WorldWideScience

Sample records for cell biology signals

  1. Thematic minireview series: cell biology of G protein signaling.

    Science.gov (United States)

    Dohlman, Henrik G

    2015-03-13

    This thematic series is on the topic of cell signaling from a cell biology perspective, with a particular focus on G proteins. G protein-coupled receptors (GPCRs, also known as seven-transmembrane receptors) are typically found at the cell surface. Upon agonist binding, these receptors will activate a GTP-binding G protein at the cytoplasmic face of the plasma membrane. Additionally, there is growing evidence that G proteins can also be activated by non-receptor binding partners, and they can signal from non-plasma membrane compartments. The production of second messengers at multiple, spatially distinct locations represents a type of signal encoding that has been largely neglected. The first minireview in the series describes biosensors that are being used to monitor G protein signaling events in live cells. The second describes the implementation of antibody-based biosensors to dissect endosome signaling by G proteins and their receptors. The third describes the function of a non-receptor, cytoplasmic activator of G protein signaling, called GIV (Girdin). Collectively, the advances described in these articles provide a deeper understanding and emerging opportunities for new pharmacology. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Illuminating cell signaling: Using Vibrio harveyi in an introductory biology laboratory.

    Science.gov (United States)

    Hrizo, Stacy L; Kaufmann, Nancy

    2009-05-01

    Cell signaling is an essential cellular process that is performed by all living organisms. Bacteria communicate with each other using a chemical language in a signaling pathway that allows bacteria to evaluate the size of their population, determine when they have reached a critical mass (quorum sensing), and then change their behavior in unison to carry out processes that require many cells acting together to be effective. Here, we describe a laboratory exercise in which the students observe the induction of bioluminescence or light production as an output of the quorum sensing pathway in Vibrio harveyi. Using both wildtype and mutant bacterial strains they explore the induction of community behavior via cell-cell communication by determining whether there is a correlation between the density of the bacterial population and the production of light by the bacterial culture. Using data from a cross-feeding assay the students make predictions about the identity of their strains and directly test these predictions using conditioned media from various liquid cultures. This two part exercise is designed for an introductory biology course to begin familiarizing students with collecting data, making predictions based upon the data and directly testing their hypotheses using a model organism with a cell signaling pathway that has a simple visual output: light production. Copyright © 2009 International Union of Biochemistry and Molecular Biology, Inc.

  3. Wnt Signaling in Cancer Stem Cell Biology

    NARCIS (Netherlands)

    de Sousa E Melo, Felipe; Vermeulen, Louis

    2016-01-01

    Aberrant regulation of Wnt signaling is a common theme seen across many tumor types. Decades of research have unraveled the epigenetic and genetic alterations that result in elevated Wnt pathway activity. More recently, it has become apparent that Wnt signaling levels identify stem-like tumor cells

  4. Reconstruction and signal propagation analysis of the Syk signaling network in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Aurélien Naldi

    2017-03-01

    Full Text Available The ability to build in-depth cell signaling networks from vast experimental data is a key objective of computational biology. The spleen tyrosine kinase (Syk protein, a well-characterized key player in immune cell signaling, was surprisingly first shown by our group to exhibit an onco-suppressive function in mammary epithelial cells and corroborated by many other studies, but the molecular mechanisms of this function remain largely unsolved. Based on existing proteomic data, we report here the generation of an interaction-based network of signaling pathways controlled by Syk in breast cancer cells. Pathway enrichment of the Syk targets previously identified by quantitative phospho-proteomics indicated that Syk is engaged in cell adhesion, motility, growth and death. Using the components and interactions of these pathways, we bootstrapped the reconstruction of a comprehensive network covering Syk signaling in breast cancer cells. To generate in silico hypotheses on Syk signaling propagation, we developed a method allowing to rank paths between Syk and its targets. We first annotated the network according to experimental datasets. We then combined shortest path computation with random walk processes to estimate the importance of individual interactions and selected biologically relevant pathways in the network. Molecular and cell biology experiments allowed to distinguish candidate mechanisms that underlie the impact of Syk on the regulation of cortactin and ezrin, both involved in actin-mediated cell adhesion and motility. The Syk network was further completed with the results of our biological validation experiments. The resulting Syk signaling sub-networks can be explored via an online visualization platform.

  5. Cell biology symposium: Membrane trafficking and signal transduction

    Science.gov (United States)

    In general, membrane trafficking is a broad group of processes where proteins and other large molecules are distributed throughout the cell as well as adjacent extracellular spaces. Whereas signal transduction is a process where signals are transmitted through a series of chemical or molecular event...

  6. Systems Biology and Stem Cell Pluripotency

    DEFF Research Database (Denmark)

    Mashayekhi, Kaveh; Hall, Vanessa Jane; Freude, Kristine

    2016-01-01

    Recent breakthroughs in stem cell biology have accelerated research in the area of regenerative medicine. Over the past years, it has become possible to derive patient-specific stem cells which can be used to generate different cell populations for potential cell therapy. Systems biological...... modeling of stem cell pluripotency and differentiation have largely been based on prior knowledge of signaling pathways, gene regulatory networks, and epigenetic factors. However, there is a great need to extend the complexity of the modeling and to integrate different types of data, which would further...... improve systems biology and its uses in the field. In this chapter, we first give a general background on stem cell biology and regenerative medicine. Stem cell potency is introduced together with the hierarchy of stem cells ranging from pluripotent embryonic stem cells (ESCs) and induced pluripotent stem...

  7. Stochastic processes in cell biology

    CERN Document Server

    Bressloff, Paul C

    2014-01-01

    This book develops the theory of continuous and discrete stochastic processes within the context of cell biology.  A wide range of biological topics are covered including normal and anomalous diffusion in complex cellular environments, stochastic ion channels and excitable systems, stochastic calcium signaling, molecular motors, intracellular transport, signal transduction, bacterial chemotaxis, robustness in gene networks, genetic switches and oscillators, cell polarization, polymerization, cellular length control, and branching processes. The book also provides a pedagogical introduction to the theory of stochastic process – Fokker Planck equations, stochastic differential equations, master equations and jump Markov processes, diffusion approximations and the system size expansion, first passage time problems, stochastic hybrid systems, reaction-diffusion equations, exclusion processes, WKB methods, martingales and branching processes, stochastic calculus, and numerical methods.   This text is primarily...

  8. Decoding Signal Processing at the Single-Cell Level

    Energy Technology Data Exchange (ETDEWEB)

    Wiley, H. Steven

    2017-12-01

    The ability of cells to detect and decode information about their extracellular environment is critical to generating an appropriate response. In multicellular organisms, cells must decode dozens of signals from their neighbors and extracellular matrix to maintain tissue homeostasis while still responding to environmental stressors. How cells detect and process information from their surroundings through a surprisingly limited number of signal transduction pathways is one of the most important question in biology. Despite many decades of research, many of the fundamental principles that underlie cell signal processing remain obscure. However, in this issue of Cell Systems, Gillies et al present compelling evidence that the early response gene circuit can act as a linear signal integrator, thus providing significant insight into how cells handle fluctuating signals and noise in their environment.

  9. Biological signals classification and analysis

    CERN Document Server

    Kiasaleh, Kamran

    2015-01-01

    This authored monograph presents key aspects of signal processing analysis in the biomedical arena. Unlike wireless communication systems, biological entities produce signals with underlying nonlinear, chaotic nature that elude classification using the standard signal processing techniques, which have been developed over the past several decades for dealing primarily with standard communication systems. This book separates what is random from that which appears to be random, and yet is truly deterministic with random appearance. At its core, this work gives the reader a perspective on biomedical signals and the means to classify and process such signals. In particular, a review of random processes along with means to assess the behavior of random signals is also provided. The book also includes a general discussion of biological signals in order to demonstrate the inefficacy of the well-known techniques to correctly extract meaningful information from such signals. Finally, a thorough discussion of recently ...

  10. High-dimensional single-cell cancer biology.

    Science.gov (United States)

    Irish, Jonathan M; Doxie, Deon B

    2014-01-01

    Cancer cells are distinguished from each other and from healthy cells by features that drive clonal evolution and therapy resistance. New advances in high-dimensional flow cytometry make it possible to systematically measure mechanisms of tumor initiation, progression, and therapy resistance on millions of cells from human tumors. Here we describe flow cytometry techniques that enable a "single-cell " view of cancer. High-dimensional techniques like mass cytometry enable multiplexed single-cell analysis of cell identity, clinical biomarkers, signaling network phospho-proteins, transcription factors, and functional readouts of proliferation, cell cycle status, and apoptosis. This capability pairs well with a signaling profiles approach that dissects mechanism by systematically perturbing and measuring many nodes in a signaling network. Single-cell approaches enable study of cellular heterogeneity of primary tissues and turn cell subsets into experimental controls or opportunities for new discovery. Rare populations of stem cells or therapy-resistant cancer cells can be identified and compared to other types of cells within the same sample. In the long term, these techniques will enable tracking of minimal residual disease (MRD) and disease progression. By better understanding biological systems that control development and cell-cell interactions in healthy and diseased contexts, we can learn to program cells to become therapeutic agents or target malignant signaling events to specifically kill cancer cells. Single-cell approaches that provide deep insight into cell signaling and fate decisions will be critical to optimizing the next generation of cancer treatments combining targeted approaches and immunotherapy.

  11. Basolateral BMP signaling in polarized epithelial cells.

    Directory of Open Access Journals (Sweden)

    Masao Saitoh

    Full Text Available Bone morphogenetic proteins (BMPs regulate various biological processes, mostly mediated by cells of mesenchymal origin. However, the roles of BMPs in epithelial cells are poorly understood. Here, we demonstrate that, in polarized epithelial cells, BMP signals are transmitted from BMP receptor complexes exclusively localized at the basolateral surface of the cell membrane. In addition, basolateral stimulation with BMP increased expression of components of tight junctions and enhanced the transepithelial resistance (TER, counteracting reduction of TER by treatment with TGF-β or an anti-tumor drug. We conclude that BMPs maintain epithelial polarity via intracellular signaling from basolaterally localized BMP receptors.

  12. Eduard Strasburger (1844-1912): founder of modern plant cell biology.

    Science.gov (United States)

    Volkmann, Dieter; Baluška, František; Menzel, Diedrik

    2012-10-01

    Eduard Strasburger, director of the Botany Institute and the Botanical Garden at the University of Bonn from 1881 to 1912, was one of the most admirable scientists in the field of plant biology, not just as the founder of modern plant cell biology but in addition as an excellent teacher who strongly believed in "education through science." He contributed to plant cell biology by discovering the discrete stages of karyokinesis and cytokinesis in algae and higher plants, describing cytoplasmic streaming in different systems, and reporting on the growth of the pollen tube into the embryo sac and guidance of the tube by synergides. Strasburger raised many problems which are hot spots in recent plant cell biology, e.g., structure and function of the plasmodesmata in relation to phloem loading (Strasburger cells) and signaling, mechanisms of cell plate formation, vesicle trafficking as a basis for most important developmental processes, and signaling related to fertilization.

  13. Defining Biological Networks for Noise Buffering and Signaling Sensitivity Using Approximate Bayesian Computation

    Directory of Open Access Journals (Sweden)

    Shuqiang Wang

    2014-01-01

    Full Text Available Reliable information processing in cells requires high sensitivity to changes in the input signal but low sensitivity to random fluctuations in the transmitted signal. There are often many alternative biological circuits qualifying for this biological function. Distinguishing theses biological models and finding the most suitable one are essential, as such model ranking, by experimental evidence, will help to judge the support of the working hypotheses forming each model. Here, we employ the approximate Bayesian computation (ABC method based on sequential Monte Carlo (SMC to search for biological circuits that can maintain signaling sensitivity while minimizing noise propagation, focusing on cases where the noise is characterized by rapid fluctuations. By systematically analyzing three-component circuits, we rank these biological circuits and identify three-basic-biological-motif buffering noise while maintaining sensitivity to long-term changes in input signals. We discuss in detail a particular implementation in control of nutrient homeostasis in yeast. The principal component analysis of the posterior provides insight into the nature of the reaction between nodes.

  14. Hierarchical feedback modules and reaction hubs in cell signaling networks.

    Science.gov (United States)

    Xu, Jianfeng; Lan, Yueheng

    2015-01-01

    Despite much effort, identification of modular structures and study of their organizing and functional roles remain a formidable challenge in molecular systems biology, which, however, is essential in reaching a systematic understanding of large-scale cell regulation networks and hence gaining capacity of exerting effective interference to cell activity. Combining graph theoretic methods with available dynamics information, we successfully retrieved multiple feedback modules of three important signaling networks. These feedbacks are structurally arranged in a hierarchical way and dynamically produce layered temporal profiles of output signals. We found that global and local feedbacks act in very different ways and on distinct features of the information flow conveyed by signal transduction but work highly coordinately to implement specific biological functions. The redundancy embodied with multiple signal-relaying channels and feedback controls bestow great robustness and the reaction hubs seated at junctions of different paths announce their paramount importance through exquisite parameter management. The current investigation reveals intriguing general features of the organization of cell signaling networks and their relevance to biological function, which may find interesting applications in analysis, design and control of bio-networks.

  15. Hierarchical feedback modules and reaction hubs in cell signaling networks.

    Directory of Open Access Journals (Sweden)

    Jianfeng Xu

    Full Text Available Despite much effort, identification of modular structures and study of their organizing and functional roles remain a formidable challenge in molecular systems biology, which, however, is essential in reaching a systematic understanding of large-scale cell regulation networks and hence gaining capacity of exerting effective interference to cell activity. Combining graph theoretic methods with available dynamics information, we successfully retrieved multiple feedback modules of three important signaling networks. These feedbacks are structurally arranged in a hierarchical way and dynamically produce layered temporal profiles of output signals. We found that global and local feedbacks act in very different ways and on distinct features of the information flow conveyed by signal transduction but work highly coordinately to implement specific biological functions. The redundancy embodied with multiple signal-relaying channels and feedback controls bestow great robustness and the reaction hubs seated at junctions of different paths announce their paramount importance through exquisite parameter management. The current investigation reveals intriguing general features of the organization of cell signaling networks and their relevance to biological function, which may find interesting applications in analysis, design and control of bio-networks.

  16. Hierarchical Feedback Modules and Reaction Hubs in Cell Signaling Networks

    Science.gov (United States)

    Xu, Jianfeng; Lan, Yueheng

    2015-01-01

    Despite much effort, identification of modular structures and study of their organizing and functional roles remain a formidable challenge in molecular systems biology, which, however, is essential in reaching a systematic understanding of large-scale cell regulation networks and hence gaining capacity of exerting effective interference to cell activity. Combining graph theoretic methods with available dynamics information, we successfully retrieved multiple feedback modules of three important signaling networks. These feedbacks are structurally arranged in a hierarchical way and dynamically produce layered temporal profiles of output signals. We found that global and local feedbacks act in very different ways and on distinct features of the information flow conveyed by signal transduction but work highly coordinately to implement specific biological functions. The redundancy embodied with multiple signal-relaying channels and feedback controls bestow great robustness and the reaction hubs seated at junctions of different paths announce their paramount importance through exquisite parameter management. The current investigation reveals intriguing general features of the organization of cell signaling networks and their relevance to biological function, which may find interesting applications in analysis, design and control of bio-networks. PMID:25951347

  17. Nonimmune cells equipped with T-cell-receptor-like signaling for cancer cell ablation.

    Science.gov (United States)

    Kojima, Ryosuke; Scheller, Leo; Fussenegger, Martin

    2018-01-01

    The ability to engineer custom cell-contact-sensing output devices into human nonimmune cells would be useful for extending the applicability of cell-based cancer therapies and for avoiding risks associated with engineered immune cells. Here we have developed a new class of synthetic T-cell receptor-like signal-transduction device that functions efficiently in human nonimmune cells and triggers release of output molecules specifically upon sensing contact with a target cell. This device employs an interleukin signaling cascade, whose OFF/ON switching is controlled by biophysical segregation of a transmembrane signal-inhibitory protein from the sensor cell-target cell interface. We further show that designer nonimmune cells equipped with this device driving expression of a membrane-penetrator/prodrug-activating enzyme construct could specifically kill target cells in the presence of the prodrug, indicating its potential usefulness for target-cell-specific, cell-based enzyme-prodrug cancer therapy. Our study also contributes to the advancement of synthetic biology by extending available design principles to transmit extracellular information to cells.

  18. Synthetic biology in mammalian cells: Next generation research tools and therapeutics

    Science.gov (United States)

    Lienert, Florian; Lohmueller, Jason J; Garg, Abhishek; Silver, Pamela A

    2014-01-01

    Recent progress in DNA manipulation and gene circuit engineering has greatly improved our ability to programme and probe mammalian cell behaviour. These advances have led to a new generation of synthetic biology research tools and potential therapeutic applications. Programmable DNA-binding domains and RNA regulators are leading to unprecedented control of gene expression and elucidation of gene function. Rebuilding complex biological circuits such as T cell receptor signalling in isolation from their natural context has deepened our understanding of network motifs and signalling pathways. Synthetic biology is also leading to innovative therapeutic interventions based on cell-based therapies, protein drugs, vaccines and gene therapies. PMID:24434884

  19. Probing Embryonic Stem Cell Autocrine and Paracrine Signaling Using Microfluidics

    Science.gov (United States)

    Przybyla, Laralynne; Voldman, Joel

    2012-07-01

    Although stem cell fate is traditionally manipulated by exogenously altering the cells' extracellular signaling environment, the endogenous autocrine and paracrine signals produced by the cells also contribute to their two essential processes: self-renewal and differentiation. Autocrine and/or paracrine signals are fundamental to both embryonic stem cell self-renewal and early embryonic development, but the nature and contributions of these signals are often difficult to fully define using conventional methods. Microfluidic techniques have been used to explore the effects of cell-secreted signals by controlling cell organization or by providing precise control over the spatial and temporal cellular microenvironment. Here we review how such techniques have begun to be adapted for use with embryonic stem cells, and we illustrate how many remaining questions in embryonic stem cell biology could be addressed using microfluidic technologies.

  20. DPP4 inhibitors promote biological functions of human endothelial progenitor cells by targeting the SDF-1/CXCR4 signaling pathway

    Directory of Open Access Journals (Sweden)

    Liu Feng

    2016-01-01

    Full Text Available Dipeptidyl peptidase 4 (DPP4 inhibitors(oral hypoglycemic agentshave beneficial effects during the early stages of diabetes. In this study, we evaluated the role of DPP4inhibitorsonthe biological functions of cultured human endothelial progenitor cells (EPCs. After treating EPCs with the DPP4 inhibitors sitagliptin and vildagliptin, we examined the mRNA expression of DPP4, vascular endothelial growth factor (VEGF,VEGF receptor 2 (VEGFR-2,endothelial nitric oxide synthase (eNOS, caspase-3,stromal cell-derived factor-1 (SDF-1, chemokine (C-X-C motif receptor 4 (CXCR4 were measured by RT-PCR. The protein expression of SDF-1 and CXCR4 was determined by Western blot; cell proliferation was tested by the MTT method, and DPP4 activity was determined by a DPP4 assay. Our results revealed that DPP4 expression and activity were inhibited following the treatment with various doses of DPP4 inhibitors. Cell proliferation and the expression of VEGF, VEGFR-2andeNOS were up regulated, while cell apoptosis was inhibited by DPP4 inhibitors in a dose-dependent manner. DPP4 inhibitors activated the SDF-1/CXCR4 signaling pathway, shown by the elevated expression of SDF-1/CXCR4. This further proved that after the SDF-1/CXCR4 signaling pathway was blocked by its inhibitor ADM3100, the effects of DPP4 inhibitors on the proliferation and apoptosis, and the expression of VEGF, VEGFR-2and eNOS of EPCs were significantly reduced. These findings suggest that DPP4 inhibitors promote the biological functions of human EPCs by up regulating the SDF-1/CXCR4 signaling pathway.

  1. Knowledge Gaps in Rodent Pancreas Biology: Taking Human Pluripotent Stem Cell-Derived Pancreatic Beta Cells into Our Own Hands.

    Science.gov (United States)

    Santosa, Munirah Mohamad; Low, Blaise Su Jun; Pek, Nicole Min Qian; Teo, Adrian Kee Keong

    2015-01-01

    In the field of stem cell biology and diabetes, we and others seek to derive mature and functional human pancreatic β cells for disease modeling and cell replacement therapy. Traditionally, knowledge gathered from rodents is extended to human pancreas developmental biology research involving human pluripotent stem cells (hPSCs). While much has been learnt from rodent pancreas biology in the early steps toward Pdx1(+) pancreatic progenitors, much less is known about the transition toward Ngn3(+) pancreatic endocrine progenitors. Essentially, the later steps of pancreatic β cell development and maturation remain elusive to date. As a result, the most recent advances in the stem cell and diabetes field have relied upon combinatorial testing of numerous growth factors and chemical compounds in an arbitrary trial-and-error fashion to derive mature and functional human pancreatic β cells from hPSCs. Although this hit-or-miss approach appears to have made some headway in maturing human pancreatic β cells in vitro, its underlying biology is vaguely understood. Therefore, in this mini-review, we discuss some of these late-stage signaling pathways that are involved in human pancreatic β cell differentiation and highlight our current understanding of their relevance in rodent pancreas biology. Our efforts here unravel several novel signaling pathways that can be further studied to shed light on unexplored aspects of rodent pancreas biology. New investigations into these signaling pathways are expected to advance our knowledge in human pancreas developmental biology and to aid in the translation of stem cell biology in the context of diabetes treatments.

  2. Analysis of undergraduate cell biology contents in Brazilian public universities.

    Science.gov (United States)

    Mermelstein, Claudia; Costa, Manoel Luis

    2017-04-01

    The enormous amount of information available in cell biology has created a challenge in selecting the core concepts we should be teaching our undergraduates. One way to define a set of essential core ideas in cell biology is to analyze what a specific cell biology community is teaching their students. Our main objective was to analyze the cell biology content currently being taught in Brazilian universities. We collected the syllabi of cell biology courses from public universities in Brazil and analyzed the frequency of cell biology topics in each course. We also compared the Brazilian data with the contents of a major cell biology textbook. Our analysis showed that while some cell biology topics such as plasma membrane and cytoskeleton was present in ∼100% of the Brazilian curricula analyzed others such as cell signaling and cell differentiation were present in only ∼35%. The average cell biology content taught in the Brazilian universities is quite different from what is presented in the textbook. We discuss several possible explanations for these observations. We also suggest a list with essential cell biology topics for any biological or biomedical undergraduate course. The comparative discussion of cell biology topics presented here could be valuable in other educational contexts. © 2017 The Authors. Cell Biology International Published by John Wiley & Sons Ltd on behalf of International Federation of Cell Biology.

  3. Lipid Cell Biology: A Focus on Lipids in Cell Division.

    Science.gov (United States)

    Storck, Elisabeth M; Özbalci, Cagakan; Eggert, Ulrike S

    2018-06-20

    Cells depend on hugely diverse lipidomes for many functions. The actions and structural integrity of the plasma membrane and most organelles also critically depend on membranes and their lipid components. Despite the biological importance of lipids, our understanding of lipid engagement, especially the roles of lipid hydrophobic alkyl side chains, in key cellular processes is still developing. Emerging research has begun to dissect the importance of lipids in intricate events such as cell division. This review discusses how these structurally diverse biomolecules are spatially and temporally regulated during cell division, with a focus on cytokinesis. We analyze how lipids facilitate changes in cellular morphology during division and how they participate in key signaling events. We identify which cytokinesis proteins are associated with membranes, suggesting lipid interactions. More broadly, we highlight key unaddressed questions in lipid cell biology and techniques, including mass spectrometry, advanced imaging, and chemical biology, which will help us gain insights into the functional roles of lipids.

  4. Cytoskeleton in mast cell signaling

    Czech Academy of Sciences Publication Activity Database

    Dráber, Pavel; Sulimenko, Vadym; Dráberová, Eduarda

    2012-01-01

    Roč. 3, May (2012), s. 130 ISSN 1664-3224 R&D Projects: GA ČR GAP302/10/1701; GA ČR GPP302/11/P709; GA ČR GAP302/12/1673 Grant - others:ECST(XE) Action BM1007 Institutional research plan: CEZ:AV0Z50520514 Keywords : cytoskeleton * mast cell activation * signal transduction Subject RIV: EB - Genetics ; Molecular Biology

  5. Micro/nano-fabrication technologies for cell biology.

    Science.gov (United States)

    Qian, Tongcheng; Wang, Yingxiao

    2010-10-01

    Micro/nano-fabrication techniques, such as soft lithography and electrospinning, have been well-developed and widely applied in many research fields in the past decade. Due to the low costs and simple procedures, these techniques have become important and popular for biological studies. In this review, we focus on the studies integrating micro/nano-fabrication work to elucidate the molecular mechanism of signaling transduction in cell biology. We first describe different micro/nano-fabrication technologies, including techniques generating three-dimensional scaffolds for tissue engineering. We then introduce the application of these technologies in manipulating the physical or chemical micro/nano-environment to regulate the cellular behavior and response, such as cell life and death, differentiation, proliferation, and cell migration. Recent advancement in integrating the micro/nano-technologies and live cell imaging are also discussed. Finally, potential schemes in cell biology involving micro/nano-fabrication technologies are proposed to provide perspectives on the future research activities.

  6. Illuminating Cell Signaling: Using "Vibrio harveyi" in an Introductory Biology Laboratory

    Science.gov (United States)

    Hrizo, Stacy L.; Kaufmann, Nancy

    2009-01-01

    Cell signaling is an essential cellular process that is performed by all living organisms. Bacteria communicate with each other using a chemical language in a signaling pathway that allows bacteria to evaluate the size of their population, determine when they have reached a critical mass (quorum sensing), and then change their behavior in unison…

  7. Retinoic acid signalling in thymocytes regulates T cell development

    DEFF Research Database (Denmark)

    Wendland, Kerstin; Sitnik, Katarzyna Maria; Kotarsky, Knut

    . Here, using a RA sensitive reporter mouse model, we demonstrate that endogenous RAR responses are induced in CD69+CD4+CD8lo and CD69+CD4+CD8+ thymocytes undergoing positive selection and lineage commitment, and continue to be present in both CD4+ and CD8+ single positive (SP) cells, with RA signaling...... further enhanced in recently generated CD69+ CD4+ SP cells. To address the potential biological significance of RA signaling in developing thymocytes, we evaluated T cell development in CD4Cre-dnRAR mice, where RA signaling is blocked in thymocytes from the CD4+CD8+ double positive (DP) stage onwards due...

  8. Syndecans – key regulators of cell signaling and biological functions

    DEFF Research Database (Denmark)

    Afratis, Nikolaos A.; Nikitovic, Dragana; Multhaupt, Hinke A.B.

    2017-01-01

    molecules during cancer initiation and progression. Particularly syndecans interact with other cell surface receptors, such as growth factor receptors and integrins, which lead to activation of downstream signaling pathways, which are critical for the cellular behavior. Moreover, this review describes...

  9. Nonlinear signaling on biological networks: The role of stochasticity and spectral clustering

    Science.gov (United States)

    Hernandez-Hernandez, Gonzalo; Myers, Jesse; Alvarez-Lacalle, Enrique; Shiferaw, Yohannes

    2017-03-01

    Signal transduction within biological cells is governed by networks of interacting proteins. Communication between these proteins is mediated by signaling molecules which bind to receptors and induce stochastic transitions between different conformational states. Signaling is typically a cooperative process which requires the occurrence of multiple binding events so that reaction rates have a nonlinear dependence on the amount of signaling molecule. It is this nonlinearity that endows biological signaling networks with robust switchlike properties which are critical to their biological function. In this study we investigate how the properties of these signaling systems depend on the network architecture. Our main result is that these nonlinear networks exhibit bistability where the network activity can switch between states that correspond to a low and high activity level. We show that this bistable regime emerges at a critical coupling strength that is determined by the spectral structure of the network. In particular, the set of nodes that correspond to large components of the leading eigenvector of the adjacency matrix determines the onset of bistability. Above this transition the eigenvectors of the adjacency matrix determine a hierarchy of clusters, defined by its spectral properties, which are activated sequentially with increasing network activity. We argue further that the onset of bistability occurs either continuously or discontinuously depending upon whether the leading eigenvector is localized or delocalized. Finally, we show that at low network coupling stochastic transitions to the active branch are also driven by the set of nodes that contribute more strongly to the leading eigenvector. However, at high coupling, transitions are insensitive to network structure since the network can be activated by stochastic transitions of a few nodes. Thus this work identifies important features of biological signaling networks that may underlie their biological

  10. Defined spatiotemporal features of RAS-ERK signals dictate cell fate in MCF-7 mammary epithelial cells.

    Science.gov (United States)

    Herrero, Ana; Casar, Berta; Colón-Bolea, Paula; Agudo-Ibáñez, Lorena; Crespo, Piero

    2016-06-15

    Signals conveyed through the RAS-ERK pathway are essential for the determination of cell fate. It is well established that signal variability is achieved in the different microenvironments in which signals unfold. It is also known that signal duration is critical for decisions concerning cell commitment. However, it is unclear how RAS-ERK signals integrate time and space in order to elicit a given biological response. To investigate this, we used MCF-7 cells, in which EGF-induced transient ERK activation triggers proliferation, whereas sustained ERK activation in response to heregulin leads to adipocytic differentiation. We found that both proliferative and differentiating signals emanate exclusively from plasma membrane-disordered microdomains. Of interest, the EGF signal can be transformed into a differentiating stimulus by HRAS overexpression, which prolongs ERK activation, but only if HRAS localizes at disordered membrane. On the other hand, HRAS signals emanating from the Golgi complex induce apoptosis and can prevent heregulin-induced differentiation. Our results indicate that within the same cellular context, RAS can exert different, even antagonistic, effects, depending on its sublocalization. Thus cell destiny is defined by the ability of a stimulus to activate RAS at the appropriate sublocalization for an adequate period while avoiding switching on opposing RAS signals. © 2016 Herrero et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  11. The cell biology of T-dependent B cell activation

    DEFF Research Database (Denmark)

    Owens, T; Zeine, R

    1989-01-01

    The requirement that CD4+ helper T cells recognize antigen in association with class II Major Histocompatibility Complex (MHC) encoded molecules constrains T cells to activation through intercellular interaction. The cell biology of the interactions between CD4+ T cells and antigen-presenting cells...... includes multipoint intermolecular interactions that probably involve aggregation of both polymorphic and monomorphic T cell surface molecules. Such aggregations have been shown in vitro to markedly enhance and, in some cases, induce T cell activation. The production of T-derived lymphokines that have been...... implicated in B cell activation is dependent on the T cell receptor for antigen and its associated CD3 signalling complex. T-dependent help for B cell activation is therefore similarly MHC-restricted and involves T-B intercellular interaction. Recent reports that describe antigen-independent B cell...

  12. Special Issue: International Congress of Cell Biology 2016, Prague

    Czech Academy of Sciences Publication Activity Database

    Stick, R.; Dráber, Pavel

    2017-01-01

    Roč. 254, č. 3 (2017), s. 1141-1142 ISSN 0033-183X R&D Projects: GA ČR GA16-25159S Institutional support: RVO:68378050 Keywords : cellular structures and functions, ,, , * tubulin isotypes * actin * transcription regulation * signaling pathways Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Cell biology Impact factor: 2.870, year: 2016

  13. Regulatory effect of evodiamine on the malignant biological behaviors and Wnt/β-catenin signaling pathway of colorectal cancer cell lines HT29

    Directory of Open Access Journals (Sweden)

    Yuan-Hui Wang

    2016-04-01

    Full Text Available Objective: To study the regulatory effect of evodiamine on the malignant biological behaviors and Wnt/β-catenin signaling pathway of colorectal cancer cell lines HT29. Methods: Colorectal cancer cell lines HT29 were cultured and divided into blank control group and evodiamine group, and after different treatment, cell viability, proportion of different cell cycle as well as the contents of VEGFA, VEGFB, VEGFC, MMP3, MMP14, Wnt and β-catenin were detected. Results: (1 Cell viability: MTT value of evodiamine group was significantly lower than that of blank control group; (2 Cell cycle: proportion of both S phase and G2/M phase of evodiamine group were lower than those of blank control group, and proportion of G0/ G1 phase was higher than that of blank control group; (3 VEGF and MMP contents: VEGFA, VEGFB, VEGFC, MMP3 and MMP14 contents of evodiamine group were lower than those of blank control group; (4 Wnt/β-catenin signaling pathway: Wnt and β-catenin contents of evodiamine group were lower than those of blank control group. Conclusion: Evodiamine can inhibit the proliferation of colorectal cancer cell lines HT29 and down-regulate the expression of VEGF and MMP, and the effect may be achieved by inhibiting the activation of Wnt/β-catenin signaling pathway.

  14. Systems biology of host-mycobiota interactions: dissecting Dectin-1 and Dectin-2 signalling in immune cells with DC-ATLAS.

    Science.gov (United States)

    Rizzetto, Lisa; De Filippo, Carlotta; Rivero, Damariz; Riccadonna, Samantha; Beltrame, Luca; Cavalieri, Duccio

    2013-11-01

    Modelling the networks sustaining the fruitful coexistence between fungi and their mammalian hosts is becoming increasingly important to control emerging fungal pathogens. The C-type lectins Dectin-1 and Dectin-2 are involved in host defense mechanisms against fungal infection driving inflammatory and adaptive immune responses and complement in containing fungal burdens. Recognizing carbohydrate structures in pathogens, their engagement induces maturation of dendritic cells (DCs) into potent immuno-stimulatory cells endowed with the capacity to efficiently prime T cells. Owing to these properties, Dectin-1 and Dectin-2 agonists are currently under investigation as promising adjuvants in vaccination procedures for the treatment of fungal infection. Thus, a detailed understanding of events' cascade specifically triggered in DCs upon engagement is of great interest in translational research. Here, we summarize the current knowledge on Dectin-1 and Dectin-2 signalling in DCs highlighting similarities and differences. Detailed maps are annotated, using the Biological Connection Markup Language (BCML) data model, and stored in DC-ATLAS, a versatile resource for the interpretation of high-throughput data generated perturbing the signalling network of DCs. Copyright © 2013 Elsevier GmbH. All rights reserved.

  15. Perturbation Biology: Inferring Signaling Networks in Cellular Systems

    Science.gov (United States)

    Miller, Martin L.; Gauthier, Nicholas P.; Jing, Xiaohong; Kaushik, Poorvi; He, Qin; Mills, Gordon; Solit, David B.; Pratilas, Christine A.; Weigt, Martin; Braunstein, Alfredo; Pagnani, Andrea; Zecchina, Riccardo; Sander, Chris

    2013-01-01

    We present a powerful experimental-computational technology for inferring network models that predict the response of cells to perturbations, and that may be useful in the design of combinatorial therapy against cancer. The experiments are systematic series of perturbations of cancer cell lines by targeted drugs, singly or in combination. The response to perturbation is quantified in terms of relative changes in the measured levels of proteins, phospho-proteins and cellular phenotypes such as viability. Computational network models are derived de novo, i.e., without prior knowledge of signaling pathways, and are based on simple non-linear differential equations. The prohibitively large solution space of all possible network models is explored efficiently using a probabilistic algorithm, Belief Propagation (BP), which is three orders of magnitude faster than standard Monte Carlo methods. Explicit executable models are derived for a set of perturbation experiments in SKMEL-133 melanoma cell lines, which are resistant to the therapeutically important inhibitor of RAF kinase. The resulting network models reproduce and extend known pathway biology. They empower potential discoveries of new molecular interactions and predict efficacious novel drug perturbations, such as the inhibition of PLK1, which is verified experimentally. This technology is suitable for application to larger systems in diverse areas of molecular biology. PMID:24367245

  16. Biology of Schwann cells.

    Science.gov (United States)

    Kidd, Grahame J; Ohno, Nobuhiko; Trapp, Bruce D

    2013-01-01

    The fundamental roles of Schwann cells during peripheral nerve formation and regeneration have been recognized for more than 100 years, but the cellular and molecular mechanisms that integrate Schwann cell and axonal functions continue to be elucidated. Derived from the embryonic neural crest, Schwann cells differentiate into myelinating cells or bundle multiple unmyelinated axons into Remak fibers. Axons dictate which differentiation path Schwann cells follow, and recent studies have established that axonal neuregulin1 signaling via ErbB2/B3 receptors on Schwann cells is essential for Schwann cell myelination. Extracellular matrix production and interactions mediated by specific integrin and dystroglycan complexes are also critical requisites for Schwann cell-axon interactions. Myelination entails expansion and specialization of the Schwann cell plasma membrane over millimeter distances. Many of the myelin-specific proteins have been identified, and transgenic manipulation of myelin genes have provided novel insights into myelin protein function, including maintenance of axonal integrity and survival. Cellular events that facilitate myelination, including microtubule-based protein and mRNA targeting, and actin based locomotion, have also begun to be understood. Arguably, the most remarkable facet of Schwann cell biology, however, is their vigorous response to axonal damage. Degradation of myelin, dedifferentiation, division, production of axonotrophic factors, and remyelination all underpin the substantial regenerative capacity of the Schwann cells and peripheral nerves. Many of these properties are not shared by CNS fibers, which are myelinated by oligodendrocytes. Dissecting the molecular mechanisms responsible for the complex biology of Schwann cells continues to have practical benefits in identifying novel therapeutic targets not only for Schwann cell-specific diseases but other disorders in which axons degenerate. Copyright © 2013 Elsevier B.V. All rights

  17. Applied Developmental Biology: Making Human Pancreatic Beta Cells for Diabetics.

    Science.gov (United States)

    Melton, Douglas A

    2016-01-01

    Understanding the genes and signaling pathways that determine the differentiation and fate of a cell is a central goal of developmental biology. Using that information to gain mastery over the fates of cells presents new approaches to cell transplantation and drug discovery for human diseases including diabetes. © 2016 Elsevier Inc. All rights reserved.

  18. Multiway modeling and analysis in stem cell systems biology

    Directory of Open Access Journals (Sweden)

    Vandenberg Scott L

    2008-07-01

    Full Text Available Abstract Background Systems biology refers to multidisciplinary approaches designed to uncover emergent properties of biological systems. Stem cells are an attractive target for this analysis, due to their broad therapeutic potential. A central theme of systems biology is the use of computational modeling to reconstruct complex systems from a wealth of reductionist, molecular data (e.g., gene/protein expression, signal transduction activity, metabolic activity, etc.. A number of deterministic, probabilistic, and statistical learning models are used to understand sophisticated cellular behaviors such as protein expression during cellular differentiation and the activity of signaling networks. However, many of these models are bimodal i.e., they only consider row-column relationships. In contrast, multiway modeling techniques (also known as tensor models can analyze multimodal data, which capture much more information about complex behaviors such as cell differentiation. In particular, tensors can be very powerful tools for modeling the dynamic activity of biological networks over time. Here, we review the application of systems biology to stem cells and illustrate application of tensor analysis to model collagen-induced osteogenic differentiation of human mesenchymal stem cells. Results We applied Tucker1, Tucker3, and Parallel Factor Analysis (PARAFAC models to identify protein/gene expression patterns during extracellular matrix-induced osteogenic differentiation of human mesenchymal stem cells. In one case, we organized our data into a tensor of type protein/gene locus link × gene ontology category × osteogenic stimulant, and found that our cells expressed two distinct, stimulus-dependent sets of functionally related genes as they underwent osteogenic differentiation. In a second case, we organized DNA microarray data in a three-way tensor of gene IDs × osteogenic stimulus × replicates, and found that application of tensile strain to a

  19. Mass spectrometry based proteomics in cell biology and signaling research

    International Nuclear Information System (INIS)

    Mann, M.; Andersen, J.; Ishihama, Y.; Rappsilber, J.; Ong, S.; Foster, L.; Blagoev, B.; Kratchmarova, I.; Lasonder, E.

    2002-01-01

    Full text: Proteomics is one of the most powerful post-genomics technologies. Recently accomplishments include large scale protein-protein interaction mapping, large scale mapping of phosphorylation sites and the cloning of key signaling molecules. In this talk, current state of the art of the technology will be reviewed. Applications of proteomics to the mapping of multiprotein complexes will be illustrated with recent work on the spliceosome and the nucleolus. More than 300 proteins have been mapped to each of these complexes. Quantitative techniques are becoming more and more essential in proteomics. They are usually performed by the incorporation of stable isotopes - a light form in cell state 'A' and a heavy form in cell state 'E' - and subsequent comparison of mass spectrometric peak heights. A new technique called, SILAC for Stable isotope Incorporation by Amino acids in Cell culture, has been applied to studying cell differentiation and mapping secreted proteins from adipocytes. A number of known and novel proteins important in adipocyte differentiation have been identified by this technique. Some of these proved to be upregulated at the 1 mRNA level, too, whereas others appear to be regulated post-translationally. We have also applied the SILAC method to protein-protein interaction mapping. For example, we compared immunoprecipitates from stimulated and non-stimulated cells to find binding partners recruited to the bait due to the stimulus. Several novel substrates in the EGF pathway were found in this way. An important application of proteomics in the signaling field is the mapping of post-translational modifications. In particular, there are a number of techniques for phosphotyrosine phosphorylation mapping which have proven very useful. Making use of the mass deficiency of the phosphogroup, 'parent ion scans' con be performed, which selectively reveal phosphotyrosine peptides from complex peptides mixtures. This technique has been used to clone several

  20. Potentials of single-cell biology in identification and validation of disease biomarkers.

    Science.gov (United States)

    Niu, Furong; Wang, Diane C; Lu, Jiapei; Wu, Wei; Wang, Xiangdong

    2016-09-01

    Single-cell biology is considered a new approach to identify and validate disease-specific biomarkers. However, the concern raised by clinicians is how to apply single-cell measurements for clinical practice, translate the message of single-cell systems biology into clinical phenotype or explain alterations of single-cell gene sequencing and function in patient response to therapies. This study is to address the importance and necessity of single-cell gene sequencing in the identification and development of disease-specific biomarkers, the definition and significance of single-cell biology and single-cell systems biology in the understanding of single-cell full picture, the development and establishment of whole-cell models in the validation of targeted biological function and the figure and meaning of single-molecule imaging in single cell to trace intra-single-cell molecule expression, signal, interaction and location. We headline the important role of single-cell biology in the discovery and development of disease-specific biomarkers with a special emphasis on understanding single-cell biological functions, e.g. mechanical phenotypes, single-cell biology, heterogeneity and organization of genome function. We have reason to believe that such multi-dimensional, multi-layer, multi-crossing and stereoscopic single-cell biology definitely benefits the discovery and development of disease-specific biomarkers. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  1. Electromagnetic effects - From cell biology to medicine.

    Science.gov (United States)

    Funk, Richard H W; Monsees, Thomas; Ozkucur, Nurdan

    2009-01-01

    In this review we compile and discuss the published plethora of cell biological effects which are ascribed to electric fields (EF), magnetic fields (MF) and electromagnetic fields (EMF). In recent years, a change in paradigm took place concerning the endogenously produced static EF of cells and tissues. Here, modern molecular biology could link the action of ion transporters and ion channels to the "electric" action of cells and tissues. Also, sensing of these mainly EF could be demonstrated in studies of cell migration and wound healing. The triggers exerted by ion concentrations and concomitant electric field gradients have been traced along signaling cascades till gene expression changes in the nucleus. Far more enigmatic is the way of action of static MF which come in most cases from outside (e.g. earth magnetic field). All systems in an organism from the molecular to the organ level are more or less in motion. Thus, in living tissue we mostly find alternating fields as well as combination of EF and MF normally in the range of extremely low-frequency EMF. Because a bewildering array of model systems and clinical devices exits in the EMF field we concentrate on cell biological findings and look for basic principles in the EF, MF and EMF action. As an outlook for future research topics, this review tries to link areas of EF, MF and EMF research to thermodynamics and quantum physics, approaches that will produce novel insights into cell biology.

  2. DMPD: Lysophospholipid receptors: signaling and biology. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15189145 Lysophospholipid receptors: signaling and biology. Ishii I, Fukushima N, Y...e X, Chun J. Annu Rev Biochem. 2004;73:321-54. (.png) (.svg) (.html) (.csml) Show Lysophospholipid receptors...: signaling and biology. PubmedID 15189145 Title Lysophospholipid receptors: signaling and biology. Authors

  3. Role of CSL-dependent and independent Notch signaling pathways in cell apoptosis.

    Science.gov (United States)

    Zeng, Chong; Xing, Rui; Liu, Jing; Xing, Feiyue

    2016-01-01

    Apoptosis is a normally biological phenomenon in various organisms, involving complexly molecular mechanisms with a series of signaling processes. Notch signaling is found evolutionarily conserved in many species, playing a critical role in embryonic development, normal tissue homeostasis, angiogenesis and immunoregulation. The focus of this review is on currently novel advances about roles of CSL-dependent and independent Notch signaling pathways in cell apoptosis. The CSL can bind Notch intracellular domain (NIC) to act as a switch in mediating transcriptional activation or inactivation of the Notch signaling pathway downstream genes in the nucleus. It shows that CSL-dependent signaling regulates the cell apoptosis through Hes-1-PTEN-AKT-mTOR signaling, but rather the CSL-independent signaling mediates the cell apoptosis possibly via NIC-mTORC2-AKT-mTOR signaling, providing a new insight into apoptotic mechanisms.

  4. Radioresistance-related signaling pathways in nasopharyngeal carcinoma cells

    International Nuclear Information System (INIS)

    Guo Ya; Zhu Xiaodong; Qu Song; Su Fang; Wang Qi; Zhang Wei

    2011-01-01

    Objective: To study the difference of gene expression profile between the radioresistant human nasopharyngeal carcinoma cell line CNE-2R and CNE-2, and to screen the signaling pathway associated with radioresistance of nasopharyngeal carcinoma. Methods: The radioresistant nasopharyngeal carcinoma cell line CNE-2R was constructed from the original cell line CNE-2. CNE-2R and CNE-2 cells were cultured and administered with 60 Co γ-ray irradiation at the dose of 400 cGy for 15 times. Human-6v 3.0 whole genome expression profile was used to screen the differentially expressed genes. Bioinformatic analysis was used to identify the pathways related to radioresistance. Results: The number of the differentially expressed genes that were found in these 2 experiments was 374. The Kegg pathway and Biocarta pathway analysis of the differentially expressed genes showed the biological importance of Toll-like receptor signaling pathway and IL-1 R-mediated signal transduction pathway to the radioresistance of the CNE-2R cells and the significant differences of 13 genes in these 2 pathways,including JUN, MYD88, CCL5, CXCL10, STAT1, LY96, FOS, CCL3, IL-6, IL-8, IL-1α, IL-1β, and IRAK2 (t=13.47-66.57, P<0.05). Conclusions: Toll-like receptor signaling pathway and IL-1R-mediated signal transduction pathway might be related to the occurrence of radioresistance. (authors)

  5. Mesangial cell biology

    Energy Technology Data Exchange (ETDEWEB)

    Abboud, Hanna E., E-mail: Abboud@uthscsa.edu

    2012-05-15

    Mesangial cells originate from the metanephric mesenchyme and maintain structural integrity of the glomerular microvascular bed and mesangial matrix homeostasis. In response to metabolic, immunologic or hemodynamic injury, these cells undergo apoptosis or acquire an activated phenotype and undergo hypertrophy, proliferation with excessive production of matrix proteins, growth factors, chemokines and cytokines. These soluble factors exert autocrine and paracrine effects on the cells or on other glomerular cells, respectively. MCs are primary targets of immune-mediated glomerular diseases such as IGA nephropathy or metabolic diseases such as diabetes. MCs may also respond to injury that primarily involves podocytes and endothelial cells or to structural and genetic abnormalities of the glomerular basement membrane. Signal transduction and oxidant stress pathways are activated in MCs and likely represent integrated input from multiple mediators. Such responses are convenient targets for therapeutic intervention. Studies in cultured MCs should be supplemented with in vivo studies as well as examination of freshly isolated cells from normal and diseases glomeruli. In addition to ex vivo morphologic studies in kidney cortex, cells should be studied in their natural environment, isolated glomeruli or even tissue slices. Identification of a specific marker of MCs should help genetic manipulation as well as selective therapeutic targeting of these cells. Identification of biological responses of MCs that are not mediated by the renin–angiotensin system should help development of novel and effective therapeutic strategies to treat diseases characterized by MC pathology.

  6. Mesangial cell biology

    International Nuclear Information System (INIS)

    Abboud, Hanna E.

    2012-01-01

    Mesangial cells originate from the metanephric mesenchyme and maintain structural integrity of the glomerular microvascular bed and mesangial matrix homeostasis. In response to metabolic, immunologic or hemodynamic injury, these cells undergo apoptosis or acquire an activated phenotype and undergo hypertrophy, proliferation with excessive production of matrix proteins, growth factors, chemokines and cytokines. These soluble factors exert autocrine and paracrine effects on the cells or on other glomerular cells, respectively. MCs are primary targets of immune-mediated glomerular diseases such as IGA nephropathy or metabolic diseases such as diabetes. MCs may also respond to injury that primarily involves podocytes and endothelial cells or to structural and genetic abnormalities of the glomerular basement membrane. Signal transduction and oxidant stress pathways are activated in MCs and likely represent integrated input from multiple mediators. Such responses are convenient targets for therapeutic intervention. Studies in cultured MCs should be supplemented with in vivo studies as well as examination of freshly isolated cells from normal and diseases glomeruli. In addition to ex vivo morphologic studies in kidney cortex, cells should be studied in their natural environment, isolated glomeruli or even tissue slices. Identification of a specific marker of MCs should help genetic manipulation as well as selective therapeutic targeting of these cells. Identification of biological responses of MCs that are not mediated by the renin–angiotensin system should help development of novel and effective therapeutic strategies to treat diseases characterized by MC pathology.

  7. Role of Cytokine-Induced Glycosylation Changes in Regulating Cell Interactions and Cell Signaling in Inflammatory Diseases and Cancer

    Directory of Open Access Journals (Sweden)

    Justine H. Dewald

    2016-11-01

    Full Text Available Glycosylation is one of the most important modifications of proteins and lipids, and cell surface glycoconjugates are thought to play important roles in a variety of biological functions including cell-cell and cell-substrate interactions, bacterial adhesion, cell immunogenicity and cell signaling. Alterations of glycosylation are observed in number of diseases such as cancer and chronic inflammation. In that context, pro-inflammatory cytokines have been shown to modulate cell surface glycosylation by regulating the expression of glycosyltransferases involved in the biosynthesis of carbohydrate chains. These changes in cell surface glycosylation are also known to regulate cell signaling and could contribute to disease pathogenesis. This review summarizes our current knowledge of the glycosylation changes induced by pro-inflammatory cytokines, with a particular focus on cancer and cystic fibrosis, and their consequences on cell interactions and signaling.

  8. Wnt Signaling in Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Qi Xu

    2016-06-01

    Full Text Available Renal cell carcinoma (RCC accounts for 90% of all kidney cancers. Due to poor diagnosis, high resistance to the systemic therapies and the fact that most RCC cases occur sporadically, current research switched its focus on studying the molecular mechanisms underlying RCC. The aim is the discovery of new effective and less toxic anti-cancer drugs and novel diagnostic markers. Besides the PI3K/Akt/mTOR, HGF/Met and VHL/hypoxia cellular signaling pathways, the involvement of the Wnt/β-catenin pathway in RCC is commonly studied. Wnt signaling and its targeted genes are known to actively participate in different biological processes during embryonic development and renal cancer. Recently, studies have shown that targeting this pathway by alternating/inhibiting its intracellular signal transduction can reduce cancer cells viability and inhibit their growth. The targets and drugs identified show promising potential to serve as novel RCC therapeutics and prognostic markers. This review aims to summarize the current status quo regarding recent research on RCC focusing on the involvement of the Wnt/β-catenin pathway and how its understanding could facilitate the identification of potential therapeutic targets, new drugs and diagnostic biomarkers.

  9. Signal transduction and chemotaxis in mast cells

    Czech Academy of Sciences Publication Activity Database

    Dráber, Petr; Hálová, Ivana; Polakovičová, Iva; Kawakami, T.

    2016-01-01

    Roč. 778, jaro (2016), s. 11-23 ISSN 0014-2999 R&D Projects: GA ČR(CZ) GA14-09807S; GA ČR(CZ) GBP302/12/G101; GA ČR(CZ) GA14-00703S Institutional support: RVO:68378050 Keywords : Mast cell * IgE receptor * KIT receptor * Signal transduction * Chemotaxis * Plasma membrane Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.896, year: 2016

  10. Developmental biology, the stem cell of biological disciplines

    OpenAIRE

    Gilbert, Scott F.

    2017-01-01

    Developmental biology (including embryology) is proposed as "the stem cell of biological disciplines.” Genetics, cell biology, oncology, immunology, evolutionary mechanisms, neurobiology, and systems biology each has its ancestry in developmental biology. Moreover, developmental biology continues to roll on, budding off more disciplines, while retaining its own identity. While its descendant disciplines differentiate into sciences with a restricted set of paradigms, examples, and techniques, ...

  11. Radiation-induced perturbation of cell-to-cell signalling and communication

    International Nuclear Information System (INIS)

    Mariotti, L.; Facoetti, A.; Bertolotti, A.; Ranza, E.; Alloni, D.; Ottolenghi, A.

    2011-01-01

    The investigation of the bystander phenomena (i.e. the induction of damage in cells not directly traversed by radiation) is strictly related to the study of the mechanisms of intercellular communication and of the perturbative effects of radiation. A new possible way to try to solve the bystander puzzle is through a 'systems radiation biology' approach with the total integration of experimental and theoretical activities. In particular, this contribution will focus on: (1) 'ad hoc' experiments designed to quantify key parameters involved in intercellular signalling (focusing, as a pilot study, on release, decay and internalization of interleukin-6 molecules, their modulation by radiation, and possible differences between in vivo/in vitro behaviour); (2) the implementation and the development of two different modelling approaches: a stochastic model (based on a Monte Carlo code) that takes account of the local mechanisms of release and internalization of signalling molecules (e.g. cytokines) and an analytical model where signal molecules are treated as a population and their temporal behaviour is described by differential equations. This approach provided instruments to investigate the complex phenomena of signal transmission and the role of cell communication to guarantee (maintain) the robustness of the in vitro experimental systems against the effects of perturbations. (authors)

  12. Tiny cells meet big questions: a closer look at bacterial cell biology.

    Science.gov (United States)

    Goley, Erin D

    2013-04-01

    While studying actin assembly as a graduate student with Matt Welch at the University of California at Berkeley, my interest was piqued by reports of surprising observations in bacteria: the identification of numerous cytoskeletal proteins, actin homologues fulfilling spindle-like functions, and even the presence of membrane-bound organelles. Curiosity about these phenomena drew me to Lucy Shapiro's lab at Stanford University for my postdoctoral research. In the Shapiro lab, and now in my lab at Johns Hopkins, I have focused on investigating the mechanisms of bacterial cytokinesis. Spending time as both a eukaryotic cell biologist and a bacterial cell biologist has convinced me that bacterial cells present the same questions as eukaryotic cells: How are chromosomes organized and accurately segregated? How is force generated for cytokinesis? How is polarity established? How are signals transduced within and between cells? These problems are conceptually similar between eukaryotes and bacteria, although their solutions can differ significantly in specifics. In this Perspective, I provide a broad view of cell biological phenomena in bacteria, the technical challenges facing those of us who peer into bacterial cells, and areas of common ground as research in eukaryotic and bacterial cell biology moves forward.

  13. A Checklist for Successful Quantitative Live Cell Imaging in Systems Biology

    Science.gov (United States)

    Sung, Myong-Hee

    2013-01-01

    Mathematical modeling of signaling and gene regulatory networks has provided unique insights about systems behaviors for many cell biological problems of medical importance. Quantitative single cell monitoring has a crucial role in advancing systems modeling of molecular networks. However, due to the multidisciplinary techniques that are necessary for adaptation of such systems biology approaches, dissemination to a wide research community has been relatively slow. In this essay, I focus on some technical aspects that are often under-appreciated, yet critical in harnessing live cell imaging methods to achieve single-cell-level understanding and quantitative modeling of molecular networks. The importance of these technical considerations will be elaborated with examples of successes and shortcomings. Future efforts will benefit by avoiding some pitfalls and by utilizing the lessons collectively learned from recent applications of imaging in systems biology. PMID:24709701

  14. Translational environmental biology: cell biology informing conservation.

    Science.gov (United States)

    Traylor-Knowles, Nikki; Palumbi, Stephen R

    2014-05-01

    Typically, findings from cell biology have been beneficial for preventing human disease. However, translational applications from cell biology can also be applied to conservation efforts, such as protecting coral reefs. Recent efforts to understand the cell biological mechanisms maintaining coral health such as innate immunity and acclimatization have prompted new developments in conservation. Similar to biomedicine, we urge that future efforts should focus on better frameworks for biomarker development to protect coral reefs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Developmental biology, the stem cell of biological disciplines.

    Science.gov (United States)

    Gilbert, Scott F

    2017-12-01

    Developmental biology (including embryology) is proposed as "the stem cell of biological disciplines." Genetics, cell biology, oncology, immunology, evolutionary mechanisms, neurobiology, and systems biology each has its ancestry in developmental biology. Moreover, developmental biology continues to roll on, budding off more disciplines, while retaining its own identity. While its descendant disciplines differentiate into sciences with a restricted set of paradigms, examples, and techniques, developmental biology remains vigorous, pluripotent, and relatively undifferentiated. In many disciplines, especially in evolutionary biology and oncology, the developmental perspective is being reasserted as an important research program.

  16. Biochemistry and biology: heart-to-heart to investigate cardiac progenitor cells.

    Science.gov (United States)

    Chimenti, Isotta; Forte, Elvira; Angelini, Francesco; Messina, Elisa; Giacomello, Alessandro

    2013-02-01

    Cardiac regenerative medicine is a rapidly evolving field, with promising future developments for effective personalized treatments. Several stem/progenitor cells are candidates for cardiac cell therapy, and emerging evidence suggests how multiple metabolic and biochemical pathways strictly regulate their fate and renewal. In this review, we will explore a selection of areas of common interest for biology and biochemistry concerning stem/progenitor cells, and in particular cardiac progenitor cells. Numerous regulatory mechanisms have been identified that link stem cell signaling and functions to the modulation of metabolic pathways, and vice versa. Pharmacological treatments and culture requirements may be exploited to modulate stem cell pluripotency and self-renewal, possibly boosting their regenerative potential for cell therapy. Mitochondria and their many related metabolites and messengers, such as oxygen, ROS, calcium and glucose, have a crucial role in regulating stem cell fate and the balance of their functions, together with many metabolic enzymes. Furthermore, protein biochemistry and proteomics can provide precious clues on the definition of different progenitor cell populations, their physiology and their autocrine/paracrine regulatory/signaling networks. Interdisciplinary approaches between biology and biochemistry can provide productive insights on stem/progenitor cells, allowing the development of novel strategies and protocols for effective cardiac cell therapy clinical translation. This article is part of a Special Issue entitled Biochemistry of Stem Cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Proteomics in studying cancer stem cell biology.

    Science.gov (United States)

    Kranenburg, Onno; Emmink, Benjamin L; Knol, Jaco; van Houdt, Winan J; Rinkes, Inne H M Borel; Jimenez, Connie R

    2012-06-01

    Normal multipotent tissue stem cells (SCs) are the driving force behind tissue turnover and repair. The cancer stem cell theory holds that tumors also contain stem-like cells that drive tumor growth and metastasis formation. However, very little is known about the regulation of SC maintenance pathways in cancer and how these are affected by cancer-specific genetic alterations and by treatment. Proteomics is emerging as a powerful tool to identify the signaling complexes and pathways that control multi- and pluri-potency and SC differentiation. Here, the authors review the novel insights that these studies have provided and present a comprehensive strategy for the use of proteomics in studying cancer SC biology.

  18. Disrupted Signaling through the Fanconi Anemia Pathway Leads to Dysfunctional Hematopoietic Stem Cell Biology: Underlying Mechanisms and Potential Therapeutic Strategies

    Science.gov (United States)

    Geiselhart, Anja; Lier, Amelie; Walter, Dagmar; Milsom, Michael D.

    2012-01-01

    Fanconi anemia (FA) is the most common inherited bone marrow failure syndrome. FA patients suffer to varying degrees from a heterogeneous range of developmental defects and, in addition, have an increased likelihood of developing cancer. Almost all FA patients develop a severe, progressive bone marrow failure syndrome, which impacts upon the production of all hematopoietic lineages and, hence, is thought to be driven by a defect at the level of the hematopoietic stem cell (HSC). This hypothesis would also correlate with the very high incidence of MDS and AML that is observed in FA patients. In this paper, we discuss the evidence that supports the role of dysfunctional HSC biology in driving the etiology of the disease. Furthermore, we consider the different model systems currently available to study the biology of cells defective in the FA signaling pathway and how they are informative in terms of identifying the physiologic mediators of HSC depletion and dissecting their putative mechanism of action. Finally, we ask whether the insights gained using such disease models can be translated into potential novel therapeutic strategies for the treatment of the hematologic disorders in FA patients. PMID:22675615

  19. Mechanisms of Wnt signaling and control.

    Science.gov (United States)

    Grainger, Stephanie; Willert, Karl

    2018-03-30

    The Wnt signaling pathway is a highly conserved system that regulates complex biological processes across all metazoan species. At the cellular level, secreted Wnt proteins serve to break symmetry and provide cells with positional information that is critical to the patterning of the entire body plan. At the organismal level, Wnt signals are employed to orchestrate fundamental developmental processes, including the specification of the anterior-posterior body axis, induction of the primitive streak and ensuing gastrulation movements, and the generation of cell and tissue diversity. Wnt functions extend into adulthood where they regulate stem cell behavior, tissue homeostasis, and damage repair. Disruption of Wnt signaling activity during embryonic development or in adults results in a spectrum of abnormalities and diseases, including cancer. The molecular mechanisms that underlie the myriad of Wnt-regulated biological effects have been the subject of intense research for over three decades. This review is intended to summarize our current understanding of how Wnt signals are generated and interpreted. This article is categorized under: Biological Mechanisms > Cell Signaling Developmental Biology > Stem Cell Biology and Regeneration. © 2018 Wiley Periodicals, Inc.

  20. Muscle Satellite Cells: Exploring the Basic Biology to Rule Them.

    Science.gov (United States)

    Almeida, Camila F; Fernandes, Stephanie A; Ribeiro Junior, Antonio F; Keith Okamoto, Oswaldo; Vainzof, Mariz

    2016-01-01

    Adult skeletal muscle is a postmitotic tissue with an enormous capacity to regenerate upon injury. This is accomplished by resident stem cells, named satellite cells, which were identified more than 50 years ago. Since their discovery, many researchers have been concentrating efforts to answer questions about their origin and role in muscle development, the way they contribute to muscle regeneration, and their potential to cell-based therapies. Satellite cells are maintained in a quiescent state and upon requirement are activated, proliferating, and fusing with other cells to form or repair myofibers. In addition, they are able to self-renew and replenish the stem pool. Every phase of satellite cell activity is highly regulated and orchestrated by many molecules and signaling pathways; the elucidation of players and mechanisms involved in satellite cell biology is of extreme importance, being the first step to expose the crucial points that could be modulated to extract the optimal response from these cells in therapeutic strategies. Here, we review the basic aspects about satellite cells biology and briefly discuss recent findings about therapeutic attempts, trying to raise questions about how basic biology could provide a solid scaffold to more successful use of these cells in clinics.

  1. Wnt and BMP signaling crosstalk in regulating dental stem cells: Implications in dental tissue engineering

    Directory of Open Access Journals (Sweden)

    Fugui Zhang

    2016-12-01

    Full Text Available Tooth is a complex hard tissue organ and consists of multiple cell types that are regulated by important signaling pathways such as Wnt and BMP signaling. Serious injuries and/or loss of tooth or periodontal tissues may significantly impact aesthetic appearance, essential oral functions and the quality of life. Regenerative dentistry holds great promise in treating oral/dental disorders. The past decade has witnessed a rapid expansion of our understanding of the biological features of dental stem cells, along with the signaling mechanisms governing stem cell self-renewal and differentiation. In this review, we first summarize the biological characteristics of seven types of dental stem cells, including dental pulp stem cells, stem cells from apical papilla, stem cells from human exfoliated deciduous teeth, dental follicle precursor cells, periodontal ligament stem cells, alveolar bone-derived mesenchymal stem cells (MSCs, and MSCs from gingiva. We then focus on how these stem cells are regulated by bone morphogenetic protein (BMP and/or Wnt signaling by examining the interplays between these pathways. Lastly, we analyze the current status of dental tissue engineering strategies that utilize oral/dental stem cells by harnessing the interplays between BMP and Wnt pathways. We also highlight the challenges that must be addressed before the dental stem cells may reach any clinical applications. Thus, we can expect to witness significant progresses to be made in regenerative dentistry in the coming decade.

  2. Fostering synergy between cell biology and systems biology.

    Science.gov (United States)

    Eddy, James A; Funk, Cory C; Price, Nathan D

    2015-08-01

    In the shared pursuit of elucidating detailed mechanisms of cell function, systems biology presents a natural complement to ongoing efforts in cell biology. Systems biology aims to characterize biological systems through integrated and quantitative modeling of cellular information. The process of model building and analysis provides value through synthesizing and cataloging information about cells and molecules, predicting mechanisms and identifying generalizable themes, generating hypotheses and guiding experimental design, and highlighting knowledge gaps and refining understanding. In turn, incorporating domain expertise and experimental data is crucial for building towards whole cell models. An iterative cycle of interaction between cell and systems biologists advances the goals of both fields and establishes a framework for mechanistic understanding of the genome-to-phenome relationship. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  3. VEGF signaling inside vascular endothelial cells and beyond.

    Science.gov (United States)

    Eichmann, Anne; Simons, Michael

    2012-04-01

    Vascular endothelial growth factor-A (VEGF-A) has long been recognized as the key regulator of vascular development and function in health and disease. VEGF is a secreted polypeptide that binds to transmembrane tyrosine kinase VEGF receptors on the plasma membrane, inducing their dimerization, activation and assembly of a membrane-proximal signaling complex. Recent studies have revealed that many key events of VEGFR signaling occur inside the endothelial cell and are regulated by endosomal receptor trafficking. Plasma membrane VEGFR interacting molecules, including vascular guidance receptors Neuropilins and Ephrins also regulate VEGFR endocytosis and trafficking. VEGF signaling is increasingly recognized for its roles outside of the vascular system, notably during neural development, and blood vessels regulate epithelial branching morphogenesis. We review here recent advances in our understanding of VEGF signaling and its biological roles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Reciprocal Inflammatory Signaling Between Intestinal Epithelial Cells and Adipocytes in the Absence of Immune Cells

    Directory of Open Access Journals (Sweden)

    Yu Takahashi

    2017-09-01

    Full Text Available Visceral fat accumulation as observed in Crohn's disease and obesity is linked to chronic gut inflammation, suggesting that accumulation of gut adipocytes can trigger local inflammatory signaling. However, direct interactions between intestinal epithelial cells (IECs and adipocytes have not been investigated, in part because IEC physiology is difficult to replicate in culture. In this study, we originally prepared intact, polarized, and cytokine responsive IEC monolayers from primary or induced pluripotent stem cell-derived intestinal organoids by simple and repeatable methods. When these physiological IECs were co-cultured with differentiated adipocytes in Transwell, pro-inflammatory genes were induced in both cell types, suggesting reciprocal inflammatory activation in the absence of immunocompetent cells. These inflammatory responses were blocked by nuclear factor-κB or signal transducer and activator of transcription 3 inhibition and by anti-tumor necrosis factor- or anti-interleukin-6-neutralizing antibodies. Our results highlight the utility of these monolayers for investigating IEC biology. Furthermore, this system recapitulates the intestinal epithelium–mesenteric fat signals that potentially trigger or worsen inflammatory disorders such as Crohn's disease and obesity-related enterocolitis.

  5. Tongue and Taste Organ Biology and Function: Homeostasis Maintained by Hedgehog Signaling.

    Science.gov (United States)

    Mistretta, Charlotte M; Kumari, Archana

    2017-02-10

    The tongue is an elaborate complex of heterogeneous tissues with taste organs of diverse embryonic origins. The lingual taste organs are papillae, composed of an epithelium that includes specialized taste buds, the basal lamina, and a lamina propria core with matrix molecules, fibroblasts, nerves, and vessels. Because taste organs are dynamic in cell biology and sensory function, homeostasis requires tight regulation in specific compartments or niches. Recently, the Hedgehog (Hh) pathway has emerged as an essential regulator that maintains lingual taste papillae, taste bud and progenitor cell proliferation and differentiation, and neurophysiological function. Activating or suppressing Hh signaling, with genetic models or pharmacological agents used in cancer treatments, disrupts taste papilla and taste bud integrity and can eliminate responses from taste nerves to chemical stimuli but not to touch or temperature. Understanding Hh regulation of taste organ homeostasis contributes knowledge about the basic biology underlying taste disruptions in patients treated with Hh pathway inhibitors.

  6. Cancer stem cells in hepatocellular carcinoma: Therapeutic implications based on stem cell biology.

    Science.gov (United States)

    Chiba, Tetsuhiro; Iwama, Atsushi; Yokosuka, Osamu

    2016-01-01

    Hepatocellular carcinoma (HCC) is the sixth most common cancer and the third most frequent cause of cancer-related death worldwide. Despite advances in its diagnosis and treatment, the prognosis of patients with advanced HCC remains unfavorable. Recent advances in stem cell biology and associated technologies have enabled the identification of minor components of tumorigenic cells, termed cancer stem cells (CSC) or tumor-initiating cells, in cancers such as HCC. Furthermore, because CSC play a central role in tumor development, metastasis and recurrence, they are considered to be a therapeutic target in cancer treatment. Hepatic CSC have been successfully identified using functional and cell surface markers. The analysis of purified hepatic CSC has revealed the molecular machinery and signaling pathways involved in their maintenance. In addition, epigenetic transcriptional regulation has been shown to be important in the development and maintenance of CSC. Although inhibitors of CSC show promise as CSC-targeting drugs, novel therapeutic approaches for the eradication of CSC are yet to be established. In this review, we describe recent progress in hepatic CSC research and provide a perspective on the available therapeutic approaches based on stem cell biology. © 2015 The Japan Society of Hepatology.

  7. Nanobody-Based Biologics for Modulating Purinergic Signaling in Inflammation and Immunity

    Directory of Open Access Journals (Sweden)

    Stephan Menzel

    2018-03-01

    Full Text Available Adenosine triphosphate (ATP and nicotinamide adenine dinucleotide (NAD+ are released as danger signals from cells during infection and sterile inflammation. In the extracellular compartment ATP is converted by CD39, CD73, and other ecto-enzymes into metabolites that modulate the activity of T cells and macrophages. While ATP mediates pro-inflammatory signals via P2X7 and other P2 receptors, adenosine triggers anti-inflammatory signaling via the adenosine 2a receptor (Adora2a and other P1 receptors. The latter also plays a role in maintaining an immunosuppressive tumor microenvironment. NAD+ is converted by CD38, CD203 and other ecto-enzymes to the Ca2+ mobilizing messengers cyclic ADP-ribose and ADP-ribose, and to adenosine. Recent findings on the roles of CD38, CD39, CD73, CD203, P2X7, and Adora2a in inflammation and immunity underscore the potential of these proteins as drug targets. However, available small molecule inhibitors often lack specificity and mediate unwanted off-target toxicity. Nanobodies – single domain antibodies derived from heavy chain antibodies that naturally occur in camelids – display a propensity to bind functional epitopes not accessible to conventional antibodies. Like conventional antibodies, nanobodies and nanobody-based biologics are highly specific and have well-understood, tunable in vivo pharmacodynamics with little if any toxicity. Nanobodies thus represent attractive alternatives to small molecule inhibitors for modulating purinergic signaling in inflammation and immunity. Here we review recent progress made in developing nanobodies against key targets of purinergic signaling.

  8. Nanobody-Based Biologics for Modulating Purinergic Signaling in Inflammation and Immunity.

    Science.gov (United States)

    Menzel, Stephan; Schwarz, Nicole; Haag, Friedrich; Koch-Nolte, Friedrich

    2018-01-01

    Adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide (NAD + ) are released as danger signals from cells during infection and sterile inflammation. In the extracellular compartment ATP is converted by CD39, CD73, and other ecto-enzymes into metabolites that modulate the activity of T cells and macrophages. While ATP mediates pro-inflammatory signals via P2X7 and other P2 receptors, adenosine triggers anti-inflammatory signaling via the adenosine 2a receptor (Adora2a) and other P1 receptors. The latter also plays a role in maintaining an immunosuppressive tumor microenvironment. NAD + is converted by CD38, CD203 and other ecto-enzymes to the Ca 2+ mobilizing messengers cyclic ADP-ribose and ADP-ribose, and to adenosine. Recent findings on the roles of CD38, CD39, CD73, CD203, P2X7, and Adora2a in inflammation and immunity underscore the potential of these proteins as drug targets. However, available small molecule inhibitors often lack specificity and mediate unwanted off-target toxicity. Nanobodies - single domain antibodies derived from heavy chain antibodies that naturally occur in camelids - display a propensity to bind functional epitopes not accessible to conventional antibodies. Like conventional antibodies, nanobodies and nanobody-based biologics are highly specific and have well-understood, tunable in vivo pharmacodynamics with little if any toxicity. Nanobodies thus represent attractive alternatives to small molecule inhibitors for modulating purinergic signaling in inflammation and immunity. Here we review recent progress made in developing nanobodies against key targets of purinergic signaling.

  9. Plasma membrane--cortical cytoskeleton interactions: a cell biology approach with biophysical considerations.

    Science.gov (United States)

    Kapus, András; Janmey, Paul

    2013-07-01

    From a biophysical standpoint, the interface between the cell membrane and the cytoskeleton is an intriguing site where a "two-dimensional fluid" interacts with an exceedingly complex three-dimensional protein meshwork. The membrane is a key regulator of the cytoskeleton, which not only provides docking sites for cytoskeletal elements through transmembrane proteins, lipid binding-based, and electrostatic interactions, but also serves as the source of the signaling events and molecules that control cytoskeletal organization and remolding. Conversely, the cytoskeleton is a key determinant of the biophysical and biochemical properties of the membrane, including its shape, tension, movement, composition, as well as the mobility, partitioning, and recycling of its constituents. From a cell biological standpoint, the membrane-cytoskeleton interplay underlies--as a central executor and/or regulator--a multitude of complex processes including chemical and mechanical signal transduction, motility/migration, endo-/exo-/phagocytosis, and other forms of membrane traffic, cell-cell, and cell-matrix adhesion. The aim of this article is to provide an overview of the tight structural and functional coupling between the membrane and the cytoskeleton. As biophysical approaches, both theoretical and experimental, proved to be instrumental for our understanding of the membrane/cytoskeleton interplay, this review will "oscillate" between the cell biological phenomena and the corresponding biophysical principles and considerations. After describing the types of connections between the membrane and the cytoskeleton, we will focus on a few key physical parameters and processes (force generation, curvature, tension, and surface charge) and will discuss how these contribute to a variety of fundamental cell biological functions. © 2013 American Physiological Society.

  10. DC-ATLAS: a systems biology resource to dissect receptor specific signal transduction in dendritic cells.

    NARCIS (Netherlands)

    Cavalieri, D.; Rivero, D.; Beltrame, L.; Buschow, S.I.; Calura, E.; Rizzetto, L.; Gessani, S.; Gauzzi, M.C.; Reith, W.; Baur, A.; Bonaiuti, R.; Brandizi, M.; Filippo, C. De; D'Oro, U.; Draghici, S.; Dunand-Sauthier, I.; Gatti, E.; Granucci, F.; Gundel, M.; Kramer, M.; Kuka, M.; Lanyi, A.; Melief, C.J.; Montfoort, N. van; Ostuni, R.; Pierre, P.; Popovici, R.; Rajnavolgyi, E.; Schierer, S.; Schuler, G.; Soumelis, V.; Splendiani, A.; Stefanini, I.; Torcia, M.G.; Zanoni, I.; Zollinger, R.; Figdor, C.G.; Austyn, J.M.

    2010-01-01

    BACKGROUND: The advent of Systems Biology has been accompanied by the blooming of pathway databases. Currently pathways are defined generically with respect to the organ or cell type where a reaction takes place. The cell type specificity of the reactions is the foundation of immunological research,

  11. [A novel biologic electricity signal measurement based on neuron chip].

    Science.gov (United States)

    Lei, Yinsheng; Wang, Mingshi; Sun, Tongjing; Zhu, Qiang; Qin, Ran

    2006-06-01

    Neuron chip is a multiprocessor with three pipeline CPU; its communication protocol and control processor are integrated in effect to carry out the function of communication, control, attemper, I/O, etc. A novel biologic electronic signal measurement network system is composed of intelligent measurement nodes with neuron chip at the core. In this study, the electronic signals such as ECG, EEG, EMG and BOS can be synthetically measured by those intelligent nodes, and some valuable diagnostic messages are found. Wavelet transform is employed in this system to analyze various biologic electronic signals due to its strong time-frequency ability of decomposing signal local character. Better effect is gained. This paper introduces the hardware structure of network and intelligent measurement node, the measurement theory and the signal figure of data acquisition and processing.

  12. Transcriptional Profiling of Hypoxic Neural Stem Cells Identifies Calcineurin-NFATc4 Signaling as a Major Regulator of Neural Stem Cell Biology

    Science.gov (United States)

    Moreno, Marta; Fernández, Virginia; Monllau, Josep M.; Borrell, Víctor; Lerin, Carles; de la Iglesia, Núria

    2015-01-01

    Summary Neural stem cells (NSCs) reside in a hypoxic microenvironment within the brain. However, the crucial transcription factors (TFs) that regulate NSC biology under physiologic hypoxia are poorly understood. Here we have performed gene set enrichment analysis (GSEA) of microarray datasets from hypoxic versus normoxic NSCs with the aim of identifying pathways and TFs that are activated under oxygen concentrations mimicking normal brain tissue microenvironment. Integration of TF target (TFT) and pathway enrichment analysis identified the calcium-regulated TF NFATc4 as a major candidate to regulate hypoxic NSC functions. Nfatc4 expression was coordinately upregulated by top hypoxia-activated TFs, while NFATc4 target genes were enriched in hypoxic NSCs. Loss-of-function analyses further revealed that the calcineurin-NFATc4 signaling axis acts as a major regulator of NSC self-renewal and proliferation in vitro and in vivo by promoting the expression of TFs, including Id2, that contribute to the maintenance of the NSC state. PMID:26235896

  13. Molecular biology of the cell

    CERN Document Server

    Alberts, Bruce; Lewis, Julian

    2000-01-01

    Molecular Biology of the Cell is the classic in-dept text reference in cell biology. By extracting the fundamental concepts from this enormous and ever-growing field, the authors tell the story of cell biology, and create a coherent framework through which non-expert readers may approach the subject. Written in clear and concise language, and beautifully illustrated, the book is enjoyable to read, and it provides a clear sense of the excitement of modern biology. Molecular Biology of the Cell sets forth the current understanding of cell biology (completely updated as of Autumn 2001), and it explores the intriguing implications and possibilities of the great deal that remains unknown. The hallmark features of previous editions continue in the Fourth Edition. The book is designed with a clean and open, single-column layout. The art program maintains a completely consistent format and style, and includes over 1,600 photographs, electron micrographs, and original drawings by the authors. Clear and concise concept...

