matrix. FRACPORT is validated by application to a simple example of fractured porous medium transport that has previously been analyzed by other methods. Then its utility is demonstrated in analyzing more complex cases of pulses of solute into a fractured matrix. The report serves as a user's guide to FRACPORT. A detailed description of data input, along with a listing of input for a sample problem, is provided. 16 references, 18 figures, 3 tables.

  20. A comprehensive compartmental model of blood glucose regulation for healthy and type 2 diabetic subjects.

    Science.gov (United States)

    Vahidi, O; Kwok, K E; Gopaluni, R B; Knop, F K

    2016-09-01

    We have expanded a former compartmental model of blood glucose regulation for healthy and type 2 diabetic subjects. The former model was a detailed physiological model which considered the interactions of three substances, glucose, insulin and glucagon on regulating the blood sugar. The main drawback of the former model was its restriction on the route of glucose entrance to the body which was limited to the intravenous glucose injection. To handle the oral glucose intake, we have added a model of glucose absorption in the gastrointestinal tract to the former model to address the resultant variations of blood glucose concentrations following an oral glucose intake. Another model representing the incretins production in the gastrointestinal tract along with their hormonal effects on boosting pancreatic insulin production is also added to the former model. We have used two sets of clinical data obtained during oral glucose tolerance test and isoglycemic intravenous glucose infusion test from both type 2 diabetic and healthy subjects to estimate the model parameters and to validate the model results. The estimation of model parameters is accomplished through solving a nonlinear optimization problem. The results show acceptable precision of the estimated model parameters and demonstrate the capability of the model in accurate prediction of the body response during the clinical studies.

  1. Proposing a Compartmental Model for Leprosy and Parameterizing Using Regional Incidence in Brazil.

    Science.gov (United States)

    Smith, Rebecca Lee

    2016-08-01

    Hansen's disease (HD), or leprosy, is still considered a public health risk in much of Brazil. Understanding the dynamics of the infection at a regional level can aid in identification of targets to improve control. A compartmental continuous-time model for leprosy dynamics was designed based on understanding of the biology of the infection. The transmission coefficients for the model and the rate of detection were fit for each region using Approximate Bayesian Computation applied to paucibacillary and multibacillary incidence data over the period of 2000 to 2010, and model fit was validated on incidence data from 2011 to 2012. Regional variation was noted in detection rate, with cases in the Midwest estimated to be infectious for 10 years prior to detection compared to 5 years for most other regions. Posterior predictions for the model estimated that elimination of leprosy as a public health risk would require, on average, 44-45 years in the three regions with the highest prevalence. The model is easily adaptable to other settings, and can be studied to determine the efficacy of improved case finding on leprosy control.

  2. Kinetic compartmental analysis of carnitine metabolism in the human carnitine deficiency syndromes. Evidence for alterations in tissue carnitine transport.

    OpenAIRE

    Rebouche, C J; Engel, A G

    1984-01-01

    The human primary carnitine deficiency syndromes are potentially fatal disorders affecting children and adults. The molecular etiologies of these syndromes have not been determined. In this investigation, we considered the hypothesis that these syndromes result from defective transport of carnitine into tissues, particularly skeletal muscle. The problem was approached by mathematical modeling, by using the technique of kinetic compartmental analysis. A tracer dose of L-[methyl-3H]carnitine wa...

  3. Compartmentalized microbial composition, oxygen gradients and nitrogen fixation in the gut of Odontotaenius disjunctus.

    Science.gov (United States)

    Ceja-Navarro, Javier A; Nguyen, Nhu H; Karaoz, Ulas; Gross, Stephanie R; Herman, Donald J; Andersen, Gary L; Bruns, Thomas D; Pett-Ridge, Jennifer; Blackwell, Meredith; Brodie, Eoin L

    2014-01-01

    Coarse woody debris is an important biomass pool in forest ecosystems that numerous groups of insects have evolved to take advantage of. These insects are ecologically important and represent useful natural analogs for biomass to biofuel conversion. Using a range of molecular approaches combined with microelectrode measurements of oxygen, we have characterized the gut microbiome and physiology of Odontotaenius disjunctus, a wood-feeding beetle native to the eastern United States. We hypothesized that morphological and physiological differences among gut regions would correspond to distinct microbial populations and activities. In fact, significantly different communities were found in the foregut (FG), midgut (MG)/posterior hindgut (PHG) and anterior hindgut (AHG), with Actinobacteria and Rhizobiales being more abundant toward the FG and PHG. Conversely, fermentative bacteria such as Bacteroidetes and Clostridia were more abundant in the AHG, and also the sole region where methanogenic Archaea were detected. Although each gut region possessed an anaerobic core, micron-scale profiling identified radial gradients in oxygen concentration in all regions. Nitrogen fixation was confirmed by (15)N2 incorporation, and nitrogenase gene (nifH) expression was greatest in the AHG. Phylogenetic analysis of nifH identified the most abundant transcript as related to Ni-Fe nitrogenase of a Bacteroidetes species, Paludibacter propionicigenes. Overall, we demonstrate not only a compartmentalized microbiome in this beetle digestive tract but also sharp oxygen gradients that may permit aerobic and anaerobic metabolism to occur within the same regions in close proximity. We provide evidence for the microbial fixation of N2 that is important for this beetle to subsist on woody biomass.

  4. The Importance of Bank Storage in Supplying Baseflow to Rivers Flowing Through Compartmentalized, Alluvial Aquifers

    Science.gov (United States)

    Rhodes, Kimberly A.; Proffitt, Tiffany; Rowley, Taylor; Knappett, Peter S. K.; Montiel, Daniel; Dimova, Natasha; Tebo, Daniel; Miller, Gretchen R.

    2017-12-01

    As water grows scarcer in semiarid and arid regions around the world, new tools are needed to quantify fluxes of water and chemicals between aquifers and rivers. In this study, we quantify the volumetric flux of subsurface water to a 24 km reach of the Brazos River, a lowland river that meanders through the Brazos River Alluvium Aquifer (BRAA), with 8 months of high-frequency differential gaging measurements using fixed gaging stations. Subsurface discharge sources were determined using natural tracers and End-Member Mixing Analysis (EMMA). During a 4 month river stage recession following a high stage event, subsurface discharge decreased from 50 m3/s to 0, releasing a total of 1.0 × 108 m3 of water. Subsurface discharge dried up even as the groundwater table at two locations in the BRAA located 300-500 m from the river remained ˜4 m higher than the river stage. Less than 4% of the water discharged from the subsurface during the prolonged recession period resembled the chemical fingerprint of the alluvial aquifer. Instead, the chemistry of this discharged water closely resembled high stage "event" river water. Together, these findings suggest that the river is well connected to rechargeable bank storage reservoirs but disconnected from the broader alluvial aquifer. The average width of discrete bank storage zones on each side of the river, identified with Electrical Resistivity Tomography (ERT), was approximately 1.5 km. In such highly compartmentalized aquifers, groundwater pumping is unlikely to impact the exchange between the river and the alluvium.

  5. Ocular pharmacokinetics of a novel tetrahydroquinoline analog in rabbit: absorption, disposition, and non-compartmental analysis.

    Science.gov (United States)

    Pamulapati, Chandrasena R; Schoenwald, Ronald D

    2011-12-01

    The pharmacologically active compound (33% reduction in rabbit intraocular pressure recovery rate assay) 1-ethyl-6-fluoro-1,2,3,4-tetrahydroquinoline (MC4), which showed ocular hypotensive action and had optimum physicochemical properties, was characterized for its ocular absorption and distribution properties to better understand its in vivo potency in comparison with an inactive compound, N-ethyl-1,4-benzoxazine (MC1). Tissue distribution to various ocular tissues was determined after absorption by both corneal and conjunctival-scleral routes, following administration by the "topical infusion" technique. The rank order of penetration for both the compounds was cornea > iris-ciliary body > aqueous humor > lens > conjunctiva-sclera. Overall, MC4 had significantly higher concentrations than MC1 in various ocular tissues, but particularly in the iris-ciliary body, which is the site of action (biophase). Ocular disposition studies of the active compound MC4 were then conducted to characterize its elimination kinetics, and the pharmacokinetic parameters were determined by non-compartmental and moment analysis using equations specific to "topical infusion" technique: first-order absorption rate constant, 4.1 × 10(-4) min(-1) ; elimination rate constant, 0.012 min(-1) ; mean residence time, 39.6 min; steady-state volume of distribution, 0.721 mL; and aqueous humor ocular clearance, 8.44 µL/min. The results were consistent with the conclusion that MC4 is well absorbed and distributed to the active site. Copyright © 2011 Wiley-Liss, Inc.

  6. Validation of Bayesian analysis of compartmental kinetic models in medical imaging.

    Science.gov (United States)

    Sitek, Arkadiusz; Li, Quanzheng; El Fakhri, Georges; Alpert, Nathaniel M

    2016-10-01

    Kinetic compartmental analysis is frequently used to compute physiologically relevant quantitative values from time series of images. In this paper, a new approach based on Bayesian analysis to obtain information about these parameters is presented and validated. The closed-form of the posterior distribution of kinetic parameters is derived with a hierarchical prior to model the standard deviation of normally distributed noise. Markov chain Monte Carlo methods are used for numerical estimation of the posterior distribution. Computer simulations of the kinetics of F18-fluorodeoxyglucose (FDG) are used to demonstrate drawing statistical inferences about kinetic parameters and to validate the theory and implementation. Additionally, point estimates of kinetic parameters and covariance of those estimates are determined using the classical non-linear least squares approach. Posteriors obtained using methods proposed in this work are accurate as no significant deviation from the expected shape of the posterior was found (one-sided P>0.08). It is demonstrated that the results obtained by the standard non-linear least-square methods fail to provide accurate estimation of uncertainty for the same data set (P<0.0001). The results of this work validate new methods for a computer simulations of FDG kinetics. Results show that in situations where the classical approach fails in accurate estimation of uncertainty, Bayesian estimation provides an accurate information about the uncertainties in the parameters. Although a particular example of FDG kinetics was used in the paper, the methods can be extended for different pharmaceuticals and imaging modalities. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  7. Barcoding of GPCR trafficking and signaling through the various trafficking roadmaps by compartmentalized signaling networks.

    Science.gov (United States)

    Bahouth, Suleiman W; Nooh, Mohammed M

    2017-08-01

    Proper signaling by G protein coupled receptors (GPCR) is dependent on the specific repertoire of transducing, enzymatic and regulatory kinases and phosphatases that shape its signaling output. Activation and signaling of the GPCR through its cognate G protein is impacted by G protein-coupled receptor kinase (GRK)-imprinted "barcodes" that recruit β-arrestins to regulate subsequent desensitization, biased signaling and endocytosis of the GPCR. The outcome of agonist-internalized GPCR in endosomes is also regulated by sequence motifs or "barcodes" within the GPCR that mediate its recycling to the plasma membrane or retention and eventual degradation as well as its subsequent signaling in endosomes. Given the vast number of diverse sequences in GPCR, several trafficking mechanisms for endosomal GPCR have been described. The majority of recycling GPCR, are sorted out of endosomes in a "sequence-dependent pathway" anchored around a type-1 PDZ-binding module found in their C-tails. For a subset of these GPCR, a second "barcode" imprinted onto specific GPCR serine/threonine residues by compartmentalized kinase networks was required for their efficient recycling through the "sequence-dependent pathway". Mutating the serine/threonine residues involved, produced dramatic effects on GPCR trafficking, indicating that they played a major role in setting the trafficking itinerary of these GPCR. While endosomal SNX27, retromer/WASH complexes and actin were required for efficient sorting and budding of all these GPCR, additional proteins were required for GPCR sorting via the second "barcode". Here we will review recent developments in GPCR trafficking in general and the human β 1 -adrenergic receptor in particular across the various trafficking roadmaps. In addition, we will discuss the role of GPCR trafficking in regulating endosomal GPCR signaling, which promote biochemical and physiological effects that are distinct from those generated by the GPCR signal transduction

  8. Relationships between metal compartmentalization and biomarkers in earthworms exposed to field-contaminated soils.

    Science.gov (United States)

    Beaumelle, Léa; Hedde, Mickaël; Vandenbulcke, Franck; Lamy, Isabelle

    2017-05-01

    Partitioning tissue metal concentration into subcellular compartments reflecting toxicologically available pools may provide good descriptors of the toxicological effects of metals on organisms. Here we investigated the relationships between internal compartmentalization of Cd, Pb and Zn and biomarker responses in a model soil organism: the earthworm. The aim of this study was to identify metal fractions reflecting the toxic pressure in an endogeic, naturally occurring earthworm species (Aporrectodea caliginosa) exposed to realistic field-contaminated soils. After a 21 days exposure experiment to 31 field-contaminated soils, Cd, Pb and Zn concentrations in earthworms and in three subcellular fractions (cytosol, debris and granules) were quantified. Different biomarkers were measured: the expression of a metallothionein gene (mt), the activity of catalase (CAT) and of glutathione-s-transferase (GST), and the protein, lipid and glycogen reserves. Biomarkers were further combined into an integrated biomarker index (IBR). The subcellular fractionation provided better predictors of biomarkers than the total internal contents hence supporting its use when assessing toxicological bioavailability of metals to earthworms. The most soluble internal pools of metals were not always the best predictors of biomarker responses. metallothionein expression responded to increasing concentrations of Cd in the insoluble fraction (debris + granules). Protein and glycogen contents were also mainly related to Cd and Pb in the insoluble fraction. On the other hand, GST activity was better explained by Pb in the cytosolic fraction. CAT activity and lipid contents variations were not related to metal subcellular distribution. The IBR was best explained by both soluble and insoluble fractions of Pb and Cd. This study further extends the scope of mt expression as a robust and specific biomarker in an ecologically representative earthworm species exposed to field-contaminated soils. The

  9. Comparison of total and compartmental gastric emptying and antral motility between healthy men and women

    Energy Technology Data Exchange (ETDEWEB)

    Bennink, R.; Van den Maegdenbergh, V.; Roo, M. de; Mortelmans, L. [Department of Nuclear Medicine, UZ KU Leuven (Belgium); Peeters, M.; Geypens, B.; Rutgeerts, P. [Department of Gastroenterology, UZ KU Leuven (Belgium)

    1998-09-01

    There is increasing evidence of gender-related differences in gastric emptying. The purpose of this study was first, to confirm the difference in gastric emptying for both solid and liquid test meals between healthy men and women, and secondly, to investigate the origin of this difference by studying regional gastric emptying and antral motility. A standard gastric emptying test with additional compartmental (proximal and distal) evaluation and dynamic imaging of the antrum was performed in 20 healthy women studied during the first 10 days of the menstrual cycle, and in 31 healthy age-matched men. In concordance with previous reports, women had a longer half-emptying time for solids as compared to men (86.2{+-}5.1 vs 52.2{+-}2.9 min, P<0.05). In our observations this seemed to be related to a significantly prolonged lag phase and a significant decrease in terminal slope. Dynamical antral scintigraphy did not show a significant difference. The distribution of the test meal within the stomach (proximal vs distal) showed more early proximal retention in women as compared to men. The terminal slope of the distal somach was significantly lower in women. We did not observe a significant difference in gastric emptying of the liquid test meal between men and women. Gastric emptying of solids is significantly slower in healthy women as compared to men. These findings emphasise the importance of using different normal values for clinical and research purposes in gastric emptying scintigraphy in men and women. The difference could not be explained by antral motility alone. Increased proximal retention and a lower terminal emptying rate in women are observations to be further investigated. (orig.) With 5 figs., 2 tabs., 36 refs.

  10. Retinol metabolism in rats with low vitamin A status: A compartmental model

    International Nuclear Information System (INIS)

    Lewis, K.C.; Green, M.H.; Green, J.B.; Zech, L.A.

    1990-01-01

    A compartmental model was developed to describe the metabolism of vitamin A in rats with low vitamin A status maintained by a low dietary intake of vitamin A (approximately 2 micrograms retinol equivalents/day). After the IV bolus injection of [3H]retinol in its physiological transport complex, tracer and trace data were obtained from plasma, organs (liver, kidneys, small intestine, eyes, adrenals, testes, lungs, carcass), and tracer data were obtained from urine and feces. The dietary protocol developed for this study resulted in animals having plasma vitamin A levels less than 10 micrograms retinol/dl and total liver vitamin A levels of approximately 1 microgram retinol equivalent. Four compartments were used to model the plasma: one to describe retinol, one to describe the nonphysiological portion of the dose, and two to simulate polar metabolites derived from retinol. The liver required two compartments and a delay, the carcass (small intestine, eyes, adrenals, testes, and lungs, plus remaining carcass) required three compartments, and the kidneys required two. The model predicted a vitamin A utilization rate of 1.65 micrograms retinol equivalents/day with the urine and feces accounting for most of the output. The plasma retinol turnover rate was approximately 20 micrograms retinol equivalents/day; this was 12 times greater than the utilization rate. This indicated that, of the large amount of retinol moving through the plasma each day, less than 10% of this was actually being irreversibly utilized. Similarly, as compared to the whole-body utilization rate, there was a relatively high turnover rate of retinol in the kidneys, carcass, and liver, coupled with a high degree of recycling of vitamin A through these tissues. Of the total vitamin A that entered the liver from all sources including the diet, approximately 86% was mobilized into the plasma

  11. Axial compartmentation of descending and ascending thin limbs of Henle's loops.

    Science.gov (United States)

    Westrick, Kristen Y; Serack, Bradley; Dantzler, William H; Pannabecker, Thomas L

    2013-02-01

    In the inner medulla, radial organization of nephrons and blood vessels around collecting duct (CD) clusters leads to two lateral interstitial regions and preferential intersegmental fluid and solute flows. As the descending (DTLs) and ascending thin limbs (ATLs) pass through these regions, their transepithelial fluid and solute flows are influenced by variable transepithelial solute gradients and structure-to-structure interactions. The goal of this study was to quantify structure-to-structure interactions, so as to better understand compartmentation and flows of transepithelial water, NaCl, and urea and generation of the axial osmotic gradient. To accomplish this, we determined lateral distances of AQP1-positive and AQP1-negative DTLs and ATLs from their nearest CDs, so as to gauge interactions with intercluster and intracluster lateral regions and interactions with interstitial nodal spaces (INSs). DTLs express reduced AQP1 and low transepithelial water permeability along their deepest segments. Deep AQP1-null segments, prebend segments, and ATLs lie equally near to CDs. Prebend segments and ATLs abut CDs and INSs throughout much of their descent and ascent, respectively; however, the distal 30% of ATLs of the longest loops lie distant from CDs as they approach the outer medullary boundary and have minimal interaction with INSs. These relationships occur regardless of loop length. Finally, we show that ascending vasa recta separate intercluster AQP1-positive DTLs from descending vasa recta, thereby minimizing dilution of gradients that drive solute secretion. We hypothesize that DTLs and ATLs enter and exit CD clusters in an orchestrated fashion that is important for generation of the corticopapillary solute gradient by minimizing NaCl and urea loss.

  12. Compartmental and dosimetric studies of anti-CD20 labelled with 188Re

    International Nuclear Information System (INIS)

    Kuramoto, Graciela Barrio

    2016-01-01

    The radioimmunotherapy (RIT) uses MAbs conjugated to radionuclides α or β - emitters, both for therapy. Your treatment is based on the irradiation and tumor destruction, preserving the normal organs as the excess radiation. Radionuclides β - emitters as 131 I, 90 Y, 188 Re 177 Lu and are useful for the development of therapeutic radiopharmaceuticals and, when coupled with MAb and Anti-CD20 it is important mainly for the treatment of non-Hodgkin's lymphomas (NHL). 188 Re (E β = 2.12 MeV; E γ = 155 keV; t1/2 = 16.9 h) is an attractive radionuclide for RIT. However, 188 Re can be obtained from a radionuclide generator of 188 W/ 188 Re, commercially available, making it convenient for use in research and for clinical routine. The CR of IPEN has a project aimed at the production of radiopharmaceutical 188 Re-Anti-CD20, where the radionuclide can be obtained from a generator system 188 W/ 188 Re. With this proposed a study to assess the efficiency of this labeling technique for treatment in accordance compartmental and dosimetry. The objective of this study was to compare the marking of anti-CD20 MAb with 188 Re with the marking of the antibody with 90 Y, 131 I, 177 Lu and 99m Tc (for their similar chemical characteristics) and 211 At, 213 Bi, 223 Ra and 225 Ac); through the study of labeling techniques reported in literature, the proposal of a compartmental model to evaluate its pharmacokinetic and dosimetric studies, high interest for therapy. The result of the study shows a favorable kinetics for 188 Re, by their physical and chemical characteristics compared to the other evaluated radionuclides. The compartment proposed study describes the metabolism of 188 Reanti- CD20 through a compartment mammillary model, which by their pharmacokinetic analysis, performed compared to products emitters β -131 I-labeled anti CD20, 177 Luanti- CD20, the γ emitter 99m Tc-Anti-CD20 and α emitter 211 At-Anti-CD20 presented a elimination constant of approximately 0.05 hours

  13. Biodistribution and biological characteristics of p-[(bis-carboxymethyl) aminomethyl carboxyamino] hippuric acid (Pahida) labelled with technetium-99m. Establishment of pharmacokinetics parameters through compartmental model

    International Nuclear Information System (INIS)

    Araujo, E.B. de.

    1990-01-01

    Biologic distribution of p- [(bis-carboxymethylaminomethyl carboxyamino)] hippuric acid (PAHIDA) labeled with sup(99m)Tc in Wistar rats, showed a selective renal uptake among the other organs and tissues. The compound is predominantly eliminated by urinary tract, with small enterohepatic percent of excretion Chromatographic analysis of urine showed the product and possible metabolites. PAHIDA- sup(99m)Tc blood clearance is relatively rapid and a good percent is transported by plasmatic proteins. The percent binding to the erythrocytes is significant after one hour, this is due probably to hydrolysed technetium. The extrapolation of the plasmatic curve denoted the existence of three exponentials, suggesting a model with three compartments: central or intravascular and two peripherics or extravasculars - rapid and slow exchange (retention). Exponential's half life and the transfer constant (k) among the compartments were determined. The compound retention was reaffirmed by whole body determination. The decomposition of the curve in two exponentials allowed to assess the component's half-life. The compartmental model proposed in agreement with the experimental results, showed the complex retention that may be related the binding with the blood components, the possibility of renal metabolization or a structural impediment in the interaction with the tubular cells receptors. (author)

  14. Stratigraphic and structural compartmentalization observed within a model turbidite reservoir, Pennsylvanian Upper Jackfork Formation, Hollywood Quarry, Arkansas

    Energy Technology Data Exchange (ETDEWEB)

    Slatt, R. [Colorado School of Mines, Golden, CO (United States); Jordan, D. [Arco International Oil and Gas Co., Plano, TX (United States); Stone, C. [Arkansas Geological Commission, Little Rock, AR (United States)] [and others

    1995-08-01

    Hollywood Quarry is a 600 x 375 x 150 ft. (200 x 125 x 50m) excavation which provides a window into lower Pennsylvanian Jackfork Formation turbidite stratal architecture along the crest of a faulted anticlinal fold. A variety of turbidite facies are present, including: (a) lenticular, channelized sandstones, pebbly sandstones, and conglomerates within shale, (b) laterally continuous, interbedded thin sandstones and shales, and (c) thicker, laterally continuous shales. The sandstone and shale layers we broken by several strike-slip and reverse faults, with vertical displacements of up to several feet. This combination of facies and structural elements has resulted in a highly compartmentalized stratigraphic interval, both horizontally and vertically, along the anticlinal flexure. The quarry can be considered analogous to a scaled-down turbidite reservoir. Outcrop gamma-ray logs, measured sections, a fault map, and cross sections provide a database which is analogous to what would be available for a subsurface reservoir. Thus, the quarry provides an ideal outdoor geologic and engineering {open_quote}workshop{close_quote} venue for visualizing the potential complexities of a combination structural-stratigraphic (turbidite) reservoir. Since all forms of compartmentalization are readily visible in the quarry, problems related to management of compartmentalized reservoirs can be discussed and analyzed first-hand while standing in the quarry, within this {open_quote}model reservoir{close_quotes}. These problems include: (a) the high degree of stratigraphic and structural complexity that may be encountered, even at close well spacings, (b) uncertainty in well log correlations and log-shape interpretations, (c) variations in volumetric calculations as a function of amount of data available, and (d) potential production problems associated with specific {open_quote}field{close_quote} development plans.

  15. [CLINICAL APPLICATION OF OXFORD MOBILE-BEARING BIPOLAR PROSTHESIS UNICOMPARTMENTAL KNEE ARTHROPLASTY FOR SINGLE COMPARTMENTAL KNEE OSTEOARTHRITIS].

    Science.gov (United States)

    Wang, Shangzeng; Cheng, Shao; Wang, Yisheng

    2016-01-01

    To evaluate the effectiveness of Oxford mobile-bearing bipolar prosthesis unicompartmental knee arthroplasty (UKA) in the treatment of single compartmental knee osteoarthritis. Between June 2011 and July 2013, 22 cases of single compartmental knee osteoarthritis were treated by Oxford mobile-bearing bipolar prosthesis UKA. Of 22 cases, 8 were male and 14 were female with an average age of 65 years (range, 45-80 years); the left knee was involved in 12 cases, and the right knee in 10 cases, with a mean disease duration of 32.5 months (range, 8-90 months). The mean weight was 55.2 kg (range, 50-65 kg), and the mean body mass index was 20.8 kg/m2 (range, 17-25 kg/m2). Osteoarthritis involved in the single knee medial compartment in all patients. Knee society score (KSS) and range of motion (ROM) were measured to evaluate the knee joint function. Primary healing of incision was obtained in all patients, and there was no complication of infection, bedsore, or deep venous thrombosis. Postoperative follow-up was 2-4 years (mean, 3.2 years). The X-ray films showed good position of prosthesis, no prosthesis dislocation, or periprosthetic infection during follow-up. Knee ROM, KSS function score, and KSS clinical score were significantly improved at 1 week after operation and at last follow-up when compared with preoperative ones (P 0.05). Oxford mobile-bearing bipolar prosthesis UKA is an effective method to treat single compartmental knee osteoarthritis, with the advantages of less trauma, earlier rehabilitation exercise, near physiological state in joint function, and less risk of complications.

  16. Compartmental Modeling and Dosimetry of in Vivo Metabolic Studies of Leucine and Three Secretory Proteins in Humans Using Radioactive Tracers

    Science.gov (United States)

    Venkatakrishnan, Vaidehi

    1995-01-01

    Physical and mathematical models provide a systematic means of looking at biological systems. Radioactive tracer kinetic studies open a unique window to study complex tracee systems such as protein metabolism in humans. This research deals with compartmental modeling of tracer kinetic data on leucine and apolipoprotein metabolism obtained using an endogenous tritiated leucine tracer administered as a bolus, and application of compartmental modeling techniques for dosimetric evaluation of metabolic studies of radioiodinated apolipoproteins. Dr. Waldo R. Fisher, Department of Medicine, was the coordinating research supervisor and the work was carried out in his laboratory. A compartmental model for leucine kinetics in humans has been developed that emphasizes its recycling pathways which were examined over two weeks. This model builds on a previously published model of Cobelli et al, that analyzed leucine kinetic data up to only eight hours. The proposed model includes different routes for re-entry of leucine from protein breakdown into plasma accounting for proteins which turn over at different rates. This new model successfully incorporates published models of three secretory proteins: albumin, apoA-I, and VLDL apoB, in toto thus increasing its validity and utility. The published model of apoA-I, based on an exogenous radioiodinated tracer, was examined with data obtained using an endogenous leucine tracer using compartmental techniques. The analysis concludes that the major portion of apoA-I enters plasma by a fast pathway but the major fraction of apoA-I in plasma resides with a second slow pathway; further the study is suggestive of a precursor-product relationship between the two plasma apoA-I pools. The possible relevance of the latter suggestion to the aberrant kinetics of apoA-I in Tangier disease is discussed. The analysis of apoA-II data resulted in similar conclusions. A methodology for evaluating the dosimetry of radioiodinated apolipoproteins by

  17. Compartmental HBV evolution and replication in liver and extrahepatic sites after nucleos/tide analogue therapy in chronic hepatitis B carriers.

    Science.gov (United States)

    Gao, Shan; Duan, Zhong-Ping; Chen, Yu; van der Meer, Frank; Lee, Samuel S; Osiowy, Carla; van Marle, Guido; Coffin, Carla S

    2017-09-01

    Hepatitis B virus (HBV) variants are associated with nucleos/tide analogue (NA) response and liver disease but it is unknown whether NA influences extrahepatic HBV persistence. To investigate HBV replication and genetic evolution in hepatic and extrahepatic sites of chronic hepatitis B (CHB) before and after NA therapy. A total of 13 paired plasma, peripheral blood mononuclear cells (PBMC), were collected from chronic HBV carriers at baseline and after a median 53 weeks NA therapy as well as liver biopsy (N=7 baseline, N=5 follow-up). HBV covalently closed circular DNA (cccDNA) and messenger (m) RNA in liver and PBMC were analyzed. HBV polymerase (P)/surface (S), basal core promoter (BCP)/pre-core (PC)/C gene clonal sequencing was done in plasma, peripheral blood mononuclear cells (PBMC), and liver. Compare to baseline, at ∼53 weeks follow-up, there was no significant change in HBV cccDNA levels in liver (0.2-0.08 copies/hepatocyte, p>0.05) or in PBMC 0.003-0.02 copies/PBMC, p>0.05), and HBV mRNA remained detectable in both sites. At baseline, BCP variants were higher in PBMC vs. liver and plasma. After therapy, drug resistant (DR) and immune escape (IE) variants increased in liver but IE and PC variants were more frequent in PBMC. HBV P/S diversity was significantly higher in PBMC compared to plasma. Continuous HBV replication occurs in liver and PBMC and shows compartmentalized evolution under selective pressure of potent NA therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Compartmentalized beta subunit distribution determines characteristics and ethanol sensitivity of somatic, dendritic, and terminal large-conductance calcium-activated potassium channels in the rat central nervous system.

    Science.gov (United States)

    Wynne, P M; Puig, S I; Martin, G E; Treistman, S N

    2009-06-01

    Neurons are highly differentiated and polarized cells, whose various functions depend upon the compartmentalization of ion channels. The rat hypothalamic-neurohypophysial system (HNS), in which cell bodies and dendrites reside in the hypothalamus, physically separated from their nerve terminals in the neurohypophysis, provides a particularly powerful preparation in which to study the distribution and regional properties of ion channel proteins. Using electrophysiological and immunohistochemical techniques, we characterized the large-conductance calcium-activated potassium (BK) channel in each of the three primary compartments (soma, dendrite, and terminal) of HNS neurons. We found that dendritic BK channels, in common with somatic channels but in contrast to nerve terminal channels, are insensitive to iberiotoxin. Furthermore, analysis of dendritic BK channel gating kinetics indicates that they, like somatic channels, have fast activation kinetics, in contrast to the slow gating of terminal channels. Dendritic and somatic channels are also more sensitive to calcium and have a greater conductance than terminal channels. Finally, although terminal BK channels are highly potentiated by ethanol, somatic and dendritic channels are insensitive to the drug. The biophysical and pharmacological properties of somatic and dendritic versus nerve terminal channels are consistent with the characteristics of exogenously expressed alphabeta1 versus alphabeta4 channels, respectively. Therefore, one possible explanation for our findings is a selective distribution of auxiliary beta1 subunits to the somatic and dendritic compartments and beta4 to the terminal compartment. This hypothesis is supported immunohistochemically by the appearance of distinct punctate beta1 or beta4 channel clusters in the membrane of somatic and dendritic or nerve terminal compartments, respectively.

  19. Gadoxetate-enhanced MR imaging and compartmental modelling to assess hepatocyte bidirectional transport function in rats with advanced liver fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Giraudeau, Celine; Leporq, Benjamin; Doblas, Sabrina [University Paris Diderot, Sorbonne Paris Cite, Hopital Beaujon, Laboratory of Imaging Biomarkers, UMR1149 Inserm, Clichy (France); Lagadec, Matthieu; Daire, Jean-Luc; Van Beers, Bernard E. [University Paris Diderot, Sorbonne Paris Cite, Hopital Beaujon, Laboratory of Imaging Biomarkers, UMR1149 Inserm, Clichy (France); Beaujon University Hospital Paris Nord, Department of Radiology, Clichy (France); Pastor, Catherine M. [University Paris Diderot, Sorbonne Paris Cite, Hopital Beaujon, Laboratory of Imaging Biomarkers, UMR1149 Inserm, Clichy (France); Hopitaux Universitaires de Geneve, Departement d' Imagerie et des Sciences de l' Information Medicale, Geneva (Switzerland)

    2017-05-15

    Changes in the expression of hepatocyte membrane transporters in advanced fibrosis decrease the hepatic transport function of organic anions. The aim of our study was to assess if these changes can be evaluated with pharmacokinetic analysis of the hepatobiliary transport of the MR contrast agent gadoxetate. Dynamic gadoxetate-enhanced MRI was performed in 17 rats with advanced fibrosis and 8 normal rats. After deconvolution, hepatocyte three-compartmental analysis was performed to calculate the hepatocyte influx, biliary efflux and sinusoidal backflux rates. The expression of Oatp1a1, Mrp2 and Mrp3 organic anion membrane transporters was assessed with reverse transcription polymerase chain reaction. In the rats with advanced fibrosis, the influx and efflux rates of gadoxetate decreased and the backflux rate increased significantly (p = 0.003, 0.041 and 0.010, respectively). Significant correlations were found between influx and Oatp1a1 expression (r = 0.78, p < 0.001), biliary efflux and Mrp2 (r = 0.50, p = 0.016) and sinusoidal backflux and Mrp3 (r = 0.61, p = 0.002). These results show that changes in the bidirectional organic anion hepatocyte transport function in rats with advanced liver fibrosis can be assessed with compartmental analysis of gadoxetate-enhanced MRI. (orig.)

  20. A novel three-input monomolecular logic circuit on a rhodamine inspired bio-compatible bi-compartmental molecular platform

    International Nuclear Information System (INIS)

    Mistri, Tarun; Bhowmick, Rahul; Katarkar, Atul; Chaudhuri, Keya; Ali, Mahammad

    2017-01-01

    Methodological synthesis of a new biocompatible bi-compartmental rhodamine based probe (L 3 ) provides a multi-inputs and multi-outputs molecular logic circuit based on simple chemosensing phenomena. Spectroscopic responses of Cu 2+ and Hg 2+ towards L 3 together with reversible binding of S 2- with L 3 -Cu 2+ and L 3 -Hg 2+ complexes help us to construct a thee-input molecular circuit on their control and sequential addition to a solution of L 3 in a mixed organo-aqueous medium. We have further successfully encoded binary digits out of these inputs and outputs which may convert a three-digit input string into a two-digit output string resulting a simple monomolecular logic circuit. Such a molecular ‘Boolean’ logic operation may improve the complexity of logic gate circuitry and computational speed and may be useful to employ in potential biocompatible molecular logic platforms. - Graphical abstract: A new bi-compartmental molecular system equipped with Rhodamine fluorophore unit provides a Multi-inputs and Multi-outputs Molecular Logic Circuit based on a very simple observation of chemosensing activities.

  1. A novel three-input monomolecular logic circuit on a rhodamine inspired bio-compatible bi-compartmental molecular platform

    Energy Technology Data Exchange (ETDEWEB)

    Mistri, Tarun; Bhowmick, Rahul [Department of Chemistry, Jadavpur University, 188 Raja S.C. Mullick Road, Kolkata 700032 (India); Katarkar, Atul; Chaudhuri, Keya [Molecular & Human Genetics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata 700032 (India); Ali, Mahammad, E-mail: mali@chemistry.jdvu.ac.in [Department of Chemistry, Jadavpur University, 188 Raja S.C. Mullick Road, Kolkata 700032 (India)

    2017-05-15

    Methodological synthesis of a new biocompatible bi-compartmental rhodamine based probe (L{sup 3}) provides a multi-inputs and multi-outputs molecular logic circuit based on simple chemosensing phenomena. Spectroscopic responses of Cu{sup 2+} and Hg{sup 2+} towards L{sup 3} together with reversible binding of S{sup 2-} with L{sup 3}-Cu{sup 2+} and L{sup 3}-Hg{sup 2+} complexes help us to construct a thee-input molecular circuit on their control and sequential addition to a solution of L{sup 3} in a mixed organo-aqueous medium. We have further successfully encoded binary digits out of these inputs and outputs which may convert a three-digit input string into a two-digit output string resulting a simple monomolecular logic circuit. Such a molecular ‘Boolean’ logic operation may improve the complexity of logic gate circuitry and computational speed and may be useful to employ in potential biocompatible molecular logic platforms. - Graphical abstract: A new bi-compartmental molecular system equipped with Rhodamine fluorophore unit provides a Multi-inputs and Multi-outputs Molecular Logic Circuit based on a very simple observation of chemosensing activities.

  2. [Correlation of medial compartmental joint line elevation with femorotibial angle correction and clinical function after unicompartmental arthroplasty].

    Science.gov (United States)

    Zhang, Zhan-Feng; Wang, Dan; Min, Ji-Kang

    2017-04-25

    To study the correlation of postoperative femorotibial angle with medial compartmental joint line elevation after unicompartmental arthroplasty(UKA), as well as the correlation of joint line elevation with the clinical function by measuring radiological joint line. A retrospective study of 56 patients from July 2012 to August 2015 was performed. The mean body mass index (BMI) was 23.5 (ranged, 18.3 to 30.1). The standing anteroposterior radiographs of these patients were assessed both pre-and post-operatively, and the knee function was evaluated according to HSS grading. The correlation between postoperative femorotibial angle(FTA) and joint line elevation was analyzed as well as the correlation between joint line elevation and the clinical function. The mean medial joint line elevation was (2.2±2.0) mm(ranged, -3.3 to 7.0 mm), and the mean FTA correction was (2.3±3.0)°(ranged, -4.5° to 9.6°). The mean follow-up period was 12.2 months. There was a significant correlation between in joint line elevation and FTA correction( P clinical function( P >0.05). There was a significant correlation between medial compartmental joint line elevation and FTA correction after UKA, and the proximal tibial osteotomy was critical during the procedure. There was no significant correlation between joint line elevation and the clinical function, which may be related to the design of UKA prosthesis.

  3. Inter-compartmental transport of organophosphate and pyrethroid pesticides in South China: Implications for a regional risk assessment

    International Nuclear Information System (INIS)

    Li, Huizhen; Wei, Yanli; Lydy, Michael J.; You, Jing

    2014-01-01

    The dynamic flux of an organophosphate and four pyrethroid pesticides was determined in an air-(soil)-water-sediment system based on monitoring data from Guangzhou, China. The total air–water flux, including air–water gaseous exchange and atmospheric deposition, showed deposition from air to water for chlorpyrifos, bifenthrin and cypermethrin, but volatilization for lambda-cyhalothrin and permethrin. The transport of the pesticides from overlying water to sediment suggested that sediment acted as a sink for the pesticides. Additionally, distinct annual atmospheric depositional fluxes between legacy and current-use pesticides suggested the role of consumer usage in their transport throughout the system. Finally, pesticide toxicity was estimated from annual air–water-sediment flux within an urban stream in Guangzhou. A dynamic flux-based risk assessment indicated that inter-compartmental transport of chlorpyrifos decreased its atmospheric exposure, but had little influence on its aquatic toxicity. Instead, water-to-sediment transport of pyrethroids increased their sediment toxicity, which was supported by previously reported toxicity data. - Highlights: • Transport fluxes of chlorpyrifos and pyrethroids were assessed in Guangzhou, China. • Sediment acted as a sink for chlorpyrifos and pyrethroids. • Air-to-water transport decreased the exposure risk of atmospheric chlorpyrifos. • Dynamic transport might increase the risk of pyrethroids in air and sediment. • Flux-based pesticide concentrations provide a way to estimate sediment toxicity. - Regional risk assessment could be improved by integrating dynamic flux information derived from inter-compartmental models

  4. Gadoxetate-enhanced MR imaging and compartmental modelling to assess hepatocyte bidirectional transport function in rats with advanced liver fibrosis

    International Nuclear Information System (INIS)

    Giraudeau, Celine; Leporq, Benjamin; Doblas, Sabrina; Lagadec, Matthieu; Daire, Jean-Luc; Van Beers, Bernard E.; Pastor, Catherine M.

    2017-01-01

    Changes in the expression of hepatocyte membrane transporters in advanced fibrosis decrease the hepatic transport function of organic anions. The aim of our study was to assess if these changes can be evaluated with pharmacokinetic analysis of the hepatobiliary transport of the MR contrast agent gadoxetate. Dynamic gadoxetate-enhanced MRI was performed in 17 rats with advanced fibrosis and 8 normal rats. After deconvolution, hepatocyte three-compartmental analysis was performed to calculate the hepatocyte influx, biliary efflux and sinusoidal backflux rates. The expression of Oatp1a1, Mrp2 and Mrp3 organic anion membrane transporters was assessed with reverse transcription polymerase chain reaction. In the rats with advanced fibrosis, the influx and efflux rates of gadoxetate decreased and the backflux rate increased significantly (p = 0.003, 0.041 and 0.010, respectively). Significant correlations were found between influx and Oatp1a1 expression (r = 0.78, p < 0.001), biliary efflux and Mrp2 (r = 0.50, p = 0.016) and sinusoidal backflux and Mrp3 (r = 0.61, p = 0.002). These results show that changes in the bidirectional organic anion hepatocyte transport function in rats with advanced liver fibrosis can be assessed with compartmental analysis of gadoxetate-enhanced MRI. (orig.)

  5. Computer Modeling of Sand Transport on Mars Using a Compart-Mentalized Fluids Algorithm (CFA)

    Science.gov (United States)

    Marshall, J.; Stratton, D.

    1999-01-01

    of sand comminution on Mars. A multiple-grain transport model using just the equations of grain motion describing lift and drag is impossible to develop owing to stochastic effects --the very effects we wish to model. Also, unless we were to employ supercomputing techniques and extremely complex computer codes that could deal with millions of grains simultaneously, it would also be difficult to model grain transport if we attempted to consider every grain in motion. No existing computer models were found that satisfactorily used the equations of motion to arrive at transport flux numbers for the different populations of saltation and reptation. Modeling all the grains in a transport system was an intractable problem within our resources, and thus we developed what we believe to be a new modeling approach to simulating grain transport. The CFA deals with grain populations, but considers them to belong to various compartmentalized fluid units in the boundary layer. In this way, the model circumvents the multigrain problem by dealing primarily with the consequences of grain transport --momentum transfer between air and grains, which is the physical essence of a dynamic grain-fluid mixture. We thus chose to model the aeolian transport process as a superposition of fluids. These fluids include the air as well as particle populations of various properties. The prime property distinguishing these fluids is upward and downward grain motion. In a normal saltation trajectory, a grain's downwind velocity increases with time, so a rising grain will have a smaller downwind velocity than a failing grain. Because of this disparity in rising and falling grain proper-ties, it seemed appropriate to track these as two separate grain populations within the same physical space. The air itself can be considered a separate fluid superimposed within and interacting with the various grain-cloud "fluids". Additional informaiton is contained in the original.

  6. Full-length cellular β-secretase has a trimeric subunit stoichiometry, and its sulfur-rich transmembrane interaction site modulates cytosolic copper compartmentalization.

    Science.gov (United States)

    Liebsch, Filip; Aurousseau, Mark R P; Bethge, Tobias; McGuire, Hugo; Scolari, Silvia; Herrmann, Andreas; Blunck, Rikard; Bowie, Derek; Multhaup, Gerd

    2017-08-11

    The β-secretase (BACE1) initiates processing of the amyloid precursor protein (APP) into Aβ peptides, which have been implicated as central players in the pathology of Alzheimer disease. BACE1 has been described as a copper-binding protein and its oligomeric state as being monomeric, dimeric, and/or multimeric, but the native cellular stoichiometry has remained elusive. Here, by using single-molecule fluorescence and in vitro cross-linking experiments with photo-activatable unnatural amino acids, we show that full-length BACE1, independently of its subcellular localization, exists as trimers in human cells. We found that trimerization requires the BACE1 transmembrane sequences (TMSs) and cytoplasmic domains, with residues Ala 463 and Cys 466 buried within the trimer interface of the sulfur-rich core of the TMSs. Our 3D model predicts that the sulfur-rich core of the trimeric BACE1 TMS is accessible to metal ions, but copper ions did not trigger trimerization. The results of functional assays of endogenous BACE1 suggest that it has a role in intracellular copper compartmentalization by transferring cytosolic copper to intracellular compartments, while leaving the overall cellular copper concentration unaltered. Adding to existing physiological models, our results provide novel insight into the atypical interactions between copper and BACE1 and into its non-enzymatic activities. In conclusion, therapeutic Alzheimer disease prevention strategies aimed at decreasing BACE1 protein levels should be regarded with caution, because adverse effects in copper homeostasis may occur. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Defining Lipid Transport Pathways in Animal Cells

    Science.gov (United States)

    Pagano, Richard E.; Sleight, Richard G.

    1985-09-01

    A new technique for studying the metabolism and intracellular transport of lipid molecules in living cells based on the use of fluorescent lipid analogs is described. The cellular processing of various intermediates (phosphatidic acid and ceramide) and end products (phosphatidylcholine and phosphatidylethanolamine) in lipid biosynthesis is reviewed and a working model for compartmentalization during lipid biosynthesis is presented.

  8. Levels, spatial variation and compartmentalization of trace elements in brown algae Cystoseira from marine protected areas of Crimea (Black Sea).

    Science.gov (United States)

    Kravtsova, Alexandra V; Milchakova, Nataliya A; Frontasyeva, Marina V

    2015-08-15

    Levels of Al, Sc, V, Co, Ni, As, Br, Rb, Sr, Ag, Sb, I, Cs, Ba, Th and U that were rarely or never studied, as well as the concentrations of classically investigated Mn, Fe and Zn in brown algae Cystoseira barbata C. Ag. and Cystoseira crinita (Desf.) Bory from the coastal waters of marine protected areas (Crimea, Black Sea), were determined using neutron activation analysis. Spatial variation and compartmentalization were studied for all 19 trace elements (TE). Concentrations of most TE were higher in "branches" than in "stems". Spatial variations of V, Co, Ni and Zn can be related to anthropogenic activities while Al, Sc, Fe, Rb, Cs, Th and U varied depending on chemical peculiarities of the coastal zone rocks. TE concentrations in C. crinita from marine protected areas near Tarkhankut peninsula and Cape Fiolent, identified as the most clean water areas, are submitted as the background concentrations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Kinetic compartmental analysis of carnitine metabolism in the human carnitine deficiency syndromes. Evidence for alterations in tissue carnitine transport

    International Nuclear Information System (INIS)

    Rebouche, C.J.; Engel, A.G.

