WorldWideScience

Sample records for cell compartmentation

  1. Compartmentalized Signaling in Neurons: From Cell Biology to Neuroscience.

    Science.gov (United States)

    Terenzio, Marco; Schiavo, Giampietro; Fainzilber, Mike

    2017-11-01

    Neurons are the largest known cells, with complex and highly polarized morphologies. As such, neuronal signaling is highly compartmentalized, requiring sophisticated transfer mechanisms to convey and integrate information within and between sub-neuronal compartments. Here, we survey different modes of compartmentalized signaling in neurons, highlighting examples wherein the fundamental cell biological processes of protein synthesis and degradation, membrane trafficking, and organelle transport are employed to enable the encoding and integration of information, locally and globally within a neuron. Comparisons to other cell types indicate that neurons accentuate widely shared mechanisms, providing invaluable models for the compartmentalization and transfer mechanisms required and used by most eukaryotic cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Functional Compartmentalization within Starburst Amacrine Cell Dendrites in the Retina.

    Science.gov (United States)

    Poleg-Polsky, Alon; Ding, Huayu; Diamond, Jeffrey S

    2018-03-13

    Dendrites in many neurons actively compute information. In retinal starburst amacrine cells, transformations from synaptic input to output occur within individual dendrites and mediate direction selectivity, but directional signal fidelity at individual synaptic outputs and correlated activity among neighboring outputs on starburst dendrites have not been examined systematically. Here, we record visually evoked calcium signals simultaneously at many individual synaptic outputs within single starburst amacrine cells in mouse retina. We measure visual receptive fields of individual output synapses and show that small groups of outputs are functionally compartmentalized within starburst dendrites, creating distinct computational units. Inhibition enhances compartmentalization and directional tuning of individual outputs but also decreases the signal-to-noise ratio. Simulations suggest, however, that the noise underlying output signal variability is well tolerated by postsynaptic direction-selective ganglion cells, which integrate convergent inputs to acquire reliable directional information. Published by Elsevier Inc.

  3. Functional Compartmentalization within Starburst Amacrine Cell Dendrites in the Retina

    Directory of Open Access Journals (Sweden)

    Alon Poleg-Polsky

    2018-03-01

    Full Text Available Summary: Dendrites in many neurons actively compute information. In retinal starburst amacrine cells, transformations from synaptic input to output occur within individual dendrites and mediate direction selectivity, but directional signal fidelity at individual synaptic outputs and correlated activity among neighboring outputs on starburst dendrites have not been examined systematically. Here, we record visually evoked calcium signals simultaneously at many individual synaptic outputs within single starburst amacrine cells in mouse retina. We measure visual receptive fields of individual output synapses and show that small groups of outputs are functionally compartmentalized within starburst dendrites, creating distinct computational units. Inhibition enhances compartmentalization and directional tuning of individual outputs but also decreases the signal-to-noise ratio. Simulations suggest, however, that the noise underlying output signal variability is well tolerated by postsynaptic direction-selective ganglion cells, which integrate convergent inputs to acquire reliable directional information. : Poleg-Polsky et al. examine the directional signaling fidelity of individual synapses on starburst amacrine cell dendrites. They identify functionally and morphologically distinct signaling compartments within SAC dendrites and show that inhibition enhances reliable decoding by postsynaptic direction-selective ganglion cells. Keywords: retina, synaptic transmission, amacrine cell, correlation, visual processing, inhibition, direction selectivity

  4. Compartmentation and equilibration of abscisic acid in isolated Xanthium cells

    International Nuclear Information System (INIS)

    Bray, E.A.; Zeevaart, J.A.D.

    1986-01-01

    The compartmentation of endogenous abscisic acid (ABA), applied (+/-)-[ 3 H]ABA, and (+/-)-trans-ABA was measured in isolated mesophyll cells of the Chicago strain of Xanthium strumarium L. The release of ABA to the medium in the presence or absence of DMSO was used to determine the equilibration of ABA in the cells. It was found that a greater percentage of the (+/-)-[ 3 H]ABA and the (+/-)-trans-ABA was released into the medium than of the endogenous ABA, indicating that applied ABA did not equilibrate with the endogenous material. Therefore, in further investigations only the compartmentation of endogenous ABA was studied. Endogenous ABA was released from Xanthium cells according to the pH gradients among the various cellular compartments. Thus, darkness, high external pH, KNO 2 , and drought-stress all increased the efflux of ABA from the cells. Efflux of ABA from the cells in the presence of 0.6 M mannitol occurred within 30 seconds, but only 8% of the endogenous material was released during the 20 minute treatment

  5. An actomyosin-based barrier inhibits cell mixing at compartmental boundaries in Drosophila embryos.

    Science.gov (United States)

    Monier, Bruno; Pélissier-Monier, Anne; Brand, Andrea H; Sanson, Bénédicte

    2010-01-01

    Partitioning tissues into compartments that do not intermix is essential for the correct morphogenesis of animal embryos and organs. Several hypotheses have been proposed to explain compartmental cell sorting, mainly differential adhesion, but also regulation of the cytoskeleton or of cell proliferation. Nevertheless, the molecular and cellular mechanisms that keep cells apart at boundaries remain unclear. Here we demonstrate, in early Drosophila melanogaster embryos, that actomyosin-based barriers stop cells from invading neighbouring compartments. Our analysis shows that cells can transiently invade neighbouring compartments, especially when they divide, but are then pushed back into their compartment of origin. Actomyosin cytoskeletal components are enriched at compartmental boundaries, forming cable-like structures when the epidermis is mitotically active. When MyoII (non-muscle myosin II) function is inhibited, including locally at the cable by chromophore-assisted laser inactivation (CALI), in live embryos, dividing cells are no longer pushed back, leading to compartmental cell mixing. We propose that local regulation of actomyosin contractibility, rather than differential adhesion, is the primary mechanism sorting cells at compartmental boundaries.

  6. Retinal ganglion cells: Energetics, compartmentation, axonal transport, cytoskeletons and vulnerability.

    Science.gov (United States)

    Yu, Dao-Yi; Cringle, Stephen J; Balaratnasingam, Chandrakumar; Morgan, William H; Yu, Paula K; Su, Er-Ning

    2013-09-01

    Retinal ganglion cells (RGCs) are specialized projection neurons that relay an immense amount of visual information from the retina to the brain. RGC signal inputs are collected by dendrites and output is distributed from the cell body via very thin (0.5-1 μm) and long (∼50 mm) axons. The RGC cell body is larger than other retinal neurons, but is still only a very small fraction (one ten thousandths) of the length and total surface area of the axon. The total distance traversed by RGCs extends from the retina, starting from synapses with bipolar and amacrine cells, to the brain, to synapses with neurons in the lateral geniculate nucleus. This review will focus on the energy demands of RGCs and the relevant tissues that surround them. RGC survival and function unexceptionally depends upon free energy, predominantly adenosine triphosphate (ATP). RGC energy metabolism is vastly different when compared to that of the photoreceptors. Each subcellular component of the RGC is remarkably different in terms of structure, function and extracellular environment. The energy demands and distribution of each component are also distinct as evidenced by the uneven distribution of mitochondria and ATP within the RGC - signifying the presence of intracellular energy gradients. In this review we will describe RGCs as having four subcellular components, (1) Dendrites, (2) Cell body, (3) Non-myelinated axon, including intraocular and optic nerve head portions, and (4) Myelinated axon, including the intra-orbital and intracranial portions. We will also describe how RGCs integrate information from each subcellular component in order achieve intracellular homeostatic stability as well as respond to perturbations in the extracellular environment. The possible cellular mechanisms such as axonal transport and axonal cytoskeleton proteins that are involved in maintaining RGC energy homeostasis during normal and disease conditions will also be discussed in depth. The emphasis of this

  7. Folded genome as a platform for the functional compartmentalization of the eukaryotic cell nucleus

    Directory of Open Access Journals (Sweden)

    Ioudinkova E. S.

    2014-03-01

    Full Text Available In a number of recent studies a tight interconnection between the spatial organization of the eukaryotic genome and its functioning has been demonstrated. Moreover, it is becoming evident that the folded DNA by itself consti- tutes an important, if not the key, factor supporting the internal nuclear organization. In this review, we will discuss the current state of chromatin research with the special attention focused on chromosome territories, chromatin folding and dynamics, chromatin domains, transcription and replication factories. Based on this analysis we will show how interphase chromosomes define the assembly of different nuclear compartments and underlie the spatial compartmentalization of the cell nucleus.

  8. The cell cycle of the planctomycete Gemmata obscuriglobus with respect to cell compartmentalization

    Directory of Open Access Journals (Sweden)

    Fuerst John A

    2009-01-01

    Full Text Available Abstract Background Gemmata obscuriglobus is a distinctive member of the divergent phylum Planctomycetes, all known members of which are peptidoglycan-less bacteria with a shared compartmentalized cell structure and divide by a budding process. G. obscuriglobus in addition shares the unique feature that its nucleoid DNA is surrounded by an envelope consisting of two membranes forming an analogous structure to the membrane-bounded nucleoid of eukaryotes and therefore G. obscuriglobus forms a special model for cell biology. Draft genome data for G. obscuriglobus as well as complete genome sequences available so far for other planctomycetes indicate that the key bacterial cell division protein FtsZ is not present in these planctomycetes, so the cell division process in planctomycetes is of special comparative interest. The membrane-bounded nature of the nucleoid in G. obscuriglobus also suggests that special mechanisms for the distribution of this nuclear body to the bud and for distribution of chromosomal DNA might exist during division. It was therefore of interest to examine the cell division cycle in G. obscuriglobus and the process of nucleoid distribution and nuclear body formation during division in this planctomycete bacterium via light and electron microscopy. Results Using phase contrast and fluorescence light microscopy, and transmission electron microscopy, the cell division cycle of G. obscuriglobus was determined. During the budding process, the bud was formed and developed in size from one point of the mother cell perimeter until separation. The matured daughter cell acted as a new mother cell and started its own budding cycle while the mother cell can itself initiate budding repeatedly. Fluorescence microscopy of DAPI-stained cells of G. obscuriglobus suggested that translocation of the nucleoid and formation of the bud did not occur at the same time. Confocal laser scanning light microscopy applied to cells stained for membranes as

  9. Mdm4 loss in the intestinal epithelium leads to compartmentalized cell death but no tissue abnormalities

    Science.gov (United States)

    Valentin-Vega, Yasmine A.; Box, Neil; Terzian, Tamara; Lozano, Guillermina

    2014-01-01

    Mdm4 is a critical inhibitor of the p53 tumor suppressor. Mdm4 null mice die early during embryogenesis due to increased p53 activity. In this study, we explore the role that Mdm4 plays in the intestinal epithelium by crossing mice carrying the Mdm4 floxed allele to mice with the Villin Cre transgene. Our data show that loss of Mdm4 (Mdm4intΔ) in this tissue resulted in viable animals with no obvious morphological abnormalities. However, these mutants displayed increased p53 levels and apoptosis exclusively in the proliferative compartment of the intestinal epithelium. This phenotype was completely rescued in a p53 null background. Notably, the observed compartmentalized apoptosis in proliferative intestinal epithelial cells was not due to restricted Mdm4 expression in this region. Thus, in this specific cellular context, p53 is negatively regulated by Mdm4 exclusively in highly proliferative cells. PMID:19371999

  10. Compartmentation of membrane processes and nucleotide dynamics in diffusion-restricted cardiac cell microenvironment

    Science.gov (United States)

    Alekseev, Alexey E.; Reyes, Santiago; Selivanov, Vitaly A.; Dzeja, Petras P.; Terzic, Andre

    2011-01-01

    Orchestrated excitation–contraction coupling in heart muscle requires adequate spatial arrangement of systems responsible for ion movement and metabolite turnover. Co-localization of regulatory and transporting proteins into macromolecular complexes within an environment of microanatomical cell components raises intracellular diffusion barriers that hamper the mobility of metabolites and signaling molecules. Compared to substrate diffusion in the cytosol, diffusional restrictions underneath the sarcolemma are much larger and could impede ion and nucleotide movement by a factor of 103–105. Diffusion barriers thus seclude metabolites within the submembrane space enabling rapid and vectorial effector targeting, yet hinder energy supply from the bulk cytosolic space implicating the necessity for a shunting transfer mechanism. Here, we address principles of membrane protein compartmentation, phosphotransfer enzyme-facilitated interdomain energy transfer, and nucleotide signal dynamics at the subsarcolemma–cytosol interface. This article is part of a Special Issue entitled ‘Local Signaling in Myocytes’. PMID:21704043

  11. Compartmentalization of Total and Virus-Specific Tissue-Resident Memory CD8+ T Cells in Human Lymphoid Organs.

    OpenAIRE

    Heng Giap Woon; Asolina Braun; Jane Li; Corey Smith; Jarem Edwards; Frederic Sierro; Carl G Feng; Rajiv Khanna; Michael Elliot; Andrew Bell; Andrew D Hislop; Stuart G Tangye; Alan B Rickinson; Thomas Gebhardt; Warwick J Britton

    2016-01-01

    Disruption of T cell memory during severe immune suppression results in reactivation of chronic viral infections, such as Epstein Barr virus (EBV) and Cytomegalovirus (CMV). How different subsets of memory T cells contribute to the protective immunity against these viruses remains poorly defined. In this study we examined the compartmentalization of virus-specific, tissue resident memory CD8+ T cells in human lymphoid organs. This revealed two distinct populations of memory CD8+ T cells, that...

  12. Lipid droplet-associated proteins (LDAPs) are required for the dynamic regulation of neutral lipid compartmentation in plant cells

    Science.gov (United States)

    Eukaryotic cells compartmentalize neutral lipids into organelles called lipid droplets (LDs), and while much is known about the role of LDs in storing triacylglycerols (TAGs) in seeds, their biogenesis and function in non-seed tissues is poorly understood. Recently, we identified a class of plant-sp...

  13. DNA precursor compartmentation in mammalian cells: distribution and rates of equilibration between nucleus and cytoplasm

    International Nuclear Information System (INIS)

    Leeds, J.M.

    1986-01-01

    A rapid nuclear isolation technique was adapted in order to examine the question of DNA precursor compartmentation in mammalian cells. By using this method a reproducible proportion of the cellular nucleotides remained associated with the isolated nuclei. Examination, at several different cell densities, of exponentially growing HeLa cells showed that the nuclei contained a constant but distinct proportion of each dNTP. The nuclear dATP and dTTP concentrations were equal at all densities examined even though the dTTP pool was 150% of the dATP whole-cell pool. The nuclear portion of the whole-cell pools was roughly equal to the volume occupied by the nucleus. The nuclear-cytoplasmic dNTP pool distribution did not change throughout the cell cycle of synchronized Chinese hamster ovary (CHO) cells. The rates at which either radiolabeled cytidine or deoxycytidine equilibrated with the nuclear and whole-cell dCTP pools of G1 and S phase CHO cells were compared. Experiments comparing the labeling kinetics of 3 H-thymidine in G1, S phase, and exponentially growing cells revealed that the S phase dTTP pool equilibrated with exogenously added thymidine faster than the G1 phase pool. The rate of equilibration in exponentially growing cells appeared to be a combination of that seen in G1 and S phases. A linear rate of 3 H-thymidine incorporation into DNA occurred at the same rate in S phase and exponentially growing cells

  14. Compartmentalization today

    Science.gov (United States)

    Kevin T. Smith

    2006-01-01

    For more than 30 years, the compartmentdization concept has helped tree care practitioners and land managers interpret patterns of decay in living trees. Understanding these patterns can help guide the selection of treatments that meet the needs of people and communities while respecting the underlying tree biology. At its simplest, compartmentalization resists the...

  15. cGMP Signaling in the Cardiovascular System—The Role of Compartmentation and Its Live Cell Imaging

    Science.gov (United States)

    Bork, Nadja I.; Nikolaev, Viacheslav O.

    2018-01-01

    The ubiquitous second messenger 3′,5′-cyclic guanosine monophosphate (cGMP) regulates multiple physiologic processes in the cardiovascular system. Its intracellular effects are mediated by stringently controlled subcellular microdomains. In this review, we will illustrate the current techniques available for real-time cGMP measurements with a specific focus on live cell imaging methods. We will also discuss currently accepted and emerging mechanisms of cGMP compartmentation in the cardiovascular system. PMID:29534460

  16. Dendritic compartmentalization of chloride cotransporters underlies directional responses of starburst amacrine cells in retina.

    Science.gov (United States)

    Gavrikov, Konstantin E; Nilson, James E; Dmitriev, Andrey V; Zucker, Charles L; Mangel, Stuart C

    2006-12-05

    The mechanisms in the retina that generate light responses selective for the direction of image motion remain unresolved. Recent evidence indicates that directionally selective light responses occur first in the retina in the dendrites of an interneuron, i.e., the starburst amacrine cell, and that these responses are highly sensitive to the activity of Na-K-2Cl (NKCC) and K-Cl (KCC), two types of chloride cotransporter that determine whether the neurotransmitter GABA depolarizes or hyperpolarizes neurons, respectively. We show here that selective blockade of the NKCC2 and KCC2 cotransporters located on starburst dendrites consistently hyperpolarized and depolarized the starburst cells, respectively, and greatly reduced or eliminated their directionally selective light responses. By mapping NKCC2 and KCC2 antibody staining on these dendrites, we further show that NKCC2 and KCC2 are preferentially located in the proximal and distal dendritic compartments, respectively. Finally, measurements of the GABA reversal potential in different starburst dendritic compartments indicate that the GABA reversal potential at the distal dendrite is more hyperpolarized than at the proximal dendrite due to KCC2 activity. These results thus demonstrate that the differential distribution of NKCC2 on the proximal dendrites and KCC2 on the distal dendrites of starburst cells results in a GABA-evoked depolarization and hyperpolarization at the NKCC2 and KCC2 compartments, respectively, and underlies the directionally selective light responses of the dendrites. The functional compartmentalization of interneuron dendrites may be an important means by which the nervous system encodes complex information at the subcellular level.

  17. Compartmentalization of Total and Virus-Specific Tissue-Resident Memory CD8+ T Cells in Human Lymphoid Organs.

    Directory of Open Access Journals (Sweden)

    Heng Giap Woon

    2016-08-01

    Full Text Available Disruption of T cell memory during severe immune suppression results in reactivation of chronic viral infections, such as Epstein Barr virus (EBV and Cytomegalovirus (CMV. How different subsets of memory T cells contribute to the protective immunity against these viruses remains poorly defined. In this study we examined the compartmentalization of virus-specific, tissue resident memory CD8+ T cells in human lymphoid organs. This revealed two distinct populations of memory CD8+ T cells, that were CD69+CD103+ and CD69+CD103-, and were retained within the spleen and tonsils in the absence of recent T cell stimulation. These two types of memory cells were distinct not only in their phenotype and transcriptional profile, but also in their anatomical localization within tonsils and spleen. The EBV-specific, but not CMV-specific, CD8+ memory T cells preferentially accumulated in the tonsils and acquired a phenotype that ensured their retention at the epithelial sites where EBV replicates. In vitro studies revealed that the cytokine IL-15 can potentiate the retention of circulating effector memory CD8+ T cells by down-regulating the expression of sphingosine-1-phosphate receptor, required for T cell exit from tissues, and its transcriptional activator, Kruppel-like factor 2 (KLF2. Within the tonsils the expression of IL-15 was detected in regions where CD8+ T cells localized, further supporting a role for this cytokine in T cell retention. Together this study provides evidence for the compartmentalization of distinct types of resident memory T cells that could contribute to the long-term protection against persisting viral infections.

  18. Modulation of cytokine release by differentiated CACO-2 cells in a compartmentalized coculture model with mononuclear leucocytes and nonpathogenic bacteria

    DEFF Research Database (Denmark)

    Parlesak, Alexandr; Haller, D.; Brinz, S.

    2004-01-01

    To further investigate the interaction between human mononuclear leucocytes [peripheral blood mononuclear cells (PBMC)] and enterocytes, the effect of a confluent layer of differentiated CACO-2 cells on cytokine kinetics during challenge with bacteria in a compartmentalized coculture model...... was investigated. Nonpathogenic Escherichia coli were added either to the apical or the basolateral compartment of this transwell cell culture system, the latter of which contained human leucocytes. The synthesis of tumour necrosis factor (TNF-alpha) and interleukin (IL)-12 was significantly suppressed by CACO-2...... cells when leucocytes were stimulated directly with bacteria. This suppression was not paralleled by changes in the production of IL-10, IL-6 and transforming growth factor (TGF)-beta. When the bacteria were applied apically to the CACO-2 cell layer, the production of TNF-alpha, IL-12, IL-1beta, IL-8...

  19. Novel therapeutic strategies to target leukemic cells that hijack compartmentalized continuous hematopoietic stem cell niches

    NARCIS (Netherlands)

    Hira, Vashendriya V. V.; van Noorden, Cornelis J. F.; Carraway, Hetty E.; Maciejewski, Jaroslaw P.; Molenaar, Remco J.

    2017-01-01

    Acute myeloid leukemia and acute lymphoblastic leukemia cells hijack hematopoietic stem cell (HSC) niches in the bone marrow and become leukemic stem cells (LSCs) at the expense of normal HSCs. LSCs are quiescent and resistant to chemotherapy and can cause relapse of the disease. HSCs in niches are

  20. Novel therapeutic strategies to target leukemic cells that hijack compartmentalized continuous hematopoietic stem cell niches.

    Science.gov (United States)

    Hira, Vashendriya V V; Van Noorden, Cornelis J F; Carraway, Hetty E; Maciejewski, Jaroslaw P; Molenaar, Remco J

    2017-08-01

    Acute myeloid leukemia and acute lymphoblastic leukemia cells hijack hematopoietic stem cell (HSC) niches in the bone marrow and become leukemic stem cells (LSCs) at the expense of normal HSCs. LSCs are quiescent and resistant to chemotherapy and can cause relapse of the disease. HSCs in niches are needed to generate blood cell precursors that are committed to unilineage differentiation and eventually production of mature blood cells, including red blood cells, megakaryocytes, myeloid cells and lymphocytes. Thus far, three types of HSC niches are recognized: endosteal, reticular and perivascular niches. However, we argue here that there is only one type of HSC niche, which consists of a periarteriolar compartment and a perisinusoidal compartment. In the periarteriolar compartment, hypoxia and low levels of reactive oxygen species preserve the HSC pool. In the perisinusoidal compartment, hypoxia in combination with higher levels of reactive oxygen species enables proliferation of progenitor cells and their mobilization into the circulation. Because HSC niches offer protection to LSCs against chemotherapy, we review novel therapeutic strategies to inhibit homing of LSCs in niches for the prevention of dedifferentiation of leukemic cells into LSCs and to stimulate migration of leukemic cells out of niches. These strategies enhance differentiation and proliferation and thus sensitize leukemic cells to chemotherapy. Finally, we list clinical trials of therapies that tackle LSCs in HSC niches to circumvent their protection against chemotherapy. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Droplet Microfluidics for Compartmentalized Cell Lysis and Extension of DNA from Single-Cells

    Science.gov (United States)

    Zimny, Philip; Juncker, David; Reisner, Walter

    Current single cell DNA analysis methods suffer from (i) bias introduced by the need for molecular amplification and (ii) limited ability to sequence repetitive elements, resulting in (iii) an inability to obtain information regarding long range genomic features. Recent efforts to circumvent these limitations rely on techniques for sensing single molecules of DNA extracted from single-cells. Here we demonstrate a droplet microfluidic approach for encapsulation and biochemical processing of single-cells inside alginate microparticles. In our approach, single-cells are first packaged inside the alginate microparticles followed by cell lysis, DNA purification, and labeling steps performed off-chip inside this microparticle system. The alginate microparticles are then introduced inside a micro/nanofluidic system where the alginate is broken down via a chelating buffer, releasing long DNA molecules which are then extended inside nanofluidic channels for analysis via standard mapping protocols.

  2. Cellular compartmentalization of secondary metabolism

    Directory of Open Access Journals (Sweden)

    H. Corby eKistler

    2015-02-01

    Full Text Available Fungal secondary metabolism is often considered apart from the essential housekeeping functions of the cell. However, there are clear links between fundamental cellular metabolism and the biochemical pathways leading to secondary metabolite synthesis. Besides utilizing key biochemical precursors shared with the most essential processes of the cell (e.g. amino acids, acetyl CoA, NADPH, enzymes for secondary metabolite synthesis are compartmentalized at conserved subcellular sites that position pathway enzymes to use these common biochemical precursors. Co-compartmentalization of secondary metabolism pathway enzymes also may function to channel precursors, promote pathway efficiency and sequester pathway intermediates and products from the rest of the cell. In this review we discuss the compartmentalization of three well-studied fungal secondary metabolite biosynthetic pathways for penicillin G, aflatoxin and deoxynivalenol, and summarize evidence used to infer subcellular localization. We also discuss how these metabolites potentially are trafficked within the cell and may be exported.

  3. Lipid Droplet-Associated Proteins (LDAPs) Are Required for the Dynamic Regulation of Neutral Lipid Compartmentation in Plant Cells1

    Science.gov (United States)

    Park, Sunjung; Wu, Peng

    2016-01-01

    Eukaryotic cells compartmentalize neutral lipids into organelles called lipid droplets (LDs), and while much is known about the role of LDs in storing triacylglycerols in seeds, their biogenesis and function in nonseed tissues are poorly understood. Recently, we identified a class of plant-specific, lipid droplet-associated proteins (LDAPs) that are abundant components of LDs in nonseed cell types. Here, we characterized the three LDAPs in Arabidopsis (Arabidopsis thaliana) to gain insight to their targeting, assembly, and influence on LD function and dynamics. While all three LDAPs targeted specifically to the LD surface, truncation analysis of LDAP3 revealed that essentially the entire protein was required for LD localization. The association of LDAP3 with LDs was detergent sensitive, but the protein bound with similar affinity to synthetic liposomes of various phospholipid compositions, suggesting that other factors contributed to targeting specificity. Investigation of LD dynamics in leaves revealed that LD abundance was modulated during the diurnal cycle, and characterization of LDAP misexpression mutants indicated that all three LDAPs were important for this process. LD abundance was increased significantly during abiotic stress, and characterization of mutant lines revealed that LDAP1 and LDAP3 were required for the proper induction of LDs during heat and cold temperature stress, respectively. Furthermore, LDAP1 was required for proper neutral lipid compartmentalization and triacylglycerol degradation during postgerminative growth. Taken together, these studies reveal that LDAPs are required for the maintenance and regulation of LDs in plant cells and perform nonredundant functions in various physiological contexts, including stress response and postgerminative growth. PMID:26896396

  4. Lipid Droplet-Associated Proteins (LDAPs) Are Required for the Dynamic Regulation of Neutral Lipid Compartmentation in Plant Cells.

    Science.gov (United States)

    Gidda, Satinder K; Park, Sunjung; Pyc, Michal; Yurchenko, Olga; Cai, Yingqi; Wu, Peng; Andrews, David W; Chapman, Kent D; Dyer, John M; Mullen, Robert T

    2016-04-01

    Eukaryotic cells compartmentalize neutral lipids into organelles called lipid droplets (LDs), and while much is known about the role of LDs in storing triacylglycerols in seeds, their biogenesis and function in nonseed tissues are poorly understood. Recently, we identified a class of plant-specific, lipid droplet-associated proteins (LDAPs) that are abundant components of LDs in nonseed cell types. Here, we characterized the three LDAPs in Arabidopsis (Arabidopsis thaliana) to gain insight to their targeting, assembly, and influence on LD function and dynamics. While all three LDAPs targeted specifically to the LD surface, truncation analysis of LDAP3 revealed that essentially the entire protein was required for LD localization. The association of LDAP3 with LDs was detergent sensitive, but the protein bound with similar affinity to synthetic liposomes of various phospholipid compositions, suggesting that other factors contributed to targeting specificity. Investigation of LD dynamics in leaves revealed that LD abundance was modulated during the diurnal cycle, and characterization of LDAP misexpression mutants indicated that all three LDAPs were important for this process. LD abundance was increased significantly during abiotic stress, and characterization of mutant lines revealed that LDAP1 and LDAP3 were required for the proper induction of LDs during heat and cold temperature stress, respectively. Furthermore, LDAP1 was required for proper neutral lipid compartmentalization and triacylglycerol degradation during postgerminative growth. Taken together, these studies reveal that LDAPs are required for the maintenance and regulation of LDs in plant cells and perform nonredundant functions in various physiological contexts, including stress response and postgerminative growth. © 2016 American Society of Plant Biologists. All Rights Reserved.

  5. CELLULAR COMPARTMENTALIZATION AND HEAVY METAL ...

    African Journals Online (AJOL)

    CELLULAR COMPARTMENTALIZATION AND HEAVY METAL LOAD IN THE MOSS. Barbula lambarenensis AROUND A MEGA CEMENT FACTORY IN SOUTHWEST NIGERIA. *. Ogunkunle, C. O. and Fatoba, P. O.. Department of Plant Biology, University of Ilorin .... the free transport of Zn across the cell wall as it.

  6. Lipid droplet-associated proteins (LDAPs) are involved in the compartmentalization of lipophilic compounds in plant cells.

    Science.gov (United States)

    Gidda, Satinder K; Watt, Samantha; Collins-Silva, Jillian; Kilaru, Aruna; Arondel, Vincent; Yurchenko, Olga; Horn, Patrick J; James, Christopher N; Shintani, David; Ohlrogge, John B; Chapman, Kent D; Mullen, Robert T; Dyer, John M

    2013-11-01

    While lipid droplets have traditionally been considered as inert sites for the storage of triacylglycerols and sterol esters, they are now recognized as dynamic and functionally diverse organelles involved in energy homeostasis, lipid signaling, and stress responses. Unlike most other organelles, lipid droplets are delineated by a half-unit membrane whose protein constituents are poorly understood, except in the specialized case of oleosins, which are associated with seed lipid droplets. Recently, we identified a new class of lipid-droplet associated proteins called LDAPs that localize specifically to the lipid droplet surface within plant cells and share extensive sequence similarity with the small rubber particle proteins (SRPPs) found in rubber-accumulating plants. Here, we provide additional evidence for a role of LDAPs in lipid accumulation in oil-rich fruit tissues, and further explore the functional relationships between LDAPs and SRPPs. In addition, we propose that the larger LDAP/SRPP protein family plays important roles in the compartmentalization of lipophilic compounds, including triacylglycerols and polyisoprenoids, into lipid droplets within plant cells. Potential roles in lipid droplet biogenesis and function of these proteins also are discussed.

  7. The candidate phylum Poribacteria by single-cell genomics: new insights into phylogeny, cell-compartmentation, eukaryote-like repeat proteins, and other genomic features.

    Directory of Open Access Journals (Sweden)

    Janine Kamke

    Full Text Available The candidate phylum Poribacteria is one of the most dominant and widespread members of the microbial communities residing within marine sponges. Cell compartmentalization had been postulated along with their discovery about a decade ago and their phylogenetic association to the Planctomycetes, Verrucomicrobia, Chlamydiae superphylum was proposed soon thereafter. In the present study we revised these features based on genomic data obtained from six poribacterial single cells. We propose that Poribacteria form a distinct monophyletic phylum contiguous to the PVC superphylum together with other candidate phyla. Our genomic analyses supported the possibility of cell compartmentalization in form of bacterial microcompartments. Further analyses of eukaryote-like protein domains stressed the importance of such proteins with features including tetratricopeptide repeats, leucin rich repeats as well as low density lipoproteins receptor repeats, the latter of which are reported here for the first time from a sponge symbiont. Finally, examining the most abundant protein domain family on poribacterial genomes revealed diverse phyH family proteins, some of which may be related to dissolved organic posphorus uptake.

  8. Compartmentalization of GABA synthesis by GAD67 differs between pancreatic beta cells and neurons

    DEFF Research Database (Denmark)

    Kanaani, Jamil; Cianciaruso, Chiara; Phelps, Edward A

    2015-01-01

    The inhibitory neurotransmitter GABA is synthesized by the enzyme glutamic acid decarboxylase (GAD) in neurons and in pancreatic β-cells in islets of Langerhans where it functions as a paracrine and autocrine signaling molecule regulating the function of islet endocrine cells. The localization...

  9. Communication Between the Cell Membrane and the Nucleus: Role of Protein Compartmentalization

    Energy Technology Data Exchange (ETDEWEB)

    Lelievre, Sophie A; Bissell, Mina J

    1998-10-21

    Understanding how the information is conveyed from outside to inside the cell is a critical challenge for all biologists involved in signal transduction. The flow of information initiated by cell-cell and cell-extracellular matrix contacts is mediated by the formation of adhesion complexes involving multiple proteins. Inside adhesion complexes, connective membrane skeleton (CMS) proteins are signal transducers that bind to adhesion molecules, organize the cytoskeleton, and initiate biochemical cascades. Adhesion complex-mediated signal transduction ultimately directs the formation of supramolecular structures in the cell nucleus, as illustrated by the establishment of multi complexes of DNA-bound transcription factors, and the redistribution of nuclear structural proteins to form nuclear subdomains. Recently, several CMS proteins have been observed to travel to the cell nucleus, suggesting a distinctive role for these proteins in signal transduction. This review focuses on the nuclear translocation of structural signal transducers of the membrane skeleton and also extends our analysis to possible translocation of resident nuclear proteins to the membrane skeleton. This leads us to envision the communication between spatially distant cellular compartments (i.e., membrane skeleton and cell nucleus) as a bidirectional flow of information (a dynamic reciprocity) based on subtle multilevel structural and biochemical equilibria. At one level, it is mediated by the interaction between structural signal transducers and their binding partners, at another level it may be mediated by the balance and integration of signal transducers in different cellular compartments.

  10. Compartmentalization of the Outer Hair Cell Demonstrated by Slow Diffusion in the Extracisternal Space

    OpenAIRE

    Gliko, Olga; Saggau, Peter; Brownell, William E.

    2009-01-01

    In the outer hair cell (OHC), the extracisternal space (ECiS) is a conduit and reservoir of the molecular and ionic substrates of the lateral wall, including those necessary for electromotility. To determine the mechanisms through which molecules are transported in the ECiS of the OHC, we selectively imaged the time-dependent spatial distribution of fluorescent molecules in a

  11. Active Dendrites and Differential Distribution of Calcium Channels Enable Functional Compartmentalization of Golgi Cells.

    Science.gov (United States)

    Rudolph, Stephanie; Hull, Court; Regehr, Wade G

    2015-11-25

    Interneurons are essential to controlling excitability, timing, and synaptic integration in neuronal networks. Golgi cells (GoCs) serve these roles at the input layer of the cerebellar cortex by releasing GABA to inhibit granule cells (grcs). GoCs are excited by mossy fibers (MFs) and grcs and provide feedforward and feedback inhibition to grcs. Here we investigate two important aspects of GoC physiology: the properties of GoC dendrites and the role of calcium signaling in regulating GoC spontaneous activity. Although GoC dendrites are extensive, previous studies concluded they are devoid of voltage-gated ion channels. Hence, the current view holds that somatic voltage signals decay passively within GoC dendrites, and grc synapses onto distal dendrites are not amplified and are therefore ineffective at firing GoCs because of strong passive attenuation. Using whole-cell recording and calcium imaging in rat slices, we find that dendritic voltage-gated sodium channels allow somatic action potentials to activate voltage-gated calcium channels (VGCCs) along the entire dendritic length, with R-type and T-type VGCCs preferentially located distally. We show that R- and T-type VGCCs located in the dendrites can boost distal synaptic inputs and promote burst firing. Active dendrites are thus critical to the regulation of GoC activity, and consequently, to the processing of input to the cerebellar cortex. In contrast, we find that N-type channels are preferentially located near the soma, and control the frequency and pattern of spontaneous firing through their close association with calcium-activated potassium (KCa) channels. Thus, VGCC types are differentially distributed and serve specialized functions within GoCs. Interneurons are essential to neural processing because they modulate excitability, timing, and synaptic integration within circuits. At the input layer of the cerebellar cortex, a single type of interneuron, the Golgi cell (GoC), carries these functions. The

  12. Compartmentalized Metabolic Engineering for Artemisinin Biosynthesis and Effective Malaria Treatment by Oral Delivery of Plant Cells.

    Science.gov (United States)

    Malhotra, Karan; Subramaniyan, Mayavan; Rawat, Khushboo; Kalamuddin, Md; Qureshi, M Irfan; Malhotra, Pawan; Mohmmed, Asif; Cornish, Katrina; Daniell, Henry; Kumar, Shashi

    2016-11-07

    Artemisinin is highly effective against drug-resistant malarial parasites, which affects nearly half of the global population and kills >500 000 people each year. The primary cost of artemisinin is the very expensive process used to extract and purify the drug from Artemisia annua. Elimination of this apparently unnecessary step will make this potent antimalarial drug affordable to the global population living in endemic regions. Here we reported the oral delivery of a non-protein drug artemisinin biosynthesized (∼0.8 mg/g dry weight) at clinically meaningful levels in tobacco by engineering two metabolic pathways targeted to three different cellular compartments (chloroplast, nucleus, and mitochondria). The doubly transgenic lines showed a three-fold enhancement of isopentenyl pyrophosphate, and targeting AACPR, DBR2, and CYP71AV1 to chloroplasts resulted in higher expression and an efficient photo-oxidation of dihydroartemisinic acid to artemisinin. Partially purified extracts from the leaves of transgenic tobacco plants inhibited in vitro growth progression of Plasmodium falciparum-infected red blood cells. Oral feeding of whole intact plant cells bioencapsulating the artemisinin reduced the parasitemia levels in challenged mice in comparison with commercial drug. Such novel synergistic approaches should facilitate low-cost production and delivery of artemisinin and other drugs through metabolic engineering of edible plants. Copyright © 2016 The Author. Published by Elsevier Inc. All rights reserved.

  13. In Vivo HIV-1 Cell-to-Cell Transmission Promotes Multicopy Micro-compartmentalized Infection

    Directory of Open Access Journals (Sweden)

    Kenneth M. Law

    2016-06-01

    Full Text Available HIV-1 infection is enhanced by adhesive structures that form between infected and uninfected T cells called virological synapses (VSs. This mode of transmission results in the frequent co-transmission of multiple copies of HIV-1 across the VS, which can reduce sensitivity to antiretroviral drugs. Studying HIV-1 infection of humanized mice, we measured the frequency of co-transmission and the spatiotemporal organization of infected cells as indicators of cell-to-cell transmission in vivo. When inoculating mice with cells co-infected with two viral genotypes, we observed high levels of co-transmission to target cells. Additionally, micro-anatomical clustering of viral genotypes within lymphoid tissue indicates that viral spread is driven by local processes and not a diffuse viral cloud. Intravital splenic imaging reveals that anchored HIV-infected cells induce arrest of interacting, uninfected CD4+ T cells to form Env-dependent cell-cell conjugates. These findings suggest that HIV-1 spread between immune cells can be anatomically localized into infectious clusters.

  14. PET kinetic analysis. Compartmental model

    International Nuclear Information System (INIS)

    Watabe, Hiroshi; Ikoma, Yoko; Shidahara, Miho; Kimura, Yuichi; Naganawa, Mika

    2006-01-01

    Positron emission tomography (PET) enables not only visualization of the distribution of radiotracer, but also has ability to quantify several biomedical functions. Compartmental model is a basic idea to analyze dynamic PET data. This review describes the principle of the compartmental model and categorizes the techniques and approaches for the compartmental model according to various aspects: model design, experimental design, invasiveness, and mathematical solution. We also discussed advanced applications of the compartmental analysis with PET. (author)

  15. Clade-specific differences in active viral replication and compartmentalization

    NARCIS (Netherlands)

    Sala, Monica; Centlivre, Mireille; Wain-Hobson, Simon

    2006-01-01

    This review focuses on the impact of HIV-1 clade-specific polymorphisms on the dynamics of viral replication and compartmentalization in vivo. HIV-1 transcription and compartmentalization are essentially modulated by interconnected parameters: cellular activation by T-cell receptor engagement or

  16. Current Ideas about Prebiological Compartmentalization

    Science.gov (United States)

    Monnard, Pierre-Alain; Walde, Peter

    2015-01-01

    Contemporary biological cells are highly sophisticated dynamic compartment systems which separate an internal volume from the external medium through a boundary, which controls, in complex ways, the exchange of matter and energy between the cell’s interior and the environment. Since such compartmentalization is a fundamental principle of all forms of life, scenarios have been elaborated about the emergence of prebiological compartments on early Earth, in particular about their likely structural characteristics and dynamic features. Chemical systems that consist of potentially prebiological compartments and chemical reaction networks have been designed to model pre-cellular systems. These systems are often referred to as “protocells”. Past and current protocell model systems are presented and compared. Since the prebiotic formation of cell-like compartments is directly linked to the prebiotic availability of compartment building blocks, a few aspects on the likely chemical inventory on the early Earth are also summarized. PMID:25867709

  17. Activation of PKA in cell requires higher concentration of cAMP than in vitro: implications for compartmentalization of cAMP signalling.

    Science.gov (United States)

    Koschinski, Andreas; Zaccolo, Manuela

    2017-10-26

    cAMP is a ubiquitous second messenger responsible for the cellular effects of multiple hormones and neurotransmitters via activation of its main effector, protein kinase A (PKA). Multiple studies have shown that the basal concentration of cAMP in several cell types is about 1 μM. This value is well above the reported concentration of cAMP required to half-maximally activate PKA, which measures in the 100-300 nM range. Several hypotheses have been suggested to explain this apparent discrepancy including inaccurate measurements of intracellular free cAMP, inaccurate measurement of the apparent activation constant of PKA or shielding of PKA from bulk cytosolic cAMP via localization of the enzyme to microdomains with lower basal cAMP concentration. However, direct experimental evidence in support of any of these models is limited and a firm conclusion is missing. In this study we use multiple FRET-based reporters for the detection of cAMP and PKA activity in intact cells and we establish that the sensitivity of PKA to cAMP is almost twenty times lower when measured in cell than when measured in vitro. Our findings have important implications for the understanding of compartmentalized cAMP signalling.

  18. Performance of non-compartmentalized enzymatic biofuel cell based on buckypaper cathode and ferrocene-containing redox polymer anode

    Science.gov (United States)

    Bunte, Christine; Hussein, Laith; Urban, Gerald A.

    2014-02-01

    Novel single compartment Glucose/O2 biofuel cells (BFCs) were developed using immobilized enzymes and the mediated electron transfer (MET) approach. The bioanode was prepared through a ferrocene-containing redox polymer crosslinked in the presence of a biocatalyst on a glassy carbon support. Here, the redox polymer can physically entrap the enzyme and prevent it from leaching. Additionally it provides a biocompatible microenvironment and thus could extend the life time of enzyme. On the other side, the mediated biocathode was prepared based on bilirubin oxidase and 2,2‧-azinobis(3-ethylbenzothiazoline-6-sulfonate) diammonium salt (ABTS2-) system which has been physically entrapped in Nafion matrix and then adsorbed directly on a highly porous, conductive and functionalized buckypaper (fBP). Both electrodes were characterized physically and electrochemically. Employing these electrodes, the resulting BFC generates an open circuit voltage (Voc) of approximately 0.550 V and a peak power density of 26 μW cm-2 at 0.2 V at 37 °C in quiescent O2-saturated physiological buffer containing 5 mM glucose. The cell sustains a load up to 225 μA cm-2. Moreover, a high short circuit current (Isc) of 300 μA cm-2 is approached. This BFC can operate in mild conditions without using any toxic materials which makes it attractive for implantable devices.

  19. Studies in the compartmentalization of trace elements in the blood of patients with sickle cell anaemia using PIXE technique

    International Nuclear Information System (INIS)

    Ojo, J.O.; Oluwole, A.F.; Durosinmi, M.A.; Arsed, W.; Akanle, O.A.; Spyrou, N.M.

    1993-01-01

    Concentrations of trace elements in the whole blood, plasma and erythrocytes of 77 individuals (20 carrying the HbSS genotype, 21 with HbAS and 36 with HbAA) were determined using a PIXE facility employing a 2 MeV proton beam. Up to 16 elements were detected in some or all of the samples. The skewness of elemental distribution was measured for each element in the three bloodflow compartments. Most of the essential elements, apart from selenium were distinctly packed in either the erythrocytes or the plasma. Results of the t-test employed to compare elemental values between sickle cell subjects and matched controls show similar patterns in the three compartments for some of the elements. The results are compared with previous work using INAA. (orig.)

  20. Shedding light on cell compartmentation in the candidate phylum Poribacteria by high resolution visualisation and transcriptional profiling

    Science.gov (United States)

    Jahn, Martin T.; Markert, Sebastian M.; Ryu, Taewoo; Ravasi, Timothy; Stigloher, Christian; Hentschel, Ute; Moitinho-Silva, Lucas

    2016-10-01

    Assigning functions to uncultivated environmental microorganisms continues to be a challenging endeavour. Here, we present a new microscopy protocol for fluorescence in situ hybridisation-correlative light and electron microscopy (FISH-CLEM) that enabled, to our knowledge for the first time, the identification of single cells within their complex microenvironment at electron microscopy resolution. Members of the candidate phylum Poribacteria, common and uncultivated symbionts of marine sponges, were used towards this goal. Cellular 3D reconstructions revealed bipolar, spherical granules of low electron density, which likely represent carbon reserves. Poribacterial activity profiles were retrieved from prokaryotic enriched sponge metatranscriptomes using simulation-based optimised mapping. We observed high transcriptional activity for proteins related to bacterial microcompartments (BMC) and we resolved their subcellular localisation by combining FISH-CLEM with immunohistochemistry (IHC) on ultra-thin sponge tissue sections. In terms of functional relevance, we propose that the BMC-A region may be involved in 1,2-propanediol degradation. The FISH-IHC-CLEM approach was proven an effective toolkit to combine -omics approaches with functional studies and it should be widely applicable in environmental microbiology.

  1. Shedding light on cell compartmentation in the candidate phylum Poribacteria by high resolution visualisation and transcriptional profiling

    KAUST Repository

    Jahn, Martin T.

    2016-10-31

    Assigning functions to uncultivated environmental microorganisms continues to be a challenging endeavour. Here, we present a new microscopy protocol for fluorescence in situ hybridisation-correlative light and electron microscopy (FISH-CLEM) that enabled, to our knowledge for the first time, the identification of single cells within their complex microenvironment at electron microscopy resolution. Members of the candidate phylum Poribacteria, common and uncultivated symbionts of marine sponges, were used towards this goal. Cellular 3D reconstructions revealed bipolar, spherical granules of low electron density, which likely represent carbon reserves. Poribacterial activity profiles were retrieved from prokaryotic enriched sponge metatranscriptomes using simulation-based optimised mapping. We observed high transcriptional activity for proteins related to bacterial microcompartments (BMC) and we resolved their subcellular localisation by combining FISH-CLEM with immunohistochemistry (IHC) on ultra-thin sponge tissue sections. In terms of functional relevance, we propose that the BMC-A region may be involved in 1,2-propanediol degradation. The FISH-IHC-CLEM approach was proven an effective toolkit to combine -omics approaches with functional studies and it should be widely applicable in environmental microbiology.

  2. Nonnegative and Compartmental Dynamical Systems

    CERN Document Server

    Haddad, Wassim M; Hui, Qing

    2010-01-01

    This comprehensive book provides the first unified framework for stability and dissipativity analysis and control design for nonnegative and compartmental dynamical systems, which play a key role in a wide range of fields, including engineering, thermal sciences, biology, ecology, economics, genetics, chemistry, medicine, and sociology. Using the highest standards of exposition and rigor, the authors explain these systems and advance the state of the art in their analysis and active control design. Nonnegative and Compartmental Dynamical Systems presents the most complete treatment available o

  3. Passive Noise Filtering by Cellular Compartmentalization.

    Science.gov (United States)

    Stoeger, Thomas; Battich, Nico; Pelkmans, Lucas

    2016-03-10

    Chemical reactions contain an inherent element of randomness, which presents itself as noise that interferes with cellular processes and communication. Here we discuss the ability of the spatial partitioning of molecular systems to filter and, thus, remove noise, while preserving regulated and predictable differences between single living cells. In contrast to active noise filtering by network motifs, cellular compartmentalization is highly effective and easily scales to numerous systems without requiring a substantial usage of cellular energy. We will use passive noise filtering by the eukaryotic cell nucleus as an example of how this increases predictability of transcriptional output, with possible implications for the evolution of complex multicellularity. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Compartmentation of metals in foliage of Populus tremula grown on soils with mixed contamination. II. Zinc binding inside leaf cell organelles

    Energy Technology Data Exchange (ETDEWEB)

    Vollenweider, Pierre, E-mail: pierre.vollenweider@wsl.c [Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Bernasconi, Petra [Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Environmental Protection Office (AfU), Aabachstrasse 5, 6300 Zug (Switzerland); Gautschi, Hans-Peter [Centre for Microscopy and Image Analysis (CMI), University of Zurich, Gloriastrasse 30, 8006 Zuerich (Switzerland); Menard, Terry; Frey, Beat; Guenthardt-Goerg, Madeleine S. [Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zuercherstrasse 111, 8903 Birmensdorf (Switzerland)

    2011-01-15

    The phytoextraction potential of plants for removing heavy metals from polluted soils is determined by their capacity to store contaminants in aboveground organs and complex them safely. In this study, the metal compartmentation, elemental composition of zinc deposits and zinc complexation within leaves from poplars grown on soil with mixed metal contamination was analysed combining several histochemical and microanalytical approaches. Zinc was the only heavy metal detected and was stored in several organelles in the form of globoid deposits showing {beta}-metachromasy. It was associated to oxygen anions and different cations, noteworthy phosphorous. The deposit structure, elemental composition and element ratios indicated that zinc was chelated by phytic acid ligands. Maturation processes in vacuolar vs. cytoplasmic deposits were suggested by differences in size and amounts of complexed zinc. Hence, zinc complexation by phytate contributed to metal detoxification and accumulation in foliage but could not prevent toxicity reactions therein. - Zinc contaminants translocated to symplast of aged leaves were detoxified by phytic acid ligands.

  5. Compartmental modeling and tracer kinetics

    CERN Document Server

    Anderson, David H

    1983-01-01

    This monograph is concerned with mathematical aspects of compartmental an­ alysis. In particular, linear models are closely analyzed since they are fully justifiable as an investigative tool in tracer experiments. The objective of the monograph is to bring the reader up to date on some of the current mathematical prob­ lems of interest in compartmental analysis. This is accomplished by reviewing mathematical developments in the literature, especially over the last 10-15 years, and by presenting some new thoughts and directions for future mathematical research. These notes started as a series of lectures that I gave while visiting with the Division of Applied ~1athematics, Brown University, 1979, and have developed in­ to this collection of articles aimed at the reader with a beginning graduate level background in mathematics. The text can be used as a self-paced reading course. With this in mind, exercises have been appropriately placed throughout the notes. As an aid in reading the material, the e~d of a ...

  6. Metabolic compartmentalization in the human cortex and hippocampus: evidence for a cell- and region-specific localization of lactate dehydrogenase 5 and pyruvate dehydrogenase

    Directory of Open Access Journals (Sweden)

    Kovari Enikö

    2007-05-01

    at the regional level, that support the notion of metabolic compartmentalization between astrocytes and neurons, whereby lactate produced by astrocytes could be oxidized by neurons.

  7. The nigrostriatal pathway: axonal collateralization and compartmental specificity.

    Science.gov (United States)

    Prensa, L; Giménez-Amaya, J M; Parent, A; Bernácer, J; Cebrián, C

    2009-01-01

    This paper reviews two of the major features of the nigrostriatal pathway, its axonal collateralization, and compartmental specificity, as revealed by single-axon labeling experiments in rodents and immunocytological analysis of human postmortem tissue. The dorsal and ventral tiers of the substantia nigra pars compacta harbor various types of neurons the axons of which branch not only within the striatum but also in other major components of the basal ganglia. Furthermore, some nigrostriatal axons send collaterals both to thalamus and to brainstem pedunculopontine tegmental nucleus. In humans, the compartmental specificity of the nigrostriatal pathway is revealed by the fact that the matrix compartment is densely innervated by dopaminergic fibers, whereas the striosomes display different densities of dopaminergic terminals depending on their location within the striatum. The nigral neurons most severely affected in Parkinson's disease are the ventral tier cells that project to the matrix and form deep clusters in the substantia nigra pars reticulata.

  8. TNF and IL-10 are major factors in modulation of the phagocytic cell environment in lung and lymph node in tuberculosis: a next-generation two-compartmental model.

    Science.gov (United States)

    Marino, Simeone; Myers, Amy; Flynn, JoAnne L; Kirschner, Denise E

    2010-08-21

    Tuberculosis (TB) is one of the earliest recorded human diseases and still one of the deadliest worldwide. Its causative agent is the bacteria Mycobacterium tuberculosis (Mtb). Cytokine-mediated macrophage activation is a necessary step in control of bacterial growth, and early immunologic events in lymph node and lung are crucial to the outcome of infection, although the factors that influence these environments and the immune response are poorly understood. Our goal is to build the next-generation two-compartmental model of the immune response to provide a gateway to more spatial and mechanistic investigations of M. tuberculosis infection in the LN and lung. Crucial immune factors emerge that affect macrophage populations and inflammation, namely TNF-dependent recruitment and apoptosis, and IL-10 levels. Surprisingly, bacterial load plays a less important role than TNF in increasing the population of infected macrophages and inflammation. Using a mathematical model, it is possible to distinguish the effects of pro-inflammatory (TNF) and anti-inflammatory (IL-10) cytokines on the spectrum of phagocyte populations (macrophages and dendritic cells) in the lung and lymph node. Our results suggest that TNF is a major mediator of recruitment of phagocytes to the lungs. In contrast, IL-10 plays a role in balancing the dominant macrophage phenotype in LN and lung. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  9. Compartmentalization in PVC super-phylum: evolution and impact.

    Science.gov (United States)

    Pinos, Sandrine; Pontarotti, Pierre; Raoult, Didier; Baudoin, Jean Pierre; Pagnier, Isabelle

    2016-08-09

    The PVC super-phylum gathers bacteria from seven phyla (Planctomycetes, Verrucomicrobiae, Chlamydiae, Lentisphaera, Poribacteria, OP3, WWE2) presenting different lifestyles, cell plans and environments. Planctomyces and several Verrucomicrobiae exhibit a complex cell plan, with an intracytoplasmic membrane inducing the compartmentalization of the cytoplasm into two regions (pirellulosome and paryphoplasm). The evolution and function of this cell plan is still subject to debate. In this work, we hypothesized that it could play a role in protection of the bacterial DNA, especially against Horizontal Genes Transfers (HGT). Therefore, 64 bacterial genomes belonging to seven different phyla (whose four PVC phyla) were studied. We reconstructed the evolution of the cell plan as precisely as possible, thanks to information obtained by bibliographic study and electronic microscopy. We used a strategy based on comparative phylogenomic in order to determine the part occupied by the horizontal transfers for each studied genomes. Our results show that the bacteria Simkania negevensis (Chlamydiae) and Coraliomargarita akajimensis (Verrucomicrobiae), whose cell plan were unknown before, are compartmentalized, as we can see on the micrographies. This is one of the first indication of the presence of an intracytoplasmic membrane in a Chlamydiae. The proportion of HGT does not seems to be related to the cell plan of bacteria, suggesting that compartmentalization does not induce a protection of bacterial DNA against HGT. Conversely, lifestyle of bacteria seems to impact the ability of bacteria to exchange genes. Our study allows a best reconstruction of the evolution of intracytoplasmic membrane, but this structure seems to have no impact on HGT occurrences. This article was reviewed by Mircea Podar and Olivier Tenaillon.

  10. Human-specific subcellular compartmentalization of P-element induced wimpy testis-like (PIWIL) granules during germ cell development and spermatogenesis

    NARCIS (Netherlands)

    Gomes Fernandes, Maria; He, Nannan; Wang, Fang; Van Iperen, Liesbeth; Eguizabal, Cristina; Matorras, Roberto; Roelen, Bernard A J; Chuva de Sousa Lopes, Susana M

    2018-01-01

    STUDY QUESTION: What is the dynamics of expression of P-element induced wimpy testis-like (PIWIL) proteins in the germline during human fetal development and spermatogenesis? SUMMARY ANSWER: PIWIL1, PIWIL2, PIWIL3 and PIWIL4 were expressed in a sex-specific fashion in human germ cells (GC) during

  11. The HBx oncoprotein of hepatitis B virus deregulates the cell cycle by promoting the intracellular accumulation and re-compartmentalization of the cellular deubiquitinase USP37.

    Directory of Open Access Journals (Sweden)

    Nehul Saxena

    Full Text Available The HBx oncoprotein of hepatitis B Virus has been accredited as one of the protagonists in driving hepatocarcinogenesis. HBx exerts its influence over the cell cycle progression by potentiating the activity of cyclin A/E-CDK2 complex, the Cyclin A partner of which is a well-known target of cellular deubiquitinase USP37. In the present study, we observed the intracellular accumulation of cyclin A and USP37 proteins under the HBx microenvironment. Flow cytometry analysis of the HBx-expressing cells showed deregulation of cell cycle apparently due to the enhanced gene expression and stabilization of USP37 protein and deubiquitination of Cyclin A by USP37. Our co-immunoprecipitation and confocal microscopic studies suggested a direct interaction between USP37 and HBx. This interaction promoted the translocation of USP37 outside the nucleus and prevented its association and ubiquitination by E3 ubiquitin ligases - APC/CDH1 and SCF/β-TrCP. Thus, HBx seems to control the cell cycle progression via the cyclin A-CDK2 complex by regulating the intracellular distribution and stability of deubiquitinase USP37.

  12. Human-specific subcellular compartmentalization of P-element induced wimpy testis-like (PIWIL) granules during germ cell development and spermatogenesis.

    Science.gov (United States)

    Gomes Fernandes, Maria; He, Nannan; Wang, Fang; Van Iperen, Liesbeth; Eguizabal, Cristina; Matorras, Roberto; Roelen, Bernard A J; Chuva De Sousa Lopes, Susana M

    2018-02-01

    What is the dynamics of expression of P-element induced wimpy testis-like (PIWIL) proteins in the germline during human fetal development and spermatogenesis? PIWIL1, PIWIL2, PIWIL3 and PIWIL4 were expressed in a sex-specific fashion in human germ cells (GC) during development and adulthood. PIWILs showed a mutually exclusive pattern of subcellular localization. PIWILs were present in the intermitochondrial cement and a single large granule in meiotic GC and their expression was different from that observed in mice, highlighting species-differences. In mice, PIWIL proteins play prominent roles in male infertility. PIWIL mouse mutants show either post-meiotic arrest at the round spermatid stage (PIWIL1) or arrest at the zygotene-pachytene stage of meiosis I (PIWIL2 and PIWIL4) in males, while females remain fertile. Recent studies have reported a robust piRNA pool in human fetal ovary. This is a qualitative analysis of PIWILs expression in paraffin-embedded fetal human male (N = 8), female gonads (N = 6) and adult testes (N = 5), and bioinformatics analysis of online available single-cell transcriptomics data of human fetal germ cells (n = 242). Human fetal gonads from elective abortion without medical indication and adult testes biopsies were donated for research with informed consent. Samples were fixed, paraffin-embedded and analyzed by immunofluorescence to study the temporal and cellular localization of PIWIL1, PIWIL2, PIWIL3 and PIWIL4. PIWIL1, PIWIL2 and PIWIL4 showed a mutually exclusive pattern of subcellular localization, particularly in female oocytes. To our surprise, PIWIL1 immunostaining revealed the presence of a single dense paranuclear body, resembling the chromatoid body of haploid spermatocytes, in meiotic oocytes. Moreover, in contrast to mice, PIWIL4, but not PIWIL2, localized to the intermitochondrial cement. PIWIL3 was not expressed in GC during development. The upregulation of PIWIL transcripts correlated with the transcription of markers

  13. Intracellular compartmentalization of skeletal muscle glycogen metabolism and insulin signalling

    DEFF Research Database (Denmark)

    Prats Gavalda, Clara; Gomez-Cabello, Alba; Vigelsø Hansen, Andreas

    2011-01-01

    The interest in skeletal muscle metabolism and insulin signalling has increased exponentially in recent years as a consequence of their role in the development of type 2 diabetes mellitus. Despite this, the exact mechanisms involved in the regulation of skeletal muscle glycogen metabolism...... compartmentalization in the regulation of skeletal muscle glycogen metabolism and insulin signalling. As a result, a hypothetical regulatory mechanism is proposed by which cells could direct glycogen resynthesis towards different pools of glycogen particles depending on the metabolic needs. Furthermore, we discuss...

  14. Compartmentalization and transport in β-lactam antibiotic biosynthesis by filamentous fungi

    NARCIS (Netherlands)

    Kamp, Mart van de; Driessen, Arnold J.M.; Konings, Wil N.

    1999-01-01

    A proper description of the biosynthesis of fungal β-lactam antibiotics requires detailed knowledge of the cell biology of the producing organisms. This involves a delineation of the compartmentalization of the biosynthetic pathways, and of the consequential transport steps across the cell-boundary

  15. Compartmentalization of GPCR signalling controls unique cellular responses.

    Science.gov (United States)

    Ellisdon, Andrew M; Halls, Michelle L

    2016-04-15

    With >800 members, G protein-coupled receptors (GPCRs) are the largest class of cell-surface signalling proteins, and their activation mediates diverse physiological processes. GPCRs are ubiquitously distributed across all cell types, involved in many diseases and are major drug targets. However, GPCR drug discovery is still characterized by very high attrition rates. New avenues for GPCR drug discovery may be provided by a recent shift away from the traditional view of signal transduction as a simple chain of events initiated from the plasma membrane. It is now apparent that GPCR signalling is restricted to highly organized compartments within the cell, and that GPCRs activate distinct signalling pathways once internalized. A high-resolution understanding of how compartmentalized signalling is controlled will probably provide unique opportunities to selectively and therapeutically target GPCRs. © 2016 Authors; published by Portland Press Limited.

  16. Reconstruction and modeling protein translocation and compartmentalization in Escherichia coli at the genome-scale

    DEFF Research Database (Denmark)

    Liu, Joanne K.; O’Brien, Edward J.; Lerman, Joshua A.

    2014-01-01

    cell morphology. Comparison of computations performed with this expanded ME-model, named iJL1678-ME, against available experimental data reveals that the model accurately describes translocation pathway expression and the functional proteome by compartmentalized mass. Conclusion: iJL1678-ME enables...

  17. Compartmentation prevents a lethal turbo-explosion of glycolysis in trypanosomes

    NARCIS (Netherlands)

    J.R. Haanstra (Jurgen); A. van Tuijl (Arjen); P. Kessler (Peter); W. Reijnders (Willem); P.A.M. Michels (Paul); H.V. Westerhoff (Hans); M. Parsons (Marilyn); B.M. Bakker (Barbara)

    2008-01-01

    textabstractATP generation by both glycolysis and glycerol catabolism is autocatalytic, because the first kinases of these pathways are fuelled by ATP produced downstream. Previous modeling studies predicted that either feedback inhibition or compartmentation of glycolysis can protect cells from

  18. Advanced compositional gradient and compartmentalization analysis

    Energy Technology Data Exchange (ETDEWEB)

    Canas, Jesus A.; Petti, Daniela; Mullins, Oliver [Schlumberger Servicos de Petroleo Ltda., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    Acquisition of hydrocarbons samples from the reservoir prior to oil or gas production is essential in order to design production strategies and production facilities. In addition, reservoir compartmentalization and hydrocarbon compositional grading magnify the necessity to map fluid properties vertically and laterally in the reservoir prior to production. Formation testers supply a wealth of information to observe and predict the state of fluids in hydrocarbon reservoirs, through detailed pressure and fluid analysis measurements. With the correct understanding of the state of fluids in the reservoirs, reserve calculations and adequate development plans can be prepared. Additionally, flow barriers may then be revealed. This paper describes a new Downhole Fluid Analysis technology (DFA) for improved reservoir management. DFA is a unique process that combines new fluid identification sensors, which allow real time monitoring of a wide range of parameters as GOR, fluid density, viscosity, fluorescence and composition (CH{sub 4}, C2- C5, C6 +, CO{sub 2}), free gas and liquid phases detection, saturation pressure, as well WBM and OBM filtrate differentiation and pH. This process is not limited to light fluid evaluation and we extended to heavy oil (HO) reservoirs analysis successfully. The combination of DFA Fluid Profiling with pressure measurements has shown to be very effective for compartmentalization characterization. The ability of thin barriers to hold off large depletion pressures has been established, as the gradual variation of hydrocarbon quality in biodegraded oils. In addition, heavy oils can show large compositional variation due to variations in source rock charging but without fluid mixing. Our findings indicates that steep gradients are common in gas condensates or volatile oils, and that biodegradation is more common in HO than in other hydrocarbons, which generate fluid gradients and heavy ends tars near the OWC, limiting the aquifer activity and

  19. Intracellular transport and compartmentation of phosphate in plants.

    Science.gov (United States)

    Versaw, Wayne K; Garcia, L Rene

    2017-10-01

    Phosphate (Pi) is an essential macronutrient with structural and metabolic roles within every compartment of the plant cell. Intracellular Pi transporters direct Pi to each organelle and also control its exchange between subcellular compartments thereby providing the means to coordinate compartmented metabolic processes, including glycolysis, photosynthesis, and respiration. In this review we summarize recent advances in the identification and functional analysis of Pi transporters that localize to vacuoles, chloroplasts, non-photosynthetic plastids, mitochondria, and the Golgi apparatus. Electrical potentials across intracellular membranes and the pH of subcellular environments will also be highlighted as key factors influencing the energetics of Pi transport, and therefore pose limits for Pi compartmentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. [Compartmentalized organization of human corpus striatum].

    Science.gov (United States)

    Prensa, L; Parent, A; Giménez-Amaya, J M

    The compartmentalization of the human striatum was first established thanks to the pioneer work of Graybiel and Ragsdale in 1978. These authors described in the human striatum, as well as in the cats and primates, zones poorly stained for the enzyme acetylcholinesterase, which they termed striosomes, that lie in more intensely stained matrix. The striosome/matrix subdivision of the striatum is supported by the distribution of a wide variety of transmitter-related substances and by the organization of striatal afferent and efferent connections. The results of many studies performed in different species in the last twenty years have indicated that the chemical heterogeneity of striatum is more complex than the simple subdivision into striosomes and matrix compartments. Thus, a further subdivisions of the dual striosome/matrix system has been proposed on the basis of the results of a huge amount of works combining tract tracing methods with histochemical techniques. The matrix has been demonstrated to be heterogeneous by containing numerous functional modules that were termed matrisomes. Furthermore, the most recent study of the distribution of a wide variety of neurochemical markers in the striosomal compartment of the human striatum, has revealed that the striosomes are themselves heterogeneous, being composed of a central core and a peripheral region. Since it is now twenty years from the first description of the striosome/matrix organization of the striatum, in this review we intend to summarize the major finding regarding the compartmental organization of this subcortical structure that have been obtained during this period of time.

  1. Compartmentation of redox metabolism in malaria parasites.

    Directory of Open Access Journals (Sweden)

    Sebastian Kehr

    Full Text Available Malaria, caused by the apicomplexan parasite Plasmodium, still represents a major threat to human health and welfare and leads to about one million human deaths annually. Plasmodium is a rapidly multiplying unicellular organism undergoing a complex developmental cycle in man and mosquito - a life style that requires rapid adaptation to various environments. In order to deal with high fluxes of reactive oxygen species and maintain redox regulatory processes and pathogenicity, Plasmodium depends upon an adequate redox balance. By systematically studying the subcellular localization of the major antioxidant and redox regulatory proteins, we obtained the first complete map of redox compartmentation in Plasmodium falciparum. We demonstrate the targeting of two plasmodial peroxiredoxins and a putative glyoxalase system to the apicoplast, a non-photosynthetic plastid. We furthermore obtained a complete picture of the compartmentation of thioredoxin- and glutaredoxin-like proteins. Notably, for the two major antioxidant redox-enzymes--glutathione reductase and thioredoxin reductase--Plasmodium makes use of alternative-translation-initiation (ATI to achieve differential targeting. Dual localization of proteins effected by ATI is likely to occur also in other Apicomplexa and might open new avenues for therapeutic intervention.

  2. Xylem Vessel Diameter Affects the Compartmentalization of the Vascular Pathogen Phaeomoniella chlamydospora in Grapevine

    Directory of Open Access Journals (Sweden)

    Jérôme Pouzoulet

    2017-08-01

    Full Text Available Fungal wilt diseases are a threat to global food safety. Previous studies in perennial crops showed that xylem vessel diameter affects disease susceptibility. We tested the hypothesis that xylem vessel diameter impacts occlusion processes and pathogen compartmentalization in Vitis vinifera L. We studied the interaction between four grape commercial cultivars with the vascular wilt pathogen Phaeomoniella chlamydospora. We used qPCR and wood necrotic lesion length to measure fungal colonization coupled with histological studies to assess differences in xylem morphology, pathogen compartmentalization, and fungal colonization strategy. We provided evidence that grape cultivar with wide xylem vessel diameter showed increased susceptibility to P. chlamydospora. The host response to pathogen included vessel occlusion with tyloses and gels, deposition of non-structural phenolic compounds and suberin in vessel walls and depletion of starch in parenchyma cells. Pathogen compartmentalization was less efficient in wide xylem vessels than in narrow diameter vessels. Large vessels displayed higher number of tyloses and gel pockets, which provided substrate for P. chlamydospora growth and routes to escape occluded vessels. We discuss in which capacity xylem vessel diameter is a key determinant of the compartmentalization process and in turn grape cultivar resistance to disease caused by P. chlamydospora.

  3. Diversity in the dynamical behaviour of a compartmentalized programmable biochemical oscillator.

    Science.gov (United States)

    Weitz, Maximilian; Kim, Jongmin; Kapsner, Korbinian; Winfree, Erik; Franco, Elisa; Simmel, Friedrich C

    2014-04-01

    In vitro compartmentalization of biochemical reaction networks is a crucial step towards engineering artificial cell-scale devices and systems. At this scale the dynamics of molecular systems becomes stochastic, which introduces several engineering challenges and opportunities. Here we study a programmable transcriptional oscillator system that is compartmentalized into microemulsion droplets with volumes between 33 fl and 16 pl. Simultaneous measurement of large populations of droplets reveals major variations in the amplitude, frequency and damping of the oscillations. Variability increases for smaller droplets and depends on the operating point of the oscillator. Rather than reflecting the stochastic kinetics of the chemical reaction network itself, the variability can be attributed to the statistical variation of reactant concentrations created during their partitioning into droplets. We anticipate that robustness to partitioning variability will be a critical challenge for engineering cell-scale systems, and that highly parallel time-series acquisition from microemulsion droplets will become a key tool for characterization of stochastic circuit function.

  4. Field Testing of Compartmentalization Methods for Multifamily Construction

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K. [Building Science Corporation, Westford, MA (United States); Lstiburek, J. W. [Building Science Corporation, Westford, MA (United States)

    2015-03-01

    The 2012 International Energy Conservation Code (IECC) has an airtightness requirement of 3 air changes per hour at 50 Pascals test pressure (3 ACH50) for single-family and multifamily construction (in climate zones 3–8). The Leadership in Energy & Environmental Design certification program and ASHRAE Standard 189 have comparable compartmentalization requirements. ASHRAE Standard 62.2 will soon be responsible for all multifamily ventilation requirements (low rise and high rise); it has an exceptionally stringent compartmentalization requirement. These code and program requirements are driving the need for easier and more effective methods of compartmentalization in multifamily buildings.

  5. Drivers of compartmentalization in a Mediterranean pollination network

    DEFF Research Database (Denmark)

    Gonzalez, Ana M. Martin; Allesina, Stefano; Rodrigo, Anselm

    2012-01-01

    We study compartmentalization in a Mediterranean pollination network using three different analytical approaches: unipartite modularity (UM), bipartite modularity (BM) and the group model (GM). Our objectives are to compare compartments obtained with these three approaches and to explore the role...

  6. Compartmental analysis of dynamic nuclear medicine data: models and identifiability

    Science.gov (United States)

    Delbary, Fabrice; Garbarino, Sara; Vivaldi, Valentina

    2016-12-01

    Compartmental models based on tracer mass balance are extensively used in clinical and pre-clinical nuclear medicine in order to obtain quantitative information on tracer metabolism in the biological tissue. This paper is the first of a series of two that deal with the problem of tracer coefficient estimation via compartmental modelling in an inverse problem framework. Specifically, here we discuss the identifiability problem for a general n-dimension compartmental system and provide uniqueness results in the case of two-compartment and three-compartment compartmental models. The second paper will utilize this framework in order to show how nonlinear regularization schemes can be applied to obtain numerical estimates of the tracer coefficients in the case of nuclear medicine data corresponding to brain, liver and kidney physiology.

  7. Mapping intracellular diffusion distribution using single quantum dot tracking: compartmentalized diffusion defined by endoplasmic reticulum.

    Science.gov (United States)

    Li, Hui; Dou, Shuo-Xing; Liu, Yu-Ru; Li, Wei; Xie, Ping; Wang, Wei-Chi; Wang, Peng-Ye

    2015-01-14

    The crowded intracellular environment influences the diffusion-mediated cellular processes, such as metabolism, signaling, and transport. The hindered diffusion of macromolecules in heterogeneous cytoplasm has been studied over years, but the detailed diffusion distribution and its origin still remain unclear. Here, we introduce a novel method to map rapidly the diffusion distribution in single cells based on single-particle tracking (SPT) of quantum dots (QDs). The diffusion map reveals the heterogeneous intracellular environment and, more importantly, an unreported compartmentalization of QD diffusions in cytoplasm. Simultaneous observations of QD motion and green fluorescent protein-tagged endoplasmic reticulum (ER) dynamics provide direct evidence that the compartmentalization results from micron-scale domains defined by ER tubules, and ER cisternae form perinuclear areas that restrict QDs to enter. The same phenomenon was observed using fluorescein isothiocyanate-dextrans, further confirming the compartmentalized diffusion. These results shed new light on the diffusive movements of macromolecules in the cell, and the mapping of intracellular diffusion distribution may be used to develop strategies for nanoparticle-based drug deliveries and therapeutics.

  8. Compartmentalization of prostaglandins in the canine kidney

    International Nuclear Information System (INIS)

    Morgan-Boyd, R.L.

    1986-01-01

    The kidney has been shown to synthesize all of the naturally occurring major prostaglandins which may be restricted to a discrete part of the kidney where their actions are physiologically important, such as the vascular compartment and the tubular compartment. In order to examine this concept of compartmentalization, the authors conducted a series of experiments to determine whether PGl 2 , measured as 6-keto-pGF/sub 1α/, produced in the kidney is restricted to the renal vascular compartment or whether it also has access to the tubular compartment. Experiments were performed in the pentobarbital-anesthetized dog. Increasing pre-glomerular levels of 6-keto-PFG/sub 1α/ caused marked increases in both the urinary excretion and the renal venous outflow to 6-keto-PGF/sub 1α/. When 3 H-6-keto-PGF/sub 1α/ was co-infused with inulin into the renal artery, 33% of the radioactivity and 23% of the inulin was recovered on first pass. With infusion of 3 H-PGl 2 and inulin, 20% of the radioactivity and 28% of the inulin reached the urine on first pass. Radioactive PGl 2 appeared to be less filterable at the glomeruli than either 3 H-6-keto-PGF/sub 1α/ or inulin. In the final set of experiments, in which dogs were prepared for a ureteral stopped-flow study, the PGE 2 /U/P/sub In/ ratio a peak was observed proximal to the Na + plateau but distal to the Na+ nadir. In light of the results from the stopped-flow study and the intrarenal infusion studies, they conclude that PGE 2 synthesized in the kidney enters both the renal and tubular compartments. In contrast, they find that 6-keto-PGF/sub 1α/ of renal origin enters only the renal origin enters only the renal vascular compartment and not the tubular compartment

  9. Micro-compartmentalized cultivation of cyanobacteria for mutant screening using glass slides with highly water-repellent mark

    Directory of Open Access Journals (Sweden)

    Sayuri Arai

    2014-12-01

    Full Text Available Photosynthetic microorganisms such as cyanobacteria have attracted attention for their potential to produce biofuels and biochemicals directly from CO2. Cell isolation by colony has conventionally been used for selecting target cells. Colony isolation methods require a significant amount of time for cultivation, and the colony-forming ratio is potentially low for cyanobacteria. Here, we overcome such limitations by encapsulating and culturing cells in droplets with an overlay of dodecane using glass slides printed with highly water-repellent mark. In the compartmentalized culture, the oil phase protects the small volume of culture medium from drying and increases the CO2 supply. Since a difference in cell growth was observed with and without the addition of antibiotics, this compartmentalized culture method could be a powerful tool for mutant selection.