  14. Thrombopoietin stimulates migration and activates multiple signaling pathways in hepatoblastoma cells

    DEFF Research Database (Denmark)

    Romanelli, Roberto G; Petrai, Ilaria; Robino, Gaia

    2005-01-01

    Thrombopoietin (TPO), a cytokine that participates in the differentiation and maturation of megakaryocytes, is produced in the liver, but only limited information is available on the biological response of liver-derived cells to TPO. In this study, we investigated whether HepG2 cells express c-Mpl......, the receptor for TPO, and whether TPO elicits biological responses and intracellular signaling in this cell type. Specific transcripts for c-Mpl were detected in HepG2 cells by RT-PCR, and expression of the protein was demonstrated by Western blot analysis and immunofluorescence. Exposure of HepG2 cells to TPO...... members of the MAPK family, including ERK and JNK, as assessed using phosphorylation-specific antibodies and immune complex kinase assays. TPO also activated phosphatidylinositol 3-kinase (PI3K) and the downstream kinase Akt in a time-dependent manner. Finally, activation of c-Mpl was associated...

  15. Realization of Flight Control System in Virtual Reality Environment with Biological Signals

    OpenAIRE

    ALTIN, Cemil; ER, Orhan

    2018-01-01

    In this study, anunmanned aerial vehicle was flown on a virtual reality gaming platform with thehelp of commands processed by signal processing methods of biological signals. In thedeveloped application, Matlab signal processing environment and Unity 3Denvironment which is a virtual reality software platform are integrated witheach other and made to work. The biological signals obtained from the EEG ve EMGsensors are processed in Matlab environment and then converted to commands andtransferre...

  16. Biological fuel cells and their applications

    OpenAIRE

    Shukla, AK; Suresh, P; Berchmans, S; Rajendran, A

    2004-01-01

    One type of genuine fuel cell that does hold promise in the long-term is the biological fuel cell. Unlike conventional fuel cells, which employ hydrogen, ethanol and methanol as fuel, biological fuel cells use organic products produced by metabolic processes or use organic electron donors utilized in the growth processes as fuels for current generation. A distinctive feature of biological fuel cells is that the electrode reactions are controlled by biocatalysts, i.e. the biological redox-reac...

  17. A generalizable platform for interrogating target- and signal-specific consequences of electrophilic modifications in redox-dependent cell signaling.

    Science.gov (United States)

    Lin, Hong-Yu; Haegele, Joseph A; Disare, Michael T; Lin, Qishan; Aye, Yimon

    2015-05-20

    Despite the known propensity of small-molecule electrophiles to react with numerous cysteine-active proteins, biological actions of individual signal inducers have emerged to be chemotype-specific. To pinpoint and quantify the impacts of modifying one target out of the whole proteome, we develop a target-protein-personalized "electrophile toolbox" with which specific intracellular targets can be selectively modified at a precise time by specific reactive signals. This general methodology, T-REX (targetable reactive electrophiles and oxidants), is established by (1) constructing a platform that can deliver a range of electronic and sterically different bioactive lipid-derived signaling electrophiles to specific proteins in cells; (2) probing the kinetics of targeted delivery concept, which revealed that targeting efficiency in cells is largely driven by initial on-rate of alkylation; and (3) evaluating the consequences of protein-target- and small-molecule-signal-specific modifications on the strength of downstream signaling. These data show that T-REX allows quantitative interrogations into the extent to which the Nrf2 transcription factor-dependent antioxidant response element (ARE) signaling is activated by selective electrophilic modifications on Keap1 protein, one of several redox-sensitive regulators of the Nrf2-ARE axis. The results document Keap1 as a promiscuous electrophile-responsive sensor able to respond with similar efficiencies to discrete electrophilic signals, promoting comparable strength of Nrf2-ARE induction. T-REX is also able to elicit cell activation in cases in which whole-cell electrophile flooding fails to stimulate ARE induction prior to causing cytotoxicity. The platform presents a previously unavailable opportunity to elucidate the functional consequences of small-molecule-signal- and protein-target-specific electrophilic modifications in an otherwise unaffected cellular background.

  18. Endothelial juxtaposition of distinct adult stem cells activates angiogenesis signaling molecules in endothelial cells.

    Science.gov (United States)

    Mohammadi, Elham; Nassiri, Seyed Mahdi; Rahbarghazi, Reza; Siavashi, Vahid; Araghi, Atefeh

    2015-12-01

    Efficacy of therapeutic angiogenesis needs a comprehensive understanding of endothelial cell (EC) function and biological factors and cells that interplay with ECs. Stem cells are considered the key components of pro- and anti-angiogenic milieu in a wide variety of physiopathological states, and interactions of EC-stem cells have been the subject of controversy in recent years. In this study, the potential effects of three tissue-specific adult stem cells, namely rat marrow-derived mesenchymal stem cells (rBMSCs), rat adipose-derived stem cells (rADSCs) and rat muscle-derived satellite cells (rSCs), on the endothelial activation of key angiogenic signaling molecules, including VEGF, Ang-2, VEGFR-2, Tie-2, and Tie2-pho, were investigated. Human umbilical vein endothelial cells (HUVECs) and rat lung microvascular endothelial cells (RLMECs) were cocultured with the stem cells or incubated with the stem cell-derived conditioned media on Matrigel. Following HUVEC-stem cell coculture, CD31-positive ECs were flow sorted and subjected to western blotting to analyze potential changes in the expression of the pro-angiogenic signaling molecules. Elongation and co-alignment of the stem cells were seen along the EC tubes in the EC-stem cell cocultures on Matrigel, with cell-to-cell dye communication in the EC-rBMSC cocultures. Moreover, rBMSCs and rADSCs significantly improved endothelial tubulogenesis in both juxtacrine and paracrine manners. These two latter stem cells dynamically up-regulated VEGF, Ang-2, VREGR-2, and Tie-2 but down-regulated Tie2-pho and the Tie2-pho/Tie-2 ratio in HUVECs. Induction of pro-angiogenic signaling in ECs by marrow- and adipose-derived MSCs further indicates the significance of stem cell milieu in angiogenesis dynamics.

  19. Membrane Transfer from Mononuclear Cells to Polymorphonuclear Neutrophils Transduces Cell Survival and Activation Signals in the Recipient Cells via Anti-Extrinsic Apoptotic and MAP Kinase Signaling Pathways.

    Science.gov (United States)

    Li, Ko-Jen; Wu, Cheng-Han; Shen, Chieh-Yu; Kuo, Yu-Min; Yu, Chia-Li; Hsieh, Song-Chou

    2016-01-01

    The biological significance of membrane transfer (trogocytosis) between polymorphonuclear neutrophils (PMNs) and mononuclear cells (MNCs) remains unclear. We investigated the biological/immunological effects and molecular basis of trogocytosis among various immune cells in healthy individuals and patients with active systemic lupus erythematosus (SLE). By flow cytometry, we determined that molecules in the immunological synapse, including HLA class-I and-II, CD11b and LFA-1, along with CXCR1, are exchanged among autologous PMNs, CD4+ T cells, and U937 cells (monocytes) after cell-cell contact. Small interfering RNA knockdown of the integrin adhesion molecule CD11a in U937 unexpectedly enhanced the level of total membrane transfer from U937 to PMN cells. Functionally, phagocytosis and IL-8 production by PMNs were enhanced after co-culture with T cells. Total membrane transfer from CD4+ T to PMNs delayed PMN apoptosis by suppressing the extrinsic apoptotic molecules, BAX, MYC and caspase 8. This enhancement of activities of PMNs by T cells was found to be mediated via p38- and P44/42-Akt-MAP kinase pathways and inhibited by the actin-polymerization inhibitor, latrunculin B, the clathrin inhibitor, Pitstop-2, and human immunoglobulin G, but not by the caveolin inhibitor, methyl-β-cyclodextrin. In addition, membrane transfer from PMNs enhanced IL-2 production by recipient anti-CD3/anti-CD28 activated MNCs, and this was suppressed by inhibitors of mitogen-activated protein kinase (PD98059) and protein kinase C (Rottlerin). Of clinical significance, decreased total membrane transfer from PMNs to MNCs in patients with active SLE suppressed mononuclear IL-2 production. In conclusion, membrane transfer from MNCs to PMNs, mainly at the immunological synapse, transduces survival and activation signals to enhance PMN functions and is dependent on actin polymerization, clathrin activation, and Fcγ receptors, while membrane transfer from PMNs to MNCs depends on MAP kinase and

  20. Membrane Transfer from Mononuclear Cells to Polymorphonuclear Neutrophils Transduces Cell Survival and Activation Signals in the Recipient Cells via Anti-Extrinsic Apoptotic and MAP Kinase Signaling Pathways.

    Directory of Open Access Journals (Sweden)

    Ko-Jen Li

    Full Text Available The biological significance of membrane transfer (trogocytosis between polymorphonuclear neutrophils (PMNs and mononuclear cells (MNCs remains unclear. We investigated the biological/immunological effects and molecular basis of trogocytosis among various immune cells in healthy individuals and patients with active systemic lupus erythematosus (SLE. By flow cytometry, we determined that molecules in the immunological synapse, including HLA class-I and-II, CD11b and LFA-1, along with CXCR1, are exchanged among autologous PMNs, CD4+ T cells, and U937 cells (monocytes after cell-cell contact. Small interfering RNA knockdown of the integrin adhesion molecule CD11a in U937 unexpectedly enhanced the level of total membrane transfer from U937 to PMN cells. Functionally, phagocytosis and IL-8 production by PMNs were enhanced after co-culture with T cells. Total membrane transfer from CD4+ T to PMNs delayed PMN apoptosis by suppressing the extrinsic apoptotic molecules, BAX, MYC and caspase 8. This enhancement of activities of PMNs by T cells was found to be mediated via p38- and P44/42-Akt-MAP kinase pathways and inhibited by the actin-polymerization inhibitor, latrunculin B, the clathrin inhibitor, Pitstop-2, and human immunoglobulin G, but not by the caveolin inhibitor, methyl-β-cyclodextrin. In addition, membrane transfer from PMNs enhanced IL-2 production by recipient anti-CD3/anti-CD28 activated MNCs, and this was suppressed by inhibitors of mitogen-activated protein kinase (PD98059 and protein kinase C (Rottlerin. Of clinical significance, decreased total membrane transfer from PMNs to MNCs in patients with active SLE suppressed mononuclear IL-2 production. In conclusion, membrane transfer from MNCs to PMNs, mainly at the immunological synapse, transduces survival and activation signals to enhance PMN functions and is dependent on actin polymerization, clathrin activation, and Fcγ receptors, while membrane transfer from PMNs to MNCs depends on

  1. Biophysical mechanisms complementing "classical" cell biology.

    Science.gov (United States)

    Funk, Richard H W

    2018-01-01

    This overview addresses phenomena in cell- and molecular biology which are puzzling by their fast and highly coordinated way of organization. Generally, it appears that informative processes probably involved are more on the biophysical than on the classical biochemical side. The coordination problem is explained within the first part of the review by the topic of endogenous electrical phenomena. These are found e.g. in fast tissue organization and reorganization processes like development, wound healing and regeneration. Here, coupling into classical biochemical signaling and reactions can be shown by modern microscopy, electronics and bioinformatics. Further, one can follow the triggered reactions seamlessly via molecular biology till into genetics. Direct observation of intracellular electric processes is very difficult because of e.g. shielding through the cell membrane and damping by other structures. Therefore, we have to rely on photonic and photon - phonon coupling phenomena like molecular vibrations, which are addressed within the second part. Molecules normally possess different charge moieties and thus small electromagnetic (EMF) patterns arise during molecular vibration. These patterns can now be measured best within the optical part of the spectrum - much less in the lower terahertz till kHz and lower Hz part (third part of this review). Finally, EMFs facilitate quantum informative processes in coherent domains of molecular, charge and electron spin motion. This helps to coordinate such manifold and intertwined processes going on within cells, tissues and organs (part 4). Because the phenomena described in part 3 and 4 of the review still await really hard proofs we need concerted efforts and a combination of biophysics, molecular biology and informatics to unravel the described mysteries in "physics of life".

  2. Calcium Signaling in Taste Cells

    Science.gov (United States)

    Medler, Kathryn F.

    2014-01-01

    The sense of taste is a common ability shared by all organisms and is used to detect nutrients as well as potentially harmful compounds. Thus taste is critical to survival. Despite its importance, surprisingly little is known about the mechanisms generating and regulating responses to taste stimuli. All taste responses depend on calcium signals to generate appropriate responses which are relayed to the brain. Some taste cells have conventional synapses and rely on calcium influx through voltage-gated calcium channels. Other taste cells lack these synapses and depend on calcium release to formulate an output signal through a hemichannel. Beyond establishing these characteristics, few studies have focused on understanding how these calcium signals are formed. We identified multiple calcium clearance mechanisms that regulate calcium levels in taste cells as well as a calcium influx that contributes to maintaining appropriate calcium homeostasis in these cells. Multiple factors regulate the evoked taste signals with varying roles in different cell populations. Clearly, calcium signaling is a dynamic process in taste cells and is more complex than has previously been appreciated. PMID:25450977

  3. Signaling profiling at the single-cell level identifies a distinct signaling signature in murine hematopoietic stem cells.

    Science.gov (United States)

    Du, Juan; Wang, Jinyong; Kong, Guangyao; Jiang, Jing; Zhang, Jingfang; Liu, Yangang; Tong, Wei; Zhang, Jing

    2012-07-01

    Hematopoietic stem cell (HSC) function is tightly regulated by cytokine signaling. Although phospho-flow cytometry allows us to study signaling in defined populations of cells, there has been tremendous hurdle to carry out this study in rare HSCs due to unrecoverable critical HSC markers, low HSC number, and poor cell recovery rate. Here, we overcame these difficulties and developed a "HSC phospho-flow" method to analyze cytokine signaling in murine HSCs at the single-cell level and compare HSC signaling profile to that of multipotent progenitors (MPPs), a cell type immediately downstream of HSCs, and commonly used Lin(-) cKit(+) cells (LK cells, enriched for myeloid progenitors). We chose to study signaling evoked from three representative cytokines, stem cell factor (SCF) and thrombopoietin (TPO) that are essential for HSC function and granulocyte macrophage-colony-stimulating factor (GM-CSF) that is dispensable for HSCs. HSCs display a distinct TPO and GM-CSF signaling signature from MPPs and LK cells, which highly correlates with receptor surface expression. In contrast, although majority of LK cells express lower levels of cKit than HSCs and MPPs, SCF-evoked ERK1/2 activation in LK cells shows a significantly increased magnitude for a prolonged period. These results suggest that specific cellular context plays a more important role than receptor surface expression in SCF signaling. Our study of HSC signaling at the homeostasis stage paves the way to investigate signaling changes in HSCs under conditions of stress, aging, and hematopoietic diseases. Copyright © 2012 AlphaMed Press.

  4. Systems biology of adipose tissue metabolism: regulation of growth, signaling and inflammation.

    Science.gov (United States)

    Manteiga, Sara; Choi, Kyungoh; Jayaraman, Arul; Lee, Kyongbum

    2013-01-01

    Adipose tissue (AT) depots actively regulate whole body energy homeostasis by orchestrating complex communications with other physiological systems as well as within the tissue. Adipocytes readily respond to hormonal and nutritional inputs to store excess nutrients as intracellular lipids or mobilize the stored fat for utilization. Co-ordinated regulation of metabolic pathways balancing uptake, esterification, and hydrolysis of lipids is accomplished through positive and negative feedback interactions of regulatory hubs comprising several pleiotropic protein kinases and nuclear receptors. Metabolic regulation in adipocytes encompasses biogenesis and remodeling of uniquely large lipid droplets (LDs). The regulatory hubs also function as energy and nutrient sensors, and integrate metabolic regulation with intercellular signaling. Over-nutrition causes hypertrophic expansion of adipocytes, which, through incompletely understood mechanisms, initiates a cascade of metabolic and signaling events leading to tissue remodeling and immune cell recruitment. Macrophage activation and polarization toward a pro-inflammatory phenotype drives a self-reinforcing cycle of pro-inflammatory signals in the AT, establishing an inflammatory state. Sustained inflammation accelerates lipolysis and elevates free fatty acids in circulation, which robustly correlates with development of obesity-related diseases. The adipose regulatory network coupling metabolism, growth, and signaling of multiple cell types is exceedingly complex. While components of the regulatory network have been individually studied in exquisite detail, systems approaches have rarely been utilized to comprehensively assess the relative engagements of the components. Thus, need and opportunity exist to develop quantitative models of metabolic and signaling networks to achieve a more complete understanding of AT biology in both health and disease. Copyright © 2013 Wiley Periodicals, Inc.

  5. [Cell signaling pathways interaction in cellular proliferation: Potential target for therapeutic interventionism].

    Science.gov (United States)

    Valdespino-Gómez, Víctor Manuel; Valdespino-Castillo, Patricia Margarita; Valdespino-Castillo, Víctor Edmundo

    2015-01-01

    Nowadays, cellular physiology is best understood by analysing their interacting molecular components. Proteins are the major components of the cells. Different proteins are organised in the form of functional clusters, pathways or networks. These molecules are ordered in clusters of receptor molecules of extracellular signals, transducers, sensors and biological response effectors. The identification of these intracellular signaling pathways in different cellular types has required a long journey of experimental work. More than 300 intracellular signaling pathways have been identified in human cells. They participate in cell homeostasis processes for structural and functional maintenance. Some of them participate simultaneously or in a nearly-consecutive progression to generate a cellular phenotypic change. In this review, an analysis is performed on the main intracellular signaling pathways that take part in the cellular proliferation process, and the potential use of some components of these pathways as target for therapeutic interventionism are also underlined. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  6. A systems biology approach to the pathogenesis of obesity-related nonalcoholic fatty liver disease using reverse phase protein microarrays for multiplexed cell signaling analysis.

    Science.gov (United States)

    Calvert, Valerie S; Collantes, Rochelle; Elariny, Hazem; Afendy, Arian; Baranova, Ancha; Mendoza, Michael; Goodman, Zachary; Liotta, Lance A; Petricoin, Emanuel F; Younossi, Zobair M

    2007-07-01

    Nonalcoholic fatty liver disease (NAFLD) is a common cause of chronic liver disease. Omental adipose tissue, a biologically active organ secreting adipokines and cytokines, may play a role in the development of NAFLD. We tested this hypothesis with reverse-phase protein microarrays (RPA) for multiplexed cell signaling analysis of adipose tissue from patients with NAFLD. Omental adipose tissue was obtained from 99 obese patients. Liver biopsies obtained at the time of surgery were all read by the same hepatopathologist. Adipose tissue was exposed to rapid pressure cycles to extract protein lysates. RPA was used to investigate intracellular signaling. Analysis of 54 different kinase substrates and cell signaling endpoints showed that an insulin signaling pathway is deranged in different locations in NAFLD patients. Furthermore, components of insulin receptor-mediated signaling differentiate most of the conditions on the NAFLD spectrum. For example, PKA (protein kinase A) and AKT/mTOR (protein kinase B/mammalian target of rapamycin) pathway derangement accurately discriminates patients with NASH from those with the non-progressive forms of NAFLD. PKC (protein kinase C) delta, AKT, and SHC phosphorylation changes occur in patients with simple steatosis. Amounts of the FKHR (forkhead factor Foxo1)phosphorylated at S256 residue were significantly correlated with AST/ALT ratio in all morbidly obese patients. Furthermore, amounts of cleaved caspase 9 and pp90RSK S380 were positively correlated in patients with NASH. Specific insulin pathway signaling events are altered in the adipose tissue of patients with NASH compared with patients with nonprogressive forms of NAFLD. These findings provide evidence for the role of omental fat in the pathogenesis, and potentially, the progression of NAFLD.

  7. Studying cell biology in the skin.

    Science.gov (United States)

    Morrow, Angel; Lechler, Terry

    2015-11-15

    Advances in cell biology have often been driven by studies in diverse organisms and cell types. Although there are technical reasons for why different cell types are used, there are also important physiological reasons. For example, ultrastructural studies of vesicle transport were aided by the use of professional secretory cell types. The use of tissues/primary cells has the advantage not only of using cells that are adapted to the use of certain cell biological machinery, but also of highlighting the physiological roles of this machinery. Here we discuss advantages of the skin as a model system. We discuss both advances in cell biology that used the skin as a driving force and future prospects for use of the skin to understand basic cell biology. A unique combination of characteristics and tools makes the skin a useful in vivo model system for many cell biologists. © 2015 Morrow and Lechler. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  8. B-cell receptor signaling as a driver of lymphoma development and evolution.

    Science.gov (United States)

    Niemann, Carsten U; Wiestner, Adrian

    2013-12-01

    The B-cell receptor (BCR) is essential for normal B-cell development and maturation. In an increasing number of B-cell malignancies, BCR signaling is implicated as a pivotal pathway in tumorigenesis. Mechanisms of BCR activation are quite diverse and range from chronic antigenic drive by microbial or viral antigens to autostimulation of B-cells by self-antigens to activating mutations in intracellular components of the BCR pathway. Hepatitis C virus infection can lead to the development of splenic marginal zone lymphoma, while Helicobacter pylori infection is associated with the development of mucosa-associated lymphoid tissue lymphomas. In some of these cases, successful treatment of the infection removes the inciting antigen and results in resolution of the lymphoma. Chronic lymphocytic leukemia has been recognized for decades as a malignancy of auto-reactive B-cells and its clinical course is in part determined by the differential response of the malignant cells to BCR activation. In a number of B-cell malignancies, activating mutations in signal transduction components of the BCR pathway have been identified; prominent examples are activated B-cell-like (ABC) diffuse large B-cell lymphomas (DLBCL) that carry mutations in CD79B and CARD11 and display chronic active BCR signaling resulting in constitutive activation of the NF-κB pathway. Despite considerable heterogeneity in biology and clinical course, many mature B-cell malignancies are highly sensitive to kinase inhibitors that disrupt BCR signaling. Thus, targeted therapy through inhibition of BCR signaling is emerging as a new treatment paradigm for many B-cell malignancies. Here, we review the role of the BCR in the pathogenesis of B-cell malignancies and summarize clinical results of the emerging class of kinase inhibitors that target this pathway. Copyright © 2013. Published by Elsevier Ltd.

  9. Mammalian cell biology

    International Nuclear Information System (INIS)

    Elkind, M.M.

    1979-01-01

    This section contains summaries of research on mechanisms of lethality and radioinduced changes in mammalian cell properties, new cell systems for the study of the biology of mutation and neoplastic transformation, and comparative properties of ionizing radiations

  10. Networks in Cell Biology

    Science.gov (United States)

    Buchanan, Mark; Caldarelli, Guido; De Los Rios, Paolo; Rao, Francesco; Vendruscolo, Michele

    2010-05-01

    Introduction; 1. Network views of the cell Paolo De Los Rios and Michele Vendruscolo; 2. Transcriptional regulatory networks Sarath Chandra Janga and M. Madan Babu; 3. Transcription factors and gene regulatory networks Matteo Brilli, Elissa Calistri and Pietro Lió; 4. Experimental methods for protein interaction identification Peter Uetz, Björn Titz, Seesandra V. Rajagopala and Gerard Cagney; 5. Modeling protein interaction networks Francesco Rao; 6. Dynamics and evolution of metabolic networks Daniel Segré; 7. Hierarchical modularity in biological networks: the case of metabolic networks Erzsébet Ravasz Regan; 8. Signalling networks Gian Paolo Rossini; Appendix 1. Complex networks: from local to global properties D. Garlaschelli and G. Caldarelli; Appendix 2. Modelling the local structure of networks D. Garlaschelli and G. Caldarelli; Appendix 3. Higher-order topological properties S. Ahnert, T. Fink and G. Caldarelli; Appendix 4. Elementary mathematical concepts A. Gabrielli and G. Caldarelli; References.

  11. Signaling network of dendritic cells in response to pathogens: a community-input supported knowledgebase.

    Science.gov (United States)

    Patil, Sonali; Pincas, Hanna; Seto, Jeremy; Nudelman, German; Nudelman, Irina; Sealfon, Stuart C

    2010-10-07

    Dendritic cells are antigen-presenting cells that play an essential role in linking the innate and adaptive immune systems. Much research has focused on the signaling pathways triggered upon infection of dendritic cells by various pathogens. The high level of activity in the field makes it desirable to have a pathway-based resource to access the information in the literature. Current pathway diagrams lack either comprehensiveness, or an open-access editorial interface. Hence, there is a need for a dependable, expertly curated knowledgebase that integrates this information into a map of signaling networks. We have built a detailed diagram of the dendritic cell signaling network, with the goal of providing researchers with a valuable resource and a facile method for community input. Network construction has relied on comprehensive review of the literature and regular updates. The diagram includes detailed depictions of pathways activated downstream of different pathogen recognition receptors such as Toll-like receptors, retinoic acid-inducible gene-I-like receptors, C-type lectin receptors and nucleotide-binding oligomerization domain-like receptors. Initially assembled using CellDesigner software, it provides an annotated graphical representation of interactions stored in Systems Biology Mark-up Language. The network, which comprises 249 nodes and 213 edges, has been web-published through the Biological Pathway Publisher software suite. Nodes are annotated with PubMed references and gene-related information, and linked to a public wiki, providing a discussion forum for updates and corrections. To gain more insight into regulatory patterns of dendritic cell signaling, we analyzed the network using graph-theory methods: bifan, feedforward and multi-input convergence motifs were enriched. This emphasis on activating control mechanisms is consonant with a network that subserves persistent and coordinated responses to pathogen detection. This map represents a navigable

  12. Evolutionary cell biology: two origins, one objective.

    Science.gov (United States)

    Lynch, Michael; Field, Mark C; Goodson, Holly V; Malik, Harmit S; Pereira-Leal, José B; Roos, David S; Turkewitz, Aaron P; Sazer, Shelley

    2014-12-02

    All aspects of biological diversification ultimately trace to evolutionary modifications at the cellular level. This central role of cells frames the basic questions as to how cells work and how cells come to be the way they are. Although these two lines of inquiry lie respectively within the traditional provenance of cell biology and evolutionary biology, a comprehensive synthesis of evolutionary and cell-biological thinking is lacking. We define evolutionary cell biology as the fusion of these two eponymous fields with the theoretical and quantitative branches of biochemistry, biophysics, and population genetics. The key goals are to develop a mechanistic understanding of general evolutionary processes, while specifically infusing cell biology with an evolutionary perspective. The full development of this interdisciplinary field has the potential to solve numerous problems in diverse areas of biology, including the degree to which selection, effectively neutral processes, historical contingencies, and/or constraints at the chemical and biophysical levels dictate patterns of variation for intracellular features. These problems can now be examined at both the within- and among-species levels, with single-cell methodologies even allowing quantification of variation within genotypes. Some results from this emerging field have already had a substantial impact on cell biology, and future findings will significantly influence applications in agriculture, medicine, environmental science, and synthetic biology.

  13. Computational modelling of multi-cell migration in a multi-signalling substrate

    International Nuclear Information System (INIS)

    Mousavi, Seyed Jamaleddin; Doblaré, Manuel; Doweidar, Mohamed Hamdy

    2014-01-01

    Cell migration is a vital process in many biological phenomena ranging from wound healing to tissue regeneration. Over the past few years, it has been proven that in addition to cell–cell and cell-substrate mechanical interactions (mechanotaxis), cells can be driven by thermal, chemical and/or electrical stimuli. A numerical model was recently presented by the authors to analyse single cell migration in a multi-signalling substrate. That work is here extended to include multi-cell migration due to cell–cell interaction in a multi-signalling substrate under different conditions. This model is based on balancing the forces that act on the cell population in the presence of different guiding cues. Several numerical experiments are presented to illustrate the effect of different stimuli on the trajectory and final location of the cell population within a 3D heterogeneous multi-signalling substrate. Our findings indicate that although multi-cell migration is relatively similar to single cell migration in some aspects, the associated behaviour is very different. For instance, cell–cell interaction may delay single cell migration towards effective cues while increasing the magnitude of the average net cell traction force as well as the local velocity. Besides, the random movement of a cell within a cell population is slightly greater than that of single cell migration. Moreover, higher electrical field strength causes the cell slug to flatten near the cathode. On the other hand, as with single cell migration, the existence of electrotaxis dominates mechanotaxis, moving the cells to the cathode or anode pole located at the free surface. The numerical results here obtained are qualitatively consistent with related experimental works. (paper)

  14. Phosphoinositide-3-Kinase Signaling in Human Natural Killer Cells: New Insights from Primary Immunodeficiency

    Directory of Open Access Journals (Sweden)

    Emily M. Mace

    2018-03-01

    Full Text Available Human natural killer (NK cells play a critical role in the control of viral infections and malignancy. Their importance in human health and disease is illustrated by severe viral infections in patients with primary immunodeficiencies that affect NK cell function and/or development. The recent identification of patients with phosphoinositide-3-kinase (PI3K-signaling pathway mutations that can cause primary immunodeficiency provides valuable insight into the role that PI3K signaling plays in human NK cell maturation and lytic function. There is a rich literature that demonstrates a requirement for PI3K in multiple key aspects of NK cell biology, including development/maturation, homing, priming, and function. Here, I briefly review these previous studies and place them in context with recent findings from the study of primary immunodeficiency patients, particularly those with hyperactivating mutations in PI3Kδ signaling.

  15. Divergence of canonical danger signals: The genome-level expression patterns of human mononuclear cells subjected to heat shock or lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Sakthivel Bhuvaneswari

    2008-05-01

    Full Text Available Abstract Background Peripheral blood mononuclear cells (PBMC serve a sentinel role allowing the host to efficiently sense and adapt to the presence of danger signals. Herein we have directly compared the genome-level expression patterns (microarray of a human PBMC model (THP-1 cells subjected to one of two canonical danger signals, heat shock or lipopolysaccharide (LPS. Results and Discussion Based on sequential expression and statistical filters, and in comparison to control cells, we found that 3,988 genes were differentially regulated in THP-1 cells subjected to LPS stress, and 2,921 genes were differentially regulated in THP-1 cells subjected to heat shock stress. Venn analyses demonstrated that the majority of differentially regulated genes (≥ 70% were uniquely expressed in response to one of the two danger signals. Functional analyses demonstrated that the two danger signals induced expression or repression of genes corresponding to unique pathways, molecular functions, biological processes, and gene networks. In contrast, there were 184 genes that were commonly upregulated by both stress signals, and 430 genes that were commonly downregulated by both stress signals. Interestingly, the 184 commonly upregulated genes corresponded to a gene network broadly related to inflammation, and more specifically to chemokine signaling. Conclusion These data demonstrate that the mononuclear cell responses to the canonical stress signals, heat shock and LPS, are highly divergent. However, there is a heretofore unrecognized common pattern of gene network expression corresponding to chemokine-related biology. The data also serve as a reference database for investigators in the field of stress signaling.

  16. Sensory Flask Cells in Sponge Larvae Regulate Metamorphosis via Calcium Signaling.

    Science.gov (United States)

    Nakanishi, Nagayasu; Stoupin, Daniel; Degnan, Sandie M; Degnan, Bernard M

    2015-12-01

    The Porifera (sponges) is one of the earliest phyletic lineages to branch off the metazoan tree. Although the body-plan of sponges is among the simplest in the animal kingdom and sponges lack nervous systems that communicate environmental signals to other cells, their larvae have sensory systems that generate coordinated responses to environmental cues. In eumetazoans (Cnidaria and Bilateria), the nervous systems of larvae often regulate metamorphosis through Ca(2+)-dependent signal transduction. In sponges, neither the identity of the receptor system that detects an inductive environmental cue (hereafter "metamorphic cues") nor the signaling system that mediates settlement and metamorphosis are known. Using a combination of behavioral assays and surgical manipulations, we show here that specialized epithelial cells-referred to as flask cells-enriched in the anterior third of the Amphimedon queenslandica larva are most likely to be the sensory cells that detect the metamorphic cues. Surgical removal of the region enriched in flask cells in a larva inhibits the initiation of metamorphosis. The flask cell has an apical sensory apparatus with a cilium surrounded by an apical F-actin-rich protrusion, and numerous vesicles, hallmarks of eumetazoan sensory-neurosecretory cells. We demonstrate that these flask cells respond to metamorphic cues by elevating intracellular Ca(2+) levels, and that this elevation is necessary for the initiation of metamorphosis. Taken together, these analyses suggest that sponge larvae have sensory-secretory epithelial cells capable of converting exogenous cues into internal signals via Ca(2+)-mediated signaling, which is necessary for the initiation of metamorphosis. Similarities in the morphology, physiology, and function of the sensory flask cells in sponge larvae with the sensory/neurosecretory cells in eumetazoan larvae suggest this sensory system predates the divergence of Porifera and Eumetazoa. © The Author 2015. Published by Oxford

  17. Oxygen in human health from life to death – An approach to teaching redox biology and signaling to graduate and medical students

    Directory of Open Access Journals (Sweden)

    Margaret M. Briehl

    2015-08-01

    Full Text Available In the absence of oxygen human life is measured in minutes. In the presence of oxygen, normal metabolism generates reactive species (ROS that have the potential to cause cell injury contributing to human aging and disease. Between these extremes, organisms have developed means for sensing oxygen and ROS and regulating their cellular processes in response. Redox signaling contributes to the control of cell proliferation and death. Aberrant redox signaling underlies many human diseases. The attributes acquired by altered redox homeostasis in cancer cells illustrate this particularly well. This teaching review and the accompanying illustrations provide an introduction to redox biology and signaling aimed at instructors of graduate and medical students.

  18. Pavement cells: a model system for non-transcriptional auxin signalling and crosstalks.

    Science.gov (United States)

    Chen, Jisheng; Wang, Fei; Zheng, Shiqin; Xu, Tongda; Yang, Zhenbiao

    2015-08-01

    Auxin (indole acetic acid) is a multifunctional phytohormone controlling various developmental patterns, morphogenetic processes, and growth behaviours in plants. The transcription-based pathway activated by the nuclear TRANSPORT INHIBITOR RESISTANT 1/auxin-related F-box auxin receptors is well established, but the long-sought molecular mechanisms of non-transcriptional auxin signalling remained enigmatic until very recently. Along with the establishment of the Arabidopsis leaf epidermal pavement cell (PC) as an exciting and amenable model system in the past decade, we began to gain insight into non-transcriptional auxin signalling. The puzzle-piece shape of PCs forms from intercalated or interdigitated cell growth, requiring local intra- and inter-cellular coordination of lobe and indent formation. Precise coordination of this interdigitated pattern requires auxin and an extracellular auxin sensing system that activates plasma membrane-associated Rho GTPases from plants and subsequent downstream events regulating cytoskeletal reorganization and PIN polarization. Apart from auxin, mechanical stress and cytokinin have been shown to affect PC interdigitation, possibly by interacting with auxin signals. This review focuses upon signalling mechanisms for cell polarity formation in PCs, with an emphasis on non-transcriptional auxin signalling in polarized cell expansion and pattern formation and how different auxin pathways interplay with each other and with other signals. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. Cell-Cell Contact Area Affects Notch Signaling and Notch-Dependent Patterning.

    Science.gov (United States)

    Shaya, Oren; Binshtok, Udi; Hersch, Micha; Rivkin, Dmitri; Weinreb, Sheila; Amir-Zilberstein, Liat; Khamaisi, Bassma; Oppenheim, Olya; Desai, Ravi A; Goodyear, Richard J; Richardson, Guy P; Chen, Christopher S; Sprinzak, David

    2017-03-13

    During development, cells undergo dramatic changes in their morphology. By affecting contact geometry, these morphological changes could influence cellular communication. However, it has remained unclear whether and how signaling depends on contact geometry. This question is particularly relevant for Notch signaling, which coordinates neighboring cell fates through direct cell-cell signaling. Using micropatterning with a receptor trans-endocytosis assay, we show that signaling between pairs of cells correlates with their contact area. This relationship extends across contact diameters ranging from micrometers to tens of micrometers. Mathematical modeling predicts that dependence of signaling on contact area can bias cellular differentiation in Notch-mediated lateral inhibition processes, such that smaller cells are more likely to differentiate into signal-producing cells. Consistent with this prediction, analysis of developing chick inner ear revealed that ligand-producing hair cell precursors have smaller apical footprints than non-hair cells. Together, these results highlight the influence of cell morphology on fate determination processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. mTOR signaling promotes stem cell activation via counterbalancing BMP-mediated suppression during hair regeneration.

    Science.gov (United States)

    Deng, Zhili; Lei, Xiaohua; Zhang, Xudong; Zhang, Huishan; Liu, Shuang; Chen, Qi; Hu, Huimin; Wang, Xinyue; Ning, Lina; Cao, Yujing; Zhao, Tongbiao; Zhou, Jiaxi; Chen, Ting; Duan, Enkui

    2015-02-01

    Hair follicles (HFs) undergo cycles of degeneration (catagen), rest (telogen), and regeneration (anagen) phases. Anagen begins when the hair follicle stem cells (HFSCs) obtain sufficient activation cues to overcome suppressive signals, mainly the BMP pathway, from their niche cells. Here, we unveil that mTOR complex 1 (mTORC1) signaling is activated in HFSCs, which coincides with the HFSC activation at the telogen-to-anagen transition. By using both an inducible conditional gene targeting strategy and a pharmacological inhibition method to ablate or inhibit mTOR signaling in adult skin epithelium before anagen initiation, we demonstrate that HFs that cannot respond to mTOR signaling display significantly delayed HFSC activation and extended telogen. Unexpectedly, BMP signaling activity is dramatically prolonged in mTOR signaling-deficient HFs. Through both gain- and loss-of-function studies in vitro, we show that mTORC1 signaling negatively affects BMP signaling, which serves as a main mechanism whereby mTORC1 signaling facilitates HFSC activation. Indeed, in vivo suppression of BMP by its antagonist Noggin rescues the HFSC activation defect in mTORC1-null skin. Our findings reveal a critical role for mTOR signaling in regulating stem cell activation through counterbalancing BMP-mediated repression during hair regeneration. © The Author (2015). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  1. Feedback dynamics and cell function: Why systems biology is called Systems Biology.

    Science.gov (United States)

    Wolkenhauer, Olaf; Mesarovic, Mihajlo

    2005-05-01

    A new paradigm, like Systems Biology, should challenge the way research has been conducted previously. This Opinion article aims to present Systems Biology, not as the application of engineering principles to biology but as a merger of systems- and control theory with molecular- and cell biology. In our view, the central dogma of Systems Biology is that it is system dynamics that gives rise to the functioning and function of cells. The concepts of feedback regulation and control of pathways and the coordination of cell function are emphasized as an important area of Systems Biology research. The hurdles and risks for this area are discussed from the perspective of dynamic pathway modelling. Most of all, the aim of this article is to promote mathematical modelling and simulation as a part of molecular- and cell biology. Systems Biology is a success if it is widely accepted that there is nothing more practical than a good theory.

  2. Aberrant signaling pathways in medulloblastomas: a stem cell connection

    Directory of Open Access Journals (Sweden)

    Carolina Oliveira Rodini

    2010-12-01

    Full Text Available Medulloblastoma is a highly malignant primary tumor of the central nervous system. It represents the most frequent type of solid tumor and the leading cause of death related to cancer in early childhood. Current treatment includes surgery, chemotherapy and radiotherapy which may lead to severe cognitive impairment and secondary brain tumors. New perspectives for therapeutic development have emerged with the identification of stem-like cells displaying high tumorigenic potential and increased radio- and chemo-resistance in gliomas. Under the cancer stem cell hypothesis, transformation of neural stem cells and/or granular neuron progenitors of the cerebellum are though to be involved in medulloblastoma development. Dissecting the genetic and molecular alterations associated with this process should significantly impact both basic and applied cancer research. Based on cumulative evidences in the fields of genetics and molecular biology of medulloblastomas, we discuss the possible involvement of developmental signaling pathways as critical biochemical switches determining normal neurogenesis or tumorigenesis. From the clinical viewpoint, modulation of signaling pathways such as TGFβ, regulating neural stem cell proliferation and tumor development, might be attempted as an alternative strategy for future drug development aiming at more efficient therapies and improved clinical outcome of patients with pediatric brain cancers.

  3. Ovatodiolide Targets β-Catenin Signaling in Suppressing Tumorigenesis and Overcoming Drug Resistance in Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Jar-Yi Ho

    2013-01-01

    Full Text Available Dysregulated β-catenin signaling is intricately involved in renal cell carcinoma (RCC carcinogenesis and progression. Determining potential β-catenin signaling inhibitors would be helpful in ameliorating drug resistance in advanced or metastatic RCC. Screening for β-catenin signaling inhibitors involved in silico inquiry of the PubChem Bioactivity database followed by TCF/LEF reporter assay. The biological effects of ovatodiolide were evaluated in 4 RCC cell lines in vitro and 2 RCC cell lines in a mouse xenograft model. The synergistic effects of ovatodiolide and sorafenib or sunitinib were examined in 2 TKI-resistant RCC cell lines. Ovatodiolide, a pure compound of Anisomeles indica, inhibited β-catenin signaling and reduced RCC cell viability, survival, migration/invasion, and in vitro cell or in vivo mouse tumorigenicity. Cytotoxicity was significantly reduced in a normal kidney epithelial cell line with the treatment. Ovatodiolide reduced phosphorylated β-catenin (S552 that inhibited β-catenin nuclear translocation. Moreover, ovatodiolide decreased β-catenin stability and impaired the association of β-catenin and transcription factor 4. Ovatodiolide combined with sorafenib or sunitinib overcame drug resistance in TKI-resistant RCC cells. Ovatodiolide may be a potent β-catenin signaling inhibitor, with synergistic effects with sorafenib or sunitinib, and therefore, a useful candidate for improving RCC therapy.

  4. Signaling network of dendritic cells in response to pathogens: a community-input supported knowledgebase

    Directory of Open Access Journals (Sweden)

    Nudelman Irina

    2010-10-01

    Full Text Available Abstract Background Dendritic cells are antigen-presenting cells that play an essential role in linking the innate and adaptive immune systems. Much research has focused on the signaling pathways triggered upon infection of dendritic cells by various pathogens. The high level of activity in the field makes it desirable to have a pathway-based resource to access the information in the literature. Current pathway diagrams lack either comprehensiveness, or an open-access editorial interface. Hence, there is a need for a dependable, expertly curated knowledgebase that integrates this information into a map of signaling networks. Description We have built a detailed diagram of the dendritic cell signaling network, with the goal of providing researchers with a valuable resource and a facile method for community input. Network construction has relied on comprehensive review of the literature and regular updates. The diagram includes detailed depictions of pathways activated downstream of different pathogen recognition receptors such as Toll-like receptors, retinoic acid-inducible gene-I-like receptors, C-type lectin receptors and nucleotide-binding oligomerization domain-like receptors. Initially assembled using CellDesigner software, it provides an annotated graphical representation of interactions stored in Systems Biology Mark-up Language. The network, which comprises 249 nodes and 213 edges, has been web-published through the Biological Pathway Publisher software suite. Nodes are annotated with PubMed references and gene-related information, and linked to a public wiki, providing a discussion forum for updates and corrections. To gain more insight into regulatory patterns of dendritic cell signaling, we analyzed the network using graph-theory methods: bifan, feedforward and multi-input convergence motifs were enriched. This emphasis on activating control mechanisms is consonant with a network that subserves persistent and coordinated responses to

  5. Micrasterias as a model system in plant cell biology

    Directory of Open Access Journals (Sweden)

    Ursula Luetz-Meindl

    2016-07-01

    Full Text Available The unicellular freshwater alga Micrasterias denticulata is an exceptional organism due to its extraordinary star-shaped, highly symmetric morphology and has thus attracted the interest of researchers for many decades. As a member of the Streptophyta, Micrasterias is not only genetically closely related to higher land plants but shares common features with them in many physiological and cell biological aspects. These facts, together with its considerable cell size of about 200 µm, its modest cultivation conditions and the uncomplicated accessibility particularly to any microscopic techniques, make Micrasterias a very well suited cell biological plant model system. The review focuses particularly on cell wall formation and composition, dictyosomal structure and function, cytoskeleton control of growth and morphogenesis as well as on ionic regulation and signal transduction. It has been also shown in the recent years that Micrasterias is a highly sensitive indicator for environmental stress impact such as heavy metals, high salinity, oxidative stress or starvation. Stress induced organelle degradation, autophagy, adaption and detoxification mechanisms have moved in the center of interest and have been investigated with modern microscopic techniques such as 3-D- and analytical electron microscopy as well as with biochemical, physiological and molecular approaches. This review is intended to summarize and discuss the most important results obtained in Micrasterias in the last 20 years and to compare the results to similar processes in higher plant cells.

  6. Analysis and logical modeling of biological signaling transduction networks

    Science.gov (United States)

    Sun, Zhongyao

    The study of network theory and its application span across a multitude of seemingly disparate fields of science and technology: computer science, biology, social science, linguistics, etc. It is the intrinsic similarities embedded in the entities and the way they interact with one another in these systems that link them together. In this dissertation, I present from both the aspect of theoretical analysis and the aspect of application three projects, which primarily focus on signal transduction networks in biology. In these projects, I assembled a network model through extensively perusing literature, performed model-based simulations and validation, analyzed network topology, and proposed a novel network measure. The application of network modeling to the system of stomatal opening in plants revealed a fundamental question about the process that has been left unanswered in decades. The novel measure of the redundancy of signal transduction networks with Boolean dynamics by calculating its maximum node-independent elementary signaling mode set accurately predicts the effect of single node knockout in such signaling processes. The three projects as an organic whole advance the understanding of a real system as well as the behavior of such network models, giving me an opportunity to take a glimpse at the dazzling facets of the immense world of network science.

  7. Changing the threshold-Signals and mechanisms of mast cell priming.

    Science.gov (United States)

    Halova, Ivana; Rönnberg, Elin; Draberova, Lubica; Vliagoftis, Harissios; Nilsson, Gunnar P; Draber, Petr

    2018-03-01

    Mast cells play a key role in allergy and other inflammatory diseases involving engagement of multivalent antigen with IgE bound to high-affinity IgE receptors (FcεRIs). Aggregation of FcεRIs on mast cells initiates a cascade of signaling events that eventually lead to degranulation, secretion of leukotrienes and prostaglandins, and cytokine and chemokine production contributing to the inflammatory response. Exposure to pro-inflammatory cytokines, chemokines, bacterial and viral products, as well as some other biological products and drugs, induces mast cell transition from the basal state into a primed one, which leads to enhanced response to IgE-antigen complexes. Mast cell priming changes the threshold for antigen-mediated activation by various mechanisms, depending on the priming agent used, which alone usually do not induce mast cell degranulation. In this review, we describe the priming processes induced in mast cells by various cytokines (stem cell factor, interleukins-4, -6 and -33), chemokines, other agents acting through G protein-coupled receptors (adenosine, prostaglandin E 2 , sphingosine-1-phosphate, and β-2-adrenergic receptor agonists), toll-like receptors, and various drugs affecting the cytoskeleton. We will review the current knowledge about the molecular mechanisms behind priming of mast cells leading to degranulation and cytokine production and discuss the biological effects of mast cell priming induced by several cytokines. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Protein Phosphatase 2A in the Regulation of Wnt Signaling, Stem Cells, and Cancer.

    Science.gov (United States)

    Thompson, Joshua J; Williams, Christopher S

    2018-02-26

    Protein phosphorylation is a ubiquitous cellular process that allows for the nuanced and reversible regulation of protein activity. Protein phosphatase 2A (PP2A) is a heterotrimeric serine-threonine phosphatase-composed of a structural, regulatory, and catalytic subunit-that controls a variety of cellular events via protein dephosphorylation. While much is known about PP2A and its basic biochemistry, the diversity of its components-especially the multitude of regulatory subunits-has impeded the determination of PP2A function. As a consequence of this complexity, PP2A has been shown to both positively and negatively regulate signaling networks such as the Wnt pathway. Wnt signaling modulates major developmental processes, and is a dominant mediator of stem cell self-renewal, cell fate, and cancer stem cells. Because PP2A affects Wnt signaling both positively and negatively and at multiple levels, further understanding of this complex dynamic may ultimately provide insight into stem cell biology and how to better treat cancers that result from alterations in Wnt signaling. This review will summarize literature that implicates PP2A as a tumor suppressor, explore PP2A mutations identified in human malignancy, and focus on PP2A in the regulation of Wnt signaling and stem cells so as to better understand how aberrancy in this pathway can contribute to tumorigenesis.

  9. Learning Cell Biology as a Team: A Project-Based Approach to Upper-Division Cell Biology

    Science.gov (United States)

    Wright, Robin; Boggs, James

    2002-01-01

    To help students develop successful strategies for learning how to learn and communicate complex information in cell biology, we developed a quarter-long cell biology class based on team projects. Each team researches a particular human disease and presents information about the cellular structure or process affected by the disease, the cellular…

  10. Retinoic acid signalling is required for the efficient differentiation of CD4+ T cells into pathogenic effector cells during the development of intestinal inflammation

    DEFF Research Database (Denmark)

    Rivollier, Aymeric Marie Christian; Pool, Lieneke; Frising, Ulrika

    Epidemiological studies of vitamin A-deficient populations have illustrated the importance of the vitamin A metabolite retinoic acid (RA) in mucosal immune responses. However, RA seems to be a double-edge sword in CD4+ T cell biology. While it sustains the development of foxp3+ regulatory T cells......, it was also very recently reported to be essential for the stability of the Th1 lineage and to prevent transition to a Th17 program. Here we explored the role of RA signalling in CD4+ T cells during the development of intestinal inflammation in the T cell transfer colitis model. We found that RA signalling......-deficient CD4+ T cells are less potent at inducing intestinal inflammation compared to their RA signalling-competent counterparts and exhibit a differentiation skewing towards more IFNγ- IL-17+, IL-17+IFNγ+ and foxp3+ cells, while their capacity to differentiate into IL-17-IFNγ+ Th1 cells is compromised...

  11. Teaching Cell Biology in Primary Schools

    Directory of Open Access Journals (Sweden)

    Francele de Abreu Carlan

    2014-01-01

    Full Text Available Basic concepts of cell biology are essential for scientific literacy. However, because many aspects of cell theory and cell functioning are quite abstract, students experience difficulties understanding them. In this study, we investigated whether diverse teaching resources such as the use of replicas of Leeuwenhoek’s microscope, visualization of cells using an optical microscope, construction of three-dimensional cell models, and reading of a comic book about cells could mitigate the difficulties encountered when teaching cell biology to 8th-grade primary school students. The results suggest that these didactic activities improve students’ ability to learn concrete concepts about cell biology, such as the composition of living beings, growth, and cicatrization. Also, the development of skills was observed, as, for example, the notion of cell size. However, no significant improvements were observed in students’ ability to learn about abstract topics, such as the structures of subcellular organelles and their functions. These results suggest that many students in this age have not yet concluded Piaget’s concrete operational stage, indicating that the concepts required for the significant learning of abstract subjects need to be explored more thoroughly in the process of designing programs that introduce primary school students to cell biology.

  12. Computational Tools for Stem Cell Biology.

    Science.gov (United States)

    Bian, Qin; Cahan, Patrick

    2016-12-01

    For over half a century, the field of developmental biology has leveraged computation to explore mechanisms of developmental processes. More recently, computational approaches have been critical in the translation of high throughput data into knowledge of both developmental and stem cell biology. In the past several years, a new subdiscipline of computational stem cell biology has emerged that synthesizes the modeling of systems-level aspects of stem cells with high-throughput molecular data. In this review, we provide an overview of this new field and pay particular attention to the impact that single cell transcriptomics is expected to have on our understanding of development and our ability to engineer cell fate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Determinants of cell-to-cell variability in protein kinase signaling.

    Science.gov (United States)

    Jeschke, Matthias; Baumgärtner, Stephan; Legewie, Stefan

    2013-01-01

    Cells reliably sense environmental changes despite internal and external fluctuations, but the mechanisms underlying robustness remain unclear. We analyzed how fluctuations in signaling protein concentrations give rise to cell-to-cell variability in protein kinase signaling using analytical theory and numerical simulations. We characterized the dose-response behavior of signaling cascades by calculating the stimulus level at which a pathway responds ('pathway sensitivity') and the maximal activation level upon strong stimulation. Minimal kinase cascades with gradual dose-response behavior show strong variability, because the pathway sensitivity and the maximal activation level cannot be simultaneously invariant. Negative feedback regulation resolves this trade-off and coordinately reduces fluctuations in the pathway sensitivity and maximal activation. Feedbacks acting at different levels in the cascade control different aspects of the dose-response curve, thereby synergistically reducing the variability. We also investigated more complex, ultrasensitive signaling cascades capable of switch-like decision making, and found that these can be inherently robust to protein concentration fluctuations. We describe how the cell-to-cell variability of ultrasensitive signaling systems can be actively regulated, e.g., by altering the expression of phosphatase(s) or by feedback/feedforward loops. Our calculations reveal that slow transcriptional negative feedback loops allow for variability suppression while maintaining switch-like decision making. Taken together, we describe design principles of signaling cascades that promote robustness. Our results may explain why certain signaling cascades like the yeast pheromone pathway show switch-like decision making with little cell-to-cell variability.

  14. Dynamic ubiquitin signaling in cell cycle regulation.

    Science.gov (United States)

    Gilberto, Samuel; Peter, Matthias

    2017-08-07

    The cell division cycle is driven by a collection of enzymes that coordinate DNA duplication and separation, ensuring that genomic information is faithfully and perpetually maintained. The activity of the effector proteins that perform and coordinate these biological processes oscillates by regulated expression and/or posttranslational modifications. Ubiquitylation is a cardinal cellular modification and is long known for driving cell cycle transitions. In this review, we emphasize emerging concepts of how ubiquitylation brings the necessary dynamicity and plasticity that underlie the processes of DNA replication and mitosis. New studies, often focusing on the regulation of chromosomal proteins like DNA polymerases or kinetochore kinases, are demonstrating that ubiquitylation is a versatile modification that can be used to fine-tune these cell cycle events, frequently through processes that do not involve proteasomal degradation. Understanding how the increasing variety of identified ubiquitin signals are transduced will allow us to develop a deeper mechanistic perception of how the multiple factors come together to faithfully propagate genomic information. Here, we discuss these and additional conceptual challenges that are currently under study toward understanding how ubiquitin governs cell cycle regulation. © 2017 Gilberto and Peter.

  15. Lessons learned about spaceflight and cell biology experiments

    Science.gov (United States)

    Hughes-Fulford, Millie

    2004-01-01

    Conducting cell biology experiments in microgravity can be among the most technically challenging events in a biologist's life. Conflicting events of spaceflight include waiting to get manifested, delays in manifest schedules, training astronauts to not shake your cultures and to add reagents slowly, as shaking or quick injection can activate signaling cascades and give you erroneous results. It is important to select good hardware that is reliable. Possible conflicting environments in flight include g-force and vibration of launch, exposure of cells to microgravity for extended periods until hardware is turned on, changes in cabin gases and cosmic radiation. One should have an on-board 1-g control centrifuge in order to eliminate environmental differences. Other obstacles include getting your funding in a timely manner (it is not uncommon for two to three years to pass between notification of grant approval for funding and actually getting funded). That said, it is important to note that microgravity research is worthwhile since all terrestrial life evolved in a gravity field and secrets of biological function may only be answered by removing the constant of gravity. Finally, spaceflight experiments are rewarding and worth your effort and patience.

  16. Semantic Mining based on graph theory and ontologies. Case Study: Cell Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Carlos R. Rangel

    2016-08-01

    Full Text Available In this paper we use concepts from graph theory and cellular biology represented as ontologies, to carry out semantic mining tasks on signaling pathway networks. Specifically, the paper describes the semantic enrichment of signaling pathway networks. A cell signaling network describes the basic cellular activities and their interactions. The main contribution of this paper is in the signaling pathway research area, it proposes a new technique to analyze and understand how changes in these networks may affect the transmission and flow of information, which produce diseases such as cancer and diabetes. Our approach is based on three concepts from graph theory (modularity, clustering and centrality frequently used on social networks analysis. Our approach consists into two phases: the first uses the graph theory concepts to determine the cellular groups in the network, which we will call them communities; the second uses ontologies for the semantic enrichment of the cellular communities. The measures used from the graph theory allow us to determine the set of cells that are close (for example, in a disease, and the main cells in each community. We analyze our approach in two cases: TGF-ß and the Alzheimer Disease.

  17. Genomic Signal Processing: Predicting Basic Molecular Biological Principles

    Science.gov (United States)

    Alter, Orly

    2005-03-01

    Advances in high-throughput technologies enable acquisition of different types of molecular biological data, monitoring the flow of biological information as DNA is transcribed to RNA, and RNA is translated to proteins, on a genomic scale. Future discovery in biology and medicine will come from the mathematical modeling of these data, which hold the key to fundamental understanding of life on the molecular level, as well as answers to questions regarding diagnosis, treatment and drug development. Recently we described data-driven models for genome-scale molecular biological data, which use singular value decomposition (SVD) and the comparative generalized SVD (GSVD). Now we describe an integrative data-driven model, which uses pseudoinverse projection (1). We also demonstrate the predictive power of these matrix algebra models (2). The integrative pseudoinverse projection model formulates any number of genome-scale molecular biological data sets in terms of one chosen set of data samples, or of profiles extracted mathematically from data samples, designated the ``basis'' set. The mathematical variables of this integrative model, the pseudoinverse correlation patterns that are uncovered in the data, represent independent processes and corresponding cellular states (such as observed genome-wide effects of known regulators or transcription factors, the biological components of the cellular machinery that generate the genomic signals, and measured samples in which these regulators or transcription factors are over- or underactive). Reconstruction of the data in the basis simulates experimental observation of only the cellular states manifest in the data that correspond to those of the basis. Classification of the data samples according to their reconstruction in the basis, rather than their overall measured profiles, maps the cellular states of the data onto those of the basis, and gives a global picture of the correlations and possibly also causal coordination of

  18. Myostatin signals through Pax7 to regulate satellite cell self-renewal

    International Nuclear Information System (INIS)

    McFarlane, Craig; Hennebry, Alex; Thomas, Mark; Plummer, Erin; Ling, Nicholas; Sharma, Mridula; Kambadur, Ravi

    2008-01-01

    Myostatin, a Transforming Growth Factor-beta (TGF-β) super-family member, has previously been shown to negatively regulate satellite cell activation and self-renewal. However, to date the mechanism behind Myostatin function in satellite cell biology is not known. Here we show that Myostatin signals via a Pax7-dependent mechanism to regulate satellite cell self-renewal. While excess Myostatin inhibited Pax7 expression via ERK1/2 signaling, an increase in Pax7 expression was observed following both genetic inactivation and functional antagonism of Myostatin. As a result, we show that either blocking or inactivating Myostatin enhances the partitioning of the fusion-incompetent self-renewed satellite cell lineage (high Pax7 expression, low MyoD expression) from the pool of actively proliferating myogenic precursor cells. Consistent with this result, over-expression of Pax7 in C2C12 myogenic cells resulted in increased self-renewal through a mechanism which slowed both myogenic proliferation and differentiation. Taken together, these results suggest that increased expression of Pax7 promotes satellite cell self-renewal, and furthermore Myostatin may control the process of satellite cell self-renewal through regulation of Pax7. Thus we speculate that, in addition to the intrinsic factors (such as Pax7), extrinsic factors both positive and negative in nature, will play a major role in determining the stemness of skeletal muscle satellite cells

  19. Plant synthetic biology for molecular engineering of signalling and development.

    Science.gov (United States)

    Nemhauser, Jennifer L; Torii, Keiko U

    2016-03-02

    Molecular genetic studies of model plants in the past few decades have identified many key genes and pathways controlling development, metabolism and environmental responses. Recent technological and informatics advances have led to unprecedented volumes of data that may uncover underlying principles of plants as biological systems. The newly emerged discipline of synthetic biology and related molecular engineering approaches is built on this strong foundation. Today, plant regulatory pathways can be reconstituted in heterologous organisms to identify and manipulate parameters influencing signalling outputs. Moreover, regulatory circuits that include receptors, ligands, signal transduction components, epigenetic machinery and molecular motors can be engineered and introduced into plants to create novel traits in a predictive manner. Here, we provide a brief history of plant synthetic biology and significant recent examples of this approach, focusing on how knowledge generated by the reference plant Arabidopsis thaliana has contributed to the rapid rise of this new discipline, and discuss potential future directions.

  20. Integrating cell biology and proteomic approaches in plants.

    Science.gov (United States)

    Takáč, Tomáš; Šamajová, Olga; Šamaj, Jozef

    2017-10-03

    Significant improvements of protein extraction, separation, mass spectrometry and bioinformatics nurtured advancements of proteomics during the past years. The usefulness of proteomics in the investigation of biological problems can be enhanced by integration with other experimental methods from cell biology, genetics, biochemistry, pharmacology, molecular biology and other omics approaches including transcriptomics and metabolomics. This review aims to summarize current trends integrating cell biology and proteomics in plant science. Cell biology approaches are most frequently used in proteomic studies investigating subcellular and developmental proteomes, however, they were also employed in proteomic studies exploring abiotic and biotic stress responses, vesicular transport, cytoskeleton and protein posttranslational modifications. They are used either for detailed cellular or ultrastructural characterization of the object subjected to proteomic study, validation of proteomic results or to expand proteomic data. In this respect, a broad spectrum of methods is employed to support proteomic studies including ultrastructural electron microscopy studies, histochemical staining, immunochemical localization, in vivo imaging of fluorescently tagged proteins and visualization of protein-protein interactions. Thus, cell biological observations on fixed or living cell compartments, cells, tissues and organs are feasible, and in some cases fundamental for the validation and complementation of proteomic data. Validation of proteomic data by independent experimental methods requires development of new complementary approaches. Benefits of cell biology methods and techniques are not sufficiently highlighted in current proteomic studies. This encouraged us to review most popular cell biology methods used in proteomic studies and to evaluate their relevance and potential for proteomic data validation and enrichment of purely proteomic analyses. We also provide examples of

  1. The emerging age of cell-free synthetic biology.

    Science.gov (United States)

    Smith, Mark Thomas; Wilding, Kristen M; Hunt, Jeremy M; Bennett, Anthony M; Bundy, Bradley C

    2014-08-25

    The engineering of and mastery over biological parts has catalyzed the emergence of synthetic biology. This field has grown exponentially in the past decade. As increasingly more applications of synthetic biology are pursued, more challenges are encountered, such as delivering genetic material into cells and optimizing genetic circuits in vivo. An in vitro or cell-free approach to synthetic biology simplifies and avoids many of the pitfalls of in vivo synthetic biology. In this review, we describe some of the innate features that make cell-free systems compelling platforms for synthetic biology and discuss emerging improvements of cell-free technologies. We also select and highlight recent and emerging applications of cell-free synthetic biology. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  2. N-Acetylglucosamine Functions in Cell Signaling

    Directory of Open Access Journals (Sweden)

    James B. Konopka

    2012-01-01

    Full Text Available The amino sugar N-acetylglucosamine (GlcNAc is well known for the important structural roles that it plays at the cell surface. It is a key component of bacterial cell wall peptidoglycan, fungal cell wall chitin, and the extracellular matrix of animal cells. Interestingly, recent studies have also identified new roles for GlcNAc in cell signaling. For example, GlcNAc stimulates the human fungal pathogen Candida albicans to undergo changes in morphogenesis and expression of virulence genes. Pathogenic E. coli responds to GlcNAc by altering the expression of fimbriae and CURLI fibers that promote biofilm formation and GlcNAc stimulates soil bacteria to undergo changes in morphogenesis and production of antibiotics. Studies with animal cells have revealed that GlcNAc influences cell signaling through the posttranslational modification of proteins by glycosylation. O-linked attachment of GlcNAc to Ser and Thr residues regulates a variety of intracellular proteins, including transcription factors such as NFκB, c-myc, and p53. In addition, the specificity of Notch family receptors for different ligands is altered by GlcNAc attachment to fucose residues in the extracellular domain. GlcNAc also impacts signal transduction by altering the degree of branching of N-linked glycans, which influences cell surface signaling proteins. These emerging roles of GlcNAc as an activator and mediator of cellular signaling in fungi, animals, and bacteria will be the focus of this paper.

  3. Determinants of cell-to-cell variability in protein kinase signaling.

    Directory of Open Access Journals (Sweden)

    Matthias Jeschke

    Full Text Available Cells reliably sense environmental changes despite internal and external fluctuations, but the mechanisms underlying robustness remain unclear. We analyzed how fluctuations in signaling protein concentrations give rise to cell-to-cell variability in protein kinase signaling using analytical theory and numerical simulations. We characterized the dose-response behavior of signaling cascades by calculating the stimulus level at which a pathway responds ('pathway sensitivity' and the maximal activation level upon strong stimulation. Minimal kinase cascades with gradual dose-response behavior show strong variability, because the pathway sensitivity and the maximal activation level cannot be simultaneously invariant. Negative feedback regulation resolves this trade-off and coordinately reduces fluctuations in the pathway sensitivity and maximal activation. Feedbacks acting at different levels in the cascade control different aspects of the dose-response curve, thereby synergistically reducing the variability. We also investigated more complex, ultrasensitive signaling cascades capable of switch-like decision making, and found that these can be inherently robust to protein concentration fluctuations. We describe how the cell-to-cell variability of ultrasensitive signaling systems can be actively regulated, e.g., by altering the expression of phosphatase(s or by feedback/feedforward loops. Our calculations reveal that slow transcriptional negative feedback loops allow for variability suppression while maintaining switch-like decision making. Taken together, we describe design principles of signaling cascades that promote robustness. Our results may explain why certain signaling cascades like the yeast pheromone pathway show switch-like decision making with little cell-to-cell variability.

  4. Building tolerance by dismantling synapses: inhibitory receptor signaling in natural killer cells.

    Science.gov (United States)

    Huse, Morgan; Catherine Milanoski, S; Abeyweera, Thushara P

    2013-01-01

    Cell surface receptors bearing immunotyrosine-based inhibitory motifs (ITIMs) maintain natural killer (NK) cell tolerance to normal host tissues. These receptors are difficult to analyze mechanistically because they block activating responses in a rapid and comprehensive manner. The advent of high-resolution single cell imaging techniques has enabled investigators to explore the cell biological basis of the inhibitory response. Recent studies using these approaches indicate that ITIM-containing receptors function at least in part by structurally undermining the immunological synapse between the NK cell and its target. In this review, we discuss these new advances and how they might relate to what is known about the biochemistry of inhibitory signaling in NK cells and other cell types. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  5. Engineered Breast Cancer Cell Spheroids Reproduce Biologic Properties of Solid Tumors.

    Science.gov (United States)

    Ham, Stephanie L; Joshi, Ramila; Luker, Gary D; Tavana, Hossein

    2016-11-01

    Solid tumors develop as 3D tissue constructs. As tumors grow larger, spatial gradients of nutrients and oxygen and inadequate diffusive supply to cells distant from vasculature develops. Hypoxia initiates signaling and transcriptional alterations to promote survival of cancer cells and generation of cancer stem cells (CSCs) that have self-renewal and tumor-initiation capabilities. Both hypoxia and CSCs are associated with resistance to therapies and tumor relapse. This study demonstrates that 3D cancer cell models, known as tumor spheroids, generated with a polymeric aqueous two-phase system (ATPS) technology capture these important biological processes. Similar to solid tumors, spheroids of triple negative breast cancer cells deposit major extracellular matrix proteins. The molecular analysis establishes presence of hypoxic cells in the core region and expression of CSC gene and protein markers including CD24, CD133, and Nanog. Importantly, these spheroids resist treatment with chemotherapy drugs. A combination treatment approach using a hypoxia-activated prodrug, TH-302, and a chemotherapy drug, doxorubicin, successfully targets drug resistant spheroids. This study demonstrates that ATPS spheroids recapitulate important biological and functional properties of solid tumors and provide a unique model for studies in cancer research. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Lipid rafts and B cell signaling.

    Science.gov (United States)

    Gupta, Neetu; DeFranco, Anthony L

    2007-10-01

    B cells comprise an essential component of the humoral immune system. They are equipped with the unique ability to synthesize and secrete pathogen-neutralizing antibodies, and share with professional antigen presenting cells the ability to internalize foreign antigens, and process them for presentation to helper T cells. Recent evidence indicates that specialized cholesterol- and glycosphingolipid-rich microdomains in the plasma membrane commonly referred to as lipid rafts, serve to compartmentalize key signaling molecules during the different stages of B cell activation including B cell antigen receptor (BCR)-initiated signal transduction, endocytosis of BCR-antigen complexes, loading of antigenic peptides onto MHC class II molecules, MHC-II associated antigen presentation to helper T cells, and receipt of helper signals via the CD40 receptor. Here we review the recent literature arguing for a role of lipid rafts in the spatial organization of B cell function.

  7. STAT signaling in mammary gland differentiation, cell survival and tumorigenesis.

    Science.gov (United States)

    Haricharan, S; Li, Y

    2014-01-25

    The mammary gland is a unique organ that undergoes extensive and profound changes during puberty, menstruation, pregnancy, lactation and involution. The changes that take place during puberty involve large-scale proliferation and invasion of the fat-pad. During pregnancy and lactation, the mammary cells are exposed to signaling pathways that inhibit apoptosis, induce proliferation and invoke terminal differentiation. Finally, during involution the mammary gland is exposed to milk stasis, programmed cell death and stromal reorganization to clear the differentiated milk-producing cells. Not surprisingly, the signaling pathways responsible for bringing about these changes in breast cells are often subverted during the process of tumorigenesis. The STAT family of proteins is involved in every stage of mammary gland development, and is also frequently implicated in breast tumorigenesis. While the roles of STAT3 and STAT5 during mammary gland development and tumorigenesis are well studied, others members, e.g. STAT1 and STAT6, have only recently been observed to play a role in mammary gland biology. Continued investigation into the STAT protein network in the mammary gland will likely yield new biomarkers and risk factors for breast cancer, and may also lead to novel prophylactic or therapeutic strategies against breast cancer. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. Romidepsin targets multiple survival signaling pathways in malignant T cells

    International Nuclear Information System (INIS)

    Valdez, B C; Brammer, J E; Li, Y; Murray, D; Liu, Y; Hosing, C; Nieto, Y; Champlin, R E; Andersson, B S

    2015-01-01

    Romidepsin is a cyclic molecule that inhibits histone deacetylases. It is Food and Drug Administration-approved for treatment of cutaneous and peripheral T-cell lymphoma, but its precise mechanism of action against malignant T cells is unknown. To better understand the biological effects of romidepsin in these cells, we exposed PEER and SUPT1 T-cell lines, and a primary sample from T-cell lymphoma patient (Patient J) to romidepsin. We then examined the consequences in some key oncogenic signaling pathways. Romidepsin displayed IC 50 values of 10.8, 7.9 and 7.0 nm in PEER, SUPT1 and Patient J cells, respectively. Strong inhibition of histone deacetylases and demethylases, increased production of reactive oxygen species and decreased mitochondrial membrane potential were observed, which may contribute to the observed DNA-damage response and apoptosis. The stress-activated protein kinase/c-Jun N-terminal kinase signaling pathway and unfolded protein response in the endoplasmic reticulum were activated, whereas the phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) and β-catenin pro-survival pathways were inhibited. The decreased level of β-catenin correlated with the upregulation of its inhibitor SFRP1 through romidepsin-mediated hypomethylation of its gene promoter. Our results provide new insights into how romidepsin invokes malignant T-cell killing, show evidence of its associated DNA hypomethylating activity and offer a rationale for the development of romidepsin-containing combination therapies

  9. Signal transduction by growth factor receptors: signaling in an instant

    DEFF Research Database (Denmark)

    Dengjel, Joern; Akimov, Vyacheslav; Blagoev, Blagoy

    2007-01-01

    Phosphorylation-based signaling events happening within the first minute of receptor stimulation have so far only been analyzed by classical cell biological approaches like live-cell microscopy. The development of a quench flow system with a time resolution of one second coupled to a read...

  10. Detection, Characterization, and Biological Effect of Quorum-Sensing Signaling Molecules in Peanut-Nodulating Bradyrhizobia

    Directory of Open Access Journals (Sweden)

    Walter Giordano

    2012-03-01

    Full Text Available Bacteria of the genus Bradyrhizobium are able to establish a symbiotic relationship with peanut (Arachis hypogaea root cells and to fix atmospheric nitrogen by converting it to nitrogenous compounds. Quorum sensing (QS is a cell-cell communication mechanism employed by a variety of bacterial species to coordinate behavior at a community level through regulation of gene expression. The QS process depends on bacterial production of various signaling molecules, among which the N-acylhomoserine lactones (AHLs are most commonly used by Gram-negative bacteria. Some previous reports have shown the production of QS signaling molecules by various rhizobia, but little is known regarding mechanisms of communication among peanut-nodulating strains. The aims of this study were to identify and characterize QS signals produced by peanut-nodulating bradyrhizobial strains and to evaluate their effects on processes related to cell interaction. Detection of AHLs in 53 rhizobial strains was performed using the biosensor strains Agrobacterium tumefaciens NTL4 (pZLR4 and Chromobacterium violaceum CV026 for AHLs with long and short acyl chains, respectively. None of the strains screened were found to produce AHLs with short acyl chains, but 14 strains produced AHLs with long acyl chains. These 14 AHL-producing strains were further studied by quantification of β-galactosidase activity levels (AHL-like inducer activity in NTL4 (pZLR4. Strains displaying moderate to high levels of AHL-like inducer activity were subjected to chemical identification of signaling molecules by high-performance liquid chromatography coupled to mass spectrometry (LC-MS/MS. For each AHL-producing strain, we found at least four different AHLs, corresponding to N-hexanoyl-DL-homoserine lactone (C6, N-(3-oxodecanoyl-L-homoserine lactone (3OC10, N-(3-oxododecanoyl-L-homoserine lactone (3OC12, and N-(3-oxotetradecanoyl-L-homoserine lactone (3OC14. Biological roles of 3OC10, 3OC12, and 3OC14 AHLs

  11. Method for increasing nuclear magnetic resonance signals in living biological tissue

    International Nuclear Information System (INIS)

    Krongrad, A.

    1995-01-01

    A method of enhancing a magnetic resonance comprising the steps of administering a quantity of a selected magnetic isotope to a living biological tissue at a concentration greater than the naturally occurring concentration of such isotope and detecting magnetic resonance signal from the administered magnetic isotope in the living biological tissue. (author)

  12. Ras promotes cell survival by antagonizing both JNK and Hid signals in the Drosophila eye.

    Science.gov (United States)

    Wu, Yue; Zhuang, Yuan; Han, Min; Xu, Tian; Deng, Kejing

    2009-10-20

    Programmed cell death, or apoptosis, is a fundamental physiological process during normal development or in pathological conditions. The activation of apoptosis can be elicited by numerous signalling pathways. Ras is known to mediate anti-apoptotic signals by inhibiting Hid activity in the Drosophila eye. Here we report the isolation of a new loss-of-function ras allele, rasKP, which causes excessive apoptosis in the Drosophila eye. This new function is likely to be mediated through the JNK pathway since the inhibition of JNK signalling can significantly suppress rasKP-induced apoptosis, whereas the removal of hid only weakly suppresses the phenotype. Furthermore, the reduction of JNK signalling together with the expression of the baculovirus caspase inhibitor p35, which blocks Hid activity, strongly suppresses the rasKP cell death. In addition, we find a strong correlation between rasKP-induced apoptosis in the eye disc and the activation of JNK signalling. In the Drosophila eye, Ras may protect cells from apoptosis by inhibiting both JNK and Hid activities. Surprisingly, reducing Ras activity in the wing, however, does not cause apoptosis but rather affects cell and organ size. Thus, in addition to its requirement for cell viability, Ras appears to mediate different biological roles depending on the developmental context and on the level of its expression.

  13. Comprehensive analysis of signal transduction in three-dimensional ECM-based tumor cell cultures

    Directory of Open Access Journals (Sweden)

    Iris Eke

    2015-11-01

    Full Text Available Analysis of signal transduction and protein phosphorylation is fundamental to understand physiological and pathological cell behavior as well as identification of novel therapeutic targets. Despite the fact that more physiological three-dimensional cell culture assays are increasingly used, particularly proteomics and phosphoproteomics remain challenging due to easy, robust and reproducible sample preparation. Here, we present an easy-to-perform, reliable and time-efficient method for the production of 3D cell lysates without compromising cell adhesion before cell lysis. The samples can be used for Western blotting as well as phosphoproteome array technology. This technique would be of interest for researchers working in all fields of biology and drug development.

  14. Coupling Planar Cell Polarity Signaling to Morphogenesis

    Directory of Open Access Journals (Sweden)

    Jeffrey D. Axelrod

    2002-01-01

    Full Text Available Epithelial cells and other groups of cells acquire a polarity orthogonal to their apical–basal axes, referred to as Planar Cell Polarity (PCP. The process by which these cells become polarized requires a signaling pathway using Frizzled as a receptor. Responding cells sense cues from their environment that provide directional information, and they translate this information into cellular asymmetry. Most of what is known about PCP derives from studies in the fruit fly, Drosophila. We review what is known about how cells translate an unknown signal into asymmetric cytoskeletal reorganization. We then discuss how the vertebrate processes of convergent extension and cochlear hair-cell development may relate to Drosophila PCP signaling.

  15. Exposure to 3G mobile phone signals does not affect the biological features of brain tumor cells.

    Science.gov (United States)

    Liu, Yu-xiao; Li, Guo-qing; Fu, Xiang-ping; Xue, Jing-hui; Ji, Shou-ping; Zhang, Zhi-wen; Zhang, Yi; Li, An-ming

    2015-08-08

    The increase in mobile phone use has generated concerns about possible risks to human health, especially the development of brain tumors. Whether tumor patients should continue to use mobile telephones has remained unclear because of a paucity of information. Herein, we investigated whether electromagnetic fields from mobile phones could alter the biological features of human tumor cells and act as a tumor-promoting agent. Human glioblastoma cell lines, U251-MG and U87-MG, were exposed to 1950-MHz time division-synchronous code division multiple access (TD-SCDMA) at a specific absorption rate (maximum SAR = 5.0 W/kg) for 12, 24, and 48 h. Cell morphologies and ultra-structures were observed by microscopy and the rates of apoptosis and cell cycle progression were monitored by flow cytometry. Additionally, cell growth was determined using the CKK-8 assay, and the expression levels of tumor and apoptosis-related genes and proteins were analyzed by real-time PCR and western blotting, respectively. Tumor formation and invasiveness were measured using a tumorigenicity assay in vivo and migration assays in vitro. No significant differences in either biological features or tumor formation ability were observed between unexposed and exposed glioblastoma cells. Our data showed that exposure to 1950-MHz TD-SCDMA electromagnetic fields for up to 48 h did not act as a cytotoxic or tumor-promoting agent to affect the proliferation or gene expression profile of glioblastoma cells. Our findings implied that exposing brain tumor cells in vitro for up to 48 h to 1950-MHz continuous TD-SCDMA electromagnetic fields did not elicit a general cell stress response.