    1984-01-01

    The human primary carnitine deficiency syndromes are potentially fatal disorders affecting children and adults. The molecular etiologies of these syndromes have not been determined. In this investigation, we considered the hypothesis that these syndromes result from defective transport of carnitine into tissues, particularly skeletal muscle. The problem was approached by mathematical modeling, by using the technique of kinetic compartmental analysis. A tracer dose of L-[methyl-3H]carnitine was administered intravenously to six normal subjects, one patient with primary muscle carnitine deficiency (MCD), and four patients with primary systemic carnitine deficiency (SCD). Specific radioactivity was followed in plasma for 28 d. A three-compartment model (extracellular fluid, muscle, and ''other tissues'') was adopted. Rate constants, fluxes, pool sizes, and turnover times were calculated. Results of these calculations indicated reduced transport of carnitine into muscle in both forms of primary carnitine deficiency. However, in SCD, the reduced rate of carnitine transport was attributed to reduced plasma carnitine concentration. In MCD, the results are consistent with an intrinsic defect in the transport process. Abnormal fluctuations of the plasma carnitine, but of a different form, occurred in MCD and SCD. The significance of these are unclear, but in SCD they suggest abnormal regulation of the muscle/plasma carnitine concentration gradient. In 8 of 11 subjects, carnitine excretion was less than dietary carnitine intake. Carnitine excretion rates calculated by kinetic compartmental analysis were higher than corresponding rates measured directly, indicating degradation of carnitine. However, we found no radioactive metabolites of L-[methyl-3H]carnitine in urine. These observations suggest that dietary carnitine was metabolized in the gastrointestinal tract

  10. Acute and chronic rejection: compartmentalization and kinetics of counterbalancing signals in cardiac transplants.

    Science.gov (United States)

    Kaul, A M K; Goparaju, S; Dvorina, N; Iida, S; Keslar, K S; de la Motte, C A; Valujskikh, A; Fairchild, R L; Baldwin, W M

    2015-02-01

    Acute and chronic rejection impact distinct compartments of cardiac allografts. Intramyocardial mononuclear cell infiltrates define acute rejection, whereas chronic rejection affects large arteries. Hearts transplanted from male to female C57BL/6 mice undergo acute rejection with interstitial infiltrates at 2 weeks that resolve by 6 weeks when large arteries develop arteriopathy. These processes are dependent on T cells because no infiltrates developed in T cell-deficient mice and transfer of CD4 T cells restored T cell as well as macrophage infiltrates and ultimately neointima formation. Markers of inflammatory macrophages were up-regulated in the interstitium acutely and decreased as markers of wound healing macrophages increased chronically. Programmed cell death protein, a negative costimulator, and its ligand PDL1 were up-regulated in the interstitium during resolution of acute rejection. Blocking PDL1:PD1 interactions in the acute phase increased interstitial T cell infiltrates. Toll-like receptor (TLR) 4 and its endogenous ligand hyaluronan were increased in arteries with neointimal expansion. Injection of hyaluronan fragments increased intragraft production of chemokines. Our data indicate that negative costimulatory pathways are critical for the resolution of acute interstitial infiltrates. In the arterial compartment recognition of endogenous ligands including hyaluronan by the innate TLRs may support the progression of arteriopathy. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  11. Repetitive disruptions of the nuclear envelope invoke temporary loss of cellular compartmentalization in laminopathies

    NARCIS (Netherlands)

    De Vos, W.H.; Houben, F.; Kamps, M.; Malhas, A.; Verheyen, F.; Cox, J.; Manders, E.M.M.; Verstraeten, V.L.R.M.; van Steensel, M.A.M.; Marcelis, C.L.M.; van den Wijngaard, A.; Vaux, D.J.; Ramaekers, F.C.S.; Broers, J.L.V.

    2011-01-01

    The nuclear lamina provides structural support to the nucleus and has a central role in nuclear organization and gene regulation. Defects in its constituents, the lamins, lead to a class of genetic diseases collectively referred to as laminopathies. Using live cell imaging, we observed the

  12. Visualization of plasma membrane compartmentalization by high-speed quantum dot tracking

    DEFF Research Database (Denmark)

    Clausen, M. P.; Lagerholm, B. C.

    2013-01-01

    In this study, we have imaged plasma membrane molecules labeled with quantum dots in live cells using a conventional wide-field microscope with high spatial precision at sampling frequencies of 1.75 kHz. Many of the resulting single molecule trajectories are sufficiently long (up to several...

  13. Compartmentalized Regulation of Parkin-Mediated Mitochondrial Quality Control in the Drosophila Nervous System In Vivo

    Science.gov (United States)

    Sung, Hyun; Tandarich, Lauren C.; Nguyen, Kenny

    2016-01-01

    In neurons, the normal distribution and selective removal of mitochondria are considered essential for maintaining the functions of the large asymmetric cell and its diverse compartments. Parkin, a E3 ubiquitin ligase associated with familial Parkinson's disease, has been implicated in mitochondrial dynamics and removal in cells including neurons. However, it is not clear how Parkin functions in mitochondrial turnover in vivo, or whether Parkin-dependent events of the mitochondrial life cycle occur in all neuronal compartments. Here, using the live Drosophila nervous system, we investigated the involvement of Parkin in mitochondrial dynamics, distribution, morphology, and removal. Contrary to our expectations, we found that Parkin-deficient animals do not accumulate senescent mitochondria in their motor axons or neuromuscular junctions; instead, they contain far fewer axonal mitochondria, and these displayed normal motility behavior, morphology, and metabolic state. However, the loss of Parkin did produce abnormal tubular and reticular mitochondria restricted to the motor cell bodies. In addition, in contrast to drug-treated, immortalized cells in vitro, mature motor neurons rarely displayed Parkin-dependent mitophagy. These data indicate that the cell body is the focus of Parkin-dependent mitochondrial quality control in neurons, and argue that a selection process allows only healthy mitochondria to pass from cell bodies to axons, perhaps to limit the impact of mitochondrial dysfunction. SIGNIFICANCE STATEMENT Parkin has been proposed to police mitochondrial fidelity by binding to dysfunctional mitochondria via PTEN (phosphatase and tensin homolog)-induced putative kinase 1 (PINK1) and targeting them for autophagic degradation. However, it is unknown whether and how the PINK1/Parkin pathway regulates the mitochondrial life cycle in neurons in vivo. Using Drosophila motor neurons, we show that parkin disruption generates an abnormal mitochondrial network in cell

  14. Transport and compartmentation of phosphite in higher plant cells - kinetic and 31P nuclear magnetic resonance studies

    NARCIS (Netherlands)

    Danova-Alt, R.; Dijkema, C.; Waard, de P.; Köck, M.

    2008-01-01

    Phosphite (Phi, H(2)PO(3)(-)), being the active part of several fungicides, has been shown to influence not only the fungal metabolism but also the development of phosphate-deficient plants. However, the mechanism of phosphite effects on plants is still widely unknown. In this paper we analysed

  15. Intracellular ionic compartmentation, electrical membrane properties, and cell membrane permeability before and during first cleavage in the Ambystoma egg

    NARCIS (Netherlands)

    Laat, S.W. de; Wouters, W.; Silva Pimenta Guarda, M.M. Marques da; Silva Guarda, M.A. da

    The intracellular ionic distribution in uncleaved and cleaving Ambystoma eggs was investigated by analysing the influx of 3H2O, by determining the total content of Na+, K+ and Cl− in extracts of eggs at different stages by both flame spectrophotometry and ion-selective microelectrodes, and by the

  16. Shedding light on cell compartmentation in the candidate phylum Poribacteria by high resolution visualisation and transcriptional profiling

    KAUST Repository

    Jahn, Martin T.; Markert, Sebastian M.; Ryu, Tae Woo; Ravasi, Timothy; Stigloher, Christian; Hentschel, Ute; Moitinho-Silva, Lucas

    2016-01-01

    metatranscriptomes using simulation-based optimised mapping. We observed high transcriptional activity for proteins related to bacterial microcompartments (BMC) and we resolved their subcellular localisation by combining FISH-CLEM with immunohistochemistry (IHC

  17. The conformational and subcellular compartmental dance of plant NLRs during viral recognition and defense signaling

    Science.gov (United States)

    Padmanabhan, Meenu S; Dinesh-Kumar, Savithramma P

    2014-01-01

    Plant innate immune response against viruses utilizes intracellular Nucleotide Binding domain Leucine Rich Repeat (NLR) class of receptors. NLRs recognize different viral proteins termed elicitors and initiate diverse signaling processes that induce programmed cell death (PCD) in infected cells and restrict virus spread. In this review we describe the recent advances made in the study of plant NLRs that detect viruses. We describe some of the physical and functional interactions these NLRs undertake. We elaborate on the intra-molecular and homotypic association of NLRs that function in self-regulation and activation. Nuclear role for some viral NLRs is discussed as well as the emerging importance of the RNAi pathway in regulating the NLR family. PMID:24906192

  18. Compartmental and noncompartmental modeling of ¹³C-lycopene absorption, isomerization, and distribution kinetics in healthy adults.

    Science.gov (United States)

    Moran, Nancy E; Cichon, Morgan J; Riedl, Kenneth M; Grainger, Elizabeth M; Schwartz, Steven J; Novotny, Janet A; Erdman, John W; Clinton, Steven K

    2015-12-01

    Lycopene, which is a red carotenoid in tomatoes, has been hypothesized to mediate disease-preventive effects associated with tomato consumption. Lycopene is consumed primarily as the all-trans geometric isomer in foods, whereas human plasma and tissues show greater proportions of cis isomers. With the use of compartmental modeling and stable isotope technology, we determined whether endogenous all-trans-to-cis-lycopene isomerization or isomeric-bioavailability differences underlie the greater proportion of lycopene cis isomers in human tissues than in tomato foods. Healthy men (n = 4) and women (n = 4) consumed (13)C-lycopene (10.2 mg; 82% all-trans and 18% cis), and plasma was collected over 28 d. Unlabeled and (13)C-labeled total lycopene and lycopene-isomer plasma concentrations, which were measured with the use of high-performance liquid chromatography-mass spectrometry, were fit to a 7-compartment model. Subjects absorbed a mean ± SEM of 23% ± 6% of the lycopene. The proportion of plasma cis-(13)C-lycopene isomers increased over time, and all-trans had a shorter half-life than that of cis isomers (5.3 ± 0.3 and 8.8 ± 0.6 d, respectively; P lycopene bioavailability and endogenous trans-to-cis-lycopene isomerization was predictive of plasma (13)C and unlabeled cis- and all-trans-lycopene concentrations. Although the bioavailability of cis (24.5% ± 6%) and all-trans (23.2% ± 8%) isomers did not differ, endogenous isomerization (0.97 ± 0.25 μmol/d in the fast-turnover tissue lycopene pool) drove tissue and plasma isomeric profiles. (13)C-Lycopene combined with physiologic compartmental modeling provides a strategy for following complex in vivo metabolic processes in humans and reveals that postabsorptive trans-to-cis-lycopene isomerization, and not the differential bioavailability of isomers, drives tissue and plasma enrichment of cis-lycopene. This trial was registered at clinicaltrials.gov as NCT01692340. © 2015 American Society for Nutrition.

  19. Compartmental and noncompartmental modeling of 13C-lycopene absorption, isomerization, and distribution kinetics in healthy adults123

    Science.gov (United States)

    Moran, Nancy E; Cichon, Morgan J; Riedl, Kenneth M; Grainger, Elizabeth M; Schwartz, Steven J; Novotny, Janet A; Erdman, John W; Clinton, Steven K

    2015-01-01

    Background: Lycopene, which is a red carotenoid in tomatoes, has been hypothesized to mediate disease-preventive effects associated with tomato consumption. Lycopene is consumed primarily as the all-trans geometric isomer in foods, whereas human plasma and tissues show greater proportions of cis isomers. Objective: With the use of compartmental modeling and stable isotope technology, we determined whether endogenous all-trans-to-cis-lycopene isomerization or isomeric-bioavailability differences underlie the greater proportion of lycopene cis isomers in human tissues than in tomato foods. Design: Healthy men (n = 4) and women (n = 4) consumed 13C-lycopene (10.2 mg; 82% all-trans and 18% cis), and plasma was collected over 28 d. Unlabeled and 13C-labeled total lycopene and lycopene-isomer plasma concentrations, which were measured with the use of high-performance liquid chromatography–mass spectrometry, were fit to a 7-compartment model. Results: Subjects absorbed a mean ± SEM of 23% ± 6% of the lycopene. The proportion of plasma cis-13C-lycopene isomers increased over time, and all-trans had a shorter half-life than that of cis isomers (5.3 ± 0.3 and 8.8 ± 0.6 d, respectively; P lycopene bioavailability and endogenous trans-to-cis-lycopene isomerization was predictive of plasma 13C and unlabeled cis- and all-trans-lycopene concentrations. Although the bioavailability of cis (24.5% ± 6%) and all-trans (23.2% ± 8%) isomers did not differ, endogenous isomerization (0.97 ± 0.25 μmol/d in the fast-turnover tissue lycopene pool) drove tissue and plasma isomeric profiles. Conclusion: 13C-Lycopene combined with physiologic compartmental modeling provides a strategy for following complex in vivo metabolic processes in humans and reveals that postabsorptive trans-to-cis-lycopene isomerization, and not the differential bioavailability of isomers, drives tissue and plasma enrichment of cis-lycopene. This trial was registered at clinicaltrials.gov as NCT01692340. PMID

  20. Compartmental and dosimetric studies of anti-CD20 labeled with 188Re

    International Nuclear Information System (INIS)

    Barrio Kuramoto Graciela; Mie Nakamura Matsuda Margareth; Osso Joao Jr, Alberto

    2016-01-01

    Radioimmunotherapy has the potential to deliver lethal radiation energy directly to malignant cells via targeting of radioisotope-conjugated monoclonal antibodies (MAbs) to specific antigens. Rituximab (RTX) is specifically targeted against CD20, a surface antigen expressed by B-lymphocytes. The use of 188 Re from a 188 W/ 188 Re generator system represents an alternative radionuclide for therapy. Rhenium has chemical properties similar to technetium and both can be conjugated to antibodies using similar chemistry methods. The objective of this work is to prove the usefulness of this radiopharmaceutical based on dosimetric and pharmacokinetic studies that are also required by the Brazilian Regulatory Agency. (author)

  1. Reconstruction and modeling protein translocation and compartmentalization in Escherichia coli at the genome-scale

    DEFF Research Database (Denmark)

    Liu, Joanne K.; O’Brien, Edward J.; Lerman, Joshua A.

    2014-01-01

    Background: Membranes play a crucial role in cellular functions. Membranes provide a physical barrier, control the trafficking of substances entering and leaving the cell, and are a major determinant of cellular ultra-structure. In addition, components embedded within the membrane participate...... the computation of cellular phenotypes through an integrated computation of proteome composition, abundance, and activity in four cellular compartments (cytoplasm, periplasm, inner and outer membrane). Reconstruction and validation of the model has demonstrated that the iJL1678-ME is capable of capturing...

  2. Using Cluster Analysis to Compartmentalize a Large Managed Wetland Based on Physical, Biological, and Climatic Geospatial Attributes.

    Science.gov (United States)

    Hahus, Ian; Migliaccio, Kati; Douglas-Mankin, Kyle; Klarenberg, Geraldine; Muñoz-Carpena, Rafael

    2018-04-27

    Hierarchical and partitional cluster analyses were used to compartmentalize Water Conservation Area 1, a managed wetland within the Arthur R. Marshall Loxahatchee National Wildlife Refuge in southeast Florida, USA, based on physical, biological, and climatic geospatial attributes. Single, complete, average, and Ward's linkages were tested during the hierarchical cluster analyses, with average linkage providing the best results. In general, the partitional method, partitioning around medoids, found clusters that were more evenly sized and more spatially aggregated than those resulting from the hierarchical analyses. However, hierarchical analysis appeared to be better suited to identify outlier regions that were significantly different from other areas. The clusters identified by geospatial attributes were similar to clusters developed for the interior marsh in a separate study using water quality attributes, suggesting that similar factors have influenced variations in both the set of physical, biological, and climatic attributes selected in this study and water quality parameters. However, geospatial data allowed further subdivision of several interior marsh clusters identified from the water quality data, potentially indicating zones with important differences in function. Identification of these zones can be useful to managers and modelers by informing the distribution of monitoring equipment and personnel as well as delineating regions that may respond similarly to future changes in management or climate.

  3. Drug compartmentalization as strategy to improve the physico-chemical properties of diclofenac sodium loaded niosomes for topical applications.

    Science.gov (United States)

    Tavano, Lorena; de Cindio, Bruno; Picci, Nevio; Ioele, Giuseppina; Muzzalupo, Rita

    2014-12-01

    The objective of this research was to study the effect of diclofenac sodium compartmentalization on the physico-chemical properties (such as size, drug entrapment efficiency and percutaneous permeation across rabbit skin) of niosomal vesicles used as carriers. Niosomes were prepared starting from nonionic commercial surfactants belonging to the class of Polysorbates and Pluronics: mixtures of Span 60/F127 and Tween 60/F127 at different ratios were used to obtain vesicles and all formulations were compared in terms of dimensions, morphology, polydispersity index and entrapment efficiency. Moreover, the enhancing effect of niosomes on the ex vivo percutaneous penetration of diclofenac sodium was investigated using Franz-type diffusion chambers and compared to that obtained by using the corresponding drug solution. Results demonstrated that niosomes were spherical and homogeneous in shape. Their size was found to be dependent on the hydrophile-lipophile balance of the surfactant mixture: increasing hydrophobicity resulted in smaller vesicles. Drug incorporation led to a significant variation in vesicle size dependently from the compartment in which the drug was located. The permeation of diclofenac from free solution used as control was found to be lower respect to that obtained for all niosomal formulations, that can be considered as percutaneous permeation enhancers. In particular, the results indicated that the highest cumulative amounts of diclofenac permeated across rabbit skin after 24 h were obtained by formulations in which the drug was located in the aqueous core.

  4. Levels, spatial variation and compartmentalization of trace elements in brown algae Cystoseira from marine protected areas of Crimea (Black Sea)

    International Nuclear Information System (INIS)

    Kravtsova, Alexandra V.; Milchakova, Nataliya A.; Frontasyeva, Marina V.

    2015-01-01

    Highlights: • 19 trace elements were determined in Cystoseira spp. from marine protected areas. • Levels of 10 elements were lower than reported data for Black Sea Cystoseira spp. • Concentrations of most trace elements were higher in “branches” than in “stems”. • Spatial variations of V, Co, Ni and Zn can be related to anthropogenic activities. • Al, Sc, Fe, Rb, Cs, Th, U varied depending on geological composition of the coast. - Abstract: Levels of Al, Sc, V, Co, Ni, As, Br, Rb, Sr, Ag, Sb, I, Cs, Ba, Th and U that were rarely or never studied, as well as the concentrations of classically investigated Mn, Fe and Zn in brown algae Cystoseira barbata C. Ag. and Cystoseira crinita (Desf.) Bory from the coastal waters of marine protected areas (Crimea, Black Sea), were determined using neutron activation analysis. Spatial variation and compartmentalization were studied for all 19 trace elements (TE). Concentrations of most TE were higher in “branches” than in “stems”. Spatial variations of V, Co, Ni and Zn can be related to anthropogenic activities while Al, Sc, Fe, Rb, Cs, Th and U varied depending on chemical peculiarities of the coastal zone rocks. TE concentrations in C. crinita from marine protected areas near Tarkhankut peninsula and Cape Fiolent, identified as the most clean water areas, are submitted as the background concentrations

  5. Two-compartmental population balance modeling of a pulsed spray fluidized bed granulation based on computational fluid dynamics (CFD) analysis.

    Science.gov (United States)

    Liu, Huolong; Li, Mingzhong

    2014-11-20

    In this work a two-compartmental population balance model (TCPBM) was proposed to model a pulsed top-spray fluidized bed granulation. The proposed TCPBM considered the spatially heterogeneous granulation mechanisms of the granule growth by dividing the granulator into two perfectly mixed zones of the wetting compartment and drying compartment, in which the aggregation mechanism was assumed in the wetting compartment and the breakage mechanism was considered in the drying compartment. The sizes of the wetting and drying compartments were constant in the TCPBM, in which 30% of the bed was the wetting compartment and 70% of the bed was the drying compartment. The exchange rate of particles between the wetting and drying compartments was determined by the details of the flow properties and distribution of particles predicted by the computational fluid dynamics (CFD) simulation. The experimental validation has shown that the proposed TCPBM can predict evolution of the granule size and distribution within the granulator under different binder spray operating conditions accurately. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Inter-compartmental transport of organophosphate and pyrethroid pesticides in South China: implications for a regional risk assessment.

    Science.gov (United States)

    Li, Huizhen; Wei, Yanli; Lydy, Michael J; You, Jing

    2014-07-01

    The dynamic flux of an organophosphate and four pyrethroid pesticides was determined in an air-(soil)-water-sediment system based on monitoring data from Guangzhou, China. The total air-water flux, including air-water gaseous exchange and atmospheric deposition, showed deposition from air to water for chlorpyrifos, bifenthrin and cypermethrin, but volatilization for lambda-cyhalothrin and permethrin. The transport of the pesticides from overlying water to sediment suggested that sediment acted as a sink for the pesticides. Additionally, distinct annual atmospheric depositional fluxes between legacy and current-use pesticides suggested the role of consumer usage in their transport throughout the system. Finally, pesticide toxicity was estimated from annual air-water-sediment flux within an urban stream in Guangzhou. A dynamic flux-based risk assessment indicated that inter-compartmental transport of chlorpyrifos decreased its atmospheric exposure, but had little influence on its aquatic toxicity. Instead, water-to-sediment transport of pyrethroids increased their sediment toxicity, which was supported by previously reported toxicity data. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Prenatal HIV testing: the compartmentalization of women's sexual risk exposure and the return of the maternal fetal conflict.

    Science.gov (United States)

    Kelly, Kristin; Hampson, Sarah Cote; Huff, Jamie

    2012-01-01

    The purpose of the researchers in this study was to investigate how women who were being tested for HIV during their pregnancies were evaluating, conceptualizing, and negotiating their risk of infection. The study included two focus groups and 20 in-depth interviews with 30 patients, ages 17-38 years, from diverse ethnic/racial, social, and economic backgrounds. Qualitative analyses of the interview transcripts revealed support for the idea that pregnant women have a responsibility to minimize risks to their fetus, with all interviewees describing actions to minimize those risks while pregnant. Two sub-themes emerged that were related to the presence of differences in how interviewees conceptualized risk depending on the type of risk being discussed. In the case of diet and lifestyle influences, interviewees framed their health and the health of the fetus as connected. In contrast, when the issue of HIV risk and testing was raised, the interviewees described the risk of HIV to themselves and their fetuses as separate concerns and, with few exceptions, reported no effort to reduce the risk of becoming infected while pregnant (beyond consenting to HIV screening while receiving prenatal care). Findings suggest the importance of developing HIV prevention messages that counter the compartmentalization of risk during pregnancy.

  8. Cell biology of anaerobic ammonium-oxidizing bacteria

    NARCIS (Netherlands)

    Niftrik, L.A.M.P. van

    2008-01-01

    Anammox bacteria perform anaerobic ammonium oxidation to dinitrogen gas and belong to the phylum Planctomycetes. Whereas most Prokaryotes consist of one compartment, the cytoplasm bounded by the cytoplasmic membrane and cell wall, the species within this phylum are compartmentalized by intracellular

  9. Compartmentation of mono- and sesqui-terpene biosynthesis of the essential oil in poncirus trifoliata

    International Nuclear Information System (INIS)

    Heinrich, G.; Wegener, R.; Schultze, W.

    1980-01-01

    The fruit of Poncirus trifoliata shows glandular cells complexes in the exocarp, which produce a volatile oil rich in monoterpenes but poor in sesquiterpenes and oxigenated compounds. The juice vesicles of the endocarp possess similar cell complexes mainly containing sesquiterpenes and oxigenated compounds, whereas monoterpenes only occur in small amounts. By the use of combined gas chromatography-mass spectrometry 19 components of the rind oil and 15 compounds of the endocarp oil could be identified. As demonstrated by electron microscopy the terpenes most probably are synthesized predominantly, if not exclusively in plastids. As shown by gasradiochromatography radioactive precursors ( 14 Co 2 and 14 C-leucine) are incorporated into mono- and sesqui-terpenes to a different extent. This is due to two gland types producing essential oils of different composition with regard to their mono- and sesqui-terpene percentage. In fruit development the exocarp glands differentiate earlier than the endocarp glands do. The activity of exogenously applied 14 Co 2 first reaches the peripheral glands and later on appears in the interior glands. Depending upon the growth season, labelled leucine transported by the conducting tissues from lower plant parts leads to a high specific activity of the sesqui-terpenes and oxigenated compounds. It could be argued that in this instance the glands of the pulp are better provided with precursors than the exocarp glands. The successive maxima of essential oil production in both glandular complexes, and the changes in the concentration of individual oil constituents during the ontogeny of the fruit also contribute to different incorporation ratios of radioactive precursors into mono- and sesqui-terpenes. (author)

  10. Zebrin II compartmentation of the cerebellum in a basal insectivore, the Madagascan hedgehog tenrec Echinops telfairi

    Science.gov (United States)

    Sillitoe, Roy V; Künzle, Heinz; Hawkes, Richard

    2003-01-01

    The mammalian cerebellum is histologically uniform. However, underlying the simple laminar architecture is a complex arrangement of parasagittal stripes and transverse zones that can be revealed by the expression of zebrin II/aldolase C. The cerebellar cortex of rodents, for example, is organized into four transverse zones: anterior, central, posterior and nodular. Within the anterior and posterior zones, parasagittal stripes of Purkinje cells expressing zebrin II alternate with those that do not. Zonal boundaries appear to be independent of cerebellar lobulation. To explore this model further, and to broaden our understanding of the evolution of cerebellar patterning, zebrin II expression has been studied in the cerebellum of the Madagascan hedgehog tenrec (Echinops telfairi), a basal insectivore with a lissiform cerebellum with only five lobules. Zebrin II expression in the tenrec reveals an array of four transverse zones as in rodents, two with homogeneous zebrin II expression, two further subdivided into stripes, that closely resembles the expression pattern described in other mammals. We conclude that a zone-and-stripe organization may be a common feature of the mammalian cerebellar vermis and hemispheres, and that zonal boundaries and cerebellar lobules and fissures form independently. PMID:14529046

  11. A compartmentalized mathematical model of the β1-adrenergic signaling system in mouse ventricular myocytes.

    Directory of Open Access Journals (Sweden)

    Vladimir E Bondarenko

    Full Text Available The β1-adrenergic signaling system plays an important role in the functioning of cardiac cells. Experimental data shows that the activation of this system produces inotropy, lusitropy, and chronotropy in the heart, such as increased magnitude and relaxation rates of [Ca(2+]i transients and contraction force, and increased heart rhythm. However, excessive stimulation of β1-adrenergic receptors leads to heart dysfunction and heart failure. In this paper, a comprehensive, experimentally based mathematical model of the β1-adrenergic signaling system for mouse ventricular myocytes is developed, which includes major subcellular functional compartments (caveolae, extracaveolae, and cytosol. The model describes biochemical reactions that occur during stimulation of β1-adrenoceptors, changes in ionic currents, and modifications of Ca(2+ handling system. Simulations describe the dynamics of major signaling molecules, such as cyclic AMP and protein kinase A, in different subcellular compartments; the effects of inhibition of phosphodiesterases on cAMP production; kinetics and magnitudes of phosphorylation of ion channels, transporters, and Ca(2+ handling proteins; modifications of action potential shape and duration; magnitudes and relaxation rates of [Ca(2+]i transients; changes in intracellular and transmembrane Ca(2+ fluxes; and [Na(+]i fluxes and dynamics. The model elucidates complex interactions of ionic currents upon activation of β1-adrenoceptors at different stimulation frequencies, which ultimately lead to a relatively modest increase in action potential duration and significant increase in [Ca(2+]i transients. In particular, the model includes two subpopulations of the L-type Ca(2+ channels, in caveolae and extracaveolae compartments, and their effects on the action potential and [Ca(2+]i transients are investigated. The presented model can be used by researchers for the interpretation of experimental data and for the developments of

  12. Caesium accumulation by microorganisms: uptake mechanisms, cation competition, compartmentalization and toxicity

    International Nuclear Information System (INIS)

    Avery, S.V.

    1995-01-01

    The continued release of caesium radioisotopes into the environment has led to a resurgence of interest in microbe-Cs interactions. Caesium exists almost exclusively as the monovalent cation Cs + in the natural environment. Although Cs + is a weak Lewis acid that exhibits a low tendency to form complexes with ligands, its chemical similarity to the biologically essential alkali cation K + facilitates high levels of metabolism-dependent intracellular accumulation. Microbial Cs + (K + ) uptake is generally mediated by monovalent cation transport systems located on the plasma membrane. These differ widely in specificity for alkali cations and consequently microorganisms display large differences in their ability to accumulate Cs + ; Cs + appears to have an equal or greater affinity than K + for transport in certain microorganisms. Microbial Cs + accumulation is markedly influenced by the presence of external cations, e.g. K + , Na + , NH 4 + and H + , and is generally accompanied by an approximate stoichiometric exchange for intracellular K + . However, stimulation of growth of K + -starved microbial cultures by Cs + is limited and it has been proposed that it is not the presence of Cs + in cells that is growth inhibitory but rather the resulting loss of K + . Increased microbial tolerance to Cs + may result from sequestration of Cs + in vacuoles or changes in the activity and/or specificity of transport systems mediating Cs + uptake. The precise intracellular target(s) for Cs + - induced toxicity has yet to be clearly defined, although certain internal structures, e.g. ribosomes, become unstable in the presence of Cs + and Cs + is known to substitute poorly for K + in the activation of many K + -requiring enzymes. (author)

  13. Compartmentalized self-replication (CSR) selection of Thermococcus litoralis Sh1B DNA polymerase for diminished uracil binding.

    Science.gov (United States)

    Tubeleviciute, Agne; Skirgaila, Remigijus

    2010-08-01

    The thermostable archaeal DNA polymerase Sh1B from Thermococcus litoralis has a typical uracil-binding pocket, which in nature plays an essential role in preventing the accumulation of mutations caused by cytosine deamination to uracil and subsequent G-C base pair transition to A-T during the genomic DNA replication. The uracil-binding pocket recognizes and binds uracil base in a template strand trapping the polymerase. Since DNA replication stops, the repair systems have a chance to correct the promutagenic event. Archaeal family B DNA polymerases are employed in various PCR applications. Contrary to nature, in PCR the uracil-binding property of archaeal polymerases is disadvantageous and results in decreased DNA amplification yields and lowered sensitivity. Furthermore, in diagnostics qPCR, RT-qPCR and end-point PCR are performed using dNTP mixtures, where dTTP is partially or fully replaced by dUTP. Uracil-DNA glycosylase treatment and subsequent heating of the samples is used to degrade the DNA containing uracil and prevent carryover contamination, which is the main concern in diagnostic laboratories. A thermostable archaeal DNA polymerase with the abolished uracil binding would be a highly desirable and commercially interesting product. An attempt to disable uracil binding in DNA polymerase Sh1B from T. litoralis by generating site-specific mutants did not yield satisfactory results. However, a combination of random mutagenesis of the whole polymerase gene and compartmentalized self-replication was successfully used to select variants of thermostable Sh1B polymerase capable of performing PCR with dUTP instead of dTTP.

  14. Comparison of linear and nonlinear implementation of the compartmental tissue uptake model for dynamic contrast-enhanced MRI.

    Science.gov (United States)

    Kallehauge, Jesper F; Sourbron, Steven; Irving, Benjamin; Tanderup, Kari; Schnabel, Julia A; Chappell, Michael A

    2017-06-01

    Fitting tracer kinetic models using linear methods is much faster than using their nonlinear counterparts, although this comes often at the expense of reduced accuracy and precision. The aim of this study was to derive and compare the performance of the linear compartmental tissue uptake (CTU) model with its nonlinear version with respect to their percentage error and precision. The linear and nonlinear CTU models were initially compared using simulations with varying noise and temporal sampling. Subsequently, the clinical applicability of the linear model was demonstrated on 14 patients with locally advanced cervical cancer examined with dynamic contrast-enhanced magnetic resonance imaging. Simulations revealed equal percentage error and precision when noise was within clinical achievable ranges (contrast-to-noise ratio >10). The linear method was significantly faster than the nonlinear method, with a minimum speedup of around 230 across all tested sampling rates. Clinical analysis revealed that parameters estimated using the linear and nonlinear CTU model were highly correlated (ρ ≥ 0.95). The linear CTU model is computationally more efficient and more stable against temporal downsampling, whereas the nonlinear method is more robust to variations in noise. The two methods may be used interchangeably within clinical achievable ranges of temporal sampling and noise. Magn Reson Med 77:2414-2423, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  15. Gait analysis of patients with an off-the-shelf total knee replacement versus customized bi-compartmental knee replacement.

    Science.gov (United States)

    Wang, Henry; Foster, Jonathan; Franksen, Natasha; Estes, Jill; Rolston, Lindsey

    2018-04-01

    Newer TKR designs have been introduced to the market with the aim of overcoming common sizing problems with older TKR designs. Furthermore, since a sizable percentage of patients with OA present with disease limited to the medial/lateral knee compartment in addition to the patellofemoral joint, for whom, a customized bi-compartmental knee replacement (BKR) is available as a treatment option. To date, there is very little information regarding knee strength and mechanics during gait for patients implanted with these modern TKR and BKR designs. The purpose of the study was to evaluate knee strength and mechanics during walking for patients with either a modern off the shelf TKR or a customized BKR and compare these findings to a cohort of healthy controls. Twelve healthy controls, eight BKR, and nine TKR patients participated in the study. Maximal isometric knee strength was evaluated. 3D kinematic and kinetic analyses were conducted for level walking. The TKR knee exhibited less peak extensor torque when compared to, both the BKR and control limbs (p < 0.05). The TKR knee had less extensor moment at stance than both the BKR and control knees (p < 0.05). Both the BKR and control knees displayed larger internal rotation at stance than that of the TKR knee (p < 0.05). This study suggests that, for patients that exhibit isolated OA of the tibiofemoral joint, using a customized BKR implant is a viable treatment option and may contribute to superior mechanical advantages.

  16. The assembly of metals chelation by thiols and vacuolar compartmentalization conferred increased tolerance to and accumulation of cadmium and arsenic in transgenic Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Guo, Jiangbo; Xu, Wenzhong; Ma, Mi

    2012-01-01

    Highlights: ► Simultaneous transformation of AsPCS1 and ScYCF1 into Arabidopsis thaliana which is sensitive to heavy metals, leads to transgenic plants tolerant to Arsenic and cadmium. ► Dual-gene transgenic Arabidopsis showed higher accumulation of Arsenic and cadmium than single and non-transgenic plants. ► Our results proved that improved thiol peptides synthesis and vacuolar compartmentation in plant dramatically boosted the survival rates of plants when exposed to heavy metals. ► A new strategy for efficient phytoremediation of heavy metals by stacking genes transformation in plants was developed in this article. - Abstract: Transgenic Arabidopsis thaliana were developed to increase tolerance for and accumulation of heavy metals and metalloids by simultaneous overexpression of AsPCS1 and YCF1 (derived from garlic and baker's yeast) based on the fact that chelation of metals and vacuolar compartmentalization are the main strategies for heavy metals/metalloids detoxification and tolerance in plants. Dual-gene transgenic lines had the longest roots and the highest accumulation of Cd and As than single-gene transgenic lines and wildtype. When grown on cadmium or arsenic (arsenite/arsenate), Dual-gene transgenic lines accumulated over 2–10 folds cadmium/arsenite and 2–3 folds arsenate than wild type or plants expressing AsPCS1 or YCF1 alone. Such stacking modified genes involved in chelation of toxic metals and vacuolar compartmentalization represents a highly promising new tool for use in phytoremediation efforts.

  17. The assembly of metals chelation by thiols and vacuolar compartmentalization conferred increased tolerance to and accumulation of cadmium and arsenic in transgenic Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jiangbo [Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093 (China); Inner Mongolia Key Laboratory of Biomass-Energy Conversion, The Institute of Bioengineering and Technology, Inner Mongolia University of Science and Technology, Baotou 040100 (China); Xu, Wenzhong [Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093 (China); Ma, Mi, E-mail: mami@ibcas.ac.cn [Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093 (China)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Simultaneous transformation of AsPCS1 and ScYCF1 into Arabidopsis thaliana which is sensitive to heavy metals, leads to transgenic plants tolerant to Arsenic and cadmium. Black-Right-Pointing-Pointer Dual-gene transgenic Arabidopsis showed higher accumulation of Arsenic and cadmium than single and non-transgenic plants. Black-Right-Pointing-Pointer Our results proved that improved thiol peptides synthesis and vacuolar compartmentation in plant dramatically boosted the survival rates of plants when exposed to heavy metals. Black-Right-Pointing-Pointer A new strategy for efficient phytoremediation of heavy metals by stacking genes transformation in plants was developed in this article. - Abstract: Transgenic Arabidopsis thaliana were developed to increase tolerance for and accumulation of heavy metals and metalloids by simultaneous overexpression of AsPCS1 and YCF1 (derived from garlic and baker's yeast) based on the fact that chelation of metals and vacuolar compartmentalization are the main strategies for heavy metals/metalloids detoxification and tolerance in plants. Dual-gene transgenic lines had the longest roots and the highest accumulation of Cd and As than single-gene transgenic lines and wildtype. When grown on cadmium or arsenic (arsenite/arsenate), Dual-gene transgenic lines accumulated over 2-10 folds cadmium/arsenite and 2-3 folds arsenate than wild type or plants expressing AsPCS1 or YCF1 alone. Such stacking modified genes involved in chelation of toxic metals and vacuolar compartmentalization represents a highly promising new tool for use in phytoremediation efforts.

  18. Typing of MRI in medial meniscus degeneration in relation to radiological grade in medial compartmental osteoarthritis of the knee

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Nobuhito; Koshino, Tomihisa; Saito, Tomoyuki; Sakai, Naotaka; Takagi, Toshitaka; Takeuchi, Ryohei [Yokohama City Univ. (Japan). School of Medicine

    1998-10-01

    The advancement of degeneration of 50 medial menisci in patients with medial compartmental osteoarthritic knees (OA) were evaluated with magnetic resonance imaging (MRI). The average age of the patients was 66.6 years (range, 39 to 86). According to a radiographical grading system, 6 knees were classified as Grade 1, 24 as Grade 2, 16 as Grade 3, and 4 as Grade 4. The extent and the location of a high intensity region in MRI were observed in 3 parts of the meniscus, namely, the anterior, middle and posterior part. In Grade 1, no high intensity region was observed in 3 knees, and a high intensity region was observed only in the posterior part in 2 knees. A high intensity region was observed from the medial to the posterior part in 13 knees, and only in the posterior part in 10 knees of Grade 2; from the medial to the posterior part in 12 knees, and only in the posterior part in 3 knees of Grade 3, and from the anterior to the posterior part in 2 knees of Grade 4. The shape of the high intensity region in the medial meniscus was classified into 5 types, as follows: Type 1, there was no high intensity region; Type 2, the high intensity region was observed to be restricted within the meniscus; Type 3, the high intensity region resembled a horizontal tear; Type 4, the high intensity region was observed as all of the medial joint space without a marginal area; Type 5, the high intensity region was observed as all of the medial joint space. In Grade 1, 3 knees were classified as Type 1, and 2 knees as Type 2; in Grade 2, 7 knees as Type 2, and 13 knees as Type 3, and 4 knees into Type 4; in Grade 3, 6 knees as Type 3, and 7 knees as Type 4; and in Grade 4, 2 knees as Type 4, and 2 knees as Type 5. These findings might suggest that the degeneration of medial meniscus in the medial type of OA was accelerated by mechanical stress due to varus deformity. (author)

  19. Compartmentalized cAMP Signaling Associated With Lipid Raft and Non-raft Membrane Domains in Adult Ventricular Myocytes.

    Science.gov (United States)

    Agarwal, Shailesh R; Gratwohl, Jackson; Cozad, Mia; Yang, Pei-Chi; Clancy, Colleen E; Harvey, Robert D

    2018-01-01

    Aim: Confining cAMP production to discrete subcellular locations makes it possible for this ubiquitous second messenger to elicit unique functional responses. Yet, factors that determine how and where the production of this diffusible signaling molecule occurs are incompletely understood. The fluid mosaic model originally proposed that signal transduction occurs through random interactions between proteins diffusing freely throughout the plasma membrane. However, it is now known that the movement of membrane proteins is restricted, suggesting that the plasma membrane is segregated into distinct microdomains where different signaling proteins can be concentrated. In this study, we examined what role lipid raft and non-raft membrane domains play in compartmentation of cAMP signaling in adult ventricular myocytes. Methods and Results: The freely diffusible fluorescence resonance energy transfer-based biosensor Epac2-camps was used to measure global cytosolic cAMP responses, while versions of the probe targeted to lipid raft (Epac2-MyrPalm) and non-raft (Epac2-CAAX) domains were used to monitor local cAMP production near the plasma membrane. We found that β-adrenergic receptors, which are expressed in lipid raft and non-raft domains, produce cAMP responses near the plasma membrane that are distinctly different from those produced by E-type prostaglandin receptors, which are expressed exclusively in non-raft domains. We also found that there are differences in basal cAMP levels associated with lipid raft and non-raft domains, and that this can be explained by differences in basal adenylyl cyclase activity associated with each of these membrane environments. In addition, we found evidence that phosphodiesterases 2, 3, and 4 work together in regulating cAMP activity associated with both lipid raft and non-raft domains, while phosphodiesterase 3 plays a more prominent role in the bulk cytoplasmic compartment. Conclusion: These results suggest that different membrane

  20. Analytical solutions to compartmental indoor air quality models with application to environmental tobacco smoke concentrations measured in a house.

    Science.gov (United States)

    Ott, Wayne R; Klepeis, Neil E; Switzer, Paul

    2003-08-01

    This paper derives the analytical solutions to multi-compartment indoor air quality models for predicting indoor air pollutant concentrations in the home and evaluates the solutions using experimental measurements in the rooms of a single-story residence. The model uses Laplace transform methods to solve the mass balance equations for two interconnected compartments, obtaining analytical solutions that can be applied without a computer. Environmental tobacco smoke (ETS) sources such as the cigarette typically emit pollutants for relatively short times (7-11 min) and are represented mathematically by a "rectangular" source emission time function, or approximated by a short-duration source called an "impulse" time function. Other time-varying indoor sources also can be represented by Laplace transforms. The two-compartment model is more complicated than the single-compartment model and has more parameters, including the cigarette or combustion source emission rate as a function of time, room volumes, compartmental air change rates, and interzonal air flow factors expressed as dimensionless ratios. This paper provides analytical solutions for the impulse, step (Heaviside), and rectangular source emission time functions. It evaluates the indoor model in an unoccupied two-bedroom home using cigars and cigarettes as sources with continuous measurements of carbon monoxide (CO), respirable suspended particles (RSP), and particulate polycyclic aromatic hydrocarbons (PPAH). Fine particle mass concentrations (RSP or PM3.5) are measured using real-time monitors. In our experiments, simultaneous measurements of concentrations at three heights in a bedroom confirm an important assumption of the model-spatial uniformity of mixing. The parameter values of the two-compartment model were obtained using a "grid search" optimization method, and the predicted solutions agreed well with the measured concentration time series in the rooms of the home. The door and window positions in

  1. Typing of MRI in medial meniscus degeneration in relation to radiological grade in medial compartmental osteoarthritis of the knee

    International Nuclear Information System (INIS)

    Nagata, Nobuhito; Koshino, Tomihisa; Saito, Tomoyuki; Sakai, Naotaka; Takagi, Toshitaka; Takeuchi, Ryohei

    1998-01-01

    The advancement of degeneration of 50 medial menisci in patients with medial compartmental osteoarthritic knees (OA) were evaluated with magnetic resonance imaging (MRI). The average age of the patients was 66.6 years (range, 39 to 86). According to a radiographical grading system, 6 knees were classified as Grade 1, 24 as Grade 2, 16 as Grade 3, and 4 as Grade 4. The extent and the location of a high intensity region in MRI were observed in 3 parts of the meniscus, namely, the anterior, middle and posterior part. In Grade 1, no high intensity region was observed in 3 knees, and a high intensity region was observed only in the posterior part in 2 knees. A high intensity region was observed from the medial to the posterior part in 13 knees, and only in the posterior part in 10 knees of Grade 2; from the medial to the posterior part in 12 knees, and only in the posterior part in 3 knees of Grade 3, and from the anterior to the posterior part in 2 knees of Grade 4. The shape of the high intensity region in the medial meniscus was classified into 5 types, as follows: Type 1, there was no high intensity region; Type 2, the high intensity region was observed to be restricted within the meniscus; Type 3, the high intensity region resembled a horizontal tear; Type 4, the high intensity region was observed as all of the medial joint space without a marginal area; Type 5, the high intensity region was observed as all of the medial joint space. In Grade 1, 3 knees were classified as Type 1, and 2 knees as Type 2; in Grade 2, 7 knees as Type 2, and 13 knees as Type 3, and 4 knees into Type 4; in Grade 3, 6 knees as Type 3, and 7 knees as Type 4; and in Grade 4, 2 knees as Type 4, and 2 knees as Type 5. These findings might suggest that the degeneration of medial meniscus in the medial type of OA was accelerated by mechanical stress due to varus deformity. (author)

  2. Anti-tuberculosis drug combination for controlled oral delivery using 3D printed compartmental dosage forms: From drug product design to in vivo testing

    DEFF Research Database (Denmark)

    Genina, Natalja; Boetker, Johan Peter; Colombo, Stefano

    2017-01-01

    for treatment of tuberculosis (TB) that negatively interact with each other upon simultaneous release in acidic environment. The dcDUs were designed in silico by computer aided design (CAD) and fabricated in two steps; first three-dimensional (3D) printing of the outer structure, followed by hot-melt extrusion...... (HME) of the drug-containing filaments. The structure of the fabricated dcDUs was visualized by scanning electron microscopy (SEM). The 3D printed compartmentalized shells were loaded with filaments containing active pharmaceutical ingredient (API) and selectively sealed to modulate drug dissolution...

  3. Mechanisms of salt tolerance in habanero pepper plants (Capsicum chinense Jacq.): Proline accumulation, ions dynamics and sodium root-shoot partition and compartmentation.