  10. Approximations of kidney models and compartmental kidney models

    International Nuclear Information System (INIS)

    Nahorski, Z.

    1996-01-01

    Compartmental models were proposed in sixties to model the flow of isotopes through the kidney. These models were then criticized to not conform to the physiology of the kidney flow of isotopes. That is why they were abandoned, even thought their fits to the measured data were usually good. In this paper it is shown that some approximations of a physiological model proposed earlier by the present author can be interpreted as equations describing compartmental models. Their parameters have, however, different interpretation than the rates of intercompartmental flows. Diagrams of the time variations of the isotope content in the kidney are compared for the exact and approximate model using computer simulation technique

  11. Compartmental architecture and dynamics of hematopoiesis.

    Directory of Open Access Journals (Sweden)

    David Dingli

    Full Text Available BACKGROUND: Blood cell formation is maintained by the replication of hematopoietic stem cells (HSC that continuously feed downstream "compartments" where amplification and differentiation of cells occurs, giving rise to all blood lineages. Whereas HSC replicate slowly, committed cells replicate faster as they become more differentiated. METHODOLOGY/SIGNIFICANT FINDING: We propose a multi-compartment model of hematopoiesis, designed on the principle of cell flow conservation under stationary conditions. Cells lost from one compartment due to differentiation are replaced by cells from the upstream compartment. We assume that there is a constant relationship between cell input and output in each compartment and fix the single parameter of the model using data available for granulocyte maturation. We predict that approximately 31 mitotic events separate the HSC from the mature cells observed in the circulation. Besides estimating the number of compartments, our model allows us to estimate the size of each compartment, the rate of cell replication within each compartment, the mean time a given cell type contributes to hematopoiesis, the amplification rate in each compartment, as well as the mean time separating stem-cell replication and mature blood-cell formation. CONCLUSIONS: Despite its simplicity, the model agrees with the limited in vivo data available and can make testable predictions. In particular, our prediction of the average lifetime of a PIG-A mutated clone agrees closely with the experimental results available for the PIG-A gene mutation in healthy adults. The present elucidation of the compartment structure and dynamics of hematopoiesis may prove insightful in further understanding a variety of hematopoietic disorders.

  12. Macroanatomy of compartmentalization in fire scars of three western conifers

    Science.gov (United States)

    Kevin T. Smith; Elaine Sutherland; Estelle Arbellay; Markus Stoffel; Donald. Falk

    2013-01-01

    Fire scars are visible evidence of compartmentalization and closure processes that contribute to tree survival after fire injury. Preliminary observations of dissected fire scars from trees injured within the last decade showed centripetal development of wound-initiated discoloration (WID) through 2-3 decades of former sapwood in Larix occidentalis and Pseudotsuga...

  13. Synthesis of copper and nickel complexes using compartmental ...

    Indian Academy of Sciences (India)

    Administrator

    Synthesis of copper and nickel complexes using compartmental ligands: X-ray, electrochemical and magnetic studies. J MANONMANI, V NARAYANAN and M KANDASWAMY. Department of Inorganic Chemistry, University of Madras, Guindy Campus,. Chennai 600 025, India. The search for several synthetic routes leading ...

  14. Integration through compartmentalization? Pitfalls of 'poldering' in Bangladesh

    NARCIS (Netherlands)

    Warner, J.F.

    2010-01-01

    The article sketches the history of the Flood Action Plan 20 (FAP-20), an experiment with polder compartmentalization, seeking to integrate flood management, drainage, and irrigation, and make it more democratic in response to the destructive 1987 and 1988 floods in Bangladesh. As a transferred

  15. Integration through Compartmentalization? Pitfalls of “Poldering” in Bangladesh

    NARCIS (Netherlands)

    Warner, J.F.

    2010-01-01

    The article sketches the history of the Flood Action Plan 20 (FAP-20), an experiment with polder compartmentalization, seeking to integrate flood management, drainage, and irrigation, and make it more democratic in response to the destructive 1987 and 1988 floods in Bangladesh. As a transferred

  16. Controlled synthesis of 3D multi-compartmental particles with centrifuge-based microdroplet formation from a multi-barrelled capillary.

    Science.gov (United States)

    Maeda, Kazuki; Onoe, Hiroaki; Takinoue, Masahiro; Takeuchi, Shoji

    2012-03-08

    Controlled synthesis of micro multi-compartmental particles using a centrifuge droplet shooting device (CDSD) is reported. Sodium alginate solutions introduced in a multi-barreled capillary form droplets at the capillary orifice under ultrahigh gravity and gelify in a CaCl(2) solution. The size, shape, and compartmentalization of the particles are controlled. Co-encapsulation of Jurkat cells and magnetic colloids into Janus particles is demonstrated. The Janus particles present sensitive reaction toward magnetic fields, while the viability of the encapsulated cells is 91%. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Compartmentalization of decayed wood associated with Armillaria mellea in several tree species

    Science.gov (United States)

    Alex L. Shigo; Joanna T. Tippett

    1981-01-01

    Decayed wood associated with Armillaria mellea was compartmentalized according to the CODIT (Compartmentalization Of Decay In Trees) model. Compartmentalization in the sapwood began after the tree walled off the area of dead cambium associated with the inflection of the fungus. The fungus spread into dying sapwood beneath and beyond the area of...

  18. Modulation in Wistar Rats of Blood Corticosterone Compartmentation by Sex and a Cafeteria Diet

    Science.gov (United States)

    Romero, María del Mar; Holmgren-Holm, Fredrik; Grasa, Maria del Mar; Esteve, Montserrat; Remesar, Xavier; Fernández-López, José Antonio; Alemany, Marià

    2013-01-01

    In the metabolic syndrome, glucocorticoid activity is increased, but circulating levels show little change. Most of blood glucocorticoids are bound to corticosteroid-binding globulin (CBG), which liver expression and circulating levels are higher in females than in males. Since blood hormones are also bound to blood cells, and the size of this compartment is considerable for androgens and estrogens, we analyzed whether sex or eating a cafeteria diet altered the compartmentation of corticosterone in rat blood. The main corticosterone compartment in rat blood is that specifically bound to plasma proteins, with smaller compartments bound to blood cells or free. Cafeteria diet increased the expression of liver CBG gene, binding plasma capacity and the proportion of blood cell-bound corticosterone. There were marked sex differences in blood corticosterone compartmentation in rats, which were unrelated to testosterone. The use of a monoclonal antibody ELISA and a polyclonal Western blot for plasma CBG compared with both specific plasma binding of corticosterone and CBG gene expression suggested the existence of different forms of CBG, with varying affinities for corticosterone in males and females, since ELISA data showed higher plasma CBG for males, but binding and Western blot analyses (plus liver gene expression) and higher physiological effectiveness for females. Good cross- reactivity to the antigen for polyclonal CBG antibody suggests that in all cases we were measuring CBG.The different immunoreactivity and binding affinity may help explain the marked sex-related differences in plasma hormone binding as sex-linked different proportions of CBG forms. PMID:23451210

  19. Ras acylation, compartmentalization and signaling nanoclusters (Review)

    OpenAIRE

    HENIS, YOAV I.; HANCOCK, JOHN F.; PRIOR, IAN A.

    2008-01-01

    Ras proteins have become paradigms for isoform- and compartment-specific signaling. Recent work has shown that Ras isoforms are differentially distributed within cell surface signaling nanoclusters and on endomembranous compartments. The critical feature regulating Ras protein localization and isoform-specific functions is the C-terminal hypervariable region (HVR). In this review we discuss the differential post-translational modifications and reversible targeting functions of Ras isoform HVR...

  20. Laboratory of Cell and Molecular Biology

    Data.gov (United States)

    Federal Laboratory Consortium — The Laboratory of Cell and Molecular Biology investigates the organization, compartmentalization, and biochemistry of eukaryotic cells and the pathology associated...

  1. Membrane compartmentalization of melanosomal gp75.

    Science.gov (United States)

    Giacomini, P; Fraioli, R; Cuomo, M; Natali, P G

    1992-03-01

    A melanosomal integral membrane glycoprotein of 75 kD (gp75) has been previously identified as the human homologue of the product specified by the murine brown locus. We presently report that this molecule may be susceptible to limited proteolysis and extrinsic radioiodination in intact, live cells. Consequently, it is suggested that its cellular location might include the plasma membrane and/or a cellular compartment easily accessible to proteases and to chemically catalyzed vectorial iodination. This is of interest in view of the potential applicative value of gp75 as a target for the radioimmunoscintography of melanoma lesions.

  2. Gas confinement in compartmentalized coordination polymers for highly selective sorption.

    Science.gov (United States)

    Giménez-Marqués, Mónica; Calvo Galve, Néstor; Palomino, Miguel; Valencia, Susana; Rey, Fernando; Sastre, Germán; Vitórica-Yrezábal, Iñigo J; Jiménez-Ruiz, Mónica; Rodríguez-Velamazán, J Alberto; González, Miguel A; Jordá, José L; Coronado, Eugenio; Espallargas, Guillermo Mínguez

    2017-04-01

    Discrimination between different gases is an essential aspect for industrial and environmental applications involving sensing and separation. Several classes of porous materials have been used in this context, including zeolites and more recently MOFs. However, to reach high selectivities for the separation of gas mixtures is a challenging task that often requires the understanding of the specific interactions established between the porous framework and the gases. Here we propose an approach to obtain an enhanced selectivity based on the use of compartmentalized coordination polymers, named CCP-1 and CCP-2 , which are crystalline materials comprising isolated discrete cavities. These compartmentalized materials are excellent candidates for the selective separation of CO 2 from methane and nitrogen. A complete understanding of the sorption process is accomplished with the use of complementary experimental techniques including X-ray diffraction, adsorption studies, inelastic- and quasi-elastic neutron scattering, magnetic measurements and molecular dynamics calculations.

  3. A Novel Method for Performance Analysis of Compartmentalized Reservoirs

    Directory of Open Access Journals (Sweden)

    Shahamat Mohammad Sadeq

    2016-05-01

    Full Text Available This paper presents a simple analytical model for performance analysis of compartmentalized reservoirs producing under Constant Terminal Rate (CTR and Constant Terminal Pressure (CTP. The model is based on the well-known material balance and boundary dominated flow equations and is written in terms of capacitance and resistance of a production and a support compartment. These capacitance and resistance terms account for a combination of reservoir parameters which enable the developed model to be used for characterizing such systems. In addition to considering the properties contrast between the two reservoir compartments, the model takes into account existence of transmissibility barriers with the use of resistance terms. The model is used to analyze production performance of unconventional reservoirs, where the multistage fracturing of horizontal wells effectively creates a Stimulated Reservoir Volume (SRV with an enhanced permeability surrounded by a non-stimulated region. It can also be used for analysis of compartmentalized conventional reservoirs. The analytical solutions provide type curves through which the controlling reservoirs parameters of a compartmentalized system can be estimated. The contribution of the supporting compartment is modeled based on a boundary dominated flow assumption. The transient behaviour of the support compartment is captured by application of “distance of investigation” concept. The model shows that depletion of the production and support compartments exhibit two unit slopes on a log-log plot of pressure versus time for CTR. For CTP, however, the depletions display two exponential declines. The depletion signatures are separated by transition periods, which depend on the contribution of the support compartment (i.e. transient or boundary dominated flow. The developed equations can be implemented easily in a spreadsheet application, and are corroborated with the use of a numerical simulation. The study

  4. Animal-to-Human Extrapolation Using Compartmental Models

    Science.gov (United States)

    1991-01-01

    In this article, designates the excretory organ (for example, the kidney). The we will address the general methodology of extrapolation using symbol...must be true in any compartmental system because they are exposure (9). based on physical principles. In these equations the V1, Qj, k, In the setting...and diffusion approximation models to a simple perfusion-diffusion system governed by partial differential equations for v or, C,, which analytic

  5. Field Testing of Compartmentalization Methods for Multifamily Construction

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K. [Building Science Corporation, Westford, MA (United States); Lstiburek, J. [Building Science Corporation, Westford, MA (United States)

    2015-03-01

    The 2012 IECC has an airtightness requirement of 3 air changes per hour at 50 Pascals test pressure for both single-family and multifamily construction in Climate Zones 3-8. Other programs (LEED, ASHRAE 189, ASHRAE 62.2) have similar or tighter compartmentalization requirements, driving the need for easier and more effective methods of compartmentalization in multifamily buildings. Builders and practitioners have found that fire-resistance rated wall assemblies are a major source of difficulty in air sealing/compartmentalization, particularly in townhouse construction. This problem is exacerbated when garages are “tucked in” to the units and living space is located over the garages. In this project, Building Science Corporation examined the taping of exterior sheathing details to improve air sealing results in townhouse and multifamily construction, when coupled with a better understanding of air leakage pathways. Current approaches are cumbersome, expensive, time consuming, and ineffective; these details were proposed as a more effective and efficient method. The effectiveness of these air sealing methods was tested with blower door testing, including “nulled” or “guarded” testing (adjacent units run at equal test pressure to null out inter-unit air leakage, or “pressure neutralization”). Pressure diagnostics were used to evaluate unit-to-unit connections and series leakage pathways (i.e., air leakage from exterior, into the fire-resistance rated wall assembly, and to the interior).

  6. On the contributions of photorespiration and compartmentation to the contrasting intramolecular 2H profiles of C3 and C4 plant sugars

    Science.gov (United States)

    Youping Zhou; Benli Zhang; Hilary Stuart-Williams; Kliti Grice; Charles H. Hocart; Arthur Gessler; Zachary E. Kayler; Graham D. Farquhar

    2018-01-01

    Compartmentation of C4 photosynthetic biochemistry into bundle sheath (BS) and mesophyll (M) cells, and photorespiration in C3 plants is predicted to have hydrogen isotopic consequences for metabolites at both molecular and site-specific levels. Molecular-level evidence was recently reported (Zhou et al., 2016), but...

  7. Posttranslational protein S-palmitoylation and the compartmentalization of signaling molecules in neurons

    Directory of Open Access Journals (Sweden)

    SEAN I PATTERSON

    2002-01-01

    Full Text Available Protein domains play a fundamental role in the spatial and temporal organization of intracellular signaling systems. While protein phosphorylation has long been known to modify the interactions that underlie this organization, the dynamic cycling of lipids should now be included amongst the posttranslational processes determining specificity in signal transduction. The characteristics of this process are reminiscent of the properties of protein and lipid phosphorylation in determining compartmentalization through SH2 or PH domains. Recent studies have confirmed the functional importance of protein S-palmitoylation in the compartmentalization of signaling molecules that support normal physiological function in cell division and apoptosis, and synaptic transmission and neurite outgrowth. In neurons, S-palmitoylation and targeting of proteins to rafts are regulated differentially in development by a number of processes, including some related to synaptogenesis and synaptic plasticity. Alterations in the S-palmitoylation state of proteins substantially affect their cellular function, raising the possibility of new therapeutic targets in cancer and nervous system injury and disease.

  8. Subcellular Compartmentalization and Trafficking of the Biosynthetic Machinery for Fungal Melanin

    Directory of Open Access Journals (Sweden)

    Srijana Upadhyay

    2016-03-01

    Full Text Available Protection by melanin depends on its subcellular location. Although most filamentous fungi synthesize melanin via a polyketide synthase pathway, where and how melanin biosynthesis occurs and how it is deposited as extracellular granules remain elusive. Using a forward genetic screen in the pathogen Aspergillus fumigatus, we find that mutations in an endosomal sorting nexin abolish melanin cell-wall deposition. We find that all enzymes involved in the early steps of melanin biosynthesis are recruited to endosomes through a non-conventional secretory pathway. In contrast, late melanin enzymes accumulate in the cell wall. Such subcellular compartmentalization of the melanin biosynthetic machinery occurs in both A. fumigatus and A. nidulans. Thus, fungal melanin biosynthesis appears to be initiated in endosomes with exocytosis leading to melanin extracellular deposition, much like the synthesis and trafficking of mammalian melanin in endosomally derived melanosomes.

  9. The iDuo Bi-compartmental Knee Replacement: Our Early Experience.

    Directory of Open Access Journals (Sweden)

    Peter Jemmett

    2016-12-01

    Our early results suggest that the iDuo knee is a good option for those with isolated bi-compartmental disease and outcome scores are comparable with those reported for the BKA. This bi-compartmental design may bridge the gap between the uni-compartmental and total knee replacement. The choice between monolithic or modular designs remains in debate. We will continue to use this prosthesis for a carefully selected group of patients.

  10. PKA catalytic subunit compartmentation regulates contractile and hypertrophic responses to β-adrenergic signaling

    Science.gov (United States)

    Yang, Jason H.; Polanowska-Grabowska, Renata K.; Smith, Jeffrey S.; Shields, Charles W.; Saucerman, Jeffrey J.

    2014-01-01

    β-adrenergic signaling is spatiotemporally heterogeneous in the cardiac myocyte, conferring exquisite control to sympathetic stimulation. Such heterogeneity drives the formation of protein kinase A (PKA) signaling microdomains, which regulate Ca2+ handling and contractility. Here, we test the hypothesis that the nucleus independently comprises a PKA signaling microdomain regulating myocyte hypertrophy. Spatially-targeted FRET reporters for PKA activity identified slower PKA activation and lower isoproterenol sensitivity in the nucleus (t50 = 10.60±0.68 min; EC50 = 89.00 nmol/L) than in the cytosol (t50 = 3.71±0.25 min; EC50 = 1.22 nmol/L). These differences were not explained by cAMP or AKAP-based compartmentation. A computational model of cytosolic and nuclear PKA activity was developed and predicted that differences in nuclear PKA dynamics and magnitude are regulated by slow PKA catalytic subunit diffusion, while differences in isoproterenol sensitivity are regulated by nuclear expression of protein kinase inhibitor (PKI). These were validated by FRET and immunofluorescence. The model also predicted differential phosphorylation of PKA substrates regulating cell contractility and hypertrophy. Ca2+ and cell hypertrophy measurements validated these predictions and identified higher isoproterenol sensitivity for contractile enhancements (EC50 = 1.84 nmol/L) over cell hypertrophy (EC50 = 85.88 nmol/L). Over-expression of spatially targeted PKA catalytic subunit to the cytosol or nucleus enhanced contractile and hypertrophic responses, respectively. We conclude that restricted PKA catalytic subunit diffusion is an important PKA compartmentation mechanism and the nucleus comprises a novel PKA signaling microdomain, insulating hypertrophic from contractile β-adrenergic signaling responses. PMID:24225179

  11. Compartmentalized liquid crystal alignment induced by sparse polymer ribbons with surface relief gratings.

    Science.gov (United States)

    Ji, Zhichao; Zhang, Xinzheng; Shi, Bin; Li, Wei; Luo, Weiwei; Drevensek-Olenik, Irena; Wu, Qiang; Xu, Jingjun

    2016-01-15

    We report on the liquid crystal (LC) alignment induced by sparse polymer ribbons fabricated by the two-photon polymerization-based direct laser writing method. Each ribbon is fabricated by a single scan of the laser through the photoresist and possesses surface relief gratings on both sides. The relief gratings are caused by the optical interference between the incident and reflected laser beams. With the aid of these relief gratings, LC molecules can be well aligned along the selected direction of the ribbons. LC cells with the Z-shaped and checkerboard-type microstructures are constructed based on the sparse out-of-plane polymeric ribbons. Our results show that with such polymer ribbons a compartmentalized LC alignment in the arbitrary microstructures can be realized.

  12. Lower extremity compartmental anatomy: clinical relevance to radiologists

    Energy Technology Data Exchange (ETDEWEB)

    Toomayan, Glen A.; Robertson, Fabienne; Major, Nancy M. [Duke University Medical Center, Department of Radiology, Durham (United States)

    2005-06-01

    A thorough understanding of compartmental anatomy is necessary for the radiologist participating in the care of a patient with a lower extremity musculoskeletal malignancy. Localization of tumor to compartment of origin and identification of extracompartmental spread preoperatively are needed to correctly stage a tumor and determine the appropriate surgical management. An understanding of the locations of fascial boundaries, extracompartmental tissues, and neurovascular structures of the thigh and lower leg facilitates this diagnostic process. For the radiologist planning to biopsy a suspicious musculoskeletal lesion, consultation with the referring orthopaedic surgeon is recommended in order to jointly select an appropriate percutaneous biopsy approach. Adequate preprocedural planning ensures selection of an approach which prevents iatrogenic tumor spread beyond the compartment of origin, protects neurovascular structures, and allows complete resection of the biopsy tract and scar at the time of surgical resection without jeopardizing a potential limb-sparing procedure. Cross-sectional anatomic review and case examples demonstrate the importance of a detailed understanding of compartmental anatomy when approaching the patient with a lower extremity musculoskeletal tumor. (orig.)

  13. Cadherins in cerebellar development: translation of embryonic patterning into mature functional compartmentalization.

    Science.gov (United States)

    Redies, Christoph; Neudert, Franziska; Lin, Juntang

    2011-09-01

    Cadherins are cell adhesion molecules with multiple morphogenic functions in brain development, for example, in neuroblast migration and aggregation, axon navigation, neural circuit formation, and synaptogenesis. More than 100 members of the cadherin superfamily are expressed in the developing and mature brain. Most of the cadherins investigated, in particular classic cadherins and δ-protocadherins, are expressed in the cerebellum. For several cadherin subtypes, expression begins at early embryonic stages and persists until mature stages of cerebellar development. At intermediate stages, distinct Purkinje cell clusters exhibit unique rostrocaudal and mediolateral expression profiles for each cadherin. In the chicken, mouse, and other species, the Purkinje cell clusters are separated by intervening raphes of migrating granule cells. This pattern of Purkinje cell clusters/raphes is, at least in part, continuous with the parasagittal striping pattern that is apparent in the mature cerebellar cortex, for example, for zebrin II/aldolase C. Moreover, subregions of the deep cerebellar nuclei, vestibular nuclei and the olivary complex also express cadherins differentially. Neuroanatomical evidence suggests that the nuclear subregions and cortical domains that express the same cadherin subtype are connected to each other, to form neural subcircuits of the cerebellar system. Cadherins thus provide a molecular code that specifies not only embryonic structures but also functional cerebellar compartmentalization. By following the implementation of this code, it can be revealed how mature functional architecture emerges from embryonic patterning during cerebellar development. Dysfunction of some cadherins is associated with psychiatric diseases and developmental impairments and may also affect cerebellar function.

  14. Identification of HIV-1 genitourinary tract compartmentalization by analyzing the env gene sequences in urine.

    Science.gov (United States)

    Blasi, Maria; Carpenter, J Harris; Balakumaran, Bala; Cara, Andrea; Gao, Feng; Klotman, Mary E

    2015-08-24

    HIV-1 persists indefinitely in memory CD4 T cells and other long-lived cellular reservoirs despite antiretroviral therapy. Our group had previously demonstrated that HIV-1 can establish a productive infection in renal epithelial cells and that the kidney represents a separate compartment for HIV-1 replication. Here, to better understand the viruses in this unique site, we genetically characterized and compared the viruses in blood and urine specimens from 24 HIV-1 infected patients with detectable viremia. Blood and urine samples were obtained from 35 HIV-1 positive patients. Single-genome amplification was performed on HIV-1 env RNA and DNA isolated from urine supernatants and urine-derived cell pellets, respectively, as well as from plasma and peripheral blood mononuclear cell from the same individuals. Neighbor-joining trees were constructed under the Kimura 2-parameter model. We amplified and sequenced the full-length HIV-1 envelope (env) gene from 12 of the 24 individuals, indicating that 50% of the viremic HIV-1-positive patients had viral RNA in their urine. Phylogenetic analysis of the env sequences from four individuals with more than 15 urine-derived env sequences showed that the majority of the sequences from urine formed distinct cluster(s) independent of those peripheral blood mononuclear cell and plasma-derived sequences, consistent with viral compartmentalization in the urine. Our results suggest the presence of a distinct HIV compartment in the genitourinary tract.

  15. Cs-137 accumulation and elimination by Gracilaria caudata alga and Abudefduf saxatilis fish. Compartmental analysis

    International Nuclear Information System (INIS)

    Mattiolo-Marchese, Sandra Regina

    1998-01-01

    From the ecological point of view, 137 Cs is a critical radionuclide because its physical half-life is long (30 years), and it has a high fission yield. Besides, it presents similar characteristics to sodium and potassium, fundamental elements for the living organisms, in great concentration in all cells. This work has as aim to study the 137 Cs accumulation and elimination by the alga Gracilaria caudata and by the fish Abudefduf saxatilis as well as to obtain the transfer constants of the 137 Cs from the water into the organisms. The concentration factor found for the fish was 5.6 +- 0.2 and for the alga, 13.0 +- 0,6. With 7 and 22 days, the fish and alga respectively had already eliminated half of the accumulated radionuclide. The 137 Cs ingestion efficiency by the fish was also studied and it was verified that the fish assimilated only 47.6 % of the cesium content in the food; and within of 4 days it had eliminated more than half of ingested cesium. A compartmental model was proposed to explain the distribution of cesium in the compartments (water - alga and water - fish). Data obtained from the experiments of 137 Cs accumulation and elimination were applied in the Ana Comp Program. This program permits the compartmental analysis, and quantifies the cesium distribution from the sea-water to the organisms, and vice versa, through the transfer constants (k). The Ana Comp Program also allowed to calculate the dose that one would receive by the consumption of fish contaminated by cesium. Levels of 137 Cs from the global fallout in environmental samples, from Sao Sebastiao, northern coast of Sao Paulo, (where the 'Centro de Biologia Marinha da Universidade de Sao Paulo - CEBIMar - USP' is located), were verified. (author)

  16. Synapse-specific and compartmentalized expression of presynaptic homeostatic potentiation.

    Science.gov (United States)

    Li, Xiling; Goel, Pragya; Chen, Catherine; Angajala, Varun; Chen, Xun; Dickman, Dion K

    2018-04-05

    Postsynaptic compartments can be specifically modulated during various forms of synaptic plasticity, but it is unclear whether this precision is shared at presynaptic terminals. Presynaptic Homeostatic Plasticity (PHP) stabilizes neurotransmission at the Drosophila neuromuscular junction, where a retrograde enhancement of presynaptic neurotransmitter release compensates for diminished postsynaptic receptor functionality. To test the specificity of PHP induction and expression, we have developed a genetic manipulation to reduce postsynaptic receptor expression at one of the two muscles innervated by a single motor neuron. We find that PHP can be induced and expressed at a subset of synapses, over both acute and chronic time scales, without influencing transmission at adjacent release sites. Further, homeostatic modulations to CaMKII, vesicle pools, and functional release sites are compartmentalized and do not spread to neighboring pre- or post-synaptic structures. Thus, both PHP induction and expression mechanisms are locally transmitted and restricted to specific synaptic compartments. © 2018, Li et al.

  17. Compartmentalization of NO signaling cascade in skeletal muscles

    International Nuclear Information System (INIS)

    Buchwalow, Igor B.; Minin, Evgeny A.; Samoilova, Vera E.; Boecker, Werner; Wellner, Maren; Schmitz, Wilhelm; Neumann, Joachim; Punkt, Karla

    2005-01-01

    Skeletal muscle functions regulated by NO are now firmly established. However, the literature on the compartmentalization of NO signaling in myocytes is highly controversial. To address this issue, we examined localization of enzymes engaged in L-arginine-NO-cGMP signaling in the rat quadriceps muscle. Employing immunocytochemical labeling complemented with tyramide signal amplification and electron microscopy, we found NO synthase expressed not only in the sarcolemma, but also along contractile fibers, in the sarcoplasmic reticulum and mitochondria. The expression pattern of NO synthase in myocytes showed striking parallels with the enzymes engaged in L-arginine-NO-cGMP signaling (arginase, phosphodiesterase, and soluble guanylyl cyclase). Our findings are indicative of an autocrine fashion of NO signaling in skeletal muscles at both cellular and subcellular levels, and challenge the notion that the NO generation is restricted to the sarcolemma

  18. Apartment Compartmentalization With an Aerosol-Based Sealing Process

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, S. [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Berger, D. [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Harrington, C. [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2015-03-01

    Air sealing of building enclosures is a difficult and time-consuming process. Current methods in new construction require laborers to physically locate small and sometimes large holes in multiple assemblies and then manually seal each of them. The innovation demonstrated under this research study was the automated air sealing and compartmentalization of buildings through the use of an aerosolized sealant, developed by the Western Cooling Efficiency Center at University of California Davis. CARB sought to demonstrate this new technology application in a multifamily building in Queens, NY. The effectiveness of the sealing process was evaluated by three methods: air leakage testing of overall apartment before and after sealing, point-source testing of individual leaks, and pressure measurements in the walls of the target apartment during sealing.

  19. Diffusion and light-dependent compartmentalization of transducin.

    Science.gov (United States)

    Kerov, Vasily; Artemyev, Nikolai O

    2011-01-01

    Diffusion and light-dependent compartmentalization of transducin are essential for phototransduction and light adaptation of rod photoreceptors. Here, transgenic Xenopus laevis models were designed to probe the roles of transducin/rhodopsin interactions and lipid modifications in transducin compartmentalization, membrane mobility, and light-induced translocation. Localization and diffusion of EGFP-fused rod transducin-α subunit (Gα(t1)), mutant Gα(t1) that is predicted to be N-acylated and S-palmitoylated (Gα(t1)A3C), and mutant Gα(t1) uncoupled from light-activated rhodopsin (Gα(t1)-Ctα(s)), were examined by EGFP-fluorescence imaging and fluorescence recovery after photobleaching (FRAP). Similar to Gα(t1), Gα(t1)A3C and Gα(t1)-Ctα(s) were correctly targeted to the rod outer segments in the dark, however the light-dependent translocation of both mutants was markedly impaired. Our analysis revealed a moderate acceleration of the lateral diffusion for the activated Gα(t1) consistent with the diffusion of the separated Gα(t1)GTP and Gβ(1)γ(1) on the membrane surface. Unexpectedly, the kinetics of longitudinal diffusion were comparable for Gα(t1)GTP with a single lipid anchor and heterotrimeric Gα(t1)β(1)γ(1) or Gα(t1)-Ctα(s)β(1)γ(1) with two lipid modifications. This contrasted the lack of the longitudinal diffusion of the Gα(t1)A3C mutant apparently caused by its stable two lipid attachment to the membrane and suggests the existence of a mechanism that facilitates axial diffusion of Gα(t1)β(1)γ(1). Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Compartmental endoscopic surgical anatomy of the medial intraconal orbital space.

    Science.gov (United States)

    Bleier, Benjamin S; Healy, David Y; Chhabra, Nipun; Freitag, Suzanne

    2014-07-01

    Surgical management of intraconal pathology represents the next frontier in endoscopic endonasal surgery. Despite this, the medial intraconal space remains a relatively unexplored region, secondary to its variable and technically demanding anatomy. The purpose of this study is to define the neurovascular structures in this region and introduce a compartmentalized approach to enhance surgical planning. This study was an institutional review board (IRB)-exempt endoscopic anatomic study in 10 cadaveric orbits. After dissection of the medial intraconal space, the pattern and trajectory of the oculomotor nerve and ophthalmic arterial arborizations were analyzed. The position of all vessels as well as the length of the oculomotor trunk and branches relative to the sphenoid face were calculated. A mean of 1.5 arterial branches were identified (n = 15; range, 1-4) at a mean of 8.8 mm from the sphenoid face (range, 4-15 mm). The majority of the arteries (n = 7) inserted adjacent to the midline of medial rectus. The oculomotor nerve inserted at the level of the sphenoid face and arborized with a large proximal trunk 5.5 ± 1.1 mm in length and multiple branches extending 13.2 ± 2.7 mm from the sphenoid face. The most anterior nerve and vascular pedicle were identified at 17.0 and 15.0 mm from the sphenoid face, respectively. The neurovascular supply to the medial rectus muscle describes a varied but predictable pattern. This data allows the compartmentalization of the medial intraconal space into 3 zones relative to the neurovascular supply. These zones inform the complexity of the dissection and provide a guideline for safe medial rectus retraction relative to the fixed landmark of the sphenoid face. © 2014 ARS-AAOA, LLC.

  1. A new approach to the compartmental analysis in pharmacokinetics: fractional time evolution of diclofenac.

    Science.gov (United States)

    Popović, Jovan K; Atanacković, Milica T; Pilipović, Ana S; Rapaić, Milan R; Pilipović, Stevan; Atanacković, Teodor M

    2010-04-01

    This study presents a new two compartmental model and its application to the evaluation of diclofenac pharmacokinetics in a small number of healthy adults, during a bioequivalence trial. In the model the integer order derivatives are replaced by derivatives of real order often called fractional order derivatives. Physically that means that a history (memory) of a biological process, realized as a transfer from one compartment to another one with the mass balance conservation, is taken into account. This kind of investigations in pharmacokinetics is founded by Dokoumetzidis and Macheras through the one compartmental models while our contribution is the analysis of multi-dimensional compartmental models with the applications of the two compartmental model in evaluation of diclofenac pharmacokinetics. Two experiments were preformed with 12 healthy volunteers with two slow release 100 mg diclofenac tablet formulations. The agreement of the values predicted by the proposed model with the values obtained through experiments is shown to be good. Thus, pharmacokinetics of slow release diclofenac can be described well by a specific two compartmental model with fractional derivatives of the same order. Parameters in the model are determined by the least-squares method and the Particle Swarm Optimization (PSO) numerical procedure is used. The results show that the fractional order two compartmental model for diclofenac is superior in comparison to the classical two compartmental model. Actually this is true in general case since the classical one is a special case of the fractional one.

  2. Subcellular Optogenetic Stimulation for Activity-Dependent Myelination of Axons in a Novel Microfluidic Compartmentalized Platform.

    Science.gov (United States)

    Lee, Hae Ung; Nag, Sudip; Blasiak, Agata; Jin, Yan; Thakor, Nitish; Yang, In Hong

    2016-10-19

    Myelination is governed by neuron-glia communication, which in turn is modulated by neural activity. The exact mechanisms remain elusive. We developed a novel in vitro optogenetic stimulation platform that facilitates subcellular activity induction in hundreds of neurons simultaneously. The light isolation was achieved by creating a biocompatible, light-absorbent, black microfluidic device integrated with a programmable, high-power LED array. The system was applied to a compartmentalized culture of primary neurons whose distal axons were interacting with oligodendrocyte precursor cells. Neural activity was induced along whole neurons or was constrained to cell bodies with proximal axons or distal axons only. All three modes of stimulation promoted oligodendrocyte differentiation and the myelination of axons as evidenced by a decrease in the number of oligodendrocyte precursor cells followed by increases in the number of mature oligodendrocytes and myelin sheath fragments. These results demonstrated the potential of our novel optogenetic stimulation system for the global and focal induction of neural activity in vitro for studying axon myelination.

  3. Compartmentation of sucrose during radial transfer in mature sorghum culm

    Directory of Open Access Journals (Sweden)

    Vietor Donald M

    2007-06-01

    Full Text Available Abstract Background The sucrose that accumulates in the culm of sorghum (Sorghum bicolor (L. Moench and other large tropical andropogonoid grasses can be of commercial value, and can buffer assimilate supply during development. Previous study conducted with intact plants showed that sucrose can be radially transferred to the intracellular compartment of mature ripening sorghum internode without being hydrolysed. In this study, culm-infused radiolabelled sucrose was traced between cellular compartments and among related metabolites to determine if the compartmental path of sucrose during radial transfer in culm tissue was symplasmic or included an apoplasmic step. This transfer path was evaluated for elongating and ripening culm tissue of intact plants of two semidwarf grain sorghums. The metabolic path in elongating internode tissue was also evaluated. Results On the day after culm infusion of the tracer sucrose, the specific radioactivity of sucrose recovered from the intracellular compartment of growing axillary-branch tissue was greater (nearly twice than that in the free space, indicating that sucrose was preferentially transferred through symplasmic routes. In contrast, the sucrose specific radioactivity in the intracellular compartment of the mature (ripening culm tissue was probably less (about 3/4's than that in free space indicating that sucrose was preferentially transferred through routes that included an apoplasmic step. In growing internodes of the axillary branch of sorghum, the tritium label initially provided in the fructose moiety of sucrose molecules was largely (81% recovered in the fructose moiety, indicating that a large portion of sucrose molecules is not hydrolysed and resynthesized during radial transfer. Conclusion During radial transfer of sucrose in ripening internodes of intact sorghum plants, much of the sucrose is transferred intact (without hydrolysis and resynthesis and primarily through a path that includes an

  4. Adaptive and neuroadaptive control for nonnegative and compartmental dynamical systems

    Science.gov (United States)

    Volyanskyy, Kostyantyn Y.

    Neural networks have been extensively used for adaptive system identification as well as adaptive and neuroadaptive control of highly uncertain systems. The goal of adaptive and neuroadaptive control is to achieve system performance without excessive reliance on system models. To improve robustness and the speed of adaptation of adaptive and neuroadaptive controllers several controller architectures have been proposed in the literature. In this dissertation, we develop a new neuroadaptive control architecture for nonlinear uncertain dynamical systems. The proposed framework involves a novel controller architecture with additional terms in the update laws that are constructed using a moving window of the integrated system uncertainty. These terms can be used to identify the ideal system weights of the neural network as well as effectively suppress system uncertainty. Linear and nonlinear parameterizations of the system uncertainty are considered and state and output feedback neuroadaptive controllers are developed. Furthermore, we extend the developed framework to discrete-time dynamical systems. To illustrate the efficacy of the proposed approach we apply our results to an aircraft model with wing rock dynamics, a spacecraft model with unknown moment of inertia, and an unmanned combat aerial vehicle undergoing actuator failures, and compare our results with standard neuroadaptive control methods. Nonnegative systems are essential in capturing the behavior of a wide range of dynamical systems involving dynamic states whose values are nonnegative. A sub-class of nonnegative dynamical systems are compartmental systems. These systems are derived from mass and energy balance considerations and are comprised of homogeneous interconnected microscopic subsystems or compartments which exchange variable quantities of material via intercompartmental flow laws. In this dissertation, we develop direct adaptive and neuroadaptive control framework for stabilization, disturbance

  5. Inositol lipid turnover and compartmentation in canine trachealis smooth muscle

    International Nuclear Information System (INIS)

    Baron, C.B.; Pring, M.; Coburn, R.F.

    1989-01-01

    We established conditions for the study of metabolism and compartmentation of inositol phospholipids in canine trachealis muscle. Unstimulated muscle was incubated with myo-[3H]inositol for 30 min at 37 degrees C which resulted in labeling of the tissue free myo-inositol pool, whereas only a small amount of radioactivity was incorporated into inositol phospholipids or inositol phosphates. After addition of 5.5 microM carbachol, phosphatidylinositol (PI), phosphatidylinositol-4-phosphate (PIP), and phosphatidylinositol-4,5-bisphosphate (PIP2), specific radioactivities increased exponentially, reaching apparent constant values in 180-240 min. Initial rates of increases in PI, PIP, and PIP2 specific radioactivities were 39, 32, and 66 times that measured in unstimulated muscle. Metabolic flux rates (nmol.100 nmol total lipid Pi-1.min-1) during development of force averaged 0.42 +/- 0.09 and during force maintenance averaged 0.14 +/- 0.01. Fractions of total PI, PIP, and PIP2 pools that were linked to muscarinic cholinergic activation were estimated to be 0.97, 0.85, and 0.65, respectively. Initial rates of increase in specific radioactivities and specific radioactivities during carbachol activation were similar in PI, PIP, and PIP2 fast active compartments, suggesting metabolic flux from PI to PIP to PIP2 was in near chemical equilibrium. Turnover times for PI, PIP, and PIP2 fast active compartments were estimated to be 21, 1.6, and 4.0 min, respectively

  6. High resolution sequencing of hepatitis C virus reveals limited intra-hepatic compartmentalization in end-stage liver disease.

    Science.gov (United States)

    Hedegaard, Ditte L; Tully, Damien C; Rowe, Ian A; Reynolds, Gary M; Bean, David J; Hu, Ke; Davis, Christopher; Wilhelm, Annika; Ogilvie, Colin B; Power, Karen A; Tarr, Alexander W; Kelly, Deirdre; Allen, Todd M; Balfe, Peter; McKeating, Jane A

    2017-01-01

    The high replication and mutation rate of hepatitis C virus (HCV) results in a heterogeneous population of viral sequences in vivo. HCV replicates in the liver and infected hepatocytes occur as foci surrounded by uninfected cells that may promote compartmentalization of viral variants. Given recent reports showing interferon stimulated gene (ISG) expression in chronic hepatitis C, we hypothesized that local interferon responses may limit HCV replication and evolution. To investigate the spatial influence of liver architecture on viral replication we measured HCV RNA and ISG mRNA from each of the 8 Couinaud segments of the liver from 21 patients undergoing liver transplant. HCV RNA and ISG mRNA levels were comparable across all sites from an individual liver but showed up to 500-fold difference between patients. Importantly, there was no association between ISG and HCV RNA expression across all sites in the liver or plasma. Deep sequencing of HCV RNA isolated from the 8 hepatic sites from two subjects showed a similar distribution of viral quasispecies across the liver and uniform sequence diversity. Single genome amplification of HCV E1E2-envelope clones from 6 selected patients at 2 hepatic sites supported these data and showed no evidence for HCV compartmentalization. We found no differences between the hepatic and plasma viral quasispecies in all patients sampled. We conclude that in end-stage liver disease HCV RNA levels and the genetic pool of HCV envelope sequences are indistinguishable between distant sites in the liver and plasma, arguing against viral compartmentalization. HCV is an RNA virus that exists as a quasispecies of closely related genomes that are under continuous selection by host innate and adaptive immune responses and antiviral drug therapy. The primary site of HCV replication is the liver and yet our understanding of the spatial distribution of viral variants within the liver is limited. High resolution sequencing of HCV and monitoring of

  7. Compartmental models for assessing the fishery production in the Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Dalal, S.G.; Parulekar, A.H.

    Compartmental models for assessing the fishery production in the Indian Ocean is discussed. The article examines the theoretical basis on which modern fishery sciences is built. The model shows that, large changes in energy flux from one pathway...

  8. In or out? On the tightness of glycosomal compartmentalization of metabolites and enzymes in Trypanosoma brucei

    NARCIS (Netherlands)

    Haanstra, Jurgen R.; Bakker, Barbara M.; Michels, Paul A. M.

    2014-01-01

    Trypanosomatids sequester large parts of glucose metabolism inside specialised peroxisomes, called glycosomes. Many studies have shown that correct glycosomal compartmentalization of glycolytic enzymes is essential for bloodstream-form Trypanosoma brucel. The recent finding of pore-forming

  9. cAMP Signaling Compartmentation: Adenylyl Cyclases as Anchors of Dynamic Signaling Complexes.

    Science.gov (United States)

    Johnstone, Timothy B; Agarwal, Shailesh R; Harvey, Robert D; Ostrom, Rennolds S

    2018-04-01

    It is widely accepted that cAMP signaling is compartmentalized within cells. However, our knowledge of how receptors, cAMP signaling enzymes, effectors, and other key proteins form specific signaling complexes to regulate specific cell responses is limited. The multicomponent nature of these systems and the spatiotemporal dynamics involved as proteins interact and move within a cell make cAMP responses highly complex. Adenylyl cyclases, the enzymatic source of cAMP production, are key starting points for understanding cAMP compartments and defining the functional signaling complexes. Three basic elements are required to form a signaling compartment. First, a localized signal is generated by a G protein-coupled receptor paired to one or more of the nine different transmembrane adenylyl cyclase isoforms that generate the cAMP signal in the cytosol. The diffusion of cAMP is subsequently limited by several factors, including expression of any number of phosphodiesterases (of which there are 24 genes plus spice variants). Finally, signal response elements are differentially localized to respond to cAMP produced within each locale. A-kinase-anchoring proteins, of which there are 43 different isoforms, facilitate this by targeting protein kinase A to specific substrates. Thousands of potential combinations of these three elements are possible in any given cell type, making the characterization of cAMP signaling compartments daunting. This review will focus on what is known about how cells organize cAMP signaling components as well as identify the unknowns. We make an argument for adenylyl cyclases being central to the formation and maintenance of these signaling complexes. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  10. Compartmentalization of innate immune responses in the central nervous system during cryptococcal meningitis/HIV coinfection.

    Science.gov (United States)

    Naranbhai, Vivek; Chang, Christina C; Durgiah, Raveshni; Omarjee, Saleha; Lim, Andrew; Moosa, Mahomed-Yunus S; Elliot, Julian H; Ndung'u, Thumbi; Lewin, Sharon R; French, Martyn A; Carr, William H

    2014-03-13

    The role of innate immunity in the pathogenesis of cryptococcal meningitis is unclear. We hypothesized that natural killer (NK) cell and monocyte responses show central nervous system (CNS) compartment-specific profiles, and are altered by antifungal therapy and combination antiretroviral therapy (cART) during cryptococcal meningitis/HIV coinfection. Substudy of a prospective cohort study of adults with cryptococcal meningitis/HIV coinfection in Durban, South Africa. We used multiparametric flow cytometry to study compartmentalization of subsets, CD69 (a marker of activation), CXCR3 and CX3CR1 expression, and cytokine secretion of NK cells and monocytes in freshly collected blood and cerebrospinal fluid (CSF) at diagnosis (n = 23), completion of antifungal therapy induction (n = 19), and after a further 4 weeks of cART (n = 9). Relative to blood, CSF was enriched with CD56(bright) (immunoregulatory) NK cells (P = 0.0004). At enrolment, CXCR3 expression was more frequent among blood CD56(bright) than either blood CD56(dim) (P pos) NK-cell proportions nor CX3CR1(pos) NK-cell proportions. CD56(bright) and CD56(dim) NK cells were more activated in CSF than blood (P < 0.0001). Antifungal therapy induction reduced CD56(dim) NK-cell activation in CSF (P = 0.02). Activation of blood CD56(bright) and CD56(dim) NK cells was diminished following cART commencement (P < 0.0001, P = 0.03). Immunoregulatory NK cells in CSF tended to secrete higher levels of CXCL10 (P = 0.06) and lower levels of tumor necrosis factor α (P = 0.06) than blood immunoregulatory NK cells. CSF was enriched with nonclassical monocytes (P = 0.001), but antifungal therapy restored proportions of classical monocytes (P = 0.007). These results highlight CNS activation, trafficking, and function of NK cells and monocytes in cryptococcal meningitis/HIV and implicate immunoregulatory NK cells and proinflammatory monocytes as potential modulators of cryptococcal meningitis pathogenesis during HIV coinfection.

  11. Compartmental analysis to predict biodistribution in radiopharmaceutical design studies

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Marina F.; Pujatti, Priscilla B.; Araujo, Elaine B.; Mesquita, Carlos H. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: mflima@ipen.br

    2009-07-01

    The use of compartmental analysis allows the mathematical separation of tissues and organs to determinate the concentration of activity in each fraction of interest. Although the radiochemical purity must observe Pharmacopoeia specification (values upper 95%), very lower contains of free radionuclides could contribute significantly as dose in the neighborhood organs and make tumor up take studies not viable in case of radiopharmaceutical on the basis of labeled peptides. Animal studies with a product of Lutetium-177 labeled Bombesin derivative ({sup 177}Lu-BBNP) developed in IPEN-CNEN/SP and free Lutetium-177 developed in CNEA/EZEIZA was used to show how subtract free {sup 177}Lu contribution over {sup 177}Lu-BBNP to estimate the radiopharmaceutical potential as diagnosis or therapy agent. The first approach of the studies included the knowledge of chemical kinetics and mimetism of the Lutetium and the possible targets of the diagnosis/therapy to choose the possible models to apply over the sampling standard methods used in experimental works. A model with only one physical compartment (whole body) and one chemical compartment ({sup 177}Lu-BBNP) generated with the compartmental analysis protocol ANACOMP showed high differences between experimental and theoretical values over 2.5 hours, in spite of the concentration of activity had been in a good statistics rang of measurement. The values used in this work were residence time from three different kinds of study with free {sup 177}Lu: whole body, average excretion and maximum excretion as a chemical compartment. Activity concentration values as time function in measurements of total whole body and activity measurement in samples of blood with projection to total circulating blood volume with {sup 177}Lu-BBNP. Considering the two sources of data in the same modeling a better consistence was obtained. The next step was the statistic treatment of biodistribution and dosimetry in mice (Balb C) considering three chemical

  12. Efficient Vaccine Distribution Based on a Hybrid Compartmental Model.

    Directory of Open Access Journals (Sweden)

    Zhiwen Yu

    Full Text Available To effectively and efficiently reduce the morbidity and mortality that may be caused by outbreaks of emerging infectious diseases, it is very important for public health agencies to make informed decisions for controlling the spread of the disease. Such decisions must incorporate various kinds of intervention strategies, such as vaccinations, school closures and border restrictions. Recently, researchers have paid increased attention to searching for effective vaccine distribution strategies for reducing the effects of pandemic outbreaks when resources are limited. Most of the existing research work has been focused on how to design an effective age-structured epidemic model and to select a suitable vaccine distribution strategy to prevent the propagation of an infectious virus. Models that evaluate age structure effects are common, but models that additionally evaluate geographical effects are less common. In this paper, we propose a new SEIR (susceptible-exposed-infectious šC recovered model, named the hybrid SEIR-V model (HSEIR-V, which considers not only the dynamics of infection prevalence in several age-specific host populations, but also seeks to characterize the dynamics by which a virus spreads in various geographic districts. Several vaccination strategies such as different kinds of vaccine coverage, different vaccine releasing times and different vaccine deployment methods are incorporated into the HSEIR-V compartmental model. We also design four hybrid vaccination distribution strategies (based on population size, contact pattern matrix, infection rate and infectious risk for controlling the spread of viral infections. Based on data from the 2009-2010 H1N1 influenza epidemic, we evaluate the effectiveness of our proposed HSEIR-V model and study the effects of different types of human behaviour in responding to epidemics.

  13. Use of flux analysis to study the compartmentation of copper in copper tolerant and non-tolerant Mimulus guttatus

    International Nuclear Information System (INIS)

    Shaw, P.; Collins, J.C.; Thurman, D.A.

    1987-01-01

    Compartmental flux analysis using 64 Cu and a stereological study have been used to estimate the amount and concentrations of copper in the cell wall, cytoplasm and vacuole of roots of non-tolerant and copper tolerant clones of Mimulus guttatus. The cell wall was not found to be a major site of copper accumulation in either clone compared with the cytoplasmic and vacuolar phases. The cytoplasmic concentrations of copper in the non-tolerant clone were significantly grater than those of the tolerant clone when grown in 2.0 and 10.0 μM external copper. At all external copper concentrations and for both clones vacuolar levels of copper were lower than the cytoplasmic ones. At 10.0 μM external copper the vacuolar concentrations of the non-tolerant clone were significantly higher than those of the tolerant clone

  14. Compartmentalized system with membrane-bound glycerol kinase. Activity and product distribution versus asymmetrical substrate supply.

    Science.gov (United States)

    Girard, A; Merchie, B; Maïsterrena, B

    1991-03-15

    An artificial-membrane-bound glycerokinase chosen as a membrane-bound two-substrate-enzyme model has been used to separate two unequal compartments of a specially designed diffusion cell. An interesting feature is the asymmetry of compartments and the existence of a diffusion layer adjacent to only one face of the enzymic membrane. In such a situation the apparent enzyme activity and the product distribution in the system have been studied versus all the possibilities of combination of ATP and glycerol supply. Our approach has lead us to differentiate two different roles played by a diffusion layer adjacent to a permeable enzymic membrane. Depending on the spatial origin of the enzymic substrates (i.e. from which compartment they derive), the diffusion layer can play either the role of a passive additional resistance to that of the membrane or the role of a third compartment in which the reaction product can partially accumulate before splitting on both parts of the membrane. Our results mainly demonstrate that a membrane-bound enzyme activity and the resulting product distribution occurring in a compartmentalized system may be regulated by the cumulative effect due to the asymmetry in volumes of the compartments, the presence of a diffusion layer and the different possibilities of substrate supply. With the topography studied, which is close to that reported for many 'in vivo' situations, the product may be diffused lead to vectorial metabolism processes.

  15. Compartmentalization of SIV Replication Within Secondary Lymphoid Tissues of Rhesus Macaques is Linked to Disease Stage and Inversely Related to Localization of Virus-Specific CTL1 2

    Science.gov (United States)

    Connick, Elizabeth; Folkvord, Joy M.; Lind, Katherine T.; Rakasz, Eva G.; Miles, Brodie; Wilson, Nancy A.; Santiago, Mario L.; Schmitt, Kimberly; Stephens, Edward B.; Kim, Hyeon O.; Wagstaff, Reece; Li, Shengbin; Abdelaal, Hadia M.; Kemp, Nathan; Watkins, David I.; MaWhinney, Samantha; Skinner, Pamela J.

    2014-01-01

    We previously demonstrated that HIV replication is concentrated in lymph node B cell follicles during chronic infection and that HIV-specific CTL fail to accumulate in large numbers at those sites. It is unknown whether these observations can be generalized to other secondary lymphoid tissues, or whether virus compartmentalization occurs in the absence of CTL. We evaluated these questions in SIVmac239-infected rhesus macaques by quantifying SIV RNA+ cells and SIV-specific CTL in situ in spleen, lymph nodes and intestinal tissues obtained at several stages of infection. During chronic asymptomatic infection prior to simian AIDS (SAIDS), SIV-producing cells were more concentrated in follicular compared to extrafollicular regions of secondary lymphoid tissues. At day 14 of infection, when CTL have minimal impact on virus replication, there was no compartmentalization of SIV-producing cells. Virus compartmentalization was diminished in animals with SAIDS, which often have low frequency CTL responses. SIV-specific CTL were consistently more concentrated within extrafollicular regions of lymph node and spleen in chronically infected animals regardless of epitope specificity. Frequencies of SIV-specific CTL within follicular and extrafollicular compartments predicted SIV RNA+ cells within these compartments in a mixed model. Few SIV-specific CTL expressed the follicular homing molecule CXCR5 in the absence of the extrafollicular retention molecule CCR7, possibly accounting for the paucity of follicular CTL. These findings bolster the hypothesis that B cell follicles are immune privileged sites and suggest that strategies to augment CTL in B cell follicles could lead to improved viral control and possibly a functional cure for HIV infection. PMID:25362178

  16. The cellular and compartmental profile of mouse retinal glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and ~P transferring kinases.

    Science.gov (United States)

    Rueda, Elda M; Johnson, Jerry E; Giddabasappa, Anand; Swaroop, Anand; Brooks, Matthew J; Sigel, Irena; Chaney, Shawnta Y; Fox, Donald A

    2016-01-01

    The homeostatic regulation of cellular ATP is achieved by the coordinated activity of ATP utilization, synthesis, and buffering. Glucose is the major substrate for ATP synthesis through glycolysis and oxidative phosphorylation (OXPHOS), whereas intermediary metabolism through the tricarboxylic acid (TCA) cycle utilizes non-glucose-derived monocarboxylates, amino acids, and alpha ketoacids to support mitochondrial ATP and GTP synthesis. Cellular ATP is buffered by specialized equilibrium-driven high-energy phosphate (~P) transferring kinases. Our goals were twofold: 1) to characterize the gene expression, protein expression, and activity of key synthesizing and regulating enzymes of energy metabolism in the whole mouse retina, retinal compartments, and/or cells and 2) to provide an integrative analysis of the results related to function. mRNA expression data of energy-related genes were extracted from our whole retinal Affymetrix microarray data. Fixed-frozen retinas from adult C57BL/6N mice were used for immunohistochemistry, laser scanning confocal microscopy, and enzymatic histochemistry. The immunoreactivity levels of well-characterized antibodies, for all major retinal cells and their compartments, were obtained using our established semiquantitative confocal and imaging techniques. Quantitative cytochrome oxidase (COX) and lactate dehydrogenase (LDH) activity was determined histochemically. The Affymetrix data revealed varied gene expression patterns of the ATP synthesizing and regulating enzymes found in the muscle, liver, and brain. Confocal studies showed differential cellular and compartmental distribution of isozymes involved in glucose, glutamate, glutamine, lactate, and creatine metabolism. The pattern and intensity of the antibodies and of the COX and LDH activity showed the high capacity of photoreceptors for aerobic glycolysis and OXPHOS. Competition assays with pyruvate revealed that LDH-5 was localized in the photoreceptor inner segments. The

  17. Distribution and compartmental organization of GABAergic medium-sized spiny neurons in the mouse Nucleus Accumbens

    Directory of Open Access Journals (Sweden)

    Giuseppe eGangarossa

    2013-02-01

    Full Text Available The nucleus accumbens (NAc is a critical brain region involved in many reward-related behaviors. The NAc comprises major compartments the core and the shell, which encompass several subterritories. GABAergic medium-sized spiny neurons (MSNs constitute the output neurons of the NAc core and shell. While the functional organization of the NAc core outputs resembles the one described for the dorsal striatum, a simple classification of the NAc shell neurons has been difficult to define due to the complexity of the compartmental segregation of cells. We used a variety of BAC transgenic mice expressing enhanced green fluorescence (EGFP or the Cre-recombinase (Cre under the control of the promoter of dopamine D1, D2, and D3 receptors and of adenosine A2a receptor to dissect the microanatomy of the NAc. Moreover, using various immunological markers we characterized in detail the distribution of MSNs in the mouse NAc. In addition, cell-type specific ERK phosphorylation in the NAc subterritories was analyzed following acute administration of SKF81297 (a D1R-like agonist, quinpirole (a D2R-like agonist, apomorphine (a non-selective DA receptor agonist, raclopride (a D2R-like antagonist, and psychostimulant drugs, including cocaine and d-amphetamine. Each drug generated a unique topography and cell-type specific activation of ERK in the NAc. Our results show the existence of marked differences in the receptor expression pattern and functional activation of MSNs within the shell subterritories. This study emphasizes the anatomical and functional heterogeneity of the NAc, which will have to be considered in its further study.

  18. Add-in macros for rapid and versatile calculation of non-compartmental pharmacokinetic parameters on Microsoft Excel spreadsheets.

    Science.gov (United States)

    Sato, H; Sato, S; Wang, Y M; Horikoshi, I

    1996-06-01

    We developed a package of macro programs (named PK_MOMENT) to automatically calculate non-compartmental pharmacokinetic parameters on Microsoft Excel spreadsheets. These macros include rigorous algorithms to execute moment calculations in a comprehensive manner. An optimum number of terminal data points for infinite-time extrapolation can be calculated with one of these macros so that automatic calculation of infinite moment parameters is possible. The moment calculation with PK_MOMENT provided satisfactory results using the hybrid (mixed linear-logarithmic) trapezoidal method rather than the conventional linear trapezoidal method. The macro-aided pharmacokinetic analyses turned out to be useful in that the macro-containing cells can be easily copied and pasted to analyze other data sets and that powerful tools of Excel can be utilized. The use of our macros will be significantly time-saving for routine pharmacokinetic analyses, considering that pharmacokinetic data are usually stored in a spreadsheet format, typically with Excel.

  19. Global identifiability of linear compartmental models--a computer algebra algorithm.

    Science.gov (United States)

    Audoly, S; D'Angiò, L; Saccomani, M P; Cobelli, C

    1998-01-01

    A priori global identifiability deals with the uniqueness of the solution for the unknown parameters of a model and is, thus, a prerequisite for parameter estimation of biological dynamic models. Global identifiability is however difficult to test, since it requires solving a system of algebraic nonlinear equations which increases both in nonlinearity degree and number of terms and unknowns with increasing model order. In this paper, a computer algebra tool, GLOBI (GLOBal Identifiability) is presented, which combines the topological transfer function method with the Buchberger algorithm, to test global identifiability of linear compartmental models. GLOBI allows for the automatic testing of a priori global identifiability of general structure compartmental models from general multi input-multi output experiments. Examples of usage of GLOBI to analyze a priori global identifiability of some complex biological compartmental models are provided.

  20. Co-Compartmentation of Terpene Biosynthesis and Storage via Synthetic Droplet

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Cheng [Texas; amp,M Agrilife Synthetic and Systems Biology Innovation Hub, Texas A& amp,M University, College Station, Texas 77843, United States; Department; amp,M University, College Station, Texas 77843, United States; Institute; amp,M University, College Station, Texas 77843, United States; Kim, YongKyoung [Texas; amp,M Agrilife Synthetic and Systems Biology Innovation Hub, Texas A& amp,M University, College Station, Texas 77843, United States; Department; amp,M University, College Station, Texas 77843, United States; Institute; amp,M University, College Station, Texas 77843, United States; Zeng, Yining [Biosciences; Li, Man [Texas; amp,M Agrilife Synthetic and Systems Biology Innovation Hub, Texas A& amp,M University, College Station, Texas 77843, United States; Department; amp,M University, College Station, Texas 77843, United States; Institute; amp,M University, College Station, Texas 77843, United States; Wang, Xin [Texas; amp,M Agrilife Synthetic and Systems Biology Innovation Hub, Texas A& amp,M University, College Station, Texas 77843, United States; Department; amp,M University, College Station, Texas 77843, United States; Institute; amp,M University, College Station, Texas 77843, United States; Hu, Cheng [Texas; amp,M Agrilife Synthetic and Systems Biology Innovation Hub, Texas A& amp,M University, College Station, Texas 77843, United States; Department; amp,M University, College Station, Texas 77843, United States; Institute; amp,M University, College Station, Texas 77843, United States; Gorman, Connor [Texas; amp,M Agrilife Synthetic and Systems Biology Innovation Hub, Texas A& amp,M University, College Station, Texas 77843, United States; Department; amp,M University, College Station, Texas 77843, United States; Institute; amp,M University, College Station, Texas 77843, United States; Dai, Susie Y. [State; Ding, Shi-You [Department; Yuan, Joshua S. [Texas; amp,M Agrilife Synthetic and Systems Biology Innovation Hub, Texas A& amp,M University, College Station, Texas 77843, United States; Department; amp,M University, College Station, Texas 77843, United States; Institute; amp,M University, College Station, Texas 77843, United States

    2018-02-16

    Traditional bioproduct engineering focuses on pathway optimization, yet is often complicated by product inhibition, downstream consumption, and the toxicity of certain products. Here, we present the co-compartmentation of biosynthesis and storage via a synthetic droplet as an effective new strategy to improve the bioproduct yield, with squalene as a model compound. A hydrophobic protein was designed and introduced into the tobacco chloroplast to generate a synthetic droplet for terpene storage. Simultaneously, squalene biosynthesis enzymes were introduced to chloroplasts together with the droplet-forming protein to co-compartmentalize the biosynthesis and storage of squalene. The strategy has enabled a record yield of squalene at 2.6 mg/g fresh weight without compromising plant growth. Confocal fluorescent microscopy imaging, stimulated Raman scattering microscopy, and droplet composition analysis confirmed the formation of synthetic storage droplet in chloroplast. The co-compartmentation of synthetic storage droplet with a targeted metabolic pathway engineering represents a new strategy for enhancing bioproduct yield.

  1. The architecture of antagonistic networks: Node degree distribution, compartmentalization and nestedness

    Directory of Open Access Journals (Sweden)

    Savannah Nuwagaba

    2015-12-01

    Full Text Available Describing complex ecosystems as networks of interacting components has proved fruitful - revealing many distinctive patterns and dynamics of ecological systems. Of these patterns, three have often been brought up in literature, including species degree distribution, compartmentalization and nestedness, due largely to their implications for the functionality and stability of communities. Here, using 61 empirical antagonistic networks, we aim to settle the inconsistency in literature by (i fitting their node degree distributions to five different parametric models and identifying the one fits the best, (ii measuring the levels of nestedness and compartmentalization of these 61 networks and testing their significance using different null models, and (iii exploring how network connectance affects these three network architecture metrics. This research showed that most antagonistic networks do not display power law degree distributions and that resource species are generally uniformly distributed. We also clearly showed that the conclusion of whether a network is significantly compartmentalized or nested depends largely on the null model used.

  2. Subcellular compartmentation of sugar signalling: Links among carbon cellular status, route of sucrolysis, sink-source allocation, and metabolic partitioning

    Directory of Open Access Journals (Sweden)

    Axel eTiessen

    2013-01-01

    Full Text Available Recent findings suggest that both subcellular compartmentation and route of sucrolysis are important for plant development, growth, and yield. Signalling effects are dependent on the tissue, cell type and stage of development. Downstream effects also depend on the amount and localisation of hexoses and disaccharides. All enzymes of sucrose metabolism (e.g. invertase, hexokinase, fructokinase, sucrose synthase, and sucrose 6-phosphate synthase are not produced from single genes, but from paralogue families in plant genomes. Each paralogue has unique expression across plant organs and developmental stages. Multiple isoforms can be targeted to different cellular compartments (e.g. plastids, mitochondria, nuclei, and cytosol. Many of the key enzymes are regulated by post-transcriptional modifications and associate in multimeric protein complexes. Some isoforms have regulatory functions, either in addition to or in replacement of their catalytic activity. This explains why some isozymes are not redundant, but also complicates elucidation of their specific involvement in sugar signalling. The subcellular compartmentation of sucrose metabolism forces refinement of some of the paradigms of sugar signalling during physiological processes. For example, the catalytic and signalling functions of diverse paralogues needs to be more carefully analysed in the context of post-genomic biology. It is important to note that it is the differential localization of both the sugars themselves as well as the sugar-metabolizing enzymes that ultimately led to sugar signalling. We conclude that a combination of subcellular complexity and gene duplication/subfunctionalization gave rise to sugar signalling as a regulatory mechanism in plant cells.

  3. Glucose 6-phosphate compartmentation and the control of glycogen synthesis

    NARCIS (Netherlands)

    Meijer, Alfred

    2002-01-01

    Using adenovirus-mediated gene transfer into FTO-2B cells, a rat hepatoma cell line, we have overexpressed hexokinase I, (HK I), glucokinase (GK), liver glycogen synthase (LGS), muscle glycogen synthase (MGS), and combinations of each of the two glucose phosphorylating enzymes with each one of the

  4. Krebs cycle metabolon formation: metabolite concentration gradient enhanced compartmentation of sequential enzymes.

    Science.gov (United States)

    Wu, Fei; Pelster, Lindsey N; Minteer, Shelley D

    2015-01-25

    Dynamics of metabolon formation in mitochondria was probed by studying diffusional motion of two sequential Krebs cycle enzymes in a microfluidic channel. Enhanced directional co-diffusion of both enzymes against a substrate concentration gradient was observed in the presence of intermediate generation. This reveals a metabolite directed compartmentation of metabolic pathways.

  5. Statistical properties of compartmental model parameters extracted from dynamic positron emission tomography experiments

    International Nuclear Information System (INIS)

    Mazoyer, B.M.; Huesman, R.H.; Budinger, T.F.; Knittel, B.L.

    1986-01-01

    Over the past years a major focus of research in physiologic studies employing tracers has been the computer implementation of mathematical methods of kinetic modeling for extracting the desired physiological parameters from tomographically derived data. A study is reported of factors that affect the statistical properties of compartmental model parameters extracted from dynamic positron emission tomography (PET) experiments

  6. The Contradictions and Compartmentalizing the Interactions between Integrated Business Structures: Aspect of Branding

    Directory of Open Access Journals (Sweden)

    Nifatova Olena M.

    2017-04-01

    Full Text Available The article is aimed at identifying contradictions and developing a compartmentalizing as to the interaction between integrated business structures, taking into consideration the branding approach to management. The main specific features and contradictions that arise in the process of integration in the domestic market of mergers and acquisitions have been allocated. The contradictions identified were systematized and substantiated at three economic levels: macro-, meso-, and microeconomic. A compartmentalizing of the business units interaction in a merge or an acquisition process has been proposed. This compartmentalizing takes account of the branding aspect through the introduction of «brands interaction» – cluster interaction, circular interaction, holding interaction, linear interaction, which enhances the scientific view of exploring the problem of business units interaction in the process of the formations becoming integrated. The development of a compartmentalizing as to the interaction between integrated business structures, taking into consideration the branding approach to management, would provide a more effective use of the fundamental nature of branding as synergistic force in terms of the system of integration of business structures at the current stage of development of the national economy. Further development of branding issues in this sphere will have a significant impact on the functioning of the integrated business structures with the participation of Ukrainian companies.

  7. Heterogeneity and compartmentalization of Pneumocystis carinii f. sp. hominis genotypes in autopsy lungs

    DEFF Research Database (Denmark)

    Helweg-Larsen, J; Lundgren, Bettina; Lundgren, Jens Dilling

    2001-01-01

    . Not all genotypes present in the lungs at autopsy were detected in the diagnostic respiratory samples. Compartmentalization of specific ITS and mtLSU rRNA sequence types was observed in different lung segments. In conclusion, the interpretation of genotype data and in particular ITS sequence types...

  8. Sustainability of a Compartmentalized Host-Parasite Replicator System under Periodic Washout-Mixing Cycles

    Directory of Open Access Journals (Sweden)

    Taro Furubayashi

    2018-01-01

    Full Text Available The emergence and dominance of parasitic replicators are among the major hurdles for the proliferation of primitive replicators. Compartmentalization of replicators is proposed to relieve the parasite dominance; however, it remains unclear under what conditions simple compartmentalization uncoupled with internal reaction secures the long-term survival of a population of primitive replicators against incessant parasite emergence. Here, we investigate the sustainability of a compartmentalized host-parasite replicator (CHPR system undergoing periodic washout-mixing cycles, by constructing a mathematical model and performing extensive simulations. We describe sustainable landscapes of the CHPR system in the parameter space and elucidate the mechanism of phase transitions between sustainable and extinct regions. Our findings revealed that a large population size of compartments, a high mixing intensity, and a modest amount of nutrients are important factors for the robust survival of replicators. We also found two distinctive sustainable phases with different mixing intensities. These results suggest that a population of simple host–parasite replicators assumed before the origin of life can be sustained by a simple compartmentalization with periodic washout-mixing processes.

  9. Meningoencephalitis and Compartmentalization of the Cerebral Ventricles Caused by Enterobacter sakazakii

    Science.gov (United States)

    Kleiman, Martin B.; Allen, Stephen D.; Neal, Patricia; Reynolds, Janet

    1981-01-01

    A necrotizing meningoencephalitis complicated by ventricular compartmentalization and abscess formation caused by Enterobacter sakazakii in a previously healthy 5-week-old female is described. A detailed description of the isolate is presented. This communication firmly establishes the pathogenicity of E. sakazakii. PMID:7287892

  10. A new method to estimate parameters of linear compartmental models using artificial neural networks

    International Nuclear Information System (INIS)

    Gambhir, Sanjiv S.; Keppenne, Christian L.; Phelps, Michael E.; Banerjee, Pranab K.

    1998-01-01

    At present, the preferred tool for parameter estimation in compartmental analysis is an iterative procedure; weighted nonlinear regression. For a large number of applications, observed data can be fitted to sums of exponentials whose parameters are directly related to the rate constants/coefficients of the compartmental models. Since weighted nonlinear regression often has to be repeated for many different data sets, the process of fitting data from compartmental systems can be very time consuming. Furthermore the minimization routine often converges to a local (as opposed to global) minimum. In this paper, we examine the possibility of using artificial neural networks instead of weighted nonlinear regression in order to estimate model parameters. We train simple feed-forward neural networks to produce as outputs the parameter values of a given model when kinetic data are fed to the networks' input layer. The artificial neural networks produce unbiased estimates and are orders of magnitude faster than regression algorithms. At noise levels typical of many real applications, the neural networks are found to produce lower variance estimates than weighted nonlinear regression in the estimation of parameters from mono- and biexponential models. These results are primarily due to the inability of weighted nonlinear regression to converge. These results establish that artificial neural networks are powerful tools for estimating parameters for simple compartmental models. (author)

  11. SYNCHROTRON X-RAY ABSORPTION-EDGE COMPUTED MICROTOMOGRAPHY IMAGING OF THALLIUM COMPARTMENTALIZATION IN IBERIS INTERMEDIA

    Science.gov (United States)

    Thallium (TI) is an extremely toxic metal which, due to its similarities to K, is readily taken up by plants. Thallium is efficiently hyperaccumulated in Iberis intermedia as TI(I). Distribution and compartmentalization of TI in I. intermedia is highes...

  12. Compartmental Model For Uptake Of 137cs By Pine In Forest Soil ...

    African Journals Online (AJOL)

    A compartmental model of soil to pine tree transfer of 137Cs following the Chernobyl nuclear accident is presented. The model was validated using data collected in 1996 at five sites in Northern Ukraine. The transfer constants of 137Cs between model compartments are estimated using a semi-empirical method.

  13. Compartmentalization: a conceptual framework for understanding how trees grow and defend themselves

    Science.gov (United States)

    Alex L. Shigo

    1984-01-01

    The purpose of this chapter is to describe a conceptual framework for understanding how trees grow and how they and other perennial plants defend themselves. The concept of compartmentalization has developed over many years, a synthesis of ideas from a number of investigators. It is derived from detailed studies of the gross morphology and cellular anatomy of the wood...

  14. Role of cellular compartmentalization in the trophic transfer of mercury species in a freshwater plant-crustacean food chain.

    Science.gov (United States)

    Beauvais-Flück, Rebecca; Chaumot, Arnaud; Gimbert, Frédéric; Quéau, Hervé; Geffard, Olivier; Slaveykova, Vera I; Cosio, Claudia

    2016-12-15

    Mercury (Hg) represents an important risk for human health through the food webs contamination. Macrophytes bioaccumulate Hg and play a role in Hg transfer to food webs in shallow aquatic ecosystems. Nevertheless, the compartmentalization of Hg within macrophytes, notably major accumulation in the cell wall and its impact on trophic transfer to primary consumers are overlooked. The present work focusses on the trophic transfer of inorganic Hg (IHg) and monomethyl-Hg (MMHg) from the intracellular and cell wall compartments of the macrophyte Elodea nuttallii - considered a good candidate for phytoremediation - to the crustacean Gammarus fossarum. The results demonstrated that Hg accumulated in both compartments was trophically bioavailable to gammarids. Besides IHg from both compartments were similarly transferred to G. fossarum, while for MMHg, uptake rates were ∼2.5-fold higher in G. fossarum fed with the cell wall vs the intracellular compartment. During the depuration phase, Hg concentrations in G. fossarum varied insignificantly suggesting that both IHg and MMHg were strongly bound to biological ligands in the crustacean. Our data imply that cell walls have to be considered as an important source of Hg to consumers in freshwater food webs when developing procedures for enhancing aquatic environment protection during phytoremediation programs. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Cytoplasmic compartmentalization of the fetal piRNA pathway in mice.

    Directory of Open Access Journals (Sweden)

    Alexei A Aravin

    2009-12-01

    Full Text Available Derepression of transposable elements (TEs in the course of epigenetic reprogramming of the mouse embryonic germline necessitates the existence of a robust defense that is comprised of PIWI/piRNA pathway and de novo DNA methylation machinery. To gain further insight into biogenesis and function of piRNAs, we studied the intracellular localization of piRNA pathway components and used the combination of genetic, molecular, and cell biological approaches to examine the performance of the piRNA pathway in germ cells of mice lacking Maelstrom (MAEL, an evolutionarily conserved protein implicated in transposon silencing in fruit flies and mice. Here we show that principal components of the fetal piRNA pathway, MILI and MIWI2 proteins, localize to two distinct types of germinal cytoplasmic granules and exhibit differential association with components of the mRNA degradation/translational repression machinery. The first type of granules, pi-bodies, contains the MILI-TDRD1 module of the piRNA pathway and is likely equivalent to the enigmatic "cementing material" first described in electron micrographs of rat gonocytes over 35 years ago. The second type of granules, piP-bodies, harbors the MIWI2-TDRD9-MAEL module of the piRNA pathway and signature components of P-bodies, GW182, DCP1a, DDX6/p54, and XRN1 proteins. piP-bodies are found predominantly in the proximity of pi-bodies and the two frequently share mouse VASA homolog (MVH protein, an RNA helicase. In Mael-mutant gonocytes, MIWI2, TDRD9, and MVH are lost from piP-bodies, whereas no effects on pi-body composition are observed. Further analysis revealed that MAEL appears to specifically facilitate MIWI2-dependent aspects of the piRNA pathway including biogenesis of secondary piRNAs, de novo DNA methylation, and efficient downregulation of TEs. Cumulatively, our data reveal elaborate cytoplasmic compartmentalization of the fetal piRNA pathway that relies on MAEL function.