  16. In situ single molecule imaging of cell membranes: linking basic nanotechniques to cell biology, immunology and medicine

    Science.gov (United States)

    Pi, Jiang; Jin, Hua; Yang, Fen; Chen, Zheng W.; Cai, Jiye

    2014-10-01

    The cell membrane, which consists of a viscous phospholipid bilayer, different kinds of proteins and various nano/micrometer-sized domains, plays a very important role in ensuring the stability of the intracellular environment and the order of cellular signal transductions. Exploring the precise cell membrane structure and detailed functions of the biomolecules in a cell membrane would be helpful to understand the underlying mechanisms involved in cell membrane signal transductions, which could further benefit research into cell biology, immunology and medicine. The detection of membrane biomolecules at the single molecule level can provide some subtle information about the molecular structure and the functions of the cell membrane. In particular, information obtained about the molecular mechanisms and other information at the single molecule level are significantly different from that detected from a large amount of biomolecules at the large-scale through traditional techniques, and can thus provide a novel perspective for the study of cell membrane structures and functions. However, the precise investigations of membrane biomolecules prompts researchers to explore cell membranes at the single molecule level by the use of in situ imaging methods, as the exact conformation and functions of biomolecules are highly controlled by the native cellular environment. Recently, the in situ single molecule imaging of cell membranes has attracted increasing attention from cell biologists and immunologists. The size of biomolecules and their clusters on the cell surface are set at the nanoscale, which makes it mandatory to use high- and super-resolution imaging techniques to realize the in situ single molecule imaging of cell membranes. In the past few decades, some amazing imaging techniques and instruments with super resolution have been widely developed for molecule imaging, which can also be further employed for the in situ single molecule imaging of cell membranes. In

  17. Integrated analysis of breast cancer cell lines reveals unique signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Heiser, Laura M.; Wang, Nicholas J.; Talcott, Carolyn L.; Laderoute, Keith R.; Knapp, Merrill; Guan, Yinghui; Hu, Zhi; Ziyad, Safiyyah; Weber, Barbara L.; Laquerre, Sylvie; Jackson, Jeffrey R.; Wooster, Richard F.; Kuo, Wen-Lin; Gray, Joe W.; Spellman, Paul T.

    2009-03-31

    Cancer is a heterogeneous disease resulting from the accumulation of genetic defects that negatively impact control of cell division, motility, adhesion and apoptosis. Deregulation in signaling along the EGFR-MAPK pathway is common in breast cancer, though the manner in which deregulation occurs varies between both individuals and cancer subtypes. We were interested in identifying subnetworks within the EGFR-MAPK pathway that are similarly deregulated across subsets of breast cancers. To that end, we mapped genomic, transcriptional and proteomic profiles for 30 breast cancer cell lines onto a curated Pathway Logic symbolic systems model of EGFR-MEK signaling. This model was comprised of 539 molecular states and 396 rules governing signaling between active states. We analyzed these models and identified several subtype specific subnetworks, including one that suggested PAK1 is particularly important in regulating the MAPK cascade when it is over-expressed. We hypothesized that PAK1 overexpressing cell lines would have increased sensitivity to MEK inhibitors. We tested this experimentally by measuring quantitative responses of 20 breast cancer cell lines to three MEK inhibitors. We found that PAK1 over-expressing luminal breast cancer cell lines are significantly more sensitive to MEK inhibition as compared to those that express PAK1 at low levels. This indicates that PAK1 over-expression may be a useful clinical marker to identify patient populations that may be sensitive to MEK inhibitors. All together, our results support the utility of symbolic system biology models for identification of therapeutic approaches that will be effective against breast cancer subsets.

  18. Integrated analysis of breast cancer cell lines reveals unique signaling pathways.

    Science.gov (United States)

    Heiser, Laura M; Wang, Nicholas J; Talcott, Carolyn L; Laderoute, Keith R; Knapp, Merrill; Guan, Yinghui; Hu, Zhi; Ziyad, Safiyyah; Weber, Barbara L; Laquerre, Sylvie; Jackson, Jeffrey R; Wooster, Richard F; Kuo, Wen Lin; Gray, Joe W; Spellman, Paul T

    2009-01-01

    Cancer is a heterogeneous disease resulting from the accumulation of genetic defects that negatively impact control of cell division, motility, adhesion and apoptosis. Deregulation in signaling along the EgfR-MAPK pathway is common in breast cancer, though the manner in which deregulation occurs varies between both individuals and cancer subtypes. We were interested in identifying subnetworks within the EgfR-MAPK pathway that are similarly deregulated across subsets of breast cancers. To that end, we mapped genomic, transcriptional and proteomic profiles for 30 breast cancer cell lines onto a curated Pathway Logic symbolic systems model of EgfR-MAPK signaling. This model was composed of 539 molecular states and 396 rules governing signaling between active states. We analyzed these models and identified several subtype-specific subnetworks, including one that suggested Pak1 is particularly important in regulating the MAPK cascade when it is over-expressed. We hypothesized that Pak1 over-expressing cell lines would have increased sensitivity to Mek inhibitors. We tested this experimentally by measuring quantitative responses of 20 breast cancer cell lines to three Mek inhibitors. We found that Pak1 over-expressing luminal breast cancer cell lines are significantly more sensitive to Mek inhibition compared to those that express Pak1 at low levels. This indicates that Pak1 over-expression may be a useful clinical marker to identify patient populations that may be sensitive to Mek inhibitors. All together, our results support the utility of symbolic system biology models for identification of therapeutic approaches that will be effective against breast cancer subsets.

  19. Mammalian synthetic biology for studying the cell.

    Science.gov (United States)

    Mathur, Melina; Xiang, Joy S; Smolke, Christina D

    2017-01-02

    Synthetic biology is advancing the design of genetic devices that enable the study of cellular and molecular biology in mammalian cells. These genetic devices use diverse regulatory mechanisms to both examine cellular processes and achieve precise and dynamic control of cellular phenotype. Synthetic biology tools provide novel functionality to complement the examination of natural cell systems, including engineered molecules with specific activities and model systems that mimic complex regulatory processes. Continued development of quantitative standards and computational tools will expand capacities to probe cellular mechanisms with genetic devices to achieve a more comprehensive understanding of the cell. In this study, we review synthetic biology tools that are being applied to effectively investigate diverse cellular processes, regulatory networks, and multicellular interactions. We also discuss current challenges and future developments in the field that may transform the types of investigation possible in cell biology. © 2017 Mathur et al.

  20. Hypoxia induces a phase transition within a kinase signaling network in cancer cells

    Science.gov (United States)

    Wei, Wei; Shi, Qihui; Remacle, Francoise; Qin, Lidong; Shackelford, David B.; Shin, Young Shik; Mischel, Paul S.; Levine, R. D.; Heath, James R.

    2013-01-01

    Hypoxia is a near-universal feature of cancer, promoting glycolysis, cellular proliferation, and angiogenesis. The molecular mechanisms of hypoxic signaling have been intensively studied, but the impact of changes in oxygen partial pressure (pO2) on the state of signaling networks is less clear. In a glioblastoma multiforme (GBM) cancer cell model, we examined the response of signaling networks to targeted pathway inhibition between 21% and 1% pO2. We used a microchip technology that facilitates quantification of a panel of functional proteins from statistical numbers of single cells. We find that near 1.5% pO2, the signaling network associated with mammalian target of rapamycin (mTOR) complex 1 (mTORC1)—a critical component of hypoxic signaling and a compelling cancer drug target—is deregulated in a manner such that it will be unresponsive to mTOR kinase inhibitors near 1.5% pO2, but will respond at higher or lower pO2 values. These predictions were validated through experiments on bulk GBM cell line cultures and on neurosphere cultures of a human-origin GBM xenograft tumor. We attempt to understand this behavior through the use of a quantitative version of Le Chatelier’s principle, as well as through a steady-state kinetic model of protein interactions, both of which indicate that hypoxia can influence mTORC1 signaling as a switch. The Le Chatelier approach also indicates that this switch may be thought of as a type of phase transition. Our analysis indicates that certain biologically complex cell behaviors may be understood using fundamental, thermodynamics-motivated principles. PMID:23530221

  1. Hypoxia induces a phase transition within a kinase signaling network in cancer cells.

    Science.gov (United States)

    Wei, Wei; Shi, Qihui; Remacle, Francoise; Qin, Lidong; Shackelford, David B; Shin, Young Shik; Mischel, Paul S; Levine, R D; Heath, James R

    2013-04-09

    Hypoxia is a near-universal feature of cancer, promoting glycolysis, cellular proliferation, and angiogenesis. The molecular mechanisms of hypoxic signaling have been intensively studied, but the impact of changes in oxygen partial pressure (pO2) on the state of signaling networks is less clear. In a glioblastoma multiforme (GBM) cancer cell model, we examined the response of signaling networks to targeted pathway inhibition between 21% and 1% pO2. We used a microchip technology that facilitates quantification of a panel of functional proteins from statistical numbers of single cells. We find that near 1.5% pO2, the signaling network associated with mammalian target of rapamycin (mTOR) complex 1 (mTORC1)--a critical component of hypoxic signaling and a compelling cancer drug target--is deregulated in a manner such that it will be unresponsive to mTOR kinase inhibitors near 1.5% pO2, but will respond at higher or lower pO2 values. These predictions were validated through experiments on bulk GBM cell line cultures and on neurosphere cultures of a human-origin GBM xenograft tumor. We attempt to understand this behavior through the use of a quantitative version of Le Chatelier's principle, as well as through a steady-state kinetic model of protein interactions, both of which indicate that hypoxia can influence mTORC1 signaling as a switch. The Le Chatelier approach also indicates that this switch may be thought of as a type of phase transition. Our analysis indicates that certain biologically complex cell behaviors may be understood using fundamental, thermodynamics-motivated principles.

  2. Illegitimate WNT signaling promotes proliferation of multiple myeloma cells

    Science.gov (United States)

    Derksen, Patrick W. B.; Tjin, Esther; Meijer, Helen P.; Klok, Melanie D.; Mac Gillavry, Harold D.; van Oers, Marinus H. J.; Lokhorst, Henk M.; Bloem, Andries C.; Clevers, Hans; Nusse, Roel; van der Neut, Ronald; Spaargaren, Marcel; Pals, Steven T.

    2004-01-01

    The unrestrained growth of tumor cells is generally attributed to mutations in essential growth control genes, but tumor cells are also influenced by signals from the environment. In multiple myeloma (MM), the factors and signals coming from the bone marrow microenvironment are possibly even essential for the growth of the tumor cells. As targets for intervention, these signals may be equally important as mutated oncogenes. Given their oncogenic potential, WNT signals form a class of paracrine growth factors that could act to influence MM cell growth. In this paper, we report that MM cells have hallmarks of active WNT signaling, whereas the cells have not undergone detectable mutations in WNT signaling genes such as adenomatous polyposis coli and β-catenin (CTNNB1). We show that the malignant MM plasma cells overexpress β-catenin, including its N-terminally unphosphorylated form, suggesting active β-catenin/T cell factor-mediated transcription. Further accumulation and nuclear localization of β-catenin, and/or increased cell proliferation, was achieved by stimulation of WNT signaling with either Wnt3a, LiCl, or the constitutively active S33Y mutant of β-catenin. In contrast, by blocking WNT signaling by dominant-negative T cell factor, we can interfere with the growth of MM cells. We therefore suggest that MM cells are dependent on an active WNT signal, which may have important implications for the management of this incurable form of cancer. PMID:15067127

  3. Plant Systems Biology at the Single-Cell Level.

    Science.gov (United States)

    Libault, Marc; Pingault, Lise; Zogli, Prince; Schiefelbein, John

    2017-11-01

    Our understanding of plant biology is increasingly being built upon studies using 'omics and system biology approaches performed at the level of the entire plant, organ, or tissue. Although these approaches open new avenues to better understand plant biology, they suffer from the cellular complexity of the analyzed sample. Recent methodological advances now allow plant scientists to overcome this limitation and enable biological analyses of single-cells or single-cell-types. Coupled with the development of bioinformatics and functional genomics resources, these studies provide opportunities for high-resolution systems analyses of plant phenomena. In this review, we describe the recent advances, current challenges, and future directions in exploring the biology of single-cells and single-cell-types to enhance our understanding of plant biology as a system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A systems biology approach identified different regulatory networks targeted by KSHV miR-K12-11 in B cells and endothelial cells.

    Science.gov (United States)

    Yang, Yajie; Boss, Isaac W; McIntyre, Lauren M; Renne, Rolf

    2014-08-08

    Kaposi's sarcoma associated herpes virus (KSHV) is associated with tumors of endothelial and lymphoid origin. During latent infection, KSHV expresses miR-K12-11, an ortholog of the human tumor gene hsa-miR-155. Both gene products are microRNAs (miRNAs), which are important post-transcriptional regulators that contribute to tissue specific gene expression. Advances in target identification technologies and molecular interaction databases have allowed a systems biology approach to unravel the gene regulatory networks (GRNs) triggered by miR-K12-11 in endothelial and lymphoid cells. Understanding the tissue specific function of miR-K12-11 will help to elucidate underlying mechanisms of KSHV pathogenesis. Ectopic expression of miR-K12-11 differentially affected gene expression in BJAB cells of lymphoid origin and TIVE cells of endothelial origin. Direct miRNA targeting accounted for a small fraction of the observed transcriptome changes: only 29 genes were identified as putative direct targets of miR-K12-11 in both cell types. However, a number of commonly affected biological pathways, such as carbohydrate metabolism and interferon response related signaling, were revealed by gene ontology analysis. Integration of transcriptome profiling, bioinformatic algorithms, and databases of protein-protein interactome from the ENCODE project identified different nodes of GRNs utilized by miR-K12-11 in a tissue-specific fashion. These effector genes, including cancer associated transcription factors and signaling proteins, amplified the regulatory potential of a single miRNA, from a small set of putative direct targets to a larger set of genes. This is the first comparative analysis of miRNA-K12-11's effects in endothelial and B cells, from tissues infected with KSHV in vivo. MiR-K12-11 was able to broadly modulate gene expression in both cell types. Using a systems biology approach, we inferred that miR-K12-11 establishes its GRN by both repressing master TFs and influencing

  5. Differential TCR signals for T helper cell programming.

    Science.gov (United States)

    Morel, Penelope A

    2018-05-02

    Upon encounter with their cognate antigen naïve CD4 T cells become activated and are induced to differentiate into several possible T helper (Th) cell subsets. This differentiation depends on a number of factors including antigen presenting cells, cytokines and costimulatory molecules. The strength of the T cell receptor (TCR) signal, related to the affinity of TCR for antigen and antigen dose, has emerged as a dominant factor in determining Th cell fate. Recent studies have revealed that TCR signals of high or low strength do not simply induce quantitatively different signals in the T cells, but rather qualitatively distinct pathways can be induced based on TCR signal strength. This review examines the recent literature in this area and highlights important new developments in our understanding of Th cell differentiation and TCR signal strength. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  6. Cell–cell signaling drives the evolution of complex traits: introduction—lung evo-devo

    Science.gov (United States)

    Torday, John S.; Rehan, V. K.

    2009-01-01

    Physiology integrates biology with the environment through cell–cell interactions at multiple levels. The evolution of the respiratory system has been “deconvoluted” (Torday and Rehan in Am J Respir Cell Mol Biol 31:8–12, 2004) through Gene Regulatory Networks (GRNs) applied to cell–cell communication for all aspects of lung biology development, homeostasis, regeneration, and aging. Using this approach, we have predicted the phenotypic consequences of failed signaling for lung development, homeostasis, and regeneration based on evolutionary principles. This cell–cell communication model predicts other aspects of vertebrate physiology as adaptational responses. For example, the oxygen-induced differentiation of alveolar myocytes into alveolar adipocytes was critical for the evolution of the lung in land dwelling animals adapting to fluctuating Phanarezoic oxygen levels over the past 500 million years. Adipocytes prevent lung injury due to oxygen radicals and facilitate the rise of endothermy. In addition, they produce the class I cytokine leptin, which augments pulmonary surfactant activity and alveolar surface area, increasing selection pressure for both respiratory oxygenation and metabolic demand initially constrained by high-systemic vascular pressure, but subsequently compensated by the evolution of the adrenomedullary beta-adrenergic receptor mechanism. Conserted positive selection for the lung and adrenals created further selection pressure for the heart, which becomes progressively more complex phylogenetically in tandem with the lung. Developmentally, increasing heart complexity and size impinges precociously on the gut mesoderm to induce the liver. That evolutionary-developmental interaction is significant because the liver provides regulated sources of glucose and glycogen to the evolving physiologic system, which is necessary for the evolution of the neocortex. Evolution of neocortical control furthers integration of physiologic systems. Such

  7. Non-invasive optoacoustic probing of the density and stiffness of single biological cells

    Science.gov (United States)

    Dehoux, T.; Audoin, B.

    2012-12-01

    Recently, the coherent generation of GHz acoustic waves using ultrashort laser pulses has demonstrated the ability to probe the sound velocity in vegetal cells and in cell-mimicking soft micro-objects with micrometer resolution, opening tremendous potentialities for single-cell biology. However, manipulating biological media in physiological conditions is often a technical challenge when using a laser-based setup. In this article, we present a new opto-acoustic bio-transducer composed of a thin metal film sputtered on a transparent heat sink that allows reducing importantly the laser-induced cellular stresses, and offers a wide variety of optical configurations. In particular, by exploiting the acoustic reflection coefficient at the sample-transducer interface and the photoacoustic interaction inside the transparent sample, the density and compressibility of the sample can be probed simultaneously. Using an ad hoc signal analysis based on Hilbert and wavelet transforms, these quantities are measured accurately for a reference fluid. Similar analysis performed in a single vegetal cell also suggests high sensitivity to the state of the transducer-cell interface, and notably to the presence of the plasma membrane that encloses the cell vacuole.

  8. Liver cell-derived microparticles activate hedgehog signaling and alter gene expression in hepatic endothelial cells.

    Science.gov (United States)

    Witek, Rafal P; Yang, Liu; Liu, Renshui; Jung, Youngmi; Omenetti, Alessia; Syn, Wing-Kin; Choi, Steve S; Cheong, Yeiwon; Fearing, Caitlin M; Agboola, Kolade M; Chen, Wei; Diehl, Anna Mae

    2009-01-01

    Angiogenesis contributes to vascular remodeling during cirrhosis. In cirrhotic livers, cholangiocytes, and myofibroblastic hepatic stellate cells (MF-HSC) produce Hedgehog (Hh) ligands. During embryogenesis Hh ligands are released from ligand-producing cells in microparticles and activate Hh signaling in endothelial cells. We studied whether adult liver cell-derived microparticles contain Hh ligands that alter hepatic sinusoidal endothelial cells (SEC). MF-HSC and cholangiocytes were exposed to platelet-derived growth factor to induce Hh ligands; microparticles were isolated from medium, analyzed by transmission electron microscopy and immunoblots, and applied to Hh-reporter-containing cells. Microparticles were obtained from serum and bile of rats after bile duct ligation (BDL) or sham surgery and applied to normal primary liver SEC with or without cyclopamine, an Hh signaling inhibitor. Effects on SEC gene expression were evaluated by quantitative reverse-transcription polymerase chain reaction and immunoblotting. Hh target gene expression and SEC activation markers were compared in primary SEC and in liver sections from healthy and BDL rats. Platelet-derived growth factor-treated MF-HSC and cholangiocytes released exosome-enriched microparticles containing biologically-active Hh ligands. BDL increased release of Hh-containing exosome-enriched microparticles into plasma and bile. Transmission electron microscopy and immunoblots revealed similarities among microparticles from all sources; all microparticles induced similar Hh-dependent changes in SEC gene expression. SEC from healthy livers did not express Hh target genes or activation markers, but both were up-regulated in SEC after BDL. Hh-containing exosome-enriched microparticles released from liver cells alter hepatic SEC gene expression, suggesting a novel mechanism for cirrhotic vasculopathy.

  9. Expression profile and function of Wnt signaling mechanisms in malignant mesothelioma cells

    International Nuclear Information System (INIS)

    Fox, Simon A.; Richards, Alex K.; Kusumah, Ivonne; Perumal, Vanathi; Bolitho, Erin M.; Mutsaers, Steven E.; Dharmarajan, Arun M.

    2013-01-01

    Highlights: •Expression profile of Wnt pathway related genes in mesothelioma cells. •Differential expression of key Wnt pathway molecules and regulators. •Wnt3a stimulated mesothelioma growth whereas sFRP4 was inhibitory. •Targeting β-Catenin can sensitise mesothelioma cells to cytotoxic drugs. -- Abstract: Malignant mesothelioma (MM) is an uncommon and particularly aggressive cancer associated with asbestos exposure, which currently presents an intractable clinical challenge. Wnt signaling has been reported to play a role in the neoplastic properties of mesothelioma cells but has not been investigated in detail in this cancer. We surveyed expression of Wnts, their receptors, and other key molecules in this pathway in well established in vitro mesothelioma models in comparison with primary mesothelial cultures. We also tested the biological response of MM cell lines to exogenous Wnt and secreted regulators, as well as targeting β-catenin. We detected frequent expression of Wnt3 and Wnt5a, as well as Fzd 2, 4 and 6. The mRNA of Wnt4, Fzd3, sFRP4, APC and axin2 were downregulated in MM relative to mesothelial cells while LEF1 was overexpressed in MM. Functionally, we observed that Wnt3a stimulated MM proliferation while sFRP4 was inhibitory. Furthermore, directly targeting β-catenin expression could sensitise MM cells to cytotoxic drugs. These results provide evidence for altered expression of a number of Wnt/Fzd signaling molecules in MM. Modulation of Wnt signaling in MM may prove a means of targeting proliferation and drug resistance in this cancer

  10. Expression profile and function of Wnt signaling mechanisms in malignant mesothelioma cells

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Simon A., E-mail: s.fox@curtin.edu.au [Molecular Pharmacology Laboratory, School of Pharmacy, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA (Australia); Richards, Alex K.; Kusumah, Ivonne; Perumal, Vanathi [Molecular Pharmacology Laboratory, School of Pharmacy, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA (Australia); Bolitho, Erin M. [Western Australian Institute for Medical Research, The University of Western Australia Centre for Medical Research, Perth, WA (Australia); Mutsaers, Steven E. [Lung Institute of Western Australia, Centre for Asthma Allergy and Respiratory Research, University of Western Australia, Nedlands (Australia); Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia and Western Australian Institute for Medical Research, Nedlands (Australia); Dharmarajan, Arun M. [School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA (Australia)

    2013-10-11

    Highlights: •Expression profile of Wnt pathway related genes in mesothelioma cells. •Differential expression of key Wnt pathway molecules and regulators. •Wnt3a stimulated mesothelioma growth whereas sFRP4 was inhibitory. •Targeting β-Catenin can sensitise mesothelioma cells to cytotoxic drugs. -- Abstract: Malignant mesothelioma (MM) is an uncommon and particularly aggressive cancer associated with asbestos exposure, which currently presents an intractable clinical challenge. Wnt signaling has been reported to play a role in the neoplastic properties of mesothelioma cells but has not been investigated in detail in this cancer. We surveyed expression of Wnts, their receptors, and other key molecules in this pathway in well established in vitro mesothelioma models in comparison with primary mesothelial cultures. We also tested the biological response of MM cell lines to exogenous Wnt and secreted regulators, as well as targeting β-catenin. We detected frequent expression of Wnt3 and Wnt5a, as well as Fzd 2, 4 and 6. The mRNA of Wnt4, Fzd3, sFRP4, APC and axin2 were downregulated in MM relative to mesothelial cells while LEF1 was overexpressed in MM. Functionally, we observed that Wnt3a stimulated MM proliferation while sFRP4 was inhibitory. Furthermore, directly targeting β-catenin expression could sensitise MM cells to cytotoxic drugs. These results provide evidence for altered expression of a number of Wnt/Fzd signaling molecules in MM. Modulation of Wnt signaling in MM may prove a means of targeting proliferation and drug resistance in this cancer.

  11. Analyzing cell fate control by cytokines through continuous single cell biochemistry.

    Science.gov (United States)

    Rieger, Michael A; Schroeder, Timm

    2009-10-01

    Cytokines are important regulators of cell fates with high clinical and commercial relevance. However, despite decades of intense academic and industrial research, it proved surprisingly difficult to describe the biological functions of cytokines in a precise and comprehensive manner. The exact analysis of cytokine biology is complicated by the fact that individual cytokines control many different cell fates and activate a multitude of intracellular signaling pathways. Moreover, although activating different molecular programs, different cytokines can be redundant in their biological effects. In addition, cytokines with different biological effects can activate overlapping signaling pathways. This prospect article will outline the necessity of continuous single cell biochemistry to unravel the biological functions of molecular cytokine signaling. It focuses on potentials and limitations of recent technical developments in fluorescent time-lapse imaging and single cell tracking allowing constant long-term observation of molecules and behavior of single cells. (c) 2009 Wiley-Liss, Inc.

  12. Discrepancy of biologic behavior influenced by bone marrow derived cells in lung cancer.

    Science.gov (United States)

    Zhang, Jie; Niu, Xiao-Min; Liao, Mei-Lin; Liu, Yun; Sha, Hui-Fang; Zhao, Yi; Yu, Yong-Feng; Tan, Qiang; Xiang, Jia-Qing; Fang, Jing; Lv, Dan-Dan; Li, Xue-Bing; Lu, Shun; Chen, Hai-Quan

    2010-11-01

    Disseminated cancer cells may initially require local nutrients and growth factors to thrive and survive in bone marrow. However, data on the influence of bone marrow derived cells (BMDC, also called bone stromal cells in some publications) on lung cancer cells is largely unexplored. This study explored the mechanism of how bone stromal factors contribute to the bone tropism in lung cancer. The difference among lung cancer cell lines in their abilities to metastasize to bone was found using the SCID animal model. Supernatant of bone marrow aspiration (BM) and condition medium from human bone stromal cells (BSC) were used to study the activity of bone stromal factors. We found bone stromal factors significantly increased the proliferation, invasion, adhesion and expression of angiogenosis-related factors, and inhibited the apoptosis for high bone metastasis H460 lung cancer cells. These biologic effects were not seen in SPC-A1 or A549 cells, which are low bone metastasis lung cancer cells. Adhesion of H460 cells to surface coated with bone stromal cells can activate some signal transduction pathways, and alter the expression of adhesion associated factors, including integrin β 3 and ADAMTS-1, two potential targets related with bone metastasis. We concluded that bone marrow derived cells had a profound effect on biological behavior of lung cancers, therefore favoring the growth of lung cancer cells in bone.

  13. Dental pulp stem cells. Biology and use for periodontal tissue engineering.

    Science.gov (United States)

    Ashri, Nahid Y; Ajlan, Sumaiah A; Aldahmash, Abdullah M

    2015-12-01

    Inflammatory periodontal disease is a major cause of loss of tooth-supporting structures. Novel approaches for regeneration of periodontal apparatus is an area of intensive research. Periodontal tissue engineering implies the use of appropriate regenerative cells, delivered through a suitable scaffold, and guided through signaling molecules. Dental pulp stem cells have been used in an increasing number of studies in dental tissue engineering. Those cells show mesenchymal (stromal) stem cell-like properties including self-renewal and multilineage differentiation potentials, aside from their relative accessibility and pleasant handling properties. The purpose of this article is to review the biological principles of periodontal tissue engineering, along with the challenges facing the development of a consistent and clinically relevant tissue regeneration platform. This article includes an updated review on dental pulp stem cells and their applications in periodontal regeneration, in combination with different scaffolds and growth factors.

  14. Cell Science and Cell Biology Research at MSFC: Summary

    Science.gov (United States)

    2003-01-01

    The common theme of these research programs is that they investigate regulation of gene expression in cells, and ultimately gene expression is controlled by the macromolecular interactions between regulatory proteins and DNA. The NASA Critical Path Roadmap identifies Muscle Alterations and Atrophy and Radiation Effects as Very Serious Risks and Severe Risks, respectively, in long term space flights. The specific problem addressed by Dr. Young's research ("Skeletal Muscle Atrophy and Muscle Cell Signaling") is that skeletal muscle loss in space cannot be prevented by vigorous exercise. Aerobic skeletal muscles (i.e., red muscles) undergo the most extensive atrophy during long-term space flight. Of the many different potential avenues for preventing muscle atrophy, Dr. Young has chosen to study the beta-adrenergic receptor (betaAR) pathway. The reason for this choice is that a family of compounds called betaAR agonists will preferentially cause an increase in muscle mass of aerobic muscles (i.e., red muscle) in animals, potentially providing a specific pharmacological solution to muscle loss in microgravity. In addition, muscle atrophy is a widespread medical problem in neuromuscular diseases, spinal cord injury, lack of exercise, aging, and any disease requiring prolonged bedridden status. Skeletal muscle cells in cell culture are utilized as a model system to study this problem. Dr. Richmond's research ("Radiation & Cancer Biology of Mammary Cells in Culture") is directed toward developing a laboratory model for use in risk assessment of cancer caused by space radiation. This research is unique because a human model will be developed utilizing human mammary cells that are highly susceptible to tumor development. This approach is preferential over using animal cells because of problems in comparing radiation-induced cancers between humans and animals.

  15. The Virtual Cell: a software environment for computational cell biology.

    Science.gov (United States)

    Loew, L M; Schaff, J C

    2001-10-01

    The newly emerging field of computational cell biology requires software tools that address the needs of a broad community of scientists. Cell biological processes are controlled by an interacting set of biochemical and electrophysiological events that are distributed within complex cellular structures. Computational modeling is familiar to researchers in fields such as molecular structure, neurobiology and metabolic pathway engineering, and is rapidly emerging in the area of gene expression. Although some of these established modeling approaches can be adapted to address problems of interest to cell biologists, relatively few software development efforts have been directed at the field as a whole. The Virtual Cell is a computational environment designed for cell biologists as well as for mathematical biologists and bioengineers. It serves to aid the construction of cell biological models and the generation of simulations from them. The system enables the formulation of both compartmental and spatial models, the latter with either idealized or experimentally derived geometries of one, two or three dimensions.

  16. Industrial systems biology and its impact on synthetic biology of yeast cell factories.

    Science.gov (United States)

    Fletcher, Eugene; Krivoruchko, Anastasia; Nielsen, Jens

    2016-06-01

    Engineering industrial cell factories to effectively yield a desired product while dealing with industrially relevant stresses is usually the most challenging step in the development of industrial production of chemicals using microbial fermentation processes. Using synthetic biology tools, microbial cell factories such as Saccharomyces cerevisiae can be engineered to express synthetic pathways for the production of fuels, biopharmaceuticals, fragrances, and food flavors. However, directing fluxes through these synthetic pathways towards the desired product can be demanding due to complex regulation or poor gene expression. Systems biology, which applies computational tools and mathematical modeling to understand complex biological networks, can be used to guide synthetic biology design. Here, we present our perspective on how systems biology can impact synthetic biology towards the goal of developing improved yeast cell factories. Biotechnol. Bioeng. 2016;113: 1164-1170. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  17. Ell3 stimulates proliferation, drug resistance, and cancer stem cell properties of breast cancer cells via a MEK/ERK-dependent signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Hee-Jin [Department of Biomedical Science, College of Life Science, CHA University, Seoul (Korea, Republic of); Kim, Gwangil [Department of Pathology, CHA Bundang Medical Center, CHA University, Seoul (Korea, Republic of); Park, Kyung-Soon, E-mail: kspark@cha.ac.kr [Department of Biomedical Science, College of Life Science, CHA University, Seoul (Korea, Republic of)

    2013-08-09

    Highlights: •Ell3 enhances proliferation and drug resistance of breast cancer cell lines. •Ell3 is related to the cancer stem cell characteristics of breast cancer cell lines. •Ell3 enhances oncogenicity of breast cancer through the ERK1/2 signaling pathway. -- Abstract: Ell3 is a RNA polymerase II transcription elongation factor that is enriched in testis. The C-terminal domain of Ell3 shows strong similarities to that of Ell (eleven−nineteen lysine-rich leukemia gene), which acts as a negative regulator of p53 and regulates cell proliferation and survival. Recent studies in our laboratory showed that Ell3 induces the differentiation of mouse embryonic stem cells by protecting differentiating cells from apoptosis via the promotion of p53 degradation. In this study, we evaluated the function of Ell3 in breast cancer cell lines. MCF-7 cell lines overexpressing Ell3 were used to examine cell proliferation and cancer stem cell properties. Ectopic expression of Ell3 in breast cancer cell lines induces proliferation and 5-FU resistance. In addition, Ell3 expression increases the cancer stem cell population, which is characterized by CD44 (+) or ALDH1 (+) cells. Mammosphere-forming potential and migration ability were also increased upon Ell3 expression in breast cancer cell lines. Through biochemical and molecular biological analyses, we showed that Ell3 regulates proliferation, cancer stem cell properties and drug resistance in breast cancer cell lines partly through the MEK−extracellular signal-regulated kinase signaling pathway. Murine xenograft experiments showed that Ell3 expression promotes tumorigenesis in vivo. These results suggest that Ell3 may play a critical role in promoting oncogenesis in breast cancer by regulating cell proliferation and cancer stem cell properties via the ERK1/2 signaling pathway.

  18. Ell3 stimulates proliferation, drug resistance, and cancer stem cell properties of breast cancer cells via a MEK/ERK-dependent signaling pathway

    International Nuclear Information System (INIS)

    Ahn, Hee-Jin; Kim, Gwangil; Park, Kyung-Soon

    2013-01-01

    Highlights: •Ell3 enhances proliferation and drug resistance of breast cancer cell lines. •Ell3 is related to the cancer stem cell characteristics of breast cancer cell lines. •Ell3 enhances oncogenicity of breast cancer through the ERK1/2 signaling pathway. -- Abstract: Ell3 is a RNA polymerase II transcription elongation factor that is enriched in testis. The C-terminal domain of Ell3 shows strong similarities to that of Ell (eleven−nineteen lysine-rich leukemia gene), which acts as a negative regulator of p53 and regulates cell proliferation and survival. Recent studies in our laboratory showed that Ell3 induces the differentiation of mouse embryonic stem cells by protecting differentiating cells from apoptosis via the promotion of p53 degradation. In this study, we evaluated the function of Ell3 in breast cancer cell lines. MCF-7 cell lines overexpressing Ell3 were used to examine cell proliferation and cancer stem cell properties. Ectopic expression of Ell3 in breast cancer cell lines induces proliferation and 5-FU resistance. In addition, Ell3 expression increases the cancer stem cell population, which is characterized by CD44 (+) or ALDH1 (+) cells. Mammosphere-forming potential and migration ability were also increased upon Ell3 expression in breast cancer cell lines. Through biochemical and molecular biological analyses, we showed that Ell3 regulates proliferation, cancer stem cell properties and drug resistance in breast cancer cell lines partly through the MEK−extracellular signal-regulated kinase signaling pathway. Murine xenograft experiments showed that Ell3 expression promotes tumorigenesis in vivo. These results suggest that Ell3 may play a critical role in promoting oncogenesis in breast cancer by regulating cell proliferation and cancer stem cell properties via the ERK1/2 signaling pathway

  19. Designing lymphocyte functional structure for optimal signal detection: voilà, T cells.

    Science.gov (United States)

    Noest, A J

    2000-11-21

    One basic task of immune systems is to detect signals from unknown "intruders" amidst a noisy background of harmless signals. To clarify the functional importance of many observed lymphocyte properties, I ask: What properties would a cell have if one designed it according to the theory of optimal detection, with minimal regard for biological constraints? Sparse and reasonable assumptions about the statistics of available signals prove sufficient for deriving many features of the optimal functional structure, in an incremental and modular design. The use of one common formalism guarantees that all parts of the design collaborate to solve the detection task. Detection performance is computed at several stages of the design. Comparison between design variants reveals e.g. the importance of controlling the signal integration time. This predicts that an appropriate control mechanism should exist. Comparing the design to reality, I find a striking similarity with many features of T cells. For example, the formalism dictates clonal specificity, serial receptor triggering, (grades of) anergy, negative and positive selection, co-stimulation, high-zone tolerance, and clonal production of cytokines. Serious mismatches should be found if T cells were hindered by mechanistic constraints or vestiges of their (co-)evolutionary history, but I have not found clear examples. By contrast, fundamental mismatches abound when comparing the design to immune systems of e.g. invertebrates. The wide-ranging differences seem to hinge on the (in)ability to generate a large diversity of receptors. Copyright 2000 Academic Press.

  20. Modification of T cell responses by stem cell mobilization requires direct signaling of the T cell by G-CSF and IL-10

    DEFF Research Database (Denmark)

    MacDonald, Kelli P.A.; Le Texier, Laetitia; Zhang, Ping

    2014-01-01

    The majority of allogeneic stem cell transplants are currently undertaken using G-CSF mobilized peripheral blood stem cells. G-CSF has diverse biological effects on a broad range of cells and IL-10 is a key regulator of many of these effects. Using mixed radiation chimeras in which...... the hematopoietic or nonhematopoietic compartments were wild-type, IL-10(-/-), G-CSFR(-/-), or combinations thereof we demonstrated that the attenuation of alloreactive T cell responses after G-CSF mobilization required direct signaling of the T cell by both G-CSF and IL-10. IL-10 was generated principally by radio......-resistant tissue, and was not required to be produced by T cells. G-CSF mobilization significantly modulated the transcription profile of CD4(+)CD25(+) regulatory T cells, promoted their expansion in the donor and recipient and their depletion significantly increased graft-versus-host disease (GVHD). In contrast...

  1. WNT4 mediates estrogen receptor signaling and endocrine resistance in invasive lobular carcinoma cell lines.

    Science.gov (United States)

    Sikora, Matthew J; Jacobsen, Britta M; Levine, Kevin; Chen, Jian; Davidson, Nancy E; Lee, Adrian V; Alexander, Caroline M; Oesterreich, Steffi

    2016-09-20

    Invasive lobular carcinoma (ILC) of the breast typically presents with clinical biomarkers consistent with a favorable response to endocrine therapies, and over 90 % of ILC cases express the estrogen receptor (ER). However, a subset of ILC cases may be resistant to endocrine therapies, suggesting that ER biology is unique in ILC. Using ILC cell lines, we previously demonstrated that ER regulates a distinct gene expression program in ILC cells, and we hypothesized that these ER-driven pathways modulate the endocrine response in ILC. One potential novel pathway is via the Wnt ligand WNT4, a critical signaling molecule in mammary gland development regulated by the progesterone receptor. The ILC cell lines MDA-MB-134-VI, SUM44PE, and BCK4 were used to assess WNT4 gene expression and regulation, as well as the role of WNT4 in estrogen-regulated proliferation. To assess these mechanisms in the context of endocrine resistance, we developed novel ILC endocrine-resistant long-term estrogen-deprived (ILC-LTED) models. ILC and ILC-LTED cell lines were used to identify upstream regulators and downstream signaling effectors of WNT4 signaling. ILC cells co-opted WNT4 signaling by placing it under direct ER control. We observed that ER regulation of WNT4 correlated with use of an ER binding site at the WNT4 locus, specifically in ILC cells. Further, WNT4 was required for endocrine response in ILC cells, as WNT4 knockdown blocked estrogen-induced proliferation. ILC-LTED cells remained dependent on WNT4 for proliferation, by either maintaining ER function and WNT4 regulation or uncoupling WNT4 from ER and upregulating WNT4 expression. In the latter case, WNT4 expression was driven by activated nuclear factor kappa-B signaling in ILC-LTED cells. In ILC and ILC-LTED cells, WNT4 led to suppression of CDKN1A/p21, which is critical for ILC cell proliferation. CDKN1A knockdown partially reversed the effects of WNT4 knockdown. WNT4 drives a novel signaling pathway in ILC cells, with a

  2. Artificial cell mimics as simplified models for the study of cell biology.

    Science.gov (United States)

    Salehi-Reyhani, Ali; Ces, Oscar; Elani, Yuval

    2017-07-01

    Living cells are hugely complex chemical systems composed of a milieu of distinct chemical species (including DNA, proteins, lipids, and metabolites) interconnected with one another through a vast web of interactions: this complexity renders the study of cell biology in a quantitative and systematic manner a difficult task. There has been an increasing drive towards the utilization of artificial cells as cell mimics to alleviate this, a development that has been aided by recent advances in artificial cell construction. Cell mimics are simplified cell-like structures, composed from the bottom-up with precisely defined and tunable compositions. They allow specific facets of cell biology to be studied in isolation, in a simplified environment where control of variables can be achieved without interference from a living and responsive cell. This mini-review outlines the core principles of this approach and surveys recent key investigations that use cell mimics to address a wide range of biological questions. It will also place the field in the context of emerging trends, discuss the associated limitations, and outline future directions of the field. Impact statement Recent years have seen an increasing drive to construct cell mimics and use them as simplified experimental models to replicate and understand biological phenomena in a well-defined and controlled system. By summarizing the advances in this burgeoning field, and using case studies as a basis for discussion on the limitations and future directions of this approach, it is hoped that this minireview will spur others in the experimental biology community to use artificial cells as simplified models with which to probe biological systems.

  3. Effects of TGF-β signaling blockade on human A549 lung adenocarcinoma cell lines.

    Science.gov (United States)

    Xu, Cheng-Cheng; Wu, Lei-Ming; Sun, Wei; Zhang, Ni; Chen, Wen-Shu; Fu, Xiang-Ning

    2011-01-01

    Transforming growth factor β (TGF-β) is overexpressed in a wide variety of cancer types including lung adenocarcinoma (LAC), and the TGF-β signaling pathway plays an important role in tumor development. To determine whether blockade of the TGF-β signaling pathway can inhibit the malignant biological behavior of LAC, RNA interference (RNAi) technology was used to silence the expression of TGF-β receptor, type II (TGFβRII) in the LAC cell line, A549, and its effects on cell proliferation, invasion and metastasis were examined. Three specific small interfering RNAs (siRNAs) designed for targeting human TGFβRII were transfected into A549 cells. The expression of TGFβRII was detected by Western blot analysis. Cell proliferation was measured by MTT and clonogenic assays. Cell apoptosis was assessed by flow cytometry. The invasion and metastasis of A549 cells were investigated using the wound healing and Matrigel invasion assays. The expression of PI3K, phosphorylated Smad2, Smad4, Akt, Erk1/2, P38 and MMPs was detected by Western blot analysis. The TGFβRII siRNA significantly reduced the expression of TGFβRII in A549 cells. The knockdown of TGFβRII in A549 cells resulted in the suppression of cell proliferation, invasion and metastasis and induced cell apoptosis. In addition to the Smad-dependent pathway, independent pathways including the Erk MAPK, PI3K/Akt and p38 MAPK pathways, as well as the expression of MMPs and VEGF, were inhibited. In conclusion, TGF-β signaling is required for LAC progression. Therefore, the blockade of this signaling pathway by the down-regulation of TGFβRII using SiRNA may provide a potential gene therapy for LAC.

  4. Introducing Mammalian Cell Culture and Cell Viability Techniques in the Undergraduate Biology Laboratory.

    Science.gov (United States)

    Bowey-Dellinger, Kristen; Dixon, Luke; Ackerman, Kristin; Vigueira, Cynthia; Suh, Yewseok K; Lyda, Todd; Sapp, Kelli; Grider, Michael; Crater, Dinene; Russell, Travis; Elias, Michael; Coffield, V McNeil; Segarra, Verónica A

    2017-01-01

    Undergraduate students learn about mammalian cell culture applications in introductory biology courses. However, laboratory modules are rarely designed to provide hands-on experience with mammalian cells or teach cell culture techniques, such as trypsinization and cell counting. Students are more likely to learn about cell culture using bacteria or yeast, as they are typically easier to grow, culture, and manipulate given the equipment, tools, and environment of most undergraduate biology laboratories. In contrast, the utilization of mammalian cells requires a dedicated biological safety cabinet and rigorous antiseptic techniques. For this reason, we have devised a laboratory module and method herein that familiarizes students with common cell culture procedures, without the use of a sterile hood or large cell culture facility. Students design and perform a time-efficient inquiry-based cell viability experiment using HeLa cells and tools that are readily available in an undergraduate biology laboratory. Students will become familiar with common techniques such as trypsinizing cells, cell counting with a hemocytometer, performing serial dilutions, and determining cell viability using trypan blue dye. Additionally, students will work with graphing software to analyze their data and think critically about the mechanism of death on a cellular level. Two different adaptations of this inquiry-based lab are presented-one for non-biology majors and one for biology majors. Overall, these laboratories aim to expose students to mammalian cell culture and basic techniques and help them to conceptualize their application in scientific research.

  5. Prion potency in stem cells biology.

    Science.gov (United States)

    Lopes, Marilene H; Santos, Tiago G

    2012-01-01

    Prion protein (PrP) can be considered a pivotal molecule because it interacts with several partners to perform a diverse range of critical biological functions that might differ in embryonic and adult cells. In recent years, there have been major advances in elucidating the putative role of PrP in the basic biology of stem cells in many different systems. Here, we review the evidence indicating that PrP is a key molecule involved in driving different aspects of the potency of embryonic and tissue-specific stem cells in self-perpetuation and differentiation in many cell types. It has been shown that PrP is involved in stem cell self-renewal, controlling pluripotency gene expression, proliferation, and neural and cardiomyocyte differentiation. PrP also has essential roles in distinct processes that regulate tissue-specific stem cell biology in nervous and hematopoietic systems and during muscle regeneration. Results from our own investigations have shown that PrP is able to modulate self-renewal and proliferation in neural stem cells, processes that are enhanced by PrP interactions with stress inducible protein 1 (STI1). Thus, the available data reveal the influence of PrP in acting upon the maintenance of pluripotent status or the differentiation of stem cells from the early embryogenesis through adulthood.

  6. Cell biology experiments conducted in space

    Science.gov (United States)

    Taylor, G. R.

    1977-01-01

    A review of cell biology experiments conducted during the first two decades of space flight is provided. References are tabulated for work done with six types of living test system: isolated viruses, bacteriophage-host, bacteria, yeasts and filamentous fungi, protozoans, and small groups of cells (such as hamster cell tissue and fertilized frog eggs). The general results of studies involving the survival of cells in space, the effect of space flight on growing cultures, the biological effects of multicharged high-energy particles, and the effects of space flight on the genetic apparatus of microorganisms are summarized. It is concluded that cell systems remain sufficiently stable during space flight to permit experimentation with models requiring a fixed cell line during the space shuttle era.

  7. Spatial Modeling Tools for Cell Biology

    National Research Council Canada - National Science Library

    Przekwas, Andrzej; Friend, Tom; Teixeira, Rodrigo; Chen, Z. J; Wilkerson, Patrick

    2006-01-01

    .... Scientific potentials and military relevance of computational biology and bioinformatics have inspired DARPA/IPTO's visionary BioSPICE project to develop computational framework and modeling tools for cell biology...

  8. Leptospira interrogans causes quantitative and morphological disturbances in adherens junctions and other biological groups of proteins in human endothelial cells

    Science.gov (United States)

    Sato, Hiromi

    2017-01-01

    Pathogenic Leptospira transmits from animals to humans, causing the zoonotic life-threatening infection called leptospirosis. This infection is reported worldwide with higher risk in tropical regions. Symptoms of leptospirosis range from mild illness to severe illness such as liver damage, kidney failure, respiratory distress, meningitis, and fatal hemorrhagic disease. Invasive species of Leptospira rapidly disseminate to multiple tissues where this bacterium damages host endothelial cells, increasing vascular permeability. Despite the burden in humans and animals, the pathogenic mechanisms of Leptospira infection remain to be elucidated. The pathogenic leptospires adhere to endothelial cells and permeabilize endothelial barriers in vivo and in vitro. In this study, human endothelial cells were infected with the pathogenic L. interrogans serovar Copenhageni or the saprophyte L. biflexa serovar Patoc to investigate morphological changes and other distinctive phenotypes of host cell proteins by fluorescence microscopy. Among those analyzed, 17 proteins from five biological classes demonstrated distinctive phenotypes in morphology and/or signal intensity upon infection with Leptospira. The affected biological groups include: 1) extracellular matrix, 2) intercellular adhesion molecules and cell surface receptors, 3) intracellular proteins, 4) cell-cell junction proteins, and 5) a cytoskeletal protein. Infection with the pathogenic strain most profoundly disturbed the biological structures of adherens junctions (VE-cadherin and catenins) and actin filaments. Our data illuminate morphological disruptions and reduced signals of cell-cell junction proteins and filamentous actin in L. interrogans-infected endothelial cells. In addition, Leptospira infection, regardless of pathogenic status, influenced other host proteins belonging to multiple biological classes. Our data suggest that this zoonotic agent may damage endothelial cells via multiple cascades or pathways

  9. Leptospira interrogans causes quantitative and morphological disturbances in adherens junctions and other biological groups of proteins in human endothelial cells.

    Science.gov (United States)

    Sato, Hiromi; Coburn, Jenifer

    2017-07-01

    Pathogenic Leptospira transmits from animals to humans, causing the zoonotic life-threatening infection called leptospirosis. This infection is reported worldwide with higher risk in tropical regions. Symptoms of leptospirosis range from mild illness to severe illness such as liver damage, kidney failure, respiratory distress, meningitis, and fatal hemorrhagic disease. Invasive species of Leptospira rapidly disseminate to multiple tissues where this bacterium damages host endothelial cells, increasing vascular permeability. Despite the burden in humans and animals, the pathogenic mechanisms of Leptospira infection remain to be elucidated. The pathogenic leptospires adhere to endothelial cells and permeabilize endothelial barriers in vivo and in vitro. In this study, human endothelial cells were infected with the pathogenic L. interrogans serovar Copenhageni or the saprophyte L. biflexa serovar Patoc to investigate morphological changes and other distinctive phenotypes of host cell proteins by fluorescence microscopy. Among those analyzed, 17 proteins from five biological classes demonstrated distinctive phenotypes in morphology and/or signal intensity upon infection with Leptospira. The affected biological groups include: 1) extracellular matrix, 2) intercellular adhesion molecules and cell surface receptors, 3) intracellular proteins, 4) cell-cell junction proteins, and 5) a cytoskeletal protein. Infection with the pathogenic strain most profoundly disturbed the biological structures of adherens junctions (VE-cadherin and catenins) and actin filaments. Our data illuminate morphological disruptions and reduced signals of cell-cell junction proteins and filamentous actin in L. interrogans-infected endothelial cells. In addition, Leptospira infection, regardless of pathogenic status, influenced other host proteins belonging to multiple biological classes. Our data suggest that this zoonotic agent may damage endothelial cells via multiple cascades or pathways

  10. Leptospira interrogans causes quantitative and morphological disturbances in adherens junctions and other biological groups of proteins in human endothelial cells.

    Directory of Open Access Journals (Sweden)

    Hiromi Sato

    2017-07-01

    Full Text Available Pathogenic Leptospira transmits from animals to humans, causing the zoonotic life-threatening infection called leptospirosis. This infection is reported worldwide with higher risk in tropical regions. Symptoms of leptospirosis range from mild illness to severe illness such as liver damage, kidney failure, respiratory distress, meningitis, and fatal hemorrhagic disease. Invasive species of Leptospira rapidly disseminate to multiple tissues where this bacterium damages host endothelial cells, increasing vascular permeability. Despite the burden in humans and animals, the pathogenic mechanisms of Leptospira infection remain to be elucidated. The pathogenic leptospires adhere to endothelial cells and permeabilize endothelial barriers in vivo and in vitro. In this study, human endothelial cells were infected with the pathogenic L. interrogans serovar Copenhageni or the saprophyte L. biflexa serovar Patoc to investigate morphological changes and other distinctive phenotypes of host cell proteins by fluorescence microscopy. Among those analyzed, 17 proteins from five biological classes demonstrated distinctive phenotypes in morphology and/or signal intensity upon infection with Leptospira. The affected biological groups include: 1 extracellular matrix, 2 intercellular adhesion molecules and cell surface receptors, 3 intracellular proteins, 4 cell-cell junction proteins, and 5 a cytoskeletal protein. Infection with the pathogenic strain most profoundly disturbed the biological structures of adherens junctions (VE-cadherin and catenins and actin filaments. Our data illuminate morphological disruptions and reduced signals of cell-cell junction proteins and filamentous actin in L. interrogans-infected endothelial cells. In addition, Leptospira infection, regardless of pathogenic status, influenced other host proteins belonging to multiple biological classes. Our data suggest that this zoonotic agent may damage endothelial cells via multiple cascades or

  11. Retinoic acid signalling is required for the pathogenicity of effector CD4+ T cells during the development of intestinal inflammation

    DEFF Research Database (Denmark)

    Rivollier, Aymeric Marie Christian; Pool, Lieneke; Frising, Ulrika

    The vitamin A metabolite retinoic acid (RA) seems to be a double-edge sword in CD4+ T cell biology, sustaining the development of foxp3+ Treg cells, but also being essential for the stability of the Th1 lineage. Here we explored the role of RA signalling in CD4+ T cells during the development...... of intestinal inflammation in the T cell transfer colitis model. RA signalling-deficient CD4+ T cells are less potent at inducing intestinal inflammation compared to their RA signalling-proficient counterparts and exhibit a differentiation skewing towards more IL-17+ and foxp3+ cells, while their capacity......-deficient and –proficient Tregs are equally competent to inhibit colitis development. Together our results indicate that RA, through its receptor RARα, negatively regulates the early expansion of CD4+ T cells during colitis and is necessary for the generation of colitogenic Th1/Th17 cells, while it is dispensable...

  12. Dynamic Interaction- and Phospho-Proteomics Reveal Lck as a Major Signaling Hub of CD147 in T Cells.

    Science.gov (United States)

    Supper, Verena; Hartl, Ingrid; Boulègue, Cyril; Ohradanova-Repic, Anna; Stockinger, Hannes

    2017-03-15

    Numerous publications have addressed CD147 as a tumor marker and regulator of cytoskeleton, cell growth, stress response, or immune cell function; however, the molecular functionality of CD147 remains incompletely understood. Using affinity purification, mass spectrometry, and phosphopeptide enrichment of isotope-labeled peptides, we examined the dynamic of the CD147 microenvironment and the CD147-dependent phosphoproteome in the Jurkat T cell line upon treatment with T cell stimulating agents. We identified novel dynamic interaction partners of CD147 such as CD45, CD47, GNAI2, Lck, RAP1B, and VAT1 and, furthermore, found 76 CD147-dependent phosphorylation sites on 57 proteins. Using the STRING protein network database, a network between the CD147 microenvironment and the CD147-dependent phosphoproteins was generated and led to the identification of key signaling hubs around the G proteins RAP1B and GNB1, the kinases PKCβ, PAK2, Lck, and CDK1, and the chaperone HSPA5. Gene ontology biological process term analysis revealed that wound healing-, cytoskeleton-, immune system-, stress response-, phosphorylation- and protein modification-, defense response to virus-, and TNF production-associated terms are enriched within the microenvironment and the phosphoproteins of CD147. With the generated signaling network and gene ontology biological process term grouping, we identify potential signaling routes of CD147 affecting T cell growth and function. Copyright © 2017 by The American Association of Immunologists, Inc.

  13. Signaling hierarchy regulating human endothelial cell development.

    Science.gov (United States)

    Kelly, Melissa A; Hirschi, Karen K

    2009-05-01

    Our present knowledge of the regulation of mammalian endothelial cell differentiation has been largely derived from studies of mouse embryonic development. However, unique mechanisms and hierarchy of signals that govern human endothelial cell development are unknown and, thus, explored in these studies. Using human embryonic stem cells as a model system, we were able to reproducibly and robustly generate differentiated endothelial cells via coculture on OP9 marrow stromal cells. We found that, in contrast to studies in the mouse, bFGF and VEGF had no specific effects on the initiation of human vasculogenesis. However, exogenous Ihh promoted endothelial cell differentiation, as evidenced by increased production of cells with cobblestone morphology that coexpress multiple endothelial-specific genes and proteins, form lumens, and exhibit DiI-AcLDL uptake. Inhibition of BMP signaling using Noggin or BMP4, specifically, using neutralizing antibodies suppressed endothelial cell formation; whereas, addition of rhBMP4 to cells treated with the hedgehog inhibitor cyclopamine rescued endothelial cell development. Our studies revealed that Ihh promoted human endothelial cell differentiation from pluripotent hES cells via BMP signaling, providing novel insights applicable to modulating human endothelial cell formation and vascular regeneration for human clinical therapies.

  14. Cell-free synthetic biology: thinking outside the cell.

    Science.gov (United States)

    Hodgman, C Eric; Jewett, Michael C

    2012-05-01

    Cell-free synthetic biology is emerging as a powerful approach aimed to understand, harness, and expand the capabilities of natural biological systems without using intact cells. Cell-free systems bypass cell walls and remove genetic regulation to enable direct access to the inner workings of the cell. The unprecedented level of control and freedom of design, relative to in vivo systems, has inspired the rapid development of engineering foundations for cell-free systems in recent years. These efforts have led to programmed circuits, spatially organized pathways, co-activated catalytic ensembles, rational optimization of synthetic multi-enzyme pathways, and linear scalability from the micro-liter to the 100-liter scale. It is now clear that cell-free systems offer a versatile test-bed for understanding why nature's designs work the way they do and also for enabling biosynthetic routes to novel chemicals, sustainable fuels, and new classes of tunable materials. While challenges remain, the emergence of cell-free systems is poised to open the way to novel products that until now have been impractical, if not impossible, to produce by other means. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Guard Cell Signal Transduction Network: Advances in Understanding Abscisic Acid, CO2, and Ca2+ Signaling

    KAUST Repository

    Kim, Tae-Houn

    2010-05-04

    Stomatal pores are formed by pairs of specialized epidermal guard cells and serve as major gateways for both CO2 influx into plants from the atmosphere and transpirational water loss of plants. Because they regulate stomatal pore apertures via integration of both endogenous hormonal stimuli and environmental signals, guard cells have been highly developed as a model system to dissect the dynamics and mechanisms of plant-cell signaling. The stress hormone ABA and elevated levels of CO2 activate complex signaling pathways in guard cells that are mediated by kinases/phosphatases, secondary messengers, and ion channel regulation. Recent research in guard cells has led to a new hypothesis for how plants achieve specificity in intracellular calcium signaling: CO2 and ABA enhance (prime) the calcium sensitivity of downstream calcium-signaling mechanisms. Recent progress in identification of early stomatal signaling components are reviewed here, including ABA receptors and CO2-binding response proteins, as well as systems approaches that advance our understanding of guard cell-signaling mechanisms.

  16. Guard Cell Signal Transduction Network: Advances in Understanding Abscisic Acid, CO2, and Ca2+ Signaling

    KAUST Repository

    Kim, Tae-Houn; Bö hmer, Maik; Hu, Honghong; Nishimura, Noriyuki; Schroeder, Julian I.

    2010-01-01

    Stomatal pores are formed by pairs of specialized epidermal guard cells and serve as major gateways for both CO2 influx into plants from the atmosphere and transpirational water loss of plants. Because they regulate stomatal pore apertures via integration of both endogenous hormonal stimuli and environmental signals, guard cells have been highly developed as a model system to dissect the dynamics and mechanisms of plant-cell signaling. The stress hormone ABA and elevated levels of CO2 activate complex signaling pathways in guard cells that are mediated by kinases/phosphatases, secondary messengers, and ion channel regulation. Recent research in guard cells has led to a new hypothesis for how plants achieve specificity in intracellular calcium signaling: CO2 and ABA enhance (prime) the calcium sensitivity of downstream calcium-signaling mechanisms. Recent progress in identification of early stomatal signaling components are reviewed here, including ABA receptors and CO2-binding response proteins, as well as systems approaches that advance our understanding of guard cell-signaling mechanisms.

  17. Stat3 signaling regulates embryonic stem cell fate in a dose-dependent manner

    Directory of Open Access Journals (Sweden)

    Chih-I Tai

    2014-09-01

    Full Text Available Stat3 is essential for mouse embryonic stem cell (mESC self-renewal mediated by LIF/gp130 receptor signaling. Current understanding of Stat3-mediated ESC self-renewal mechanisms is very limited, and has heretofore been dominated by the view that Stat3 signaling functions in a binary “on/off” manner. Here, in contrast to this binary viewpoint, we demonstrate a contextual, rheostat-like mechanism for Stat3's function in mESCs. Activation and expression levels determine whether Stat3 functions in a self-renewal or a differentiation role in mESCs. We also show that Stat3 induces rapid differentiation of mESCs toward the trophectoderm (TE lineage when its activation level exceeds certain thresholds. Stat3 induces this differentiation phenotype via induction of Tfap2c and its downstream target Cdx2. Our findings provide a novel concept in the realm of Stat3, self-renewal signaling, and pluripotent stem cell biology. Ultimately, this finding may facilitate the development of conditions for the establishment of authentic non-rodent ESCs.

  18. Inquiry into Chemotherapy-Induced P53 Activation in Cancer Cells as a Model for Teaching Signal Transduction

    Science.gov (United States)

    Srougi, Melissa C.; Carson, Susan

    2013-01-01

    Intracellular and extracellular communication is conducted through an intricate and interwoven network of signal transduction pathways. The mechanisms for how cells speak with one another are of significant biological importance to both basic and industrial scientists from a number of different disciplines. We have therefore developed and…

  19. Diffusible signal factor family signals provide a fitness advantage to Xanthomonas campestris pv. campestris in interspecies competition.

    Science.gov (United States)

    Deng, Yinyue; Wu, Jien; Yin, Wenfang; Li, Peng; Zhou, Jianuan; Chen, Shaohua; He, Fei; Cai, Jun; Zhang, Lian-Hui

    2016-05-01

    Diffusible signal factor (DSF) represents a new class of widely conserved quorum sensing signals, which regulates various biological functions through intra- or interspecies signaling. The previous studies identified that there is an antagonistic interaction between Xanthomonas and Bacillus species bacteria in natural ecosystem, but the detailed molecular mechanism of interspecies competition is not clear. This study showed that Xanthomonas campestris pv. campestris (Xcc) interfered with morphological transition and sporulation of Bacillus thuringiensis in mixed cultures, whereas abrogation of the DSF synthase RpfF reduced the interference. DSF inhibited B. thuringiensis cell division and sporulation through modulation of ftsZ, which encodes an important cell division protein in bacterial cells. In addition, RpfF is essential for production of six DSF-family signals in Xcc, which employ the same signaling pathways to regulate biological functions in Xcc and play similar effects on reduction of cell division, sporulation and antibiotic resistance of B. thuringiensis. Furthermore, abrogation of RpfF decreased the competitive capability of Xcc against B. thuringiensis on the surface of Chinese cabbage leaves. Our findings provide new insights into the role of DSF-family signals in interspecies competition and depict molecular mechanisms with which Xcc competes with B. thuringiensis. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Exposure to a specific time-varying electromagnetic field inhibits cell proliferation via cAMP and ERK signaling in cancer cells.

    Science.gov (United States)

    Buckner, Carly A; Buckner, Alison L; Koren, Stan A; Persinger, Michael A; Lafrenie, Robert M

    2018-04-01

    Exposure to specific electromagnetic field (EMF) patterns can affect a variety of biological systems. We have shown that exposure to Thomas-EMF, a low-intensity, frequency-modulated (25-6 Hz) EMF pattern, inhibited growth and altered cell signaling in malignant cells. Exposure to Thomas-EMF for 1 h/day inhibited the growth of malignant cells including B16-BL6 mouse melanoma cells, MDA-MB-231, MDA-MB-468, BT-20, and MCF-7 human breast cancer and HeLa cervical cancer cells but did not affect non-malignant cells. The Thomas-EMF-dependent changes in cell proliferation were mediated by adenosine 3',5'-cyclic monophosphate (cAMP) and extracellular-signal-regulated kinase (ERK) signaling pathways. Exposure of malignant cells to Thomas-EMF transiently changed the level of cellular cAMP and promoted ERK phosphorylation. Pharmacologic inhibitors (SQ22536) and activators (forskolin) of cAMP production both blocked the ability of Thomas-EMF to inhibit cell proliferation, and an inhibitor of the MAP kinase pathway (PD98059) was able to partially block Thomas-EMF-dependent inhibition of cell proliferation. Genetic modulation of protein kinase A (PKA) in B16-BL6 cells also altered the effect of Thomas-EMF on cell proliferation. Cells transfected with the constitutively active form of PKA (PKA-CA), which interfered with ERK phosphorylation, also interfered with the Thomas-EMF effect on cell proliferation. The non-malignant cells did not show any EMF-dependent changes in cAMP levels, ERK phosphorylation, or cell growth. These data indicate that exposure to the specific Thomas-EMF pattern can inhibit the growth of malignant cells in a manner dependent on contributions from the cAMP and MAP kinase pathways. Bioelectromagnetics. 39;217-230, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Optimization of carrier frequency and duty cycle for pulse modulation of biological signals.

    Science.gov (United States)

    Tandon, S N; Singh, S; Sharma, P K; Khosla, S

    1980-10-01

    Digital modulation techniques are commonly used for the recording and transmission of biological signals. Hitherto, the choice of subcarrier frequency for recording or transmission of biological signals has been arbitary and this usually results in poor signal to noise ratio (SNR) due to the limited frequency characteristics of the system. In the present study the frequency characteristics of the system (first order approximation) has been taken to be that of a Butterworth filter. Computations based on this assumption show that for a given input signal there exists an optimum subcarrier frequency and a corresponding optimum duty cycle which would give maximum SNR of the system. For convenience, a nomogram has been prepared and it has been shown that for a given frequency response of the system, the nomogram could be used for selecting an optimum subcarrier frequency and a corresponding duty cycle. The theoretical formulations have been verified with experimental work.

  2. Notch Signaling Is Associated With ALDH Activity And An Aggressive Metastatic Phenotype In Murine Osteosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Xiaodong eMu

    2013-06-01

    Full Text Available Osteosarcoma (OS is the most common primary malignancy of bone, and pulmonary metastatic disease accounts for nearly all mortality. However, little is known about the biochemical signaling alterations that drive the progression of metastatic disease. Two murine OS cell populations, K7M2 and K12, are clonally related but differ significantly in their metastatic phenotypes and therefore represent excellent tools for studying metastatic OS molecular biology. K7M2 cells are highly metastatic, whereas K12 cells display limited metastatic potential. Here we report that the expression of Notch genes (Notch1, 2, 4 are up-regulated, including downstream targets Hes1 and Stat3, in the highly metastatic K7M2 cells compared to the less metastatic K12 cells, indicating that the Notch signaling pathway is more active in K7M2 cells. We have previously described that K7M2 cells exhibit higher levels of aldehyde dehydrogenase (ALDH activity. Here we report that K7M2 cell ALDH activity is reduced with Notch inhibition, suggesting that ALDH activity may be regulated in part by the Notch pathway. Notch signaling is also associated with increased resistance to oxidative stress, migration, invasion, and VEGF expression in vitro. However, Notch inhibition did not significantly alter K7M2 cell proliferation. In conclusion, we provide evidence that Notch signaling is associated with ALDH activity and increased metastatic behavior in OS cells. Both Notch and ALDH are putative molecular targets for the treatment and prevention of OS metastasis.

  3. The truncate mutation of Notch2 enhances cell proliferation through activating the NF-κB signal pathway in the diffuse large B-cell lymphomas.

    Directory of Open Access Journals (Sweden)

    Xinxia Zhang

    Full Text Available The Notch2 is a critical membrane receptor for B-cell functions, and also displays various biological roles in lymphoma pathogenesis. In this article, we reported that 3 of 69 (4.3% diffuse large B-cell lymphomas (DLBCLs exhibited a truncate NOTCH2 mutation at the nucleotide 7605 (G/A in the cDNA sequence, which led to partial deletion of the C-terminal of PEST (proline-, glutamic acid-, serine- and threonine-rich domain. The truncate Notch2 activated both the Notch2 and the NF-κB signals and promoted the proliferation of B-cell lymphoma cell lines, including DLBCL and Burkitt's lymphoma cell lines. Moreover, the ectopic proliferation was completely inhibited by ammonium pyrrolidinedithiocarbamate (PDTC, an NF-κB inhibitor. Simultaneously, PDTC also reduced the expression level of Notch2. Based on these results, we conclude that the Notch2 receptor with PEST domain truncation enhances cell proliferation which may be associated with the activation of the Notch2 and the NF-κB signaling. Our results are expected to provide a possible target for new DLBCL therapies by suppressing the Notch2 and the NF-κB signaling.

  4. Computational cell model based on autonomous cell movement regulated by cell-cell signalling successfully recapitulates the "inside and outside" pattern of cell sorting

    Directory of Open Access Journals (Sweden)

    Ajioka Itsuki

    2007-09-01

    Full Text Available Abstract Background Development of multicellular organisms proceeds from a single fertilized egg as the combined effect of countless numbers of cellular interactions among highly dynamic cells. Since at least a reminiscent pattern of morphogenesis can be recapitulated in a reproducible manner in reaggregation cultures of dissociated embryonic cells, which is known as cell sorting, the cells themselves must possess some autonomous cell behaviors that assure specific and reproducible self-organization. Understanding of this self-organized dynamics of heterogeneous cell population seems to require some novel approaches so that the approaches bridge a gap between molecular events and morphogenesis in developmental and cell biology. A conceptual cell model in a computer may answer that purpose. We constructed a dynamical cell model based on autonomous cell behaviors, including cell shape, growth, division, adhesion, transformation, and motility as well as cell-cell signaling. The model gives some insights about what cellular behaviors make an appropriate global pattern of the cell population. Results We applied the model to "inside and outside" pattern of cell-sorting, in which two different embryonic cell types within a randomly mixed aggregate are sorted so that one cell type tends to gather in the central region of the aggregate and the other cell type surrounds the first cell type. Our model can modify the above cell behaviors by varying parameters related to them. We explored various parameter sets with which the "inside and outside" pattern could be achieved. The simulation results suggested that direction of cell movement responding to its neighborhood and the cell's mobility are important for this specific rearrangement. Conclusion We constructed an in silico cell model that mimics autonomous cell behaviors and applied it to cell sorting, which is a simple and appropriate phenomenon exhibiting self-organization of cell population. The model

  5. Chansporter complexes in cell signaling.

    Science.gov (United States)

    Abbott, Geoffrey W

    2017-09-01

    Ion channels facilitate diffusion of ions across cell membranes for such diverse purposes as neuronal signaling, muscular contraction, and fluid homeostasis. Solute transporters often utilize ionic gradients to move aqueous solutes up their concentration gradient, also fulfilling a wide variety of tasks. Recently, an increasing number of ion channel-transporter ('chansporter') complexes have been discovered. Chansporter complex formation may overcome what could otherwise be considerable spatial barriers to rapid signal integration and feedback between channels and transporters, the ions and other substrates they transport, and environmental factors to which they must respond. Here, current knowledge in this field is summarized, covering both heterologous expression structure/function findings and potential mechanisms by which chansporter complexes fulfill contrasting roles in cell signaling in vivo. © 2017 Federation of European Biochemical Societies.

  6. Mechanics rules cell biology

    Directory of Open Access Journals (Sweden)

    Wang James HC

    2010-07-01

    Full Text Available Abstract Cells in the musculoskeletal system are subjected to various mechanical forces in vivo. Years of research have shown that these mechanical forces, including tension and compression, greatly influence various cellular functions such as gene expression, cell proliferation and differentiation, and secretion of matrix proteins. Cells also use mechanotransduction mechanisms to convert mechanical signals into a cascade of cellular and molecular events. This mini-review provides an overview of cell mechanobiology to highlight the notion that mechanics, mainly in the form of mechanical forces, dictates cell behaviors in terms of both cellular mechanobiological responses and mechanotransduction.

  7. Wnt Signalling in Gastrointestinal Epithelial Stem Cells

    Directory of Open Access Journals (Sweden)

    Dustin J. Flanagan

    2018-03-01

    Full Text Available Wnt signalling regulates several cellular functions including proliferation, differentiation, apoptosis and migration, and is critical for embryonic development. Stem cells are defined by their ability for self-renewal and the ability to be able to give rise to differentiated progeny. Consequently, they are essential for the homeostasis of many organs including the gastrointestinal tract. This review will describe the huge advances in our understanding of how stem cell functions in the gastrointestinal tract are regulated by Wnt signalling, including how deregulated Wnt signalling can hijack these functions to transform cells and lead to cancer.

  8. Regulation of Cell Wall Biogenesis in Saccharomyces cerevisiae: The Cell Wall Integrity Signaling Pathway

    Science.gov (United States)

    Levin, David E.

    2011-01-01

    The yeast cell wall is a strong, but elastic, structure that is essential not only for the maintenance of cell shape and integrity, but also for progression through the cell cycle. During growth and morphogenesis, and in response to environmental challenges, the cell wall is remodeled in a highly regulated and polarized manner, a process that is principally under the control of the cell wall integrity (CWI) signaling pathway. This pathway transmits wall stress signals from the cell surface to the Rho1 GTPase, which mobilizes a physiologic response through a variety of effectors. Activation of CWI signaling regulates the production of various carbohydrate polymers of the cell wall, as well as their polarized delivery to the site of cell wall remodeling. This review article centers on CWI signaling in Saccharomyces cerevisiae through the cell cycle and in response to cell wall stress. The interface of this signaling pathway with other pathways that contribute to the maintenance of cell wall integrity is also discussed. PMID:22174182

  9. Wearable System for Acquisition and Monitoring of Biological Signals

    Science.gov (United States)

    Piccinini, D. J.; Andino, N. B.; Ponce, S. D.; Roberti, MA; López, y. N.

    2016-04-01

    This paper presents a modular, wearable system for acquisition and wireless transmission of biological signals. Configurable slaves for different signals (such as ECG, EMG, inertial sensors, and temperature) based in the ADS1294 Medical Analog Front End are connected to a Master, based in the CC3200 microcontroller, both from Texas Instruments. The slaves are configurable according to the specific application, providing versatility to the wearable system. The battery consumption is reduced, through a couple of Li-ion batteries and the circuit has also a battery charger. A custom made box was designed and fabricated in a 3D printer, preserving the requirements of low cost, low weight and safety recommendations.

  10. TinkerCell: modular CAD tool for synthetic biology

    Science.gov (United States)

    Chandran, Deepak; Bergmann, Frank T; Sauro, Herbert M

    2009-01-01

    Background Synthetic biology brings together concepts and techniques from engineering and biology. In this field, computer-aided design (CAD) is necessary in order to bridge the gap between computational modeling and biological data. Using a CAD application, it would be possible to construct models using available biological "parts" and directly generate the DNA sequence that represents the model, thus increasing the efficiency of design and construction of synthetic networks. Results An application named TinkerCell has been developed in order to serve as a CAD tool for synthetic biology. TinkerCell is a visual modeling tool that supports a hierarchy of biological parts. Each part in this hierarchy consists of a set of attributes that define the part, such as sequence or rate constants. Models that are constructed using these parts can be analyzed using various third-party C and Python programs that are hosted by TinkerCell via an extensive C and Python application programming interface (API). TinkerCell supports the notion of a module, which are networks with interfaces. Such modules can be connected to each other, forming larger modular networks. TinkerCell is a free and open-source project under the Berkeley Software Distribution license. Downloads, documentation, and tutorials are available at . Conclusion An ideal CAD application for engineering biological systems would provide features such as: building and simulating networks, analyzing robustness of networks, and searching databases for components that meet the design criteria. At the current state of synthetic biology, there are no established methods for measuring robustness or identifying components that fit a design. The same is true for databases of biological parts. TinkerCell's flexible modeling framework allows it to cope with changes in the field. Such changes may involve the way parts are characterized or the way synthetic networks are modeled and analyzed computationally. TinkerCell can readily

  11. TinkerCell: modular CAD tool for synthetic biology

    Directory of Open Access Journals (Sweden)

    Bergmann Frank T

    2009-10-01

    Full Text Available Abstract Background Synthetic biology brings together concepts and techniques from engineering and biology. In this field, computer-aided design (CAD is necessary in order to bridge the gap between computational modeling and biological data. Using a CAD application, it would be possible to construct models using available biological "parts" and directly generate the DNA sequence that represents the model, thus increasing the efficiency of design and construction of synthetic networks. Results An application named TinkerCell has been developed in order to serve as a CAD tool for synthetic biology. TinkerCell is a visual modeling tool that supports a hierarchy of biological parts. Each part in this hierarchy consists of a set of attributes that define the part, such as sequence or rate constants. Models that are constructed using these parts can be analyzed using various third-party C and Python programs that are hosted by TinkerCell via an extensive C and Python application programming interface (API. TinkerCell supports the notion of a module, which are networks with interfaces. Such modules can be connected to each other, forming larger modular networks. TinkerCell is a free and open-source project under the Berkeley Software Distribution license. Downloads, documentation, and tutorials are available at http://www.tinkercell.com. Conclusion An ideal CAD application for engineering biological systems would provide features such as: building and simulating networks, analyzing robustness of networks, and searching databases for components that meet the design criteria. At the current state of synthetic biology, there are no established methods for measuring robustness or identifying components that fit a design. The same is true for databases of biological parts. TinkerCell's flexible modeling framework allows it to cope with changes in the field. Such changes may involve the way parts are characterized or the way synthetic networks are modeled

  12. Laboratory of Cell and Molecular Biology

    Data.gov (United States)

    Federal Laboratory Consortium — The Laboratory of Cell and Molecular Biology investigates the organization, compartmentalization, and biochemistry of eukaryotic cells and the pathology associated...

  13. Intracellular signal modulation by nanomaterials.

    Science.gov (United States)

    Hussain, Salik; Garantziotis, Stavros; Rodrigues-Lima, Fernando; Dupret, Jean-Marie; Baeza-Squiban, Armelle; Boland, Sonja

    2014-01-01

    A thorough understanding of the interactions of nanomaterials with biological systems and the resulting activation of signal transduction pathways is essential for the development of safe and consumer friendly nanotechnology. Here we present an overview of signaling pathways induced by nanomaterial exposures and describe the possible correlation of their physicochemical characteristics with biological outcomes. In addition to the hierarchical oxidative stress model and a review of the intrinsic and cell-mediated mechanisms of reactive oxygen species (ROS) generating capacities of nanomaterials, we also discuss other oxidative stress dependent and independent cellular signaling pathways. Induction of the inflammasome, calcium signaling, and endoplasmic reticulum stress are reviewed. Furthermore, the uptake mechanisms can be of crucial importance for the cytotoxicity of nanomaterials and membrane-dependent signaling pathways have also been shown to be responsible for cellular effects of nanomaterials. Epigenetic regulation by nanomaterials, effects of nanoparticle-protein interactions on cell signaling pathways, and the induction of various cell death modalities by nanomaterials are described. We describe the common trigger mechanisms shared by various nanomaterials to induce cell death pathways and describe the interplay of different modalities in orchestrating the final outcome after nanomaterial exposures. A better understanding of signal modulations induced by nanomaterials is not only essential for the synthesis and design of safer nanomaterials but will also help to discover potential nanomedical applications of these materials. Several biomedical applications based on the different signaling pathways induced by nanomaterials are already proposed and will certainly gain a great deal of attraction in the near future.