    Science.gov (United States)

    Bojórquez-Quintal, Emanuel; Velarde-Buendía, Ana; Ku-González, Angela; Carillo-Pech, Mildred; Ortega-Camacho, Daniela; Echevarría-Machado, Ileana; Pottosin, Igor; Martínez-Estévez, Manuel

    2014-01-01

    Despite its economic relevance, little is known about salt tolerance mechanisms in pepper plants. To address this question, we compared differences in responses to NaCl in two Capsicum chinense varieties: Rex (tolerant) and Chichen-Itza (sensitive). Under salt stress (150 mM NaCl over 7 days) roots of Rex variety accumulated 50 times more compatible solutes such as proline compared to Chichen-Itza. Mineral analysis indicated that Na(+) is restricted to roots by preventing its transport to leaves. Fluorescence analysis suggested an efficient Na(+) compartmentalization in vacuole-like structures and in small intracellular compartments in roots of Rex variety. At the same time, Na(+) in Chichen-Itza plants was compartmentalized in the apoplast, suggesting substantial Na(+) extrusion. Rex variety was found to retain more K(+) in its roots under salt stress according to a mineral analysis and microelectrode ion flux estimation (MIFE). Vanadate-sensitive H(+) efflux was higher in Chichen-Itza variety plants, suggesting a higher activity of the plasma membrane H(+)-ATPase, which fuels the extrusion of Na(+), and, possibly, also the re-uptake of K(+). Our results suggest a combination of stress tolerance mechanisms, in order to alleviate the salt-induced injury. Furthermore, Na(+) extrusion to apoplast does not appear to be an efficient strategy for salt tolerance in pepper plants.

  4. Analysis of primary cilia in directional cell migration in fibroblasts

    DEFF Research Database (Denmark)

    Christensen, Søren Tvorup; Veland, Iben; Schwab, Albrecht

    2013-01-01

    summarize selected methods in analyzing ciliary function in directional cell migration, including immunofluorescence microscopy, scratch assay, and chemotaxis assay by micropipette addition of PDGFRα ligands to cultures of fibroblasts. These methods should be useful not only in studying cell migration....... In particular, platelet-derived growth factor receptor alpha (PDGFRα) is compartmentalized to the primary cilium to activate signaling pathways that regulate reorganization of the cytoskeleton required for lamellipodium formation and directional migration in the presence of a specific ligand gradient. We...

  5. Classical algorithms for automated parameter-search methods in compartmental neural models - A critical survey based on simulations using neuron

    International Nuclear Information System (INIS)

    Mutihac, R.; Mutihac, R.C.; Cicuttin, A.

    2001-09-01

    gradient-descent techniques are adequate if the parameter space is low-dimensional, relatively smooth, and has a few local minima (e.g., parameterizing single-neuron compartmental models). Only the fast algorithms and/or a decent (low) number of model parameters are candidates for automated parameter search because of practical reasons. Eventually, the size of the parameter space may be reduced and/or parallel supercomputers may be used. Data overfitting may negatively affect the generalization ability of the model. Bayesian methods include Occam's factor, which set the preference for simpler models. Proliferation of (neural) models raises the question of rigorous criteria for comparing the overall performance of various models designed to match the same type of data. Bayesian methods provide the best framework to assess the neural models quantitatively. Paradoxically, parameter-search methods may sometimes be more useful when they fail by discarding unrealistic mechanisms used in the model design, rather than fitting experimental data to an alleged model

  6. Inhibition of glutathione biosynthesis alters compartmental redox status and the thiol proteome in organogenesis-stage rat conceptuses.

    Science.gov (United States)

    Harris, Craig; Shuster, Daniel Z; Roman Gomez, Rosaicela; Sant, Karilyn E; Reed, Matthew S; Pohl, Jan; Hansen, Jason M

    2013-10-01

    oxidation was seen in the BSO-treated AF compartment after 6 h. Biotinylated iodoacetamide (BIAM) labeling of proteins revealed the significant thiol oxidation of many EMB proteins following BSO treatment. Quantitative changes in the thiol proteome, associated with developmentally relevant pathways, were detected using isotope coded affinity tag (ICAT) labeling and mass spectroscopy. Adaptive pathways were selectively enriched with increased concentrations of proteins involved in mRNA processing (splicesome) and mRNA stabilization (glycolysis, GAPDH), as well as protein synthesis (aminoacyl-tRNA) and protein folding (antigen processing, Hsp70, protein disulfide isomerase). These results show the ability of chemical and environmental modulators to selectively alter compartmental intracellular and extracellular GSH and Cys concentrations and change their corresponding E(h) within the intact viable conceptus. The altered E(h) were also of sufficient magnitude to alter the redox proteome and change relative protein concentrations, suggesting that the mechanistic links through which environmental factors inform and regulate developmental signaling pathways may be discovered using systems developmental biology techniques. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. BMP antagonism by Noggin is required in presumptive notochord cells for mammalian foregut morphogenesis.

    Science.gov (United States)

    Fausett, Sarah R; Brunet, Lisa J; Klingensmith, John

    2014-07-01

    Esophageal atresia with tracheoesophageal fistula (EA/TEF) is a serious human birth defect, in which the esophagus ends before reaching the stomach, and is aberrantly connected with the trachea. Several mouse models of EA/TEF have recently demonstrated that proper dorsal/ventral (D/V) patterning of the primitive anterior foregut endoderm is essential for correct compartmentalization of the trachea and esophagus. Here we elucidate the pathogenic mechanisms underlying the EA/TEF that occurs in mice lacking the BMP antagonist Noggin, which display correct dorsal/ventral patterning. To clarify the mechanism of this malformation, we use spatiotemporal manipulation of Noggin and BMP receptor 1A conditional alleles during foregut development. Surprisingly, we find that the expression of Noggin in the compartmentalizing endoderm is not required to generate distinct tracheal and esophageal tubes. Instead, we show that Noggin and BMP signaling attenuation are required in the early notochord to correctly resolve notochord cells from the dorsal foregut endoderm, which in turn, appears to be a prerequisite for foregut compartmentalization. Collectively, our findings support an emerging model for a mechanism underlying EA/TEF in which impaired notochord resolution from the early endoderm causes the foregut to be hypo-cellular just prior to the critical period of compartmentalization. Our further characterizations suggest that Noggin may regulate a cell rearrangement process that involves reciprocal E-cadherin and Zeb1 expression in the resolving notochord cells. Copyright © 2014. Published by Elsevier Inc.

  8. The epidermis comprises autonomous compartments maintained by distinct stem cell populations

    DEFF Research Database (Denmark)

    Page, Mahalia E; Lombard, Patrick; Ng, Felicia

    2013-01-01

    populations. In contrast, upon wounding, stem cell progeny from multiple compartments acquire lineage plasticity and make permanent contributions to regenerating tissue. We further show that oncogene activation in Lrig1(+ve) cells drives hyperplasia but requires auxiliary stimuli for tumor formation....... In summary, our data demonstrate that epidermal stem cells are lineage restricted during homeostasis and suggest that compartmentalization may constitute a conserved mechanism underlying epithelial tissue maintenance....

  9. The Virtual Cell: a software environment for computational cell biology.

    Science.gov (United States)

    Loew, L M; Schaff, J C

    2001-10-01

    The newly emerging field of computational cell biology requires software tools that address the needs of a broad community of scientists. Cell biological processes are controlled by an interacting set of biochemical and electrophysiological events that are distributed within complex cellular structures. Computational modeling is familiar to researchers in fields such as molecular structure, neurobiology and metabolic pathway engineering, and is rapidly emerging in the area of gene expression. Although some of these established modeling approaches can be adapted to address problems of interest to cell biologists, relatively few software development efforts have been directed at the field as a whole. The Virtual Cell is a computational environment designed for cell biologists as well as for mathematical biologists and bioengineers. It serves to aid the construction of cell biological models and the generation of simulations from them. The system enables the formulation of both compartmental and spatial models, the latter with either idealized or experimentally derived geometries of one, two or three dimensions.

  10. Radiotracers in the study of marine food chains. The use of compartmental analysis and analog modelling in measuring utilization rates of particulate organic matter by benthic invertebrates

    International Nuclear Information System (INIS)

    Gremare, A.; Amouroux, J.M.; Charles, F.

    1991-01-01

    The present study assesses the problem of recycling when using radiotracers to quantify ingestion and assimilation rates of particulate organic matter by benthic invertebrates. The rapid production of dissolved organic matter and its subsequent utilization by benthic invertebrates constitutes a major bias in this kind of study. However recycling processes may also concern POM through the production and reingestion of faeces. The present paper shows that compartmental analysis of the diffusion kinetics of the radiotracer between the different compartments of the system studied and the analog modelling of the exchanges of radioactivity between compartments may be used in order to determine ingestion and assimilation rates. This method is illustrated by the study of a system composed of the bacteria Lactobacillus sp. and the filter-feeding bivalve Venerupis decussata. The advantages and drawbacks of this approach relative to other existing methods are briefly discussed. (Author)

  11. Work-related pain in extrinsic finger extensor musculature of instrumentalists is associated with intracellular pH compartmentation during exercise.

    Directory of Open Access Journals (Sweden)

    Angel Moreno-Torres

    Full Text Available BACKGROUND: Although non-specific pain in the upper limb muscles of workers engaged in mild repetitive tasks is a common occupational health problem, much is unknown about the associated structural and biochemical changes. In this study, we compared the muscle energy metabolism of the extrinsic finger extensor musculature in instrumentalists suffering from work-related pain with that of healthy control instrumentalists using non-invasive phosphorus magnetic resonance spectroscopy ((31P-MRS. We hypothesize that the affected muscles will show alterations related with an impaired energy metabolism. METHODOLOGY/PRINCIPAL FINDINGS: We studied 19 volunteer instrumentalists (11 subjects with work-related pain affecting the extrinsic finger extensor musculature and 8 healthy controls. We used (31P-MRS to find deviations from the expected metabolic response to exercise in phosphocreatine (PCr, inorganic phosphate (Pi, Pi/PCr ratio and intracellular pH kinetics. We observed a reduced finger extensor exercise tolerance in instrumentalists with myalgia, an intracellular pH compartmentation in the form of neutral and acid compartments, as detected by Pi peak splitting in (31P-MRS spectra, predominantly in myalgic muscles, and a strong association of this pattern with the condition. CONCLUSIONS/SIGNIFICANCE: Work-related pain in the finger extrinsic extensor muscles is associated with intracellular pH compartmentation during exercise, non-invasively detectable by (31P-MRS and consistent with the simultaneous energy production by oxidative metabolism and glycolysis. We speculate that a deficit in energy production by oxidative pathways may exist in the affected muscles. Two possible explanations for this would be the partial and/or local reduction of blood supply and the reduction of the muscle oxidative capacity itself.

  12. Test-retest reliability of automated whole body and compartmental muscle volume measurements on a wide bore 3T MR system

    International Nuclear Information System (INIS)

    Thomas, Marianna S.; Newman, David; Kasmai, Bahman; Greenwood, Richard; Malcolm, Paul N.; Leinhard, Olof Dahlqvist; Karlsson, Anette; Borga, Magnus; Rosander, Johannes; Toms, Andoni P.

    2014-01-01

    To measure the test-retest reproducibility of an automated system for quantifying whole body and compartmental muscle volumes using wide bore 3 T MRI. Thirty volunteers stratified by body mass index underwent whole body 3 T MRI, two-point Dixon sequences, on two separate occasions. Water-fat separation was performed, with automated segmentation of whole body, torso, upper and lower leg volumes, and manually segmented lower leg muscle volumes. Mean automated total body muscle volume was 19.32 L (SD9.1) and 19.28 L (SD9.12) for first and second acquisitions (Intraclass correlation coefficient (ICC) = 1.0, 95 % level of agreement -0.32-0.2 L). ICC for all automated test-retest muscle volumes were almost perfect (0.99-1.0) with 95 % levels of agreement 1.8-6.6 % of mean volume. Automated muscle volume measurements correlate closely with manual quantification (right lower leg: manual 1.68 L (2SD0.6) compared to automated 1.64 L (2SD 0.6), left lower leg: manual 1.69 L (2SD 0.64) compared to automated 1.63 L (SD0.61), correlation coefficients for automated and manual segmentation were 0.94-0.96). Fully automated whole body and compartmental muscle volume quantification can be achieved rapidly on a 3 T wide bore system with very low margins of error, excellent test-retest reliability and excellent correlation to manual segmentation in the lower leg. (orig.)

  13. PET-based compartmental modeling of {sup 124}I-A33 antibody: quantitative characterization of patient-specific tumor targeting in colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zanzonico, Pat; O' Donoghue, Joseph A.; Humm, John L. [Memorial Sloan Kettering Cancer Center, Department of Medical Physics, New York, NY (United States); Carrasquillo, Jorge A.; Pandit-Taskar, Neeta; Ruan, Shutian; Larson, Steven M. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Smith-Jones, Peter [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Stony Brook School of Medicine, Departments of Psychiatry and Radiology, Stony Brook, NY (United States); Divgi, Chaitanya [Columbia University Medical Center, New York, NY (United States); Scott, Andrew M. [La Trobe University, Olivia Newton-John Cancer Research Institute, Melbourne (Australia); Kemeny, Nancy E.; Wong, Douglas; Scheinberg, David [Memorial Sloan Kettering Cancer Center, Department of Medicine, New York, NY (United States); Fong, Yuman [Memorial Sloan Kettering Cancer Center, Department of Surgery, New York, NY (United States); City of Hope, Department of Surgery, Duarte, CA (United States); Ritter, Gerd; Jungbluth, Achem; Old, Lloyd J. [Memorial Sloan Kettering Cancer Center, Ludwig Institute for Cancer Research, New York, NY (United States)

    2015-10-15

    The molecular specificity of monoclonal antibodies (mAbs) directed against tumor antigens has proven effective for targeted therapy of human cancers, as shown by a growing list of successful antibody-based drug products. We describe a novel, nonlinear compartmental model using PET-derived data to determine the ''best-fit'' parameters and model-derived quantities for optimizing biodistribution of intravenously injected {sup 124}I-labeled antitumor antibodies. As an example of this paradigm, quantitative image and kinetic analyses of anti-A33 humanized mAb (also known as ''A33'') were performed in 11 colorectal cancer patients. Serial whole-body PET scans of {sup 124}I-labeled A33 and blood samples were acquired and the resulting tissue time-activity data for each patient were fit to a nonlinear compartmental model using the SAAM II computer code. Excellent agreement was observed between fitted and measured parameters of tumor uptake, ''off-target'' uptake in bowel mucosa, blood clearance, tumor antigen levels, and percent antigen occupancy. This approach should be generally applicable to antibody-antigen systems in human tumors for which the masses of antigen-expressing tumor and of normal tissues can be estimated and for which antibody kinetics can be measured with PET. Ultimately, based on each patient's resulting ''best-fit'' nonlinear model, a patient-specific optimum mAb dose (in micromoles, for example) may be derived. (orig.)

  14. IP-10 and MIG are compartmentalized at the site of disease during pleural and meningeal tuberculosis and are decreased after antituberculosis treatment.

    Science.gov (United States)

    Yang, Qianting; Cai, Yi; Zhao, Wei; Wu, Fan; Zhang, Mingxia; Luo, Kai; Zhang, Yan; Liu, Haiying; Zhou, Boping; Kornfeld, Hardy; Chen, Xinchun

    2014-12-01

    The diagnosis of active tuberculosis (TB) disease remains a challenge, especially in high-burden settings. Cytokines and chemokines are important in the pathogenesis of TB. Here we investigate the usefulness of circulating and compartmentalized cytokines/chemokines for diagnosis of TB. The levels of multiple cytokines/chemokines in plasma, pleural fluid (PF), and cerebrospinal fluid (CSF) were determined by Luminex liquid array-based multiplexed immunoassays. Three of 26 cytokines/chemokines in plasma were significantly different between TB and latent tuberculosis infection (LTBI). Among them, IP-10 and MIG had the highest diagnostic values, with an area under the receiver operating characteristic curve (ROC AUC) of 0.92 for IP-10 and 0.86 for MIG for distinguishing TB from LTBI. However, IP-10 and MIG levels in plasma were not different between TB and non-TB lung disease. In contrast, compartmentalized IP-10 and MIG in the PF and CSF showed promising diagnostic values in discriminating TB and non-TB pleural effusion (AUC = 0.87 for IP-10 and 0.93 for MIG), as well as TB meningitis and non-TB meningitis (AUC = 0.9 for IP-10 and 0.95 for MIG). A longitudinal study showed that the plasma levels of IP-10, MIG, granulocyte colony-stimulating factor (G-CSF), and gamma interferon (IFN-γ) decreased, while the levels of MCP-1/CCL2 and eotaxin-1/CCL11 increased, after successful treatment of TB. Our findings provide a practical methodology for discriminating active TB from LTBI by sequential IFN-γ release assays (IGRAs) and plasma IP-10 testing, while increased IP-10 and MIG at the site of infection (PF or CSF) can be used as a marker for distinguishing pleural effusion and meningitis caused by TB from those of non-TB origins. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  15. Effect of scatter correction on the compartmental measurement of striatal and extrastriatal dopamine D2 receptors using [123I]epidepride SPET

    International Nuclear Information System (INIS)

    Fujita, Masahiro; Seneca, Nicholas; Innis, Robert B.; Varrone, Andrea; Kim, Kyeong Min; Watabe, Hiroshi; Iida, Hidehiro; Zoghbi, Sami S.; Tipre, Dnyanesh; Seibyl, John P.

    2004-01-01

    Prior studies with anthropomorphic phantoms and single, static in vivo brain images have demonstrated that scatter correction significantly improves the accuracy of regional quantitation of single-photon emission tomography (SPET) brain images. Since the regional distribution of activity changes following a bolus injection of a typical neuroreceptor ligand, we examined the effect of scatter correction on the compartmental modeling of serial dynamic images of striatal and extrastriatal dopamine D 2 receptors using [ 123 I]epidepride. Eight healthy human subjects [age 30±8 (range 22-46) years] participated in a study with a bolus injection of 373±12 (354-389) MBq [ 123 I]epidepride and data acquisition over a period of 14 h. A transmission scan was obtained in each study for attenuation and scatter correction. Distribution volumes were calculated by means of compartmental nonlinear least-squares analysis using metabolite-corrected arterial input function and brain data processed with scatter correction using narrow-beam geometry μ (SC) and without scatter correction using broad-beam μ (NoSC). Effects of SC were markedly different among brain regions. SC increased activities in the putamen and thalamus after 1-1.5 h while it decreased activity during the entire experiment in the temporal cortex and cerebellum. Compared with NoSC, SC significantly increased specific distribution volume in the putamen (58%, P=0.0001) and thalamus (23%, P=0.0297). Compared with NoSC, SC made regional distribution of the specific distribution volume closer to that of [ 18 F]fallypride. It is concluded that SC is required for accurate quantification of distribution volumes of receptor ligands in SPET studies. (orig.)

  16. Work-Related Pain in Extrinsic Finger Extensor Musculature of Instrumentalists Is Associated with Intracellular pH Compartmentation during Exercise

    Science.gov (United States)

    Moreno-Torres, Angel; Rosset-Llobet, Jaume; Pujol, Jesus; Fàbregas, Sílvia; Gonzalez-de-Suso, Jose-Manuel

    2010-01-01

    Background Although non-specific pain in the upper limb muscles of workers engaged in mild repetitive tasks is a common occupational health problem, much is unknown about the associated structural and biochemical changes. In this study, we compared the muscle energy metabolism of the extrinsic finger extensor musculature in instrumentalists suffering from work-related pain with that of healthy control instrumentalists using non-invasive phosphorus magnetic resonance spectroscopy (31P-MRS). We hypothesize that the affected muscles will show alterations related with an impaired energy metabolism. Methodology/Principal Findings We studied 19 volunteer instrumentalists (11 subjects with work-related pain affecting the extrinsic finger extensor musculature and 8 healthy controls). We used 31P-MRS to find deviations from the expected metabolic response to exercise in phosphocreatine (PCr), inorganic phosphate (Pi), Pi/PCr ratio and intracellular pH kinetics. We observed a reduced finger extensor exercise tolerance in instrumentalists with myalgia, an intracellular pH compartmentation in the form of neutral and acid compartments, as detected by Pi peak splitting in 31P-MRS spectra, predominantly in myalgic muscles, and a strong association of this pattern with the condition. Conclusions/Significance Work-related pain in the finger extrinsic extensor muscles is associated with intracellular pH compartmentation during exercise, non-invasively detectable by 31P-MRS and consistent with the simultaneous energy production by oxidative metabolism and glycolysis. We speculate that a deficit in energy production by oxidative pathways may exist in the affected muscles. Two possible explanations for this would be the partial and/or local reduction of blood supply and the reduction of the muscle oxidative capacity itself. PMID:20161738

  17. Test-retest reliability of automated whole body and compartmental muscle volume measurements on a wide bore 3T MR system

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Marianna S.; Newman, David; Kasmai, Bahman; Greenwood, Richard; Malcolm, Paul N. [Norfolk and Norwich University Hospital, Department of Radiology, Norwich (United Kingdom); Leinhard, Olof Dahlqvist [Linkoeping University, Center for Medical Image Science and Visualization, Linkoeping (Sweden); Linkoeping University, Department of Medical and Health Sciences, Linkoeping (Sweden); Karlsson, Anette; Borga, Magnus [Linkoeping University, Center for Medical Image Science and Visualization, Linkoeping (Sweden); Linkoeping University, Department of Biomedical Engineering, Linkoeping (Sweden); Rosander, Johannes [Advanced MR Analytics AB, Linkoeping (Sweden); Toms, Andoni P. [Norfolk and Norwich University Hospital, Department of Radiology, Norwich (United Kingdom); Radiology Academy, Cotman Centre, Norwich, Norfolk (United Kingdom)

    2014-09-15

    To measure the test-retest reproducibility of an automated system for quantifying whole body and compartmental muscle volumes using wide bore 3 T MRI. Thirty volunteers stratified by body mass index underwent whole body 3 T MRI, two-point Dixon sequences, on two separate occasions. Water-fat separation was performed, with automated segmentation of whole body, torso, upper and lower leg volumes, and manually segmented lower leg muscle volumes. Mean automated total body muscle volume was 19.32 L (SD9.1) and 19.28 L (SD9.12) for first and second acquisitions (Intraclass correlation coefficient (ICC) = 1.0, 95 % level of agreement -0.32-0.2 L). ICC for all automated test-retest muscle volumes were almost perfect (0.99-1.0) with 95 % levels of agreement 1.8-6.6 % of mean volume. Automated muscle volume measurements correlate closely with manual quantification (right lower leg: manual 1.68 L (2SD0.6) compared to automated 1.64 L (2SD 0.6), left lower leg: manual 1.69 L (2SD 0.64) compared to automated 1.63 L (SD0.61), correlation coefficients for automated and manual segmentation were 0.94-0.96). Fully automated whole body and compartmental muscle volume quantification can be achieved rapidly on a 3 T wide bore system with very low margins of error, excellent test-retest reliability and excellent correlation to manual segmentation in the lower leg. (orig.)

  18. Effect of scatter correction on the compartmental measurement of striatal and extrastriatal dopamine D{sub 2} receptors using [{sup 123}I]epidepride SPET

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Masahiro; Seneca, Nicholas; Innis, Robert B. [Department of Psychiatry, Yale University School of Medicine and VA Connecticut Healthcare System, West Haven, CT (United States); Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD (United States); Varrone, Andrea [Department of Psychiatry, Yale University School of Medicine and VA Connecticut Healthcare System, West Haven, CT (United States); Biostructure and Bioimaging Institute, National Research Council, Napoli (Italy); Kim, Kyeong Min; Watabe, Hiroshi; Iida, Hidehiro [Department of Investigative Radiology, National Cardiovascular Center Research Institute, Osaka (Japan); Zoghbi, Sami S. [Department of Psychiatry, Yale University School of Medicine and VA Connecticut Healthcare System, West Haven, CT (United States); Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD (United States); Department of Radiology, Yale University School of Medicine and VA Connecticut Healthcare System, West Haven, CT (United States); Tipre, Dnyanesh [Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD (United States); Seibyl, John P. [Institute for Neurodegenerative Disorders, New Haven, CT (United States)

    2004-05-01

    Prior studies with anthropomorphic phantoms and single, static in vivo brain images have demonstrated that scatter correction significantly improves the accuracy of regional quantitation of single-photon emission tomography (SPET) brain images. Since the regional distribution of activity changes following a bolus injection of a typical neuroreceptor ligand, we examined the effect of scatter correction on the compartmental modeling of serial dynamic images of striatal and extrastriatal dopamine D{sub 2} receptors using [{sup 123}I]epidepride. Eight healthy human subjects [age 30{+-}8 (range 22-46) years] participated in a study with a bolus injection of 373{+-}12 (354-389) MBq [{sup 123}I]epidepride and data acquisition over a period of 14 h. A transmission scan was obtained in each study for attenuation and scatter correction. Distribution volumes were calculated by means of compartmental nonlinear least-squares analysis using metabolite-corrected arterial input function and brain data processed with scatter correction using narrow-beam geometry {mu} (SC) and without scatter correction using broad-beam {mu} (NoSC). Effects of SC were markedly different among brain regions. SC increased activities in the putamen and thalamus after 1-1.5 h while it decreased activity during the entire experiment in the temporal cortex and cerebellum. Compared with NoSC, SC significantly increased specific distribution volume in the putamen (58%, P=0.0001) and thalamus (23%, P=0.0297). Compared with NoSC, SC made regional distribution of the specific distribution volume closer to that of [{sup 18}F]fallypride. It is concluded that SC is required for accurate quantification of distribution volumes of receptor ligands in SPET studies. (orig.)

  19. Test-retest reliability of automated whole body and compartmental muscle volume measurements on a wide bore 3T MR system.

    Science.gov (United States)

    Thomas, Marianna S; Newman, David; Leinhard, Olof Dahlqvist; Kasmai, Bahman; Greenwood, Richard; Malcolm, Paul N; Karlsson, Anette; Rosander, Johannes; Borga, Magnus; Toms, Andoni P

    2014-09-01

    To measure the test-retest reproducibility of an automated system for quantifying whole body and compartmental muscle volumes using wide bore 3 T MRI. Thirty volunteers stratified by body mass index underwent whole body 3 T MRI, two-point Dixon sequences, on two separate occasions. Water-fat separation was performed, with automated segmentation of whole body, torso, upper and lower leg volumes, and manually segmented lower leg muscle volumes. Mean automated total body muscle volume was 19·32 L (SD9·1) and 19·28 L (SD9·12) for first and second acquisitions (Intraclass correlation coefficient (ICC) = 1·0, 95% level of agreement -0·32-0·2 L). ICC for all automated test-retest muscle volumes were almost perfect (0·99-1·0) with 95% levels of agreement 1.8-6.6% of mean volume. Automated muscle volume measurements correlate closely with manual quantification (right lower leg: manual 1·68 L (2SD0·6) compared to automated 1·64 L (2SD 0·6), left lower leg: manual 1·69 L (2SD 0·64) compared to automated 1·63 L (SD0·61), correlation coefficients for automated and manual segmentation were 0·94-0·96). Fully automated whole body and compartmental muscle volume quantification can be achieved rapidly on a 3 T wide bore system with very low margins of error, excellent test-retest reliability and excellent correlation to manual segmentation in the lower leg. Sarcopaenia is an important reversible complication of a number of diseases. Manual quantification of muscle volume is time-consuming and expensive. Muscles can be imaged using in and out of phase MRI. Automated atlas-based segmentation can identify muscle groups. Automated muscle volume segmentation is reproducible and can replace manual measurements.

  20. A new method of high-speed cellular protein separation and insight into subcellular compartmentalization of proteins.

    Science.gov (United States)

    Png, Evelyn; Lan, WanWen; Lazaroo, Melisa; Chen, Silin; Zhou, Lei; Tong, Louis

    2011-05-01

    Transglutaminase (TGM)-2 is a ubiquitous protein with important cellular functions such as regulation of cytoskeleton, cell adhesion, apoptosis, energy metabolism, and stress signaling. We identified several proteins that may interact with TGM-2 through a discovery-based proteomics method via pull down of flag-tagged TGM-2 peptide fragments. The distribution of these potential binding partners of TGM-2 was studied in subcellular fractions separated by density using novel high-speed centricollation technology. Centricollation is a compressed air-driven, low-temperature stepwise ultracentrifugation procedure where low extraction volumes can be processed in a relatively short time in non-denaturing separation conditions with high recovery yield. The fractions were characterized by immunoblots against known organelle markers. The changes in the concentrations of the binding partners were studied in cells expressing short hairpin RNA against TGM-2 (shTG). Desmin, mitochondrial intramembrane cleaving protease (PARL), protein tyrosine kinase (NTRK3), and serine protease (PRSS3) were found to be less concentrated in the 8.5%, 10%, 15%, and 20% sucrose fractions (SFs) from the lysate of shTG cells. The Golgi-associated protein (GOLGA2) was predominantly localized in 15% SF fraction, and in shTG, this shifted to predominantly in the 8.5% SF and showed larger aggregations in the cytosol of cells on immunofluorescent staining compared to control. Based on the relative concentrations of these proteins, we propose how trafficking of such proteins between cellular compartments can occur to regulate cell function. Centricollation is useful for elucidating biological function at the molecular level, especially when combined with traditional cell biology techniques.

  1. Structural-Functional Organization of the Eukaryotic Cell Nucleus and Transcription Regulation: Introduction to This Special Issue of Biochemistry (Moscow).

    Science.gov (United States)

    Razin, S V

    2018-04-01

    This issue of Biochemistry (Moscow) is devoted to the cell nucleus and mechanisms of transcription regulation. Over the years, biochemical processes in the cell nucleus have been studied in isolation, outside the context of their spatial organization. Now it is clear that segregation of functional processes within a compartmentalized cell nucleus is very important for the implementation of basic genetic processes. The functional compartmentalization of the cell nucleus is closely related to the spatial organization of the genome, which in turn plays a key role in the operation of epigenetic mechanisms. In this issue of Biochemistry (Moscow), we present a selection of review articles covering the functional architecture of the eukaryotic cell nucleus, the mechanisms of genome folding, the role of stochastic processes in establishing 3D architecture of the genome, and the impact of genome spatial organization on transcription regulation.

  2. A Simple Plasma Retinol Isotope Ratio Method for Estimating β-Carotene Relative Bioefficacy in Humans: Validation with the Use of Model-Based Compartmental Analysis.

    Science.gov (United States)

    Ford, Jennifer Lynn; Green, Joanne Balmer; Lietz, Georg; Oxley, Anthony; Green, Michael H

    2017-09-01

    Background: Provitamin A carotenoids are an important source of dietary vitamin A for many populations. Thus, accurate and simple methods for estimating carotenoid bioefficacy are needed to evaluate the vitamin A value of test solutions and plant sources. β-Carotene bioefficacy is often estimated from the ratio of the areas under plasma isotope response curves after subjects ingest labeled β-carotene and a labeled retinyl acetate reference dose [isotope reference method (IRM)], but to our knowledge, the method has not yet been evaluated for accuracy. Objectives: Our objectives were to develop and test a physiologically based compartmental model that includes both absorptive and postabsorptive β-carotene bioconversion and to use the model to evaluate the accuracy of the IRM and a simple plasma retinol isotope ratio [(RIR), labeled β-carotene-derived retinol/labeled reference-dose-derived retinol in one plasma sample] for estimating relative bioefficacy. Methods: We used model-based compartmental analysis (Simulation, Analysis and Modeling software) to develop and apply a model that provided known values for β-carotene bioefficacy. Theoretical data for 10 subjects were generated by the model and used to determine bioefficacy by RIR and IRM; predictions were compared with known values. We also applied RIR and IRM to previously published data. Results: Plasma RIR accurately predicted β-carotene relative bioefficacy at 14 d or later. IRM also accurately predicted bioefficacy by 14 d, except that, when there was substantial postabsorptive bioconversion, IRM underestimated bioefficacy. Based on our model, 1-d predictions of relative bioefficacy include absorptive plus a portion of early postabsorptive conversion. Conclusion: The plasma RIR is a simple tracer method that accurately predicts β-carotene relative bioefficacy based on analysis of one blood sample obtained at ≥14 d after co-ingestion of labeled β-carotene and retinyl acetate. The method also provides

  3. Lyophilized kits of diamino dithiol compounds for labelling with 99m-technetium. Pharmacokinetics studies and distribution compartmental models of the related complexes

    International Nuclear Information System (INIS)

    Araujo, Elaine Bortoleti de

    1995-01-01

    The present work reflects the clinical interest for labelling diamino dithiol compounds with technetium-99m. Both chosen compounds, L,L-Ethylene dicysteine (L,L-EC) and L,L-Ethylene dicysteine diethyl esther (L,L-ECD) were obtained with relative good yield and characterized by IR and NMR. The study of labelling conditions with technetium-99m showed the influence of the type and mass of reducing agent as well as the pH on the formation of complexes with desired biological characteristics. Radiochemical purity was determined by thin layer chromatography (TLC) and high performance liquid chromatography (HPLC). Lyophilised kits of L,L-EC and L,L-ECD for labelling with 99m Tc were obtained, with stability superior to 120 days, when stored under refrigeration, enabling the kits marketing. The ideal formulation of the kits as well as the use of liquid nitrogen in the freezing process, determined the lyophilization success. Distribution biological studies of the 99m Tc complexes were performed on mice by invasive method and on bigger animals by scintigraphic evaluation. Biological distribution studies of the complex 99m Tc-L,L-EC showed fast blood clearance, with the elimination of about 90% of the administered dose after 60 minutes, almost exclusively by the urinary system. The biological distribution results were adjusted to a three compartmental distribution model, as expected for a radiopharmaceutical designed to renal dynamic studies, with tubular elimination. The complex interaction with renal tubular receptors is related with structural characteristics of the compound, more specifically with the presence and location of polar groups. In comparison with 99m Tc-L,L-EC, biological studies of the complex 99m Tc -L,L-ECD showed different distribution aspects, despite some structural similarities. The presence of ethyl groups confers to the complex neutrality and lipophilicity. It cross the intact blood brain barrier and is retained in the brain for enough period

  4. Spectral Clustering Predicts Tumor Tissue Heterogeneity Using Dynamic 18F-FDG PET: A Complement to the Standard Compartmental Modeling Approach.

    Science.gov (United States)

    Katiyar, Prateek; Divine, Mathew R; Kohlhofer, Ursula; Quintanilla-Martinez, Leticia; Schölkopf, Bernhard; Pichler, Bernd J; Disselhorst, Jonathan A

    2017-04-01

    In this study, we described and validated an unsupervised segmentation algorithm for the assessment of tumor heterogeneity using dynamic 18 F-FDG PET. The aim of our study was to objectively evaluate the proposed method and make comparisons with compartmental modeling parametric maps and SUV segmentations using simulations of clinically relevant tumor tissue types. Methods: An irreversible 2-tissue-compartmental model was implemented to simulate clinical and preclinical 18 F-FDG PET time-activity curves using population-based arterial input functions (80 clinical and 12 preclinical) and the kinetic parameter values of 3 tumor tissue types. The simulated time-activity curves were corrupted with different levels of noise and used to calculate the tissue-type misclassification errors of spectral clustering (SC), parametric maps, and SUV segmentation. The utility of the inverse noise variance- and Laplacian score-derived frame weighting schemes before SC was also investigated. Finally, the SC scheme with the best results was tested on a dynamic 18 F-FDG measurement of a mouse bearing subcutaneous colon cancer and validated using histology. Results: In the preclinical setup, the inverse noise variance-weighted SC exhibited the lowest misclassification errors (8.09%-28.53%) at all noise levels in contrast to the Laplacian score-weighted SC (16.12%-31.23%), unweighted SC (25.73%-40.03%), parametric maps (28.02%-61.45%), and SUV (45.49%-45.63%) segmentation. The classification efficacy of both weighted SC schemes in the clinical case was comparable to the unweighted SC. When applied to the dynamic 18 F-FDG measurement of colon cancer, the proposed algorithm accurately identified densely vascularized regions from the rest of the tumor. In addition, the segmented regions and clusterwise average time-activity curves showed excellent correlation with the tumor histology. Conclusion: The promising results of SC mark its position as a robust tool for quantification of tumor

  5. Applications of Cell Microencapsulation.

    Science.gov (United States)

    Opara, Emmanuel C

    2017-01-01

    The goal of this chapter is to provide an overview of the different purposes for which the cell microencapsulation technology can be used. These include immunoisolation of non-autologous cells used for cell therapy; immobilization of cells for localized (targeted) delivery of therapeutic products to ablate, repair, or regenerate tissue; simultaneous delivery of multiple therapeutic agents in cell therapy; spatial compartmentalization of cells in complex tissue engineering; expansion of cells in culture; and production of different probiotics and metabolites for industrial applications. For each of these applications, specific examples are provided to illustrate how the microencapsulation technology can be utilized to achieve the purpose. However, successful use of the cell microencapsulation technology for whatever purpose will ultimately depend upon careful consideration for the choice of the encapsulating polymers, the method of fabrication (cross-linking) of the microbeads, which affects the permselectivity, the biocompatibility and the mechanical strength of the microbeads as well as environmental parameters such as temperature, humidity, osmotic pressure, and storage solutions.The various applications discussed in this chapter are illustrated in the different chapters of this book and where appropriate relevant images of the microencapsulation products are provided. It is hoped that this outline of the different applications of cell microencapsulation would provide a good platform for tissue engineers, scientists, and clinicians to design novel tissue constructs and products for therapeutic and industrial applications.

  6. Lipid rafts and B cell signaling.

    Science.gov (United States)

    Gupta, Neetu; DeFranco, Anthony L

    2007-10-01

    B cells comprise an essential component of the humoral immune system. They are equipped with the unique ability to synthesize and secrete pathogen-neutralizing antibodies, and share with professional antigen presenting cells the ability to internalize foreign antigens, and process them for presentation to helper T cells. Recent evidence indicates that specialized cholesterol- and glycosphingolipid-rich microdomains in the plasma membrane commonly referred to as lipid rafts, serve to compartmentalize key signaling molecules during the different stages of B cell activation including B cell antigen receptor (BCR)-initiated signal transduction, endocytosis of BCR-antigen complexes, loading of antigenic peptides onto MHC class II molecules, MHC-II associated antigen presentation to helper T cells, and receipt of helper signals via the CD40 receptor. Here we review the recent literature arguing for a role of lipid rafts in the spatial organization of B cell function.

  7. Characterization of EIAV LTR variability and compartmentalization in various reservoir tissues of long-term inapparent carrier ponies

    International Nuclear Information System (INIS)

    Reis, Jenner K.P.; Craigo, Jodi K.; Cook, Sheila J.; Issel, Charles J.; Montelaro, Ronald C.

    2003-01-01

    Dynamic genomic variation resulting in changes in envelope antigenicity has been established as a fundamental mechanism of persistence by equine infectious anemia virus (EIAV), as observed with other lentiviruses, including HIV-1. In addition to the reported changes in envelope sequences, however, certain studies indicate the viral LTR as a second variable EIAV gene, with the enhancer region being designated as hypervariable. These observations have lead to the suggestion that LTR variation may alter viral replication properties to optimize to the microenvironment of particular tissue reservoirs. To test this hypothesis directly, we examined the population of LTR quasispecies contained in various tissues of two inapparent carrier ponies experimentally infected with a reference EIAV biological clone for 18 months. The results of these studies demonstrated that the EIAV LTR is in fact highly conserved with respect to the infecting LTR species after 1.5 years of persistent infection and regardless of the tissue reservoir. Thus, these comprehensive analyses demonstrate for the first time that the EIAV LTR is highly conserved during long-term persistent infection and that the observed variations in viral LTR are associated more with in vitro adaptation to replication in cultured cells rather than in vivo replication in natural target cells

  8. Compartmental analysis and dosimetric aspects applied to cholesterol with {sup 3}H labeled; Analise compartimental e aspectos dosimetricos aplicados ao colesterol marcado com {sup 3}H

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Adriano dos Santos

    2015-07-01

    Cardiovascular diseases (CVDs) are one of the major reasons of death around the world according to the World Health Organization (WHO). It is well known that changes in levels of plasma lipoproteins, which are responsible for the transport of cholesterol into the bloodstream, are associated with cardiovascular diseases. For this reason to know the biokinetic parameters of plasma lipoproteins and quantifies them is important to correct and deep understanding about the diseases associated with these disorders. The main aim of this study is to provide a biokinetic model and estimate the radiometric doses for {sup 3}H-Cholesterol, a radioactive tracer widely used in physiological and metabolic studies. The model was based on [Schwartz et al. 2004] about the distribution of cholesterol by the lipoprotein and gastrointestinal model [ICRP 30, 1979]. The doses distribution in compartments of the model and other organs and tissues of a standard adult described in [ICRP 106, 2008] was calculated using MIRD method (Medical Internal Radiation Dose) and compartmental analysis using the computer program Matlab®. The dose coefficients were estimated for a standard phantom man (73 kg) described in [ICRP 60, 1991]. The estimated doses for both model and for other organs were low and did not exceed the highest dose obtained that was in the upper large intestine, as 44,8 μGy these parameters will assist in ethics committee's opinions on the use of works that use the {sup 3}H-cholesterol which radioactive tracer. (author)

  9. Application of the compartmental analysis theory to the studies of the kinetics of the rainfall infiltration in the unsaturated zone in Abadia de Goias

    International Nuclear Information System (INIS)

    Poli, D. de C.R.; Mesquita, C.H. de

    1999-01-01

    The compartmental analysis was used for evaluation of kinetic parameters of the rainfall infiltration and determination of ground water recharge in Abadia-Goiania-Brazil. A model containing 13 compartments was proposed to explain the water infiltration and the kinetics of the unsaturated zone. To validate the model, tracer injections were carried out at a representative site of the region, at a depth of 50 cm, below the root zone. Soil samples were taken 4,9 and 12 months after the injection. In the first compartment, one component of the evaporation (K 4,0 ) was considered and for the last compartment, one constant of removal for the water table (k 13,0 ). Compartments 1, 2 and 3 were added to the system to consider precipitation effect. The AnaComp program, developed at IPEN, was used to determine the transfer constants k i,j ( from compartment i to compartment j)were i and j range from 0 to 13. In this program the constants k i,j were determined by the nonlinear last squares method, using eigenvalues - eigenvectors routines or alternatively, the fourth order Runge-Kutta routine. In this compartment model, the radioactive tracer was introduced as a single pulse, into the 6th compartment (50 cm depth). This permits to characterize the tracer diffusion processes in the soil studied. The adopted model showed an explanation coefficient f 2 equal to 0.78, which is satisfactory for the methodology used. (author)

  10. Understanding the drug release mechanism from a montmorillonite matrix and its binary mixture with a hydrophilic polymer using a compartmental modelling approach

    Science.gov (United States)

    Choiri, S.; Ainurofiq, A.

    2018-03-01

    Drug release from a montmorillonite (MMT) matrix is a complex mechanism controlled by swelling mechanism of MMT and an interaction of drug and MMT. The aim of this research was to explain a suitable model of the drug release mechanism from MMT and its binary mixture with a hydrophilic polymer in the controlled release formulation based on a compartmental modelling approach. Theophylline was used as a drug model and incorporated into MMT and a binary mixture with hydroxyl propyl methyl cellulose (HPMC) as a hydrophilic polymer, by a kneading method. The dissolution test was performed and the modelling of drug release was assisted by a WinSAAM software. A 2 model was purposed based on the swelling capability and basal spacing of MMT compartments. The model evaluation was carried out to goodness of fit and statistical parameters and models were validated by a cross-validation technique. The drug release from MMT matrix regulated by a burst release mechanism of unloaded drug, swelling ability, basal spacing of MMT compartment, and equilibrium between basal spacing and swelling compartments. Furthermore, the addition of HPMC in MMT system altered the presence of swelling compartment and equilibrium between swelling and basal spacing compartment systems. In addition, a hydrophilic polymer reduced the burst release mechanism of unloaded drug.

  11. Compartmentalized self-replication under fast PCR cycling conditions yields Taq DNA polymerase mutants with increased DNA-binding affinity and blood resistance.

    Science.gov (United States)

    Arezi, Bahram; McKinney, Nancy; Hansen, Connie; Cayouette, Michelle; Fox, Jeffrey; Chen, Keith; Lapira, Jennifer; Hamilton, Sarah; Hogrefe, Holly

    2014-01-01

    Faster-cycling PCR formulations, protocols, and instruments have been developed to address the need for increased throughput and shorter turn-around times for PCR-based assays. Although run times can be cut by up to 50%, shorter cycle times have been correlated with lower detection sensitivity and increased variability. To address these concerns, we applied Compartmentalized Self Replication (CSR) to evolve faster-cycling mutants of Taq DNA polymerase. After five rounds of selection using progressively shorter PCR extension times, individual mutations identified in the fastest-cycling clones were randomly combined using ligation-based multi-site mutagenesis. The best-performing combinatorial mutants exhibit 35- to 90-fold higher affinity (lower Kd ) for primed template and a moderate (2-fold) increase in extension rate compared to wild-type Taq. Further characterization revealed that CSR-selected mutations provide increased resistance to inhibitors, and most notably, enable direct amplification from up to 65% whole blood. We discuss the contribution of individual mutations to fast-cycling and blood-resistant phenotypes.

  12. Temporal phases of activity-dependent plasticity and memory are mediated by compartmentalized routing of MAPK signaling in aplysia sensory neurons.

    Science.gov (United States)

    Shobe, Justin L; Zhao, Yali; Stough, Shara; Ye, Xiaojing; Hsuan, Vickie; Martin, Kelsey C; Carew, Thomas J

    2009-01-15

    An activity-dependent form of intermediate memory (AD-ITM) for sensitization is induced in Aplysia by a single tail shock that gives rise to plastic changes (AD-ITF) in tail sensory neurons (SNs) via the interaction of action potential firing in the SN coupled with the release of serotonin in the CNS. Activity-dependent long-term facilitation (AD-LTF, lasting >24hr) requires protein synthesis dependent persistent mitogen-activated protein kinase (MAPK) activation and translocation to the SN nucleus. We now show that the induction of the earlier temporal phase (AD-ITM and AD-ITF), which is translation and transcription independent, requires the activation of a compartmentally distinct novel signaling cascade that links second messengers, MAPK and PKC into a unified pathway within tail SNs. Since both AD-ITM and AD-LTM require MAPK activity, these collective findings suggest that presynaptic SNs route the flow of molecular information to distinct subcellular compartments during the induction of activity-dependent long-lasting memories.