  16. Foliar or root exposures to smelter particles: Consequences for lead compartmentalization and speciation in plant leaves

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, Eva [Université de Toulouse, INP, UPS, EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement), ENSAT, Avenue de l' Agrobiopole, 31326 Castanet-Tolosan (France); CNRS, EcoLab, 31326 Castanet-Tolosan (France); Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Université de Toulouse, CNRS, IRD, 14 Avenue E. Belin, F-31400 Toulouse (France); Dappe, Vincent [LASIR (UMR CNRS 8516), Université de Lille 1, Bât. C5, 59655 Villeneuve d' Ascq Cedex (France); Sarret, Géraldine [ISTerre, UMR 5275, Université Grenoble I, CNRS, F-38041 Grenoble (France); Sobanska, Sophie [LASIR (UMR CNRS 8516), Université de Lille 1, Bât. C5, 59655 Villeneuve d' Ascq Cedex (France); Nowak, Dorota; Nowak, Jakub; Stefaniak, Elżbieta Anna [Department of Chemistry, John Paul II Catholic University of Lublin, Al. Kraśnicka 102, 20-718 Lublin (Poland); Magnin, Valérie [ISTerre, UMR 5275, Université Grenoble I, CNRS, F-38041 Grenoble (France); Ranieri, Vincent [CEA-INAC, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Dumat, Camille, E-mail: camille.dumat@ensat.fr [Université de Toulouse, INP, UPS, EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement), ENSAT, Avenue de l' Agrobiopole, 31326 Castanet-Tolosan (France); CNRS, EcoLab, 31326 Castanet-Tolosan (France)

    2014-04-01

    In urban areas with high fallout of airborne particles, metal uptake by plants mainly occurs by foliar pathways and can strongly impact crop quality. However, there is a lack of knowledge on metal localization and speciation in plants after pollution exposure, especially in the case of foliar uptake. In this study, two contrasting crops, lettuce (Lactuca sativa L.) and rye-grass (Lolium perenne L.), were exposed to Pb-rich particles emitted by a Pb-recycling factory via either atmospheric or soil application. Pb accumulation in plant leaves was observed for both ways of exposure. The mechanisms involved in Pb uptake were investigated using a combination of microscopic and spectroscopic techniques (electron microscopy, laser ablation, Raman microspectroscopy, and X-ray absorption spectroscopy). The results show that Pb localization and speciation are strongly influenced by the type of exposure (root or shoot pathway) and the plant species. Foliar exposure is the main pathway of uptake, involving the highest concentrations in plant tissues. Under atmospheric fallouts, Pb-rich particles were strongly adsorbed on the leaf surface of both plant species. In lettuce, stomata contained Pb-rich particles in their apertures, with some deformations of guard cells. In addition to PbO and PbSO{sub 4}, chemical forms that were also observed in pristine particles, new species were identified: organic compounds (minimum 20%) and hexagonal platy crystals of PbCO{sub 3}. In rye-grass, the changes in Pb speciation were even more egregious: Pb–cell wall and Pb–organic acid complexes were the major species observed. For root exposure, identified here as a minor pathway of Pb transfer compared to foliar uptake, another secondary species, pyromorphite, was identified in rye-grass leaves. Finally, combining bulk and spatially resolved spectroscopic techniques permitted both the overall speciation and the minor but possibly highly reactive lead species to be determined in order to

  17. The effects of membrane compartmentalization of csk on TCR signaling

    Czech Academy of Sciences Publication Activity Database

    Otáhal, Pavel; Pata, Supansa; Angelisová, Pavla; Hořejší, Václav; Brdička, Tomáš

    2010-01-01

    Roč. 1813, č. 2 (2010), s. 367-376 ISSN 0006-3002 R&D Projects: GA ČR GEMEM/09/E011; GA MŠk 1M0506 Institutional research plan: CEZ:AV0Z50520514 Keywords : T-cell activation * lipid rafts * CBP Subject RIV: EB - Genetics ; Molecular Biology

  18. Spatiotemporal compartmentalization of key physiological processes during muscle precursor differentiation

    OpenAIRE

    Özbudak, Ertuğrul M; Tassy, Olivier; Pourquié, Olivier

    2010-01-01

    The development of multicellular organisms is controlled by transcriptional networks. Understanding the role of these networks requires a full understanding of transcriptome regulation during embryogenesis. Several microarray studies have characterized the temporal evolution of the transcriptome during development in different organisms [Wang QT, et al. (2004) Dev Cell 6:133–144; Furlong EE, Andersen EC, Null B, White KP, Scott MP (2001) Science 293:1629–1633; Mitiku N, Baker JC (2007) Dev Ce...

  19. Compartmentalization and ultrastructural alterations induced by chromium in aquatic macrophytes.

    Science.gov (United States)

    Mangabeira, Pedro A; Ferreira, Aluane S; de Almeida, Alex-Alan F; Fernandes, Valéria F; Lucena, Emerson; Souza, Vânia L; dos Santos Júnior, Alberto J; Oliveira, Arno H; Grenier-Loustalot, Marie F; Barbier, Fréderique; Silva, Delmira C

    2011-12-01

    The aim of the present study was to identify the sites of accumulation of Cr in the species of macrophytes that are abundant in the Cachoeira river, namely, Alternanthera philoxeroides, Borreria scabiosoides, Polygonum ferrugineum and Eichhornia crassipes. Plants were grown in nutritive solution supplemented with 0.25 and 50 mg l(-1) of CrCl(3)·6H(2)O. Samples of plant tissues were digested with HNO(3)/HCl in a closed-vessel microwave system and the concentrations of Cr determined using inductively-coupled plasma mass spectrometry (ICP-MS). The ultrastructure of root, stem and leaf tissue was examined using transmission electron microscopy (TEM) and secondary ion mass spectrometry (SIMS) in order to determine the sites of accumulation of Cr and to detect possible alterations in cell organelles induced by the presence of the metal. Chromium accumulated principally in the roots of the four macrophytes (8.6-30 mg kg(-1) dw), with much lower concentrations present in the stems and leaves (3.8-8.6 and 0.01-9.0 mg kg(-1) dw, respectively). Within root tissue, Cr was present mainly in the vacuoles of parenchyma cells and cell walls of xylem and parenchyma. Alterations in the shape of the chloroplasts and nuclei were detected in A. philoxeroides and B. scabiosoides, suggesting a possible application of these aquatic plants as biomarkers from Cr contamination.

  20. Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols.

    Science.gov (United States)

    Avalos, José L; Fink, Gerald R; Stephanopoulos, Gregory

    2013-04-01

    Efforts to improve the production of a compound of interest in Saccharomyces cerevisiae have mainly involved engineering or overexpression of cytoplasmic enzymes. We show that targeting metabolic pathways to mitochondria can increase production compared with overexpression of the enzymes involved in the same pathways in the cytoplasm. Compartmentalization of the Ehrlich pathway into mitochondria increased isobutanol production by 260%, whereas overexpression of the same pathway in the cytoplasm only improved yields by 10%, compared with a strain overproducing enzymes involved in only the first three steps of the biosynthetic pathway. Subcellular fractionation of engineered strains revealed that targeting the enzymes of the Ehrlich pathway to the mitochondria achieves greater local enzyme concentrations. Other benefits of compartmentalization may include increased availability of intermediates, removing the need to transport intermediates out of the mitochondrion and reducing the loss of intermediates to competing pathways.

  1. Spatial variability in compartmental fate modelling : Linking fugacity models and GIS.

    Science.gov (United States)

    Wania, F

    1996-03-01

    A new approach is presented which is designed to address the spatial heterogeneity of the environment in compartmental mass balance models of chemical fate in the environment. It rests on the assumption of chemical equilibration within one phase despite prevailing environmental heterogeneity. Composite D- and Z-values are derived from sub-unit specific environmental parameters and are used to solve mass balance equations which can be adopted essentially unchanged from existing compartmental fugacity models. With the resulting common fugacity value for each compartment, sub-unit specific concentrations and process rates can be calculated. The approach is illustrated using the QWASI lake model to calculate the fate of hexachlorobenzene in a hypothetical lake sub-divided in four distinct sub-units. The approach allows the subdivision of each compartment in a large number of sub-units with distinct environmental characteristics without substantially increasing model complexity. This is a necessary condition for linking fugacity models to geographical information systems.

  2. Organization of parent knowledge: compartmentalization and integration in adult child-parent relationships.

    Science.gov (United States)

    Limke, Alicia; Showers, Carolin J

    2010-09-01

    Previous research has demonstrated an association between structure of beliefs about romantic partners and feelings for that partner. Here, the structure of college students' beliefs about their parents was linked to distinct types of ongoing parent-child relationships identified by cluster analysis. An integrative structure of mother knowledge was associated with an evaluatively complex type of relationship ("dealing"), characterized by greater liking and closeness and less cooperation and contact. Positive compartmentalization of mother knowledge was associated with mother relationships that were consistently positive ("denying") across different dimensions. In contrast, the most positive father relationships were reported by daughters with evaluatively integrative father structures. Possible reasons for daughters' tendency to integrate father structures and to compartmentalize mother structures are discussed.

  3. Etiopathogenical criteria in the early diagnosis of Compartmental Syndrome (CS of the shank

    Directory of Open Access Journals (Sweden)

    Șerban Al. O.

    2014-11-01

    Full Text Available Through the evaluation of some etiopathogenic risk factors one can anticipate the evaluation of some fractures towards Compartmental Syndrome (CS and then their diagnosis in early stage, when the symptomatology is still unconvincing and the treatment reduces the risk of ischemia lesions. Based both on some prospective observations, using a group of shank fractures, and also on the clinical facts of constituted CS, there were made correlations, statistically reported in the case of some etiopathogenic risk factors represented by the fracture localization and its characteristics, traumatic mechanisms, soft tissue quality and polytraumatism, having an objective common denominator, the compartmental pressure level measured directly. The authors propose an etiopathogenic risk score of CS for the fractures reaching the pressure level of 20-30mmHg, recommending the pressional and clinical monitoring for a score of minimum 10 points. These fractures have a certain risk of CS.

  4. The architecture of antagonistic networks: Node degree distribution, compartmentalization and nestedness

    OpenAIRE

    Savannah Nuwagaba; Cang Hui

    2015-01-01

    Describing complex ecosystems as networks of interacting components has proved fruitful - revealing many distinctive patterns and dynamics of ecological systems. Of these patterns, three have often been brought up in literature, including species degree distribution, compartmentalization and nestedness, due largely to their implications for the functionality and stability of communities. Here, using 61 empirical antagonistic networks, we aim to settle the inconsistency in literature by (i) fi...

  5. Aspects of astrocyte energy metabolism, amino acid neurotransmitter homoeostasis and metabolic compartmentation

    DEFF Research Database (Denmark)

    Kreft, Marko; Bak, Lasse Kristoffer; Waagepetersen, Helle S

    2012-01-01

    Astrocytes are key players in brain function; they are intimately involved in neuronal signalling processes and their metabolism is tightly coupled to that of neurons. In the present review, we will be concerned with a discussion of aspects of astrocyte metabolism, including energy-generating pat......-generating pathways and amino acid homoeostasis. A discussion of the impact that uptake of neurotransmitter glutamate may have on these pathways is included along with a section on metabolic compartmentation....

  6. A Residual Approach for Balanced Truncation Model Reduction (BTMR of Compartmental Systems

    Directory of Open Access Journals (Sweden)

    William La Cruz

    2014-05-01

    Full Text Available This paper presents a residual approach of the square root balanced truncation algorithm for model order reduction of continuous, linear and time-invariante compartmental systems. Specifically, the new approach uses a residual method to approximate the controllability and observability gramians, whose resolution is an essential step of the square root balanced truncation algorithm, that requires a great computational cost. Numerical experiences are included to highlight the efficacy of the proposed approach.

  7. Repurposing the Saccharomyces cerevisiae peroxisome for compartmentalizing multi-enzyme pathways

    Energy Technology Data Exchange (ETDEWEB)

    DeLoache, William [Univ. of California, Berkeley, CA (United States); Russ, Zachary [Univ. of California, Berkeley, CA (United States); Samson, Jennifer [Univ. of California, Berkeley, CA (United States); Dueber, John [Univ. of California, Berkeley, CA (United States)

    2017-09-25

    The peroxisome of Saccharomyces cerevisiae was targeted for repurposing in order to create a synthetic organelle that provides a generalizable compartment for engineered metabolic pathways. Compartmentalization of enzymes into organelles is a promising strategy for limiting metabolic crosstalk, improving pathway efficiency, and ultimately modifying the chemical environment to be distinct from that of the cytoplasm. We focused on the Saccharomyces cerevisiae peroxisome, as this organelle is not required for viability when grown on conventional media. We identified an enhanced peroxisomal targeting signal type 1 (PTS1) for rapidly importing non-native cargo proteins. Additionally, we performed the first systematic in vivo measurements of nonspecific metabolite permeability across the peroxisomal membrane using a polymer exclusion assay and characterized the size dependency of metabolite trafficking. Finally, we applied these new insights to compartmentalize a two-enzyme pathway in the peroxisome and characterize the expression regimes where compartmentalization leads to improved product titer. This work builds a foundation for using the peroxisome as a synthetic organelle, highlighting both promise and future challenges on the way to realizing this goal.

  8. Self-concept structure and borderline personality disorder: evidence for negative compartmentalization.

    Science.gov (United States)

    Vater, Aline; Schröder-Abé, Michela; Weißgerber, Susan; Roepke, Stefan; Schütz, Astrid

    2015-03-01

    Borderline personality disorder (BPD) is characterized by an unstable and incongruent self-concept. However, there is a dearth of empirical studies investigating self-concept in BPD. In order to bridge this research gap, the purpose of this study was to apply an in-depth analysis of structural aspects of the self-concept in BPD. We examined the degree of compartmentalization, i.e., a tendency to organize knowledge about the self into discrete, extremely valenced (i.e., either positive or negative) categories (Showers, 1992). We hypothesized and found that BPD patients had the most compartmentalized self-concept structure and a higher proportion of negative self-attributes relative to both a non-clinical and a depressed control group. Moreover, BPD patients rated negative self-aspects as more important than positive ones relative to non-clinical controls. We cannot determine whether causal relationships exist between psychological symptoms and self-concept structure. Moreover, further comparisons to patients with other psychiatric disorders are necessary in order to further confirm the clinical specificity of our results. Our findings indicate that a negative compartmentalized self-concept is a specific feature of BPD. Implications for future research, psychological assessment, and psychotherapeutic treatment are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Differential compartmentalization of mRNAs in squid giant axon.

    Science.gov (United States)

    Chun, J T; Gioio, A E; Crispino, M; Giuditta, A; Kaplan, B B

    1996-11-01

    Previously, we reported that the squid giant axon contains a heterogeneous population of mRNAs that includes beta-actin, beta-tubulin, kinesin, neurofilament proteins, and enolase. To define the absolute levels and relative distribution of these mRNAs, we have used competitive reverse transcription-PCR to quantify the levels of five mRNAs present in the giant axon and giant fiber lobe (GFL), the location of the parental cell soma. In the GFL, the number of transcripts for these mRNAs varied over a fourfold range, with beta-tubulin being the most abundant mRNA species (1.25 x 10(9) molecules per GFL). Based on transcript number, the rank order of mRNA levels in the GFL was beta-tubulin > beta-actin > kinesin > enolase > microtubule-associated protein (MAP) H1. In contrast, kinesin mRNA was most abundant in the axon (4.1 x 10(7) molecules per axon) with individual mRNA levels varying 15-fold. The rank order of mRNA levels in the axon was kinesin > beta-tubulin > MAP H1 > beta-actin > enolase. The relative abundance of the mRNA species in the axon did not correlate with the size of the transcript, nor was it directly related to their corresponding levels in the GFL. Taken together, these findings confirm that significant amounts of mRNA are present in the giant axon and suggest that specific mRNAs are differentially transported into the axonal domain.

  10. Metabolic hormones, apolipoproteins, adipokines, and cytokines in the alveolar lining fluid of healthy adults: compartmentalization and physiological correlates.

    Directory of Open Access Journals (Sweden)

    Carlos O Mendivil

    Full Text Available Our current understanding of hormone regulation in lung parenchyma is quite limited. We aimed to quantify a diverse array of biologically relevant protein mediators in alveolar lining fluid (ALF, compared to serum concentrations, and explore factors associated with protein compartmentalization on either side of the air-blood barrier.Participants were 24 healthy adult non-smoker volunteers without respiratory symptoms or significant medical conditions, with normal lung exams and office spirometry. Cell-free bronchoalveolar lavage fluid and serum were analyzed for 24 proteins (including enteric and metabolic hormones, apolipoproteins, adipokines, and cytokines using a highly sensitive multiplex ELISA. Measurements were normalized to ALF concentrations. The ALF:serum concentration ratios were examined in relation to measures of protein size, hydrophobicity, charge, and to participant clinical and spirometric values.ALF measurements from 24 individuals detected 19 proteins, including adiponectin, adipsin, apoA-I, apoA-II, apoB, apoC-II, apoC-III, apoE, C-reactive protein, ghrelin, glucose-dependent insulinotropic peptide (GIP, glucagon-like peptide-1 (GLP-1, glucagon, insulin, leptin, monocyte chemoattractant protein-1, plasminogen activator inhibitor-1, resistin, and visfatin. C-peptide and serpin E1 were not detected in ALF for any individual, and IL-6, IL-10, and TNF-alpha were not detected in either ALF or serum for any individual. In general, ALF levels were similar or lower in concentration for most proteins compared to serum. However, ghrelin, resistin, insulin, visfatin and GLP-1 had ALF concentrations significantly higher compared to serum. Importantly, elevated ALF:serum ratios of ghrelin, visfatin and resistin correlated with protein net charge and isoelectric point, but not with molecular weight or hydrophobicity.Biologically relevant enteric and metabolic hormones, apolipoproteins, adipokines, and cytokines can be detected in the ALF of

  11. Morphological features, distribution and compartmental organization of the nicotinamide adenine dinucleotide phosphate reduced-diaphorase interneurons in the human striatum.

    Science.gov (United States)

    Bernácer, Javier; Prensa, Lucía; Giménez-Amaya, José Manuel

    2005-08-29

    Striatal nicotinamide adenine dinucleotide phosphate reduced-diaphorase (NADPH-d)-positive (+) cells are one of the major classes of striatal interneurons. The present study analyzes their somatodendritic morphology, distribution pattern, and compartmental organization in the caudate nucleus (CN) and putamen (Put) of nine normal human brains. The following striatal territories are examined: 1) the precommissural head of the CN; 2) the postcommissural head of the CN; 3) the body of the CN; 4) the gyrus of the CN; 5) the tail of the CN; 6) the precommissural Put; and 7) the postcommissural Put. Three morphologically distinct types of NADPH-d+ neurons were found in each of these territories. The two most common NADPH-d+ neurons displayed an ovoid or triangular perikaryon from which several thick primary dendrites emerged, although much less numerous, bipolar-shaped NADPH-d+ cells were also observed. The highest density of NADPH-d+ neurons was found in the gyrus of the CN, followed by the body of the CN, tail of the CN, postcommissural head of the CN, postcommissural Put, precommissural head of the CN, and precommissural Put. The matrix was the striatal compartment with the densest NADPH-d+ neuronal population. Some of these cells also occurred in the center and peripheral regions of the striosomes located in the head of the CN and in the Put. In the body and gyrus of the CN, the striosomes were largely devoid of these striatal interneurons. Knowledge of the density and distribution of these interneurons should advance our understanding of the organization of the normal human striatum and help to evaluate the effects of neurodegenerative processes on cell density. (c) 2005 Wiley-Liss, Inc.

  12. Estimate of FDG Excretion by means of Compartmental Analysis and Ant Colony Optimization of Nuclear Medicine Data

    Science.gov (United States)

    Garbarino, Sara; Caviglia, Giacomo; Brignone, Massimo; Massollo, Michela; Sambuceti, Gianmario; Piana, Michele

    2013-01-01

    [18F]fluoro-2-deoxy-D-glucose (FDG) is one of the most utilized tracers for positron emission tomography (PET) applications in oncology. FDG-PET relies on higher glycolytic activity in tumors compared to normal structures as the basis of image contrast. As a glucose analog, FDG is transported into malignant cells which typically exhibit an increased radioactivity. However, different from glucose, FDG is not reabsorbed by the renal system and is excreted to the bladder. The present paper describes a novel computational method for the quantitative assessment of this excretion process. The method is based on a compartmental analysis of FDG-PET data in which the excretion process is explicitly accounted for by the bladder compartment and on the application of an ant colony optimization (ACO) algorithm for the determination of the tracer coefficients describing the FDG transport effectiveness. The validation of this approach is performed by means of both synthetic data and real measurements acquired by a PET device for small animals (micro-PET). Possible oncological applications of the results are discussed in the final section. PMID:24191175

  13. Compartmentalized localization of 11β-HSD 1 and 2 at the feto-maternal interface in the first trimester of human pregnancy.

    Science.gov (United States)

    Yang, Qianlan; Wang, Wangsheng; Liu, Chao; Wang, Yu; Sun, Kang

    2016-10-01

    Glucocorticoids are engaged in a number of actions at the feto-maternal interface for the establishment of early pregnancy. However, excessive glucocorticoids can be deleterious to fetal development. Therefore, compartmentalized distribution of 11β-hydroxysteroid dehydrogenase 1 and 2 (11β-HSD1 and 2), which regenerates and inactivates cortisol respectively, would ensure an optimal cortisol concentration at the feto-maternal interface for the establishment of early gestation. However, the distribution pattern of 11β-HSD1 and 2 at the feto-maternal interface in early human pregnancy is not clearly defined. Here we showed that 11β-HSD1 distributed extensively on the maternal side including decidual stromal cells and epithelial cells but scarcely on the fetal side except for localization in the fetal blood vessels of the chorionic villi. In contrast, 11β-HSD2 was abundantly localized in syncytial layer of the chorionic villi and the decidual epithelium. In primary cultures, cortisol upregulated not only 11β-HSD1 expression in decidual stromal cells but also 11β-HSD2 expression in villous trophoblasts of early pregnancy. Further studies revealed that cortisol inhibited the expression of interleukin-1β and 6 in decidual stromal cells and villous trophoblasts, and stimulated expression of human chorionic gonadotropin in villous trophoblasts. Collectively, this study has revealed a compartmentalized distribution pattern of 11β-HSD 1 and 2 at the feto-maternal interface, both of which can be upregulated by glucocorticoids, suggesting that a coordinated interaction between 11β-HSD 1 and 2 may exist to ensure an optimal cortisol concentration at discrete locations at the feto-maternal interface for the establishment of early pregnancy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. DISTING: A web application for fast algorithmic computation of alternative indistinguishable linear compartmental models.

    Science.gov (United States)

    Davidson, Natalie R; Godfrey, Keith R; Alquaddoomi, Faisal; Nola, David; DiStefano, Joseph J

    2017-05-01

    We describe and illustrate use of DISTING, a novel web application for computing alternative structurally identifiable linear compartmental models that are input-output indistinguishable from a postulated linear compartmental model. Several computer packages are available for analysing the structural identifiability of such models, but DISTING is the first to be made available for assessing indistinguishability. The computational algorithms embedded in DISTING are based on advanced versions of established geometric and algebraic properties of linear compartmental models, embedded in a user-friendly graphic model user interface. Novel computational tools greatly speed up the overall procedure. These include algorithms for Jacobian matrix reduction, submatrix rank reduction, and parallelization of candidate rank computations in symbolic matrix analysis. The application of DISTING to three postulated models with respectively two, three and four compartments is given. The 2-compartment example is used to illustrate the indistinguishability problem; the original (unidentifiable) model is found to have two structurally identifiable models that are indistinguishable from it. The 3-compartment example has three structurally identifiable indistinguishable models. It is found from DISTING that the four-compartment example has five structurally identifiable models indistinguishable from the original postulated model. This example shows that care is needed when dealing with models that have two or more compartments which are neither perturbed nor observed, because the numbering of these compartments may be arbitrary. DISTING is universally and freely available via the Internet. It is easy to use and circumvents tedious and complicated algebraic analysis previously done by hand. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Directed clustering in driven compartmentalized granular gas systems in zero gravity

    International Nuclear Information System (INIS)

    Li, Y; Hou, M; Evesque, P

    2011-01-01

    Clustering of shaken fluidized granular matter in connected compartments has been observed and studied in the laboratory. This clustering behavior in granular gas systems is related to the dissipative nature of granular system, and therefore shall not depend on gravity. This clustering phenomenon in compartmental configuration may provide a means for particle depletion and transportation in microgravity environment. In this work we propose different configurations for possible directed clustering in zero gravity. The related experiment has been planned for the Chinese satellite SJ-10.

  16. Incorporating hydraulic/hydromorphologic properties and their stage dependency into hydrologic compartmental models

    Science.gov (United States)

    Gustafsson, A.; Wörman, A.

    2009-04-01

    According to recent studies, the volumetric error of the predicted size of the spring flood in Sweden can be as large as 20%. A significant part of this error originates from simplifications in the spatial and hydrodynamic description of watercourse networks, as well as statistical problems to give proper weight to extreme flows. Possible ways to improve current hydrological modelling practises is by making models more adapted to varying flow conditions as well as by increasing the coupling between model parameters and physical catchment characteristics. This study formulates a methodology based in hydrodynamical/hydraulic theory to investigate how river network characteristics vary with flow stage and how to transfer this information to compartmental hydrologic models such as the HBV/HYPE models. This is particularly important during extreme flows when a significant portion of the water flows outside the normal stream channels. The aim is to combine knowledge about the hydrodynamics and hydro-morphology of watercourse networks to improve the predictions of peak flows. HYPE is a semi-distributed conceptual compartmental hydrological model which is currently being developed at the SMHI as a successor to the HBV model. The model (HYPE) is thought to be better adapted to varying flow conditions by using the dynamical response functions derived by the methodology described here. The distribution of residence times within the watercourse network - and how these depend on flow stage is analysed. This information is then incorporated into the response functions of the HYPE model, i.e. the compartmental model receives a dynamic transformation function relating river discharge to storativity within the sub-catchment. This response function hence reflects the topologic and hydromorphologic characteristics of the watercourse network as well as flow stage. Seven subcatchments in Rönne River basin (1900 km2) are studied to show how this approach can improve the prediction of

  17. The kinetics of multi-compartmentalized systems, studied by radioactive tracers

    International Nuclear Information System (INIS)

    Gouveia, A.S. de.

    1978-01-01

    The use of compartmental models to investigate kinetic problems is presented. This use is restricted, however, to linear models. As an application of different methods, the kinetic behaviour of haemaccel labelled with iodine 131 is studied, the interval of the physically viable solutions being established. The existence of a class of solutions is explained as a result of lack of knowledge of a complete data set. The possibility of obtaining a single solution is also discussed. The formalism of the program SAAM (Simulation, Analysis and modelling) now judged very important for the study of multi-compartimental analysis is presented. (I.C.R) [pt

  18. Elevated compartmentalization of Na+ into vacuoles improves salt and cold stress tolerance in sweet potato (Ipomoea batatas).

    Science.gov (United States)

    Fan, Weijuan; Deng, Gaifang; Wang, Hongxia; Zhang, Hongxia; Zhang, Peng

    2015-08-01

    Salinity and low temperature are the main limiting factors for sweet potato (Ipomoea batatas) growth and agricultural productivity. Various studies have shown that plant NHX-type antiporter plays a crucial role in regulating plant tolerance to salt stress by intracellular Na(+) compartmentalization. The Arabidopsis thaliana AtNHX1 gene that encodes a vacuolar Na(+) /H(+) antiporter was introduced into the sweet potato cultivar Xushu-22 by Agrobacterium-mediated transformation to confer abiotic stress tolerance. Stable insertion of AtNHX1 into the sweet potato genome and its expression was confirmed by Southern blot and reverse transcription-polymerase chain reaction (RT-PCR). A remarkably higher Na(+) /H(+) exchange activity of tonoplast membrane from transgenic sweet potato lines (NOE) in comparison with wild-type (WT) plants confirmed the vacuolar antiporter function in mediating Na(+) /H(+) exchange. Under salt stress, NOE plants accumulated higher Na(+) and K(+) levels in their tissues compared with WT plants, maintaining high K(+) /Na(+) ratios. Consequently, NOE plants showed enhanced protection against cell damage due to the increased proline accumulation, preserved cell membrane integrity, enhanced reactive oxygen species (ROS) scavenging (e.g. increased superoxide dismutase activity), and reduced H2 O2 and malondialdehyde (MDA) production. Moreover, the transgenic plants showed improved cold tolerance through multiple mechanisms of action, revealing the first molecular evidence for NHX1 function in cold response. The transgenic plants showed better biomass production and root yield under stressful conditions. These findings demonstrate that overexpressing AtNHX1 in sweet potato renders the crop tolerant to both salt and cold stresses, providing a greater capacity for the use of AtNHX1 in improving crop performance under combined abiotic stress conditions. © 2014 Scandinavian Plant Physiology Society.

  19. Accession data for analysed Xestospongia testudinaria metatranscriptomes, supplement to: Jahn, Martin T; Markert, Sebastian M; Ryu, Taewoo; Ravasi, Timothy; Stigloher, Christian; Hentschel, Ute; Moitinho-Silva, Lucas (2016): Shedding light on cell compartmentation in the candidate phylum Poribacteria by high resolution visualisation and transcriptional profiling. Scientific Reports, 6, 35860

    KAUST Repository

    Jahn, Martin T

    2016-01-01

    Assigning functions to uncultivated environmental microorganisms continues to be a challenging endeavour. Here, we present a new microscopy protocol for fluorescence in situ hybridisation-correlative light and electron microscopy (FISH-CLEM) that enabled, to our knowledge for the first time, the identification of single cells within their complex microenvironment at electron microscopy resolution. Members of the candidate phylum Poribacteria, common and uncultivated symbionts of marine sponges, were used towards this goal. Cellular 3D reconstructions revealed bipolar, spherical granules of low electron density, which likely represent carbon reserves. Poribacterial activity profiles were retrieved from prokaryotic enriched sponge metatranscriptomes using simulation-based optimised mapping. We observed high transcriptional activity for proteins related to bacterial microcompartments (BMC) and we resolved their subcellular localisation by combining FISH-CLEM with immunohistochemistry (IHC) on ultra-thin sponge tissue sections. In terms of functional relevance, we propose that the BMC-A region may be involved in 1,2-propanediol degradation. The FISH-IHC-CLEM approach was proven an effective toolkit to combine -omics approaches with functional studies and it should be widely applicable in environmental microbiology.

  20. Compartmentalized metabolic network reconstruction of microbial communities to determine the effect of agricultural intervention on soils.

    Science.gov (United States)

    Alvarez-Silva, María Camila; Álvarez-Yela, Astrid Catalina; Gómez-Cano, Fabio; Zambrano, María Mercedes; Husserl, Johana; Danies, Giovanna; Restrepo, Silvia; González-Barrios, Andrés Fernando

    2017-01-01

    Soil microbial communities are responsible for a wide range of ecological processes and have an important economic impact in agriculture. Determining the metabolic processes performed by microbial communities is crucial for understanding and managing ecosystem properties. Metagenomic approaches allow the elucidation of the main metabolic processes that determine the performance of microbial communities under different environmental conditions and perturbations. Here we present the first compartmentalized metabolic reconstruction at a metagenomics scale of a microbial ecosystem. This systematic approach conceives a meta-organism without boundaries between individual organisms and allows the in silico evaluation of the effect of agricultural intervention on soils at a metagenomics level. To characterize the microbial ecosystems, topological properties, taxonomic and metabolic profiles, as well as a Flux Balance Analysis (FBA) were considered. Furthermore, topological and optimization algorithms were implemented to carry out the curation of the models, to ensure the continuity of the fluxes between the metabolic pathways, and to confirm the metabolite exchange between subcellular compartments. The proposed models provide specific information about ecosystems that are generally overlooked in non-compartmentalized or non-curated networks, like the influence of transport reactions in the metabolic processes, especially the important effect on mitochondrial processes, as well as provide more accurate results of the fluxes used to optimize the metabolic processes within the microbial community.

  1. Compartmentalized metabolic network reconstruction of microbial communities to determine the effect of agricultural intervention on soils.

    Directory of Open Access Journals (Sweden)

    María Camila Alvarez-Silva

    Full Text Available Soil microbial communities are responsible for a wide range of ecological processes and have an important economic impact in agriculture. Determining the metabolic processes performed by microbial communities is crucial for understanding and managing ecosystem properties. Metagenomic approaches allow the elucidation of the main metabolic processes that determine the performance of microbial communities under different environmental conditions and perturbations. Here we present the first compartmentalized metabolic reconstruction at a metagenomics scale of a microbial ecosystem. This systematic approach conceives a meta-organism without boundaries between individual organisms and allows the in silico evaluation of the effect of agricultural intervention on soils at a metagenomics level. To characterize the microbial ecosystems, topological properties, taxonomic and metabolic profiles, as well as a Flux Balance Analysis (FBA were considered. Furthermore, topological and optimization algorithms were implemented to carry out the curation of the models, to ensure the continuity of the fluxes between the metabolic pathways, and to confirm the metabolite exchange between subcellular compartments. The proposed models provide specific information about ecosystems that are generally overlooked in non-compartmentalized or non-curated networks, like the influence of transport reactions in the metabolic processes, especially the important effect on mitochondrial processes, as well as provide more accurate results of the fluxes used to optimize the metabolic processes within the microbial community.

  2. Intracellular Redox Compartmentation and ROS-Related Communication in Regulation and Signaling.

    Science.gov (United States)

    Noctor, Graham; Foyer, Christine H

    2016-07-01

    Recent years have witnessed enormous progress in understanding redox signaling related to reactive oxygen species (ROS) in plants. The consensus view is that such signaling is intrinsic to many developmental processes and responses to the environment. ROS-related redox signaling is tightly wedded to compartmentation. Because membranes function as barriers, highly redox-active powerhouses such as chloroplasts, peroxisomes, and mitochondria may elicit specific signaling responses. However, transporter functions allow membranes also to act as bridges between compartments, and so regulated capacity to transmit redox changes across membranes influences the outcome of triggers produced at different locations. As well as ROS and other oxidizing species, antioxidants are key players that determine the extent of ROS accumulation at different sites and that may themselves act as signal transmitters. Like ROS, antioxidants can be transported across membranes. In addition, the intracellular distribution of antioxidative enzymes may be modulated to regulate or facilitate redox signaling appropriate to the conditions. Finally, there is substantial plasticity in organellar shape, with extensions such as stromules, peroxules, and matrixules playing potentially crucial roles in organelle-organelle communication. We provide an overview of the advances in subcellular compartmentation, identifying the gaps in our knowledge and discussing future developments in the area. © 2016 American Society of Plant Biologists. All Rights Reserved.

  3. Compartmentalization of the gut viral reservoir in HIV-1 infected patients

    Directory of Open Access Journals (Sweden)

    Grant Tannika

    2007-12-01

    Full Text Available Abstract Background Recently there has been an increasing interest and appreciation for the gut as both a viral reservoir as well as an important host-pathogen interface in human immunodefiency virus type 1 (HIV-1 infection. The gut associated lymphoid tissue (GALT is the largest lymphoid organ infected by HIV-1. In this study we examined if different HIV-1 quasispecies are found in different parts of the gut of HIV-1 infected individuals. Results Gut biopsies (esophagus, stomach, duodenum and colorectum were obtained from eight HIV-1 infected preHAART (highly active antiretroviral therapy patients. HIV-1 Nef and Reverse transcriptase (RT encoding sequences were obtained through nested PCR amplification from DNA isolated from the gut biopsy tissues. The PCR fragments were cloned and sequenced. The resulting sequences were subjected to various phylogenetic analyses. Expression of the nef gene and viral RNA in the different gut tissues was determined using real-time RT-PCR. Phylogenetic analysis of the Nef protein-encoding region revealed compartmentalization of viral replication in the gut within patients. Viral diversity in both the Nef and RT encoding region varied in different parts of the gut. Moreover, increased nef gene expression (p Conclusion Our results indicated that different HIV-1 quasispecies populate different parts of the gut, and that viral replication in the gut is compartmentalized. These observations underscore the importance of the gut as a host-pathogen interface in HIV-1 infection.

  4. Proline accumulation, ions dynamics and sodium root-shoot partition and compartmentation

    Directory of Open Access Journals (Sweden)

    Jesus Emanuel eBojorquez Quintal

    2014-11-01

    Full Text Available Despite its economic relevance, little is known about salt tolerance mechanisms in pepper plants. To address this question, we compared differences in responses to NaCl in two Capsicum chinense varieties: Rex (tolerant and Chichen-Itza (sensitive. Under salt stress (150 mM NaCl over 7 days roots of Rex variety accumulated 50 times more compatible solutes such as proline compared to Chichen-Itza. Mineral analysis indicated that Na+ is restricted to roots by preventing its transport to leaves. Fluorescence analysis suggested an efficient Na+ compartmentalization in vacuole-like structures and in small intracellular compartments in roots of Rex variety. At the same time, Na+ in Chichen-Itza plants was compartmentalized in the apoplast, suggesting substantial Na+ extrusion. Rex variety was found to retain more K+ in its roots under salt stress according to a mineral analysis and microelectrode ion flux estimation (MIFE. Vanadate-sensitive H+ efflux was higher in Chichen-Itza variety plants, suggesting a higher activity of the plasma membrane H+-ATPase, which fuels the extrusion of Na+, and, possibly, also the re-uptake of K+. Our results suggest a combination of stress tolerance mechanisms, in order to alleviate the salt-induced injury. Furthermore, Na+ extrusion to apoplast does not appear to be an efficient strategy for salt tolerance in pepper plants.

  5. A compartmental model of the cAMP/PKA/MAPK pathway in Bio-PEPA

    Directory of Open Access Journals (Sweden)

    Federica Ciocchetta

    2009-11-01

    Full Text Available The vast majority of biochemical systems involve the exchange of information between different compartments, either in the form of transportation or via the intervention of membrane proteins which are able to transmit stimuli between bordering compartments. The correct quantitative handling of compartments is, therefore, extremely important when modelling real biochemical systems. The Bio-PEPA process algebra is equipped with the capability of explicitly defining quantitative information such as compartment volumes and membrane surface areas. Furthermore, the recent development of the Bio-PEPA Eclipse Plug-in allows us to perform a correct stochastic simulation of multi-compartmental models. Here we present a Bio-PEPA compartmental model of the cAMP/PKA/MAPK pathway. We analyse the system using the Bio-PEPA Eclipse Plug-in and we show the correctness of our model by comparison with an existing ODE model. Furthermore, we perform computational experiments in order to investigate certain properties of the pathway. Specifically, we focus on the system response to the inhibition and strengthening of feedback loops and to the variation in the activity of key pathway reactions and we observe how these modifications affect the behaviour of the pathway. These experiments are useful to understand the control and regulatory mechanisms of the system.

  6. Reconstruction of Arabidopsis metabolic network models accounting for subcellular compartmentalization and tissue-specificity.

    Science.gov (United States)

    Mintz-Oron, Shira; Meir, Sagit; Malitsky, Sergey; Ruppin, Eytan; Aharoni, Asaph; Shlomi, Tomer

    2012-01-03

    Plant metabolic engineering is commonly used in the production of functional foods and quality trait improvement. However, to date, computational model-based approaches have only been scarcely used in this important endeavor, in marked contrast to their prominent success in microbial metabolic engineering. In this study we present a computational pipeline for the reconstruction of fully compartmentalized tissue-specific models of Arabidopsis thaliana on a genome scale. This reconstruction involves automatic extraction of known biochemical reactions in Arabidopsis for both primary and secondary metabolism, automatic gap-filling, and the implementation of methods for determining subcellular localization and tissue assignment of enzymes. The reconstructed tissue models are amenable for constraint-based modeling analysis, and significantly extend upon previous model reconstructions. A set of computational validations (i.e., cross-validation tests, simulations of known metabolic functionalities) and experimental validations (comparison with experimental metabolomics datasets under various compartments and tissues) strongly testify to the predictive ability of the models. The utility of the derived models was demonstrated in the prediction of measured fluxes in metabolically engineered seed strains and the design of genetic manipulations that are expected to increase vitamin E content, a significant nutrient for human health. Overall, the reconstructed tissue models are expected to lay down the foundations for computational-based rational design of plant metabolic engineering. The reconstructed compartmentalized Arabidopsis tissue models are MIRIAM-compliant and are available upon request.

  7. Spatial Cell Biology : Dissecting and directing intracellular transport mechanisms

    NARCIS (Netherlands)

    Adrian, M.

    2017-01-01

    Cellular compartmentalization and intracellular transport mechanisms are important to establish and maintain the spatial organisation of proteins and organelles needed to ensure proper cellular functioning. Especially in polarized cells like neurons, the proper distribution of proteins into the

  8. Utilization of stable isotopes for the study of in vivo compartmental metabolism of poly-insaturate fatty acids

    International Nuclear Information System (INIS)

    Brossard, N.; Croset, M.; Lecerf, J.; Lagarde, M.; Pachiaudi, C.; Normand, S.; Riou, J.P.; Chirouze, V.; Tayot, J.L.

    1994-01-01

    In order to study the compartmental metabolism of the 22:6n-3 fatty acid, and particularly the role of the transport plasmatic forms for the tissue uptake (especially brain), a technique is developed using carbon 13 stable isotope and an isotopic mass spectrometry coupled to gaseous chromatography technique. This method has been validated in rat with docosahexaenoic acid enriched in 13 C and esterified in triglycerides. The compartmental metabolism is monitored by measuring the variation of 22:6n-3 isotopic enrichment in the various lipoprotein lipidic fractions, in blood globules and in the brain. 1 fig., 1 tab., 12 refs

  9. Multi-compartmental transdermal patch for simultaneous delivery of multiple drugs: formulation and evaluation of newly developed novel dosage form

    Directory of Open Access Journals (Sweden)

    Vijayan Venugopal

    2015-07-01

    Full Text Available Objective: To evaluate the formulation of multi-compartmental transdermal patches for simultaneous delivery of multiple drugs: aceclofenac and serratiopeptidase. Methods: The patch was prepared by simple solvent casting method using hydroxy propyl methyl cellulose K100M as matrix forming agent and dimethyl sulphoxide as permeation enhancer. The prepared transdermal patch was evaluated by physiochemical parameters and in- vitro diffusion studies. Results: The multi-compartmental transdermal patch showed sustained drug release over the period of 12 h. Conclusions: Multicompartmental transdermal patches shows better bioavailability, therapeutic efficacy and very economic as compared with other dosage forms.

  10. [Effect of NaCl stress on ion compartmentation, photosynthesis and growth of Salicornia bigelovii Torr].

    Science.gov (United States)

    Wang, Li-Yan; Zhao, Ke-Fu

    2004-02-01

    Seedlings of Salicornia bigelovii Torr. were treated with different concentrations of NaCl (0, 100, 300, 600 mmol/L). Ion contents, Na(+) subcelluar localization, photosynthetic rate, ultrastructure of chloroplast and other parameters were measured. The data showed both fresh and dry weight of whole plant of Salicornia bigelovii Torr. under salinity were higher than the control. When NaCl concentration is about 300 mmol/L Salicornia bigelovii Torr. grow strongest. The contents of Na(+) and Cl(-) and c(Na)/c(K) in shoots increased with the salinity. Both Na(+) and Cl(-) were mainly transported to shoots. Ion X-ray microanalysis indicated Na(+) was mainly compartmentalized into vacuoles. Photosynthetic rate increased with the salinity under NaCl 100-300 mmol/L, but declined under NaCl 600 mmol/L. Ultrastructure of chloroplast was destroyed by NaCl 600 mmol/L.

  11. Compartmentalization of metabolic pathways in yeast mitochondria improves production of branched chain alcohols

    Science.gov (United States)

    Avalos, José L.; Fink, Gerald R.; Stephanopoulos, Gregory

    2013-01-01

    Efforts to improve the production of a compound of interest in Saccharomyces cerevisiae have mainly involved engineering or overexpression of cytoplasmic enzymes. We show that targeted expression of metabolic pathways to mitochondria can increase production levels compared with expression of the same pathways in the cytoplasm. Compartmentalisation of the Ehrlich pathway into mitochondria increased isobutanol production by 260%, whereas overexpression of the same pathway in the cytoplasm only improved yields by 10%, compared with a strain overexpressing only the first three steps of the biosynthetic pathway. Subcellular fractionation of engineered strains reveals that targeting the enzymes of the Ehrlich pathway to the mitochondria achieves higher local enzyme concentrations. Other benefits of compartmentalization may include increased availability of intermediates, removing the need to transport intermediates out of the mitochondrion, and reducing the loss of intermediates to competing pathways. PMID:23417095

  12. Dual regulation of muscle glycogen synthase during exercise by activation and compartmentalization

    DEFF Research Database (Denmark)

    Prats, Clara; Helge, Jørn W; Nordby, Pernille

    2009-01-01

    Glycogen synthase (GS) is considered the rate-limiting enzyme in glycogenesis but still today there is a lack of understanding on its regulation. We have previously shown phosphorylation-dependent GS intracellular redistribution at the start of glycogen re-synthesis in rabbit skeletal muscle (Prats......, C., Cadefau, J. A., Cussó, R., Qvortrup, K., Nielsen, J. N., Wojtaszewki, J. F., Wojtaszewki, J. F., Hardie, D. G., Stewart, G., Hansen, B. F., and Ploug, T. (2005) J. Biol. Chem. 280, 23165-23172). In the present study we investigate the regulation of human muscle GS activity by glycogen, exercise......, and insulin. Using immunocytochemistry we investigate the existence and relevance of GS intracellular compartmentalization during exercise and during glycogen re-synthesis. The results show that GS intrinsic activity is strongly dependent on glycogen levels and that such regulation involves associated...

  13. A comprehensive compartmental model of blood glucose regulation for healthy and type 2 diabetic subjects

    DEFF Research Database (Denmark)

    Vahidi, O; Kwok, K E; Gopaluni, R B

    2016-01-01

    We have expanded a former compartmental model of blood glucose regulation for healthy and type 2 diabetic subjects. The former model was a detailed physiological model which considered the interactions of three substances, glucose, insulin and glucagon on regulating the blood sugar. The main...... variations of blood glucose concentrations following an oral glucose intake. Another model representing the incretins production in the gastrointestinal tract along with their hormonal effects on boosting pancreatic insulin production is also added to the former model. We have used two sets of clinical data...... obtained during oral glucose tolerance test and isoglycemic intravenous glucose infusion test from both type 2 diabetic and healthy subjects to estimate the model parameters and to validate the model results. The estimation of model parameters is accomplished through solving a nonlinear optimization...

  14. Geo-environmental zoning using physiographic compartmentalization: a proposal for supporting sustainable decision-making

    Directory of Open Access Journals (Sweden)

    CLAUDIA V.S. CORRÊA

    Full Text Available ABSTRACT The geo-environmental zoning represents an important strategy in the territorial management. However, it requires a logical and structured procedure. Therefore, an approach using physiographic compartmentalization is proposed and applied as case study in a region covered by the topographic maps of São José dos Campos and Jacareí, Brazil. This region has great geological and geomorphological peculiarities, beyond being a place with large human interventions because of its quickly economic growth. The methodology is based on photointerpretation techniques and remote sensing in GIS environment. As a result, seven geo-environmental zones were obtained from a weighted integration by multicriteria analysis of physiographic units with land-use classes. In conclusion, taking into account potentialities and limitations, the proposed approach can be considered able to support sustainable decision-making, being applicable in other regions.

  15. Measurement of renal glomerular filtration rate using labelled substances with compartmental analysis

    International Nuclear Information System (INIS)

    Eberstadt, P.L.

    1981-10-01

    Using a model for the two-compartmental open system and experiments on animals (rabbits and dogs) as well as on human healthy volunteers, an attempt was made to study the advantages and limitations of different radionuclide methods for glomerular filtration rate determination. Labelled compounds used in different combinations were: 3 H-inulin, sup(113m)In-EDTA, 131 I-iothalamate, sup(99m)Tc-DTPA and 14 C-creatinine. The results of the study lead to some working hypotheses concerning the value of creatinine and other labelled substances in the measurement of glomerular filtration rate in clinical practice. The advantages and disadvantages of individual methods summarized in the final report are generally in agreement with the present views of many research workers. Also the hypothesis can be justified that the different labelled compounds which have been studied might be handled independently by the membranes involved but at the long run produce similar homeostatic balance

  16. Savannah River Laboratory DOSTOMAN code: a compartmental pathways computer model of contaminant transport

    International Nuclear Information System (INIS)

    King, C.M.; Wilhite, E.L.; Root, R.W. Jr.

    1985-01-01

    The Savannah River Laboratory DOSTOMAN code has been used since 1978 for environmental pathway analysis of potential migration of radionuclides and hazardous chemicals. The DOSTOMAN work is reviewed including a summary of historical use of compartmental models, the mathematical basis for the DOSTOMAN code, examples of exact analytical solutions for simple matrices, methods for numerical solution of complex matrices, and mathematical validation/calibration of the SRL code. The review includes the methodology for application to nuclear and hazardous chemical waste disposal, examples of use of the model in contaminant transport and pathway analysis, a user's guide for computer implementation, peer review of the code, and use of DOSTOMAN at other Department of Energy sites. 22 refs., 3 figs

  17. Cerebrospinal fluid analysis in the HIV infection and compartmentalization of HIV in the central nervous system

    Directory of Open Access Journals (Sweden)

    Sérgio Monteiro de Almeida

    2015-07-01

    Full Text Available The nervous system plays an important role in HIV infection. The purpose of this review is to discuss the indications for cerebrospinal fluid (CSF analysis in HIV infection in clinical practice. CSF analysis in HIV infection is indicated for the diagnosis of opportunistic infections and co-infections, diagnosis of meningitis caused by HIV, quantification of HIV viral load, and analysis of CNS HIV compartmentalization. Although several CSF biomarkers have been investigated, none are clinically applicable. The capacity of HIV to generate genetic diversity, in association with the constitutional characteristics of the CNS, facilitates the generation of HIV quasispecies in the CNS that are distinct from HIV in the systemic circulation. CSF analysis has a well-defined and valuable role in the diagnosis of CNS infections in HIV/AIDS patients. Further research is necessary to establish a clinically applicable biomarker for the diagnosis of HIV-associated neurocognitive disorders.

  18. Sequence Stratigraphy of the Dakota Sandstone, Eastern San Juan Basin, New Mexico, and its Relationship to Reservoir Compartmentalization

    Energy Technology Data Exchange (ETDEWEB)

    Varney, Peter J.

    2002-04-23

    This research established the Dakota-outcrop sequence stratigraphy in part of the eastern San Juan Basin, New Mexico, and relates reservoir quality lithologies in depositional sequences to structure and reservoir compartmentalization in the South Lindrith Field area. The result was a predictive tool that will help guide further exploration and development.

  19. 21 CFR 888.3535 - Knee joint femorotibial (uni-compartmental) metal/polymer porous-coated uncemented prosthesis.

    Science.gov (United States)

    2010-04-01

    .../polymer porous-coated uncemented prosthesis. 888.3535 Section 888.3535 Food and Drugs FOOD AND DRUG... prosthesis. (a) Identification. A knee joint femorotibial (uni-compartmental) metal/polymer porous-coated uncemented prosthesis is a device intended to be implanted to replace part of a knee joint. The device limits...

  20. Assessment of spatial heterogeneity in continuous twin screw wet granulation process using three-compartmental population balance model.

    Science.gov (United States)

    Liu, Huolong; Galbraith, Shaun C; Park, Seo-Young; Cha, Bumjoon; Huang, Zhuangrong; Meyer, Robert Frederick; Flamm, Matthew H; O'Connor, Thomas; Lee, Sau; Yoon, Seongkyu

    2018-01-25

    In this study, a novel three-compartmental population balance model (PBM) for a continuous twin screw wet granulation process is developed, combining the techniques of PBM and regression process modeling. The developed model links screw configuration, screw speed, and blend throughput with granule properties to predict the granule size distribution (GSD) and volume-average granule diameter. The granulator screw barrel was divided into three compartments along barrel length: wetting compartment, mixing compartment, and steady growth compartment. Different granulation mechanisms are assumed in each compartment. The proposed model therefore considers spatial heterogeneity, improving model prediction accuracy. An industrial data set containing 14 experiments is applied for model development. Three validation experiments show that the three-compartmental PBM can accurately predict granule diameter and size distribution at randomly selected operating conditions. Sixteen combinations of aggregation and breakage kernels are investigated in predicting the experimental GSD to best judge the granulation mechanism. The three-compartmental model is compared with a one-compartmental model in predicting granule diameter at different experimental conditions to demonstrate its advantage. The influence of the screw configuration, screw speed and blend throughput on the volume-average granule diameter is analyzed based on the developed model.

  1. Recent advances in compartmentalized synthetic architectures as drug carriers, cell mimics and artificial organelles

    DEFF Research Database (Denmark)

    York-Durán, María José; Gallardo, Maria Godoy; Labay, Cédric Pierre

    2017-01-01

    significant research attention and these assemblies are proposed as candidate materials for a range of biomedical applications. In this Review article, the recent successes of multicompartment architectures as carriers for the delivery of therapeutic cargo or the creation of micro- and nanoreactors that mimic...

  2. Evaluation of a compartmental model for estimating tumor hypoxia via FMISO dynamic PET imaging

    International Nuclear Information System (INIS)

    Wang Wenli; Nehmeh, Sadek A; O'Donoghue, Joseph; Zanzonico, Pat B; Schmidtlein, C Ross; Lee, Nancy Y; Humm, John L; Georgi, Jens-Christoph; Paulus, Timo; Narayanan, Manoj; Bal, Matthieu

    2009-01-01

    This paper systematically evaluates a pharmacokinetic compartmental model for identifying tumor hypoxia using dynamic positron emission tomography (PET) imaging with 18 F-fluoromisonidazole (FMISO). A generic irreversible one-plasma two-tissue compartmental model was used. A dynamic PET image dataset was simulated with three tumor regions-normoxic, hypoxic and necrotic-embedded in a normal-tissue background, and with an image-based arterial input function. Each voxelized tissue's time activity curve (TAC) was simulated with typical values of kinetic parameters, as deduced from FMISO-PET data from nine head-and-neck cancer patients. The dynamic dataset was first produced without any statistical noise to ensure that correct kinetic parameters were reproducible. Next, to investigate the stability of kinetic parameter estimation in the presence of noise, 1000 noisy samples of the dynamic dataset were generated, from which 1000 noisy estimates of kinetic parameters were calculated and used to estimate the sample mean and covariance matrix. It is found that a more peaked input function gave less variation in various kinetic parameters, and the variation of kinetic parameters could also be reduced by two region-of-interest averaging techniques. To further investigate how bias in the arterial input function affected the kinetic parameter estimation, a shift error was introduced in the peak amplitude and peak location of the input TAC, and the bias of various kinetic parameters calculated. In summary, mathematical phantom studies have been used to determine the statistical accuracy and precision of model-based kinetic analysis, which helps to validate this analysis and provides guidance in planning clinical dynamic FMISO-PET studies.

  3. Transit-time and age distributions for nonlinear time-dependent compartmental systems.

    Science.gov (United States)

    Metzler, Holger; Müller, Markus; Sierra, Carlos A

    2018-02-06

    Many processes in nature are modeled using compartmental systems (reservoir/pool/box systems). Usually, they are expressed as a set of first-order differential equations describing the transfer of matter across a network of compartments. The concepts of age of matter in compartments and the time required for particles to transit the system are important diagnostics of these models with applications to a wide range of scientific questions. Until now, explicit formulas for transit-time and age distributions of nonlinear time-dependent compartmental systems were not available. We compute densities for these types of systems under the assumption of well-mixed compartments. Assuming that a solution of the nonlinear system is available at least numerically, we show how to construct a linear time-dependent system with the same solution trajectory. We demonstrate how to exploit this solution to compute transit-time and age distributions in dependence on given start values and initial age distributions. Furthermore, we derive equations for the time evolution of quantiles and moments of the age distributions. Our results generalize available density formulas for the linear time-independent case and mean-age formulas for the linear time-dependent case. As an example, we apply our formulas to a nonlinear and a linear version of a simple global carbon cycle model driven by a time-dependent input signal which represents fossil fuel additions. We derive time-dependent age distributions for all compartments and calculate the time it takes to remove fossil carbon in a business-as-usual scenario.

  4. Proteolytic compartmentalization and activity in the midgut of Andrallus spinidens Fabricius (Hemiptera: Pentatomidae

    Directory of Open Access Journals (Sweden)

    S. Sorkhabi-Abdolmaleki

    2013-04-01

    Full Text Available Digestive proteolytic activity in the alimentary canal of Andrallus spinidens, a potential biocontrol agent of lepidopteran larvae, was studied by considering enzyme compartmentalization and diversity. The alimentary canal of adults consists of a foregut, a four- sectioned midgut, namely V1 to V4 (ventriculus, and a hindgut. The optimal pH for general proteolytic activity was found to be at pH 8 with a small peak at pH 6. Results revealed that there are several specific proteases in the midgut of A. spinidens, including trypsin-like, chymotrypsin-like, and elastase as serine proteases, and cathepsins B, L and D as cysteine proteases, in addition to two exopeptidases of carboxy- and aminopetidases. Compartmentalization of digestive proteolytic activity showed that V3 is the main area of proteolytic secretion for both general and specific proteases and that V4 has the lowest enzymatic role, so that four out of the eight specific proteases found showed no activity in this section. The lowest and the highest proteolytic activity was found to be in the 1st and 4th nymphal instars, respectively. Using the specific inhibitors phenylmethylsulfonyl fluoride, Na-p-tosyl-L-lysine chloromethyl ketone, Ntosyl- L-phenylalanine chloromethyl ketone, L-trans-epoxysuccinyl-leucylamido-( 4-guanidino-butane, cystatin, phenanthroline and ethylendiamidetetraacetic acid, we verified the presence of all specific proteases noted using both biochemical assays and sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Our findings demonstrated that A. spinidens could utilize several caterpillars because of the presence of various of proteases in its midgut.

  5. The construction of next-generation matrices for compartmental epidemic models.

    Science.gov (United States)

    Diekmann, O; Heesterbeek, J A P; Roberts, M G

    2010-06-06

    The basic reproduction number (0) is arguably the most important quantity in infectious disease epidemiology. The next-generation matrix (NGM) is the natural basis for the definition and calculation of (0) where finitely many different categories of individuals are recognized. We clear up confusion that has been around in the literature concerning the construction of this matrix, specifically for the most frequently used so-called compartmental models. We present a detailed easy recipe for the construction of the NGM from basic ingredients derived directly from the specifications of the model. We show that two related matrices exist which we define to be the NGM with large domain and the NGM with small domain. The three matrices together reflect the range of possibilities encountered in the literature for the characterization of (0). We show how they are connected and how their construction follows from the basic model ingredients, and establish that they have the same non-zero eigenvalues, the largest of which is the basic reproduction number (0). Although we present formal recipes based on linear algebra, we encourage the construction of the NGM by way of direct epidemiological reasoning, using the clear interpretation of the elements of the NGM and of the model ingredients. We present a selection of examples as a practical guide to our methods. In the appendix we present an elementary but complete proof that (0) defined as the dominant eigenvalue of the NGM for compartmental systems and the Malthusian parameter r, the real-time exponential growth rate in the early phase of an outbreak, are connected by the properties that (0) > 1 if and only if r > 0, and (0) = 1 if and only if r = 0.

  6. Pathway Compartmentalization in Peroxisome of Saccharomyces cerevisiae to Produce Versatile Medium Chain Fatty Alcohols.

    Science.gov (United States)

    Sheng, Jiayuan; Stevens, Joseph; Feng, Xueyang

    2016-05-27

    Fatty alcohols are value-added chemicals and important components of a variety of industries, which have a >3 billion-dollar global market annually. Long chain fatty alcohols (>C12) are mainly used in surfactants, lubricants, detergents, pharmaceuticals and cosmetics while medium chain fatty alcohols (C6-C12) could be used as diesel-like biofuels. Microbial production of fatty alcohols from renewable feedstock stands as a promising strategy to enable sustainable supply of fatty alcohols. In this study, we report, for the first time, that medium chain fatty alcohols could be produced in yeast via targeted expression of a fatty acyl-CoA reductase (TaFAR) in the peroxisome of Saccharomyces cerevisiae. By tagging TaFAR enzyme with peroxisomal targeting signal peptides, the TaFAR could be compartmentalized into the matrix of the peroxisome to hijack the medium chain fatty acyl-CoA generated from the beta-oxidation pathway and convert them to versatile medium chain fatty alcohols (C10 &C12). The overexpression of genes encoding PEX7 and acetyl-CoA carboxylase further improved fatty alcohol production by 1.4-fold. After medium optimization in fed-batch fermentation using glucose as the sole carbon source, fatty alcohols were produced at 1.3 g/L, including 6.9% 1-decanol, 27.5% 1-dodecanol, 2.9% 1-tetradecanol and 62.7% 1-hexadecanol. This work revealed that peroxisome could be engineered as a compartmentalized organelle for producing fatty acid-derived chemicals in S. cerevisiae.

  7. Effects of Air Stacking Maneuver on Cough Peak Flow and Chest Wall Compartmental Volumes of Subjects With Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Sarmento, Antonio; Resqueti, Vanessa; Dourado-Júnior, Mario; Saturnino, Lailane; Aliverti, Andrea; Fregonezi, Guilherme; de Andrade, Armele Dornelas

    2017-11-01

    To assess the acute effects of air stacking on cough peak flow (CPF) and chest wall compartmental volumes of persons with amyotrophic lateral sclerosis (ALS) versus healthy subjects positioned at 45° body inclination. Cross-sectional study with a matched-pair design. University hospital. Persons (N=24) with ALS (n=12) and age-matched healthy subjects (n=12). CPF, chest wall compartmental inspiratory capacity, chest wall vital capacity, chest wall tidal volume and operational volumes, breathing pattern, and percentage of contribution of the compartments to the inspired volume were measured by optoelectronic plethysmography. Compared with healthy subjects, significantly lower CPF (P=.007), chest wall compartmental inspiratory capacity (P<.001), chest wall vital capacity (P<.001), and chest wall tidal volume (P<.001) were found in subjects with ALS. Immediately after air stacking, CPF (P<.001) and chest wall compartmental inspiratory capacity (P<.001) significantly increased in both groups, with values returning to basal only in healthy subjects. After air stacking, the abdominal compartment (P=.004) was determined to be responsible for the inspired volume in subjects with ALS. Significantly higher chest wall vital capacity (P=.05) was observed in subjects with ALS 5 minutes after air stacking, with the rib cage compartment (P=.049) being responsible for volume change. No differences were found in chest wall vital capacity and compartmental volumes of healthy subjects. Chest wall tidal volume (P<.001) significantly increased during the protocol in the healthy subjects, mainly because of end-inspiratory (P<.001) and abdominal volumes (P=.008). No significant differences were observed in percentage of contribution of the compartments to the inspired volume and end-expiratory volume of both groups. No significant differences were found in chest wall tidal volume, operational volume, and breathing pattern in persons with ALS. Air stacking is effective in increasing CPF

  8. Boron compartmentation in roots of sunflower plants of different boron status: A study using the stable isotopes 10B and 11B adopting two independent approaches

    International Nuclear Information System (INIS)

    Pfeffer, H.; Dannel, F.; Roemheld, V.

    2001-01-01

    The intracellular compartmentation of boron (B) in roots of sunflower plants precultured with 100 μM B (high B) or 1 μM B (low B) was studied using two independent approaches. In the first approach, short-term efflux studies using the stable isotopes 11 B and 10 B were carried out. In roots of high B plants, the calculated concentrations of B (nmol g FW -1 ) were 52.6 in the cell wall, 7.5 in the vacuole, 27.1 in the cytosol and 48.0 in the free space. In roots of low B plants, the concentrations of B (nmol g FW -1 ) were 43.4 in the cell wall, 2.8 in the vacuole, 17.9 in the cytosol and almost zero in the free space. Although the B supply differed by a factor 100, the B concentrations in the cytosol and the vacuole of low B plants were 66 and 37% of the respective concentrations in high B plants. This suggests an additional role for B in plant metabolism, besides its function in the cell wall. In the second approach, root B pools (cell sap and water-insoluble residue) were determined for comparison, and found to be in good agreement with the results from the efflux study. (au)

  9. Cytoplasmic localization of Hug1p, a negative regulator of the MEC1 pathway, coincides with the compartmentalization of Rnr2p–Rnr4p

    International Nuclear Information System (INIS)

    Ainsworth, William B.; Hughes, Bridget Todd; Au, Wei Chun; Sakelaris, Sally; Kerscher, Oliver; Benton, Michael G.; Basrai, Munira A.

    2013-01-01

    Highlights: •Hug1p overexpression sensitizes wild-type cells to DNA damage and hydroxyurea (HU). •Expression of Hug1p in response to HU treatment is delayed relative to Rnr3p. •MEC1 pathway genes are required for cytoplasmic localization of Hug1p. •Hug1p subcellular compartmentalization to the cytoplasm coincides with Rnr2p–Rnr4p. -- Abstract: The evolutionarily conserved MEC1 checkpoint pathway mediates cell cycle arrest and induction of genes including the RNR (Ribonucleotide reductase) genes and HUG1 (Hydroxyurea, ultraviolet, and gamma radiation) in response to DNA damage and replication arrest. Rnr complex activity is in part controlled by cytoplasmic localization of the Rnr2p–Rnr4p subunits and inactivation of negative regulators Sml1p and Dif1p upon DNA damage and hydroxyurea (HU) treatment. We previously showed that a deletion of HUG1 rescues lethality of mec1Δ and suppresses dun1Δ strains. In this study, multiple approaches demonstrate the regulatory response of Hug1p to DNA damage and HU treatment and support its role as a negative effector of the MEC1 pathway. Consistent with our hypothesis, wild-type cells are sensitive to DNA damage and HU when HUG1 is overexpressed. A Hug1 polyclonal antiserum reveals that HUG1 encodes a protein in budding yeast and its MEC1-dependent expression is delayed compared to the rapid induction of Rnr3p in response to HU treatment. Cell biology and subcellular fractionation experiments show localization of Hug1p-GFP to the cytoplasm upon HU treatment. The cytoplasmic localization of Hug1p-GFP is dependent on MEC1 pathway genes and coincides with the cytoplasmic localization of Rnr2p–Rnr4p. Taken together, the genetic interactions, gene expression, and localization studies support a novel role for Hug1p as a negative regulator of the MEC1 checkpoint response through its compartmentalization with Rnr2p–Rnr4p

  10. Cytoplasmic localization of Hug1p, a negative regulator of the MEC1 pathway, coincides with the compartmentalization of Rnr2p–Rnr4p

    Energy Technology Data Exchange (ETDEWEB)

    Ainsworth, William B. [Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803 (United States); Hughes, Bridget Todd; Au, Wei Chun; Sakelaris, Sally [Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States); Kerscher, Oliver [Biology Department, The College of William and Mary, Williamsburg, VA 23185 (United States); Benton, Michael G., E-mail: benton@lsu.edu [Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA 70803 (United States); Basrai, Munira A., E-mail: basraim@mail.nih.gov [Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States)

    2013-10-04

    Highlights: •Hug1p overexpression sensitizes wild-type cells to DNA damage and hydroxyurea (HU). •Expression of Hug1p in response to HU treatment is delayed relative to Rnr3p. •MEC1 pathway genes are required for cytoplasmic localization of Hug1p. •Hug1p subcellular compartmentalization to the cytoplasm coincides with Rnr2p–Rnr4p. -- Abstract: The evolutionarily conserved MEC1 checkpoint pathway mediates cell cycle arrest and induction of genes including the RNR (Ribonucleotide reductase) genes and HUG1 (Hydroxyurea, ultraviolet, and gamma radiation) in response to DNA damage and replication arrest. Rnr complex activity is in part controlled by cytoplasmic localization of the Rnr2p–Rnr4p subunits and inactivation of negative regulators Sml1p and Dif1p upon DNA damage and hydroxyurea (HU) treatment. We previously showed that a deletion of HUG1 rescues lethality of mec1Δ and suppresses dun1Δ strains. In this study, multiple approaches demonstrate the regulatory response of Hug1p to DNA damage and HU treatment and support its role as a negative effector of the MEC1 pathway. Consistent with our hypothesis, wild-type cells are sensitive to DNA damage and HU when HUG1 is overexpressed. A Hug1 polyclonal antiserum reveals that HUG1 encodes a protein in budding yeast and its MEC1-dependent expression is delayed compared to the rapid induction of Rnr3p in response to HU treatment. Cell biology and subcellular fractionation experiments show localization of Hug1p-GFP to the cytoplasm upon HU treatment. The cytoplasmic localization of Hug1p-GFP is dependent on MEC1 pathway genes and coincides with the cytoplasmic localization of Rnr2p–Rnr4p. Taken together, the genetic interactions, gene expression, and localization studies support a novel role for Hug1p as a negative regulator of the MEC1 checkpoint response through its compartmentalization with Rnr2p–Rnr4p.

  11. HIV-1 tropism testing in subjects achieving undetectable HIV-1 RNA: diagnostic accuracy, viral evolution and compartmentalization.

    Directory of Open Access Journals (Sweden)

    Christian Pou

    Full Text Available BACKGROUND: Technically, HIV-1 tropism can be evaluated in plasma or peripheral blood mononuclear cells (PBMCs. However, only tropism testing of plasma HIV-1 has been validated as a tool to predict virological response to CCR5 antagonists in clinical trials. The preferable tropism testing strategy in subjects with undetectable HIV-1 viremia, in whom plasma tropism testing is not feasible, remains uncertain. METHODS & RESULTS: We designed a proof-of-concept study including 30 chronically HIV-1-infected individuals who achieved HIV-1 RNA <50 copies/mL during at least 2 years after first-line ART initiation. First, we determined the diagnostic accuracy of 454 and population sequencing of gp120 V3-loops in plasma and PBMCs, as well as of MT-2 assays before ART initiation. The Enhanced Sensitivity Trofile Assay (ESTA was used as the technical reference standard. 454 sequencing of plasma viruses provided the highest agreement with ESTA. The accuracy of 454 sequencing decreased in PBMCs due to reduced specificity. Population sequencing in plasma and PBMCs was slightly less accurate than plasma 454 sequencing, being less sensitive but more specific. MT-2 assays had low sensitivity but 100% specificity. Then, we used optimized 454 sequence data to investigate viral evolution in PBMCs during viremia suppression and only found evolution of R5 viruses in one subject. No de novo CXCR4-using HIV-1 production was observed over time. Finally, Slatkin-Maddison tests suggested that plasma and cell-associated V3 forms were sometimes compartmentalized. CONCLUSIONS: The absence of tropism shifts during viremia suppression suggests that, when available, testing of stored plasma samples is generally safe and informative, provided that HIV-1 suppression is maintained. Tropism testing in PBMCs may not necessarily produce equivalent biological results to plasma, because the structure of viral populations and the diagnostic performance of tropism assays may sometimes vary

  12. Mathematical basis for the measurement of absolute and fractional cardiac output with diffusible tracers by compartmental analysis methods

    International Nuclear Information System (INIS)

    Charkes, N.D.

    1984-01-01

    Using compartmental analysis methods, a mathematical basis is given for the measurement of absolute and fractional cardiac output with diffusible tracers. Cardiac output is shown to be the product of the blood volume and the sum of the rate constants of tracer egress from blood, modified by a factor reflecting transcapillary diffusibility, the transfer fraction. The return of tracer to the blood and distant (intracellular) events are shown to play no role in the solution. Fractional cardiac output is the ratio of the rate constant of tracer egress from blood to an organ, divided by the sum of the egress constants from blood. Predominantly extracellular ions such as sodium or bromide are best suited for this technique, although theoretically any diffusible tracer whose compartmental model can be solved may be used. It is shown that fractional cardiac output is independent of the transfer fraction, and therefore can be measured accurately by tracers which are not freely diffusible

  13. Linear least squares compartmental-model-independent parameter identification in PET

    International Nuclear Information System (INIS)

    Thie, J.A.; Smith, G.T.; Hubner, K.F.

    1997-01-01

    A simplified approach involving linear-regression straight-line parameter fitting of dynamic scan data is developed for both specific and nonspecific models. Where compartmental-model topologies apply, the measured activity may be expressed in terms of: its integrals, plasma activity and plasma integrals -- all in a linear expression with macroparameters as coefficients. Multiple linear regression, as in spreadsheet software, determines parameters for best data fits. Positron emission tomography (PET)-acquired gray-matter images in a dynamic scan are analyzed: both by this method and by traditional iterative nonlinear least squares. Both patient and simulated data were used. Regression and traditional methods are in expected agreement. Monte-Carlo simulations evaluate parameter standard deviations, due to data noise, and much smaller noise-induced biases. Unique straight-line graphical displays permit visualizing data influences on various macroparameters as changes in slopes. Advantages of regression fitting are: simplicity, speed, ease of implementation in spreadsheet software, avoiding risks of convergence failures or false solutions in iterative least squares, and providing various visualizations of the uptake process by straight line graphical displays. Multiparameter model-independent analyses on lesser understood systems is also made possible

  14. Hypothalamic metabolic compartmentation during appetite regulation as revealed by magnetic resonance imaging and spectroscopy methods

    Science.gov (United States)

    Lizarbe, Blanca; Benitez, Ania; Peláez Brioso, Gerardo A.; Sánchez-Montañés, Manuel; López-Larrubia, Pilar; Ballesteros, Paloma; Cerdán, Sebastián

    2013-01-01

    We review the role of neuroglial compartmentation and transcellular neurotransmitter cycling during hypothalamic appetite regulation as detected by Magnetic Resonance Imaging (MRI) and Spectroscopy (MRS) methods. We address first the neurochemical basis of neuroendocrine regulation in the hypothalamus and the orexigenic and anorexigenic feed-back loops that control appetite. Then we examine the main MRI and MRS strategies that have been used to investigate appetite regulation. Manganese-enhanced magnetic resonance imaging (MEMRI), Blood oxygenation level-dependent contrast (BOLD), and Diffusion-weighted magnetic resonance imaging (DWI) have revealed Mn2+ accumulations, augmented oxygen consumptions, and astrocytic swelling in the hypothalamus under fasting conditions, respectively. High field 1H magnetic resonance in vivo, showed increased hypothalamic myo-inositol concentrations as compared to other cerebral structures. 1H and 13C high resolution magic angle spinning (HRMAS) revealed increased neuroglial oxidative and glycolytic metabolism, as well as increased hypothalamic glutamatergic and GABAergic neurotransmissions under orexigenic stimulation. We propose here an integrative interpretation of all these findings suggesting that the neuroendocrine regulation of appetite is supported by important ionic and metabolic transcellular fluxes which begin at the tripartite orexigenic clefts and become extended spatially in the hypothalamus through astrocytic networks becoming eventually MRI and MRS detectable. PMID:23781199

  15. The Use of Metaphors in Poetry and Organization Theory: Toward De-Compartmentalization of Organizational Knowledge

    Directory of Open Access Journals (Sweden)

    Naveed Yazdani

    2011-09-01

    Full Text Available Since the time of Western modernity, knowledge is compartmentalized into differentiated fields. This has however not mitigated the influence of natural science model of theorizing on social sciences. As a result, the discipline of organization theory has grown without the influence of abstract, ephemeral and metaphysical fields such as religion, history, mystic philosophy, arts and literature. With the rise of organizational cultural studies and the emergence of symbolic-interpretive view of organizing during the last three or four decades, the trend is however gradually shifting. Corporate aesthetics is a field within organization theory which places value on the aesthetical aspects of managing and organizing. Taking the lead from corporate aesthetics, this paper highlights the link between Organization theory and literature (poetry, both English and Urdu. The linguistic and conceptual instrument of metaphors is isolated as the underpinning tool of this link. The role of metaphors in organization theory seems to have further importance because of the emergence of „social construction‟ and „sense making‟ views of organizations. The paper reinforces the views of contemporary writers of organization theory that the field draws from multiple and diverse disciplines by highlighting the link between organization theory and poetry through employing metaphoricity.