  14. HER/ErbB Receptor Interactions and Signaling Patterns in Human Mammary Epithelial Cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yi; Opresko, Lee K.; Shankaran, Harish; Chrisler, William B.; Wiley, H. S.; Resat, Haluk

    2009-10-31

    Knowledge about signaling pathways is typically compiled based on data gathered using different cell lines. This approach implicitly assumes that cell line dependence is not important, which can be misleading because different cell lines do not always respond to a particular stimulus in the same way. The lack of coherent data collected from closely related cellular systems can be detrimental to the efforts to understand the regulation of biological processes. In this study, we report the development of a library of human mammary epithelial (HME) cell lines which express endogenous levels of the cell surface receptor EGFR/HER1, and different levels of HER2 and HER3. Using our clone library, we have quantified the interactions among the HER1-3 receptors and systematically investigated the existing hypotheses about their interaction patterns. Contrary to earlier suggestions, we find that lateral interactions with HER2 do not lead to strong transactivation between EGFR and HER3. Our study identified HER2 as the dominant dimerization partner for both EGFR and HER3, and revealed that EGFR and HER3 activations are only weakly linked in HME cells. We have also quantified the time-dependent activation patterns of the downstream effectors Erk and Akt. We found that HER3 signaling makes the strongest contribution to Akt activation and that, stimulation of either EGFR or HER3 pathways activate Erk at significant levels. Our study shows that cell libraries formed from closely related clones can be a powerful resource for pursuing the quantitative investigations that are necessary for developing a systems level understanding of cell signaling.

  15. Industrial systems biology and its impact on synthetic biology of yeast cell factories

    DEFF Research Database (Denmark)

    Fletcher, Eugene; Krivoruchko, Anastasia; Nielsen, Jens

    2016-01-01

    Engineering industrial cell factories to effectively yield a desired product while dealing with industrially relevant stresses is usually the most challenging step in the development of industrial production of chemicals using microbial fermentation processes. Using synthetic biology tools......, microbial cell factories such as Saccharomyces cerevisiae can be engineered to express synthetic pathways for the production of fuels, biopharmaceuticals, fragrances, and food flavors. However, directing fluxes through these synthetic pathways towards the desired product can be demanding due to complex...... regulation or poor gene expression. Systems biology, which applies computational tools and mathematical modeling to understand complex biological networks, can be used to guide synthetic biology design. Here, we present our perspective on how systems biology can impact synthetic biology towards the goal...

  16. Glycoengineering in CHO cells: Advances in systems biology

    DEFF Research Database (Denmark)

    Tejwani, Vijay; Andersen, Mikael Rørdam; Nam, Jong Hyun

    2018-01-01

    are not well understood. A systems biology approach combining different technologies is needed for complete understanding of the molecular processes accounting for this variability and to open up new venues in cell line development. In this review, we describe several advances in genetic manipulation, modeling......For several decades, glycoprotein biologics have been successfully produced from Chinese hamster ovary (CHO) cells. The therapeutic efficacy and potency of glycoprotein biologics are often dictated by their post translational modifications, particularly glycosylation, which unlike protein synthesis....... Recently, CHO cells have also been explored for production of therapeutic glycosaminoglycans (e.g. heparin), which presents similar challenges as producing glycoproteins biologics. Approaches to controlling heterogeneity in CHO cells and directing the biosynthetic process toward desired glycoforms...

  17. EGFR-dependent signalling reduced and p38 dependent apoptosis required by Gallic acid in Malignant Mesothelioma cells.

    Science.gov (United States)

    Demiroglu-Zergeroglu, Asuman; Candemir, Gulsife; Turhanlar, Ebru; Sagir, Fatma; Ayvali, Nurettin

    2016-12-01

    The unrestrained EGFR signalling contributes to malignant phenotype in a number of cancers including Malignant Mesotheliomas. Present study was designed to evaluate EGFR-dependent anti-proliferative and apoptotic effects of Gallic acid in transformed Mesothelial (MeT-5A) and Malignant Mesothelioma (SPC212) cells. Gallic acid reduced the viability of Malignant Mesothelioma cells in a concentration and time-dependent manner. However, viability of mesothelial cells reduced only at high concentration and longer time periods. Gallic acid restrained the activation of EGFR, ERK1/2 and AKT proteins and down regulated expression of Cyclin D and Bcl-2 genes, but upregulated the expression of p21 gene in EGF-induced SPC212 cells. GA-induced transitory G1 arrest and triggered mitochondrial and death receptor mediated apoptosis, which requires p38MAPK activation. The data provided here indicate that GA is able to inhibit EGFR dependent proliferation and survival signals and induces p38 pathway dependent apoptosis in Malignant Mesothelioma cells. On the basis of these experimental findings it is worthwhile to investigate further the biological activity of Gallic acid on other Mesothelioma cell lines harbouring aberrant EGFR signals. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Computer-aided design of biological circuits using TinkerCell.

    Science.gov (United States)

    Chandran, Deepak; Bergmann, Frank T; Sauro, Herbert M

    2010-01-01

    Synthetic biology is an engineering discipline that builds on modeling practices from systems biology and wet-lab techniques from genetic engineering. As synthetic biology advances, efficient procedures will be developed that will allow a synthetic biologist to design, analyze, and build biological networks. In this idealized pipeline, computer-aided design (CAD) is a necessary component. The role of a CAD application would be to allow efficient transition from a general design to a final product. TinkerCell is a design tool for serving this purpose in synthetic biology. In TinkerCell, users build biological networks using biological parts and modules. The network can be analyzed using one of several functions provided by TinkerCell or custom programs from third-party sources. Since best practices for modeling and constructing synthetic biology networks have not yet been established, TinkerCell is designed as a flexible and extensible application that can adjust itself to changes in the field. © 2010 Landes Bioscience

  19. Cell signaling during Trypanosoma cruzi invasion

    Directory of Open Access Journals (Sweden)

    Fernando Yukio Maeda

    2012-11-01

    Full Text Available Cell signaling is an essential requirement for mammalian cell invasion by Trypanosoma cruzi. Depending on the parasite strain and the parasite developmental form, distinct signaling pathways may be induced. In this short review, we focus on the data coming from studies with metacyclic trypomastigotes (MT generated in vitro and tissue culture-derived trypomastigotes (TCT, used as counterparts of insect-borne and bloodstream parasites respectively. During invasion of host cells by MT or TCT, intracellular Ca2+ mobilization and host cell lysosomal exocytosis are triggered. Invasion mediated by MT surface molecule gp82 requires the activation of mammalian target of rapamycin (mTOR, phosphatidylinositol 3-kinase (PI3K and protein kinase C (PKC in the host cell, associated with Ca2+-dependent disruption of the actin cytoskeleton. In MT, protein tyrosine kinase (PTK, PI3K, phospholipase C (PLC and PKC appear to be activated. TCT invasion, on the other hand, does not rely on mTOR activation, rather on target cell PI3K, and may involve the host cell autophagy for parasite internalization. Enzymes, such oligopeptidase B and the major T. cruzi cysteine proteinase cruzipain, have been shown to generate molecules that induce target cell Ca2+ signal. In addition, TCT may trigger host cell responses mediated by TGF-β receptor or integrin family member. Further investigations are needed for a more complete and detailed picture of T. cruzi invasion.

  20. Transcriptional profiling of ErbB signalling in mammary luminal epithelial cells - interplay of ErbB and IGF1 signalling through IGFBP3 regulation

    International Nuclear Information System (INIS)

    Worthington, Jenny; Bertani, Mariana; Chan, Hong-Lin; Gerrits, Bertran; Timms, John F

    2010-01-01

    Members of the ErbB family of growth factor receptors are intricately linked with epithelial cell biology, development and tumourigenesis; however, the mechanisms involved in their downstream signalling are poorly understood. Indeed, it is unclear how signal specificity is achieved and the relative contribution each receptor has to specific gene expression. Gene expression profiling of a human mammary luminal epithelial cell model of ErbB2-overexpression was carried out using cDNA microarrays with a common RNA reference approach to examine long-term overlapping and differential responses to EGF and heregulin beta1 treatment in the context of ErbB2 overexpression. Altered gene expression was validated using quantitative real time PCR and/or immunoblotting. One gene of interest was targeted for further characterisation, where the effects of siRNA-mediated silencing on IGF1-dependent signalling and cellular phenotype were examined and compared to the effects of loss of ErbB2 expression. 775 genes were differentially expressed and clustered in terms of their growth factor responsiveness. As well as identifying uncharacterized genes as novel targets of ErbB2-dependent signalling, ErbB2 overexpression augmented the induction of multiple genes involved in proliferation (e.g. MYC, MAP2K1, MAP2K3), autocrine growth factor signalling (VEGF, PDGF) and adhesion/cytoskeletal regulation (ZYX, THBS1, VCL, CNN3, ITGA2, ITGA3, NEDD9, TAGLN), linking them to the hyper-poliferative and altered adhesive phenotype of the ErbB2-overexpressing cells. We also report ErbB2-dependent down-regulation of multiple interferon-stimulated genes that may permit ErbB2-overexpressing cells to resist the anti-proliferative action of interferons. Finally, IGFBP3 was unique in its pattern of regulation and we further investigated a possible role for IGFBP3 down-regulation in ErbB2-dependent transformation through suppressed IGF1 signalling. We show that IGF1-dependent signalling and proliferation were

  1. TRIM29 Overexpression Promotes Proliferation and Survival of Bladder Cancer Cells through NF-κB Signaling.

    Science.gov (United States)

    Tan, Shu-Tao; Liu, Sheng-Ye; Wu, Bin

    2016-10-01

    TRIM29 overexpression has been reported in several human malignancies and showed correlation with cancer cell malignancy. The aim of the current study is to examine its clinical significance and biological roles in human bladder cancer tissues and cell lines. A total of 102 cases of bladder cancer tissues were examined for TRIM29 expression by immunohistochemistry. siRNA and plasmid transfection were performed in 5637 and BIU-87 cell lines. Cell Counting Kit-8, flow cytometry, western blot, and real-time polymerase chain reaction were performed to examine its biological roles and mechanism in bladder cancer cells. We found that TRIM29 overexpression showed correlation with invading depth (p=0.0087). Knockdown of TRIM29 expression in bladder cancer cell line 5637 inhibited cell growth rate and cell cycle transition while its overexpression in BIU-87 cells accelerated cell proliferation and cell cycle progression. TRIM29 overexpression also inhibited cell apoptosis induced by cisplatin. In addition, we demonstrated that TRIM29 depletion decreased while its overexpression led to upregulated expression of cyclin D1, cyclin E, and Bcl-2. We also showed that TRIM29 knockdown inhibited protein kinase C (PKC) and nuclear factor κB (NF-κB) signaling while its overexpression stimulated the PKC and NF-κB pathways. BAY 11-7082 (NF-κB inhibitor) partly attenuated the effect of TRIM29 on expression of cyclin and Bcl-2. Treatment with PKC inhibitor staurosporine resulted in ameliorated TRIM29 induced activation of NF-κB. The current study demonstrated that TRIM29 upregulates cyclin and Bcl family proteins level to facilitate malignant cell growth and inhibit drug-induced apoptosis in bladder cancer, possibly through PKC-NF-κB signaling pathways.

  2. BMP signaling regulates satellite cell-dependent postnatal muscle growth.

    Science.gov (United States)

    Stantzou, Amalia; Schirwis, Elija; Swist, Sandra; Alonso-Martin, Sonia; Polydorou, Ioanna; Zarrouki, Faouzi; Mouisel, Etienne; Beley, Cyriaque; Julien, Anaïs; Le Grand, Fabien; Garcia, Luis; Colnot, Céline; Birchmeier, Carmen; Braun, Thomas; Schuelke, Markus; Relaix, Frédéric; Amthor, Helge

    2017-08-01

    Postnatal growth of skeletal muscle largely depends on the expansion and differentiation of resident stem cells, the so-called satellite cells. Here, we demonstrate that postnatal satellite cells express components of the bone morphogenetic protein (BMP) signaling machinery. Overexpression of noggin in postnatal mice (to antagonize BMP ligands), satellite cell-specific knockout of Alk3 (the gene encoding the BMP transmembrane receptor) or overexpression of inhibitory SMAD6 decreased satellite cell proliferation and accretion during myofiber growth, and ultimately retarded muscle growth. Moreover, reduced BMP signaling diminished the adult satellite cell pool. Abrogation of BMP signaling in satellite cell-derived primary myoblasts strongly diminished cell proliferation and upregulated the expression of cell cycle inhibitors p21 and p57 In conclusion, these results show that BMP signaling defines postnatal muscle development by regulating satellite cell-dependent myofiber growth and the generation of the adult muscle stem cell pool. © 2017. Published by The Company of Biologists Ltd.

  3. Apoptotic Cells Induced Signaling for Immune Homeostasis in Macrophages and Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Uriel Trahtemberg

    2017-10-01

    Full Text Available Inefficient and abnormal clearance of apoptotic cells (efferocytosis contributes to systemic autoimmune disease in humans and mice, and inefficient chromosomal DNA degradation by DNAse II leads to systemic polyarthritis and a cytokine storm. By contrast, efficient clearance allows immune homeostasis, generally leads to a non-inflammatory state for both macrophages and dendritic cells (DCs, and contributes to maintenance of peripheral tolerance. As many as 3 × 108 cells undergo apoptosis every hour in our bodies, and one of the primary “eat me” signals expressed by apoptotic cells is phosphatidylserine (PtdSer. Apoptotic cells themselves are major contributors to the “anti-inflammatory” nature of the engulfment process, some by secreting thrombospondin-1 (TSP-1 or adenosine monophosphate and possibly other immune modulating “calm-down” signals that interact with macrophages and DCs. Apoptotic cells also produce “find me” and “tolerate me” signals to attract and immune modulate macrophages and DCs that express specific receptors for some of these signals. Neither macrophages nor DCs are uniform, and each cell type may variably express membrane proteins that function as receptors for PtdSer or for opsonins like complement or opsonins that bind to PtdSer, such as protein S and growth arrest-specific 6. Macrophages and DCs also express scavenger receptors, CD36, and integrins that function via bridging molecules such as TSP-1 or milk fat globule-EGF factor 8 protein and that differentially engage in various multi-ligand interactions between apoptotic cells and phagocytes. In this review, we describe the anti-inflammatory and pro-homeostatic nature of apoptotic cell interaction with the immune system. We do not review some forms of immunogenic cell death. We summarize the known apoptotic cell signaling events in macrophages and DCs that are related to toll-like receptors, nuclear factor kappa B, inflammasome, the lipid

  4. Vectorial signalling mechanism required for cell-cell communication during sporulation in Bacillus subtilis.

    Science.gov (United States)

    Diez, Veronica; Schujman, Gustavo E; Gueiros-Filho, Frederico J; de Mendoza, Diego

    2012-01-01

    Spore formation in Bacillus subtilis takes place in a sporangium consisting of two chambers, the forespore and the mother cell, which are linked by pathways of cell-cell communication. One pathway, which couples the proteolytic activation of the mother cell transcription factor σ(E) to the action of a forespore synthesized signal molecule, SpoIIR, has remained enigmatic. Signalling by SpoIIR requires the protein to be exported to the intermembrane space between forespore and mother cell, where it will interact with and activate the integral membrane protease SpoIIGA. Here we show that SpoIIR signal activity as well as the cleavage of its N-terminal extension is strictly dependent on the prespore fatty acid biosynthetic machinery. We also report that a conserved threonine residue (T27) in SpoIIR is required for processing, suggesting that signalling of SpoIIR is dependent on fatty acid synthesis probably because of acylation of T27. In addition, SpoIIR localization in the forespore septal membrane depends on the presence of SpoIIGA. The orchestration of σ(E) activation in the intercellular space by an acylated signal protein provides a new paradigm to ensure local transmission of a weak signal across the bilayer to control cell-cell communication during development. © 2011 Blackwell Publishing Ltd.

  5. Concise Review: Stem Cell Population Biology: Insights from Hematopoiesis.

    Science.gov (United States)

    MacLean, Adam L; Lo Celso, Cristina; Stumpf, Michael P H

    2017-01-01

    Stem cells are fundamental to human life and offer great therapeutic potential, yet their biology remains incompletely-or in cases even poorly-understood. The field of stem cell biology has grown substantially in recent years due to a combination of experimental and theoretical contributions: the experimental branch of this work provides data in an ever-increasing number of dimensions, while the theoretical branch seeks to determine suitable models of the fundamental stem cell processes that these data describe. The application of population dynamics to biology is amongst the oldest applications of mathematics to biology, and the population dynamics perspective continues to offer much today. Here we describe the impact that such a perspective has made in the field of stem cell biology. Using hematopoietic stem cells as our model system, we discuss the approaches that have been used to study their key properties, such as capacity for self-renewal, differentiation, and cell fate lineage choice. We will also discuss the relevance of population dynamics in models of stem cells and cancer, where competition naturally emerges as an influential factor on the temporal evolution of cell populations. Stem Cells 2017;35:80-88. © 2016 AlphaMed Press.

  6. Predicting spiral wave patterns from cell properties in a model of biological self-organization.

    Science.gov (United States)

    Geberth, Daniel; Hütt, Marc-Thorsten

    2008-09-01

    In many biological systems, biological variability (i.e., systematic differences between the system components) can be expected to outrank statistical fluctuations in the shaping of self-organized patterns. In principle, the distribution of single-element properties should thus allow predicting features of such patterns. For a mathematical model of a paradigmatic and well-studied pattern formation process, spiral waves of cAMP signaling in colonies of the slime mold Dictyostelium discoideum, we explore this possibility and observe a pronounced anticorrelation between spiral waves and cell properties (namely, the firing rate) and particularly a clustering of spiral wave tips in regions devoid of spontaneously firing (pacemaker) cells. Furthermore, we observe local inhomogeneities in the distribution of spiral chiralities, again induced by the pacemaker distribution. We show that these findings can be explained by a simple geometrical model of spiral wave generation.

  7. The Multiple Faces of Prostaglandin E2 G-Protein Coupled Receptor Signaling during the Dendritic Cell Life Cycle

    Directory of Open Access Journals (Sweden)

    Alessandra Cambi

    2013-03-01

    Full Text Available Many processes regulating immune responses are initiated by G-protein coupled receptors (GPCRs and report biochemical changes in the microenvironment. Dendritic cells (DCs are the most potent antigen-presenting cells and crucial for the regulation of innate and adaptive immune responses. The lipid mediator Prostaglandin E2 (PGE2 via four GPCR subtypes (EP1-4 critically regulates DC generation, maturation and migration. The role of PGE2 signaling in DC biology was unraveled by the characterization of EP receptor subtype expression in DC progenitor cells and DCs, the identification of the signaling pathways initiated by these GPCR subtypes and the classification of DC responses to PGE2 at different stages of differentiation. Here, we review the advances in PGE2 signaling in DCs and describe the efforts still to be made to understand the spatio-temporal fine-tuning of PGE2 responses by DCs.

  8. Fluid shear promotes chondrosarcoma cell invasion by activating matrix metalloproteinase 12 via IGF-2 and VEGF signaling pathways

    Science.gov (United States)

    Wang, P; Chen, S-H; Hung, W-C; Paul, C; Zhu, F; Guan, P-P; Huso, DL; Kontrogianni-Konstantopoulos, A; Konstantopoulos, K

    2015-01-01

    Interstitial fluid flow in and around the tumor tissue is a physiologically relevant mechanical signal that regulates intracellular signaling pathways throughout the tumor. Yet, the effects of interstitial flow and associated fluid shear stress on the tumor cell function have been largely overlooked. Using in vitro bioengineering models in conjunction with molecular cell biology tools, we found that fluid shear (2 dyn/cm2) markedly upregulates matrix metalloproteinase 12 (MMP-12) expression and its activity in human chondrosarcoma cells. MMP-12 expression is induced in human chondrocytes during malignant transformation. However, the signaling pathway regulating MMP-12 expression and its potential role in human chondrosarcoma cell invasion and metastasis have yet to be delineated. We discovered that fluid shear stress induces the synthesis of insulin growth factor-2 (IGF-2) and vascular endothelial growth factor (VEGF) B and D, which in turn transactivate MMP-12 via PI3-K, p38 and JNK signaling pathways. IGF-2-, VEGF-B- or VEGF-D-stimulated chondrosarcoma cells display markedly higher migratory and invasive potentials in vitro, which are blocked by inhibiting MMP-12, PI3-K, p38 or JNK activity. Moreover, recombinant human MMP-12 or MMP-12 overexpression can potentiate chondrosarcoma cell invasion in vitro and the lung colonization in vivo. By reconstructing and delineating the signaling pathway regulating MMP-12 activation, potential therapeutic strategies that interfere with chondrosarcoma cell invasion may be identified. PMID:25435370

  9. Chemokines: a new dendritic cell signal for T cell activation

    Directory of Open Access Journals (Sweden)

    Christoph A Thaiss

    2011-08-01

    Full Text Available Dendritic cells (DCs are the main inducers and regulators of cytotoxic T lymphocyte (CTL responses against viruses and tumors. One checkpoint to avoid misguided CTL activation, which might damage healthy cells of the body, is the necessity for multiple activation signals, involving both antigenic as well as additional signals that reflect the presence of pathogens. DCs provide both signals when activated by ligands of pattern recognition receptors and licensed by helper lymphocytes. Recently, it has been established that such T cell licensing can be facilitated by CD4+ T helper cells (classical licensing or by NKT cells (alternative licensing. Licensing regulates the DC/CTL cross-talk at multiple layers. Direct recruitment of CTLs through chemokines released by licensed DCs has recently emerged as a common theme and has a crucial impact on the efficiency of CTL responses. Here, we discuss recent advances in our understanding of DC licensing for cross-priming and implications for the temporal and spatial regulation underlying this process. Future vaccination strategies will benefit from a deeper insight into the mechanisms that govern CTL activation.

  10. Molecular biology of breast cancer stem cells: potential clinical applications.

    Science.gov (United States)

    Nguyen, Nam P; Almeida, Fabio S; Chi, Alex; Nguyen, Ly M; Cohen, Deirdre; Karlsson, Ulf; Vinh-Hung, Vincent

    2010-10-01

    Breast cancer stem cells (CSC) have been postulated recently as responsible for failure of breast cancer treatment. The purpose of this study is to review breast CSCs molecular biology with respect to their mechanism of resistance to conventional therapy, and to develop treatment strategies that may improve survival of breast cancer patients. A literature search has identified in vitro and in vivo studies of breast CSCs. Breast CSCs overexpress breast cancer resistance protein (BCRP) which allows cancer cells to transport actively chemotherapy agents out of the cells. Radioresistance is modulated through activation of Wnt signaling pathway and overexpression of genes coding for glutathione. Lapatinib can selectively target HER-2 positive breast CSCs and improves disease-free survival in these patients. Metformin may target basal type breast CSCs. Parthenolide and oncolytic viruses are promising targeting agents for breast CSCs. Future clinical trials for breast cancer should include anti-cancer stem cells targeting agents in addition to conventional chemotherapy. Hypofractionation radiotherapy may be indicated for residual disease post chemotherapy. 2010 Elsevier Ltd. All rights reserved.

  11. Cytoskeleton in Mast Cell Signaling

    Science.gov (United States)

    Dráber, Pavel; Sulimenko, Vadym; Dráberová, Eduarda

    2012-01-01

    Mast cell activation mediated by the high affinity receptor for IgE (FcεRI) is a key event in allergic response and inflammation. Other receptors on mast cells, as c-Kit for stem cell factor and G protein-coupled receptors (GPCRs) synergistically enhance the FcεRI-mediated release of inflammatory mediators. Activation of various signaling pathways in mast cells results in changes in cell morphology, adhesion to substrate, exocytosis, and migration. Reorganization of cytoskeleton is pivotal in all these processes. Cytoskeletal proteins also play an important role in initial stages of FcεRI and other surface receptors induced triggering. Highly dynamic microtubules formed by αβ-tubulin dimers as well as microfilaments build up from polymerized actin are affected in activated cells by kinases/phosphatases, Rho GTPases and changes in concentration of cytosolic Ca2+. Also important are nucleation proteins; the γ-tubulin complexes in case of microtubules or Arp 2/3 complex with its nucleation promoting factors and formins in case of microfilaments. The dynamic nature of microtubules and microfilaments in activated cells depends on many associated/regulatory proteins. Changes in rigidity of activated mast cells reflect changes in intermediate filaments build up from vimentin. This review offers a critical appraisal of current knowledge on the role of cytoskeleton in mast cells signaling. PMID:22654883

  12. The function of endocytosis in Wnt signaling.

    Science.gov (United States)

    Brunt, Lucy; Scholpp, Steffen

    2018-03-01

    Wnt growth factors regulate one of the most important signaling networks during development, tissue homeostasis and disease. Despite the biological importance of Wnt signaling, the mechanism of endocytosis during this process is ill described. Wnt molecules can act as paracrine signals, which are secreted from the producing cells and transported through neighboring tissue to activate signaling in target cells. Endocytosis of the ligand is important at several stages of action: One central function of endocytic trafficking in the Wnt pathway occurs in the source cell. Furthermore, the β-catenin-dependent Wnt ligands require endocytosis for signal activation and to regulate gene transcription in the responding cells. Alternatively, Wnt/β-catenin-independent signaling regulates endocytosis of cell adherence plaques to control cell migration. In this comparative review, we elucidate these three fundamental interconnected functions, which together regulate cellular fate and cellular behavior. Based on established hypotheses and recent findings, we develop a revised picture for the complex function of endocytosis in the Wnt signaling network.

  13. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells

    International Nuclear Information System (INIS)

    Dontu, Gabriela; Jackson, Kyle W; McNicholas, Erin; Kawamura, Mari J; Abdallah, Wissam M; Wicha, Max S

    2004-01-01

    Notch signaling has been implicated in the regulation of cell-fate decisions such as self-renewal of adult stem cells and differentiation of progenitor cells along a particular lineage. Moreover, depending on the cellular and developmental context, the Notch pathway acts as a regulator of cell survival and cell proliferation. Abnormal expression of Notch receptors has been found in different types of epithelial metaplastic lesions and neoplastic lesions, suggesting that Notch may act as a proto-oncogene. The vertebrate Notch1 and Notch4 homologs are involved in normal development of the mammary gland, and mutated forms of these genes are associated with development of mouse mammary tumors. In order to determine the role of Notch signaling in mammary cell-fate determination, we have utilized a newly described in vitro system in which mammary stem/progenitor cells can be cultured in suspension as nonadherent 'mammospheres'. Notch signaling was activated using exogenous ligands, or was inhibited using previously characterized Notch signaling antagonists. Utilizing this system, we demonstrate that Notch signaling can act on mammary stem cells to promote self-renewal and on early progenitor cells to promote their proliferation, as demonstrated by a 10-fold increase in secondary mammosphere formation upon addition of a Notch-activating DSL peptide. In addition to acting on stem cells, Notch signaling is also able to act on multipotent progenitor cells, facilitating myoepithelial lineage-specific commitment and proliferation. Stimulation of this pathway also promotes branching morphogenesis in three-dimensional Matrigel cultures. These effects are completely inhibited by a Notch4 blocking antibody or a gamma secretase inhibitor that blocks Notch processing. In contrast to the effects of Notch signaling on mammary stem/progenitor cells, modulation of this pathway has no discernable effect on fully committed, differentiated, mammary epithelial cells. These studies

  14. Chemical and biological insights into uranium-induced apoptosis of rat hepatic cell line

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Fang; You, Yong [University of South China, College of Hunan Province, Key Laboratory of Tumor Cellular and Molecular Pathology, Hengyang (China); Du, Ke-Jie [University of South China, School of Chemistry and Chemical Engineering, Hengyang (China); Fang, Zhen [Anhui Normal University, College of Chemistry and Materials Science, Wuhu (China); Wen, Ge-Bo [University of South China, College of Hunan Province, Key Laboratory of Tumor Cellular and Molecular Pathology, Hengyang (China); University of South China, Laboratory of Protein Structure and Function, Hengyang (China); Lin, Ying-Wu [University of South China, School of Chemistry and Chemical Engineering, Hengyang (China); University of South China, Laboratory of Protein Structure and Function, Hengyang (China)

    2015-05-15

    Uranium release into the environment is a threat to human health, and the mechanisms of cytotoxicity caused by uranium are not well-understood. To improve our understanding in this respect, we herein evaluated the effects of uranium exposure on normal rat hepatic BRL cells. As revealed by scanning electron microscopy and transmission electron microscope analysis, uranyl nitrate was found to be transformed into uranyl phosphate particles in the medium and taken up by BRL cells in an endocytotic uptake manner, which presumably initiates apoptosis of the cell, although soluble uranyl ion may also be toxic. The apoptosis of BRL cells upon uranium exposure was also confirmed by both the acridine orange and ethidium bromide double staining assay and the Annexin V/propidium iodide double staining assay. Further studies revealed that uranium induced the loss of mitochondrial membrane potential in a dose-dependent manner. Moreover, the uranium-induced apoptosis was found to be associated with the activation of caspase-3, caspase-8 and caspase-9, indicating both a mitochondria-dependent signaling pathway and a death receptor pathway by a crosstalk. This study provides new chemical and biological insights into the mechanism of uranium toxicity toward hepatic cells, which will help seek approaches for biological remediation of uranium. (orig.)

  15. AlliedSignal solid oxide fuel cell technology

    Energy Technology Data Exchange (ETDEWEB)

    Minh, N.; Barr, K.; Kelly, P.; Montgomery, K. [AlliedSignal Aerospace Equipment Systems, Torrance, CA (United States)

    1996-12-31

    AlliedSignal has been developing high-performance, lightweight solid oxide fuel cell (SOFC) technology for a broad spectrum of electric power generation applications. This technology is well suited for use in a variety of power systems, ranging from commercial cogeneration to military mobile power sources. The AlliedSignal SOFC is based on stacking high-performance thin-electrolyte cells with lightweight metallic interconnect assemblies to form a compact structure. The fuel cell can be operated at reduced temperatures (600{degrees} to 800{degrees}C). SOFC stacks based on this design has the potential of producing 1 kW/kg and 1 ML. This paper summarizes the technical status of the design, manufacture, and operation of AlliedSignal SOFCs.

  16. Functional microarray analysis suggests repressed cell-cell signaling and cell survival-related modules inhibit progression of head and neck squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Soares Fernando A

    2011-04-01

    Full Text Available Abstract Background Cancer shows a great diversity in its clinical behavior which cannot be easily predicted using the currently available clinical or pathological markers. The identification of pathways associated with lymph node metastasis (N+ and recurrent head and neck squamous cell carcinoma (HNSCC may increase our understanding of the complex biology of this disease. Methods Tumor samples were obtained from untreated HNSCC patients undergoing surgery. Patients were classified according to pathologic lymph node status (positive or negative or tumor recurrence (recurrent or non-recurrent tumor after treatment (surgery with neck dissection followed by radiotherapy. Using microarray gene expression, we screened tumor samples according to modules comprised by genes in the same pathway or functional category. Results The most frequent alterations were the repression of modules in negative lymph node (N0 and in non-recurrent tumors rather than induction of modules in N+ or in recurrent tumors. N0 tumors showed repression of modules that contain cell survival genes and in non-recurrent tumors cell-cell signaling and extracellular region modules were repressed. Conclusions The repression of modules that contain cell survival genes in N0 tumors reinforces the important role that apoptosis plays in the regulation of metastasis. In addition, because tumor samples used here were not microdissected, tumor gene expression data are represented together with the stroma, which may reveal signaling between the microenvironment and tumor cells. For instance, in non-recurrent tumors, extracellular region module was repressed, indicating that the stroma and tumor cells may have fewer interactions, which disable metastasis development. Finally, the genes highlighted in our analysis can be implicated in more than one pathway or characteristic, suggesting that therapeutic approaches to prevent tumor progression should target more than one gene or pathway

  17. Surface code—biophysical signals for apoptotic cell clearance

    International Nuclear Information System (INIS)

    Biermann, Mona; Maueröder, Christian; Brauner, Jan M; Chaurio, Ricardo; Herrmann, Martin; Muñoz, Luis E; Janko, Christina

    2013-01-01

    Apoptotic cell death and the clearance of dying cells play an important and physiological role in embryonic development and normal tissue turnover. In contrast to necrosis, apoptosis proceeds in an anti-inflammatory manner. It is orchestrated by the timed release and/or exposure of so-called ‘find-me’, ‘eat me’ and ‘tolerate me’ signals. Mononuclear phagocytes are attracted by various ‘find-me’ signals, including proteins, nucleotides, and phospholipids released by the dying cell, whereas the involvement of granulocytes is prevented via ‘stay away’ signals. The exposure of anionic phospholipids like phosphatidylserine (PS) by apoptotic cells on the outer leaflet of the plasma membrane is one of the main ‘eat me’ signals. PS is recognized by a number of innate receptors as well as by soluble bridging molecules on the surface of phagocytes. Importantly, phagocytes are able to discriminate between viable and apoptotic cells both exposing PS. Due to cytoskeleton remodeling PS has a higher lateral mobility on the surfaces of apoptotic cells thereby promoting receptor clustering on the phagocyte. PS not only plays an important role in the engulfment process, but also acts as ‘tolerate me’ signal inducing the release of anti-inflammatory cytokines by phagocytes. An efficient and fast clearance of apoptotic cells is required to prevent secondary necrosis and leakage of intracellular danger signals into the surrounding tissue. Failure or prolongation of the clearance process leads to the release of intracellular antigens into the periphery provoking inflammation and development of systemic inflammatory autoimmune disease like systemic lupus erythematosus. Here we review the current findings concerning apoptosis-inducing pathways, important players of apoptotic cell recognition and clearance as well as the role of membrane remodeling in the engulfment of apoptotic cells by phagocytes. (paper)

  18. Cytokine signalling in embryonic stem cells

    DEFF Research Database (Denmark)

    Kristensen, David Møbjerg; Kalisz, Mark; Nielsen, Jens Høiriis

    2006-01-01

    Cytokines play a central role in maintaining self-renewal in mouse embryonic stem (ES) cells through a member of the interleukin-6 type cytokine family termed leukemia inhibitory factor (LIF). LIF activates the JAK-STAT3 pathway through the class I cytokine receptor gp130, which forms a trimeric...... pathways seem to converge on c-myc as a common target to promote self-renewal. Whereas LIF does not seem to stimulate self-renewal in human embryonic stem cells it cannot be excluded that other cytokines are involved. The pleiotropic actions of the increasing number of cytokines and receptors signalling...... via JAKs, STATs and SOCS exhibit considerable redundancy, compensation and plasticity in stem cells in accordance with the view that stem cells are governed by quantitative variations in strength and duration of signalling events known from other cell types rather than qualitatively different stem...

  19. Induction of the unfolded protein response by constitutive G-protein signaling in rod photoreceptor cells.

    Science.gov (United States)

    Wang, Tian; Chen, Jeannie

    2014-10-17

    Phototransduction is a G-protein signal transduction cascade that converts photon absorption to a change in current at the plasma membrane. Certain genetic mutations affecting the proteins in the phototransduction cascade cause blinding disorders in humans. Some of these mutations serve as a genetic source of "equivalent light" that activates the cascade, whereas other mutations lead to amplification of the light response. How constitutive phototransduction causes photoreceptor cell death is poorly understood. We showed that persistent G-protein signaling, which occurs in rod arrestin and rhodopsin kinase knock-out mice, caused a rapid and specific induction of the PERK pathway of the unfolded protein response. These changes were not observed in the cGMP-gated channel knock-out rods, an equivalent light condition that mimics light-stimulated channel closure. Thus transducin signaling, but not channel closure, triggers rapid cell death in light damage caused by constitutive phototransduction. Additionally, we show that in the albino light damage model cell death was not associated with increase in global protein ubiquitination or unfolded protein response induction. Taken together, these observations provide novel mechanistic insights into the cell death pathway caused by constitutive phototransduction and identify the unfolded protein response as a potential target for therapeutic intervention. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Adipocyte activation of cancer stem cell signaling in breast cancer

    Institute of Scientific and Technical Information of China (English)

    Benjamin; Wolfson; Gabriel; Eades; Qun; Zhou

    2015-01-01

    Signaling within the tumor microenvironment has a critical role in cancer initiation and progression. Adipocytes, one of the major components of the breast microenvironment,have been shown to provide pro-tumorigenic signals that promote cancer cell proliferation and invasiveness in vitro and tumorigenicity in vivo. Adipocyte secreted factors such as leptin and interleukin-6(IL-6) have a paracrine effect on breast cancer cells. In adipocyte-adjacent breast cancer cells, the leptin and IL-6 signaling pathways activate janus kinase 2/signal transducer and activatorof transcription 5, promoting the epithelial-mesenchymal transition, and upregulating stemness regulators such as Notch, Wnt and the Sex determining region Y-box 2/octamer binding transcription factor 4/Nanog signaling axis. In this review we will summarize the major signaling pathways that regulate cancer stem cells in breast cancer and describe the effects that adipocyte secreted IL-6 and leptin have on breast cancer stem cell signaling. Finally we will introduce a new potential treatment paradigm of inhibiting the adipocyte-breast cancer cell signaling via targeting the IL-6 or leptin pathways.

  1. mTOR signaling promotes foam cell formation and inhibits foam cell egress through suppressing the SIRT1 signaling pathway.

    Science.gov (United States)

    Zheng, Haixiang; Fu, Yucai; Huang, Yusheng; Zheng, Xinde; Yu, Wei; Wang, Wei

    2017-09-01

    Atherosclerosis (AS) is a chronic immuno‑inflammatory disease accompanied by dyslipidemia. The authors previously demonstrated that sirtuin 1 (SIRT1) may prevent atherogenesis through influencing the liver X receptor/C‑C chemokine receptor type 7/nuclear factor‑κB (LXR‑CCR7/NF‑κB) signaling pathway. Previous studies have suggested a role for mammalian target of rapamycin (mTOR) signaling in the pathogenesis of cardiovascular diseases. The present study investigated the potential association between mTOR signaling and SIRT1‑LXR‑CCR7/NF‑κB signaling (SIRT1 signaling) in AS pathogenesis. To induce foam cell formation, U937 cells were differentiated into macrophages by exposure to phorbol 12‑myristate 13‑acetate (PMA) for 24 h, followed by treatment with palmitate and oxidized low density lipoprotein for a further 24 h. Oil red O staining revealed a large accumulation of lipid droplets present in foam cells. Western blot analysis demonstrated increased protein levels of phosphorylated (p)‑mTOR and its downstream factor p‑ribosomal protein S6 kinase (p70S6K). Reverse transcription‑quantitative polymerase chain reaction and western blot analyses additionally revealed decreased expression of SIRT1, LXRα and CCR7 and increased expression of NF‑κB and its downstream factor tumor necrosis factor‑α (TNF‑α) in an atherogenetic condition induced by lysophosphatidic acid (LPA). In addition, abundant lipid droplets accumulated in U937‑LPA‑treated foam cells. Rapamycin, an mTOR inhibitor, suppressed the expression and activity of mTOR and p70S6K, however enhanced expression of SIRT1, LXRα, and CCR7. Conversely, rapamycin deceased TNF‑α and NF‑κB activity, the latter of which was further confirmed by immunofluorescence analysis demonstrating increased levels of NF‑κB present in the cytoplasm compared with the nucleus. The findings of the present study suggest that mTOR signaling promotes foam cell formation and inhibits foam

  2. Peroxisome Proliferator-Activated Receptor and Vitamin D Receptor Signaling Pathways in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yasuko Kitagishi

    2013-10-01

    Full Text Available Peroxisome proliferator-activated receptors (PPARs are members of the superfamily of nuclear hormone receptors, which respond to specific ligands such as polyunsaturated fatty acids by altering gene expression. Three subtypes of this receptor have been discovered, each evolving to achieve different biological functions. Like other nuclear receptors, the transcriptional activity of PPARs is affected not only by ligand-stimulation, but also by cross-talk with other molecules. For example, both PPARs and the RXRs are ligand-activated transcription factors that coordinately regulate gene expression. In addition, PPARs and vitamin D receptor (VDR signaling pathways regulate a multitude of genes that are of importance for cellular functions including cell proliferation and cell differentiation. Interaction of the PPARs and VDR signaling pathways has been shown at the level of molecular cross-regulation of their transcription factor. A variety of ligands influencing the PPARs and VDR signaling pathways have been shown to reveal chemopreventive potential by mediating tumor suppressive activities in human cancers. Use of these compounds may represent a potential novel strategy to prevent cancers. This review summarizes the roles of the PPARs and the VDR in pathogenesis and progression of cancer.

  3. Peroxisome Proliferator-Activated Receptor and Vitamin D Receptor Signaling Pathways in Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Satoru, E-mail: smatsuda@cc.nara-wu.ac.jp; Kitagishi, Yasuko [Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506 (Japan)

    2013-10-21

    Peroxisome proliferator-activated receptors (PPARs) are members of the superfamily of nuclear hormone receptors, which respond to specific ligands such as polyunsaturated fatty acids by altering gene expression. Three subtypes of this receptor have been discovered, each evolving to achieve different biological functions. Like other nuclear receptors, the transcriptional activity of PPARs is affected not only by ligand-stimulation, but also by cross-talk with other molecules. For example, both PPARs and the RXRs are ligand-activated transcription factors that coordinately regulate gene expression. In addition, PPARs and vitamin D receptor (VDR) signaling pathways regulate a multitude of genes that are of importance for cellular functions including cell proliferation and cell differentiation. Interaction of the PPARs and VDR signaling pathways has been shown at the level of molecular cross-regulation of their transcription factor. A variety of ligands influencing the PPARs and VDR signaling pathways have been shown to reveal chemopreventive potential by mediating tumor suppressive activities in human cancers. Use of these compounds may represent a potential novel strategy to prevent cancers. This review summarizes the roles of the PPARs and the VDR in pathogenesis and progression of cancer.

  4. Peroxisome Proliferator-Activated Receptor and Vitamin D Receptor Signaling Pathways in Cancer Cells

    International Nuclear Information System (INIS)

    Matsuda, Satoru; Kitagishi, Yasuko

    2013-01-01

    Peroxisome proliferator-activated receptors (PPARs) are members of the superfamily of nuclear hormone receptors, which respond to specific ligands such as polyunsaturated fatty acids by altering gene expression. Three subtypes of this receptor have been discovered, each evolving to achieve different biological functions. Like other nuclear receptors, the transcriptional activity of PPARs is affected not only by ligand-stimulation, but also by cross-talk with other molecules. For example, both PPARs and the RXRs are ligand-activated transcription factors that coordinately regulate gene expression. In addition, PPARs and vitamin D receptor (VDR) signaling pathways regulate a multitude of genes that are of importance for cellular functions including cell proliferation and cell differentiation. Interaction of the PPARs and VDR signaling pathways has been shown at the level of molecular cross-regulation of their transcription factor. A variety of ligands influencing the PPARs and VDR signaling pathways have been shown to reveal chemopreventive potential by mediating tumor suppressive activities in human cancers. Use of these compounds may represent a potential novel strategy to prevent cancers. This review summarizes the roles of the PPARs and the VDR in pathogenesis and progression of cancer

  5. TSLP signaling pathway map: a platform for analysis of TSLP-mediated signaling.

    Science.gov (United States)

    Zhong, Jun; Sharma, Jyoti; Raju, Rajesh; Palapetta, Shyam Mohan; Prasad, T S Keshava; Huang, Tai-Chung; Yoda, Akinori; Tyner, Jeffrey W; van Bodegom, Diederik; Weinstock, David M; Ziegler, Steven F; Pandey, Akhilesh

    2014-01-01

    Thymic stromal lymphopoietin (TSLP) is a four-helix bundle cytokine that plays a critical role in the regulation of immune responses and in the differentiation of hematopoietic cells. TSLP signals through a heterodimeric receptor complex consisting of an interleukin-7 receptor α chain and a unique TSLP receptor (TSLPR) [also known as cytokine receptor-like factor 2 (CRLF2)]. Cellular targets of TSLP include dendritic cells, B cells, mast cells, regulatory T (Treg) cells and CD4+ and CD8+ T cells. The TSLP/TSLPR axis can activate multiple signaling transduction pathways including the JAK/STAT pathway and the PI-3 kinase pathway. Aberrant TSLP/TSLPR signaling has been associated with a variety of human diseases including asthma, atopic dermatitis, nasal polyposis, inflammatory bowel disease, eosinophilic eosophagitis and, most recently, acute lymphoblastic leukemia. A centralized resource of the TSLP signaling pathway cataloging signaling events is not yet available. In this study, we present a literature-annotated resource of reactions in the TSLP signaling pathway. This pathway map is publicly available through NetPath (http://www.netpath.org/), an open access signal transduction pathway resource developed previously by our group. This map includes 236 molecules and 252 reactions that are involved in TSLP/TSLPR signaling pathway. We expect that the TSLP signaling pathway map will provide a rich resource to study the biology of this important cytokine as well as to identify novel therapeutic targets for diseases associated with dysregulated TSLP/TSLPR signaling. Database URL: http://www.netpath.org/pathways?path_id=NetPath_24.

  6. Cellular Architecture Regulates Collective Calcium Signaling and Cell Contractility.

    Directory of Open Access Journals (Sweden)

    Jian Sun

    2016-05-01

    Full Text Available A key feature of multicellular systems is the ability of cells to function collectively in response to external stimuli. However, the mechanisms of intercellular cell signaling and their functional implications in diverse vascular structures are poorly understood. Using a combination of computational modeling and plasma lithography micropatterning, we investigate the roles of structural arrangement of endothelial cells in collective calcium signaling and cell contractility. Under histamine stimulation, endothelial cells in self-assembled and microengineered networks, but not individual cells and monolayers, exhibit calcium oscillations. Micropatterning, pharmacological inhibition, and computational modeling reveal that the calcium oscillation depends on the number of neighboring cells coupled via gap junctional intercellular communication, providing a mechanistic basis of the architecture-dependent calcium signaling. Furthermore, the calcium oscillation attenuates the histamine-induced cytoskeletal reorganization and cell contraction, resulting in differential cell responses in an architecture-dependent manner. Taken together, our results suggest that endothelial cells can sense and respond to chemical stimuli according to the vascular architecture via collective calcium signaling.

  7. Stem cell signaling. An integral program for tissue renewal and regeneration : Wnt signaling and stem cell control

    NARCIS (Netherlands)

    Clevers, Hans; Loh, Kyle M; Nusse, Roel

    2014-01-01

    Stem cells fuel tissue development, renewal, and regeneration, and these activities are controlled by the local stem cell microenvironment, the "niche." Wnt signals emanating from the niche can act as self-renewal factors for stem cells in multiple mammalian tissues. Wnt proteins are lipid-modified,

  8. Normalization of TAM post-receptor signaling reveals a cell invasive signature for Axl tyrosine kinase.

    Science.gov (United States)

    Kimani, Stanley G; Kumar, Sushil; Davra, Viralkumar; Chang, Yun-Juan; Kasikara, Canan; Geng, Ke; Tsou, Wen-I; Wang, Shenyan; Hoque, Mainul; Boháč, Andrej; Lewis-Antes, Anita; De Lorenzo, Mariana S; Kotenko, Sergei V; Birge, Raymond B

    2016-09-06

    Tyro3, Axl, and Mertk (TAMs) are a family of three conserved receptor tyrosine kinases that have pleiotropic roles in innate immunity and homeostasis and when overexpressed in cancer cells can drive tumorigenesis. In the present study, we engineered EGFR/TAM chimeric receptors (EGFR/Tyro3, EGFR/Axl, and EGF/Mertk) with the goals to interrogate post-receptor functions of TAMs, and query whether TAMs have unique or overlapping post-receptor activation profiles. Stable expression of EGFR/TAMs in EGFR-deficient CHO cells afforded robust EGF inducible TAM receptor phosphorylation and activation of downstream signaling. Using a series of unbiased screening approaches, that include kinome-view analysis, phosphor-arrays, RNAseq/GSEA analysis, as well as cell biological and in vivo readouts, we provide evidence that each TAM has unique post-receptor signaling platforms and identify an intrinsic role for Axl that impinges on cell motility and invasion compared to Tyro3 and Mertk. These studies demonstrate that TAM show unique post-receptor signatures that impinge on distinct gene expression profiles and tumorigenic outcomes.

  9. Redox signaling during hypoxia in mammalian cells

    Directory of Open Access Journals (Sweden)

    Kimberly A. Smith

    2017-10-01

    Full Text Available Hypoxia triggers a wide range of protective responses in mammalian cells, which are mediated through transcriptional and post-translational mechanisms. Redox signaling in cells by reactive oxygen species (ROS such as hydrogen peroxide (H2O2 occurs through the reversible oxidation of cysteine thiol groups, resulting in structural modifications that can change protein function profoundly. Mitochondria are an important source of ROS generation, and studies reveal that superoxide generation by the electron transport chain increases during hypoxia. Other sources of ROS, such as the NAD(PH oxidases, may also generate oxidant signals in hypoxia. This review considers the growing body of work indicating that increased ROS signals during hypoxia are responsible for regulating the activation of protective mechanisms in diverse cell types.

  10. Signal Transduction of Sphingosine-1-Phosphate G Protein—Coupled Receptors

    Directory of Open Access Journals (Sweden)

    Nicholas Young

    2006-01-01

    Full Text Available Sphingosine-1-phosphate (S1P is a bioactive lipid capable of eliciting dramatic effects in a variety of cell types. Signaling by this molecule is by a family of five G protein—coupled receptors named S1P1–5 that signal through a variety of pathways to regulate cell proliferation, migration, cytoskeletal organization, and differentiation. These receptors are expressed in a wide variety of tissues and cell types, and their cellular effects contribute to important biological and pathological functions of S1P in many processes, including angiogenesis, vascular development, lymphocyte trafficking, and cancer. This review will focus on the current progress in the field of S1P receptor signaling and biology.

  11. Cell Hydration as a Biomarker for Estimation of Biological Effects of Nonionizing Radiation on Cells and Organisms

    Directory of Open Access Journals (Sweden)

    Sinerik Ayrapetyan

    2014-01-01

    Full Text Available “Changes in cell hydration” have been hypothesized as an input signal for intracellular metabolic cascade responsible for biological effects of nonionizing radiation (NIR. To test this hypothesis a comparative study on the impacts of different temperature and NIR (infrasound frequency mechanical vibration (MV, static magnetic field (SMF, extremely low frequency electromagnetic field (ELF EMF, and microwave (MW pretreated water on the hydration of barley seeds in its dormant and germination periods was performed. In dormant state temperature sensitivity (Q10 of seed hydration in distilled water (DW was less than 2, and it was nonsensitive to NIR treated DW, whereas during the germination period (48–72 hours seeds hydration exhibited temperature sensitivity Q10>2 and higher sensitivity to NIR treated DW. Obtained data allow us to suggest that the metabolic driving of intracellular water dynamics accompanied by hydrogen bonding and breaking is more sensitive to NIR-induced water structure changes in seed bathing aqua medium than the simple thermodynamic processes such as osmotic gradient driven water absorption by seeds in dormant state. Therefore, cell hydration is suggested to be a universal and extrasensitive biomarker for detection of biological effects of NIR on cells and organisms.

  12. Synthetic biology approaches to engineer T cells.

    Science.gov (United States)

    Wu, Chia-Yung; Rupp, Levi J; Roybal, Kole T; Lim, Wendell A

    2015-08-01

    There is rapidly growing interest in learning how to engineer immune cells, such as T lymphocytes, because of the potential of these engineered cells to be used for therapeutic applications such as the recognition and killing of cancer cells. At the same time, our knowhow and capability to logically engineer cellular behavior is growing rapidly with the development of synthetic biology. Here we describe how synthetic biology approaches are being used to rationally alter the behavior of T cells to optimize them for therapeutic functions. We also describe future developments that will be important in order to construct safe and precise T cell therapeutics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Natural killer cell signal integration balances synapse symmetry and migration.

    Directory of Open Access Journals (Sweden)

    Fiona J Culley

    2009-07-01

    Full Text Available Natural killer (NK cells discern the health of other cells by recognising the balance of activating and inhibitory ligands expressed by each target cell. However, how the integration of activating and inhibitory signals relates to formation of the NK cell immune synapse remains a central question in our understanding of NK cell recognition. Here we report that ligation of LFA-1 on NK cells induced asymmetrical cell spreading and migration. In contrast, ligation of the activating receptor NKG2D induced symmetrical spreading of ruffled lamellipodia encompassing a dynamic ring of f-actin, concurrent with polarization towards a target cell and a "stop" signal. Ligation of both LFA-1 and NKG2D together resulted in symmetrical spreading but co-ligation of inhibitory receptors reverted NK cells to an asymmetrical migratory configuration leading to inhibitory synapses being smaller and more rapidly disassembled. Using micropatterned activating and inhibitory ligands, signals were found to be continuously and locally integrated during spreading. Together, these data demonstrate that NK cells spread to form large, stable, symmetrical synapses if activating signals dominate, whereas asymmetrical migratory "kinapses" are favoured if inhibitory signals dominate. This clarifies how the integration of activating and inhibitory receptor signals is translated to an appropriate NK cell response.

  14. MICROSLEEPS AND THEIR DETECTION FROM THE BIOLOGICAL SIGNALS

    Directory of Open Access Journals (Sweden)

    Martin Holub

    2017-12-01

    Full Text Available Microsleeps (MS are a frequently discussed topic due to their fatal consequences. Their detection is necessary for the purpose of sleep laboratories, where they provide an option for the quantifying rate of sleep deprivation level and objective evaluation of subjective sleepiness. Many studies are dealing with this topic for automotive usage to design a fatigue countermeasure device. We made a research of recent attitude to the development of the automated MS detection methods. We created an overview of several MS detection approaches based on the measurement of biological signals. We also summarized the changes in EEG, EOG and ECG signals, which have been published over the last few years. The reproducible changes in the entire EEG spectrum, primarily with the increased activity of delta and theta, were noticed during a transition to fatigue. There were observed changes of blinking rate and reduction of eye movements during the fatigue tasks. MS correspond with variations in the autonomic regulation of the cardiovascular function, which can be quantified by HRV parameters. The decrease in HR, VLF, and LF/HF before falling asleep was revealed. EEG signal, especially its slow wave activity, considered to be the most predictive and reliable for the level of alertness. In spite of the detection from EEG signal is the most common method, EOG based approaches can also be very efficient and more driver-friendly. Besides, the signal processing in the time domain can improve the detection accuracy of the short events like MS.

  15. Molecular and Cellular Signaling

    CERN Document Server

    Beckerman, Martin

    2005-01-01

    A small number of signaling pathways, no more than a dozen or so, form a control layer that is responsible for all signaling in and between cells of the human body. The signaling proteins belonging to the control layer determine what kinds of cells are made during development and how they function during adult life. Malfunctions in the proteins belonging to the control layer are responsible for a host of human diseases ranging from neurological disorders to cancers. Most drugs target components in the control layer, and difficulties in drug design are intimately related to the architecture of the control layer. Molecular and Cellular Signaling provides an introduction to molecular and cellular signaling in biological systems with an emphasis on the underlying physical principles. The text is aimed at upper-level undergraduates, graduate students and individuals in medicine and pharmacology interested in broadening their understanding of how cells regulate and coordinate their core activities and how diseases ...

  16. Using Mouse Mammary Tumor Cells to Teach Core Biology Concepts: A Simple Lab Module.

    Science.gov (United States)

    McIlrath, Victoria; Trye, Alice; Aguanno, Ann

    2015-06-18

    Undergraduate biology students are required to learn, understand and apply a variety of cellular and molecular biology concepts and techniques in preparation for biomedical, graduate and professional programs or careers in science. To address this, a simple laboratory module was devised to teach the concepts of cell division, cellular communication and cancer through the application of animal cell culture techniques. Here the mouse mammary tumor (MMT) cell line is used to model for breast cancer. Students learn to grow and characterize these animal cells in culture and test the effects of traditional and non-traditional chemotherapy agents on cell proliferation. Specifically, students determine the optimal cell concentration for plating and growing cells, learn how to prepare and dilute drug solutions, identify the best dosage and treatment time course of the antiproliferative agents, and ascertain the rate of cell death in response to various treatments. The module employs both a standard cell counting technique using a hemocytometer and a novel cell counting method using microscopy software. The experimental procedure lends to open-ended inquiry as students can modify critical steps of the protocol, including testing homeopathic agents and over-the-counter drugs. In short, this lab module requires students to use the scientific process to apply their knowledge of the cell cycle, cellular signaling pathways, cancer and modes of treatment, all while developing an array of laboratory skills including cell culture and analysis of experimental data not routinely taught in the undergraduate classroom.

  17. Robustness of MEK-ERK Dynamics and Origins of Cell-to-Cell Variability in MAPK Signaling

    Directory of Open Access Journals (Sweden)

    Sarah Filippi

    2016-06-01

    Full Text Available Cellular signaling processes can exhibit pronounced cell-to-cell variability in genetically identical cells. This affects how individual cells respond differentially to the same environmental stimulus. However, the origins of cell-to-cell variability in cellular signaling systems remain poorly understood. Here, we measure the dynamics of phosphorylated MEK and ERK across cell populations and quantify the levels of population heterogeneity over time using high-throughput image cytometry. We use a statistical modeling framework to show that extrinsic noise, particularly that from upstream MEK, is the dominant factor causing cell-to-cell variability in ERK phosphorylation, rather than stochasticity in the phosphorylation/dephosphorylation of ERK. We furthermore show that without extrinsic noise in the core module, variable (including noisy signals would be faithfully reproduced downstream, but the within-module extrinsic variability distorts these signals and leads to a drastic reduction in the mutual information between incoming signal and ERK activity.

  18. Investigation on the role of IGF-1 signal transduction in the biological radiation responses

    Energy Technology Data Exchange (ETDEWEB)

    Jung, U Hee; Jo, Sung Kee; Park, Hae Ran; Oh, Soo Jin; Cho, Eun Hee; Eom, Hyun Soo; Ju, Eun Jin

    2009-05-15

    Effects of {gamma}-irradiation on the IGF-1 related gene expressions and activations in various cell lines - Various expression patterns of IGF-1 and IGF-1R following {gamma}-irradiation were observed according to the cell lines - The increased expressions of IGF-1 and IGF-1R were observed in Balb/3T3 and NIH/3T3 cells - Among the IGF-1 downstream signaling molecules, the phosphorylated ERK5 were not changed by {gamma}-irradiation in all three examined cell lines, whereas the phosphorylated p65 were increased by {gamma} -irradiation in all cell lines. The role of IGF-1 and p38 signaling in {gamma}-irradiated mouse embryonic fibroblast (MEF) cells - In MEF cells, IGF-1 signaling molecules were decreased and p21/phosphorylated p38 were increased by {gamma}-irradiation - The experiments with IGF-1R inhibitor (AG1024) and p38 inhibitor (SB203580) revealed that IGF-1 signaling is involved but not essential in radiation-induced cell growth arrest and senescence and that p38 MAP kinase play a important role in this cellular radiation response. The role of IGF-1 and p38 signaling in {gamma}-irradiated mouse fibroblast (NIH/3T3) cell - In NIH/3T3 cells, IGF-1 signaling molecules and p21/phosphorylated p38 were increased by {gamma} -irradiation. - However, the experiments with IGF-1R inhibitor (AG1024) and p38 inhibitor (SB203580) revealed that IGF-1 and p38 signaling do not play a crucial role in radiation-induced cell growth arrest and senescence in NIH/3T3 cells. Effects of {gamma}-irradiation on the expressions and activations on the genes related to the IGF-1 signaling in mouse tissues - In {gamma}-irradiated mice, the increased expressions of IGF-1 and IGF-1R were observed in the lung and kidney at 2 months after irradiation, and in all the tissues examined (lung, liver and kidney) at 6 months after irradiation. - In the lung of {gamma}-irradiated mice at 6 months after irradiation, the increases of IGF-1R, phosphorylated FOXO3a, p65, p38, p21 were observed. - The

  19. Investigation on the role of IGF-1 signal transduction in the biological radiation responses

    International Nuclear Information System (INIS)

    Jung, U Hee; Jo, Sung Kee; Park, Hae Ran; Oh, Soo Jin; Cho, Eun Hee; Eom, Hyun Soo; Ju, Eun Jin

    2009-05-01

    Effects of γ-irradiation on the IGF-1 related gene expressions and activations in various cell lines - Various expression patterns of IGF-1 and IGF-1R following γ-irradiation were observed according to the cell lines - The increased expressions of IGF-1 and IGF-1R were observed in Balb/3T3 and NIH/3T3 cells - Among the IGF-1 downstream signaling molecules, the phosphorylated ERK5 were not changed by γ-irradiation in all three examined cell lines, whereas the phosphorylated p65 were increased by γ -irradiation in all cell lines. The role of IGF-1 and p38 signaling in γ-irradiated mouse embryonic fibroblast (MEF) cells - In MEF cells, IGF-1 signaling molecules were decreased and p21/phosphorylated p38 were increased by γ-irradiation - The experiments with IGF-1R inhibitor (AG1024) and p38 inhibitor (SB203580) revealed that IGF-1 signaling is involved but not essential in radiation-induced cell growth arrest and senescence and that p38 MAP kinase play a important role in this cellular radiation response. The role of IGF-1 and p38 signaling in γ-irradiated mouse fibroblast (NIH/3T3) cell - In NIH/3T3 cells, IGF-1 signaling molecules and p21/phosphorylated p38 were increased by γ -irradiation. - However, the experiments with IGF-1R inhibitor (AG1024) and p38 inhibitor (SB203580) revealed that IGF-1 and p38 signaling do not play a crucial role in radiation-induced cell growth arrest and senescence in NIH/3T3 cells. Effects of γ-irradiation on the expressions and activations on the genes related to the IGF-1 signaling in mouse tissues - In γ-irradiated mice, the increased expressions of IGF-1 and IGF-1R were observed in the lung and kidney at 2 months after irradiation, and in all the tissues examined (lung, liver and kidney) at 6 months after irradiation. - In the lung of γ-irradiated mice at 6 months after irradiation, the increases of IGF-1R, phosphorylated FOXO3a, p65, p38, p21 were observed. - The patterns of altered expressions showed significant

  20. Dysfunctional Hematopoietic Stem Cell Biology: Underlying Mechanisms and Potential Therapeutic Strategies

    Directory of Open Access Journals (Sweden)

    Anja Geiselhart

    2012-01-01

    Full Text Available Fanconi anemia (FA is the most common inherited bone marrow failure syndrome. FA patients suffer to varying degrees from a heterogeneous range of developmental defects and, in addition, have an increased likelihood of developing cancer. Almost all FA patients develop a severe, progressive bone marrow failure syndrome, which impacts upon the production of all hematopoietic lineages and, hence, is thought to be driven by a defect at the level of the hematopoietic stem cell (HSC. This hypothesis would also correlate with the very high incidence of MDS and AML that is observed in FA patients. In this paper, we discuss the evidence that supports the role of dysfunctional HSC biology in driving the etiology of the disease. Furthermore, we consider the different model systems currently available to study the biology of cells defective in the FA signaling pathway and how they are informative in terms of identifying the physiologic mediators of HSC depletion and dissecting their putative mechanism of action. Finally, we ask whether the insights gained using such disease models can be translated into potential novel therapeutic strategies for the treatment of the hematologic disorders in FA patients.

  1. Cell signalling and phospholipid metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Boss, W.F.

    1990-01-01

    These studies explored whether phosphoinositide (PI) has a role in plants analogous to its role in animal cells. Although no parallel activity of PI in signal transduction was found in plant cells, activity of inositol phospholipid kinase was found to be modulated by light and by cell wall degrading enzymes. These studies indicate a major role for inositol phospholipids in plant growth and development as membrane effectors but not as a source of second messengers.

  2. A Review of Cell Adhesion Studies for Biomedical and Biological Applications

    Science.gov (United States)

    Ahmad Khalili, Amelia; Ahmad, Mohd Ridzuan

    2015-01-01

    Cell adhesion is essential in cell communication and regulation, and is of fundamental importance in the development and maintenance of tissues. The mechanical interactions between a cell and its extracellular matrix (ECM) can influence and control cell behavior and function. The essential function of cell adhesion has created tremendous interests in developing methods for measuring and studying cell adhesion properties. The study of cell adhesion could be categorized into cell adhesion attachment and detachment events. The study of cell adhesion has been widely explored via both events for many important purposes in cellular biology, biomedical, and engineering fields. Cell adhesion attachment and detachment events could be further grouped into the cell population and single cell approach. Various techniques to measure cell adhesion have been applied to many fields of study in order to gain understanding of cell signaling pathways, biomaterial studies for implantable sensors, artificial bone and tooth replacement, the development of tissue-on-a-chip and organ-on-a-chip in tissue engineering, the effects of biochemical treatments and environmental stimuli to the cell adhesion, the potential of drug treatments, cancer metastasis study, and the determination of the adhesion properties of normal and cancerous cells. This review discussed the overview of the available methods to study cell adhesion through attachment and detachment events. PMID:26251901

  3. A Review of Cell Adhesion Studies for Biomedical and Biological Applications

    Directory of Open Access Journals (Sweden)

    Amelia Ahmad Khalili

    2015-08-01

    Full Text Available Cell adhesion is essential in cell communication and regulation, and is of fundamental importance in the development and maintenance of tissues. The mechanical interactions between a cell and its extracellular matrix (ECM can influence and control cell behavior and function. The essential function of cell adhesion has created tremendous interests in developing methods for measuring and studying cell adhesion properties. The study of cell adhesion could be categorized into cell adhesion attachment and detachment events. The study of cell adhesion has been widely explored via both events for many important purposes in cellular biology, biomedical, and engineering fields. Cell adhesion attachment and detachment events could be further grouped into the cell population and single cell approach. Various techniques to measure cell adhesion have been applied to many fields of study in order to gain understanding of cell signaling pathways, biomaterial studies for implantable sensors, artificial bone and tooth replacement, the development of tissue-on-a-chip and organ-on-a-chip in tissue engineering, the effects of biochemical treatments and environmental stimuli to the cell adhesion, the potential of drug treatments, cancer metastasis study, and the determination of the adhesion properties of normal and cancerous cells. This review discussed the overview of the available methods to study cell adhesion through attachment and detachment events.

  4. Seeing Cells: Teaching the Visual/Verbal Rhetoric of Biology

    Science.gov (United States)

    Dinolfo, John; Heifferon, Barbara; Temesvari, Lesly A.

    2007-01-01

    This pilot study obtained baseline information on verbal and visual rhetorics to teach microscopy techniques to college biology majors. We presented cell images to students in cell biology and biology writing classes and then asked them to identify textual, verbal, and visual cues that support microscopy learning. Survey responses suggest that…

  5. Mammalian cell biology

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Progress is reported on studies of the molecular biology and functional changes in cultured mammalian cells following exposure to x radiation, uv radiation, fission neutrons, or various chemical environmental pollutants alone or in combinations. Emphasis was placed on the separate and combined effects of polycyclic aromatic hydrocarbons released during combustion of fossil fuels and ionizing and nonionizing radiations. Sun lamps, which emit a continuous spectrum of near ultraviolet light of 290 nm to 315 nm were used for studies of predictive cell killing due to sunlight. Results showed that exposure to uv light (254 nm) may not be adequate to predict effects produced by sunlight. Data are included from studies on single-strand breaks and repair in DNA of cultured hamster cells exposed to uv or nearultraviolet light. The possible interactions of the polycyclic aromatic hydrocarbon 7,12-dimethylbenz(a)-anthracene (DmBA) alone or combined with exposure to x radiation, uv radiation (254 nm) or near ultraviolet simulating sunlight were compared for effects on cell survival

  6. Cell to cell signalling during vertebrate limb bud development

    NARCIS (Netherlands)

    Panman, Lia

    2004-01-01

    Communication between cells is essential during embryonic development. The vertebrate limb bud provides us a model to study signalling interactions between cells during patterning of embryonic tissues and organogenesis. In chapter 1 I give an introduction about limb bud development that is focussed

  7. Ca2+ signalling in endothelial progenitor cells: a novel means to improve cell-based therapy and impair tumour vascularisation.

    Science.gov (United States)

    Moccia, Francesco; Lodola, Francesco; Dragoni, Silvia; Bonetti, Elisa; Bottino, Cinzia; Guerra, Germano; Laforenza, Umberto; Rosti, Vittorio; Tanzi, Franco

    2014-01-01

    Endothelial progenitor cells (EPCs) have recently been employed in cell-based therapy (CBT) to promote regeneration of ischemic organs, such as heart and limbs. Furthermore, EPCs may sustain tumour vascularisation and provide an additional target for anticancer therapies. CBT is limited by the paucity of cells harvested from peripheral blood and suffers from several pitfalls, including the low rate of engrafted EPCs, whereas classic antiangiogenic treatments manifest a number of side effects and may induce resistance into the patients. CBT will benefit of a better understanding of the signal transduction pathway(s) which drive(s) EPC proliferation, trafficking, and incorporation into injured tissues. At the same time, this information might outline alternative molecular targets to impair tumor neovascularisation and improve the therapeutic outcome of antiangiogenic strategies. An increase in intracellular Ca(2+) concentration is the key signal in the regulation of cellular replication, migration, and differentiation. In particular, Ca(2+) signalling may regulate cellcycle progression, due to the Ca(2+)-sensitivity of a number of cycline-dependent kinases, and gene expression, owing to the Ca(2+)-dependence of several transcription factors. Recent work has outlined the role of the so-called store-operated Ca(2+) entry in driving EPC proliferation and migration. Unravelling the mechanisms guiding EPC engraftment into neovessels might supply the biological bases required to improve CBT and anticancer treatments. For example, genetic manipulation of the Ca(2+) signalling machinery could provide a novel approach to increase the extent of limb regeneration or preventing tumour vascularisation by EPCs.

  8. N-3 poly-unsaturated fatty acids shift estrogen signaling to inhibit human breast cancer cell growth.

    Directory of Open Access Journals (Sweden)

    Wenqing Cao

    Full Text Available Although evidence has shown the regulating effect of n-3 poly-unsaturated fatty acid (n-3 PUFA on cell signaling transduction, it remains unknown whether n-3 PUFA treatment modulates estrogen signaling. The current study showed that docosahexaenoic acid (DHA, C22:6, eicosapentaenoic acid (EPA, C20:5 shifted the pro-survival and proliferative effect of estrogen to a pro-apoptotic effect in human breast cancer (BCa MCF-7 and T47D cells. 17 β-estradiol (E2 enhanced the inhibitory effect of n-3 PUFAs on BCa cell growth. The IC50 of DHA or EPA in MCF-7 cells decreased when combined with E2 (10 nM treatment (from 173 µM for DHA only to 113 µM for DHA+E2, and from 187 µm for EPA only to 130 µm for EPA+E2. E2 also augmented apoptosis in n-3 PUFA-treated BCa cells. In contrast, in cells treated with stearic acid (SA, C18:0 as well as cells not treated with fatty acid, E2 promoted breast cancer cell growth. Classical (nuclear estrogen receptors may not be involved in the pro-apoptotic effects of E2 on the n-3 PUFA-treated BCa cells because ERα agonist failed to elicit, and ERα knockdown failed to block E2 pro-apoptotic effects. Subsequent studies reveal that G protein coupled estrogen receptor 1 (GPER1 may mediate the pro-apoptotic effect of estrogen. N-3 PUFA treatment initiated the pro-apoptotic signaling of estrogen by increasing GPER1-cAMP-PKA signaling response, and blunting EGFR, Erk 1/2, and AKT activity. These findings may not only provide the evidence to link n-3 PUFAs biologic effects and the pro-apoptotic signaling of estrogen in breast cancer cells, but also shed new insight into the potential application of n-3 PUFAs in BCa treatment.

  9. TRPM5, a taste-signaling transient receptor potential ion-channel, is a ubiquitous signaling component in chemosensory cells

    Directory of Open Access Journals (Sweden)

    Hofmann Thomas

    2007-07-01

    Full Text Available Abstract Background A growing number of TRP channels have been identified as key players in the sensation of smell, temperature, mechanical forces and taste. TRPM5 is known to be abundantly expressed in taste receptor cells where it participates in sweet, amino acid and bitter perception. A role of TRPM5 in other sensory systems, however, has not been studied so far. Results Here, we systematically investigated the expression of TRPM5 in rat and mouse tissues. Apart from taste buds, where we found TRPM5 to be predominantly localized on the basolateral surface of taste receptor cells, TRPM5 immunoreactivity was seen in other chemosensory organs – the main olfactory epithelium and the vomeronasal organ. Most strikingly, we found solitary TRPM5-enriched epithelial cells in all parts of the respiratory and gastrointestinal tract. Based on their tissue distribution, the low cell density, morphological features and co-immunostaining with different epithelial markers, we identified these cells as brush cells (also known as tuft, fibrillovesicular, multivesicular or caveolated cells. In terms of morphological characteristics, brush cells resemble taste receptor cells, while their origin and biological role are still under intensive debate. Conclusion We consider TRPM5 to be an intrinsic signaling component of mammalian chemosensory organs, and provide evidence for brush cells being an important cellular correlate in the periphery.

  10. Diverse phosphorylation patterns of B cell receptor-associated signaling in naïve and memory human B cells revealed by phosphoflow, a powerful technique to study signaling at the single cell level

    Directory of Open Access Journals (Sweden)

    Franklin R Toapanta

    2012-10-01

    Full Text Available Following interaction with cognate antigens, B cells undergo cell activation, proliferation and differentiation. Ligation of the B cell receptor (BCR leads to the phosphorylation of BCR-associated signaling proteins within minutes of antigen binding, a process with profound consequences for the fate of the cells and development of effector immunity. Phosphoflow allows a rapid evaluation of various signaling pathways in complex heterogenous cell subsets. This novel technique was used in combination with multi-chromatic flow cytometry and fluorescent-cell barcoding to study phosphorylation of BCR-associated signaling pathways in naïve and memory human B cell subsets. Proteins of the initiation (Syk, propagation (Btk, Akt and integration (p38MAPK and Erk1/2 signaling units were studied. Switched memory (Sm CD27+ and Sm CD27- phosphorylation patterns were similar when stimulated with anti-IgA or -IgG. In contrast, naïve and unswitched memory (Um cells showed significant differences following IgM stimulation. Enhanced phosphorylation of Syk was observed in Um cells, suggesting a lower activation threshold. This is likely the result of higher amounts of IgM on the cell surface, higher pan-Syk levels and enhanced susceptibility to phosphatase inhibition. All other signaling proteins evaluated also showed some degree of enhanced phosphorylation in Um cells. Furthermore, both the PLC-γ2 and PI3K pathways were activated in Um cells, while only the PI3K pathway was activated on naïve cells. Um cells were the only ones that activated signaling pathways when stimulated with fluorescently-labeled S. Typhi and S. pneumoniae. Finally, simultaneous evaluation of signaling proteins at the single cell level (multi-phosphorylated cells revealed that interaction with gram positive and negative bacteria resulted in complex and diverse signaling patterns. Phosphoflow holds great potential to accelerate vaccine development by identifying signaling profiles in good

  11. Identifying niche-mediated regulatory factors of stem cell phenotypic state: a systems biology approach.

    Science.gov (United States)

    Ravichandran, Srikanth; Del Sol, Antonio

    2017-02-01

    Understanding how the cellular niche controls the stem cell phenotype is often hampered due to the complexity of variegated niche composition, its dynamics, and nonlinear stem cell-niche interactions. Here, we propose a systems biology view that considers stem cell-niche interactions as a many-body problem amenable to simplification by the concept of mean field approximation. This enables approximation of the niche effect on stem cells as a constant field that induces sustained activation/inhibition of specific stem cell signaling pathways in all stem cells within heterogeneous populations exhibiting the same phenotype (niche determinants). This view offers a new basis for the development of single cell-based computational approaches for identifying niche determinants, which has potential applications in regenerative medicine and tissue engineering. © 2017 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  12. Biologic consequences of Stat1-independent IFN signaling

    Science.gov (United States)

    Gil, M. Pilar; Bohn, Erwin; O'Guin, Andrew K.; Ramana, Chilakamarti V.; Levine, Beth; Stark, George R.; Virgin, Herbert W.; Schreiber, Robert D.

    2001-01-01

    Although Stat1 is required for many IFN-dependent responses, recent work has shown that IFNγ functions independently of Stat1 to affect the growth of tumor cells or immortalized fibroblasts. We now demonstrate that both IFNγ and IFNα/β regulate proliferative responses in cells of the mononuclear phagocyte lineage derived from Stat1-null mice. Using both representational difference analysis and gene arrays, we show that IFNγ exerts its Stat1-independent actions on mononuclear phagocytes by regulating the expression of many genes. This result was confirmed by monitoring changes in expression and function of the corresponding gene products. Regulation of the expression of these genes requires the IFNγ receptor and Jak1. The physiologic relevance of IFN-dependent, Stat1-independent signaling was demonstrated by monitoring antiviral responses in Stat1-null mice. Thus, the IFN receptors engage alternative Stat1-independent signaling pathways that have important physiological consequences. PMID:11390995

  13. Cell biology of the Koji mold Aspergillus oryzae.

    Science.gov (United States)

    Kitamoto, Katsuhiko

    2015-01-01

    Koji mold, Aspergillus oryzae, has been used for the production of sake, miso, and soy sauce for more than one thousand years in Japan. Due to the importance, A. oryzae has been designated as the national micro-organism of Japan (Koku-kin). A. oryzae has been intensively studied in the past century, with most investigations focusing on breeding techniques and developing methods for Koji making for sake brewing. However, the understanding of fundamental biology of A. oryzae remains relatively limited compared with the yeast Saccharomyces cerevisiae. Therefore, we have focused on studying the cell biology including live cell imaging of organelles, protein vesicular trafficking, autophagy, and Woronin body functions using the available genomic information. In this review, I describe essential findings of cell biology of A. oryzae obtained in our study for a quarter of century. Understanding of the basic biology will be critical for not its biotechnological application, but also for an understanding of the fundamental biology of other filamentous fungi.

  14. Wnt secretion and signaling in Caenorhabditis elegans

    NARCIS (Netherlands)

    Yang, P.T.