  13. 31P-Nuclear Magnetic Resonance Determination of Phosphate Compartmentation in Leaves of Reproductive Soybeans (Glycine max L.) as Affected by Phosphate Nutrition 1

    Science.gov (United States)

    Lauer, Michael J.; Blevins, Dale G.; Sierzputowska-Gracz, Hanna

    1989-01-01

    Most leaf phosphorus is remobilized to the seed during reproductive development in soybean. We determined, using 31P-NMR, the effect phosphorus remobilization has on vacuolar inorganic phosphate pool size in soybean (Glycine max [L.] Merr.) leaves with respect to phosphorus nutrition and plant development. Phosphate compartmentation between cytoplasmic and vacuolar pools was observed and followed in intact tissue grown hydroponically, at the R2, R4, and R6 growth stages. As phosphorus in the nutrient solution decreased from 0.45 to 0.05 millimolar, the vacuolar phosphate peak became less prominent relative to cytoplasmic phosphate and hexose monophosphate peaks. At a nutrient phosphate concentration of 0.05 millimolar, the vacuolar phosphate peak was not detectable. At higher levels of nutrient phosphate, as plants progressed from the R2 to the R6 growth stage, the vacuolar phosphate peak was the first to disappear, suggesting that storage phosphate was remobilized to a greater extent than metabolic phosphate. Under suboptimal phosphate nutrition (≤ 0.20 millimolar), the hexose monophosphate and cytoplasmic phosphate peaks declined earlier in reproductive development than when phosphate was present in optimal amounts. Under low phosphate concentrations (0.05 millimolar) cytoplasmic phosphate was greatly reduced. Carbon metabolism was coincidently disrupted under low phosphate nutrition as shown by the appearance of large, prominent starch grains in the leaves. Cytoplasmic phosphate, and leaf carbon metabolism dependent on it, are buffered by vacuolar phosphate until late stages of reproductive growth. Images Figure 4 PMID:16666705

  14. Rapid and Quantitative Detection of Vibrio parahemolyticus by the Mixed-Dye-Based Loop-Mediated Isothermal Amplification Assay on a Self-Priming Compartmentalization Microfluidic Chip.

    Science.gov (United States)

    Pang, Bo; Ding, Xiong; Wang, Guoping; Zhao, Chao; Xu, Yanan; Fu, Kaiyue; Sun, Jingjing; Song, Xiuling; Wu, Wenshuai; Liu, Yushen; Song, Qi; Hu, Jiumei; Li, Juan; Mu, Ying

    2017-12-27

    Vibrio parahemolyticus (VP) mostly isolated from aquatic products is one of the major causes of bacterial food-poisoning events worldwide, which could be reduced using a promising on-site detection method. Herein, a rapid and quantitative method for VP detection was developed by applying a mixed-dye-loaded loop-mediated isothermal amplification (LAMP) assay on a self-priming compartmentalization (SPC) microfluidic chip, termed on-chip mixed-dye-based LAMP (CMD-LAMP). In comparison to conventional approaches, CMD-LAMP was advantageous on the limit of detection, which reached down to 1 × 10 3 CFU/mL in food-contaminated samples without the pre-enrichment of bacteria. Additionally, as a result of the use of a mixed dye and SPC chip, the quantitative result could be easily acquired, avoiding the requirement of sophisticated instruments and tedious operation. Also, CMD-LAMP was rapid and cost-effective. Conclusively, CMD-LAMP has great potential in realizing the on-site quantitative analysis of VP for food safety.

  15. Compartmental analysis of roots in intact rapidly-growing Spergularia marina and Lactuca sativa: partial characterization of the symplasms functional in the radial transport of Na+ and K+

    International Nuclear Information System (INIS)

    Lazof, D.B.

    1987-01-01

    Techniques of compartmental analysis were adapted to the study of intact roots of rapidly-growing Spergularia marine and Lactuca sativa. Using large numbers of plants short time-courses of uptake and chase, 42 K + and 22 Na + transport could be resolved, even during a chase following a brief 10 minute labeling period. The use of intact plant systems allowed distinction of that portion of the isotope flux into the root, associated with the ion-conducting symplasms. A small compartment, which rapidly (t/sub .5/ + , accounting for the observed obtention of linear translocation rates within minutes of transferring to labeled solution. The ion contents of this compartment varied in proportion to the external ion concentration. When K + was at a high external concentration, labeled K + exchanged into this same symplasm, but chasing a short pulse indicated that K + transport to the xylem was not through a rapidly-exchanging compartment. At physiological concentrations of K + the evidence indicated that transport of K + across the root proceeded through a compartment which was not exchanging rapidly with the external medium. The rise to a linear rate of isotope translocation was gradual and translocation during a chase, following a brief pulse,was prolonged, indicating that this compartment retained its specific activity for a considerable period

  16. Nature of rate-limiting steps in a compartmentalized enzyme system. Quantitation of dopamine transport and hydroxylation rates in resealed chromaffin granule ghosts

    International Nuclear Information System (INIS)

    Ahn, N.G.; Klinman, J.P.

    1989-01-01

    Using isolated chromaffin granule ghosts from bovine adrenal medullae, we have studied the kinetics of dopamine beta-monooxygenase (D beta M) activity as it is linked to dopamine transport. Measurements of the initial rates of transport and of transport-linked norepinephrine formation suggested that enzyme activity may be partially rate-limiting in the coupled carrier/enzyme system. This was confirmed by (i) measurements of initial rates of norepinephrine formation using deuterated substrate, which gave isotope effects greater than 2.0, and (ii) kinetic measurements using ghosts pulsed with varying concentrations of labeled dopamine, which indicated substantial substrate accumulation in the vesicle interior as a function of time. Initial rates of product formation, when combined with approximations of internal substrate concentrations, allowed estimates of Kcat and Km for intravesicular D beta M. Activation by external reductant was apparent in both initial rate parameters and the measurements of transients. Under conditions of optimal D beta M activity, the enzyme rate parameters (kcat = 0.31 nmol/s.mg and Km = 2 mM) indicated partial rate limitation compared to dopamine transport (kcat = 0.38 nmol/s.mg and Km = 32 microM). Compartmental analysis of the time curves, performed using numerical nonlinear least squares methods, gave least squares estimates of rate constants for a simple carrier mechanism and kcat values for D beta M which were consistent with estimates from initial rates

  17. The Role of a Platelet Lysate-Based Compartmentalized System as a Carrier of Cells and Platelet-Origin Cytokines for Periodontal Tissue Regeneration

    NARCIS (Netherlands)

    Babo, P.S.; Cai, X.; Plachokova, A.S.; Reis, R.L.; Jansen, J.A.; Gomes, M.E.; Walboomers, X.F.

    2016-01-01

    Currently available clinical therapies are not capable to regenerate tissues that are lost by periodontitis. Tissue engineering can be applied as a strategy to regenerate reliably the tissues and function of damaged periodontium. A prerequisite for this regeneration is the colonization of the defect

  18. Studies of labelling conditions for gentamicin with sup(99m)Tc. Complexation with ruthexium. Establishment of pharmacokinetics parameters through compartmental analysis

    International Nuclear Information System (INIS)

    Carvalho, O.G. de.

    1988-01-01

    Gentamicin sulphate is an aminoglycoside antibiotic type specifically used for treatment of infections produced by Gram-negative bacterias but at the other hand it presents ototoxic reactions as a serious side effect. The main purpose of labelling gentamicin with sup(99m)Tc was to obtain a radioactive tracer to carry out biological studies and compartmental analysis of this antibiotic. The optimal labelling conditions of gentamicin sulphate with sup(99m)Tc, using sodium pertechnetate solution eluted from a sup(99)Mo- sup(99m)Tc generator, were stablished by testing different masses of antibiotic, and reduction agent (SnCl sub(2).2H sub(2)O), and also different reaction time and final labelling PH. The same labelling procedure was used with Re (amonium perrenate) in order to obtain some semi-quantitative approximations of the chemical structure of the complex formed, since Re and Tc present similar chemical characteristics. In this way it is possible to suggest the role that the groups NH2 and C-O bonding of the gentamicin play in the complexation process. From the studies of the biological uptake of sup(99m)Tc-gentamicin sulphate in rats, the kidneys showed the highest affinity for the antibiotic. The maximum uptake was observed in 180 to 240 minutes followed by a decrease of it afterwards. For the dose and time used, no significative uptake by the auricular region was detected. Curve of plasma decay of sup(99m)Tc-gentamicin was obtained, and from the exponentials of each beanch of this curve respective half-lives were calculated. Furthermore the apparent volume of distribution was determined, and with the residual radioactivity in the body, the biological half-life and total clearance were obtained. The distribution of sup(99m)Tc-gentamicin in rats was set in a bi-compartments in addition to a retention one for the 24 hours time interval studied. (author)

  19. Compartmental and dosimetric studies of anti-CD20 labelled with {sup 188}Re; Estudo compartimental e dosimetrico do Anti-CD20 marcado com {sup 188}Re

    Energy Technology Data Exchange (ETDEWEB)

    Kuramoto, Graciela Barrio

    2016-10-01

    The radioimmunotherapy (RIT) uses MAbs conjugated to radionuclides α or β{sup -} emitters, both for therapy. Your treatment is based on the irradiation and tumor destruction, preserving the normal organs as the excess radiation. Radionuclides β{sup -} emitters as {sup 131}I, {sup 90}Y, {sup 188}Re {sup 177}Lu and are useful for the development of therapeutic radiopharmaceuticals and, when coupled with MAb and Anti-CD20 it is important mainly for the treatment of non-Hodgkin's lymphomas (NHL). {sup 188}Re (E{sub β} = 2.12 MeV; E{sub γ} = 155 keV; t1/2 = 16.9 h) is an attractive radionuclide for RIT. However, {sup 188}Re can be obtained from a radionuclide generator of {sup 188}W/{sup 188}Re, commercially available, making it convenient for use in research and for clinical routine. The CR of IPEN has a project aimed at the production of radiopharmaceutical {sup 188}Re-Anti-CD20, where the radionuclide can be obtained from a generator system {sup 188}W/{sup 188}Re. With this proposed a study to assess the efficiency of this labeling technique for treatment in accordance compartmental and dosimetry. The objective of this study was to compare the marking of anti-CD20 MAb with {sup 188}Re with the marking of the antibody with {sup 90}Y, {sup 131}I, {sup 177}Lu and {sup 99m}Tc (for their similar chemical characteristics) and {sup 211}At, {sup 213}Bi, {sup 223}Ra and {sup 225}Ac); through the study of labeling techniques reported in literature, the proposal of a compartmental model to evaluate its pharmacokinetic and dosimetric studies, high interest for therapy. The result of the study shows a favorable kinetics for {sup 188}Re, by their physical and chemical characteristics compared to the other evaluated radionuclides. The compartment proposed study describes the metabolism of {sup 188}Reanti- CD20 through a compartment mammillary model, which by their pharmacokinetic analysis, performed compared to products emitters β{sup -131}I-labeled anti CD20, {sup 177

  20. The cytoskeleton in cell-autonomous immunity: structural determinants of host defence

    Science.gov (United States)

    Mostowy, Serge; Shenoy, Avinash R.

    2016-01-01

    Host cells use antimicrobial proteins, pathogen-restrictive compartmentalization and cell death in their defence against intracellular pathogens. Recent work has revealed that four components of the cytoskeleton — actin, microtubules, intermediate filaments and septins, which are well known for their roles in cell division, shape and movement — have important functions in innate immunity and cellular self-defence. Investigations using cellular and animal models have shown that these cytoskeletal proteins are crucial for sensing bacteria and for mobilizing effector mechanisms to eliminate them. In this Review, we highlight the emerging roles of the cytoskeleton as a structural determinant of cell-autonomous host defence. PMID:26292640

  1. Compartmentalized safety coolant injection system

    International Nuclear Information System (INIS)

    Johnson, F.T.

    1983-01-01

    A safety coolant injection system for nuclear reactors wherein a core reflood tank is provided to afford more reliable reflooding of the reactor core in the event of a break in one of the reactor coolant supply loops. Each reactor coolant supply loop is arranged in a separate compartment in the containment structure to contain and control the flow of spilled coolant so as to permit its use during emergency core cooling procedures. A spillway allows spilled coolant in the compartment to pass into the emergency water storage tank from where it can be pumped back to the reactor vessel. (author)

  2. Multiparameter Cell Cycle Analysis.

    Science.gov (United States)

    Jacobberger, James W; Sramkoski, R Michael; Stefan, Tammy; Woost, Philip G

    2018-01-01

    Cell cycle cytometry and analysis are essential tools for studying cells of model organisms and natural populations (e.g., bone marrow). Methods have not changed much for many years. The simplest and most common protocol is DNA content analysis, which is extensively published and reviewed. The next most common protocol, 5-bromo-2-deoxyuridine S phase labeling detected by specific antibodies, is also well published and reviewed. More recently, S phase labeling using 5'-ethynyl-2'-deoxyuridine incorporation and a chemical reaction to label substituted DNA has been established as a basic, reliable protocol. Multiple antibody labeling to detect epitopes on cell cycle regulated proteins, which is what this chapter is about, is the most complex of these cytometric cell cycle assays, requiring knowledge of the chemistry of fixation, the biochemistry of antibody-antigen reactions, and spectral compensation. However, because this knowledge is relatively well presented methodologically in many papers and reviews, this chapter will present a minimal Methods section for one mammalian cell type and an extended Notes section, focusing on aspects that are problematic or not well described in the literature. Most of the presented work involves how to segment the data to produce a complete, progressive, and compartmentalized cell cycle analysis from early G1 to late mitosis (telophase). A more recent development, using fluorescent proteins fused with proteins or peptides that are degraded by ubiquitination during specific periods of the cell cycle, termed "Fucci" (fluorescent, ubiquitination-based cell cycle indicators) provide an analysis similar in concept to multiple antibody labeling, except in this case cells can be analyzed while living and transgenic organisms can be created to perform cell cycle analysis ex or in vivo (Sakaue-Sawano et al., Cell 132:487-498, 2007). This technology will not be discussed.

  3. Intracellular compartimentation of abscisic acid (ABA) in guard cells and mesophyll cells under exposure to SO sub 2. Kompartimentierung von Abscisinsaeure (ABA) in Schliess- und Mesophyllzellen unter SO sub 2 -Belastung

    Energy Technology Data Exchange (ETDEWEB)

    Baier, M.; Daeter, W.; Hartung, W. (Wuerzburg Univ. (Germany, F.R.). Lehrstuhl fuer Botanik 1)

    1989-07-01

    The effect of SO{sub 2} on the intracellular compartimentation of ABA in guard cells and mesophyll cells of Valerianella locusta was investigated, using the efflux compartmental analysis, as described by Behl and Hartung (1986). The cytoplasmic ABA content of the guard cells was reduced drastically by 6 {mu}molxm{sup -3} SO{sub 2} (20% of the controls). The vacuolar content was decreased less dramatically (70% of the controls). The ABA distribution of mesophyll cells remained uneffected by 6 {mu}molxm{sup -3} SO{sub 2}. The SO{sub 2} effects are explained by an acidification of the compartments. (orig.).

  4. Relationship Between Kinetics of Inflow and Outflow as the Basis of a Computer Simulation for Solving Compartmental Models: Example of Electrolyte Transfers in Cardiovascular Tissues

    Energy Technology Data Exchange (ETDEWEB)

    Llaurado, J. G. [Biomedical Engineering Group, Marquette University (United States); Marquette School of Medicine, Milwaukee (United States); Nuclear Medicine Service of Veterans Administration Center, Wood, WI (United States)

    1971-02-15

    A method commonly used for the study of the distribution of a substance among the different spaces ol a biological tissue is the continuous washout (outflow) and isotope counting of fragments of tissue previously incubated with a tracer. A first order kinetics compartmental system can be postulated and characterized by the transport rates (k) at which the substance of interest moves across its different compartments. Direct solution from the outflow data requires knowledge of the initial conditions for, or to have access for measurements in, each compartment. This cannot be fulfilled in most biological problems. In the course of studying {sup 22}Na distribution in segments of arteries a digital computer simulation approach was developed to solve the system. In the belief that the approach transcends this particular application, its mathematical basis is herein presented: the movement of radioactive tracer obeys Divides dq/d Divides = - Divides k Divides Divides q Divides + Divides r Divides (1) where |q| is a vector of response functions for each compartment, |k] is a square matrix of transport rate constants and |r| is a vector of input rates to the system. Solution of Eq. 1 is Divides q Divides = e{sup - Divides k Divides t} {integral}{sub 0}{sup t} e{sup Divides k Divides t} Divides r Divides dt + e{sup - Divides k Divides t} Divides q{sub 0} Divides (2) (i) For an inflow experiment, with 0 initial conditions and a constant unit input rate |r{sub u}| Divides q Divides = ( Divides I Divides - e{sup - Divides k Divides t}) Divides k Divides {sup -1} Divides r{sub u} Divides (3) as t --> {infinity}, Divides q{sub {infinity}} Divides = Divides k Divides {sup -1} Divides r{sub u} Divides , which replaced in Eq. 3, Divides q Divides = Divides q{sub {infinity}} Divides -e{sup - Divides k Divides t} Divides q{sub {infinity}} Divides (4) (ii) For an outflow experiment Divides r Divides = 0 and Eq. 2 becomes Divides q Divides = e{sup - Divides k Divides t} Divides q{sub 0

  5. Visualization of the Nucleolus in Living Cells with Cell-Penetrating Fluorescent Peptides.

    Science.gov (United States)

    Martin, Robert M; Herce, Henry D; Ludwig, Anne K; Cardoso, M Cristina

    2016-01-01

    The nucleolus is the hallmark of nuclear compartmentalization and has been shown to exert multiple roles in cellular metabolism besides its main function as the place of ribosomal RNA synthesis and assembly of ribosomes. The nucleolus plays also a major role in nuclear organization as the largest compartment within the nucleus. The prominent structure of the nucleolus can be detected using contrast light microscopy providing an approximate localization of the nucleolus, but this approach does not allow to determine accurately the three-dimensional structure of the nucleolus in cells and tissues. Immunofluorescence staining with antibodies specific to nucleolar proteins albeit very useful is time consuming, normally antibodies recognize their epitopes only within a small range of species and is applicable only in fixed cells. Here, we present a simple method to selectively and accurately label this ubiquitous subnuclear compartment in living cells of a large range of species using a fluorescently labeled cell-penetrating peptide.

  6. Cellular Microenvironment Dictates Androgen Production by Murine Fetal Leydig Cells in Primary Culture1

    Science.gov (United States)

    Carney, Colleen M.; Muszynski, Jessica L.; Strotman, Lindsay N.; Lewis, Samantha R.; O'Connell, Rachel L.; Beebe, David J.; Theberge, Ashleigh B.; Jorgensen, Joan S.

    2014-01-01

    ABSTRACT Despite the fact that fetal Leydig cells are recognized as the primary source of androgens in male embryos, the mechanisms by which steroidogenesis occurs within the developing testis remain unclear. A genetic approach was used to visualize and isolate fetal Leydig cells from remaining cells within developing mouse testes. Cyp11a1-Cre mice were bred to mT/mG dual reporter mice to target membrane-tagged enhanced green fluorescent protein (GFP) within steroidogenic cells, whereas other cells expressed membrane-tagged tandem-dimer tomato red. Fetal Leydig cell identity was validated using double-labeled immunohistochemistry against GFP and the steroidogenic enzyme 3beta-HSD, and cells were successfully isolated as indicated by qPCR results from sorted cell populations. Because fetal Leydig cells must collaborate with neighboring cells to synthesize testosterone, we hypothesized that the fetal Leydig cell microenvironment defined their capacity for androgen production. Microfluidic culture devices were used to measure androstenedione and testosterone production of fetal Leydig cells that were cultured in cell-cell contact within a mixed population, were isolated but remained in medium contact via compartmentalized co-culture with other testicular cells, or were isolated and cultured alone. Results showed that fetal Leydig cells maintained their identity and steroidogenic activity for 3–5 days in primary culture. Microenvironment dictated proficiency of testosterone production. As expected, fetal Leydig cells produced androstenedione but not testosterone when cultured in isolation. More testosterone accumulated in medium from mixed cultures than from compartmentalized co-cultures initially; however, co-cultures maintained testosterone synthesis for a longer time. These data suggest that a combination of cell-cell contact and soluble factors constitute the ideal microenvironment for fetal Leydig cell activity in primary culture. PMID:25143354

  7. Pectinous cell wall thickenings formation - A common defense strategy of plants to cope with Pb.

    Science.gov (United States)

    Krzesłowska, Magdalena; Rabęda, Irena; Basińska, Aneta; Lewandowski, Michał; Mellerowicz, Ewa J; Napieralska, Anna; Samardakiewicz, Sławomir; Woźny, Adam

    2016-07-01

    Lead, one of the most abundant and hazardous trace metals affecting living organisms, has been commonly detected in plant cell walls including some tolerant plants, mining ecotypes and hyperaccumulators. We have previously shown that in tip growing Funaria sp. protonemata cell wall is remodeled in response to lead by formation of thickenings rich in low-methylesterified pectins (pectin epitope JIM5 - JIM5-P) able to bind metal ions, which accumulate large amounts of Pb. Hence, it leads to the increase of cell wall capacity for Pb compartmentalization. Here we show that diverse plant species belonging to different phyla (Arabidopsis, hybrid aspen, star duckweed), form similar cell wall thickenings in response to Pb. These thickenings are formed in tip growing cells such as the root hairs, and in diffuse growing cells such as meristematic and root cap columella cells of root apices in hybrid aspen and Arabidopsis and in mesophyll cells in star duckweed fronds. Notably, all analyzed cell wall thickenings were abundant in JIM5-P and accumulated high amounts of Pb. In addition, the co-localization of JIM5-P and Pb commonly occurred in these cells. Hence, cell wall thickenings formed the extra compartment for Pb accumulation. In this way plant cells increased cell wall capacity for compartmentalization of this toxic metal, protecting protoplast from its toxicity. As cell wall thickenings occurred in diverse plant species and cell types differing in the type of growth we may conclude that pectinous cell wall thickenings formation is a widespread defense strategy of plants to cope with Pb. Moreover, detection of natural defense strategy, increasing plant cell walls capacity for metal accumulation, reveals a promising direction for enhancing plant efficiency in phytoremediation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Confinement of activating receptors at the plasma membrane controls natural killer cell tolerance.

    Science.gov (United States)

    Guia, Sophie; Jaeger, Baptiste N; Piatek, Stefan; Mailfert, Sébastien; Trombik, Tomasz; Fenis, Aurore; Chevrier, Nicolas; Walzer, Thierry; Kerdiles, Yann M; Marguet, Didier; Vivier, Eric; Ugolini, Sophie

    2011-04-05

    Natural killer (NK) cell tolerance to self is partly ensured by major histocompatibility complex (MHC) class I-specific inhibitory receptors on NK cells, which dampen their reactivity when engaged. However, NK cells that do not detect self MHC class I are not autoreactive. We used dynamic fluorescence correlation spectroscopy to show that MHC class I-independent NK cell tolerance in mice was associated with the presence of hyporesponsive NK cells in which both activating and inhibitory receptors were confined in an actin meshwork at the plasma membrane. In contrast, the recognition of self MHC class I by inhibitory receptors "educated" NK cells to become fully reactive, and activating NK cell receptors became dynamically compartmentalized in membrane nanodomains. We propose that the confinement of activating receptors at the plasma membrane is pivotal to ensuring the self-tolerance of NK cells.

  9. Photosynthesis in Flaveria brownii, a C(4)-Like Species: Leaf Anatomy, Characteristics of CO(2) Exchange, Compartmentation of Photosynthetic Enzymes, and Metabolism of CO(2).

    Science.gov (United States)

    Cheng, S H; Moore, B D; Edwards, G E; Ku, M S

    1988-08-01

    Light microscopic examination of leaf cross-sections showed that Flaveria brownii A. M. Powell exhibits Kranz anatomy, in which distinct, chloroplast-containing bundle sheath cells are surrounded by two types of mesophyll cells. Smaller mesophyll cells containing many chloroplasts are arranged around the bundle sheath cells. Larger, spongy mesophyll cells, having fewer chloroplasts, are located between the smaller mesophyll cells and the epidermis. F. brownii has very low CO(2) compensation points at different O(2) levels, which is typical of C(4) plants, yet it does show about 4% inhibition of net photosynthesis by 21% O(2) at 30 degrees C. Protoplasts of the three photosynthetic leaf cell types were isolated according to relative differences in their buoyant densities. On a chlorophyll basis, the activities of phosphoenolpyruvate carboxylase and pyruvate, Pi dikinase (carboxylation phase of C(4) pathway) were highest in the larger mesophyll protoplasts, intermediate in the smaller mesophyll protoplasts, and lowest, but still present, in the bundle sheath protoplasts. In contrast, activities of ribulose 1,5-bisphosphate carboxylase, other C(3) cycle enzymes, and NADP-malic enzyme showed a reverse gradation, although there were significant activities of these enzymes in mesophyll cells. As indicated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the banding pattern of certain polypeptides of the total soluble proteins from the three cell types also supported the distribution pattern obtained by activity assays of these enzymes. Analysis of initial (14)C products in whole leaves and extrapolation of pulse-labeling curves to zero time indicated that about 80% of the CO(2) is fixed into C(4) acids (malate and aspartate), whereas about 20% of the CO(2) directly enters the C(3) cycle. This is consistent with the high activity of enzymes for CO(2) fixation by the C(4) pathway and the substantial activity of enzymes of the C(3) cycle in the mesophyll cells

  10. Recent Theoretical Approaches to Minimal Artificial Cells

    Directory of Open Access Journals (Sweden)

    Fabio Mavelli

    2014-05-01

    Full Text Available Minimal artificial cells (MACs are self-assembled chemical systems able to mimic the behavior of living cells at a minimal level, i.e. to exhibit self-maintenance, self-reproduction and the capability of evolution. The bottom-up approach to the construction of MACs is mainly based on the encapsulation of chemical reacting systems inside lipid vesicles, i.e. chemical systems enclosed (compartmentalized by a double-layered lipid membrane. Several researchers are currently interested in synthesizing such simple cellular models for biotechnological purposes or for investigating origin of life scenarios. Within this context, the properties of lipid vesicles (e.g., their stability, permeability, growth dynamics, potential to host reactions or undergo division processes… play a central role, in combination with the dynamics of the encapsulated chemical or biochemical networks. Thus, from a theoretical standpoint, it is very important to develop kinetic equations in order to explore first—and specify later—the conditions that allow the robust implementation of these complex chemically reacting systems, as well as their controlled reproduction. Due to being compartmentalized in small volumes, the population of reacting molecules can be very low in terms of the number of molecules and therefore their behavior becomes highly affected by stochastic effects both in the time course of reactions and in occupancy distribution among the vesicle population. In this short review we report our mathematical approaches to model artificial cell systems in this complex scenario by giving a summary of three recent simulations studies on the topic of primitive cell (protocell systems.

  11. Cell-Intrinsic Glycogen Metabolism Supports Early Glycolytic Reprogramming Required for Dendritic Cell Immune Responses.

    Science.gov (United States)

    Thwe, Phyu M; Pelgrom, Leonard; Cooper, Rachel; Beauchamp, Saritha; Reisz, Julie A; D'Alessandro, Angelo; Everts, Bart; Amiel, Eyal

    2017-09-05

    Dendritic cell (DC) activation by Toll-like receptor (TLR) agonists causes rapid glycolytic reprogramming that is required to meet the metabolic demands of their immune activation. Recent efforts in the field have identified an important role for extracellular glucose sourcing to support DC activation. However, the contributions of intracellular glucose stores to these processes have not been well characterized. We demonstrate that DCs possess intracellular glycogen stores and that cell-intrinsic glycogen metabolism supports the early effector functions of TLR-activated DCs. Inhibition of glycogenolysis significantly attenuates TLR-mediated DC maturation and impairs their ability to initiate lymphocyte activation. We further report that DCs exhibit functional compartmentalization of glucose- and glycogen-derived carbons, where these substrates preferentially contribute to distinct metabolic pathways. This work provides novel insights into nutrient homeostasis in DCs, demonstrating that differential utilization of glycogen and glucose metabolism regulates their optimal immune function. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Monodisperse Picoliter Droplets for Low-Bias and Contamination-Free Reactions in Single-Cell Whole Genome Amplification.

    Directory of Open Access Journals (Sweden)

    Yohei Nishikawa

    Full Text Available Whole genome amplification (WGA is essential for obtaining genome sequences from single bacterial cells because the quantity of template DNA contained in a single cell is very low. Multiple displacement amplification (MDA, using Phi29 DNA polymerase and random primers, is the most widely used method for single-cell WGA. However, single-cell MDA usually results in uneven genome coverage because of amplification bias, background amplification of contaminating DNA, and formation of chimeras by linking of non-contiguous chromosomal regions. Here, we present a novel MDA method, termed droplet MDA, that minimizes amplification bias and amplification of contaminants by using picoliter-sized droplets for compartmentalized WGA reactions. Extracted DNA fragments from a lysed cell in MDA mixture are divided into 105 droplets (67 pL within minutes via flow through simple microfluidic channels. Compartmentalized genome fragments can be individually amplified in these droplets without the risk of encounter with reagent-borne or environmental contaminants. Following quality assessment of WGA products from single Escherichia coli cells, we showed that droplet MDA minimized unexpected amplification and improved the percentage of genome recovery from 59% to 89%. Our results demonstrate that microfluidic-generated droplets show potential as an efficient tool for effective amplification of low-input DNA for single-cell genomics and greatly reduce the cost and labor investment required for determination of nearly complete genome sequences of uncultured bacteria from environmental samples.

  13. Increase of chromium tolerance in Scenedesmus acutus after sulfur starvation: Chromium uptake and compartmentalization in two strains with different sensitivities to Cr(VI).

    Science.gov (United States)

    Marieschi, M; Gorbi, G; Zanni, C; Sardella, A; Torelli, A

    2015-10-01

    In photosynthetic organisms sulfate constitutes the main sulfur source for the biosynthesis of GSH and its precursor Cys. Hence, sulfur availability can modulate the capacity to cope with environmental stresses, a phenomenon known as SIR/SED (Sulfur Induced Resistance or Sulfur Enhanced Defence). Since chromate may compete for sulfate transport into the cells, in this study chromium accumulation and tolerance were investigated in relation to sulfur availability in two strains of the unicellular green alga Scenedesmus acutus with different Cr-sensitivities. Paradoxically, sulfur deprivation has been demonstrated to induce a transient increase of Cr-tolerance in both strains. Sulfur deprivation is known to enhance the sulfate uptake/assimilation pathway leading to important consequences on Cr-tolerance: (i) reduced chromate uptake due to the induction of high affinity sulfate transporters (ii) higher production of cysteine and GSH which can play a role both through the formation of unsoluble complexes and their sequestration in inert compartments. To investigate the role of the above mentioned mechanisms, Cr accumulation in total cells and in different cell compartments (cell wall, membranes, soluble and miscellaneous fractions) was analyzed in both sulfur-starved and unstarved cells. Both strains mainly accumulated chromium in the soluble fraction, but the uptake was higher in the wild-type. In this type a short period of sulfur starvation before Cr(VI) treatment lowered chromium accumulation to the level observed in the unstarved Cr-tolerant strain, in which Cr uptake seems instead less influenced by S-starvation, since no significant decrease was observed. The increase in Cr-tolerance following S-starvation seems thus to rely on different mechanisms in the two strains, suggesting the induction of a mechanism constitutively active in the Cr-tolerant strain, maybe a high affinity sulfate transporter also in the wild-type. Changes observed in the cell wall and

  14. New insights into how trafficking regulates T cell receptor signaling

    Directory of Open Access Journals (Sweden)

    Jieqiong Lou

    2016-07-01

    Full Text Available AbstractThere is emerging evidence that exocytosis plays an important role in regulating T cell receptor (TCR signaling. The trafficking molecules involved in lytic granule (LG secretion in cytotoxic T lymphocytes (CTL have been well studied due to the immune disorder known as familial hemophagocytic lymphohisiocytosis (FHLH. However, the knowledge of trafficking machineries regulating the exocytosis of receptors and signaling molecules remains quite limited. In this review, we summarize the reported trafficking molecules involved in the transport of the TCR and downstream signaling molecules to the cell surface. By combining this information with the known knowledge of LG exocytosis and general exocytic trafficking machinery, we attempt to draw a more complete picture of how the TCR signaling network and exocytic trafficking matrix are interconnected to facilitate T cell activation. This also highlights how membrane compartmentalization facilitates the spatiotemporal organization of cellular responses that are essential for immune functions.

  15. A Stromal Cell Niche for Human and Mouse Type 3 Innate Lymphoid Cells.

    Science.gov (United States)

    Hoorweg, Kerim; Narang, Priyanka; Li, Zhi; Thuery, Anne; Papazian, Natalie; Withers, David R; Coles, Mark C; Cupedo, Tom

    2015-11-01

    Adaptive immunity critically depends on the functional compartmentalization of secondary lymphoid organs. Mesenchymal stromal cells create and maintain specialized niches that support survival, activation, and expansion of T and B cells, and integrated analysis of lymphocytes and their niche has been instrumental in understanding adaptive immunity. Lymphoid organs are also home to type 3 innate lymphoid cells (ILC3), innate effector cells essential for barrier immunity. However, a specialized stromal niche for ILC3 has not been identified. A novel lineage-tracing approach now identifies a subset of murine fetal lymphoid tissue organizer cells that gives rise exclusively to adult marginal reticular cells. Moreover, both cell types are conserved from mice to humans and colocalize with ILC3 in secondary lymphoid tissues throughout life. In sum, we provide evidence that fetal stromal organizers give rise to adult marginal reticular cells and form a dedicated stromal niche for innate ILC3 in adaptive lymphoid organs. Copyright © 2015 by The American Association of Immunologists, Inc.

  16. Myc and Fgf Are Required for Zebrafish Neuromast Hair Cell Regeneration.

    Science.gov (United States)

    Lee, Sang Goo; Huang, Mingqian; Obholzer, Nikolaus D; Sun, Shan; Li, Wenyan; Petrillo, Marco; Dai, Pu; Zhou, Yi; Cotanche, Douglas A; Megason, Sean G; Li, Huawei; Chen, Zheng-Yi

    2016-01-01

    Unlike mammals, the non-mammalian vertebrate inner ear can regenerate the sensory cells, hair cells, either spontaneously or through induction after hair cell loss, leading to hearing recovery. The mechanisms underlying the regeneration are poorly understood. By microarray analysis on a chick model, we show that chick hair cell regeneration involves the activation of proliferation genes and downregulation of differentiation genes. Both MYC and FGF are activated in chick hair cell regeneration. Using a zebrafish lateral line neuromast hair cell regeneration model, we show that the specific inhibition of Myc or Fgf suppresses hair cell regeneration, demonstrating that both pathways are essential to the process. Rapid upregulation of Myc and delayed Fgf activation during regeneration suggest a role of Myc in proliferation and Fgf in differentiation. The dorsal-ventral pattern of fgfr1a in the neuromasts overlaps with the distribution of hair cell precursors. By laser ablation, we show that the fgfr1a-positive supporting cells are likely the hair cell precursors that directly give rise to new hair cells; whereas the anterior-posterior fgfr1a-negative supporting cells have heightened proliferation capacity, likely to serve as more primitive progenitor cells to replenish lost precursors after hair cell loss. Thus fgfr1a is likely to mark compartmentalized supporting cell subtypes with different capacities in renewal proliferation and hair cell regeneration. Manipulation of c-MYC and FGF pathways could be explored for mammalian hair cell regeneration.

  17. Metabolism of γ-hydroxyl-[1-14C] butyrate by rat brain: relationship to the Krebs cycle and metabolic compartmentation of amino acids

    International Nuclear Information System (INIS)

    Doherty, J.D.; Roth, R.H.

    1978-01-01

    Ninhydrin decarboxylation experiments were carried out on the labelled amino acids produced following intraventricular injection of either γ-hydroxy-[1- 14 C] butyric acid (GHB) or [1- 14 C] succinate. The loss of isotope (as 14 CO 2 ) was similar for both substances. The [1- 14 C] GHB metabolites lost 75% of the label and the [1- 14 C] succinate metabolites lost 68%. This observation gives support to the hypothesis that the rat brain has the enzymatic capacity to metabolize [1- 14 C] GHB to succinate and to amino acids that have the isotope in the carboxylic acid group adjacent to the α-amino group. These results also indicate that the label from [1- 14 C] GHB does not enter the Krebs cycle as acetate. The specific activity ratio of radio-labelled glutamine to glutamic acid was determined in order to evaluate which of the two major metabolic compartments prefentially metabolize GHB. It was found that for [1- 14 C] GHB the ratio was 4.20 +- 0.18 (S.E. for n = 7) and for [1- 14 C] succinate the ratio was 7.71 (average of two trials, 7.74 and 7.69). These results suggest that the compartment thought to be associated with glial cells and synaptosomal structures is largely responsible for the metabolism of GHB. Metabolism as it might relate to the neuropharmacological action of GHB is discussed. (author)

  18. Cell tracing reveals a dorsoventral lineage restriction plane in the mouse limb bud mesenchyme.

    Science.gov (United States)

    Arques, Carlos G; Doohan, Roisin; Sharpe, James; Torres, Miguel

    2007-10-01

    Regionalization of embryonic fields into independent units of growth and patterning is a widespread strategy during metazoan development. Compartments represent a particular instance of this regionalization, in which unit coherence is maintained by cell lineage restriction between adjacent regions. Lineage compartments have been described during insect and vertebrate development. Two common characteristics of the compartments described so far are their occurrence in epithelial structures and the presence of signaling regions at compartment borders. Whereas Drosophila compartmental organization represents a background subdivision of embryonic fields that is not necessarily related to anatomical structures, vertebrate compartment borders described thus far coincide with, or anticipate, anatomical or cell-type discontinuities. Here, we describe a general method for clonal analysis in the mouse and use it to determine the topology of clone distribution along the three limb axes. We identify a lineage restriction boundary at the limb mesenchyme dorsoventral border that is unrelated to any anatomical discontinuity, and whose lineage restriction border is not obviously associated with any signaling center. This restriction is the first example in vertebrates of a mechanism of primordium subdivision unrelated to anatomical boundaries. Furthermore, this is the first lineage compartment described within a mesenchymal structure in any organism, suggesting that lineage restrictions are fundamental not only for epithelial structures, but also for mesenchymal field patterning. No lineage compartmentalization was found along the proximodistal or anteroposterior axes, indicating that patterning along these axes does not involve restriction of cell dispersion at specific axial positions.

  19. Model for cadmium transport and distribution in CHO cells

    Energy Technology Data Exchange (ETDEWEB)

    Hayden, T.L.; Turner, J.E.; Williams, M.W.; Cook, J.S.; Hsie, A.W.

    1982-01-01

    A compartmental model is developed to study the transport and distribution of cadmium in Chinese hamster ovary (CHO) cells. Of central importance to the model is the role played by sequestering components which bind free Cd/sup 2 +/ ions. The most important of these is a low-molecular-weight protein, metallothionein, which is produced by the cells in response to an increase in the cellular concentration of Cd/sup 2 +/. Monte Carlo techniques are used to generate a stochastic model based on existing experimental data describing the intracellular transport of cadmium between different compartments. This approach provides an alternative to the usual numerical solution of differential-delay equations that arise in deterministic models. Our model suggests subcellular structures which may be responsible for the accumulation of cadmium and, hence, could account for cadmium detoxification. 4 figures, 1 table.

  20. Use of a "Super-child" Approach to Assess the Vitamin A Equivalence of Moringa oleifera Leaves, Develop a Compartmental Model for Vitamin A Kinetics, and Estimate Vitamin A Total Body Stores in Young Mexican Children.

    Science.gov (United States)

    Lopez-Teros, Veronica; Ford, Jennifer Lynn; Green, Michael H; Tang, Guangwen; Grusak, Michael A; Quihui-Cota, Luis; Muzhingi, Tawanda; Paz-Cassini, Mariela; Astiazaran-Garcia, Humberto

    2017-12-01

    Background: Worldwide, an estimated 250 million children children. Methods: β-Carotene was intrinsically labeled by growing MO plants in a 2 H 2 O nutrient solution. Fifteen well-nourished children (17-35 mo old) consumed puréed MO leaves (1 mg β-carotene) and a reference dose of [ 13 C 10 ]retinyl acetate (1 mg) in oil. Blood (2 samples/child) was collected 10 times (2 or 3 children each time) over 35 d. The bioefficacy of MO leaves was calculated from areas under the composite "super-child" plasma isotope response curves, and MO VA equivalence was estimated through the use of these values; a compartmental model was developed to predict VA TBS and retinol kinetics through the use of composite plasma [ 13 C 10 ]retinol data. TBS were also estimated with isotope dilution. Results: The relative bioefficacy of β-carotene retinol activity equivalents from MO was 28%; VA equivalence was 3.3:1 by weight (0.56 μmol retinol:1 μmol β-carotene). Kinetics of plasma retinol indicate more rapid plasma appearance and turnover and more extensive recycling in these children than are observed in adults. Model-predicted mean TBS (823 μmol) was similar to values predicted using a retinol isotope dilution equation applied to data from 3 to 6 d after dosing (mean ± SD: 832 ± 176 μmol; n = 7). Conclusions: The super-child approach can be used to estimate population carotenoid bioefficacy and VA equivalence, VA status, and parameters of retinol metabolism from a composite data set. Our results provide initial estimates of retinol kinetics in well-nourished young children with adequate VA stores and demonstrate that MO leaves may be an important source of VA. © 2017 American Society for Nutrition.

  1. Programmed cell death during development of cowpea (Vigna unguiculata (L.) Walp.) seed coat.

    Science.gov (United States)

    Lima, Nathália Bastos; Trindade, Fernanda Gomes; da Cunha, Maura; Oliveira, Antônia Elenir Amâncio; Topping, Jennifer; Lindsey, Keith; Fernandes, Kátia Valevski Sales

    2015-04-01

    The seed coat develops primarily from maternal tissues and comprises multiple cell layers at maturity, providing a metabolically dynamic interface between the developing embryo and the environment during embryogenesis, dormancy and germination of seeds. Seed coat development involves dramatic cellular changes, and the aim of this research was to investigate the role of programmed cell death (PCD) events during the development of seed coats of cowpea [Vigna unguiculata (L.) Walp.]. We demonstrate that cells of the developing cowpea seed coats undergo a programme of autolytic cell death, detected as cellular morphological changes in nuclei, mitochondria, chloroplasts and vacuoles, DNA fragmentation and oligonucleosome accumulation in the cytoplasm, and loss of membrane viability. We show for the first time that classes 6 and 8 caspase-like enzymes are active during seed coat development, and that these activities may be compartmentalized by translocation between vacuoles and cytoplasm during PCD events. © 2014 John Wiley & Sons Ltd.

  2. Phosphatidylinositol 3-phosphates-at the interface between cell signalling and membrane traffic.

    Science.gov (United States)

    Marat, Andrea L; Haucke, Volker

    2016-03-15

    Phosphoinositides (PIs) form a minor class of phospholipids with crucial functions in cell physiology, ranging from cell signalling and motility to a role as signposts of compartmental membrane identity. Phosphatidylinositol 3-phosphates are present at the plasma membrane and within the endolysosomal system, where they serve as key regulators of both cell signalling and of intracellular membrane traffic. Here, we provide an overview of the metabolic pathways that regulate cellular synthesis of PI 3-phosphates at distinct intracellular sites and discuss the mechanisms by which these lipids regulate cell signalling and membrane traffic. Finally, we provide a framework for how PI 3-phosphate metabolism is integrated into the cellular network. © 2016 The Authors.

  3. Construction of synthetic nucleoli in human cells reveals how a major functional nuclear domain is formed and propagated through cell division.

    Science.gov (United States)

    Grob, Alice; Colleran, Christine; McStay, Brian

    2014-02-01

    Human cell nuclei are functionally organized into structurally stable yet dynamic bodies whose cell cycle inheritance is poorly understood. Here, we investigate the biogenesis and propagation of nucleoli, sites of ribosome biogenesis and key regulators of cellular growth. Nucleolar and cell cycles are intimately connected. Nucleoli disappear during mitosis, reforming around prominent uncharacterized chromosomal features, nucleolar organizer regions (NORs). By examining the effects of UBF depletion on both endogenous NORs and synthetic pseudo-NORs, we reveal its essential role in maintaining competency and establishing a bookmark on mitotic NORs. Furthermore, we demonstrate that neo-NORs, UBF-binding site arrays coupled with rDNA transcription units, direct the de novo biogenesis of functional compartmentalized neonucleoli irrespective of their site of chromosomal integration. For the first time, we establish the sequence requirements for nucleolar biogenesis and provide proof that this is a staged process where UBF-dependent mitotic bookmarking precedes function-dependent nucleolar assembly.

  4. Use of actin-bound adenosine 5'-diphosphate as a method to determine the specific 32P-radioactivity of the gamma-phosphoryl group of adenosine 5'-triphosphate in a highly compartmentalized cell, the platelet

    International Nuclear Information System (INIS)

    Verhoeven, A.J.; Cook, C.A.; Holmsen, H.

    1988-01-01

    Determination of the specific 32 P-radioactivity of cytoplasmic ATP in 32 P-Pi-labeled platelets is complicated by the presence of a large pool of metabolically inactive, granule-stored nucleotides. Moreover, our data show that the specific 32 P-radioactivity of cytoplasmic ATP is severely underestimated when determined in platelets after the complete secretion of granule-stored nucleotides, possibly due to isotopic dilution with granule-stored phosphate. As F-actin-bound ADP is ethanol-insoluble, this pool can be readily separated from the other nucleotide pools in platelets. Here we show that the specific 32 P-radioactivity of F-actin-bound ADP accurately reflects that of the gamma-phosphoryl group of cytoplasmic ATP. During uptake of 32 P-Pi by human platelets the specific 32 P-radioactivity of F-actin-bound ADP equals that of the monoester phosphates of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate, which are in metabolic equilibrium with cytoplasmic ATP. Therefore, this method enables the determination of the specific 32 P-radioactivity of the gamma-phosphoryl group of cytoplasmic ATP in platelets even under short-term labeling conditions

  5. Antigen-Specific Th17 Cells Are Primed by Distinct and Complementary Dendritic Cell Subsets in Oropharyngeal Candidiasis.