  16. Dynamic PET scanning and compartmental model analysis to determine cellular level radiotracer distribution in vivo

    International Nuclear Information System (INIS)

    Smith, G.T.; Hubner, K.F.; Goodman, M.M.; Stubbs, J.B.

    1992-01-01

    Positron emission tomography (PET) has been used to measure tissue radiotracer concentration in vivo. Radiochemical distribution can be determined with compartmental model analysis. A two compartment model describes the kinetics of N-13 ammonia ( 13 NH 3 ) in the myocardium. The model consists of a vascular space, Q 1 and a space for 13 NH 3 bound within the tissue, Q 2 . Differential equations for the model can be written: X(t) = AX(t) + BU( t), Y(t)= CX(t)+ DU(t) (1) where X(t) is a column vector [Q 1 (t); Q 2 (t)], U(t) is the arterial input activity measured from the left ventricular blood pool, and Y(t) is the measured tissue activity using PET. Matrices A, B, C, and D are dependent on physiological parameters describing the kinetics of 13 NH 3 in the myocardium. Estimated parameter matrices in Equation 1 have been validated in dog experiments by measuring myocardial perfusion with dynamic PET scanning and intravenous injection of 13 NH 3 . Tracer concentrations for each compartment can be calculated by direct integration of Equation 1. If the cellular level distribution of each compartment is known, the concentration of tracer within the intracellular and extracellular space can be determined. Applications of this type of modeling include parameter estimation for measurement of physiological processes, organ level dosimetry, and determination of cellular radiotracer distribution

  17. Compartmental analysis and dosimetric aspects applied to cholesterol with 3H labeled

    International Nuclear Information System (INIS)

    Oliveira, Adriano dos Santos

    2015-01-01

    Cardiovascular diseases (CVDs) are one of the major reasons of death around the world according to the World Health Organization (WHO). It is well known that changes in levels of plasma lipoproteins, which are responsible for the transport of cholesterol into the bloodstream, are associated with cardiovascular diseases. For this reason to know the biokinetic parameters of plasma lipoproteins and quantifies them is important to correct and deep understanding about the diseases associated with these disorders. The main aim of this study is to provide a biokinetic model and estimate the radiometric doses for 3 H-Cholesterol, a radioactive tracer widely used in physiological and metabolic studies. The model was based on [Schwartz et al. 2004] about the distribution of cholesterol by the lipoprotein and gastrointestinal model [ICRP 30, 1979]. The doses distribution in compartments of the model and other organs and tissues of a standard adult described in [ICRP 106, 2008] was calculated using MIRD method (Medical Internal Radiation Dose) and compartmental analysis using the computer program Matlab®. The dose coefficients were estimated for a standard phantom man (73 kg) described in [ICRP 60, 1991]. The estimated doses for both model and for other organs were low and did not exceed the highest dose obtained that was in the upper large intestine, as 44,8 μGy these parameters will assist in ethics committee's opinions on the use of works that use the 3 H-cholesterol which radioactive tracer. (author)

  18. Fault assessment for basement reservoir compartmentalization: Case study at Northeast Betara gas field, South Sumatra Basin

    Science.gov (United States)

    Risyad, M.; Suta, I. N.; Haris, A.

    2017-07-01

    Northeast Betara field is situated on the northern part of prolific South Sumatra Basin. It has produced gas from Lower Talang Akar Formation sandstone and over 90 wells have been drilled. A 3D seismic data was acquired in 2000 and reprocessed in 2012 to enhance the subsurface image. In 2013 an exploratory well NEB Base-1 was drilled and made gas and condensate discovery from the subsequent pre-tertiary basement which is confirmed as granite. The well proved fractured basement reservoir play on paleo high of the structure. The absence of full-diameter conventional core prompts well logs and seismic data analysis by using a workstation. Main methods for fracture prediction have been seismic attributes extraction and structural geology studies of basement provided by image logs on a few exploration wells. Ant tracking attribute is widely employed to image seismic event discontinuities due to extensive faults which generated the natural fractures. Delineations well NEB Base-2 was drilled on second paleo high and unfortunately, it did not find any gas indication from pre-tertiary basement target. Seismic structural interpretation and seismic attributes are conducted to image distribution of event discontinuities related to faults or fracture. We found that compartmentalization on basement involved old faults and both paleo high have undergone different structural history and stress character which resulted in separated fractures distribution.

  19. Synthesis, characterization and biological activity of symmetric dinuclear complexes derived from a novel macrocyclic compartmental ligand

    International Nuclear Information System (INIS)

    Mruthyunjayaswamy, B.H.M.; Ijare, Omkar B.; Jadegoud, Y.

    2005-01-01

    A phenol based novel macrocyclic binucleating compartmental ligand N,N-bis(2,6-diiminomethyl-4-methyl-1-hydroxyphenyl)malonoyldicarboxamide was prepared. The complexes were prepared by template method by reacting 2,6-diformyl-4-methylphenol, malonoyl dihydrazide and the metal chlorides of Cu(II), Ni(II), Co(II), Cd(II), Zn(II) and Hg(II) in methanol to get a series of dinuclear complexes. The complexes were characterized by elemental analyses, conductivity measurements, magnetic susceptibility data, IR, UV-Vis, ESR, NMR and FAB mass spectral data. The dinuclear nature of the complexes was confirmed on the basis of elemental analyses, magnetic susceptibility, ESR and FAB mass spectral data. The ligand as well as Cu(II), Ni(II), Co(II) and Zn(II) complexes were tested for their antibacterial and antifungal properties against Escherichia coli, Staphyloccocus aureus, Aspergillus niger and Fusarium oxysporum. Magnetic susceptibility measurements of Cu(II), Ni(II) and Co(II) complexes reveal that these complexes exhibit antiferromagnetic coupling behavior due to the presence of two metal ions in close proximity. FAB mass spectrum of the Cu(II) complex gave a clear evidence for the dinuclear nature. The ligand and the complexes were found to be less active against the tested bacteria, but the ligand alone was found active against the fungus Fusarium oxysporum. (author)

  20. PGI2 synthesis and excretion in dog kidney: evidence for renal PG compartmentalization

    International Nuclear Information System (INIS)

    Boyd, R.M.; Nasjletti, A.; Heerdt, P.M.; Baer, P.G.

    1986-01-01

    To assess the concept of compartmentalization of renal prostaglandins (PG), we compared entry of PGE2 and the PGI2 metabolite 6-keto-PGF1 alpha into the renal vascular and tubular compartments, in sodium pentobarbital-anesthetized dogs. Renal arterial 6-keto-PGF1 alpha infusion increased both renal venous and urinary 6-keto-PGF1 alpha outflow. In contrast, renal arterial infusion of arachidonic acid (AA) or bradykinin (BK) increased renal venous 6-keto-PGF1 alpha outflow but had no effect on its urinary outflow. Both urinary and renal venous PGE2 outflows increased during AA or BK infusion. Ureteral stopped-flow studies revealed no postglomerular 6-keto-PGF1 alpha entry into tubular fluid. During renal arterial infusion of [3H]PGI2 and inulin, first-pass 3H clearance was 40% of inulin clearance; 35% of urinary 3H was 6-keto-PGF1 alpha, and two other urinary metabolites were found. During renal arterial infusion of [3H]6-keto-PGF1 alpha and inulin, first-pass 3H clearance was 150% of inulin clearance; 75% of urinary 3H was 6-keto-PGF1 alpha, and only one other metabolite was found. We conclude that in the dog PGE2 synthesized in the kidney enters directly into both the renal vascular and tubular compartments, but 6-keto-PGF1 alpha of renal origin enters directly into only the renal vascular compartment

  1. Technology Solutions Case Study: Apartment Compartmentalization with an Aerosol-Based Sealing Process

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-07-01

    Air sealing of building enclosures is a difficult and time-consuming process. Current methods in new construction require laborers to physically locate small and sometimes large holes in multiple assemblies and then manually seal each of them. This research study by Building America team Consortium for Advanced Residential Buildings demonstrated the automated air sealing and compartmentalization of buildings through the use of an aerosolized sealant developed by the Western Cooling Efficiency Center at University of California Davis. CARB demonstrated this new technology application in a multifamily building in Queens, NY. The effectiveness of the sealing process was evaluated by three methods: air leakage testing of overall apartment before and after sealing, point-source testing of individual leaks, and pressure measurements in the walls of the target apartment during sealing. Aerosolized sealing was successful by several measures in this study. Many individual leaks that are labor-intensive to address separately were well sealed by the aerosol particles. In addition, many diffuse leaks that are difficult to identify and treat were also sealed. The aerosol-based sealing process resulted in an average reduction of 71% in air leakage across three apartments and an average apartment airtightness of 0.08 CFM50/SF of enclosure area.

  2. Integrated compartmental model for describing the transport of solute in a fractured porous medium. [FRACPORT

    Energy Technology Data Exchange (ETDEWEB)

    DeAngelis, D.L.; Yeh, G.T.; Huff, D.D.

    1984-10-01

    This report documents a model, FRACPORT, that simulates the transport of a solute through a fractured porous matrix. The model should be useful in analyzing the possible transport of radionuclides from shallow-land burial sites in humid environments. The use of the model is restricted to transport through saturated zones. The report first discusses the general modeling approach used, which is based on the Integrated Compartmental Method. The basic equations of solute transport are then presented. The model, which assumes a known water velocity field, solves these equations on two different time scales; one related to rapid transport of solute along fractures and the other related to slower transport through the porous matrix. FRACPORT is validated by application to a simple example of fractured porous medium transport that has previously been analyzed by other methods. Then its utility is demonstrated in analyzing more complex cases of pulses of solute into a fractured matrix. The report serves as a user's guide to FRACPORT. A detailed description of data input, along with a listing of input for a sample problem, is provided. 16 references, 18 figures, 3 tables.

  3. Three-compartmental analysis of effects of D-propranolol on thyroid hormone kinetics

    International Nuclear Information System (INIS)

    Van Der Heijden, J.T.M.; Krenning, E.P.; Van Toor, H.; Hennemann, G.; Docter, R.

    1988-01-01

    Tracer thyroxine (T 4 ), 3,3',5-triiodothyronine (T 3 ), and 3,3',5'-triiodothyronine (rT 3 ) kinetic studies were performed in normal T 4 substituted subjects before and during oral D-propranolol treatment to determine whether changes in thyroid hormone metabolism in a propranolol-induced low-T 3 syndrome result from inhibition of 5'-deiodination or inhibition of transport of iodothyronines into tissues. Data were analyzed according to a three-compartmental model of distribution and metabolism. No changes were observed in size of the three T 4 compartments or in fractional and mass transfer rates of T 4 from plasma to the rapidly (REP) and slowly (SEP) equilibrating pools. Serum T 3 , free T 3 , T 3 plasma pool, T 3 mass transfer rate to REP and SEP, and the T 3 pool masses were all significantly decreased during propranolol to a similar extent as the T 3 plasma production rate (PR). It is concluded that the D-propranolol-induced changes in thyroid hormone metabolism, resulting in a low-T 3 syndrome, are due to inhibition of thyroid hormone deiodination. This is in contrast to the low-T 3 syndrome during caloric deprivation, which results from inhibition of transport of iodothyronines into the liver

  4. A comprehensive compartmental model of blood glucose regulation for healthy and type 2 diabetic subjects.

    Science.gov (United States)

    Vahidi, O; Kwok, K E; Gopaluni, R B; Knop, F K

    2016-09-01

    We have expanded a former compartmental model of blood glucose regulation for healthy and type 2 diabetic subjects. The former model was a detailed physiological model which considered the interactions of three substances, glucose, insulin and glucagon on regulating the blood sugar. The main drawback of the former model was its restriction on the route of glucose entrance to the body which was limited to the intravenous glucose injection. To handle the oral glucose intake, we have added a model of glucose absorption in the gastrointestinal tract to the former model to address the resultant variations of blood glucose concentrations following an oral glucose intake. Another model representing the incretins production in the gastrointestinal tract along with their hormonal effects on boosting pancreatic insulin production is also added to the former model. We have used two sets of clinical data obtained during oral glucose tolerance test and isoglycemic intravenous glucose infusion test from both type 2 diabetic and healthy subjects to estimate the model parameters and to validate the model results. The estimation of model parameters is accomplished through solving a nonlinear optimization problem. The results show acceptable precision of the estimated model parameters and demonstrate the capability of the model in accurate prediction of the body response during the clinical studies.

  5. Hydraulic characteristics and their effects on working performance of compartmentalized anaerobic reactor.

    Science.gov (United States)

    Ji, Jun-yuan; Zheng, Kai; Xing, Ya-juan; Zheng, Ping

    2012-07-01

    The compartmentalized anaerobic reactor (CAR) is a patent novel high-rate reactor and shows a great potential for its application. The hydraulic characteristics and their effects on the working performance of CAR were investigated. The flow pattern tended to plug flow at normal organic loading rate (OLR) and completely mixed flow at high OLRs. The relation of hydraulic dead space (HDS or V(h)) with hydraulic loading rate (HLR or L) and biogas production rate (BPR or G) was V(h) = 3.75 L + 0.19 G-9.47. The hydraulic efficiency of CAR was good or near to good. Both HLR and BPR had significant effects on the hydraulic efficiency, but their effect became less at super-high OLR. They also had a slight influence on the effective volume ratios of CAR, but the influence of BPR almost disappeared at super-high OLR. The good working performance of CAR was ascribed to the improved reactor configuration. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Dynamic compartmentalization of DNA repair proteins within spiral ganglion neurons in response to noise stress.

    Science.gov (United States)

    Guthrie, O'neil W

    2012-12-01

    ABSTRACT In response to stress, spiral ganglion neurons may remodel intracellular pools of DNA repair proteins. This hypothesis was addressed by determining the intracellular location of three classic DNA excision repair proteins (XPA, CSA, and XPC) within the neurons under normal conditions, one day after noise stress (105 dB/4 hr) and following DNA repair adjuvant therapy with carboxy alkyl esters (CAEs; 160 mg/kg/28 days). Under normal conditions, three intracellular compartments were enriched with at least one repair protein. These intracellular compartments were designated nuclear, cytoplasmic, and perinuclear. After the noise stress each repair protein aggregated in the cytoplasm. After CAE therapy each intracellular compartment was enriched with the three DNA repair proteins. Combining noise stress with CAE therapy resulted in the enrichment of at least two repair proteins in each intracellular compartment. The combined results suggest that in response to noise stress and/or otoprotective therapy, spiral ganglion neurons may selectively remodel compartmentalized DNA repair proteins.

  7. Reservoir compartmentalization and management strategies: Lessons learned in the Illinois basin

    Energy Technology Data Exchange (ETDEWEB)

    Grube, J.P.; Crockett, J.E.; Huff, B.G. [and others

    1997-08-01

    A research project jointly sponsored by the US Department of Energy and the Illinois State Geological Survey focused on the Cypress and Aux Vases Formations (Mississippian), major clastic reservoirs in the Illinois Basin. Results from the research showed that understanding the nature and distribution of reservoir compartments, and using effective reservoir management strategies, can significantly improve recovery efficiencies from oil fields in this mature basin. Compartments can be most effectively drained where they are geologically well defined and reservoir management practices are coordinated through unified, compartment-wide, development programs. Our studies showed that the Cypress and Aux Vases reservoirs contain lateral and vertical permeability barriers forming compartments that range in size from isolated, interlaminated sandstone and shale beds to sandstone bodies tens of feet in thickness and more than a mile in length. Stacked or shingled, genetically similar sandstone bodies are commonly separated by thin impermeable intervals that can be difficult to distinguish on logs and can, therefore, cause correlation problems, even between wells drilled on spacing of less than ten acres. Lateral separation of sandstone bodies causes similar problems. Reservoir compartmentalization reduces primary and particularly secondary recovery by trapping pockets of by-passed or banked oil. Compartments can be detected by comparing recovery factors of genetically similar sandstone bodies within a field; using packers to separate commingled intervals and analyzing fluid recoveries and pressures; making detailed core-to-log calibrations that identify compartment boundaries; and analyzing pressure data from waterflood programs.

  8. Compartmental Schiff-base ligands--a rich library of tectons in designing magnetic and luminescent materials.

    Science.gov (United States)

    Andruh, Marius

    2011-03-21

    The binuclear complexes (3d-3d, 3d-3d', 3d-4f) with compartmental ligands can efficiently act as tectons in crystal engineering. Various high nuclearity clusters and coordination polymers can be easily obtained by choosing the appropriate spacers. The main interest in such systems arises from their magnetic and photophysical properties. Moreover, 3d-3d' and 3d-4f complexes are useful precursors in designing heterotrimetallic systems with relevance in molecular magnetism.

  9. The Importance of Bank Storage in Supplying Baseflow to Rivers Flowing Through Compartmentalized, Alluvial Aquifers

    Science.gov (United States)

    Rhodes, Kimberly A.; Proffitt, Tiffany; Rowley, Taylor; Knappett, Peter S. K.; Montiel, Daniel; Dimova, Natasha; Tebo, Daniel; Miller, Gretchen R.

    2017-12-01

    As water grows scarcer in semiarid and arid regions around the world, new tools are needed to quantify fluxes of water and chemicals between aquifers and rivers. In this study, we quantify the volumetric flux of subsurface water to a 24 km reach of the Brazos River, a lowland river that meanders through the Brazos River Alluvium Aquifer (BRAA), with 8 months of high-frequency differential gaging measurements using fixed gaging stations. Subsurface discharge sources were determined using natural tracers and End-Member Mixing Analysis (EMMA). During a 4 month river stage recession following a high stage event, subsurface discharge decreased from 50 m3/s to 0, releasing a total of 1.0 × 108 m3 of water. Subsurface discharge dried up even as the groundwater table at two locations in the BRAA located 300-500 m from the river remained ˜4 m higher than the river stage. Less than 4% of the water discharged from the subsurface during the prolonged recession period resembled the chemical fingerprint of the alluvial aquifer. Instead, the chemistry of this discharged water closely resembled high stage "event" river water. Together, these findings suggest that the river is well connected to rechargeable bank storage reservoirs but disconnected from the broader alluvial aquifer. The average width of discrete bank storage zones on each side of the river, identified with Electrical Resistivity Tomography (ERT), was approximately 1.5 km. In such highly compartmentalized aquifers, groundwater pumping is unlikely to impact the exchange between the river and the alluvium.

  10. Relationships between metal compartmentalization and biomarkers in earthworms exposed to field-contaminated soils.

    Science.gov (United States)

    Beaumelle, Léa; Hedde, Mickaël; Vandenbulcke, Franck; Lamy, Isabelle

    2017-05-01

    Partitioning tissue metal concentration into subcellular compartments reflecting toxicologically available pools may provide good descriptors of the toxicological effects of metals on organisms. Here we investigated the relationships between internal compartmentalization of Cd, Pb and Zn and biomarker responses in a model soil organism: the earthworm. The aim of this study was to identify metal fractions reflecting the toxic pressure in an endogeic, naturally occurring earthworm species (Aporrectodea caliginosa) exposed to realistic field-contaminated soils. After a 21 days exposure experiment to 31 field-contaminated soils, Cd, Pb and Zn concentrations in earthworms and in three subcellular fractions (cytosol, debris and granules) were quantified. Different biomarkers were measured: the expression of a metallothionein gene (mt), the activity of catalase (CAT) and of glutathione-s-transferase (GST), and the protein, lipid and glycogen reserves. Biomarkers were further combined into an integrated biomarker index (IBR). The subcellular fractionation provided better predictors of biomarkers than the total internal contents hence supporting its use when assessing toxicological bioavailability of metals to earthworms. The most soluble internal pools of metals were not always the best predictors of biomarker responses. metallothionein expression responded to increasing concentrations of Cd in the insoluble fraction (debris + granules). Protein and glycogen contents were also mainly related to Cd and Pb in the insoluble fraction. On the other hand, GST activity was better explained by Pb in the cytosolic fraction. CAT activity and lipid contents variations were not related to metal subcellular distribution. The IBR was best explained by both soluble and insoluble fractions of Pb and Cd. This study further extends the scope of mt expression as a robust and specific biomarker in an ecologically representative earthworm species exposed to field-contaminated soils. The

  11. Ocular pharmacokinetics of a novel tetrahydroquinoline analog in rabbit: absorption, disposition, and non-compartmental analysis.

    Science.gov (United States)

    Pamulapati, Chandrasena R; Schoenwald, Ronald D

    2011-12-01

    The pharmacologically active compound (33% reduction in rabbit intraocular pressure recovery rate assay) 1-ethyl-6-fluoro-1,2,3,4-tetrahydroquinoline (MC4), which showed ocular hypotensive action and had optimum physicochemical properties, was characterized for its ocular absorption and distribution properties to better understand its in vivo potency in comparison with an inactive compound, N-ethyl-1,4-benzoxazine (MC1). Tissue distribution to various ocular tissues was determined after absorption by both corneal and conjunctival-scleral routes, following administration by the "topical infusion" technique. The rank order of penetration for both the compounds was cornea > iris-ciliary body > aqueous humor > lens > conjunctiva-sclera. Overall, MC4 had significantly higher concentrations than MC1 in various ocular tissues, but particularly in the iris-ciliary body, which is the site of action (biophase). Ocular disposition studies of the active compound MC4 were then conducted to characterize its elimination kinetics, and the pharmacokinetic parameters were determined by non-compartmental and moment analysis using equations specific to "topical infusion" technique: first-order absorption rate constant, 4.1 × 10(-4) min(-1) ; elimination rate constant, 0.012 min(-1) ; mean residence time, 39.6 min; steady-state volume of distribution, 0.721 mL; and aqueous humor ocular clearance, 8.44 µL/min. The results were consistent with the conclusion that MC4 is well absorbed and distributed to the active site. Copyright © 2011 Wiley-Liss, Inc.

  12. Comparison of total and compartmental gastric emptying and antral motility between healthy men and women

    Energy Technology Data Exchange (ETDEWEB)

    Bennink, R.; Van den Maegdenbergh, V.; Roo, M. de; Mortelmans, L. [Department of Nuclear Medicine, UZ KU Leuven (Belgium); Peeters, M.; Geypens, B.; Rutgeerts, P. [Department of Gastroenterology, UZ KU Leuven (Belgium)

    1998-09-01

    There is increasing evidence of gender-related differences in gastric emptying. The purpose of this study was first, to confirm the difference in gastric emptying for both solid and liquid test meals between healthy men and women, and secondly, to investigate the origin of this difference by studying regional gastric emptying and antral motility. A standard gastric emptying test with additional compartmental (proximal and distal) evaluation and dynamic imaging of the antrum was performed in 20 healthy women studied during the first 10 days of the menstrual cycle, and in 31 healthy age-matched men. In concordance with previous reports, women had a longer half-emptying time for solids as compared to men (86.2{+-}5.1 vs 52.2{+-}2.9 min, P<0.05). In our observations this seemed to be related to a significantly prolonged lag phase and a significant decrease in terminal slope. Dynamical antral scintigraphy did not show a significant difference. The distribution of the test meal within the stomach (proximal vs distal) showed more early proximal retention in women as compared to men. The terminal slope of the distal somach was significantly lower in women. We did not observe a significant difference in gastric emptying of the liquid test meal between men and women. Gastric emptying of solids is significantly slower in healthy women as compared to men. These findings emphasise the importance of using different normal values for clinical and research purposes in gastric emptying scintigraphy in men and women. The difference could not be explained by antral motility alone. Increased proximal retention and a lower terminal emptying rate in women are observations to be further investigated. (orig.) With 5 figs., 2 tabs., 36 refs.

  13. Application of oil gas-chromatography in reservoir compartmentalization in a mature Venezuelan oil field

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, N.G.; Mompart, L. [Maraven, Caracas (Venezuela); Talukdar, S.C.

    1996-08-01

    Gas chromatographic oil {open_quotes}fingerprinting{close_quotes} was successfully applied in a multidisciplinary production geology project by Maraven, S.A. to define the extent of vertical and lateral continuity of Eocene and Miocene sandstone reservoirs in the highly faulted Bloque I field, Maracaibo Basin, Venezuela. Seventy-five non-biodegraded oils (20{degrees}-37.4{degrees} API) were analyzed with gas chromatography. Fifty were produced from the Eocene Misoa C-4, C-5, C-6 or C-7 horizons, fifteen from the Miocene basal La Rosa and ten from multizone completions. Gas chromatographic and terpane and sterane biomarker data show that all of the oils are genetically related. They were expelled from a type II, Upper Cretaceous marine La Luna source rock at about 0.80-0.90% R{sub o} maturity. Alteration in the reservoir by gas stripping with or without subsequent light hydrocarbons mixing was observed in some oils. Detailed chromatographic comparisons among the oils shown by star plots and cluster analysis utilizing several naphthenic and aromatic peak height ratios, resulted in oil pool groupings. This led to finding previously unknown lateral and vertical reservoir communication and also helped in checking and updating the scaling character of faults. In the commingled oils, percentages of each contributing zone in the mixture were also determined giving Maraven engineers a proven, rapid and inexpensive tool for production allocation and reservoir management The oil pool compartmentalization defined by the geochemical fingerprinting is in very good agreement with the sequence stratigraphic interpretation of the reservoirs and helped evaluate the influence of structure in oil migration and trapping.

  14. Retinol metabolism in rats with low vitamin A status: A compartmental model

    International Nuclear Information System (INIS)

    Lewis, K.C.; Green, M.H.; Green, J.B.; Zech, L.A.

    1990-01-01

    A compartmental model was developed to describe the metabolism of vitamin A in rats with low vitamin A status maintained by a low dietary intake of vitamin A (approximately 2 micrograms retinol equivalents/day). After the IV bolus injection of [3H]retinol in its physiological transport complex, tracer and trace data were obtained from plasma, organs (liver, kidneys, small intestine, eyes, adrenals, testes, lungs, carcass), and tracer data were obtained from urine and feces. The dietary protocol developed for this study resulted in animals having plasma vitamin A levels less than 10 micrograms retinol/dl and total liver vitamin A levels of approximately 1 microgram retinol equivalent. Four compartments were used to model the plasma: one to describe retinol, one to describe the nonphysiological portion of the dose, and two to simulate polar metabolites derived from retinol. The liver required two compartments and a delay, the carcass (small intestine, eyes, adrenals, testes, and lungs, plus remaining carcass) required three compartments, and the kidneys required two. The model predicted a vitamin A utilization rate of 1.65 micrograms retinol equivalents/day with the urine and feces accounting for most of the output. The plasma retinol turnover rate was approximately 20 micrograms retinol equivalents/day; this was 12 times greater than the utilization rate. This indicated that, of the large amount of retinol moving through the plasma each day, less than 10% of this was actually being irreversibly utilized. Similarly, as compared to the whole-body utilization rate, there was a relatively high turnover rate of retinol in the kidneys, carcass, and liver, coupled with a high degree of recycling of vitamin A through these tissues. Of the total vitamin A that entered the liver from all sources including the diet, approximately 86% was mobilized into the plasma

  15. Barcoding of GPCR trafficking and signaling through the various trafficking roadmaps by compartmentalized signaling networks.

    Science.gov (United States)

    Bahouth, Suleiman W; Nooh, Mohammed M

    2017-08-01

    Proper signaling by G protein coupled receptors (GPCR) is dependent on the specific repertoire of transducing, enzymatic and regulatory kinases and phosphatases that shape its signaling output. Activation and signaling of the GPCR through its cognate G protein is impacted by G protein-coupled receptor kinase (GRK)-imprinted "barcodes" that recruit β-arrestins to regulate subsequent desensitization, biased signaling and endocytosis of the GPCR. The outcome of agonist-internalized GPCR in endosomes is also regulated by sequence motifs or "barcodes" within the GPCR that mediate its recycling to the plasma membrane or retention and eventual degradation as well as its subsequent signaling in endosomes. Given the vast number of diverse sequences in GPCR, several trafficking mechanisms for endosomal GPCR have been described. The majority of recycling GPCR, are sorted out of endosomes in a "sequence-dependent pathway" anchored around a type-1 PDZ-binding module found in their C-tails. For a subset of these GPCR, a second "barcode" imprinted onto specific GPCR serine/threonine residues by compartmentalized kinase networks was required for their efficient recycling through the "sequence-dependent pathway". Mutating the serine/threonine residues involved, produced dramatic effects on GPCR trafficking, indicating that they played a major role in setting the trafficking itinerary of these GPCR. While endosomal SNX27, retromer/WASH complexes and actin were required for efficient sorting and budding of all these GPCR, additional proteins were required for GPCR sorting via the second "barcode". Here we will review recent developments in GPCR trafficking in general and the human β 1 -adrenergic receptor in particular across the various trafficking roadmaps. In addition, we will discuss the role of GPCR trafficking in regulating endosomal GPCR signaling, which promote biochemical and physiological effects that are distinct from those generated by the GPCR signal transduction

  16. Compartmental and dosimetric studies of anti-CD20 labelled with 188Re

    International Nuclear Information System (INIS)

    Kuramoto, Graciela Barrio

    2016-01-01

    The radioimmunotherapy (RIT) uses MAbs conjugated to radionuclides α or β - emitters, both for therapy. Your treatment is based on the irradiation and tumor destruction, preserving the normal organs as the excess radiation. Radionuclides β - emitters as 131 I, 90 Y, 188 Re 177 Lu and are useful for the development of therapeutic radiopharmaceuticals and, when coupled with MAb and Anti-CD20 it is important mainly for the treatment of non-Hodgkin's lymphomas (NHL). 188 Re (E β = 2.12 MeV; E γ = 155 keV; t1/2 = 16.9 h) is an attractive radionuclide for RIT. However, 188 Re can be obtained from a radionuclide generator of 188 W/ 188 Re, commercially available, making it convenient for use in research and for clinical routine. The CR of IPEN has a project aimed at the production of radiopharmaceutical 188 Re-Anti-CD20, where the radionuclide can be obtained from a generator system 188 W/ 188 Re. With this proposed a study to assess the efficiency of this labeling technique for treatment in accordance compartmental and dosimetry. The objective of this study was to compare the marking of anti-CD20 MAb with 188 Re with the marking of the antibody with 90 Y, 131 I, 177 Lu and 99m Tc (for their similar chemical characteristics) and 211 At, 213 Bi, 223 Ra and 225 Ac); through the study of labeling techniques reported in literature, the proposal of a compartmental model to evaluate its pharmacokinetic and dosimetric studies, high interest for therapy. The result of the study shows a favorable kinetics for 188 Re, by their physical and chemical characteristics compared to the other evaluated radionuclides. The compartment proposed study describes the metabolism of 188 Reanti- CD20 through a compartment mammillary model, which by their pharmacokinetic analysis, performed compared to products emitters β -131 I-labeled anti CD20, 177 Luanti- CD20, the γ emitter 99m Tc-Anti-CD20 and α emitter 211 At-Anti-CD20 presented a elimination constant of approximately 0.05 hours

  17. A physiologically required G protein-coupled receptor (GPCR)-regulator of G protein signaling (RGS) interaction that compartmentalizes RGS activity.

    Science.gov (United States)

    Croft, Wayne; Hill, Claire; McCann, Eilish; Bond, Michael; Esparza-Franco, Manuel; Bennett, Jeannette; Rand, David; Davey, John; Ladds, Graham

    2013-09-20

    G protein-coupled receptors (GPCRs) can interact with regulator of G protein signaling (RGS) proteins. However, the effects of such interactions on signal transduction and their physiological relevance have been largely undetermined. Ligand-bound GPCRs initiate by promoting exchange of GDP for GTP on the Gα subunit of heterotrimeric G proteins. Signaling is terminated by hydrolysis of GTP to GDP through intrinsic GTPase activity of the Gα subunit, a reaction catalyzed by RGS proteins. Using yeast as a tool to study GPCR signaling in isolation, we define an interaction between the cognate GPCR (Mam2) and RGS (Rgs1), mapping the interaction domains. This reaction tethers Rgs1 at the plasma membrane and is essential for physiological signaling response. In vivo quantitative data inform the development of a kinetic model of the GTPase cycle, which extends previous attempts by including GPCR-RGS interactions. In vivo and in silico data confirm that GPCR-RGS interactions can impose an additional layer of regulation through mediating RGS subcellular localization to compartmentalize RGS activity within a cell, thus highlighting their importance as potential targets to modulate GPCR signaling pathways.

  18. Biodistribution and biological characteristics of p-[(bis-carboxymethyl) aminomethyl carboxyamino] hippuric acid (Pahida) labelled with technetium-99m. Establishment of pharmacokinetics parameters through compartmental model

    International Nuclear Information System (INIS)

    Araujo, E.B. de.

    1990-01-01

    Biologic distribution of p- [(bis-carboxymethylaminomethyl carboxyamino)] hippuric acid (PAHIDA) labeled with sup(99m)Tc in Wistar rats, showed a selective renal uptake among the other organs and tissues. The compound is predominantly eliminated by urinary tract, with small enterohepatic percent of excretion Chromatographic analysis of urine showed the product and possible metabolites. PAHIDA- sup(99m)Tc blood clearance is relatively rapid and a good percent is transported by plasmatic proteins. The percent binding to the erythrocytes is significant after one hour, this is due probably to hydrolysed technetium. The extrapolation of the plasmatic curve denoted the existence of three exponentials, suggesting a model with three compartments: central or intravascular and two peripherics or extravasculars - rapid and slow exchange (retention). Exponential's half life and the transfer constant (k) among the compartments were determined. The compound retention was reaffirmed by whole body determination. The decomposition of the curve in two exponentials allowed to assess the component's half-life. The compartmental model proposed in agreement with the experimental results, showed the complex retention that may be related the binding with the blood components, the possibility of renal metabolization or a structural impediment in the interaction with the tubular cells receptors. (author)

  19. A quasi-3D compartmental multi-scale approach to detect and quantify diseased regional lung constriction using spirometry data.

    Science.gov (United States)

    Kannan, Ravishekar Ravi; Singh, Narender; Przekwas, Andrzej

    2018-02-27

    Spirometry is a widely used pulmonary function test to detect the airflow limitations associated with various obstructive lung diseases, such as asthma, chronic obstructive pulmonary disease (COPD), and even obesity-related complications. These conditions arise due to the change in the airway resistance, alveolar compliance, and inductance values. Currently, zero-dimensional (0D) compartmental models are commonly used for calibrating these resistance, compliance, and inductance values, i.e., solving the inverse spirometry problem. However, 0D compartments cannot capture the flow physics or the spatial geometry effects, thereby generating a low fidelity prediction of the diseased lung. Computational fluid dynamics (CFD) models offer higher fidelity solutions but may be impractical for certain applications due to the duration of these simulations. Recently, a novel, fast-running and robust Quasi-3D (Q3D) wire model for simulating the airflow in the human lung airway was developed by CFD Research Corporation (CFDRC). This Q3D method preserved the 3D spatial nature of the airways and was favorably validated against CFD solutions. In the present study, the Q3D compartmental multi-scale combination is further improved to predict regional lung constriction of diseased lungs using spirometry data. The Q3D mesh is resolved up to the eighth lung airway generation. The remainder of the airways and the alveoli sections are modeled using a compartmental approach. The Q3D geometry is then split into different spatial sections and the resistance values in these regions are obtained using parameter inversion. Finally, the airway diameter values are then reduced to create the actual diseased lung model, corresponding to these resistance values. This diseased lung model can be used for patient-specific drug deposition predictions and the subsequent optimization of the orally inhaled drug products. This article is protected by copyright. All rights reserved.

  20. Stratigraphic and structural compartmentalization observed within a model turbidite reservoir, Pennsylvanian Upper Jackfork Formation, Hollywood Quarry, Arkansas

    Energy Technology Data Exchange (ETDEWEB)

    Slatt, R. [Colorado School of Mines, Golden, CO (United States); Jordan, D. [Arco International Oil and Gas Co., Plano, TX (United States); Stone, C. [Arkansas Geological Commission, Little Rock, AR (United States)] [and others

    1995-08-01

    Hollywood Quarry is a 600 x 375 x 150 ft. (200 x 125 x 50m) excavation which provides a window into lower Pennsylvanian Jackfork Formation turbidite stratal architecture along the crest of a faulted anticlinal fold. A variety of turbidite facies are present, including: (a) lenticular, channelized sandstones, pebbly sandstones, and conglomerates within shale, (b) laterally continuous, interbedded thin sandstones and shales, and (c) thicker, laterally continuous shales. The sandstone and shale layers we broken by several strike-slip and reverse faults, with vertical displacements of up to several feet. This combination of facies and structural elements has resulted in a highly compartmentalized stratigraphic interval, both horizontally and vertically, along the anticlinal flexure. The quarry can be considered analogous to a scaled-down turbidite reservoir. Outcrop gamma-ray logs, measured sections, a fault map, and cross sections provide a database which is analogous to what would be available for a subsurface reservoir. Thus, the quarry provides an ideal outdoor geologic and engineering {open_quote}workshop{close_quote} venue for visualizing the potential complexities of a combination structural-stratigraphic (turbidite) reservoir. Since all forms of compartmentalization are readily visible in the quarry, problems related to management of compartmentalized reservoirs can be discussed and analyzed first-hand while standing in the quarry, within this {open_quote}model reservoir{close_quotes}. These problems include: (a) the high degree of stratigraphic and structural complexity that may be encountered, even at close well spacings, (b) uncertainty in well log correlations and log-shape interpretations, (c) variations in volumetric calculations as a function of amount of data available, and (d) potential production problems associated with specific {open_quote}field{close_quote} development plans.

  1. [CLINICAL APPLICATION OF OXFORD MOBILE-BEARING BIPOLAR PROSTHESIS UNICOMPARTMENTAL KNEE ARTHROPLASTY FOR SINGLE COMPARTMENTAL KNEE OSTEOARTHRITIS].

    Science.gov (United States)

    Wang, Shangzeng; Cheng, Shao; Wang, Yisheng

    2016-01-01

    To evaluate the effectiveness of Oxford mobile-bearing bipolar prosthesis unicompartmental knee arthroplasty (UKA) in the treatment of single compartmental knee osteoarthritis. Between June 2011 and July 2013, 22 cases of single compartmental knee osteoarthritis were treated by Oxford mobile-bearing bipolar prosthesis UKA. Of 22 cases, 8 were male and 14 were female with an average age of 65 years (range, 45-80 years); the left knee was involved in 12 cases, and the right knee in 10 cases, with a mean disease duration of 32.5 months (range, 8-90 months). The mean weight was 55.2 kg (range, 50-65 kg), and the mean body mass index was 20.8 kg/m2 (range, 17-25 kg/m2). Osteoarthritis involved in the single knee medial compartment in all patients. Knee society score (KSS) and range of motion (ROM) were measured to evaluate the knee joint function. Primary healing of incision was obtained in all patients, and there was no complication of infection, bedsore, or deep venous thrombosis. Postoperative follow-up was 2-4 years (mean, 3.2 years). The X-ray films showed good position of prosthesis, no prosthesis dislocation, or periprosthetic infection during follow-up. Knee ROM, KSS function score, and KSS clinical score were significantly improved at 1 week after operation and at last follow-up when compared with preoperative ones (P 0.05). Oxford mobile-bearing bipolar prosthesis UKA is an effective method to treat single compartmental knee osteoarthritis, with the advantages of less trauma, earlier rehabilitation exercise, near physiological state in joint function, and less risk of complications.

  2. Cell Biology of Prokaryotic Organelles

    OpenAIRE

    Murat, Dorothee; Byrne, Meghan; Komeili, Arash

    2010-01-01

    Mounting evidence in recent years has challenged the dogma that prokaryotes are simple and undefined cells devoid of an organized subcellular architecture. In fact, proteins once thought to be the purely eukaryotic inventions, including relatives of actin and tubulin control prokaryotic cell shape, DNA segregation, and cytokinesis. Similarly, compartmentalization, commonly noted as a distinguishing feature of eukaryotic cells, is also prevalent in the prokaryotic world in the form of protein-...

  3. Compartmentalized beta subunit distribution determines characteristics and ethanol sensitivity of somatic, dendritic, and terminal large-conductance calcium-activated potassium channels in the rat central nervous system.

    Science.gov (United States)

    Wynne, P M; Puig, S I; Martin, G E; Treistman, S N

    2009-06-01

    Neurons are highly differentiated and polarized cells, whose various functions depend upon the compartmentalization of ion channels. The rat hypothalamic-neurohypophysial system (HNS), in which cell bodies and dendrites reside in the hypothalamus, physically separated from their nerve terminals in the neurohypophysis, provides a particularly powerful preparation in which to study the distribution and regional properties of ion channel proteins. Using electrophysiological and immunohistochemical techniques, we characterized the large-conductance calcium-activated potassium (BK) channel in each of the three primary compartments (soma, dendrite, and terminal) of HNS neurons. We found that dendritic BK channels, in common with somatic channels but in contrast to nerve terminal channels, are insensitive to iberiotoxin. Furthermore, analysis of dendritic BK channel gating kinetics indicates that they, like somatic channels, have fast activation kinetics, in contrast to the slow gating of terminal channels. Dendritic and somatic channels are also more sensitive to calcium and have a greater conductance than terminal channels. Finally, although terminal BK channels are highly potentiated by ethanol, somatic and dendritic channels are insensitive to the drug. The biophysical and pharmacological properties of somatic and dendritic versus nerve terminal channels are consistent with the characteristics of exogenously expressed alphabeta1 versus alphabeta4 channels, respectively. Therefore, one possible explanation for our findings is a selective distribution of auxiliary beta1 subunits to the somatic and dendritic compartments and beta4 to the terminal compartment. This hypothesis is supported immunohistochemically by the appearance of distinct punctate beta1 or beta4 channel clusters in the membrane of somatic and dendritic or nerve terminal compartments, respectively.

  4. Compartmental HBV evolution and replication in liver and extrahepatic sites after nucleos/tide analogue therapy in chronic hepatitis B carriers.

    Science.gov (United States)

    Gao, Shan; Duan, Zhong-Ping; Chen, Yu; van der Meer, Frank; Lee, Samuel S; Osiowy, Carla; van Marle, Guido; Coffin, Carla S

    2017-09-01

    Hepatitis B virus (HBV) variants are associated with nucleos/tide analogue (NA) response and liver disease but it is unknown whether NA influences extrahepatic HBV persistence. To investigate HBV replication and genetic evolution in hepatic and extrahepatic sites of chronic hepatitis B (CHB) before and after NA therapy. A total of 13 paired plasma, peripheral blood mononuclear cells (PBMC), were collected from chronic HBV carriers at baseline and after a median 53 weeks NA therapy as well as liver biopsy (N=7 baseline, N=5 follow-up). HBV covalently closed circular DNA (cccDNA) and messenger (m) RNA in liver and PBMC were analyzed. HBV polymerase (P)/surface (S), basal core promoter (BCP)/pre-core (PC)/C gene clonal sequencing was done in plasma, peripheral blood mononuclear cells (PBMC), and liver. Compare to baseline, at ∼53 weeks follow-up, there was no significant change in HBV cccDNA levels in liver (0.2-0.08 copies/hepatocyte, p>0.05) or in PBMC 0.003-0.02 copies/PBMC, p>0.05), and HBV mRNA remained detectable in both sites. At baseline, BCP variants were higher in PBMC vs. liver and plasma. After therapy, drug resistant (DR) and immune escape (IE) variants increased in liver but IE and PC variants were more frequent in PBMC. HBV P/S diversity was significantly higher in PBMC compared to plasma. Continuous HBV replication occurs in liver and PBMC and shows compartmentalized evolution under selective pressure of potent NA therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Gadoxetate-enhanced MR imaging and compartmental modelling to assess hepatocyte bidirectional transport function in rats with advanced liver fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Giraudeau, Celine; Leporq, Benjamin; Doblas, Sabrina [University Paris Diderot, Sorbonne Paris Cite, Hopital Beaujon, Laboratory of Imaging Biomarkers, UMR1149 Inserm, Clichy (France); Lagadec, Matthieu; Daire, Jean-Luc; Van Beers, Bernard E. [University Paris Diderot, Sorbonne Paris Cite, Hopital Beaujon, Laboratory of Imaging Biomarkers, UMR1149 Inserm, Clichy (France); Beaujon University Hospital Paris Nord, Department of Radiology, Clichy (France); Pastor, Catherine M. [University Paris Diderot, Sorbonne Paris Cite, Hopital Beaujon, Laboratory of Imaging Biomarkers, UMR1149 Inserm, Clichy (France); Hopitaux Universitaires de Geneve, Departement d' Imagerie et des Sciences de l' Information Medicale, Geneva (Switzerland)

    2017-05-15

    Changes in the expression of hepatocyte membrane transporters in advanced fibrosis decrease the hepatic transport function of organic anions. The aim of our study was to assess if these changes can be evaluated with pharmacokinetic analysis of the hepatobiliary transport of the MR contrast agent gadoxetate. Dynamic gadoxetate-enhanced MRI was performed in 17 rats with advanced fibrosis and 8 normal rats. After deconvolution, hepatocyte three-compartmental analysis was performed to calculate the hepatocyte influx, biliary efflux and sinusoidal backflux rates. The expression of Oatp1a1, Mrp2 and Mrp3 organic anion membrane transporters was assessed with reverse transcription polymerase chain reaction. In the rats with advanced fibrosis, the influx and efflux rates of gadoxetate decreased and the backflux rate increased significantly (p = 0.003, 0.041 and 0.010, respectively). Significant correlations were found between influx and Oatp1a1 expression (r = 0.78, p < 0.001), biliary efflux and Mrp2 (r = 0.50, p = 0.016) and sinusoidal backflux and Mrp3 (r = 0.61, p = 0.002). These results show that changes in the bidirectional organic anion hepatocyte transport function in rats with advanced liver fibrosis can be assessed with compartmental analysis of gadoxetate-enhanced MRI. (orig.)

  6. Inter-compartmental transport of organophosphate and pyrethroid pesticides in South China: Implications for a regional risk assessment

    International Nuclear Information System (INIS)

    Li, Huizhen; Wei, Yanli; Lydy, Michael J.; You, Jing

    2014-01-01

    The dynamic flux of an organophosphate and four pyrethroid pesticides was determined in an air-(soil)-water-sediment system based on monitoring data from Guangzhou, China. The total air–water flux, including air–water gaseous exchange and atmospheric deposition, showed deposition from air to water for chlorpyrifos, bifenthrin and cypermethrin, but volatilization for lambda-cyhalothrin and permethrin. The transport of the pesticides from overlying water to sediment suggested that sediment acted as a sink for the pesticides. Additionally, distinct annual atmospheric depositional fluxes between legacy and current-use pesticides suggested the role of consumer usage in their transport throughout the system. Finally, pesticide toxicity was estimated from annual air–water-sediment flux within an urban stream in Guangzhou. A dynamic flux-based risk assessment indicated that inter-compartmental transport of chlorpyrifos decreased its atmospheric exposure, but had little influence on its aquatic toxicity. Instead, water-to-sediment transport of pyrethroids increased their sediment toxicity, which was supported by previously reported toxicity data. - Highlights: • Transport fluxes of chlorpyrifos and pyrethroids were assessed in Guangzhou, China. • Sediment acted as a sink for chlorpyrifos and pyrethroids. • Air-to-water transport decreased the exposure risk of atmospheric chlorpyrifos. • Dynamic transport might increase the risk of pyrethroids in air and sediment. • Flux-based pesticide concentrations provide a way to estimate sediment toxicity. - Regional risk assessment could be improved by integrating dynamic flux information derived from inter-compartmental models

  7. Computer Modeling of Sand Transport on Mars Using a Compart-Mentalized Fluids Algorithm (CFA)

    Science.gov (United States)

    Marshall, J.; Stratton, D.

    1999-01-01

    of sand comminution on Mars. A multiple-grain transport model using just the equations of grain motion describing lift and drag is impossible to develop owing to stochastic effects --the very effects we wish to model. Also, unless we were to employ supercomputing techniques and extremely complex computer codes that could deal with millions of grains simultaneously, it would also be difficult to model grain transport if we attempted to consider every grain in motion. No existing computer models were found that satisfactorily used the equations of motion to arrive at transport flux numbers for the different populations of saltation and reptation. Modeling all the grains in a transport system was an intractable problem within our resources, and thus we developed what we believe to be a new modeling approach to simulating grain transport. The CFA deals with grain populations, but considers them to belong to various compartmentalized fluid units in the boundary layer. In this way, the model circumvents the multigrain problem by dealing primarily with the consequences of grain transport --momentum transfer between air and grains, which is the physical essence of a dynamic grain-fluid mixture. We thus chose to model the aeolian transport process as a superposition of fluids. These fluids include the air as well as particle populations of various properties. The prime property distinguishing these fluids is upward and downward grain motion. In a normal saltation trajectory, a grain's downwind velocity increases with time, so a rising grain will have a smaller downwind velocity than a failing grain. Because of this disparity in rising and falling grain proper-ties, it seemed appropriate to track these as two separate grain populations within the same physical space. The air itself can be considered a separate fluid superimposed within and interacting with the various grain-cloud "fluids". Additional informaiton is contained in the original.

  8. Full-length cellular β-secretase has a trimeric subunit stoichiometry, and its sulfur-rich transmembrane interaction site modulates cytosolic copper compartmentalization.

    Science.gov (United States)

    Liebsch, Filip; Aurousseau, Mark R P; Bethge, Tobias; McGuire, Hugo; Scolari, Silvia; Herrmann, Andreas; Blunck, Rikard; Bowie, Derek; Multhaup, Gerd

    2017-08-11

    The β-secretase (BACE1) initiates processing of the amyloid precursor protein (APP) into Aβ peptides, which have been implicated as central players in the pathology of Alzheimer disease. BACE1 has been described as a copper-binding protein and its oligomeric state as being monomeric, dimeric, and/or multimeric, but the native cellular stoichiometry has remained elusive. Here, by using single-molecule fluorescence and in vitro cross-linking experiments with photo-activatable unnatural amino acids, we show that full-length BACE1, independently of its subcellular localization, exists as trimers in human cells. We found that trimerization requires the BACE1 transmembrane sequences (TMSs) and cytoplasmic domains, with residues Ala 463 and Cys 466 buried within the trimer interface of the sulfur-rich core of the TMSs. Our 3D model predicts that the sulfur-rich core of the trimeric BACE1 TMS is accessible to metal ions, but copper ions did not trigger trimerization. The results of functional assays of endogenous BACE1 suggest that it has a role in intracellular copper compartmentalization by transferring cytosolic copper to intracellular compartments, while leaving the overall cellular copper concentration unaltered. Adding to existing physiological models, our results provide novel insight into the atypical interactions between copper and BACE1 and into its non-enzymatic activities. In conclusion, therapeutic Alzheimer disease prevention strategies aimed at decreasing BACE1 protein levels should be regarded with caution, because adverse effects in copper homeostasis may occur. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Molecular compartmentalization of lateral geniculate nucleus in the gray squirrel (Sciurus carolinensis).

    Science.gov (United States)

    Felch, Daniel L; Van Hooser, Stephen D

    2012-01-01

    Previous research has suggested that the three physiologically defined relay cell-types in mammalian lateral geniculate nucleus (LGN)-called parvocellular (P), magnocellular (M), and koniocellular (K) cells in primates and X, Y, and W cells in other mammals-each express a unique combination of cell-type marker proteins. However, some of the relationships among physiological classification and protein expression found in primates, prosimians, and tree shrews do not apply to carnivores and murid rodents. It remains unknown whether these are exceptions to a common rule for all mammals, or whether these relationships vary over a wide range of species. To address this question, we examined protein expression in the gray squirrel (Sciurus carolinensis), a highly visual rodent. Unlike many rodents, squirrel LGN is well laminated, and the organization of X-like, Y-like, and W-like cells relative to the LGN layers has been characterized physiologically. We labeled tissue sections through visual thalamus with antibodies to calbindin and parvalbumin, the antibody Cat-301, and the lectin WFA. Calbindin expression was found in W-like cells in LGN layer 3, just adjacent to the optic tract. These results suggest that calbindin is a common marker for the konicellular pathway in mammals. However, while parvalbumin expression characterizes P and M cells in primates and X and Y cells in tree shrews, here it identifies only about half of the X-like cells in LGN layers 1 and 2. Putative Y/M cell markers did not differentiate relay cells in this animal. Together, these results suggest that protein expression patterns among LGN relay cell classes are variable across mammals.

  10. Molecular compartmentalization of lateral geniculate nucleus in the gray squirrel (Sciurus carolinensis

    Directory of Open Access Journals (Sweden)

    Daniel L Felch

    2012-04-01

    Full Text Available Previous research has suggested that the three physiologically-defined relay cell types in mammalian lateral geniculate nucleus (LGN – called parvocellular (P, magnocellular (M, and koniocellular (K cells in primates and X, Y, and W cells in other mammals – each express a unique combination of cell type marker proteins. However, some of the relationships among physiological classification and protein expression found in primates, prosimians, and tree shrews do not apply to carnivores and murid rodents. It remains unknown whether these are exceptions to a common rule for all mammals, or whether these relationships vary over a wide range of species. To address this question, we examined protein expression in the gray squirrel (Sciurus carolinensis, a highly visual rodent. Unlike many rodents, squirrel LGN is well laminated, and the organization of X-like, Y-like, and W-like cells relative to the LGN layers has been characterized physiologically. We labeled tissue sections through visual thalamus with antibodies to calbindin and parvalbumin, the antibody Cat-301, and the lectin WFA. Calbindin expression was found in W-like cells in LGN layer 3, just adjacent to the optic tract. These results suggest that calbindin is a common marker for the konicellular pathway in mammals. However, while parvalbumin expression characterizes P and M cells in primates and X and Y cells in tree shrews, here it identifies only about half of the X-like cells in LGN layers 1 and 2. Putative Y/M cell markers did not differentiate relay cells in this animal. Together, these results suggest that protein expression patterns among LGN relay cell classes are variable across mammals.

  11. Defining Lipid Transport Pathways in Animal Cells

    Science.gov (United States)

    Pagano, Richard E.; Sleight, Richard G.

    1985-09-01

    A new technique for studying the metabolism and intracellular transport of lipid molecules in living cells based on the use of fluorescent lipid analogs is described. The cellular processing of various intermediates (phosphatidic acid and ceramide) and end products (phosphatidylcholine and phosphatidylethanolamine) in lipid biosynthesis is reviewed and a working model for compartmentalization during lipid biosynthesis is presented.

  12. Levels, spatial variation and compartmentalization of trace elements in brown algae Cystoseira from marine protected areas of Crimea (Black Sea).

    Science.gov (United States)

    Kravtsova, Alexandra V; Milchakova, Nataliya A; Frontasyeva, Marina V

    2015-08-15

    Levels of Al, Sc, V, Co, Ni, As, Br, Rb, Sr, Ag, Sb, I, Cs, Ba, Th and U that were rarely or never studied, as well as the concentrations of classically investigated Mn, Fe and Zn in brown algae Cystoseira barbata C. Ag. and Cystoseira crinita (Desf.) Bory from the coastal waters of marine protected areas (Crimea, Black Sea), were determined using neutron activation analysis. Spatial variation and compartmentalization were studied for all 19 trace elements (TE). Concentrations of most TE were higher in "branches" than in "stems". Spatial variations of V, Co, Ni and Zn can be related to anthropogenic activities while Al, Sc, Fe, Rb, Cs, Th and U varied depending on chemical peculiarities of the coastal zone rocks. TE concentrations in C. crinita from marine protected areas near Tarkhankut peninsula and Cape Fiolent, identified as the most clean water areas, are submitted as the background concentrations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Use of a Distributed, Finite-Volume, Hydrologic Model to Assess the Sensitivity of the Everglades to De-compartmentalization

    Science.gov (United States)

    Senarath, S. U.

    2002-12-01

    The Everglades, the only remaining subtropical wilderness in the continental USA, is the home to a number of threatened and endangered species. Although the pre-drainage Everglades covered an area of approximately 11,048 km2, urbanization and farming have reduced its area by approximately 50%. The remaining Everglades has also changed as a result of drainage and compartmentalization by over 2,200 km of levees and canals. This area is also adversely affected by exotic species, nutrient enrichment, contaminants and altered freshwater flows. The \\8 billion Comprehensive Everglades Restoration Plan provides a ``framework and guide to restore, protect, and preserve the water resources of central and southern Florida, including the Everglades.'' The success of this project, one of the largest eco-system restoration projects in the world, depends heavily on our understanding of the quantity, quality, timing and distribution of South Florida's pre-drainage freshwater flow. Consequently, accurate hydrologic modeling is crucial for the restoration of the greater Everglades ecosystem. The Regional Simulation Model (RSM) developed by the South Florida Water Management District is currently being used to investigate the effect of de-compartmentalization on freshwater flow dynamics in parts of the remaining Everglades which includes the Everglades National Park and the Big Cypress National Preserve. The RSM is an implicit, finite-volume, continuous, distributed, integrated surface/ground-water model, capable of simulating one-dimensional canal flow and two-dimensional overland flow in arbitrarily shaped areas using a variable triangular mesh. It has physically-based formulations for the simulation of overland and groundwater flow, evapo-transpiration, infiltration, levee seepage, and canal and structure flows. It is capable of simulating features that are unique to South Florida such as low-relief topography, high water tables, saturation-excess runoff, depth

  14. Differential compartmentalization of Streptococcus pyogenes virulence factors and host protein binding properties as a mechanism for host adaptation.

    Science.gov (United States)

    Kilsgård, Ola; Karlsson, Christofer; Malmström, Erik; Malmström, Johan

    2016-11-01

    Streptococcus pyogenes is an important human pathogen responsible for substantial morbidity and mortality worldwide. Although S. pyogenes is a strictly human pathogen with no other known animal reservoir, several murine infection models exist to explore different aspects of the bacterial pathogenesis. Inoculating mice with wild-type S. pyogenes strains can result in the generation of new bacterial phenotypes that are hypervirulent compared to the original inoculum. In this study, we used a serial mass spectrometry based proteomics strategy to investigate if these hypervirulent strains have an altered distribution of virulence proteins across the intracellular, surface associated and secreted bacterial compartments and if any change in compartmentalization can alter the protein-protein interaction network between bacteria and host proteins. Quantitative analysis of the S. pyogenes surface and secreted proteomes revealed that animal passaged strains are associated with significantly higher amount of virulence factors on the bacterial surface and in the media. This altered virulence factor compartmentalization results in increased binding of several mouse plasma proteins to the bacterial surface, a trend that was consistent for mouse plasma from several different mouse strains. In general, both the wild-type strain and animal passaged strain were capable of binding high amounts of human plasma proteins. However, compared to the non-passaged strains, the animal passaged strains displayed an increased ability to bind mouse plasma proteins, in particular for M protein binders, indicating that the increased affinity for mouse blood plasma proteins is a consequence of host adaptation of this pathogen to a new host. In conclusion, plotting the total amount of virulence factors against the total amount of plasma proteins associated to the bacterial surface could clearly separate out animal passaged strains from wild type strains indicating a virulence model that could

  15. Molecular analysis reveals high compartmentalization in aphid-primary parasitoid networks and low parasitoid sharing between crop and noncrop habitats.

    Science.gov (United States)

    Derocles, Stephane A P; Le Ralec, Anne; Besson, Mathilde M; Maret, Marion; Walton, Alan; Evans, Darren M; Plantegenest, Manuel

    2014-08-01

    The ecosystem service of insect pest regulation by natural enemies, such as primary parasitoids, may be enhanced by the presence of uncultivated, semi-natural habitats within agro-ecosystems, although quantifying such host-parasitoid interactions is difficult. Here, we use rRNA 16S gene sequencing to assess both the level of parasitism by Aphidiinae primary parasitoids and parasitoid identity on a large sample of aphids collected in cultivated and uncultivated agricultural habitats in Western France. We used these data to construct ecological networks to assess the level of compartmentalization between aphid and parasitoid food webs of cultivated and uncultivated habitats. We evaluated the extent to which uncultivated margins provided a resource for parasitoids shared between pest and nonpest aphids. We compared the observed quantitative ecological network described by our molecular approach to an empirical qualitative network based on aphid-parasitoid interactions from traditional rearing data found in the literature. We found that the molecular network was highly compartmentalized and that parasitoid sharing is relatively rare between aphids, especially between crop and noncrop compartments. Moreover, the few cases of putative shared generalist parasitoids were questionable and could be due to the lack of discrimination of cryptic species or from intraspecific host specialization. Our results suggest that apparent competition mediated by Aphidiinae parasitoids is probably rare in agricultural areas and that the contribution of field margins as a source of these biocontrol agents is much more limited than expected. Further large-scale (spatial and temporal) studies on other crops and noncrop habitats are needed to confirm this. © 2014 John Wiley & Sons Ltd.

  16. Control of VEGF-A transcriptional programs by pausing and genomic compartmentalization.

    Science.gov (United States)

    Kaikkonen, Minna U; Niskanen, Henri; Romanoski, Casey E; Kansanen, Emilia; Kivelä, Annukka M; Laitalainen, Jarkko; Heinz, Sven; Benner, Christopher; Glass, Christopher K; Ylä-Herttuala, Seppo

    2014-11-10

    Vascular endothelial growth factor A (VEGF-A) is a master regulator of angiogenesis, vascular development and function. In this study we investigated the transcriptional regulation of VEGF-A-responsive genes in primary human aortic endothelial cells (HAECs) and human umbilical vein endothelial cells (HUVECs) using genome-wide global run-on sequencing (GRO-Seq). We demonstrate that half of VEGF-A-regulated gene promoters are characterized by a transcriptionally competent paused RNA polymerase II (Pol II). We show that transition into productive elongation is a major mechanism of gene activation of virtually all VEGF-regulated genes, whereas only ∼40% of the genes are induced at the level of initiation. In addition, we report a comprehensive chromatin interaction map generated in HUVECs using tethered conformation capture (TCC) and characterize chromatin interactions in relation to transcriptional activity. We demonstrate that sites of active transcription are more likely to engage in chromatin looping and cell type-specific transcriptional activity reflects the boundaries of chromatin interactions. Furthermore, we identify large chromatin compartments with a tendency to be coordinately transcribed upon VEGF-A stimulation. We provide evidence that these compartments are enriched for clusters of regulatory regions such as super-enhancers and for disease-associated single nucleotide polymorphisms (SNPs). Collectively, these findings provide new insights into mechanisms behind VEGF-A-regulated transcriptional programs in endothelial cells. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Recombinational DNA repair is regulated by compartmentalization of DNA lesions at the nuclear pore complex

    DEFF Research Database (Denmark)

    Géli, Vincent; Lisby, Michael

    2015-01-01

    The nuclear pore complex (NPC) is emerging as a center for recruitment of a class of "difficult to repair" lesions such as double-strand breaks without a repair template and eroded telomeres in telomerase-deficient cells. In addition to such pathological situations, a recent study by Su and colle...

  18. Visualization of plasma membrane compartmentalization by high-speed quantum dot tracking

    DEFF Research Database (Denmark)

    Clausen, M. P.; Lagerholm, B. C.

    2013-01-01

    In this study, we have imaged plasma membrane molecules labeled with quantum dots in live cells using a conventional wide-field microscope with high spatial precision at sampling frequencies of 1.75 kHz. Many of the resulting single molecule trajectories are sufficiently long (up to several...

  19. Compartmental Analysis Suggests Macropinocytosis at the Onset of Diatom Valve Formation

    NARCIS (Netherlands)

    Brasser, H. J.; van der Strate, H. J.; Gieskes, W. W. C.; Krijger, G. C.; Vrieling, E. G.; Wolterbeek, H. T.

    During valve formation of the siliceous frustules of diatoms, bulk uptake of silicic acid and its subsequent transport through the cell is required before it can be deposited in the silica deposition vesicle (SDV). It has been assumed that transport takes place via silicon transporters (SITs), but

  20. Compartmental Analysis Suggests Macropinocytosis at the Onset of Diatom Valve Formation

    NARCIS (Netherlands)

    Brasser, H.J.; Van der Strate, H.J.; Gieskes, W.W.C.; Krijger, G.C.; Vrieling, E.G.; Wolterbeek, H.T.

    2010-01-01

    During valve formation of the siliceous frustules of diatoms, bulk uptake of silicic acid and its subsequent transport through the cell is required before it can be deposited in the silica deposition vesicle (SDV). It has been assumed that transport takes place via silicon transporters (SITs), but

  1. Intracellular compartmentation of cardiac fibres from rainbow trout and Atlantic cod - a general design of heart cells

    DEFF Research Database (Denmark)

    Birkedal, R.; Gesser, Hans

    2006-01-01

    Previously identified, potentially neuroprotective reactions of neuroglobin require the existence of yet unknown redox partners. We show here that the reduction of ferric neuroglobin by cytochrome b5 is relatively slow (k=6×102M-1s-1 at pH 7.0) and thus is unlikely to be of physiological signific...

  2. Preparing e18 cortical rat neurons for compartmentalization in a microfluidic device.

    Science.gov (United States)

    Harris, Joseph; Lee, Hyuna; Tu, Christina Tu; Cribbs, David; Cotman, Carl; Jeon, Noo Li

    2007-01-01

    In this video, we demonstrate the preparation of E18 cortical rat neurons. E18 cortical rat neurons are obtained from E18 fetal rat cortex previously dissected and prepared. The E18 cortex is, upon dissection, immediately dissociated into individual neurons. It is possible to store E18 cortex in Hibernate E buffer containing B27 at 4 degrees C for up to a week before the dissociation is performed. However, there will be a drop in cell viability. Typically we obtain our E18 Cortex fresh. It is transported to the lab in ice cold Calcium free Magnesium free dissection buffer (CMFM). Upon arrival, trypsin is added to the cortex to a final concentration of 0.125%. The cortex is then incubated at 37 degrees C for 8 minutes. DMEM containing 10% FBS is added to the cortex to stop the reaction. The cortex is then centrifuged at 2500 rpm for 2 minutes. The supernatant is removed and 2 ml of Neural Basal Media (NBM) containing 2% B27 (vol/vol) and 0.25% Glutamax (vol/vol) is added to the cortex which is then re-suspended by pipetting up and down. Next, the cortex is triturated with previously fire polished glass pipettes, each with a successive smaller opening. After triturating, the cortex is once again centrifuged at 2500 rpm for 2 minutes. The supernatant is then removed and the cortex pellet re-suspended with 2 ml of NBM containing B27 and Glutamax. The cell suspension is then passed through a 40 um nylon cell strainer. Next the cells are counted. The neurons are now ready for loading into the neuron microfluidic device.

  3. Compartmental and noncompartmental modeling of 13C-lycopene absorption, isomerization, and distribution kinetics in healthy adults123

    Science.gov (United States)

    Moran, Nancy E; Cichon, Morgan J; Riedl, Kenneth M; Grainger, Elizabeth M; Schwartz, Steven J; Novotny, Janet A; Erdman, John W; Clinton, Steven K

    2015-01-01

    Background: Lycopene, which is a red carotenoid in tomatoes, has been hypothesized to mediate disease-preventive effects associated with tomato consumption. Lycopene is consumed primarily as the all-trans geometric isomer in foods, whereas human plasma and tissues show greater proportions of cis isomers. Objective: With the use of compartmental modeling and stable isotope technology, we determined whether endogenous all-trans-to-cis-lycopene isomerization or isomeric-bioavailability differences underlie the greater proportion of lycopene cis isomers in human tissues than in tomato foods. Design: Healthy men (n = 4) and women (n = 4) consumed 13C-lycopene (10.2 mg; 82% all-trans and 18% cis), and plasma was collected over 28 d. Unlabeled and 13C-labeled total lycopene and lycopene-isomer plasma concentrations, which were measured with the use of high-performance liquid chromatography–mass spectrometry, were fit to a 7-compartment model. Results: Subjects absorbed a mean ± SEM of 23% ± 6% of the lycopene. The proportion of plasma cis-13C-lycopene isomers increased over time, and all-trans had a shorter half-life than that of cis isomers (5.3 ± 0.3 and 8.8 ± 0.6 d, respectively; P isomerization was predictive of plasma 13C and unlabeled cis- and all-trans-lycopene concentrations. Although the bioavailability of cis (24.5% ± 6%) and all-trans (23.2% ± 8%) isomers did not differ, endogenous isomerization (0.97 ± 0.25 μmol/d in the fast-turnover tissue lycopene pool) drove tissue and plasma isomeric profiles. Conclusion: 13C-Lycopene combined with physiologic compartmental modeling provides a strategy for following complex in vivo metabolic processes in humans and reveals that postabsorptive trans-to-cis-lycopene isomerization, and not the differential bioavailability of isomers, drives tissue and plasma enrichment of cis-lycopene. This trial was registered at clinicaltrials.gov as NCT01692340. PMID:26561629

  4. Compartmental and noncompartmental modeling of ¹³C-lycopene absorption, isomerization, and distribution kinetics in healthy adults.

    Science.gov (United States)

    Moran, Nancy E; Cichon, Morgan J; Riedl, Kenneth M; Grainger, Elizabeth M; Schwartz, Steven J; Novotny, Janet A; Erdman, John W; Clinton, Steven K

    2015-12-01

    Lycopene, which is a red carotenoid in tomatoes, has been hypothesized to mediate disease-preventive effects associated with tomato consumption. Lycopene is consumed primarily as the all-trans geometric isomer in foods, whereas human plasma and tissues show greater proportions of cis isomers. With the use of compartmental modeling and stable isotope technology, we determined whether endogenous all-trans-to-cis-lycopene isomerization or isomeric-bioavailability differences underlie the greater proportion of lycopene cis isomers in human tissues than in tomato foods. Healthy men (n = 4) and women (n = 4) consumed (13)C-lycopene (10.2 mg; 82% all-trans and 18% cis), and plasma was collected over 28 d. Unlabeled and (13)C-labeled total lycopene and lycopene-isomer plasma concentrations, which were measured with the use of high-performance liquid chromatography-mass spectrometry, were fit to a 7-compartment model. Subjects absorbed a mean ± SEM of 23% ± 6% of the lycopene. The proportion of plasma cis-(13)C-lycopene isomers increased over time, and all-trans had a shorter half-life than that of cis isomers (5.3 ± 0.3 and 8.8 ± 0.6 d, respectively; P isomerization was predictive of plasma (13)C and unlabeled cis- and all-trans-lycopene concentrations. Although the bioavailability of cis (24.5% ± 6%) and all-trans (23.2% ± 8%) isomers did not differ, endogenous isomerization (0.97 ± 0.25 μmol/d in the fast-turnover tissue lycopene pool) drove tissue and plasma isomeric profiles. (13)C-Lycopene combined with physiologic compartmental modeling provides a strategy for following complex in vivo metabolic processes in humans and reveals that postabsorptive trans-to-cis-lycopene isomerization, and not the differential bioavailability of isomers, drives tissue and plasma enrichment of cis-lycopene. This trial was registered at clinicaltrials.gov as NCT01692340. © 2015 American Society for Nutrition.

  5. Preparing E18 Cortical Rat Neurons for Compartmentalization in a Microfluidic Device

    OpenAIRE

    Harris, Joseph; Lee, Hyuna; Tu, Christina Tu; Cribbs, David; Cotman, Carl; Jeon, Noo Li

    2007-01-01

    In this video, we demonstrate the preparation of E18 cortical rat neurons. E18 cortical rat neurons are obtained from E18 fetal rat cortex previously dissected and prepared. The E18 cortex is, upon dissection, immediately dissociated into individual neurons. It is possible to store E18 cortex in Hibernate E buffer containing B27 at 4°C for up to a week before the dissociation is performed. However, there will be a drop in cell viability. Typically we obtain our E18 Cortex fresh. It is tra...

  6. Anti-tuberculosis drug combination for controlled oral delivery using 3D printed compartmental dosage forms: From drug product design to in vivo testing

    DEFF Research Database (Denmark)

    Genina, Natalja; Boetker, Johan Peter; Colombo, Stefano

    2017-01-01

    The design and production of an oral dual-compartmental dosage unit (dcDU) was examined in vitro and in vivo with the purpose of physically isolating and modulating the release profile of an anti-tuberculosis drug combination. Rifampicin (RIF) and isoniazid (ISO) are first line combination drugs...... for treatment of tuberculosis (TB) that negatively interact with each other upon simultaneous release in acidic environment. The dcDUs were designed in silico by computer aided design (CAD) and fabricated in two steps; first three-dimensional (3D) printing of the outer structure, followed by hot-melt extrusion...... (HME) of the drug-containing filaments. The structure of the fabricated dcDUs was visualized by scanning electron microscopy (SEM). The 3D printed compartmentalized shells were loaded with filaments containing active pharmaceutical ingredient (API) and selectively sealed to modulate drug dissolution...

  7. Neurotrophin-mediated dendrite-to-nucleus signaling revealed by microfluidic compartmentalization of dendrites.

    Science.gov (United States)

    Cohen, Michael S; Bas Orth, Carlos; Kim, Hyung Joon; Jeon, Noo Li; Jaffrey, Samie R

    2011-07-05

    Signaling from dendritic synapses to the nucleus regulates important aspects of neuronal function, including synaptic plasticity. The neurotrophin brain-derived neurotrophic factor (BDNF) can induce long-lasting strengthening of synapses in vivo and this effect is dependent on transcription. However, the mechanism of signaling to the nucleus is not well understood. Here we describe a microfluidic culture device to investigate dendrite-to-nucleus signaling. Using these microfluidic devices, we demonstrate that BDNF can act directly on dendrites to elicit an anterograde signal that induces transcription of the immediate early genes, Arc and c-Fos. Induction of Arc is dependent on dendrite- and cell body-derived calcium, whereas induction of c-Fos is calcium-independent. In contrast to retrograde neurotrophin-mediated axon-to-nucleus signaling, which is MEK5-dependent, BDNF-mediated anterograde dendrite-to-nucleus signaling is dependent on MEK1/2. Intriguingly, the activity of TrkB, the BDNF receptor, is required in the cell body for the induction of Arc and c-Fos mediated by dendritically applied BDNF. These results are consistent with the involvement of a signaling endosome-like pathway that conveys BDNF signals from the dendrite to the nucleus.

  8. Fault seal analysis to predict the compartmentalization of gas reservoir: Case study of Steenkool formation Bintuni Basin

    Science.gov (United States)

    Ginanjar, W. C. B.; Haris, A.; Riyanto, A.

    2017-07-01

    This study is aimed to analyze the mechanism of hydrocarbons trapping in the field on a relatively new play in the Bintuni basin particularly Steenkool formation. The first well in this field has been drilled with a shallow target in the Steenkool formation and the drilling is managed to find new gas reserves in the shale-sandstone layer. In the structure of this gas discovery, there is the potential barrier for compartmentalization that draws attention to analyze how the patterns of structural of fault become a part of reservoir compartment. In order to measure the risk associated with prospects on a field bounded by faults, it is important to understand the processes that contribute to fault seal. The method of Fault Seal Analysis (FSA) is one of the methods used for the analysis of the nature of a fault whether the fault is sealing or leaking the fluid flow in the reservoir. Trapping systems that are limited by faults play an important role in creating a trap of hydrocarbon. The ability of a fault to seal fluid is quantitatively reflected by the value of Shale Gouge Ratio (SGR). SGR is the calculation of the amount of fine-grained material that fills fault plane (fault gouge) as a result of the movement mechanism of fault. The result of this study is a valuable resource for the systematic evaluation of the analysis of hydrocarbon prospects in the field.

  9. Drug compartmentalization as strategy to improve the physico-chemical properties of diclofenac sodium loaded niosomes for topical applications.