    2008-01-01

    Wnt proteins are a highly conserved family of signaling molecules that play a central role during development and in adult tissue homeostasis. Wnt proteins regulate a variety of biological processes, ranging from cell proliferation and cell fate determination to cell migration, axon guidance and

  15. Hcm1 integrates signals from Cdk1 and calcineurin to control cell proliferation.

    Science.gov (United States)

    Arsenault, Heather E; Roy, Jagoree; Mapa, Claudine E; Cyert, Martha S; Benanti, Jennifer A

    2015-10-15

    Cyclin-dependent kinase (Cdk1) orchestrates progression through the cell cycle by coordinating the activities of cell-cycle regulators. Although phosphatases that oppose Cdk1 are likely to be necessary to establish dynamic phosphorylation, specific phosphatases that target most Cdk1 substrates have not been identified. In budding yeast, the transcription factor Hcm1 activates expression of genes that regulate chromosome segregation and is critical for maintaining genome stability. Previously we found that Hcm1 activity and degradation are stimulated by Cdk1 phosphorylation of distinct clusters of sites. Here we show that, upon exposure to environmental stress, the phosphatase calcineurin inhibits Hcm1 by specifically removing activating phosphorylations and that this regulation is important for cells to delay proliferation when they encounter stress. Our work identifies a mechanism by which proliferative signals from Cdk1 are removed in response to stress and suggests that Hcm1 functions as a rheostat that integrates stimulatory and inhibitory signals to control cell proliferation. © 2015 Arsenault, Roy, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  16. Cell membrane disruption stimulates cAMP and Ca2+ signaling to potentiate cell membrane resealing in neighboring cells

    Directory of Open Access Journals (Sweden)

    Tatsuru Togo

    2017-12-01

    Full Text Available Disruption of cellular plasma membranes is a common event in many animal tissues, and the membranes are usually rapidly resealed. Moreover, repeated membrane disruptions within a single cell reseal faster than the initial wound in a protein kinase A (PKA- and protein kinase C (PKC-dependent manner. In addition to wounded cells, recent studies have demonstrated that wounding of Madin-Darby canine kidney (MDCK cells potentiates membrane resealing in neighboring cells in the short-term by purinergic signaling, and in the long-term by nitric oxide/protein kinase G signaling. In the present study, real-time imaging showed that cell membrane disruption stimulated cAMP synthesis and Ca2+ mobilization from intracellular stores by purinergic signaling in neighboring MDCK cells. Furthermore, inhibition of PKA and PKC suppressed the ATP-mediated short-term potentiation of membrane resealing in neighboring cells. These results suggest that cell membrane disruption stimulates PKA and PKC via purinergic signaling to potentiate cell membrane resealing in neighboring MDCK cells.

  17. Temporal effects of Notch signaling and potential cooperation with multiple downstream effectors on adenohypophysis cell specification in zebrafish.

    Science.gov (United States)

    Nakahara, Yoshinari; Muto, Akihiko; Hirabayashi, Ryo; Sakuma, Tetsushi; Yamamoto, Takashi; Kume, Shoen; Kikuchi, Yutaka

    2016-05-01

    The adenohypophysis (AH) consists of six distinct types of hormone-secreting cells. In zebrafish, although proper differentiation of all AH cell types has been shown to require Notch signaling within a period of 14-16 h postfertilization (hpf), the mechanisms underlying this process remain to be elucidated. Herein, we observed using the Notch inhibitor dibenzazepine (DBZ) that Notch signaling also contributed to AH cell specification beyond 16 hpf. Specification of distinct cell types was perturbed by DBZ treatment for different time frames, suggesting that AH cells are specified by Notch-dependent and cell-type-specific mechanisms. We also found that two hes-family genes, her4.1 and hey1, were expressed in the developing AH under the influence of Notch signaling. her4.1 knockdown reduced expression of proopiomelanocortin a (pomca), growth hormone (gh), and prolactin, whereas hey1 was responsible only for gh expression. Simultaneous loss of both Her4.1 and Hey1 produced milder phenotypes than that of DBZ-treated embryos. Moreover, DBZ treatment from 18 hpf led to a significant down-regulation of both gh and pomca genes only when combined with injection of a subthreshold level of her4.1-morpholino. These observations suggest that multiple downstream effectors, including Her4.1 and Hey1, mediate Notch signaling during AH cell specification. © 2016 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  18. Molecular biology of the cell

    National Research Council Canada - National Science Library

    Alberts, Bruce; Walter, Peter; Raff, Martin; Roberts, Keith; Lewis, Julian; Johnson, Alexander

    2007-01-01

    .... By extracting fundamental concepts and meaning from this enormous and ever-growing field, the authors tell the story of cell biology, and create a coherent framework through which non-expert readers...

  19. NK cell activation: distinct stimulatory pathways counterbalancing inhibitory signals.

    Science.gov (United States)

    Bakker, A B; Wu, J; Phillips, J H; Lanier, L L

    2000-01-01

    A delicate balance between positive and negative signals regulates NK cell effector function. Activation of NK cells may be initiated by the triggering of multiple adhesion or costimulatory molecules, and can be counterbalanced by inhibitory signals induced by receptors for MHC class I. A common pathway of inhibitory signaling is provided by immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in the cytoplasmic domains of these receptors which mediate the recruitment of SH2 domain-bearing tyrosine phosphate-1 (SHP-1). In contrast to the extensive progress that has been made regarding the negative regulation of NK cell function, our knowledge of the signals that activate NK cells is still poor. Recent studies of the activating receptor complexes have shed new light on the induction of NK cell effector function. Several NK receptors using novel adaptors with immunoreceptor tyrosine-based activation motifs (ITAMs) and with PI 3-kinase recruiting motifs have been implicated in NK cell stimulation.

  20. Retinoic acid signalling in thymocytes regulates T cell development

    DEFF Research Database (Denmark)

    Wendland, Kerstin; Sitnik, Katarzyna Maria; Kotarsky, Knut

    in the regulatory regions of targetgenes. RA has been reported to play a direct role in regulating multiple aspects of peripheralT cell responses1, but whether endogenous RA signalling occurs in developingthymocytes and the potential impact of such signals in regulating T cell developmentremains unclear. To address......RARα. This blocks RA signalling in developing thymocytes from the DN3/4 stageonwards and thus allows us to study the role of RA in T cell development...

  1. Bystander signaling via oxidative metabolism.

    Science.gov (United States)

    Sawal, Humaira Aziz; Asghar, Kashif; Bureik, Matthias; Jalal, Nasir

    2017-01-01

    The radiation-induced bystander effect (RIBE) is the initiation of biological end points in cells (bystander cells) that are not directly traversed by an incident-radiation track, but are in close proximity to cells that are receiving the radiation. RIBE has been indicted of causing DNA damage via oxidative stress, besides causing direct damage, inducing tumorigenesis, producing micronuclei, and causing apoptosis. RIBE is regulated by signaling proteins that are either endogenous or secreted by cells as a means of communication between cells, and can activate intracellular or intercellular oxidative metabolism that can further trigger signaling pathways of inflammation. Bystander signals can pass through gap junctions in attached cell lines, while the suspended cell lines transmit these signals via hormones and soluble proteins. This review provides the background information on how reactive oxygen species (ROS) act as bystander signals. Although ROS have a very short half-life and have a nanometer-scale sphere of influence, the wide variety of ROS produced via various sources can exert a cumulative effect, not only in forming DNA adducts but also setting up signaling pathways of inflammation, apoptosis, cell-cycle arrest, aging, and even tumorigenesis. This review outlines the sources of the bystander effect linked to ROS in a cell, and provides methods of investigation for researchers who would like to pursue this field of science.

  2. Information theory based approaches to cellular signaling.

    Science.gov (United States)

    Waltermann, Christian; Klipp, Edda

    2011-10-01

    Cells interact with their environment and they have to react adequately to internal and external changes such changes in nutrient composition, physical properties like temperature or osmolarity and other stresses. More specifically, they must be able to evaluate whether the external change is significant or just in the range of noise. Based on multiple external parameters they have to compute an optimal response. Cellular signaling pathways are considered as the major means of information perception and transmission in cells. Here, we review different attempts to quantify information processing on the level of individual cells. We refer to Shannon entropy, mutual information, and informal measures of signaling pathway cross-talk and specificity. Information theory in systems biology has been successfully applied to identification of optimal pathway structures, mutual information and entropy as system response in sensitivity analysis, and quantification of input and output information. While the study of information transmission within the framework of information theory in technical systems is an advanced field with high impact in engineering and telecommunication, its application to biological objects and processes is still restricted to specific fields such as neuroscience, structural and molecular biology. However, in systems biology dealing with a holistic understanding of biochemical systems and cellular signaling only recently a number of examples for the application of information theory have emerged. This article is part of a Special Issue entitled Systems Biology of Microorganisms. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. CD70 reverse signaling enhances NK cell function and immunosurveillance in CD27-expressing B-cell malignancies.

    Science.gov (United States)

    Al Sayed, Mohamad F; Ruckstuhl, Carla A; Hilmenyuk, Tamara; Claus, Christina; Bourquin, Jean-Pierre; Bornhauser, Beat C; Radpour, Ramin; Riether, Carsten; Ochsenbein, Adrian F

    2017-07-20

    The interaction of the tumor necrosis factor receptor (TNFR) CD27 with its ligand CD70 is an emerging target to treat cancer. CD27 signaling provides costimulatory signals to cytotoxic T cells but also increases the frequency of regulatory T cells. Similar to other TNFR ligands, CD70 has been shown to initiate intracellular signaling pathways (CD70 reverse signaling). CD27 is expressed on a majority of B-cell non-Hodgkin lymphoma, but its role in the immune control of lymphoma and leukemia is unknown. We therefore generated a cytoplasmic deletion mutant of CD27 (CD27-trunc) to study the role of CD70 reverse signaling in the immunosurveillance of B-cell malignancies in vivo. Expression of CD27-trunc on malignant cells increased the number of tumor-infiltrating interferon γ-producing natural killer (NK) cells. In contrast, the antitumoral T-cell response remained largely unchanged. CD70 reverse signaling in NK cells was mediated via the AKT signaling pathway and increased NK cell survival and effector function. The improved immune control by activated NK cells prolonged survival of CD27-trunc-expressing lymphoma-bearing mice. Finally, CD70 reverse signaling enhanced survival and effector function of human NK cells in a B-cell acute lymphoblastic leukemia xenotransplants model. Therefore, CD70 reverse signaling in NK cells contributes to the immune control of CD27-expressing B-cell lymphoma and leukemia. © 2017 by The American Society of Hematology.

  4. Inhibition of IKK/NF-κB Signaling Enhances Differentiation of Mesenchymal Stromal Cells from Human Embryonic Stem Cells.

    Science.gov (United States)

    Deng, Peng; Zhou, Chenchen; Alvarez, Ruth; Hong, Christine; Wang, Cun-Yu

    2016-04-12

    Embryonic stem cell-derived mesenchymal stromal cells (MSCs; also known as mesenchymal stem cells) represent a promising source for bone regenerative medicine. Despite remarkable advances in stem cell biology, the molecular mechanism regulating differentiation of human embryonic stem cells (hESCs) into MSCs remains poorly understood. Here, we report that inhibition of IκB kinase (IKK)/nuclear factor kappa B (NF-κB) signaling enhances differentiation of hESCs into MSCs by expediting the loss of pluripotent markers and increasing the expression of MSC surface markers. In addition, a significantly higher quantity of MSCs was produced from hESCs with IKK/NF-κB suppression. These isolated MSCs displayed evident multipotency with capacity to terminally differentiate into osteoblasts, chondrocytes, and adipocytes in vitro and to form bone in vivo. Collectively, our data provide important insights into the role of NF-κB in mesenchymal lineage specification during hESC differentiation, suggesting that IKK inhibitors could be utilized as an adjuvant in generating MSCs for cell-mediated therapies. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Cell-free synthetic biology for environmental sensing and remediation.

    Science.gov (United States)

    Karig, David K

    2017-06-01

    The fields of biosensing and bioremediation leverage the phenomenal array of sensing and metabolic capabilities offered by natural microbes. Synthetic biology provides tools for transforming these fields through complex integration of natural and novel biological components to achieve sophisticated sensing, regulation, and metabolic function. However, the majority of synthetic biology efforts are conducted in living cells, and concerns over releasing genetically modified organisms constitute a key barrier to environmental applications. Cell-free protein expression systems offer a path towards leveraging synthetic biology, while preventing the spread of engineered organisms in nature. Recent efforts in the areas of cell-free approaches for sensing, regulation, and metabolic pathway implementation, as well as for preserving and deploying cell-free expression components, embody key steps towards realizing the potential of cell-free systems for environmental sensing and remediation. Copyright © 2017 The Author. Published by Elsevier Ltd.. All rights reserved.

  6. Bioelectric Signal Measuring System

    Science.gov (United States)

    Guadarrama-Santana, A.; Pólo-Parada, L.; García-Valenzuela, A.

    2015-01-01

    We describe a low noise measuring system based on interdigitated electrodes for sensing bioelectrical signals. The system registers differential voltage measurements in order of microvolts. The base noise during measurements was in nanovolts and thus, the sensing signals presented a very good signal to noise ratio. An excitation voltage of 1Vrms with 10 KHz frequency was applied to an interdigitated capacitive sensor without a material under test and to a mirror device simultaneously. The output signals of both devices was then subtracted in order to obtain an initial reference value near cero volts and reduce parasitic capacitances due to the electronics, wiring and system hardware as well. The response of the measuring system was characterized by monitoring temporal bioelectrical signals in real time of biological materials such as embryo chicken heart cells and bovine suprarenal gland cells.

  7. Interaction of Herbal Compounds with Biological Targets: A Case Study with Berberine

    Directory of Open Access Journals (Sweden)

    Xiao-Wu Chen

    2012-01-01

    Full Text Available Berberine is one of the main alkaloids found in the Chinese herb Huang lian (Rhizoma Coptidis, which has been reported to have multiple pharmacological activities. This study aimed to analyze the molecular targets of berberine based on literature data followed by a pathway analysis using the PANTHER program. PANTHER analysis of berberine targets showed that the most classes of molecular functions include receptor binding, kinase activity, protein binding, transcription activity, DNA binding, and kinase regulator activity. Based on the biological process classification of in vitro berberine targets, those targets related to signal transduction, intracellular signalling cascade, cell surface receptor-linked signal transduction, cell motion, cell cycle control, immunity system process, and protein metabolic process are most frequently involved. In addition, berberine was found to interact with a mixture of biological pathways, such as Alzheimer’s disease-presenilin and -secretase pathways, angiogenesis, apoptosis signalling pathway, FAS signalling pathway, Hungtington disease, inflammation mediated by chemokine and cytokine signalling pathways, interleukin signalling pathway, and p53 pathways. We also explored the possible mechanism of action for the anti-diabetic effect of berberine. Further studies are warranted to elucidate the mechanisms of action of berberine using systems biology approach.

  8. The Fog signaling pathway: Insights into signaling in morphogenesis

    Science.gov (United States)

    Manning, Alyssa J.; Rogers, Stephen L.

    2014-01-01

    Epithelia form the building blocks of many tissue and organ types. Epithelial cells often form a contiguous 2-dimensional sheet that is held together by strong adhesions. The mechanical properties conferred by these adhesions allow the cells to undergo dramatic three-dimensional morphogenetic movements while maintaining cell–cell contacts during embryogenesis and post-embryonic development. The Drosophila Folded gastrulation pathway triggers epithelial cell shape changes that drive gastrulation and tissue folding and is one of the most extensively studied examples of epithelial morphogenesis. This pathway has yielded key insights into the signaling mechanisms and cellular machinery involved in epithelial remodeling. In this review, we discuss principles of morphogenesis and signaling that have been discovered through genetic and cell biological examination of this pathway. We also consider various regulatory mechanisms and the system's relevance to mammalian development. We propose future directions that will continue to broaden our knowledge of morphogenesis across taxa. PMID:25127992

  9. Biological interaction of living cells with COSAN-based synthetic vesicles.

    Science.gov (United States)

    Tarrés, Màrius; Canetta, Elisabetta; Paul, Eleanor; Forbes, Jordan; Azzouni, Karima; Viñas, Clara; Teixidor, Francesc; Harwood, Adrian J

    2015-01-15

    Cobaltabisdicarbollide (COSAN) [3,3'-Co(1,2-C2B9H11)2](-), is a complex boron-based anion that has the unusual property of self-assembly into membranes and vesicles. These membranes have similar dimensions to biological membranes found in cells, and previously COSAN has been shown to pass through synthetic lipid membranes and those of living cells without causing breakdown of membrane barrier properties. Here, we investigate the interaction of this inorganic membrane system with living cells. We show that COSAN has no immediate effect on cell viability, and cells fully recover when COSAN is removed following exposure for hours to days. COSAN elicits a range of cell biological effects, including altered cell morphology, inhibition of cell growth and, in some cases, apoptosis. These observations reveal a new biology at the interface between inorganic, synthetic COSAN membranes and naturally occurring biological membranes.

  10. Biological cell as a soft magnetoelectric material: Elucidating the physical mechanisms underpinning the detection of magnetic fields by animals

    Science.gov (United States)

    Krichen, S.; Liu, L.; Sharma, P.

    2017-10-01

    Sharks, birds, bats, turtles, and many other animals can detect magnetic fields. Aside from using this remarkable ability to exploit the terrestrial magnetic field map to sense direction, a subset is also able to implement a version of the so-called geophysical positioning system. How do these animals detect magnetic fields? The answer to this rather deceptively simple question has proven to be quite elusive. The currently prevalent theories, while providing interesting insights, fall short of explaining several aspects of magnetoreception. For example, minute magnetic particles have been detected in magnetically sensitive animals. However, how is the detected magnetic field converted into electrical signals given any lack of experimental evidence for relevant electroreceptors? In principle, a magnetoelectric material is capable of converting magnetic signals into electricity (and vice versa). This property, however, is rare and restricted to a rather small set of exotic hard crystalline materials. Indeed, such elements have never been detected in the animals studied so far. In this work we quantitatively outline the conditions under which a biological cell may detect a magnetic field and convert it into electrical signals detectable by biological cells. Specifically, we prove the existence of an overlooked strain-mediated mechanism and show that most biological cells can act as nontrivial magnetoelectric materials provided that the magnetic permeability constant is only slightly more than that of a vacuum. The enhanced magnetic permeability is easily achieved by small amounts of magnetic particles that have been experimentally detected in magnetosensitive animals. Our proposed mechanism appears to explain most of the experimental observations related to the physical basis of magnetoreception.

  11. Primary Cilia, Signaling Networks and Cell Migration

    DEFF Research Database (Denmark)

    Veland, Iben Rønn

    Primary cilia are microtubule-based, sensory organelles that emerge from the centrosomal mother centriole to project from the surface of most quiescent cells in the human body. Ciliary entry is a tightly controlled process, involving diffusion barriers and gating complexes that maintain a unique...... this controls directional cell migration as a physiological response. The ciliary pocket is a membrane invagination with elevated activity of clathrin-dependent endocytosis (CDE). In paper I, we show that the primary cilium regulates TGF-β signaling and the ciliary pocket is a compartment for CDE...... on formation of the primary cilium and CDE at the pocket region. The ciliary protein Inversin functions as a molecular switch between canonical and non-canonical Wnt signaling. In paper II, we show that Inversin and the primary cilium control Wnt signaling and are required for polarization and cell migration...

  12. TGF-β Signaling Regulates Pancreatic β-Cell Proliferation through Control of Cell Cycle Regulator p27 Expression

    International Nuclear Information System (INIS)

    Suzuki, Tomoyuki; Dai, Ping; Hatakeyama, Tomoya; Harada, Yoshinori; Tanaka, Hideo; Yoshimura, Norio; Takamatsu, Tetsuro

    2013-01-01

    Proliferation of pancreatic β-cells is an important mechanism underlying β-cell mass adaptation to metabolic demands. Increasing β-cell mass by regeneration may ameliorate or correct both type 1 and type 2 diabetes, which both result from inadequate production of insulin by β-cells of the pancreatic islet. Transforming growth factor β (TGF-β) signaling is essential for fetal development and growth of pancreatic islets. In this study, we exposed HIT-T15, a clonal pancreatic β-cell line, to TGF-β signaling. We found that inhibition of TGF-β signaling promotes proliferation of the cells significantly, while TGF-β signaling stimulation inhibits proliferation of the cells remarkably. We confirmed that this proliferative regulation by TGF-β signaling is due to the changed expression of the cell cycle regulator p27. Furthermore, we demonstrated that there is no observed effect on transcriptional activity of p27 by TGF-β signaling. Our data show that TGF-β signaling mediates the cell-cycle progression of pancreatic β-cells by regulating the nuclear localization of CDK inhibitor, p27. Inhibition of TGF-β signaling reduces the nuclear accumulation of p27, and as a result this inhibition promotes proliferation of β-cells

  13. Composite mathematical modeling of calcium signaling behind neuronal cell death in Alzheimer's disease.

    Science.gov (United States)

    Ranjan, Bobby; Chong, Ket Hing; Zheng, Jie

    2018-04-11

    Alzheimer's disease (AD) is a progressive neurological disorder, recognized as the most common cause of dementia affecting people aged 65 and above. AD is characterized by an increase in amyloid metabolism, and by the misfolding and deposition of β-amyloid oligomers in and around neurons in the brain. These processes remodel the calcium signaling mechanism in neurons, leading to cell death via apoptosis. Despite accumulating knowledge about the biological processes underlying AD, mathematical models to date are restricted to depicting only a small portion of the pathology. Here, we integrated multiple mathematical models to analyze and understand the relationship among amyloid depositions, calcium signaling and mitochondrial permeability transition pore (PTP) related cell apoptosis in AD. The model was used to simulate calcium dynamics in the absence and presence of AD. In the absence of AD, i.e. without β-amyloid deposition, mitochondrial and cytosolic calcium level remains in the low resting concentration. However, our in silico simulation of the presence of AD with the β-amyloid deposition, shows an increase in the entry of calcium ions into the cell and dysregulation of Ca 2+ channel receptors on the Endoplasmic Reticulum. This composite model enabled us to make simulation that is not possible to measure experimentally. Our mathematical model depicting the mechanisms affecting calcium signaling in neurons can help understand AD at the systems level and has potential for diagnostic and therapeutic applications.

  14. Essential role of Bmp signaling and its positive feedback loop in the early cell fate evolution of chordates

    Czech Academy of Sciences Publication Activity Database

    Kozmiková, Iryna; Candiani, S.; Fabian, Peter; Gurská, Daniela; Kozmik, Zbyněk

    2013-01-01

    Roč. 382, č. 2 (2013), s. 538-554 ISSN 0012-1606 R&D Projects: GA ČR GCP305/10/J064; GA MŠk EE2.3.30.0027 Institutional support: RVO:68378050 Keywords : Bmp signaling * axial patterning * cell fate * chordates * evolution Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.637, year: 2013

  15. Vitamin D controls T cell antigen receptor signaling and activation of human T cells

    DEFF Research Database (Denmark)

    von Essen, Marina Rode; Kongsbak-Wismann, Martin; Schjerling, Peter

    2010-01-01

    Phospholipase C (PLC) isozymes are key signaling proteins downstream of many extracellular stimuli. Here we show that naive human T cells had very low expression of PLC-gamma1 and that this correlated with low T cell antigen receptor (TCR) responsiveness in naive T cells. However, TCR triggering...... led to an upregulation of approximately 75-fold in PLC-gamma1 expression, which correlated with greater TCR responsiveness. Induction of PLC-gamma1 was dependent on vitamin D and expression of the vitamin D receptor (VDR). Naive T cells did not express VDR, but VDR expression was induced by TCR...... signaling via the alternative mitogen-activated protein kinase p38 pathway. Thus, initial TCR signaling via p38 leads to successive induction of VDR and PLC-gamma1, which are required for subsequent classical TCR signaling and T cell activation....

  16. Biophysical Aspects of Transmembrane Signaling

    CERN Document Server

    Damjanovich, Sandor

    2005-01-01

    Transmembrane signaling is one of the most significant cell biological events in the life and death of cells in general and lymphocytes in particular. Until recently biochemists and biophysicists were not accustomed to thinking of these processes from the side of a high number of complex biochemical events and an equally high number of physical changes at molecular and cellular levels at the same time. Both types of researchers were convinced that their findings are the most decisive, having higher importance than the findings of the other scientist population. Both casts were wrong. Life, even at cellular level, has a number of interacting physical and biochemical mechanisms, which finally build up the creation of an "excited" cell that will respond to particular signals from the outer or inner world. This book handles both aspects of the signalling events, and in some cases tries to unify our concepts and help understand the signals that govern the life and death of our cells. Not only the understanding, bu...

  17. Signaling pathways regulating murine pancreatic development

    DEFF Research Database (Denmark)

    Serup, Palle

    2012-01-01

    The recent decades have seen a huge expansion in our knowledge about pancreatic development. Numerous lineage-restricted transcription factor genes have been identified and much has been learned about their function. Similarly, numerous signaling pathways important for pancreas development have...... been identified and the specific roles have been investigated by genetic and cell biological methods. The present review presents an overview of the principal signaling pathways involved in regulating murine pancreatic growth, morphogenesis, and cell differentiation....

  18. Calcium specificity signaling mechanisms in abscisic acid signal transduction in Arabidopsis guard cells

    Science.gov (United States)

    Brandt, Benjamin; Munemasa, Shintaro; Wang, Cun; Nguyen, Desiree; Yong, Taiming; Yang, Paul G; Poretsky, Elly; Belknap, Thomas F; Waadt, Rainer; Alemán, Fernando; Schroeder, Julian I

    2015-01-01

    A central question is how specificity in cellular responses to the eukaryotic second messenger Ca2+ is achieved. Plant guard cells, that form stomatal pores for gas exchange, provide a powerful system for in depth investigation of Ca2+-signaling specificity in plants. In intact guard cells, abscisic acid (ABA) enhances (primes) the Ca2+-sensitivity of downstream signaling events that result in activation of S-type anion channels during stomatal closure, providing a specificity mechanism in Ca2+-signaling. However, the underlying genetic and biochemical mechanisms remain unknown. Here we show impairment of ABA signal transduction in stomata of calcium-dependent protein kinase quadruple mutant plants. Interestingly, protein phosphatase 2Cs prevent non-specific Ca2+-signaling. Moreover, we demonstrate an unexpected interdependence of the Ca2+-dependent and Ca2+-independent ABA-signaling branches and the in planta requirement of simultaneous phosphorylation at two key phosphorylation sites in SLAC1. We identify novel mechanisms ensuring specificity and robustness within stomatal Ca2+-signaling on a cellular, genetic, and biochemical level. DOI: http://dx.doi.org/10.7554/eLife.03599.001 PMID:26192964

  19. Mast cells: potential positive and negative roles in tumor biology.

    Science.gov (United States)

    Marichal, Thomas; Tsai, Mindy; Galli, Stephen J

    2013-11-01

    Mast cells are immune cells that reside in virtually all vascularized tissues. Upon activation by diverse mechanisms, mast cells can secrete a broad array of biologically active products that either are stored in the cytoplasmic granules of the cells (e.g., histamine, heparin, various proteases) or are produced de novo upon cell stimulation (e.g., prostaglandins, leukotrienes, cytokines, chemokines, and growth factors). Mast cells are best known for their effector functions during anaphylaxis and acute IgE-associated allergic reactions, but they also have been implicated in a wide variety of processes that maintain health or contribute to disease. There has been particular interest in the possible roles of mast cells in tumor biology. In vitro studies have shown that mast cells have the potential to influence many aspects of tumor biology, including tumor development, tumor-induced angiogenesis, and tissue remodeling, and the shaping of adaptive immune responses to tumors. Yet, the actual contributions of mast cells to tumor biology in vivo remain controversial. Here, we review some basic features of mast cell biology with a special emphasis on those relevant to their potential roles in tumors. We discuss how using in vivo tumor models in combination with models in which mast cell function can be modulated has implicated mast cells in the regulation of host responses to tumors. Finally, we summarize data from studies of human tumors that suggest either beneficial or detrimental roles for mast cells in tumors. ©2013 AACR.

  20. Prolonged sulforaphane treatment activates survival signaling in nontumorigenic NCM460 colon cells but apoptotic signaling in tumorigenic HCT116 colon cells.

    Science.gov (United States)

    Zeng, Huawei; Trujillo, Olivia N; Moyer, Mary P; Botnen, James H

    2011-01-01

    Sulforaphane (SFN) is a naturally occurring chemopreventive agent; the induction of cell cycle arrest and apoptosis is a key mechanism by which SFN exerts its colon cancer prevention. However, little is known about the differential effects of SFN on colon cancer and normal cells. In this study, we demonstrated that SFN (15 μmol/L) exposure (72 h) inhibited cell proliferation by up to 95% in colon cancer cells (HCT116) and by 52% in normal colon mucosa-derived (NCM460) cells. Our data also showed that SFN exposure (5 and 10 μmol/L) led to the reduction of G1 phase cell distribution and an induction of apoptosis in HCT116 cells, but to a much lesser extent in NCM460 cells. Furthermore, the examination of mitogen-activated protein kinase (MAPK) signaling status revealed that SFN upregulated the phosphorylation of extracellular-regulated kinase 1/2 (ERK1/2) in NCM460 cells but not in HCT116 cells. In contrast, SFN enhanced the phosphorylation of stress-activated protein kinase (SAPK) and decreased cellular myelocytomatosis oncogene (c-Myc) expression in HCT116 cells but not NCM460 cells. Taken together, the activation of survival signaling in NCM460 cells and apoptotic signaling in HCT116 cells may play a critical role in SFN's stronger potential of inhibiting cell proliferation in colon cancer cells than in normal colon cells. Copyright © 2011, Taylor & Francis Group, LLC

  1. The pool of preactivated Lck in the initiation of T-cell signaling: a critical re-evaluation of the Lck standby model

    Czech Academy of Sciences Publication Activity Database

    Ballek, Ondřej; Valečka, Jan; Manning, Jasper; Filipp, Dominik

    2015-01-01

    Roč. 93, č. 4 (2015), s. 384-395 ISSN 0818-9641 R&D Projects: GA ČR GA310/09/2084 Institutional support: RVO:68378050 Keywords : Lck, T- cell * proximal TCR * signaling Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.473, year: 2015

  2. A Network Biology Approach Identifies Molecular Cross-Talk between Normal Prostate Epithelial and Prostate Carcinoma Cells.

    Science.gov (United States)

    Trevino, Victor; Cassese, Alberto; Nagy, Zsuzsanna; Zhuang, Xiaodong; Herbert, John; Antczak, Philipp; Clarke, Kim; Davies, Nicholas; Rahman, Ayesha; Campbell, Moray J; Guindani, Michele; Bicknell, Roy; Vannucci, Marina; Falciani, Francesco

    2016-04-01

    The advent of functional genomics has enabled the genome-wide characterization of the molecular state of cells and tissues, virtually at every level of biological organization. The difficulty in organizing and mining this unprecedented amount of information has stimulated the development of computational methods designed to infer the underlying structure of regulatory networks from observational data. These important developments had a profound impact in biological sciences since they triggered the development of a novel data-driven investigative approach. In cancer research, this strategy has been particularly successful. It has contributed to the identification of novel biomarkers, to a better characterization of disease heterogeneity and to a more in depth understanding of cancer pathophysiology. However, so far these approaches have not explicitly addressed the challenge of identifying networks representing the interaction of different cell types in a complex tissue. Since these interactions represent an essential part of the biology of both diseased and healthy tissues, it is of paramount importance that this challenge is addressed. Here we report the definition of a network reverse engineering strategy designed to infer directional signals linking adjacent cell types within a complex tissue. The application of this inference strategy to prostate cancer genome-wide expression profiling data validated the approach and revealed that normal epithelial cells exert an anti-tumour activity on prostate carcinoma cells. Moreover, by using a Bayesian hierarchical model integrating genetics and gene expression data and combining this with survival analysis, we show that the expression of putative cell communication genes related to focal adhesion and secretion is affected by epistatic gene copy number variation and it is predictive of patient survival. Ultimately, this study represents a generalizable approach to the challenge of deciphering cell communication networks

  3. A Network Biology Approach Identifies Molecular Cross-Talk between Normal Prostate Epithelial and Prostate Carcinoma Cells.

    Directory of Open Access Journals (Sweden)

    Victor Trevino

    2016-04-01

    Full Text Available The advent of functional genomics has enabled the genome-wide characterization of the molecular state of cells and tissues, virtually at every level of biological organization. The difficulty in organizing and mining this unprecedented amount of information has stimulated the development of computational methods designed to infer the underlying structure of regulatory networks from observational data. These important developments had a profound impact in biological sciences since they triggered the development of a novel data-driven investigative approach. In cancer research, this strategy has been particularly successful. It has contributed to the identification of novel biomarkers, to a better characterization of disease heterogeneity and to a more in depth understanding of cancer pathophysiology. However, so far these approaches have not explicitly addressed the challenge of identifying networks representing the interaction of different cell types in a complex tissue. Since these interactions represent an essential part of the biology of both diseased and healthy tissues, it is of paramount importance that this challenge is addressed. Here we report the definition of a network reverse engineering strategy designed to infer directional signals linking adjacent cell types within a complex tissue. The application of this inference strategy to prostate cancer genome-wide expression profiling data validated the approach and revealed that normal epithelial cells exert an anti-tumour activity on prostate carcinoma cells. Moreover, by using a Bayesian hierarchical model integrating genetics and gene expression data and combining this with survival analysis, we show that the expression of putative cell communication genes related to focal adhesion and secretion is affected by epistatic gene copy number variation and it is predictive of patient survival. Ultimately, this study represents a generalizable approach to the challenge of deciphering cell

  4. Autonomous rexinoid death signaling is suppressed by converging signaling pathways in immature leukemia cells.

    Science.gov (United States)

    Benoit, G R; Flexor, M; Besançon, F; Altucci, L; Rossin, A; Hillion, J; Balajthy, Z; Legres, L; Ségal-Bendirdjian, E; Gronemeyer, H; Lanotte, M

    2001-07-01

    On their own, retinoid X receptor (RXR)-selective ligands (rexinoids) are silent in retinoic acid receptor (RAR)-RXR heterodimers, and no selective rexinoid program has been described as yet in cellular systems. We report here on the rexinoid signaling capacity that triggers apoptosis of immature promyelocytic NB4 cells as a default pathway in the absence of survival factors. Rexinoid-induced apoptosis displays all features of bona fide programmed cell death and is inhibited by RXR, but not RAR antagonists. Several types of survival signals block rexinoid-induced apoptosis. RARalpha agonists switch the cellular response toward differentiation and induce the expression of antiapoptosis factors. Activation of the protein kinase A pathway in the presence of rexinoid agonists induces maturation and blocks immature cell apoptosis. Addition of nonretinoid serum factors also blocks cell death but does not induce cell differentiation. Rexinoid-induced apoptosis is linked to neither the presence nor stability of the promyelocytic leukemia-RARalpha fusion protein and operates also in non-acute promyelocytic leukemia cells. Together our results support a model according to which rexinoids activate in certain leukemia cells a default death pathway onto which several other signaling paradigms converge. This pathway is entirely distinct from that triggered by RAR agonists, which control cell maturation and postmaturation apoptosis.

  5. The Androgen Receptor Bridges Stem Cell-Associated Signaling Nodes in Prostate Stem Cells

    Directory of Open Access Journals (Sweden)

    Alastair H. Davies

    2016-01-01

    Full Text Available The therapeutic potential of stem cells relies on dissecting the complex signaling networks that are thought to regulate their pluripotency and self-renewal. Until recently, attention has focused almost exclusively on a small set of “core” transcription factors for maintaining the stem cell state. It is now clear that stem cell regulatory networks are far more complex. In this review, we examine the role of the androgen receptor (AR in coordinating interactions between signaling nodes that govern the balance of cell fate decisions in prostate stem cells.

  6. Bioinformatics approaches to single-cell analysis in developmental biology.

    Science.gov (United States)

    Yalcin, Dicle; Hakguder, Zeynep M; Otu, Hasan H

    2016-03-01

    Individual cells within the same population show various degrees of heterogeneity, which may be better handled with single-cell analysis to address biological and clinical questions. Single-cell analysis is especially important in developmental biology as subtle spatial and temporal differences in cells have significant associations with cell fate decisions during differentiation and with the description of a particular state of a cell exhibiting an aberrant phenotype. Biotechnological advances, especially in the area of microfluidics, have led to a robust, massively parallel and multi-dimensional capturing, sorting, and lysis of single-cells and amplification of related macromolecules, which have enabled the use of imaging and omics techniques on single cells. There have been improvements in computational single-cell image analysis in developmental biology regarding feature extraction, segmentation, image enhancement and machine learning, handling limitations of optical resolution to gain new perspectives from the raw microscopy images. Omics approaches, such as transcriptomics, genomics and epigenomics, targeting gene and small RNA expression, single nucleotide and structural variations and methylation and histone modifications, rely heavily on high-throughput sequencing technologies. Although there are well-established bioinformatics methods for analysis of sequence data, there are limited bioinformatics approaches which address experimental design, sample size considerations, amplification bias, normalization, differential expression, coverage, clustering and classification issues, specifically applied at the single-cell level. In this review, we summarize biological and technological advancements, discuss challenges faced in the aforementioned data acquisition and analysis issues and present future prospects for application of single-cell analyses to developmental biology. © The Author 2015. Published by Oxford University Press on behalf of the European

  7. Quantitative stem cell biology: the threat and the glory.

    Science.gov (United States)

    Pollard, Steven M

    2016-11-15

    Major technological innovations over the past decade have transformed our ability to extract quantitative data from biological systems at an unprecedented scale and resolution. These quantitative methods and associated large datasets should lead to an exciting new phase of discovery across many areas of biology. However, there is a clear threat: will we drown in these rivers of data? On 18th July 2016, stem cell biologists gathered in Cambridge for the 5th annual Cambridge Stem Cell Symposium to discuss 'Quantitative stem cell biology: from molecules to models'. This Meeting Review provides a summary of the data presented by each speaker, with a focus on quantitative techniques and the new biological insights that are emerging. © 2016. Published by The Company of Biologists Ltd.

  8. Arctigenin promotes apoptosis in ovarian cancer cells via the iNOS/NO/STAT3/survivin signalling.

    Science.gov (United States)

    Huang, Ke; Li, Li-an; Meng, Yuan-guang; You, Yan-qin; Fu, Xiao-yu; Song, Lei

    2014-12-01

    Arctigenin is a biologically active lignan extracted from the seeds of Arctium lappa and shows anticancer activity against a variety of human cancers. The aim of this study was to determine the effects of arctigenin on ovarian cancer cell proliferation and survival and associated molecular mechanisms. Human ovarian cancer OVCAR3 and SKOV3 cells were treated with arctigenin, and cell proliferation and apoptosis were assessed. Western blot analysis was used to examine signal transducer and activator of transcription-3 (STAT3) phosphorylation and survivin and inducible nitric oxide synthase (iNOS) expression. The involvement of STAT3/survivin/iNOS/NO signalling in arctigenin action was checked. Arctigenin treatment resulted in a significant and dose-dependent inhibition of cell proliferation. Arctigenin-treated cells showed a 4-6 times increase in the percentage of apoptosis, compared with control cells. Pre-treatment with Ac-DEVD-CHO, a specific inhibitor of caspase-3, counteracted the induction of apoptosis by arctigenin. Arctigenin treatment significantly inhibited STAT3 phosphorylation and survivin and iNOS expression. Arctigenin-induced apoptosis was impaired by pre-transfection with survivin-expressing plasmid or addition of chemical nitric oxide (NO) donors. Additionally, exogenous NO prevented the suppression of STAT3 phosphorylation and survivin expression by arctigenin. Arctigenin treatment inhibits the proliferation and induces caspase-3-dependent apoptosis of ovarian cancer cells. Suppression of iNOS/NO/STAT3/survivin signalling is causally linked to the anticancer activity of arctigenin. Therefore, arctigenin may be applicable to anticancer therapy for ovarian cancer. © 2014 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  9. Phantom phone signals: An investigation into the prevalence and predictors of imagined cell phone signals

    NARCIS (Netherlands)

    Tanis, M.A.; Beukeboom, C.J.; Hartmann, T.; Vermeulen, I.E.

    2015-01-01

    This paper aims to elucidate the peculiar phenomenon of imagined cell phone signals, or Phantom Phone Signals (PPS), which is defined as an individual's perception of a phone signal, indicating an incoming call, message, or social media notification, when in fact no such signal was transmitted. A

  10. Dendritic Cells in the Context of Human Tumors: Biology and Experimental Tools.

    Science.gov (United States)

    Volovitz, Ilan; Melzer, Susanne; Amar, Sarah; Bocsi, József; Bloch, Merav; Efroni, Sol; Ram, Zvi; Tárnok, Attila

    2016-01-01

    Dendritic cells (DC) are the most potent and versatile antigen-presenting cells (APC) in the immune system. DC have an exceptional ability to comprehend the immune context of a captured antigen based on molecular signals identified from its vicinity. The analyzed information is then conveyed to other immune effector cells. Such capability enables DC to play a pivotal role in mediating either an immunogenic response or immune tolerance towards an acquired antigen. This review summarizes current knowledge on DC in the context of human tumors. It covers the basics of human DC biology, elaborating on the different markers, morphology and function of the different subsets of human DC. Human blood-borne DC are comprised of at least three subsets consisting of one plasmacytoid DC (pDC) and two to three myeloid DC (mDC) subsets. Some tissues have unique DC. Each subset has a different phenotype and function and may induce pro-tumoral or anti-tumoral effects. The review also discusses two methods fundamental to the research of DC on the single-cell level: multicolor flow cytometry (FCM) and image-based cytometry (IC). These methods, along with new genomics and proteomics tools, can provide high-resolution information on specific DC subsets and on immune and tumor cells with which they interact. The different layers of collected biological data may then be integrated using Immune-Cytomics modeling approaches. Such novel integrated approaches may help unravel the complex network of cellular interactions that DC carry out within tumors, and may help harness this complex immunological information into the development of more effective treatments for cancer.

  11. Wnt-β-Catenin Signaling Promotes the Maturation of Mast Cells

    Directory of Open Access Journals (Sweden)

    Tomoko Yamaguchi

    2016-01-01

    Full Text Available Mast cells play an important role in the pathogenesis of allergic diseases. Immature mast cells migrate into peripheral tissues from the bone marrow and undergo complete maturation. Interestingly, mast cells have characteristics similar to hematopoietic stem cells (HSCs, such as self-renewal and c-kit expression. In HSCs, Wnt signaling is involved in their maintenance and differentiation. On the other hand, the relation between Wnt signaling and mast cell differentiation is poorly understood. To study whether Wnt signals play a role in the maturation of mast cells, we studied the effect of Wnt proteins on mast cell maturation of bone marrow-derived mast cells (BMMCs. The expression levels of CD81 protein and histidine decarboxylase mRNA and activity of mast cell-specific protease were all elevated in BMMCs treated with Wnt5a. In addition, Wnt5a induced the expression of Axin2 and TCF mRNA in BMMCs. These results showed that Wnt5a could promote the maturation of mast cells via the canonical Wnt signaling pathway and provide important insights into the molecular mechanisms underlying the differentiation of mast cells.

  12. Calcium signaling properties of a thyrotroph cell line, mouse TαT1 cells.

    Science.gov (United States)

    Tomić, Melanija; Bargi-Souza, Paula; Leiva-Salcedo, Elias; Nunes, Maria Tereza; Stojilkovic, Stanko S

    2015-12-01

    TαT1 cells are mouse thyrotroph cell line frequently used for studies on thyroid-stimulating hormone beta subunit gene expression and other cellular functions. Here we have characterized calcium-signaling pathways in TαT1 cells, an issue not previously addressed in these cells and incompletely described in native thyrotrophs. TαT1 cells are excitable and fire action potentials spontaneously and in response to application of thyrotropin-releasing hormone (TRH), the native hypothalamic agonist for thyrotrophs. Spontaneous electrical activity is coupled to small amplitude fluctuations in intracellular calcium, whereas TRH stimulates both calcium mobilization from intracellular pools and calcium influx. Non-receptor-mediated depletion of intracellular pool also leads to a prominent facilitation of calcium influx. Both receptor and non-receptor stimulated calcium influx is substantially attenuated but not completely abolished by inhibition of voltage-gated calcium channels, suggesting that depletion of intracellular calcium pool in these cells provides a signal for both voltage-independent and -dependent calcium influx, the latter by facilitating the pacemaking activity. These cells also express purinergic P2Y1 receptors and their activation by extracellular ATP mimics TRH action on calcium mobilization and influx. The thyroid hormone triiodothyronine prolongs duration of TRH-induced calcium spikes during 30-min exposure. These data indicate that TαT1 cells are capable of responding to natively feed-forward TRH signaling and intrapituitary ATP signaling with acute calcium mobilization and sustained calcium influx. Amplification of TRH-induced calcium signaling by triiodothyronine further suggests the existence of a pathway for positive feedback effects of thyroid hormones probably in a non-genomic manner. Published by Elsevier Ltd.

  13. Protein kinase D1 stimulates proliferation and enhances tumorigenesis of MCF-7 human breast cancer cells through a MEK/ERK-dependent signaling pathway

    International Nuclear Information System (INIS)

    Karam, Manale; Legay, Christine; Auclair, Christian; Ricort, Jean-Marc

    2012-01-01

    Protein kinase D1, PKD1, is a novel serine/threonine kinase whose altered expression and dysregulation in many tumors as well as its activation by several mitogens suggest that this protein could regulate proliferation and tumorigenesis. Nevertheless, the precise signaling pathways used are still unclear and the potential direct role of PKD1 in tumor development and progression has not been yet investigated. In order to clarify the role of PKD1 in cell proliferation and tumorigenesis, we studied the effects of PKD1 overexpression in a human adenocarcinoma breast cancer cell line, MCF-7 cells. We demonstrated that overexpression of PKD1 specifically promotes MCF-7 cell proliferation through accelerating G0/G1 to S phase transition of the cell cycle. Moreover, inhibition of endogenous PKD1 significantly reduced cell proliferation. Taken together, these results clearly strengthen the regulatory role of PKD1 in cell growth. We also demonstrated that overexpression of PKD1 specifically diminished serum- and anchorage-dependence for proliferation and survival in vitro and allowed MCF-7 cells to form tumors in vivo. Thus, all these data highlight the central role of PKD1 in biological processes which are hallmarks of malignant transformation. Analysis of two major signaling pathways implicated in MCF-7 cell proliferation showed that PKD1 overexpression significantly increased ERK1/2 phosphorylation state without affecting Akt phosphorylation. Moreover, PKD1 overexpression-stimulated cell proliferation and anchorage-independent growth were totally impaired by inhibition of the MEK/ERK kinase cascade. However, neither of these effects was affected by blocking the PI 3-kinase/Akt signaling pathway. Thus, the MEK/ERK signaling appears to be a determining pathway mediating the biological effects of PKD1 in MCF-7 cells. Taken together, all these data demonstrate that PKD1 overexpression increases the aggressiveness of MCF-7 breast cancer cells through enhancing their oncogenic

  14. An energy-efficient communication method based on the relationships between biological signals for ubiquitous health monitoring.

    Science.gov (United States)

    Kwon, Hyok Chon; Na, Doosu; Ko, Byung Geun; Lee, Songjun

    2008-01-01

    Wireless sensor networks have been studied in the area of intelligent transportation systems, disaster perception, environment monitoring, ubiquitous healthcare, home network, and so on. For the ubiquitous healthcare, the previous systems collect the sensed health related data at portable devices without regard to correlations of various biological signals to determine the health conditions. It is not the energy-efficient method to gather a lot of information into a specific node to decide the health condition. Since the biological signals are related with each other to estimate certain body condition, it is necessary to be collected selectively by their relationship for energy efficiency of the networked nodes. One of researches about low power consumption is the reduction of the amount of packet transmission. In this paper, a health monitoring system, which allows the transmission of the reduced number of packets by means of setting the routing path considered the relations of biological signals, is proposed.

  15. Zinc stimulates glucose oxidation and glycemic control by modulating the insulin signaling pathway in human and mouse skeletal muscle cell lines.

    Science.gov (United States)

    Norouzi, Shaghayegh; Adulcikas, John; Sohal, Sukhwinder Singh; Myers, Stephen

    2018-01-01

    Zinc is a metal ion that is an essential cell signaling molecule. Highlighting this, zinc is an insulin mimetic, activating cellular pathways that regulate cellular homeostasis and physiological responses. Previous studies have linked dysfunctional zinc signaling with several disease states including cancer, obesity, cardiovascular disease and type 2 diabetes. The present study evaluated the insulin-like effects of zinc on cell signaling molecules including tyrosine, PRSA40, Akt, ERK1/2, SHP-2, GSK-3β and p38, and glucose oxidation in human and mouse skeletal muscle cells. Insulin and zinc independently led to the phosphorylation of these proteins over a 60-minute time course in both mouse and human skeletal muscle cells. Similarly, utilizing a protein array we identified that zinc could active the phosphorylation of p38, ERK1/2 and GSK-3B in human and ERK1/2 and GSK-3B in mouse skeletal muscle cells. Glucose oxidation assays were performed on skeletal muscle cells treated with insulin, zinc, or a combination of both and resulted in a significant induction of glucose consumption in mouse (pzinc alone. Insulin, as expected, increased glucose oxidation in mouse (pzinc and insulin did not augment glucose consumption in these cells. Zinc acts as an insulin mimetic, activating key molecules implicated in cell signaling to maintain glucose homeostasis in mouse and human skeletal muscle cells. Zinc is an important metal ion implicated in several biological processes. The role of zinc as an insulin memetic in activating key signaling molecules involved in glucose homeostasis could provide opportunities to utilize this ion therapeutically in treating disorders associated with dysfunctional zinc signaling.

  16. cellPACK: a virtual mesoscope to model and visualize structural systems biology.

    Science.gov (United States)

    Johnson, Graham T; Autin, Ludovic; Al-Alusi, Mostafa; Goodsell, David S; Sanner, Michel F; Olson, Arthur J

    2015-01-01

    cellPACK assembles computational models of the biological mesoscale, an intermediate scale (10-100 nm) between molecular and cellular biology scales. cellPACK's modular architecture unites existing and novel packing algorithms to generate, visualize and analyze comprehensive three-dimensional models of complex biological environments that integrate data from multiple experimental systems biology and structural biology sources. cellPACK is available as open-source code, with tools for validation of models and with 'recipes' and models for five biological systems: blood plasma, cytoplasm, synaptic vesicles, HIV and a mycoplasma cell. We have applied cellPACK to model distributions of HIV envelope protein to test several hypotheses for consistency with experimental observations. Biologists, educators and outreach specialists can interact with cellPACK models, develop new recipes and perform packing experiments through scripting and graphical user interfaces at http://cellPACK.org/.

  17. Signal peptide of eosinophil cationic protein is toxic to cells lacking signal peptide peptidase

    International Nuclear Information System (INIS)

    Wu, C.-M.; Chang, Margaret Dah-Tsyr

    2004-01-01

    Eosinophil cationic protein (ECP) is a toxin secreted by activated human eosinophils. The properties of mature ECP have been well studied but those of the signal peptide of ECP (ECPsp) are not clear. In this study, several chimeric proteins containing N-terminal fusion of ECPsp were generated, and introduced into Escherichia coli, Pichia pastoris, and human epidermoid carcinoma cell line A431 to study the function of ECPsp. We found that expression of ECPsp chimeric proteins inhibited the growth of E. coli and P. pastoris but not A431 cells. Primary sequence analysis and in vitro transcription/translation of ECPsp have revealed that it is a potential substrate for human signal peptide peptidase (hSPP), an intramembrane protease located in endoplasmic reticulum. In addition, knockdown of the hSPP mRNA expression in ECPsp-eGFP/A431 cells caused the growth inhibitory effect, whereas complementally expression of hSPP in P. pastoris system rescued the cell growth. Taken together, we have demonstrated that ECPsp is a toxic signal peptide, and expression of hSPP protects the cells from growth inhibition

  18. Analysis of a dynamic model of guard cell signaling reveals the stability of signal propagation

    Science.gov (United States)

    Gan, Xiao; Albert, RéKa

    Analyzing the long-term behaviors (attractors) of dynamic models of biological systems can provide valuable insight into biological phenotypes and their stability. We identified the long-term behaviors of a multi-level, 70-node discrete dynamic model of the stomatal opening process in plants. We reduce the model's huge state space by reducing unregulated nodes and simple mediator nodes, and by simplifying the regulatory functions of selected nodes while keeping the model consistent with experimental observations. We perform attractor analysis on the resulting 32-node reduced model by two methods: 1. converting it into a Boolean model, then applying two attractor-finding algorithms; 2. theoretical analysis of the regulatory functions. We conclude that all nodes except two in the reduced model have a single attractor; and only two nodes can admit oscillations. The multistability or oscillations do not affect the stomatal opening level in any situation. This conclusion applies to the original model as well in all the biologically meaningful cases. We further demonstrate the robustness of signal propagation by showing that a large percentage of single-node knockouts does not affect the stomatal opening level. Thus, we conclude that the complex structure of this signal transduction network provides multiple information propagation pathways while not allowing extensive multistability or oscillations, resulting in robust signal propagation. Our innovative combination of methods offers a promising way to analyze multi-level models.

  19. Interaction of Wnt Signaling with BMP/Smad Signaling during the Transition from Cell Proliferation to Myogenic Differentiation in Mouse Myoblast-Derived Cells

    Directory of Open Access Journals (Sweden)

    Kumiko Terada

    2013-01-01

    Full Text Available Background. Wnt signaling is involved in muscle formation through β-catenin-dependent or -independent pathways, but interactions with other signaling pathways including transforming growth factor β/Smad have not been precisely elucidated. Results. As Wnt4 stimulates myogenic differentiation by antagonizing myostatin (GDF8 activity, we examined the role of Wnt4 signaling during muscle differentiation in the C2C12 myoblast cell line. Among several extrinsic signaling molecules examined in a microarray analysis of C2C12 cells during the transition from cell proliferation to differentiation after mitogen deprivation, bone morphogenetic protein 4 (BMP4 expression was prominently increased. Wnt4 overexpression had similar effects on BMP4 expression. BMP4 was able to inhibit muscle differentiation when added to the culture medium. BMP4 and noggin had no effects on the cellular localization of β-catenin induced by Wnt3a; however, the BMP4-induced phosphorylation of Smad1/5/8 was enhanced by Wnt4, but not by Wnt3a. The BMP antagonist noggin effectively stimulated muscle differentiation through binding to endogenous BMPs, and the effect of noggin was enhanced by the presence of Wnt3a and Wnt4. Conclusion. These results suggest that BMP/Smad pathways are modified through Wnt signaling during the transition from progenitor cell proliferation to myogenic differentiation, although Wnt/β-catenin signaling is not modified with BMP/Smad signaling.

  20. Noninvasive Assessment of Cell Fate and Biology in Transplanted Mesenchymal Stem Cells.

    Science.gov (United States)

    Franchi, Federico; Rodriguez-Porcel, Martin

    2017-01-01

    Recently, molecular imaging has become a conditio sine qua non for cell-based regenerative medicine. Developments in molecular imaging techniques, such as reporter gene technology, have increasingly enabled the noninvasive assessment of the fate and biology of cells after cardiovascular applications. In this context, bioluminescence imaging is the most commonly used imaging modality in small animal models of preclinical studies. Here, we present a detailed protocol of a reporter gene imaging approach for monitoring the viability and biology of Mesenchymal Stem Cells transplanted in a mouse model of myocardial ischemia reperfusion injury.

  1. Adhesion signaling promotes protease‑driven polyploidization of glioblastoma cells.

    Science.gov (United States)

    Mercapide, Javier; Lorico, Aurelio

    2014-11-01

    An increase in ploidy (polyploidization) causes genomic instability in cancer. However, the determinants for the increased DNA content of cancer cells have not yet been fully elucidated. In the present study, we investigated whether adhesion induces polyploidization in human U87MG glioblastoma cells. For this purpose, we employed expression vectors that reported transcriptional activation by signaling networks implicated in cancer. Signaling activation induced by intercellular integrin binding elicited both extracellular signal‑regulated kinase (ERK) and Notch target transcription. Upon the prolonged activation of both ERK and Notch target transcription induced by integrin binding to adhesion protein, cell cultures accumulated polyploid cells, as determined by cell DNA content distribution analysis and the quantification of polynucleated cells. This linked the transcriptional activation induced by integrin adhesion to the increased frequency of polyploidization. Accordingly, the inhibition of signaling decreased the extent of polyploidization mediated by protease‑driven intracellular invasion. Therefore, the findings of this study indicate that integrin adhesion induces polyploidization through the stimulation of glioblastoma cell invasiveness.

  2. The Cell Collective: Toward an open and collaborative approach to systems biology

    Directory of Open Access Journals (Sweden)

    Helikar Tomáš

    2012-08-01

    Full Text Available Abstract Background Despite decades of new discoveries in biomedical research, the overwhelming complexity of cells has been a significant barrier to a fundamental understanding of how cells work as a whole. As such, the holistic study of biochemical pathways requires computer modeling. Due to the complexity of cells, it is not feasible for one person or group to model the cell in its entirety. Results The Cell Collective is a platform that allows the world-wide scientific community to create these models collectively. Its interface enables users to build and use models without specifying any mathematical equations or computer code - addressing one of the major hurdles with computational research. In addition, this platform allows scientists to simulate and analyze the models in real-time on the web, including the ability to simulate loss/gain of function and test what-if scenarios in real time. Conclusions The Cell Collective is a web-based platform that enables laboratory scientists from across the globe to collaboratively build large-scale models of various biological processes, and simulate/analyze them in real time. In this manuscript, we show examples of its application to a large-scale model of signal transduction.

  3. Jasmonic acid signaling modulates ozone-induced hypersensitive cell death.

    Science.gov (United States)

    Rao, M V; Lee, H; Creelman, R A; Mullet, J E; Davis, K R

    2000-09-01

    Recent studies suggest that cross-talk between salicylic acid (SA)-, jasmonic acid (JA)-, and ethylene-dependent signaling pathways regulates plant responses to both abiotic and biotic stress factors. Earlier studies demonstrated that ozone (O(3)) exposure activates a hypersensitive response (HR)-like cell death pathway in the Arabidopsis ecotype Cvi-0. We now have confirmed the role of SA and JA signaling in influencing O(3)-induced cell death. Expression of salicylate hydroxylase (NahG) in Cvi-0 reduced O(3)-induced cell death. Methyl jasmonate (Me-JA) pretreatment of Cvi-0 decreased O(3)-induced H(2)O(2) content and SA concentrations and completely abolished O(3)-induced cell death. Cvi-0 synthesized as much JA as did Col-0 in response to O(3) exposure but exhibited much less sensitivity to exogenous Me-JA. Analyses of the responses to O(3) of the JA-signaling mutants jar1 and fad3/7/8 also demonstrated an antagonistic relationship between JA- and SA-signaling pathways in controlling the magnitude of O(3)-induced HR-like cell death.

  4. MAPK cascades in guard cell signal transduction

    Directory of Open Access Journals (Sweden)

    Yuree eLee

    2016-02-01

    Full Text Available Guard cells form stomata on the epidermis and continuously respond to endogenous and environmental stimuli to fine-tune the gas exchange and transpirational water loss, processes which involve mitogen-activated protein kinase (MAPK cascades. MAPKs form three-tiered kinase cascades with MAPK kinases and MAPK kinase kinases, by which signals are transduced to the target proteins. MAPK cascade genes are highly conserved in all eukaryotes, and they play crucial roles in myriad developmental and physiological processes. MAPK cascades function during biotic and abiotic stress responses by linking extracellular signals received by receptors to cytosolic events and gene expression. In this review, we highlight recent findings and insights into MAPK-mediated guard cell signaling, including the specificity of MAPK cascades and the remaining questions.

  5. Genomewide effects of peroxisome proliferator-activated receptor gamma in macrophages and dendritic cells--revealing complexity through systems biology.

    Science.gov (United States)

    Cuaranta-Monroy, Ixchelt; Kiss, Mate; Simandi, Zoltan; Nagy, Laszlo

    2015-09-01

    Systems biology approaches have become indispensable tools in biomedical and basic research. These data integrating bioinformatic methods gained prominence after high-throughput technologies became available to investigate complex cellular processes, such as transcriptional regulation and protein-protein interactions, on a scale that had not been studied before. Immunology is one of the medical fields that systems biology impacted profoundly due to the plasticity of cell types involved and the accessibility of a wide range of experimental models. In this review, we summarize the most important recent genomewide studies exploring the function of peroxisome proliferator-activated receptor γ in macrophages and dendritic cells. PPARγ ChIP-seq experiments were performed in adipocytes derived from embryonic stem cells to complement the existing data sets and to provide comparators to macrophage data. Finally, lists of regulated genes generated from such experiments were analysed with bioinformatics and system biology approaches. We show that genomewide studies utilizing high-throughput data acquisition methods made it possible to gain deeper insights into the role of PPARγ in these immune cell types. We also demonstrate that analysis and visualization of data using network-based approaches can be used to identify novel genes and functions regulated by the receptor. The example of PPARγ in macrophages and dendritic cells highlights the crucial importance of systems biology approaches in establishing novel cellular functions for long-known signaling pathways. © 2015 Stichting European Society for Clinical Investigation Journal Foundation.

  6. Cellular signaling identifiability analysis: a case study.

    Science.gov (United States)

    Roper, Ryan T; Pia Saccomani, Maria; Vicini, Paolo

    2010-05-21

    Two primary purposes for mathematical modeling in cell biology are (1) simulation for making predictions of experimental outcomes and (2) parameter estimation for drawing inferences from experimental data about unobserved aspects of biological systems. While the former purpose has become common in the biological sciences, the latter is less common, particularly when studying cellular and subcellular phenomena such as signaling-the focus of the current study. Data are difficult to obtain at this level. Therefore, even models of only modest complexity can contain parameters for which the available data are insufficient for estimation. In the present study, we use a set of published cellular signaling models to address issues related to global parameter identifiability. That is, we address the following question: assuming known time courses for some model variables, which parameters is it theoretically impossible to estimate, even with continuous, noise-free data? Following an introduction to this problem and its relevance, we perform a full identifiability analysis on a set of cellular signaling models using DAISY (Differential Algebra for the Identifiability of SYstems). We use our analysis to bring to light important issues related to parameter identifiability in ordinary differential equation (ODE) models. We contend that this is, as of yet, an under-appreciated issue in biological modeling and, more particularly, cell biology. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  7. Wnt/β-catenin signaling regulates cancer stem cells in lung cancer A549 cells

    International Nuclear Information System (INIS)

    Teng, Ying; Wang, Xiuwen; Wang, Yawei; Ma, Daoxin

    2010-01-01

    Wnt/β-catenin signaling plays an important role not only in cancer, but also in cancer stem cells. In this study, we found that β-catenin and OCT-4 was highly expressed in cisplatin (DDP) selected A549 cells. Stimulating A549 cells with lithium chloride (LiCl) resulted in accumulation of β-catenin and up-regulation of a typical Wnt target gene cyclin D1. This stimulation also significantly enhanced proliferation, clone formation, migration and drug resistance abilities in A549 cells. Moreover, the up-regulation of OCT-4, a stem cell marker, was observed through real-time PCR and Western blotting. In a reverse approach, we inhibited Wnt signaling by knocking down the expression of β-catenin using RNA interference technology. This inhibition resulted in down-regulation of the Wnt target gene cyclin D1 as well as the proliferation, clone formation, migration and drug resistance abilities. Meanwhile, the expression of OCT-4 was reduced after the inhibition of Wnt/β-catenin signaling. Taken together, our study provides strong evidence that canonical Wnt signaling plays an important role in lung cancer stem cell properties, and it also regulates OCT-4, a lung cancer stem cell marker.

  8. Biologically based machine vision: signal analysis of monopolar cells in the visual system of Musca domestica.

    Science.gov (United States)

    Newton, Jenny; Barrett, Steven F; Wilcox, Michael J; Popp, Stephanie

    2002-01-01

    Machine vision for navigational purposes is a rapidly growing field. Many abilities such as object recognition and target tracking rely on vision. Autonomous vehicles must be able to navigate in dynamic enviroments and simultaneously locate a target position. Traditional machine vision often fails to react in real time because of large computational requirements whereas the fly achieves complex orientation and navigation with a relatively small and simple brain. Understanding how the fly extracts visual information and how neurons encode and process information could lead us to a new approach for machine vision applications. Photoreceptors in the Musca domestica eye that share the same spatial information converge into a structure called the cartridge. The cartridge consists of the photoreceptor axon terminals and monopolar cells L1, L2, and L4. It is thought that L1 and L2 cells encode edge related information relative to a single cartridge. These cells are thought to be equivalent to vertebrate bipolar cells, producing contrast enhancement and reduction of information sent to L4. Monopolar cell L4 is thought to perform image segmentation on the information input from L1 and L2 and also enhance edge detection. A mesh of interconnected L4's would correlate the output from L1 and L2 cells of adjacent cartridges and provide a parallel network for segmenting an object's edges. The focus of this research is to excite photoreceptors of the common housefly, Musca domestica, with different visual patterns. The electrical response of monopolar cells L1, L2, and L4 will be recorded using intracellular recording techniques. Signal analysis will determine the neurocircuitry to detect and segment images.

  9. A biological inspired fuzzy adaptive window median filter (FAWMF) for enhancing DNA signal processing.

    Science.gov (United States)

    Ahmad, Muneer; Jung, Low Tan; Bhuiyan, Al-Amin

    2017-10-01

    Digital signal processing techniques commonly employ fixed length window filters to process the signal contents. DNA signals differ in characteristics from common digital signals since they carry nucleotides as contents. The nucleotides own genetic code context and fuzzy behaviors due to their special structure and order in DNA strand. Employing conventional fixed length window filters for DNA signal processing produce spectral leakage and hence results in signal noise. A biological context aware adaptive window filter is required to process the DNA signals. This paper introduces a biological inspired fuzzy adaptive window median filter (FAWMF) which computes the fuzzy membership strength of nucleotides in each slide of window and filters nucleotides based on median filtering with a combination of s-shaped and z-shaped filters. Since coding regions cause 3-base periodicity by an unbalanced nucleotides' distribution producing a relatively high bias for nucleotides' usage, such fundamental characteristic of nucleotides has been exploited in FAWMF to suppress the signal noise. Along with adaptive response of FAWMF, a strong correlation between median nucleotides and the Π shaped filter was observed which produced enhanced discrimination between coding and non-coding regions contrary to fixed length conventional window filters. The proposed FAWMF attains a significant enhancement in coding regions identification i.e. 40% to 125% as compared to other conventional window filters tested over more than 250 benchmarked and randomly taken DNA datasets of different organisms. This study proves that conventional fixed length window filters applied to DNA signals do not achieve significant results since the nucleotides carry genetic code context. The proposed FAWMF algorithm is adaptive and outperforms significantly to process DNA signal contents. The algorithm applied to variety of DNA datasets produced noteworthy discrimination between coding and non-coding regions contrary

  10. c-MPL provides tumor-targeted T-cell receptor-transgenic T cells with costimulation and cytokine signals.

    Science.gov (United States)

    Nishimura, Christopher D; Brenner, Daniel A; Mukherjee, Malini; Hirsch, Rachel A; Ott, Leah; Wu, Meng-Fen; Liu, Hao; Dakhova, Olga; Orange, Jordan S; Brenner, Malcolm K; Lin, Charles Y; Arber, Caroline

    2017-12-21

    Adoptively transferred T-cell receptor (TCR)-engineered T cells depend on host-derived costimulation and cytokine signals for their full and sustained activation. However, in patients with cancer, both signals are frequently impaired. Hence, we developed a novel strategy that combines both essential signals in 1 transgene by expressing the nonlymphoid hematopoietic growth factor receptor c-MPL (myeloproliferative leukemia), the receptor for thrombopoietin (TPO), in T cells. c-MPL signaling activates pathways shared with conventional costimulatory and cytokine receptor signaling. Thus, we hypothesized that host-derived TPO, present in the tumor microenvironment, or pharmacological c-MPL agonists approved by the US Food and Drug Administration could deliver both signals to c-MPL-engineered TCR-transgenic T cells. We found that c-MPL + polyclonal T cells expand and proliferate in response to TPO, and persist longer after adoptive transfer in immunodeficient human TPO-transgenic mice. In TCR-transgenic T cells, c-MPL activation enhances antitumor function, T-cell expansion, and cytokine production and preserves a central memory phenotype. c-MPL signaling also enables sequential tumor cell killing, enhances the formation of effective immune synapses, and improves antileukemic activity in vivo in a leukemia xenograft model. We identify the type 1 interferon pathway as a molecular mechanism by which c-MPL mediates immune stimulation in T cells. In conclusion, we present a novel immunotherapeutic strategy using c-MPL-enhanced transgenic T cells responding to either endogenously produced TPO (a microenvironment factor in hematologic malignancies) or c-MPL-targeted pharmacological agents. © 2017 by The American Society of Hematology.

  11. Curcumin blocks interleukin-1 signaling in chondrosarcoma cells.

    Directory of Open Access Journals (Sweden)

    Thomas Kalinski

    Full Text Available Interleukin (IL-1 signaling plays an important role in inflammatory processes, but also in malignant processes. The essential downstream event in IL-1 signaling is the activation of nuclear factor (NF-κB, which leads to the expression of several genes that are involved in cell proliferation, invasion, angiogenesis and metastasis, among them VEGF-A. As microenvironment-derived IL-1β is required for invasion and angiogenesis in malignant tumors, also in chondrosarcomas, we investigated IL-1β-induced signal transduction and VEGF-A expression in C3842 and SW1353 chondrosarcoma cells. We additionally performed in vitro angiogenesis assays and NF-κB-related gene expression analyses. Curcumin is a substance which inhibits IL-1 signaling very early by preventing the recruitment of IL-1 receptor associated kinase (IRAK to the IL-1 receptor. We demonstrate that IL-1 signaling and VEGF-A expression are blocked by Curcumin in chondrosarcoma cells. We further show that Curcumin blocks IL-1β-induced angiogenesis and NF-κB-related gene expression. We suppose that IL-1 blockade is an additional treatment option in chondrosarcoma, either by Curcumin, its derivatives or other IL-1 blocking agents.

  12. Crammed signaling motifs in the T-cell receptor.

    Science.gov (United States)

    Borroto, Aldo; Abia, David; Alarcón, Balbino

    2014-09-01

    Although the T cell antigen receptor (TCR) is long known to contain multiple signaling subunits (CD3γ, CD3δ, CD3ɛ and CD3ζ), their role in signal transduction is still not well understood. The presence of at least one immunoreceptor tyrosine-based activation motif (ITAM) in each CD3 subunit has led to the idea that the multiplication of such elements essentially serves to amplify signals. However, the evolutionary conservation of non-ITAM sequences suggests that each CD3 subunit is likely to have specific non-redundant roles at some stage of development or in mature T cell function. The CD3ɛ subunit is paradigmatic because in a relatively short cytoplasmic sequence (∼55 amino acids) it contains several docking sites for proteins involved in intracellular trafficking and signaling, proteins whose relevance in T cell activation is slowly starting to be revealed. In this review we will summarize our current knowledge on the signaling effectors that bind directly to the TCR and we will propose a hierarchy in their response to TCR triggering. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Automatic detection of biological cells

    International Nuclear Information System (INIS)

    Alves Da Costa, Caiuby

    1983-01-01

    The present research work has dealt with the analysis of biological cell images in general, and more specially with the cervical cells. This work was carried out in order to develop an automaton leading to a better prevention of cancer through automated mass screening. The device has been implemented on Motorola 68.000 microprocessor system. The automaton carries out cell nucleus analysis in several steps. The main steps are: - First: the automaton focuses on an individual cell nucleus among the smear's cell (about 10.000), - Second: it process each nucleus image. The digital processing yields geometrical of the nucleus (area and perimeter) for each cell. These data are stored in a local memory for further discriminant analysis by a microcomputer. In this way smears are classed in two groups: hale smears and uncertain smears. The automaton uses a wired logic for image acquisition and its software algorithms provide image reconstruction. The reconstruction algorithms are general purpose. Tests have proved that they can reconstruct any two dimensional images independently of its geometrical form. Moreover they can make the reconstruction of any image among the several images present in observation field. The processing times registered during the tests (for different cases) were situated, all of them, below three minutes for 10,000 images (each of them formed by an average of 450 pixels). The interest of the method is generality and speed. The only restriction is the primary device sensor (CCD linear array) length. Thus the automaton application can be extended beyond the biological image field. (author) [fr

  14. Exploiting the MDM2-CK1α Protein-Protein Interface to Develop Novel Biologics That Induce UBL-Kinase-Modification and Inhibit Cell Growth

    Science.gov (United States)

    Huart, Anne-Sophie; MacLaine, Nicola J.; Narayan, Vikram; Hupp, Ted R.

    2012-01-01

    Protein-protein interactions forming dominant signalling events are providing ever-growing platforms for the development of novel Biologic tools for controlling cell growth. Casein Kinase 1 α (CK1α) forms a genetic and physical interaction with the murine double minute chromosome 2 (MDM2) oncoprotein resulting in degradation of the p53 tumour suppressor. Pharmacological inhibition of CK1 increases p53 protein level and induces cell death, whilst small interfering RNA-mediated depletion of CK1α stabilizes p53 and induces growth arrest. We mapped the dominant protein-protein interface that stabilizes the MDM2 and CK1α complex in order to determine whether a peptide derived from the core CK1α-MDM2 interface form novel Biologics that can be used to probe the contribution of the CK1-MDM2 protein-protein interaction to p53 activation and cell viability. Overlapping peptides derived from CK1α were screened for dominant MDM2 binding sites using (i) ELISA with recombinant MDM2; (ii) cell lysate pull-down towards endogenous MDM2; (iii) MDM2-CK1α complex-based competition ELISA; and (iv) MDM2-mediated ubiquitination. One dominant peptide, peptide 35 was bioactive in all four assays and its transfection induced cell death/growth arrest in a p53-independent manner. Ectopic expression of flag-tagged peptide 35 induced a novel ubiquitin and NEDD8 modification of CK1α, providing one of the first examples whereby NEDDylation of a protein kinase can be induced. These data identify an MDM2 binding motif in CK1α which when isolated as a small peptide can (i) function as a dominant negative inhibitor of the CK1α-MDM2 interface, (ii) be used as a tool to study NEDDylation of CK1α, and (iii) reduce cell growth. Further, this approach provides a technological blueprint, complementing siRNA and chemical biology approaches, by exploiting protein-protein interactions in order to develop Biologics to manipulate novel types of signalling pathways such as cross-talk between

  15. Exploiting the MDM2-CK1α protein-protein interface to develop novel biologics that induce UBL-kinase-modification and inhibit cell growth.

    Directory of Open Access Journals (Sweden)

    Anne-Sophie Huart

    Full Text Available Protein-protein interactions forming dominant signalling events are providing ever-growing platforms for the development of novel Biologic tools for controlling cell growth. Casein Kinase 1 α (CK1α forms a genetic and physical interaction with the murine double minute chromosome 2 (MDM2 oncoprotein resulting in degradation of the p53 tumour suppressor. Pharmacological inhibition of CK1 increases p53 protein level and induces cell death, whilst small interfering RNA-mediated depletion of CK1α stabilizes p53 and induces growth arrest. We mapped the dominant protein-protein interface that stabilizes the MDM2 and CK1α complex in order to determine whether a peptide derived from the core CK1α-MDM2 interface form novel Biologics that can be used to probe the contribution of the CK1-MDM2 protein-protein interaction to p53 activation and cell viability. Overlapping peptides derived from CK1α were screened for dominant MDM2 binding sites using (i ELISA with recombinant MDM2; (ii cell lysate pull-down towards endogenous MDM2; (iii MDM2-CK1α complex-based competition ELISA; and (iv MDM2-mediated ubiquitination. One dominant peptide, peptide 35 was bioactive in all four assays and its transfection induced cell death/growth arrest in a p53-independent manner. Ectopic expression of flag-tagged peptide 35 induced a novel ubiquitin and NEDD8 modification of CK1α, providing one of the first examples whereby NEDDylation of a protein kinase can be induced. These data identify an MDM2 binding motif in CK1α which when isolated as a small peptide can (i function as a dominant negative inhibitor of the CK1α-MDM2 interface, (ii be used as a tool to study NEDDylation of CK1α, and (iii reduce cell growth. Further, this approach provides a technological blueprint, complementing siRNA and chemical biology approaches, by exploiting protein-protein interactions in order to develop Biologics to manipulate novel types of signalling pathways such as cross

  16. Diversity of Neuropeptide Cell-Cell Signaling Molecules Generated by Proteolytic Processing Revealed by Neuropeptidomics Mass Spectrometry

    Science.gov (United States)

    Hook, Vivian; Lietz, Christopher B.; Podvin, Sonia; Cajka, Tomas; Fiehn, Oliver

    2018-04-01

    Neuropeptides are short peptides in the range of 3-40 residues that are secreted for cell-cell communication in neuroendocrine systems. In the nervous system, neuropeptides comprise the largest group of neurotransmitters. In the endocrine system, neuropeptides function as peptide hormones to coordinate intercellular signaling among target physiological systems. The diversity of neuropeptide functions is defined by their distinct primary sequences, peptide lengths, proteolytic processing of pro-neuropeptide precursors, and covalent modifications. Global, untargeted neuropeptidomics mass spectrometry is advantageous for defining the structural features of the thousands to tens of thousands of neuropeptides present in biological systems. Defining neuropeptide structures is the basis for defining the proteolytic processing pathways that convert pro-neuropeptides into active peptides. Neuropeptidomics has revealed that processing of pro-neuropeptides occurs at paired basic residues sites, and at non-basic residue sites. Processing results in neuropeptides with known functions and generates novel peptides representing intervening peptide domains flanked by dibasic residue processing sites, identified by neuropeptidomics. While very short peptide products of 2-4 residues are predicted from pro-neuropeptide dibasic processing sites, such peptides have not been readily identified; therefore, it will be logical to utilize metabolomics to identify very short peptides with neuropeptidomics in future studies. Proteolytic processing is accompanied by covalent post-translational modifications (PTMs) of neuropeptides comprising C-terminal amidation, N-terminal pyroglutamate, disulfide bonds, phosphorylation, sulfation, acetylation, glycosylation, and others. Neuropeptidomics can define PTM features of neuropeptides. In summary, neuropeptidomics for untargeted, global analyses of neuropeptides is essential for elucidation of proteases that generate diverse neuropeptides for cell-cell

  17. Diversity of Neuropeptide Cell-Cell Signaling Molecules Generated by Proteolytic Processing Revealed by Neuropeptidomics Mass Spectrometry

    Science.gov (United States)

    Hook, Vivian; Lietz, Christopher B.; Podvin, Sonia; Cajka, Tomas; Fiehn, Oliver

    2018-05-01

    Neuropeptides are short peptides in the range of 3-40 residues that are secreted for cell-cell communication in neuroendocrine systems. In the nervous system, neuropeptides comprise the largest group of neurotransmitters. In the endocrine system, neuropeptides function as peptide hormones to coordinate intercellular signaling among target physiological systems. The diversity of neuropeptide functions is defined by their distinct primary sequences, peptide lengths, proteolytic processing of pro-neuropeptide precursors, and covalent modifications. Global, untargeted neuropeptidomics mass spectrometry is advantageous for defining the structural features of the thousands to tens of thousands of neuropeptides present in biological systems. Defining neuropeptide structures is the basis for defining the proteolytic processing pathways that convert pro-neuropeptides into active peptides. Neuropeptidomics has revealed that processing of pro-neuropeptides occurs at paired basic residues sites, and at non-basic residue sites. Processing results in neuropeptides with known functions and generates novel peptides representing intervening peptide domains flanked by dibasic residue processing sites, identified by neuropeptidomics. While very short peptide products of 2-4 residues are predicted from pro-neuropeptide dibasic processing sites, such peptides have not been readily identified; therefore, it will be logical to utilize metabolomics to identify very short peptides with neuropeptidomics in future studies. Proteolytic processing is accompanied by covalent post-translational modifications (PTMs) of neuropeptides comprising C-terminal amidation, N-terminal pyroglutamate, disulfide bonds, phosphorylation, sulfation, acetylation, glycosylation, and others. Neuropeptidomics can define PTM features of neuropeptides. In summary, neuropeptidomics for untargeted, global analyses of neuropeptides is essential for elucidation of proteases that generate diverse neuropeptides for cell-cell

  18. A Diagnostic Assessment for Introductory Molecular and Cell Biology

    Science.gov (United States)

    Shi, Jia; Wood, William B.; Martin, Jennifer M.; Guild, Nancy A.; Vicens, Quentin; Knight, Jennifer K.