    Directory of Open Access Journals (Sweden)

    Kerstin Trautwein-Weidner

    2015-10-01

    Full Text Available Candida spp. can cause severe and chronic mucocutaneous and systemic infections in immunocompromised individuals. Protection from mucocutaneous candidiasis depends on T helper cells, in particular those secreting IL-17. The events regulating T cell activation and differentiation toward effector fates in response to fungal invasion in different tissues are poorly understood. Here we generated a Candida-specific TCR transgenic mouse reactive to a novel endogenous antigen that is conserved in multiple distant species of Candida, including the clinically highly relevant C. albicans and C. glabrata. Using TCR transgenic T cells in combination with an experimental model of oropharyngeal candidiasis (OPC we investigated antigen presentation and Th17 priming by different subsets of dendritic cells (DCs present in the infected oral mucosa. Candida-derived endogenous antigen accesses the draining lymph nodes and is directly presented by migratory DCs. Tissue-resident Flt3L-dependent DCs and CCR2-dependent monocyte-derived DCs collaborate in antigen presentation and T cell priming during OPC. In contrast, Langerhans cells, which are also present in the oral mucosa and have been shown to prime Th17 cells in the skin, are not required for induction of the Candida-specific T cell response upon oral challenge. This highlights the functional compartmentalization of specific DC subsets in different tissues. These data provide important new insights to our understanding of tissue-specific antifungal immunity.

  6. Can cell survival parameters be deduced from non-clonogenic assays of radiation damage to normal tissue

    International Nuclear Information System (INIS)

    Michalowski, A.; Wheldon, T.E.; Kirk, J.

    1984-01-01

    The relationship between dose-response curves for large scale radiation injury to tissues and survival curves for clonogenic cells is not necessarily simple. Sterilization of clonogenic cells occurs near-instantaneously compared with the protracted lag period for gross injury to tissues. Moreover, with some types of macroscopic damage, the shapes of the dose-response curves may depend on time of assay. Changes in the area or volume of irradiated tissue may also influence the shapes of these curves. The temporal pattern of expression of large scale injury also varies between tissues, and two distinct groups can be recognized. In rapidly proliferating tissues, lag period is almost independent of dose, whilst in slowly proliferating tissues, it is inversely proportional to dose. This might be explained by invoking differences in corresponding proliferative structures of the tissues. (Three compartmental Type H versus one compartmental Type F proliferative organization). For the second group of tissues particularly, mathematical modelling suggests a systematic dissociation of the dose-response curves for clonogenic cell survival and large scale injury. In particular, it may be difficult to disentangle the contributions made to inter-fraction sparing by cellular repair processes and by proliferation-related factors. (U.K.)

  7. Rifte Guaritas basin compartmentation in Camaqua

    International Nuclear Information System (INIS)

    Preissler, A; Rolim, S; Philipp, R.

    2010-01-01

    The study contributes to the knowledge of the tectonic evolution of the Guaritas rift basin in Camaqua. Were used aero magnetic geophysical data for modeling the geometry and the depth of the structures and geological units. The research was supported in processing and interpretation of Aster images (EOS-Terra), which were extracted from geophysical models and digital image

  8. Review of compartmental analysis in ecosystem science

    International Nuclear Information System (INIS)

    O'Neill, R.V.

    1978-01-01

    The compartment model has a large number of applications in ecosystem science. An attempt is made to outline the problem areas and objectives for which this type of model has particular advantages. The areas identified are an adequate model of tracer movement through an undisturbed but non-equilibrium ecosystem; an adequate model of the movement of material in greater than tracer quantity through an ecosystem near steady state; a minimal model based on limited data; a tool for extrapolating past trends; a framework for the summarization of large data sets; and a theoretical tool for exploring and comparing limited aspects of ecosystem dynamics. The review is set in an historical perspective which helps explain why these models were adopted in ecology. References are also provided to literature which documents available mathematical techniques in an ecological context

  9. Compartmentalization analysis using discrete fracture network models

    Energy Technology Data Exchange (ETDEWEB)

    La Pointe, P.R.; Eiben, T.; Dershowitz, W. [Golder Associates, Redmond, VA (United States); Wadleigh, E. [Marathon Oil Co., Midland, TX (United States)

    1997-08-01

    This paper illustrates how Discrete Fracture Network (DFN) technology can serve as a basis for the calculation of reservoir engineering parameters for the development of fractured reservoirs. It describes the development of quantitative techniques for defining the geometry and volume of structurally controlled compartments. These techniques are based on a combination of stochastic geometry, computational geometry, and graph the theory. The parameters addressed are compartment size, matrix block size and tributary drainage volume. The concept of DFN models is explained and methodologies to compute these parameters are demonstrated.

  10. A Numerical Simulation for a Deterministic Compartmental ...

    African Journals Online (AJOL)

    In this work, an earlier deterministic mathematical model of HIV/AIDS is revisited and numerical solutions obtained using Eulers numerical method. Using hypothetical values for the parameters, a program was written in VISUAL BASIC programming language to generate series for the system of difference equations from the ...

  11. Interreligious dialogue: Moving between compartmentalization and complexity

    Directory of Open Access Journals (Sweden)

    Anne Hege Grung

    2011-05-01

    Full Text Available Interreligious dialogues as organized activities establish religious difference among its participants as a premise. This article discusses how various ways of signifying religious difference in interreligious dialogues can impact culturally by looking at the dynamics between the dialogues’ ‘insides’ and ‘outsides’, especially regarding the ways in which differences are conceptualized. The current criticism of interreligious dialogue and the current perspectives on the dialogues’ alleged effects on conceptualizing differences are examined in the examples presented in this article. Finally, two models of interreligious dialogue are suggested. First, a model where religious differences are apprehended as ‘constitutive’, and second, a model where religious differences are viewed as ‘challenge’. The first relates to a multicultural view of differences, and the second to a perspective of cultural complexity. Lastly, the two models are discussed in relation to the notion of strategic essentialism. Anne Hege Grung is a researcher at the Faculty of Theology, University of Oslo.

  12. Chloroplast Dysfunction Causes Multiple Defects in Cell Cycle Progression in the Arabidopsis crumpled leaf Mutant

    KAUST Repository

    Hudik, Elodie

    2014-07-18

    The majority of research on cell cycle regulation is focused on the nuclear events that govern the replication and segregation of the genome between the two daughter cells. However, eukaryotic cells contain several compartmentalized organelles with specialized functions, and coordination among these organelles is required for proper cell cycle progression, as evidenced by the isolation of several mutants in which both organelle function and overall plant development were affected. To investigate how chloroplast dysfunction affects the cell cycle, we analyzed the crumpled leaf (crl) mutant of Arabidopsis (Arabidopsis thaliana), which is deficient for a chloroplastic protein and displays particularly severe developmental defects. In the crl mutant, we reveal that cell cycle regulation is altered drastically and that meristematic cells prematurely enter differentiation, leading to reduced plant stature and early endoreduplication in the leaves. This response is due to the repression of several key cell cycle regulators as well as constitutive activation of stress-response genes, among them the cell cycle inhibitor SIAMESE-RELATED5. One unique feature of the crl mutant is that it produces aplastidic cells in several organs, including the root tip. By investigating the consequence of the absence of plastids on cell cycle progression, we showed that nuclear DNA replication occurs in aplastidic cells in the root tip, which opens future research prospects regarding the dialogue between plastids and the nucleus during cell cycle regulation in higher plants.

  13. Inhibiting Cadmium Transport Process in Root Cells of Plants: A Review

    Directory of Open Access Journals (Sweden)

    ZHAO Yan-ling

    2016-05-01

    Full Text Available Cadmium(Cd is the most common element found in the heavy-metal contaminated soils in China. Roots of rice and vegetables can concentrate Cd from acid soils, and then transport Cd to above-ground parts. Cd in edible part of plants directly influences the food safety. Cellwall, plasma membrane and organells of root cells in plant can discriminate Cd from other elements. A lot of Cd can be fixed in root cells by precipitation, complexation, compartmentation, and so on, to inhibit its transport from roots to shoot and guarantee the physiological activities in above-ground parts carrying out normally. This paper summarized recent advance on inhibiting Cd transport process in subcellular fractions of root cells of plants, which is in advantage of exploring excellent germplasms and gene resources in the future.

  14. Resistance to Antiangiogenic Therapies by Metabolic Symbiosis in Renal Cell Carcinoma PDX Models and Patients

    Directory of Open Access Journals (Sweden)

    Gabriela Jiménez-Valerio

    2016-05-01

    Full Text Available Antiangiogenic drugs are used clinically for treatment of renal cell carcinoma (RCC as a standard first-line treatment. Nevertheless, these agents primarily serve to stabilize disease, and resistance eventually develops concomitant with progression. Here, we implicate metabolic symbiosis between tumor cells distal and proximal to remaining vessels as a mechanism of resistance to antiangiogenic therapies in patient-derived RCC orthoxenograft (PDX models and in clinical samples. This metabolic patterning is regulated by the mTOR pathway, and its inhibition effectively blocks metabolic symbiosis in PDX models. Clinically, patients treated with antiangiogenics consistently present with histologic signatures of metabolic symbiosis that are exacerbated in resistant tumors. Furthermore, the mTOR pathway is also associated in clinical samples, and its inhibition eliminates symbiotic patterning in patient samples. Overall, these data support a mechanism of resistance to antiangiogenics involving metabolic compartmentalization of tumor cells that can be inhibited by mTOR-targeted drugs.

  15. Engineering genetic circuit interactions within and between synthetic minimal cells

    Science.gov (United States)

    Adamala, Katarzyna P.; Martin-Alarcon, Daniel A.; Guthrie-Honea, Katriona R.; Boyden, Edward S.

    2017-05-01

    Genetic circuits and reaction cascades are of great importance for synthetic biology, biochemistry and bioengineering. An open question is how to maximize the modularity of their design to enable the integration of different reaction networks and to optimize their scalability and flexibility. One option is encapsulation within liposomes, which enables chemical reactions to proceed in well-isolated environments. Here we adapt liposome encapsulation to enable the modular, controlled compartmentalization of genetic circuits and cascades. We demonstrate that it is possible to engineer genetic circuit-containing synthetic minimal cells (synells) to contain multiple-part genetic cascades, and that these cascades can be controlled by external signals as well as inter-liposomal communication without crosstalk. We also show that liposomes that contain different cascades can be fused in a controlled way so that the products of incompatible reactions can be brought together. Synells thus enable a more modular creation of synthetic biology cascades, an essential step towards their ultimate programmability.

  16. With or without rafts? Alternative views on cell membranes.

    Science.gov (United States)

    Sevcsik, Eva; Schütz, Gerhard J

    2016-02-01

    The fundamental mechanisms of protein and lipid organization at the plasma membrane have continued to engage researchers for decades. Among proposed models, one idea has been particularly successful which assumes that sterol-dependent nanoscopic phases of different lipid chain order compartmentalize proteins, thereby modulating protein functionality. This model of membrane rafts has sustainably sparked the fields of membrane biophysics and biology, and shifted membrane lipids into the spotlight of research; by now, rafts have become an integral part of our terminology to describe a variety of cell biological processes. But is the evidence clear enough to continue supporting a theoretical concept which has resisted direct proof by observation for nearly twenty years? In this essay, we revisit findings that gave rise to and substantiated the raft hypothesis, discuss its impact on recent studies, and present alternative mechanisms to account for plasma membrane heterogeneity. © 2015 WILEY Periodicals, Inc.

  17. Determining the bacterial cell biology of Planctomycetes.

    Science.gov (United States)

    Boedeker, Christian; Schüler, Margarete; Reintjes, Greta; Jeske, Olga; van Teeseling, Muriel C F; Jogler, Mareike; Rast, Patrick; Borchert, Daniela; Devos, Damien P; Kucklick, Martin; Schaffer, Miroslava; Kolter, Roberto; van Niftrik, Laura; Engelmann, Susanne; Amann, Rudolf; Rohde, Manfred; Engelhardt, Harald; Jogler, Christian

    2017-04-10

    Bacteria of the phylum Planctomycetes have been previously reported to possess several features that are typical of eukaryotes, such as cytosolic compartmentalization and endocytosis-like macromolecule uptake. However, recent evidence points towards a Gram-negative cell plan for Planctomycetes, although in-depth experimental analysis has been hampered by insufficient genetic tools. Here we develop methods for expression of fluorescent proteins and for gene deletion in a model planctomycete, Planctopirus limnophila, to analyse its cell organization in detail. Super-resolution light microscopy of mutants, cryo-electron tomography, bioinformatic predictions and proteomic analyses support an altered Gram-negative cell plan for Planctomycetes, including a defined outer membrane, a periplasmic space that can be greatly enlarged and convoluted, and an energized cytoplasmic membrane. These conclusions are further supported by experiments performed with two other Planctomycetes, Gemmata obscuriglobus and Rhodopirellula baltica. We also provide experimental evidence that is inconsistent with endocytosis-like macromolecule uptake; instead, extracellular macromolecules can be taken up and accumulate in the periplasmic space through unclear mechanisms.

  18. Denervation-induced homeostatic dendritic plasticity in morphological granule cell models

    Directory of Open Access Journals (Sweden)

    Hermann Cuntz

    2014-03-01

    Full Text Available Neuronal death and subsequent denervation of target areas are major consequences of several neurological conditions such asischemia or neurodegeneration (Alzheimer's disease. The denervation-induced axonal loss results in reorganization of the dendritic tree of denervated neurons. The dendritic reorganization has been previously studied using entorhinal cortex lesion (ECL. ECL leads to shortening and loss of dendritic segments in the denervated outer molecular layer of the dentate gyrus. However, the functional importance of these long-term dendritic alterations is not yet understood and their impact on neuronal electrical properties remains unclear. Here we analyzed what happens to the electrotonic structure and excitability of dentate granule cells after lesion-induced alterations of their dendritic morphology, assuming all other parameters remain equal. We performed comparative electrotonic analysis in anatomically and biophysically realistic compartmental models of 3D-reconstructed healthy and denervated granule cells. Using the method of morphological modeling based on optimization principles minimizing the amount of wiring and maximizing synaptic democracy, we built artificial granule cells which replicate morphological features of their real counterparts. Our results show that somatofugal and somatopetal voltage attenuation in the passive cable model are strongly reduced in denervated granule cells. In line with these predictions, the attenuation both of simulated backpropagating action potentials and forward propagating EPSPs was significantly reduced in dendrites of denervated neurons. Intriguingly, the enhancement of action potential backpropagation occurred specifically in the denervated dendritic layers. Furthermore, simulations of synaptic f-I curves revealed a homeostatic increase of excitability in denervated granule cells. In summary, our morphological and compartmental modeling indicates that unless modified by changes of

  19. Massively parallel whole genome amplification for single-cell sequencing using droplet microfluidics.

    Science.gov (United States)

    Hosokawa, Masahito; Nishikawa, Yohei; Kogawa, Masato; Takeyama, Haruko

    2017-07-12

    Massively parallel single-cell genome sequencing is required to further understand genetic diversities in complex biological systems. Whole genome amplification (WGA) is the first step for single-cell sequencing, but its throughput and accuracy are insufficient in conventional reaction platforms. Here, we introduce single droplet multiple displacement amplification (sd-MDA), a method that enables massively parallel amplification of single cell genomes while maintaining sequence accuracy and specificity. Tens of thousands of single cells are compartmentalized in millions of picoliter droplets and then subjected to lysis and WGA by passive droplet fusion in microfluidic channels. Because single cells are isolated in compartments, their genomes are amplified to saturation without contamination. This enables the high-throughput acquisition of contamination-free and cell specific sequence reads from single cells (21,000 single-cells/h), resulting in enhancement of the sequence data quality compared to conventional methods. This method allowed WGA of both single bacterial cells and human cancer cells. The obtained sequencing coverage rivals those of conventional techniques with superior sequence quality. In addition, we also demonstrate de novo assembly of uncultured soil bacteria and obtain draft genomes from single cell sequencing. This sd-MDA is promising for flexible and scalable use in single-cell sequencing.

  20. Relations between fluxes and concentrations of Na in cell suspensions of Acer pseudoplatanus

    International Nuclear Information System (INIS)

    Pennarun, A.-M.

    1978-01-01

    Taking in account the data provided by preliminary compartmental analysis, the net influxes of 24 Na measured in Acer cells after a short loading period (45 minutes) followed by a short wash (1 minute) represent the influx across the plasmalemma (phi sub(0c)) and, after a long loading period (4 hours) followed by a long wash (2 hours) represent the quasi-steady influx from the external solution to the vacuole (phi sub(0v). At flux equilibrium and when the external Na concentration is high enough, the other unidirectional fluxes - phi sub(c0), phi sub(cv) and phi sub(vc) - can be determined from these measurements. This method was used to study the variation of Na flux in terms of the external concentrations and the resulting internal concentrations. The kinetics obtained confirm the active nature of the efflux phi sub(vc) across the tonoplast according to the conclusions given by the application of the USSING-TEORELL criterion to the results of compartmental analysis. On the contrary, they suggest a passive character for the efflux phi sub(c0) accross the plasmalemma which could be considered as active according to the USSING-TEORELL criterion. The contradiction could be eliminated by taking into consideration the important underestimation of the Na activity coefficient in the cytoplasm, due to the neglecting of water binding [fr

  1. Effects of potentially acidic air pollutants on the intracellular distribution and transport of plant growth regulators in mesophyll cells of leaves. Consequences on stress- and developmental physiology

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, H.; Pfanz, H.; Hartung, W.

    1987-07-11

    The influence of SO/sub 2/ on the intracellular distribution of abscisic acid (ABA) and indole-acetic acid (IAA) in mesophyll cells of Picea abies, Tsuga americana and Hordeum vulgare was investigated. The compartmentation of ABA and IAA depends on intracellular pH-gradients. The hydrophilic anions ABA and IAA are accumulated in the alkaline cell compartments cytosol and chloroplasts, which act as anion traps for weak acids. Uptake of sulfur dioxide into leaves leads to an acidification of alkaline cell compartments, thus decreasing intracellular pH-gradients. Consequently this results in an increased release of plant growth regulators from the cell interior into the apoplast. Therefore the target cells of plant hormones i.e. meristems and stomates are exposed to altered hormone concentrations. Obviously this influences the regulation of cellular metabolism plant development and growth.

  2. Differentiating Immune Cell Targets in Gut-Associated Lymphoid Tissue for HIV Cure.

    Science.gov (United States)

    Khan, Shahzada; Telwatte, Sushama; Trapecar, Martin; Yukl, Steven; Sanjabi, Shomyseh

    2017-11-01

    The single greatest challenge to an HIV cure is the persistence of latently infected cells containing inducible, replication-competent proviral genomes, which constitute only a small fraction of total or infected cells in the body. Although resting CD4 + T cells in the blood are a well-known source of viral rebound, more than 90% of the body's lymphocytes reside elsewhere. Many are in gut tissue, where HIV DNA levels per million CD4 + T cells are considerably higher than in the blood. Despite the significant contribution of gut tissue to viral replication and persistence, little is known about the cell types that support persistence of HIV in the gut; importantly, T cells in the gut have phenotypic, functional, and survival properties that are distinct from T cells in other tissues. The mechanisms by which latency is established and maintained will likely depend on the location and cytokine milieu surrounding the latently infected cells in each compartment. Therefore, successful HIV cure strategies require identification and characterization of the exact cell types that support viral persistence, particularly in the gut. In this review, we describe the seeding of the latent HIV reservoir in the gut mucosa; highlight the evidence for compartmentalization and depletion of T cells; summarize the immunologic consequences of HIV infection within the gut milieu; propose how the damaged gut environment may promote the latent HIV reservoir; and explore several immune cell targets in the gut and their place on the path toward HIV cure.

  3. In Vitro Reconstruction of Neuronal Networks Derived from Human iPS Cells Using Microfabricated Devices.

    Directory of Open Access Journals (Sweden)

    Yuzo Takayama

    Full Text Available Morphology and function of the nervous system is maintained via well-coordinated processes both in central and peripheral nervous tissues, which govern the homeostasis of organs/tissues. Impairments of the nervous system induce neuronal disorders such as peripheral neuropathy or cardiac arrhythmia. Although further investigation is warranted to reveal the molecular mechanisms of progression in such diseases, appropriate model systems mimicking the patient-specific communication between neurons and organs are not established yet. In this study, we reconstructed the neuronal network in vitro either between neurons of the human induced pluripotent stem (iPS cell derived peripheral nervous system (PNS and central nervous system (CNS, or between PNS neurons and cardiac cells in a morphologically and functionally compartmentalized manner. Networks were constructed in photolithographically microfabricated devices with two culture compartments connected by 20 microtunnels. We confirmed that PNS and CNS neurons connected via synapses and formed a network. Additionally, calcium-imaging experiments showed that the bundles originating from the PNS neurons were functionally active and responded reproducibly to external stimuli. Next, we confirmed that CNS neurons showed an increase in calcium activity during electrical stimulation of networked bundles from PNS neurons in order to demonstrate the formation of functional cell-cell interactions. We also confirmed the formation of synapses between PNS neurons and mature cardiac cells. These results indicate that compartmentalized culture devices are promising tools for reconstructing network-wide connections between PNS neurons and various organs, and might help to understand patient-specific molecular and functional mechanisms under normal and pathological conditions.

  4. Carbon-14 tracer studies in the metabolism of isolated rat-liver parenchymal cells under conditions of gluconeogenesis from lactate and pyruvate

    International Nuclear Information System (INIS)

    Muellhofer, G.; Mueller, C.; Stetten, C. von; Gruber, E.

    1977-01-01

    In rat liver perfusion experiments under conditions of gluconeogenesis from lactate and pyruvate, 14 C-labeling patterns of metabolites with (1- 14 C)-labeled and (2- 14 C)-labeled lactate or pyruvate. [ 14 C]bicarbonate and [1- 14 C]octanoate as tracers have been obtained which do not agree with generally assumed reaction schemes. The experiments have been repeated with incubations of isolated rat-liver parenchymal cells. The results demonstrate that the discrepancies between expected and analysed 14 C-labeling patterns of metabolites were still existent. From this observation, it may be concluded that 14 C-labelling patterns of metabolites are indicative for the existence of still unknown metabolic relationships in liver parenchymal cells. Furthermore, the results of our experiments prove that conclusions based on the exclusive analysis of metabolite levels are of limited value for studying intracellular events, because of uncharacterized compartmentations, which become evident in 14 C-tracer studies. It cannot be answered by our studies whether the apparent existence of differently labelled species of citrate, oxoglutarate, or acetyl-CoA represent intracellular compartmentation, or whether it is the result of metabolic heterogeneity of liver parenchym cells. (orig.) [de

  5. Molecular Programs Underlying Asymmetric Stem Cell Division and Their Disruption in Malignancy.

    Science.gov (United States)

    Mukherjee, Subhas; Brat, Daniel J

    2017-01-01

    Asymmetric division of stem cells is a highly conserved and tightly regulated process by which a single stem cell produces two unequal daughter cells. One retains its stem cell identity while the other becomes specialized through a differentiation program and loses stem cell properties. Coordinating these events requires control over numerous intra- and extracellular biological processes and signaling networks. In the initial stages, critical events include the compartmentalization of fate determining proteins within the mother cell and their subsequent passage to the appropriate daughter cell in order to direct their destiny. Disturbance of these events results in an altered dynamic of self-renewing and differentiation within the cell population, which is highly relevant to the growth and progression of cancer. Other critical events include proper asymmetric spindle assembly, extrinsic regulation through micro-environmental cues, and non-canonical signaling networks that impact cell division and fate determination. In this review, we discuss mechanisms that maintain the delicate balance of asymmetric cell division in normal tissues and describe the current understanding how some of these mechanisms are deregulated in cancer.

  6. The dynamics of p53 in single cells: physiologically based ODE and reaction–diffusion PDE models

    International Nuclear Information System (INIS)

    Eliaš, Ján; Clairambault, Jean; Dimitrio, Luna; Natalini, Roberto

    2014-01-01

    The intracellular signalling network of the p53 protein plays important roles in genome protection and the control of cell cycle phase transitions. Recently observed oscillatory behaviour in single cells under stress conditions has inspired several research groups to simulate and study the dynamics of the protein with the aim of gaining a proper understanding of the physiological meanings of the oscillations. We propose compartmental ODE and PDE models of p53 activation and regulation in single cells following DNA damage and we show that the p53 oscillations can be retrieved by plainly involving p53–Mdm2 and ATM–p53–Wip1 negative feedbacks, which are sufficient for oscillations experimentally, with no further need to introduce any delays into the protein responses and without considering additional positive feedback. (paper)

  7. Computerized microfluidic cell culture using elastomeric channels and Braille displays.

    Science.gov (United States)

    Gu, Wei; Zhu, Xiaoyue; Futai, Nobuyuki; Cho, Brenda S; Takayama, Shuichi

    2004-11-09

    Computer-controlled microfluidics would advance many types of cellular assays and microscale tissue engineering studies wherever spatiotemporal changes in fluidics need to be defined. However, this goal has been elusive because of the limited availability of integrated, programmable pumps and valves. This paper demonstrates how a refreshable Braille display, with its grid of 320 vertically moving pins, can power integrated pumps and valves through localized deformations of channel networks within elastic silicone rubber. The resulting computerized fluidic control is able to switch among: (i) rapid and efficient mixing between streams, (ii) multiple laminar flows with minimal mixing between streams, and (iii) segmented plug-flow of immiscible fluids within the same channel architecture. The same control method is used to precisely seed cells, compartmentalize them into distinct subpopulations through channel reconfiguration, and culture each cell subpopulation for up to 3 weeks under perfusion. These reliable microscale cell cultures showed gradients of cellular behavior from C2C12 myoblasts along channel lengths, as well as differences in cell density of undifferentiated myoblasts and differentiation patterns, both programmable through different flow rates of serum-containing media. This technology will allow future microscale tissue or cell studies to be more accessible, especially for high-throughput, complex, and long-term experiments. The microfluidic actuation method described is versatile and computer programmable, yet simple, well packaged, and portable enough for personal use.

  8. The effect of sub-lethal damage repair and exchange on the final slope of cell survival curves

    International Nuclear Information System (INIS)

    Carlone, M.C.; Wilkins, D.E.; Raaphorst, G.P.

    2003-01-01

    Full text: The Lea-Catcheside dose rate protraction factor, G, is the most widely used model to describe the effects of dose rate on cell survival. In the linear quadratic formalism, this factor modifies the beta component of cell killing; G is greatest for acute irradiations while vanishing at low dose rates. We have found a simple compartmental model that can derive the Lea-Catcheside function. This compartmental model clearly shows that the G function can only be derived using a little known assumption: the diminution of sub-lethal damage due to exchange of repairable lesions is negligible compared to that due to repair. This assumption was explicitly stated by Lea, but it does not appear to have been restated or verified since very early work on cell survival. The implication of this assumption is that sub-lethal damage can be modeled without considering exchange, which is evidenced by the fact that the G function does not contain parameters relating to exchange. By using a new model that fully accounts for repair and exchange of sublethal lesions, a cell survival expression that has a modified G function, but that retains the linear quadratic formalism, can be obtained. At low doses, this new model predicts linear-quadratic behavior, but the behavior gradually changes to mono-exponential at high doses, which is consistent with experimental observations. Modeling cell survival of well-known survival curves using the modified linear quadratic model shows statistically significant improvement in the fits to the cell survival data as compared to best fits obtained with the linear quadratic model. It is shown that these improvements in fits are due to a superior representation of the high dose region of the survival curve

  9. B cell and T cell immunity in the female genital tract: potential of distinct mucosal routes of vaccination and role of tissue-associated dendritic cells and natural killer cells.

    Science.gov (United States)

    Anjuère, F; Bekri, S; Bihl, F; Braud, V M; Cuburu, N; Czerkinsky, C; Hervouet, C; Luci, C

    2012-10-01

    The female genital mucosa constitutes the major port of entry of sexually transmitted infections. Most genital microbial pathogens represent an enormous challenge for developing vaccines that can induce genital immunity that will prevent their transmission. It is now established that long-lasting protective immunity at mucosal surfaces has to involve local B-cell and T-cell effectors as well as local memory cells. Mucosal immunization constitutes an attractive way to generate systemic and genital B-cell and T-cell immune responses that can control early infection by sexually transmitted pathogens. Nevertheless, no mucosal vaccines against sexually transmitted infections are approved for human use. The mucosa-associated immune system is highly compartmentalized and the selection of any particular route or combinations of routes of immunization is critical when defining vaccine strategies against genital infections. Furthermore, mucosal surfaces are complex immunocompetent tissues that comprise antigen-presenting cells and also innate immune effectors and non-immune cells that can act as 'natural adjuvants' or negative immune modulators. The functions of these cells have to be taken into account when designing tissue-specific antigen-delivery systems and adjuvants. Here, we will discuss data that compare different mucosal routes of immunization to generate B-cell and T-cell responses in the genital tract, with a special emphasis on the newly described sublingual route of immunization. We will also summarize data on the understanding of the effector and induction mechanisms of genital immunity that may influence the development of vaccine strategies against genital infections. © 2012 The Authors. Clinical Microbiology and Infection © 2012 European Society of Clinical Microbiology and Infectious Diseases.

  10. Oral dendritic cells mediate antigen-specific tolerance by stimulating TH1 and regulatory CD4+ T cells.

    Science.gov (United States)

    Mascarell, Laurent; Lombardi, Vincent; Louise, Anne; Saint-Lu, Nathalie; Chabre, Henri; Moussu, Hélène; Betbeder, Didier; Balazuc, Anne-Marie; Van Overtvelt, Laurence; Moingeon, Philippe

    2008-09-01

    A detailed characterization of oral antigen-presenting cells is critical to improve second-generation sublingual allergy vaccines. To characterize oral dendritic cells (DCs) within lingual and buccal tissues from BALB/c mice with respect to their surface phenotype, distribution, and capacity to polarize CD4(+) T-cell responses. In situ analysis of oral DCs was performed by immunohistology. Purified DCs were tested in vitro for their capacity to capture, process, and present the ovalbumin antigen to naive CD4(+) T cells. In vivo priming of ovalbumin-specific T cells adoptively transferred to BALB/c mice was analyzed by cytofluorometry in cervical lymph nodes after sublingual administration of mucoadhesive ovalbumin. Three subsets of oral DCs with a distinct tissue distribution were identified: (1) a minor subset of CD207(+) Langerhans cells located in the mucosa itself, (2) a major subpopulation of CD11b(+)CD11c(-) and CD11b(+)CD11c(+) myeloid DCs at the mucosal/submucosal interface, and (3) B220(+)120G8(+) plasmacytoid DCs found in submucosal tissues. Purified myeloid and plasmacytoid oral DCs capture and process the antigen efficiently and are programmed to elicit IFN-gamma and/or IL-10 production together with a suppressive function in naive CD4(+) T cells. Targeting the ovalbumin antigen to oral DCs in vivo by using mucoadhesive particles establishes tolerance in the absence of cell depletion through the stimulation of IFN-gamma and IL-10-producing CD4(+) regulatory T cells in cervical lymph nodes. The oral immune system is composed of various subsets of tolerogenic DCs organized in a compartmentalized manner and programmed to induce T(H)1/regulatory T-cell responses.

  11. Characterization of the association of radiolabeled bleomycin A2 with HeLa cells

    International Nuclear Information System (INIS)

    Roy, S.N.; Horwitz, S.B.

    1984-01-01

    The association of [ 3 H]bleomycin A2 and Cu(II):[ 3 H]bleomycin A2 with HeLa cells has been characterized. Under the conditions of our experiments, approximately 0.1% of the total drug in the medium associates with HeLa cells. Both forms of the drug bind to HeLa cells in a specific and saturable manner, with a Km of 20 microM and a Vmax of 2.5 pmol/min/10(6) cells. Scatchard analysis of the specific binding data demonstrates a single set of high-affinity binding sites. Cytotoxic activities of both forms of the drug are similar, with a 50% lethal dose of 0.5 microM at 48 hr. The specific binding in HeLa cells of either the labeled metal-free drug or its copper complex is reversible by a 100-fold excess of either unlabeled drug. Interaction of the drug with cells is temperature sensitive but is unaffected by metabolic poisons, suggesting that this process is not energy dependent. Isolation of DNA from HeLa cells incubated with the drug indicates that 1 mol of either [ 3 H]bleomycin A2 or Cu(II):[ 3 H]bleomycin A2 binds per 10(8) nucleotides. Further studies with the radiolabeled drug are required to define precisely the mechanisms involved in bleomycin uptake and compartmentalization within the cell

  12. Membrane potential and ion transport in lung epithelial type II cells

    International Nuclear Information System (INIS)

    Gallo, R.L.

    1986-01-01

    The alveolar type II pneumocyte is critically important to the function and maintenance of pulmonary epithelium. To investigate the nature of the response of type II cells to membrane injury, and describe a possible mechanism by which these cells regulate surfactant secretion, the membrane potential of isolated rabbit type II cells was characterized. This evaluation was accomplished by measurements of the accumulation of the membrane potential probes: [ 3 H]triphenylmethylphosphonium ([ 3 H]TPMP + ), rubidium 86, and the fluorescent dye DiOC 5 . A compartmental analysis of probe uptake into mitochondrial, cytoplasmic, and non-membrane potential dependent stores was made through the use of selective membrane depolarizations with carbonycyanide M-chlorophenylhydrazone (CCCP), and lysophosphatidylcholine (LPC). These techniques and population analysis with flow cytometry, permitted the accurate evaluation of type II cell membrane potential under control conditions and under conditions which stimulated cell activity. Further analysis of ion transport by cells exposed to radiation or adrenergic stimulation revealed a common increase in Na + /K + ATPase activity, and an increase in sodium influx across the plasma membrane. This sodium influx was found to be a critical step in the initiation of surfactant secretion. It is concluded that radiation exposure as well as other pulmonary toxicants can directly affect the membrane potential and ionic regulation of type II cells. Ion transport, particularly of sodium, plays an important role in the regulation of type II cell function

  13. Characterization of CD8+ T-Cell Responses in the Peripheral Blood and Skin Injection Sites of Melanoma Patients Treated with mRNA Electroporated Autologous Dendritic Cells (TriMixDC-MEL

    Directory of Open Access Journals (Sweden)

    Daphné Benteyn

    2013-01-01

    Full Text Available Treatment of melanoma patients with mRNA electroporated dendritic cells (TriMixDC-MEL stimulates T-cell responses against the presented tumor-associated antigens (TAAs. In the current clinical trials, melanoma patients with systemic metastases are treated, requiring priming and/or expansion of preexisting TAA-specific T cells that are able to migrate to both the skin and internal organs. We monitored the presence of TAA-specific CD8+ T cells infiltrating the skin at sites of intradermal TriMixDC-MEL injection (SKILs and within the circulation of melanoma patients treated in two clinical trials. In 10 out of fourteen (71% patients screened, CD8+ T cells recognizing any of the four TAA presented by TriMixDC-MEL cellular vaccine were found in both compartments. In total, 30 TAA-specific T-cell responses were detected among the SKILs and 29 among peripheral blood T cells, of which 24 in common. A detailed characterization of the antigen specificity of CD8+ T-cell populations in four patients indicates that the majority of the epitopes detected were only recognized by CD8+ T cells derived from either skin biopsies or peripheral blood, indicating that some compartmentalization occurs after TriMix-DC therapy. To conclude, functional TAA-specific CD8+ T cells distribute both to the skin and peripheral blood of patients after TriMixDC-MEL therapy.

  14. Characterization of CD8+ T-cell responses in the peripheral blood and skin injection sites of melanoma patients treated with mRNA electroporated autologous dendritic cells (TriMixDC-MEL).

    Science.gov (United States)

    Benteyn, Daphné; Van Nuffel, An M T; Wilgenhof, Sofie; Corthals, Jurgen; Heirman, Carlo; Neyns, Bart; Thielemans, Kris; Bonehill, Aude

    2013-01-01

    Treatment of melanoma patients with mRNA electroporated dendritic cells (TriMixDC-MEL) stimulates T-cell responses against the presented tumor-associated antigens (TAAs). In the current clinical trials, melanoma patients with systemic metastases are treated, requiring priming and/or expansion of preexisting TAA-specific T cells that are able to migrate to both the skin and internal organs. We monitored the presence of TAA-specific CD8(+) T cells infiltrating the skin at sites of intradermal TriMixDC-MEL injection (SKILs) and within the circulation of melanoma patients treated in two clinical trials. In 10 out of fourteen (71%) patients screened, CD8(+) T cells recognizing any of the four TAA presented by TriMixDC-MEL cellular vaccine were found in both compartments. In total, 30 TAA-specific T-cell responses were detected among the SKILs and 29 among peripheral blood T cells, of which 24 in common. A detailed characterization of the antigen specificity of CD8(+) T-cell populations in four patients indicates that the majority of the epitopes detected were only recognized by CD8(+) T cells derived from either skin biopsies or peripheral blood, indicating that some compartmentalization occurs after TriMix-DC therapy. To conclude, functional TAA-specific CD8(+) T cells distribute both to the skin and peripheral blood of patients after TriMixDC-MEL therapy.

  15. Development of droplets‐based microfluidic systems for single­‐cell high‐throughput screening

    DEFF Research Database (Denmark)

    Chen, Jun; Jensen, Thomas Glasdam; Godina, Alexei

    2014-01-01

    High-throughput screening (HTS) plays an important role in the development of microbial cell factories. One of the most popular approaches is to use microplates combined with the application of robotics, liquid handling and sophisticated detection methods. However, these workstations require large...... investment, and a logarithmic increase to screen large combinatorial libraries over the decades also makes it gradually out of depth. Here, we are trying to develop a feasible high‐throughput system that uses microfluidics to compartmentalize a single cell for propagation and analysis in monodisperse...... picoliter aqueous droplets surround by an immiscible fluorinated oil phase. Our aim is to use this system to facilitate the screening process for both the biotechnology and food industry....

  16. Spatially Controlled Delivery of siRNAs to Stem Cells in Implants Generated by Multi-Component Additive Manufacturing

    DEFF Research Database (Denmark)

    Andersen, Morten Østergaard; Le, Dang Quang Svend; Chen, Muwan

    2013-01-01

    Additive manufacturing is a promising technique in tissue engineering, as it enables truly individualized implants to be made to fit a particular defect. As previously shown, a feasible strategy to produce complex multicellular tissues is to deposit different small interfering RNA (siRNA) in porous...... implants that are subsequently sutured together. In this study, an additive manufacturing strategy to deposit carbohydrate hydrogels containing different siRNAs is applied into an implant, in a spatially controlled manner. When the obtained structures are seeded with mesenchymal stem (stromal) cells......, the selected siRNAs are delivered to the cells and induces specific and localized gene silencing. Here, it is demonstrated how to replicate part of a patient's spinal cord from a computed tomography scan, using an additive manufacturing technique to produce an implant with compartmentalized si...

  17. Stem Cells

    Science.gov (United States)

    Stem cells are cells with the potential to develop into many different types of cells in the body. ... the body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...

  18. Tetraspanin-enriched microdomains: a functional unit in cell plasma membranes.

    Science.gov (United States)

    Yáñez-Mó, María; Barreiro, Olga; Gordon-Alonso, Mónica; Sala-Valdés, Mónica; Sánchez-Madrid, Francisco

    2009-09-01

    Membrane lipids and proteins are non-randomly distributed and are unable to diffuse freely in the plane of the membrane. This is because of multiple constraints imposed both by the cortical cytoskeleton and by the preference of lipids and proteins to cluster into diverse and specialized membrane domains, including tetraspanin-enriched microdomains, glycosylphosphatidyl inositol-linked proteins nanodomains and caveolae, among others. Recent biophysical characterization of tetraspanin-enriched microdomains suggests that they might be specially suited for the regulation of avidity of adhesion receptors and the compartmentalization of enzymatic activities. Moreover, modulation by tetraspanins of the function of adhesion receptors involved in inflammation, lymphocyte activation, cancer and pathogen infection suggests potential as therapeutic targets. This review explores this emerging picture of tetraspanin microdomains and discusses the implications for cell adhesion, proteolysis and pathogenesis.

  19. Multiple modes of action potential initiation and propagation in mitral cell primary dendrite

    DEFF Research Database (Denmark)

    Chen, Wei R; Shen, Gongyu Y; Shepherd, Gordon M

    2002-01-01

    recordings with computational modeling to analyze action-potential initiation and propagation in the primary dendrite. In response to depolarizing current injection or distal olfactory nerve input, fast Na(+) action potentials were recorded along the entire length of the primary dendritic trunk. With weak......-to-moderate olfactory nerve input, an action potential was initiated near the soma and then back-propagated into the primary dendrite. As olfactory nerve input increased, the initiation site suddenly shifted to the distal primary dendrite. Multi-compartmental modeling indicated that this abrupt shift of the spike......-initiation site reflected an independent thresholding mechanism in the distal dendrite. When strong olfactory nerve excitation was paired with strong inhibition to the mitral cell basal secondary dendrites, a small fast prepotential was recorded at the soma, which indicated that an action potential was initiated...

  20. Intrinsic bursting of AII amacrine cells underlies oscillations in the rd1 mouse retina.

    Science.gov (United States)

    Choi, Hannah; Zhang, Lei; Cembrowski, Mark S; Sabottke, Carl F; Markowitz, Alexander L; Butts, Daniel A; Kath, William L; Singer, Joshua H; Riecke, Hermann

    2014-09-15

    In many forms of retinal degeneration, photoreceptors die but inner retinal circuits remain intact. In the rd1 mouse, an established model for blinding retinal diseases, spontaneous activity in the coupled network of AII amacrine and ON cone bipolar cells leads to rhythmic bursting of ganglion cells. Since such activity could impair retinal and/or cortical responses to restored photoreceptor function, understanding its nature is important for developing treatments of retinal pathologies. Here we analyzed a compartmental model of the wild-type mouse AII amacrine cell to predict that the cell's intrinsic membrane properties, specifically, interacting fast Na and slow, M-type K conductances, would allow its membrane potential to oscillate when light-evoked excitatory synaptic inputs were withdrawn following photoreceptor degeneration. We tested and confirmed this hypothesis experimentally by recording from AIIs in a slice preparation of rd1 retina. Additionally, recordings from ganglion cells in a whole mount preparation of rd1 retina demonstrated that activity in AIIs was propagated unchanged to elicit bursts of action potentials in ganglion cells. We conclude that oscillations are not an emergent property of a degenerated retinal network. Rather, they arise largely from the intrinsic properties of a single retinal interneuron, the AII amacrine cell. Copyright © 2014 the American Physiological Society.

  1. The development of primary and secondary lymphoid tissues in the nurse shark Ginglymostoma cirratum: B-cell zones precede dendritic cell immigration and T-cell zone formation during ontogeny of the spleen.

    Science.gov (United States)

    Rumfelt, L L; McKinney, E C; Taylor, E; Flajnik, M F

    2002-08-01

    Secondary lymphoid tissue and immunoglobulin (Ig) production in mammals is not fully developed at birth, requiring time postnatally to attain all features required for adaptive immune responses. The immune system of newborn sharks - the oldest vertebrate group having adaptive immunity - also displays immature characteristics such as low serum IgM concentration and high levels of IgM1gj, an innate-like Ig. Primary and secondary lymphoid tissues in sharks and other cartilaginous fish were identified previously, but their cellular organization was not examined in detail. In this study of nurse shark lymphoid tissue, we demonstrate that the adult spleen contains well-defined, highly vascularized white pulp (WP) areas, composed of a central T-cell zone containing a major histocompatibility complex (MHC) class II+ dendritic cell (DC) network and a small number of Ig+ secretory cells, surrounded by smaller zones of surface Ig+ (sIg+) B cells. In neonates, splenic WPs are exclusively B-cell zones containing sIgM+-MHC class IIlow B cells; thus compartmentalized areas with T cells and DCs, as well as surface Ig novel antigen receptor (sIgNAR)-expressing B cells are absent at birth. Not until the pups are 5 months old do these WP areas become adult-like; concomitantly, sIgNAR+ B cells are readily detectable, indicating that this Ig class requires a 'mature immune-responsive environment'. The epigonal organ is the major site of neonatal B lymphopoiesis, based on the presence of developing B cells and recombination-activating gene 1 (RAG1)/terminal deoxynucleotidyl transferase (TdT) expression, indicative of antigen receptor rearrangement; such expression persists into adult life, whereas the spleen has negligible lymphopoietic activity. In adults but not neonates, many secretory B cells reside in the epigonal organ, suggesting, like in mammals, that B cells home to this primary lymphoid tissue after activation in other areas of the body.

  2. Lipid raft involvement in yeast cell growth and death

    Energy Technology Data Exchange (ETDEWEB)

    Mollinedo, Faustino, E-mail: fmollin@usal.es [Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas - Universidad de Salamanca, Salamanca (Spain)

    2012-10-10

    The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Cryptococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na{sup +}, K{sup +}, and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.

  3. Lipid raft involvement in yeast cell growth and death

    International Nuclear Information System (INIS)

    Mollinedo, Faustino

    2012-01-01

    The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Cryptococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na + , K + , and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.

  4. Dynamic FDG-PET Imaging to Differentiate Malignancies from Inflammation in Subcutaneous and In Situ Mouse Model for Non-Small Cell Lung Carcinoma (NSCLC).

    Science.gov (United States)

    Yang, Zhen; Zan, Yunlong; Zheng, Xiujuan; Hai, Wangxi; Chen, Kewei; Huang, Qiu; Xu, Yuhong; Peng, Jinliang

    2015-01-01

    [18F]fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) has been widely used in oncologic procedures such as tumor diagnosis and staging. However, false-positive rates have been high, unacceptable and mainly caused by inflammatory lesions. Misinterpretations take place especially when non-subcutaneous inflammations appear at the tumor site, for instance in the lung. The aim of the current study is to evaluate the use of dynamic PET imaging procedure to differentiate in situ and subcutaneous non-small cell lung carcinoma (NSCLC) from inflammation, and estimate the kinetics of inflammations in various locations. Dynamic FDG-PET was performed on 33 female mice inoculated with tumor and/or inflammation subcutaneously or inside the lung. Standardized Uptake Values (SUVs) from static imaging (SUVmax) as well as values of influx rate constant (Ki) of compartmental modeling from dynamic imaging were obtained. Static and kinetic data from different lesions (tumor and inflammations) or different locations (subcutaneous, in situ and spontaneous group) were compared. Values of SUVmax showed significant difference in subcutaneous tumor and inflammation (pPET based SUVmax, both subcutaneous and in situ inflammations and malignancies can be differentiated via dynamic FDG-PET based Ki. Moreover, Values of influx rate constant Ki from compartmental modeling can offer an assessment for inflammations at different locations of the body, which also implies further validation is necessary before the replacement of in situ inflammation with its subcutaneous counterpart in animal experiments.

  5. Splenectomy alters distribution and turnover but not numbers or protective capacity of de novo generated memory CD8 T cells.