    Science.gov (United States)

    Tavano, Lorena; de Cindio, Bruno; Picci, Nevio; Ioele, Giuseppina; Muzzalupo, Rita

    2014-12-01

    The objective of this research was to study the effect of diclofenac sodium compartmentalization on the physico-chemical properties (such as size, drug entrapment efficiency and percutaneous permeation across rabbit skin) of niosomal vesicles used as carriers. Niosomes were prepared starting from nonionic commercial surfactants belonging to the class of Polysorbates and Pluronics: mixtures of Span 60/F127 and Tween 60/F127 at different ratios were used to obtain vesicles and all formulations were compared in terms of dimensions, morphology, polydispersity index and entrapment efficiency. Moreover, the enhancing effect of niosomes on the ex vivo percutaneous penetration of diclofenac sodium was investigated using Franz-type diffusion chambers and compared to that obtained by using the corresponding drug solution. Results demonstrated that niosomes were spherical and homogeneous in shape. Their size was found to be dependent on the hydrophile-lipophile balance of the surfactant mixture: increasing hydrophobicity resulted in smaller vesicles. Drug incorporation led to a significant variation in vesicle size dependently from the compartment in which the drug was located. The permeation of diclofenac from free solution used as control was found to be lower respect to that obtained for all niosomal formulations, that can be considered as percutaneous permeation enhancers. In particular, the results indicated that the highest cumulative amounts of diclofenac permeated across rabbit skin after 24 h were obtained by formulations in which the drug was located in the aqueous core.

  10. Levels, spatial variation and compartmentalization of trace elements in brown algae Cystoseira from marine protected areas of Crimea (Black Sea)

    International Nuclear Information System (INIS)

    Kravtsova, Alexandra V.; Milchakova, Nataliya A.; Frontasyeva, Marina V.

    2015-01-01

    Highlights: • 19 trace elements were determined in Cystoseira spp. from marine protected areas. • Levels of 10 elements were lower than reported data for Black Sea Cystoseira spp. • Concentrations of most trace elements were higher in “branches” than in “stems”. • Spatial variations of V, Co, Ni and Zn can be related to anthropogenic activities. • Al, Sc, Fe, Rb, Cs, Th, U varied depending on geological composition of the coast. - Abstract: Levels of Al, Sc, V, Co, Ni, As, Br, Rb, Sr, Ag, Sb, I, Cs, Ba, Th and U that were rarely or never studied, as well as the concentrations of classically investigated Mn, Fe and Zn in brown algae Cystoseira barbata C. Ag. and Cystoseira crinita (Desf.) Bory from the coastal waters of marine protected areas (Crimea, Black Sea), were determined using neutron activation analysis. Spatial variation and compartmentalization were studied for all 19 trace elements (TE). Concentrations of most TE were higher in “branches” than in “stems”. Spatial variations of V, Co, Ni and Zn can be related to anthropogenic activities while Al, Sc, Fe, Rb, Cs, Th and U varied depending on chemical peculiarities of the coastal zone rocks. TE concentrations in C. crinita from marine protected areas near Tarkhankut peninsula and Cape Fiolent, identified as the most clean water areas, are submitted as the background concentrations

  11. Surface interactions with compartmentalized cellular phosphates explain rare earth oxide nanoparticle hazard and provide opportunities for safer design.

    Science.gov (United States)

    Li, Ruibin; Ji, Zhaoxia; Chang, Chong Hyun; Dunphy, Darren R; Cai, Xiaoming; Meng, Huan; Zhang, Haiyuan; Sun, Bingbing; Wang, Xiang; Dong, Juyao; Lin, Sijie; Wang, Meiying; Liao, Yu-Pei; Brinker, C Jeffrey; Nel, Andre; Xia, Tian

    2014-02-25

    Growing international exploitation of rare earth oxides (REOs) for commercial and biological use has increased the possibility of human exposure and adverse health effects. Occupational exposure to rare earth materials in miners and polishers leads to a severe form of pneumoconiosis, while gadolinium-containing MRI contrast agents cause nephrogenic systemic fibrosis in patients with renal impairment. The mechanisms for inducing these adverse pro-fibrogenic effects are of considerable importance for the safety assessment of REO particles as well as presenting opportunities for safer design. In this study, using a well-prepared REO library, we obtained a mechanistic understanding of how REOs induce cellular and pulmonary damage by a compartmentalized intracellular biotransformation process in lysosomes that results in pro-fibrogenic growth factor production and lung fibrosis. We demonstrate that rare earth oxide ion shedding in acidifying macrophage lysosomes leads to biotic phosphate complexation that results in organelle damage due to stripping of phosphates from the surrounding lipid bilayer. This results in nanoparticle biotransformation into urchin shaped structures and setting in motion a series of events that trigger NLRP3 inflammasome activation, IL-1β release, TGF-β1 and PDGF-AA production. However, pretreatment of REO nanoparticles with phosphate in a neutral pH environment prevents biological transformation and pro-fibrogenic effects. This can be used as a safer design principle for producing rare earth nanoparticles for biological use.

  12. Acute effects of incremental inspiratory loads on compartmental chest wall volume and predominant activity frequency of inspiratory muscle.

    Science.gov (United States)

    Da Gama, Alana Elza Fontes; de Andrade Carvalho, Larissa; Feitosa, Larissa Andrade; do Nascimento Junior, Jasiel Frutuoso; da Silva, Marilú Gomes Netto Monte; Amorim, César F; Aliverti, Andréa; Lambertz, Daniel; Rodrigues, Marco Aurélio Benedetti; de Andrade, Armèle Dornelas

    2013-12-01

    This research aims to analyze the acute effect of incremental inspiratory loads on respiratory pattern and on the predominant activity frequency of inspiratory muscle, taking into account differences in gender responses. Optoelectronic Plethysmography was performed during loads in 39 healthy subjects (20 women), placing 89 markers on the thoracic-abdominal wall to obtain total and regional volumes. Surface electromyography (SEMG) was taken simultaneously on the Sternocleidomastoid and Diaphragm muscles, to calculate the predominant muscle activity frequency through wavelet analysis. Inspiratory loads were performed using Threshold(®)with 2 min of breathing at different levels, ranging from a load of 10 cmH(2)O plus 5 cmH(2)O to 40 cmH(2)O or fatigue. Inspiratory Time increased during loads. Total and compartmental volumes increased with different regions, changing at different loads. These changes in volume occur earlier in women (20 cmH(2)O) than in men (30 cmH(2)O). The predominant activity frequency of Sternocleidmastoid muscle decreased at 30 cmH(2)O, while Diaphragm activity decreased at 40 cmH(2)O. The acute effects of incremental inspiratory loads are increases of total and regional volumes and inspiratory time. As for muscle activity, the predominant activity frequency declined in Sternocleidomastoid and Diaphragm muscles, but at different loads. Such respiratory and SEMG patterns and gender differences should be considered when clinical interventions are performed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Two-compartmental population balance modeling of a pulsed spray fluidized bed granulation based on computational fluid dynamics (CFD) analysis.

    Science.gov (United States)

    Liu, Huolong; Li, Mingzhong

    2014-11-20

    In this work a two-compartmental population balance model (TCPBM) was proposed to model a pulsed top-spray fluidized bed granulation. The proposed TCPBM considered the spatially heterogeneous granulation mechanisms of the granule growth by dividing the granulator into two perfectly mixed zones of the wetting compartment and drying compartment, in which the aggregation mechanism was assumed in the wetting compartment and the breakage mechanism was considered in the drying compartment. The sizes of the wetting and drying compartments were constant in the TCPBM, in which 30% of the bed was the wetting compartment and 70% of the bed was the drying compartment. The exchange rate of particles between the wetting and drying compartments was determined by the details of the flow properties and distribution of particles predicted by the computational fluid dynamics (CFD) simulation. The experimental validation has shown that the proposed TCPBM can predict evolution of the granule size and distribution within the granulator under different binder spray operating conditions accurately. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Inter-compartmental transport of organophosphate and pyrethroid pesticides in South China: implications for a regional risk assessment.

    Science.gov (United States)

    Li, Huizhen; Wei, Yanli; Lydy, Michael J; You, Jing

    2014-07-01

    The dynamic flux of an organophosphate and four pyrethroid pesticides was determined in an air-(soil)-water-sediment system based on monitoring data from Guangzhou, China. The total air-water flux, including air-water gaseous exchange and atmospheric deposition, showed deposition from air to water for chlorpyrifos, bifenthrin and cypermethrin, but volatilization for lambda-cyhalothrin and permethrin. The transport of the pesticides from overlying water to sediment suggested that sediment acted as a sink for the pesticides. Additionally, distinct annual atmospheric depositional fluxes between legacy and current-use pesticides suggested the role of consumer usage in their transport throughout the system. Finally, pesticide toxicity was estimated from annual air-water-sediment flux within an urban stream in Guangzhou. A dynamic flux-based risk assessment indicated that inter-compartmental transport of chlorpyrifos decreased its atmospheric exposure, but had little influence on its aquatic toxicity. Instead, water-to-sediment transport of pyrethroids increased their sediment toxicity, which was supported by previously reported toxicity data. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Compartmentalized Microfluidic Platforms: The Unrivaled Breakthrough of In Vitro Tools for Neurobiological Research.

    Science.gov (United States)

    Neto, Estrela; Leitão, Luís; Sousa, Daniela M; Alves, Cecília J; Alencastre, Inês S; Aguiar, Paulo; Lamghari, Meriem

    2016-11-16

    Microfluidic technology has become a valuable tool to the scientific community, allowing researchers to study fine cellular mechanisms with higher variable control compared with conventional systems. It has evolved tremendously, and its applicability and flexibility made its usage grow exponentially and transversely to several research fields. This has been particularly noticeable in neuroscience research, where microfluidic platforms made it possible to address specific questions extending from axonal guidance, synapse formation, or axonal transport to the development of 3D models of the CNS to allow pharmacological testing and drug screening. Furthermore, the continuous upgrade of microfluidic platforms has allowed a deeper study of the communication occurring between different neuronal and glial cells or between neurons and other peripheral tissues, both in physiological and pathological conditions. Importantly, the evolution of microfluidic technology has always been accompanied by the development of new computational tools addressing data acquisition, analysis, and modeling. Copyright © 2016 the authors 0270-6474/16/3611573-12$15.00/0.

  16. Compartmentation of mono- and sesqui-terpene biosynthesis of the essential oil in poncirus trifoliata

    International Nuclear Information System (INIS)

    Heinrich, G.; Wegener, R.; Schultze, W.

    1980-01-01

    The fruit of Poncirus trifoliata shows glandular cells complexes in the exocarp, which produce a volatile oil rich in monoterpenes but poor in sesquiterpenes and oxigenated compounds. The juice vesicles of the endocarp possess similar cell complexes mainly containing sesquiterpenes and oxigenated compounds, whereas monoterpenes only occur in small amounts. By the use of combined gas chromatography-mass spectrometry 19 components of the rind oil and 15 compounds of the endocarp oil could be identified. As demonstrated by electron microscopy the terpenes most probably are synthesized predominantly, if not exclusively in plastids. As shown by gasradiochromatography radioactive precursors ( 14 Co 2 and 14 C-leucine) are incorporated into mono- and sesqui-terpenes to a different extent. This is due to two gland types producing essential oils of different composition with regard to their mono- and sesqui-terpene percentage. In fruit development the exocarp glands differentiate earlier than the endocarp glands do. The activity of exogenously applied 14 Co 2 first reaches the peripheral glands and later on appears in the interior glands. Depending upon the growth season, labelled leucine transported by the conducting tissues from lower plant parts leads to a high specific activity of the sesqui-terpenes and oxigenated compounds. It could be argued that in this instance the glands of the pulp are better provided with precursors than the exocarp glands. The successive maxima of essential oil production in both glandular complexes, and the changes in the concentration of individual oil constituents during the ontogeny of the fruit also contribute to different incorporation ratios of radioactive precursors into mono- and sesqui-terpenes. (author)

  17. Cell biology of anaerobic ammonium-oxidizing bacteria

    NARCIS (Netherlands)

    Niftrik, L.A.M.P. van

    2008-01-01

    Anammox bacteria perform anaerobic ammonium oxidation to dinitrogen gas and belong to the phylum Planctomycetes. Whereas most Prokaryotes consist of one compartment, the cytoplasm bounded by the cytoplasmic membrane and cell wall, the species within this phylum are compartmentalized by intracellular

  18. Peptidases Compartmentalized to the Ascaris suum Intestinal Lumen and Apical Intestinal Membrane

    Science.gov (United States)

    Rosa, Bruce A.

    2015-01-01

    The nematode intestine is a tissue of interest for developing new methods of therapy and control of parasitic nematodes. However, biological details of intestinal cell functions remain obscure, as do the proteins and molecular functions located on the apical intestinal membrane (AIM), and within the intestinal lumen (IL) of nematodes. Accordingly, methods were developed to gain a comprehensive identification of peptidases that function in the intestinal tract of adult female Ascaris suum. Peptidase activity was detected in multiple fractions of the A. suum intestine under pH conditions ranging from 5.0 to 8.0. Peptidase class inhibitors were used to characterize these activities. The fractions included whole lysates, membrane enriched fractions, and physiological- and 4 molar urea-perfusates of the intestinal lumen. Concanavalin A (ConA) was confirmed to bind to the AIM, and intestinal proteins affinity isolated on ConA-beads were compared to proteins from membrane and perfusate fractions by mass spectrometry. Twenty-nine predicted peptidases were identified including aspartic, cysteine, and serine peptidases, and an unexpectedly high number (16) of metallopeptidases. Many of these proteins co-localized to multiple fractions, providing independent support for localization to specific intestinal compartments, including the IL and AIM. This unique perfusion model produced the most comprehensive view of likely digestive peptidases that function in these intestinal compartments of A. suum, or any nematode. This model offers a means to directly determine functions of these proteins in the A. suum intestine and, more generally, deduce the wide array functions that exist in these cellular compartments of the nematode intestine. PMID:25569475

  19. Compartmentalized self-replication (CSR) selection of Thermococcus litoralis Sh1B DNA polymerase for diminished uracil binding.

    Science.gov (United States)

    Tubeleviciute, Agne; Skirgaila, Remigijus

    2010-08-01

    The thermostable archaeal DNA polymerase Sh1B from Thermococcus litoralis has a typical uracil-binding pocket, which in nature plays an essential role in preventing the accumulation of mutations caused by cytosine deamination to uracil and subsequent G-C base pair transition to A-T during the genomic DNA replication. The uracil-binding pocket recognizes and binds uracil base in a template strand trapping the polymerase. Since DNA replication stops, the repair systems have a chance to correct the promutagenic event. Archaeal family B DNA polymerases are employed in various PCR applications. Contrary to nature, in PCR the uracil-binding property of archaeal polymerases is disadvantageous and results in decreased DNA amplification yields and lowered sensitivity. Furthermore, in diagnostics qPCR, RT-qPCR and end-point PCR are performed using dNTP mixtures, where dTTP is partially or fully replaced by dUTP. Uracil-DNA glycosylase treatment and subsequent heating of the samples is used to degrade the DNA containing uracil and prevent carryover contamination, which is the main concern in diagnostic laboratories. A thermostable archaeal DNA polymerase with the abolished uracil binding would be a highly desirable and commercially interesting product. An attempt to disable uracil binding in DNA polymerase Sh1B from T. litoralis by generating site-specific mutants did not yield satisfactory results. However, a combination of random mutagenesis of the whole polymerase gene and compartmentalized self-replication was successfully used to select variants of thermostable Sh1B polymerase capable of performing PCR with dUTP instead of dTTP.

  20. Comparison of linear and nonlinear implementation of the compartmental tissue uptake model for dynamic contrast-enhanced MRI.

    Science.gov (United States)

    Kallehauge, Jesper F; Sourbron, Steven; Irving, Benjamin; Tanderup, Kari; Schnabel, Julia A; Chappell, Michael A

    2017-06-01

    Fitting tracer kinetic models using linear methods is much faster than using their nonlinear counterparts, although this comes often at the expense of reduced accuracy and precision. The aim of this study was to derive and compare the performance of the linear compartmental tissue uptake (CTU) model with its nonlinear version with respect to their percentage error and precision. The linear and nonlinear CTU models were initially compared using simulations with varying noise and temporal sampling. Subsequently, the clinical applicability of the linear model was demonstrated on 14 patients with locally advanced cervical cancer examined with dynamic contrast-enhanced magnetic resonance imaging. Simulations revealed equal percentage error and precision when noise was within clinical achievable ranges (contrast-to-noise ratio >10). The linear method was significantly faster than the nonlinear method, with a minimum speedup of around 230 across all tested sampling rates. Clinical analysis revealed that parameters estimated using the linear and nonlinear CTU model were highly correlated (ρ ≥ 0.95). The linear CTU model is computationally more efficient and more stable against temporal downsampling, whereas the nonlinear method is more robust to variations in noise. The two methods may be used interchangeably within clinical achievable ranges of temporal sampling and noise. Magn Reson Med 77:2414-2423, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  1. Gait analysis of patients with an off-the-shelf total knee replacement versus customized bi-compartmental knee replacement.

    Science.gov (United States)

    Wang, Henry; Foster, Jonathan; Franksen, Natasha; Estes, Jill; Rolston, Lindsey

    2017-09-04

    Newer TKR designs have been introduced to the market with the aim of overcoming common sizing problems with older TKR designs. Furthermore, since a sizable percentage of patients with OA present with disease limited to the medial/lateral knee compartment in addition to the patellofemoral joint, for whom, a customized bi-compartmental knee replacement (BKR) is available as a treatment option. To date, there is very little information regarding knee strength and mechanics during gait for patients implanted with these modern TKR and BKR designs. The purpose of the study was to evaluate knee strength and mechanics during walking for patients with either a modern off the shelf TKR or a customized BKR and compare these findings to a cohort of healthy controls. Twelve healthy controls, eight BKR, and nine TKR patients participated in the study. Maximal isometric knee strength was evaluated. 3D kinematic and kinetic analyses were conducted for level walking. The TKR knee exhibited less peak extensor torque when compared to, both the BKR and control limbs (p < 0.05). The TKR knee had less extensor moment at stance than both the BKR and control knees (p < 0.05). Both the BKR and control knees displayed larger internal rotation at stance than that of the TKR knee (p < 0.05). This study suggests that, for patients that exhibit isolated OA of the tibiofemoral joint, using a customized BKR implant is a viable treatment option and may contribute to superior mechanical advantages.

  2. Subcellular compartmentalization of Cd and Zn in two bivalves. I. Significance of metal-sensitive fractions (MSF) and biologically detoxified metal (BDM)

    Science.gov (United States)

    Wallace, W.G.; Lee, B.-G.; Luoma, S.N.

    2003-01-01

    Many aspects of metal accumulation in aquatic invertebrates (i.e. toxicity, tolerance and trophic transfer) can be understood by examining the subcellular partitioning of accumulated metal. In this paper, we use a compartmentalization approach to interpret the significance of metal, species and size dependence in the subcellular partitioning of Cd and Zn in the bivalves Macoma balthica and Potamocorbula amurensis. Of special interest is the compartmentalization of metal as metal-sensitive fractions (MSF) (i.e. organelles and heat-sensitive proteins, termed 'enzymes' hereafter) and biologically detoxified metal (BDM) (i.e. metallothioneins [MT] and metal-rich granules [MRG]). Clams from San Francisco Bay, CA, were exposed for 14 d to seawater (20??? salinity) containing 3.5 ??g l-1 Cd and 20.5 ??g l-1 Zn, including 109Cd and 65Zn as radiotracers. Uptake was followed by 21 d of depuration. The subcellular partitioning of metal within clams was examined following exposure and loss. P. amurensis accumulated ???22x more Cd and ???2x more Zn than M. balthica. MT played an important role in the storage of Cd in P. amurensis, while organelles were the major site of Zn accumulation. In M. balthica, Cd and Zn partitioned similarly, although the pathway of detoxification was metal-specific (MRG for Cd; MRG and MT for Zn). Upon loss, M. balthica depurated ???40% of Cd with Zn being retained; P. amurensis retained Cd and depurated Zn (???40%). During efflux, Cd and Zn concentrations in the MSF compartment of both clams declined with metal either being lost from the animal or being transferred to the BDM compartment. Subcellular compartmentalization was also size-dependent, with the importance of BDM increasing with clam size; MSF decreased accordingly. We hypothesized that progressive retention of metal as BDM (i.e. MRG) with age may lead to size dependency of metal concentrations often observed in some populations of M. balthica.

  3. The assembly of metals chelation by thiols and vacuolar compartmentalization conferred increased tolerance to and accumulation of cadmium and arsenic in transgenic Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jiangbo [Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093 (China); Inner Mongolia Key Laboratory of Biomass-Energy Conversion, The Institute of Bioengineering and Technology, Inner Mongolia University of Science and Technology, Baotou 040100 (China); Xu, Wenzhong [Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093 (China); Ma, Mi, E-mail: mami@ibcas.ac.cn [Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093 (China)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Simultaneous transformation of AsPCS1 and ScYCF1 into Arabidopsis thaliana which is sensitive to heavy metals, leads to transgenic plants tolerant to Arsenic and cadmium. Black-Right-Pointing-Pointer Dual-gene transgenic Arabidopsis showed higher accumulation of Arsenic and cadmium than single and non-transgenic plants. Black-Right-Pointing-Pointer Our results proved that improved thiol peptides synthesis and vacuolar compartmentation in plant dramatically boosted the survival rates of plants when exposed to heavy metals. Black-Right-Pointing-Pointer A new strategy for efficient phytoremediation of heavy metals by stacking genes transformation in plants was developed in this article. - Abstract: Transgenic Arabidopsis thaliana were developed to increase tolerance for and accumulation of heavy metals and metalloids by simultaneous overexpression of AsPCS1 and YCF1 (derived from garlic and baker's yeast) based on the fact that chelation of metals and vacuolar compartmentalization are the main strategies for heavy metals/metalloids detoxification and tolerance in plants. Dual-gene transgenic lines had the longest roots and the highest accumulation of Cd and As than single-gene transgenic lines and wildtype. When grown on cadmium or arsenic (arsenite/arsenate), Dual-gene transgenic lines accumulated over 2-10 folds cadmium/arsenite and 2-3 folds arsenate than wild type or plants expressing AsPCS1 or YCF1 alone. Such stacking modified genes involved in chelation of toxic metals and vacuolar compartmentalization represents a highly promising new tool for use in phytoremediation efforts.

  4. The assembly of metals chelation by thiols and vacuolar compartmentalization conferred increased tolerance to and accumulation of cadmium and arsenic in transgenic Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Guo, Jiangbo; Xu, Wenzhong; Ma, Mi

    2012-01-01

    Highlights: ► Simultaneous transformation of AsPCS1 and ScYCF1 into Arabidopsis thaliana which is sensitive to heavy metals, leads to transgenic plants tolerant to Arsenic and cadmium. ► Dual-gene transgenic Arabidopsis showed higher accumulation of Arsenic and cadmium than single and non-transgenic plants. ► Our results proved that improved thiol peptides synthesis and vacuolar compartmentation in plant dramatically boosted the survival rates of plants when exposed to heavy metals. ► A new strategy for efficient phytoremediation of heavy metals by stacking genes transformation in plants was developed in this article. - Abstract: Transgenic Arabidopsis thaliana were developed to increase tolerance for and accumulation of heavy metals and metalloids by simultaneous overexpression of AsPCS1 and YCF1 (derived from garlic and baker's yeast) based on the fact that chelation of metals and vacuolar compartmentalization are the main strategies for heavy metals/metalloids detoxification and tolerance in plants. Dual-gene transgenic lines had the longest roots and the highest accumulation of Cd and As than single-gene transgenic lines and wildtype. When grown on cadmium or arsenic (arsenite/arsenate), Dual-gene transgenic lines accumulated over 2–10 folds cadmium/arsenite and 2–3 folds arsenate than wild type or plants expressing AsPCS1 or YCF1 alone. Such stacking modified genes involved in chelation of toxic metals and vacuolar compartmentalization represents a highly promising new tool for use in phytoremediation efforts.

  5. Typing of MRI in medial meniscus degeneration in relation to radiological grade in medial compartmental osteoarthritis of the knee

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Nobuhito; Koshino, Tomihisa; Saito, Tomoyuki; Sakai, Naotaka; Takagi, Toshitaka; Takeuchi, Ryohei [Yokohama City Univ. (Japan). School of Medicine

    1998-10-01

    The advancement of degeneration of 50 medial menisci in patients with medial compartmental osteoarthritic knees (OA) were evaluated with magnetic resonance imaging (MRI). The average age of the patients was 66.6 years (range, 39 to 86). According to a radiographical grading system, 6 knees were classified as Grade 1, 24 as Grade 2, 16 as Grade 3, and 4 as Grade 4. The extent and the location of a high intensity region in MRI were observed in 3 parts of the meniscus, namely, the anterior, middle and posterior part. In Grade 1, no high intensity region was observed in 3 knees, and a high intensity region was observed only in the posterior part in 2 knees. A high intensity region was observed from the medial to the posterior part in 13 knees, and only in the posterior part in 10 knees of Grade 2; from the medial to the posterior part in 12 knees, and only in the posterior part in 3 knees of Grade 3, and from the anterior to the posterior part in 2 knees of Grade 4. The shape of the high intensity region in the medial meniscus was classified into 5 types, as follows: Type 1, there was no high intensity region; Type 2, the high intensity region was observed to be restricted within the meniscus; Type 3, the high intensity region resembled a horizontal tear; Type 4, the high intensity region was observed as all of the medial joint space without a marginal area; Type 5, the high intensity region was observed as all of the medial joint space. In Grade 1, 3 knees were classified as Type 1, and 2 knees as Type 2; in Grade 2, 7 knees as Type 2, and 13 knees as Type 3, and 4 knees into Type 4; in Grade 3, 6 knees as Type 3, and 7 knees as Type 4; and in Grade 4, 2 knees as Type 4, and 2 knees as Type 5. These findings might suggest that the degeneration of medial meniscus in the medial type of OA was accelerated by mechanical stress due to varus deformity. (author)

  6. Typing of MRI in medial meniscus degeneration in relation to radiological grade in medial compartmental osteoarthritis of the knee

    International Nuclear Information System (INIS)

    Nagata, Nobuhito; Koshino, Tomihisa; Saito, Tomoyuki; Sakai, Naotaka; Takagi, Toshitaka; Takeuchi, Ryohei

    1998-01-01

    The advancement of degeneration of 50 medial menisci in patients with medial compartmental osteoarthritic knees (OA) were evaluated with magnetic resonance imaging (MRI). The average age of the patients was 66.6 years (range, 39 to 86). According to a radiographical grading system, 6 knees were classified as Grade 1, 24 as Grade 2, 16 as Grade 3, and 4 as Grade 4. The extent and the location of a high intensity region in MRI were observed in 3 parts of the meniscus, namely, the anterior, middle and posterior part. In Grade 1, no high intensity region was observed in 3 knees, and a high intensity region was observed only in the posterior part in 2 knees. A high intensity region was observed from the medial to the posterior part in 13 knees, and only in the posterior part in 10 knees of Grade 2; from the medial to the posterior part in 12 knees, and only in the posterior part in 3 knees of Grade 3, and from the anterior to the posterior part in 2 knees of Grade 4. The shape of the high intensity region in the medial meniscus was classified into 5 types, as follows: Type 1, there was no high intensity region; Type 2, the high intensity region was observed to be restricted within the meniscus; Type 3, the high intensity region resembled a horizontal tear; Type 4, the high intensity region was observed as all of the medial joint space without a marginal area; Type 5, the high intensity region was observed as all of the medial joint space. In Grade 1, 3 knees were classified as Type 1, and 2 knees as Type 2; in Grade 2, 7 knees as Type 2, and 13 knees as Type 3, and 4 knees into Type 4; in Grade 3, 6 knees as Type 3, and 7 knees as Type 4; and in Grade 4, 2 knees as Type 4, and 2 knees as Type 5. These findings might suggest that the degeneration of medial meniscus in the medial type of OA was accelerated by mechanical stress due to varus deformity. (author)

  7. Anti-tuberculosis drug combination for controlled oral delivery using 3D printed compartmental dosage forms: From drug product design to in vivo testing.

    Science.gov (United States)

    Genina, Natalja; Boetker, Johan Peter; Colombo, Stefano; Harmankaya, Necati; Rantanen, Jukka; Bohr, Adam

    2017-12-28

    The design and production of an oral dual-compartmental dosage unit (dcDU) was examined in vitro and in vivo with the purpose of physically isolating and modulating the release profile of an anti-tuberculosis drug combination. Rifampicin (RIF) and isoniazid (ISO) are first line combination drugs for treatment of tuberculosis (TB) that negatively interact with each other upon simultaneous release in acidic environment. The dcDUs were designed in silico by computer aided design (CAD) and fabricated in two steps; first three-dimensional (3D) printing of the outer structure, followed by hot-melt extrusion (HME) of the drug-containing filaments. The structure of the fabricated dcDUs was visualized by scanning electron microscopy (SEM). The 3D printed compartmentalized shells were loaded with filaments containing active pharmaceutical ingredient (API) and selectively sealed to modulate drug dissolution. The drug release profile of the dcDUs was characterized by pH-transfer dissolution in vitro and pharmacokinetics studies in rats, and resulted in modified release of the APIs from the dcDUs as compared to the free filaments. Furthermore, the selective physical sealing of the compartments resulted in an effective retardation of the in vitro API release. The findings of this study support the development of controllable-by-design dcDU systems for combination therapies to enable efficient therapeutic translation of oral dosage forms. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Classical algorithms for automated parameter-search methods in compartmental neural models - A critical survey based on simulations using neuron

    International Nuclear Information System (INIS)

    Mutihac, R.; Mutihac, R.C.; Cicuttin, A.

    2001-09-01

    gradient-descent techniques are adequate if the parameter space is low-dimensional, relatively smooth, and has a few local minima (e.g., parameterizing single-neuron compartmental models). Only the fast algorithms and/or a decent (low) number of model parameters are candidates for automated parameter search because of practical reasons. Eventually, the size of the parameter space may be reduced and/or parallel supercomputers may be used. Data overfitting may negatively affect the generalization ability of the model. Bayesian methods include Occam's factor, which set the preference for simpler models. Proliferation of (neural) models raises the question of rigorous criteria for comparing the overall performance of various models designed to match the same type of data. Bayesian methods provide the best framework to assess the neural models quantitatively. Paradoxically, parameter-search methods may sometimes be more useful when they fail by discarding unrealistic mechanisms used in the model design, rather than fitting experimental data to an alleged model

  9. 1H-NMR study of the impact of high pressure and thermal processing on cell membrane integrity of onions

    NARCIS (Netherlands)

    Gonzalez, M.E.; Barrett, D.M.; McCarthy, M.J.; Vergeldt, F.J.; Gerkema, E.; Matser, A.M.; As, van H.

    2010-01-01

    Proton nuclear magnetic resonance (1H-NMR) relaxometry was used to study the effects of high pressure and thermal processing on membrane permeability and cell compartmentalization, important components of plant tissue texture. High pressure treated onions were subjected to pressure levels from 20 to

  10. Biodegradation of a mixture of the herbicides ametryn, and 2,4-dichlorophenoxyacetic acid (2,4-D) in a compartmentalized biofilm reactor.

    Science.gov (United States)

    Sandoval-Carrasco, Carlos A; Ahuatzi-Chacón, Deifilia; Galíndez-Mayer, Juvencio; Ruiz-Ordaz, Nora; Juárez-Ramírez, Cleotilde; Martínez-Jerónimo, Fernando

    2013-10-01

    In this work, an efficient degradation process for the removal of 2,4-D and ametryn, together with organic and inorganic adjuvants used in the commercial formulations of both herbicides, was developed. Although both compounds are toxic for microbial communities, ametryn is markedly more toxic than 2,4-D. In spite of this, the microbial consortium used could resist loading rates up to 31.5 mg L(-1) d(-1) of ametryn, with removal efficiencies up to 97% for both herbicides. Thus, an alternative use of this consortium could be bioaugmentation, as a tool to protect the structure and function of an activated-sludge biota against ametryn or 2,4-D shock loads. The process was carried out in a lab-scale prototype of aerobic biobarrier constructed as a compartmentalized fixed film reactor with airlift recirculation of oxygenated liquid. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Work-related pain in extrinsic finger extensor musculature of instrumentalists is associated with intracellular pH compartmentation during exercise.

    Directory of Open Access Journals (Sweden)

    Angel Moreno-Torres

    Full Text Available BACKGROUND: Although non-specific pain in the upper limb muscles of workers engaged in mild repetitive tasks is a common occupational health problem, much is unknown about the associated structural and biochemical changes. In this study, we compared the muscle energy metabolism of the extrinsic finger extensor musculature in instrumentalists suffering from work-related pain with that of healthy control instrumentalists using non-invasive phosphorus magnetic resonance spectroscopy ((31P-MRS. We hypothesize that the affected muscles will show alterations related with an impaired energy metabolism. METHODOLOGY/PRINCIPAL FINDINGS: We studied 19 volunteer instrumentalists (11 subjects with work-related pain affecting the extrinsic finger extensor musculature and 8 healthy controls. We used (31P-MRS to find deviations from the expected metabolic response to exercise in phosphocreatine (PCr, inorganic phosphate (Pi, Pi/PCr ratio and intracellular pH kinetics. We observed a reduced finger extensor exercise tolerance in instrumentalists with myalgia, an intracellular pH compartmentation in the form of neutral and acid compartments, as detected by Pi peak splitting in (31P-MRS spectra, predominantly in myalgic muscles, and a strong association of this pattern with the condition. CONCLUSIONS/SIGNIFICANCE: Work-related pain in the finger extrinsic extensor muscles is associated with intracellular pH compartmentation during exercise, non-invasively detectable by (31P-MRS and consistent with the simultaneous energy production by oxidative metabolism and glycolysis. We speculate that a deficit in energy production by oxidative pathways may exist in the affected muscles. Two possible explanations for this would be the partial and/or local reduction of blood supply and the reduction of the muscle oxidative capacity itself.

  12. PET-based compartmental modeling of {sup 124}I-A33 antibody: quantitative characterization of patient-specific tumor targeting in colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Zanzonico, Pat; O' Donoghue, Joseph A.; Humm, John L. [Memorial Sloan Kettering Cancer Center, Department of Medical Physics, New York, NY (United States); Carrasquillo, Jorge A.; Pandit-Taskar, Neeta; Ruan, Shutian; Larson, Steven M. [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Smith-Jones, Peter [Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY (United States); Stony Brook School of Medicine, Departments of Psychiatry and Radiology, Stony Brook, NY (United States); Divgi, Chaitanya [Columbia University Medical Center, New York, NY (United States); Scott, Andrew M. [La Trobe University, Olivia Newton-John Cancer Research Institute, Melbourne (Australia); Kemeny, Nancy E.; Wong, Douglas; Scheinberg, David [Memorial Sloan Kettering Cancer Center, Department of Medicine, New York, NY (United States); Fong, Yuman [Memorial Sloan Kettering Cancer Center, Department of Surgery, New York, NY (United States); City of Hope, Department of Surgery, Duarte, CA (United States); Ritter, Gerd; Jungbluth, Achem; Old, Lloyd J. [Memorial Sloan Kettering Cancer Center, Ludwig Institute for Cancer Research, New York, NY (United States)

    2015-10-15

    The molecular specificity of monoclonal antibodies (mAbs) directed against tumor antigens has proven effective for targeted therapy of human cancers, as shown by a growing list of successful antibody-based drug products. We describe a novel, nonlinear compartmental model using PET-derived data to determine the ''best-fit'' parameters and model-derived quantities for optimizing biodistribution of intravenously injected {sup 124}I-labeled antitumor antibodies. As an example of this paradigm, quantitative image and kinetic analyses of anti-A33 humanized mAb (also known as ''A33'') were performed in 11 colorectal cancer patients. Serial whole-body PET scans of {sup 124}I-labeled A33 and blood samples were acquired and the resulting tissue time-activity data for each patient were fit to a nonlinear compartmental model using the SAAM II computer code. Excellent agreement was observed between fitted and measured parameters of tumor uptake, ''off-target'' uptake in bowel mucosa, blood clearance, tumor antigen levels, and percent antigen occupancy. This approach should be generally applicable to antibody-antigen systems in human tumors for which the masses of antigen-expressing tumor and of normal tissues can be estimated and for which antibody kinetics can be measured with PET. Ultimately, based on each patient's resulting ''best-fit'' nonlinear model, a patient-specific optimum mAb dose (in micromoles, for example) may be derived. (orig.)

  13. Effect of scatter correction on the compartmental measurement of striatal and extrastriatal dopamine D{sub 2} receptors using [{sup 123}I]epidepride SPET

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Masahiro; Seneca, Nicholas; Innis, Robert B. [Department of Psychiatry, Yale University School of Medicine and VA Connecticut Healthcare System, West Haven, CT (United States); Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD (United States); Varrone, Andrea [Department of Psychiatry, Yale University School of Medicine and VA Connecticut Healthcare System, West Haven, CT (United States); Biostructure and Bioimaging Institute, National Research Council, Napoli (Italy); Kim, Kyeong Min; Watabe, Hiroshi; Iida, Hidehiro [Department of Investigative Radiology, National Cardiovascular Center Research Institute, Osaka (Japan); Zoghbi, Sami S. [Department of Psychiatry, Yale University School of Medicine and VA Connecticut Healthcare System, West Haven, CT (United States); Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD (United States); Department of Radiology, Yale University School of Medicine and VA Connecticut Healthcare System, West Haven, CT (United States); Tipre, Dnyanesh [Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD (United States); Seibyl, John P. [Institute for Neurodegenerative Disorders, New Haven, CT (United States)

    2004-05-01

    Prior studies with anthropomorphic phantoms and single, static in vivo brain images have demonstrated that scatter correction significantly improves the accuracy of regional quantitation of single-photon emission tomography (SPET) brain images. Since the regional distribution of activity changes following a bolus injection of a typical neuroreceptor ligand, we examined the effect of scatter correction on the compartmental modeling of serial dynamic images of striatal and extrastriatal dopamine D{sub 2} receptors using [{sup 123}I]epidepride. Eight healthy human subjects [age 30{+-}8 (range 22-46) years] participated in a study with a bolus injection of 373{+-}12 (354-389) MBq [{sup 123}I]epidepride and data acquisition over a period of 14 h. A transmission scan was obtained in each study for attenuation and scatter correction. Distribution volumes were calculated by means of compartmental nonlinear least-squares analysis using metabolite-corrected arterial input function and brain data processed with scatter correction using narrow-beam geometry {mu} (SC) and without scatter correction using broad-beam {mu} (NoSC). Effects of SC were markedly different among brain regions. SC increased activities in the putamen and thalamus after 1-1.5 h while it decreased activity during the entire experiment in the temporal cortex and cerebellum. Compared with NoSC, SC significantly increased specific distribution volume in the putamen (58%, P=0.0001) and thalamus (23%, P=0.0297). Compared with NoSC, SC made regional distribution of the specific distribution volume closer to that of [{sup 18}F]fallypride. It is concluded that SC is required for accurate quantification of distribution volumes of receptor ligands in SPET studies. (orig.)

  14. The Virtual Cell: a software environment for computational cell biology.

    Science.gov (United States)

    Loew, L M; Schaff, J C

    2001-10-01

    The newly emerging field of computational cell biology requires software tools that address the needs of a broad community of scientists. Cell biological processes are controlled by an interacting set of biochemical and electrophysiological events that are distributed within complex cellular structures. Computational modeling is familiar to researchers in fields such as molecular structure, neurobiology and metabolic pathway engineering, and is rapidly emerging in the area of gene expression. Although some of these established modeling approaches can be adapted to address problems of interest to cell biologists, relatively few software development efforts have been directed at the field as a whole. The Virtual Cell is a computational environment designed for cell biologists as well as for mathematical biologists and bioengineers. It serves to aid the construction of cell biological models and the generation of simulations from them. The system enables the formulation of both compartmental and spatial models, the latter with either idealized or experimentally derived geometries of one, two or three dimensions.

  15. A new method of high-speed cellular protein separation and insight into subcellular compartmentalization of proteins.

    Science.gov (United States)

    Png, Evelyn; Lan, WanWen; Lazaroo, Melisa; Chen, Silin; Zhou, Lei; Tong, Louis

    2011-05-01

    Transglutaminase (TGM)-2 is a ubiquitous protein with important cellular functions such as regulation of cytoskeleton, cell adhesion, apoptosis, energy metabolism, and stress signaling. We identified several proteins that may interact with TGM-2 through a discovery-based proteomics method via pull down of flag-tagged TGM-2 peptide fragments. The distribution of these potential binding partners of TGM-2 was studied in subcellular fractions separated by density using novel high-speed centricollation technology. Centricollation is a compressed air-driven, low-temperature stepwise ultracentrifugation procedure where low extraction volumes can be processed in a relatively short time in non-denaturing separation conditions with high recovery yield. The fractions were characterized by immunoblots against known organelle markers. The changes in the concentrations of the binding partners were studied in cells expressing short hairpin RNA against TGM-2 (shTG). Desmin, mitochondrial intramembrane cleaving protease (PARL), protein tyrosine kinase (NTRK3), and serine protease (PRSS3) were found to be less concentrated in the 8.5%, 10%, 15%, and 20% sucrose fractions (SFs) from the lysate of shTG cells. The Golgi-associated protein (GOLGA2) was predominantly localized in 15% SF fraction, and in shTG, this shifted to predominantly in the 8.5% SF and showed larger aggregations in the cytosol of cells on immunofluorescent staining compared to control. Based on the relative concentrations of these proteins, we propose how trafficking of such proteins between cellular compartments can occur to regulate cell function. Centricollation is useful for elucidating biological function at the molecular level, especially when combined with traditional cell biology techniques.

  16. Phosphorus-31 nuclear magnetic resonance studies of intracellular pH, phosphate compartmentation and phosphate transport in yeasts

    NARCIS (Netherlands)

    Nicolay, K.; Scheffers, W.A.; Bruinenberg, P.M.; Kaptein, R.

    1982-01-01

    31p NMR spectra were obtained from suspensions of Candida utilis, Saccharomyces cerevisiae and Zygosaccharomyces bailii grown aerobically on glucose. Direct introduction of substrate into the cell suspension, without interruption of the measurements, revealed rapid changes in pH upon addition of the

  17. A Simple Plasma Retinol Isotope Ratio Method for Estimating β-Carotene Relative Bioefficacy in Humans: Validation with the Use of Model-Based Compartmental Analysis.

    Science.gov (United States)

    Ford, Jennifer Lynn; Green, Joanne Balmer; Lietz, Georg; Oxley, Anthony; Green, Michael H

    2017-09-01

    Background: Provitamin A carotenoids are an important source of dietary vitamin A for many populations. Thus, accurate and simple methods for estimating carotenoid bioefficacy are needed to evaluate the vitamin A value of test solutions and plant sources. β-Carotene bioefficacy is often estimated from the ratio of the areas under plasma isotope response curves after subjects ingest labeled β-carotene and a labeled retinyl acetate reference dose [isotope reference method (IRM)], but to our knowledge, the method has not yet been evaluated for accuracy. Objectives: Our objectives were to develop and test a physiologically based compartmental model that includes both absorptive and postabsorptive β-carotene bioconversion and to use the model to evaluate the accuracy of the IRM and a simple plasma retinol isotope ratio [(RIR), labeled β-carotene-derived retinol/labeled reference-dose-derived retinol in one plasma sample] for estimating relative bioefficacy. Methods: We used model-based compartmental analysis (Simulation, Analysis and Modeling software) to develop and apply a model that provided known values for β-carotene bioefficacy. Theoretical data for 10 subjects were generated by the model and used to determine bioefficacy by RIR and IRM; predictions were compared with known values. We also applied RIR and IRM to previously published data. Results: Plasma RIR accurately predicted β-carotene relative bioefficacy at 14 d or later. IRM also accurately predicted bioefficacy by 14 d, except that, when there was substantial postabsorptive bioconversion, IRM underestimated bioefficacy. Based on our model, 1-d predictions of relative bioefficacy include absorptive plus a portion of early postabsorptive conversion. Conclusion: The plasma RIR is a simple tracer method that accurately predicts β-carotene relative bioefficacy based on analysis of one blood sample obtained at ≥14 d after co-ingestion of labeled β-carotene and retinyl acetate. The method also provides

  18. Lyophilized kits of diamino dithiol compounds for labelling with 99m-technetium. Pharmacokinetics studies and distribution compartmental models of the related complexes

    International Nuclear Information System (INIS)

    Araujo, Elaine Bortoleti de

    1995-01-01

    The present work reflects the clinical interest for labelling diamino dithiol compounds with technetium-99m. Both chosen compounds, L,L-Ethylene dicysteine (L,L-EC) and L,L-Ethylene dicysteine diethyl esther (L,L-ECD) were obtained with relative good yield and characterized by IR and NMR. The study of labelling conditions with technetium-99m showed the influence of the type and mass of reducing agent as well as the pH on the formation of complexes with desired biological characteristics. Radiochemical purity was determined by thin layer chromatography (TLC) and high performance liquid chromatography (HPLC). Lyophilised kits of L,L-EC and L,L-ECD for labelling with 99m Tc were obtained, with stability superior to 120 days, when stored under refrigeration, enabling the kits marketing. The ideal formulation of the kits as well as the use of liquid nitrogen in the freezing process, determined the lyophilization success. Distribution biological studies of the 99m Tc complexes were performed on mice by invasive method and on bigger animals by scintigraphic evaluation. Biological distribution studies of the complex 99m Tc-L,L-EC showed fast blood clearance, with the elimination of about 90% of the administered dose after 60 minutes, almost exclusively by the urinary system. The biological distribution results were adjusted to a three compartmental distribution model, as expected for a radiopharmaceutical designed to renal dynamic studies, with tubular elimination. The complex interaction with renal tubular receptors is related with structural characteristics of the compound, more specifically with the presence and location of polar groups. In comparison with 99m Tc-L,L-EC, biological studies of the complex 99m Tc -L,L-ECD showed different distribution aspects, despite some structural similarities. The presence of ethyl groups confers to the complex neutrality and lipophilicity. It cross the intact blood brain barrier and is retained in the brain for enough period

  19. Characterization of EIAV LTR variability and compartmentalization in various reservoir tissues of long-term inapparent carrier ponies

    International Nuclear Information System (INIS)

    Reis, Jenner K.P.; Craigo, Jodi K.; Cook, Sheila J.; Issel, Charles J.; Montelaro, Ronald C.

    2003-01-01

    Dynamic genomic variation resulting in changes in envelope antigenicity has been established as a fundamental mechanism of persistence by equine infectious anemia virus (EIAV), as observed with other lentiviruses, including HIV-1. In addition to the reported changes in envelope sequences, however, certain studies indicate the viral LTR as a second variable EIAV gene, with the enhancer region being designated as hypervariable. These observations have lead to the suggestion that LTR variation may alter viral replication properties to optimize to the microenvironment of particular tissue reservoirs. To test this hypothesis directly, we examined the population of LTR quasispecies contained in various tissues of two inapparent carrier ponies experimentally infected with a reference EIAV biological clone for 18 months. The results of these studies demonstrated that the EIAV LTR is in fact highly conserved with respect to the infecting LTR species after 1.5 years of persistent infection and regardless of the tissue reservoir. Thus, these comprehensive analyses demonstrate for the first time that the EIAV LTR is highly conserved during long-term persistent infection and that the observed variations in viral LTR are associated more with in vitro adaptation to replication in cultured cells rather than in vivo replication in natural target cells

  20. Applications of Cell Microencapsulation.

    Science.gov (United States)

    Opara, Emmanuel C

    2017-01-01

    The goal of this chapter is to provide an overview of the different purposes for which the cell microencapsulation technology can be used. These include immunoisolation of non-autologous cells used for cell therapy; immobilization of cells for localized (targeted) delivery of therapeutic products to ablate, repair, or regenerate tissue; simultaneous delivery of multiple therapeutic agents in cell therapy; spatial compartmentalization of cells in complex tissue engineering; expansion of cells in culture; and production of different probiotics and metabolites for industrial applications. For each of these applications, specific examples are provided to illustrate how the microencapsulation technology can be utilized to achieve the purpose. However, successful use of the cell microencapsulation technology for whatever purpose will ultimately depend upon careful consideration for the choice of the encapsulating polymers, the method of fabrication (cross-linking) of the microbeads, which affects the permselectivity, the biocompatibility and the mechanical strength of the microbeads as well as environmental parameters such as temperature, humidity, osmotic pressure, and storage solutions.The various applications discussed in this chapter are illustrated in the different chapters of this book and where appropriate relevant images of the microencapsulation products are provided. It is hoped that this outline of the different applications of cell microencapsulation would provide a good platform for tissue engineers, scientists, and clinicians to design novel tissue constructs and products for therapeutic and industrial applications.

  1. Compartmental analysis and dosimetric aspects applied to cholesterol with {sup 3}H labeled; Analise compartimental e aspectos dosimetricos aplicados ao colesterol marcado com {sup 3}H

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Adriano dos Santos

    2015-07-01

    Cardiovascular diseases (CVDs) are one of the major reasons of death around the world according to the World Health Organization (WHO). It is well known that changes in levels of plasma lipoproteins, which are responsible for the transport of cholesterol into the bloodstream, are associated with cardiovascular diseases. For this reason to know the biokinetic parameters of plasma lipoproteins and quantifies them is important to correct and deep understanding about the diseases associated with these disorders. The main aim of this study is to provide a biokinetic model and estimate the radiometric doses for {sup 3}H-Cholesterol, a radioactive tracer widely used in physiological and metabolic studies. The model was based on [Schwartz et al. 2004] about the distribution of cholesterol by the lipoprotein and gastrointestinal model [ICRP 30, 1979]. The doses distribution in compartments of the model and other organs and tissues of a standard adult described in [ICRP 106, 2008] was calculated using MIRD method (Medical Internal Radiation Dose) and compartmental analysis using the computer program Matlab®. The dose coefficients were estimated for a standard phantom man (73 kg) described in [ICRP 60, 1991]. The estimated doses for both model and for other organs were low and did not exceed the highest dose obtained that was in the upper large intestine, as 44,8 μGy these parameters will assist in ethics committee's opinions on the use of works that use the {sup 3}H-cholesterol which radioactive tracer. (author)

  2. Building America Case Study: Apartment Compartmentalization with an Aerosol-Based Sealing Process - Queens, NY; Technology Solutions for New and Existing Homes, Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-07-01

    Air sealing of building enclosures is a difficult and time-consuming process. Current methods in new construction require laborers to physically locate small and sometimes large holes in multiple assemblies and then manually seal each of them. The innovation demonstrated under this research study was the automated air sealing and compartmentalization of buildings through the use of an aerosolized sealant, developed by the Western Cooling Efficiency Center at University of California Davis.
    CARB sought to demonstrate this new technology application in a multifamily building in Queens, NY. The effectiveness of the sealing process was evaluated by three methods: air leakage testing of overall apartment before and after sealing, point-source testing of individual leaks, and pressure measurements in the walls of the target apartment during sealing. Aerosolized sealing was successful by several measures in this study. Many individual leaks that are labor-intensive to address separately were well sealed by the aerosol particles. In addition, many diffuse leaks that are difficult to identify and treat were also sealed. The aerosol-based sealing process resulted in an average reduction of 71% in air leakage across three apartments and an average apartment airtightness of 0.08 CFM50/SF of enclosure area.

  3. Nature of rate-limiting steps in a compartmentalized enzyme system. Quantitation of dopamine transport and hydroxylation rates in resealed chromaffin granule ghosts

    International Nuclear Information System (INIS)

    Ahn, N.G.; Klinman, J.P.

    1989-01-01

    Using isolated chromaffin granule ghosts from bovine adrenal medullae, we have studied the kinetics of dopamine beta-monooxygenase (D beta M) activity as it is linked to dopamine transport. Measurements of the initial rates of transport and of transport-linked norepinephrine formation suggested that enzyme activity may be partially rate-limiting in the coupled carrier/enzyme system. This was confirmed by (i) measurements of initial rates of norepinephrine formation using deuterated substrate, which gave isotope effects greater than 2.0, and (ii) kinetic measurements using ghosts pulsed with varying concentrations of labeled dopamine, which indicated substantial substrate accumulation in the vesicle interior as a function of time. Initial rates of product formation, when combined with approximations of internal substrate concentrations, allowed estimates of Kcat and Km for intravesicular D beta M. Activation by external reductant was apparent in both initial rate parameters and the measurements of transients. Under conditions of optimal D beta M activity, the enzyme rate parameters (kcat = 0.31 nmol/s.mg and Km = 2 mM) indicated partial rate limitation compared to dopamine transport (kcat = 0.38 nmol/s.mg and Km = 32 microM). Compartmental analysis of the time curves, performed using numerical nonlinear least squares methods, gave least squares estimates of rate constants for a simple carrier mechanism and kcat values for D beta M which were consistent with estimates from initial rates

  4. In vitro digestion of short-dough biscuits enriched in proteins and/or fibres, using a multi-compartmental and dynamic system (1): viscosity measurement and prediction.

    Science.gov (United States)

    Villemejane, C; Wahl, R; Aymard, P; Denis, S; Michon, C

    2015-09-01

    The effects of biscuit composition on the viscosity generated during digestion were investigated. A control biscuit, one with proteins, one with fibres, and one with both proteins and fibres were digested under the same conditions, using the TNO intestinal model (TIM-1). The TIM-1 is a multi-compartmental and dynamic in vitro system, simulating digestion in the upper tract (stomach and small intestine) of healthy adult humans. Digesta were collected at different times, in the different compartments of the TIM-1 (stomach, duodenum, jejunum and ileum) and viscosity was measured with a dynamic rheometer. Results showed a marked effect of biscuit composition on chyme viscosity. Highest viscosity was obtained with biscuits containing viscous soluble fibres, followed by those enriched in both proteins and fibres, then by protein-enriched and control biscuits. The viscosity was maintained throughout the gut up to the ileal compartment. A prediction of the evolution of the chyme viscosity in each compartment of the TIM-1 was built, based on model curves describing the evolution of the viscosity as a function of biscuit concentration, and on dilution factors measured by spectrophotometry on a blank digestion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Selective compartmental dominance: an explanation for a noninfectious, multifactorial etiology for acquired immune deficiency syndrome (AIDS), and a rationale for ozone therapy and other immune modulating therapies.

    Science.gov (United States)

    Shallenberger, F

    1998-01-01

    The most widely accepted etiological explanation for acquired immune deficiency syndrome (AIDS) currently invokes an infectious model involving the human immunodeficiency virus (HIV). Because this infectious model has failed to meet any conventional criteria for establishing microbial causation, this theory still relies on the high, though not perfect, statistical correlation linking presence of HIV antibodies with patients diagnosed with, and at risk for the syndrome. Many scientists and clinicians now doubt the HIV theory, though, and propose instead a multifactorial causation similar to that seen in cancer and heart disease. In order to discard the HIV model, however, it is necessary to explain the high statistical correlation mentioned above. Recent studies involving cellular mediated immunity and cytokine modulation may explain this statistical relationship without the need to invoke infectious causation, by suggesting certain functional characteristics and feedback loops in the immune system which the author calls selective compartmental dominance (SCD). SCD provides a model in which chronic dominance of the humoral immune compartment secondary to chronic high-dose antigenic challenge results in chronic suppression of the cellular immune compartment. This model predicts that even HIV-negative members of the risk groups are susceptible to AIDS, assigns no special causal role for HIV in AIDS, and suggests a rational course of nontoxic therapy that can potentially reverse cases in the earlier stages.

  6. Investigations of a compartmental model for leucine kinetics using non-linear mixed effects models with ordinary and stochastic differential equations.

    Science.gov (United States)

    Berglund, Martin; Sunnåker, Mikael; Adiels, Martin; Jirstrand, Mats; Wennberg, Bernt

    2012-12-01

    Non-linear mixed effects (NLME) models represent a powerful tool to simultaneously analyse data from several individuals. In this study, a compartmental model of leucine kinetics is examined and extended with a stochastic differential equation to model non-steady-state concentrations of free leucine in the plasma. Data obtained from tracer/tracee experiments for a group of healthy control individuals and a group of individuals suffering from diabetes mellitus type 2 are analysed. We find that the interindividual variation of the model parameters is much smaller for the NLME models, compared to traditional estimates obtained from each individual separately. Using the mixed effects approach, the population parameters are estimated well also when only half of the data are used for each individual. For a typical individual, the amount of free leucine is predicted to vary with a standard deviation of 8.9% around a mean value during the experiment. Moreover, leucine degradation and protein uptake of leucine is smaller, proteolysis larger and the amount of free leucine in the body is much larger for the diabetic individuals than the control individuals. In conclusion, NLME models offers improved estimates for model parameters in complex models based on tracer/tracee data and may be a suitable tool to reduce data sampling in clinical studies.

  7. An inexpensive and innovative correction of medial compartmental osteoarthritis knee joint by high tibial lateral closed wedge osteotomy in a rural set up

    Directory of Open Access Journals (Sweden)

    Prasad DV, Arun AA, Tushar Chaudhari, Sagar Jawale, Shakthi Panda, Abhinav Jadhav, Deepak Dathrange

    2014-11-01

    Full Text Available Osteoarthritis of Knee joint with Varus deformity causes considerable disability. Operative treatment aims at shifting the mechanical load bearing axis to the less affected compartment of the knee to relieve the symptoms. Exclusion Criteria: Non-walkers due to generalized arthropathies / medical comorbidities, Flexion deformity > 10 degrees, Range of motion 1cm lateral subluxation in standing A-P X rays of both knees. Methodology: 32 (12 Males and 20 Females cases of Medial compartment osteoarthritis presenting in our OPD between 2008-2012 were treated by HTOand cortical screw and SS wire fixation (TBW Technique. Results: Evaluation of results was done based on knee rating scale by Japanese orthopaedic association. 22 cases were Excellent, 8 cases were good. One case of failure, an iatrogenic intracondylar fracture of Tibia, and another secondary haematoma under the suture line, aspirated and complete healing was achieved. Patients had good range of motion, were able to squat and sit cross legged comfortably. Conclusion: HTO by Closed Medial wedge osteotomy and fixation with cortical screw and SS wire provides a good alternative to unicompartmental knee Arthroplasty and even Total knee Arthroplasty (may be up to 10-15 years in patients with Medial compartmental osteoarthritis. It is a cost effective technique with the use of minimum hardware and early postoperative mobilization in patients who cannot afford Knee Arthroplasty in a Rural set up.

  8. Lipid rafts and B cell signaling.

    Science.gov (United States)

    Gupta, Neetu; DeFranco, Anthony L

    2007-10-01

    B cells comprise an essential component of the humoral immune system. They are equipped with the unique ability to synthesize and secrete pathogen-neutralizing antibodies, and share with professional antigen presenting cells the ability to internalize foreign antigens, and process them for presentation to helper T cells. Recent evidence indicates that specialized cholesterol- and glycosphingolipid-rich microdomains in the plasma membrane commonly referred to as lipid rafts, serve to compartmentalize key signaling molecules during the different stages of B cell activation including B cell antigen receptor (BCR)-initiated signal transduction, endocytosis of BCR-antigen complexes, loading of antigenic peptides onto MHC class II molecules, MHC-II associated antigen presentation to helper T cells, and receipt of helper signals via the CD40 receptor. Here we review the recent literature arguing for a role of lipid rafts in the spatial organization of B cell function.

  9. HIV-1 Tropism Testing in Subjects Achieving Undetectable HIV-1 RNA: Diagnostic Accuracy, Viral Evolution and Compartmentalization

    Science.gov (United States)

    Pou, Christian; Codoñer, Francisco M.; Thielen, Alexander; Bellido, Rocío; Pérez-Álvarez, Susana; Cabrera, Cecilia; Dalmau, Judith; Curriu, Marta; Lie, Yolanda; Noguera-Julian, Marc; Puig, Jordi; Martínez-Picado, Javier; Blanco, Julià; Coakley, Eoin; Däumer, Martin; Clotet, Bonaventura; Paredes, Roger

    2013-01-01

    Background Technically, HIV-1 tropism can be evaluated in plasma or peripheral blood mononuclear cells (PBMCs). However, only tropism testing of plasma HIV-1 has been validated as a tool to predict virological response to CCR5 antagonists in clinical trials. The preferable tropism testing strategy in subjects with undetectable HIV-1 viremia, in whom plasma tropism testing is not feasible, remains uncertain. Methods & Results We designed a proof-of-concept study including 30 chronically HIV-1-infected individuals who achieved HIV-1 RNA tropism shifts during viremia suppression suggests that, when available, testing of stored plasma samples is generally safe and informative, provided that HIV-1 suppression is maintained. Tropism testing in PBMCs may not necessarily produce equivalent biological results to plasma, because the structure of viral populations and the diagnostic performance of tropism assays may sometimes vary between compartments. Thereby, proviral DNA tropism testing should be specifically validated in clinical trials before it can be applied to routine clinical decision-making. PMID:23936293

  10. Expression of the Ly-6 family proteins Lynx1 and Ly6H in the rat brain is compartmentalized, cell-type specific, and developmentally regulated

    DEFF Research Database (Denmark)

    Thomsen, Morten Skøtt; Cinar, Betül; Jensen, Majbrit Myrup

    2014-01-01

    The Ly-6 superfamily of proteins, which affects diverse processes in the immune system, has attracted renewed attention due to the ability of some Ly-6 proteins to bind to and modulate the function of neuronal nicotinic acetylcholine receptors (nAChRs). However, there is a scarcity of knowledge...

  11. Cell segregation in the vertebrate hindbrain: a matter of boundaries.

    Science.gov (United States)

    Terriente, Javier; Pujades, Cristina

    2015-10-01

    Segregating cells into compartments during embryonic development is essential for growth and pattern formation. In the developing hindbrain, boundaries separate molecularly, physically and neuroanatomically distinct segments called rhombomeres. After rhombomeric cells have acquired their identity, interhombomeric boundaries restrict cell intermingling between adjacent rhombomeres and act as signaling centers to pattern the surrounding tissue. Several works have stressed the relevance of Eph/ephrin signaling in rhombomeric cell sorting. Recent data have unveiled the role of this pathway in the assembly of actomyosin cables as an important mechanism for keeping cells from different rhombomeres segregated. In this Review, we will provide a short summary of recent evidences gathered in different systems suggesting that physical actomyosin barriers can be a general mechanism for tissue separation. We will discuss current evidences supporting a model where cell-cell signaling pathways, such as Eph/ephrin, govern compartmental cell sorting through modulation of the actomyosin cytoskeleton and cell adhesive properties to prevent cell intermingling.

  12. Studies of labelling conditions for gentamicin with sup(99m)Tc. Complexation with ruthexium. Establishment of pharmacokinetics parameters through compartmental analysis

    International Nuclear Information System (INIS)

    Carvalho, O.G. de.

    1988-01-01

    Gentamicin sulphate is an aminoglycoside antibiotic type specifically used for treatment of infections produced by Gram-negative bacterias but at the other hand it presents ototoxic reactions as a serious side effect. The main purpose of labelling gentamicin with sup(99m)Tc was to obtain a radioactive tracer to carry out biological studies and compartmental analysis of this antibiotic. The optimal labelling conditions of gentamicin sulphate with sup(99m)Tc, using sodium pertechnetate solution eluted from a sup(99)Mo- sup(99m)Tc generator, were stablished by testing different masses of antibiotic, and reduction agent (SnCl sub(2).2H sub(2)O), and also different reaction time and final labelling PH. The same labelling procedure was used with Re (amonium perrenate) in order to obtain some semi-quantitative approximations of the chemical structure of the complex formed, since Re and Tc present similar chemical characteristics. In this way it is possible to suggest the role that the groups NH2 and C-O bonding of the gentamicin play in the complexation process. From the studies of the biological uptake of sup(99m)Tc-gentamicin sulphate in rats, the kidneys showed the highest affinity for the antibiotic. The maximum uptake was observed in 180 to 240 minutes followed by a decrease of it afterwards. For the dose and time used, no significative uptake by the auricular region was detected. Curve of plasma decay of sup(99m)Tc-gentamicin was obtained, and from the exponentials of each beanch of this curve respective half-lives were calculated. Furthermore the apparent volume of distribution was determined, and with the residual radioactivity in the body, the biological half-life and total clearance were obtained. The distribution of sup(99m)Tc-gentamicin in rats was set in a bi-compartments in addition to a retention one for the 24 hours time interval studied. (author)

  13. Ultra–Short-Term Reproducibility of Speckle-Noise Freed Fluid and Tissue Compartmentalization of the Choroid Analyzed by Standard OCT

    Science.gov (United States)

    Maloca, Peter; Gyger, Cyrill; Schoetzau, Andreas; Hasler, Pascal W.

    2015-01-01

    Purpose We measured reproducibility of speckle-noise freed fluid and tissue compartmentalization of the choroid (choroidal angiography and tissue characterization). Methods This study included 26 eyes of 13 healthy females: 13 were used for repeated measurements and 13 were used for side comparison. A semiautomated algorithm removed speckle-noise with structure preservation. Results Intraclass correlation (ICC), with respect to reproducibility of the method, showed an ICC for choroidal fluid inner space analysis (FISA) of 95.15% (90.01–98.24). The ICC of tissue inner space analysis (TISA) was 99.75% (99.47–99.91). The total choroid ratio (TCR), calculated from volumes of tissue to vessels, showed an ICC of 88.84% (78.28–95.82). Comparison of eyes (left to right) showed a difference for FISA of 0.033 (95% confidence interval [CI] −0.0018–0.0680, P = 0.063), TISA −0.118 (CI −0.2373–0.0023, P = 0.055), and TCR −0.590 (CI −0.9047 to −0.2754, P = 0.004). The ICC for FISA and TISA showed a trend in the difference comparing left and right eyes; however, TCR showed a significant difference between the eyes in the measured area (P OCT). Findings from basic science about speckle noise were translated into a novel, medical image postprocessing application that can separate signal from speckle noise with structure preservation with high reproducibility and enhance medical imaging. PMID:26629399

  14. Compartmental and dosimetric studies of anti-CD20 labelled with {sup 188}Re; Estudo compartimental e dosimetrico do Anti-CD20 marcado com {sup 188}Re

    Energy Technology Data Exchange (ETDEWEB)

    Kuramoto, Graciela Barrio

    2016-10-01

    The radioimmunotherapy (RIT) uses MAbs conjugated to radionuclides α or β{sup -} emitters, both for therapy. Your treatment is based on the irradiation and tumor destruction, preserving the normal organs as the excess radiation. Radionuclides β{sup -} emitters as {sup 131}I, {sup 90}Y, {sup 188}Re {sup 177}Lu and are useful for the development of therapeutic radiopharmaceuticals and, when coupled with MAb and Anti-CD20 it is important mainly for the treatment of non-Hodgkin's lymphomas (NHL). {sup 188}Re (E{sub β} = 2.12 MeV; E{sub γ} = 155 keV; t1/2 = 16.9 h) is an attractive radionuclide for RIT. However, {sup 188}Re can be obtained from a radionuclide generator of {sup 188}W/{sup 188}Re, commercially available, making it convenient for use in research and for clinical routine. The CR of IPEN has a project aimed at the production of radiopharmaceutical {sup 188}Re-Anti-CD20, where the radionuclide can be obtained from a generator system {sup 188}W/{sup 188}Re. With this proposed a study to assess the efficiency of this labeling technique for treatment in accordance compartmental and dosimetry. The objective of this study was to compare the marking of anti-CD20 MAb with {sup 188}Re with the marking of the antibody with {sup 90}Y, {sup 131}I, {sup 177}Lu and {sup 99m}Tc (for their similar chemical characteristics) and {sup 211}At, {sup 213}Bi, {sup 223}Ra and {sup 225}Ac); through the study of labeling techniques reported in literature, the proposal of a compartmental model to evaluate its pharmacokinetic and dosimetric studies, high interest for therapy. The result of the study shows a favorable kinetics for {sup 188}Re, by their physical and chemical characteristics compared to the other evaluated radionuclides. The compartment proposed study describes the metabolism of {sup 188}Reanti- CD20 through a compartment mammillary model, which by their pharmacokinetic analysis, performed compared to products emitters β{sup -131}I-labeled anti CD20, {sup 177

  15. The cytoskeleton in cell-autonomous immunity: structural determinants of host defence

    Science.gov (United States)

    Mostowy, Serge; Shenoy, Avinash R.

    2016-01-01

    Host cells use antimicrobial proteins, pathogen-restrictive compartmentalization and cell death in their defence against intracellular pathogens. Recent work has revealed that four components of the cytoskeleton — actin, microtubules, intermediate filaments and septins, which are well known for their roles in cell division, shape and movement — have important functions in innate immunity and cellular self-defence. Investigations using cellular and animal models have shown that these cytoskeletal proteins are crucial for sensing bacteria and for mobilizing effector mechanisms to eliminate them. In this Review, we highlight the emerging roles of the cytoskeleton as a structural determinant of cell-autonomous host defence. PMID:26292640

  16. Modelagem por compartimentos para integrar e comunicar conhecimento em nutrição Compartmental modeling to integrate and communicate nutritional knowledge

    Directory of Open Access Journals (Sweden)

    Edgar O. Oviedo-Rondón

    2007-07-01

    Full Text Available Esta palestra tem o objetivo de apresentar e discutir metodologias utilizadas para modelar e integrar o conhecimento clássico em nutrição animal, e o produzido por novas ciências moleculares como nutrigenoma, proteoma e metaboloma. Estas ciências e a bioinformática estão ajudando a expandir rapidamente o conhecimento dos sistemas biológicos de interesse em nutrição animal. Na palestra discutirei como é importante dedicar parte de nosso tempo a integrar o conhecimento existente para esclarecer os problemas em pesquisa, utilizando as ferramentas mais adequadas para evitar duplicação de pesquisas, que causam desperdício de recursos humanos, econômicos, e de tempo. A modelagem matemática por compartimentos utilizando programas de computador pode ser a melhor maneira de acumular estas informações, integrar diferentes descobertas, e comunicar o conhecimento atual dos sistemas, e do metabolismo de nutrientes às novas gerações, e avançar na determinação mais adequada das exigências nutricionais.This presentation aims to present and discuss methodologies used to model and integrate classical knowledge in animal nutrition, and new discoveries produced by new molecular sciences like nutrigenomics, proteomics and metabolomics. These sciences and bioinformatics are helping to expand >very quickly the knowledge of the biological systems of interest in animal nutrition. I will discuss the importance of dedicating part of our efforts to integrate current knowledge to prioritize research problems using the most adequate tools. This will help to avoid research duplication that causes waste of valuable resources. Compartmental mathematical modeling using computer software could be one of the best ways to accumulate this information. It can help to integrate new discoveries, communicate the knowledge about animal systems and nutrient metabolism to a new generation of scientists, and advance to more accurate determination of nutrient

  17. Evidence for substantial maintenance of membrane integrity and cell viability in normally developing grape (Vitis vinifera L.) berries throughout development.

    Science.gov (United States)

    Krasnow, Mark; Matthews, Mark; Shackel, Ken

    2008-01-01

    Fluorescein diacetate (FDA) was used as a vital stain to assay membrane integrity (cell viability) in mesocarp tissue of the developing grape (Vitis vinifera L.) berry in order to test the hypothesis that there is a substantial loss of compartmentation in these cells during ripening. This technique was also used to determine whether loss of viability was associated with symptoms of a ripening disorder known as berry shrivel. FDA fluorescence of berry cells was rapid, bright, and stable for over 1 h at room temperature. Confocal microscopy detected FDA staining through two to three intact surface cell layers (300-400 mum) of bisected berries, and showed that the fluorescence was confined to the cytoplasm, indicating the maintenance of integrity in both cytoplasmic as well as vacuolar membranes, and the presence of active cytoplasmic esterases. FDA clearly discriminated between living cells and freeze-killed cells, and exhibited little, if any, non-specific staining. Propidium iodide and DAPI, both widely used to assess cell viability, were unable to discriminate between living and freeze-killed cells, and did not specifically stain the nuclei of dead cells. For normally developing berries under field conditions there was no evidence of viability loss until about 40 d after veraison, and the majority (80%) of mesocarp cells remained viable past commercial harvest (26 degrees Brix). These results are inconsistent with current models of grape berry development which hypothesize that veraison is associated with a general loss of compartmentation in mesocarp cells. The observed viability loss was primarily in the locule area around the seeds, suggesting that a localized loss of viability and compartmentation may occur as part of normal fruit development. The cell viability of berry shrivel-affected berries was similar to that of normally developing berries until the onset of visible symptoms (i.e. shrivelling), at which time viability declined in visibly shrivelled

  18. A directionally-selective neuromorphic circuit based on reciprocal synapses in Starburst Amacrine Cells.

    Science.gov (United States)

    Tseng, Ko-Chung; Parker, Alice C; Joshi, Jonathan

    2011-01-01

    Starburst Amacrine Cells (SACs) play a major role in the detection of directional motion in the biological retina. The starburst amacrine cell has intrinsic electrical mechanisms for producing directional selectivity (DS). GABA transmitter-receptor interactions between two overlapping SACs make DS more robust. We present a compartmentalized CMOS neuromorphic circuit that models a portion of two biological starburst amacrine cells in the retina and includes a simplified model of reciprocal interaction between the dendritic branches of SACs. We demonstrate that a neuromorphic circuit incorporating the reciprocal synapses enhances the responses in the neuromorphic dendritic tip and generates robust directional selectivity.

  19. Stomatin-like protein 2 deficiency in T cells is associated with altered mitochondrial respiration and defective CD4+ T cell responses.

    Science.gov (United States)

    Christie, Darah A; Mitsopoulos, Panagiotis; Blagih, Julianna; Dunn, Stanley D; St-Pierre, Julie; Jones, Russell G; Hatch, Grant M; Madrenas, Joaquín

    2012-11-01

    Stomatin-like protein 2 (SLP-2) is a mostly mitochondrial protein that regulates mitochondrial biogenesis and function and modulates T cell activation. To determine the mechanism of action of SLP-2, we generated T cell-specific SLP-2-deficient mice. These mice had normal numbers of thymocytes and T cells in the periphery. However, conventional SLP-2-deficient T cells had a posttranscriptional defect in IL-2 production in response to TCR ligation, and this translated into reduced CD4(+) T cell responses. SLP-2 deficiency was associated with impaired cardiolipin compartmentalization in mitochondrial membranes, decreased levels of the NADH dehydrogenase (ubiquinone) iron-sulfur protein 3, NADH dehydrogenase (ubiquinone) 1β subcomplex subunit 8, and NADH dehydrogenase (ubiquinone) 1α subcomplex subunit 9 of respiratory complex I, and decreased activity of this complex as well as of complex II plus III of the respiratory chain. In addition, SLP-2-deficient T cells showed a significant increase in uncoupled mitochondrial respiration and a greater reliance on glycolysis. Based on these results, we propose that SLP-2 organizes the mitochondrial membrane compartmentalization of cardiolipin, which is required for optimal assembly and function of respiratory chain complexes. This function, in T cells, helps to ensure proper metabolic response during activation.

  20. Pectinous cell wall thickenings formation - A common defense strategy of plants to cope with Pb.

    Science.gov (United States)

    Krzesłowska, Magdalena; Rabęda, Irena; Basińska, Aneta; Lewandowski, Michał; Mellerowicz, Ewa J; Napieralska, Anna; Samardakiewicz, Sławomir; Woźny, Adam

    2016-07-01

    Lead, one of the most abundant and hazardous trace metals affecting living organisms, has been commonly detected in plant cell walls including some tolerant plants, mining ecotypes and hyperaccumulators. We have previously shown that in tip growing Funaria sp. protonemata cell wall is remodeled in response to lead by formation of thickenings rich in low-methylesterified pectins (pectin epitope JIM5 - JIM5-P) able to bind metal ions, which accumulate large amounts of Pb. Hence, it leads to the increase of cell wall capacity for Pb compartmentalization. Here we show that diverse plant species belonging to different phyla (Arabidopsis, hybrid aspen, star duckweed), form similar cell wall thickenings in response to Pb. These thickenings are formed in tip growing cells such as the root hairs, and in diffuse growing cells such as meristematic and root cap columella cells of root apices in hybrid aspen and Arabidopsis and in mesophyll cells in star duckweed fronds. Notably, all analyzed cell wall thickenings were abundant in JIM5-P and accumulated high amounts of Pb. In addition, the co-localization of JIM5-P and Pb commonly occurred in these cells. Hence, cell wall thickenings formed the extra compartment for Pb accumulation. In this way plant cells increased cell wall capacity for compartmentalization of this toxic metal, protecting protoplast from its toxicity. As cell wall thickenings occurred in diverse plant species and cell types differing in the type of growth we may conclude that pectinous cell wall thickenings formation is a widespread defense strategy of plants to cope with Pb. Moreover, detection of natural defense strategy, increasing plant cell walls capacity for metal accumulation, reveals a promising direction for enhancing plant efficiency in phytoremediation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Photosynthesis in Flaveria brownii, a C(4)-Like Species: Leaf Anatomy, Characteristics of CO(2) Exchange, Compartmentation of Photosynthetic Enzymes, and Metabolism of CO(2).