    2010-01-01

    We have developed and validated a tool for assessing understanding of a selection of fundamental concepts and basic knowledge in undergraduate introductory molecular and cell biology, focusing on areas in which students often have misconceptions. This multiple-choice Introductory Molecular and Cell Biology Assessment (IMCA) instrument is designed…

  19. Homeobox NKX2-3 promotes marginal-zone lymphomagenesis by activating B-cell receptor signalling and shaping lymphocyte dynamics

    Science.gov (United States)

    Robles, Eloy F.; Mena-Varas, Maria; Barrio, Laura; Merino-Cortes, Sara V.; Balogh, Péter; Du, Ming-Qing; Akasaka, Takashi; Parker, Anton; Roa, Sergio; Panizo, Carlos; Martin-Guerrero, Idoia; Siebert, Reiner; Segura, Victor; Agirre, Xabier; Macri-Pellizeri, Laura; Aldaz, Beatriz; Vilas-Zornoza, Amaia; Zhang, Shaowei; Moody, Sarah; Calasanz, Maria Jose; Tousseyn, Thomas; Broccardo, Cyril; Brousset, Pierre; Campos-Sanchez, Elena; Cobaleda, Cesar; Sanchez-Garcia, Isidro; Fernandez-Luna, Jose Luis; Garcia-Muñoz, Ricardo; Pena, Esther; Bellosillo, Beatriz; Salar, Antonio; Baptista, Maria Joao; Hernandez-Rivas, Jesús Maria; Gonzalez, Marcos; Terol, Maria Jose; Climent, Joan; Ferrandez, Antonio; Sagaert, Xavier; Melnick, Ari M.; Prosper, Felipe; Oscier, David G.; Carrasco, Yolanda R.; Dyer, Martin J. S.; Martinez-Climent, Jose A.

    2016-01-01

    NKX2 homeobox family proteins have a role in cancer development. Here we show that NKX2-3 is overexpressed in tumour cells from a subset of patients with marginal-zone lymphomas, but not with other B-cell malignancies. While Nkx2-3-deficient mice exhibit the absence of marginal-zone B cells, transgenic mice with expression of NKX2-3 in B cells show marginal-zone expansion that leads to the development of tumours, faithfully recapitulating the principal clinical and biological features of human marginal-zone lymphomas. NKX2-3 induces B-cell receptor signalling by phosphorylating Lyn/Syk kinases, which in turn activate multiple integrins (LFA-1, VLA-4), adhesion molecules (ICAM-1, MadCAM-1) and the chemokine receptor CXCR4. These molecules enhance migration, polarization and homing of B cells to splenic and extranodal tissues, eventually driving malignant transformation through triggering NF-κB and PI3K-AKT pathways. This study implicates oncogenic NKX2-3 in lymphomagenesis, and provides a valid experimental mouse model for studying the biology and therapy of human marginal-zone B-cell lymphomas. PMID:27297662

  20. Nrf2 regulates cellular behaviors and Notch signaling in oral squamous cell carcinoma cells.

    Science.gov (United States)

    Fan, Hong; Paiboonrungruan, Chorlada; Zhang, Xinyan; Prigge, Justin R; Schmidt, Edward E; Sun, Zheng; Chen, Xiaoxin

    2017-11-04

    Oxidative stress is known to play a pivotal role in the development of oral squamous cell carcinoma (OSCC). We have demonstrated that activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway has chemopreventive effects against oxidative stress-associated OSCC. However, Nrf2 have dual roles in cancer development; while it prevents carcinogenesis of normal cells, hyperactive Nrf2 also promotes the survival of cancer cells. This study is aimed to understand the function of Nrf2 in regulating cellular behaviors of OSCC cells, and the potential mechanisms through which Nrf2 facilitates OSCC. We established the Nrf2-overexpressing and Nrf2-knockdown OSCC cell lines, and examined the function of Nrf2 in regulating cell proliferation, migration, invasion, cell cycle and colony formation. Our data showed that Nrf2 overexpression promoted cancer phenotypes in OSCC cells, whereas Nrf2 silencing inhibited these phenotypes. In addition, Nrf2 positively regulated Notch signaling pathway in OSCC cells in vitro. Consistent with this observation, Nrf2 activation in Keap1 -/- mice resulted in not only hyperproliferation of squamous epithelial cells in mouse tongue as evidenced by increased expression of PCNA, but also activation of Notch signaling in these cells as evidenced by increased expression of NICD1 and Hes1. In conclusion, Nrf2 regulates cancer behaviors and Notch signaling in OSCC cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. A signal processing analysis of Purkinje cells in vitro

    Directory of Open Access Journals (Sweden)

    Ze'ev R Abrams

    2010-05-01

    Full Text Available Cerebellar Purkinje cells in vitro fire recurrent sequences of Sodium and Calcium spikes. Here, we analyze the Purkinje cell using harmonic analysis, and our experiments reveal that its output signal is comprised of three distinct frequency bands, which are combined using Amplitude and Frequency Modulation (AM/FM. We find that the three characteristic frequencies - Sodium, Calcium and Switching – occur in various combinations in all waveforms observed using whole-cell current clamp recordings. We found that the Calcium frequency can display a frequency doubling of its frequency mode, and the Switching frequency can act as a possible generator of pauses that are typically seen in Purkinje output recordings. Using a reversibly photo-switchable kainate receptor agonist, we demonstrate the external modulation of the Calcium and Switching frequencies. These experiments and Fourier analysis suggest that the Purkinje cell can be understood as a harmonic signal oscillator, enabling a higher level of interpretation of Purkinje signaling based on modern signal processing techniques.

  2. Short-range intercellular calcium signaling in bone

    DEFF Research Database (Denmark)

    Jørgensen, Niklas R

    2005-01-01

    The regulation of bone turnover is a complex and finely tuned process. Many factors regulate bone remodeling, including hormones, growth factors, cytokines etc. However, little is known about the signals coupling bone formation to bone resorption, and how mechanical forces are translated...... into biological effects in bone. Intercellular calcium waves are increases in intracellular calcium concentration in single cells, subsequently propagating to adjacent cells, and can be a possible mechanism for the coupling of bone formation to bone resorption. The aim of the present studies was to investigate...... whether bone cells are capable of communicating via intercellular calcium signals, and determine by which mechanisms the cells propagate the signals. First, we found that osteoblastic cells can propagate intercellular calcium transients upon mechanical stimulation, and that there are two principally...

  3. Phospho-specific flow cytometry identifies aberrant signaling in indolent B-cell lymphoma

    Directory of Open Access Journals (Sweden)

    Blix Egil S

    2012-10-01

    Full Text Available Abstract Background Knowledge about signaling pathways in malignant cells may provide prognostic and diagnostic information in addition to identify potential molecular targets for therapy. B-cell receptor (BCR and co-receptor CD40 signaling is essential for normal B cells, and there is increasing evidence that signaling via BCR and CD40 plays an important role in the pathogenesis of B-cell lymphoma. The aim of this study was to investigate basal and induced signaling in lymphoma B cells and infiltrating T cells in single-cell suspensions of biopsies from small cell lymphocytic lymphoma/chronic lymphocytic leukemia (SLL/CLL and marginal zone lymphoma (MZL patients. Methods Samples from untreated SLL/CLL and MZL patients were examined for basal and activation induced signaling by phospho-specific flow cytometry. A panel of 9 stimulation conditions targeting B and T cells, including crosslinking of the B cell receptor (BCR, CD40 ligand and interleukins in combination with 12 matching phospho-protein readouts was used to study signaling. Results Malignant B cells from SLL/CLL patients had higher basal levels of phosphorylated (p-SFKs, p-PLCγ, p-ERK, p-p38, p-p65 (NF-κB, p-STAT5 and p-STAT6, compared to healthy donor B cells. In contrast, anti-BCR induced signaling was highly impaired in SLL/CLL and MZL B cells as determined by low p-SFK, p-SYK and p-PLCγ levels. Impaired anti-BCR-induced p-PLCγ was associated with reduced surface expression of IgM and CD79b. Similarly, CD40L-induced p-ERK and p-p38 were also significantly reduced in lymphoma B cells, whereas p-p65 (NF-κB was equal to that of normal B cells. In contrast, IL-2, IL-7 and IL-15 induced p-STAT5 in tumor-infiltrating T cells were not different from normal T cells. Conclusions BCR signaling and CD40L-induced p-p38 was suppressed in malignant B cells from SLL/CLL and MZL patients. Single-cell phospho-specific flow cytometry for detection of basal as well as activation

  4. Cell adhesion signaling regulates RANK expression in osteoclast precursors.

    Directory of Open Access Journals (Sweden)

    Ayako Mochizuki

    Full Text Available Cells with monocyte/macrophage lineage expressing receptor activator of NF-κB (RANK differentiate into osteoclasts following stimulation with the RANK ligand (RANKL. Cell adhesion signaling is also required for osteoclast differentiation from precursors. However, details of the mechanism by which cell adhesion signals induce osteoclast differentiation have not been fully elucidated. To investigate the participation of cell adhesion signaling in osteoclast differentiation, mouse bone marrow-derived macrophages (BMMs were used as osteoclast precursors, and cultured on either plastic cell culture dishes (adherent condition or the top surface of semisolid methylcellulose gel loaded in culture tubes (non-adherent condition. BMMs cultured under the adherent condition differentiated into osteoclasts in response to RANKL stimulation. However, under the non-adherent condition, the efficiency of osteoclast differentiation was markedly reduced even in the presence of RANKL. These BMMs retained macrophage characteristics including phagocytic function and gene expression profile. Lipopolysaccharide (LPS and tumor necrosis factor -αTNF-α activated the NF-κB-mediated signaling pathways under both the adherent and non-adherent conditions, while RANKL activated the pathways only under the adherent condition. BMMs highly expressed RANK mRNA and protein under the adherent condition as compared to the non-adherent condition. Also, BMMs transferred from the adherent to non-adherent condition showed downregulated RANK expression within 24 hours. In contrast, transferring those from the non-adherent to adherent condition significantly increased the level of RANK expression. Moreover, interruption of cell adhesion signaling by echistatin, an RGD-containing disintegrin, decreased RANK expression in BMMs, while forced expression of either RANK or TNFR-associated factor 6 (TRAF6 in BMMs induced their differentiation into osteoclasts even under the non

  5. Glial cell biology in the Great Lakes region.

    Science.gov (United States)

    Feinstein, Douglas L; Skoff, Robert P

    2016-03-31

    We report on the tenth bi-annual Great Lakes Glial meeting, held in Traverse City, Michigan, USA, September 27-29 2015. The GLG meeting is a small conference that focuses on current research in glial cell biology. The array of functions that glial cells (astrocytes, microglia, oligodendrocytes, Schwann cells) play in health and disease is constantly increasing. Despite this diversity, GLG meetings bring together scientists with common interests, leading to a better understanding of these cells. This year's meeting included two keynote speakers who presented talks on the regulation of CNS myelination and the consequences of stress on Schwann cell biology. Twenty-two other talks were presented along with two poster sessions. Sessions covered recent findings in the areas of microglial and astrocyte activation; age-dependent changes to glial cells, Schwann cell development and pathology, and the role of stem cells in glioma and neural regeneration.

  6. Lysosomal cysteine peptidases - Molecules signaling tumor cell death and survival.

    Science.gov (United States)

    Pišlar, Anja; Perišić Nanut, Milica; Kos, Janko

    2015-12-01

    Lysosomal cysteine peptidases - cysteine cathepsins - are general intracellular protein-degrading enzymes that control also a variety of specific physiological processes. They can trigger irreversible events leading to signal transduction and activation of signaling pathways, resulting in cell survival and proliferation or cell death. In cancer cells, lysosomal cysteine peptidases are involved in multiple processes during malignant progression. Their translocation from the endosomal/lysosomal pathway to nucleus, cytoplasm, plasma membrane and extracellular space enables the activation and remodeling of a variety of tumor promoting proteins. Thus, lysosomal cysteine peptidases interfere with cytokine/chemokine signaling, regulate cell adhesion and migration and endocytosis, are involved in the antitumor immune response and apoptosis, and promote cell invasion, angiogenesis and metastasis. Further, lysosomal cysteine peptidases modify growth factors and receptors involved in tyrosine kinase dependent pathways such as MAPK, Akt and JNK, thus representing key signaling tools for the activation of tumor cell growth and proliferation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Lessons we learned from high-throughput and top-down systems biology analyses about glioma stem cells.

    Science.gov (United States)

    Mock, Andreas; Chiblak, Sara; Herold-Mende, Christel

    2014-01-01

    A growing body of evidence suggests that glioma stem cells (GSCs) account for tumor initiation, therapy resistance, and the subsequent regrowth of gliomas. Thus, continuous efforts have been undertaken to further characterize this subpopulation of less differentiated tumor cells. Although we are able to enrich GSCs, we still lack a comprehensive understanding of GSC phenotypes and behavior. The advent of high-throughput technologies raised hope that incorporation of these newly developed platforms would help to tackle such questions. Since then a couple of comparative genome-, transcriptome- and proteome-wide studies on GSCs have been conducted giving new insights in GSC biology. However, lessons had to be learned in designing high-throughput experiments and some of the resulting conclusions fell short of expectations because they were performed on only a few GSC lines or at one molecular level instead of an integrative poly-omics approach. Despite these shortcomings, our knowledge of GSC biology has markedly expanded due to a number of survival-associated biomarkers as well as glioma-relevant signaling pathways and therapeutic targets being identified. In this article we review recent findings obtained by comparative high-throughput analyses of GSCs. We further summarize fundamental concepts of systems biology as well as its applications for glioma stem cell research.

  8. Allosteric conformational barcodes direct signaling in the cell.

    Science.gov (United States)

    Nussinov, Ruth; Ma, Buyong; Tsai, Chung-Jung; Csermely, Peter

    2013-09-03

    The cellular network is highly interconnected. Pathways merge and diverge. They proceed through shared proteins and may change directions. How are cellular pathways controlled and their directions decided, coded, and read? These questions become particularly acute when we consider that a small number of pathways, such as signaling pathways that regulate cell fates, cell proliferation, and cell death in development, are extensively exploited. This review focuses on these signaling questions from the structural standpoint and discusses the literature in this light. All co-occurring allosteric events (including posttranslational modifications, pathogen binding, and gain-of-function mutations) collectively tag the protein functional site with a unique barcode. The barcode shape is read by an interacting molecule, which transmits the signal. A conformational barcode provides an intracellular address label, which selectively favors binding to one partner and quenches binding to others, and, in this way, determines the pathway direction, and, eventually, the cell's response and fate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Molecular biology of mycoplasmas: from the minimum cell concept to the artificial cell.

    Science.gov (United States)

    Cordova, Caio M M; Hoeltgebaum, Daniela L; Machado, Laís D P N; Santos, Larissa Dos

    2016-01-01

    Mycoplasmas are a large group of bacteria, sorted into different genera in the Mollicutes class, whose main characteristic in common, besides the small genome, is the absence of cell wall. They are considered cellular and molecular biology study models. We present an updated review of the molecular biology of these model microorganisms and the development of replicative vectors for the transformation of mycoplasmas. Synthetic biology studies inspired by these pioneering works became possible and won the attention of the mainstream media. For the first time, an artificial genome was synthesized (a minimal genome produced from consensus sequences obtained from mycoplasmas). For the first time, a functional artificial cell has been constructed by introducing a genome completely synthesized within a cell envelope of a mycoplasma obtained by transformation techniques. Therefore, this article offers an updated insight to the state of the art of these peculiar organisms' molecular biology.

  10. METABOLIC MODELLING IN THE DEVELOPMENT OF CELL FACTORIES BY SYNTHETIC BIOLOGY

    Directory of Open Access Journals (Sweden)

    Paula Jouhten

    2012-10-01

    Full Text Available Cell factories are commonly microbial organisms utilized for bioconversion of renewable resources to bulk or high value chemicals. Introduction of novel production pathways in chassis strains is the core of the development of cell factories by synthetic biology. Synthetic biology aims to create novel biological functions and systems not found in nature by combining biology with engineering. The workflow of the development of novel cell factories with synthetic biology is ideally linear which will be attainable with the quantitative engineering approach, high-quality predictive models, and libraries of well-characterized parts. Different types of metabolic models, mathematical representations of metabolism and its components, enzymes and metabolites, are useful in particular phases of the synthetic biology workflow. In this minireview, the role of metabolic modelling in synthetic biology will be discussed with a review of current status of compatible methods and models for the in silico design and quantitative evaluation of a cell factory.

  11. Ikaros limits follicular B cell activation by regulating B cell receptor signaling pathways

    International Nuclear Information System (INIS)

    Heizmann, Beate; Sellars, MacLean; Macias-Garcia, Alejandra; Chan, Susan; Kastner, Philippe

    2016-01-01

    The Ikaros transcription factor is essential for early B cell development, but its effect on mature B cells is debated. We show that Ikaros is required to limit the response of naive splenic B cells to B cell receptor signals. Ikaros deficient follicular B cells grow larger and enter cell cycle faster after anti-IgM stimulation. Unstimulated mutant B cells show deregulation of positive and negative regulators of signal transduction at the mRNA level, and constitutive phosphorylation of ERK, p38, SYK, BTK, AKT and LYN. Stimulation results in enhanced and prolonged ERK and p38 phosphorylation, followed by hyper-proliferation. Pharmacological inhibition of ERK and p38 abrogates the increased proliferative response of Ikaros deficient cells. These results suggest that Ikaros functions as a negative regulator of follicular B cell activation.

  12. Ikaros limits follicular B cell activation by regulating B cell receptor signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Heizmann, Beate [Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch (France); Sellars, MacLean [Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch (France); David Geffen School of Medicine at UCLA, Los Angeles, CA 90095 (United States); Macias-Garcia, Alejandra [Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch (France); Institute for Medical Engineering and Science at MIT, Cambridge, MA 02139 (United States); Chan, Susan, E-mail: scpk@igbmc.fr [Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch (France); Kastner, Philippe, E-mail: scpk@igbmc.fr [Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch (France); Faculté de Médecine, Université de Strasbourg, Strasbourg (France)

    2016-02-12

    The Ikaros transcription factor is essential for early B cell development, but its effect on mature B cells is debated. We show that Ikaros is required to limit the response of naive splenic B cells to B cell receptor signals. Ikaros deficient follicular B cells grow larger and enter cell cycle faster after anti-IgM stimulation. Unstimulated mutant B cells show deregulation of positive and negative regulators of signal transduction at the mRNA level, and constitutive phosphorylation of ERK, p38, SYK, BTK, AKT and LYN. Stimulation results in enhanced and prolonged ERK and p38 phosphorylation, followed by hyper-proliferation. Pharmacological inhibition of ERK and p38 abrogates the increased proliferative response of Ikaros deficient cells. These results suggest that Ikaros functions as a negative regulator of follicular B cell activation.

  13. Integrative systems and synthetic biology of cell-matrix adhesion sites.

    Science.gov (United States)

    Zamir, Eli

    2016-09-02

    The complexity of cell-matrix adhesion convolves its roles in the development and functioning of multicellular organisms and their evolutionary tinkering. Cell-matrix adhesion is mediated by sites along the plasma membrane that anchor the actin cytoskeleton to the matrix via a large number of proteins, collectively called the integrin adhesome. Fundamental challenges for understanding how cell-matrix adhesion sites assemble and function arise from their multi-functionality, rapid dynamics, large number of components and molecular diversity. Systems biology faces these challenges in its strive to understand how the integrin adhesome gives rise to functional adhesion sites. Synthetic biology enables engineering intracellular modules and circuits with properties of interest. In this review I discuss some of the fundamental questions in systems biology of cell-matrix adhesion and how synthetic biology can help addressing them.

  14. Amperometric Adhesion Signals of Liposomes, Cells and Droplets

    OpenAIRE

    Ivošević DeNardis, N.; Žutić, V.; Svetličić, V.; Frkanec, R.

    2009-01-01

    Individual soft microparticles (liposomes, living cells and organic droplets) in aqueous media are characterized by their adhesion signals using amperometry at the dropping mercury electrode. We confirmed that the general mechanism established for adhesion of hydrocarbon droplets and cells is valid as well for liposome adhesion within a wide range of surface charge densities. Incidents and shape of adhesion signals in liposome suspensions reflect liposome polydispersity, surface charge den...

  15. MET signalling in primary colon epithelial cells leads to increased transformation irrespective of aberrant Wnt signalling

    Science.gov (United States)

    Boon, E M J; Kovarikova, M; Derksen, P W B; van der Neut, R

    2005-01-01

    It has been shown that in hereditary and most sporadic colon tumours, components of the Wnt pathway are mutated. The Wnt target MET has been implicated in the development of colon cancer. Here, we show that overexpression of wild-type or a constitutively activated form of MET in colon epithelial cells leads to increased transformation irrespective of Wnt signalling. Fetal human colon epithelial cells without aberrant Wnt signalling were transfected with wild-type or mutated MET constructs. Expression of these constructs leads to increased phosphorylation of MET and its downstream targets PKB and MAPK. Upon stimulation with HGF, the expression of E-cadherin is downregulated in wild-type MET-transfected cells, whereas cells expressing mutated MET show low E-cadherin levels independent of stimulation with ligand. This implies a higher migratory propensity of these cells. Furthermore, fetal human colon epithelial cells expressing the mutated form of MET have colony-forming capacity in soft agar, while cells expressing wild-type MET show an intermediate phenotype. Subcutaneous injection of mutated MET-transfected cells in nude mice leads to the formation of tumours within 12 days in all mice injected. At this time point, mock-transfected cells do not form tumours, while wild-type MET-transfected cells form subcutaneous tumours in one out of five mice. We thus show that MET signalling can lead to increased transformation of colon epithelial cells independent of Wnt signalling and in this way could play an essential role in the onset and progression of colorectal cancer. PMID:15785735

  16. The changing world of modern cell biology.

    Science.gov (United States)

    Misteli, Tom

    2009-01-12

    Change is always ambiguous. There is the enticing prospect of novelty and better times ahead, but at the same time the concern of losing the good of the past. It is with these sentiments that I take over as the Editor-in-Chief from Ira Mellman who for a decade has cleverly and effectively lead the JCB. During this time he directed and oversaw an extensive modernization of the journal and guided it through dramatic changes in the publishing world. Ira lead the journal with unyielding dedication and enthusiasm and we in the cell biology community must thank him profoundly for his service. It is his work, together with the invaluable contribution of the best editorial board and the most dedicated professional editorial staff in the scientific publishing business, that allows me to now take over the stewardship of the JCB with a tremendous sense of excitement and determination to continue and expand the JCB's role as the leading journal in the cell biology community and as a trendsetter in the rapidly changing world of modern cell biology.

  17. Dynamic multiprotein assemblies shape the spatial structure of cell signaling.

    Science.gov (United States)

    Nussinov, Ruth; Jang, Hyunbum

    2014-01-01

    Cell signaling underlies critical cellular decisions. Coordination, efficiency as well as fail-safe mechanisms are key elements. How the cell ensures that these hallmarks are at play are important questions. Cell signaling is often viewed as taking place through discrete and cross-talking pathways; oftentimes these are modularized to emphasize distinct functions. While simple, convenient and clear, such models largely neglect the spatial structure of cell signaling; they also convey inter-modular (or inter-protein) spatial separation that may not exist. Here our thesis is that cell signaling is shaped by a network of multiprotein assemblies. While pre-organized, the assemblies and network are loose and dynamic. They contain transiently-associated multiprotein complexes which are often mediated by scaffolding proteins. They are also typically anchored in the membrane, and their continuum may span the cell. IQGAP1 scaffolding protein which binds proteins including Raf, calmodulin, Mek, Erk, actin, and tens more, with actin shaping B-cell (and likely other) membrane-anchored nanoclusters and allosterically polymerizing in dynamic cytoskeleton formation, and Raf anchoring in the membrane along with Ras, provides a striking example. The multivalent network of dynamic proteins and lipids, with specific interactions forming and breaking, can be viewed as endowing gel-like properties. Collectively, this reasons that efficient, productive and reliable cell signaling takes place primarily through transient, preorganized and cooperative protein-protein interactions spanning the cell rather than stochastic, diffusion-controlled processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Investigating the role of retinal Müller cells with approaches in genetics and cell biology.

    Science.gov (United States)

    Fu, Suhua; Zhu, Meili; Ash, John D; Wang, Yunchang; Le, Yun-Zheng

    2014-01-01

    Müller cells are major macroglia and play many essential roles as a supporting cell in the retina. As Müller cells only constitute a small portion of retinal cells, investigating the role of Müller glia in retinal biology and diseases is particularly challenging. To overcome this problem, we first generated a Cre/lox-based conditional gene targeting system that permits the genetic manipulation and functional dissection of gene of interests in Müller cells. To investigate diabetes-induced alteration of Müller cells, we recently adopted methods to analyze Müller cells survival/death in vitro and in vivo. We also used normal and genetically altered primary cell cultures to reveal the mechanistic insights for Müller cells in biological and disease processes. In this article, we will discuss the applications and limitations of these methodologies, which may be useful for research in retinal Müller cell biology and pathophysiology.

  19. Intercellular signaling through secreted proteins induces free-energy gradient-directed cell movement.

    Science.gov (United States)

    Kravchenko-Balasha, Nataly; Shin, Young Shik; Sutherland, Alex; Levine, R D; Heath, James R

    2016-05-17

    Controlling cell migration is important in tissue engineering and medicine. Cell motility depends on factors such as nutrient concentration gradients and soluble factor signaling. In particular, cell-cell signaling can depend on cell-cell separation distance and can influence cellular arrangements in bulk cultures. Here, we seek a physical-based approach, which identifies a potential governed by cell-cell signaling that induces a directed cell-cell motion. A single-cell barcode chip (SCBC) was used to experimentally interrogate secreted proteins in hundreds of isolated glioblastoma brain cancer cell pairs and to monitor their relative motions over time. We used these trajectories to identify a range of cell-cell separation distances where the signaling was most stable. We then used a thermodynamics-motivated analysis of secreted protein levels to characterize free-energy changes for different cell-cell distances. We show that glioblastoma cell-cell movement can be described as Brownian motion biased by cell-cell potential. To demonstrate that the free-energy potential as determined by the signaling is the driver of motion, we inhibited two proteins most involved in maintaining the free-energy gradient. Following inhibition, cell pairs showed an essentially random Brownian motion, similar to the case for untreated, isolated single cells.

  20. Evolutionary cell biology: functional insight from "endless forms most beautiful".

    Science.gov (United States)

    Richardson, Elisabeth; Zerr, Kelly; Tsaousis, Anastasios; Dorrell, Richard G; Dacks, Joel B

    2015-12-15

    In animal and fungal model organisms, the complexities of cell biology have been analyzed in exquisite detail and much is known about how these organisms function at the cellular level. However, the model organisms cell biologists generally use include only a tiny fraction of the true diversity of eukaryotic cellular forms. The divergent cellular processes observed in these more distant lineages are still largely unknown in the general scientific community. Despite the relative obscurity of these organisms, comparative studies of them across eukaryotic diversity have had profound implications for our understanding of fundamental cell biology in all species and have revealed the evolution and origins of previously observed cellular processes. In this Perspective, we will discuss the complexity of cell biology found across the eukaryotic tree, and three specific examples of where studies of divergent cell biology have altered our understanding of key functional aspects of mitochondria, plastids, and membrane trafficking. © 2015 Richardson et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  1. Liposomal packaging generates Wnt protein with in vivo biological activity.

    Directory of Open Access Journals (Sweden)

    Nathan T Morrell

    2008-08-01

    Full Text Available Wnt signals exercise strong cell-biological and regenerative effects of considerable therapeutic value. There are, however, no specific Wnt agonists and no method for in vivo delivery of purified Wnt proteins. Wnts contain lipid adducts that are required for activity and we exploited this lipophilicity by packaging purified Wnt3a protein into lipid vesicles. Rather than being encapsulated, Wnts are tethered to the liposomal surface, where they enhance and sustain Wnt signaling in vitro. Molecules that effectively antagonize soluble Wnt3a protein but are ineffective against the Wnt3a signal presented by a cell in a paracrine or autocrine manner are also unable to block liposomal Wnt3a activity, suggesting that liposomal packaging mimics the biological state of active Wnts. When delivered subcutaneously, Wnt3a liposomes induce hair follicle neogenesis, demonstrating their robust biological activity in a regenerative context.

  2. Single-cell analysis reveals a link between CD3- and CD59-mediated signaling pathways in Jurkat T cells

    International Nuclear Information System (INIS)

    Lipp, A. M.

    2012-01-01

    Elevation of intracellular free calcium concentration ([Ca2+]i) is a key signal during T cell activation and is commonly used as a read-out parameter for stimulation of T cell signaling. Upon T cell stimulation a variety of calcium signals is produced by individual cells of the T cell population and the type of calcium signal strongly influences cell fate decisions. The heterogeneous nature of T cells is masked in ensemble measurements, which highlights the need for single-cell measurements. In this study we used single-cell calcium measurements in Jurkat cells to investigate signaling pathways, which are triggered by different proteins, namely CD3 and CD59. By application of an automated cluster algorithm the presented assay provides unbiased analysis of a large data set of individual calcium time traces generated by the whole cell population. By using this method we could demonstrate that the Jurkat population generates heterogeneous calcium signals in a stimulus-dependent manner. Furthermore, our data revealed the existence of a link between CD3- and CD59-mediated signaling pathways. Single-cell calcium measurements in Jurkat cells expressing different levels of the T cell receptor (TCR) complex indicated that CD59-mediated calcium signaling is critically dependent on TCR surface expression levels. In addition, triggering CD59-mediated calcium signaling resulted in down-regulation of TCR surface expression levels, which is known to happen upon direct TCR triggering too. Moreover, by using siRNA-mediated protein knock-downs and protein knock-out Jurkat mutants we could show that CD3- and CD59-mediated calcium signaling require identical key proteins. We therefore explored by which mechanism CD59-mediated signaling couples into TCR-mediated signaling. Fluorescence recovery after photobleaching (FRAP) experiments and live-cell protein-protein interaction assays provided no evidence of a direct physical interaction between CD3- and CD59-mediated signaling pathways

  3. Signal transduction events in aluminum-induced cell death in tomato suspension cells

    NARCIS (Netherlands)

    Iakimova, E.T.; Kapchina-Toteva, V.M.; Woltering, E.J.

    2007-01-01

    In this study, some of the signal transduction events involved in AlCl3-induced cell death in tomato (Lycopersicon esculentum Mill.) suspension cells were elucidated. Cells treated with 100 ¿M AlCl3 showed typical features of programmed cell death (PCD) such as nuclear and cytoplasmic condensation.

  4. Macroscopic law of conservation revealed in the population dynamics of Toll-like receptor signaling

    Directory of Open Access Journals (Sweden)

    Selvarajoo Kumar

    2011-04-01

    Full Text Available Abstract Stimulating the receptors of a single cell generates stochastic intracellular signaling. The fluctuating response has been attributed to the low abundance of signaling molecules and the spatio-temporal effects of diffusion and crowding. At population level, however, cells are able to execute well-defined deterministic biological processes such as growth, division, differentiation and immune response. These data reflect biology as a system possessing microscopic and macroscopic dynamics. This commentary discusses the average population response of the Toll-like receptor (TLR 3 and 4 signaling. Without requiring detailed experimental data, linear response equations together with the fundamental law of information conservation have been used to decipher novel network features such as unknown intermediates, processes and cross-talk mechanisms. For single cell response, however, such simplicity seems far from reality. Thus, as observed in any other complex systems, biology can be considered to possess order and disorder, inheriting a mixture of predictable population level and unpredictable single cell outcomes.

  5. N-wasp is essential for the negative regulation of B cell receptor signaling.

    Directory of Open Access Journals (Sweden)

    Chaohong Liu

    2013-11-01

    Full Text Available Negative regulation of receptor signaling is essential for controlling cell activation and differentiation. In B-lymphocytes, the down-regulation of B-cell antigen receptor (BCR signaling is critical for suppressing the activation of self-reactive B cells; however, the mechanism underlying the negative regulation of signaling remains elusive. Using genetically manipulated mouse models and total internal reflection fluorescence microscopy, we demonstrate that neuronal Wiskott-Aldrich syndrome protein (N-WASP, which is coexpressed with WASP in all immune cells, is a critical negative regulator of B-cell signaling. B-cell-specific N-WASP gene deletion causes enhanced and prolonged BCR signaling and elevated levels of autoantibodies in the mouse serum. The increased signaling in N-WASP knockout B cells is concurrent with increased accumulation of F-actin at the B-cell surface, enhanced B-cell spreading on the antigen-presenting membrane, delayed B-cell contraction, inhibition in the merger of signaling active BCR microclusters into signaling inactive central clusters, and a blockage of BCR internalization. Upon BCR activation, WASP is activated first, followed by N-WASP in mouse and human primary B cells. The activation of N-WASP is suppressed by Bruton's tyrosine kinase-induced WASP activation, and is restored by the activation of SH2 domain-containing inositol 5-phosphatase that inhibits WASP activation. Our results reveal a new mechanism for the negative regulation of BCR signaling and broadly suggest an actin-mediated mechanism for signaling down-regulation.

  6. Synthetic Biology Outside the Cell: Linking Computational Tools to Cell-Free Systems

    International Nuclear Information System (INIS)

    Lewis, Daniel D.; Villarreal, Fernando D.; Wu, Fan; Tan, Cheemeng

    2014-01-01

    As mathematical models become more commonly integrated into the study of biology, a common language for describing biological processes is manifesting. Many tools have emerged for the simulation of in vivo synthetic biological systems, with only a few examples of prominent work done on predicting the dynamics of cell-free synthetic systems. At the same time, experimental biologists have begun to study dynamics of in vitro systems encapsulated by amphiphilic molecules, opening the door for the development of a new generation of biomimetic systems. In this review, we explore both in vivo and in vitro models of biochemical networks with a special focus on tools that could be applied to the construction of cell-free expression systems. We believe that quantitative studies of complex cellular mechanisms and pathways in synthetic systems can yield important insights into what makes cells different from conventional chemical systems.

  7. Synthetic Biology Outside the Cell: Linking Computational Tools to Cell-Free Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Daniel D. [Integrative Genetics and Genomics, University of California Davis, Davis, CA (United States); Department of Biomedical Engineering, University of California Davis, Davis, CA (United States); Villarreal, Fernando D.; Wu, Fan; Tan, Cheemeng, E-mail: cmtan@ucdavis.edu [Department of Biomedical Engineering, University of California Davis, Davis, CA (United States)

    2014-12-09

    As mathematical models become more commonly integrated into the study of biology, a common language for describing biological processes is manifesting. Many tools have emerged for the simulation of in vivo synthetic biological systems, with only a few examples of prominent work done on predicting the dynamics of cell-free synthetic systems. At the same time, experimental biologists have begun to study dynamics of in vitro systems encapsulated by amphiphilic molecules, opening the door for the development of a new generation of biomimetic systems. In this review, we explore both in vivo and in vitro models of biochemical networks with a special focus on tools that could be applied to the construction of cell-free expression systems. We believe that quantitative studies of complex cellular mechanisms and pathways in synthetic systems can yield important insights into what makes cells different from conventional chemical systems.

  8. Signaling hierarchy regulating human endothelial cell development

    Science.gov (United States)

    Our present knowledge of the regulation of mammalian endothelial cell differentiation has been largely derived from studies of mouse embryonic development. However, unique mechanisms and hierarchy of signals that govern human endothelial cell development are unknown and, thus, explored in these stud...

  9. Data-driven quantification of the robustness and sensitivity of cell signaling networks

    International Nuclear Information System (INIS)

    Mukherjee, Sayak; Seok, Sang-Cheol; Vieland, Veronica J; Das, Jayajit

    2013-01-01

    Robustness and sensitivity of responses generated by cell signaling networks has been associated with survival and evolvability of organisms. However, existing methods analyzing robustness and sensitivity of signaling networks ignore the experimentally observed cell-to-cell variations of protein abundances and cell functions or contain ad hoc assumptions. We propose and apply a data-driven maximum entropy based method to quantify robustness and sensitivity of Escherichia coli (E. coli) chemotaxis signaling network. Our analysis correctly rank orders different models of E. coli chemotaxis based on their robustness and suggests that parameters regulating cell signaling are evolutionary selected to vary in individual cells according to their abilities to perturb cell functions. Furthermore, predictions from our approach regarding distribution of protein abundances and properties of chemotactic responses in individual cells based on cell population averaged data are in excellent agreement with their experimental counterparts. Our approach is general and can be used to evaluate robustness as well as generate predictions of single cell properties based on population averaged experimental data in a wide range of cell signaling systems. (paper)

  10. Retinoic Acid Signaling in Thymic Epithelial Cells Regulates Thymopoiesis

    DEFF Research Database (Denmark)

    Wendland, Kerstin; Niss, Kristoffer; Kotarsky, Knut

    2018-01-01

    Despite the essential role of thymic epithelial cells (TEC) in T cell development, the signals regulating TEC differentiation and homeostasis remain incompletely understood. In this study, we show a key in vivo role for the vitamin A metabolite, retinoic acid (RA), in TEC homeostasis. In the abse......Despite the essential role of thymic epithelial cells (TEC) in T cell development, the signals regulating TEC differentiation and homeostasis remain incompletely understood. In this study, we show a key in vivo role for the vitamin A metabolite, retinoic acid (RA), in TEC homeostasis...

  11. Morphogen and community effects determine cell fates in response to BMP4 signaling in human embryonic stem cells.

    Science.gov (United States)

    Nemashkalo, Anastasiia; Ruzo, Albert; Heemskerk, Idse; Warmflash, Aryeh

    2017-09-01

    Paracrine signals maintain developmental states and create cell fate patterns in vivo and influence differentiation outcomes in human embryonic stem cells (hESCs) in vitro Systematic investigation of morphogen signaling is hampered by the difficulty of disentangling endogenous signaling from experimentally applied ligands. Here, we grow hESCs in micropatterned colonies of 1-8 cells ('µColonies') to quantitatively investigate paracrine signaling and the response to external stimuli. We examine BMP4-mediated differentiation in µColonies and standard culture conditions and find that in µColonies, above a threshold concentration, BMP4 gives rise to only a single cell fate, contrary to its role as a morphogen in other developmental systems. Under standard culture conditions BMP4 acts as a morphogen but this requires secondary signals and particular cell densities. We find that a 'community effect' enforces a common fate within µColonies, both in the state of pluripotency and when cells are differentiated, and that this effect allows a more precise response to external signals. Using live cell imaging to correlate signaling histories with cell fates, we demonstrate that interactions between neighbors result in sustained, homogenous signaling necessary for differentiation. © 2017. Published by The Company of Biologists Ltd.

  12. Drak2 Does Not Regulate TGF-β Signaling in T Cells.

    Directory of Open Access Journals (Sweden)

    Tarsha L Harris

    Full Text Available Drak2 is a serine/threonine kinase expressed highest in T cells and B cells. Drak2-/- mice are resistant to autoimmunity in mouse models of type 1 diabetes and multiple sclerosis. Resistance to these diseases occurs, in part, because Drak2 is required for the survival of autoreactive T cells that induce disease. However, the molecular mechanisms by which Drak2 affects T cell survival and autoimmunity are not known. A recent report demonstrated that Drak2 negatively regulated transforming growth factor-β (TGF-β signaling in tumor cell lines. Thus, increased TGF-β signaling in the absence of Drak2 may contribute to the resistance to autoimmunity in Drak2-/- mice. Therefore, we examined if Drak2 functioned as a negative regulator of TGF-β signaling in T cells, and whether the enhanced susceptibility to death of Drak2-/- T cells was due to augmented TGF-β signaling. Using several in vitro assays to test TGF-β signaling and T cell function, we found that activation of Smad2 and Smad3, which are downstream of the TGF-β receptor, was similar between wildtype and Drak2-/- T cells. Furthermore, TGF-β-mediated effects on naïve T cell proliferation, activated CD8+ T cell survival, and regulatory T cell induction was similar between wildtype and Drak2-/- T cells. Finally, the increased susceptibility to death in the absence of Drak2 was not due to enhanced TGF-β signaling. Together, these data suggest that Drak2 does not function as a negative regulator of TGF-β signaling in primary T cells stimulated in vitro. It is important to investigate and discern potential molecular mechanisms by which Drak2 functions in order to better understand the etiology of autoimmune diseases, as well as to validate the use of Drak2 as a target for therapeutic treatment of these diseases.

  13. Apoptosis and signalling in acid sphingomyelinase deficient cells

    Directory of Open Access Journals (Sweden)

    Sillence Dan J

    2001-11-01

    Full Text Available Abstract Background Recent evidence suggests that the activation of a non-specific lipid scramblase during apoptosis induces the flipping of sphingomyelin from the cell surface to the cytoplasmic leaftet of the plasma membrane. Inner leaflet sphingomyelin is then cleaved to ceramide by a neutral sphingomyelinase. The production of this non-membrane forming lipid induces blebbing of the plasma membrane to aid rapid engulfment by professional phagocytes. However contrary evidence suggests that cells which are deficient in acid sphingomyelinase are defective in apoptosis signalling. This data has been interpreted as support for the activation of acid sphingomyelinase as an early signal in apoptosis. Hypothesis An alternative explanation is put forward whereby the accumulation of intracellular sphingomyelin in sphingomyelinase deficient cells leads to the formation of intracellular rafts which lead to the sequestration of important signalling molecules that are normally present on the cell surface where they perform their function. Testing the hypothesis It is expected that the subcellular distribution of important signalling molecules is altered in acid sphingomyelinase deficient cells, leading to their sequestration in late endosomes / lysosomes. Other sphingolipid storage diseases such as Niemann-Pick type C which have normal acid sphingomyelinase activity would also be expected to show the same phenotype. Implications of the hypothesis If true the hypothesis would provide a mechanism for the pathology of the sphingolipid storage diseases at the cellular level and also have implications for the role of ceramide in apoptosis.

  14. Sphingosine signaling and atherogenesis

    DEFF Research Database (Denmark)

    Xu, Cang-bao; Hansen-Schwartz, Jacob; Edvinsson, Lars

    2004-01-01

    Sphingosine-1-phosphate (S1P) has diverse biological functions acting inside cells as a second messenger to regulate cell proliferation and survival, and extracellularly, as a ligand for a group of G protein-coupled receptors (GPCRs) named the endothelial differentiation gene (EDG) family. Five...... closely related GPCRs of EDG family (EDG1, EDG3, EDG5, EDG6, and EDG8) have recently been identified as high-affinity S1P receptors. These receptors are coupled via Gi, Gq, G12/13, and Rho. The signaling pathways are linked to vascular cell migration, proliferation, apoptosis, intracellular Ca2......+ mobilization, and expression of adhesion molecules. The formation of an atherosclerotic lesion occurs through activation of cellular events that include monocyte adhesion to the endothelium and vascular smooth muscle cell (VSMC) migration and proliferation. Thus, S1P signaling may play an important role...

  15. Porcine pluripotency cell signaling develops from the inner cell mass to the epiblast during early development

    DEFF Research Database (Denmark)

    Hall, Vanessa Jane; Christensen, Josef; Gao, Yu

    2009-01-01

      The signaling mechanisms regulating pluripotency in porcine embryonic stem cells and embryos are unknown. In this study, we characterize cell signaling in the in-vivo porcine inner cell mass and later-stage epiblast. We evaluate expression of OCT4, NANOG, SOX2, genes within the JAK/STAT pathway...... pluripotency in human embryonic stem cells is detectable in the porcine epiblast, but not in the inner cell mass. Copyright (c) 2009 Wiley-Liss, Inc.......  The signaling mechanisms regulating pluripotency in porcine embryonic stem cells and embryos are unknown. In this study, we characterize cell signaling in the in-vivo porcine inner cell mass and later-stage epiblast. We evaluate expression of OCT4, NANOG, SOX2, genes within the JAK/STAT pathway...... (LIF, LIFR, GP130), FGF pathway (bFGF, FGFR1, FGFR2), BMP pathway (BMP4), and downstream-activated genes (STAT3, c-Myc, c-Fos, and SMAD4). We discovered two different expression profiles exist in the developing porcine embryo. The D6 porcine blastocyst (inner cell mass stage) is devoid...

  16. Integrative Radiation Biology

    Energy Technology Data Exchange (ETDEWEB)

    Barcellos-Hoff, Mary Helen [New York University School of Medicine, NY (United States)

    2015-02-27

    We plan to study tissue-level mechanisms important to human breast radiation carcinogenesis. We propose that the cell biology of irradiated tissues reveals a coordinated multicellular damage response program in which individual cell contributions are primarily directed towards suppression of carcinogenesis and reestablishment of homeostasis. We identified transforming growth factor β1 (TGFβ) as a pivotal signal. Notably, we have discovered that TGFβ suppresses genomic instability by controlling the intrinsic DNA damage response and centrosome integrity. However, TGFβ also mediates disruption of microenvironment interactions, which drive epithelial to mesenchymal transition in irradiated human mammary epithelial cells. This apparent paradox of positive and negative controls by TGFβ is the topic of the present proposal. First, we postulate that these phenotypes manifest differentially following fractionated or chronic exposures; second, that the interactions of multiple cell types in tissues modify the responses evident in this single cell type culture models. The goals are to: 1) study the effect of low dose rate and fractionated radiation exposure in combination with TGFβ on the irradiated phenotype and genomic instability of non-malignant human epithelial cells; and 2) determine whether stromal-epithelial interactions suppress the irradiated phenotype in cell culture and the humanized mammary mouse model. These data will be used to 3) develop a systems biology model that integrates radiation effects across multiple levels of tissue organization and time. Modeling multicellular radiation responses coordinated via extracellular signaling could have a significant impact on the extrapolation of human health risks from high dose to low dose/rate radiation exposure.

  17. Zinc in Cellular Regulation: The Nature and Significance of "Zinc Signals".

    Science.gov (United States)

    Maret, Wolfgang

    2017-10-31

    In the last decade, we witnessed discoveries that established Zn 2+ as a second major signalling metal ion in the transmission of information within cells and in communication between cells. Together with Ca 2+ and Mg 2+ , Zn 2+ covers biological regulation with redox-inert metal ions over many orders of magnitude in concentrations. The regulatory functions of zinc ions, together with their functions as a cofactor in about three thousand zinc metalloproteins, impact virtually all aspects of cell biology. This article attempts to define the regulatory functions of zinc ions, and focuses on the nature of zinc signals and zinc signalling in pathways where zinc ions are either extracellular stimuli or intracellular messengers. These pathways interact with Ca 2+ , redox, and phosphorylation signalling. The regulatory functions of zinc require a complex system of precise homeostatic control for transients, subcellular distribution and traffic, organellar homeostasis, and vesicular storage and exocytosis of zinc ions.

  18. Advances in Retinal Stem Cell Biology

    Directory of Open Access Journals (Sweden)

    Andrea S Viczian

    2013-01-01

    Full Text Available Tremendous progress has been made in recent years to generate retinal cells from pluripotent cell sources. These advances provide hope for those suffering from blindness due to lost retinal cells. Understanding the intrinsic genetic network in model organisms, like fly and frog, has led to a better understanding of the extrinsic signaling pathways necessary for retinal progenitor cell formation in mouse and human cell cultures. This review focuses on the culture methods used by different groups, which has culminated in the generation of laminated retinal tissue from both embryonic and induced pluripotent cells. The review also briefly describes advances made in transplantation studies using donor retinal progenitor and cultured retinal cells.

  19. Overcoming the Refractory Expression of Secreted Recombinant Proteins in Mammalian Cells through Modification of the Signal Peptide and Adjacent Amino Acids.

    Science.gov (United States)

    Güler-Gane, Gülin; Kidd, Sara; Sridharan, Sudharsan; Vaughan, Tristan J; Wilkinson, Trevor C I; Tigue, Natalie J

    2016-01-01

    The expression and subsequent purification of mammalian recombinant proteins is of critical importance to many areas of biological science. To maintain the appropriate tertiary structure and post-translational modifications of such proteins, transient mammalian expression systems are often adopted. The successful utilisation of these systems is, however, not always forthcoming and some recombinant proteins prove refractory to expression in mammalian hosts. In this study we focussed on the role of different N-terminal signal peptides and residues immediately downstream, in influencing the level of secreted recombinant protein obtained from suspension HEK293 cells. Using secreted alkaline phosphatase (SEAP) as a model protein, we identified that the +1/+2 downstream residues flanking a heterologous signal peptide significantly affect secreted levels. By incorporating these findings we conducted a comparison of different signal peptide sequences and identified the most productive as secrecon, a computationally-designed sequence. Importantly, in the context of the secrecon signal peptide and SEAP, we also demonstrated a clear preference for specific amino acid residues at the +1 position (e.g. alanine), and a detrimental effect of others (cysteine, proline, tyrosine and glutamine). When proteins that naturally contain these "undesirable" residues at the +1 position were expressed with their native signal peptide, the heterologous secrecon signal peptide, or secrecon with an additional alanine at the +1 or +1 and +2 position, the level of expression differed significantly and in an unpredictable manner. For each protein, however, at least one of the panel of signal peptide/adjacent amino acid combinations enabled successful recombinant expression. In this study, we highlight the important interplay between a signal peptide and its adjacent amino acids in enabling protein expression, and we describe a strategy that could enable recombinant proteins that have so far

  20. Making sense of Wnt signaling – linking hair cell regeneration to development

    Directory of Open Access Journals (Sweden)

    Lina eJansson

    2015-03-01

    Full Text Available Wnt signaling is a highly conserved pathway crucial for development and homeostasis of multicellular organisms. Secreted Wnt ligands bind Frizzled receptors to regulate diverse processes such as axis patterning, cell division, and cell fate specification. They also serve to govern self-renewal of somatic stem cells in several adult tissues. The complexity of the pathway can be attributed to the myriad of Wnt and Frizzled combinations as well as its diverse context-dependent functions. In the developing mouse inner ear, Wnt signaling plays diverse roles, including specification of the otic placode and patterning of the otic vesicle. At later stages, its activity governs sensory hair cell specification, cell cycle regulation, and hair cell orientation. In regenerating sensory organs from non-mammalian species, Wnt signaling can also regulate the extent of proliferative hair cell regeneration. This review describes the current knowledge of the roles of Wnt signaling and Wnt-responsive cells in hair cell development and regeneration. We also discuss possible future directions and the potential application and limitation of Wnt signaling in augmenting hair cell regeneration.

  1. Wnt/β-catenin Signaling in Normal and Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Kenneth C. Valkenburg

    2011-04-01

    Full Text Available The ability of Wnt ligands to initiate a signaling cascade that results in cytoplasmic stabilization of, and nuclear localization of, β-catenin underlies their ability to regulate progenitor cell differentiation. In this review, we will summarize the current knowledge of the mechanisms underlying Wnt/β-catenin signaling and how the pathway regulates normal differentiation of stem cells in the intestine, mammary gland, and prostate. We will also discuss how dysregulation of the pathway is associated with putative cancer stem cells and the potential therapeutic implications of regulating Wnt signaling.

  2. Probing the biology of cell boundary conditions through confinement of Xenopus cell-free cytoplasmic extracts.

    Science.gov (United States)

    Bermudez, Jessica G; Chen, Hui; Einstein, Lily C; Good, Matthew C

    2017-01-01

    Cell-free cytoplasmic extracts prepared from Xenopus eggs and embryos have for decades provided a biochemical system with which to interrogate complex cell biological processes in vitro. Recently, the application of microfabrication and microfluidic strategies in biology has narrowed the gap between in vitro and in vivo studies by enabling formation of cell-size compartments containing functional cytoplasm. These approaches provide numerous advantages over traditional biochemical experiments performed in a test tube. Most notably, the cell-free cytoplasm is confined using a two- or three-dimensional boundary, which mimics the natural configuration of a cell. This strategy enables characterization of the spatial organization of a cell, and the role that boundaries play in regulating intracellular assembly and function. In this review, we describe the marriage of Xenopus cell-free cytoplasm and confinement technologies to generate synthetic cell-like systems, the recent biological insights they have enabled, and the promise they hold for future scientific discovery. © 2017 Wiley Periodicals, Inc.

  3. CellNet: Network Biology Applied to Stem Cell Engineering

    Science.gov (United States)

    Cahan, Patrick; Li, Hu; Morris, Samantha A.; da Rocha, Edroaldo Lummertz; Daley, George Q.; Collins, James J.

    2014-01-01

    SUMMARY Somatic cell reprogramming, directed differentiation of pluripotent stem cells, and direct conversions between differentiated cell lineages represent powerful approaches to engineer cells for research and regenerative medicine. We have developed CellNet, a network biology platform that more accurately assesses the fidelity of cellular engineering than existing methodologies and generates hypotheses for improving cell derivations. Analyzing expression data from 56 published reports, we found that cells derived via directed differentiation more closely resemble their in vivo counterparts than products of direct conversion, as reflected by the establishment of target cell-type gene regulatory networks (GRNs). Furthermore, we discovered that directly converted cells fail to adequately silence expression programs of the starting population, and that the establishment of unintended GRNs is common to virtually every cellular engineering paradigm. CellNet provides a platform for quantifying how closely engineered cell populations resemble their target cell type and a rational strategy to guide enhanced cellular engineering. PMID:25126793

  4. CellNet: network biology applied to stem cell engineering.

    Science.gov (United States)

    Cahan, Patrick; Li, Hu; Morris, Samantha A; Lummertz da Rocha, Edroaldo; Daley, George Q; Collins, James J

    2014-08-14

    Somatic cell reprogramming, directed differentiation of pluripotent stem cells, and direct conversions between differentiated cell lineages represent powerful approaches to engineer cells for research and regenerative medicine. We have developed CellNet, a network biology platform that more accurately assesses the fidelity of cellular engineering than existing methodologies and generates hypotheses for improving cell derivations. Analyzing expression data from 56 published reports, we found that cells derived via directed differentiation more closely resemble their in vivo counterparts than products of direct conversion, as reflected by the establishment of target cell-type gene regulatory networks (GRNs). Furthermore, we discovered that directly converted cells fail to adequately silence expression programs of the starting population and that the establishment of unintended GRNs is common to virtually every cellular engineering paradigm. CellNet provides a platform for quantifying how closely engineered cell populations resemble their target cell type and a rational strategy to guide enhanced cellular engineering. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Genome-edited human stem cell-derived beta cells: a powerful tool for drilling down on type 2 diabetes GWAS biology.

    Science.gov (United States)

    Beer, Nicola L; Gloyn, Anna L

    2016-01-01

    Type 2 diabetes (T2D) is a disease of pandemic proportions, one defined by a complex aetiological mix of genetic, epigenetic, environmental, and lifestyle risk factors. Whilst the last decade of T2D genetic research has identified more than 100 loci showing strong statistical association with disease susceptibility, our inability to capitalise upon these signals reflects, in part, a lack of appropriate human cell models for study. This review discusses the impact of two complementary, state-of-the-art technologies on T2D genetic research: the generation of stem cell-derived, endocrine pancreas-lineage cells and the editing of their genomes. Such models facilitate investigation of diabetes-associated genomic perturbations in a physiologically representative cell context and allow the role of both developmental and adult islet dysfunction in T2D pathogenesis to be investigated. Accordingly, we interrogate the role that patient-derived induced pluripotent stem cell models are playing in understanding cellular dysfunction in monogenic diabetes, and how site-specific nucleases such as the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system are helping to confirm genes crucial to human endocrine pancreas development. We also highlight the novel biology gleaned in the absence of patient lines, including an ability to model the whole phenotypic spectrum of diabetes phenotypes occurring both in utero and in adult cells, interrogating the non-coding 'islet regulome' for disease-causing perturbations, and understanding the role of other islet cell types in aberrant glycaemia. This article aims to reinforce the importance of investigating T2D signals in cell models reflecting appropriate species, genomic context, developmental time point, and tissue type.

  6. Plant cell wall signalling and receptor-like kinases.

    Science.gov (United States)

    Wolf, Sebastian

    2017-02-15

    Communication between the extracellular matrix and the cell interior is essential for all organisms as intrinsic and extrinsic cues have to be integrated to co-ordinate development, growth, and behaviour. This applies in particular to plants, the growth and shape of which is governed by deposition and remodelling of the cell wall, a rigid, yet dynamic, extracellular network. It is thus generally assumed that cell wall surveillance pathways exist to monitor the state of the wall and, if needed, elicit compensatory responses such as altered expression of cell wall remodelling and biosynthesis genes. Here, I highlight recent advances in the field of cell wall signalling in plants, with emphasis on the role of plasma membrane receptor-like kinase complexes. In addition, possible roles for cell wall-mediated signalling beyond the maintenance of cell wall integrity are discussed. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  7. Bystander effect: Biological endpoints and microarray analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhry, M. Ahmad [Department of Medical Laboratory and Radiation Sciences, College of Nursing and Health Sciences, University of Vermont, 302 Rowell Building, Burlington, VT 05405 (United States) and DNA Microarray Facility, University of Vermont, Burlington, VT 05405 (United States)]. E-mail: mchaudhr@uvm.edu

    2006-05-11

    In cell populations exposed to ionizing radiation, the biological effects occur in a much larger proportion of cells than are estimated to be traversed by radiation. It has been suggested that irradiated cells are capable of providing signals to the neighboring unirradiated cells resulting in damage to these cells. This phenomenon is termed the bystander effect. The bystander effect induces persistent, long-term, transmissible changes that result in delayed death and neoplastic transformation. Because the bystander effect is relevant to carcinogenesis, it could have significant implications for risk estimation for radiation exposure. The nature of the bystander effect signal and how it impacts the unirradiated cells remains to be elucidated. Examination of the changes in gene expression could provide clues to understanding the bystander effect and could define the signaling pathways involved in sustaining damage to these cells. The microarray technology serves as a tool to gain insight into the molecular pathways leading to bystander effect. Using medium from irradiated normal human diploid lung fibroblasts as a model system we examined gene expression alterations in bystander cells. The microarray data revealed that the radiation-induced gene expression profile in irradiated cells is different from unirradiated bystander cells suggesting that the pathways leading to biological effects in the bystander cells are different from the directly irradiated cells. The genes known to be responsive to ionizing radiation were observed in irradiated cells. Several genes were upregulated in cells receiving media from irradiated cells. Surprisingly no genes were found to be downregulated in these cells. A number of genes belonging to extracellular signaling, growth factors and several receptors were identified in bystander cells. Interestingly 15 genes involved in the cell communication processes were found to be upregulated. The induction of receptors and the cell

  8. Bystander effect: Biological endpoints and microarray analysis

    International Nuclear Information System (INIS)

    Chaudhry, M. Ahmad

    2006-01-01

    In cell populations exposed to ionizing radiation, the biological effects occur in a much larger proportion of cells than are estimated to be traversed by radiation. It has been suggested that irradiated cells are capable of providing signals to the neighboring unirradiated cells resulting in damage to these cells. This phenomenon is termed the bystander effect. The bystander effect induces persistent, long-term, transmissible changes that result in delayed death and neoplastic transformation. Because the bystander effect is relevant to carcinogenesis, it could have significant implications for risk estimation for radiation exposure. The nature of the bystander effect signal and how it impacts the unirradiated cells remains to be elucidated. Examination of the changes in gene expression could provide clues to understanding the bystander effect and could define the signaling pathways involved in sustaining damage to these cells. The microarray technology serves as a tool to gain insight into the molecular pathways leading to bystander effect. Using medium from irradiated normal human diploid lung fibroblasts as a model system we examined gene expression alterations in bystander cells. The microarray data revealed that the radiation-induced gene expression profile in irradiated cells is different from unirradiated bystander cells suggesting that the pathways leading to biological effects in the bystander cells are different from the directly irradiated cells. The genes known to be responsive to ionizing radiation were observed in irradiated cells. Several genes were upregulated in cells receiving media from irradiated cells. Surprisingly no genes were found to be downregulated in these cells. A number of genes belonging to extracellular signaling, growth factors and several receptors were identified in bystander cells. Interestingly 15 genes involved in the cell communication processes were found to be upregulated. The induction of receptors and the cell

  9. Inferring the functional effect of gene expression changes in signaling pathways

    Science.gov (United States)

    Sebastián-León, Patricia; Carbonell, José; Salavert, Francisco; Sanchez, Rubén; Medina, Ignacio; Dopazo, Joaquín

    2013-01-01

    Signaling pathways constitute a valuable source of information that allows interpreting the way in which alterations in gene activities affect to particular cell functionalities. There are web tools available that allow viewing and editing pathways, as well as representing experimental data on them. However, few methods aimed to identify the signaling circuits, within a pathway, associated to the biological problem studied exist and none of them provide a convenient graphical web interface. We present PATHiWAYS, a web-based signaling pathway visualization system that infers changes in signaling that affect cell functionality from the measurements of gene expression values in typical expression microarray case–control experiments. A simple probabilistic model of the pathway is used to estimate the probabilities for signal transmission from any receptor to any final effector molecule (taking into account the pathway topology) using for this the individual probabilities of gene product presence/absence inferred from gene expression values. Significant changes in these probabilities allow linking different cell functionalities triggered by the pathway to the biological problem studied. PATHiWAYS is available at: http://pathiways.babelomics.org/. PMID:23748960

  10. Biological and Molecular Effects of Small Molecule Kinase Inhibitors on Low-Passage Human Colorectal Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Falko Lange

    2014-01-01

    Full Text Available Low-passage cancer cell lines are versatile tools to study tumor cell biology. Here, we have employed four such cell lines, established from primary tumors of colorectal cancer (CRC patients, to evaluate effects of the small molecule kinase inhibitors (SMI vemurafenib, trametinib, perifosine, and regorafenib in an in vitro setting. The mutant BRAF (V600E/V600K inhibitor vemurafenib, but also the MEK1/2 inhibitor trametinib efficiently inhibited DNA synthesis, signaling through ERK1/2 and expression of genes downstream of ERK1/2 in BRAF mutant cells only. In case of the AKT inhibitor perifosine, three cell lines showed a high or intermediate responsiveness to the drug while one cell line was resistant. The multikinase inhibitor regorafenib inhibited proliferation of all CRC lines with similar efficiency and independent of the presence or absence of KRAS, BRAF, PIK3CA, and TP53 mutations. Regorafenib action was associated with broad-range inhibitory effects at the level of gene expression but not with a general inhibition of AKT or MEK/ERK signaling. In vemurafenib-sensitive cells, the antiproliferative effect of vemurafenib was enhanced by the other SMI. Together, our results provide insights into the determinants of SMI efficiencies in CRC cells and encourage the further use of low-passage CRC cell lines as preclinical models.

  11. Modulation of B-cell receptor and microenvironment signaling by a guanine exchange factor in B-cell malignancies

    International Nuclear Information System (INIS)

    Liao, Wei; Sharma, Sanjai

    2016-01-01

    Objective: Chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL) cells over-express a guanine exchange factor (GEF), Rasgrf-1. This GEF increases active Ras as it catalyzes the removal of GDP from Ras so that GTP can bind and activate Ras. This study aims to study the mechanism of action of Rasgrf-1 in B-cell malignancies. Methods: N-terminus truncated Rasgrf-1 variants have a higher GEF activity as compared to the full-length transcript therefore a MCL cell line with stable over-expression of truncated Rasgrf-1 was established. The B-cell receptor (BCR) and chemokine signaling pathways were compared in the Rasgrf-1 over-expressing and a control transfected cell line. Results: Cells over-expressing truncated form of Rasgrf-1 have a higher proliferative rate as compared to control transfected cells. BCR was activated by lower concentrations of anti-IgM antibody in Rasgrf-1 over-expressing cells as compared to control cells indicating that these cells are more sensitive to BCR signaling. BCR signaling also phosphorylates Rasgrf-1 that further increases its GEF function and amplifies BCR signaling. This activation of Rasgrf-1 in over-expressing cells resulted in a higher expression of phospho-ERK, AKT, BTK and PKC-alpha as compared to control cells. Besides BCR, Rasgrf-1 over-expressing cells were also more sensitive to microenvironment stimuli as determined by resistance to apoptosis, chemotaxis and ERK pathway activation. Conclusions: This GEF protein sensitizes B-cells to BCR and chemokine mediated signaling and also upregulates a number of other signaling pathways which promotes growth and survival of these cells

  12. A muscle stem cell for every muscle: variability of satellite cell biology among different muscle groups

    Science.gov (United States)

    Randolph, Matthew E.; Pavlath, Grace K.

    2015-01-01

    The human body contains approximately 640 individual skeletal muscles. Despite the fact that all of these muscles are composed of striated muscle tissue, the biology of these muscles and their associated muscle stem cell populations are quite diverse. Skeletal muscles are affected differentially by various muscular dystrophies (MDs), such that certain genetic mutations specifically alter muscle function in only a subset of muscles. Additionally, defective muscle stem cells have been implicated in the pathology of some MDs. The biology of muscle stem cells varies depending on the muscles with which they are associated. Here we review the biology of skeletal muscle stem cell populations of eight different muscle groups. Understanding the biological variation of skeletal muscles and their resident stem cells could provide valuable insight into mechanisms underlying the susceptibility of certain muscles to myopathic disease. PMID:26500547

  13. TMEPAI regulates EMT in lung cancer cells by modulating the ROS and IRS-1 signaling pathways.

    Science.gov (United States)

    Hu, Ying; He, Kai; Wang, Dongmei; Yuan, Xinwang; Liu, Yi; Ji, Hongbin; Song, Jianguo

    2013-08-01

    The epithelial-mesenchymal transition (EMT) has been implicated in various pathophysiological processes, including cancer cell migration and distal metastasis. Reactive oxygen species (ROS) and insulin receptor substrate-1 (IRS-1) are important in cancer progression and regulation of EMT. To explore the biological significance and regulatory mechanism of EMT, we determined the expression, the biological function and the signaling pathway of prostate transmembrane protein, androgen induced-1 (TMEPAI), during the induction of EMT and cell migration. Transforming growth factor (TGF)-β1 significantly upregulated the expression of TMEPAI during EMT in human lung adenocarcinoma. Depletion of TMEPAI abolished TGF-β1-induced downregulation of ferritin heavy chain and the subsequent generation of ROS, thus suppressing TGF-β1-induced EMT and cell migration. In addition, increased ROS production and overexpression of TMEPAI downregulated the level of IRS-1. Both the addition of H2O2 and IRS-1 small interfering RNA rescued the ability of TGF-β1 to induce EMT in TMEPAI-depleted cells. Remarkably, the levels of TMEPAI in lung tumor tissues are very high, whereas its expression in normal lung epithelium is very low. Moreover, TMEPAI expression was positively correlated with the cell mesenchymal phenotype and migration potential. Our work reveals that TMEPAI contributes to TGF-β1-induced EMT through ROS production and IRS-1 downregulation in lung cancer cells.

  14. The Emerging Cell Biology of Thyroid Stem Cells

    Science.gov (United States)

    Latif, Rauf; Minsky, Noga C.; Ma, Risheng

    2011-01-01

    Context: Stem cells are undifferentiated cells with the property of self-renewal and give rise to highly specialized cells under appropriate local conditions. The use of stem cells in regenerative medicine holds great promise for the treatment of many diseases, including those of the thyroid gland. Evidence Acquisition: This review focuses on the progress that has been made in thyroid stem cell research including an overview of cellular and molecular events (most of which were drawn from the period 1990–2011) and discusses the remaining problems encountered in their differentiation. Evidence Synthesis: Protocols for the in vitro differentiation of embryonic stem cells, based on normal developmental processes, have generated thyroid-like cells but without full thyrocyte function. However, agents have been identified, including activin A, insulin, and IGF-I, which are able to stimulate the generation of thyroid-like cells in vitro. In addition, thyroid stem/progenitor cells have been identified within the normal thyroid gland and within thyroid cancers. Conclusions: Advances in thyroid stem cell biology are providing not only insight into thyroid development but may offer therapeutic potential in thyroid cancer and future thyroid cell replacement therapy. PMID:21778219

  15. Notch pathway signaling in the skin antagonizes Merkel cell development.

    Science.gov (United States)

    Logan, Gregory J; Wright, Margaret C; Kubicki, Adam C; Maricich, Stephen M

    2018-02-15

    Merkel cells are mechanosensitive skin cells derived from the epidermal lineage whose development requires expression of the basic helix-loop-helix transcription factor Atoh1. The genes and pathways involved in regulating Merkel cell development during embryogenesis are poorly understood. Notch pathway signaling antagonizes Atoh1 expression in many developing body regions, so we hypothesized that Notch signaling might inhibit Merkel cell development. We found that conditional, constitutive overexpression of the Notch intracellular domain (NICD) in mouse epidermis significantly decreased Merkel cell numbers in whisker follicles and touch domes of hairy skin. Conversely, conditional deletion of the obligate NICD binding partner RBPj in the epidermis significantly increased Merkel cell numbers in whisker follicles, led to the development of ectopic Merkel cells outside of touch domes in hairy skin epidermis, and altered the distribution of Merkel cells in touch domes. Deletion of the downstream Notch effector gene Hes1 also significantly increased Merkel cell numbers in whisker follicles. Together, these data demonstrate that Notch signaling regulates Merkel cell production and patterning. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Multinuclear giant cell formation is enhanced by down-regulation of Wnt signaling in gastric cancer cell line, AGS

    International Nuclear Information System (INIS)

    Kim, Shi-Mun; Kim, Rockki; Ryu, Jae-Hyun; Jho, Eek-Hoon; Song, Ki-Joon; Jang, Shyh-Ing; Kee, Sun-Ho

    2005-01-01

    AGS cells, which were derived from malignant gastric adenocarcinoma tissue, lack E-cadherin-mediated cell adhesion but have a high level of nuclear β-catenin, which suggests altered Wnt signal. In addition, approximately 5% of AGS cells form multinuclear giant cells in the routine culture conditions, while taxol treatment causes most AGS cells to become giant cells. The observation of reduced nuclear β-catenin levels in giant cells induced by taxol treatment prompted us to investigate the relationship between Wnt signaling and giant cell formation. After overnight serum starvation, the shape of AGS cells became flattened, and this morphological change was accompanied by decrease in Myc expression and an increase in the giant cell population. Lithium chloride treatment, which inhibits GSK3β activity, reversed these serum starvation effects, which suggests an inverse relationship between Wnt signaling and giant cell formation. Furthermore, the down-regulation of Wnt signaling caused by the over-expression of ICAT, E-cadherin, and Axin enhanced giant cell formation. Therefore, down-regulation of Wnt signaling may be related to giant cell formation, which is considered to be a survival mechanism against induced cell death

  17. Protein kinase C signaling and cell cycle regulation

    Directory of Open Access Journals (Sweden)

    Adrian R Black

    2013-01-01

    Full Text Available A link between T cell proliferation and the protein kinase C (PKC family of serine/threonine kinases has been recognized for about thirty years. However, despite the wealth of information on PKC-mediated control of T cell activation, understanding of the effects of PKCs on the cell cycle machinery in this cell type remains limited. Studies in other systems have revealed important cell cycle-specific effects of PKC signaling that can either positively or negatively impact proliferation. The outcome of PKC activation is highly context-dependent, with the precise cell cycle target(s and overall effects determined by the specific isozyme involved, the timing of PKC activation, the cell type, and the signaling environment. Although PKCs can regulate all stages of the cell cycle, they appear to predominantly affect G0/G1 and G2. PKCs can modulate multiple cell cycle regulatory molecules, including cyclins, cyclin-dependent kinases (cdks, cdk inhibitors and cdc25 phosphatases; however, evidence points to Cip/Kip cdk inhibitors and D-type cyclins as key mediators of PKC-regulated cell cycle-specific effects. Several PKC isozymes can target Cip/Kip proteins to control G0/G1→S and/or G2→M transit, while effects on D-type cyclins regulate entry into and progression through G1. Analysis of PKC signaling in T cells has largely focused on its roles in T cell activation; thus, observed cell cycle effects are mainly positive. A prominent role is emerging for PKCθ, with non-redundant functions of other isozymes also described. Additional evidence points to PKCδ as a negative regulator of the cell cycle in these cells. As in other cell types, context-dependent effects of individual isozymes have been noted in T cells, and Cip/Kip cdk inhibitors and D-type cyclins appear to be major PKC targets. Future studies are anticipated to take advantage of the similarities between these various systems to enhance understanding of PKC-mediated cell cycle regulation in

  18. Design principles in biological networks

    Science.gov (United States)

    Goyal, Sidhartha

    Much of biology emerges from networks of interactions. Even in a single bacterium such as Escherichia coli, there are hundreds of coexisting gene and protein networks. Although biological networks are the outcome of evolution, various physical and biological constraints limit their functional capacity. The focus of this thesis is to understand how functional constraints such as optimal growth in mircoorganisms and information flow in signaling pathways shape the metabolic network of bacterium E. coli and the quorum sensing network of marine bacterium Vibrio harveyi, respectively. Metabolic networks convert basic elemental sources into complex building-blocks eventually leading to cell's growth. Therefore, typically, metabolic pathways are often coupled both by the use of a common substrate and by stoichiometric utilization of their products for cell growth. We showed that such a coupled network with product-feedback inhibition may exhibit limit-cycle oscillations which arise via a Hopf bifurcation. Furthermore, we analyzed several representative metabolic modules and find that, in all cases, simple product-feedback inhibition allows nearly optimal growth, in agreement with the predicted growth-rate by the flux-balance analysis (FBA). Bacteria have fascinating and diverse social lives. They display coordinated group behaviors regulated by quorum sensing (QS) systems. The QS circuit of V. harveyi integrates and funnels different ecological information through a common phosphorelay cascade to a set of small regulatory RNAs (sRNAs) that enables collective behavior. We analyzed the signaling properties and information flow in the QS circuit, which provides a model for information flow in signaling networks more generally. A comparative study of post-transcriptional and conventional transcriptional regulation suggest a niche for sRNAs in allowing cells to transition quickly yet reliably between distinct states. Furthermore, we develop a new framework for analyzing signal

  19. Hyperpolarized NMR Probes for Biological Assays

    Directory of Open Access Journals (Sweden)

    Sebastian Meier

    2014-01-01

    Full Text Available During the last decade, the development of nuclear spin polarization enhanced (hyperpolarized molecular probes has opened up new opportunities for studying the inner workings of living cells in real time. The hyperpolarized probes are produced ex situ, introduced into biological systems and detected with high sensitivity and contrast against background signals using high resolution NMR spectroscopy. A variety of natural, derivatized and designed hyperpolarized probes has emerged for diverse biological studies including assays of intracellular reaction progression, pathway kinetics, probe uptake and export, pH, redox state, reactive oxygen species, ion concentrations, drug efficacy or oncogenic signaling. These probes are readily used directly under natural conditions in biofluids and are often directly developed and optimized for cellular assays, thus leaving little doubt about their specificity and utility under biologically relevant conditions. Hyperpolarized molecular probes for biological NMR spectroscopy enable the unbiased detection of complex processes by virtue of the high spectral resolution, structural specificity and quantifiability of NMR signals. Here, we provide a survey of strategies used for the selection, design and use of hyperpolarized NMR probes in biological assays, and describe current limitations and developments.

  20. Thymosin β4 induces invasion and migration of human colorectal cancer cells through the ILK/AKT/β-catenin signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Piao, Zhengri [Research Center for Molecular Therapeutic to GI Tract of Cancer Center, Chonnam National University Hwasun Hospital, Hwasun (Korea, Republic of); Center for Creative Biomedical Scientists (BK-21 Plus Project), Chonnam National University Medical School, Gwangju (Korea, Republic of); Hong, Chang-Soo [Research Center for Molecular Therapeutic to GI Tract of Cancer Center, Chonnam National University Hwasun Hospital, Hwasun (Korea, Republic of); Jung, Mi-Ran [Department of Gastroenterologic Surgery, Chonnam National University Hwasun Hospital, Hwasun (Korea, Republic of); Choi, Chan [Department of Pathology, Chonnam National University Hwasun Hospital, Hwasun (Korea, Republic of); Park, Young-Kyu, E-mail: parkyk@jnu.ac.kr [Research Center for Molecular Therapeutic to GI Tract of Cancer Center, Chonnam National University Hwasun Hospital, Hwasun (Korea, Republic of); Center for Creative Biomedical Scientists (BK-21 Plus Project), Chonnam National University Medical School, Gwangju (Korea, Republic of); Department of Gastroenterologic Surgery, Chonnam National University Hwasun Hospital, Hwasun (Korea, Republic of)

    2014-09-26

    Highlights: • Tβ4 is overexpressed in human colorectal cancer cells. • The overexpression of Tβ4 is correlated with stage of colorectal cancer. • Tβ4 stimulates cell adhesion, invasion, migration and EMT. • Tβ4 activates the ILK/AKT/β-catenin signaling pathway. - Abstract: Thymosin β4 (Tβ4) is a 43-amino-acid peptide involved in many biological processes. However, the precise molecular signaling mechanism(s) of Tβ4 in cell invasion and migration remain unclear. In this study, we show that Tβ4 was significantly overexpressed in colorectal cancer tissues compared to adjacent normal tissues and high levels of Tβ4 were correlated with stage of colorectal cancer, and that Tβ4 expression was associated with morphogenesis and EMT. Tβ4-upregulated cancer cells showed increased adhesion, invasion and migration activity, whereas Tβ4-downregulated cells showed decreased activities. We also demonstrated that Tβ4 interacts with ILK, which promoted the phosphorylation and activation of AKT, the phosphorylation and inactivation of GSK3β, the expression and nuclear localization of β-catenin, and integrin receptor activation. These results suggest that Tβ4 is an important regulator of the ILK/AKT/β-catenin/Integrin signaling cascade to induce cell invasion and migration in colorectal cancer cells, and is a potential target for cancer treatment.

  1. Use of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes (hiPSC-CMs) to Monitor Compound Effects on Cardiac Myocyte Signaling Pathways.