    Directory of Open Access Journals (Sweden)

    Marie eKim

    2014-11-01

    Full Text Available The spleen is a highly compartmentalized lymphoid organ that allows for efficient antigen presentation and activation of immune responses. Additionally, the spleen itself functions to remove senescent red blood cells, filter bacteria, and sequester platelets. Splenectomy, commonly performed after blunt force trauma or splenomegaly, has been shown to increase risk of certain bacterial and parasitic infections years after removal of the spleen. Although previous studies report defects in memory B cells and IgM titers in splenectomized patients, the effect of splenectomy on CD8 T cell responses and memory CD8 T cell function remains ill defined. Using TCR-transgenic P14 cells, we demonstrate that homeostatic proliferation and representation of pathogen-specific memory CD8 T cells in the blood are enhanced in splenectomized compared to sham surgery mice. Surprisingly, despite the enhanced turnover, splenectomized mice displayed no changes in total memory CD8 T cell numbers nor impaired protection against lethal dose challenge with Listeria monocytogenes. Thus, our data suggest that memory CD8 T cell maintenance and function remain intact in the absence of the spleen.

  6. An overview of techniques for the measurement of calcium distribution, calcium fluxes, and cytosolic free calcium in mammalian cells

    International Nuclear Information System (INIS)

    Borle, A.B.

    1990-01-01

    An array of techniques can be used to study cell calcium metabolism that comprises several calcium compartments and many types of transport systems such as ion channels, ATP-dependent pumps, and antiporters. The measurement of total call calcium brings little information of value since 60 to 80% of total cell calcium is actually bound to the extracellular glycocalyx. Cell fractionation and differential centrifugation have been used to study intracellular Ca 2+ compartmentalization, but the methods suffer from the possibility of Ca 2+ loss or redistribution among cell fractions. Steady-state kinetic analyses of 45 Ca uptake or desaturation curves have been used to study the distribution of Ca 2+ among various kinetic pools in living cells and their rate of Ca 2+ exchange, but the analyses are constrained by many limitations. Nonsteady-state tracer studies can provide information about rapid changes in calcium influx or efflux in and out of the cell. Zero-time kinetics of 45 Ca uptake can detect instantaneous changes in calcium influx, while 45 Ca fractional efflux ratio, can detect rapid stimulations or inhibitions of calcium efflux out of cells. The best strategy to study cell calcium metabolism is to use several different methods that focus on a specific problem from widely different angles

  7. Regional control of Drosophila gut stem cell proliferation: EGF establishes GSSC proliferative set point & controls emergence from quiescence.

    Science.gov (United States)

    Strand, Marie; Micchelli, Craig A

    2013-01-01

    Adult stem cells vary widely in their rates of proliferation. Some stem cells are constitutively active, while others divide only in response to injury. The mechanism controlling this differential proliferative set point is not well understood. The anterior-posterior (A/P) axis of the adult Drosophila midgut has a segmental organization, displaying physiological compartmentalization and region-specific epithelia. These distinct midgut regions are maintained by defined stem cell populations with unique division schedules, providing an excellent experimental model with which to investigate this question. Here, we focus on the quiescent gastric stem cells (GSSCs) of the acidic copper cell region (CCR), which exhibit the greatest period of latency between divisions of all characterized gut stem cells, to define the molecular basis of differential stem cell activity. Our molecular genetic analysis demonstrates that the mitogenic EGF signaling pathway is a limiting factor controlling GSSC proliferation. We find that under baseline conditions, when GSSCs are largely quiescent, the lowest levels of EGF ligands in the midgut are found in the CCR. However, acute epithelial injury by enteric pathogens leads to an increase in EGF ligand expression in the CCR and rapid expansion of the GSSC lineage. Thus, the unique proliferative set points for gut stem cells residing in physiologically distinct compartments are governed by regional control of niche signals along the A/P axis.

  8. Regional control of Drosophila gut stem cell proliferation: EGF establishes GSSC proliferative set point & controls emergence from quiescence.

    Directory of Open Access Journals (Sweden)

    Marie Strand

    Full Text Available Adult stem cells vary widely in their rates of proliferation. Some stem cells are constitutively active, while others divide only in response to injury. The mechanism controlling this differential proliferative set point is not well understood. The anterior-posterior (A/P axis of the adult Drosophila midgut has a segmental organization, displaying physiological compartmentalization and region-specific epithelia. These distinct midgut regions are maintained by defined stem cell populations with unique division schedules, providing an excellent experimental model with which to investigate this question. Here, we focus on the quiescent gastric stem cells (GSSCs of the acidic copper cell region (CCR, which exhibit the greatest period of latency between divisions of all characterized gut stem cells, to define the molecular basis of differential stem cell activity. Our molecular genetic analysis demonstrates that the mitogenic EGF signaling pathway is a limiting factor controlling GSSC proliferation. We find that under baseline conditions, when GSSCs are largely quiescent, the lowest levels of EGF ligands in the midgut are found in the CCR. However, acute epithelial injury by enteric pathogens leads to an increase in EGF ligand expression in the CCR and rapid expansion of the GSSC lineage. Thus, the unique proliferative set points for gut stem cells residing in physiologically distinct compartments are governed by regional control of niche signals along the A/P axis.

  9. Lyophilized kits of diamino dithiol compounds for labelling with {sup 99m}-technetium. Pharmacokinetics studies and distribution compartmental models of the related complexes; Conjuntos de reativos liofilizados de compostos diaminoditiolicos para marcacao com tecnecio-99m. Estudo farmacocinetico e elaboracao de modelos compartimentalizados dos respectivos complexos

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Elaine Bortoleti de

    1995-07-01

    The present work reflects the clinical interest for labelling diamino dithiol compounds with technetium-99m. Both chosen compounds, L,L-Ethylene dicysteine (L,L-EC) and L,L-Ethylene dicysteine diethyl esther (L,L-ECD) were obtained with relative good yield and characterized by IR and NMR. The study of labelling conditions with technetium-99m showed the influence of the type and mass of reducing agent as well as the pH on the formation of complexes with desired biological characteristics. Radiochemical purity was determined by thin layer chromatography (TLC) and high performance liquid chromatography (HPLC). Lyophilised kits of L,L-EC and L,L-ECD for labelling with {sup 99m}Tc were obtained, with stability superior to 120 days, when stored under refrigeration, enabling the kits marketing. The ideal formulation of the kits as well as the use of liquid nitrogen in the freezing process, determined the lyophilization success. Distribution biological studies of the {sup 99m}Tc complexes were performed on mice by invasive method and on bigger animals by scintigraphic evaluation. Biological distribution studies of the complex {sup 99m}Tc-L,L-EC showed fast blood clearance, with the elimination of about 90% of the administered dose after 60 minutes, almost exclusively by the urinary system. The biological distribution results were adjusted to a three compartmental distribution model, as expected for a radiopharmaceutical designed to renal dynamic studies, with tubular elimination. The complex interaction with renal tubular receptors is related with structural characteristics of the compound, more specifically with the presence and location of polar groups. In comparison with {sup 99m}Tc-L,L-EC, biological studies of the complex {sup 99m}Tc -L,L-ECD showed different distribution aspects, despite some structural similarities. The presence of ethyl groups confers to the complex neutrality and lipophilicity. It cross the intact blood brain barrier and is retained in the brain

  10. Functional Interactions Between Early Biopolymers and Primitive Cells

    Science.gov (United States)

    Heili, J.; Gaut, N.; Han, Q.; Gomez-Garcia, J.; Szostak, J. W.; Adamala, K. P.; Engelhart, A. E.

    2017-07-01

    Recently, we have demonstrated that compartmentalized biomolecules exhibit functional behaviors not observed in bulk solution. We suggest that numerous synthetic and regulatory processes might have been enabled by membrane-biomolecule interactions.

  11. Cell-to-Cell Communication Circuits: Quantitative Analysis of Synthetic Logic Gates

    Science.gov (United States)

    Hoffman-Sommer, Marta; Supady, Adriana; Klipp, Edda

    2012-01-01

    One of the goals in the field of synthetic biology is the construction of cellular computation devices that could function in a manner similar to electronic circuits. To this end, attempts are made to create biological systems that function as logic gates. In this work we present a theoretical quantitative analysis of a synthetic cellular logic-gates system, which has been implemented in cells of the yeast Saccharomyces cerevisiae (Regot et al., 2011). It exploits endogenous MAP kinase signaling pathways. The novelty of the system lies in the compartmentalization of the circuit where all basic logic gates are implemented in independent single cells that can then be cultured together to perform complex logic functions. We have constructed kinetic models of the multicellular IDENTITY, NOT, OR, and IMPLIES logic gates, using both deterministic and stochastic frameworks. All necessary model parameters are taken from literature or estimated based on published kinetic data, in such a way that the resulting models correctly capture important dynamic features of the included mitogen-activated protein kinase pathways. We analyze the models in terms of parameter sensitivity and we discuss possible ways of optimizing the system, e.g., by tuning the culture density. We apply a stochastic modeling approach, which simulates the behavior of whole populations of cells and allows us to investigate the noise generated in the system; we find that the gene expression units are the major sources of noise. Finally, the model is used for the design of system modifications: we show how the current system could be transformed to operate on three discrete values. PMID:22934039

  12. Isolation of circulating tumor cells using photoacoustic flowmetry and two phase flow

    Science.gov (United States)

    O'Brien, Christine M.; Rood, Kyle D.; Gupta, Sagar K.; Mosley, Jeffrey D.; Goldschmidt, Benjamin S.; Sharma, Nikhilesh; Sengupta, Shramik; Viator, John A.

    2011-03-01

    Melanoma is the deadliest form of skin cancer, yet current diagnostic methods are inadequately sensitive. Patients must wait until secondary tumors form before malignancy can be diagnosed and treatment prescribed. Detection of cells that have broken off the original tumor and flow through the blood or lymph system can provide data for diagnosing and monitoring cancer. Our group utilizes the photoacoustic effect to detect metastatic melanoma cells, which contain the pigmented granule melanin. As a rapid laser pulse irradiates melanoma, the melanin undergoes thermo-elastic expansion and ultimately creates a photoacoustic wave. Thus, melanoma patient's blood samples can be enriched, leaving the melanoma in a white blood cell (WBC) suspension. Irradiated melanoma cells produce photoacoustic waves, which are detected with a piezoelectric transducer, while the optically transparent WBCs create no signals. Here we report an isolation scheme utilizing two-phase flow to separate detected melanoma from the suspension. By introducing two immiscible fluids through a t-junction into one flow path, the analytes are compartmentalized. Therefore, the slug in which the melanoma cell is located can be identified and extracted from the system. Two-phase immiscible flow is a label free technique, and could be used for other types of pathological analytes.

  13. Tetraspanins and Transmembrane Adaptor Proteins As Plasma Membrane Organizers-Mast Cell Case.

    Science.gov (United States)

    Halova, Ivana; Draber, Petr

    2016-01-01

    The plasma membrane contains diverse and specialized membrane domains, which include tetraspanin-enriched domains (TEMs) and transmembrane adaptor protein (TRAP)-enriched domains. Recent biophysical, microscopic, and functional studies indicated that TEMs and TRAP-enriched domains are involved in compartmentalization of physicochemical events of such important processes as immunoreceptor signal transduction and chemotaxis. Moreover, there is evidence of a cross-talk between TEMs and TRAP-enriched domains. In this review we discuss the presence and function of such domains and their crosstalk using mast cells as a model. The combined data based on analysis of selected mast cell-expressed tetraspanins [cluster of differentiation (CD)9, CD53, CD63, CD81, CD151)] or TRAPs [linker for activation of T cells (LAT), non-T cell activation linker (NTAL), and phosphoprotein associated with glycosphingolipid-enriched membrane microdomains (PAG)] using knockout mice or specific antibodies point to a diversity within these two families and bring evidence of the important roles of these molecules in signaling events. An example of this diversity is physical separation of two TRAPs, LAT and NTAL, which are in many aspects similar but show plasma membrane location in different microdomains in both non-activated and activated cells. Although our understanding of TEMs and TRAP-enriched domains is far from complete, pharmaceutical applications of the knowledge about these domains are under way.

  14. Tetraspanins and Transmembrane Adaptor Proteins as Plasma Membrane Organizers – Mast Cell Case

    Directory of Open Access Journals (Sweden)

    Ivana eHalova

    2016-05-01

    Full Text Available The plasma membrane contains diverse and specialized membrane domains, which include tetraspanin-enriched domains (TEMs and transmembrane adaptor protein (TRAP-enriched domains. Recent biophysical, microscopic and functional studies indicated that TEMs and TRAP-enriched domains are involved in compartmentalization of physicochemical events of such important processes as immunoreceptor signal transduction and chemotaxis. Moreover, there is evidence of a cross-talk between TEMs and TRAP-enriched domains. In this review we discuss the presence and function of such domains and their crosstalk using mast cells as a model. The combined data based on analysis of selected mast cell-expressed tetraspanins [cluster of differentiation (CD9, CD53, CD63, CD81, CD151] or TRAPs [linker for activation of T cells (LAT, non-T cell activation linker (NTAL, and phosphoprotein associated with glycosphingolipid-enriched membrane microdomains (PAG] using knockout mice or specific antibodies point to a diversity within these two families and bring evidence of the important roles of these molecules in signaling events. An example of this diversity is physical separation of two TRAPs, LAT and NTAL, which are in many aspects similar but show plasma membrane location in different microdomains in both non-activated and activated cells. Although our understanding of TEMs and TRAP-enriched domains is far from complete, pharmaceutical applications of the knowledge about these domains are under way.

  15. Alkaline elution of DNA from mammalian cells on cellulose triacetate filters

    International Nuclear Information System (INIS)

    Moss, A.J. Jr.; Nagle, W.A.; Henle, K.J.; Prior, R.M.

    1984-01-01

    The alkaline elution technique is widely used for the estimation of cellular DNA damage because of its sensitivity in the biologically relevant dose range. The authors have extended the original studies and provide additional characterization of the cellulose triacetate alkaline elution method. This filter material permits the elution of approximately 80 percent of cellular DNA from untreated V79 cells. the total radioactivity in the system was compartmentalized with respect to 1) lysing solution, 2) washing solution, 3) elution fractions, and 4) membrane retained activity. In these studies [/sup 3/H]-thymidine labeled untreated internal control cells were co-eluted with X-irradiated [/sup 14/C]-thymidine labeled cells. For the estimation of DNA damage, elution profiles for treated cells were directly compared with untreated internal control cells. The quantity of DNA eluting in excess of the labeled internal control per fraction is directly proportional to the extent of DNA damage in the treated sample. Using the technique the necessity of an irradiated internal control is eliminated

  16. ImaEdge - a platform for quantitative analysis of the spatiotemporal dynamics of cortical proteins during cell polarization.

    Science.gov (United States)

    Zhang, Zhen; Lim, Yen Wei; Zhao, Peng; Kanchanawong, Pakorn; Motegi, Fumio

    2017-12-15

    Cell polarity involves the compartmentalization of the cell cortex. The establishment of cortical compartments arises from the spatial bias in the activity and concentration of cortical proteins. The mechanistic dissection of cell polarity requires the accurate detection of dynamic changes in cortical proteins, but the fluctuations of cell shape and the inhomogeneous distributions of cortical proteins greatly complicate the quantitative extraction of their global and local changes during cell polarization. To address these problems, we introduce an open-source software package, ImaEdge, which automates the segmentation of the cortex from time-lapse movies, and enables quantitative extraction of cortical protein intensities. We demonstrate that ImaEdge enables efficient and rigorous analysis of the dynamic evolution of cortical PAR proteins during Caenorhabditis elegans embryogenesis. It is also capable of accurate tracking of varying levels of transgene expression and discontinuous signals of the actomyosin cytoskeleton during multiple rounds of cell division. ImaEdge provides a unique resource for quantitative studies of cortical polarization, with the potential for application to many types of polarized cells.This article has an associated First Person interview with the first authors of the paper. © 2017. Published by The Company of Biologists Ltd.

  17. A cellular Potts model for the MMP-dependent and -independent cancer cell migration in matrix microtracks of different dimensions

    Science.gov (United States)

    Scianna, Marco; Preziosi, Luigi

    2014-03-01

    Cell migration is fundamental in a wide variety of physiological and pathological phenomena, among other in cancer invasion and development. In particular, the migratory/invasive capability of single metastatic cells is fundamental in determining the malignancy of a solid tumor. Specific cell migration phenotypes result for instance from the reciprocal interplay between the biophysical and biochemical properties of both the malignant cells themselves and of the surrounding environment. In particular, the extracellular matrices (ECMs) forming connective tissues can provide both loosely organized zones and densely packed barriers, which may impact cell invasion mode and efficiency. The critical processes involved in cell movement within confined spaces are (i) the proteolytic activity of matrix metalloproteinases (MMPs) and (ii) the deformation of the entire cell body, and in particular of the nucleus. We here present an extended cellular Potts model (CPM) to simulate a bio-engineered matrix system, which tests the active motile behavior of a single cancer cell into narrow channels of different widths. As distinct features of our approach, the cell is modeled as a compartmentalized discrete element, differentiated in the nucleus and in the cytosolic region, while a directional shape-dependent movement is explicitly driven by the evolution of its polarity vector. As outcomes, we find that, in a large track, the tumor cell is not able to maintain a directional movement. On the contrary, a structure of subcellular width behaves as a contact guidance sustaining cell persistent locomotion. In particular, a MMP-deprived cell is able to repolarize and follow the micropattern geometry, while a full MMP activity leads to a secondary track expansion by degrading the matrix structure. Finally, we confirm that cell movement within a subnuclear structure can be achieved either by pericellular proteolysis or by a significant deformation of cell nucleus.

  18. The Activity of the Neutral Sphingomyelinase Is Important in T Cell Recruitment and Directional Migration

    Directory of Open Access Journals (Sweden)

    Lena Collenburg

    2017-08-01

    Full Text Available Breakdown of sphingomyelin as catalyzed by the activity of sphingomyelinases profoundly affects biophysical properties of cellular membranes which is particularly important with regard to compartmentalization of surface receptors and their signaling relay. As it is activated both upon TCR ligation and co-stimulation in a spatiotemporally controlled manner, the neutral sphingomyelinase (NSM has proven to be important in T cell activation, where it appears to play a particularly important role in cytoskeletal reorganization and cell polarization. Because these are important parameters in directional T cell migration and motility in tissues, we analyzed the role of the NSM in these processes. Pharmacological inhibition of NSM interfered with early lymph node homing of T cells in vivo indicating that the enzyme impacts on endothelial adhesion, transendothelial migration, sensing of chemokine gradients or, at a cellular level, acquisition of a polarized phenotype. NSM inhibition reduced adhesion of T cells to TNF-α/IFN-γ activated, but not resting endothelial cells, most likely via inhibiting high-affinity LFA-1 clustering. NSM activity proved to be highly important in directional T cell motility in response to SDF1-α, indicating that their ability to sense and translate chemokine gradients might be NSM dependent. In fact, pharmacological or genetic NSM ablation interfered with T cell polarization both at an overall morphological level and redistribution of CXCR4 and pERM proteins on endothelial cells or fibronectin, as well as with F-actin polymerization in response to SDF1-α stimulation, indicating that efficient directional perception and signaling relay depend on NSM activity. Altogether, these data support a central role of the NSM in T cell recruitment and migration both under homeostatic and inflamed conditions by regulating polarized redistribution of receptors and their coupling to the cytoskeleton.

  19. Self-renewing Monolayer of Primary Colonic or Rectal Epithelial CellsSummary

    Directory of Open Access Journals (Sweden)

    Yuli Wang

    2017-07-01

    Full Text Available Background & Aims: Three-dimensional organoid culture has fundamentally changed the in vitro study of intestinal biology enabling novel assays; however, its use is limited because of an inaccessible luminal compartment and challenges to data gathering in a three-dimensional hydrogel matrix. Long-lived, self-renewing 2-dimensional (2-D tissue cultured from primary colon cells has not been accomplished. Methods: The surface matrix and chemical factors that sustain 2-D mouse colonic and human rectal epithelial cell monolayers with cell repertoires comparable to that in vivo were identified. Results: The monolayers formed organoids or colonoids when placed in standard Matrigel culture. As with the colonoids, the monolayers exhibited compartmentalization of proliferative and differentiated cells, with proliferative cells located near the peripheral edges of growing monolayers and differentiated cells predominated in the central regions. Screening of 77 dietary compounds and metabolites revealed altered proliferation or differentiation of the murine colonic epithelium. When exposed to a subset of the compound library, murine organoids exhibited similar responses to that of the monolayer but with differences that were likely attributable to the inaccessible organoid lumen. The response of the human primary epithelium to a compound subset was distinct from that of both the murine primary epithelium and human tumor cells. Conclusions: This study demonstrates that a self-renewing 2-D murine and human monolayer derived from primary cells can serve as a physiologically relevant assay system for study of stem cell renewal and differentiation and for compound screening. The platform holds transformative potential for personalized and precision medicine and can be applied to emerging areas of disease modeling and microbiome studies. Keywords: Colonic Epithelial Cells, Monolayer, Organoids, Compound Screening

  20. Blood CXCR3+ CD4 T Cells Are Enriched in Inducible Replication Competent HIV in Aviremic Antiretroviral Therapy-Treated Individuals.

    Science.gov (United States)

    Banga, Riddhima; Procopio, Francesco A; Ruggiero, Alessandra; Noto, Alessandra; Ohmiti, Khalid; Cavassini, Matthias; Corpataux, Jean-Marc; Paxton, William A; Pollakis, Georgios; Perreau, Matthieu

    2018-01-01

    We recently demonstrated that lymph nodes (LNs) PD-1 + /T follicular helper (Tfh) cells from antiretroviral therapy (ART)-treated HIV-infected individuals were enriched in cells containing replication competent virus. However, the distribution of cells containing inducible replication competent virus has been only partially elucidated in blood memory CD4 T-cell populations including the Tfh cell counterpart circulating in blood (cTfh). In this context, we have investigated the distribution of (1) total HIV-infected cells and (2) cells containing replication competent and infectious virus within various blood and LN memory CD4 T-cell populations of conventional antiretroviral therapy (cART)-treated HIV-infected individuals. In the present study, we show that blood CXCR3-expressing memory CD4 T cells are enriched in cells containing inducible replication competent virus and contributed the most to the total pool of cells containing replication competent and infectious virus in blood. Interestingly, subsequent proviral sequence analysis did not indicate virus compartmentalization between blood and LN CD4 T-cell populations, suggesting dynamic interchanges between the two compartments. We then investigated whether the composition of blood HIV reservoir may reflect the polarization of LN CD4 T cells at the time of reservoir seeding and showed that LN PD-1 + CD4 T cells of viremic untreated HIV-infected individuals expressed significantly higher levels of CXCR3 as compared to CCR4 and/or CCR6, suggesting that blood CXCR3-expressing CD4 T cells may originate from LN PD-1 + CD4 T cells. Taken together, these results indicate that blood CXCR3-expressing CD4 T cells represent the major blood compartment containing inducible replication competent virus in treated aviremic HIV-infected individuals.

  1. Origin of the cell nucleus, mitosis and sex: roles of intracellular coevolution

    Directory of Open Access Journals (Sweden)

    Cavalier-Smith Thomas

    2010-02-01

    Full Text Available Abstract Background The transition from prokaryotes to eukaryotes was the most radical change in cell organisation since life began, with the largest ever burst of gene duplication and novelty. According to the coevolutionary theory of eukaryote origins, the fundamental innovations were the concerted origins of the endomembrane system and cytoskeleton, subsequently recruited to form the cell nucleus and coevolving mitotic apparatus, with numerous genetic eukaryotic novelties inevitable consequences of this compartmentation and novel DNA segregation mechanism. Physical and mutational mechanisms of origin of the nucleus are seldom considered beyond the long-standing assumption that it involved wrapping pre-existing endomembranes around chromatin. Discussions on the origin of sex typically overlook its association with protozoan entry into dormant walled cysts and the likely simultaneous coevolutionary, not sequential, origin of mitosis and meiosis. Results I elucidate nuclear and mitotic coevolution, explaining the origins of dicer and small centromeric RNAs for positionally controlling centromeric heterochromatin, and how 27 major features of the cell nucleus evolved in four logical stages, making both mechanisms and selective advantages explicit: two initial stages (origin of 30 nm chromatin fibres, enabling DNA compaction; and firmer attachment of endomembranes to heterochromatin protected DNA and nascent RNA from shearing by novel molecular motors mediating vesicle transport, division, and cytoplasmic motility. Then octagonal nuclear pore complexes (NPCs arguably evolved from COPII coated vesicle proteins trapped in clumps by Ran GTPase-mediated cisternal fusion that generated the fenestrated nuclear envelope, preventing lethal complete cisternal fusion, and allowing passive protein and RNA exchange. Finally, plugging NPC lumens by an FG-nucleoporin meshwork and adopting karyopherins for nucleocytoplasmic exchange conferred compartmentation

  2. Origin of the cell nucleus, mitosis and sex: roles of intracellular coevolution.

    Science.gov (United States)

    Cavalier-Smith, Thomas

    2010-02-04

    The transition from prokaryotes to eukaryotes was the most radical change in cell organisation since life began, with the largest ever burst of gene duplication and novelty. According to the coevolutionary theory of eukaryote origins, the fundamental innovations were the concerted origins of the endomembrane system and cytoskeleton, subsequently recruited to form the cell nucleus and coevolving mitotic apparatus, with numerous genetic eukaryotic novelties inevitable consequences of this compartmentation and novel DNA segregation mechanism. Physical and mutational mechanisms of origin of the nucleus are seldom considered beyond the long-standing assumption that it involved wrapping pre-existing endomembranes around chromatin. Discussions on the origin of sex typically overlook its association with protozoan entry into dormant walled cysts and the likely simultaneous coevolutionary, not sequential, origin of mitosis and meiosis. I elucidate nuclear and mitotic coevolution, explaining the origins of dicer and small centromeric RNAs for positionally controlling centromeric heterochromatin, and how 27 major features of the cell nucleus evolved in four logical stages, making both mechanisms and selective advantages explicit: two initial stages (origin of 30 nm chromatin fibres, enabling DNA compaction; and firmer attachment of endomembranes to heterochromatin) protected DNA and nascent RNA from shearing by novel molecular motors mediating vesicle transport, division, and cytoplasmic motility. Then octagonal nuclear pore complexes (NPCs) arguably evolved from COPII coated vesicle proteins trapped in clumps by Ran GTPase-mediated cisternal fusion that generated the fenestrated nuclear envelope, preventing lethal complete cisternal fusion, and allowing passive protein and RNA exchange. Finally, plugging NPC lumens by an FG-nucleoporin meshwork and adopting karyopherins for nucleocytoplasmic exchange conferred compartmentation advantages. These successive changes took place

  3. Cholesterol accumulation in Niemann Pick type C (NPC) model cells causes a shift in APP localization to lipid rafts

    International Nuclear Information System (INIS)

    Kosicek, Marko; Malnar, Martina; Goate, Alison; Hecimovic, Silva

    2010-01-01

    It has been suggested that cholesterol may modulate amyloid-β (Aβ) formation, a causative factor of Alzheimer's disease (AD), by regulating distribution of the three key proteins in the pathogenesis of AD (β-amyloid precursor protein (APP), β-secretase (BACE1) and/or presenilin 1 (PS1)) within lipid rafts. In this work we tested whether cholesterol accumulation upon NPC1 dysfunction, which causes Niemann Pick type C disease (NPC), causes increased partitioning of APP into lipid rafts leading to increased CTF/Aβ formation in these cholesterol-rich membrane microdomains. To test this we used CHO NPC1 -/- cells (NPC cells) and parental CHOwt cells. By sucrose density gradient centrifugation we observed a shift in fl-APP/CTF compartmentalization into lipid raft fractions upon cholesterol accumulation in NPC vs. wt cells. Furthermore, γ-secretase inhibitor treatment significantly increased fl-APP/CTF distribution in raft fractions in NPC vs. wt cells, suggesting that upon cholesterol accumulation in NPC1-null cells increased formation of APP-CTF and its increased processing towards Aβ occurs in lipid rafts. Our results support that cholesterol overload, such as in NPC disease, leads to increased partitioning of APP/CTF into lipid rafts resulting in increased amyloidogenic processing of APP in these cholesterol-rich membranes. This work adds to the mechanism of the cholesterol-effect on APP processing and the pathogenesis of Alzheimer's disease and supports the role of lipid rafts in these processes.

  4. Microdomains in the membrane landscape shape antigen-presenting cell function.

    Science.gov (United States)

    Zuidscherwoude, Malou; de Winde, Charlotte M; Cambi, Alessandra; van Spriel, Annemiek B

    2014-02-01

    The plasma membrane of immune cells is a highly organized cell structure that is key to the initiation and regulation of innate and adaptive immune responses. It is well-established that immunoreceptors embedded in the plasma membrane have a nonrandom spatial distribution that is important for coupling to components of intracellular signaling cascades. In the last two decades, specialized membrane microdomains, including lipid rafts and TEMs, have been identified. These domains are preformed structures ("physical entities") that compartmentalize proteins, lipids, and signaling molecules into multimolecular assemblies. In APCs, different microdomains containing immunoreceptors (MHC proteins, PRRs, integrins, among others) have been reported that are imperative for efficient pathogen recognition, the formation of the immunological synapse, and subsequent T cell activation. In addition, recent work has demonstrated that tetraspanin microdomains and lipid rafts are involved in BCR signaling and B cell activation. Research into the molecular mechanisms underlying membrane domain formation is fundamental to a comprehensive understanding of membrane-proximal signaling and APC function. This review will also discuss the advances in the microscopy field for the visualization of the plasma membrane, as well as the recent progress in targeting microdomains as novel, therapeutic approach for infectious and malignant diseases.

  5. In vivo biochemistry: quantifying ion and metabolite levels in individual cells or cultures of yeast.

    Science.gov (United States)

    Bermejo, Clara; Ewald, Jennifer C; Lanquar, Viviane; Jones, Alexander M; Frommer, Wolf B

    2011-08-15

    Over the past decade, we have learned that cellular processes, including signalling and metabolism, are highly compartmentalized, and that relevant changes in metabolic state can occur at sub-second timescales. Moreover, we have learned that individual cells in populations, or as part of a tissue, exist in different states. If we want to understand metabolic processes and signalling better, it will be necessary to measure biochemical and biophysical responses of individual cells with high temporal and spatial resolution. Fluorescence imaging has revolutionized all aspects of biology since it has the potential to provide information on the cellular and subcellular distribution of ions and metabolites with sub-second time resolution. In the present review we summarize recent progress in quantifying ions and metabolites in populations of yeast cells as well as in individual yeast cells with the help of quantitative fluorescent indicators, namely FRET metabolite sensors. We discuss the opportunities and potential pitfalls and the controls that help preclude misinterpretation. © The Authors Journal compilation © 2011 Biochemical Society

  6. Characterization of axon formation in the embryonic stem cell-derived motoneuron.

    Science.gov (United States)

    Pan, Hung-Chuan; Wu, Ya-Ting; Shen, Shih-Cheng; Wang, Chi-Chung; Tsai, Ming-Shiun; Cheng, Fu-Chou; Lin, Shinn-Zong; Chen, Ching-Wen; Liu, Ching-San; Su, Hong-Lin

    2011-01-01

    The developing neural cell must form a highly organized architecture to properly receive and transmit nerve signals. Neural formation from embryonic stem (ES) cells provides a novel system for studying axonogenesis, which are orchestrated by polarity-regulating molecules. Here the ES-derived motoneurons, identified by HB9 promoter-driven green fluorescent protein (GFP) expression, showed characteristics of motoneuron-specific gene expression. In the majority of motoneurons, one of the bilateral neurites developed into an axon that featured with axonal markers, including Tau1, vesicle acetylcholine transporter, and synaptophysin. Interestingly, one third of the motoneurons developed bi-axonal processes but no multiple axonal GFP cell was found. The neuronal polarity-regulating proteins, including the phosphorylated AKT and ERK, were compartmentalized into both of the bilateral axonal tips. Importantly, this aberrant axon morphology was still present after the engraftment of GFP(+) neurons into the spinal cord, suggesting that even a mature neural environment fails to provide a proper niche to guide normal axon formation. These findings underscore the necessity for evaluating the morphogenesis and functionality of neurons before the clinical trials using ES or somatic stem cells.

  7. A sphingolipid-dependent diffusion barrier confines ER stress to the yeast mother cell

    Science.gov (United States)

    Clay, Lori; Caudron, Fabrice; Denoth-Lippuner, Annina; Boettcher, Barbara; Buvelot Frei, Stéphanie; Snapp, Erik Lee; Barral, Yves

    2014-01-01

    In many cell types, lateral diffusion barriers compartmentalize the plasma membrane and, at least in budding yeast, the endoplasmic reticulum (ER). However, the molecular nature of these barriers, their mode of action and their cellular functions are unclear. Here, we show that misfolded proteins of the ER remain confined into the mother compartment of budding yeast cells. Confinement required the formation of a lateral diffusion barrier in the form of a distinct domain of the ER-membrane at the bud neck, in a septin-, Bud1 GTPase- and sphingolipid-dependent manner. The sphingolipids, but not Bud1, also contributed to barrier formation in the outer membrane of the dividing nucleus. Barrier-dependent confinement of ER stress into the mother cell promoted aging. Together, our data clarify the physical nature of lateral diffusion barriers in the ER and establish the role of such barriers in the asymmetric segregation of proteotoxic misfolded proteins during cell division and aging. DOI: http://dx.doi.org/10.7554/eLife.01883.001 PMID:24843009

  8. Glycosylation-mediated phenylpropanoid partitioning in Populus tremuloides cell cultures

    Directory of Open Access Journals (Sweden)

    Babst Benjamin A

    2009-12-01

    identified candidate genes for glycosyltransferases that may mediate the glycosylation, and for transporters that mediate the subcellular compartmentalization of sugars and phenolic glycosides. The suspension cells appear to represent a facile system for dissecting the regulation of phenolic carbon partitioning, and in turn, its effects on growth in Populus.

  9. Invasive cancer cells and metastasis

    Science.gov (United States)

    Mierke, Claudia Tanja

    2013-12-01

    the biophysical state of the primary tumor cell. To determine the cytoskeletal dynamics they chose magnetic twisting cytometry, where the spontaneous motion of surface bound marker beads was measured, which is a measure for the cytoskeletal remodeling dynamics. The group of Katarina Wolf measured the stiffness of the cell nucleus because it is the largest and stiffest organelle, which may hinder the migration of invasive tumor cells through dense connective tissue [2]. They combined atomic force confocal microscopy for measurement of bulk nuclear stiffness (the inverse of the compressibility) with simultaneous visualization of the cantilever-nucleus contact as well as monitoring of the cell's fate. The dynamics of tissue topology such as the mixing of compartments during cancer invasion and metastasis were theoretically analyzed by Lance L Munn [3]. In particular, he presented a mathematical model of tissue repair and tumor growth based on collective cell migration that simulates a wide range of tumor behaviors using correct tissue compartmentalization and connectivity. In the future, the topological analysis could be helpful for tumor diagnosis or monitoring tumor therapy. The group of Cynthia A Reinhart-King analyzed how the topological guidance of a 3D tumor cell migration at an interface of collagen densities affects cell motility [4]. In particular, they mimicked the heterogeneities in density of the tumor stroma by preparing gels with an interface of high and low density collagen gels and investigated how this affects cell motility. The author's review paper details the effect of focal adhesion proteins such as focal adhesion kinase (FAK) on cell motility and how this effect is driven by mechanical alterations of cells expressing FAK compared to cells with FAK knock-out [5]. In particular, it focused on mechanical properties regulated by FAK in comparison to the mechano-regulating protein vinculin. This article highlights that both focal adhesion proteins

  10. Cells and cell biochemistry.

    Science.gov (United States)

    Farley, Alistair; Hendry, Charles; McLafferty, Ella

    This article, which forms part of the life sciences series, aims to promote understanding of the basic structure and function of cells. It assists healthcare professionals to appreciate the complex anatomy and physiology underpinning the functioning of the human body. Several introductory chemical concepts and terms are outlined. The basic building blocks of all matter, atoms, are examined and the way in which they may interact to form new compounds within the body is discussed. The basic structures and components that make up a typical cell are considered.

  11. GUCY2C-directed CAR-T cells oppose colorectal cancer metastases without autoimmunity.

    Science.gov (United States)

    Magee, Michael S; Kraft, Crystal L; Abraham, Tara S; Baybutt, Trevor R; Marszalowicz, Glen P; Li, Peng; Waldman, Scott A; Snook, Adam E

    2016-01-01

    Adoptive T-cell therapy (ACT) is an emerging paradigm in which T cells are genetically modified to target cancer-associated antigens and eradicate tumors. However, challenges treating epithelial cancers with ACT reflect antigen targets that are not tumor-specific, permitting immune damage to normal tissues, and preclinical testing in artificial xenogeneic models, preventing prediction of toxicities in patients. In that context, mucosa-restricted antigens expressed by cancers exploit anatomical compartmentalization which shields mucosae from systemic antitumor immunity. This shielding may be amplified with ACT platforms employing antibody-based chimeric antigen receptors (CARs), which mediate MHC-independent recog-nition of antigens. GUCY2C is a cancer mucosa antigen expressed on the luminal surfaces of the intestinal mucosa in mice and humans, and universally overexpressed by colorectal tumors, suggesting its unique utility as an ACT target. T cells expressing CARs directed by a GUCY2C-specific antibody fragment recognized GUCY2C, quantified by expression of activation markers and cytokines. Further, GUCY2C CAR-T cells lysed GUCY2C-expressing, but not GUCY2C-deficient, mouse colorectal cancer cells. Moreover, GUCY2C CAR-T cells reduced tumor number and morbidity and improved survival in mice harboring GUCY2C-expressing colorectal cancer metastases. GUCY2C-directed T cell efficacy reflected CAR affinity and surface expression and was achieved without immune-mediated damage to normal tissues in syngeneic mice. These observations highlight the potential for therapeutic translation of GUCY2C-directed CAR-T cells to treat metastatic tumors, without collateral autoimmunity, in patients with metastatic colorectal cancer.

  12. Multitissue Transcriptomics Delineates the Diversity of Airway T Cell Functions in Asthma.

    Science.gov (United States)

    Singhania, Akul; Wallington, Joshua C; Smith, Caroline G; Horowitz, Daniel; Staples, Karl J; Howarth, Peter H; Gadola, Stephan D; Djukanović, Ratko; Woelk, Christopher H; Hinks, Timothy S C

    2018-02-01

    Asthma arises from the complex interplay of inflammatory pathways in diverse cell types and tissues. We sought to undertake a comprehensive transcriptomic assessment of the epithelium and airway T cells that remain understudied in asthma and investigate interactions between multiple cells and tissues. Epithelial brushings and flow-sorted CD3 + T cells from sputum and BAL were obtained from healthy subjects (n = 19) and patients with asthma (mild, moderate, and severe asthma; n = 46). Gene expression was assessed using Affymetrix HT HG-U133 + PM GeneChips, and results were validated by real-time quantitative PCR. In the epithelium, IL-13 response genes (POSTN, SERPINB2, and CLCA1), mast cell mediators (CPA3 and TPSAB1), inducible nitric oxide synthase, and cystatins (CST1, CST2, and CST4) were upregulated in mild asthma, but, except for cystatins, were suppressed by corticosteroids in moderate asthma. In severe asthma-with predominantly neutrophilic phenotype-several distinct processes were upregulated, including neutrophilia (TCN1 and MMP9), mucins, and oxidative stress responses. The majority of the disease signature was evident in sputum T cells in severe asthma, where 267 genes were differentially regulated compared with health, highlighting compartmentalization of inflammation. This signature included IL-17-inducible chemokines (CXCL1, CXCL2, CXCL3, IL8, and CSF3) and chemoattractants for neutrophils (IL8, CCL3, and LGALS3), T cells, and monocytes. A protein interaction network in severe asthma highlighted signatures of responses to bacterial infections across tissues (CEACAM5, CD14, and TLR2), including Toll-like receptor signaling. In conclusion, the activation of innate immune pathways in the airways suggests that activated T cells may be driving neutrophilic inflammation and steroid-insensitive IL-17 response in severe asthma.

  13. Effect of nerve growth factor on the synthesis of amino acids in PC12 cells

    International Nuclear Information System (INIS)

    Zielke, H.R.; Tildon, J.T.; Kauffman, F.C.; Baab, P.J.

    1989-01-01

    Radioactive short-chain fatty acids preferentially label glutamine relative to glutamate in brain due to compartmentation of glutamine and glutamate. To determine whether this phenomenon occurs in a single cell culture model, we examined the effect of fatty acid chain length on the synthesis as well as pool size of selected amino acids in rat pheochromocytoma PC12 cells, a cell culture model of the large glutamate compartment in neurons. Intracellular 14C-amino acids were quantitated by HPLC, and the incorporation of [U-14C]-glucose, [1-14C]-butyrate, [1-14C]-octanoate, and [1-14C]-palmitate into five amino acids was measured in native and NGF-treated PC12 cells. NGF pretreatment decreased the intracellular concentration of amino acids as did addition of fatty acids but these effects were not additive. Specific activities of amino acids in native cells labelled by 14C-octanoate were 1,300 DPM/nmol, 490 DPM/nmol, 200 DPM/nmol, and 110 DPM/nmol for glutamate, aspartate, glutamine, and serine, respectively. No radioactivity was detected in alanine. Similar specific activities were noted when 14C-butyrate was the precursor; however, there was at least 5-fold less if 14C-palmitate was the precursor. Pretreatment of cells with NGF decreased the specific activity of amino acids by 25-65%. Specific activities of amino acids synthesized from 14C-glucose decreased in the following order: glutamate, 1,640 DPM/nmol; aspartate, 1,210 DPM/nmol; alanine, 580 DPM/nmol; glutamine, 275 DPM/nmol; and serine, 80 DPM/nmol for native cells. NGF pretreatment decreased the specific activities of glutamate and glutamine, but not of the other 3 amino acids. The preferred precursor for glutamate synthesis in native PC12 cells was glucose followed by octanoate, butyrate and palmitate (16:6:3:1)

  14. Real-time dynamics of RNA Polymerase II clustering in live human cells

    Science.gov (United States)

    Cisse, Ibrahim

    2014-03-01

    Transcription is the first step in the central dogma of molecular biology, when genetic information encoded on DNA is made into messenger RNA. How this fundamental process occurs within living cells (in vivo) is poorly understood,[1] despite extensive biochemical characterizations with isolated biomolecules (in vitro). For high-order organisms, like humans, transcription is reported to be spatially compartmentalized in nuclear foci consisting of clusters of RNA Polymerase II, the enzyme responsible for synthesizing all messenger RNAs. However, little is known of when these foci assemble or their relative stability. We developed an approach based on photo-activation localization microscopy (PALM) combined with a temporal correlation analysis, which we refer to as tcPALM. The tcPALM method enables the real-time characterization of biomolecular spatiotemporal organization, with single-molecule sensitivity, directly in living cells.[2] Using tcPALM, we observed that RNA Polymerase II clusters form transiently, with an average lifetime of 5.1 (+/- 0.4) seconds. Stimuli affecting transcription regulation yielded orders of magnitude changes in the dynamics of the polymerase clusters, implying that clustering is regulated and plays a role in the cells ability to effect rapid response to external signals. Our results suggest that the transient crowding of enzymes may aid in rate-limiting steps of genome regulation.

  15. Local ATP generation by brain-type creatine kinase (CK-B facilitates cell motility.

    Directory of Open Access Journals (Sweden)

    Jan W P Kuiper

    Full Text Available BACKGROUND: Creatine Kinases (CK catalyze the reversible transfer of high-energy phosphate groups between ATP and phosphocreatine, thereby playing a storage and distribution role in cellular energetics. Brain-type CK (CK-B deficiency is coupled to loss of function in neural cell circuits, altered bone-remodeling by osteoclasts and complement-mediated phagocytotic activity of macrophages, processes sharing dependency on actomyosin dynamics. METHODOLOGY/PRINCIPAL FINDINGS: Here, we provide evidence for direct coupling between CK-B and actomyosin activities in cortical microdomains of astrocytes and fibroblasts during spreading and migration. CK-B transiently accumulates in membrane ruffles and ablation of CK-B activity affects spreading and migration performance. Complementation experiments in CK-B-deficient fibroblasts, using new strategies to force protein relocalization from cytosol to cortical sites at membranes, confirmed the contribution of compartmentalized CK-B to cell morphogenetic dynamics. CONCLUSION/SIGNIFICANCE: Our results provide evidence that local cytoskeletal dynamics during cell motility is coupled to on-site availability of ATP generated by CK-B.

  16. Spatial Organization and Dynamics of Transcription Elongation and Pre-mRNA Processing in Live Cells

    Directory of Open Access Journals (Sweden)

    Miguel Sánchez-Álvarez

    2011-01-01

    Full Text Available During the last 30 years, systematic biochemical and functional studies have significantly expanded our knowledge of the transcriptional molecular components and the pre-mRNA processing machinery of the cell. However, our current understanding of how these functions take place spatiotemporally within the highly compartmentalized eukaryotic nucleus remains limited. Moreover, it is increasingly clear that “the whole is more than the sum of its parts” and that an understanding of the dynamic coregulation of genes is essential for fully characterizing complex biological phenomena and underlying diseases. Recent technological advances in light microscopy in addition to novel cell and molecular biology approaches have led to the development of new tools, which are being used to address these questions and may contribute to achieving an integrated and global understanding of how the genome works at a cellular level. Here, we review major hallmarks and novel insights in RNA polymerase II activity and pre-mRNA processing in the context of nuclear organization, as well as new concepts and challenges arising from our ability to gather extensive dynamic information at the single-cell resolution.

  17. Immunoarchitectural patterns in nodal marginal zone B-cell lymphoma: a study of 51 cases.

    Science.gov (United States)

    Salama, Mohamed E; Lossos, Izidore S; Warnke, Roger A; Natkunam, Yasodha

    2009-07-01

    Nodal marginal zone lymphoma (NMZL) represents a rare and heterogeneous group that lacks markers specific for the diagnosis. We evaluated morphologic and immunoarchitectural features of 51 NMZLs, and the following immunostains were performed: CD20, CD21, CD23, CD5, CD3, CD43, CD10, Ki-67, BCL1, BCL2, BCL6, HGAL, and LMO2. Four immunoarchitectural patterns were evident: diffuse (38 [75%]), well-formed nodular/follicular (5 [10%]), interfollicular (7 [14%]), and perifollicular (1 [2%]). Additional features included a monocytoid component (36 [71%]), admixed large cells (20 [39%]), plasma cells (24 [47%]), compartmentalizing stromal sclerosis (13 [25%]), and prominent blood vessel sclerosis (10 [20%]). CD21 highlighted disrupted follicular dendritic cell meshwork in 35 (71%) of 49 cases, and CD43 coexpression was present in 10 (24%) of 42 cases. A panel of germinal center-associated markers was helpful in eliminating cases of diffuse follicle center lymphoma. Our results highlight the histologic and immunoarchitectural spectrum of NMZL and the usefulness of immunohistochemical analysis for CD43, CD23, CD21, BCL6, HGAL, and LMO2 in the diagnosis of NMZL.