    Science.gov (United States)

    Cheng, S H; Moore, B D; Edwards, G E; Ku, M S

    1988-08-01

    Light microscopic examination of leaf cross-sections showed that Flaveria brownii A. M. Powell exhibits Kranz anatomy, in which distinct, chloroplast-containing bundle sheath cells are surrounded by two types of mesophyll cells. Smaller mesophyll cells containing many chloroplasts are arranged around the bundle sheath cells. Larger, spongy mesophyll cells, having fewer chloroplasts, are located between the smaller mesophyll cells and the epidermis. F. brownii has very low CO(2) compensation points at different O(2) levels, which is typical of C(4) plants, yet it does show about 4% inhibition of net photosynthesis by 21% O(2) at 30 degrees C. Protoplasts of the three photosynthetic leaf cell types were isolated according to relative differences in their buoyant densities. On a chlorophyll basis, the activities of phosphoenolpyruvate carboxylase and pyruvate, Pi dikinase (carboxylation phase of C(4) pathway) were highest in the larger mesophyll protoplasts, intermediate in the smaller mesophyll protoplasts, and lowest, but still present, in the bundle sheath protoplasts. In contrast, activities of ribulose 1,5-bisphosphate carboxylase, other C(3) cycle enzymes, and NADP-malic enzyme showed a reverse gradation, although there were significant activities of these enzymes in mesophyll cells. As indicated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the banding pattern of certain polypeptides of the total soluble proteins from the three cell types also supported the distribution pattern obtained by activity assays of these enzymes. Analysis of initial (14)C products in whole leaves and extrapolation of pulse-labeling curves to zero time indicated that about 80% of the CO(2) is fixed into C(4) acids (malate and aspartate), whereas about 20% of the CO(2) directly enters the C(3) cycle. This is consistent with the high activity of enzymes for CO(2) fixation by the C(4) pathway and the substantial activity of enzymes of the C(3) cycle in the mesophyll cells

  2. Recent Theoretical Approaches to Minimal Artificial Cells

    Directory of Open Access Journals (Sweden)

    Fabio Mavelli

    2014-05-01

    Full Text Available Minimal artificial cells (MACs are self-assembled chemical systems able to mimic the behavior of living cells at a minimal level, i.e. to exhibit self-maintenance, self-reproduction and the capability of evolution. The bottom-up approach to the construction of MACs is mainly based on the encapsulation of chemical reacting systems inside lipid vesicles, i.e. chemical systems enclosed (compartmentalized by a double-layered lipid membrane. Several researchers are currently interested in synthesizing such simple cellular models for biotechnological purposes or for investigating origin of life scenarios. Within this context, the properties of lipid vesicles (e.g., their stability, permeability, growth dynamics, potential to host reactions or undergo division processes… play a central role, in combination with the dynamics of the encapsulated chemical or biochemical networks. Thus, from a theoretical standpoint, it is very important to develop kinetic equations in order to explore first—and specify later—the conditions that allow the robust implementation of these complex chemically reacting systems, as well as their controlled reproduction. Due to being compartmentalized in small volumes, the population of reacting molecules can be very low in terms of the number of molecules and therefore their behavior becomes highly affected by stochastic effects both in the time course of reactions and in occupancy distribution among the vesicle population. In this short review we report our mathematical approaches to model artificial cell systems in this complex scenario by giving a summary of three recent simulations studies on the topic of primitive cell (protocell systems.

  3. Monodisperse Picoliter Droplets for Low-Bias and Contamination-Free Reactions in Single-Cell Whole Genome Amplification.

    Directory of Open Access Journals (Sweden)

    Yohei Nishikawa

    Full Text Available Whole genome amplification (WGA is essential for obtaining genome sequences from single bacterial cells because the quantity of template DNA contained in a single cell is very low. Multiple displacement amplification (MDA, using Phi29 DNA polymerase and random primers, is the most widely used method for single-cell WGA. However, single-cell MDA usually results in uneven genome coverage because of amplification bias, background amplification of contaminating DNA, and formation of chimeras by linking of non-contiguous chromosomal regions. Here, we present a novel MDA method, termed droplet MDA, that minimizes amplification bias and amplification of contaminants by using picoliter-sized droplets for compartmentalized WGA reactions. Extracted DNA fragments from a lysed cell in MDA mixture are divided into 105 droplets (67 pL within minutes via flow through simple microfluidic channels. Compartmentalized genome fragments can be individually amplified in these droplets without the risk of encounter with reagent-borne or environmental contaminants. Following quality assessment of WGA products from single Escherichia coli cells, we showed that droplet MDA minimized unexpected amplification and improved the percentage of genome recovery from 59% to 89%. Our results demonstrate that microfluidic-generated droplets show potential as an efficient tool for effective amplification of low-input DNA for single-cell genomics and greatly reduce the cost and labor investment required for determination of nearly complete genome sequences of uncultured bacteria from environmental samples.

  4. Development of droplets‐based microfluidic systems for single­‐cell high‐throughput screening

    DEFF Research Database (Denmark)

    Chen, Jun; Jensen, Thomas Glasdam; Godina, Alexei

    2014-01-01

    investment, and a logarithmic increase to screen large combinatorial libraries over the decades also makes it gradually out of depth. Here, we are trying to develop a feasible high‐throughput system that uses microfluidics to compartmentalize a single cell for propagation and analysis in monodisperse......High-throughput screening (HTS) plays an important role in the development of microbial cell factories. One of the most popular approaches is to use microplates combined with the application of robotics, liquid handling and sophisticated detection methods. However, these workstations require large...

  5. One-step parameter estimation of the acid-base equilibria in the ground and excited states of 2-naphthol by global compartmental analysis of the fluorescence decay surface

    Science.gov (United States)

    Van den Bergh, Viviane; Boens, Noël; De Schryver, Frans C.; Ameloot, Marcel; Gallay, Jacques; Kowalczyk, Andrzej

    1992-10-01

    In this paper a new implementation of global bicompartmental analysis of the fluorescence decay surface is presented and applied to the acid-base equilibria in the ground and excited states of 2-naphthol. It is shown that, when the total concentration and absorbance in the ground state of a bicompartmental system are known, global bicompartmental analysis allows one to fit directly for the rate constants of the excited-state process, the normalized spectral emission weighting factors, the equilibrium constant of the ground-state process and the extinction coefficient of one of the species. This one-step global compartmental analysis yields the following values for the rate constants, the ground-state acidity constant and the extinction coefficient of 2-naphtholate at 320 nm: k01=(1.12±0.01)×10 8 s -1, k21=(5±1)×10 10 M -1 s -1, k02=(1.33±0.01)×10 8 s -1, k12=(7.1±0.6)×10 7 s -1, Ka=(2.7±0.4)×10 -10 M and ɛ=1600±300 M -1 cm -1. These values are in good agreement with those reported previously from separate analyses of fluorescence and absorbance. The species-associated emission and excitation spectra of the 2-naphthol and 2-naphtholate emission are calculated from the steady-state spectra and the obtained fluorescence decay parameters.

  6. CD49a Expression Defines Tissue-Resident CD8+ T Cells Poised for Cytotoxic Function in Human Skin

    DEFF Research Database (Denmark)

    Cheuk, Stanley; Schlums, Heinrich; Sérézal, Irène Gallais

    2017-01-01

    Tissue-resident memory T (Trm) cells form a heterogeneous population that provides localized protection against pathogens. Here, we identify CD49a as a marker that differentiates CD8+ Trm cells on a compartmental and functional basis. In human skin epithelia, CD8+CD49a+ Trm cells produced...... interferon-γ, whereas CD8+CD49a− Trm cells produced interleukin-17 (IL-17). In addition, CD8+CD49a+ Trm cells from healthy skin rapidly induced the expression of the effector molecules perforin and granzyme B when stimulated with IL-15, thereby promoting a strong cytotoxic response. In skin from patients...... in this skin disease. Overall, CD49a expression delineates CD8+ Trm cell specialization in human epithelial barriers and correlates with the effector cell balance found in distinct inflammatory skin diseases....

  7. Metabolism of γ-hydroxyl-[1-14C] butyrate by rat brain: relationship to the Krebs cycle and metabolic compartmentation of amino acids

    International Nuclear Information System (INIS)

    Doherty, J.D.; Roth, R.H.

    1978-01-01

    Ninhydrin decarboxylation experiments were carried out on the labelled amino acids produced following intraventricular injection of either γ-hydroxy-[1- 14 C] butyric acid (GHB) or [1- 14 C] succinate. The loss of isotope (as 14 CO 2 ) was similar for both substances. The [1- 14 C] GHB metabolites lost 75% of the label and the [1- 14 C] succinate metabolites lost 68%. This observation gives support to the hypothesis that the rat brain has the enzymatic capacity to metabolize [1- 14 C] GHB to succinate and to amino acids that have the isotope in the carboxylic acid group adjacent to the α-amino group. These results also indicate that the label from [1- 14 C] GHB does not enter the Krebs cycle as acetate. The specific activity ratio of radio-labelled glutamine to glutamic acid was determined in order to evaluate which of the two major metabolic compartments prefentially metabolize GHB. It was found that for [1- 14 C] GHB the ratio was 4.20 +- 0.18 (S.E. for n = 7) and for [1- 14 C] succinate the ratio was 7.71 (average of two trials, 7.74 and 7.69). These results suggest that the compartment thought to be associated with glial cells and synaptosomal structures is largely responsible for the metabolism of GHB. Metabolism as it might relate to the neuropharmacological action of GHB is discussed. (author)

  8. Myc and Fgf Are Required for Zebrafish Neuromast Hair Cell Regeneration.

    Science.gov (United States)

    Lee, Sang Goo; Huang, Mingqian; Obholzer, Nikolaus D; Sun, Shan; Li, Wenyan; Petrillo, Marco; Dai, Pu; Zhou, Yi; Cotanche, Douglas A; Megason, Sean G; Li, Huawei; Chen, Zheng-Yi

    2016-01-01

    Unlike mammals, the non-mammalian vertebrate inner ear can regenerate the sensory cells, hair cells, either spontaneously or through induction after hair cell loss, leading to hearing recovery. The mechanisms underlying the regeneration are poorly understood. By microarray analysis on a chick model, we show that chick hair cell regeneration involves the activation of proliferation genes and downregulation of differentiation genes. Both MYC and FGF are activated in chick hair cell regeneration. Using a zebrafish lateral line neuromast hair cell regeneration model, we show that the specific inhibition of Myc or Fgf suppresses hair cell regeneration, demonstrating that both pathways are essential to the process. Rapid upregulation of Myc and delayed Fgf activation during regeneration suggest a role of Myc in proliferation and Fgf in differentiation. The dorsal-ventral pattern of fgfr1a in the neuromasts overlaps with the distribution of hair cell precursors. By laser ablation, we show that the fgfr1a-positive supporting cells are likely the hair cell precursors that directly give rise to new hair cells; whereas the anterior-posterior fgfr1a-negative supporting cells have heightened proliferation capacity, likely to serve as more primitive progenitor cells to replenish lost precursors after hair cell loss. Thus fgfr1a is likely to mark compartmentalized supporting cell subtypes with different capacities in renewal proliferation and hair cell regeneration. Manipulation of c-MYC and FGF pathways could be explored for mammalian hair cell regeneration.

  9. Model for cadmium transport and distribution in CHO cells

    Energy Technology Data Exchange (ETDEWEB)

    Hayden, T.L.; Turner, J.E.; Williams, M.W.; Cook, J.S.; Hsie, A.W.

    1982-01-01

    A compartmental model is developed to study the transport and distribution of cadmium in Chinese hamster ovary (CHO) cells. Of central importance to the model is the role played by sequestering components which bind free Cd/sup 2 +/ ions. The most important of these is a low-molecular-weight protein, metallothionein, which is produced by the cells in response to an increase in the cellular concentration of Cd/sup 2 +/. Monte Carlo techniques are used to generate a stochastic model based on existing experimental data describing the intracellular transport of cadmium between different compartments. This approach provides an alternative to the usual numerical solution of differential-delay equations that arise in deterministic models. Our model suggests subcellular structures which may be responsible for the accumulation of cadmium and, hence, could account for cadmium detoxification. 4 figures, 1 table.

  10. Use of a "Super-child" Approach to Assess the Vitamin A Equivalence of Moringa oleifera Leaves, Develop a Compartmental Model for Vitamin A Kinetics, and Estimate Vitamin A Total Body Stores in Young Mexican Children.

    Science.gov (United States)

    Lopez-Teros, Veronica; Ford, Jennifer Lynn; Green, Michael H; Tang, Guangwen; Grusak, Michael A; Quihui-Cota, Luis; Muzhingi, Tawanda; Paz-Cassini, Mariela; Astiazaran-Garcia, Humberto

    2017-12-01

    Background: Worldwide, an estimated 250 million children children. Methods: β-Carotene was intrinsically labeled by growing MO plants in a 2 H 2 O nutrient solution. Fifteen well-nourished children (17-35 mo old) consumed puréed MO leaves (1 mg β-carotene) and a reference dose of [ 13 C 10 ]retinyl acetate (1 mg) in oil. Blood (2 samples/child) was collected 10 times (2 or 3 children each time) over 35 d. The bioefficacy of MO leaves was calculated from areas under the composite "super-child" plasma isotope response curves, and MO VA equivalence was estimated through the use of these values; a compartmental model was developed to predict VA TBS and retinol kinetics through the use of composite plasma [ 13 C 10 ]retinol data. TBS were also estimated with isotope dilution. Results: The relative bioefficacy of β-carotene retinol activity equivalents from MO was 28%; VA equivalence was 3.3:1 by weight (0.56 μmol retinol:1 μmol β-carotene). Kinetics of plasma retinol indicate more rapid plasma appearance and turnover and more extensive recycling in these children than are observed in adults. Model-predicted mean TBS (823 μmol) was similar to values predicted using a retinol isotope dilution equation applied to data from 3 to 6 d after dosing (mean ± SD: 832 ± 176 μmol; n = 7). Conclusions: The super-child approach can be used to estimate population carotenoid bioefficacy and VA equivalence, VA status, and parameters of retinol metabolism from a composite data set. Our results provide initial estimates of retinol kinetics in well-nourished young children with adequate VA stores and demonstrate that MO leaves may be an important source of VA. © 2017 American Society for Nutrition.

  11. A mechanically sensitive cell layer regulates the physical properties of the Arabidopsis seed coat.

    Science.gov (United States)

    Creff, Audrey; Brocard, Lysiane; Ingram, Gwyneth

    2015-02-23

    Endogenous mechanical stresses regulate plant growth and development. Tensile stress in epidermal cells affects microtubule reorientation and anisotropic cell wall deposition, and mechanical stimulus at the meristem regulates trafficking and polar localization of auxin transporters. However, the mechanical regulation of other plant growth regulators has not been demonstrated. Here we propose that during seed growth, mechanical stress exerted by the expanding embryo and endosperm is perceived by a specific mechanosensitive cell layer in the seed coat. We show that the adaxial epidermis of the outer integument thickens its cell wall in a mechanosensitive fashion, demonstrates microtubule dynamics consistent with mechanical stress perception and shows mechanosensitive expression of ELA1, a regulator of seed size and gibberellic acid (GA) metabolism. By exploiting physical and genetic compartmentalization, and combining genetic and surgical techniques, we propose a mechanistic link between mechanical stress and GA accumulation that regulates seed development.

  12. Phosphatidylinositol 3-phosphates-at the interface between cell signalling and membrane traffic.

    Science.gov (United States)

    Marat, Andrea L; Haucke, Volker

    2016-03-15

    Phosphoinositides (PIs) form a minor class of phospholipids with crucial functions in cell physiology, ranging from cell signalling and motility to a role as signposts of compartmental membrane identity. Phosphatidylinositol 3-phosphates are present at the plasma membrane and within the endolysosomal system, where they serve as key regulators of both cell signalling and of intracellular membrane traffic. Here, we provide an overview of the metabolic pathways that regulate cellular synthesis of PI 3-phosphates at distinct intracellular sites and discuss the mechanisms by which these lipids regulate cell signalling and membrane traffic. Finally, we provide a framework for how PI 3-phosphate metabolism is integrated into the cellular network. © 2016 The Authors.

  13. Programmed cell death during development of cowpea (Vigna unguiculata (L.) Walp.) seed coat.

    Science.gov (United States)

    Lima, Nathália Bastos; Trindade, Fernanda Gomes; da Cunha, Maura; Oliveira, Antônia Elenir Amâncio; Topping, Jennifer; Lindsey, Keith; Fernandes, Kátia Valevski Sales

    2015-04-01

    The seed coat develops primarily from maternal tissues and comprises multiple cell layers at maturity, providing a metabolically dynamic interface between the developing embryo and the environment during embryogenesis, dormancy and germination of seeds. Seed coat development involves dramatic cellular changes, and the aim of this research was to investigate the role of programmed cell death (PCD) events during the development of seed coats of cowpea [Vigna unguiculata (L.) Walp.]. We demonstrate that cells of the developing cowpea seed coats undergo a programme of autolytic cell death, detected as cellular morphological changes in nuclei, mitochondria, chloroplasts and vacuoles, DNA fragmentation and oligonucleosome accumulation in the cytoplasm, and loss of membrane viability. We show for the first time that classes 6 and 8 caspase-like enzymes are active during seed coat development, and that these activities may be compartmentalized by translocation between vacuoles and cytoplasm during PCD events. © 2014 John Wiley & Sons Ltd.

  14. Construction of synthetic nucleoli in human cells reveals how a major functional nuclear domain is formed and propagated through cell division.

    Science.gov (United States)

    Grob, Alice; Colleran, Christine; McStay, Brian

    2014-02-01

    Human cell nuclei are functionally organized into structurally stable yet dynamic bodies whose cell cycle inheritance is poorly understood. Here, we investigate the biogenesis and propagation of nucleoli, sites of ribosome biogenesis and key regulators of cellular growth. Nucleolar and cell cycles are intimately connected. Nucleoli disappear during mitosis, reforming around prominent uncharacterized chromosomal features, nucleolar organizer regions (NORs). By examining the effects of UBF depletion on both endogenous NORs and synthetic pseudo-NORs, we reveal its essential role in maintaining competency and establishing a bookmark on mitotic NORs. Furthermore, we demonstrate that neo-NORs, UBF-binding site arrays coupled with rDNA transcription units, direct the de novo biogenesis of functional compartmentalized neonucleoli irrespective of their site of chromosomal integration. For the first time, we establish the sequence requirements for nucleolar biogenesis and provide proof that this is a staged process where UBF-dependent mitotic bookmarking precedes function-dependent nucleolar assembly.

  15. Use of actin-bound adenosine 5'-diphosphate as a method to determine the specific 32P-radioactivity of the gamma-phosphoryl group of adenosine 5'-triphosphate in a highly compartmentalized cell, the platelet

    International Nuclear Information System (INIS)

    Verhoeven, A.J.; Cook, C.A.; Holmsen, H.

    1988-01-01

    Determination of the specific 32 P-radioactivity of cytoplasmic ATP in 32 P-Pi-labeled platelets is complicated by the presence of a large pool of metabolically inactive, granule-stored nucleotides. Moreover, our data show that the specific 32 P-radioactivity of cytoplasmic ATP is severely underestimated when determined in platelets after the complete secretion of granule-stored nucleotides, possibly due to isotopic dilution with granule-stored phosphate. As F-actin-bound ADP is ethanol-insoluble, this pool can be readily separated from the other nucleotide pools in platelets. Here we show that the specific 32 P-radioactivity of F-actin-bound ADP accurately reflects that of the gamma-phosphoryl group of cytoplasmic ATP. During uptake of 32 P-Pi by human platelets the specific 32 P-radioactivity of F-actin-bound ADP equals that of the monoester phosphates of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate, which are in metabolic equilibrium with cytoplasmic ATP. Therefore, this method enables the determination of the specific 32 P-radioactivity of the gamma-phosphoryl group of cytoplasmic ATP in platelets even under short-term labeling conditions

  16. Review of compartmental analysis in ecosystem science

    International Nuclear Information System (INIS)

    O'Neill, R.V.

    1978-01-01

    The compartment model has a large number of applications in ecosystem science. An attempt is made to outline the problem areas and objectives for which this type of model has particular advantages. The areas identified are an adequate model of tracer movement through an undisturbed but non-equilibrium ecosystem; an adequate model of the movement of material in greater than tracer quantity through an ecosystem near steady state; a minimal model based on limited data; a tool for extrapolating past trends; a framework for the summarization of large data sets; and a theoretical tool for exploring and comparing limited aspects of ecosystem dynamics. The review is set in an historical perspective which helps explain why these models were adopted in ecology. References are also provided to literature which documents available mathematical techniques in an ecological context

  17. A Numerical Simulation for a Deterministic Compartmental ...

    African Journals Online (AJOL)

    In this work, an earlier deterministic mathematical model of HIV/AIDS is revisited and numerical solutions obtained using Eulers numerical method. Using hypothetical values for the parameters, a program was written in VISUAL BASIC programming language to generate series for the system of difference equations from the ...

  18. Rifte Guaritas basin compartmentation in Camaqua

    International Nuclear Information System (INIS)

    Preissler, A; Rolim, S; Philipp, R.

    2010-01-01

    The study contributes to the knowledge of the tectonic evolution of the Guaritas rift basin in Camaqua. Were used aero magnetic geophysical data for modeling the geometry and the depth of the structures and geological units. The research was supported in processing and interpretation of Aster images (EOS-Terra), which were extracted from geophysical models and digital image

  19. Compartmentalization analysis using discrete fracture network models

    Energy Technology Data Exchange (ETDEWEB)

    La Pointe, P.R.; Eiben, T.; Dershowitz, W. [Golder Associates, Redmond, VA (United States); Wadleigh, E. [Marathon Oil Co., Midland, TX (United States)

    1997-08-01

    This paper illustrates how Discrete Fracture Network (DFN) technology can serve as a basis for the calculation of reservoir engineering parameters for the development of fractured reservoirs. It describes the development of quantitative techniques for defining the geometry and volume of structurally controlled compartments. These techniques are based on a combination of stochastic geometry, computational geometry, and graph the theory. The parameters addressed are compartment size, matrix block size and tributary drainage volume. The concept of DFN models is explained and methodologies to compute these parameters are demonstrated.

  20. Antigen-Specific Th17 Cells Are Primed by Distinct and Complementary Dendritic Cell Subsets in Oropharyngeal Candidiasis.

    Directory of Open Access Journals (Sweden)

    Kerstin Trautwein-Weidner

    2015-10-01

    Full Text Available Candida spp. can cause severe and chronic mucocutaneous and systemic infections in immunocompromised individuals. Protection from mucocutaneous candidiasis depends on T helper cells, in particular those secreting IL-17. The events regulating T cell activation and differentiation toward effector fates in response to fungal invasion in different tissues are poorly understood. Here we generated a Candida-specific TCR transgenic mouse reactive to a novel endogenous antigen that is conserved in multiple distant species of Candida, including the clinically highly relevant C. albicans and C. glabrata. Using TCR transgenic T cells in combination with an experimental model of oropharyngeal candidiasis (OPC we investigated antigen presentation and Th17 priming by different subsets of dendritic cells (DCs present in the infected oral mucosa. Candida-derived endogenous antigen accesses the draining lymph nodes and is directly presented by migratory DCs. Tissue-resident Flt3L-dependent DCs and CCR2-dependent monocyte-derived DCs collaborate in antigen presentation and T cell priming during OPC. In contrast, Langerhans cells, which are also present in the oral mucosa and have been shown to prime Th17 cells in the skin, are not required for induction of the Candida-specific T cell response upon oral challenge. This highlights the functional compartmentalization of specific DC subsets in different tissues. These data provide important new insights to our understanding of tissue-specific antifungal immunity.

  1. Can cell survival parameters be deduced from non-clonogenic assays of radiation damage to normal tissue

    International Nuclear Information System (INIS)

    Michalowski, A.; Wheldon, T.E.; Kirk, J.

    1984-01-01

    The relationship between dose-response curves for large scale radiation injury to tissues and survival curves for clonogenic cells is not necessarily simple. Sterilization of clonogenic cells occurs near-instantaneously compared with the protracted lag period for gross injury to tissues. Moreover, with some types of macroscopic damage, the shapes of the dose-response curves may depend on time of assay. Changes in the area or volume of irradiated tissue may also influence the shapes of these curves. The temporal pattern of expression of large scale injury also varies between tissues, and two distinct groups can be recognized. In rapidly proliferating tissues, lag period is almost independent of dose, whilst in slowly proliferating tissues, it is inversely proportional to dose. This might be explained by invoking differences in corresponding proliferative structures of the tissues. (Three compartmental Type H versus one compartmental Type F proliferative organization). For the second group of tissues particularly, mathematical modelling suggests a systematic dissociation of the dose-response curves for clonogenic cell survival and large scale injury. In particular, it may be difficult to disentangle the contributions made to inter-fraction sparing by cellular repair processes and by proliferation-related factors. (U.K.)

  2. Chloroplast Dysfunction Causes Multiple Defects in Cell Cycle Progression in the Arabidopsis crumpled leaf Mutant

    KAUST Repository

    Hudik, Elodie

    2014-07-18

    The majority of research on cell cycle regulation is focused on the nuclear events that govern the replication and segregation of the genome between the two daughter cells. However, eukaryotic cells contain several compartmentalized organelles with specialized functions, and coordination among these organelles is required for proper cell cycle progression, as evidenced by the isolation of several mutants in which both organelle function and overall plant development were affected. To investigate how chloroplast dysfunction affects the cell cycle, we analyzed the crumpled leaf (crl) mutant of Arabidopsis (Arabidopsis thaliana), which is deficient for a chloroplastic protein and displays particularly severe developmental defects. In the crl mutant, we reveal that cell cycle regulation is altered drastically and that meristematic cells prematurely enter differentiation, leading to reduced plant stature and early endoreduplication in the leaves. This response is due to the repression of several key cell cycle regulators as well as constitutive activation of stress-response genes, among them the cell cycle inhibitor SIAMESE-RELATED5. One unique feature of the crl mutant is that it produces aplastidic cells in several organs, including the root tip. By investigating the consequence of the absence of plastids on cell cycle progression, we showed that nuclear DNA replication occurs in aplastidic cells in the root tip, which opens future research prospects regarding the dialogue between plastids and the nucleus during cell cycle regulation in higher plants.

  3. Inhibiting Cadmium Transport Process in Root Cells of Plants: A Review

    Directory of Open Access Journals (Sweden)

    ZHAO Yan-ling

    2016-05-01

    Full Text Available Cadmium(Cd is the most common element found in the heavy-metal contaminated soils in China. Roots of rice and vegetables can concentrate Cd from acid soils, and then transport Cd to above-ground parts. Cd in edible part of plants directly influences the food safety. Cellwall, plasma membrane and organells of root cells in plant can discriminate Cd from other elements. A lot of Cd can be fixed in root cells by precipitation, complexation, compartmentation, and so on, to inhibit its transport from roots to shoot and guarantee the physiological activities in above-ground parts carrying out normally. This paper summarized recent advance on inhibiting Cd transport process in subcellular fractions of root cells of plants, which is in advantage of exploring excellent germplasms and gene resources in the future.

  4. Engineering genetic circuit interactions within and between synthetic minimal cells

    Science.gov (United States)

    Adamala, Katarzyna P.; Martin-Alarcon, Daniel A.; Guthrie-Honea, Katriona R.; Boyden, Edward S.

    2017-05-01

    Genetic circuits and reaction cascades are of great importance for synthetic biology, biochemistry and bioengineering. An open question is how to maximize the modularity of their design to enable the integration of different reaction networks and to optimize their scalability and flexibility. One option is encapsulation within liposomes, which enables chemical reactions to proceed in well-isolated environments. Here we adapt liposome encapsulation to enable the modular, controlled compartmentalization of genetic circuits and cascades. We demonstrate that it is possible to engineer genetic circuit-containing synthetic minimal cells (synells) to contain multiple-part genetic cascades, and that these cascades can be controlled by external signals as well as inter-liposomal communication without crosstalk. We also show that liposomes that contain different cascades can be fused in a controlled way so that the products of incompatible reactions can be brought together. Synells thus enable a more modular creation of synthetic biology cascades, an essential step towards their ultimate programmability.

  5. Calcium accumulated by sickle cell anemia red cells does not affect their potassium (86Rb+) flux components

    International Nuclear Information System (INIS)

    Ortiz, O.E.; Lew, V.L.; Bookchin, R.M.

    1986-01-01

    We investigate here the hypothesis that the high Ca content of sickle cell anemia (SS) red cells may produce a sustained activation of the Ca2+-dependent K+ permeability (Gardos effect) and that the particularly high Ca levels in the dense SS cell fraction rich in irreversibly sickled cells (ISCs) might account for the Na pump inhibition observed in these cells. We measured active and passive 86Rb+ influx (as a marker for K+) in density-fractionated SS cells before and after extraction of their excess Ca by exposure to the Ca ionophore (A23187) and ethylene glycol tetra-acetic acid and with or without adenosine triphosphate depletion or addition of quinine. None of these maneuvers revealed any evidence of a Ca2+-dependent K leak in SS discocytes or dense cells. Na pump inhibition in the dense SS cells was associated with normal activation by external K+ and a low Vmax that persisted after Ca extraction from the cells. These results are consistent with our recent findings that the excess Ca in these cells is compartmentalized in intracellular inside-out vesicles and unavailable as free Ca2+ to the inner membrane surface. Although the steady-state free cytoplasmic Ca2+ in oxygenated SS cells must be below the levels needed to activate the K+ channel, possible brief activation of the channels of some SS cells resulting from transient elevations of cell Ca2+ during deoxygenation-induced sickling cannot be excluded. The dense, ISC-rich SS cell fraction showed a Ca2+-independent increase in the ouabain-resistant, nonsaturable component of 86Rb+ influx that, if uncompensated by Na+ gain, could contribute to the dehydration of these cells

  6. Denervation-induced homeostatic dendritic plasticity in morphological granule cell models

    Directory of Open Access Journals (Sweden)

    Hermann Cuntz

    2014-03-01

    Full Text Available Neuronal death and subsequent denervation of target areas are major consequences of several neurological conditions such asischemia or neurodegeneration (Alzheimer's disease. The denervation-induced axonal loss results in reorganization of the dendritic tree of denervated neurons. The dendritic reorganization has been previously studied using entorhinal cortex lesion (ECL. ECL leads to shortening and loss of dendritic segments in the denervated outer molecular layer of the dentate gyrus. However, the functional importance of these long-term dendritic alterations is not yet understood and their impact on neuronal electrical properties remains unclear. Here we analyzed what happens to the electrotonic structure and excitability of dentate granule cells after lesion-induced alterations of their dendritic morphology, assuming all other parameters remain equal. We performed comparative electrotonic analysis in anatomically and biophysically realistic compartmental models of 3D-reconstructed healthy and denervated granule cells. Using the method of morphological modeling based on optimization principles minimizing the amount of wiring and maximizing synaptic democracy, we built artificial granule cells which replicate morphological features of their real counterparts. Our results show that somatofugal and somatopetal voltage attenuation in the passive cable model are strongly reduced in denervated granule cells. In line with these predictions, the attenuation both of simulated backpropagating action potentials and forward propagating EPSPs was significantly reduced in dendrites of denervated neurons. Intriguingly, the enhancement of action potential backpropagation occurred specifically in the denervated dendritic layers. Furthermore, simulations of synaptic f-I curves revealed a homeostatic increase of excitability in denervated granule cells. In summary, our morphological and compartmental modeling indicates that unless modified by changes of

  7. Construction of synthetic nucleoli and what it tells us about propagation of sub-nuclear domains through cell division.

    Science.gov (United States)

    Grob, Alice; McStay, Brian

    2014-01-01

    The cell nucleus is functionally compartmentalized into numerous membraneless and dynamic, yet defined, bodies. The cell cycle inheritance of these nuclear bodies (NBs) is poorly understood at the molecular level. In higher eukaryotes, their propagation is challenged by cell division through an "open" mitosis, where the nuclear envelope disassembles along with most NBs. A deeper understanding of the mechanisms involved can be achieved using the engineering principles of synthetic biology to construct artificial NBs. Successful biogenesis of such synthetic NBs demonstrates knowledge of the basic mechanisms involved. Application of this approach to the nucleolus, a paradigm of nuclear organization, has highlighted a key role for mitotic bookmarking in the cell cycle propagation of NBs.

  8. Multiple modes for gatekeeping at fungal cell-to-cell channels.

    Science.gov (United States)

    Jedd, Gregory; Pieuchot, Laurent

    2012-12-01

    Cell-to-cell channels appear to be indispensable for successful multicellular organization and arose independently in animals, plants and fungi. Most of the fungi obtain nutrients from the environment by growing in an exploratory and invasive manner, and this ability depends on multicellular filaments known as hyphae. These cells grow by tip extension and can be divided into compartments by cell walls that typically retain a central pore that allows intercellular transport and cooperation. In the major clade of filamentous Ascomycota, integrity of this coenocytic organization is maintained by Woronin body organelles, which function as emergency patches of septal pores. In this issue of Molecular Microbiology, Bleichrodt and co-workers show that Woronin bodies can also form tight reversible associations with the pore and further link this to variation in levels of compartmental gene expression. These data define an additional modality of Woronin body-dependent gatekeeping. This commentary focuses on the implications of this work and the potential role of different modes of pore gating in controlling the growth and development of fungal tissues. © 2012 Blackwell Publishing Ltd.

  9. Vacuolar accumulation of heavy metals in Datura cultured cells is metal concentration dependent

    International Nuclear Information System (INIS)

    Krotz, R.M.; Wagner, G.J.

    1987-01-01

    Vacuolar-extravacuolar compartmentation studies were performed to determine if the vacuole serves as an accumulation site for Cd, Zn, and Ni, after growth of Datura cultured cells in trace and high levels of these metals. After 3 to 4 days growth with 0.12 μM Cd or 0.02 μM Ni (radiolabeled) no evidence was obtained for vacuolar accumulation of these metals. In contrast, growth with 30 or 45 μM Cd, 11 μM Ni (with or without trace radiolabel), or 300 and 500 μM Zn resulted in isolated vacuoles which were enriched in metal. Compartmentation after exposure to low levels of Zn and also Cu is being investigated as is the subcellular site(s) of Cd-binding peptide formed during growth in high Cd. The hypothesis that Zn is accumulated as vacuolar organic acid salts is being tested directly because no evidence was found for formation of substantial ligand of Cd-peptide in response to Zn exposure

  10. Membrane dynamics and interactions in measles virus dendritic cell infections.

    Science.gov (United States)

    Avota, Elita; Koethe, Susanne; Schneider-Schaulies, Sibylle

    2013-02-01

    Viral entry, compartmentalization and transmission depend on the formation of membrane lipid/protein microdomains concentrating receptors and signalosomes. Dendritic cells (DCs) are prime targets for measles virus (MV) infection, and this interaction promotes immune activation and generalized immunosuppression, yet also MV transport to secondary lymphatics where transmission to T cells occurs. In addition to MV trapping, DC-SIGN interaction can enhance MV uptake by activating cellular sphingomyelinases and, thereby, vertical surface transport of its entry receptor CD150. To exploit DCs as Trojan horses for transport, MV promotes DC maturation accompanied by mobilization, and restrictions of viral replication in these cells may support this process. MV-infected DCs are unable to support formation of functional immune synapses with conjugating T cells and signalling via viral glycoproteins or repulsive ligands (such as semaphorins) plays a key role in the induction of T-cell paralysis. In the absence of antigen recognition, MV transmission from infected DCs to T cells most likely involves formation of polyconjugates which concentrate viral structural proteins, viral receptors and with components enhancing either viral uptake or conjugate stability. Because DCs barely support production of infectious MV particles, these organized interfaces are likely to represent virological synapses essential for MV transmission. © 2012 Blackwell Publishing Ltd.

  11. Caveolae, caveolins, cavins and endothelial cell function: new insights

    Directory of Open Access Journals (Sweden)

    Grzegorz eSowa

    2012-01-01

    Full Text Available Caveolae are cholesterol and glycosphingolipid-rich flask-shaped invaginations of the plasma membrane which are particularly abundant in vascular endothelium and present in all other cell types of the cardiovascular system, including vascular smooth muscle cells, macrophages, cardiac myocytes, and fibroblasts. Caveolins and the more recently discovered cavins are the major protein components of caveolae. When caveolae were discovered, their functional role was believed to be limited to transport across the endothelial cell barrier. Since then, however, a large body of evidence has accumulated, suggesting that these microdomains are very important in regulating many other important endothelial cell functions, mostly due to their ability to concentrate and compartmentalize various signaling molecules. Over the course of several years, multiple studies involving knockout mouse and small interfering RNA approaches have considerably enhanced our understanding of the role of caveolae and caveolin-1 in regulating many cardiovascular functions. New findings have been reported implicating other caveolar protein components in endothelial cell signaling and function, such as the understudied caveolin-2 and newly discovered cavin proteins. The aim of this review is to focus primarily on molecular and cellular aspects of the role of caveolae, caveolins, and cavins in endothelial cell signaling and function. In addition, where appropriate, the possible implications for the cardiovascular and pulmonary physiology and pathophysiology will be discussed.

  12. Differentiating Immune Cell Targets in Gut-Associated Lymphoid Tissue for HIV Cure.

    Science.gov (United States)

    Khan, Shahzada; Telwatte, Sushama; Trapecar, Martin; Yukl, Steven; Sanjabi, Shomyseh

    2017-11-01

    The single greatest challenge to an HIV cure is the persistence of latently infected cells containing inducible, replication-competent proviral genomes, which constitute only a small fraction of total or infected cells in the body. Although resting CD4 + T cells in the blood are a well-known source of viral rebound, more than 90% of the body's lymphocytes reside elsewhere. Many are in gut tissue, where HIV DNA levels per million CD4 + T cells are considerably higher than in the blood. Despite the significant contribution of gut tissue to viral replication and persistence, little is known about the cell types that support persistence of HIV in the gut; importantly, T cells in the gut have phenotypic, functional, and survival properties that are distinct from T cells in other tissues. The mechanisms by which latency is established and maintained will likely depend on the location and cytokine milieu surrounding the latently infected cells in each compartment. Therefore, successful HIV cure strategies require identification and characterization of the exact cell types that support viral persistence, particularly in the gut. In this review, we describe the seeding of the latent HIV reservoir in the gut mucosa; highlight the evidence for compartmentalization and depletion of T cells; summarize the immunologic consequences of HIV infection within the gut milieu; propose how the damaged gut environment may promote the latent HIV reservoir; and explore several immune cell targets in the gut and their place on the path toward HIV cure.

  13. Chloride-inducible transient apoplastic alkalinizations induce stomata closure by controlling abscisic acid distribution between leaf apoplast and guard cells in salt-stressed Vicia faba.

    Science.gov (United States)

    Geilfus, Christoph-Martin; Mithöfer, Axel; Ludwig-Müller, Jutta; Zörb, Christian; Muehling, Karl H

    2015-11-01

    Chloride stress causes the leaf apoplast transiently to alkalize, an event that is presumed to contribute to the ability of plants to adapt to saline conditions. However, the initiation of coordinated processes downstream of the alkalinization is unknown. We hypothesize that chloride-inducible pH dynamics are a key chemical feature modulating the compartmental distribution of abscisic acid (ABA) and, as a consequence, affecting stomata aperture. Apoplastic pH and stomata aperture dynamics in intact Vicia faba leaves were monitored by microscopy-based ratio imaging and porometric measurements of stomatal conductance. ABA concentrations in leaf apoplast and guard cells were compared with pH dynamics by gas-chromatography-mass-spectrometry (GC-MS) and liquid-chromatography-tandem-mass spectrometry (LC-MS/MS). Results demonstrate that, upon chloride addition to roots, an alkalizing factor that initiates the pH dynamic propagates from root to leaf in a way similar to xylem-distributed water. In leaves, it induces a systemic transient apoplastic alkalinization that causes apoplastic ABA concentration to increase, followed by an elevation of endogenous guard cell ABA. We conclude that the transient alkalinization, which is a remote effect of chloride stress, modulates the compartmental distribution of ABA between the leaf apoplast and the guard cells and, in this way, is instrumental in inducing stomata closure during the beginning of salinity. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  14. The Evolution of Organellar Coat Complexes and Organization of the Eukaryotic Cell.

    Science.gov (United States)

    Rout, Michael P; Field, Mark C

    2017-06-20

    Eukaryotic cells possess a remarkably diverse range of organelles that provide compartmentalization for distinct cellular functions and are likely responsible for the remarkable success of these organisms. The origins and subsequent elaboration of these compartments represent a key aspect in the transition between prokaryotic and eukaryotic cellular forms. The protein machinery required to build, maintain, and define many membrane-bound compartments is encoded by several paralog families, including small GTPases, coiled-bundle proteins, and proteins with β-propeller and α-solenoid secondary structures. Together these proteins provide the membrane coats and control systems to structure and coordinate the endomembrane system. Mechanistically and evolutionarily, they unite not only secretory and endocytic organelles but also the flagellum and nucleus. The ancient origins for these families have been revealed by recent findings, providing new perspectives on the deep evolutionary processes and relationships that underlie eukaryotic cell structure.

  15. Selection of restriction endonucleases using artificial cells.

    Science.gov (United States)

    Zheng, Yu; Roberts, Richard J

    2007-01-01

    We describe in this article an in vitro system for the selection of restriction endonucleases using artificial cells. The artificial cells are generated in the form of a water-in-oil emulsion by in vitro compartmentalization. Each aqueous compartment contains a reconstituted transcription/translation mix along with the dispersed DNA templates. In the compartments containing endonuclease genes, an endonuclease expressed in vitro cleaves its own DNA template adjacent to the gene, leaving a sticky end. The pooled DNA templates are then ligated to an adaptor with a compatible end. The endonuclease genes are then enriched by adaptor-specific PCR on the ligation mix. We demonstrate that the system can achieve at least 100-fold enrichment in a single round of selection. It is sensitive enough to enrich an active endonuclease gene from a 1:10(5) model library in 2-3 rounds of selection. Finally, we describe experiments where we selected endonuclease genes directly from a bacterial genomic DNA source in three rounds of selections: the known PstI gene from Providencia stuartii and the new TspMI gene from Thermus sp. manalii. This method provides a unique tool for cloning restriction endonuclease genes and has many other potential applications.

  16. Target organ localization of memory CD4(+) T cells in patients with chronic beryllium disease.

    Science.gov (United States)

    Fontenot, Andrew P; Canavera, Scott J; Gharavi, Laia; Newman, Lee S; Kotzin, Brian L

    2002-11-01

    Chronic beryllium disease (CBD) is caused by exposure to beryllium in the workplace, and it remains an important public health concern. Evidence suggests that CD4(+) T cells play a critical role in the development of this disease. Using intracellular cytokine staining, we found that the frequency of beryllium-specific CD4(+) T cells in the lungs (bronchoalveolar lavage) of 12 CBD patients ranged from 1.4% to 29% (mean 17.8%), and these T cells expressed a Th1-type phenotype in response to beryllium sulfate (BeSO(4)). Few, if any, beryllium-specific CD8(+) T cells were identified. In contrast, the frequency of beryllium-responsive CD4(+) T cells in the blood of these subjects ranged from undetectable to 1 in 500. No correlation was observed between the frequency of beryllium-responsive bronchoalveolar lavage (BAL) CD4(+) T cells as detected by intracellular staining and lymphocyte proliferation in culture after BeSO(4) exposure. Staining for surface marker expression showed that nearly all BAL T cells exhibit an effector memory cell phenotype. These results demonstrate a dramatically high frequency and compartmentalization of antigen-specific effector memory CD4(+) cells in the lungs of CBD patients. These studies provide insight into the phenotypic and functional characteristics of antigen-specific T cells invading other inaccessible target organs in human disease.

  17. Compartment-specific tyrosine hydroxylase-positive innervation to AII amacrine cells in the rabbit retina.

    Science.gov (United States)

    Völgyi, B; Debertin, G; Balogh, M; Popovich, E; Kovács-Öller, T

    2014-06-13

    Tyrosine-hydroxylase-positive (TH(+)) amacrine cells release dopamine in a paracrine manner and also form GABA-ergic contact sites with inner retinal neurons. The best known sites are formed by TH(+) fibrous rings and AII amacrine cell somata in stratum 1 of the inner plexiform layer (IPL). An AII amacrine cell is a highly compartmentalized neuron with relatively large soma, a stout dendritic stalk and two sets of processes, one showing lobular appearance and extending horizontally in stratum 1 and a second transversally elongated group of fibers in strata 4 and 5. Although, all of these compartments have been reported as tic sites, it is uncertain if TH(+) amacrine cell inputs are homogeneously distributed or they rather target specific AII cell compartments. In this study we investigated the TH(+)/AII cell system by immunohistochemistry to map the potential synaptic contacts in the rabbit retina. We found numerous intimate contacts between the two amacrine cell populations throughout the IPL. However, TH(+) fibers favored the soma/main stalk region of AII amacrine cells and only contacted lobular appendages and transversal processes sporadically. In addition to the well-studied contacts between AII cell somata and TH(+) rings in stratum 1 we found that the main stalk region in stratum 3 serves as a secondary major target for TH(+) axons. These data thus clearly show that TH(+) contacts to AII amacrine cells are highly compartment specific. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. The loss of Gnai2 and Gnai3 in B cells eliminates B lymphocyte compartments and leads to a hyper-IgM like syndrome.

    Directory of Open Access Journals (Sweden)

    Il-Young Hwang

    Full Text Available B lymphocytes are compartmentalized within lymphoid organs. The organization of these compartments depends upon signaling initiated by G-protein linked chemoattractant receptors. To address the importance of the G-proteins Gαi2 and Gαi3 in chemoattractant signaling we created mice lacking both proteins in their B lymphocytes. While bone marrow B cell development and egress is grossly intact; mucosal sites, splenic marginal zones, and lymph nodes essentially lack B cells. There is a partial block in splenic follicular B cell development and a 50-60% reduction in splenic B cells, yet normal numbers of splenic T cells. The absence of Gαi2 and Gαi3 in B cells profoundly disturbs the architecture of lymphoid organs with loss of B cell compartments in the spleen, thymus, lymph nodes, and gastrointestinal tract. This results in a severe disruption of B cell function and a hyper-IgM like syndrome. Beyond the pro-B cell stage, B cells are refractory to chemokine stimulation, and splenic B cells are poorly responsive to antigen receptor engagement. Gαi2 and Gαi3 are therefore critical for B cell chemoattractant receptor signaling and for normal B cell function. These mice provide a worst case scenario of the consequences of losing chemoattractant receptor signaling in B cells.

  19. Characterization of the association of radiolabeled bleomycin A2 with HeLa cells

    International Nuclear Information System (INIS)

    Roy, S.N.; Horwitz, S.B.

    1984-01-01

    The association of [ 3 H]bleomycin A2 and Cu(II):[ 3 H]bleomycin A2 with HeLa cells has been characterized. Under the conditions of our experiments, approximately 0.1% of the total drug in the medium associates with HeLa cells. Both forms of the drug bind to HeLa cells in a specific and saturable manner, with a Km of 20 microM and a Vmax of 2.5 pmol/min/10(6) cells. Scatchard analysis of the specific binding data demonstrates a single set of high-affinity binding sites. Cytotoxic activities of both forms of the drug are similar, with a 50% lethal dose of 0.5 microM at 48 hr. The specific binding in HeLa cells of either the labeled metal-free drug or its copper complex is reversible by a 100-fold excess of either unlabeled drug. Interaction of the drug with cells is temperature sensitive but is unaffected by metabolic poisons, suggesting that this process is not energy dependent. Isolation of DNA from HeLa cells incubated with the drug indicates that 1 mol of either [ 3 H]bleomycin A2 or Cu(II):[ 3 H]bleomycin A2 binds per 10(8) nucleotides. Further studies with the radiolabeled drug are required to define precisely the mechanisms involved in bleomycin uptake and compartmentalization within the cell

  20. The oral cavity - potential source of stem cells.

    Science.gov (United States)

    Brożek, Rafał; Kurpisz, Maciej; Koczorowski, Ryszard

    2017-10-19

    The purpose of this review is to present the current knowledge regarding the hierarchy of stem cells originating from the oral cavity, which could have a potential value when applied to regenerative stomatology. It must be particularly emphasized that the heterogenous nature of its biology and function within oral compartment may predispose them to different types of applications. Stem cells can be perceived as immature, primitive and unspecialized types of cells with the ability to proliferate, self-renew and differentiate into specialized progeny according to the compartmental signaling. Their presence in tissue reservoirs was already discovered in many organs and tissues as well as in the stomatognathic system. The oral cavity appears to be an exceptionally attractive site to acquire stem cells. The common presence and easy access to these cells in dental and peridental tissues provides a real chance to apply them for therapeutic purposes. Such an opportunity would also be neutral to bioethical and moral issues, assuming autologous stem cells employment. Many authors suspect that stem cells have epigenetic memory, so some of their features can be inherited through generations. They are not connected, however, with DNA sequence modifications. It is, therefore, justified to apply the cells, which have the oral cavity as their natural reservoir, in interventions associated with tissue engineering within the stomatognathic system. An increasing number of clinical trials, among which the number of randomized studies with large group of patients is progressively carried out, allows for a prediction that shortly therapeutic methods based on stem cells of dental origin may be implemented to the routine repertoire of clinical practice.

  1. Characterization of CD8+ T-Cell Responses in the Peripheral Blood and Skin Injection Sites of Melanoma Patients Treated with mRNA Electroporated Autologous Dendritic Cells (TriMixDC-MEL

    Directory of Open Access Journals (Sweden)

    Daphné Benteyn

    2013-01-01

    Full Text Available Treatment of melanoma patients with mRNA electroporated dendritic cells (TriMixDC-MEL stimulates T-cell responses against the presented tumor-associated antigens (TAAs. In the current clinical trials, melanoma patients with systemic metastases are treated, requiring priming and/or expansion of preexisting TAA-specific T cells that are able to migrate to both the skin and internal organs. We monitored the presence of TAA-specific CD8+ T cells infiltrating the skin at sites of intradermal TriMixDC-MEL injection (SKILs and within the circulation of melanoma patients treated in two clinical trials. In 10 out of fourteen (71% patients screened, CD8+ T cells recognizing any of the four TAA presented by TriMixDC-MEL cellular vaccine were found in both compartments. In total, 30 TAA-specific T-cell responses were detected among the SKILs and 29 among peripheral blood T cells, of which 24 in common. A detailed characterization of the antigen specificity of CD8+ T-cell populations in four patients indicates that the majority of the epitopes detected were only recognized by CD8+ T cells derived from either skin biopsies or peripheral blood, indicating that some compartmentalization occurs after TriMix-DC therapy. To conclude, functional TAA-specific CD8+ T cells distribute both to the skin and peripheral blood of patients after TriMixDC-MEL therapy.

  2. Spatially controlled delivery of siRNAs to stem cells in implants generated by multi-component additive manufacturing

    DEFF Research Database (Denmark)

    Andersen, Morten Østergaard; Le, Dang Quang Svend; Chen, Muwan

    2013-01-01

    Additive manufacturing is a promising technique in tissue engineering, as it enables truly individualized implants to be made to fit a particular defect. As previously shown, a feasible strategy to produce complex multicellular tissues is to deposit different small interfering RNA (siRNA) in porous...... implants that are subsequently sutured together. In this study, an additive manufacturing strategy to deposit carbohydrate hydrogels containing different siRNAs is applied into an implant, in a spatially controlled manner. When the obtained structures are seeded with mesenchymal stem (stromal) cells......, the selected siRNAs are delivered to the cells and induces specific and localized gene silencing. Here, it is demonstrated how to replicate part of a patient's spinal cord from a computed tomography scan, using an additive manufacturing technique to produce an implant with compartmentalized si...

  3. Stem Cells

    Science.gov (United States)

    Stem cells are cells with the potential to develop into many different types of cells in the body. They serve as a repair ... body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...

  4. TLR4-dependent recognition of lipopolysaccharide by epithelial cells requires sCD14.

    Science.gov (United States)

    Bäckhed, Fredrik; Meijer, Lisa; Normark, Staffan; Richter-Dahlfors, Agneta

    2002-08-01

    Epithelial cells lining the urinary bladder mucosa are engaged in numerous functions that act in concert to prevent exposure of the sensitive upper urinary tract to bacteria. This protective effect was recently suggested to be achieved mainly by compartmentalized, organ-specific expression of the lipopolysaccharide (LPS) receptor Toll-like receptor (TLR) 4 within epithelial cells of the urogenital tract. Here, we show that bladder epithelial cells recognize similarly low amounts of LPS as macrophages. LPS responsiveness measured as secretion of the chemoattractant interleukin 8 demonstrates a dependency on TLR4 in epithelial cells, which is similar to the situation in macrophages. The TLR4-mediated LPS response in bladder epithelial cells also uses the co-receptor CD14 for efficient LPS signalling. However, bladder epithelial cells do not express endogenous CD14 and are therefore dependent on the soluble form of CD14 that is present in body fluids. Furthermore, we demonstrate that epithelial chemokine production is augmented by type 1-mediated attachment of uropathogenic Escherichia coli in the absence, but not in the presence, of CD14. Collectively, our findings strengthen the role for bladder epithelial cells as important players in the innate immune system within the urinary tract.

  5. HIV-Specific CD8+T Cells Exhibit Reduced and Differentially Regulated Cytolytic Activity in Lymphoid Tissue.

    Science.gov (United States)

    Reuter, Morgan A; Del Rio Estrada, Perla M; Buggert, Marcus; Petrovas, Constantinos; Ferrando-Martinez, Sara; Nguyen, Son; Sada Japp, Alberto; Ablanedo-Terrazas, Yuria; Rivero-Arrieta, Amaranta; Kuri-Cervantes, Leticia; Gunzelman, Heidi M; Gostick, Emma; Price, David A; Koup, Richard A; Naji, Ali; Canaday, David H; Reyes-Terán, Gustavo; Betts, Michael R

    2017-12-19

    Elimination of lymphoid tissue reservoirs is a key component of HIV eradication strategies. CD8 + T cells play a critical role in control of HIV, but their functional attributes in lymph nodes (LNs) remain unclear. Here, we show that memory, follicular CXCR5 + , and HIV-specific CD8 + T cells from LNs do not manifest the properties of cytolytic CD8 + T cells. While the frequency of follicular CXCR5 + CD8 + T cells was strongly inversely associated with peripheral viremia, this association was not dependent on cytolytic CXCR5 + CD8 + T cells. Moreover, the poor cytolytic activity of LN CD8 + T cells was linked to a compartmentalized dissociation between effector programming and the transcription factor T-bet. In line with this, activation of LN CD8 + T cells only partially induced the acquisition of cytolytic functions relative to peripheral blood CD8 + T cells. These results suggest that a state of immune privilege against CD8 + T cell-mediated cytolysis exists in lymphoid tissue, potentially facilitating the persistence of HIV. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Lipid raft involvement in yeast cell growth and death

    Directory of Open Access Journals (Sweden)

    Faustino eMollinedo

    2012-10-01

    Full Text Available The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Crytococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na+, K+ and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.

  7. Lipid raft involvement in yeast cell growth and death

    International Nuclear Information System (INIS)

    Mollinedo, Faustino

    2012-01-01

    The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Cryptococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na + , K + , and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.

  8. Lyophilized kits of diamino dithiol compounds for labelling with {sup 99m}-technetium. Pharmacokinetics studies and distribution compartmental models of the related complexes; Conjuntos de reativos liofilizados de compostos diaminoditiolicos para marcacao com tecnecio-99m. Estudo farmacocinetico e elaboracao de modelos compartimentalizados dos respectivos complexos

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Elaine Bortoleti de

    1995-07-01

    The present work reflects the clinical interest for labelling diamino dithiol compounds with technetium-99m. Both chosen compounds, L,L-Ethylene dicysteine (L,L-EC) and L,L-Ethylene dicysteine diethyl esther (L,L-ECD) were obtained with relative good yield and characterized by IR and NMR. The study of labelling conditions with technetium-99m showed the influence of the type and mass of reducing agent as well as the pH on the formation of complexes with desired biological characteristics. Radiochemical purity was determined by thin layer chromatography (TLC) and high performance liquid chromatography (HPLC). Lyophilised kits of L,L-EC and L,L-ECD for labelling with {sup 99m}Tc were obtained, with stability superior to 120 days, when stored under refrigeration, enabling the kits marketing. The ideal formulation of the kits as well as the use of liquid nitrogen in the freezing process, determined the lyophilization success. Distribution biological studies of the {sup 99m}Tc complexes were performed on mice by invasive method and on bigger animals by scintigraphic evaluation. Biological distribution studies of the complex {sup 99m}Tc-L,L-EC showed fast blood clearance, with the elimination of about 90% of the administered dose after 60 minutes, almost exclusively by the urinary system. The biological distribution results were adjusted to a three compartmental distribution model, as expected for a radiopharmaceutical designed to renal dynamic studies, with tubular elimination. The complex interaction with renal tubular receptors is related with structural characteristics of the compound, more specifically with the presence and location of polar groups. In comparison with {sup 99m}Tc-L,L-EC, biological studies of the complex {sup 99m}Tc -L,L-ECD showed different distribution aspects, despite some structural similarities. The presence of ethyl groups confers to the complex neutrality and lipophilicity. It cross the intact blood brain barrier and is retained in the brain

  9. Splenectomy alters distribution and turnover but not numbers or protective capacity of de novo generated memory CD8 T cells.

    Directory of Open Access Journals (Sweden)

    Marie eKim

    2014-11-01

    Full Text Available The spleen is a highly compartmentalized lymphoid organ that allows for efficient antigen presentation and activation of immune responses. Additionally, the spleen itself functions to remove senescent red blood cells, filter bacteria, and sequester platelets. Splenectomy, commonly performed after blunt force trauma or splenomegaly, has been shown to increase risk of certain bacterial and parasitic infections years after removal of the spleen. Although previous studies report defects in memory B cells and IgM titers in splenectomized patients, the effect of splenectomy on CD8 T cell responses and memory CD8 T cell function remains ill defined. Using TCR-transgenic P14 cells, we demonstrate that homeostatic proliferation and representation of pathogen-specific memory CD8 T cells in the blood are enhanced in splenectomized compared to sham surgery mice. Surprisingly, despite the enhanced turnover, splenectomized mice displayed no changes in total memory CD8 T cell numbers nor impaired protection against lethal dose challenge with Listeria monocytogenes. Thus, our data suggest that memory CD8 T cell maintenance and function remain intact in the absence of the spleen.

  10. Detection of Her2-overexpressing cancer cells using keyhole shaped chamber array employing a magnetic droplet-handling system.

    Science.gov (United States)

    Okochi, Mina; Koike, Shinji; Tanaka, Masayoshi; Honda, Hiroyuki

    2017-07-15

    An on-chip gene expression analysis compartmentalized in droplets was developed for detection of cancer cells at a single-cell level. The chip consists of a keyhole-shaped reaction chamber with hydrophobic modification employing a magnetic bead-droplet-handling system with a gate for bead separation. Using three kinds of water-based droplets in oil, a droplet with sample cells, a lysis buffer with magnetic beads, and RT-PCR buffer, parallel magnetic manipulation and fusion of droplets were performed using a magnet-handling device containing small external magnet patterns in an array. The actuation with the magnet offers a simple system for droplet manipulation that allows separation and fusion of droplets containing magnetic beads. After reverse transcription and amplification by thermal cycling, fluorescence was obtained for detection of overexpressing genes. For clinical detection of gastric cancer cells in peritoneal washing, the Her2-overexpressing gastric cancer cells spiked within normal cells was detected by gene expression analysis of droplets containing an average of 2.5 cells. Our developed droplet-based cancer detection system manipulated by external magnetic force without pumps or valves offers a simple and flexible set-up for transcriptional detection of cancer cells, and will be greatly advantageous for less-invasive clinical diagnosis and prognostic prediction. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. An overview of techniques for the measurement of calcium distribution, calcium fluxes, and cytosolic free calcium in mammalian cells

    International Nuclear Information System (INIS)

    Borle, A.B.

    1990-01-01

    An array of techniques can be used to study cell calcium metabolism that comprises several calcium compartments and many types of transport systems such as ion channels, ATP-dependent pumps, and antiporters. The measurement of total call calcium brings little information of value since 60 to 80% of total cell calcium is actually bound to the extracellular glycocalyx. Cell fractionation and differential centrifugation have been used to study intracellular Ca 2+ compartmentalization, but the methods suffer from the possibility of Ca 2+ loss or redistribution among cell fractions. Steady-state kinetic analyses of 45 Ca uptake or desaturation curves have been used to study the distribution of Ca 2+ among various kinetic pools in living cells and their rate of Ca 2+ exchange, but the analyses are constrained by many limitations. Nonsteady-state tracer studies can provide information about rapid changes in calcium influx or efflux in and out of the cell. Zero-time kinetics of 45 Ca uptake can detect instantaneous changes in calcium influx, while 45 Ca fractional efflux ratio, can detect rapid stimulations or inhibitions of calcium efflux out of cells. The best strategy to study cell calcium metabolism is to use several different methods that focus on a specific problem from widely different angles

  12. Nitrogen metabolism in Lignifying Pinus taeda cell cultures

    Science.gov (United States)

    van Heerden, P. S.; Towers, G. H.; Lewis, N. G.

    1996-01-01

    The primary metabolic fate of phyenylalanine, following its deamination in plants, is conscription of its carbon skeleton for lignin, suberin, flavonoid, and related metabolite formation. Since this accounts for approximately 30-40% of all organic carbon, an effective means of recycling the liberated ammonium ion must be operative. In order to establish how this occurs, the uptake and metabolism of various 15N-labeled precursors (15N-Phe, 15NH4Cl, 15N-Gln, and 15N-Glu) in lignifying Pinus taeda cell cultures was investigated, using a combination of high performance liquid chromatography, 15N NMR, and gas chromatograph-mass spectrometry analyses. It was found that the ammonium ion released during active phenylpropanoid metabolism was not made available for general amino acid/protein synthesis. Rather it was rapidly recycled back to regenerate phenylalanine, thereby providing an effective means of maintaining active phenylpropanoid metabolism with no additional nitrogen requirement. These results strongly suggest that, in lignifying cells, ammonium ion reassimilation is tightly compartmentalized.

  13. TLR4 signalling in pulmonary stromal cells is critical for inflammation and immunity in the airways.

    Science.gov (United States)

    Perros, Frederic; Lambrecht, Bart N; Hammad, Hamida

    2011-09-24

    Inflammation of the airways, which is often associated with life-threatening infection by Gram-negative bacteria or presence of endotoxin in the bioaerosol, is still a major cause of severe airway diseases. Moreover, inhaled endotoxin may play an important role in the development and progression of airway inflammation in asthma. Pathologic changes induced by endotoxin inhalation include bronchospasm, airflow obstruction, recruitment of inflammatory cells, injury of the alveolar epithelium, and disruption of pulmonary capillary integrity leading to protein rich fluid leak in the alveolar space. Mammalian Toll-like receptors (TLRs) are important signalling receptors in innate host defense. Among these receptors, TLR4 plays a critical role in the response to endotoxin. Lungs are a complex compartmentalized organ with separate barriers, namely the alveolar-capillary barrier, the microvascular endothelium, and the alveolar epithelium. An emerging theme in the field of lung immunology is that structural cells (SCs) of the airways such as epithelial cells (ECs), endothelial cells, fibroblasts and other stromal cells produce activating cytokines that determine the quantity and quality of the lung immune response. This review focuses on the role of TLR4 in the innate and adaptive immune functions of the pulmonary SCs.

  14. High-Throughput Identification of Combinatorial Ligands for DNA Delivery in Cell Culture

    Science.gov (United States)

    Svahn, Mathias G.; Rabe, Kersten S.; Barger, Geoffrey; EL-Andaloussi, Samir; Simonson, Oscar E.; Didier, Boturyn; Olivier, Renaudet; Dumy, Pascal; Brandén, Lars J.; Niemeyer, Christof M.; Smith, C. I. Edvard

    2008-10-01

    Finding the optimal combinations of ligands for tissue-specific delivery is tedious even if only a few well-established compounds are tested. The cargo affects the receptor-ligand interaction, especially when it is charged like DNA. The ligand should therefore be evaluated together with its cargo. Several viruses have been shown to interact with more than one receptor, for efficient internalization. We here present a DNA oligonucleotide-based method for inexpensive and rapid screening of biotin labeled ligands for combinatorial effects on cellular binding and uptake. The oligonucleotide complex was designed as a 44 bp double-stranded DNA oligonucleotide with one central streptavidin molecule and a second streptavidin at the terminus. The use of a highly advanced robotic platform ensured stringent processing and execution of the experiments. The oligonucleotides were fluorescently labeled and used for detection and analysis of cell-bound, internalized and intra-cellular compartmentalized constructs by an automated line-scanning confocal microscope, IN Cell Analyzer 3000. All possible combinations of 22 ligands were explored in sets of 2 and tested on 6 different human cell lines in triplicates. In total, 10 000 transfections were performed on the automation platform. Cell-specific combinations of ligands were identified and their relative position on the scaffold oligonucleotide was found to be of importance. The ligands were found to be cargo dependent, carbohydrates were more potent for DNA delivery whereas cell penetrating peptides were more potent for delivery of less charged particles.

  15. Isolation of circulating tumor cells using photoacoustic flowmetry and two phase flow

    Science.gov (United States)

    O'Brien, Christine M.; Rood, Kyle D.; Gupta, Sagar K.; Mosley, Jeffrey D.; Goldschmidt, Benjamin S.; Sharma, Nikhilesh; Sengupta, Shramik; Viator, John A.

    2011-03-01

    Melanoma is the deadliest form of skin cancer, yet current diagnostic methods are inadequately sensitive. Patients must wait until secondary tumors form before malignancy can be diagnosed and treatment prescribed. Detection of cells that have broken off the original tumor and flow through the blood or lymph system can provide data for diagnosing and monitoring cancer. Our group utilizes the photoacoustic effect to detect metastatic melanoma cells, which contain the pigmented granule melanin. As a rapid laser pulse irradiates melanoma, the melanin undergoes thermo-elastic expansion and ultimately creates a photoacoustic wave. Thus, melanoma patient's blood samples can be enriched, leaving the melanoma in a white blood cell (WBC) suspension. Irradiated melanoma cells produce photoacoustic waves, which are detected with a piezoelectric transducer, while the optically transparent WBCs create no signals. Here we report an isolation scheme utilizing two-phase flow to separate detected melanoma from the suspension. By introducing two immiscible fluids through a t-junction into one flow path, the analytes are compartmentalized. Therefore, the slug in which the melanoma cell is located can be identified and extracted from the system. Two-phase immiscible flow is a label free technique, and could be used for other types of pathological analytes.

  16. ImaEdge - a platform for quantitative analysis of the spatiotemporal dynamics of cortical proteins during cell polarization.

    Science.gov (United States)

    Zhang, Zhen; Lim, Yen Wei; Zhao, Peng; Kanchanawong, Pakorn; Motegi, Fumio

    2017-12-15

    Cell polarity involves the compartmentalization of the cell cortex. The establishment of cortical compartments arises from the spatial bias in the activity and concentration of cortical proteins. The mechanistic dissection of cell polarity requires the accurate detection of dynamic changes in cortical proteins, but the fluctuations of cell shape and the inhomogeneous distributions of cortical proteins greatly complicate the quantitative extraction of their global and local changes during cell polarization. To address these problems, we introduce an open-source software package, ImaEdge, which automates the segmentation of the cortex from time-lapse movies, and enables quantitative extraction of cortical protein intensities. We demonstrate that ImaEdge enables efficient and rigorous analysis of the dynamic evolution of cortical PAR proteins during Caenorhabditis elegans embryogenesis. It is also capable of accurate tracking of varying levels of transgene expression and discontinuous signals of the actomyosin cytoskeleton during multiple rounds of cell division. ImaEdge provides a unique resource for quantitative studies of cortical polarization, with the potential for application to many types of polarized cells.This article has an associated First Person interview with the first authors of the paper. © 2017. Published by The Company of Biologists Ltd.

  17. A cellular Potts model for the MMP-dependent and -independent cancer cell migration in matrix microtracks of different dimensions

    Science.gov (United States)

    Scianna, Marco; Preziosi, Luigi

    2014-03-01

    Cell migration is fundamental in a wide variety of physiological and pathological phenomena, among other in cancer invasion and development. In particular, the migratory/invasive capability of single metastatic cells is fundamental in determining the malignancy of a solid tumor. Specific cell migration phenotypes result for instance from the reciprocal interplay between the biophysical and biochemical properties of both the malignant cells themselves and of the surrounding environment. In particular, the extracellular matrices (ECMs) forming connective tissues can provide both loosely organized zones and densely packed barriers, which may impact cell invasion mode and efficiency. The critical processes involved in cell movement within confined spaces are (i) the proteolytic activity of matrix metalloproteinases (MMPs) and (ii) the deformation of the entire cell body, and in particular of the nucleus. We here present an extended cellular Potts model (CPM) to simulate a bio-engineered matrix system, which tests the active motile behavior of a single cancer cell into narrow channels of different widths. As distinct features of our approach, the cell is modeled as a compartmentalized discrete element, differentiated in the nucleus and in the cytosolic region, while a directional shape-dependent movement is explicitly driven by the evolution of its polarity vector. As outcomes, we find that, in a large track, the tumor cell is not able to maintain a directional movement. On the contrary, a structure of subcellular width behaves as a contact guidance sustaining cell persistent locomotion. In particular, a MMP-deprived cell is able to repolarize and follow the micropattern geometry, while a full MMP activity leads to a secondary track expansion by degrading the matrix structure. Finally, we confirm that cell movement within a subnuclear structure can be achieved either by pericellular proteolysis or by a significant deformation of cell nucleus.

  18. The Activity of the Neutral Sphingomyelinase Is Important in T Cell Recruitment and Directional Migration

    Directory of Open Access Journals (Sweden)

    Lena Collenburg

    2017-08-01

    Full Text Available Breakdown of sphingomyelin as catalyzed by the activity of sphingomyelinases profoundly affects biophysical properties of cellular membranes which is particularly important with regard to compartmentalization of surface receptors and their signaling relay. As it is activated both upon TCR ligation and co-stimulation in a spatiotemporally controlled manner, the neutral sphingomyelinase (NSM has proven to be important in T cell activation, where it appears to play a particularly important role in cytoskeletal reorganization and cell polarization. Because these are important parameters in directional T cell migration and motility in tissues, we analyzed the role of the NSM in these processes. Pharmacological inhibition of NSM interfered with early lymph node homing of T cells in vivo indicating that the enzyme impacts on endothelial adhesion, transendothelial migration, sensing of chemokine gradients or, at a cellular level, acquisition of a polarized phenotype. NSM inhibition reduced adhesion of T cells to TNF-α/IFN-γ activated, but not resting endothelial cells, most likely via inhibiting high-affinity LFA-1 clustering. NSM activity proved to be highly important in directional T cell motility in response to SDF1-α, indicating that their ability to sense and translate chemokine gradients might be NSM dependent. In fact, pharmacological or genetic NSM ablation interfered with T cell polarization both at an overall morphological level and redistribution of CXCR4 and pERM proteins on endothelial cells or fibronectin, as well as with F-actin polymerization in response to SDF1-α stimulation, indicating that efficient directional perception and signaling relay depend on NSM activity. Altogether, these data support a central role of the NSM in T cell recruitment and migration both under homeostatic and inflamed conditions by regulating polarized redistribution of receptors and their coupling to the cytoskeleton.

  19. Self-renewing Monolayer of Primary Colonic or Rectal Epithelial CellsSummary

    Directory of Open Access Journals (Sweden)

    Yuli Wang

    2017-07-01

    Full Text Available Background & Aims: Three-dimensional organoid culture has fundamentally changed the in vitro study of intestinal biology enabling novel assays; however, its use is limited because of an inaccessible luminal compartment and challenges to data gathering in a three-dimensional hydrogel matrix. Long-lived, self-renewing 2-dimensional (2-D tissue cultured from primary colon cells has not been accomplished. Methods: The surface matrix and chemical factors that sustain 2-D mouse colonic and human rectal epithelial cell monolayers with cell repertoires comparable to that in vivo were identified. Results: The monolayers formed organoids or colonoids when placed in standard Matrigel culture. As with the colonoids, the monolayers exhibited compartmentalization of proliferative and differentiated cells, with proliferative cells located near the peripheral edges of growing monolayers and differentiated cells predominated in the central regions. Screening of 77 dietary compounds and metabolites revealed altered proliferation or differentiation of the murine colonic epithelium. When exposed to a subset of the compound library, murine organoids exhibited similar responses to that of the monolayer but with differences that were likely attributable to the inaccessible organoid lumen. The response of the human primary epithelium to a compound subset was distinct from that of both the murine primary epithelium and human tumor cells. Conclusions: This study demonstrates that a self-renewing 2-D murine and human monolayer derived from primary cells can serve as a physiologically relevant assay system for study of stem cell renewal and differentiation and for compound screening. The platform holds transformative potential for personalized and precision medicine and can be applied to emerging areas of disease modeling and microbiome studies. Keywords: Colonic Epithelial Cells, Monolayer, Organoids, Compound Screening

  20. Cell-cell channels

    National Research Council Canada - National Science Library

    Baluška, F; Volkmann, Dieter; Barlow, P. W

    2006-01-01

    ...-Negative Bacteria Pheromone-Responsive Conjugative Plasmids in E. faecalis Nonpheromone-Responsive Plasmids in G+ Bacteria 21 22 27 28 Section II: Ciliate Cells 3. The Tetrahymena Conjugation Ju...

  1. Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption.

    Science.gov (United States)

    Wang, Benjamin L; Ghaderi, Adel; Zhou, Hang; Agresti, Jeremy; Weitz, David A; Fink, Gerald R; Stephanopoulos, Gregory

    2014-05-01

    Phenotyping single cells based on the products they secrete or consume is a key bottleneck in many biotechnology applications, such as combinatorial metabolic engineering for the overproduction of secreted metabolites. Here we present a flexible high-throughput approach that uses microfluidics to compartmentalize individual cells for growth and analysis in monodisperse nanoliter aqueous droplets surrounded by an immiscible fluorinated oil phase. We use this system to identify xylose-overconsuming Saccharomyces cerevisiae cells from a population containing one such cell per 10(4) cells and to screen a genomic library to identify multiple copies of the xylose isomerase gene as a genomic change contributing to high xylose consumption, a trait important for lignocellulosic feedstock utilization. We also enriched L-lactate-producing Escherichia coli clones 5,800× from a population containing one L-lactate producer per 10(4) D-lactate producers. Our approach has broad applications for single-cell analyses, such as in strain selection for the overproduction of fuels, chemicals and pharmaceuticals.