    Science.gov (United States)

    Guo, Liang; Eldridge, Sandy; Furniss, Mike; Mussio, Jodie; Davis, Myrtle

    2015-09-01

    There is a need to develop mechanism-based assays to better inform risk of cardiotoxicity. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are rapidly gaining acceptance as a biologically relevant in vitro model for use in drug discovery and cardiotoxicity screens. Utilization of hiPSC-CMs for mechanistic investigations would benefit from confirmation of the expression and activity of cellular pathways that are known to regulate cardiac myocyte viability and function. This unit describes an approach to demonstrate the presence and function of signaling pathways in hiPSC-CMs and the effects of treatments on these pathways. We present a workflow that employs protocols to demonstrate protein expression and functional integrity of signaling pathway(s) of interest and to characterize biological consequences of signaling modulation. These protocols utilize a unique combination of structural, functional, and biochemical endpoints to interrogate compound effects on cardiomyocytes. Copyright © 2015 John Wiley & Sons, Inc.

  2. Inter-donor variation in cell subset specific immune signaling responses in healthy individuals.

    Science.gov (United States)

    Longo, Diane M; Louie, Brent; Wang, Ena; Pos, Zoltan; Marincola, Francesco M; Hawtin, Rachael E; Cesano, Alessandra

    2012-01-01

    Single cell network profiling (SCNP) is a multi-parameter flow cytometry based approach that allows for the simultaneous interrogation of intracellular signaling pathways in multiple cell subpopulations within heterogeneous tissues, without the need for individual cell subset isolation. Thus, the technology is extremely well-suited for characterizing the multitude of interconnected signaling pathways and immune cell subpopulations that regulate the function of the immune system. Recently, SCNP was applied to generate a functional map of the healthy human immune cell signaling network by profiling immune signaling pathways downstream of 12 immunomodulators in 7 distinct immune cell subsets within peripheral blood mononuclear cells (PBMCs) from 60 healthy donors. In the study reported here, the degree of inter-donor variation in the magnitude of the immune signaling responses was analyzed. The highest inter-donor differences in immune signaling pathway activity occurred following perturbation of the immune signaling network, rather than in basal signaling. When examining the full panel of immune signaling responses, as one may expect, the overall degree of inter-donor variation was positively correlated (r = 0.727) with the magnitude of node response (i.e. a larger median signaling response was associated with greater inter-donor variation). However, when examining the degree of heterogeneity across cell subpopulations for individual signaling nodes, cell subset specificity in the degree of inter-donor variation was observed for several nodes. For such nodes, relatively weak correlations between inter-donor variation and the magnitude of the response were observed. Further, within the phenotypically distinct subpopulations, a fraction of the immune signaling responses had bimodal response profiles in which (a) only a portion of the cells had elevated phospho-protein levels following modulation and (b) the proportion of responsive cells varied by donor. These data

  3. A Comparative Study of Compression Methods and the Development of CODEC Program of Biological Signal for Emergency Telemedicine Service

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, T.S.; Kim, J.S. [Changwon National University, Changwon (Korea); Lim, Y.H. [Visionite Co., Ltd., Seoul (Korea); Yoo, S.K. [Yonsei University, Seoul (Korea)

    2003-05-01

    In an emergency telemedicine system such as the High-quality Multimedia based Real-time Emergency Telemedicine(HMRET) service, it is very important to examine the status of the patient continuously using the multimedia data including the biological signals(ECG, BP, Respiration, S{sub p}O{sub 2}) of the patient. In order to transmit these data real time through the communication means which have the limited transmission capacity, it is also necessary to compress the biological data besides other multimedia data. For this purpose, we investigate and compare the ECG compression techniques in the time domain and in the wavelet transform domain, and present an effective lossless compression method of the biological signals using JPEG Huffman table for an emergency telemedicine system. And, for the HMRET service, we developed the lossless compression and reconstruction program of the biological signals in MSVC++ 6.0 using DPCM method and JPEG Huffman table, and tested in an internet environment. (author). 15 refs., 17 figs., 7 tabs.

  4. Phosphorylation site dynamics of early T-cell receptor signaling

    DEFF Research Database (Denmark)

    Chylek, Lily A; Akimov, Vyacheslav; Dengjel, Jörn

    2014-01-01

    In adaptive immune responses, T-cell receptor (TCR) signaling impacts multiple cellular processes and results in T-cell differentiation, proliferation, and cytokine production. Although individual protein-protein interactions and phosphorylation events have been studied extensively, we lack...... that diverse dynamic patterns emerge within seconds. We detected phosphorylation dynamics as early as 5 s and observed widespread regulation of key TCR signaling proteins by 30 s. Development of a computational model pointed to the presence of novel regulatory mechanisms controlling phosphorylation of sites...... a systems-level understanding of how these components cooperate to control signaling dynamics, especially during the crucial first seconds of stimulation. Here, we used quantitative proteomics to characterize reshaping of the T-cell phosphoproteome in response to TCR/CD28 co-stimulation, and found...

  5. Opposing effects of actin signaling and LFA-1 on establishing the affinity threshold for inducing effector T-cell responses in mice

    Czech Academy of Sciences Publication Activity Database

    Palmer, E.; Drobek, Aleš; Štěpánek, Ondřej

    2016-01-01

    Roč. 46, č. 8 (2016), s. 1887-1901 ISSN 0014-2980 R&D Projects: GA ČR GJ16-09208Y Institutional support: RVO:68378050 Keywords : Actin cytoskeleton * Antigen affinity treshold * LFA-1 * Rap1 * Rho-family GTPases * T-cell receptor signaling Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.227, year: 2016

  6. Nitric oxide signals are interlinked with calcium signals in normal pancreatic stellate cells upon oxidative stress and inflammation.

    Science.gov (United States)

    Jakubowska, Monika A; Ferdek, Pawel E; Gerasimenko, Oleg V; Gerasimenko, Julia V; Petersen, Ole H

    2016-08-01

    The mammalian diffuse stellate cell system comprises retinoid-storing cells capable of remarkable transformations from a quiescent to an activated myofibroblast-like phenotype. Activated pancreatic stellate cells (PSCs) attract attention owing to the pivotal role they play in development of tissue fibrosis in chronic pancreatitis and pancreatic cancer. However, little is known about the actual role of PSCs in the normal pancreas. These enigmatic cells have recently been shown to respond to physiological stimuli in a manner that is markedly different from their neighbouring pancreatic acinar cells (PACs). Here, we demonstrate the capacity of PSCs to generate nitric oxide (NO), a free radical messenger mediating, for example, inflammation and vasodilatation. We show that production of cytosolic NO in PSCs is unambiguously related to cytosolic Ca(2+) signals. Only stimuli that evoke Ca(2+) signals in the PSCs elicit consequent NO generation. We provide fresh evidence for the striking difference between signalling pathways in PSCs and adjacent PACs, because PSCs, in contrast to PACs, generate substantial Ca(2+)-mediated and NOS-dependent NO signals. We also show that inhibition of NO generation protects both PSCs and PACs from necrosis. Our results highlight the interplay between Ca(2+) and NO signalling pathways in cell-cell communication, and also identify a potential therapeutic target for anti-inflammatory therapies. © 2016 The Authors.

  7. Systems-biology dissection of eukaryotic cell growth

    Directory of Open Access Journals (Sweden)

    Andrews Justen

    2010-05-01

    Full Text Available Abstract A recent article in BMC Biology illustrates the use of a systems-biology approach to integrate data across the transcriptome, proteome and metabolome of budding yeast in order to dissect the relationship between nutrient conditions and cell growth. See research article http://jbiol.com/content/6/2/4 and http://www.biomedcentral.com/1741-7007/8/68

  8. From noise to synthetic nucleoli: can synthetic biology achieve new insights?

    Science.gov (United States)

    Ciechonska, Marta; Grob, Alice; Isalan, Mark

    2016-04-18

    Synthetic biology aims to re-organise and control biological components to make functional devices. Along the way, the iterative process of designing and testing gene circuits has the potential to yield many insights into the functioning of the underlying chassis of cells. Thus, synthetic biology is converging with disciplines such as systems biology and even classical cell biology, to give a new level of predictability to gene expression, cell metabolism and cellular signalling networks. This review gives an overview of the contributions that synthetic biology has made in understanding gene expression, in terms of cell heterogeneity (noise), the coupling of growth and energy usage to expression, and spatiotemporal considerations. We mainly compare progress in bacterial and mammalian systems, which have some of the most-developed engineering frameworks. Overall, one view of synthetic biology can be neatly summarised as "creating in order to understand."

  9. Illuminating Cell Biology

    Science.gov (United States)

    2002-01-01

    NASA's Ames Research Center awarded Ciencia, Inc., a Small Business Innovation Research contract to develop the Cell Fluorescence Analysis System (CFAS) to address the size, mass, and power constraints of using fluorescence spectroscopy in the International Space Station's Life Science Research Facility. The system will play an important role in studying biological specimen's long-term adaptation to microgravity. Commercial applications for the technology include diverse markets such as food safety, in situ environmental monitoring, online process analysis, genomics and DNA chips, and non-invasive diagnostics. Ciencia has already sold the system to the private sector for biosensor applications.

  10. Resveratrol Protects PC12 Cell against 6-OHDA Damage via CXCR4 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2015-01-01

    Full Text Available Resveratrol, herbal nonflavonoid polyphenolic compound naturally derived from grapes, has long been acknowledged to possess extensive biological and pharmacological properties including antioxidant and anti-inflammatory ones and may exert a neuroprotective effect on neuronal damage in neurodegenerative diseases. However, the underlying molecular mechanisms remain undefined. In the present study, we intended to investigate the neuroprotective effects of resveratrol against 6-OHDA-induced neurotoxicity of PC12 cells and further explore the possible mechanisms involved. For this purpose, PC12 cells were exposed to 6-OHDA in the presence of resveratrol (0, 12.5, 25, and 50 μM. The results showed that resveratrol increased cell viability, alleviated the MMP reduction, and reduced the number of apoptotic cells as measured by MTT assay, JC-1 staining, and Hoechst/PI double staining (all p<0.01. Immunofluorescent staining and Western blotting revealed that resveratrol averts 6-OHDA induced CXCR4 upregulation (p<0.01. Our results demonstrated that resveratrol could effectively protect PC12 cells from 6-OHDA-induced oxidative stress and apoptosis via CXCR4 signaling pathway.

  11. Follow-the-leader cell migration requires biased cell-cell contact and local microenvironmental signals

    Science.gov (United States)

    Wynn, Michelle L.; Rupp, Paul; Trainor, Paul A.; Schnell, Santiago; Kulesa, Paul M.

    2013-06-01

    Directed cell migration often involves at least two types of cell motility that include multicellular streaming and chain migration. However, what is unclear is how cell contact dynamics and the distinct microenvironments through which cells travel influence the selection of one migratory mode or the other. The embryonic and highly invasive neural crest (NC) are an excellent model system to study this question since NC cells have been observed in vivo to display both of these types of cell motility. Here, we present data from tissue transplantation experiments in chick and in silico modeling that test our hypothesis that cell contact dynamics with each other and the microenvironment promote and sustain either multicellular stream or chain migration. We show that when premigratory cranial NC cells (at the pre-otic level) are transplanted into a more caudal region in the head (at the post-otic level), cells alter their characteristic stream behavior and migrate in chains. Similarly, post-otic NC cells migrate in streams after transplantation into the pre-otic hindbrain, suggesting that local microenvironmental signals dictate the mode of NC cell migration. Simulations of an agent-based model (ABM) that integrates the NC cell behavioral data predict that chain migration critically depends on the interplay of biased cell-cell contact and local microenvironment signals. Together, this integrated modeling and experimental approach suggests new experiments and offers a powerful tool to examine mechanisms that underlie complex cell migration patterns.

  12. Designs of precoding for LTE TDD using cell specific reference signals

    DEFF Research Database (Denmark)

    Sun, Fan; Lu, Lu; Sørensen, Troels Bundgaard

    2010-01-01

    We design non-codebook-based Multiple-Input Multiple-Output (MIMO) precoding schemes using multiple cell-specific reference signals patterns for the time division duplex (TDD) mode of LTE, where channel reciprocity can be exploited. Previously proposed non-codebookbased precoding schemes typically...... use UE specific reference signals for demodulation. Cell specific reference signals are however always allocated for the transmission of common control signalling, mobility measurements and downlink channel quality measurements. In order to save the resources occupied by UE specific reference signals...

  13. Neurotrophin signaling via TrkB and TrkC receptors promotes the growth of brain tumor-initiating cells.

    Science.gov (United States)

    Lawn, Samuel; Krishna, Niveditha; Pisklakova, Alexandra; Qu, Xiaotao; Fenstermacher, David A; Fournier, Michelle; Vrionis, Frank D; Tran, Nam; Chan, Jennifer A; Kenchappa, Rajappa S; Forsyth, Peter A

    2015-02-06

    Neurotrophins and their receptors are frequently expressed in malignant gliomas, yet their functions are largely unknown. Previously, we have shown that p75 neurotrophin receptor is required for glioma invasion and proliferation. However, the role of Trk receptors has not been examined. In this study, we investigated the importance of TrkB and TrkC in survival of brain tumor-initiating cells (BTICs). Here, we show that human malignant glioma tissues and also tumor-initiating cells isolated from fresh human malignant gliomas express the neurotrophin receptors TrkB and TrkC, not TrkA, and they also express neurotrophins NGF, BDNF, and neurotrophin 3 (NT3). Specific activation of TrkB and TrkC receptors by ligands BDNF and NT3 enhances tumor-initiating cell viability through activation of ERK and Akt pathways. Conversely, TrkB and TrkC knockdown or pharmacologic inhibition of Trk signaling decreases neurotrophin-dependent ERK activation and BTIC growth. Further, pharmacological inhibition of both ERK and Akt pathways blocked BDNF, and NT3 stimulated BTIC survival. Importantly, attenuation of BTIC growth by EGFR inhibitors could be overcome by activation of neurotrophin signaling, and neurotrophin signaling is sufficient for long term BTIC growth as spheres in the absence of EGF and FGF. Our results highlight a novel role for neurotrophin signaling in brain tumor and suggest that Trks could be a target for combinatorial treatment of malignant glioma. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. The evolving roles of canonical WNT signaling in stem cells and tumorigenesis: Implications in targeted cancer therapies

    Science.gov (United States)

    Yang, Ke; Wang, Xin; Zhang, Hongmei; Wang, Zhongliang; Nan, Guoxin; Li, Yasha; Zhang, Fugui; Mohammed, Maryam K.; Haydon, Rex C.; Luu, Hue H.; Bi, Yang; He, Tong-Chuan

    2015-01-01

    The canonical WNT/β-catenin signaling pathway governs a myriad of biological processes underlying development and maintenance of adult tissue homeostasis, including regulation of stem cell self-renewal, cell proliferation, differentiation, and apoptosis. WNTs are secreted lipid-modified glycoproteins that act as short-range ligands to activate receptor-mediated signaling pathways. The hallmark of the canonical pathway is the activation of β-catenin mediated transcriptional activity. Canonical WNTs control the β-catenin dynamics as the cytoplasmic level of β-catenin is tightly regulated via phosphorylation by the ‘destruction complex’, consisting of glycogen synthase kinase 3β (GSK3β), casein kinase 1α (CK1α), the scaffold protein AXIN, and the tumor suppressor adenomatous polyposis coli (APC). Aberrant regulation of this signaling cascade is associated with varieties of human diseases, especially cancers. Over the past decade, significant progress has been made in understanding the mechanisms of canonical WNT signaling. In this review, we focus on the current understanding of WNT signaling at the extracellular, cytoplasmic membrane, and intracellular/nuclear levels, including the emerging knowledge of crosstalk with other pathways. Recent progresses in developing novel WNT pathway-targeted therapies will also be reviewed. Thus, this review is intended to serve as a refresher of the current understanding about the physiologic and pathogenic roles of WNT/β-catenin signaling pathway, and to outline potential therapeutic opportunities by targeting the canonical WNT pathway. PMID:26618721

  15. Regulation of promyogenic signal transduction by cell-cell contact and adhesion

    International Nuclear Information System (INIS)

    Krauss, Robert S.

    2010-01-01

    Skeletal myoblast differentiation involves acquisition of the muscle-specific transcriptional program and morphological changes, including fusion into multinucleated myofibers. Differentiation is regulated by extracellular signaling cues, including cell-cell contact and adhesion. Cadherin and Ig adhesion receptors have been implicated in distinct but overlapping stages of myogenesis. N-cadherin signals through the Ig receptor Cdo to activate p38 MAP kinase, while the Ig receptor neogenin signals to activate FAK; both processes promote muscle-specific gene expression and myoblast fusion. M-cadherin activates Rac1 to enhance fusion. Specific Ig receptors (Kirre and Sns) are essential for myoblast fusion in Drosophila, also signaling through Rac, and vertebrate orthologs of Kirre and Sns have partially conserved function. Mice lacking specific cytoplasmic signaling factors activated by multiple receptors (e.g., Rac1) have strong muscle phenotypes in vivo. In contrast, mice lacking individual adhesion receptors that lie upstream of these factors have modest phenotypes. Redundancy among receptors may account for this. Many of the mammalian Ig receptors and cadherins associate with each other, and multivalent interactions within these complexes may require removal of multiple components to reveal dramatic defects in vivo. Nevertheless, it is possible that the murine adhesion receptors rate-limiting in vivo have not yet been identified or fully assessed.

  16. Regulation of promyogenic signal transduction by cell-cell contact and adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Robert S., E-mail: Robert.Krauss@mssm.edu [Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029 (United States)

    2010-11-01

    Skeletal myoblast differentiation involves acquisition of the muscle-specific transcriptional program and morphological changes, including fusion into multinucleated myofibers. Differentiation is regulated by extracellular signaling cues, including cell-cell contact and adhesion. Cadherin and Ig adhesion receptors have been implicated in distinct but overlapping stages of myogenesis. N-cadherin signals through the Ig receptor Cdo to activate p38 MAP kinase, while the Ig receptor neogenin signals to activate FAK; both processes promote muscle-specific gene expression and myoblast fusion. M-cadherin activates Rac1 to enhance fusion. Specific Ig receptors (Kirre and Sns) are essential for myoblast fusion in Drosophila, also signaling through Rac, and vertebrate orthologs of Kirre and Sns have partially conserved function. Mice lacking specific cytoplasmic signaling factors activated by multiple receptors (e.g., Rac1) have strong muscle phenotypes in vivo. In contrast, mice lacking individual adhesion receptors that lie upstream of these factors have modest phenotypes. Redundancy among receptors may account for this. Many of the mammalian Ig receptors and cadherins associate with each other, and multivalent interactions within these complexes may require removal of multiple components to reveal dramatic defects in vivo. Nevertheless, it is possible that the murine adhesion receptors rate-limiting in vivo have not yet been identified or fully assessed.

  17. Induced overexpression of protein kinase D1 stimulates mitogenic signaling in human pancreatic carcinoma PANC-1 cells.

    Science.gov (United States)

    Kisfalvi, Krisztina; Hurd, Cliff; Guha, Sushovan; Rozengurt, Enrique

    2010-05-01

    Neurotensin (NT) stimulates protein kinase D1 (PKD1), extracellular signal regulated kinase (ERK), c-Jun N-terminal Kinase (JNK), and DNA synthesis in the human pancreatic adenocarcinoma cell line PANC-1. To determine the effect of PKD1 overexpression on these biological responses, we generated inducible stable PANC-1 clones that express wild-type (WT) or kinase-dead (K618N) forms of PKD1 in response to the ecdysone analog ponasterone-A (PonA). NT potently stimulated c-Jun Ser(63) phosphorylation in both wild type and clonal derivatives of PANC-1 cells. PonA-induced expression of WT, but not K618N PKD1, rapidly blocked NT-mediated c-Jun Ser(63) phosphorylation either at the level of or upstream of MKK4, a dual-specificity kinase that leads to JNK activation. This is the first demonstration that PKD1 suppresses NT-induced JNK/cJun activation in PANC-1 cells. In contrast, PKD1 overexpression markedly increased the duration of NT-induced ERK activation in these cells. The reciprocal influence of PKD1 signaling on pro-mitogenicERK and pro-apopotic JNK/c-Jun pathways prompted us to examine whether PKD1 overexpression promotes DNA synthesis and proliferation of PANC-1 cells. Our results show that PKD1 overexpression increased DNA synthesis and cell numbers of PANC-1 cells cultured in regular dishes or in polyhydroxyethylmethacrylate [Poly-(HEMA)]-coated dishes to eliminate cell adhesion (anchorage-independent growth). Furthermore, PKD1 overexpression markedly enhanced DNA synthesis induced by NT (1-10 nM). These results indicate that PKD1 mediates mitogenic signaling in PANC-1 and suggests that this enzyme could be a novel target for the development of therapeutic drugs that restrict the proliferation of these cells.

  18. IGF-1 signaling mediated cell-specific skeletal mechano-transduction.

    Science.gov (United States)

    Tian, Faming; Wang, Yongmei; Bikle, Daniel D

    2018-02-01

    Mechanical loading preserves bone mass and stimulates bone formation, whereas skeletal unloading leads to bone loss. In addition to osteocytes, which are considered the primary sensor of mechanical load, osteoblasts, and bone specific mesenchymal stem cells also are involved. The skeletal response to mechanical signals is a complex process regulated by multiple signaling pathways including that of insulin-like growth factor-1 (IGF-1). Conditional osteocyte deletion of IGF-1 ablates the osteogenic response to mechanical loading. Similarly, osteocyte IGF-1 receptor (IGF-1R) expression is necessary for reloading-induced periosteal bone formation. Transgenic overexpression of IGF-1 in osteoblasts results in enhanced responsiveness to in vivo mechanical loading in mice, a response which is eliminated by osteoblastic conditional disruption of IGF-1 in vivo. Bone marrow derived stem cells (BMSC) from unloaded bone fail to respond to IGF-1 in vitro. IGF-1R is required for the transduction of a mechanical stimulus to downstream effectors, transduction which is lost when the IGF-1R is deleted. Although the molecular mechanisms are not yet fully elucidated, the IGF signaling pathway and its interactions with potentially interlinked signaling cascades involving integrins, the estrogen receptor, and wnt/β-catenin play an important role in regulating adaptive response of cancer bone cells to mechanical stimuli. In this review, we discuss recent advances investigating how IGF-1 and other interlinked molecules and signaling pathways regulate skeletal mechano-transduction involving different bone cells, providing an overview of the IGF-1 signaling mediated cell-specific response to mechanical stimuli. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:576-583, 2018. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  19. Cell proliferation control by Notch signalling during imaginal discs development in Drosophila

    Directory of Open Access Journals (Sweden)

    Carlos Estella

    2015-02-01

    Full Text Available The Notch signalling pathway is evolutionary conserved and participates in numerous developmental processes, including the control of cell proliferation. However, Notch signalling can promote or restrain cell division depending on the developmental context, as has been observed in human cancer where Notch can function as a tumor suppressor or an oncogene. Thus, the outcome of Notch signalling can be influenced by the cross-talk between Notch and other signalling pathways. The use of model organisms such as Drosophila has been proven to be very valuable to understand the developmental role of the Notch pathway in different tissues and its relationship with other signalling pathways during cell proliferation control. Here we review recent studies in Drosophila that shed light in the developmental control of cell proliferation by the Notch pathway in different contexts such as the eye, wing and leg imaginal discs. We also discuss the autonomous and non-autonomous effects of the Notch pathway on cell proliferation and its interactions with different signalling pathways.

  20. Signalling network construction for modelling plant defence response.

    Directory of Open Access Journals (Sweden)

    Dragana Miljkovic

    Full Text Available Plant defence signalling response against various pathogens, including viruses, is a complex phenomenon. In resistant interaction a plant cell perceives the pathogen signal, transduces it within the cell and performs a reprogramming of the cell metabolism leading to the pathogen replication arrest. This work focuses on signalling pathways crucial for the plant defence response, i.e., the salicylic acid, jasmonic acid and ethylene signal transduction pathways, in the Arabidopsis thaliana model plant. The initial signalling network topology was constructed manually by defining the representation formalism, encoding the information from public databases and literature, and composing a pathway diagram. The manually constructed network structure consists of 175 components and 387 reactions. In order to complement the network topology with possibly missing relations, a new approach to automated information extraction from biological literature was developed. This approach, named Bio3graph, allows for automated extraction of biological relations from the literature, resulting in a set of (component1, reaction, component2 triplets and composing a graph structure which can be visualised, compared to the manually constructed topology and examined by the experts. Using a plant defence response vocabulary of components and reaction types, Bio3graph was applied to a set of 9,586 relevant full text articles, resulting in 137 newly detected reactions between the components. Finally, the manually constructed topology and the new reactions were merged to form a network structure consisting of 175 components and 524 reactions. The resulting pathway diagram of plant defence signalling represents a valuable source for further computational modelling and interpretation of omics data. The developed Bio3graph approach, implemented as an executable language processing and graph visualisation workflow, is publically available at http://ropot.ijs.si/bio3graph/and can be

  1. Influence of cell printing on biological characters of chondrocytes.

    Science.gov (United States)

    Qu, Miao; Gao, Xiaoyan; Hou, Yikang; Shen, Congcong; Xu, Yourong; Zhu, Ming; Wang, Hengjian; Xu, Haisong; Chai, Gang; Zhang, Yan

    2015-01-01

    To establish a two-dimensional biological printing technique of chondrocytes and compare the difference of related biological characters between printed chondrocytes and unprinted cells so as to control the cell transfer process and keep cell viability after printing. Primary chondrocytes were obtained from human mature and fetal cartilage tissues and then were regularly sub-cultured to harvest cells at passage 2 (P2), which were adjusted to the single cell suspension at a density of 1×10(6)/mL. The experiment was divided into 2 groups: experimental group P2 chondrocytes were transferred by rapid prototype biological printer (driving voltage value 50 V, interval in x-axis 300 μm, interval in y-axis 1500 μm). Afterwards Live/Dead viability Kit and flow cytometry were respectively adopted to detect cell viability; CCK-8 Kit was adopted to detect cell proliferation viability; immunocytochemistry, immunofluorescence and RT-PCR was employed to identify related markers of chondrocytes; control group steps were the same as the printing group except that cell suspension received no printing. Fluorescence microscopy and flow cytometry analyses showed that there was no significant difference between experimental group and control group in terms of cell viability. After 7-day in vitro culture, control group exhibited higher O.D values than experimental group from 2nd day to 7th day but there was no distinct difference between these two groups (P>0.05). Inverted microscope observation demonstrated that the morphology of these two groups had no significant difference either. Similarly, Immunocytochemistry, immunofluorescence and RT-PCR assays also showed that there was no significant difference in the protein and gene expression of type II collagen and aggrecan between these two groups (P>0.05). Conclusion Cell printing has no distinctly negative effect on cell vitality, proliferation and phenotype of chondrocytes. Biological printing technique may provide a novel approach

  2. Intercellular and intracellular signaling pathways mediating ionizing radiation-induced bystander effects

    International Nuclear Information System (INIS)

    Hamada, Nobuyuki; Hara, Takamitsu; Kobayashi, Yasuhiko; Matsumoto, Hideki

    2007-01-01

    A rapidly growing body of experimental evidence indicates that ionizing radiation induces biological effects in non-irradiated bystander cells that have received signals from adjacent or distant irradiated cells. This phenomenon, which has been termed the ionizing radiation-induced bystander effect, challenges the long-standing paradigm that radiation traversal through the nucleus of a cell is a prerequisite to elicit genetic damage or a biological response. Bystander effects have been observed in a number of experimental systems, and cells whose nucleus or cytoplasm is irradiated exert bystander responses. Bystander cells manifest a multitude of biological consequences, such as genetic and epigenetic changes, alterations in gene expression, activation of signal transduction pathways, and delayed effects in their progeny. Several mediating mechanisms have been proposed. These involve gap junction-mediated intercellular communication, secreted soluble factors, oxidative metabolism, plasma membrane-bound lipid rafts, and calcium fluxes. This paper reviews briefly the current knowledge of the bystander effect with a focus on proposed mechanisms. The potential benefit of bystander effects to cancer radiotherapy will also be discussed. (author)

  3. Cardiac c-Kit Biology Revealed by Inducible Transgenesis.

    Science.gov (United States)

    Gude, Natalie A; Firouzi, Fareheh; Broughton, Kathleen M; Ilves, Kelli; Nguyen, Kristine P; Payne, Christina R; Sacchi, Veronica; Monsanto, Megan M; Casillas, Alexandria R; Khalafalla, Farid G; Wang, Bingyan J; Ebeid, David E; Alvarez, Roberto; Dembitsky, Walter P; Bailey, Barbara A; van Berlo, Jop; Sussman, Mark A

    2018-06-22

    Biological significance of c-Kit as a cardiac stem cell marker and role(s) of c-Kit+ cells in myocardial development or response to pathological injury remain unresolved because of varied and discrepant findings. Alternative experimental models are required to contextualize and reconcile discordant published observations of cardiac c-Kit myocardial biology and provide meaningful insights regarding clinical relevance of c-Kit signaling for translational cell therapy. The main objectives of this study are as follows: demonstrating c-Kit myocardial biology through combined studies of both human and murine cardiac cells; advancing understanding of c-Kit myocardial biology through creation and characterization of a novel, inducible transgenic c-Kit reporter mouse model that overcomes limitations inherent to knock-in reporter models; and providing perspective to reconcile disparate viewpoints on c-Kit biology in the myocardium. In vitro studies confirm a critical role for c-Kit signaling in both cardiomyocytes and cardiac stem cells. Activation of c-Kit receptor promotes cell survival and proliferation in stem cells and cardiomyocytes of either human or murine origin. For creation of the mouse model, the cloned mouse c-Kit promoter drives Histone2B-EGFP (enhanced green fluorescent protein; H2BEGFP) expression in a doxycycline-inducible transgenic reporter line. The combination of c-Kit transgenesis coupled to H2BEGFP readout provides sensitive, specific, inducible, and persistent tracking of c-Kit promoter activation. Tagging efficiency for EGFP+/c-Kit+ cells is similar between our transgenic versus a c-Kit knock-in mouse line, but frequency of c-Kit+ cells in cardiac tissue from the knock-in model is 55% lower than that from our transgenic line. The c-Kit transgenic reporter model reveals intimate association of c-Kit expression with adult myocardial biology. Both cardiac stem cells and a subpopulation of cardiomyocytes express c-Kit in uninjured adult heart

  4. Dual Function of Wnt Signaling during Neuronal Differentiation of Mouse Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Hanjun Kim

    2015-01-01

    Full Text Available Activation of Wnt signaling enhances self-renewal of mouse embryonic and neural stem/progenitor cells. In contrast, undifferentiated ES cells show a very low level of endogenous Wnt signaling, and ectopic activation of Wnt signaling has been shown to block neuronal differentiation. Therefore, it remains unclear whether or not endogenous Wnt/β-catenin signaling is necessary for self-renewal or neuronal differentiation of ES cells. To investigate this, we examined the expression profiles of Wnt signaling components. Expression levels of Wnts known to induce β-catenin were very low in undifferentiated ES cells. Stable ES cell lines which can monitor endogenous activity of Wnt/β-catenin signaling suggest that Wnt signaling was very low in undifferentiated ES cells, whereas it increased during embryonic body formation or neuronal differentiation. Interestingly, application of small molecules which can positively (BIO, GSK3β inhibitor or negatively (IWR-1-endo, Axin stabilizer control Wnt/β-catenin signaling suggests that activation of that signaling at different time periods had differential effects on neuronal differentiation of 46C ES cells. Further, ChIP analysis suggested that β-catenin/TCF1 complex directly regulated the expression of Sox1 during neuronal differentiation. Overall, our data suggest that Wnt/β-catenin signaling plays differential roles at different time points of neuronal differentiation.

  5. Churchill regulates cell movement and mesoderm specification by repressing Nodal signaling

    Directory of Open Access Journals (Sweden)

    Mentzer Laura

    2007-11-01

    Full Text Available Abstract Background Cell movements are essential to the determination of cell fates during development. The zinc-finger transcription factor, Churchill (ChCh has been proposed to regulate cell fate by regulating cell movements during gastrulation in the chick. However, the mechanism of action of ChCh is not understood. Results We demonstrate that ChCh acts to repress the response to Nodal-related signals in zebrafish. When ChCh function is abrogated the expression of mesodermal markers is enhanced while ectodermal markers are expressed at decreased levels. In cell transplant assays, we observed that ChCh-deficient cells are more motile than wild-type cells. When placed in wild-type hosts, ChCh-deficient cells often leave the epiblast, migrate to the germ ring and are later found in mesodermal structures. We demonstrate that both movement of ChCh-compromised cells to the germ ring and acquisition of mesodermal character depend on the ability of the donor cells to respond to Nodal signals. Blocking Nodal signaling in the donor cells at the levels of Oep, Alk receptors or Fast1 inhibited migration to the germ ring and mesodermal fate change in the donor cells. We also detect additional unusual movements of transplanted ChCh-deficient cells which suggests that movement and acquisition of mesodermal character can be uncoupled. Finally, we demonstrate that ChCh is required to limit the transcriptional response to Nodal. Conclusion These data establish a broad role for ChCh in regulating both cell movement and Nodal signaling during early zebrafish development. We show that chch is required to limit mesodermal gene expression, inhibit Nodal-dependant movement of presumptive ectodermal cells and repress the transcriptional response to Nodal signaling. These findings reveal a dynamic role for chch in regulating cell movement and fate during early development.

  6. Superbinder SH2 domains act as antagonists of cell signaling.

    Science.gov (United States)

    Kaneko, Tomonori; Huang, Haiming; Cao, Xuan; Li, Xing; Li, Chengjun; Voss, Courtney; Sidhu, Sachdev S; Li, Shawn S C

    2012-09-25

    Protein-ligand interactions mediated by modular domains, which often play important roles in regulating cellular functions, are generally of moderate affinities. We examined the Src homology 2 (SH2) domain, a modular domain that recognizes phosphorylated tyrosine (pTyr) residues, to investigate how the binding affinity of a modular domain for its ligand influences the structure and cellular function of the protein. We used the phage display method to perform directed evolution of the pTyr-binding residues in the SH2 domain of the tyrosine kinase Fyn and identified three amino acid substitutions that critically affected binding. We generated three SH2 domain triple-point mutants that were "superbinders" with much higher affinities for pTyr-containing peptides than the natural domain. Crystallographic analysis of one of these superbinders revealed that the superbinder SH2 domain recognized the pTyr moiety in a bipartite binding mode: A hydrophobic surface encompassed the phenyl ring, and a positively charged site engaged the phosphate. When expressed in mammalian cells, the superbinder SH2 domains blocked epidermal growth factor receptor signaling and inhibited anchorage-independent cell proliferation, suggesting that pTyr superbinders might be explored for therapeutic applications and useful as biological research tools. Although the SH2 domain fold can support much higher affinity for its ligand than is observed in nature, our results suggest that natural SH2 domains are not optimized for ligand binding but for specificity and flexibility, which are likely properties important for their function in signaling and regulatory processes.

  7. Genome Annotation in a Community College Cell Biology Lab

    Science.gov (United States)

    Beagley, C. Timothy

    2013-01-01

    The Biology Department at Salt Lake Community College has used the IMG-ACT toolbox to introduce a genome mapping and annotation exercise into the laboratory portion of its Cell Biology course. This project provides students with an authentic inquiry-based learning experience while introducing them to computational biology and contemporary learning…

  8. Manipulation of EphB2 regulatory motifs and SH2 binding sites switches MAPK signaling and biological activity.

    Science.gov (United States)

    Tong, Jiefei; Elowe, Sabine; Nash, Piers; Pawson, Tony

    2003-02-21

    Signaling by the Eph family of receptor tyrosine kinases (RTKs) is complex, because they can interact with a variety of intracellular targets, and can potentially induce distinct responses in different cell types. In NG108 neuronal cells, activated EphB2 recruits p120RasGAP, in a fashion that is associated with down-regulation of the Ras-Erk mitogen-activated kinase (MAPK) pathway and neurite retraction. To pursue the role of the Ras-MAPK pathway in EphB2-mediated growth cone collapse, and to explore the biochemical and biological functions of Eph receptors, we sought to re-engineer the signaling properties of EphB2 by manipulating its regulatory motifs and SH2 binding sites. An EphB2 mutant that retained juxtamembrane (JM) RasGAP binding sites but incorporated a Grb2 binding motif at an alternate RasGAP binding site within the kinase domain had little effect on basal Erk MAPK activation. In contrast, elimination of all RasGAP binding sites, accompanied by the addition of a Grb2 binding site within the kinase domain, led to an increase in phospho-Erk levels in NG108 cells following ephrin-B1 stimulation. Functional assays indicated a correlation between neurite retraction and the ability of the EphB2 mutants to down-regulate Ras-Erk MAPK signaling. These data suggest that EphB2 can be designed to repress, stabilize, or activate the Ras-Erk MAPK pathway by the manipulation of RasGAP and Grb2 SH2 domain binding sites and support the notion that Erk MAPK regulation plays a significant role in axon guidance. The behavior of EphB2 variants with mutations in the JM region and kinase domains suggests an intricate pattern of regulation and target recognition by Eph receptors.

  9. Novel insights into embryonic stem cell self-renewal revealed through comparative human and mouse systems biology networks.

    Science.gov (United States)

    Dowell, Karen G; Simons, Allen K; Bai, Hao; Kell, Braden; Wang, Zack Z; Yun, Kyuson; Hibbs, Matthew A

    2014-05-01

    Embryonic stem cells (ESCs), characterized by their ability to both self-renew and differentiate into multiple cell lineages, are a powerful model for biomedical research and developmental biology. Human and mouse ESCs share many features, yet have distinctive aspects, including fundamental differences in the signaling pathways and cell cycle controls that support self-renewal. Here, we explore the molecular basis of human ESC self-renewal using Bayesian network machine learning to integrate cell-type-specific, high-throughput data for gene function discovery. We integrated high-throughput ESC data from 83 human studies (~1.8 million data points collected under 1,100 conditions) and 62 mouse studies (~2.4 million data points collected under 1,085 conditions) into separate human and mouse predictive networks focused on ESC self-renewal to analyze shared and distinct functional relationships among protein-coding gene orthologs. Computational evaluations show that these networks are highly accurate, literature validation confirms their biological relevance, and reverse transcriptase polymerase chain reaction (RT-PCR) validation supports our predictions. Our results reflect the importance of key regulatory genes known to be strongly associated with self-renewal and pluripotency in both species (e.g., POU5F1, SOX2, and NANOG), identify metabolic differences between species (e.g., threonine metabolism), clarify differences between human and mouse ESC developmental signaling pathways (e.g., leukemia inhibitory factor (LIF)-activated JAK/STAT in mouse; NODAL/ACTIVIN-A-activated fibroblast growth factor in human), and reveal many novel genes and pathways predicted to be functionally associated with self-renewal in each species. These interactive networks are available online at www.StemSight.org for stem cell researchers to develop new hypotheses, discover potential mechanisms involving sparsely annotated genes, and prioritize genes of interest for experimental validation

  10. Rap G protein signal in normal and disordered lymphohematopoiesis.

    Science.gov (United States)

    Minato, Nagahiro

    2013-09-10

    Rap proteins (Rap1, Rap2a, b, c) are small molecular weight GTPases of the Ras family. Rap G proteins mediate diverse cellular events such as cell adhesion, proliferation, and gene activation through various signaling pathways. Activation of Rap signal is regulated tightly by several specific regulatory proteins including guanine nucleotide exchange factors and GTPase-activating proteins. Beyond cell biological studies, increasing attempts have been made in the past decade to define the roles of Rap signal in specific functions of normal tissue systems as well as in cancer. In the immune and hematopoietic systems, Rap signal plays crucial roles in the development and function of essentially all lineages of lymphocytes and hematopoietic cells, and importantly, deregulated Rap signal may lead to unique pathological conditions depending on the affected cell types, including various types of leukemia and autoimmunity. The phenotypical studies have unveiled novel, even unexpected functional aspects of Rap signal in cells from a variety of tissues, providing potentially important clues for controlling human diseases, including malignancy. © 2013 Elsevier Inc. All rights reserved.

  11. Effect of sound on gap-junction-based intercellular signaling: Calcium waves under acoustic irradiation.

    Science.gov (United States)

    Deymier, P A; Swinteck, N; Runge, K; Deymier-Black, A; Hoying, J B

    2015-01-01

    We present a previously unrecognized effect of sound waves on gap-junction-based intercellular signaling such as in biological tissues composed of endothelial cells. We suggest that sound irradiation may, through temporal and spatial modulation of cell-to-cell conductance, create intercellular calcium waves with unidirectional signal propagation associated with nonconventional topologies. Nonreciprocity in calcium wave propagation induced by sound wave irradiation is demonstrated in the case of a linear and a nonlinear reaction-diffusion model. This demonstration should be applicable to other types of gap-junction-based intercellular signals, and it is thought that it should be of help in interpreting a broad range of biological phenomena associated with the beneficial therapeutic effects of sound irradiation and possibly the harmful effects of sound waves on health.

  12. Consciousness can reduce the voltage of the output signal of solar cell

    Science.gov (United States)

    Cao, Dayong

    2010-10-01

    When the sun's light radiate on the solar cell, the solar cell can produce the output signal as the photocurrent. We use the Data Acquisition Modules to record the voltage of the output signals. The v1 is voltage of the output signal of solar cell1; The v2 is the one of solar cell2. And these two solar cells stay side by side. When we record the voltage of the output signal from the morning to the noon, the voltage of the output signals will go up, and the v1 is bigger than the v2 during this time. But when the experimenter use consciousness to reduce the voltage of the output signals. That is to say: not only natural light ratiade on two solar cells, but also consciousness act on two solar cells. Not only I can use consciousness to reduce the growth voltage of the output signals, but also can change the v1 to be littler than the v2. The experiment was conducted on Sep. 2010. There is the physical system of the mass, energy, space and time-MEST; There is the spirited system of the mind, consciousness, emotion and desire-MECD; the information system is the code system. We can use them to develop photoelectric principle, life technology and Nanotech of semiconductor for consciousness effect.

  13. Syndecans, signaling, and cell adhesion

    DEFF Research Database (Denmark)

    Couchman, J R; Woods, A

    1996-01-01

    structures within the heparan sulfate chains, leaving the roles of chondroitin sulfate chains and extracellular portion of the core proteins to be elucidated. Evidence that syndecans are a class of receptor involved in cell adhesion is mounting, and their small cytoplasmic domains may link...... transmembrane signaling from matrix to cytoskeleton, as proposed for other classes of adhesion receptors....

  14. Insulin signaling in Caenorhabditis elegans regulates both endocrine-like and cell-autonomous outputs.

    Science.gov (United States)

    Iser, Wendy B; Gami, Minaxi S; Wolkow, Catherine A

    2007-03-15

    In C. elegans, insulin signaling affects development, lifespan and stress resistance. Several studies have shown that insulin signaling affects lifespan in an endocrine-like manner from different cells, while the major downstream target of insulin, the FOXO transcription factor encoded by daf-16, may act preferentially in intestinal cells to prolong lifespan. This discrepancy raised the possibility that insulin may have both endocrine and cell-intrinsic outputs. Here, we further investigated the types of cells capable of producing endocrine outputs of insulin and also identified a new cell-intrinsic insulin output. We found that insulin signaling within groups of neurons promoted wildtype lifespan, showing that the endocrine outputs of insulin were not restricted to specific cells. In contrast, DAF-16 appeared to have a greater effect on lifespan when expressed in a combination of tissues. These results suggest that insulin signaling may regulate DAF-16 through cell-intrinsic and endocrine pathways. We also found that an insulin-dependent response to fasting in intestinal cells was preferentially regulated by intestinal insulin signaling and was less responsive to insulin signaling from non-intestinal cells. Together, these results show that C. elegans insulin signaling has endocrine as well as tissue-specific outputs which could influence lifespan in a combinatorial fashion.

  15. Src-family kinases negatively regulate NFAT signaling in resting human T cells.

    Directory of Open Access Journals (Sweden)

    Alan Baer

    Full Text Available T cell signaling is required for activation of both natural and therapeutic T cells including chimeric antigen receptor (CAR T cells. Identification of novel factors and pathways regulating T cell signaling may aid in development of effective T cell therapies. In resting human T cells, the majority of Src-family of tyrosine kinases (SFKs are inactive due to phosphorylation of a conserved carboxy-terminal tyrosine residue. Recently, a pool of enzymatically active SFKs has been identified in resting T cells; however, the significance of these is incompletely understood. Here, we characterized the role of active SFKs in resting human T cells. Pharmacologic inhibition of active SFKs enhanced distal TCR signaling as measured by IL-2 release and CD25 surface expression following TCR-independent activation. Mechanistically, inhibition of the active pool of SFKs induced nuclear translocation of NFAT1, and enhanced NFAT1-dependent signaling in resting T cells. The negative regulation of NFAT1 signaling was in part mediated by the Src-kinase Lck as human T cells lacking Lck had increased levels of nuclear NFAT1 and demonstrated enhanced NFAT1-dependent gene expression. Inhibition of active SFKs in resting primary human T cells also increased nuclear NFAT1 and enhanced NFAT1-dependent signaling. Finally, the calcineurin inhibitor FK506 and Cyclosporin A reversed the effect of SFKs inhibition on NFAT1. Together, these data identified a novel role of SFKs in preventing aberrant NFAT1 activation in resting T cells, and suggest that maintaining this pool of active SFKs in therapeutic T cells may increase the efficacy of T cell therapies.

  16. Inhibition of STAT3 Expression and Signaling in Resveratrol-Differentiated Medulloblastoma Cells

    Directory of Open Access Journals (Sweden)

    Li-Jun Yu

    2008-07-01

    Full Text Available In this study, the potential influence of resveratrol (3,5,4′-trihydroxy-trans-stilbene in signal transducer and activator of transcription 3 (STAT3 signaling of medulloblastoma cells was evaluated by checking the status of STAT3 signaling and its downstream gene expression in two medulloblastoma cell lines (UW228-2 and UW228-3 with and without resveratrol treatment. The results revealed that resveratrol induced neuronal differentiation of medulloblastoma cells. Signal transducer and activator of transcription 3 expression and phosphorylation were detected in normally cultured UW228-2 and UW228-3 cells that were apparently attenuated after resveratrol treatment. The expression of STAT3 downstream genes, survivin, cyclin D1, Cox-2, and c-Myc, was suppressed but Bcl-2 was enhanced by resveratrol. Meanwhile, the production and secretion of leukemia inhibitory factor, a STAT3 activator, became active in resveratrol-treated cells. To further ascertain the significance of STAT3 signaling for medulloblastoma cells, AG490, a selective inhibitor of STAT3 phosphorylation, was used to treat UW228-3 cells. Phosphorylation of STAT3 was inhibited by AG490 accompanied with growth suppression, differentiation-like changes, and down-regulation of survivin, cyclin D1, Cox-2, and c-Myc. Our data thus suggest the importance of STAT3 signaling in maintenance and survival of medulloblastoma cells. This signaling may be the major target of resveratrol. Enhanced leukemia inhibitory factor and Bcl-2 expressions in resveratrol-treated cells might reflect a compensatory response to the loss of STAT3 function.

  17. Discrete dynamic modeling of T cell survival signaling networks

    Science.gov (United States)

    Zhang, Ranran

    2009-03-01

    Biochemistry-based frameworks are often not applicable for the modeling of heterogeneous regulatory systems that are sparsely documented in terms of quantitative information. As an alternative, qualitative models assuming a small set of discrete states are gaining acceptance. This talk will present a discrete dynamic model of the signaling network responsible for the survival and long-term competence of cytotoxic T cells in the blood cancer T-LGL leukemia. We integrated the signaling pathways involved in normal T cell activation and the known deregulations of survival signaling in leukemic T-LGL, and formulated the regulation of each network element as a Boolean (logic) rule. Our model suggests that the persistence of two signals is sufficient to reproduce all known deregulations in leukemic T-LGL. It also indicates the nodes whose inactivity is necessary and sufficient for the reversal of the T-LGL state. We have experimentally validated several model predictions, including: (i) Inhibiting PDGF signaling induces apoptosis in leukemic T-LGL. (ii) Sphingosine kinase 1 and NFκB are essential for the long-term survival of T cells in T-LGL leukemia. (iii) T box expressed in T cells (T-bet) is constitutively activated in the T-LGL state. The model has identified potential therapeutic targets for T-LGL leukemia and can be used for generating long-term competent CTL necessary for tumor and cancer vaccine development. The success of this model, and of other discrete dynamic models, suggests that the organization of signaling networks has an determining role in their dynamics. Reference: R. Zhang, M. V. Shah, J. Yang, S. B. Nyland, X. Liu, J. K. Yun, R. Albert, T. P. Loughran, Jr., Network Model of Survival Signaling in LGL Leukemia, PNAS 105, 16308-16313 (2008).

  18. Calcium as a signal integrator in developing epithelial tissues.

    Science.gov (United States)

    Brodskiy, Pavel A; Zartman, Jeremiah J

    2018-05-16

    Decoding how tissue properties emerge across multiple spatial and temporal scales from the integration of local signals is a grand challenge in quantitative biology. For example, the collective behavior of epithelial cells is critical for shaping developing embryos. Understanding how epithelial cells interpret a diverse range of local signals to coordinate tissue-level processes requires a systems-level understanding of development. Integration of multiple signaling pathways that specify cell signaling information requires second messengers such as calcium ions. Increasingly, specific roles have been uncovered for calcium signaling throughout development. Calcium signaling regulates many processes including division, migration, death, and differentiation. However, the pleiotropic and ubiquitous nature of calcium signaling implies that many additional functions remain to be discovered. Here we review a selection of recent studies to highlight important insights into how multiple signals are transduced by calcium transients in developing epithelial tissues. Quantitative imaging and computational modeling have provided important insights into how calcium signaling integration occurs. Reverse-engineering the conserved features of signal integration mediated by calcium signaling will enable novel approaches in regenerative medicine and synthetic control of morphogenesis.

  19. Wnt Signaling in Kidney Development and Disease.

    Science.gov (United States)

    Wang, Yongping; Zhou, Chengji J; Liu, Youhua

    2018-01-01

    Wnt signal cascade is an evolutionarily conserved, developmental pathway that regulates embryogenesis, injury repair, and pathogenesis of human diseases. It is well established that Wnt ligands transmit their signal via canonical, β-catenin-dependent and noncanonical, β-catenin-independent mechanisms. Mounting evidence has revealed that Wnt signaling plays a key role in controlling early nephrogenesis and is implicated in the development of various kidney disorders. Dysregulations of Wnt expression cause a variety of developmental abnormalities and human diseases, such as congenital anomalies of the kidney and urinary tract, cystic kidney, and renal carcinoma. Multiple Wnt ligands, their receptors, and transcriptional targets are upregulated during nephron formation, which is crucial for mediating the reciprocal interaction between primordial tissues of ureteric bud and metanephric mesenchyme. Renal cysts are also associated with disrupted Wnt signaling. In addition, Wnt components are important players in renal tumorigenesis. Activation of Wnt/β-catenin is instrumental for tubular repair and regeneration after acute kidney injury. However, sustained activation of this signal cascade is linked to chronic kidney diseases and renal fibrosis in patients and experimental animal models. Mechanistically, Wnt signaling controls a diverse array of biologic processes, such as cell cycle progression, cell polarity and migration, cilia biology, and activation of renin-angiotensin system. In this chapter, we have reviewed recent findings that implicate Wnt signaling in kidney development and diseases. Targeting this signaling may hold promise for future treatment of kidney disorders in patients. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. A balance of FGF and BMP signals regulates cell cycle exit and Equarin expression in lens cells

    Science.gov (United States)

    Jarrin, Miguel; Pandit, Tanushree; Gunhaga, Lena

    2012-01-01

    In embryonic and adult lenses, a balance of cell proliferation, cell cycle exit, and differentiation is necessary to maintain physical function. The molecular mechanisms regulating the transition of proliferating lens epithelial cells to differentiated primary lens fiber cells are poorly characterized. To investigate this question, we used gain- and loss-of-function analyses to modulate fibroblast growth factor (FGF) and/or bone morphogenetic protein (BMP) signals in chick lens/retina explants. Here we show that FGF activity plays a key role for proliferation independent of BMP signals. Moreover, a balance of FGF and BMP signals regulates cell cycle exit and the expression of Ccdc80 (also called Equarin), which is expressed at sites where differentiation of lens fiber cells occurs. BMP activity promotes cell cycle exit and induces Equarin expression in an FGF-dependent manner. In contrast, FGF activity is required but not sufficient to induce cell cycle exit or Equarin expression. Furthermore, our results show that in the absence of BMP activity, lens cells have increased cell cycle length or are arrested in the cell cycle, which leads to decreased cell cycle exit. Taken together, these findings suggest that proliferation, cell cycle exit, and early differentiation of primary lens fiber cells are regulated by counterbalancing BMP and FGF signals. PMID:22718906

  1. Assessment of network perturbation amplitudes by applying high-throughput data to causal biological networks

    Directory of Open Access Journals (Sweden)

    Martin Florian

    2012-05-01

    Full Text Available Abstract Background High-throughput measurement technologies produce data sets that have the potential to elucidate the biological impact of disease, drug treatment, and environmental agents on humans. The scientific community faces an ongoing challenge in the analysis of these rich data sources to more accurately characterize biological processes that have been perturbed at the mechanistic level. Here, a new approach is built on previous methodologies in which high-throughput data was interpreted using prior biological knowledge of cause and effect relationships. These relationships are structured into network models that describe specific biological processes, such as inflammatory signaling or cell cycle progression. This enables quantitative assessment of network perturbation in response to a given stimulus. Results Four complementary methods were devised to quantify treatment-induced activity changes in processes described by network models. In addition, companion statistics were developed to qualify significance and specificity of the results. This approach is called Network Perturbation Amplitude (NPA scoring because the amplitudes of treatment-induced perturbations are computed for biological network models. The NPA methods were tested on two transcriptomic data sets: normal human bronchial epithelial (NHBE cells treated with the pro-inflammatory signaling mediator TNFα, and HCT116 colon cancer cells treated with the CDK cell cycle inhibitor R547. Each data set was scored against network models representing different aspects of inflammatory signaling and cell cycle progression, and these scores were compared with independent measures of pathway activity in NHBE cells to verify the approach. The NPA scoring method successfully quantified the amplitude of TNFα-induced perturbation for each network model when compared against NF-κB nuclear localization and cell number. In addition, the degree and specificity to which CDK

  2. The Pseudomonas aeruginosa lectin LecA triggers host cell signalling by glycosphingolipid-dependent phosphorylation of the adaptor protein CrkII.

    Science.gov (United States)

    Zheng, Shuangshuang; Eierhoff, Thorsten; Aigal, Sahaja; Brandel, Annette; Thuenauer, Roland; de Bentzmann, Sophie; Imberty, Anne; Römer, Winfried

    2017-07-01

    The human pathogen Pseudomonas aeruginosa induces phosphorylation of the adaptor protein CrkII by activating the non-receptor tyrosine kinase Abl to promote its uptake into host cells. So far, specific factors of P. aeruginosa, which induce Abl/CrkII signalling, are entirely unknown. In this research, we employed human lung epithelial cells H1299, Chinese hamster ovary cells and P. aeruginosa wild type strain PAO1 to study the invasion process of P. aeruginosa into host cells by using microbiological, biochemical and cell biological approaches such as Western Blot, immunofluorescence microscopy and flow cytometry. Here, we demonstrate that the host glycosphingolipid globotriaosylceramide, also termed Gb3, represents a signalling receptor for the P. aeruginosa lectin LecA to induce CrkII phosphorylation at tyrosine 221. Alterations in Gb3 expression and LecA function correlate with CrkII phosphorylation. Interestingly, phosphorylation of CrkII Y221 occurs independently of Abl kinase. We further show that Src family kinases transduce the signal induced by LecA binding to Gb3, leading to Crk Y221 phosphorylation. In summary, we identified LecA as a bacterial factor, which utilizes a so far unrecognized mechanism for phospho-CrkII Y221 induction by binding to the host glycosphingolipid receptor Gb3. The LecA/Gb3 interaction highlights the potential of glycolipids to mediate signalling processes across the plasma membrane and should be further elucidated to gain deeper insights into this non-canonical mechanism of activating host cell processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Biology and flow cytometry of proangiogenic hematopoietic progenitors cells.

    Science.gov (United States)

    Rose, Jonathan A; Erzurum, Serpil; Asosingh, Kewal

    2015-01-01

    During development, hematopoiesis and neovascularization are closely linked to each other via a common bipotent stem cell called the hemangioblast that gives rise to both hematopoietic cells and endothelial cells. In postnatal life, this functional connection between the vasculature and hematopoiesis is maintained by a subset of hematopoietic progenitor cells endowed with the capacity to differentiate into potent proangiogenic cells. These proangiogenic hematopoietic progenitors comprise a specific subset of bone marrow (BM)-derived cells that homes to sites of neovascularization and possess potent paracrine angiogenic activity. There is emerging evidence that this subpopulation of hematopoietic progenitors plays a critical role in vascular health and disease. Their angiogenic activity is distinct from putative "endothelial progenitor cells" that become structural cells of the endothelium by differentiation into endothelial cells. Proangiogenic hematopoietic progenitor cell research requires multidisciplinary expertise in flow cytometry, hematology, and vascular biology. This review provides a comprehensive overview of proangiogenic hematopoietic progenitor cell biology and flow cytometric methods to detect these cells in the peripheral blood circulation and BM. © 2014 International Society for Advancement of Cytometry.

  4. Colorectal cancer cells suppress CD4+ T cells immunity through canonical Wnt signaling.

    Science.gov (United States)

    Sun, Xuan; Liu, Suoning; Wang, Daguang; Zhang, Yang; Li, Wei; Guo, Yuchen; Zhang, Hua; Suo, Jian

    2017-02-28

    Understanding how colorectal cancer escapes from immunosurveillance and immune attack is important for developing novel immunotherapies for colorectal cancer. In this study we evaluated the role of canonical Wnt signaling in the regulation of T cell function in a mouse colorectal cancer model. We found that colorectal cancer cells expressed abundant Wnt ligands, and intratumoral T cells expressed various Frizzled proteins. Meanwhile, both active β-catenin and total β-catenin were elevated in intratumoral T cells. In vitro study indicated that colorectal cancer cells suppressed IFN-γ expression and increased IL-17a expression in activated CD4+ T cells. However, the cytotoxic activity of CD8+ T cells was not altered by colorectal cancer cells. To further evaluate the importance of Wnt signaling for CD4+ T cell-mediated cancer immunity, β-catenin expression was enforced in CD4+ T cells using lentiviral transduction. In an adoptive transfer model, enforced expression of β-catenin in intratumoral CD4+ T cells increased IL-17a expression, enhanced proliferation and inhibited apoptosis of colorectal cancer cells. Taken together, our study disclosed a new mechanism by which colorectal cancer impairs T cell immunity.

  5. CTNNB1 signaling in sertoli cells downregulates spermatogonial stem cell activity via WNT4.

    Directory of Open Access Journals (Sweden)

    Alexandre Boyer

    Full Text Available Constitutive activation of the WNT signaling effector CTNNB1 (β-catenin in the Sertoli cells of the Ctnnb1(tm1Mmt/+;Amhr2(tm3(creBhr/+ mouse model results in progressive germ cell loss and sterility. In this study, we sought to determine if this phenotype could be due to a loss of spermatogonial stem cell (SSC activity. Reciprocal SSC transplants between Ctnnb1(tm1Mmt/+;Amhr2(tm3(creBhr/+ and wild-type mice showed that SSC activity is lost in Ctnnb1(tm1Mmt/+;Amhr2(tm3(creBhr/+ testes over time, whereas the mutant testes could not support colonization by wild-type SSCs. Microarray analyses performed on cultured Sertoli cells showed that CTNNB1 induces the expression of genes associated with the female sex determination pathway, which was also found to occur in Ctnnb1(tm1Mmt/+;Amhr2(tm3(creBhr/+ testes. One CTNNB1 target gene encoded the secreted signaling molecule WNT4. We therefore tested the effects of WNT4 on SSC-enriched germ cell cultures, and found that WNT4 induced cell death and reduced SSC activity without affecting cell cycle. Conversely, conditional inactivation of Wnt4 in the Ctnnb1(tm1Mmt/+;Amhr2(tm3(creBhr/+ model rescued spermatogenesis and male fertility, indicating that WNT4 is the major effector downstream of CTNNB1 responsible for germ cell loss. Furthermore, WNT4 was found to signal via the CTNNB1 pathway in Sertoli cells, suggesting a self-reinforcing positive feedback loop. Collectively, these data indicate for the first time that ectopic activation of a signaling cascade in the stem cell niche depletes SSC activity through a paracrine factor. These findings may provide insight into the pathogenesis of male infertility, as well as embryonic gonadal development.

  6. Robo signaling regulates the production of cranial neural crest cells.

    Science.gov (United States)

    Li, Yan; Zhang, Xiao-Tan; Wang, Xiao-Yu; Wang, Guang; Chuai, Manli; Münsterberg, Andrea; Yang, Xuesong

    2017-12-01

    Slit/Robo signaling plays an important role in the guidance of developing neurons in developing embryos. However, it remains obscure whether and how Slit/Robo signaling is involved in the production of cranial neural crest cells. In this study, we examined Robo1 deficient mice to reveal developmental defects of mouse cranial frontal and parietal bones, which are derivatives of cranial neural crest cells. Therefore, we determined the production of HNK1 + cranial neural crest cells in early chick embryo development after knock-down (KD) of Robo1 expression. Detection of markers for pre-migratory and migratory neural crest cells, PAX7 and AP-2α, showed that production of both was affected by Robo1 KD. In addition, we found that the transcription factor slug is responsible for the aberrant delamination/EMT of cranial neural crest cells induced by Robo1 KD, which also led to elevated expression of E- and N-Cadherin. N-Cadherin expression was enhanced when blocking FGF signaling with dominant-negative FGFR1 in half of the neural tube. Taken together, we show that Slit/Robo signaling influences the delamination/EMT of cranial neural crest cells, which is required for cranial bone development. Copyright © 2017. Published by Elsevier Inc.

  7. Balancing act: matching growth with environment by the TOR signalling pathway.

    Science.gov (United States)

    Henriques, Rossana; Bögre, László; Horváth, Beátrix; Magyar, Zoltán

    2014-06-01

    One of the most fundamental aspects of growth in plants is its plasticity in relation to fluctuating environmental conditions. Growth of meristematic cells relies predominantly on protein synthesis, one of the most energy-consuming activities in cells, and thus is tightly regulated in accordance with the available nutrient and energy supplies. The Target of Rapamycin (TOR) signalling pathway takes a central position in this regulation. The core of the TOR signalling pathway is conserved throughout evolution, and can be traced back to the last eukaryotic common ancestor. In plants, a single complex constitutes the TOR signalling pathway. Manipulating the components of the TOR complex in Arabidopsis highlighted its common role as a major regulator of protein synthesis and metabolism, that is also involved in other biological functions such as cell-wall integrity, regulation of cell proliferation, and cell size. TOR, as an integral part of the auxin signalling pathway, connects hormonal and nutrient pathways. Downstream of TOR, S6 kinase and the ribosomal S6 protein have been shown to mediate several of these responses, although there is evidence of other complex non-linear TOR signalling pathway structures. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Cell adhesive ability of a biological foam ceramic with surface modification

    International Nuclear Information System (INIS)

    Zhang Yong; Li Xiaoyu; Feng Fan; Lin Yunfeng; Liao Yunmao; Tian, Weidong; Liu Lei

    2008-01-01

    Biological foam ceramic is a promising material for tissue engineering scaffold because of its biocompatibility, biodegradation and adequate pores measured from micrometer to nanometers. The aim of this study was to evaluate the adhesion and proliferation of adipose-derived stromal cells (ADSCs) on the biological foam ceramic coated with fibronectin. ADSCs were harvested from SD rats and passaged three times prior to seeding onto biological foam surface modified with fibronectin (50 μg/ml). Scaffold without surface modification served as control. To characterize cellular attachment, cells were incubated on the scaffold for 1 h and 3 h and then the cells attached onto the scaffold were counted. The difference of proliferation was appraised using MTT assay at day 1, 3, 5 and 7 before the cells reached confluence. After 7 days of culture, scanning electron microscope (SEM) was chosen to assess cell morphology and attachment of ADSCs on the biological foam ceramic. Attachment of ADSCs on the biological foam ceramic surface modified with fibronectin at 1 h or 3 h was substantially greater than that in control. MTT assay revealed that ADSCs proliferation tendency of the experimental group was nearly parallel to that of control. SEM view showed that ADSCs in the experimental groups connected more tightly and excreted more collagen than that in control. The coating of fibronectin could improve the cell adhesive ability of biological foam ceramics without evident effect on proliferation

  9. Synthetic Biology and Personalized Medicine

    Science.gov (United States)

    Jain, K.K.

    2013-01-01

    Synthetic biology, application of synthetic chemistry to biology, is a broad term that covers the engineering of biological systems with structures and functions not found in nature to process information, manipulate chemicals, produce energy, maintain cell environment and enhance human health. Synthetic biology devices contribute not only to improve our understanding of disease mechanisms, but also provide novel diagnostic tools. Methods based on synthetic biology enable the design of novel strategies for the treatment of cancer, immune diseases metabolic disorders and infectious diseases as well as the production of cheap drugs. The potential of synthetic genome, using an expanded genetic code that is designed for specific drug synthesis as well as delivery and activation of the drug in vivo by a pathological signal, was already pointed out during a lecture delivered at Kuwait University in 2005. Of two approaches to synthetic biology, top-down and bottom-up, the latter is more relevant to the development of personalized medicines as it provides more flexibility in constructing a partially synthetic cell from basic building blocks for a desired task. PMID:22907209

  10. Signal processing for molecular and cellular biological physics: an emerging field.

    Science.gov (United States)

    Little, Max A; Jones, Nick S

    2013-02-13

    Recent advances in our ability to watch the molecular and cellular processes of life in action--such as atomic force microscopy, optical tweezers and Forster fluorescence resonance energy transfer--raise challenges for digital signal processing (DSP) of the resulting experimental data. This article explores the unique properties of such biophysical time series that set them apart from other signals, such as the prevalence of abrupt jumps and steps, multi-modal distributions and autocorrelated noise. It exposes the problems with classical linear DSP algorithms applied to this kind of data, and describes new nonlinear and non-Gaussian algorithms that are able to extract information that is of direct relevance to biological physicists. It is argued that these new methods applied in this context typify the nascent field of biophysical DSP. Practical experimental examples are supplied.

  11. Cell fate in the Arabidopsis root meristem determined by directional signalling.

    Science.gov (United States)

    van den Berg, C; Willemsen, V; Hage, W; Weisbeek, P; Scheres, B

    1995-11-02

    Postembryonic development in plants is achieved by apical meristems. Surgical studies and clonal analysis have revealed indirectly that cells in shoot meristems have no predictable destiny and that position is likely to play a role in the acquisition of cell identity. In contrast to animal systems, there has been no direct evidence for inductive signalling in plants until now. Here we present evidence for such signalling using laser ablation of cells in the root meristem of Arabidopsis thaliana. Although these cells show rigid clonal relationships, we now demonstrate that it is positional control that is most important in the determination of cell fate. Positional signals can be perpetuated from more mature to initial cells to guide the pattern of meristem cell differentiation. This offers an alternative to the general opinion that meristems are the source of patterning information.

  12. Compact Electro-Permeabilization System for Controlled Treatment of Biological Cells and Cell Medium Conductivity Change Measurement

    Directory of Open Access Journals (Sweden)

    Novickij Vitalij

    2014-10-01

    Full Text Available Subjection of biological cells to high intensity pulsed electric field results in the permeabilization of the cell membrane. Measurement of the electrical conductivity change allows an analysis of the dynamics of the process, determination of the permeabilization thresholds, and ion efflux influence. In this work a compact electro-permeabilization system for controlled treatment of biological cells is presented. The system is capable of delivering 5 μs - 5 ms repetitive square wave electric field pulses with amplitude up to 1 kV. Evaluation of the cell medium conductivity change is implemented in the setup, allowing indirect measurement of the ion concentration changes occurring due to the cell membrane permeabilization. The simulation model using SPICE and the experimental data of the proposed system are presented in this work. Experimental data with biological cells is also overviewed

  13. Deregulated WNT signaling in childhood T-cell acute lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Ng, O H; Erbilgin, Y; Firtina, S; Celkan, T; Karakas, Z; Aydogan, G; Turkkan, E; Yildirmak, Y; Timur, C; Zengin, E; Dongen, J J M van; Staal, F J T; Ozbek, U; Sayitoglu, M

    2014-01-01

    WNT signaling has been implicated in the regulation of hematopoietic stem cells and plays an important role during T-cell development in thymus. Here we investigated WNT pathway activation in childhood T-cell acute lymphoblastic leukemia (T-ALL) patients. To evaluate the potential role of WNT signaling in T-cell leukomogenesis, we performed expression analysis of key components of WNT pathway. More than 85% of the childhood T-ALL patients showed upregulated β-catenin expression at the protein level compared with normal human thymocytes. The impact of this upregulation was reflected in high expression of known target genes (AXIN2, c-MYC, TCF1 and LEF). Especially AXIN2, the universal target gene of WNT pathway, was upregulated at both mRNA and protein levels in ∼40% of the patients. When β-CATENIN gene was silenced by small interfering RNA, the cancer cells showed higher rates of apoptosis. These results demonstrate that abnormal WNT signaling activation occurs in a significant fraction of human T-ALL cases independent of known T-ALL risk factors. We conclude that deregulated WNT signaling is a novel oncogenic event in childhood T-ALL

  14. Surface enhanced imaging and IR spectroscopy of the biological cells on the nanostructured gold film

    Directory of Open Access Journals (Sweden)

    G.I. Dovbeshko

    2017-07-01

    Full Text Available New approach for optical imaging, structural study and cell cultivation based on the effect of the enhancement of optical signals from biomolecules and biological cells near nanostructured rough gold surface is proposed. The surface enhanced IR absorption (SEIRA spectroscopy and confocal microscopy experiments were made using the culture of SPEV (porcine embryonic kidney epithelium transplantable line and fibroblast cells, cultivated and/or adsorbed on the gold substrate. The SEIRA spectra registered from monolayer of the SPEV cells cultivated on the rough gold showed a low frequency shift of about 2 to 7 cm 1 for the most characteristic IR vibrations, compared with those adsorbed from suspension on the same substrate. An enhancement factor of 15…30 was obtained for different molecular vibrations. The confocal microscopy contrast images of the SPEV cells on rough gold substrate were obtained in laser fluorescence mode. This approach opens new possibilities for visualization of the living cells in vivo without staining. The fluorescence of the rough gold surfaces and effects responsible for our findings have been discussed.

  15. Cell signalling and phospholipid metabolism. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Boss, W.F.

    1990-12-31

    These studies explored whether phosphoinositide (PI) has a role in plants analogous to its role in animal cells. Although no parallel activity of PI in signal transduction was found in plant cells, activity of inositol phospholipid kinase was found to be modulated by light and by cell wall degrading enzymes. These studies indicate a major role for inositol phospholipids in plant growth and development as membrane effectors but not as a source of second messengers.

  16. Neurotrophin signaling endosomes; biogenesis, regulation, and functions

    Science.gov (United States)

    Yamashita, Naoya; Kuruvilla, Rejji

    2016-01-01

    In the nervous system, communication between neurons and their post-synaptic target cells is critical for the formation, refinement and maintenance of functional neuronal connections. Diffusible signals secreted by target tissues, exemplified by the family of neurotrophins, impinge on nerve terminals to influence diverse developmental events including neuronal survival and axonal growth. Key mechanisms of action of target-derived neurotrophins include the cell biological processes of endocytosis and retrograde trafficking of their Trk receptors from growth cones to cell bodies. In this review, we summarize the molecular mechanisms underlying this endosome-mediated signaling, focusing on the instructive role of neurotrophin signaling itself in directing its own trafficking. Recent studies have linked impaired neurotrophin trafficking to neurodevelopmental disorders, highlighting the relevance of neurotrophin endosomes in human health. PMID:27327126

  17. Feedback regulation of TGF-β signaling.

    Science.gov (United States)

    Yan, Xiaohua; Xiong, Xiangyang; Chen, Ye-Guang

    2018-01-01

    Transforming growth factor beta (TGF-β) is a multi-functional polypeptide that plays a critical role in regulating a broad range of cellular functions and physiological processes. Signaling is initiated when TGF-β ligands bind to two types of cell membrane receptors with intrinsic Ser/Thr kinase activity and transmitted by the intracellular Smad proteins, which act as transcription factors to regulate gene expression in the nucleus. Although it is relatively simple and straight-forward, this TGF-β/Smad pathway is regulated by various feedback loops at different levels, including the ligand, the receptor, Smads and transcription, and is thus fine-tuned in terms of signaling robustness, duration, specificity, and plasticity. The precise control gives rise to versatile and context-dependent pathophysiological functions. In this review, we firstly give an overview of TGF-β signaling, and then discuss how each step of TGF-β signaling is finely controlled by distinct modes of feedback mechanisms, involving both protein regulators and miRNAs. © The Author 2017. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Virtual Reconstruction and Three-Dimensional Printing of Blood Cells as a Tool in Cell Biology Education.

    Science.gov (United States)

    Augusto, Ingrid; Monteiro, Douglas; Girard-Dias, Wendell; Dos Santos, Thaisa Oliveira; Rosa Belmonte, Simone Letícia; Pinto de Oliveira, Jairo; Mauad, Helder; da Silva Pacheco, Marcos; Lenz, Dominik; Stefanon Bittencourt, Athelson; Valentim Nogueira, Breno; Lopes Dos Santos, Jorge Roberto; Miranda, Kildare; Guimarães, Marco Cesar Cunegundes

    2016-01-01

    The cell biology discipline constitutes a highly dynamic field whose concepts take a long time to be incorporated into the educational system, especially in developing countries. Amongst the main obstacles to the introduction of new cell biology concepts to students is their general lack of identification with most teaching methods. The introduction of elaborated figures, movies and animations to textbooks has given a tremendous contribution to the learning process and the search for novel teaching methods has been a central goal in cell biology education. Some specialized tools, however, are usually only available in advanced research centers or in institutions that are traditionally involved with the development of novel teaching/learning processes, and are far from becoming reality in the majority of life sciences schools. When combined with the known declining interest in science among young people, a critical scenario may result. This is especially important in the field of electron microscopy and associated techniques, methods that have greatly contributed to the current knowledge on the structure and function of different cell biology models but are rarely made accessible to most students. In this work, we propose a strategy to increase the engagement of students into the world of cell and structural biology by combining 3D electron microscopy techniques and 3D prototyping technology (3D printing) to generate 3D physical models that accurately and realistically reproduce a close-to-the native structure of the cell and serve as a tool for students and teachers outside the main centers. We introduce three strategies for 3D imaging, modeling and prototyping of cells and propose the establishment of a virtual platform where different digital models can be deposited by EM groups and subsequently downloaded and printed in different schools, universities, research centers and museums, thereby modernizing teaching of cell biology and increasing the accessibility to

  19. The Wnt Signaling Landscape of Mammary Stem Cells and Breast Tumors.

    Science.gov (United States)

    Alexander, Caroline M

    2018-01-01

    Attention has been focused on Wnt signaling in the mouse mammary gland for several decades, firstly by the discovery of several Wnt loci among the oncogenes revealed by MMTV-based insertional mutagenesis screening of mouse mammary gland, and then by the remarkable visualization of Wnt-dependent specification of mammary placodes in embryonic skin. This review aims to summarize the impact of recent data for our understanding of the roles of Wnt signaling in these roles. The amount and identity of both familiar and novel Wnt signaling components is examined for mouse mammary epithelial cells. The hierarchical arrangement of mammary epithelial cell progenitors and stem cells inferred from the study of isolated cells is reinterpreted in an era that has demonstrated almost limitless cellular plasticity. Functional definitions of stem and progenitor activities are reevaluated with the discovery of novel stem cell activities and regulators, and we draw parallels with the arrangement of replication-competent cells in other tissues. Although Wnt signaling is highly oncogenic for mouse mammary epithelia, the data supporting Wnt signaling as a tumor driver for human breast cancer are still flimsy, and there is little support for the recruitment of normal Wnt-dependent breast stem cells as tumor precursor cells for either mouse or human. We discuss possible explanations for this paradox and questions still unanswered, including the potential impact of recent discoveries of Wnt-secreting microenvironments, oncogenic changes in the Rspo/Lgr/Ubiquitin ligase amplifier complex, as they could apply to breast tissues, and the feedback suppression of Wnt signaling that characterizes its developmental activity and may hide Wnt signatures in tumors. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Ganoderma lucidum suppresses growth of breast cancer cells through the inhibition of Akt/NF-kappaB signaling.

    Science.gov (United States)

    Jiang, Jiahua; Slivova, Veronika; Harvey, Kevin; Valachovicova, Tatiana; Sliva, Daniel

    2004-01-01

    Ganoderma lucidum (Reishi, Lingzhi) is a popular Asian mushroom that has been used for more than 2 millennia for the general promotion of health and was therefore called the "Mushroom of Immortality." Ganoderma lucidum was also used in traditional Chinese medicine to prevent or treat a variety of diseases, including cancer. We previously demonstrated that Ganoderma lucidum suppresses the invasive behavior of breast cancer cells by inhibiting the transcription factor NF-kappaB. However, the molecular mechanisms responsible for the inhibitory effects of Ganoderma lucidum on the growth of highly invasive and metastatic breast cancer cells has not been fully elucidated. Here, we show that Ganoderma lucidum inhibits proliferation of breast cancer MDA-MB-231 cells by downregulating Akt/NF-kappaB signaling. Ganoderma lucidum suppresses phosphorylation of Akt on Ser473 and downregulates the expression of Akt, which results in the inhibition of NF-kappaB activity in MDA-MB-231 cells. The biological effect of Ganoderma lucidum was demonstrated by cell cycle arrest at G0/G1, which was the result of the downregulation of expression of NF-kappaB-regulated cyclin D1, followed by the inhibition of cdk4. Our results suggest that Ganoderma lucidum inhibits the growth of MDA-MB-231 breast cancer cells by modulating Akt/NF-kappaB signaling and could have potential therapeutic use for the treatment of breast cancer.

  1. Plasma cell leukemia: update on biology and therapy.

    Science.gov (United States)

    Mina, Roberto; D'Agostino, Mattia; Cerrato, Chiara; Gay, Francesca; Palumbo, Antonio

    2017-07-01

    Plasma cell leukemia (PCL) is a rare, but very aggressive, plasma cell dyscrasia, representing a distinct clinicopathological entity as compared to multiple myeloma (MM), with peculiar biological and clinical features. A hundred times rarer than MM, the disease course is characterized by short remissions and poor survival. PCL is defined by an increased percentage (>20%) and absolute number (>2 × 10 9 /l) of plasma cells in the peripheral blood. PCL is defined as 'primary' when peripheral plasmacytosis is detected at diagnosis, 'secondary' when leukemization occurs in a patient with preexisting MM. Novel agents have revolutionized the outcomes of MM patients and have been introduced also for the treatment of PCL. Here, we provide an update on biology and treatment options for PCL.