  18. Probing Induced Structural Changes in Biomimetic Bacterial Cell Membrane Interactions with Divalent Cations

    Energy Technology Data Exchange (ETDEWEB)

    Holt, Allison M [ORNL; Standaert, Robert F [ORNL; Jubb, Aaron M [ORNL; Katsaras, John [ORNL; Johs, Alexander [ORNL

    2017-01-01

    Biological membranes, formed primarily by the self-assembly of complex mixtures of phospholipids, provide a structured scaffold for compartmentalization and structural processes in living cells. The specific physical properties of phospholipid species present in a given membrane play a key role in mediating these processes. Phosphatidylethanolamine (PE), a zwitterionic lipid present in bacterial, yeast, and mammalian cell membranes, is exceptional. In addition to undergoing the standard lipid polymorphic transition between the gel and liquid-crystalline phase, it can also assume an unusual polymorphic state, the inverse hexagonal phase (HII). Divalent cations are among the factors that drive the formation of the HII phase, wherein the lipid molecules form stacked tubular structures by burying the hydrophilic head groups and exposing the hydrophobic tails to the bulk solvent. Most biological membranes contain a lipid species capable of forming the HII state suggesting that such lipid polymorphic structural states play an important role in structural biological processes such as membrane fusion. In this study, the interactions between Mg2+ and biomimetic bacterial cell membranes composed of PE and phosphatidylglycerol (PG) were probed using differential scanning calorimetry (DSC), small-angle x-ray scattering (SAXS), and fluorescence spectroscopy. The lipid phase transitions were examined at varying ratios of PE to PG and upon exposure to physiologically relevant concentrations of Mg2+. An understanding of these basic interactions enhances our understanding of membrane dynamics and how membrane-mediated structural changes may occur in vivo.

  19. Membrane-bound organelles versus membrane-less compartments and their control of anabolic pathways in Drosophila

    NARCIS (Netherlands)

    Aguilera-Gomez, Angelica; Rabouille, Catherine

    2017-01-01

    Classically, we think of cell compartmentalization as being achieved by membrane-bound organelles. It has nevertheless emerged that membrane-less assemblies also largely contribute to this compartmentalization. Here, we compare the characteristics of both types of compartmentalization in term of

  20. Stem cells

    NARCIS (Netherlands)

    Jukes, Jojanneke; Both, Sanne; Post, Janine; van Blitterswijk, Clemens; Karperien, Marcel; de Boer, Jan; van Blitterswijk, Clemens A.

    2008-01-01

    This chapter defines stem cells and their properties. It identifies the major differences between embryonic and adult stem cells. Stem cells can be defined by two properties: the ability to make identical copies of themselves and the ability to form other cell types of the body. These properties are

  1. Distinct and conserved prominin-1/CD133-positive retinal cell populations identified across species.

    Directory of Open Access Journals (Sweden)

    József Jászai

    2011-03-01

    Full Text Available Besides being a marker of various somatic stem cells in mammals, prominin-1 (CD133 plays a role in maintaining the photoreceptor integrity since mutations in the PROM1 gene are linked with retinal degeneration. In spite of that, little information is available regarding its distribution in eyes of non-mammalian vertebrates endowed with high regenerative abilities. To address this subject, prominin-1 cognates were isolated from axolotl, zebrafish and chicken, and their retinal compartmentalization was investigated and compared to that of their mammalian orthologue. Interestingly, prominin-1 transcripts--except for the axolotl--were not strictly restricted to the outer nuclear layer (i.e., photoreceptor cells, but they also marked distinct subdivisions of the inner nuclear layer (INL. In zebrafish, where the prominin-1 gene is duplicated (i.e., prominin-1a and prominin-1b, a differential expression was noted for both paralogues within the INL being localized either to its vitreal or scleral subdivision, respectively. Interestingly, expression of prominin-1a within the former domain coincided with Pax-6-positive cells that are known to act as progenitors upon injury-induced retino-neurogenesis. A similar, but minute population of prominin-1-positive cells located at the vitreal side of the INL was also detected in developing and adult mice. In chicken, however, prominin-1-positive cells appeared to be aligned along the scleral side of the INL reminiscent of zebrafish prominin-1b. Taken together our data indicate that in addition to conserved expression of prominin-1 in photoreceptors, significant prominin-1-expressing non-photoreceptor retinal cell populations are present in the vertebrate eye that might represent potential sources of stem/progenitor cells for regenerative therapies.

  2. Cell Biochips

    Science.gov (United States)

    Pioufle, B. Le; Picollet-D'Hahan, N.

    A cell biochip is a microsystem, equipped with electronic and microfluidic functions, designed to manipulate or analyse living cells. The first publications in this emerging area of research appeared toward the end of the 1980s. In 1989 Washizu described a biochip designed to fuse two cells by electropermeabilisation of the cytoplasmic membrane [1]. Research centers have devised a whole range of cell chip structures, for simultaneous or sequential analysis of single cells, cell groups, or cell tissues reconstituted on the chip. The cells are arranged in a square array on a parallel cell chip for parallel analysis, while they are examined and processed one by one in a microchannel in the case of a series cell chip. In contrast to these biochips for high-throughput analysis of a large number of cells, single-cell chips focus on the analysis of a single isolated cell. As in DNA microarrays, where a large number of oligonucleotides are ordered in a matrix array, parallel cell chips order living cells in a similar way. At each point of the array, the cells can be isolated, provided that the cell type allows this, e.g., blood cells, or cultivated in groups (most adhesion cells can only survive in groups). The aim is to allow massively parallel analysis or processing. Le Pioufle et al. describe a microdevice for the culture of single cells or small groups of cells in a micropit array [2]. Each pit is equipped to stimulate the cell or group of cells either electrically or fluidically. Among the applications envisaged are gene transfer, cell sorting, and screening in pharmacology. A complementary approach, combining the DNA microarray and cell biochip ideas, has been put forward by Bailey et al. [3]. Genes previously arrayed on the chip transfect the cultured cells on the substrate depending on their position in the array (see Fig. 19.1). This way of achieving differential lipofection on a chip was then taken up again by Yoshikawa et al. [4] with primary cells, more

  3. Glutathione--linking cell proliferation to oxidative stress.

    Science.gov (United States)

    Diaz-Vivancos, Pedro; de Simone, Ambra; Kiddle, Guy; Foyer, Christine H

    2015-12-01

    The multifaceted functions of reduced glutathione (gamma-glutamyl-cysteinyl-glycine; GSH) continue to fascinate plants and animal scientists, not least because of the dynamic relationships between GSH and reactive oxygen species (ROS) that underpin reduction/oxidation (redox) regulation and signalling. Here we consider the respective roles of ROS and GSH in the regulation of plant growth, with a particular focus on regulation of the plant cell cycle. Glutathione is discussed not only as a crucial low molecular weight redox buffer that shields nuclear processes against oxidative challenge but also a flexible regulator of genetic and epigenetic functions. The intracellular compartmentalization of GSH during the cell cycle is remarkably consistent in plants and animals. Moreover, measurements of in vivo glutathione redox potentials reveal that the cellular environment is much more reducing than predicted from GSH/GSSG ratios measured in tissue extracts. The redox potential of the cytosol and nuclei of non-dividing plant cells is about -300 mV. This relatively low redox potential maintained even in cells experiencing oxidative stress by a number of mechanisms including vacuolar sequestration of GSSG. We propose that regulated ROS production linked to glutathione-mediated signalling events are the hallmark of viable cells within a changing and challenging environment. The concept that the cell cycle in animals is subject to redox controls is well established but little is known about how ROS and GSH regulate this process in plants. However, it is increasingly likely that redox controls exist in plants, although possibly through different pathways. Moreover, redox-regulated proteins that function in cell cycle checkpoints remain to be identified in plants. While GSH-responsive genes have now been identified, the mechanisms that mediate and regulate protein glutathionylation in plants remain poorly defined. The nuclear GSH pool provides an appropriate redox environment

  4. Direct transfer of viral and cellular proteins from varicella-zoster virus-infected non-neuronal cells to human axons.

    Science.gov (United States)

    Grigoryan, Sergei; Yee, Michael B; Glick, Yair; Gerber, Doron; Kepten, Eldad; Garini, Yuval; Yang, In Hong; Kinchington, Paul R; Goldstein, Ronald S

    2015-01-01

    Varicella Zoster Virus (VZV), the alphaherpesvirus that causes varicella upon primary infection and Herpes zoster (shingles) following reactivation in latently infected neurons, is known to be fusogenic. It forms polynuclear syncytia in culture, in varicella skin lesions and in infected fetal human ganglia xenografted to mice. After axonal infection using VZV expressing green fluorescent protein (GFP) in compartmentalized microfluidic cultures there is diffuse filling of axons with GFP as well as punctate fluorescence corresponding to capsids. Use of viruses with fluorescent fusions to VZV proteins reveals that both proteins encoded by VZV genes and those of the infecting cell are transferred in bulk from infecting non-neuronal cells to axons. Similar transfer of protein to axons was observed following cell associated HSV1 infection. Fluorescence recovery after photobleaching (FRAP) experiments provide evidence that this transfer is by diffusion of proteins from the infecting cells into axons. Time-lapse movies and immunocytochemical experiments in co-cultures demonstrate that non-neuronal cells fuse with neuronal somata and proteins from both cell types are present in the syncytia formed. The fusogenic nature of VZV therefore may enable not only conventional entry of virions and capsids into axonal endings in the skin by classical entry mechanisms, but also by cytoplasmic fusion that permits viral protein transfer to neurons in bulk.

  5. Cell-specific vacuolar calcium storage mediated by CAX1 regulates apoplastic calcium concentration, gas exchange, and plant productivity in Arabidopsis.

    Science.gov (United States)

    Conn, Simon J; Gilliham, Matthew; Athman, Asmini; Schreiber, Andreas W; Baumann, Ute; Moller, Isabel; Cheng, Ning-Hui; Stancombe, Matthew A; Hirschi, Kendal D; Webb, Alex A R; Burton, Rachel; Kaiser, Brent N; Tyerman, Stephen D; Leigh, Roger A

    2011-01-01

    The physiological role and mechanism of nutrient storage within vacuoles of specific cell types is poorly understood. Transcript profiles from Arabidopsis thaliana leaf cells differing in calcium concentration ([Ca], epidermis 60 mM) were compared using a microarray screen and single-cell quantitative PCR. Three tonoplast-localized Ca(2+) transporters, CAX1 (Ca(2+)/H(+)-antiporter), ACA4, and ACA11 (Ca(2+)-ATPases), were identified as preferentially expressed in Ca-rich mesophyll. Analysis of respective loss-of-function mutants demonstrated that only a mutant that lacked expression of both CAX1 and CAX3, a gene ectopically expressed in leaves upon knockout of CAX1, had reduced mesophyll [Ca]. Reduced capacity for mesophyll Ca accumulation resulted in reduced cell wall extensibility, stomatal aperture, transpiration, CO(2) assimilation, and leaf growth rate; increased transcript abundance of other Ca(2+) transporter genes; altered expression of cell wall-modifying proteins, including members of the pectinmethylesterase, expansin, cellulose synthase, and polygalacturonase families; and higher pectin concentrations and thicker cell walls. We demonstrate that these phenotypes result from altered apoplastic free [Ca(2+)], which is threefold greater in cax1/cax3 than in wild-type plants. We establish CAX1 as a key regulator of apoplastic [Ca(2+)] through compartmentation into mesophyll vacuoles, a mechanism essential for optimal plant function and productivity.

  6. Tissue microenvironments in the nasal epithelium of rainbow trout (Oncorhynchus mykiss) define two distinct CD8α+ cell populations and establish regional immunity

    Science.gov (United States)

    Sepahi, Ali; Casadei, Elisa; Tacchi, Luca; Muñoz, Pilar; LaPatra, Scott E.; Salinas, Irene

    2016-01-01

    Mucosal surfaces require balancing different physiological roles and immune functions. In order to effectively achieve multifunctionality, mucosal epithelia have evolved unique microenvironments that create unique regional immune responses without impairing other normal physiological functions. Whereas examples of regional immunity are known in other mucosal epithelia, to date, no immune microenvironments have been described in the nasal mucosa, a site where the complex functions of olfaction and immunity need to be orchestrated. In this study we identified for the first time the presence of CD8α+ cells in the rainbow trout (Oncorhynchus mykiss) nasal epithelium. Nasal CD8α+ cells display a distinct phenotype suggestive of CD8+ T cells with high integrin β2 expression. Importantly, nasal CD8α+ cells are located in clusters at the mucosal tip of each olfactory lamella but scattered in the neuroepithelial region. The grouping of CD8α+ cells may be explained by the greater expression of CCL19, ICAM-1, and VCAM-1 in the mucosal tip compared to the neuroepithelium. Whilst viral antigen uptake occurred via both tip and lateral routes, tip resident MHC-II+ cells are located significantly closer to the lumen of the nasal cavity than their neuroepithelial counterparts, therefore having quicker access to invading pathogens. Our studies reveal for the first time compartmentalized mucosal immune responses within the nasal mucosa of a vertebrate species, a strategy that likely optimizes local immune responses while protecting olfactory sensory functions. PMID:27798156

  7. GPI-anchored proteins are confined in subdiffraction clusters at the apical surface of polarized epithelial cells.

    Science.gov (United States)

    Paladino, Simona; Lebreton, Stéphanie; Lelek, Mickaël; Riccio, Patrizia; De Nicola, Sergio; Zimmer, Christophe; Zurzolo, Chiara

    2017-12-01

    Spatio-temporal compartmentalization of membrane proteins is critical for the regulation of diverse vital functions in eukaryotic cells. It was previously shown that, at the apical surface of polarized MDCK cells, glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are organized in small cholesterol-independent clusters of single GPI-AP species (homoclusters), which are required for the formation of larger cholesterol-dependent clusters formed by multiple GPI-AP species (heteroclusters). This clustered organization is crucial for the biological activities of GPI-APs; hence, understanding the spatio-temporal properties of their membrane organization is of fundamental importance. Here, by using direct stochastic optical reconstruction microscopy coupled to pair correlation analysis (pc-STORM), we were able to visualize and measure the size of these clusters. Specifically, we show that they are non-randomly distributed and have an average size of 67 nm. We also demonstrated that polarized MDCK and non-polarized CHO cells have similar cluster distribution and size, but different sensitivity to cholesterol depletion. Finally, we derived a model that allowed a quantitative characterization of the cluster organization of GPI-APs at the apical surface of polarized MDCK cells for the first time. Experimental FRET (fluorescence resonance energy transfer)/FLIM (fluorescence-lifetime imaging microscopy) data were correlated to the theoretical predictions of the model. © 2017 The Author(s).

  8. Specific immune cell and cytokine characteristics of human testicular germ cell neoplasia.

    Science.gov (United States)

    Klein, Britta; Haggeney, Thomas; Fietz, Daniela; Indumathy, Sivanjah; Loveland, Kate L; Hedger, Mark; Kliesch, Sabine; Weidner, Wolfgang; Bergmann, Martin; Schuppe, Hans-Christian

    2016-10-01

    Which immune cells and cytokine profiles are characteristic for testicular germ cell neoplasia and what consequences does this have for the understanding of the related testicular immunopathology? The unique immune environment of testicular germ cell neoplasia comprises B cells and dendritic cells as well as high transcript levels of IL-6 and other B cell supporting or T helper cell type 1 (Th1)-driven cytokines and thus differs profoundly from normal testis or inflammatory lesions associated with hypospermatogenesis. T cells are known to be the major component of inflammatory infiltrates associated with either hypospermatogenesis or testicular cancer. It has previously been reported that B cells are only involved within infiltrates of seminoma samples, but this has not been investigated further. Immunohistochemical characterisation (IHC) of infiltrating immune cells and RT-qPCR-based analysis of corresponding cytokine microenvironments was performed on different testicular pathologies. Testicular biopsies, obtained from men undergoing andrological work-up of infertility or taken during surgery for testicular cancer, were used in this study. Samples were grouped as follows: (i) normal spermatogenesis (n = 18), (ii) hypospermatogenesis associated with lymphocytic infiltrates (n = 10), (iii) samples showing neoplasia [germ cell neoplasia in situ (GCNIS, n = 26) and seminoma, n = 18]. IHC was performed using antibodies against T cells (CD3+), B cells (CD20cy+), dendritic cells (CD11c+), macrophages (CD68+) and mast cells (mast cell tryptase+). Degree and compartmental localisation of immune cells throughout all groups analysed was evaluated semi-quantitatively. RT-qPCR on RNA extracted from cryo-preserved tissue samples was performed to analyse mRNA cytokine expression, specifically levels of IL-1β, IL-6, IL-17a, tumour necrosis factor (TNF)-α (pro-inflammatory), IL-10, transforming growth factor (TGF)-β1 (anti-inflammatory), IL-2, IL-12a, IL-12b

  9. A mechanistic compartmental model for total antibody uptake in tumors.

    Science.gov (United States)

    Thurber, Greg M; Dane Wittrup, K

    2012-12-07

    Antibodies are under development to treat a variety of cancers, such as lymphomas, colon, and breast cancer. A major limitation to greater efficacy for this class of drugs is poor distribution in vivo. Localization of antibodies occurs slowly, often in insufficient therapeutic amounts, and distributes heterogeneously throughout the tumor. While the microdistribution around individual vessels is important for many therapies, the total amount of antibody localized in the tumor is paramount for many applications such as imaging, determining the therapeutic index with antibody drug conjugates, and dosing in radioimmunotherapy. With imaging and pretargeted therapeutic strategies, the time course of uptake is critical in determining when to take an image or deliver a secondary reagent. We present here a simple mechanistic model of antibody uptake and retention that captures the major rates that determine the time course of antibody concentration within a tumor including dose, affinity, plasma clearance, target expression, internalization, permeability, and vascularization. Since many of the parameters are known or can be estimated in vitro, this model can approximate the time course of antibody concentration in tumors to aid in experimental design, data interpretation, and strategies to improve localization. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Differential compartmentalization and distinct functions of GABAB receptor variants

    DEFF Research Database (Denmark)

    Vigot, Réjan; Barbieri, Samuel; Bräuner-Osborne, Hans

    2006-01-01

    , while predominantly GABAB1b mediates postsynaptic inhibition. Electron microscopy reveals a synaptic distribution of GABAB1 isoforms that agrees with the observed functional differences. Transfected CA3 neurons selectively express GABAB1a in distal axons, suggesting that the sushi repeats, a conserved...... protein interaction motif, specify heteroreceptor localization. The constitutive absence of GABAB1a but not GABAB1b results in impaired synaptic plasticity and hippocampus-dependent memory, emphasizing molecular differences in synaptic GABAB functions....

  11. Barriers in the brain : resolving dendritic spine morphology and compartmentalization

    NARCIS (Netherlands)

    Adrian, Max; Kusters, Remy; Wierenga, Corette J; Storm, Cornelis; Hoogenraad, Casper C; Kapitein, Lukas C

    2014-01-01

    Dendritic spines are micron-sized protrusions that harbor the majority of excitatory synapses in the central nervous system. The head of the spine is connected to the dendritic shaft by a 50-400 nm thin membrane tube, called the spine neck, which has been hypothesized to confine biochemical and

  12. Coarsening dynamics in a vibrofluidized compartmentalized granulas gas

    NARCIS (Netherlands)

    van der Meer, Roger M.; van der Weele, J.P.; Lohse, Detlef

    2004-01-01

    Coarsening is studied in a vertically driven, initially uniformly distributed granular gas within a container divided into many connected compartments. The clustering is experimentally observed to occur in a two-stage process: first, the particles cluster in a few of the compartments. Subsequently,

  13. Cation-sensitive compartmentalization in metallacarborane containing polymer nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Ďorďovič, V.; Uchman, M.; Reza, M.; Ruokolainen, J.; Zhigunov, Alexander; Ivankov, O. I.; Matějíček, P.

    2016-01-01

    Roč. 6, č. 12 (2016), s. 9884-9892 ISSN 2046-2069 R&D Projects: GA ČR(CZ) GA14-14608S Institutional support: RVO:61389013 Keywords : polymer nanoparticles * metallacarborane * double-hydrophilic block copolymer Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.108, year: 2016

  14. Compartmental analysis of benzo[a]pyrene toxicokinetics

    International Nuclear Information System (INIS)

    Bevan, D.R.; Weyand, E.H.

    1986-01-01

    A multicompartmental model to describe quantitatively the toxicokinetics of benzo[a]pyrene (B[a]P) was developed using SAAM (Simulation, Analysis and Modeling). [ 3 H]-B[a]P dissolved in triethylene glycol was administered intratracheally to male Sprague-Dawley rats, and amounts of [ 3 H] were quantified in various tissues at selected times up to 6 hr after administration. Elimination of [ 3 H]-B[a]P and/or metabolites from lungs was biphasic, with half-times of 5.3 min. and 116 min. [ 3 H]-B[a]P and/or metabolites were subsequently distributed primarily to liver and carcass (muscle, bones, fat, skin and associated blood). Carcass contained about 20% of administered [ 3 H] at 6 hr after administration, and agreement between the model and experimental data required that the carcass be modeled as two compartments, one with rapid and one with slow exchange. Approximately 50% of the administered dose was excreted in feces in 6 hr and only 2% appeared in urine. Enterohepatic circulation was accounted for in the model. The model was then used to predict amounts of [ 3 H]-B[a]P and/or metabolites which would be excreted into bile in animals with bile duct cannulas, and good agreement between the model and data was observed

  15. Compartmentalization in environmental science and the perversion of multiple thresholds

    Energy Technology Data Exchange (ETDEWEB)

    Burkart, W. [Institute of Radiation Hygiene of the Federal Office for Radiation Protection, Ingolstaedter Landstr. 1, D 85716 Oberschleissheim, Muenchen (Germany)

    2000-04-17

    Nature and living organisms are separated into compartments. The self-assembly of phospholipid micelles was as fundamental to the emergence of life and evolution as the formation of DNA precursors and their self-replication. Also, modern science owes much of its success to the study of single compartments, the dissection of complex structures and event chains into smaller study objects which can be manipulated with a set of more and more sophisticated equipment. However, in environmental science, these insights are obtained at a price: firstly, it is difficult to recognize, let alone to take into account what is lost during fragmentation and dissection; and secondly, artificial compartments such as scientific disciplines become self-sustaining, leading to new and unnecessary boundaries, subtly framing scientific culture and impeding progress in holistic understanding. The long-standing but fruitless quest to define dose-effect relationships and thresholds for single toxic agents in our environment is a central part of the problem. Debating single-agent toxicity in splendid isolation is deeply flawed in view of a modern world where people are exposed to low levels of a multitude of genotoxic and non-genotoxic agents. Its potential danger lies in the unwarranted postulation of separate thresholds for agents with similar action. A unifying concept involving toxicology and radiation biology is needed for a full mechanistic assessment of environmental health risks. The threat of synergism may be less than expected, but this may also hold for the safety margin commonly thought to be a consequence of linear no-threshold dose-effect relationship assumptions.

  16. Modeling influenza-like illnesses through composite compartmental models

    Science.gov (United States)

    Levy, Nir; , Michael, Iv; Yom-Tov, Elad

    2018-03-01

    Epidemiological models for the spread of pathogens in a population are usually only able to describe a single pathogen. This makes their application unrealistic in cases where multiple pathogens with similar symptoms are spreading concurrently within the same population. Here we describe a method which makes possible the application of multiple single-strain models under minimal conditions. As such, our method provides a bridge between theoretical models of epidemiology and data-driven approaches for modeling of influenza and other similar viruses. Our model extends the Susceptible-Infected-Recovered model to higher dimensions, allowing the modeling of a population infected by multiple viruses. We further provide a method, based on an overcomplete dictionary of feasible realizations of SIR solutions, to blindly partition the time series representing the number of infected people in a population into individual components, each representing the effect of a single pathogen. We demonstrate the applicability of our proposed method on five years of seasonal influenza-like illness (ILI) rates, estimated from Twitter data. We demonstrate that our method describes, on average, 44% of the variance in the ILI time series. The individual infectious components derived from our model are matched to known viral profiles in the populations, which we demonstrate matches that of independently collected epidemiological data. We further show that the basic reproductive numbers (R 0) of the matched components are in range known for these pathogens. Our results suggest that the proposed method can be applied to other pathogens and geographies, providing a simple method for estimating the parameters of epidemics in a population.

  17. COMPARTMENTALIZATION OF THE INFLAMMATORY RESPONSE TO INHALED GRAIN DUST

    Science.gov (United States)

    Interleukin (IL)-1beta, IL-6, IL-8, tumor necrosis factor (TNF)-alpha, and the secreted form of the IL-1 receptor antagonist (sIL-1RA) are involved in the inflammatory response to inhaled grain dust. Previously, we found considerable production of these cytokines in the lower...

  18. Quantitation of phosphorus excretion in sheep by compartmental analysis

    International Nuclear Information System (INIS)

    Schneider, K.M.; Boston, R.C.; Leaver, D.D.

    1987-01-01

    The control of phosphorus excretion in sheep has been examined by constructing a kinetic model that contains a mechanistic set of connections between blood and gastrointestinal tract. The model was developed using experimental data from chaff-fed sheep and gives an accurate description of the absorption and excretion of 32 P phosphorus in feces and urine of the ruminating sheep. These results indicated the main control site for phosphorus excretion in the ruminating sheep was the gastrointestinal tract, whereas for the non-ruminating sheep fed the liquid diet, control was exerted by the kidney. A critical factor in the induction of adaptation of phosphorus reabsorption by the kidney was the reduction in salivation, and since this response occurred independently of marked changes in the delivery of phosphorus to the kidney, a humoral factor may be involved in this communication between salivary gland and kidney

  19. Sympathetic neurons modulate the beat rate of pluripotent cell-derived cardiomyocytes in vitro.

    Science.gov (United States)

    Takeuchi, Akimasa; Shimba, Kenta; Mori, Masahide; Takayama, Yuzo; Moriguchi, Hiroyuki; Kotani, Kiyoshi; Lee, Jong-Kook; Noshiro, Makoto; Jimbo, Yasuhiko

    2012-12-01

    Although stem cell-derived cardiomyocytes have great potential for the therapy of heart failure, it is unclear whether their function after grafting can be controlled by the host sympathetic nervous system, a component of the autonomic nervous system (ANS). Here we demonstrate the formation of functional connections between rat sympathetic superior cervical ganglion (SCG) neurons and pluripotent (P19.CL6) cell-derived cardiomyocytes (P19CMs) in compartmentalized co-culture, achieved using photolithographic microfabrication techniques. Formation of synapses between sympathetic neurons and P19CMs was confirmed by immunostaining with antibodies against β-3 tubulin, synapsin I and cardiac troponin-I. Changes in the beat rate of P19CMs were triggered after electrical stimulation of the co-cultured SCG neurons, and were affected by the pulse frequency of the electrical stimulation. Such changes in the beat rate were prevented when propranolol, a β-adrenoreceptor antagonist, was added to the culture medium. These results suggest that the beat rate of differentiated cardiomyocytes can be modulated by electrical stimulation of connected sympathetic neurons.

  20. A dendrite-autonomous mechanism for direction selectivity in retinal starburst amacrine cells.

    Science.gov (United States)

    Hausselt, Susanne E; Euler, Thomas; Detwiler, Peter B; Denk, Winfried

    2007-07-01

    Detection of image motion direction begins in the retina, with starburst amacrine cells (SACs) playing a major role. SACs generate larger dendritic Ca(2+) signals when motion is from their somata towards their dendritic tips than for motion in the opposite direction. To study the mechanisms underlying the computation of direction selectivity (DS) in SAC dendrites, electrical responses to expanding and contracting circular wave visual stimuli were measured via somatic whole-cell recordings and quantified using Fourier analysis. Fundamental and, especially, harmonic frequency components were larger for expanding stimuli. This DS persists in the presence of GABA and glycine receptor antagonists, suggesting that inhibitory network interactions are not essential. The presence of harmonics indicates nonlinearity, which, as the relationship between harmonic amplitudes and holding potential indicates, is likely due to the activation of voltage-gated channels. [Ca(2+)] changes in SAC dendrites evoked by voltage steps and monitored by two-photon microscopy suggest that the distal dendrite is tonically depolarized relative to the soma, due in part to resting currents mediated by tonic glutamatergic synaptic input, and that high-voltage-activated Ca(2+) channels are active at rest. Supported by compartmental modeling, we conclude that dendritic DS in SACs can be computed by the dendrites themselves, relying on voltage-gated channels and a dendritic voltage gradient, which provides the spatial asymmetry necessary for direction discrimination.

  1. A dendrite-autonomous mechanism for direction selectivity in retinal starburst amacrine cells.

    Directory of Open Access Journals (Sweden)

    Susanne E Hausselt

    2007-07-01

    Full Text Available Detection of image motion direction begins in the retina, with starburst amacrine cells (SACs playing a major role. SACs generate larger dendritic Ca(2+ signals when motion is from their somata towards their dendritic tips than for motion in the opposite direction. To study the mechanisms underlying the computation of direction selectivity (DS in SAC dendrites, electrical responses to expanding and contracting circular wave visual stimuli were measured via somatic whole-cell recordings and quantified using Fourier analysis. Fundamental and, especially, harmonic frequency components were larger for expanding stimuli. This DS persists in the presence of GABA and glycine receptor antagonists, suggesting that inhibitory network interactions are not essential. The presence of harmonics indicates nonlinearity, which, as the relationship between harmonic amplitudes and holding potential indicates, is likely due to the activation of voltage-gated channels. [Ca(2+] changes in SAC dendrites evoked by voltage steps and monitored by two-photon microscopy suggest that the distal dendrite is tonically depolarized relative to the soma, due in part to resting currents mediated by tonic glutamatergic synaptic input, and that high-voltage-activated Ca(2+ channels are active at rest. Supported by compartmental modeling, we conclude that dendritic DS in SACs can be computed by the dendrites themselves, relying on voltage-gated channels and a dendritic voltage gradient, which provides the spatial asymmetry necessary for direction discrimination.

  2. Cell Motility

    CERN Document Server

    Lenz, Peter

    2008-01-01

    Cell motility is a fascinating example of cell behavior which is fundamentally important to a number of biological and pathological processes. It is based on a complex self-organized mechano-chemical machine consisting of cytoskeletal filaments and molecular motors. In general, the cytoskeleton is responsible for the movement of the entire cell and for movements within the cell. The main challenge in the field of cell motility is to develop a complete physical description on how and why cells move. For this purpose new ways of modeling the properties of biological cells have to be found. This long term goal can only be achieved if new experimental techniques are developed to extract physical information from these living systems and if theoretical models are found which bridge the gap between molecular and mesoscopic length scales. Cell Motility gives an authoritative overview of the fundamental biological facts, theoretical models, and current experimental developments in this fascinating area.

  3. Cell Phones

    Science.gov (United States)

    ... Radiation-Emitting Products and Procedures Home, Business, and Entertainment Products Cell Phones Cell Phones Share Tweet Linkedin ... Follow FDA on Facebook View FDA videos on YouTube View FDA photos on Flickr FDA Archive Combination ...

  4. Photovoltaic Cells

    OpenAIRE

    Karolis Kiela

    2012-01-01

    The article deals with an overview of photovoltaic cells that are currently manufactured and those being developed, including one or several p-n junction, organic and dye-sensitized cells using quantum dots. The paper describes the advantages and disadvantages of various photovoltaic cells, identifies the main parameters, explains the main reasons for the losses that may occur in photovoltaic cells and looks at the ways to minimize them.Article in Lithuanian

  5. TNF inhibits Notch-1 in skeletal muscle cells by Ezh2 and DNA methylation mediated repression: implications in duchenne muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Swarnali Acharyya

    2010-08-01

    Full Text Available Classical NF-kappaB signaling functions as a negative regulator of skeletal myogenesis through potentially multiple mechanisms. The inhibitory actions of TNFalpha on skeletal muscle differentiation are mediated in part through sustained NF-kappaB activity. In dystrophic muscles, NF-kappaB activity is compartmentalized to myofibers to inhibit regeneration by limiting the number of myogenic progenitor cells. This regulation coincides with elevated levels of muscle derived TNFalpha that is also under IKKbeta and NF-kappaB control.Based on these findings we speculated that in DMD, TNFalpha secreted from myotubes inhibits regeneration by directly acting on satellite cells. Analysis of several satellite cell regulators revealed that TNFalpha is capable of inhibiting Notch-1 in satellite cells and C2C12 myoblasts, which was also found to be dependent on NF-kappaB. Notch-1 inhibition occurred at the mRNA level suggesting a transcriptional repression mechanism. Unlike its classical mode of action, TNFalpha stimulated the recruitment of Ezh2 and Dnmt-3b to coordinate histone and DNA methylation, respectively. Dnmt-3b recruitment was dependent on Ezh2.We propose that in dystrophic muscles, elevated levels of TNFalpha and NF-kappaB inhibit the regenerative potential of satellite cells via epigenetic silencing of the Notch-1 gene.

  6. TNF Inhibits Notch-1 in Skeletal Muscle Cells by Ezh2 and DNA Methylation Mediated Repression: Implications in Duchenne Muscular Dystrophy

    Science.gov (United States)

    Acharyya, Swarnali; Sharma, Sudarshana M.; Cheng, Alfred S.; Ladner, Katherine J.; He, Wei; Kline, William; Wang, Huating; Ostrowski, Michael C.; Huang, Tim H.; Guttridge, Denis C.

    2010-01-01

    Background Classical NF-κB signaling functions as a negative regulator of skeletal myogenesis through potentially multiple mechanisms. The inhibitory actions of TNFα on skeletal muscle differentiation are mediated in part through sustained NF-κB activity. In dystrophic muscles, NF-κB activity is compartmentalized to myofibers to inhibit regeneration by limiting the number of myogenic progenitor cells. This regulation coincides with elevated levels of muscle derived TNFα that is also under IKKβ and NF-κB control. Methodology/Principal Findings Based on these findings we speculated that in DMD, TNFα secreted from myotubes inhibits regeneration by directly acting on satellite cells. Analysis of several satellite cell regulators revealed that TNFα is capable of inhibiting Notch-1 in satellite cells and C2C12 myoblasts, which was also found to be dependent on NF-κB. Notch-1 inhibition occurred at the mRNA level suggesting a transcriptional repression mechanism. Unlike its classical mode of action, TNFα stimulated the recruitment of Ezh2 and Dnmt-3b to coordinate histone and DNA methylation, respectively. Dnmt-3b recruitment was dependent on Ezh2. Conclusions/Significance We propose that in dystrophic muscles, elevated levels of TNFα and NF-κB inhibit the regenerative potential of satellite cells via epigenetic silencing of the Notch-1 gene. PMID:20814569

  7. Electrochemical Cell

    DEFF Research Database (Denmark)

    1999-01-01

    The invention relates to a rechargeable electrochemical cell comprising a negative electrode, an electrolyte and a positive electrode in which the positive electrode structure comprises a lithium cobalt manganese oxide of the composition Li¿2?Co¿y?Mn¿2-y?O¿4? where 0 ... for capacity losses in lithium ion cells and lithium-alloy cells....

  8. Cell Nutrition

    NARCIS (Netherlands)

    Malda, J.; Radisic, M.; Levenberg, S.; Woodfield, T.; Oomens, C.W.J.; Baaijens, F.P.T.; Svalander, P.; Vunjak-Novakovic, G.; Blitterswijk, C.; Thomsen, P.; Lindahl, A.; Hubbel, J.A.

    2008-01-01

    This chapter summarizes the role of mass transport in providing nutrients to the cells. It describes how mathematical modeling can enhance the understanding of nutrient limitation in tissue engineering. The nutrient requirements of the cells are explained and the components of the cell culture

  9. iTRAQ-based proteomic analysis reveals the mechanisms of silicon-mediated cadmium tolerance in rice (Oryza sativa) cells.

    Science.gov (United States)

    Ma, Jie; Sheng, Huachun; Li, Xiuli; Wang, Lijun

    2016-07-01

    Silicon (Si) can alleviate cadmium (Cd) stress in rice (Oryza sativa) plants, however, the understanding of the molecular mechanisms at the single-cell level remains limited. To address these questions, we investigated suspension cells of rice cultured in the dark environment in the absence and presence of Si with either short- (12 h) or long-term (5 d) Cd treatments using a combination of isobaric tags for relative and absolute quantitation (iTRAQ), fluorescent staining, and inductively coupled plasma mass spectroscopy (ICP-MS). We identified 100 proteins differentially regulated by Si under the short- or long-term Cd stress. 70% of these proteins were down-regulated, suggesting that Si may improve protein use efficiency by maintaining cells in the normal physiological status. Furthermore, we showed two different mechanisms for Si-mediated Cd tolerance. Under the short-term Cd stress, the Si-modified cell walls inhibited the uptake of Cd ions into cells and consequently reduced the expressions of glycosidase, cell surface non-specific lipid-transfer proteins (nsLTPs), and several stress-related proteins. Under the long-term Cd stress, the amount of Cd in the cytoplasm in Si-accumulating (+Si) cells was decreased by compartmentation of Cd into vacuoles, thus leading to a lower expression of glutathione S-transferases (GST). These results provide protein-level insights into the Si-mediated Cd detoxification in rice single cells. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Spatio-temporal re-organization of replication foci accompanies replication domain consolidation during human pluripotent stem cell lineage specification

    Science.gov (United States)

    Wilson, Korey A.; Elefanty, Andrew G.; Stanley, Edouard G.; Gilbert, David M.

    2016-01-01

    ABSTRACT Lineage specification of both mouse and human pluripotent stem cells (PSCs) is accompanied by spatial consolidation of chromosome domains and temporal consolidation of their replication timing. Replication timing and chromatin organization are both established during G1 phase at the timing decision point (TDP). Here, we have developed live cell imaging tools to track spatio-temporal replication domain consolidation during differentiation. First, we demonstrate that the fluorescence ubiquitination cell cycle indicator (Fucci) system is incapable of demarcating G1/S or G2/M cell cycle transitions. Instead, we employ a combination of fluorescent PCNA to monitor S phase progression, cytokinesis to demarcate mitosis, and fluorescent nucleotides to label early and late replication foci and track their 3D organization into sub-nuclear chromatin compartments throughout all cell cycle transitions. We find that, as human PSCs differentiate, the length of S phase devoted to replication of spatially clustered replication foci increases, coincident with global compartmentalization of domains into temporally clustered blocks of chromatin. Importantly, re-localization and anchorage of domains was completed prior to the onset of S phase, even in the context of an abbreviated PSC G1 phase. This approach can also be employed to investigate cell fate transitions in single PSCs, which could be seen to differentiate preferentially from G1 phase. Together, our results establish real-time, live-cell imaging methods for tracking cell cycle transitions during human PSC differentiation that can be applied to study chromosome domain consolidation and other aspects of lineage specification. PMID:27433885

  11. Reorganization of the Endosomal System in Salmonella-Infected Cells: The Ultrastructure of Salmonella-Induced Tubular Compartments

    Science.gov (United States)

    Krieger, Viktoria; Liebl, David; Zhang, Yuying; Rajashekar, Roopa; Chlanda, Petr; Giesker, Katrin; Chikkaballi, Deepak; Hensel, Michael

    2014-01-01

    During the intracellular life of Salmonella enterica, a unique membrane-bound compartment termed Salmonella-containing vacuole, or SCV, is formed. By means of translocated effector proteins, intracellular Salmonella also induce the formation of extensive, highly dynamic membrane tubules termed Salmonella-induced filaments or SIF. Here we report the first detailed ultrastructural analyses of the SCV and SIF by electron microscopy (EM), EM tomography and live cell correlative light and electron microscopy (CLEM). We found that a subset of SIF is composed of double membranes that enclose portions of host cell cytosol and cytoskeletal filaments within its inner lumen. Despite some morphological similarities, we found that the formation of SIF double membranes is independent from autophagy and requires the function of the effector proteins SseF and SseG. The lumen of SIF network is accessible to various types of endocytosed material and our CLEM analysis of double membrane SIF demonstrated that fluid phase markers accumulate only between the inner and outer membrane of these structures, a space continual with endosomal lumen. Our work reveals how manipulation of the endosomal membrane system by an intracellular pathogen results in a unique tubular membrane compartmentalization of the host cell, generating a shielded niche permissive for intracellular proliferation of Salmonella. PMID:25254663

  12. Selective alterations of the host cell architecture upon infection with parvovirus minute virus of mice

    International Nuclear Information System (INIS)

    Nueesch, Juerg P.F.; Lachmann, Sylvie; Rommelaere, Jean

    2005-01-01

    During a productive infection, the prototype strain of parvovirus minute virus of mice (MVMp) induces dramatic morphological alterations to the fibroblast host cell A9, resulting in cell lysis and progeny virus release. In order to understand the mechanisms underlying these changes, we characterized the fate of various cytoskeletal filaments and investigated the nuclear/cytoplasmic compartmentalization of infected cells. While most pronounced effects could be seen on micro- and intermediate filaments, manifest in dramatic rearrangements and degradation of filamentous (F-)actin and vimentin structures, only little impact could be seen on microtubules or the nuclear envelope during the entire monitored time of infection. To further analyze the disruption of the cytoskeletal structures, we investigated the viral impact on selective regulatory pathways. Thereby, we found a correlation between microtubule stability and MVM-induced phosphorylation of α/β tubulin. In contrast, disassembly of actin filaments late in infection could be traced back to the disregulation of two F-actin associated proteins gelsolin and Wiscott-Aldrich Syndrome Protein (WASP). Thereby, an increase in the amount of gelsolin, an F-actin severing protein was observed during infection, accounting for the disruption of stress fibers upon infection. Concomitantly, the actin polymerization activity also diminished due to a loss of WASP, the activator protein of the actin polymerization machinery the Arp2/3 complex. No effects could be seen in amount and distribution of other F-actin regulatory factors such as cortactin, cofilin, and profilin. In summary, the selective attack of MVM towards distinct host cell cytoskeletal structures argues for a regulatory feature during infection, rather than a collapse of the host cell as a mere side effect of virus production

  13. Cholesterol modulates CFTR confinement in the plasma membrane of primary epithelial cells.

    Science.gov (United States)

    Abu-Arish, Asmahan; Pandzic, Elvis; Goepp, Julie; Matthes, Elizabeth; Hanrahan, John W; Wiseman, Paul W

    2015-07-07

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a plasma-membrane anion channel that, when mutated, causes the disease cystic fibrosis. Although CFTR has been detected in a detergent-resistant membrane fraction prepared from airway epithelial cells, suggesting that it may partition into cholesterol-rich membrane microdomains (lipid rafts), its compartmentalization has not been demonstrated in intact cells and the influence of microdomains on CFTR lateral mobility is unknown. We used live-cell imaging, spatial image correlation spectroscopy, and k-space image correlation spectroscopy to examine the aggregation state of CFTR and its dynamics both within and outside microdomains in the plasma membrane of primary human bronchial epithelial cells. These studies were also performed during treatments that augment or deplete membrane cholesterol. We found two populations of CFTR molecules that were distinguishable based on their dynamics at the cell surface. One population showed confinement and had slow dynamics that were highly cholesterol dependent. The other, more abundant population was less confined and diffused more rapidly. Treatments that deplete the membrane of cholesterol caused the confined fraction and average number of CFTR molecules per cluster to decrease. Elevating cholesterol had the opposite effect, increasing channel aggregation and the fraction of channels displaying confinement, consistent with CFTR recruitment into cholesterol-rich microdomains with dimensions below the optical resolution limit. Viral infection caused the nanoscale microdomains to fuse into large platforms and reduced CFTR mobility. To our knowledge, these results provide the first biophysical evidence for multiple CFTR populations and have implications for regulation of their surface expression and channel function. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Types of Stem Cells

    Science.gov (United States)

    ... Stem Cell Glossary Search Toggle Nav Types of Stem Cells Stem cells are the foundation from which all ... Learn About Stem Cells > Types of Stem Cells Stem cells Stem cells are the foundation for every organ ...

  15. Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs.

    Directory of Open Access Journals (Sweden)

    Federica Collino

    Full Text Available BACKGROUND: Cell-derived microvesicles (MVs have been described as a new mechanism of cell-to-cell communication. MVs after internalization within target cells may deliver genetic information. Human bone marrow derived mesenchymal stem cells (MSCs and liver resident stem cells (HLSCs were shown to release MVs shuttling functional mRNAs. The aim of the present study was to evaluate whether MVs derived from MSCs and HLSCs contained selected micro-RNAs (miRNAs. METHODOLOGY/PRINCIPAL FINDINGS: MVs were isolated from MSCs and HLSCs. The presence in MVs of selected ribonucleoproteins involved in the traffic and stabilization of RNA was evaluated. We observed that MVs contained TIA, TIAR and HuR multifunctional proteins expressed in nuclei and stress granules, Stau1 and 2 implicated in the transport and stability of mRNA and Ago2 involved in miRNA transport and processing. RNA extracted from MVs and cells of origin was profiled for 365 known human mature miRNAs by real time PCR. Hierarchical clustering and similarity analysis of miRNAs showed 41 co-expressed miRNAs in MVs and cells. Some miRNAs were accumulated within MVs and absent in the cells after MV release; others were retained within the cells and not secreted in MVs. Gene ontology analysis of predicted and validated targets showed that the high expressed miRNAs in cells and MVs could be involved in multi-organ development, cell survival and differentiation. Few selected miRNAs shuttled by MVs were also associated with the immune system regulation. The highly expressed miRNAs in MVs were transferred to target cells after MV incorporation. CONCLUSIONS: This study demonstrated that MVs contained ribonucleoproteins involved in the intracellular traffic of RNA and selected pattern of miRNAs, suggesting a dynamic regulation of RNA compartmentalization in MVs. The observation that MV-highly expressed miRNAs were transferred to target cells, rises the possibility that the biological effect of stem

  16. Fuel Cells

    DEFF Research Database (Denmark)

    Smith, Anders; Pedersen, Allan Schrøder

    2014-01-01

    Fuel cells have been the subject of intense research and development efforts for the past decades. Even so, the technology has not had its commercial breakthrough yet. This entry gives an overview of the technological challenges and status of fuel cells and discusses the most promising applications...... of the different types of fuel cells. Finally, their role in a future energy supply with a large share of fluctuating sustainable power sources, e.g., solar or wind, is surveyed....

  17. Cell suicide

    International Nuclear Information System (INIS)

    May, E.; Coffigny, H.