  2. Epithelial-Mesenchymal Micro-niches Govern Stem Cell Lineage Choices.

    Science.gov (United States)

    Yang, Hanseul; Adam, Rene C; Ge, Yejing; Hua, Zhong L; Fuchs, Elaine

    2017-04-20

    Adult tissue stem cells (SCs) reside in niches, which, through intercellular contacts and signaling, influence SC behavior. Once activated, SCs typically give rise to short-lived transit-amplifying cells (TACs), which then progress to differentiate into their lineages. Here, using single-cell RNA-seq, we unearth unexpected heterogeneity among SCs and TACs of hair follicles. We trace the roots of this heterogeneity to micro-niches along epithelial-mesenchymal interfaces, where progenitors display molecular signatures reflective of spatially distinct local signals and intercellular interactions. Using lineage tracing, temporal single-cell analyses, and chromatin landscaping, we show that SC plasticity becomes restricted in a sequentially and spatially choreographed program, culminating in seven spatially arranged unilineage progenitors within TACs of mature follicles. By compartmentalizing SCs into micro-niches, tissues gain precise control over morphogenesis and regeneration: some progenitors specify lineages immediately, whereas others retain potency, preserving self-renewing features established early while progressively restricting lineages as they experience dynamic changes in microenvironment. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Functional scintiscanning using iodine 131-tagged BSP and compartmental analysis to predict disorders of the liver and biliary tract. /sup 131/J-BSP-Funktionsszintigraphie und Kompartmentanalyse bei der Abklaerung von Leber- und Gallenwegserkrankungen

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, K.

    1984-02-03

    164 individuals with normal liver findings or with overt disorders of the liver were subjected to functional scintiscanning using iodine 131-tagged bromosulfophthalein and subsequent quantitative analysis of liver function parameters. The curves of the cardiac and hepatic activity plotted against time showed a bi-exponential course. The number of compartments involved was in keeping with the number of exponential summands, which were determined solely from the values measured. Our considerations were based on a two-compartment model with plasma (P) and liver (L) as the two volumes of distribution; from this, the liver function was calculated in terms of the velocity constants k/sub 12/ (plasma-liver), k/sub 20/ (liver-gallbladder) and k/sub 21/ (liver-plasma). In the majority of hepatobiliary disorders the clearance rate (k/sub 12/) was seen to be decreased at a statistically significant level, the only exception here being fatty changes of the liver and choledocholithiasis. The excretion constant (k/sub 20/) was considerably increased in liver cirrhosis and non-obstructive disorders of the gallbladder and biliary tract, while it was decreased in biliary tract disorders associated with signs of impaired bile flow. In order to be able to make a clear distinction between intrahepatic and extrahepatic cholestasis, which is necessary in the differential diagnosis of icterus, sequential scintiscans are still required in addition to determinations of k/sub 12/ and k/sub 20/, as they offer the advantage of visual evaluation of the recorded excretion pattern of the tracer substance. The determination of the ratio between the velocity constants (k/sub 12/:k/sub 20/) provides useful information on the function of the liver cells. During follow-up observations any incipient changes in liver function can easily be predicted from the velocity constants mentioned above and evaluated on a quantitative basis. (TRV).

  4. Glycosylation-mediated phenylpropanoid partitioning in Populus tremuloides cell cultures

    Directory of Open Access Journals (Sweden)

    Babst Benjamin A

    2009-12-01

    identified candidate genes for glycosyltransferases that may mediate the glycosylation, and for transporters that mediate the subcellular compartmentalization of sugars and phenolic glycosides. The suspension cells appear to represent a facile system for dissecting the regulation of phenolic carbon partitioning, and in turn, its effects on growth in Populus.

  5. Differentiated properties of hepatocytes induced from pancreatic cells.

    Science.gov (United States)

    Tosh, David; Shen, Chia-Ning; Slack, Jonathan M W

    2002-09-01

    Transdifferentiation of pancreas to liver is a well-recognized phenomenon and has been described in animal experiments and human pathology. We recently produced an in vitro model for the transdifferentiation (or conversion) of the pancreatic cell line AR42J-B13 to hepatocytes based on culture with dexamethasone (Dex). To determine whether the hepatocytes express markers of hepatic intermediary metabolism and detoxification, we investigated the patterns of expression of glucokinase, cytochrome P450s CYP3A1 and CYP2B1/2, testosterone/4-nitrophenol uridine diphosphate glucuronosyltransferase (UDPGT), and aryl sulfotransferase. All were expressed. We also determined the expression of 2 enzymes involved in ammonia detoxification: carbamoylphosphate synthetase I (CPS I) and glutamine synthetase (GS). These enzymes are normally strictly compartmentalized in liver in a wide periportal pattern and the last downstream perivenous hepatocytes, respectively. Following culture with Dex, CPS I and GS are expressed in 2 different cell populations, suggesting that both periportal and perivenous hepatocytes are induced. We also produced a reporter assay based on the activation of green fluorescent protein (GFP) by the transthyretin (TTR) promoter or glucose-6-phosphatase (G6Pase) promoter. After culture with Dex, transfected cells begin to express GFP, showing that hepatic promoters are activated in concert with the induction of the hepatocyte phenotype. Lastly, we examined the stability of the hepatic phenotype and found that some cells still express liver markers (transferrin or albumin) up to 14 days after removal of Dex. In conclusion, these results suggest that pancreatic hepatocytes produced by this method may offer an alternative model to primary cultures of hepatocytes for the study of liver function.

  6. Invasive cancer cells and metastasis

    Science.gov (United States)

    Mierke, Claudia Tanja

    2013-12-01

    the biophysical state of the primary tumor cell. To determine the cytoskeletal dynamics they chose magnetic twisting cytometry, where the spontaneous motion of surface bound marker beads was measured, which is a measure for the cytoskeletal remodeling dynamics. The group of Katarina Wolf measured the stiffness of the cell nucleus because it is the largest and stiffest organelle, which may hinder the migration of invasive tumor cells through dense connective tissue [2]. They combined atomic force confocal microscopy for measurement of bulk nuclear stiffness (the inverse of the compressibility) with simultaneous visualization of the cantilever-nucleus contact as well as monitoring of the cell's fate. The dynamics of tissue topology such as the mixing of compartments during cancer invasion and metastasis were theoretically analyzed by Lance L Munn [3]. In particular, he presented a mathematical model of tissue repair and tumor growth based on collective cell migration that simulates a wide range of tumor behaviors using correct tissue compartmentalization and connectivity. In the future, the topological analysis could be helpful for tumor diagnosis or monitoring tumor therapy. The group of Cynthia A Reinhart-King analyzed how the topological guidance of a 3D tumor cell migration at an interface of collagen densities affects cell motility [4]. In particular, they mimicked the heterogeneities in density of the tumor stroma by preparing gels with an interface of high and low density collagen gels and investigated how this affects cell motility. The author's review paper details the effect of focal adhesion proteins such as focal adhesion kinase (FAK) on cell motility and how this effect is driven by mechanical alterations of cells expressing FAK compared to cells with FAK knock-out [5]. In particular, it focused on mechanical properties regulated by FAK in comparison to the mechano-regulating protein vinculin. This article highlights that both focal adhesion proteins

  7. Conventional Dendritic Cells Confer Protection against Mouse Cytomegalovirus Infection via TLR9 and MyD88 Signaling

    Directory of Open Access Journals (Sweden)

    Franz Puttur

    2016-10-01

    Full Text Available Cytomegalovirus (CMV is an opportunistic virus severely infecting immunocompromised individuals. In mice, endosomal Toll-like receptor 9 (TLR9 and downstream myeloid differentiation factor 88 (MyD88 are central to activating innate immune responses against mouse CMV (MCMV. In this respect, the cell-specific contribution of these pathways in initiating anti-MCMV immunity remains unclear. Using transgenic mice, we demonstrate that TLR9/MyD88 signaling selectively in CD11c+ dendritic cells (DCs strongly enhances MCMV clearance by boosting natural killer (NK cell CD69 expression and IFN-γ production. In addition, we show that in the absence of plasmacytoid DCs (pDCs, conventional DCs (cDCs promote robust NK cell effector function and MCMV clearance in a TLR9/MyD88-dependent manner. Simultaneously, cDC-derived IL-15 regulates NK cell degranulation by TLR9/MyD88-independent mechanisms. Overall, we compartmentalize the cellular contribution of TLR9 and MyD88 signaling in individual DC subsets and evaluate the mechanism by which cDCs control MCMV immunity.

  8. Effect of nerve growth factor on the synthesis of amino acids in PC12 cells

    International Nuclear Information System (INIS)

    Zielke, H.R.; Tildon, J.T.; Kauffman, F.C.; Baab, P.J.

    1989-01-01

    Radioactive short-chain fatty acids preferentially label glutamine relative to glutamate in brain due to compartmentation of glutamine and glutamate. To determine whether this phenomenon occurs in a single cell culture model, we examined the effect of fatty acid chain length on the synthesis as well as pool size of selected amino acids in rat pheochromocytoma PC12 cells, a cell culture model of the large glutamate compartment in neurons. Intracellular 14C-amino acids were quantitated by HPLC, and the incorporation of [U-14C]-glucose, [1-14C]-butyrate, [1-14C]-octanoate, and [1-14C]-palmitate into five amino acids was measured in native and NGF-treated PC12 cells. NGF pretreatment decreased the intracellular concentration of amino acids as did addition of fatty acids but these effects were not additive. Specific activities of amino acids in native cells labelled by 14C-octanoate were 1,300 DPM/nmol, 490 DPM/nmol, 200 DPM/nmol, and 110 DPM/nmol for glutamate, aspartate, glutamine, and serine, respectively. No radioactivity was detected in alanine. Similar specific activities were noted when 14C-butyrate was the precursor; however, there was at least 5-fold less if 14C-palmitate was the precursor. Pretreatment of cells with NGF decreased the specific activity of amino acids by 25-65%. Specific activities of amino acids synthesized from 14C-glucose decreased in the following order: glutamate, 1,640 DPM/nmol; aspartate, 1,210 DPM/nmol; alanine, 580 DPM/nmol; glutamine, 275 DPM/nmol; and serine, 80 DPM/nmol for native cells. NGF pretreatment decreased the specific activities of glutamate and glutamine, but not of the other 3 amino acids. The preferred precursor for glutamate synthesis in native PC12 cells was glucose followed by octanoate, butyrate and palmitate (16:6:3:1)

  9. Multitissue Transcriptomics Delineates the Diversity of Airway T Cell Functions in Asthma.

    Science.gov (United States)

    Singhania, Akul; Wallington, Joshua C; Smith, Caroline G; Horowitz, Daniel; Staples, Karl J; Howarth, Peter H; Gadola, Stephan D; Djukanović, Ratko; Woelk, Christopher H; Hinks, Timothy S C

    2018-02-01

    Asthma arises from the complex interplay of inflammatory pathways in diverse cell types and tissues. We sought to undertake a comprehensive transcriptomic assessment of the epithelium and airway T cells that remain understudied in asthma and investigate interactions between multiple cells and tissues. Epithelial brushings and flow-sorted CD3 + T cells from sputum and BAL were obtained from healthy subjects (n = 19) and patients with asthma (mild, moderate, and severe asthma; n = 46). Gene expression was assessed using Affymetrix HT HG-U133 + PM GeneChips, and results were validated by real-time quantitative PCR. In the epithelium, IL-13 response genes (POSTN, SERPINB2, and CLCA1), mast cell mediators (CPA3 and TPSAB1), inducible nitric oxide synthase, and cystatins (CST1, CST2, and CST4) were upregulated in mild asthma, but, except for cystatins, were suppressed by corticosteroids in moderate asthma. In severe asthma-with predominantly neutrophilic phenotype-several distinct processes were upregulated, including neutrophilia (TCN1 and MMP9), mucins, and oxidative stress responses. The majority of the disease signature was evident in sputum T cells in severe asthma, where 267 genes were differentially regulated compared with health, highlighting compartmentalization of inflammation. This signature included IL-17-inducible chemokines (CXCL1, CXCL2, CXCL3, IL8, and CSF3) and chemoattractants for neutrophils (IL8, CCL3, and LGALS3), T cells, and monocytes. A protein interaction network in severe asthma highlighted signatures of responses to bacterial infections across tissues (CEACAM5, CD14, and TLR2), including Toll-like receptor signaling. In conclusion, the activation of innate immune pathways in the airways suggests that activated T cells may be driving neutrophilic inflammation and steroid-insensitive IL-17 response in severe asthma.

  10. GUCY2C-directed CAR-T cells oppose colorectal cancer metastases without autoimmunity.

    Science.gov (United States)

    Magee, Michael S; Kraft, Crystal L; Abraham, Tara S; Baybutt, Trevor R; Marszalowicz, Glen P; Li, Peng; Waldman, Scott A; Snook, Adam E

    2016-01-01

    Adoptive T-cell therapy (ACT) is an emerging paradigm in which T cells are genetically modified to target cancer-associated antigens and eradicate tumors. However, challenges treating epithelial cancers with ACT reflect antigen targets that are not tumor-specific, permitting immune damage to normal tissues, and preclinical testing in artificial xenogeneic models, preventing prediction of toxicities in patients. In that context, mucosa-restricted antigens expressed by cancers exploit anatomical compartmentalization which shields mucosae from systemic antitumor immunity. This shielding may be amplified with ACT platforms employing antibody-based chimeric antigen receptors (CARs), which mediate MHC-independent recog-nition of antigens. GUCY2C is a cancer mucosa antigen expressed on the luminal surfaces of the intestinal mucosa in mice and humans, and universally overexpressed by colorectal tumors, suggesting its unique utility as an ACT target. T cells expressing CARs directed by a GUCY2C-specific antibody fragment recognized GUCY2C, quantified by expression of activation markers and cytokines. Further, GUCY2C CAR-T cells lysed GUCY2C-expressing, but not GUCY2C-deficient, mouse colorectal cancer cells. Moreover, GUCY2C CAR-T cells reduced tumor number and morbidity and improved survival in mice harboring GUCY2C-expressing colorectal cancer metastases. GUCY2C-directed T cell efficacy reflected CAR affinity and surface expression and was achieved without immune-mediated damage to normal tissues in syngeneic mice. These observations highlight the potential for therapeutic translation of GUCY2C-directed CAR-T cells to treat metastatic tumors, without collateral autoimmunity, in patients with metastatic colorectal cancer.

  11. Real-time dynamics of RNA Polymerase II clustering in live human cells

    Science.gov (United States)

    Cisse, Ibrahim

    2014-03-01

    Transcription is the first step in the central dogma of molecular biology, when genetic information encoded on DNA is made into messenger RNA. How this fundamental process occurs within living cells (in vivo) is poorly understood,[1] despite extensive biochemical characterizations with isolated biomolecules (in vitro). For high-order organisms, like humans, transcription is reported to be spatially compartmentalized in nuclear foci consisting of clusters of RNA Polymerase II, the enzyme responsible for synthesizing all messenger RNAs. However, little is known of when these foci assemble or their relative stability. We developed an approach based on photo-activation localization microscopy (PALM) combined with a temporal correlation analysis, which we refer to as tcPALM. The tcPALM method enables the real-time characterization of biomolecular spatiotemporal organization, with single-molecule sensitivity, directly in living cells.[2] Using tcPALM, we observed that RNA Polymerase II clusters form transiently, with an average lifetime of 5.1 (+/- 0.4) seconds. Stimuli affecting transcription regulation yielded orders of magnitude changes in the dynamics of the polymerase clusters, implying that clustering is regulated and plays a role in the cells ability to effect rapid response to external signals. Our results suggest that the transient crowding of enzymes may aid in rate-limiting steps of genome regulation.

  12. Immunoarchitectural patterns in nodal marginal zone B-cell lymphoma: a study of 51 cases.

    Science.gov (United States)

    Salama, Mohamed E; Lossos, Izidore S; Warnke, Roger A; Natkunam, Yasodha

    2009-07-01

    Nodal marginal zone lymphoma (NMZL) represents a rare and heterogeneous group that lacks markers specific for the diagnosis. We evaluated morphologic and immunoarchitectural features of 51 NMZLs, and the following immunostains were performed: CD20, CD21, CD23, CD5, CD3, CD43, CD10, Ki-67, BCL1, BCL2, BCL6, HGAL, and LMO2. Four immunoarchitectural patterns were evident: diffuse (38 [75%]), well-formed nodular/follicular (5 [10%]), interfollicular (7 [14%]), and perifollicular (1 [2%]). Additional features included a monocytoid component (36 [71%]), admixed large cells (20 [39%]), plasma cells (24 [47%]), compartmentalizing stromal sclerosis (13 [25%]), and prominent blood vessel sclerosis (10 [20%]). CD21 highlighted disrupted follicular dendritic cell meshwork in 35 (71%) of 49 cases, and CD43 coexpression was present in 10 (24%) of 42 cases. A panel of germinal center-associated markers was helpful in eliminating cases of diffuse follicle center lymphoma. Our results highlight the histologic and immunoarchitectural spectrum of NMZL and the usefulness of immunohistochemical analysis for CD43, CD23, CD21, BCL6, HGAL, and LMO2 in the diagnosis of NMZL.

  13. Probing Induced Structural Changes in Biomimetic Bacterial Cell Membrane Interactions with Divalent Cations

    Energy Technology Data Exchange (ETDEWEB)

    Holt, Allison M [ORNL; Standaert, Robert F [ORNL; Jubb, Aaron M [ORNL; Katsaras, John [ORNL; Johs, Alexander [ORNL

    2017-01-01

    Biological membranes, formed primarily by the self-assembly of complex mixtures of phospholipids, provide a structured scaffold for compartmentalization and structural processes in living cells. The specific physical properties of phospholipid species present in a given membrane play a key role in mediating these processes. Phosphatidylethanolamine (PE), a zwitterionic lipid present in bacterial, yeast, and mammalian cell membranes, is exceptional. In addition to undergoing the standard lipid polymorphic transition between the gel and liquid-crystalline phase, it can also assume an unusual polymorphic state, the inverse hexagonal phase (HII). Divalent cations are among the factors that drive the formation of the HII phase, wherein the lipid molecules form stacked tubular structures by burying the hydrophilic head groups and exposing the hydrophobic tails to the bulk solvent. Most biological membranes contain a lipid species capable of forming the HII state suggesting that such lipid polymorphic structural states play an important role in structural biological processes such as membrane fusion. In this study, the interactions between Mg2+ and biomimetic bacterial cell membranes composed of PE and phosphatidylglycerol (PG) were probed using differential scanning calorimetry (DSC), small-angle x-ray scattering (SAXS), and fluorescence spectroscopy. The lipid phase transitions were examined at varying ratios of PE to PG and upon exposure to physiologically relevant concentrations of Mg2+. An understanding of these basic interactions enhances our understanding of membrane dynamics and how membrane-mediated structural changes may occur in vivo.

  14. Fuel cells

    Science.gov (United States)

    Hooie, D. T.; Harrington, B. C., III; Mayfield, M. J.; Parsons, E. L.

    1992-07-01

    The primary objective of DOE's Fossil Energy Fuel Cell program is to fund the development of key fuel cell technologies in a manner that maximizes private sector participation and in a way that will give contractors the opportunity for a competitive posture, early market entry, and long-term market growth. This summary includes an overview of the Fuel Cell program, an elementary explanation of how fuel cells operate, and a synopsis of the three major fuel cell technologies sponsored by the DOE/Fossil Energy Phosphoric Acid Fuel Cell program, the Molten Carbonate Fuel Cell program, and the Solid Oxide Fuel Cell program.

  15. Direction selectivity in a model of the starburst amacrine cell.

    Science.gov (United States)

    Tukker, John J; Taylor, W Rowland; Smith, Robert G

    2004-01-01

    The starburst amacrine cell (SBAC), found in all mammalian retinas, is thought to provide the directional inhibitory input recorded in On-Off direction-selective ganglion cells (DSGCs). While voltage recordings from the somas of SBACs have not shown robust direction selectivity (DS), the dendritic tips of these cells display direction-selective calcium signals, even when gamma-aminobutyric acid (GABAa,c) channels are blocked, implying that inhibition is not necessary to generate DS. This suggested that the distinctive morphology of the SBAC could generate a DS signal at the dendritic tips, where most of its synaptic output is located. To explore this possibility, we constructed a compartmental model incorporating realistic morphological structure, passive membrane properties, and excitatory inputs. We found robust DS at the dendritic tips but not at the soma. Two-spot apparent motion and annulus radial motion produced weak DS, but thin bars produced robust DS. For these stimuli, DS was caused by the interaction of a local synaptic input signal with a temporally delayed "global" signal, that is, an excitatory postsynaptic potential (EPSP) that spread from the activated inputs into the soma and throughout the dendritic tree. In the preferred direction the signals in the dendritic tips coincided, allowing summation, whereas in the null direction the local signal preceded the global signal, preventing summation. Sine-wave grating stimuli produced the greatest amount of DS, especially at high velocities and low spatial frequencies. The sine-wave DS responses could be accounted for by a simple mathematical model, which summed phase-shifted signals from soma and dendritic tip. By testing different artificial morphologies, we discovered DS was relatively independent of the morphological details, but depended on having a sufficient number of inputs at the distal tips and a limited electrotonic isolation. Adding voltage-gated calcium channels to the model showed that their

  16. Membrane-bound organelles versus membrane-less compartments and their control of anabolic pathways in Drosophila

    NARCIS (Netherlands)

    Aguilera-Gomez, Angelica; Rabouille, Catherine

    2017-01-01

    Classically, we think of cell compartmentalization as being achieved by membrane-bound organelles. It has nevertheless emerged that membrane-less assemblies also largely contribute to this compartmentalization. Here, we compare the characteristics of both types of compartmentalization in term of

  17. Distribution of GABAergic interneurons and dopaminergic cells in the functional territories of the human striatum.

    Science.gov (United States)

    Bernácer, Javier; Prensa, Lucía; Giménez-Amaya, José Manuel

    2012-01-01

    The afferent projections of the striatum (caudate nucleus and putamen) are segregated in three territories: associative, sensorimotor and limbic. Striatal interneurons are in part responsible for the integration of these different types of information. Among them, GABAergic interneurons are the most abundant, and can be sorted in three populations according to their content in the calcium binding proteins calretinin (CR), parvalbumin (PV) and calbindin (CB). Conversely, striatal dopaminergic cells (whose role as interneurons is still unclear) are scarce. This study aims to analyze the interneuron distribution in the striatal functional territories, as well as their organization regarding to the striosomal compartment. We used immunohistochemical methods to visualize CR, PV, CB and tyrosine hydroxylase (TH) positive striatal neurons. The interneuronal distribution was assessed by stereological methods applied to every striatal functional territory. Considering the four cell groups altogether, their density was higher in the associative (2120±91 cells/mm(3)) than in the sensorimotor (959±47 cells/mm(3)) or limbic (633±119 cells/mm(3)) territories. CB- and TH-immunoreactive(-ir) cells were distributed rather homogeneously in the three striatal territories. However, the density of CR and PV interneurons were more abundant in the associative and sensorimotor striatum, respectively. Regarding to their compartmental organization, CR-ir interneurons were frequently found in the border between compartments in the associative and sensorimotor territories, and CB-ir interneurons abounded at the striosome/matrix border in the sensorimotor domain. The present study demonstrates that the architecture of the human striatum in terms of its interneuron composition varies in its three functional territories. Furthermore, our data highlight the importance of CR-ir striatal interneurons in the integration of associative information, and the selective role of PV-ir interneurons in

  18. HIV-1 replication in the central nervous system occurs in two distinct cell types.

    Directory of Open Access Journals (Sweden)

    Gretja Schnell

    2011-10-01

    Full Text Available Human immunodeficiency virus type 1 (HIV-1 infection of the central nervous system (CNS can lead to the development of HIV-1-associated dementia (HAD. We examined the virological characteristics of HIV-1 in the cerebrospinal fluid (CSF of HAD subjects to explore the association between independent viral replication in the CNS and the development of overt dementia. We found that genetically compartmentalized CCR5-tropic (R5 T cell-tropic and macrophage-tropic HIV-1 populations were independently detected in the CSF of subjects diagnosed with HIV-1-associated dementia. Macrophage-tropic HIV-1 populations were genetically diverse, representing established CNS infections, while R5 T cell-tropic HIV-1 populations were clonally amplified and associated with pleocytosis. R5 T cell-tropic viruses required high levels of surface CD4 to enter cells, and their presence was correlated with rapid decay of virus in the CSF with therapy initiation (similar to virus in the blood that is replicating in activated T cells. Macrophage-tropic viruses could enter cells with low levels of CD4, and their presence was correlated with slow decay of virus in the CSF, demonstrating a separate long-lived cell as the source of the virus. These studies demonstrate two distinct virological states inferred from the CSF virus in subjects diagnosed with HAD. Finally, macrophage-tropic viruses were largely restricted to the CNS/CSF compartment and not the blood, and in one case we were able to identify the macrophage-tropic lineage as a minor variant nearly two years before its expansion in the CNS. These results suggest that HIV-1 variants in CSF can provide information about viral replication and evolution in the CNS, events that are likely to play an important role in HIV-associated neurocognitive disorders.

  19. Glutathione--linking cell proliferation to oxidative stress.

    Science.gov (United States)

    Diaz-Vivancos, Pedro; de Simone, Ambra; Kiddle, Guy; Foyer, Christine H

    2015-12-01

    The multifaceted functions of reduced glutathione (gamma-glutamyl-cysteinyl-glycine; GSH) continue to fascinate plants and animal scientists, not least because of the dynamic relationships between GSH and reactive oxygen species (ROS) that underpin reduction/oxidation (redox) regulation and signalling. Here we consider the respective roles of ROS and GSH in the regulation of plant growth, with a particular focus on regulation of the plant cell cycle. Glutathione is discussed not only as a crucial low molecular weight redox buffer that shields nuclear processes against oxidative challenge but also a flexible regulator of genetic and epigenetic functions. The intracellular compartmentalization of GSH during the cell cycle is remarkably consistent in plants and animals. Moreover, measurements of in vivo glutathione redox potentials reveal that the cellular environment is much more reducing than predicted from GSH/GSSG ratios measured in tissue extracts. The redox potential of the cytosol and nuclei of non-dividing plant cells is about -300 mV. This relatively low redox potential maintained even in cells experiencing oxidative stress by a number of mechanisms including vacuolar sequestration of GSSG. We propose that regulated ROS production linked to glutathione-mediated signalling events are the hallmark of viable cells within a changing and challenging environment. The concept that the cell cycle in animals is subject to redox controls is well established but little is known about how ROS and GSH regulate this process in plants. However, it is increasingly likely that redox controls exist in plants, although possibly through different pathways. Moreover, redox-regulated proteins that function in cell cycle checkpoints remain to be identified in plants. While GSH-responsive genes have now been identified, the mechanisms that mediate and regulate protein glutathionylation in plants remain poorly defined. The nuclear GSH pool provides an appropriate redox environment

  20. Specific immune cell and cytokine characteristics of human testicular germ cell neoplasia.

    Science.gov (United States)

    Klein, Britta; Haggeney, Thomas; Fietz, Daniela; Indumathy, Sivanjah; Loveland, Kate L; Hedger, Mark; Kliesch, Sabine; Weidner, Wolfgang; Bergmann, Martin; Schuppe, Hans-Christian

    2016-10-01

    Which immune cells and cytokine profiles are characteristic for testicular germ cell neoplasia and what consequences does this have for the understanding of the related testicular immunopathology? The unique immune environment of testicular germ cell neoplasia comprises B cells and dendritic cells as well as high transcript levels of IL-6 and other B cell supporting or T helper cell type 1 (Th1)-driven cytokines and thus differs profoundly from normal testis or inflammatory lesions associated with hypospermatogenesis. T cells are known to be the major component of inflammatory infiltrates associated with either hypospermatogenesis or testicular cancer. It has previously been reported that B cells are only involved within infiltrates of seminoma samples, but this has not been investigated further. Immunohistochemical characterisation (IHC) of infiltrating immune cells and RT-qPCR-based analysis of corresponding cytokine microenvironments was performed on different testicular pathologies. Testicular biopsies, obtained from men undergoing andrological work-up of infertility or taken during surgery for testicular cancer, were used in this study. Samples were grouped as follows: (i) normal spermatogenesis (n = 18), (ii) hypospermatogenesis associated with lymphocytic infiltrates (n = 10), (iii) samples showing neoplasia [germ cell neoplasia in situ (GCNIS, n = 26) and seminoma, n = 18]. IHC was performed using antibodies against T cells (CD3+), B cells (CD20cy+), dendritic cells (CD11c+), macrophages (CD68+) and mast cells (mast cell tryptase+). Degree and compartmental localisation of immune cells throughout all groups analysed was evaluated semi-quantitatively. RT-qPCR on RNA extracted from cryo-preserved tissue samples was performed to analyse mRNA cytokine expression, specifically levels of IL-1β, IL-6, IL-17a, tumour necrosis factor (TNF)-α (pro-inflammatory), IL-10, transforming growth factor (TGF)-β1 (anti-inflammatory), IL-2, IL-12a, IL-12b

  1. Tissue microenvironments in the nasal epithelium of rainbow trout (Oncorhynchus mykiss) define two distinct CD8α+ cell populations and establish regional immunity

    Science.gov (United States)

    Sepahi, Ali; Casadei, Elisa; Tacchi, Luca; Muñoz, Pilar; LaPatra, Scott E.; Salinas, Irene

    2016-01-01

    Mucosal surfaces require balancing different physiological roles and immune functions. In order to effectively achieve multifunctionality, mucosal epithelia have evolved unique microenvironments that create unique regional immune responses without impairing other normal physiological functions. Whereas examples of regional immunity are known in other mucosal epithelia, to date, no immune microenvironments have been described in the nasal mucosa, a site where the complex functions of olfaction and immunity need to be orchestrated. In this study we identified for the first time the presence of CD8α+ cells in the rainbow trout (Oncorhynchus mykiss) nasal epithelium. Nasal CD8α+ cells display a distinct phenotype suggestive of CD8+ T cells with high integrin β2 expression. Importantly, nasal CD8α+ cells are located in clusters at the mucosal tip of each olfactory lamella but scattered in the neuroepithelial region. The grouping of CD8α+ cells may be explained by the greater expression of CCL19, ICAM-1, and VCAM-1 in the mucosal tip compared to the neuroepithelium. Whilst viral antigen uptake occurred via both tip and lateral routes, tip resident MHC-II+ cells are located significantly closer to the lumen of the nasal cavity than their neuroepithelial counterparts, therefore having quicker access to invading pathogens. Our studies reveal for the first time compartmentalized mucosal immune responses within the nasal mucosa of a vertebrate species, a strategy that likely optimizes local immune responses while protecting olfactory sensory functions. PMID:27798156

  2. Shedding light on the expansion and diversification of the Cdc48 protein family during the rise of the eukaryotic cell.

    Science.gov (United States)

    Kienle, Nickias; Kloepper, Tobias H; Fasshauer, Dirk

    2016-10-18

    A defining feature of eukaryotic cells is the presence of various distinct membrane-bound compartments with different metabolic roles. Material exchange between most compartments occurs via a sophisticated vesicle trafficking system. This intricate cellular architecture of eukaryotes appears to have emerged suddenly, about 2 billion years ago, from much less complex ancestors. How the eukaryotic cell acquired its internal complexity is poorly understood, partly because no prokaryotic precursors have been found for many key factors involved in compartmentalization. One exception is the Cdc48 protein family, which consists of several distinct classical ATPases associated with various cellular activities (AAA+) proteins with two consecutive AAA domains. Here, we have classified the Cdc48 family through iterative use of hidden Markov models and tree building. We found only one type, Cdc48, in prokaryotes, although a set of eight diverged members that function at distinct subcellular compartments were retrieved from eukaryotes and were probably present in the last eukaryotic common ancestor (LECA). Pronounced changes in sequence and domain structure during the radiation into the LECA set are delineated. Moreover, our analysis brings to light lineage-specific losses and duplications that often reflect important biological changes. Remarkably, we also found evidence for internal duplications within the LECA set that probably occurred during the rise of the eukaryotic cell. Our analysis corroborates the idea that the diversification of the Cdc48 family is closely intertwined with the development of the compartments of the eukaryotic cell.

  3. Modeling influenza-like illnesses through composite compartmental models

    Science.gov (United States)

    Levy, Nir; , Michael, Iv; Yom-Tov, Elad

    2018-03-01

    Epidemiological models for the spread of pathogens in a population are usually only able to describe a single pathogen. This makes their application unrealistic in cases where multiple pathogens with similar symptoms are spreading concurrently within the same population. Here we describe a method which makes possible the application of multiple single-strain models under minimal conditions. As such, our method provides a bridge between theoretical models of epidemiology and data-driven approaches for modeling of influenza and other similar viruses. Our model extends the Susceptible-Infected-Recovered model to higher dimensions, allowing the modeling of a population infected by multiple viruses. We further provide a method, based on an overcomplete dictionary of feasible realizations of SIR solutions, to blindly partition the time series representing the number of infected people in a population into individual components, each representing the effect of a single pathogen. We demonstrate the applicability of our proposed method on five years of seasonal influenza-like illness (ILI) rates, estimated from Twitter data. We demonstrate that our method describes, on average, 44% of the variance in the ILI time series. The individual infectious components derived from our model are matched to known viral profiles in the populations, which we demonstrate matches that of independently collected epidemiological data. We further show that the basic reproductive numbers (R 0) of the matched components are in range known for these pathogens. Our results suggest that the proposed method can be applied to other pathogens and geographies, providing a simple method for estimating the parameters of epidemics in a population.

  4. Synthesis of copper and nickel complexes using compartmental ...

    Indian Academy of Sciences (India)

    Administrator

    been analysed by X-ray crystallography. Complexes 1 and 3 have square pyramidal geometry. The co-ordination geometry around the metal ion in complex 7 is square planar and that in complex 10 is octahedral. The electrochemical property of the complexes was studied using cyclic voltammetry. A single quasi-reversible ...

  5. Cation-sensitive compartmentalization in metallacarborane containing polymer nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Ďorďovič, V.; Uchman, M.; Reza, M.; Ruokolainen, J.; Zhigunov, Alexander; Ivankov, O. I.; Matějíček, P.

    2016-01-01

    Roč. 6, č. 12 (2016), s. 9884-9892 ISSN 2046-2069 R&D Projects: GA ČR(CZ) GA14-14608S Institutional support: RVO:61389013 Keywords : polymer nanoparticles * metallacarborane * double-hydrophilic block copolymer Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.108, year: 2016

  6. OSIRIS : Efficient and consistent recovery of compartmentalized operating systems

    NARCIS (Netherlands)

    Bhat, Koustubha; Vogt, Dirk; Kouwe, Erik Van Der; Gras, Ben; Sambuc, Lionel; Tanenbaum, Andrew S.; Bos, Herbert; Giuffrida, Cristiano

    2016-01-01

    Much research has gone into making operating systems more amenable to recovery and more resilient to crashes. Traditional solutions rely on partitioning the operating system (OS) to contain the effects of crashes within compartments and facilitate modular recovery. However, state dependencies among

  7. Barriers in the brain : resolving dendritic spine morphology and compartmentalization

    NARCIS (Netherlands)

    Adrian, Max; Kusters, Remy; Wierenga, Corette J; Storm, Cornelis; Hoogenraad, Casper C; Kapitein, Lukas C

    2014-01-01

    Dendritic spines are micron-sized protrusions that harbor the majority of excitatory synapses in the central nervous system. The head of the spine is connected to the dendritic shaft by a 50-400 nm thin membrane tube, called the spine neck, which has been hypothesized to confine biochemical and

  8. A compartmental model for computer virus propagation with kill signals

    Science.gov (United States)

    Ren, Jianguo; Xu, Yonghong

    2017-11-01

    Research in the area of kill signals for prevention of computer virus is of significant importance for computer users. The kill signals allow computer users to take precautions beforehand. In this paper, a computer virus propagation model based on the kill signals, called SEIR-KS model, is formulated and full dynamics of the proposed model are theoretically analyzed. An epidemic threshold is obtained and the existence and uniqueness of the virus equilibrium are investigated. It is proved that the virus-free equilibrium and virus equilibrium are locally and globally asymptotically stable by applying Routh-Hurwitz criterion and Lyapunov functional approach. The results of numerical simulations are provided that verifies the theoretical results. The availability of the proposed model has been validated with following observations: (1) the density of infected nodes in the proposed model drops to approximately 75% compared to the model in related literature; and (2) a higher density of KS is conductive to inhibition of virus diffusion.

  9. Compartmentalized dynamics of cytomegalovirus replication in treated congenital infection.

    Science.gov (United States)

    Luck, S E; Emery, V C; Atkinson, C; Sharland, M; Griffiths, P D

    2016-09-01

    Cytomegalovirus (CMV) is the most prevalent congenital infection in developed countries. A significant number of infected infants develop long-term neurodevelopmental and hearing impairment irrespective of whether disease is detectable at birth. Studies of viral load and replication dynamics have informed the treatment of CMV in adult populations but no similar data exist in neonates. To study CMV virus kinetics in different body fluids of babies treated for congenital infection. CMV virus load was sequentially analyzed in blood, urine and saliva in 17 babies treated for symptomatic congenital CMV infection. Virus was detectable in the urine and saliva of all babies at baseline but in only 15/17 in blood. At the end of 6 weeks of antiviral treatment CMV remained detectable in 9/14 blood samples, 9/12 urine samples and 4/7 salivary swabs. Median half-life (T1/2) of virus decline in blood was 2.4 days (IQR 1.9-3.3) and basic reproductive number (Ro) was 2.3. Although T1/2 values were similar in urine and saliva to those observed in blood, virus dynamics differed both during and after treatment. T1/2 and Ro in blood in this group of neonates were similar to values derived from studies of immunocompromised adults. The persistent viremia observed in treated neonates cannot therefore be adequately explained by the virus dynamics early in treatment. The different dynamics exhibited in blood and urine suggests that studying changes in distinct body compartments may assist in further understanding long-term manifestations of disease. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  10. Compartmental analysis of metals in waterpipe smoking technique.

    Science.gov (United States)

    Al-Kazwini, Akeel T; Said, Adi J; Sdepanian, Stephanie

    2015-02-18

    The number of waterpipe tobacco smokers has been increasing worldwide. Smokers can be exposed to a number of toxicants, some of which are metals. The aim of this study is to quantitatively determine if the water filtration stage of the waterpipe smoking process successfully decreases exposure to Bi, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, V, and U. Four samples of commercially available tobacco (Moassel) were compared in terms of the total amount of metal contained within the fresh tobacco sample and the amount of metal distributed into each compartment of the waterpipe after a smoking session. For all metals analysed, the concentration of metal 'filtered' out during the water bubbling stage is around 3% (±1%) of the total metal. It can be concluded that this small fraction would not protect the user against exposure to the majority of the potentially toxic metals.

  11. A three compartmental model for global distribution of tritium

    International Nuclear Information System (INIS)

    Sadarangani, S.H.

    1996-01-01

    Atmospheric testing of thermonuclear devices has introduced large quantities of residual tritium into the atmosphere and subsequently this tritium has found its way into the bio-sphere. Though the introduction of tritium into the atmosphere has ceased, migration of the earlier contribution through the different ecological compartments continues to be of interest. In order to assess its present distribution and future trends a mathematical model, based on production, decay and migration of tritium has been developed. The model identifies three distinct compartments i.e. atmosphere, land surface waters and ocean surface waters. Contribution from all the thermonuclear tests has been assessed and the tritium concentrations present in the different compartments are computed. The computed concentration values compare well with experimentally obtained concentration values. (author). 4 refs., 1 tab., 5 figs

  12. Compartmentalization and transport in beta-lactam antibiotics biosynthesis

    NARCIS (Netherlands)

    Evers, ME; Trip, H; van den Berg, MA; Bovenberg, RAL; Driessen, AJM

    2004-01-01

    Classical strain improvement of beta-lactam producing organisms by random mutagenesis has been a powerful tool during the last century. Current insights in the biochemistry and genetics of beta-lactam production, in particular in the filamentous fungus Penicillium chrysogenum, however, make a more

  13. Fire-scar formation and compartmentalization in oak

    Science.gov (United States)

    Kevin T. Smith; Elaine Kennedy. Sutherland

    1999-01-01

    Fire scars result from the death of the vascular cambium resulting from excessive heating, which exposes sapwood to infection and initiates the wood decay process. In southeastern Ohio, prescribed fires in April 1995 and 1997 scarred Quercus prinus L. and Q. velutina Lam. Low-intensity fires scorched bark and produced scars, primarily on the downslope side of the stem...

  14. Cellular compartmentalization and heavy metal load in the moss ...

    African Journals Online (AJOL)

    ... low compared to Cu, Cr and Cd and these results into low toxicity to B. lambarenensis. It was concluded that moss can be effectively used as biomonitors/bioindicator of environmental pollution due to dust particles from cement factories. Keywords: Bioconcentration, Toxicity, Bioavailability, Biomonitor, transmembrane, ...

  15. Apartment Compartmentalization With an Aerosol-Based Sealing Process

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, Sean [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States); Berger, David [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States); Harrington, Curtis [Univ. of California, Davis, CA (United States)

    2015-03-01

    The U.S. Department of Energy Building America Team, Consortium for Advanced Residential Buildings, sought to demonstrate this new technology application in a new construction multifamily building in Queens, New York. The effectiveness of the sealing process was evaluated by three methods: air leakage testing of overall apartment before-and-after sealing, point-source testing of individual leaks, and pressure measurements in the walls of an apartment during sealing.

  16. A functional compartmental model of the Synechocystis PCC 6803 phycobilisome

    NARCIS (Netherlands)

    van Stokkum, Ivo H. M.; Gwizdala, Michal; Tian, Lijin; Snellenburg, Joris J.; van Grondelle, Rienk; van Amerongen, Herbert; Berera, Rudi

    In the light-harvesting antenna of the Synechocystis PCC 6803 phycobilisome (PB), the core consists of three cylinders, each composed of four disks, whereas each of the six rods consists of up to three hexamers (Arteni et al., Biochim Biophys Acta 1787(4):272–279, 2009). The rods and core contain

  17. A functional compartmental model of the Synechocystis PCC 6803 phycobilisome

    NARCIS (Netherlands)

    Stokkum, van Ivo H.M.; Gwizdala, Michal; Tian, Tian; Snellenburg, Joris J.; Grondelle, van Rienk; Amerongen, van Herbert; Berera, Rudi

    2018-01-01

    In the light-harvesting antenna of the Synechocystis PCC 6803 phycobilisome (PB), the core consists of three cylinders, each composed of four disks, whereas each of the six rods consists of up to three hexamers (Arteni et al., Biochim Biophys Acta 1787(4):272–279, 2009). The rods and core contain

  18. Differential compartmentalization and distinct functions of GABAB receptor variants

    DEFF Research Database (Denmark)

    Vigot, Réjan; Barbieri, Samuel; Bräuner-Osborne, Hans

    2006-01-01

    GABAB receptors are the G protein-coupled receptors for the main inhibitory neurotransmitter in the brain, gamma-aminobutyric acid (GABA). Molecular diversity in the GABAB system arises from the GABAB1a and GABAB1b subunit isoforms that solely differ in their ectodomains by a pair of sushi repeat...

  19. Growth Factor Independence-1 (Gfi1 Is Required for Pancreatic Acinar Unit Formation and Centroacinar Cell DifferentiationSummary

    Directory of Open Access Journals (Sweden)

    Xiaoling Qu

    2015-03-01

    Full Text Available Background & Aims: The genetic specification of the compartmentalized pancreatic acinar/centroacinar unit is poorly understood. Growth factor independence-1 (Gfi1 is a zinc finger transcriptional repressor that regulates hematopoietic stem cell maintenance, pre-T-cell differentiation, formation of granulocytes, inner ear hair cells, and the development of secretory cell types in the intestine. As GFI1/Gfi1 is expressed in human and rodent pancreas, we characterized the potential function of Gfi1 in mouse pancreatic development. Methods: Gfi1 knockout mice were analyzed at histological and molecular levels, including qRT-PCR, in situ hybridization, immunohistochemistry, and electron microscopy. Results: Loss of Gfi1 impacted formation and structure of the pancreatic acinar/centroacinar unit. Histologic and ultrastructural analysis of Gfi1-null pancreas revealed specific defects at the level of pancreatic acinar cells as well as the centroacinar cells (CACs in Gfi1−/− mice when compared with wild-type littermates. Pancreatic endocrine differentiation, islet architecture, and function were unaffected. Organ domain patterning and the formation of ductal cells occurred normally during the murine secondary transition (E13.5–E14.5 in the Gfi1−/− pancreas. However, at later gestational time points (E18.5, expression of cellular markers for CACs was substantially reduced in Gfi1−/− mice, corroborated by electron microscopy imaging of the acinar/centroacinar unit. The reduction in CACs was correlated with an exocrine organ defect. Postnatally, Gfi1 deficiency resulted in severe pancreatic acinar dysplasia, including loss of granulation, autolytic vacuolation, and a proliferative and apoptotic response. Conclusions: Gfi1 plays an important role in regulating the development of pancreatic CACs and the function of pancreatic acinar cells. Keywords: Centroacinar Cells, Claudin 10, Growth Factor Independence-1 (Gfi1

  20. A dendrite-autonomous mechanism for direction selectivity in retinal starburst amacrine cells.

    Science.gov (United States)

    Hausselt, Susanne E; Euler, Thomas; Detwiler, Peter B; Denk, Winfried

    2007-07-01

    Detection of image motion direction begins in the retina, with starburst amacrine cells (SACs) playing a major role. SACs generate larger dendritic Ca(2+) signals when motion is from their somata towards their dendritic tips than for motion in the opposite direction. To study the mechanisms underlying the computation of direction selectivity (DS) in SAC dendrites, electrical responses to expanding and contracting circular wave visual stimuli were measured via somatic whole-cell recordings and quantified using Fourier analysis. Fundamental and, especially, harmonic frequency components were larger for expanding stimuli. This DS persists in the presence of GABA and glycine receptor antagonists, suggesting that inhibitory network interactions are not essential. The presence of harmonics indicates nonlinearity, which, as the relationship between harmonic amplitudes and holding potential indicates, is likely due to the activation of voltage-gated channels. [Ca(2+)] changes in SAC dendrites evoked by voltage steps and monitored by two-photon microscopy suggest that the distal dendrite is tonically depolarized relative to the soma, due in part to resting currents mediated by tonic glutamatergic synaptic input, and that high-voltage-activated Ca(2+) channels are active at rest. Supported by compartmental modeling, we conclude that dendritic DS in SACs can be computed by the dendrites themselves, relying on voltage-gated channels and a dendritic voltage gradient, which provides the spatial asymmetry necessary for direction discrimination.

  1. Thermodynamic Paradigm for Solution Demixing Inspired by Nuclear Transport in Living Cells.

    Science.gov (United States)

    Wang, Ching-Hao; Mehta, Pankaj; Elbaum, Michael

    2017-04-14

    Living cells display a remarkable capacity to compartmentalize their functional biochemistry. A particularly fascinating example is the cell nucleus. Exchange of macromolecules between the nucleus and the surrounding cytoplasm does not involve traversing a lipid bilayer membrane. Instead, large protein channels known as nuclear pores cross the nuclear envelope and regulate the passage of other proteins and RNA molecules. Beyond simply gating diffusion, the system of nuclear pores and associated transport receptors is able to generate substantial concentration gradients, at the energetic expense of guanosine triphosphate hydrolysis. In contrast to conventional approaches to demixing such as reverse osmosis and dialysis, the biological system operates continuously, without application of cyclic changes in pressure or solvent exchange. Abstracting the biological paradigm, we examine this transport system as a thermodynamic machine of solution demixing. Building on the construct of free energy transduction and biochemical kinetics, we find conditions for the stable operation and optimization of the concentration gradients as a function of dissipation in the form of entropy production.

  2. A dendrite-autonomous mechanism for direction selectivity in retinal starburst amacrine cells.

    Directory of Open Access Journals (Sweden)

    Susanne E Hausselt

    2007-07-01

    Full Text Available Detection of image motion direction begins in the retina, with starburst amacrine cells (SACs playing a major role. SACs generate larger dendritic Ca(2+ signals when motion is from their somata towards their dendritic tips than for motion in the opposite direction. To study the mechanisms underlying the computation of direction selectivity (DS in SAC dendrites, electrical responses to expanding and contracting circular wave visual stimuli were measured via somatic whole-cell recordings and quantified using Fourier analysis. Fundamental and, especially, harmonic frequency components were larger for expanding stimuli. This DS persists in the presence of GABA and glycine receptor antagonists, suggesting that inhibitory network interactions are not essential. The presence of harmonics indicates nonlinearity, which, as the relationship between harmonic amplitudes and holding potential indicates, is likely due to the activation of voltage-gated channels. [Ca(2+] changes in SAC dendrites evoked by voltage steps and monitored by two-photon microscopy suggest that the distal dendrite is tonically depolarized relative to the soma, due in part to resting currents mediated by tonic glutamatergic synaptic input, and that high-voltage-activated Ca(2+ channels are active at rest. Supported by compartmental modeling, we conclude that dendritic DS in SACs can be computed by the dendrites themselves, relying on voltage-gated channels and a dendritic voltage gradient, which provides the spatial asymmetry necessary for direction discrimination.

  3. Cells of the rectum of Bombyx mori affected by experimental inoculation with Alphabaculovirus.

    Science.gov (United States)

    Vessaro-Silva, S A; Brancalhão, R M C; Baggio, M P D; Ribeiro, L F C

    2014-08-29

    Bombyx mori is an insect whose cocoon is used in the sericulture industry, which is an important activity in parts of southern Brazil. When parasitized by Bombyx mori nucleopolyhedrovirus (BmNPV) of the genus Alphabaculovirus (alphaBV), it develops nuclear polyhedrosis disease. In Brazil, an alphaBV was isolated from larvae of B. mori and various target tissues were identified. However, how this geographic viral isolate affects the rectum of silk moths was unknown. The rectum, a component of the cryptonephric system, acts to absorb water and mineral salts, and its importance for the metabolic balance of insects provoked interest in analyzing how it is affected by BmMNPV infection. Fifth instar B. mori larvae were inoculated with a viral suspension, and from the second to the ninth day post-inoculation, segments of the rectum (anterior and anal canal) were examined using light microscopy. The cryptonephric epithelial cells in the anterior region revealed no evidence of infection. However, from the fifth day post-inoculation, cells of the anal canal showed cytopathologies characteristic of alphaBV. Infection of the anal canal and other surrounding tissues led to tissue disorganization, with accumulation of polyhedra in the perinephric space and compartmentalization of the cryptonephric system, promoting changes in the fecal pellets, signalling physiological changes. These observations contribute to our understanding of the infectious cycle of BmMNPV in B. mori.

  4. Cell Motility

    CERN Document Server

    Lenz, Peter

    2008-01-01

    Cell motility is a fascinating example of cell behavior which is fundamentally important to a number of biological and pathological processes. It is based on a complex self-organized mechano-chemical machine consisting of cytoskeletal filaments and molecular motors. In general, the cytoskeleton is responsible for the movement of the entire cell and for movements within the cell. The main challenge in the field of cell motility is to develop a complete physical description on how and why cells move. For this purpose new ways of modeling the properties of biological cells have to be found. This long term goal can only be achieved if new experimental techniques are developed to extract physical information from these living systems and if theoretical models are found which bridge the gap between molecular and mesoscopic length scales. Cell Motility gives an authoritative overview of the fundamental biological facts, theoretical models, and current experimental developments in this fascinating area.

  5. Photovoltaic Cells

    Directory of Open Access Journals (Sweden)

    Karolis Kiela

    2012-04-01

    Full Text Available The article deals with an overview of photovoltaic cells that are currently manufactured and those being developed, including one or several p-n junction, organic and dye-sensitized cells using quantum dots. The paper describes the advantages and disadvantages of various photovoltaic cells, identifies the main parameters, explains the main reasons for the losses that may occur in photovoltaic cells and looks at the ways to minimize them.Article in Lithuanian

  6. TNF inhibits Notch-1 in skeletal muscle cells by Ezh2 and DNA methylation mediated repression: implications in duchenne muscular dystrophy.

    Directory of Open Access Journals (Sweden)

    Swarnali Acharyya

    2010-08-01

    Full Text Available Classical NF-kappaB signaling functions as a negative regulator of skeletal myogenesis through potentially multiple mechanisms. The inhibitory actions of TNFalpha on skeletal muscle differentiation are mediated in part through sustained NF-kappaB activity. In dystrophic muscles, NF-kappaB activity is compartmentalized to myofibers to inhibit regeneration by limiting the number of myogenic progenitor cells. This regulation coincides with elevated levels of muscle derived TNFalpha that is also under IKKbeta and NF-kappaB control.Based on these findings we speculated that in DMD, TNFalpha secreted from myotubes inhibits regeneration by directly acting on satellite cells. Analysis of several satellite cell regulators revealed that TNFalpha is capable of inhibiting Notch-1 in satellite cells and C2C12 myoblasts, which was also found to be dependent on NF-kappaB. Notch-1 inhibition occurred at the mRNA level suggesting a transcriptional repression mechanism. Unlike its classical mode of action, TNFalpha stimulated the recruitment of Ezh2 and Dnmt-3b to coordinate histone and DNA methylation, respectively. Dnmt-3b recruitment was dependent on Ezh2.We propose that in dystrophic muscles, elevated levels of TNFalpha and NF-kappaB inhibit the regenerative potential of satellite cells via epigenetic silencing of the Notch-1 gene.

  7. Electrochemical Cell

    DEFF Research Database (Denmark)

    1999-01-01

    The invention relates to a rechargeable electrochemical cell comprising a negative electrode, an electrolyte and a positive electrode in which the positive electrode structure comprises a lithium cobalt manganese oxide of the composition Li¿2?Co¿y?Mn¿2-y?O¿4? where 0 ... for capacity losses in lithium ion cells and lithium-alloy cells....

  8. iTRAQ-based proteomic analysis reveals the mechanisms of silicon-mediated cadmium tolerance in rice (Oryza sativa) cells.

    Science.gov (United States)

    Ma, Jie; Sheng, Huachun; Li, Xiuli; Wang, Lijun

    2016-07-01

    Silicon (Si) can alleviate cadmium (Cd) stress in rice (Oryza sativa) plants, however, the understanding of the molecular mechanisms at the single-cell level remains limited. To address these questions, we investigated suspension cells of rice cultured in the dark environment in the absence and presence of Si with either short- (12 h) or long-term (5 d) Cd treatments using a combination of isobaric tags for relative and absolute quantitation (iTRAQ), fluorescent staining, and inductively coupled plasma mass spectroscopy (ICP-MS). We identified 100 proteins differentially regulated by Si under the short- or long-term Cd stress. 70% of these proteins were down-regulated, suggesting that Si may improve protein use efficiency by maintaining cells in the normal physiological status. Furthermore, we showed two different mechanisms for Si-mediated Cd tolerance. Under the short-term Cd stress, the Si-modified cell walls inhibited the uptake of Cd ions into cells and consequently reduced the expressions of glycosidase, cell surface non-specific lipid-transfer proteins (nsLTPs), and several stress-related proteins. Under the long-term Cd stress, the amount of Cd in the cytoplasm in Si-accumulating (+Si) cells was decreased by compartmentation of Cd into vacuoles, thus leading to a lower expression of glutathione S-transferases (GST). These results provide protein-level insights into the Si-mediated Cd detoxification in rice single cells. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Growth Factor Independence-1 (Gfi1) Is Required for Pancreatic Acinar Unit Formation and Centroacinar Cell Differentiation.

    Science.gov (United States)

    Qu, Xiaoling; Nyeng, Pia; Xiao, Fan; Dorantes, Jorge; Jensen, Jan

    2015-03-01

    The genetic specification of the compartmentalized pancreatic acinar/centroacinar unit is poorly understood. Growth factor independence-1 ( Gfi1 ) is a zinc finger transcriptional repressor that regulates hematopoietic stem cell maintenance, pre-T-cell differentiation, formation of granulocytes, inner ear hair cells, and the development of secretory cell types in the intestine. As GFI1 / Gfi1 is expressed in human and rodent pancreas, we characterized the potential function of Gfi1 in mouse pancreatic development. Gfi1 knockout mice were analyzed at histological and molecular levels, including qRT-PCR, in situ hybridization, immunohistochemistry, and electron microscopy. Loss of Gfi1 impacted formation and structure of the pancreatic acinar/centroacinar unit. Histologic and ultrastructural analysis of Gfi1 -null pancreas revealed specific defects at the level of pancreatic acinar cells as well as the centroacinar cells (CACs) in  Gfi1 -/- mice when compared with wild-type littermates. Pancreatic endocrine differentiation, islet architecture, and function were unaffected. Organ domain patterning and the formation of ductal cells occurred normally during the murine secondary transition (E13.5-E14.5) in the Gfi1 -/- pancreas. However, at later gestational time points (E18.5), expression of cellular markers for CACs was substantially reduced in Gfi1 -/- mice, corroborated by electron microscopy imaging of the acinar/centroacinar unit. The reduction in CACs was correlated with an exocrine organ defect. Postnatally, Gfi1 deficiency resulted in severe pancreatic acinar dysplasia, including loss of granulation, autolytic vacuolation, and a proliferative and apoptotic response. Gfi1 plays an important role in regulating the development of pancreatic CACs and the function of pancreatic acinar cells.

  10. Spatio-temporal re-organization of replication foci accompanies replication domain consolidation during human pluripotent stem cell lineage specification

    Science.gov (United States)

    Wilson, Korey A.; Elefanty, Andrew G.; Stanley, Edouard G.; Gilbert, David M.

    2016-01-01

    ABSTRACT Lineage specification of both mouse and human pluripotent stem cells (PSCs) is accompanied by spatial consolidation of chromosome domains and temporal consolidation of their replication timing. Replication timing and chromatin organization are both established during G1 phase at the timing decision point (TDP). Here, we have developed live cell imaging tools to track spatio-temporal replication domain consolidation during differentiation. First, we demonstrate that the fluorescence ubiquitination cell cycle indicator (Fucci) system is incapable of demarcating G1/S or G2/M cell cycle transitions. Instead, we employ a combination of fluorescent PCNA to monitor S phase progression, cytokinesis to demarcate mitosis, and fluorescent nucleotides to label early and late replication foci and track their 3D organization into sub-nuclear chromatin compartments throughout all cell cycle transitions. We find that, as human PSCs differentiate, the length of S phase devoted to replication of spatially clustered replication foci increases, coincident with global compartmentalization of domains into temporally clustered blocks of chromatin. Importantly, re-localization and anchorage of domains was completed prior to the onset of S phase, even in the context of an abbreviated PSC G1 phase. This approach can also be employed to investigate cell fate transitions in single PSCs, which could be seen to differentiate preferentially from G1 phase. Together, our results establish real-time, live-cell imaging methods for tracking cell cycle transitions during human PSC differentiation that can be applied to study chromosome domain consolidation and other aspects of lineage specification. PMID:27433885

  11. Rabies Internalizes into Primary Peripheral Neurons via Clathrin Coated Pits and Requires Fusion at the Cell Body

    Science.gov (United States)

    Piccinotti, Silvia; Whelan, Sean P. J.

    2016-01-01

    The single glycoprotein (G) of rabies virus (RABV) dictates all viral entry steps from receptor engagement to membrane fusion. To study the uptake of RABV into primary neuronal cells in culture, we generated a recombinant vesicular stomatitis virus in which the G protein was replaced with that of the neurotropic RABV CVS-11 strain (rVSV CVS G). Using microfluidic compartmentalized culture, we examined the uptake of single virions into the termini of primary neurons of the dorsal root ganglion and ventral spinal cord. By pharmacologically disrupting endocytosis at the distal neurites, we demonstrate that rVSV CVS G uptake and infection are dependent on dynamin. Imaging of single virion uptake with fluorescent endocytic markers further identifies endocytosis via clathrin-coated pits as the predominant internalization mechanism. Transmission electron micrographs also reveal the presence of viral particles in vesicular structures consistent with incompletely coated clathrin pits. This work extends our previous findings of clathrin-mediated uptake of RABV into epithelial cells to two neuronal subtypes involved in rabies infection in vivo. Chemical perturbation of endosomal acidification in the neurite or somal compartment further shows that establishment of infection requires pH-dependent fusion of virions at the cell body. These findings correlate infectivity to existing single particle evidence of long-range endosomal transport of RABV and clathrin dependent uptake at the plasma membrane. PMID:27463226

  12. Single particle tracking of internalized metallic nanoparticles reveals heterogeneous directed motion after clathrin dependent endocytosis in mouse chromaffin cells

    Science.gov (United States)

    Gabriel, Manuela; Moya-Díaz, José; Gallo, Luciana I.; Marengo, Fernando D.; Estrada, Laura C.

    2018-01-01

    Most accepted single particle tracking methods are able to obtain high-resolution trajectories for relatively short periods of time. In this work we apply a straightforward combination of single-particle tracking microscopy and metallic nanoparticles internalization on mouse chromaffin cells to unveil the intracellular trafficking mechanism of metallic-nanoparticle-loaded vesicles (MNP-V) complexes after clathrin dependent endocytosis. We found that directed transport is the major route of MNP-Vs intracellular trafficking after stimulation (92.6% of the trajectories measured). We then studied the MNP-V speed at each point along the trajectory, and found that the application of a second depolarization stimulus during the tracking provokes an increase in the percentage of low-speed trajectory points in parallel with a decrease in the number of high-speed trajectory points. This result suggests that stimulation may facilitate the compartmentalization of internalized MNPs in a more restricted location such as was already demonstrated in neuronal and neuroendocrine cells (Bronfman et al 2003 J. Neurosci. 23 3209-20). Although further experiments will be required to address the mechanisms underlying this transport dynamics, our studies provide quantitative evidence of the heterogeneous behavior of vesicles mobility after endocytosis in chromaffin cells highlighting the potential of MNPs as alternative labels in optical microscopy to provide new insights into the vesicles dynamics in a wide variety of cellular environments.

  13. Reorganization of the Endosomal System in Salmonella-Infected Cells: The Ultrastructure of Salmonella-Induced Tubular Compartments

    Science.gov (United States)

    Krieger, Viktoria; Liebl, David; Zhang, Yuying; Rajashekar, Roopa; Chlanda, Petr; Giesker, Katrin; Chikkaballi, Deepak; Hensel, Michael

    2014-01-01

    During the intracellular life of Salmonella enterica, a unique membrane-bound compartment termed Salmonella-containing vacuole, or SCV, is formed. By means of translocated effector proteins, intracellular Salmonella also induce the formation of extensive, highly dynamic membrane tubules termed Salmonella-induced filaments or SIF. Here we report the first detailed ultrastructural analyses of the SCV and SIF by electron microscopy (EM), EM tomography and live cell correlative light and electron microscopy (CLEM). We found that a subset of SIF is composed of double membranes that enclose portions of host cell cytosol and cytoskeletal filaments within its inner lumen. Despite some morphological similarities, we found that the formation of SIF double membranes is independent from autophagy and requires the function of the effector proteins SseF and SseG. The lumen of SIF network is accessible to various types of endocytosed material and our CLEM analysis of double membrane SIF demonstrated that fluid phase markers accumulate only between the inner and outer membrane of these structures, a space continual with endosomal lumen. Our work reveals how manipulation of the endosomal membrane system by an intracellular pathogen results in a unique tubular membrane compartmentalization of the host cell, generating a shielded niche permissive for intracellular proliferation of Salmonella. PMID:25254663

  14. A computational study of enzyme patterning on microfluidic biofuel cell electrodes. Paper no. IGEC-1-159

    International Nuclear Information System (INIS)

    Kjeang, E.; Sinton, D.; Harrington, D.; Djilali, N.

    2005-01-01

    The specific character of biological enzyme catalysts enables combined fuel and oxidant channels and simple non-compartmentalized fuel cell assemblies. In this work, a microstructured multi-step enzymatic biofuel cell architecture is proposed, and the species transport phenomena and chemical reactions are studied computationally in order to provide guidelines for optimization. This is the first computational study of this technology, and a 2D CFD model that incorporates heterogeneous chemical reactions as boundary conditions for species transport is established. One convective diffusion equation is computed for each of the interacting species, coupled with laminar fluid flow and Michaelis-Menten enzyme kinetics. It is shown that the system is reaction rate limited, indicating that enzyme specific turnover numbers are key parameters for biofuel cell performance. Separated and mixed enzyme patterns in different proportions are analyzed for various Peclet numbers. High fuel utilization is achieved in the diffusion dominated and mixed species transport regimes with separated enzymes arranged in relation to individual turnover rates. However, the Peclet number has to be above a certain threshold value to obtain satisfying current densities. Optimum performance is achieved by mixed enzyme patterning tailored with respect to individual turnover rates, enabling high current densities combined with nearly complete fuel utilization. To maximize current density in particular, we recommend simple one-step ethanol oxidation by modified alcohol dehydrogenase enzymes with rapid kinetics. Current densities are expected to be enhanced further by enzyme-electrode covalent crosslinking via suitable electron mediators. (author)

  15. Developing robust, hydrogel-based, nanofiber-enabled encapsulation devices (NEEDs) for cell therapies.

    Science.gov (United States)

    An, Duo; Ji, Yewei; Chiu, Alan; Lu, Yen-Chun; Song, Wei; Zhai, Lei; Qi, Ling; Luo, Dan; Ma, Minglin

    2015-01-01

    Cell encapsulation holds enormous potential to treat a number of hormone deficient diseases and endocrine disorders. We report a simple and universal approach to fabricate robust, hydrogel-based, nanofiber-enabled encapsulation devices (NEEDs) with macroscopic dimensions. In this design, we take advantage of the well-known capillary action that holds wetting liquid in porous media. By impregnating the highly porous electrospun nanofiber membranes of pre-made tubular or planar devices with hydrogel precursor solutions and subsequent crosslinking, we obtained various nanofiber-enabled hydrogel devices. This approach is broadly applicable and does not alter the water content or the intrinsic chemistry of the hydrogels. The devices retained the properties of both the hydrogel (e.g. the biocompatibility) and the nanofibers (e.g. the mechanical robustness). The facile mass transfer was confirmed by encapsulation and culture of different types of cells. Additional compartmentalization of the devices enabled paracrine cell co-cultures in single implantable devices. Lastly, we provided a proof-of-concept study on potential therapeutic applications of the devices by encapsulating and delivering rat pancreatic islets into chemically-induced diabetic mice. The diabetes was corrected for the duration of the experiment (8 weeks) before the implants were retrieved. The retrieved devices showed minimal fibrosis and as expected, live and functional islets were observed within the devices. This study suggests that the design concept of NEEDs may potentially help to overcome some of the challenges in the cell encapsulation field and therefore contribute to the development of cell therapies in future. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. ZnT2-overexpression represses the cytotoxic effects of zinc hyper-accumulation in malignant metallothionein-null T47D breast tumor cells.

    Science.gov (United States)

    Lopez, Veronica; Foolad, Farnaz; Kelleher, Shannon L

    2011-05-01

    Human breast tumors accumulate abnormally high levels of zinc (Zn). As a result, numerous studies have implicated Zn hyper-accumulation in the etiology of breast cancer. Zinc accumulation can be cytotoxic, therefore cells have Zn-buffering mechanisms, such as metallothioneins (MT) and vesicular sequestration, which tightly regulate Zn homeostasis. The Zn transporter ZnT2 sequesters Zn into intracellular vesicles and thus can protect cells from Zn cytotoxicity. Herein, we report that malignant breast tumor (T47D) cells do not express MT but have approximately 4-fold greater Zn levels compared with non-malignant breast (MCF-10A) cells. Zinc accumulation coincided with ZnT2 over-expression and increased vesicular Zn pools. In this study, we hypothesized that ZnT2 suppression would eliminate protection from Zn accumulation and result in cytotoxicity in malignant breast tumor cells. Suppression of ZnT2 significantly increased cytoplasmic Zn pools (1.6-fold) as assessed with a Zn-responsive reporter assay containing four metal response elements (4X-MRE) fused to luciferase. Increased cytoplasmic Zn pools activated apoptosis in a caspase-independent manner. We observed significant generation of reactive oxygen species (ROS) (2.3-fold), lysosomal swelling and cathepsin D leakage in ZnT2-attenuated compared with ZnT2-expressing cells. Most importantly, tumor cell viability and tumor formation were significantly decreased (approximately 25%) in ZnT2-attenuated cells compared with ZnT2-expressing cells. Our data indicate that ZnT2 over-expression protects malignant MT-null breast tumor cells from Zn hyper-accumulation by sequestering Zn into intracellular vesicles. Moreover, our results implicate Zn compartmentalizing mechanisms as novel targets for breast cancer therapy. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. Types of Stem Cells

    Science.gov (United States)

    ... PDF) Download an introduction to stem cells and stem cell research. Stem Cell Glossary Stem cell terms to know. ... stem cells blog from the International Society for Stem Cell Research. Learn About Stem Cells From Lab to You ...

  18. Phosphatidylinositol 3-kinase activity and asymmetrical accumulation of F-actin are necessary for establishment of cell polarity in the early development of monospores from the marine red alga Porphyra yezoensis.

    Science.gov (United States)

    Li, Lin; Saga, Naotsune; Mikami, Koji

    2008-01-01

    The polarized distribution of F-actin is important in providing the driving force for directional migration in mammalian leukocytes and Dictyostelium cells, in which compartmentation of phosphatidylinositol 3-kinase (PI3K) and phosphatidylinositol phosphatase is critical for the establishment of cell polarity. Since monospores from the red alga Porphyra yezoensis are a real example of migrating plant cells, the involvement of the cytoskeleton and PI3K was investigated during their early development. Our results indicate that the asymmetrical localization of F-actin at the leading edge is fixed by the establishment of the anterior-posterior axis in migrating monospores, which is PI3K-dependent and protein synthesis-independent. After migration, monospores adhere to the substratum and then become upright, developing into multicellular thalli via the establishment of the apical-basal axis. In this process, F-actin usually accumulates at the bottom of the basal cell and development after migration requires new protein synthesis. These findings suggest that the establishment of anterior-posterior and apical-basal axes are differentially regulated during the early development of monospores. Our results also indicate that PI3K-dependent F-actin asymmetry is evolutionally conserved in relation to the establishment of cell polarity in migrating eukaryotic cells.

  19. Cell suicide

    International Nuclear Information System (INIS)

    May, E.; Coffigny, H.

    2000-01-01

    In the fight of the cell against the damages caused to its DNA by genotoxic agents and specially by ionizing radiations, the p53 protein plays a central part. It intervenes in the proliferation control and the differentiation but also in the keeping of genome integrity. It can direct the damages cells toward suicide, or apoptosis, to avoid the risk of tumor appearance that would be fatal to the whole organism. That is by the disordered state of cells suicide programs that the tumor cells are going to develop. The knowledge of apoptosis mechanisms, to eventually start them on demand, rises up broad hopes in the cancer therapy. (N.C.)

  20. Effect of hypoxia on thallium kinetics in cultured chick myocardial cells

    International Nuclear Information System (INIS)

    Friedman, B.J.; Beihn, R.; Friedman, J.P.

    1987-01-01

    To assess the effect of hypoxia on cellular thallium-201 ( 201 Tl) uptake and washout independent of coronary flow, we studied thallium kinetics during normoxia and hypoxia in cultured chick ventricular cells. Monolayers of contracting ventricular cells grown on coverslips were placed in a chamber and perfused to asymptote with media containing 201 Tl. Perfusates were equilibrated with 5% CO 2 -95% air or 5% CO 2 -95% nitrogen for normoxia and hypoxia, respectively. Washout thallium kinetics were then observed during perfusion with unlabeled media. Twenty paired experiments were performed, randomly alternating the sequence of normoxia and hypoxia. Pharmacokinetics for thallium were determined by computer using standard formulae. Thallium uptake and washout were best described by assuming that intracellular thallium was contained within a single compartment. Cellular thallium uptake, as well as transfer rate constants for thallium uptake and for thallium washout during normoxia and hypoxia, were compared using paired t-tests. During normoxia and hypoxia, respectively, thallium uptake was 22 +/- 7% and 19 +/- 7% of asymptote (p less than 0.01); the compartmental rate constant for uptake by the cell was 0.16 +/- 0.07 min-1 and 0.15 +/- 0.06 min-1 (N.S.); and the transfer rate constant for washout from the cell was 0.26 +/- 0.06 min-1 and 0.23 +/- 0.05 min-1 (p less than 0.01). We conclude that there was a small (14%) decrease in thallium uptake during hypoxia. The rate of thallium uptake and washout was slightly less during hypoxia, although only the rate of washout was significantly less. These data show that cellular accumulation of thallium and the rate of washout of thallium were minimally decreased by hypoxia independent of blood flow

  1. KIR2DL4 differentially signals downstream functions in human NK cells through distinct structural modules.

    Science.gov (United States)

    Miah, S M Shahjahan; Hughes, Tracey L; Campbell, Kerry S

    2008-03-01

    KIR2DL4 (2DL4) is a member of the killer cell Ig-like receptor (KIR) family in human NK cells. It can stimulate potent cytokine production and weak cytolytic activity in resting NK cells, but the mechanism for 2DL4-mediated signaling remains unclear. In this study we characterized the signaling pathways stimulated by 2DL4 engagement. In a human NK-like cell line, KHYG-1, cross-linking of 2DL4 activated MAPKs including JNK, ERK, and p38. Furthermore, 2DL4 cross-linking resulted in phosphorylation of IkappaB kinase beta (IKKbeta) and the phosphorylation and degradation of IkappaBalpha, which indicate activation of the classical NF-kappaB pathway. Engagement of 2DL4 was also shown to activate the transcription and translation of a variety of cytokine genes, including TNF-alpha, IFN-gamma, MIP1alpha, MIP1beta, and IL-8. Pharmacological inhibitors of JNK, MEK1/2 and p38, blocked IFN-gamma, IL-8, and MIP1alpha production, suggesting that MAPKs are regulating 2DL4-mediated cytokine production in a nonredundant manner. Activation of both p38 and ERK appear to be upstream of the stimulation of NF-kappaB. Mutation of a transmembrane arginine in 2DL4 to glycine (R/G mutant) abrogated FcepsilonRI-gamma association, as well as receptor-mediated cytolytic activity and calcium responses. Surprisingly, the R/G mutant still activated MAPKs and the NF-kappaB pathway and selectively stimulated the production of MIP1alpha, but not that of IFN-gamma or IL-8. In conclusion, we provide evidence that the activating functions of 2DL4 can be compartmentalized into two distinct structural modules: 1) through transmembrane association with FcepsilonRI-gamma; and 2) through another receptor domain independent of the transmembrane arginine.

  2. Alterations in regulatory T cells induced by specific oligosaccharides improve vaccine responsiveness in mice.

    Directory of Open Access Journals (Sweden)

    Marcel A Schijf

    Full Text Available Prophylactic vaccinations are generally performed to protect naïve individuals with or without suppressed immune responsiveness. In a mouse model for Influenza vaccinations the specific alterations of CD4(+CD25(+Foxp3(+ regulatory T-cells (Tregs in the immune modulation induced by orally supplied oligosaccharides containing scGOS/lcFOS/pAOS was assessed. This dietary intervention increased vaccine specific DTH responses. In addition, a significant increased percentage of T-bet(+ (Th1 activated CD69(+CD4(+ T cells (p<0.001 and reduced percentage of Gata-3(+ (Th2 activated CD69(+CD4(+T cells (p<0.001 was detected in the mesenteric lymph nodes (MLN of mice receiving scGOS/lcFOS/pAOS compared to control mice. Although no difference in the number or percentage of Tregs (CD4(+Foxp3(+ could be determined after scGOS/lcFOS/pAOS intervention, the percentage of CXCR3 (+ /T-bet(+ (Th1-Tregs was significantly reduced (p<0.05 in mice receiving scGOS/lcFOS/pAOS as compared to mice receiving placebo diets. Moreover, although no absolute difference in suppressive capacity could be detected, an alteration in cytokine profile suggests a regulatory T cell shift towards a reducing Th1 suppression profile, supporting an improved vaccination response.These data are indicative for improved vaccine responsiveness due to reduced Th1 suppressive capacity in the Treg population of mice fed the oligosaccharide specific diet, showing compartmentalization within the Treg population. The modulation of Tregs to control immune responses provides an additional arm of intervention using alternative strategies possibly leading to the development of improved vaccines.