  2. Cell Size and Growth Rate Are Modulated by TORC2-Dependent Signals.

    Science.gov (United States)

    Lucena, Rafael; Alcaide-Gavilán, Maria; Schubert, Katherine; He, Maybo; Domnauer, Matthew G; Marquer, Catherine; Klose, Christian; Surma, Michal A; Kellogg, Douglas R

    2018-01-22

    The size of all cells, from bacteria to vertebrates, is proportional to the growth rate set by nutrient availability, but the underlying mechanisms are unknown. Here, we show that nutrients modulate cell size and growth rate via the TORC2 signaling network in budding yeast. An important function of the TORC2 network is to modulate synthesis of ceramide lipids, which play roles in signaling. TORC2-dependent control of ceramide signaling strongly influences both cell size and growth rate. Thus, cells that cannot make ceramides fail to modulate their growth rate or size in response to changes in nutrients. PP2A associated with the Rts1 regulatory subunit (PP2A Rts1 ) is embedded in a feedback loop that controls TORC2 signaling and helps set the level of TORC2 signaling to match nutrient availability. Together, the data suggest a model in which growth rate and cell size are mechanistically linked by ceramide-dependent signals arising from the TORC2 network. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Inflammation activates the interferon signaling pathways in taste bud cells.

    Science.gov (United States)

    Wang, Hong; Zhou, Minliang; Brand, Joseph; Huang, Liquan

    2007-10-03

    Patients with viral and bacterial infections or other inflammatory illnesses often experience taste dysfunctions. The agents responsible for these taste disorders are thought to be related to infection-induced inflammation, but the mechanisms are not known. As a first step in characterizing the possible role of inflammation in taste disorders, we report here evidence for the presence of interferon (IFN)-mediated signaling pathways in taste bud cells. IFN receptors, particularly the IFN-gamma receptor IFNGR1, are coexpressed with the taste cell-type markers neuronal cell adhesion molecule and alpha-gustducin, suggesting that both the taste receptor cells and synapse-forming cells in the taste bud can be stimulated by IFN. Incubation of taste bud-containing lingual epithelia with recombinant IFN-alpha and IFN-gamma triggered the IFN-mediated signaling cascades, resulting in the phosphorylation of the downstream STAT1 (signal transducer and activator of transcription protein 1) transcription factor. Intraperitoneal injection of lipopolysaccharide or polyinosinic:polycytidylic acid into mice, mimicking bacterial and viral infections, respectively, altered gene expression patterns in taste bud cells. Furthermore, the systemic administration of either IFN-alpha or IFN-gamma significantly increased the number of taste bud cells undergoing programmed cell death. These findings suggest that bacterial and viral infection-induced IFNs can act directly on taste bud cells, affecting their cellular function in taste transduction, and that IFN-induced apoptosis in taste buds may cause abnormal cell turnover and skew the representation of different taste bud cell types, leading to the development of taste disorders. To our knowledge, this is the first study providing direct evidence that inflammation can affect taste buds through cytokine signaling pathways.

  4. Short-range intercellular calcium signaling in bone

    DEFF Research Database (Denmark)

    Jørgensen, Niklas Rye

    2005-01-01

    into biological effects in bone. Intercellular calcium waves are increases in intracellular calcium concentration in single cells, subsequently propagating to adjacent cells, and can be a possible mechanism for the coupling of bone formation to bone resorption. The aim of the present studies was to investigate...... whether bone cells are capable of communicating via intercellular calcium signals, and determine by which mechanisms the cells propagate the signals. First, we found that osteoblastic cells can propagate intercellular calcium transients upon mechanical stimulation, and that there are two principally...... different mechanisms for this propagation. One mechanism involves the secretion of a nucleotide, possibly ATP, acting in an autocrine action to purinergic P2Y2 receptors on the neighboring cells, leading to intracellular IP3 generation and subsequent release of calcium from intracellular stores. The other...

  5. Role of signaling lymphocytic activation molecule in T helper cell responses

    Directory of Open Access Journals (Sweden)

    Jan E. de Vries

    1998-01-01

    Full Text Available Signaling lymphocytic activation molecule (SLAM; CDw150 is a 70 kDa glycoprotein. Signaling lymphocytic activation molecule is constitutively expressed on memory T cells, CD56+ T cells, a subset of T cell receptor γδ+ cells, immature thymocytes and, at low levels, on a proportion of peripheral blood B cells. Signaling lymphocytic activation molecule is rapidly upregulated on all T and B cells after activation. Engagement of SLAM by F(ab’2 fragments of an anti-SLAM monoclonal antibody (mAb A12 enhances antigen-specific T cell proliferation. In addition, mAb A12 was directly mitogenic for T cell clones and activated T cells. T cell proliferation induced by mAb A12 is independent of interleukin (IL-2, IL-4, IL-12 and IL-15, but is cyclosporin A sensitive. Ligation of SLAM during antigen-specific T cell proliferation resulted in upregulation of interferon (IFN-γ production, even by allergen-specific T helper cell (Th 2 clones, whereas the levels of IL-4 and IL-5 production were only marginally affected. The mAb A12 was unable to induce IL-4 and IL-5 production by Th1 clones. Co-stimulation of skin-derived Der P1-specific Th2 cells from patients with atopic dermatitis via SLAM resulted in the generation of a population of IFN-γ-producing cells, thereby reverting their phenotype to a Th0 pattern. Signaling lymphocytic activation molecule is a high-affinity self ligand mediating homophilic cell interaction. In addition, soluble SLAM enhances both T and B cell proliferation. Collectively, these data indicate that SLAM molecules act both as receptors and ligands that are not only involved in T cell expansion but also drive the expanding T cells during immune responses into the Th0/Th1 pathway. This suggests that signaling through SLAM plays a role in directing Th0/Th1 development.

  6. The notch and TGF-β signaling pathways contribute to the aggressiveness of clear cell renal cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Jonas Sjölund

    Full Text Available BACKGROUND: Despite recent progress, therapy for metastatic clear cell renal cell carcinoma (CCRCC is still inadequate. Dysregulated Notch signaling in CCRCC contributes to tumor growth, but the full spectrum of downstream processes regulated by Notch in this tumor form is unknown. METHODOLOGY/PRINCIPAL FINDINGS: We show that inhibition of endogenous Notch signaling modulates TGF-β dependent gene regulation in CCRCC cells. Analysis of gene expression data representing 176 CCRCCs showed that elevated TGF-β pathway activity correlated significantly with shortened disease specific survival (log-rank test, p = 0.006 and patients with metastatic disease showed a significantly elevated TGF-β signaling activity (two-sided Student's t-test, p = 0.044. Inhibition of Notch signaling led to attenuation of both basal and TGF-β1 induced TGF-β signaling in CCRCC cells, including an extensive set of genes known to be involved in migration and invasion. Functional analyses revealed that Notch inhibition decreased the migratory and invasive capacity of CCRCC cells. CONCLUSION: An extensive cross-talk between the Notch and TGF-β signaling cascades is present in CCRCC and the functional properties of these two pathways are associated with the aggressiveness of this disease.

  7. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling.

    Science.gov (United States)

    He, Xi C; Zhang, Jiwang; Tong, Wei-Gang; Tawfik, Ossama; Ross, Jason; Scoville, David H; Tian, Qiang; Zeng, Xin; He, Xi; Wiedemann, Leanne M; Mishina, Yuji; Li, Linheng

    2004-10-01

    In humans, mutations in BMPR1A, SMAD4 and PTEN are responsible for juvenile polyposis syndrome, juvenile intestinal polyposis and Cowden disease, respectively. The development of polyposis is a common feature of these diseases, suggesting that there is an association between BMP and PTEN pathways. The mechanistic link between BMP and PTEN pathways and the related etiology of juvenile polyposis is unresolved. Here we show that conditional inactivation of Bmpr1a in mice disturbs homeostasis of intestinal epithelial regeneration with an expansion of the stem and progenitor cell populations, eventually leading to intestinal polyposis resembling human juvenile polyposis syndrome. We show that BMP signaling suppresses Wnt signaling to ensure a balanced control of stem cell self-renewal. Mechanistically, PTEN, through phosphatidylinosital-3 kinase-Akt, mediates the convergence of the BMP and Wnt pathways on control of beta-catenin. Thus, BMP signaling may control the duplication of intestinal stem cells, thereby preventing crypt fission and the subsequent increase in crypt number.

  8. Insulin-like growth factor 1 signaling is essential for mitochondrial biogenesis and mitophagy in cancer cells.

    Science.gov (United States)

    Lyons, Amy; Coleman, Michael; Riis, Sarah; Favre, Cedric; O'Flanagan, Ciara H; Zhdanov, Alexander V; Papkovsky, Dmitri B; Hursting, Stephen D; O'Connor, Rosemary

    2017-10-13

    Mitochondrial activity and metabolic reprogramming influence the phenotype of cancer cells and resistance to targeted therapy. We previously established that an insulin-like growth factor 1 (IGF-1)-inducible mitochondrial UTP carrier (PNC1/SLC25A33) promotes cell growth. This prompted us to investigate whether IGF signaling is essential for mitochondrial maintenance in cancer cells and whether this contributes to therapy resistance. Here we show that IGF-1 stimulates mitochondrial biogenesis in a range of cell lines. In MCF-7 and ZR75.1 breast cancer cells, IGF-1 induces peroxisome proliferator-activated receptor γ coactivator 1β (PGC-1β) and PGC-1α-related coactivator (PRC). Suppression of PGC-1β and PRC with siRNA reverses the effects of IGF-1 and disrupts mitochondrial morphology and membrane potential. IGF-1 also induced expression of the redox regulator nuclear factor-erythroid-derived 2-like 2 (NFE2L2 alias NRF-2). Of note, MCF-7 cells with acquired resistance to an IGF-1 receptor (IGF-1R) tyrosine kinase inhibitor exhibited reduced expression of PGC-1β, PRC, and mitochondrial biogenesis. Interestingly, these cells exhibited mitochondrial dysfunction, indicated by reactive oxygen species expression, reduced expression of the mitophagy mediators BNIP3 and BNIP3L, and impaired mitophagy. In agreement with this, IGF-1 robustly induced BNIP3 accumulation in mitochondria. Other active receptor tyrosine kinases could not compensate for reduced IGF-1R activity in mitochondrial protection, and MCF-7 cells with suppressed IGF-1R activity became highly dependent on glycolysis for survival. We conclude that IGF-1 signaling is essential for sustaining cancer cell viability by stimulating both mitochondrial biogenesis and turnover through BNIP3 induction. This core mitochondrial protective signal is likely to strongly influence responses to therapy and the phenotypic evolution of cancer. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Multispectral optical tweezers for molecular diagnostics of single biological cells

    Science.gov (United States)

    Butler, Corey; Fardad, Shima; Sincore, Alex; Vangheluwe, Marie; Baudelet, Matthieu; Richardson, Martin

    2012-03-01

    Optical trapping of single biological cells has become an established technique for controlling and studying fundamental behavior of single cells with their environment without having "many-body" interference. The development of such an instrument for optical diagnostics (including Raman and fluorescence for molecular diagnostics) via laser spectroscopy with either the "trapping" beam or secondary beams is still in progress. This paper shows the development of modular multi-spectral imaging optical tweezers combining Raman and Fluorescence diagnostics of biological cells.

  10. Cell-nonautonomous signaling of FOXO/DAF-16 to the stem cells of Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Wenjing Qi

    Full Text Available In Caenorhabditis elegans (C. elegans, the promotion of longevity by the transcription factor DAF-16 requires reduced insulin/IGF receptor (IIR signaling or the ablation of the germline, although the reason for the negative impact of germ cells is unknown. FOXO/DAF-16 activity inhibits germline proliferation in both daf-2 mutants and gld-1 tumors. In contrast to its function as a germline tumor suppressor, we now provide evidence that somatic DAF-16 in the presence of IIR signaling can also result in tumorigenic activity, which counteracts robust lifespan extension. In contrast to the cell-autonomous IIR signaling, which is required for larval germline proliferation, activation of DAF-16 in the hypodermis results in hyperplasia of the germline and disruption of the surrounding basement membrane. SHC-1 adaptor protein and AKT-1 kinase antagonize, whereas AKT-2 and SGK-1 kinases promote, this cell-nonautonomous DAF-16 function. Our data suggest that a functional balance of DAF-16 activities in different tissues determines longevity and reveals a novel, cell-nonautonomous role of FOXO/DAF-16 to affect stem cells.

  11. Cell-Nonautonomous Signaling of FOXO/DAF-16 to the Stem Cells of Caenorhabditis elegans

    Science.gov (United States)

    Qi, Wenjing; Huang, Xu; Neumann-Haefelin, Elke; Schulze, Ekkehard; Baumeister, Ralf

    2012-01-01

    In Caenorhabditis elegans (C. elegans), the promotion of longevity by the transcription factor DAF-16 requires reduced insulin/IGF receptor (IIR) signaling or the ablation of the germline, although the reason for the negative impact of germ cells is unknown. FOXO/DAF-16 activity inhibits germline proliferation in both daf-2 mutants and gld-1 tumors. In contrast to its function as a germline tumor suppressor, we now provide evidence that somatic DAF-16 in the presence of IIR signaling can also result in tumorigenic activity, which counteracts robust lifespan extension. In contrast to the cell-autonomous IIR signaling, which is required for larval germline proliferation, activation of DAF-16 in the hypodermis results in hyperplasia of the germline and disruption of the surrounding basement membrane. SHC-1 adaptor protein and AKT-1 kinase antagonize, whereas AKT-2 and SGK-1 kinases promote, this cell-nonautonomous DAF-16 function. Our data suggest that a functional balance of DAF-16 activities in different tissues determines longevity and reveals a novel, cell-nonautonomous role of FOXO/DAF-16 to affect stem cells. PMID:22916022

  12. Kurarinol induces hepatocellular carcinoma cell apoptosis through suppressing cellular signal transducer and activator of transcription 3 signaling

    International Nuclear Information System (INIS)

    Shu, Guangwen; Yang, Jing; Zhao, Wenhao; Xu, Chan; Hong, Zongguo; Mei, Zhinan; Yang, Xinzhou

    2014-01-01

    Kurarinol is a flavonoid isolated from roots of the medical plant Sophora flavescens. However, its cytotoxic activity against hepatocellular carcinoma (HCC) cells and toxic effects on mammalians remain largely unexplored. Here, the pro-apoptotic activities of kurarinol on HCC cells and its toxic impacts on tumor-bearing mice were evaluated. The molecular mechanisms underlying kurarinol-induced HCC cell apoptosis were also investigated. We found that kurarinol dose-dependently provoked HepG2, Huh-7 and H22 HCC cell apoptosis. In addition, kurarinol gave rise to a considerable decrease in the transcriptional activity of signal transducer and activator of transcription 3 (STAT3) in HCC cells. Suppression of STAT3 signaling is involved in kurarinol-induced HCC cell apoptosis. In vivo studies showed that kurarinol injection substantially induced transplanted H22 cell apoptosis with low toxic impacts on tumor-bearing mice. Similarly, the transcriptional activity of STAT3 in transplanted tumor tissues was significantly suppressed after kurarinol treatment. Collectively, our current research demonstrated that kurarinol has the capacity of inducing HCC cell apoptosis both in vitro and in vivo with undetectable toxic impacts on the host. Suppressing STAT3 signaling is implicated in kurarinol-mediated HCC cell apoptosis. - Highlights: • Kurarinol induces hepatocellular carcinoma (HCC) cell apoptosis. • Kurarinol induces HCC cell apoptosis via inhibiting STAT3. • Kurarinol exhibits low toxic effects on tumor-bearing animals

  13. Wires in the soup: quantitative models of cell signaling

    Science.gov (United States)

    Cheong, Raymond; Levchenko, Andre

    2014-01-01

    Living cells are capable of extracting information from their environments and mounting appropriate responses to a variety of associated challenges. The underlying signal transduction networks enabling this can be quite complex, necessitating for their unraveling by sophisticated computational modeling coupled with precise experimentation. Although we are still at the beginning of this process, some recent examples of integrative analysis of cell signaling are very encouraging. This review highlights the case of the NF-κB pathway in order to illustrate how a quantitative model of a signaling pathway can be gradually constructed through continuous experimental validation, and what lessons one might learn from such exercises. PMID:18291655

  14. P44/WDR77 restricts the sensitivity of proliferating cells to TGFβ signaling

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Pengfei [Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, Hubei 430022 (China); Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 (United States); Gao, Shen [Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 (United States); Gu, Zhongping [Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038 (China); Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 (United States); Huang, Tao [Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Wuhan, Hubei 430022 (China); Wang, Zhengxin, E-mail: zhenwang@mdanderson.org [Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 (United States)

    2014-07-18

    Highlights: • P44/WDR77 causes proliferating cells to become non-responsive to TGFβ signaling. • P44/WDR77 down-regulates TβRII and TβR2 expression. • P44/WDR77 down-regulated TGFβ signaling correlates with lung tumorigenesis. - Abstract: We previously reported that a novel WD-40 domain-containing protein, p44/WDR77, drives quiescent epithelial cells to re-enter the cell cycle and plays an essential role for growth of lung and prostate cancer cells. Transforming growth factor beta (TGFβ) signaling is important in the maintenance of non-transformed cells in the quiescent or slowly cycling stage. However, both non-transformed proliferating cells and human cancer cells are non-responsive to endogenous TGFβ signaling. The mechanism by which proliferating cells become refractory to TGFβ inhibition is not well established. Here, we found that silencing p44/WDR77 increased cellular sensitivity to TGFβ signaling and that this was inversely correlated with decreased cell proliferation. Smad2 or 3 phosphorylation, TGFβ-mediated transcription, and TGFβ2 and TGFβ receptor type II (TβRII) expression were dramatically induced by silencing of p44/WDR77. These data support the hypothesis that p44/WDR77 down-regulates the expression of the TGFβ ligand and its receptor, thereby leading to a cellular non-response to TGFβ signaling. Finally, we found that p44/WDR77 expression was correlated with cell proliferation and decreased TGFβ signaling during lung tumorigenesis. Together, these results suggest that p44/WDR77 expression causes the non-sensitivity of proliferating cells to TGFβ signaling, thereby contributing to cellular proliferation during lung tumorigenesis.

  15. DNA damaging bystander signalling from stem cells, cancer cells and fibroblasts after Cr(VI) exposure and its dependence on telomerase

    International Nuclear Information System (INIS)

    Cogan, Nicola; Baird, Duncan M.; Phillips, Ryan; Crompton, Lucy A.; Caldwell, Maeve A.; Rubio, Miguel A.; Newson, Roger; Lyng, Fiona; Case, C. Patrick

    2010-01-01

    The bystander effect is a feature of low dose radiation exposure and is characterized by a signaling process from irradiated cells to non irradiated cells, which causes DNA and chromosome damage in these 'nearest neighbour' cells. Here we show that a low and short dose of Cr(VI) can induce stem cells, cancer cells and fibroblasts to chronically secrete bystander signals, which cause DNA damage in neighboring cells. The Cr(VI) induced bystander signaling depended on the telomerase status of either cell. Telomerase negative fibroblasts were able to receive DNA damaging signals from telomerase positive or negative fibroblasts or telomerase positive cancer cells. However telomerase positive fibroblasts were resistant to signals from Cr(VI) exposed telomerase positive fibroblasts or cancer cells. Human embryonic stem cells, with positive Oct4 staining as a marker of pluripotency, showed no significant increase of DNA damage from adjacent Cr and mitomycin C exposed fibroblasts whilst those cells that were negatively stained did. This selectivity of DNA damaging bystander signaling could be an important consideration in developing therapies against cancer and in the safety and effectiveness of tissue engineering and transplantation using stem cells.

  16. DNA damaging bystander signalling from stem cells, cancer cells and fibroblasts after Cr(VI) exposure and its dependence on telomerase

    Energy Technology Data Exchange (ETDEWEB)

    Cogan, Nicola [Bristol Implant Research Centre, University of Bristol, Bristol, BS10 5NB (United Kingdom); Baird, Duncan M. [Department of Pathology School of Medicine, Cardiff University, Henry Wellcome Building for Biomedical Research in Wales, Heath Park, Cardiff, CF14 4XN (United Kingdom); Phillips, Ryan [Bristol Implant Research Centre, University of Bristol, Bristol, BS10 5NB (United Kingdom); Crompton, Lucy A.; Caldwell, Maeve A. [Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, BS1 3NY (United Kingdom); Rubio, Miguel A. [Center of Regenerative Medicine in Barcelona, CMRB Dr. Aiguader, 88, 7th Floor, 08003 Barcelona (Spain); Newson, Roger [Radiation and Environmental Science Centre, Focas Institute, Dublin Institute of Technology, Dublin 2 (Ireland); Lyng, Fiona [National Heart and Lung Institute, Imperial College London, London, SW7 2AZ (United Kingdom); Case, C. Patrick, E-mail: c.p.case@bristol.ac.uk [Bristol Implant Research Centre, University of Bristol, Bristol, BS10 5NB (United Kingdom)

    2010-01-05

    The bystander effect is a feature of low dose radiation exposure and is characterized by a signaling process from irradiated cells to non irradiated cells, which causes DNA and chromosome damage in these 'nearest neighbour' cells. Here we show that a low and short dose of Cr(VI) can induce stem cells, cancer cells and fibroblasts to chronically secrete bystander signals, which cause DNA damage in neighboring cells. The Cr(VI) induced bystander signaling depended on the telomerase status of either cell. Telomerase negative fibroblasts were able to receive DNA damaging signals from telomerase positive or negative fibroblasts or telomerase positive cancer cells. However telomerase positive fibroblasts were resistant to signals from Cr(VI) exposed telomerase positive fibroblasts or cancer cells. Human embryonic stem cells, with positive Oct4 staining as a marker of pluripotency, showed no significant increase of DNA damage from adjacent Cr and mitomycin C exposed fibroblasts whilst those cells that were negatively stained did. This selectivity of DNA damaging bystander signaling could be an important consideration in developing therapies against cancer and in the safety and effectiveness of tissue engineering and transplantation using stem cells.

  17. "Known Unknowns": Current Questions in Muscle Satellite Cell Biology.

    Science.gov (United States)

    Cornelison, Ddw

    2018-01-01

    Our understanding of satellite cells, now known to be the obligate stem cells of skeletal muscle, has increased dramatically in recent years due to the introduction of new molecular, genetic, and technical resources. In addition to their role in acute repair of damaged muscle, satellite cells are of interest in the fields of aging, exercise, neuromuscular disease, and stem cell therapy, and all of these applications have driven a dramatic increase in our understanding of the activity and potential of satellite cells. However, many fundamental questions of satellite cell biology remain to be answered, including their emergence as a specific lineage, the degree and significance of heterogeneity within the satellite cell population, the roles of their interactions with other resident and infiltrating cell types during homeostasis and regeneration, and the relative roles of intrinsic vs extrinsic factors that may contribute to satellite cell dysfunction in the context of aging or disease. This review will address the current state of these open questions in satellite cell biology. © 2018 Elsevier Inc. All rights reserved.

  18. Tracking hypoxic signaling within encapsulated cell aggregates.

    Science.gov (United States)

    Skiles, Matthew L; Sahai, Suchit; Blanchette, James O

    2011-12-16

    In Diabetes mellitus type 1, autoimmune destruction of the pancreatic β-cells results in loss of insulin production and potentially lethal hyperglycemia. As an alternative treatment option to exogenous insulin injection, transplantation of functional pancreatic tissue has been explored. This approach offers the promise of a more natural, long-term restoration of normoglycemia. Protection of the donor tissue from the host's immune system is required to prevent rejection and encapsulation is a method used to help achieve this aim. Biologically-derived materials, such as alginate and agarose, have been the traditional choice for capsule construction but may induce inflammation or fibrotic overgrowth which can impede nutrient and oxygen transport. Alternatively, synthetic poly(ethylene glycol) (PEG)-based hydrogels are non-degrading, easily functionalized, available at high purity, have controllable pore size, and are extremely biocompatible. As an additional benefit, PEG hydrogels may be formed rapidly in a simple photo-crosslinking reaction that does not require application of non-physiological temperatures. Such a procedure is described here. In the crosslinking reaction, UV degradation of the photoinitiator, 1-[4-(2-Hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propane-1-one (Irgacure 2959), produces free radicals which attack the vinyl carbon-carbon double bonds of dimethacrylated PEG (PEGDM) inducing crosslinking at the chain ends. Crosslinking can be achieved within 10 minutes. PEG hydrogels constructed in such a manner have been shown to favorably support cells, and the low photoinitiator concentration and brief exposure to UV irradiation is not detrimental to viability and function of the encapsulated tissue. While we methacrylate our PEG with the method described below, PEGDM can also be directly purchased from vendors such as Sigma. An inherent consequence of encapsulation is isolation of the cells from a vascular network. Supply of nutrients, notably oxygen

  19. Mobile Applications in Cell Biology Present New Approaches for Cell Modelling

    Science.gov (United States)

    de Oliveira, Mayara Lustosa; Galembeck, Eduardo

    2016-01-01

    Cell biology apps were surveyed in order to identify whether there are new approaches for modelling cells allowed by the new technologies implemented in tablets and smartphones. A total of 97 apps were identified in 3 stores surveyed (Apple, Google Play and Amazon), they are presented as: education 48.4%, games 26.8% and medicine 15.4%. The apps…

  20. Stem cell maintenance by manipulating signaling pathways: past, current and future

    Science.gov (United States)

    Chen, Xi; Ye, Shoudong; Ying, Qi-Long

    2015-01-01

    Pluripotent stem cells only exist in a narrow window during early embryonic development, whereas multipotent stem cells are abundant throughout embryonic development and are retainedin various adult tissues and organs. While pluripotent stem cell lines have been established from several species, including mouse, rat, and human, it is still challenging to establish stable multipotent stem cell lines from embryonic or adult tissues. Based on current knowledge, we anticipate that by manipulating extrinsic and intrinsic signaling pathways, most if not all types of stem cells can be maintained in a long-term culture. In this article, we summarize current culture conditions established for the long-term maintenance of authentic pluripotent and multipotent stem cells and the signaling pathways involved. We also discuss the general principles of stem cell maintenance and propose several strategies on the establishment of novel stem cell lines through manipulation of signaling pathways. [BMB Reports 2015; 48(12): 668-676] PMID:26497581

  1. DUOX enzyme activity promotes AKT signalling in prostate cancer cells.

    Science.gov (United States)

    Pettigrew, Christopher A; Clerkin, John S; Cotter, Thomas G

    2012-12-01

    Reactive oxygen species (ROS) and oxidative stress are related to tumour progression, and high levels of ROS have been observed in prostate tumours compared to normal prostate. ROS can positively influence AKT signalling and thereby promote cell survival. The aim of this project was to establish whether the ROS generated in prostate cancer cells positively regulate AKT signalling and enable resistance to apoptotic stimuli. In PC3 cells, dual oxidase (DUOX) enzymes actively generate ROS, which inactivate phosphatases, thereby maintaining AKT phosphorylation. Inhibition of DUOX by diphenylene iodium (DPI), intracellular calcium chelation and small-interfering RNA (siRNA) resulted in lower ROS levels, lower AKT and glycogen synthase kinase 3β (GSK3β) phosphorylation, as well as reduced cell viability and increased susceptibility to apoptosis stimulating fragment (FAS) induced apoptosis. This report shows that ROS levels in PC3 cells are constitutively maintained by DUOX enzymes, and these ROS positively regulate AKT signalling through inactivating phosphatases, leading to increased resistance to apoptosis.

  2. Cellular signaling with nitric oxide and cyclic GMP

    Directory of Open Access Journals (Sweden)

    F. Murad

    1999-11-01

    Full Text Available During the past two decades, nitric oxide signaling has been one of the most rapidly growing areas in biology. This simple free radical gas can regulate an ever growing list of biological processes. In most instances nitric oxide mediates its biological effects by activating guanylyl cyclase and increasing cyclic GMP synthesis. However, the identification of effects of nitric oxide that are independent of cyclic GMP is also growing at a rapid rate. The effects of nitric oxide can mediate important physiological regulatory events in cell regulation, cell-cell communication and signaling. Nitric oxide can function as an intracellular messenger, neurotransmitter and hormone. However, as with any messenger molecule, there can be too much or too little of the substance and pathological events ensue. Methods to regulate either nitric oxide formation, metabolism or function have been used therapeutically for more than a century as with nitroglycerin therapy. Current and future research should permit the development of an expanded therapeutic armamentarium for the physician to manage effectively a number of important disorders. These expectations have undoubtedly fueled the vast research interests in this simple molecule.

  3. New insights into how trafficking regulates T cell receptor signaling

    Directory of Open Access Journals (Sweden)

    Jieqiong Lou

    2016-07-01

    Full Text Available AbstractThere is emerging evidence that exocytosis plays an important role in regulating T cell receptor (TCR signaling. The trafficking molecules involved in lytic granule (LG secretion in cytotoxic T lymphocytes (CTL have been well studied due to the immune disorder known as familial hemophagocytic lymphohisiocytosis (FHLH. However, the knowledge of trafficking machineries regulating the exocytosis of receptors and signaling molecules remains quite limited. In this review, we summarize the reported trafficking molecules involved in the transport of the TCR and downstream signaling molecules to the cell surface. By combining this information with the known knowledge of LG exocytosis and general exocytic trafficking machinery, we attempt to draw a more complete picture of how the TCR signaling network and exocytic trafficking matrix are interconnected to facilitate T cell activation. This also highlights how membrane compartmentalization facilitates the spatiotemporal organization of cellular responses that are essential for immune functions.

  4. PCA3 noncoding RNA is involved in the control of prostate-cancer cell survival and modulates androgen receptor signaling

    International Nuclear Information System (INIS)

    Ferreira, Luciana Bueno; Gimba, Etel Rodrigues Pereira; Palumbo, Antonio; Mello, Kivvi Duarte de; Sternberg, Cinthya; Caetano, Mauricio S; Oliveira, Felipe Leite de; Neves, Adriana Freitas; Nasciutti, Luiz Eurico; Goulart, Luiz Ricardo

    2012-01-01

    PCA3 is a non-coding RNA (ncRNA) that is highly expressed in prostate cancer (PCa) cells, but its functional role is unknown. To investigate its putative function in PCa biology, we used gene expression knockdown by small interference RNA, and also analyzed its involvement in androgen receptor (AR) signaling. LNCaP and PC3 cells were used as in vitro models for these functional assays, and three different siRNA sequences were specifically designed to target PCA3 exon 4. Transfected cells were analyzed by real-time qRT-PCR and cell growth, viability, and apoptosis assays. Associations between PCA3 and the androgen-receptor (AR) signaling pathway were investigated by treating LNCaP cells with 100 nM dihydrotestosterone (DHT) and with its antagonist (flutamide), and analyzing the expression of some AR-modulated genes (TMPRSS2, NDRG1, GREB1, PSA, AR, FGF8, CdK1, CdK2 and PMEPA1). PCA3 expression levels were investigated in different cell compartments by using differential centrifugation and qRT-PCR. LNCaP siPCA3-transfected cells significantly inhibited cell growth and viability, and increased the proportion of cells in the sub G0/G1 phase of the cell cycle and the percentage of pyknotic nuclei, compared to those transfected with scramble siRNA (siSCr)-transfected cells. DHT-treated LNCaP cells induced a significant upregulation of PCA3 expression, which was reversed by flutamide. In siPCA3/LNCaP-transfected cells, the expression of AR target genes was downregulated compared to siSCr-transfected cells. The siPCA3 transfection also counteracted DHT stimulatory effects on the AR signaling cascade, significantly downregulating expression of the AR target gene. Analysis of PCA3 expression in different cell compartments provided evidence that the main functional roles of PCA3 occur in the nuclei and microsomal cell fractions. Our findings suggest that the ncRNA PCA3 is involved in the control of PCa cell survival, in part through modulating AR signaling, which may raise new

  5. Protein kinase C signaling and cell cycle regulation

    OpenAIRE

    Black, Adrian R.; Black, Jennifer D.

    2013-01-01

    A link between T cell proliferation and the protein kinase C (PKC) family of serine/threonine kinases has been recognized for about thirty years. However, despite the wealth of information on PKC-mediated control of T cell activation, understanding of the effects of PKCs on the cell cycle machinery in this cell type remains limited. Studies in other systems have revealed important cell cycle-specific effects of PKC signaling that can either positively or negatively impact proliferation. Th...

  6. Rictor positively regulates B cell receptor signaling by modulating actin reorganization via ezrin.

    Directory of Open Access Journals (Sweden)

    Lu Huang

    2017-08-01

    Full Text Available As the central hub of the metabolism machinery, the mammalian target of rapamycin complex 2 (mTORC2 has been well studied in lymphocytes. As an obligatory component of mTORC2, the role of Rictor in T cells is well established. However, the role of Rictor in B cells still remains elusive. Rictor is involved in B cell development, especially the peripheral development. However, the role of Rictor on B cell receptor (BCR signaling as well as the underlying cellular and molecular mechanism is still unknown. This study used B cell-specfic Rictor knockout (KO mice to investigate how Rictor regulates BCR signaling. We found that the key positive and negative BCR signaling molecules, phosphorylated Brutons tyrosine kinase (pBtk and phosphorylated SH2-containing inositol phosphatase (pSHIP, are reduced and enhanced, respectively, in Rictor KO B cells. This suggests that Rictor positively regulates the early events of BCR signaling. We found that the cellular filamentous actin (F-actin is drastically increased in Rictor KO B cells after BCR stimulation through dysregulating the dephosphorylation of ezrin. The high actin-ezrin intensity area restricts the lateral movement of BCRs upon stimulation, consequently reducing BCR clustering and BCR signaling. The reduction in the initiation of BCR signaling caused by actin alteration is associated with a decreased humoral immune response in Rictor KO mice. The inhibition of actin polymerization with latrunculin in Rictor KO B cells rescues the defects of BCR signaling and B cell differentiation. Overall, our study provides a new pathway linking cell metablism to BCR activation, in which Rictor regulates BCR signaling via actin reorganization.

  7. Nanobiotechnology meets plant cell biology: Carbon nanotubes as organelle targeting nanocarriers

    KAUST Repository

    Serag, Maged F.; Kaji, Noritada; Habuchi, Satoshi; Bianco, Alberto; Baba, Yoshinobu

    2013-01-01

    For years, nanotechnology has shown great promise in the fields of biomedical and biotechnological sciences and medical research. In this review, we demonstrate its versatility and applicability in plant cell biology studies. Specifically, we discuss the ability of functionalized carbon nanotubes to penetrate the plant cell wall, target specific organelles, probe protein-carrier activity and induce organelle recycling in plant cells. We also, shed light on prospective applications of carbon nanomaterials in cell biology and plant cell transformation. © 2013 The Royal Society of Chemistry.

  8. Systems Biology Model of Interactions Between Tissue Growth Factors and DNA Damage Pathways: Low Dose Response and Cross-Talk in TGFbeta and ATM Signaling

    Energy Technology Data Exchange (ETDEWEB)

    O' Neill, Peter [University of Oxford; Anderson, Jennifer [University of Oxford

    2014-10-02

    The etiology of radiation carcinogenesis has been described in terms of aberrant changes that span several levels of biological organization. Growth factors regulate many important cellular and tissue functions including apoptosis, differentiation and proliferation. A variety of genetic and epigenetic changes of growth factors have been shown to contribute to cancer initiation and progression. It is known that cellular and tissue damage to ionizing radiation is in part initiated by the production of reactive oxygen species, which can activate cytokine signaling, and the DNA damage response pathways, most notably the ATM signaling pathway. Recently the transforming growth factor β (TGFβ) pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation. The relevance of this interaction with the ATM pathway is not known although p53 becomes phosphorylated and DNA damage responses are involved. However, growth factor interactions with DNA damage responses have not been elucidated particularly at low doses and further characterization of their relationship to cancer processes is warranted. Our goal will be to use a systems biology approach to mathematically and experimentally describe the low dose responses and cross-talk between the ATM and TGFβ pathways initiated by low and high LET radiation. We will characterize ATM and TGFβ signaling in epithelial and fibroblast cells using 2D models and ultimately extending to 3D organotypic cell culture models to begin to elucidate possible differences that may occur for different cell types and/or inter-cellular communication. We will investigate the roles of the Smad and Activating transcription factor 2 (ATF2) proteins as the potential major contributors to cross- talk between the TGFβ and ATM pathways, and links to cell cycle control and/or the DNA damage response, and potential differences in their responses at low and high doses. We have developed various experimental

  9. Systems Biology Model of Interactions between Tissue Growth Factors and DNA Damage Pathways: Low Dose Response and Cross-Talk in TGFβ and ATM Signaling

    International Nuclear Information System (INIS)

    Cucinotta, Francis A

    2016-01-01

    The etiology of radiation carcinogenesis has been described in terms of aberrant changes that span several levels of biological organization. Growth factors regulate many important cellular and tissue functions including apoptosis, differentiation and proliferation. A variety of genetic and epigenetic changes of growth factors have been shown to contribute to cancer initiation and progression. It is known that cellular and tissue damage to ionizing radiation is in part initiated by the production of reactive oxygen species, which can activate cytokine signaling, and the DNA damage response pathways, most notably the ATM signaling pathway. Recently, the transforming growth factor β (TGFβ) pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation. The relevance of this interaction with the ATM pathway is not known although p53 becomes phosphorylated and DNA damage responses are involved. However, growth factor interactions with DNA damage responses have not been elucidated particularly at low doses, and further characterization of their relationship to cancer processes is warranted. Our goal will be to use a systems biology approach to mathematically and experimentally describe the low-dose responses and cross-talk between the ATM and TGFβ pathways initiated by low- and high-LET radiation. We will characterize ATM and TGFβ signaling in epithelial and fibroblast cells using 2D models and ultimately extending to 3D organotypic cell culture models to begin to elucidate possible differences that may occur for different cell types and/or inter-cellular communication. We will investigate the roles of the Smad and Activating transcription factor 2 (ATF2) proteins as the potential major contributors to crosstalk between the TGFβ and ATM pathways, and links to cell cycle control and/or the DNA damage response, and potential differences in their responses at low and high doses. We have developed various experimental

  10. Systems Biology Model of Interactions between Tissue Growth Factors and DNA Damage Pathways: Low Dose Response and Cross-Talk in TGFβ and ATM Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Cucinotta, Francis A [Univ. of Nevada, Las Vegas, NV (United States)

    2016-09-01

    The etiology of radiation carcinogenesis has been described in terms of aberrant changes that span several levels of biological organization. Growth factors regulate many important cellular and tissue functions including apoptosis, differentiation and proliferation. A variety of genetic and epigenetic changes of growth factors have been shown to contribute to cancer initiation and progression. It is known that cellular and tissue damage to ionizing radiation is in part initiated by the production of reactive oxygen species, which can activate cytokine signaling, and the DNA damage response pathways, most notably the ATM signaling pathway. Recently, the transforming growth factor β (TGFβ) pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation. The relevance of this interaction with the ATM pathway is not known although p53 becomes phosphorylated and DNA damage responses are involved. However, growth factor interactions with DNA damage responses have not been elucidated particularly at low doses, and further characterization of their relationship to cancer processes is warranted. Our goal will be to use a systems biology approach to mathematically and experimentally describe the low-dose responses and cross-talk between the ATM and TGFβ pathways initiated by low- and high-LET radiation. We will characterize ATM and TGFβ signaling in epithelial and fibroblast cells using 2D models and ultimately extending to 3D organotypic cell culture models to begin to elucidate possible differences that may occur for different cell types and/or inter-cellular communication. We will investigate the roles of the Smad and Activating transcription factor 2 (ATF2) proteins as the potential major contributors to crosstalk between the TGFβ and ATM pathways, and links to cell cycle control and/or the DNA damage response, and potential differences in their responses at low and high doses. We have developed various experimental

  11. Dragon enhances BMP signaling and increases transepithelial resistance in kidney epithelial cells.

    Science.gov (United States)

    Xia, Yin; Babitt, Jodie L; Bouley, Richard; Zhang, Ying; Da Silva, Nicolas; Chen, Shanzhuo; Zhuang, Zhenjie; Samad, Tarek A; Brenner, Gary J; Anderson, Jennifer L; Hong, Charles C; Schneyer, Alan L; Brown, Dennis; Lin, Herbert Y

    2010-04-01

    The neuronal adhesion protein Dragon acts as a bone morphogenetic protein (BMP) coreceptor that enhances BMP signaling. Given the importance of BMP signaling in nephrogenesis and its putative role in the response to injury in the adult kidney, we studied the localization and function of Dragon in the kidney. We observed that Dragon localized predominantly to the apical surfaces of tubular epithelial cells in the thick ascending limbs, distal convoluted tubules, and collecting ducts of mice. Dragon expression was weak in the proximal tubules and glomeruli. In mouse inner medullary collecting duct (mIMCD3) cells, Dragon generated BMP signals in a ligand-dependent manner, and BMP4 is the predominant endogenous ligand for the Dragon coreceptor. In mIMCD3 cells, BMP4 normally signaled through BMPRII, but Dragon enhanced its signaling through the BMP type II receptor ActRIIA. Dragon and BMP4 increased transepithelial resistance (TER) through the Smad1/5/8 pathway. In epithelial cells isolated from the proximal tubule and intercalated cells of collecting ducts, we observed coexpression of ActRIIA, Dragon, and BMP4 but not BMPRII. Taken together, these results suggest that Dragon may enhance BMP signaling in renal tubular epithelial cells and maintain normal renal physiology.

  12. Nanomaterials modulate stem cell differentiation: biological interaction and underlying mechanisms.

    Science.gov (United States)

    Wei, Min; Li, Song; Le, Weidong

    2017-10-25

    Stem cells are unspecialized cells that have the potential for self-renewal and differentiation into more specialized cell types. The chemical and physical properties of surrounding microenvironment contribute to the growth and differentiation of stem cells and consequently play crucial roles in the regulation of stem cells' fate. Nanomaterials hold great promise in biological and biomedical fields owing to their unique properties, such as controllable particle size, facile synthesis, large surface-to-volume ratio, tunable surface chemistry, and biocompatibility. Over the recent years, accumulating evidence has shown that nanomaterials can facilitate stem cell proliferation and differentiation, and great effort is undertaken to explore their possible modulating manners and mechanisms on stem cell differentiation. In present review, we summarize recent progress in the regulating potential of various nanomaterials on stem cell differentiation and discuss the possible cell uptake, biological interaction and underlying mechanisms.

  13. Calcium Imaging of Nerve-Mast Cell Signaling in the Human Intestine

    Directory of Open Access Journals (Sweden)

    Sabine Buhner

    2017-11-01

    Full Text Available Introduction: It is suggested that an altered microenvironment in the gut wall alters communication along a mast cell nerve axis. We aimed to record for the first time signaling between mast cells and neurons in intact human submucous preparations.Methods: We used the Ca2+ sensitive dye Fluo-4 AM to simultaneously image changes in intracellular calcium [Ca+2]i (%ΔF/F in neurons and mast cells. Data are presented as median with interquartile ranges (25/75%.Results: We recorded nerve responses in 29 samples upon selective activation of 223 mast cells by IgE receptor cross linking with the antibody mAb22E7. Mast cells responded to mAb22E7 with a median [Ca+2]i increase of 20% (11/39 peaking 90 s (64/144 after the application. Only very few neurons responded and the median percentage of responding neuronal area was 0% (0/5.9. Mast cell activation remained in the presence of the fast sodium channel blocker tetrodotoxin. Specific neuronal activation by transmural electrical field stimulation (EFS in 34 samples evoked instantaneously [Ca+2]i signals in submucous neurons. This was followed by a [Ca+2]i peak response of 8%ΔF/F (4/15 in 33% of 168 mast cells in the field of view. The mast cell response was abolished by the nerve blocker tetrododoxin, reduced by the Calcitonin Gene-Related Peptide receptor 1 antagonist BIBN-4096 and the Vasoactive Intestinal Peptide receptor antagonist PG97-269, but not by blockade of the neurokinin receptors 1–3.Conclusion: The findings revealed bidirectional signaling between mast cells and submucous neurons in human gut. In our macroscopically normal preparations a nerve to mast cell signaling was very prominent whereas a mast cell to nerve signaling was rather rare.

  14. The image of cell in biology books: an approach from Cognitive Theory of Multimedia Learning

    Directory of Open Access Journals (Sweden)

    Ricardo Ferreira das Neves

    2016-04-01

    Full Text Available The research aimed to analyze the didactic value (VD of the images related to the concept of cell in biology books of High School and Higher Education, supported by Cognitivist Theory of Multimedia Learning (TCAM. With the technological advent there was a better development of the layout of production techniques and layout of the images in books, in order to help the study of abstract concepts and often complex, such as the cell. However sometimes it not happens. From the application of TCAM principles, we noted that the images related to cell concept presented VD elements with deviations on the principles of Consistency, Signaling and Spatial Contiguity, with great emphasis to the last one. It is necessary to establish eligibility criteria and inclusion of images in books, because the images represent potential resource to reduce abstraction and to facilitate conceptual learning.

  15. Proteolytic degradation of regulator of G protein signaling 2 facilitates temporal regulation of Gq/11 signaling and vascular contraction.

    Science.gov (United States)

    Kanai, Stanley M; Edwards, Alethia J; Rurik, Joel G; Osei-Owusu, Patrick; Blumer, Kendall J

    2017-11-24

    Regulator of G protein signaling 2 (RGS2) controls signaling by receptors coupled to the G q/11 class heterotrimeric G proteins. RGS2 deficiency causes several phenotypes in mice and occurs in several diseases, including hypertension in which a proteolytically unstable RGS2 mutant has been reported. However, the mechanisms and functions of RGS2 proteolysis remain poorly understood. Here we addressed these questions by identifying degradation signals in RGS2, and studying dynamic regulation of G q/11 -evoked Ca 2+ signaling and vascular contraction. We identified a novel bipartite degradation signal in the N-terminal domain of RGS2. Mutations disrupting this signal blunted proteolytic degradation downstream of E3 ubiquitin ligase binding to RGS2. Analysis of RGS2 mutants proteolyzed at various rates and the effects of proteasome inhibition indicated that proteolytic degradation controls agonist efficacy by setting RGS2 protein expression levels, and affecting the rate at which cells regain agonist responsiveness as synthesis of RGS2 stops. Analyzing contraction of mesenteric resistance arteries supported the biological relevance of this mechanism. Because RGS2 mRNA expression often is strikingly and transiently up-regulated and then down-regulated upon cell stimulation, our findings indicate that proteolytic degradation tightly couples RGS2 transcription, protein levels, and function. Together these mechanisms provide tight temporal control of G q/11 -coupled receptor signaling in the cardiovascular, immune, and nervous systems. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Insulin-like growth factor-1 signaling in renal cell carcinoma

    International Nuclear Information System (INIS)

    Tracz, Adam F.; Szczylik, Cezary; Porta, Camillo; Czarnecka, Anna M.

    2016-01-01

    Renal cell carcinoma (RCC) incidence is highest in highly developed countries and it is the seventh most common neoplasm diagnosed. RCC management include nephrectomy and targeted therapies. Type 1 insulin-like growth factor (IGF-1) pathway plays an important role in cell proliferation and apoptosis resistance. IGF-1 and insulin share overlapping downstream signaling pathways in normal and cancer cells. IGF-1 receptor (IGF1R) stimulation may promote malignant transformation promoting cell proliferation, dedifferentiation and inhibiting apoptosis. Clear cell renal cell carcinoma (ccRCC) patients with IGF1R overexpression have 70 % increased risk of death compared to patients who had tumors without IGF1R expression. IGF1R signaling deregulation may results in p53, WT, BRCA1, VHL loss of function. RCC cells with high expression of IGF1R are more resistant to chemotherapy than cells with low expression. Silencing of IGF1R increase the chemosensitivity of ccRCC cells and the effect is greater in VHL mutated cells. Understanding the role of IGF-1 signaling pathway in RCC may result in development of new targeted therapeutic interventions. First preclinical attempts with anti-IGF-1R monoclonal antibodies or fragment antigen-binding (Fab) fragments alone or in combination with an mTOR inhibitor were shown to inhibit in vitro growth and reduced the number of colonies formed by of RCC cells

  17. Specific Protein Markers for Stem Cell Cross-Talk with Neighboring Cells in the Environment

    OpenAIRE

    Park, Kyung Soo; Shin, Seung Won; Choi, Jeong-Woo; Um, Soong Ho

    2013-01-01

    A stem cell interacts with the neighboring cells in its environment. To maintain a living organism’s metabolism, either cell-cell or cell-environment interactions may be significant. Usually, these cells communicate with each other through biological signaling by interactive behaviors of primary proteins or complementary chemicals. The signaling intermediates offer the stem cell’s functionality on its metabolism. With the rapid advent of omics technologies, various specific markers by which s...

  18. Towards the understanding of network information processing in biology

    Science.gov (United States)

    Singh, Vijay

    Living organisms perform incredibly well in detecting a signal present in the environment. This information processing is achieved near optimally and quite reliably, even though the sources of signals are highly variable and complex. The work in the last few decades has given us a fair understanding of how individual signal processing units like neurons and cell receptors process signals, but the principles of collective information processing on biological networks are far from clear. Information processing in biological networks, like the brain, metabolic circuits, cellular-signaling circuits, etc., involves complex interactions among a large number of units (neurons, receptors). The combinatorially large number of states such a system can exist in makes it impossible to study these systems from the first principles, starting from the interactions between the basic units. The principles of collective information processing on such complex networks can be identified using coarse graining approaches. This could provide insights into the organization and function of complex biological networks. Here I study models of biological networks using continuum dynamics, renormalization, maximum likelihood estimation and information theory. Such coarse graining approaches identify features that are essential for certain processes performed by underlying biological networks. We find that long-range connections in the brain allow for global scale feature detection in a signal. These also suppress the noise and remove any gaps present in the signal. Hierarchical organization with long-range connections leads to large-scale connectivity at low synapse numbers. Time delays can be utilized to separate a mixture of signals with temporal scales. Our observations indicate that the rules in multivariate signal processing are quite different from traditional single unit signal processing.

  19. Three-dimensional culture of sebaceous gland cells revealing the role of prostaglandin E{sub 2}-induced activation of canonical Wnt signaling

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Go J., E-mail: medical21go@yahoo.co.jp; Saya, Hideyuki

    2013-09-06

    Highlights: •Three-dimensional culture generates “semi-vivo” sebaceous glands. •Xenograft model failed to mimic the biology of sebaceous glands in vivo. •Proinflammatory cytokine PGE{sub 2} enhances Wnt signal activity in the organoids. •PGE{sub 2} influences on the mitochondrial and lipid metabolism in the organoids. •Considering 3R agenda, “semi-vivo” sebaceous glands are useful for research. -- Abstract: Background: Prostaglandin E{sub 2} (PGE{sub 2}) is a proinflammatory mediator and activates the canonical Wnt–β-catenin signaling pathway in hematopoietic stem cells. The SZ95 cell line was established from human sebaceous gland cells and is studied as a model system for these cells. Given that 2D culture of SZ95 cells does not recapitulate the organization of sebaceous glands in situ, we developed a 3D culture system for these cells and examined the effects of PGE{sub 2} on cell morphology and function. Results: SZ95 cells maintained in 3D culture formed organoids that mimicked the organization of sebaceous glands in situ, including the establishment of a basement membrane. Organoids exposed to PGE{sub 2} were larger and adopted a more complex organization compared with control organoids. PGE{sub 2} activated the canonical Wnt signaling pathway as well as increased cell viability and proliferation, mitochondrial metabolism, and lipid synthesis in the organoids. Conclusions: Culture of SZ95 cells in 3D culture system recapitulates the structure and susceptibility to PGE{sub 2} of sebaceous glands in situ and should prove useful for studies of the response of these glands to inflammation and other environmental stressors. Our results also implicate PGE{sub 2}-induced activation of canonical Wnt signaling pathway in regulation of the morphology,proliferation, and function of “semi-vivo” sebaceous glands.

  20. Benfotiamine counteracts glucose toxicity effects on endothelial progenitor cell differentiation via Akt/FoxO signaling.

    Science.gov (United States)

    Marchetti, Valentina; Menghini, Rossella; Rizza, Stefano; Vivanti, Alessia; Feccia, Tiziana; Lauro, Davide; Fukamizu, Akiyoshi; Lauro, Renato; Federici, Massimo

    2006-08-01

    Dysfunction of mature endothelial cells is thought to play a major role in both micro- and macrovascular complications of diabetes. However, recent advances in biology of endothelial progenitor cells (EPCs) have highlighted their involvement in diabetes complications. To determine the effect of glucotoxicity on EPCs, human EPCs have been isolated from peripheral blood mononuclear cells of healthy donors and cultured in the presence or absence of high glucose (33 mmol/l) or high glucose plus benfotiamine to scavenge glucotoxicity. Morphological analysis revealed that high glucose significantly affected the number of endothelial cell colony forming units, uptake and binding of acLDL and Lectin-1, and the ability to differentiate into CD31- and vascular endothelial growth factor receptor 2-positive cells. Functional analysis outlined a reduced EPC involvement in de novo tube formation, when cocultured with mature endothelial cells (human umbilical vein endothelial cells) on matrigel. To explain the observed phenotypes, we have investigated the signal transduction pathways known to be involved in EPC growth and differentiation. Our results indicate that hyperglycemia impairs EPC differentiation and that the process can be restored by benfotiamine administration, via the modulation of Akt/FoxO1 activity.

  1. Bystander signaling via oxidative metabolism

    Directory of Open Access Journals (Sweden)

    Sawal HA

    2017-08-01

    Full Text Available Humaira Aziz Sawal,1 Kashif Asghar,2 Matthias Bureik,3 Nasir Jalal4 1Healthcare Biotechnology Department, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 2Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, Pakistan; 3Health Science Platform, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China; 4Health Science Platform, Department of Molecular and Cellular Pharmacology, Tianjin University, Tianjin, China Abstract: The radiation-induced bystander effect (RIBE is the initiation of biological end points in cells (bystander cells that are not directly traversed by an incident-radiation track, but are in close proximity to cells that are receiving the radiation. RIBE has been indicted of causing DNA damage via oxidative stress, besides causing direct damage, inducing tumorigenesis, producing micronuclei, and causing apoptosis. RIBE is regulated by signaling proteins that are either endogenous or secreted by cells as a means of communication between cells, and can activate intracellular or intercellular oxidative metabolism that can further trigger signaling pathways of inflammation. Bystander signals can pass through gap junctions in attached cell lines, while the suspended cell lines transmit these signals via hormones and soluble proteins. This review provides the background information on how reactive oxygen species (ROS act as bystander signals. Although ROS have a very short half-life and have a nanometer-scale sphere of influence, the wide variety of ROS produced via various sources can exert a cumulative effect, not only in forming DNA adducts but also setting up signaling pathways of inflammation, apoptosis, cell-cycle arrest, aging, and even tumorigenesis. This review outlines the sources of the bystander effect linked to ROS in a cell, and provides methods of investigation for researchers who would like to

  2. Novel cross-talk between IGF-IR and DDR1 regulates IGF-IR trafficking, signaling and biological responses

    Science.gov (United States)

    Sacco, Antonella; Morcavallo, Alaide; Vella, Veronica; Voci, Concetta; Spatuzza, Michela; Xu, Shi-Qiong; Iozzo, Renato V.; Vigneri, Riccardo; Morrione, Andrea; Belfiore, Antonino

    2015-01-01

    The insulin-like growth factor-I receptor (IGF-IR), plays a key role in regulating mammalian development and growth, and is frequently deregulated in cancer contributing to tumor initiation and progression. Discoidin domain receptor 1 (DDR1), a collagen receptor tyrosine-kinase, is as well frequently overexpressed in cancer and implicated in cancer progression. Thus, we investigated whether a functional cross-talk between the IGF-IR and DDR1 exists and plays any role in cancer progression. Using human breast cancer cells we found that DDR1 constitutively associated with the IGF-IR. However, this interaction was enhanced by IGF-I stimulation, which promoted rapid DDR1 tyrosine-phosphorylation and co-internalization with the IGF-IR. Significantly, DDR1 was critical for IGF-IR endocytosis and trafficking into early endosomes, IGF-IR protein expression and IGF-I intracellular signaling and biological effects, including cell proliferation, migration and colony formation. These biological responses were inhibited by DDR1 silencing and enhanced by DDR1 overexpression. Experiments in mouse fibroblasts co-transfected with the human IGF-IR and DDR1 gave similar results and indicated that, in the absence of IGF-IR, collagen-dependent phosphorylation of DDR1 is impaired. These results demonstrate a critical role of DDR1 in the regulation of IGF-IR action, and identify DDR1 as a novel important target for breast cancers that overexpress IGF-IR. PMID:25840417

  3. Intermediate Physics for Medicine and Biology

    CERN Document Server

    Hobbie, Russell K

    2007-01-01

    Intended for advanced undergraduate and beginning graduate students in biophysics, physiology, medical physics, cell biology, and biomedical engineering, this wide-ranging text bridges the gap between introductory physics and its application to the life and biomedical sciences. This extensively revised and updated fourth edition reflects new developments at the burgeoning interface between physics and biomedicine. Among the many topics treated are: forces in the skeletal system; fluid flow, with examples from the circulatory system; the logistic equation; scaling; transport of neutral particles by diffusion and by solvent drag; membranes and osmosis; equipartition of energy in statistical mechanics; the chemical potential and free energy; biological magnetic fields; membranes and gated channels in membranes; linear and nonlinear feedback systems; nonlinear phenomena, including biological clocks and chaotic behavior; signal analysis, noise and stochastic resonance detection of weak signals; image formation and...

  4. Regulation of Cellular Redox Signaling by Matricellular Proteins in Vascular Biology, Immunology, and Cancer.

    Science.gov (United States)

    Roberts, David D; Kaur, Sukhbir; Isenberg, Jeffrey S

    2017-10-20

    In contrast to structural elements of the extracellular matrix, matricellular proteins appear transiently during development and injury responses, but their sustained expression can contribute to chronic disease. Through interactions with other matrix components and specific cell surface receptors, matricellular proteins regulate multiple signaling pathways, including those mediated by reactive oxygen and nitrogen species and H 2 S. Dysregulation of matricellular proteins contributes to the pathogenesis of vascular diseases and cancer. Defining the molecular mechanisms and receptors involved is revealing new therapeutic opportunities. Recent Advances: Thrombospondin-1 (TSP1) regulates NO, H 2 S, and superoxide production and signaling in several cell types. The TSP1 receptor CD47 plays a central role in inhibition of NO signaling, but other TSP1 receptors also modulate redox signaling. The matricellular protein CCN1 engages some of the same receptors to regulate redox signaling, and ADAMTS1 regulates NO signaling in Marfan syndrome. In addition to mediating matricellular protein signaling, redox signaling is emerging as an important pathway that controls the expression of several matricellular proteins. Redox signaling remains unexplored for many matricellular proteins. Their interactions with multiple cellular receptors remains an obstacle to defining signaling mechanisms, but improved transgenic models could overcome this barrier. Therapeutics targeting the TSP1 receptor CD47 may have beneficial effects for treating cardiovascular disease and cancer and have recently entered clinical trials. Biomarkers are needed to assess their effects on redox signaling in patients and to evaluate how these contribute to their therapeutic efficacy and potential side effects. Antioxid. Redox Signal. 27, 874-911.

  5. Signal transduction, receptors, mediators and genes: younger than ever - the 13th meeting of the Signal Transduction Society focused on aging and immunology

    Directory of Open Access Journals (Sweden)

    Klotz Lars-Oliver

    2010-02-01

    Full Text Available Abstract The 13th meeting of the Signal Transduction Society was held in Weimar, from October 28 to 30, 2009. Special focus of the 2009 conference was "Aging and Senescence", which was co-organized by the SFB 728 "Environmentally-Induced Aging Processes" of the University of Düsseldorf and the study group 'Signal Transduction' of the German Society for Cell Biology (DGZ. In addition, several other areas of signal transduction research were covered and supported by different consortia associated with the Signal Transduction Society including the long-term associated study groups of the German Society for Immunology and the Society for Biochemistry and Molecular Biology, and for instance the SFB/Transregio 52 "Transcriptional Programming of Individual T Cell Subsets" located in Würzburg, Mainz and Berlin. The different research areas that were introduced by outstanding keynote speakers attracted more than 250 scientists, showing the timeliness and relevance of the interdisciplinary concept and exchange of knowledge during the three days of the scientific program. This report gives an overview of the presentations of the conference.

  6. EGF signalling pathway regulates colon cancer stem cell proliferation and apoptosis.

    Science.gov (United States)

    Feng, Y; Dai, X; Li, X; Wang, H; Liu, J; Zhang, J; Du, Y; Xia, L

    2012-10-01

    Cancer stem cells (CSCs) compose a subpopulation of cells within a tumour that can self-renew and proliferate. Growth factors such as epidermal growth factor (EGF) and basic fibroblast growth factor (b-FGF) promote cancer stem cell proliferation in many solid tumours. This study assesses whether EGF, bFGF and IGF signalling pathways are essential for colon CSC proliferation and self-renewal. Colon CSCs were cultured in serum-free medium (SFM) with one of the following growth factors: EGF, bFGF or IGF. Characteristics of CSC gene expression were evaluated by real time PCR. Tumourigenicity of CSCs was determined using a xenograft model in vivo. Effects of EGF receptor inhibitors, Gefitinib and PD153035, on CSC proliferation, apoptosis and signalling were evaluated using fluorescence-activated cell sorting and western blotting. Colon cancer cell HCT116 transformed to CSCs in SFM. Compared to other growth factors, EGF was essential to support proliferation of CSCs that expressed higher levels of progenitor genes (Musashi-1, LGR5) and lower levels of differential genes (CK20). CSCs promoted more rapid tumour growth than regular cancer cells in xenografts. EGFR inhibitors suppressed proliferation and induced apoptosis of CSCs by inhibiting autophosphorylation of EGFR and downstream signalling proteins, such as Akt kinase, extracellular signal-regulated kinase 1/2 (ERK 1/2). This study indicates that EGF signalling was essential for formation and maintenance of colon CSCs. Inhibition of the EGF signalling pathway may provide a useful strategy for treatment of colon cancer. © 2012 Blackwell Publishing Ltd.

  7. The bottom-up approach to defining life : deciphering the functional organization of biological cells via multi-objective representation of biological complexity from molecules to cells

    Directory of Open Access Journals (Sweden)

    Sathish ePeriyasamy

    2013-12-01

    Full Text Available In silico representation of cellular systems needs to represent the adaptive dynamics of biological cells, recognizing a cell’s multi-objective topology formed by spatially and temporally cohesive intracellular structures. The design of these models needs to address the hierarchical and concurrent nature of cellular functions and incorporate the ability to self-organise in response to transitions between healthy and pathological phases, and adapt accordingly. The functions of biological systems are constantly evolving, due to the ever changing demands of their environment. Biological systems meet these demands by pursuing objectives, aided by their constituents, giving rise to biological functions. A biological cell is organised into an objective/task hierarchy. These objective hierarchy corresponds to the nested nature of temporally cohesive structures and representing them will facilitate in studying pleiotropy and polygeny by modeling causalities propagating across multiple interconnected intracellular processes. Although biological adaptations occur in physiological, developmental and reproductive timescales, the paper is focused on adaptations that occur within physiological timescales, where the biomolecular activities contributing to functional organisation, play a key role in cellular physiology. The paper proposes a multi-scale and multi-objective modelling approach from the bottom-up by representing temporally cohesive structures for multi-tasking of intracellular processes. Further the paper characterises the properties and constraints that are consequential to the organisational and adaptive dynamics in biological cells.

  8. Regulation of HtrA2 on WT1 gene expression under imatinib stimulation and its effects on the cell biology of K562 cells.

    Science.gov (United States)

    Zhang, Lixia; Li, Yan; Li, Xiaoyan; Zhang, Qing; Qiu, Shaowei; Zhang, Qi; Wang, Min; Xing, Haiyan; Rao, Qing; Tian, Zheng; Tang, Kejing; Wang, Jianxiang; Mi, Yingchang

    2017-09-01

    The aim of the present study was to investigate the regulation of Wilms Tumor 1 (WT1) by serine protease high-temperature requirement protein A2 (HtrA2), a member of the Htr family, in K562 cells. In addition, the study aimed to observe the effect of this regulation on cell biological functions and its associated mechanisms. Expression of WT1 and HtrA2 mRNA, and proteins following imatinib and the HtrA2 inhibitor 5-[5-(2-nitrophenyl) furfuryl iodine]-1, 3-diphenyl-2-thiobarbituric acid (UCF-101) treatment was detected with reverse transcription-quantitative polymerase chain reaction and western blot analysis. Subsequent to treatment with drugs and UCF-101, the proliferative function of K562 cells was detected using MTT assays, and the rate of apoptosis was detected using Annexin V with propidium iodide flow cytometry in K562 cells. The protein levels in the signaling pathway were analyzed using western blotting following treatment with imatinib and UCF-101. In K562 cells, imatinib treatment activated HtrA2 gene at a transcription level, while the WT1 gene was simultaneously downregulated. Following HtrA2 inhibitor (UCF-101) treatment, the downregulation of WT1 increased gradually. At the protein level, imatinib induced the increase in HtrA2 protein level and concomitantly downregulated WT1 protein level. Subsequent to HtrA2 inhibition by UCF-101, the WT1 protein level decreased temporarily, but eventually increased. Imatinib induced apoptosis in K562 cells, but this effect was attenuated by the HtrA2 inhibitor UCF-101, resulting in the upregulation of the WT1 protein level. However; UCF-101 did not markedly change the proliferation inhibition caused by imatinib. Imatinib activated the p38 mitogen activated protein kinase (p38 MAPK) signaling pathway in K562 cells, and UCF-101 affected the activation of imatinib in the p38 MAPK signaling pathway. Imatinib inhibited the extracellular signal-related kinase (ERK1/2) pathway markedly and persistently, but UCF-101

  9. Role of Neurokinin 3 Receptor Signaling in Oral Squamous Cell Carcinoma.

    Science.gov (United States)

    Obata, Kyoichi; Shimo, Tsuyoshi; Okui, Tatsuo; Matsumoto, Kenichi; Takada, Hiroyuki; Takabatake, Kiyofumi; Kunisada, Yuki; Ibaragi, Soichiro; Yoshioka, Norie; Kishimoto, Koji; Nagatsuka, Hitoshi; Sasaki, Akira

    2017-11-01

    The neurokinin 3 receptor (NK-3R) is differentially expressed in the central nervous system including cases of human oral squamous cell carcinoma. However, the role of NK-3R signaling in oral squamous cell carcinoma is not well known. NK-3R expression in surgically resected oral squamous cell carcinoma was examined immunohistochemically and the strength of the expression was quantified. We evaluated the function of NK-3R signaling using NK-3R antagonist in human oral squamous cell carcinoma bone invasion mouse model. NK-3R was significantly expressed in tumor cells that had invaded the bone matrix compared to the oral side tumor cells. SB222200, a selective antagonist of NK-3R, significantly suppressed the radiographic osteolytic lesion and tumorigenesis. NK-3R signaling is a potential target for the treatment of oral squamous cell carcinoma in cases of bone destruction. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  10. Emerging role of Hippo signalling in pancreatic biology: YAP re-expression and plausible link to islet cell apoptosis and replication.

    Science.gov (United States)

    Sharma, Anjana; Yerra, Veera Ganesh; Kumar, Ashutosh

    2017-02-01

    Diabetes mellitus is an ailment that develops when the functional capacity of the pancreas does not meet the metabolic requirements of the whole body, either due to insulin insufficiency or resistance to insulin action. Current therapies that control glycaemia are limited by their unwanted effects or their inability to prevent the development of long-term complications. Regeneration and replacement of beta cell therapies are shaping the goals of future management of diabetes. The Hippo pathway, first discovered in Drosophila melanogaster, plays a vital role in controlling the organ size. Nuclear recruitment of YAP/TAZ (Yes-associated protein/transcriptional co-activator with PDZ-binding motif), a mammalian analogue of Yorkie protein found in Drosophila, activates cell proliferation and inhibits apoptosis. YAP was found to regulate early pancreatic development followed by downregulation during Ngn3-specific endocrine lineage maturation corresponding to their mitotic quiescence. Recent evidences have shown that optimum modulation of upstream kinases in the Hippo signalling pathway may lead to apoptosis inhibition and renewal of progenitor as well as stem cells in case of tissue or cell injury. This article reviews the evidences linking the role of various components of the Hippo pathway to pancreatic regeneration. In particular, the focus is on the beneficial role of induced YAP expression and its nuclear distribution on apoptosis and replication of adult pancreatic β islets. This approach may be of immense significance towards our fight against diabetes; thus, more insightful research is warranted in the area of Hippo signalling pathway and its involvement in pancreatic regeneration. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  11. Kaempferol induces autophagic cell death of hepatocellular carcinoma cells via activating AMPK signaling.

    Science.gov (United States)

    Han, Bing; Yu, Yi-Qun; Yang, Qi-Lian; Shen, Chun-Ying; Wang, Xiao-Juan

    2017-10-17

    In the present study, we demonstrate that Kaempferol inhibited survival and proliferation of established human hepatocellular carcinoma (HCC) cell lines (HepG2, Huh-7, BEL7402, and SMMC) and primary human HCC cells. Kaempferol treatment in HCC cells induced profound AMP-activated protein kinase (AMPK) activation, which led to Ulk1 phosphorylation, mTOR complex 1 inhibition and cell autophagy. Autophagy induction was reflected by Beclin-1/autophagy gene 5 upregulation and p62 degradation as well as light chain 3B (LC3B)-I to LC3B-II conversion and LC3B puncta formation. Inhibition of AMPK, via AMPKα1 shRNA or dominant negative mutation, reversed above signaling changes. AMPK inhibition also largely inhibited Kaempferol-induced cytotoxicity in HCC cells. Autophagy inhibition, by 3-methyaldenine or Beclin-1 shRNA, also protected HCC cells from Kaempferol. Kaempferol downregulated melanoma antigen 6, the AMPK ubiquitin ligase, causing AMPKα1 stabilization and accumulation. We conclude that Kaempferol inhibits human HCC cells via activating AMPK signaling.

  12. Cells from icons to symbols: molecularizing cell biology in the 1980s.

    Science.gov (United States)

    Serpente, Norberto

    2011-12-01

    Over centuries cells have been the target of optical and electronic microscopes as well as others technologies, with distinctive types of visual output. Whilst optical technologies produce images 'evident to the eye', the electronic and especially the molecular create images that are more elusive to conceptualization and assessment. My study applies the semiotic approach to the production of images in cell biology to capture the shift from microscopic images to non-traditional visual technologies around 1980. Here I argue that the visual shift that coincides with the growing dominance of molecular biology involves a change from iconic to symbolic forms. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. The Dark Matter of Biology.

    Science.gov (United States)

    Ross, Jennifer L

    2016-09-06

    The inside of the cell is full of important, yet invisible species of molecules and proteins that interact weakly but couple together to have huge and important effects in many biological processes. Such "dark matter" inside cells remains mostly hidden, because our tools were developed to investigate strongly interacting species and folded proteins. Example dark-matter species include intrinsically disordered proteins, posttranslational states, ion species, and rare, transient, and weak interactions undetectable by biochemical assays. The dark matter of biology is likely to have multiple, vital roles to regulate signaling, rates of reactions, water structure and viscosity, crowding, and other cellular activities. We need to create new tools to image, detect, and understand these dark-matter species if we are to truly understand fundamental physical principles of biology. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. The central dogma of cell biology.

    Science.gov (United States)

    Cooper, S

    1981-06-01

    The Continuum Model proposes that preparations for DNA synthesis occur continuously during all phases of the division cycle. Various stimuli activate cell proliferation by changing the rate of initiator (protein) synthesis. Cell division does not initiate any process regulating cell proliferation. Cell division is the end of a process and the beginning of nothing. The alternative model which has cell proliferation regulated in the G1 phase of the division cycle is reexamined and the two types of evidence for this model, G1-variability and G1-arrest are shown to be compatible with the Continuum Model. Here, the Continuum Model is generalized to produce a new look at the logic of the division cycle in prokaryotes and eukaryotes. This new view, the Central Dogma of Cell Biology, is presented and two predictions are made. I propose that (i) cell division does not have any regulatory function, and (ii) that DNA synthesis may, indeed, have some affect on the synthesis of initiator.

  15. Discrete dynamic modeling of cellular signaling networks.

    Science.gov (United States)

    Albert, Réka; Wang, Rui-Sheng

    2009-01-01

    Understanding signal transduction in cellular systems is a central issue in systems biology. Numerous experiments from different laboratories generate an abundance of individual components and causal interactions mediating environmental and developmental signals. However, for many signal transduction systems there is insufficient information on the overall structure and the molecular mechanisms involved in the signaling network. Moreover, lack of kinetic and temporal information makes it difficult to construct quantitative models of signal transduction pathways. Discrete dynamic modeling, combined with network analysis, provides an effective way to integrate fragmentary knowledge of regulatory interactions into a predictive mathematical model which is able to describe the time evolution of the system without the requirement for kinetic parameters. This chapter introduces the fundamental concepts of discrete dynamic modeling, particularly focusing on Boolean dynamic models. We describe this method step-by-step in the context of cellular signaling networks. Several variants of Boolean dynamic models including threshold Boolean networks and piecewise linear systems are also covered, followed by two examples of successful application of discrete dynamic modeling in cell biology.

  16. Functions and Mechanisms of Fibroblast Growth Factor (FGF Signalling in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Hans-Arno J. Müller

    2013-03-01

    Full Text Available Intercellular signalling via growth factors plays an important role in controlling cell differentiation and cell movements during the development of multicellular animals. Fibroblast Growth Factor (FGF signalling induces changes in cellular behaviour allowing cells in the embryo to move, to survive, to divide or to differentiate. Several examples argue that FGF signalling is used in multi-step morphogenetic processes to achieve and maintain a transitional state of the cells required for the control of cell fate. In the genetic model Drosophila melanogaster, FGF signalling via the receptor tyrosine kinases Heartless (Htl and Breathless (Btl is particularly well studied. These FGF receptors affect gene expression, cell shape and cell–cell interactions during mesoderm layer formation, caudal visceral muscle (CVM formation, tracheal morphogenesis and glia differentiation. Here, we will address the current knowledge of the biological functions of FGF signalling in the fly on the tissue, at a cellular and molecular level.

  17. Signal transduction pathways involved in mechanotransduction in bone cells

    International Nuclear Information System (INIS)

    Liedert, Astrid; Kaspar, Daniela; Blakytny, Robert; Claes, Lutz; Ignatius, Anita

    2006-01-01

    Several in vivo and in vitro studies with different loading regimens showed that mechanical stimuli have an influence on proliferation and differentiation of bone cells. Prerequisite for this influence is the transduction of mechanical signals into the cell, a phenomenon that is termed mechanotransduction, which is essential for the maintenance of skeletal homeostasis in adults. Mechanoreceptors, such as the integrins, cadherins, and stretch-activated Ca 2+ channels, together with various signal transduction pathways, are involved in the mechanotransduction process that ultimately regulates gene expression in the nucleus. Mechanotransduction itself is considered to be regulated by hormones, the extracellular matrix of the osteoblastic cells and the mode of the mechanical stimulus

  18. Discovery of HeLa Cell Contamination in HES Cells: Call for Cell Line Authentication in Reproductive Biology Research.

    Science.gov (United States)

    Kniss, Douglas A; Summerfield, Taryn L

    2014-08-01

    Continuous cell lines are used frequently in reproductive biology research to study problems in early pregnancy events and parturition. It has been recognized for 50 years that many mammalian cell lines contain inter- or intraspecies contaminations with other cells. However, most investigators do not routinely test their culture systems for cross-contamination. The most frequent contributor to cross-contamination of cell lines is the HeLa cell isolated from an aggressive cervical adenocarcinoma. We report on the discovery of HeLa cell contamination of the human endometrial epithelial cell line HES isolated in our laboratory. Short tandem repeat analysis of 9 unique genetic loci demonstrated molecular identity between HES and HeLa cells. In addition, we verified that WISH cells, isolated originally from human amnion epithelium, were also contaminated with HeLa cells. Inasmuch as our laboratory did not culture HeLa cells at the time of HES cell derivations, the source of contamination was the WISH cell line. These data highlight the need for continued diligence in authenticating cell lines used in reproductive biology research. © The Author(s) 2014.

  19. Lunatic fringe-mediated Notch signaling regulates adult hippocampal neural stem cell maintenance.

    Science.gov (United States)

    Semerci, Fatih; Choi, William Tin-Shing; Bajic, Aleksandar; Thakkar, Aarohi; Encinas, Juan Manuel; Depreux, Frederic; Segil, Neil; Groves, Andrew K; Maletic-Savatic, Mirjana

    2017-07-12

    Hippocampal neural stem cells (NSCs) integrate inputs from multiple sources to balance quiescence and activation. Notch signaling plays a key role during this process. Here, we report that Lunatic fringe ( Lfng), a key modifier of the Notch receptor, is selectively expressed in NSCs. Further, Lfng in NSCs and Notch ligands Delta1 and Jagged1, expressed by their progeny, together influence NSC recruitment, cell cycle duration, and terminal fate. We propose a new model in which Lfng-mediated Notch signaling enables direct communication between a NSC and its descendants, so that progeny can send feedback signals to the 'mother' cell to modify its cell cycle status. Lfng-mediated Notch signaling appears to be a key factor governing NSC quiescence, division, and fate.

  20. Enhancement of B-cell receptor signaling by a point mutation of adaptor protein 3BP2 identified in human inherited disease cherubism.

    Science.gov (United States)

    Ogi, Kazuhiro; Nakashima, Kenji; Chihara, Kazuyasu; Takeuchi, Kenji; Horiguchi, Tomoko; Fujieda, Shigeharu; Sada, Kiyonao

    2011-09-01

    Tyrosine phosphorylation of adaptor protein c-Abl-Src homology 3 (SH3) domain-binding protein-2 (3BP2, also referred to SH3BP2) positively regulates the B-cell antigen receptor (BCR)-mediated signal transduction, leading to the activation of nuclear factor of activated T cells (NFAT). Here we showed the effect of the proline to arginine substitution of 3BP2 in which is the most common mutation in patients with cherubism (P418R) on B-cell receptor signaling. Comparing to the wild type, overexpression of the mutant form of 3BP2 (3BP2-P416R, corresponding to P418R in human protein) enhanced BCR-mediated activation of NFAT. 3BP2-P416R increased the signaling complex formation with Syk, phospholipase C-γ2 (PLC-γ2), and Vav1. In contrast, 3BP2-P416R could not change the association with the negative regulator 14-3-3. Loss of the association mutant that was incapable to associate with 14-3-3 could not mimic BCR-mediated NFAT activation in Syk-deficient cells. Moreover, BCR-mediated phosphorylation of extracellular signal regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) was not affected by P416R mutation. These results showed that P416R mutation of 3BP2 causes the gain of function in B cells by increasing the interaction with specific signaling molecules. © 2011 The Authors. Journal compilation © 2011 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.