    2000-01-01

    In the fight of the cell against the damages caused to its DNA by genotoxic agents and specially by ionizing radiations, the p53 protein plays a central part. It intervenes in the proliferation control and the differentiation but also in the keeping of genome integrity. It can direct the damages cells toward suicide, or apoptosis, to avoid the risk of tumor appearance that would be fatal to the whole organism. That is by the disordered state of cells suicide programs that the tumor cells are going to develop. The knowledge of apoptosis mechanisms, to eventually start them on demand, rises up broad hopes in the cancer therapy. (N.C.)

  18. KIR2DL4 differentially signals downstream functions in human NK cells through distinct structural modules.

    Science.gov (United States)

    Miah, S M Shahjahan; Hughes, Tracey L; Campbell, Kerry S

    2008-03-01

    KIR2DL4 (2DL4) is a member of the killer cell Ig-like receptor (KIR) family in human NK cells. It can stimulate potent cytokine production and weak cytolytic activity in resting NK cells, but the mechanism for 2DL4-mediated signaling remains unclear. In this study we characterized the signaling pathways stimulated by 2DL4 engagement. In a human NK-like cell line, KHYG-1, cross-linking of 2DL4 activated MAPKs including JNK, ERK, and p38. Furthermore, 2DL4 cross-linking resulted in phosphorylation of IkappaB kinase beta (IKKbeta) and the phosphorylation and degradation of IkappaBalpha, which indicate activation of the classical NF-kappaB pathway. Engagement of 2DL4 was also shown to activate the transcription and translation of a variety of cytokine genes, including TNF-alpha, IFN-gamma, MIP1alpha, MIP1beta, and IL-8. Pharmacological inhibitors of JNK, MEK1/2 and p38, blocked IFN-gamma, IL-8, and MIP1alpha production, suggesting that MAPKs are regulating 2DL4-mediated cytokine production in a nonredundant manner. Activation of both p38 and ERK appear to be upstream of the stimulation of NF-kappaB. Mutation of a transmembrane arginine in 2DL4 to glycine (R/G mutant) abrogated FcepsilonRI-gamma association, as well as receptor-mediated cytolytic activity and calcium responses. Surprisingly, the R/G mutant still activated MAPKs and the NF-kappaB pathway and selectively stimulated the production of MIP1alpha, but not that of IFN-gamma or IL-8. In conclusion, we provide evidence that the activating functions of 2DL4 can be compartmentalized into two distinct structural modules: 1) through transmembrane association with FcepsilonRI-gamma; and 2) through another receptor domain independent of the transmembrane arginine.

  19. Effect of hypoxia on thallium kinetics in cultured chick myocardial cells

    International Nuclear Information System (INIS)

    Friedman, B.J.; Beihn, R.; Friedman, J.P.

    1987-01-01

    To assess the effect of hypoxia on cellular thallium-201 ( 201 Tl) uptake and washout independent of coronary flow, we studied thallium kinetics during normoxia and hypoxia in cultured chick ventricular cells. Monolayers of contracting ventricular cells grown on coverslips were placed in a chamber and perfused to asymptote with media containing 201 Tl. Perfusates were equilibrated with 5% CO 2 -95% air or 5% CO 2 -95% nitrogen for normoxia and hypoxia, respectively. Washout thallium kinetics were then observed during perfusion with unlabeled media. Twenty paired experiments were performed, randomly alternating the sequence of normoxia and hypoxia. Pharmacokinetics for thallium were determined by computer using standard formulae. Thallium uptake and washout were best described by assuming that intracellular thallium was contained within a single compartment. Cellular thallium uptake, as well as transfer rate constants for thallium uptake and for thallium washout during normoxia and hypoxia, were compared using paired t-tests. During normoxia and hypoxia, respectively, thallium uptake was 22 +/- 7% and 19 +/- 7% of asymptote (p less than 0.01); the compartmental rate constant for uptake by the cell was 0.16 +/- 0.07 min-1 and 0.15 +/- 0.06 min-1 (N.S.); and the transfer rate constant for washout from the cell was 0.26 +/- 0.06 min-1 and 0.23 +/- 0.05 min-1 (p less than 0.01). We conclude that there was a small (14%) decrease in thallium uptake during hypoxia. The rate of thallium uptake and washout was slightly less during hypoxia, although only the rate of washout was significantly less. These data show that cellular accumulation of thallium and the rate of washout of thallium were minimally decreased by hypoxia independent of blood flow

  20. Novel Reporter for Faithful Monitoring of ERK2 Dynamics in Living Cells and Model Organisms

    Science.gov (United States)

    Sipieter, François; Cappe, Benjamin; Gonzalez Pisfil, Mariano; Spriet, Corentin; Bodart, Jean-François; Cailliau-Maggio, Katia; Vandenabeele, Peter; Héliot, Laurent; Riquet, Franck B.

    2015-01-01

    Uncoupling of ERK1/2 phosphorylation from subcellular localization is essential towards the understanding of molecular mechanisms that control ERK1/2-mediated cell-fate decision. ERK1/2 non-catalytic functions and discoveries of new specific anchors responsible of the subcellular compartmentalization of ERK1/2 signaling pathway have been proposed as regulation mechanisms for which dynamic monitoring of ERK1/2 localization is necessary. However, studying the spatiotemporal features of ERK2, for instance, in different cellular processes in living cells and tissues requires a tool that can faithfully report on its subcellular distribution. We developed a novel molecular tool, ERK2-LOC, based on the T2A-mediated coexpression of strictly equimolar levels of eGFP-ERK2 and MEK1, to faithfully visualize ERK2 localization patterns. MEK1 and eGFP-ERK2 were expressed reliably and functionally both in vitro and in single living cells. We then assessed the subcellular distribution and mobility of ERK2-LOC using fluorescence microscopy in non-stimulated conditions and after activation/inhibition of the MAPK/ERK1/2 signaling pathway. Finally, we used our coexpression system in Xenopus laevis embryos during the early stages of development. This is the first report on MEK1/ERK2 T2A-mediated coexpression in living embryos, and we show that there is a strong correlation between the spatiotemporal subcellular distribution of ERK2-LOC and the phosphorylation patterns of ERK1/2. Our approach can be used to study the spatiotemporal localization of ERK2 and its dynamics in a variety of processes in living cells and embryonic tissues. PMID:26517832

  1. Alterations in regulatory T cells induced by specific oligosaccharides improve vaccine responsiveness in mice.

    Directory of Open Access Journals (Sweden)

    Marcel A Schijf

    Full Text Available Prophylactic vaccinations are generally performed to protect naïve individuals with or without suppressed immune responsiveness. In a mouse model for Influenza vaccinations the specific alterations of CD4(+CD25(+Foxp3(+ regulatory T-cells (Tregs in the immune modulation induced by orally supplied oligosaccharides containing scGOS/lcFOS/pAOS was assessed. This dietary intervention increased vaccine specific DTH responses. In addition, a significant increased percentage of T-bet(+ (Th1 activated CD69(+CD4(+ T cells (p<0.001 and reduced percentage of Gata-3(+ (Th2 activated CD69(+CD4(+T cells (p<0.001 was detected in the mesenteric lymph nodes (MLN of mice receiving scGOS/lcFOS/pAOS compared to control mice. Although no difference in the number or percentage of Tregs (CD4(+Foxp3(+ could be determined after scGOS/lcFOS/pAOS intervention, the percentage of CXCR3 (+ /T-bet(+ (Th1-Tregs was significantly reduced (p<0.05 in mice receiving scGOS/lcFOS/pAOS as compared to mice receiving placebo diets. Moreover, although no absolute difference in suppressive capacity could be detected, an alteration in cytokine profile suggests a regulatory T cell shift towards a reducing Th1 suppression profile, supporting an improved vaccination response.These data are indicative for improved vaccine responsiveness due to reduced Th1 suppressive capacity in the Treg population of mice fed the oligosaccharide specific diet, showing compartmentalization within the Treg population. The modulation of Tregs to control immune responses provides an additional arm of intervention using alternative strategies possibly leading to the development of improved vaccines.

  2. [THE PHYSICAL CHEMICAL, BIOLOGICAL BASICS OF CELLS ABSORPTION OF UNESTERIFIED FATTY ACIDS; ALBUMIN, CAVEOLIN, CLATHRIN AND LIPID-BINDING PROTEINS OF CYTOPLASM (THE LECTURE)].

    Science.gov (United States)

    Titov, V N; Shoibonov, B B

    2016-03-01

    From aposition of phylogenetic theory of general pathology, obesity and metabolic syndrome are pathology of fatty cells. However, the first is a pathology of phylogenetically early visceral fatty cells of omentum. They supply with substratum of energy realization of biologic function of trophology, homeostasis, endoecology and adaptation. The visceral fatty cells of omentum have no receptors to insulin and synthesize adaptively insulin and they are not characterized by biologic reaction of proliferation. The obesity is a pathology of late in phylogenesis subcutaneous adpocytes. They are insulin-dependent and supply with substratum of energy realization of one biologic function of locomotion--movement at the expense of constriction of cross-striated miocytes. The adipocytes in terms of adaptation synthesize humoral mediator adponectin and actively implement biologic function of proliferation. Under both aphysiologic conditions increases passive by gradient of concentration, absorption by cells albumin-unbound free fatty acids in unionized form in micellae's composition. The passive aphysiologic absorption of free fatty acids by cells which under intracellular compartmentalization don't oxidize mitochondria results in synthesis, accumulation of triglycerides in cytoplasm of cells which don't implement it physiologically. The aphysiologic absorption of free fatty acids by cells, their etherification in triglyceride, in particular, in phylogenetically late β-cells of islets and either late cardiomyocytes which fatty acids don't synthesize de novo results in development of aphysiologic processes and disorder of function. From position of biology, these cells in vivo are subjected to loss similar to apoptosis. The formation of corpuscles of apoptosis compromise biologic function of endoecology activating biologic reaction of inflammation.

  3. Fuel cells

    NARCIS (Netherlands)

    Veen, van J.A.R.; Janssen, F.J.J.G.; Santen, van R.A.

    1999-01-01

    The principles and present-day embodiments of fuel cells are discussed. Nearly all cells are hydrogen/oxygen ones, where the hydrogen fuel is usually obtained on-site from the reforming of methane or methanol. There exists a tension between the promise of high efficiency in the conversion of

  4. Computational modeling predicts the ionic mechanism of late-onset responses in Unipolar Brush Cells

    Directory of Open Access Journals (Sweden)

    Sathyaa eSubramaniyam

    2014-08-01

    Full Text Available Unipolar Brush Cells (UBCs have been suggested to have a strong impact on cerebellar granular layer functioning, yet the corresponding cellular mechanisms remain poorly understood. UBCs have recently been reported to generate, in addition to early-onset glutamatergic synaptic responses, a late-onset response (LOR composed of a slow depolarizing ramp followed by a spike burst (Locatelli et al., 2013. The LOR activates as a consequence of synaptic activity and involves an intracellular cascade modulating H- and TRP-current gating. In order to assess the LOR mechanisms, we have developed a UBC multi-compartmental model (including soma, dendrite, initial segment and axon incorporating biologically realistic representations of ionic currents and a generic coupling mechanism regulating TRP and H channel gating. The model finely reproduced UBC responses to current injection, including a low-threshold spike sustained by CaLVA currents, a persistent discharge sustained by CaHVA currents, and a rebound burst following hyperpolarization sustained by H- and CaLVA-currents. Moreover, the model predicted that H- and TRP-current regulation was necessary and sufficient to generate the LOR and its dependence on the intensity and duration of mossy fiber activity. Therefore, the model showed that, using a basic set of ionic channels, UBCs generate a rich repertoire of delayed bursts, which could take part to the formation of tunable delay-lines in the local microcircuit.

  5. Analysis of signal transduction in cell-free extracts and rafts of Xenopus eggs.

    Science.gov (United States)

    Tokmakov, Alexander A; Iwasaki, Tetsushi; Sato, Ken-Ichi; Fukami, Yasuo

    2010-05-01

    Intracellular signaling during egg activation/fertilization has been extensively studied using intact eggs, which can be manipulated by microinjection of different mRNAs, proteins, or chemical drugs. Furthermore, egg extracts, which retain high CSF activity (CSF-arrested extracts), were developed for studying fertilization/activation signal transduction, which have significant advantages as a model system. The addition of calcium to CSF-arrested extracts initiates a plethora of signaling events that take place during egg activation. Hence, the signaling downstream of calcium mobilization has been successfully studied in the egg extracts. Moreover, despite disruption of membrane-associated signaling compartments and ordered compartmentalization during extract preparation, CSF-arrested extracts can be successfully used to study early signaling events, which occur upstream of calcium release during egg activation/fertilization. In combination with the CSF-arrested extracts, activated egg rafts can reproduce some events of egg activation, including PLCgamma activation, IP3 production, transient calcium release, MAPK inactivation, and meiotic exit. This becomes possible due to complementation of the sperm-induced egg activation signaling machinery present in the rafts with the components of signal transduction system localized in the extracts. Herein, we describe protocols for studying molecular mechanisms of egg fertilization/activation using cell-free extracts and membrane rafts prepared from metaphase-arrested Xenopus eggs.

  6. Direct synthesis of nitrogen-containing carbon nanotubes on carbon paper for fuel cell electrode

    Science.gov (United States)

    Yin, Wong Wai; Daud, Wan Ramli Wan; Mohamad, Abu Bakar; Kadhum, Abdul Amir Hassan; Majlan, Edy Herianto; Shyuan, Loh Kee

    2012-06-01

    Organic catalyst has recently been identified as the potential substitution for expensive platinum electrocatalyst for fuel cell application. Numerous studies have shown that the nitrogen-containing carbon nanotubes (N-CNT) can be synthesized through spray pyrolysis or floating chemical vapor deposition (CVD) technique using various type of organometallic as precursors. This paper presents the method of synthesis and the initial findings of the growth of N-CNT directly on carbon paper using a modified CVD technique. In this research, nickel (II) phthalocyanines (Ni-Pc) as precursor was dissolved in ethanol solvent, stirred and sonicated to become homogenized. The solution was poured into a bubbler and heated up to allow the mixture to vaporize. Subsequently, the solution vapor was flowed into the tubical reactor maintained at 900°C. Carbon paper sputtered with nickel nanoparticles was used as the substrate. The synthesized sample was examined through Field Emission Scanning Electron Microscopy (FESEM), Atomic Force Microscopy (AFM) and Fourier Transform Infra-Red (FTIR). Long, entangled and compartmentalized nanotubes with tube diameter ranging 23-27 nm were found covered the carbon paper surface with approximate of 5.5-6.0 μm in thickness. EDX analysis has successfully showed the presence of nitrogen in the carbon nanotube. FTIR analysis showed the presence of the C-N bond on CNT.

  7. Computational modeling predicts the ionic mechanism of late-onset responses in unipolar brush cells.

    Science.gov (United States)

    Subramaniyam, Sathyaa; Solinas, Sergio; Perin, Paola; Locatelli, Francesca; Masetto, Sergio; D'Angelo, Egidio

    2014-01-01

    Unipolar Brush Cells (UBCs) have been suggested to play a critical role in cerebellar functioning, yet the corresponding cellular mechanisms remain poorly understood. UBCs have recently been reported to generate, in addition to early-onset glutamate receptor-dependent synaptic responses, a late-onset response (LOR) composed of a slow depolarizing ramp followed by a spike burst (Locatelli et al., 2013). The LOR activates as a consequence of synaptic activity and involves an intracellular cascade modulating H- and TRP-current gating. In order to assess the LOR mechanisms, we have developed a UBC multi-compartmental model (including soma, dendrite, initial segment, and axon) incorporating biologically realistic representations of ionic currents and a cytoplasmic coupling mechanism regulating TRP and H channel gating. The model finely reproduced UBC responses to current injection, including a burst triggered by a low-threshold spike (LTS) sustained by CaLVA currents, a persistent discharge sustained by CaHVA currents, and a rebound burst following hyperpolarization sustained by H- and CaLVA-currents. Moreover, the model predicted that H- and TRP-current regulation was necessary and sufficient to generate the LOR and its dependence on the intensity and duration of mossy fiber activity. Therefore, the model showed that, using a basic set of ionic channels, UBCs generate a rich repertoire of bursts, which could effectively implement tunable delay-lines in the local microcircuit.

  8. Hindbrain medulla catecholamine cell group involvement in lactate-sensitive hypoglycemia-associated patterns of hypothalamic norepinephrine and epinephrine activity.

    Science.gov (United States)

    Shrestha, P K; Tamrakar, P; Ibrahim, B A; Briski, K P

    2014-10-10

    Cell-type compartmentation of glucose metabolism in the brain involves trafficking of the oxidizable glycolytic end product, l-lactate, by astrocytes to fuel neuronal mitochondrial aerobic respiration. Lactate availability within the hindbrain medulla is a monitored function that regulates systemic glucostasis as insulin-induced hypoglycemia (IIH) is exacerbated by lactate repletion of that brain region. A2 noradrenergic neurons are a plausible source of lactoprivic input to the neural gluco-regulatory circuit as caudal fourth ventricular (CV4) lactate infusion normalizes IIH-associated activation, e.g. phosphorylation of the high-sensitivity energy sensor, adenosine 5'-monophosphate-activated protein kinase (AMPK), in these cells. Here, we investigated the hypothesis that A2 neurons are unique among medullary catecholamine cells in directly screening lactate-derived energy. Adult male rats were injected with insulin or vehicle following initiation of continuous l-lactate infusion into the CV4. Two hours after injections, A1, C1, A2, and C2 neurons were collected by laser-microdissection for Western blot analysis of AMPKα1/2 and phosphoAMPKα1/2 proteins. Results show that AMPK is expressed in each cell group, but only a subset, e.g. A1, C1, and A2 neurons, exhibit increased sensor activity in response to IIH. Moreover, hindbrain lactate repletion reversed hypoglycemic augmentation of pAMPKα1/2 content in A2 and C1 but not A1 cells, and normalized hypothalamic norepinephrine and epinephrine content in a site-specific manner. The present evidence for discriminative reactivity of AMPK-expressing medullary catecholamine neurons to the screened energy substrate lactate implies that that lactoprivation is selectively signaled to the hypothalamus by A2 noradrenergic and C1 adrenergic cells. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. Identification of proteins likely to be involved in morphogenesis, cell division, and signal transduction in Planctomycetes by comparative genomics.

    Science.gov (United States)

    Jogler, Christian; Waldmann, Jost; Huang, Xiaoluo; Jogler, Mareike; Glöckner, Frank Oliver; Mascher, Thorsten; Kolter, Roberto

    2012-12-01

    Members of the Planctomycetes clade share many unusual features for bacteria. Their cytoplasm contains membrane-bound compartments, they lack peptidoglycan and FtsZ, they divide by polar budding, and they are capable of endocytosis. Planctomycete genomes have remained enigmatic, generally being quite large (up to 9 Mb), and on average, 55% of their predicted proteins are of unknown function. Importantly, proteins related to the unusual traits of Planctomycetes remain largely unknown. Thus, we embarked on bioinformatic analyses of these genomes in an effort to predict proteins that are likely to be involved in compartmentalization, cell division, and signal transduction. We used three complementary strategies. First, we defined the Planctomycetes core genome and subtracted genes of well-studied model organisms. Second, we analyzed the gene content and synteny of morphogenesis and cell division genes and combined both methods using a "guilt-by-association" approach. Third, we identified signal transduction systems as well as sigma factors. These analyses provide a manageable list of candidate genes for future genetic studies and provide evidence for complex signaling in the Planctomycetes akin to that observed for bacteria with complex life-styles, such as Myxococcus xanthus.

  10. Learn About Stem Cells

    Science.gov (United States)

    ... Patient Handbook Stem Cell Glossary Search Toggle Nav Stem Cell Basics Stem cells are the foundation from which ... original cell’s DNA, cytoplasm and cell membrane. About stem cells Stem cells are the foundation of development in ...

  11. Fuel cells

    International Nuclear Information System (INIS)

    Niederdoeckl, J.

    2001-01-01

    Europe has at present big hopes on the fuel cells technology, in comparison with other energy conversion technologies, this technology has important advantages, for example: high efficiency, very low pollution and parallel use of electric and thermal energy. Preliminary works for fuel cells developing and its commercial exploitation are at full speed; until now the European Union has invested approx. 1.7 billion Schillings, 60 relevant projects are being executed. The Austrian industry is interested in applying this technique to drives, thermal power stations and the miniature fuel cells as replacement of batteries in electronic products (Notebooks, mobile telephones, etc.). A general description of the historic development of fuel cells including the main types is given as well as what is the situation in Austria. (nevyjel)

  12. Dry cell battery poisoning

    Science.gov (United States)

    Batteries - dry cell ... Acidic dry cell batteries contain: Manganese dioxide Ammonium chloride Alkaline dry cell batteries contain: Sodium hydroxide Potassium hydroxide Lithium dioxide dry cell batteries ...

  13. Pediatric Solid-Organ Transplant Recipients Carry Chronic Loads of Epstein-Barr Virus Exclusively in the Immunoglobulin D-Negative B-Cell Compartment

    Science.gov (United States)

    Rose, Camille; Green, Michael; Webber, Steven; Ellis, Demetrius; Reyes, Jorges; Rowe, David

    2001-01-01

    Solid-organ transplant recipients are at risk for development of lymphoproliferative diseases. The purpose of this study was to examine the distribution of Epstein-Barr virus (EBV) load in the peripheral blood of pediatric transplant recipients who had become chronic viral load carriers (>8 copies/105 lymphocytes for >2 months). A total of 19 patients with viral loads ranging from 20 to 5,000 viral genome copies/105 lymphocytes were studied. Ten patients had no previous diagnosis of posttransplant lymphoproliferative disease (PT-LPD), while nine had recovered from a diagnosed case of PT-LPD. No portion of the peripheral blood viral load was detected in the cell-free plasma fraction. Viral DNA was found in a population of cells characterized as CD19hi and immunoglobulin D negative, a phenotype that is consistent with the virus being carried exclusively in the memory B-cell compartment of the peripheral blood. There was no difference in the compartmentalization based upon either the level of the viral load or the past diagnosis of an episode of PT-LPD. These results have implications for the design of tests to detect EBV infection and for the interpretation and use of positive EBV PCR assays in the management of transplant recipients. PMID:11283064

  14. Analysis of cell adhesion during early stages of colon cancer based on an extended multi-valued logic approach.

    Science.gov (United States)

    Guebel, Daniel V; Schmitz, Ulf; Wolkenhauer, Olaf; Vera, Julio

    2012-04-01

    Cell adhesion in the normal colon is typically associated with differentiated cells, whereas in cancerous colon it is associated with advanced tumors. For advanced tumors growing evidence supports the existence of stem-like cells that have originated from transdifferentiation. Because stem cells can also be transformed in their own niche, at the base of the Lieberkühn's crypts, we conjectured that cell adhesion can also be critical in early tumorigenesis. To assess this hypothesis we built an annotated, multi-valued logic model addressing cell adhesion of normal and tumorigenic stem cells in the human colon. The model accounts for (i) events involving intercellular adhesion structures, (ii) interactions involving cytoskeleton-related structures, (iii) compartmental distribution of α/β/γ/δ-catenins, and (iv) variations in critical cell adhesion regulators (e.g., ILK, FAK, IQGAP, SNAIL, Caveolin). We developed a method that can deal with graded multiple inhibitions, something which is not possible with conventional logical approaches. The model comprises 315 species (including 26 genes), interconnected by 269 reactions. Simulations of the model covered six scenarios, which considered two types of colonic cells (stem vs. differentiated cells), under three conditions (normal, stressed and tumor). Each condition results from the combination of 92 inputs. We compared our multi-valued logic approach with the conventional Boolean approach for one specific example and validated the predictions against published data. Our analysis suggests that stem cells in their niche synthesize high levels of cytoplasmatic E-cadherin and CdhEP(Ser684,686,692), even under normal-mitogenic stimulus or tumorigenic conditions. Under these conditions, E-cadherin would be incorporated into the plasmatic membrane, but only as a non-adhesive CdhE_β-catenin_IQGAP complex. Under stress conditions, however, this complex could be displaced, yielding adhesive Cdh

  15. Dendritic excitability modulates dendritic information processing in a purkinje cell model.

    Science.gov (United States)

    Coop, Allan D; Cornelis, Hugo; Santamaria, Fidel

    2010-01-01

    Using an electrophysiological compartmental model of a Purkinje cell we quantified the contribution of individual active dendritic currents to processing of synaptic activity from granule cells. We used mutual information as a measure to quantify the information from the total excitatory input current (I(Glu)) encoded in each dendritic current. In this context, each active current was considered an information channel. Our analyses showed that most of the information was encoded by the calcium (I(CaP)) and calcium activated potassium (I(Kc)) currents. Mutual information between I(Glu) and I(CaP) and I(Kc) was sensitive to different levels of excitatory and inhibitory synaptic activity that, at the same time, resulted in the same firing rate at the soma. Since dendritic excitability could be a mechanism to regulate information processing in neurons we quantified the changes in mutual information between I(Glu) and all Purkinje cell currents as a function of the density of dendritic Ca (g(CaP)) and Kca (g(Kc)) conductances. We extended our analysis to determine the window of temporal integration of I(Glu) by I(CaP) and I(Kc) as a function of channel density and synaptic activity. The window of information integration has a stronger dependence on increasing values of g(Kc) than on g(CaP), but at high levels of synaptic stimulation information integration is reduced to a few milliseconds. Overall, our results show that different dendritic conductances differentially encode synaptic activity and that dendritic excitability and the level of synaptic activity regulate the flow of information in dendrites.

  16. Chapter 6: cubic membranes the missing dimension of cell membrane organization.

    Science.gov (United States)

    Almsherqi, Zakaria A; Landh, Tomas; Kohlwein, Sepp D; Deng, Yuru

    2009-01-01

    Biological membranes are among the most fascinating assemblies of biomolecules: a bilayer less than 10 nm thick, composed of rather small lipid molecules that are held together simply by noncovalent forces, defines the cell and discriminates between "inside" and "outside", survival, and death. Intracellular compartmentalization-governed by biomembranes as well-is a characteristic feature of eukaryotic cells, which allows them to fulfill multiple and highly specialized anabolic and catabolic functions in strictly controlled environments. Although cellular membranes are generally visualized as flat sheets or closely folded isolated objects, multiple observations also demonstrate that membranes may fold into "unusual", highly organized structures with 2D or 3D periodicity. The obvious correlation of highly convoluted membrane organizations with pathological cellular states, for example, as a consequence of viral infection, deserves close consideration. However, knowledge about formation and function of these highly organized 3D periodic membrane structures is scarce, primarily due to the lack of appropriate techniques for their analysis in vivo. Currently, the only direct way to characterize cellular membrane architecture is by transmission electron microscopy (TEM). However, deciphering the spatial architecture solely based on two-dimensionally projected TEM images is a challenging task and prone to artifacts. In this review, we will provide an update on the current progress in identifying and analyzing 3D membrane architectures in biological systems, with a special focus on membranes with cubic symmetry, and their potential role in physiological and pathophysiological conditions. Proteomics and lipidomics approaches in defined experimental cell systems may prove instrumental to understand formation and function of 3D membrane morphologies.

  17. Trajectory Analysis Unveils Reelin's Role in the Directed Migration of Granule Cells in the Dentate Gyrus.

    Science.gov (United States)

    Wang, Shaobo; Brunne, Bianka; Zhao, Shanting; Chai, Xuejun; Li, Jiawei; Lau, Jeremie; Failla, Antonio Virgilio; Zobiak, Bernd; Sibbe, Mirjam; Westbrook, Gary L; Lutz, David; Frotscher, Michael

    2018-01-03

    present study, we took advantage of the expression of proopiomelanocortin-EGFP by newly generated, migrating granule cells to analyze their migratory trajectories in hippocampal slice cultures from wild-type mice and mutants deficient in Reelin signaling. We show that the compartmentalized presence of Reelin is essential for the directionality, but not the actual migratory process or speed, of migrating granule cells leading to their characteristic lamination in the dentate gyrus. Copyright © 2018 the authors 0270-6474/18/380137-12$15.00/0.

  18. Solar cells

    International Nuclear Information System (INIS)

    1980-01-01

    A method of producing solar cells is described which consists of producing a substantially monocrystalline tubular body of silicon or other suitable semiconductor material, treating this body to form an annular rectifying junction and then cutting it longitudinally to form a number of nearly flat ribbons from which the solar cells are fabricated. The P=N rectifying junction produced by the formation of silicon dioxide on the layers at the inner and outer surfaces of the body can be formed by ion-implantation or diffusion. (U.K.)

  19. Electrochemical cell

    Science.gov (United States)

    Kaun, T.D.

    An improved secondary electrochemical cell is disclosed having a negative electrode of lithium aluminum, a positive electrode of iron sulfide, a molten electrolyte of lithium chloride and potassium chloride, and the combination that the fully charged theoretical capacity of the negative electrode is in the range of 0.5 to 1.0 that of the positive electrode. The cell thus is negative electrode limiting during discharge cycling. Preferably, the negative electrode contains therein, in the approximate range of 1 to 10 volume % of the electrode, an additive from the materials of graphitized carbon, aluminum-iron alloy, and/or magnesium oxide.

  20. Stem Cells

    DEFF Research Database (Denmark)

    Sommerlund, Julie

    2004-01-01

    In his influential essay on markets, An essay on framing and overflowing (1998), Michel Callon writes that `the growing complexity of industrialized societies [is] due in large part to the movements of the technosciences, which are causing connections and interdependencies to proliferate'. This p...... and tantalizing than stem cells, in research, in medicine, or as products.......'. This paper is about tech-noscience, and about the proliferation of connections and interdependencies created by it.More specifically, the paper is about stem cells. Biotechnology in general has the power to capture the imagination. Within the field of biotechnology nothing seems more provocative...

  1. Fuel cells:

    DEFF Research Database (Denmark)

    Sørensen, Bent

    2013-01-01

    A brief overview of the progress in fuel cell applications and basic technology development is presented, as a backdrop for discussing readiness for penetration into the marketplace as a solution to problems of depletion, safety, climate or environmental impact from currently used fossil and nucl......A brief overview of the progress in fuel cell applications and basic technology development is presented, as a backdrop for discussing readiness for penetration into the marketplace as a solution to problems of depletion, safety, climate or environmental impact from currently used fossil...... and nuclear fuel-based energy technologies....

  2. Squamous Cell Carcinoma

    Science.gov (United States)

    ... Kids’ zone Video library Find a dermatologist Squamous cell carcinoma Overview Squamous cell carcinoma: This man's skin ... a squamous cell carcinoma on his face. Squamous cell carcinoma: Overview Squamous cell carcinoma (SCC) is a ...

  3. Photovoltaic cell

    Science.gov (United States)

    Gordon, Roy G.; Kurtz, Sarah

    1984-11-27

    In a photovoltaic cell structure containing a visibly transparent, electrically conductive first layer of metal oxide, and a light-absorbing semiconductive photovoltaic second layer, the improvement comprising a thin layer of transition metal nitride, carbide or boride interposed between said first and second layers.

  4. Potent Cells

    Science.gov (United States)

    Liu, Dennis

    2007-01-01

    It seems hard to believe that Dolly the cloned sheep was born 10 years ago, kindling furious arguments over the prospects and ethics of cloning a human. Today, the controversy over cloning is entwined, often confused, with concerns over the use of human embryonic stem cells. Most people are unclear what cloning is, and they know even less when it…

  5. Polymersomes containing iron sulfide (FeS) as primordial cell model : for the investigation of energy providing redox reactions.

    Science.gov (United States)

    Alpermann, Theodor; Rüdel, Kristin; Rüger, Ronny; Steiniger, Frank; Nietzsche, Sandor; Filiz, Volkan; Förster, Stephan; Fahr, Alfred; Weigand, Wolfgang

    2011-04-01

    According to Wächtershäuser's "Iron-Sulfur-World" one major requirement for the development of life on the prebiotic Earth is compartmentalization. Vesicles spontaneously formed from amphiphilic components containing a specific set of molecules including sulfide minerals may have lead to the first autotrophic prebiotic units. The iron sulfide minerals may have been formed by geological conversions in the environment of deep-sea volcanos (black smokers), which can be observed even today. Wächtershäuser postulated the evolution of chemical pathways as fundamentals of the origin of life on earth. In contrast to the classical Miller-Urey experiment, depending on external energy sources, the "Iron-Sulfur-World" is based on the catalytic and energy reproducing redox system FeS+H2S-->FeS2+H2. The energy release out of this redox reaction (∆RG°=-38 kJ/mol, pH 0) could be the cause for the subsequent synthesis of complex organic molecules and the precondition for the development of more complex units similar to cells known today. Here we show the possibility for precipitating iron sulfide inside vesicles composed of amphiphilic block-copolymers as a model system for a first prebiotic unit. Our findings could be an indication for a chemoautotrophic FeS based origin of life.

  6. Interactions between the metabolism of L-leucine and D-glucose in the pancreatic. beta. -cells

    Energy Technology Data Exchange (ETDEWEB)

    Gylfe, E; Sehlin, J [Umeaa Univ. (Sweden). Dept. of Histology

    1976-01-01

    ..beta..-cell-rich pancreatic islets microdissected from obese-hyperglycemic mice were used to study interactions between the metabolism of L-leucine and D-glucose. L-leucine reduced the islet content of aspartic acid whereas D-glucose, when added to L-leucine-incubated islets, increased the contents of aspartic acid and ..gamma..-aminobutyric acid (GABA). D-glucose also increased the incorporation of L-leucine carbon into aspartic acid, GABA and glutamic acid, suggesting stimulation of a malate shuttle mechanism. When expressed per mole of the individual amino acids, the incorporation of L-leucine carbon into GABA was 2.5 - 4 times higher than into glutamic acid indicating intracellular compartmentation of the latter amino acid. Both L-leucine and D-leucine stimulated /sup 14/CO/sub 2/ production from /sup 14/C-labelled D-glucose. L-leucine did not affect /sup 3/H/sub 2/O production from tritiated D-glucose. The present data do not indicate a role of other amino acids or D-glucose in L-leucine-stimulated insulin release.

  7. Biocompatibility, endocytosis, and intracellular trafficking of mesoporous silica and polystyrene nanoparticles in ovarian cancer cells: effects of size and surface charge groups

    Science.gov (United States)

    Ekkapongpisit, Maneerat; Giovia, Antonino; Follo, Carlo; Caputo, Giuseppe; Isidoro, Ciro

    2012-01-01

    Background and methods Nanoparticles engineered to carry both a chemotherapeutic drug and a sensitive imaging probe are valid tools for early detection of cancer cells and to monitor the cytotoxic effects of anticancer treatment simultaneously. Here we report on the effect of size (10–30 nm versus 50 nm), type of material (mesoporous silica versus polystyrene), and surface charge functionalization (none, amine groups, or carboxyl groups) on biocompatibility, uptake, compartmentalization, and intracellular retention of fluorescently labeled nanoparticles in cultured human ovarian cancer cells. We also investigated the involvement of caveolae in the mechanism of uptake of nanoparticles. Results We found that mesoporous silica nanoparticles entered via caveolae-mediated endocytosis and reached the lysosomes; however, while the 50 nm nanoparticles permanently resided within these organelles, the 10 nm nanoparticles soon relocated in the cytoplasm. Naked 10 nm mesoporous silica nanoparticles showed the highest and 50 nm carboxyl-modified mesoporous silica nanoparticles the lowest uptake rates, respectively. Polystyrene nanoparticle uptake also occurred via a caveolae-independent pathway, and was negatively affected by serum. The 30 nm carboxyl-modified polystyrene nanoparticles did not localize in lysosomes and were not toxic, while the 50 nm amine-modified polystyrene nanoparticles accumulated within lysosomes and eventually caused cell death. Ovarian cancer cells expressing caveolin-1 were more likely to endocytose these nanoparticles. Conclusion These data highlight the importance of considering both the physicochemical characteristics (ie, material, size and surface charge on chemical groups) of nanoparticles and the biochemical composition of the cell membrane when choosing the most suitable nanotheranostics for targeting cancer cells. PMID:22904626

  8. Developmental and Subcellular Organization of Single-Cell C₄ Photosynthesis in Bienertia sinuspersici Determined by Large-Scale Proteomics and cDNA Assembly from 454 DNA Sequencing.

    Science.gov (United States)

    Offermann, Sascha; Friso, Giulia; Doroshenk, Kelly A; Sun, Qi; Sharpe, Richard M; Okita, Thomas W; Wimmer, Diana; Edwards, Gerald E; van Wijk, Klaas J

    2015-05-01

    Kranz C4 species strictly depend on separation of primary and secondary carbon fixation reactions in different cell types. In contrast, the single-cell C4 (SCC4) species Bienertia sinuspersici utilizes intracellular compartmentation including two physiologically and biochemically different chloroplast types; however, information on identity, localization, and induction of proteins required for this SCC4 system is currently very limited. In this study, we determined the distribution of photosynthesis-related proteins and the induction of the C4 system during development by label-free proteomics of subcellular fractions and leaves of different developmental stages. This was enabled by inferring a protein sequence database from 454 sequencing of Bienertia cDNAs. Large-scale proteome rearrangements were observed as C4 photosynthesis developed during leaf maturation. The proteomes of the two chloroplasts are different with differential accumulation of linear and cyclic electron transport components, primary and secondary carbon fixation reactions, and a triose-phosphate shuttle that is shared between the two chloroplast types. This differential protein distribution pattern suggests the presence of a mRNA or protein-sorting mechanism for nuclear-encoded, chloroplast-targeted proteins in SCC4 species. The combined information was used to provide a comprehensive model for NAD-ME type carbon fixation in SCC4 species.

  9. Ghost cell lesions

    Directory of Open Access Journals (Sweden)

    E Rajesh

    2015-01-01

    Full Text Available Ghost cells have been a controversy for a long time. Ghost cell is a swollen/enlarged epithelial cell with eosnophilic cytoplasm, but without a nucleus. In routine H and E staining these cells give a shadowy appearance. Hence these cells are also called as shadow cells or translucent cells. The appearance of these cells varies from lesion to lesion involving odontogenic and nonodontogenic lesions. This article review about the origin, nature and significance of ghost cells in different neoplasms.

  10. Confinement of β1- and β2-adrenergic receptors in the plasma membrane of cardiomyocyte-like H9c2 cells is mediated by selective interactions with PDZ domain and A-kinase anchoring proteins but not caveolae

    Science.gov (United States)

    Valentine, Cathleen D.; Haggie, Peter M.

    2011-01-01

    The sympathetic nervous system regulates cardiac output by activating adrenergic receptors (ARs) in cardiac myocytes. The predominant cardiac ARs, β1- and β2AR, are structurally similar but mediate distinct signaling responses. Scaffold protein–mediated compartmentalization of ARs into discrete, multiprotein complexes has been proposed to dictate differential signaling responses. To test the hypothesis that βARs integrate into complexes in live cells, we measured receptor diffusion and interactions by single-particle tracking. Unstimulated β1- and β2AR were highly confined in the membrane of H9c2 cardiomyocyte-like cells, indicating that receptors are tethered and presumably integrated into protein complexes. Selective disruption of interactions with postsynaptic density protein 95/disks large/zonula occludens-1 (PDZ)–domain proteins and A-kinase anchoring proteins (AKAPs) increased receptor diffusion, indicating that these scaffold proteins participate in receptor confinement. In contrast, modulation of interactions between the putative scaffold caveolae and β2AR did not alter receptor dynamics, suggesting that these membrane domains are not involved in β2AR confinement. For both β1- and β2AR, the receptor carboxy-terminus was uniquely responsible for scaffold interactions. Our data formally demonstrate that distinct and stable protein complexes containing β1- or β2AR are formed in the plasma membrane of cardiomyocyte-like cells and that selective PDZ and AKAP interactions are responsible for the integration of receptors into complexes. PMID:21680711

  11. Confinement of β(1)- and β(2)-adrenergic receptors in the plasma membrane of cardiomyocyte-like H9c2 cells is mediated by selective interactions with PDZ domain and A-kinase anchoring proteins but not caveolae.

    Science.gov (United States)

    Valentine, Cathleen D; Haggie, Peter M

    2011-08-15

    The sympathetic nervous system regulates cardiac output by activating adrenergic receptors (ARs) in cardiac myocytes. The predominant cardiac ARs, β(1)- and β(2)AR, are structurally similar but mediate distinct signaling responses. Scaffold protein-mediated compartmentalization of ARs into discrete, multiprotein complexes has been proposed to dictate differential signaling responses. To test the hypothesis that βARs integrate into complexes in live cells, we measured receptor diffusion and interactions by single-particle tracking. Unstimulated β(1)- and β(2)AR were highly confined in the membrane of H9c2 cardiomyocyte-like cells, indicating that receptors are tethered and presumably integrated into protein complexes. Selective disruption of interactions with postsynaptic density protein 95/disks large/zonula occludens-1 (PDZ)-domain proteins and A-kinase anchoring proteins (AKAPs) increased receptor diffusion, indicating that these scaffold proteins participate in receptor confinement. In contrast, modulation of interactions between the putative scaffold caveolae and β(2)AR did not alter receptor dynamics, suggesting that these membrane domains are not involved in β(2)AR confinement. For both β(1)- and β(2)AR, the receptor carboxy-terminus was uniquely responsible for scaffold interactions. Our data formally demonstrate that distinct and stable protein complexes containing β(1)- or β(2)AR are formed in the plasma membrane of cardiomyocyte-like cells and that selective PDZ and AKAP interactions are responsible for the integration of receptors into complexes.

  12. The ancient Virus World and evolution of cells

    Directory of Open Access Journals (Sweden)

    Dolja Valerian V

    2006-09-01

    with a specific model of precellular evolution under which the primordial gene pool dwelled in a network of inorganic compartments. Somewhat paradoxically, under this scenario, we surmise that selfish genetic elements ancestral to viruses evolved prior to typical cells, to become intracellular parasites once bacteria and archaea arrived at the scene. Selection against excessively aggressive parasites that would kill off the host ensembles of genetic elements would lead to early evolution of temperate virus-like agents and primitive defense mechanisms, possibly, based on the RNA interference principle. The emergence of the eukaryotic cell is construed as the second melting pot of virus evolution from which the major groups of eukaryotic viruses originated as a result of extensive recombination of genes from various bacteriophages, archaeal viruses, plasmids, and the evolving eukaryotic genomes. Again, this vision is predicated on a specific model of the emergence of eukaryotic cell under which archaeo-bacterial symbiosis was the starting point of eukaryogenesis, a scenario that appears to be best compatible with the data. Conclusion The existence of several genes that are central to virus replication and structure, are shared by a broad variety of viruses but are missing from cellular genomes (virus hallmark genes suggests the model of an ancient virus world, a flow of virus-specific genes that went uninterrupted from the precellular stage of life's evolution to this day. This concept is tightly linked to two key conjectures on evolution of cells: existence of a complex, precellular, compartmentalized but extensively mixing and recombining pool of genes, and origin of the eukaryotic cell by archaeo-bacterial fusion. The virus world concept and these models of major transitions in the evolution of cells provide complementary pieces of an emerging coherent picture of life's history. Reviewers W. Ford Doolittle, J. Peter Gogarten, and Arcady Mushegian.

  13. Application of the principles of systems biology and Wiener's cybernetics for analysis of regulation of energy fluxes in muscle cells in vivo.

    Science.gov (United States)

    Guzun, Rita; Saks, Valdur

    2010-03-08

    The mechanisms of regulation of respiration and energy fluxes in the cells are analyzed based on the concepts of systems biology, non-equilibrium steady state kinetics and applications of Wiener's cybernetic principles of feedback regulation. Under physiological conditions cardiac function is governed by the Frank-Starling law and the main metabolic characteristic of cardiac muscle cells is metabolic homeostasis, when both workload and respiration rate can be changed manifold at constant intracellular level of phosphocreatine and ATP in the cells. This is not observed in skeletal muscles. Controversies in theoretical explanations of these observations are analyzed. Experimental studies of permeabilized fibers from human skeletal muscle vastus lateralis and adult rat cardiomyocytes showed that the respiration rate is always an apparent hyperbolic but not a sigmoid function of ADP concentration. It is our conclusion that realistic explanations of regulation of energy fluxes in muscle cells require systemic approaches including application of the feedback theory of Wiener's cybernetics in combination with detailed experimental research. Such an analysis reveals the importance of limited permeability of mitochondrial outer membrane for ADP due to interactions of mitochondria with cytoskeleton resulting in quasi-linear dependence of respiration rate on amplitude of cyclic changes in cytoplasmic ADP concentrations. The system of compartmentalized creatine kinase (CK) isoenzymes functionally coupled to ANT and ATPases, and mitochondrial-cytoskeletal interactions separate energy fluxes (mass and energy transfer) from signalling (information transfer) within dissipative metabolic structures - intracellular energetic units (ICEU). Due to the non-equilibrium state of CK reactions, intracellular ATP utilization and mitochondrial ATP regeneration are interconnected by the PCr flux from mitochondria. The feedback regulation of respiration occurring via cyclic fluctuations of

  14. Application of the Principles of Systems Biology and Wiener’s Cybernetics for Analysis of Regulation of Energy Fluxes in Muscle Cells in Vivo

    Science.gov (United States)

    Guzun, Rita; Saks, Valdur

    2010-01-01

    The mechanisms of regulation of respiration and energy fluxes in the cells are analyzed based on the concepts of systems biology, non-equilibrium steady state kinetics and applications of Wiener’s cybernetic principles of feedback regulation. Under physiological conditions cardiac function is governed by the Frank-Starling law and the main metabolic characteristic of cardiac muscle cells is metabolic homeostasis, when both workload and respiration rate can be changed manifold at constant intracellular level of phosphocreatine and ATP in the cells. This is not observed in skeletal muscles. Controversies in theoretical explanations of these observations are analyzed. Experimental studies of permeabilized fibers from human skeletal muscle vastus lateralis and adult rat cardiomyocytes showed that the respiration rate is always an apparent hyperbolic but not a sigmoid function of ADP concentration. It is our conclusion that realistic explanations of regulation of energy fluxes in muscle cells require systemic approaches including application of the feedback theory of Wiener’s cybernetics in combination with detailed experimental research. Such an analysis reveals the importance of limited permeability of mitochondrial outer membrane for ADP due to interactions of mitochondria with cytoskeleton resulting in quasi-linear dependence of respiration rate on amplitude of cyclic changes in cytoplasmic ADP concentrations. The system of compartmentalized creatine kinase (CK) isoenzymes functionally coupled to ANT and ATPases, and mitochondrial-cytoskeletal interactions separate energy fluxes (mass and energy transfer) from signalling (information transfer) within dissipative metabolic structures – intracellular energetic units (ICEU). Due to the non-equilibrium state of CK reactions, intracellular ATP utilization and mitochondrial ATP regeneration are interconnected by the PCr flux from mitochondria. The feedback regulation of respiration occurring via cyclic fluctuations

  15. In situ enzymol