  3. Fuel Cells

    DEFF Research Database (Denmark)

    Smith, Anders; Pedersen, Allan Schrøder

    2014-01-01

    Fuel cells have been the subject of intense research and development efforts for the past decades. Even so, the technology has not had its commercial breakthrough yet. This entry gives an overview of the technological challenges and status of fuel cells and discusses the most promising applications...

  4. Fuel Cells

    Science.gov (United States)

    Hawkins, M. D.

    1973-01-01

    Discusses the theories, construction, operation, types, and advantages of fuel cells developed by the American space programs. Indicates that the cell is an ideal small-scale power source characterized by its compactness, high efficiency, reliability, and freedom from polluting fumes. (CC)

  5. Stem Cells

    DEFF Research Database (Denmark)

    Sommerlund, Julie

    2004-01-01

    '. This paper is about tech-noscience, and about the proliferation of connections and interdependencies created by it.More specifically, the paper is about stem cells. Biotechnology in general has the power to capture the imagination. Within the field of biotechnology nothing seems more provocative...... and tantalizing than stem cells, in research, in medicine, or as products....

  6. Solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Tsukamoto, Moriaki; Hayashibara, Mitsuo

    1988-08-18

    Concerning the exsisting solar cell utilizing wavelength transition, the area of the solar cell element necessary for unit electric power output can be made small, but transition efficiency of the solar cell as a whole including a plastic plate with phosphor is not high. This invention concerns a solar cell which is appropriate for transferring the light within a wide spectrum range of the sunlight to electricilty efficiently, utilizes wavelength transition and has high efficiency per unit area. In other words, the solar cell of this invention has the feature of providing in parallel with a photoelectric transfer layer a layer of wavelength transitioning material (phosphor) which absorbs the light within the range of wavelength of low photoelectric transfer efficiency at the photoelectric transfer layer and emits the light within the range of wavelength in which the photoelectric transfer rate is high on the light incident side of the photoelectric transfer layer. (5 figs)

  7. Subcellular targeting and dynamic regulation of PTEN: Implications for neuronal cells and neurological disorders

    Directory of Open Access Journals (Sweden)

    Patricia eKreis

    2014-04-01

    Full Text Available PTEN is a lipid and protein phosphatase that regulates a diverse range of cellular mechanisms. PTEN is mainly present in the cytosol and transiently associates with the plasma membrane to dephosphorylate PI(3,4,5P3, thereby antagonizing the PI3-Kinase signaling pathway. Recently, PTEN has been shown to associate also with organelles such as the endoplasmic reticulum, the mitochondria or the nucleus, and to be secreted outside of the cell. In addition, PTEN dynamically localizes to specialized sub-cellular compartments such as the neuronal growth cone or dendritic spines. The diverse localizations of PTEN imply a tight temporal and spatial regulation, orchestrated by mechanisms such as posttranslational modifications, formation of distinct protein-protein interactions or the activation/recruitment of PTEN downstream of external cues. The regulation of PTEN function is thus not only important at the enzymatic activity level, but is also associated to its spatial distribution. In this review we will summarize (i recent findings that highlight mechanisms controlling PTEN movement and sub-cellular localization, and (ii current understanding of how PTEN localization is achieved by mechanisms controlling posttranslational modification, by association with binding partners and by PTEN structural or activity requirements. Finally, we will discuss the possible roles of compartmentalized PTEN in developing and mature neurons in health and disease.

  8. Computational modeling predicts the ionic mechanism of late-onset responses in unipolar brush cells.

    Science.gov (United States)

    Subramaniyam, Sathyaa; Solinas, Sergio; Perin, Paola; Locatelli, Francesca; Masetto, Sergio; D'Angelo, Egidio

    2014-01-01

    Unipolar Brush Cells (UBCs) have been suggested to play a critical role in cerebellar functioning, yet the corresponding cellular mechanisms remain poorly understood. UBCs have recently been reported to generate, in addition to early-onset glutamate receptor-dependent synaptic responses, a late-onset response (LOR) composed of a slow depolarizing ramp followed by a spike burst (Locatelli et al., 2013). The LOR activates as a consequence of synaptic activity and involves an intracellular cascade modulating H- and TRP-current gating. In order to assess the LOR mechanisms, we have developed a UBC multi-compartmental model (including soma, dendrite, initial segment, and axon) incorporating biologically realistic representations of ionic currents and a cytoplasmic coupling mechanism regulating TRP and H channel gating. The model finely reproduced UBC responses to current injection, including a burst triggered by a low-threshold spike (LTS) sustained by CaLVA currents, a persistent discharge sustained by CaHVA currents, and a rebound burst following hyperpolarization sustained by H- and CaLVA-currents. Moreover, the model predicted that H- and TRP-current regulation was necessary and sufficient to generate the LOR and its dependence on the intensity and duration of mossy fiber activity. Therefore, the model showed that, using a basic set of ionic channels, UBCs generate a rich repertoire of bursts, which could effectively implement tunable delay-lines in the local microcircuit.

  9. Subcellular targeting and dynamic regulation of PTEN: implications for neuronal cells and neurological disorders

    Science.gov (United States)

    Kreis, Patricia; Leondaritis, George; Lieberam, Ivo; Eickholt, Britta J.

    2014-01-01

    PTEN is a lipid and protein phosphatase that regulates a diverse range of cellular mechanisms. PTEN is mainly present in the cytosol and transiently associates with the plasma membrane to dephosphorylate PI(3,4,5)P3, thereby antagonizing the PI3-Kinase signaling pathway. Recently, PTEN has been shown to associate also with organelles such as the endoplasmic reticulum (ER), the mitochondria, or the nucleus, and to be secreted outside of the cell. In addition, PTEN dynamically localizes to specialized sub-cellular compartments such as the neuronal growth cone or dendritic spines. The diverse localizations of PTEN imply a tight temporal and spatial regulation, orchestrated by mechanisms such as posttranslational modifications, formation of distinct protein–protein interactions, or the activation/recruitment of PTEN downstream of external cues. The regulation of PTEN function is thus not only important at the enzymatic activity level, but is also associated to its spatial distribution. In this review we will summarize (i) recent findings that highlight mechanisms controlling PTEN movement and sub-cellular localization, and (ii) current understanding of how PTEN localization is achieved by mechanisms controlling posttranslational modification, by association with binding partners and by PTEN structural or activity requirements. Finally, we will discuss the possible roles of compartmentalized PTEN in developing and mature neurons in health and disease. PMID:24744697

  10. Absence of the Adaptor Protein PEA-15 Is Associated with Altered Pattern of Th Cytokines Production by Activated CD4+ T Lymphocytes In Vitro, and Defective Red Blood Cell Alloimmune Response In Vivo.

    Directory of Open Access Journals (Sweden)

    Stéphane Kerbrat

    Full Text Available TCR-dependent and costimulation signaling, cell division, and cytokine environment are major factors driving cytokines expression induced by CD4(+ T cell activation. PEA-15 15 (Protein Enriched in Astrocyte / 15 kDa is an adaptor protein that regulates death receptor-induced apoptosis and proliferation signaling by binding to FADD and relocating ERK1/2 to the cytosol, respectively. By using PEA-15-deficient mice, we examined the role of PEA-15 in TCR-dependent cytokine production in CD4(+ T cells. TCR-stimulated PEA-15-deficient CD4(+ T cells exhibited defective progression through the cell cycle associated with impaired expression of cyclin E and phosphoRb, two ERK1/2-dependent proteins of the cell cycle. Accordingly, expression of the division cycle-dependent cytokines IL-2 and IFNγ, a Th1 cytokine, was reduced in stimulated PEA-15-deficient CD4(+ T cells. This was associated with abnormal subcellular compartmentalization of activated ERK1/2 in PEA-15-deficient T cells. Furthermore, in vitro TCR-dependent differentiation of naive CD4(+ CD62L(+ PEA-15-deficient T cells was associated with a lower production of the Th2 cytokine, IL-4, whereas expression of the Th17-associated molecule IL4I1 was enhanced. Finally, a defective humoral response was shown in PEA-15-deficient mice in a model of red blood cell alloimmunization performed with Poly IC, a classical adjuvant of Th1 response in vivo. Collectively, our data suggest that PEA-15 contributes to the specification of the cytokine pattern of activated Th cells, thus highlighting a potential new target to interfere with T cell functional polarization and subsequent immune response.

  11. Absence of the Adaptor Protein PEA-15 Is Associated with Altered Pattern of Th Cytokines Production by Activated CD4+ T Lymphocytes In Vitro, and Defective Red Blood Cell Alloimmune Response In Vivo.

    Science.gov (United States)

    Kerbrat, Stéphane; Vingert, Benoit; Junier, Marie-Pierre; Castellano, Flavia; Renault-Mihara, François; Dos Reis Tavares, Silvina; Surenaud, Mathieu; Noizat-Pirenne, France; Boczkowski, Jorge; Guellaën, Georges; Chneiweiss, Hervé; Le Gouvello, Sabine

    2015-01-01

    TCR-dependent and costimulation signaling, cell division, and cytokine environment are major factors driving cytokines expression induced by CD4(+) T cell activation. PEA-15 15 (Protein Enriched in Astrocyte / 15 kDa) is an adaptor protein that regulates death receptor-induced apoptosis and proliferation signaling by binding to FADD and relocating ERK1/2 to the cytosol, respectively. By using PEA-15-deficient mice, we examined the role of PEA-15 in TCR-dependent cytokine production in CD4(+) T cells. TCR-stimulated PEA-15-deficient CD4(+) T cells exhibited defective progression through the cell cycle associated with impaired expression of cyclin E and phosphoRb, two ERK1/2-dependent proteins of the cell cycle. Accordingly, expression of the division cycle-dependent cytokines IL-2 and IFNγ, a Th1 cytokine, was reduced in stimulated PEA-15-deficient CD4(+) T cells. This was associated with abnormal subcellular compartmentalization of activated ERK1/2 in PEA-15-deficient T cells. Furthermore, in vitro TCR-dependent differentiation of naive CD4(+) CD62L(+) PEA-15-deficient T cells was associated with a lower production of the Th2 cytokine, IL-4, whereas expression of the Th17-associated molecule IL4I1 was enhanced. Finally, a defective humoral response was shown in PEA-15-deficient mice in a model of red blood cell alloimmunization performed with Poly IC, a classical adjuvant of Th1 response in vivo. Collectively, our data suggest that PEA-15 contributes to the specification of the cytokine pattern of activated Th cells, thus highlighting a potential new target to interfere with T cell functional polarization and subsequent immune response.

  12. Pseudomonas aeruginosa utilizes the type III secreted toxin ExoS to avoid acidified compartments within epithelial cells.

    Science.gov (United States)

    Heimer, Susan R; Evans, David J; Stern, Michael E; Barbieri, Joseph T; Yahr, Timothy; Fleiszig, Suzanne M J

    2013-01-01

    Invasive Pseudomonas aeruginosa (PA) can enter epithelial cells wherein they mediate formation of plasma membrane bleb-niches for intracellular compartmentalization. This phenotype, and capacity for intracellular replication, requires the ADP-ribosyltransferase (ADPr) activity of ExoS, a PA type III secretion system (T3SS) effector protein. Thus, PA T3SS mutants lack these capacities and instead traffic to perinuclear vacuoles. Here, we tested the hypothesis that the T3SS, via the ADPr activity of ExoS, allows PA to evade acidic vacuoles that otherwise suppress its intracellular viability. The acidification state of bacteria-occupied vacuoles within infected corneal epithelial cells was studied using LysoTracker to visualize acidic, lysosomal vacuoles. Steady state analysis showed that within cells wild-type PAO1 localized to both membrane bleb-niches and vacuoles, while both exsA (transcriptional activator) and popB (effector translocation) T3SS mutants were only found in vacuoles. The acidification state of occupied vacuoles suggested a relationship with ExoS expression, i.e. vacuoles occupied by the exsA mutant (unable to express ExoS) were more often acidified than either popB mutant or wild-type PAO1 occupied vacuoles (p cell; pUCPexoSE381D which lacks ADPr activity did not. The H(+)-ATPase inhibitor bafilomycin rescued intracellular replication to wild-type levels for exsA mutants, showing its viability is suppressed by vacuolar acidification. Taken together, the data show that the mechanism by which ExoS ADPr activity allows intracellular replication by PA involves suppression of vacuolar acidification. They also show that variability in ExoS expression by wild-type PA inside cells can differentially influence the fate of individual intracellular bacteria, even within the same cell.

  13. Bi-Cell Unit for Fuel Cell.

    Science.gov (United States)

    The patent concerns a bi-cell unit for a fuel cell . The bi-cell unit is comprised of two electrode packs. Each of the electrode packs includes an...invention relates in general to a bi-cell unit for a fuel cell and in particular, to a bi-cell unit for a hydrazine-air fuel cell .

  14. Analysis of cell adhesion during early stages of colon cancer based on an extended multi-valued logic approach.

    Science.gov (United States)

    Guebel, Daniel V; Schmitz, Ulf; Wolkenhauer, Olaf; Vera, Julio

    2012-04-01

    Cell adhesion in the normal colon is typically associated with differentiated cells, whereas in cancerous colon it is associated with advanced tumors. For advanced tumors growing evidence supports the existence of stem-like cells that have originated from transdifferentiation. Because stem cells can also be transformed in their own niche, at the base of the Lieberkühn's crypts, we conjectured that cell adhesion can also be critical in early tumorigenesis. To assess this hypothesis we built an annotated, multi-valued logic model addressing cell adhesion of normal and tumorigenic stem cells in the human colon. The model accounts for (i) events involving intercellular adhesion structures, (ii) interactions involving cytoskeleton-related structures, (iii) compartmental distribution of α/β/γ/δ-catenins, and (iv) variations in critical cell adhesion regulators (e.g., ILK, FAK, IQGAP, SNAIL, Caveolin). We developed a method that can deal with graded multiple inhibitions, something which is not possible with conventional logical approaches. The model comprises 315 species (including 26 genes), interconnected by 269 reactions. Simulations of the model covered six scenarios, which considered two types of colonic cells (stem vs. differentiated cells), under three conditions (normal, stressed and tumor). Each condition results from the combination of 92 inputs. We compared our multi-valued logic approach with the conventional Boolean approach for one specific example and validated the predictions against published data. Our analysis suggests that stem cells in their niche synthesize high levels of cytoplasmatic E-cadherin and CdhEP(Ser684,686,692), even under normal-mitogenic stimulus or tumorigenic conditions. Under these conditions, E-cadherin would be incorporated into the plasmatic membrane, but only as a non-adhesive CdhE_β-catenin_IQGAP complex. Under stress conditions, however, this complex could be displaced, yielding adhesive Cdh

  15. Dry cell battery poisoning

    Science.gov (United States)

    Batteries - dry cell ... Acidic dry cell batteries contain: Manganese dioxide Ammonium chloride Alkaline dry cell batteries contain: Sodium hydroxide Potassium hydroxide Lithium dioxide dry cell batteries ...

  16. Heterogeneous Systems Biocatalysis: The Path to the Fabrication of Self-Sufficient Artificial Metabolic Cells.

    Science.gov (United States)

    López-Gallego, Fernando; Jackson, Erienne; Betancor, Lorena

    2017-12-19

    Industrial biocatalysis is playing a key role in the development of the global bio-economy that must change our current productive model to pair the socio-economical development with the preservation of our already harmed planet. The exploitation of isolated multi-enzyme systems and the discovery of novel biocatalytic activities are leading us to manufacture chemicals that were inaccessible through biological routes in the early past. These endeavors have been grouped under the concept of systems biocatalysis. However, by using isolated biological machineries, fundamental features underlying the protein confinement found inside the living cells are missed. To re-gain these properties, such concepts can be expanded to a new concept; heterogeneous systems biocatalysis. This new concept is based on the fabrication of heterogeneous biocatalysts inspired by the spatial organization and compartmentalization that orchestrate metabolic pathways within cells. By assembling biological machineries (including enzymes and cofactors) into artificial solid chassis, one can fabricate self-sufficient and robust cell-free systems able to catalyze orchestrated chemical processes. Furthermore, the confinement of enzymes and and "artificial cofactor" inside solid materials has also attracted our attention because these self-sufficient systems exert de novo and non-natural functionalities. Here, we intend to go beyond immobilization of multi-enzyme systems, discussing only those enzymatic systems that have been co-immobilized with their cofactor or exogenous partners to enhance their cooperative action. In this article, we review the latest architectures developed to fabricate self-sufficient heterogeneous biocatalysts with application in chemical manufacturing, biosensing or energy production. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Electrochemical cell

    Science.gov (United States)

    Redey, L.I.; Myles, K.M.; Vissers, D.R.; Prakash, J.

    1996-07-02

    An electrochemical cell is described with a positive electrode having an electrochemically active layer of at least one transition metal chloride. A negative electrode of an alkali metal and a compatible electrolyte including an alkali metal salt molten at cell operating temperature is included in the cell. The electrolyte is present at least partially as a corrugated {beta}{double_prime} alumina tube surrounding the negative electrode interior to the positive electrode. The ratio of the volume of liquid electrolyte to the volume of the positive electrode is in the range of from about 0.1 to about 3. A plurality of stacked electrochemical cells is disclosed each having a positive electrode, a negative electrode of an alkali metal molten at cell operating temperature, and a compatible electrolyte. The electrolyte is at least partially present as a corrugated {beta}{double_prime} alumina sheet separating the negative electrode and interior to the positive electrodes. The alkali metal is retained in a porous electrically conductive ceramic, and seals for sealing the junctures of the electrolyte and the adjacent electrodes at the peripheries thereof. 8 figs.

  18. Trajectory Analysis Unveils Reelin's Role in the Directed Migration of Granule Cells in the Dentate Gyrus.

    Science.gov (United States)

    Wang, Shaobo; Brunne, Bianka; Zhao, Shanting; Chai, Xuejun; Li, Jiawei; Lau, Jeremie; Failla, Antonio Virgilio; Zobiak, Bernd; Sibbe, Mirjam; Westbrook, Gary L; Lutz, David; Frotscher, Michael

    2018-01-03

    present study, we took advantage of the expression of proopiomelanocortin-EGFP by newly generated, migrating granule cells to analyze their migratory trajectories in hippocampal slice cultures from wild-type mice and mutants deficient in Reelin signaling. We show that the compartmentalized presence of Reelin is essential for the directionality, but not the actual migratory process or speed, of migrating granule cells leading to their characteristic lamination in the dentate gyrus. Copyright © 2018 the authors 0270-6474/18/380137-12$15.00/0.

  19. Electrochemical cell

    Science.gov (United States)

    Kaun, T.D.

    An improved secondary electrochemical cell is disclosed having a negative electrode of lithium aluminum, a positive electrode of iron sulfide, a molten electrolyte of lithium chloride and potassium chloride, and the combination that the fully charged theoretical capacity of the negative electrode is in the range of 0.5 to 1.0 that of the positive electrode. The cell thus is negative electrode limiting during discharge cycling. Preferably, the negative electrode contains therein, in the approximate range of 1 to 10 volume % of the electrode, an additive from the materials of graphitized carbon, aluminum-iron alloy, and/or magnesium oxide.

  20. Solar cells

    International Nuclear Information System (INIS)

    1980-01-01

    A method of producing solar cells is described which consists of producing a substantially monocrystalline tubular body of silicon or other suitable semiconductor material, treating this body to form an annular rectifying junction and then cutting it longitudinally to form a number of nearly flat ribbons from which the solar cells are fabricated. The P=N rectifying junction produced by the formation of silicon dioxide on the layers at the inner and outer surfaces of the body can be formed by ion-implantation or diffusion. (U.K.)

  1. Tuning Collective Cell Migration by Cell-Cell Junction Regulation

    NARCIS (Netherlands)

    Friedl, P.; Mayor, R.

    2017-01-01

    Collective cell migration critically depends on cell-cell interactions coupled to a dynamic actin cytoskeleton. Important cell-cell adhesion receptor systems implicated in controlling collective movements include cadherins, immunoglobulin superfamily members (L1CAM, NCAM, ALCAM), Ephrin/Eph

  2. Energy storage cells

    Energy Technology Data Exchange (ETDEWEB)

    Gulia, N.V.

    1980-01-01

    The book deals with the characteristics and potentialities of energy storage cells of various types. Attention is given to electrical energy storage cells (electrochemical, electrostatic, and electrodynamic cells), mechanical energy storage cells (mechanical flywheel storage cells), and hybrid storage systems.

  3. Squamous Cell Carcinoma

    Science.gov (United States)

    ... Kids’ zone Video library Find a dermatologist Squamous cell carcinoma Overview Squamous cell carcinoma: This man's skin ... a squamous cell carcinoma on his face. Squamous cell carcinoma: Overview Squamous cell carcinoma (SCC) is a ...

  4. Learn About Stem Cells

    Science.gov (United States)

    ... PDF) Download an introduction to stem cells and stem cell research. Stem Cell Glossary Stem cell terms to know. ... ISSCR Get Involved Media © 2015 International Society for Stem Cell Research Terms of Use Disclaimer Privacy Policy

  5. Electrochemical cell

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.H.; Kubala, D.M.; Bennett, R.J.

    1977-01-13

    The high energy densities of primary cells on the basis of lithium or sodium as anode material, liquid cathode materials and nonaqueous electrolytes could not previously be fully utilised, because volume changes appearing during the discharge process inside the cell lead to an increase of cell impedance. In order to overcome this disadvantage, according to the invention a tube consisting of carbon which is slotted in the longitudinal direction is used as the cathode current collector. It is elastic in the radial direction and exerts an even pressure in the beaker-shaped cell vessel on the separator and therefore on the anode material touching the inner wall of the vessel. In order to achieve the elastic deformability of the cathode current collector, acetylene soot is used, to which are added as described in the invention, elastomers and/or mixed polymers in quantities of 10 to 30% by weight. Further claims concern the use of at least one oxyhalide of an element of groups V or VI or a halide of an element of groups IV, V or VI of the periodic table in the cathode solution.

  6. Potent Cells

    Science.gov (United States)

    Liu, Dennis

    2007-01-01

    It seems hard to believe that Dolly the cloned sheep was born 10 years ago, kindling furious arguments over the prospects and ethics of cloning a human. Today, the controversy over cloning is entwined, often confused, with concerns over the use of human embryonic stem cells. Most people are unclear what cloning is, and they know even less when it…

  7. Fuel cells:

    DEFF Research Database (Denmark)

    Sørensen, Bent

    2013-01-01

    A brief overview of the progress in fuel cell applications and basic technology development is presented, as a backdrop for discussing readiness for penetration into the marketplace as a solution to problems of depletion, safety, climate or environmental impact from currently used fossil...... and nuclear fuel-based energy technologies....

  8. Stem Cells

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 3. Stem Cells: A Dormant Volcano Within Our Body? Devaveena Dey Annapoorni Rangarajan. General Article Volume 12 Issue 3 March 2007 pp 27-34. Fulltext. Click here to view fulltext PDF. Permanent link:

  9. Photovoltaic cell

    Science.gov (United States)

    Gordon, Roy G.; Kurtz, Sarah

    1984-11-27

    In a photovoltaic cell structure containing a visibly transparent, electrically conductive first layer of metal oxide, and a light-absorbing semiconductive photovoltaic second layer, the improvement comprising a thin layer of transition metal nitride, carbide or boride interposed between said first and second layers.

  10. Polymersomes containing iron sulfide (FeS) as primordial cell model : for the investigation of energy providing redox reactions.

    Science.gov (United States)

    Alpermann, Theodor; Rüdel, Kristin; Rüger, Ronny; Steiniger, Frank; Nietzsche, Sandor; Filiz, Volkan; Förster, Stephan; Fahr, Alfred; Weigand, Wolfgang

    2011-04-01

    According to Wächtershäuser's "Iron-Sulfur-World" one major requirement for the development of life on the prebiotic Earth is compartmentalization. Vesicles spontaneously formed from amphiphilic components containing a specific set of molecules including sulfide minerals may have lead to the first autotrophic prebiotic units. The iron sulfide minerals may have been formed by geological conversions in the environment of deep-sea volcanos (black smokers), which can be observed even today. Wächtershäuser postulated the evolution of chemical pathways as fundamentals of the origin of life on earth. In contrast to the classical Miller-Urey experiment, depending on external energy sources, the "Iron-Sulfur-World" is based on the catalytic and energy reproducing redox system FeS+H2S-->FeS2+H2. The energy release out of this redox reaction (∆RG°=-38 kJ/mol, pH 0) could be the cause for the subsequent synthesis of complex organic molecules and the precondition for the development of more complex units similar to cells known today. Here we show the possibility for precipitating iron sulfide inside vesicles composed of amphiphilic block-copolymers as a model system for a first prebiotic unit. Our findings could be an indication for a chemoautotrophic FeS based origin of life.

  11. T-cell factor 4 and β-catenin chromatin occupancies pattern zonal liver metabolism in mice.

    Science.gov (United States)

    Gougelet, Angélique; Torre, Cyril; Veber, Philippe; Sartor, Chiara; Bachelot, Laura; Denechaud, Pierre-Damien; Godard, Cécile; Moldes, Marthe; Burnol, Anne-Françoise; Dubuquoy, Céline; Terris, Benoit; Guillonneau, François; Ye, Tao; Schwarz, Michael; Braeuning, Albert; Perret, Christine; Colnot, Sabine

    2014-06-01

    β-catenin signaling can be both a physiological and oncogenic pathway in the liver. It controls compartmentalized gene expression, allowing the liver to ensure its essential metabolic function. It is activated by mutations in 20%-40% of hepatocellular carcinomas (HCCs) with specific metabolic features. We decipher the molecular determinants of β-catenin-dependent zonal transcription using mice with β-catenin-activated or -inactivated hepatocytes, characterizing in vivo their chromatin occupancy by T-cell factor (Tcf)-4 and β-catenin, transcriptome, and metabolome. We find that Tcf-4 DNA bindings depend on β-catenin. Tcf-4/β-catenin binds Wnt-responsive elements preferentially around β-catenin-induced genes. In contrast, genes repressed by β-catenin bind Tcf-4 on hepatocyte nuclear factor 4 (Hnf-4)-responsive elements. β-Catenin, Tcf-4, and Hnf-4α interact, dictating β-catenin transcription, which is antagonistic to that elicited by Hnf-4α. Finally, we find the drug/bile metabolism pathway to be the one most heavily targeted by β-catenin, partly through xenobiotic nuclear receptors. β-catenin patterns the zonal liver together with Tcf-4, Hnf-4α, and xenobiotic nuclear receptors. This network represses lipid metabolism and exacerbates glutamine, drug, and bile metabolism, mirroring HCCs with β-catenin mutational activation. © 2014 by the American Association for the Study of Liver Diseases.

  12. Fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, Hirofumi.

    1989-05-22

    This invention aims to maintain a long-term operation with stable cell output characteristics by uniformly supplying an electrolyte from the reserver to the matrix layer over the entire matrix layer, and further to prevent the excessive wetting of the catalyst layer by smoothly absorbing the volume change of the electrolyte, caused by the repeated stop/start-up of the fuel cell, within the reserver system. For this purpose, in this invention, an electrolyte transport layer, which connects with an electrolyte reservor formed at the electrode end, is partly formed between the electrode material and the catalyst layer; a catalyst layer, which faces the electrolyte transport layer, has through-holes, which connect to the matrix, dispersely distributed. The electrolyte-transport layer is a thin sheet of a hydrophilic fibers which are non-wovens of such fibers as carbon, silicon carbide, silicon nitride or inorganic oxides. 11 figs.

  13. Tuning Collective Cell Migration by Cell-Cell Junction Regulation.

    Science.gov (United States)

    Friedl, Peter; Mayor, Roberto

    2017-04-03

    Collective cell migration critically depends on cell-cell interactions coupled to a dynamic actin cytoskeleton. Important cell-cell adhesion receptor systems implicated in controlling collective movements include cadherins, immunoglobulin superfamily members (L1CAM, NCAM, ALCAM), Ephrin/Eph receptors, Slit/Robo, connexins and integrins, and an adaptive array of intracellular adapter and signaling proteins. Depending on molecular composition and signaling context, cell-cell junctions adapt their shape and stability, and this gradual junction plasticity enables different types of collective cell movements such as epithelial sheet and cluster migration, branching morphogenesis and sprouting, collective network migration, as well as coordinated individual-cell migration and streaming. Thereby, plasticity of cell-cell junction composition and turnover defines the type of collective movements in epithelial, mesenchymal, neuronal, and immune cells, and defines migration coordination, anchorage, and cell dissociation. We here review cell-cell adhesion systems and their functions in different types of collective cell migration as key regulators of collective plasticity. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  14. The ancient Virus World and evolution of cells

    Directory of Open Access Journals (Sweden)

    Dolja Valerian V

    2006-09-01

    with a specific model of precellular evolution under which the primordial gene pool dwelled in a network of inorganic compartments. Somewhat paradoxically, under this scenario, we surmise that selfish genetic elements ancestral to viruses evolved prior to typical cells, to become intracellular parasites once bacteria and archaea arrived at the scene. Selection against excessively aggressive parasites that would kill off the host ensembles of genetic elements would lead to early evolution of temperate virus-like agents and primitive defense mechanisms, possibly, based on the RNA interference principle. The emergence of the eukaryotic cell is construed as the second melting pot of virus evolution from which the major groups of eukaryotic viruses originated as a result of extensive recombination of genes from various bacteriophages, archaeal viruses, plasmids, and the evolving eukaryotic genomes. Again, this vision is predicated on a specific model of the emergence of eukaryotic cell under which archaeo-bacterial symbiosis was the starting point of eukaryogenesis, a scenario that appears to be best compatible with the data. Conclusion The existence of several genes that are central to virus replication and structure, are shared by a broad variety of viruses but are missing from cellular genomes (virus hallmark genes suggests the model of an ancient virus world, a flow of virus-specific genes that went uninterrupted from the precellular stage of life's evolution to this day. This concept is tightly linked to two key conjectures on evolution of cells: existence of a complex, precellular, compartmentalized but extensively mixing and recombining pool of genes, and origin of the eukaryotic cell by archaeo-bacterial fusion. The virus world concept and these models of major transitions in the evolution of cells provide complementary pieces of an emerging coherent picture of life's history. Reviewers W. Ford Doolittle, J. Peter Gogarten, and Arcady Mushegian.

  15. TLR4- and TLR2-mediated B cell responses control the clearance of the bacterial pathogen, Leptospira interrogans.

    Science.gov (United States)

    Chassin, Cécilia; Picardeau, Mathieu; Goujon, Jean-Michel; Bourhy, Pascale; Quellard, Nathalie; Darche, Sylvie; Badell, Edgar; d'Andon, Martine Fanton; Winter, Nathalie; Lacroix-Lamandé, Sonia; Buzoni-Gatel, Dominique; Vandewalle, Alain; Werts, Catherine

    2009-08-15

    Leptospirosis is a widespread zoonosis caused by pathogenic Leptospira interrogans that are transmitted by asymptomatic infected rodents. Leptospiral lipoproteins and LPS have been shown to stimulate murine cells via TLRs 2 and 4. Host defense mechanisms remain obscure, although TLR4 has been shown to be involved in clearing Leptospira. In this study, we show that double (TLR2 and TLR4) knockout (DKO) mice rapidly died from severe hepatic and renal failure following Leptospira inoculation. Strikingly, the severe proinflammatory response detected in the liver and kidney from Leptospira-infected DKO mice appears to be independent of MyD88, the main adaptor of TLRs. Infection of chimeric mice constructed with wild-type and DKO mice, and infection of several lines of transgenic mice devoid of T and/or B lymphocytes, identified B cells as the crucial lymphocyte subset responsible for the clearance of Leptospira, through the early production of specific TLR4-dependent anti-Leptospira IgMs elicited against the leptospiral LPS. We also found a protective tissue compartmentalized TLR2/TLR4-mediated production of IFN-gamma by B and T lymphocytes, in the liver and kidney, respectively. In contrast, the tissue inflammation observed in Leptospira-infected DKO mice was further characterized to be mostly due to B lymphocytes in the liver and T cells in the kidney. Altogether these findings demonstrate that TLR2 and TLR4 play a key role in the early control of leptospirosis, but do not directly trigger the inflammation induced by pathogenic Leptospira.

  16. In situ enzymology of DNA replication and ultraviolet-induced DNA repair synthesis in permeable human cells

    International Nuclear Information System (INIS)

    Dresler, S.; Frattini, M.G.; Robinson-Hill, R.M.

    1988-01-01

    Using permeable diploid human fibroblasts, the authors have studied the deoxyribonucleoside triphosphate concentration dependences of ultraviolet- (UV-) induced DNA repair synthesis and semiconservative DNA replication. In both cell types (AG1518 and IMR-90) examined, the apparent K m values for dCTP, dGTP, and dTTP for DNA replication were between 1.2 and 2.9 μM. For UV-induced DNA repair synthesis, the apparent K m values were substantially lower, ranging from 0.11 to 0.44 μM for AG1518 cells and from 0.06 to 0.24 μM for IMR-90 cells. Recent data implicate DNA polymerase δ in UV-induced repair synthesis and suggest that DNA polymerases α and δ are both involved in semiconservative replication. They measured K m values for dGTP and dTTP for polymerases α and δ, for comparison with the values for replication and repair synthesis. The deoxyribonucleotide K m values for DNA polymerase δ are much greater than the K m values for UV-induced repair synthesis, suggesting that when polymerase δ functions in DNA repair, its characteristics are altered substantially either by association with accessory proteins or by direct posttranslational modification. In contrast, the deoxyribonucleotide binding characteristics of the DNA replication machinery differ little from those of the isolated DNA polymerases. The K m values for UV-induced repair synthesis are 5-80-fold lower than deoxyribonucleotide concentrations that have been reported for intact cultured diploid human fibroblasts. For replication, however, the K m for dGTP is only slightly lower than the average cellular dGTP concentration that has been reported for exponentially growing human fibroblasts. This finding is consistent with the concept that nucleotide compartmentation is required for the attainment of high rates of DNA replication in vivo

  17. Peptide-coated semiconductor quantum dots and their applications in biological imaging of single molecules in live cells and organisms

    Science.gov (United States)

    Pinaud, Fabien Florent

    2007-12-01

    A new surface chemistry has been developed for the solubilization and biofunctionalization of inorganic semiconductor nanocrystals fluorescent probes, also known as quantum dots. This chemistry is based on the surface coating of quantum dots with custom-designed polycysteine peptides and yields water-soluble, small, monodispersed and colloidally stable probes that remain bright and photostable in complex biological milieus. This peptide coating strategy was successfully tested on several types of core and core-shell quantum dots emitting from the visible (e.g. CdSe/ZnS) to the NIR spectrum range (e.g. CdTe/CdSe/ZnS). By taking advantage of the versatile physico-chemical properties of peptides, a peptide "toolkit" was designed and employed to impart several biological functions to individual quantum dots and control their biochemical activity at the nanometer scale. These biofunctionalized peptide-coated quantum dots were exploited in very diverse biological applications. Near-infrared emitting quantum dot probes were engineered with optimized blood circulation and biodistribution properties for in vivo animal imaging. Visible emitting quantum dots were used for single molecule tracking of raft-associated GPI-anchored proteins in live cells. This last application revealed the presence of discrete and non-caveolar lipid microdomains capable of impeding free lateral diffusions in the plasma membrane of Hela cells. Imaging and tracking of peptide-coated quantum dots provided the first direct evidence that microdomains having the composition and behavior expected for lipid rafts can induce molecular compartmentalization in the membrane of living cells.

  18. Origin of the nucleus and Ran-dependent transport to safeguard ribosome biogenesis in a chimeric cell

    Directory of Open Access Journals (Sweden)

    Jékely Gáspár

    2008-07-01

    Full Text Available Abstract Background The origin of the nucleus is a central problem about the origin of eukaryotes. The common ancestry of nuclear pore complexes (NPC and vesicle coating complexes indicates that the nucleus evolved via the modification of a pre-existing endomembrane system. Such an autogenous scenario is cell biologically feasible, but it is not clear what were the selective or neutral mechanisms that had led to the origin of the nuclear compartment. Results A key selective force during the autogenous origin of the nucleus could have been the need to segregate ribosome factories from the cytoplasm where ribosomal proteins (RPs of the protomitochondrium were synthesized. After its uptake by an anuclear cell the protomitochondrium transferred several of its RP genes to the host genome. Alphaproteobacterial RPs and archaebacterial-type host ribosomes were consequently synthesized in the same cytoplasm. This could have led to the formation of chimeric ribosomes. I propose that the nucleus evolved when the host cell compartmentalised its ribosome factories and the tightly linked genome to reduce ribosome chimerism. This was achieved in successive stages by first evolving karyopherin and RanGTP dependent chaperoning of RPs, followed by the evolution of a membrane network to serve as a diffusion barrier, and finally a hydrogel sieve to ensure selective permeability at nuclear pores. Computer simulations show that a gradual segregation of cytoplasm and nucleoplasm via these steps can progressively reduce ribosome chimerism. Conclusion Ribosome chimerism can provide a direct link between the selective forces for and the mechanisms of evolving nuclear transport and compartmentalisation. The detailed molecular scenario presented here provides a solution to the gradual evolution of nuclear compartmentalization from an anuclear stage. Reviewers This article was reviewed by Eugene V Koonin, Martijn Huynen, Anthony M. Poole and Patrick Forterre.

  19. In situ enzymology of DNA replication and ultraviolet-induced DNA repair synthesis in permeable human cells

    Energy Technology Data Exchange (ETDEWEB)

    Dresler, S.; Frattini, M.G.; Robinson-Hill, R.M. (Washington Univ., St. Louis, MO (USA))

    1988-09-20

    Using permeable diploid human fibroblasts, the authors have studied the deoxyribonucleoside triphosphate concentration dependences of ultraviolet- (UV-) induced DNA repair synthesis and semiconservative DNA replication. In both cell types (AG1518 and IMR-90) examined, the apparent K{sub m} values for dCTP, dGTP, and dTTP for DNA replication were between 1.2 and 2.9 {mu}M. For UV-induced DNA repair synthesis, the apparent K{sub m} values were substantially lower, ranging from 0.11 to 0.44 {mu}M for AG1518 cells and from 0.06 to 0.24 {mu}M for IMR-90 cells. Recent data implicate DNA polymerase {delta} in UV-induced repair synthesis and suggest that DNA polymerases {alpha} and {delta} are both involved in semiconservative replication. They measured K{sub m} values for dGTP and dTTP for polymerases {alpha} and {delta}, for comparison with the values for replication and repair synthesis. The deoxyribonucleotide K{sub m} values for DNA polymerase {delta} are much greater than the K{sub m} values for UV-induced repair synthesis, suggesting that when polymerase {delta} functions in DNA repair, its characteristics are altered substantially either by association with accessory proteins or by direct posttranslational modification. In contrast, the deoxyribonucleotide binding characteristics of the DNA replication machinery differ little from those of the isolated DNA polymerases. The K{sub m} values for UV-induced repair synthesis are 5-80-fold lower than deoxyribonucleotide concentrations that have been reported for intact cultured diploid human fibroblasts. For replication, however, the K{sub m} for dGTP is only slightly lower than the average cellular dGTP concentration that has been reported for exponentially growing human fibroblasts. This finding is consistent with the concept that nucleotide compartmentation is required for the attainment of high rates of DNA replication in vivo.

  20. Membrane Microdomains and Cytoskeleton Organization Shape and Regulate the IL-7 Receptor Signalosome in Human CD4 T-cells*

    Science.gov (United States)

    Tamarit, Blanche; Bugault, Florence; Pillet, Anne-Hélène; Lavergne, Vincent; Bochet, Pascal; Garin, Nathalie; Schwarz, Ulf; Thèze, Jacques; Rose, Thierry

    2013-01-01

    Interleukin (IL)-7 is the main homeostatic regulator of CD4 T-lymphocytes (helper) at both central and peripheral levels. Upon activation by IL-7, several signaling pathways, mainly JAK/STAT, PI3K/Akt and MAPK, induce the expression of genes involved in T-cell differentiation, activation, and proliferation. We have analyzed the early events of CD4 T-cell activation by IL-7. We have shown that IL-7 in the first few min induces the formation of cholesterol-enriched membrane microdomains that compartmentalize its activated receptor and initiate its anchoring to the cytoskeleton, supporting the formation of the signaling complex, the signalosome, on the IL-7 receptor cytoplasmic domains. Here we describe by stimulated emission depletion microscopy the key roles played by membrane microdomains and cytoskeleton transient organization in the IL-7-regulated JAK/STAT signaling pathway. We image phospho-STAT5 and cytoskeleton components along IL-7 activation kinetics using appropriate inhibitors. We show that lipid raft inhibitors delay and reduce IL-7-induced JAK1 and JAK3 phosphorylation. Drug-induced disassembly of the cytoskeleton inhibits phospho-STAT5 formation, transport, and translocation into the nucleus that controls the transcription of genes involved in T-cell activation and proliferation. We fit together the results of these quantitative analyses and propose the following mechanism. Activated IL-7 receptors embedded in membrane microdomains induce actin-microfilament meshwork formation, anchoring microtubules that grow radially from rafted receptors to the nuclear membrane. STAT5 phosphorylated by signalosomes are loaded on kinesins and glide along the microtubules across the cytoplasm to reach the nucleus 2 min after IL-7 stimulation. Radial microtubules disappear 15 min later, while transversal microtubules, independent of phospho-STAT5 transport, begin to bud from the microtubule organization center. PMID:23329834

  1. Identification of cytoskeletal elements enclosing the ATP pools that fuel human red blood cell membrane cation pumps.

    Science.gov (United States)

    Chu, Haiyan; Puchulu-Campanella, Estela; Galan, Jacob A; Tao, W Andy; Low, Philip S; Hoffman, Joseph F

    2012-07-31

    The type of metabolic compartmentalization that occurs in red blood cells differs from the types that exist in most eukaryotic cells, such as intracellular organelles. In red blood cells (ghosts), ATP is sequestered within the cytoskeletal-membrane complex. These pools of ATP are known to directly fuel both the Na(+)/K(+) and Ca(2+) pumps. ATP can be entrapped within these pools either by incubation with bulk ATP or by operation of the phosphoglycerate kinase and pyruvate kinase reactions to enzymatically generate ATP. When the pool is filled with nascent ATP, metabolic labeling of the Na(+)/K(+) or Ca(2+) pump phosphoproteins (E(Na)-P and E(Ca)-P, respectively) from bulk [γ-(32)P]-ATP is prevented until the pool is emptied by various means. Importantly, the pool also can be filled with the fluorescent ATP analog trinitrophenol ATP, as well as with a photoactivatable ATP analog, 8-azido-ATP (N(3)-ATP). Using the fluorescent ATP, we show that ATP accumulates and then disappears from the membrane as the ATP pools are filled and subsequently emptied, respectively. By loading N(3)-ATP into the membrane pool, we demonstrate that membrane proteins that contribute to the pool's architecture can be photolabeled. With the aid of an antibody to N(3)-ATP, we identify these labeled proteins by immunoblotting and characterize their derived peptides by mass spectrometry. These analyses show that the specific peptides that corral the entrapped ATP derive from sequences within β-spectrin, ankyrin, band 3, and GAPDH.

  2. Application of the Principles of Systems Biology and Wiener's Cybernetics for Analysis of Regulation of Energy Fluxes in Muscle Cells in Vivo

    Directory of Open Access Journals (Sweden)

    Rita Guzun

    2010-03-01

    Full Text Available The mechanisms of regulation of respiration and energy fluxes in the cells are analyzed based on the concepts of systems biology, non-equilibrium steady state kinetics and applications of Wiener’s cybernetic principles of feedback regulation. Under physiological conditions cardiac function is governed by the Frank-Starling law and the main metabolic characteristic of cardiac muscle cells is metabolic homeostasis, when both workload and respiration rate can be changed manifold at constant intracellular level of phosphocreatine and ATP in the cells. This is not observed in skeletal muscles. Controversies in theoretical explanations of these observations are analyzed. Experimental studies of permeabilized fibers from human skeletal muscle vastus lateralis and adult rat cardiomyocytes showed that the respiration rate is always an apparent hyperbolic but not a sigmoid function of ADP concentration. It is our conclusion that realistic explanations of regulation of energy fluxes in muscle cells require systemic approaches including application of the feedback theory of Wiener’s cybernetics in combination with detailed experimental research. Such an analysis reveals the importance of limited permeability of mitochondrial outer membrane for ADP due to interactions of mitochondria with cytoskeleton resulting in quasi-linear dependence of respiration rate on amplitude of cyclic changes in cytoplasmic ADP concentrations. The system of compartmentalized creatine kinase (CK isoenzymes functionally coupled to ANT and ATPases, and mitochondrial-cytoskeletal interactions separate energy fluxes (mass and energy transfer from signalling (information transfer within dissipative metabolic structures – intracellular energetic units (ICEU. Due to the non-equilibrium state of CK reactions, intracellular ATP utilization and mitochondrial ATP regeneration are interconnected by the PCr flux from mitochondria. The feedback regulation of respiration occurring via

  3. Electrorefining cell evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Bronson, M.C.; Thomas, R.L. (ed.)

    1989-04-14

    Operational characteristics of the LANL electrorefining cell, a modified LANL electrorefining cell, and an advanced electrorefining cell (known as the CRAC cell) were determined. Average process yields achieved were: 75% for the LANL cell, 82% for the modified LANL cell, and 86% for the CRAC cell. All product metal from the LANL and modified LANL cells was within foundry specifications. Metal from one run in the CRAC cell exceeded foundry specifications for tantalum. The LANL and modified LANL cells were simple in design and operation, but product separation was more labor intensive than with the CRAC cell. The CRAC cell was more complicated in design but remained relatively simple in operation. A decision analysis concluded that the modified LANL cell was the preferred cell. It was recommended that the modified LANL cell be implemented by the Plutonium Recovery Project at Rocky Flats and that development of the CRAC cell continue. 8 refs., 22 figs., 12 tabs.

  4. Basal Cell Carcinoma

    Science.gov (United States)

    ... Kids’ zone Video library Find a dermatologist Basal cell carcinoma Overview Basal cell carcinoma: This skin cancer ... that has received years of sun exposure. Basal cell carcinoma: Overview Basal cell carcinoma (BCC) is the ...

  5. Stem Cell Basics

    Science.gov (United States)

    ... healthy cells replace damaged cells in adult organisms. Stem cell research is one of the most fascinating areas of ... as with many expanding fields of scientific inquiry, research on stem cells raises scientific questions as rapidly as it generates ...

  6. Sickle cell anemia

    Science.gov (United States)

    Anemia - sickle cell; Hemoglobin SS disease (Hb SS); Sickle cell disease ... Sickle cell anemia is caused by an abnormal type of hemoglobin called hemoglobin S. Hemoglobin is a protein inside red blood cells ...

  7. DNA-cell conjugates

    Science.gov (United States)

    Hsiao, Shih-Chia; Francis, Matthew B.; Bertozzi, Carolyn; Mathies, Richard; Chandra, Ravi; Douglas, Erik; Twite, Amy; Toriello, Nicholas; Onoe, Hiroaki

    2016-05-03

    The present invention provides conjugates of DNA and cells by linking the DNA to a native functional group on the cell surface. The cells can be without cell walls or can have cell walls. The modified cells can be linked to a substrate surface and used in assay or bioreactors.

  8. Potency of Stem Cells

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Potency of Stem Cells. Totipotent Stem Cells (Zygote + first 2 divisions). -Can form placenta, embryo, and any cell of the body. Pluripotent (Embryonic Stem Cells). -Can form any cell of the body but can not form placenta, hence no embryo. Multipotent (Adult stem cells).

  9. Incorporating Cancer Stem Cells in Radiation Therapy Treatment Response Modeling and the Implication in Glioblastoma Multiforme Treatment Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Victoria Y.; Nguyen, Dan; Pajonk, Frank; Kupelian, Patrick; Kaprealian, Tania; Selch, Michael; Low, Daniel A.; Sheng, Ke, E-mail: ksheng@mednet.ucla.edu

    2015-03-15

    Purpose: To perform a preliminary exploration with a simplistic mathematical cancer stem cell (CSC) interaction model to determine whether the tumor-intrinsic heterogeneity and dynamic equilibrium between CSCs and differentiated cancer cells (DCCs) can better explain radiation therapy treatment response with a dual-compartment linear-quadratic (DLQ) model. Methods and Materials: The radiosensitivity parameters of CSCs and DCCs for cancer cell lines including glioblastoma multiforme (GBM), non–small cell lung cancer, melanoma, osteosarcoma, and prostate, cervical, and breast cancer were determined by performing robust least-square fitting using the DLQ model on published clonogenic survival data. Fitting performance was compared with the single-compartment LQ (SLQ) and universal survival curve models. The fitting results were then used in an ordinary differential equation describing the kinetics of DCCs and CSCs in response to 2- to 14.3-Gy fractionated treatments. The total dose to achieve tumor control and the fraction size that achieved the least normal biological equivalent dose were calculated. Results: Smaller cell survival fitting errors were observed using DLQ, with the exception of melanoma, which had a low α/β = 0.16 in SLQ. Ordinary differential equation simulation indicated lower normal tissue biological equivalent dose to achieve the same tumor control with a hypofractionated approach for 4 cell lines for the DLQ model, in contrast to SLQ, which favored 2 Gy per fraction for all cells except melanoma. The DLQ model indicated greater tumor radioresistance than SLQ, but the radioresistance was overcome by hypofractionation, other than the GBM cells, which responded poorly to all fractionations. Conclusion: The distinct radiosensitivity and dynamics between CSCs and DCCs in radiation therapy response could perhaps be one possible explanation for the heterogeneous intertumor response to hypofractionation and in some cases superior outcome from

  10. The cellular localization of autotaxin impacts on its biological functions in human thyroid carcinoma cells.

    Science.gov (United States)

    Seifert, Anja; Klonisch, Thomas; Wulfaenger, Jens; Haag, Friedrich; Dralle, Henning; Langner, Jürgen; Hoang-Vu, Cuong; Kehlen, Astrid

    2008-06-01

    Autotaxin (ATX/NPP2) shows a nucleotide pyrophosphatase/phosphodiesterase and lysophospholipase D (lysoPLD) activity and is a member of a family of structurally-related mammalian ecto-nucleotide pyrophosphate/phosphodiesterases (E-NPP1-3). ATX is unique among E-NPP as it is secreted and not membrane-bound as are NPP1 and -3. The ATX gene activity is significantly higher in undifferentiated anaplastic (UTC) as compared to follicular (FTC) and papillary thyroid carcinomas (PTC) or goiter tissues. ATX also enhances the motility of thyroid tumor cells. We bio-engineered stable transfectants of the human thyroid carcinoma cell line FTC-238 expressing either bioactively-secreted (sATX) or membrane-anchored ATX (mATX) to identify the biological functions of ATX which critically depend on the E-NPP member being secreted and provide insight into the effects of high local ATX concentrations and cellular responses. An increased cell motility was exclusively observed with FTC-238 sATX transfectants, whereas membrane-anchored ATX appeared to impair motility. We identified IL-1beta as an upstream suppressor of ATX expression in FTC-238, ATX-mediated motility in FTC-238 and stable transfectants, with IL-1beta having the strongest motility-suppressive effect on FTC-238 sATX clones. sATX and mATX strongly increased the anchorage-independent colony formation of FTC-238 but the size and number of colonies formed in the soft agar were significantly smaller in FTC-238 mATX versus the FTC-238 sATX clones. The cancer-testis antigen BAGE was identified as a novel target gene of ATX in FTC-238. Transcript levels for BAGE were 6-fold higher in FTC-238 mATX versus sATX clones. Increased BAGE transcript levels were also detected in tissues of patients with UTC versus FTC, PTC or goiter tissues. In summary, enhanced tumor cell motility and tumorigenic capacity critically depended on sATX in thyroid carcinoma cells. Irrespective of its compartmentalization, the cancer-testis antigen BAGE was

  11. Skin Stem Cells in Skin Cell Therapy

    Directory of Open Access Journals (Sweden)

    Mollapour Sisakht

    2015-12-01

    Full Text Available Context Preclinical and clinical research has shown that stem cell therapy is a promising therapeutic option for many diseases. This article describes skin stem cells sources and their therapeutic applications. Evidence Acquisition Compared with conventional methods, cell therapy reduces the surgical burden for patients because it is simple and less time-consuming. Skin cell therapy has been developed for variety of diseases. By isolation of the skin stem cell from the niche, in vitro expansion and transplantation of cells offers a surprising healing capacity profile. Results Stem cells located in skin cells have shown interesting properties such as plasticity, transdifferentiation, and specificity. Mesenchymal cells of the dermis, hypodermis, and other sources are currently being investigated to promote regeneration. Conclusions Because skin stem cells are highly accessible from autologous sources and their immunological profile is unique, they are ideal for therapeutic approaches. Optimization of administrative routes requires more investigation own to the lack of a standard protocol.

  12. NKT Cell Responses to B Cell Lymphoma.

    Science.gov (United States)

    Li, Junxin; Sun, Wenji; Subrahmanyam, Priyanka B; Page, Carly; Younger, Kenisha M; Tiper, Irina V; Frieman, Matthew; Kimball, Amy S; Webb, Tonya J

    2014-06-01

    Natural killer T (NKT) cells are a unique subset of CD1d-restricted T lymphocytes that express characteristics of both T cells and natural killer cells. NKT cells mediate tumor immune-surveillance; however, NKT cells are numerically reduced and functionally impaired in lymphoma patients. Many hematologic malignancies express CD1d molecules and co-stimulatory proteins needed to induce anti-tumor immunity by NKT cells, yet most tumors are poorly immunogenic. In this study, we sought to investigate NKT cell responses to B cell lymphoma. In the presence of exogenous antigen, both mouse and human NKT cell lines produce cytokines following stimulation by B cell lymphoma lines. NKT cell populations were examined ex vivo in mouse models of spontaneous B cell lymphoma, and it was found that during early stages, NKT cell responses were enhanced in lymphoma-bearing animals compared to disease-free animals. In contrast, in lymphoma-bearing animals with splenomegaly and lymphadenopathy, NKT cells were functionally impaired. In a mouse model of blastoid variant mantle cell lymphoma, treatment of tumor-bearing mice with a potent NKT cell agonist, α-galactosylceramide (α-GalCer), resulted in a significant decrease in disease pathology. Ex vivo studies demonstrated that NKT cells from α-GalCer treated mice produced IFN-γ following α-GalCer restimulation, unlike NKT cells from vehicle-control treated mice. These data demonstrate an important role for NKT cells in the immune response to an aggressive hematologic malignancy like mantle cell lymphoma.

  13. Epithelial cell polarity, stem cells and cancer

    DEFF Research Database (Denmark)

    Martin-Belmonte, Fernando; Perez-Moreno, Mirna

    2011-01-01

    After years of extensive scientific discovery much has been learned about the networks that regulate epithelial homeostasis. Loss of expression or functional activity of cell adhesion and cell polarity proteins (including the PAR, crumbs (CRB) and scribble (SCRIB) complexes) is intricately related......, deregulation of adhesion and polarity proteins can cause misoriented cell divisions and increased self-renewal of adult epithelial stem cells. In this Review, we highlight some advances in the understanding of how loss of epithelial cell polarity contributes to tumorigenesis....

  14. Modeling cell-in-cell structure into its biological significance

    OpenAIRE

    He, M-f; Wang, S; Wang, Y; Wang, X-n

    2013-01-01

    Although cell-in-cell structure was noted 100 years ago, the molecular mechanisms of ?entering' and the destination of cell-in-cell remain largely unclear. It takes place among the same type of cells (homotypic cell-in-cell) or different types of cells (heterotypic cell-in-cell). Cell-in-cell formation affects both effector cells and their host cells in multiple aspects, while cell-in-cell death is under more intensive investigation. Given that cell-in-cell has an important role in maintainin...

  15. Mucosal immunity and B cells in teleosts: effect of vaccination and stress.

    Directory of Open Access Journals (Sweden)

    David eParra

    2015-07-01

    Full Text Available Fish are subjected to several insults from the environment, which may endanger animal survival. Mucosal surfaces are the first line of defense against those threats and they act as a physical barrier to protect the animal but also function as immunologically active tissues. Thus, four mucosal-associated lymphoid tissues have been described in fish, which lead the immune responses in gut, skin, gills and nose. Humoral and cellular immunity, as well as its regulation and the factors that influence the response in these mucosal lymphoid tissues is still not well known in most of fish species. Mucosal B-lymphocytes and immunoglobulins (Igs are one of the key players in the immune response after vaccination. Recent findings about IgT in trout have delimited the compartmentalization of immune response in systemic and mucosal. The existence of IgT as a specialized mucosa Ig gives us the opportunity of measuring mucosal specific responses after vaccination, a fact that was not possible until recently in most of the fish species. Vaccination process is influenced by several factors, being stress one of the main stimuli determining the success of the vaccine. Thus, one of the major goals in a vaccination process is to avoid possible situations of stress, which might interfere with fish immune performance. However, the interaction between immune and neuroendocrine systems at mucosal tissues is still unknown. In this review we will summarized the latest findings about B-lymphocytes and immunoglobulins in mucosal immunity and the effect of stress and vaccines on B cell response at mucosal sites. It is important to point out that a small number of studies have been published regarding mucosal stress and very few about the influence of stress over mucosal B-lymphocytes.

  16. Combination of laccase and catalase in construction of H2O2-O2 based biocathode for applications in glucose biofuel cells.

    Science.gov (United States)

    Ammam, Malika; Fransaer, Jan

    2013-01-15

    In this study, we propose a new strategy to boost the power density of glucose biofuel cells (GBFCs) biocathodes. By combining laccase with catalase enzymes electrophoretically deposited by means of AC electric fields on multiple walled carbon nanotubes modified platinum black and, then stabilized by an outer layer of polypyrrole in the construction of GC/MWCNTs/Ptb/LAc-CAt/PPy biocathode, we can take advantage of the H(2)O(2) present in the solution or body tissue to increase the level of the dissolved O(2). The results from cyclic voltammetry, amperometry and electrochemical impedance spectroscopy demonstrate that the deposited enzymes laccase and catalase by means of AC-EPD did not inhibit each other and carry out ∼90% of the catalytic reduction process of O(2)-H(2)O(2). The power density of the non-compartmentalized GBFC constructed from GC/MWCNTs/Ptb/LAc-CAt/PPy biocathode and GC/MWCNTs/GOx/PPy bioanode in phosphate buffer containing 10mM glucose and equal amounts of dissolved O(2) and H(2)O(2) (0.3mM) is almost doubled because of the presence of catalase enzyme in the constructed biocathode. The latter might be of great interest for in vivo studies of GBFCs where the concentration of dissolved O(2) in the body tissues or biological fluids is very low compared to in vitro conditions (buffers under air). Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Deafness and loss of cochlear hair cells in the absence of thyroid hormone transporters Slc16a2 (Mct8) and Slc16a10 (Mct10).

    Science.gov (United States)

    Sharlin, David S; Ng, Lily; Verrey, François; Visser, Theo J; Liu, Ye; Olszewski, Rafal T; Hoa, Michael; Heuer, Heike; Forrest, Douglas

    2018-03-13

    Transmembrane proteins that mediate the cellular uptake or efflux of thyroid hormone potentially provide a key level of control over neurodevelopment. In humans, defects in one such protein, solute carrier SLC16A2 (MCT8) are associated with psychomotor retardation. Other proteins that transport the active form of thyroid hormone triiodothyronine (T3) or its precursor thyroxine (T4) have been identified in vitro but the wider significance of such transporters in vivo is unclear. The development of the auditory system requires thyroid hormone and the cochlea is a primary target tissue. We have proposed that the compartmental anatomy of the cochlea would necessitate transport mechanisms to convey blood-borne hormone to target tissues. We report hearing loss in mice with mutations in Slc16a2 and a related gene Slc16a10 (Mct10, Tat1). Deficiency of both transporters results in retarded development of the sensory epithelium similar to impairment caused by hypothyroidism, compounded with a progressive degeneration of cochlear hair cells and loss of endocochlear potential. Administration of T3 largely restores the development of the sensory epithelium and limited auditory function, indicating the T3-sensitivity of defects in the sensory epithelium. The results indicate a necessity for thyroid hormone transporters in cochlear development and function.

  18. Structural and hydrodynamic properties of an intrinsically disordered region of a germ cell-specific protein on phase separation.

    Science.gov (United States)

    Brady, Jacob P; Farber, Patrick J; Sekhar, Ashok; Lin, Yi-Hsuan; Huang, Rui; Bah, Alaji; Nott, Timothy J; Chan, Hue Sun; Baldwin, Andrew J; Forman-Kay, Julie D; Kay, Lewis E

    2017-09-26

    Membrane encapsulation is frequently used by the cell to sequester biomolecules and compartmentalize their function. Cells also concentrate molecules into phase-separated protein or protein/nucleic acid "membraneless organelles" that regulate a host of biochemical processes. Here, we use solution NMR spectroscopy to study phase-separated droplets formed from the intrinsically disordered N-terminal 236 residues of the germ-granule protein Ddx4. We show that the protein within the concentrated phase of phase-separated Ddx4, [Formula: see text], diffuses as a particle of 600-nm hydrodynamic radius dissolved in water. However, NMR spectra reveal sharp resonances with chemical shifts showing [Formula: see text] to be intrinsically disordered. Spin relaxation measurements indicate that the backbone amides of [Formula: see text] have significant mobility, explaining why high-resolution spectra are observed, but motion is reduced compared with an equivalently concentrated nonphase-separating control. Observation of a network of interchain interactions, as established by NOE spectroscopy, shows the importance of Phe and Arg interactions in driving the phase separation of Ddx4, while the salt dependence of both low- and high-concentration regions of phase diagrams establishes an important role for electrostatic interactions. The diffusion of a series of small probes and the compact but disordered 4E binding protein 2 (4E-BP2) protein in [Formula: see text] are explained by an excluded volume effect, similar to that found for globular protein solvents. No changes in structural propensities of 4E-BP2 dissolved in [Formula: see text] are observed, while changes to DNA and RNA molecules have been reported, highlighting the diverse roles that proteinaceous solvents play in dictating the properties of dissolved solutes.

  19. Sickle Cell Disease

    Science.gov (United States)

    Sickle cell anemia is a disease in which your body produces abnormally shaped red blood cells. The cells are shaped like a crescent or sickle. They ... last as long as normal, round red blood cells. This leads to anemia. The sickle cells also ...

  20. Host cell reactivation in mammalian cells

    International Nuclear Information System (INIS)

    Lytle, C.D.; Benane, S.G.; Stafford, J.E.

    1976-01-01

    The survival of UV-irradiated herpes simplex virus was determined in cultured Potoroo (a marsupial) and human cells under lighting conditions which promoted photereactivation. Photoreactivation was readily demonstrated for herpes virus in two lines of Potoroo cells with dose reduction factors of 0.7 to 0.8 for ovary cells and 0.5 to 0.7 for kidney cells. Light from Blacklite (near UV) lamps was more effective than from Daylight (mostly visible) lamps, suggesting that near UV radiation was more effecient for photoreactivation in Potoroo cells. The quantitative and qualitative aspects of this photoreactivation were similar to those reported for a similar virus infecting chick embryo cells. UV-survival curves of herpes virus in Potoroo cells indicated a high level of 'dark' host cell reactivation. No photoreactivation was found for UV-irradiated vaccinia virus in Potoroo cells. A similar photoreactivation study was done using special control lighting (lambda>600 nm) and human cells with normal repair and with cells deficient in excision repair (XP). No photoreactivation was found for UV-irradiated herpes virus in either human cell with either Blacklite or Daylight lamps as the sources of photoreactivating light. This result contrasts with a report of photoreactivation for a herpes virus in the same XP cells using incandescent lamps. (author)

  1. Fuel cell-fuel cell hybrid system

    Science.gov (United States)

    Geisbrecht, Rodney A.; Williams, Mark C.

    2003-09-23

    A device for converting chemical energy to electricity is provided, the device comprising a high temperature fuel cell with the ability for partially oxidizing and completely reforming fuel, and a low temperature fuel cell juxtaposed to said high temperature fuel cell so as to utilize remaining reformed fuel from the high temperature fuel cell. Also provided is a method for producing electricity comprising directing fuel to a first fuel cell, completely oxidizing a first portion of the fuel and partially oxidizing a second portion of the fuel, directing the second fuel portion to a second fuel cell, allowing the first fuel cell to utilize the first portion of the fuel to produce electricity; and allowing the second fuel cell to utilize the second portion of the fuel to produce electricity.

  2. Are mesenchymal stromal cells immune cells?

    NARCIS (Netherlands)

    M.J. Hoogduijn (Martin)

    2015-01-01

    textabstractMesenchymal stromal cells (MSCs) are considered to be promising agents for the treatment of immunological disease. Although originally identified as precursor cells for mesenchymal lineages, in vitro studies have demonstrated that MSCs possess diverse immune regulatory capacities.

  3. Galvanic cells: setting up the Daniell cell.

    OpenAIRE

    Milla González, Miguel

    2008-01-01

    With the reagents (0.05M copper nitrate solution, 0.05M zinc nitrate solution) and material (glassware, potentiometer, electric wire) availabe in the laboratory, the user must set up the Daniell cell. Different configurations can be possible if the half cells are filled with either electrolyte solution. The cell connections to the measuring device can also be changed. In all instances, an explanation of the set up cell is obtained as well as of the measured potential difference.

  4. Inside the Cell

    Science.gov (United States)

    ... NIGMS Home > Science Education > Inside the Cell Inside the Cell Seeing Cells Classroom Poster Order a Free Copy Spotlight The Cell’s Mailroom The Proteasome: The Cell’s Trash Processor in ...

  5. Stem Cell Information: Glossary

    Science.gov (United States)

    ... Long-term self-renewal Meiosis Mesenchymal stem cells Mesoderm Microenvironment Mitosis Multipotent Neural stem cell Neurons Oligodendrocyte ... layers. The three layers are the ectoderm , the mesoderm , and the endoderm . Hematopoietic stem cell - A stem ...

  6. Lung cancer - small cell

    Science.gov (United States)

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC are ...

  7. The effects of freezing, storage, and thawing on cell compartment integrity and ultrastructure

    DEFF Research Database (Denmark)

    Prentø, P

    1997-01-01

    The effects of slow freezing and thawing on enzyme compartmentalization and ultrastructure were studied in rat liver slices frozen in dry ice, isopentane/ethanol-dry ice, or liquid nitrogen, and stored at -80 degrees C for 1-14 days. Non-frozen slices served as controls. Frozen liver slices were...

  8. [Natural killer cells complot with dendritic cells].

    Science.gov (United States)

    Bielawska-Pohl, Aleksandra; Pajtasz-Piasecka, Elżbieta; Duś, Danuta

    2013-03-18

    Dendritic cells (DC) were initially considered as antigen presenting cells participating in the polarization of the immune response. Further understanding of their biology allowed determining their additional functions such as immunoregulatory and cytotoxicity. Until recently natural killer (NK) cells were known as a homogeneous population of lymphocytes capable of non-specific recognizing and eliminating target cells. Now it is widely accepted that NK cells, as a heterogeneous population, may also possess immunomodulatory functions. Moreover, the most recent analysis of the interactions between DC and NK cells revealed the exceptional functions of these cells. As a result of these studies the existence of bitypic cell population was postulated. The distinguishing features of these hybrid cells are: the expression of surface receptors typical for NK cells and DC, the cytotoxic activity, the production of interferons as well as their ability to present antigen after prior stimulation. Despite the lack of strong direct evidence that the same cell can be both cytotoxic and effectively present the antigen at the same time, there are experimental findings suggesting that generated ex vivo bitypic cells may be used in antitumor therapy. 

  9. NK cells and T cells: mirror images?

    NARCIS (Netherlands)

    Versteeg, R.

    1992-01-01

    The expression of MHC class I molecules protects cells against lysis by natural killer (NK) cells. It is possible that NK cells are 'educated' to recognize self MHC class I molecules and that the combination of self peptide and MHC class I molecule blocks NK-mediated lysis. Here, Rogier Versteeg

  10. Snail modulates cell metabolism in MDCK cells

    Energy Technology Data Exchange (ETDEWEB)

    Haraguchi, Misako, E-mail: haraguci@m3.kufm.kagoshima-u.ac.jp [Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Indo, Hiroko P. [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Iwasaki, Yasumasa [Health Care Center, Kochi University, Kochi 780-8520 (Japan); Iwashita, Yoichiro [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Fukushige, Tomoko [Department of Dermatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Majima, Hideyuki J. [Department of Maxillofacial Radiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Izumo, Kimiko; Horiuchi, Masahisa [Department of Environmental Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Kanekura, Takuro [Department of Dermatology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Furukawa, Tatsuhiko [Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan); Ozawa, Masayuki [Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544 (Japan)

    2013-03-22

    Highlights: ► MDCK/snail cells were more sensitive to glucose deprivation than MDCK/neo cells. ► MDCK/snail cells had decreased oxidative phosphorylation, O{sub 2} consumption and ATP content. ► TCA cycle enzyme activity, but not expression, was lower in MDCK/snail cells. ► MDCK/snail cells showed reduced PDH activity and increased PDK1 expression. ► MDCK/snail cells showed reduced expression of GLS2 and ACLY. -- Abstract: Snail, a repressor of E-cadherin gene transcription, induces epithelial-to-mesenchymal transition and is involved in tumor progression. Snail also mediates resistance to cell death induced by serum depletion. By contrast, we observed that snail-expressing MDCK (MDCK/snail) cells undergo cell death at a higher rate than control (MDCK/neo) cells in low-glucose medium. Therefore, we investigated whether snail expression influences cell metabolism in MDCK cells. Although gylcolysis was not affected in MDCK/snail cells, they did exhibit reduced pyruvate dehydrogenase (PDH) activity, which controls pyruvate entry into the tricarboxylic acid (TCA) cycle. Indeed, the activity of multiple enzymes involved in the TCA cycle was decreased in MDCK/snail cells, including that of mitochondrial NADP{sup +}-dependent isocitrate dehydrogenase (IDH2), succinate dehydrogenase (SDH), and electron transport Complex II and Complex IV. Consequently, lower ATP content, lower oxygen consumption and increased survival under hypoxic conditions was also observed in MDCK/snail cells compared to MDCK/neo cells. In addition, the expression and promoter activity of pyruvate dehydrogenase kinase 1 (PDK1), which phosphorylates and inhibits the activity of PDH, was increased in MDCK/snail cells, while expression levels of glutaminase 2 (GLS2) and ATP-citrate lyase (ACLY), which are involved in glutaminolysis and fatty acid synthesis, were decreased in MDCK/snail cells. These results suggest that snail modulates cell metabolism by altering the expression and activity of

  11. Cell control report

    CERN Document Server

    2013-01-01

    Please note this is a Short Discount publication. This extensive report provides an essential overview of cells and their use as factory automation building blocks. The following issues are discussed in depth: Cell integration Cell software and standards Future technologies applied to cells Plus Cell control applications including: - rotary parts manufacturing - diesel engine component development - general cell control development at the General Electric Corporation - a vendor list.

  12. Pseudomonas aeruginosa Utilizes the Type III Secreted Toxin ExoS to Avoid Acidified Compartments within Epithelial Cells

    Science.gov (United States)

    Heimer, Susan R.; Evans, David J.; Stern, Michael E.; Barbieri, Joseph T.; Yahr, Timothy; Fleiszig, Suzanne M. J.

    2013-01-01

    Invasive Pseudomonas aeruginosa (PA) can enter epithelial cells wherein they mediate formation of plasma membrane bleb-niches for intracellular compartmentalization. This phenotype, and capacity for intracellular replication, requires the ADP-ribosyltransferase (ADPr) activity of ExoS, a PA type III secretion system (T3SS) effector protein. Thus, PA T3SS mutants lack these capacities and instead traffic to perinuclear vacuoles. Here, we tested the hypothesis that the T3SS, via the ADPr activity of ExoS, allows PA to evade acidic vacuoles that otherwise suppress its intracellular viability. The acidification state of bacteria-occupied vacuoles within infected corneal epithelial cells was studied using LysoTracker to visualize acidic, lysosomal vacuoles. Steady state analysis showed that within cells wild-type PAO1 localized to both membrane bleb-niches and vacuoles, while both exsA (transcriptional activator) and popB (effector translocation) T3SS mutants were only found in vacuoles. The acidification state of occupied vacuoles suggested a relationship with ExoS expression, i.e. vacuoles occupied by the exsA mutant (unable to express ExoS) were more often acidified than either popB mutant or wild-type PAO1 occupied vacuoles (p vacuoles, and vice versa, for both popB mutants and wild-type bacteria. Complementation of a triple effector null mutant of PAO1 with exoS (pUCPexoS) reduced the number of acidified bacteria-occupied vacuoles per cell; pUCPexoSE381D which lacks ADPr activity did not. The H+-ATPase inhibitor bafilomycin rescued intracellular replication to wild-type levels for exsA mutants, showing its viability is suppressed by vacuolar acidification. Taken together, the data show that the mechanism by which ExoS ADPr activity allows intracellular replication by PA involves suppression of vacuolar acidification. They also show that variability in ExoS expression by wild-type PA inside cells can differentially influence the fate of individual intracellular

  13. GSPEL - Fuel Cell Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Fuel Cell Lab (FCL)Established to investigate, integrate, testand verifyperformance and technology readiness offuel cell systems and fuel reformers for use with...

  14. Squamous cell skin cancer

    Science.gov (United States)

    ... that reflect light more, such as water, sand, concrete, and areas that are painted white. The higher ... - skin - squamous cell; Skin cancer - squamous cell; Nonmelanoma skin cancer - squamous ...

  15. The hallmarks of cell-cell fusion.

    Science.gov (United States)

    Hernández, Javier M; Podbilewicz, Benjamin

    2017-12-15

    Cell-cell fusion is essential for fertilization and organ development. Dedicated proteins known as fusogens are responsible for mediating membrane fusion. However, until recently, these proteins either remained unidentified or were poorly understood at the mechanistic level. Here, we review how fusogens surmount multiple energy barriers to mediate cell-cell fusion. We describe how early preparatory steps bring membranes to a distance of ∼10 nm, while fusogens act in the final approach between membranes. The mechanical force exerted by cell fusogens and the accompanying lipidic rearrangements constitute the hallmarks of cell-cell fusion. Finally, we discuss the relationship between viral and eukaryotic fusogens, highlight a classification scheme regrouping a superfamily of fusogens called Fusexins, and propose new questions and avenues of enquiry. © 2017. Published by The Company of Biologists Ltd.

  16. Sepsis reveals compartment-specific responses in intestinal proliferation and apoptosis in transgenic mice whose enterocytes re-enter the cell cycle.

    Science.gov (United States)

    Lyons, John D; Klingensmith, Nathan J; Otani, Shunsuke; Mittal, Rohit; Liang, Zhe; Ford, Mandy L; Coopersmith, Craig M

    2017-12-01

    Cell production and death are tightly regulated in the rapidly renewing gut epithelium, with proliferation confined to crypts and apoptosis occurring in villi and crypts. This study sought to determine how stress alters these compartmentalized processes. Wild-type mice made septic via cecal ligation and puncture had decreased crypt proliferation and increased crypt and villus apoptosis. Fabpi -TAg mice expressing large T-antigen solely in villi had ectopic enterocyte proliferation with increased villus apoptosis in unmanipulated animals. Septic fabpi -TAg mice had an unexpected increase in villus proliferation compared with unmanipulated littermates, whereas crypt proliferation was decreased. Cell cycle regulators cyclin D1 and cyclin D2 were decreased in jejunal tissue in septic transgenic mice. In contrast, villus and crypt apoptosis were increased in septic fabpi -TAg mice. To examine the relationship between apoptosis and proliferation in a compartment-specific manner, fabpi -TAg mice were crossed with fabpl -Bcl-2 mice, resulting in expression of both genes in the villus but Bcl-2 alone in the crypt. Septic bi-transgenic animals had decreased crypt apoptosis but had a paradoxical increase in villus apoptosis compared with septic fabpi -TAg mice, associated with decreased proliferation in both compartments. Thus, sepsis unmasks compartment-specific proliferative and apoptotic regulation that is not present under homeostatic conditions.-Lyons, J. D., Klingensmith, N. J., Otani