WorldWideScience

Sample records for cell biology development

  1. Biology and physics of cell shape changes in development.

    Science.gov (United States)

    Paluch, Ewa; Heisenberg, Carl-Philipp

    2009-09-15

    Together with cell growth, division and death, changes in cell shape are of central importance for tissue morphogenesis during development. Cell shape is the product of a cell's material and active properties balanced by external forces. Control of cell shape, therefore, relies on both tight regulation of intracellular mechanics and the cell's physical interaction with its environment. In this review, we first discuss the biological and physical mechanisms of cell shape control. We next examine a number of developmental processes in which cell shape change - either individually or in a coordinated manner - drives embryonic morphogenesis and discuss how cell shape is controlled in these processes. Finally, we emphasize that cell shape control during tissue morphogenesis can only be fully understood by using a combination of cellular, molecular, developmental and biophysical approaches.

  2. A short guide to technology development in cell biology

    NARCIS (Netherlands)

    B. van Steensel (Bas)

    2015-01-01

    textabstractNew technologies drive progress in many research fields, including cell biology. Much of technological innovation comes from "bottom-up" efforts by individual students and postdocs. However, technology development can be challenging, and a successful outcome depends on many factors. This

  3. A short guide to technology development in cell biology.

    Science.gov (United States)

    van Steensel, Bas

    2015-03-16

    New technologies drive progress in many research fields, including cell biology. Much of technological innovation comes from "bottom-up" efforts by individual students and postdocs. However, technology development can be challenging, and a successful outcome depends on many factors. This article outlines some considerations that are important when embarking on a technology development project. Despite the challenges, developing a new technology can be extremely rewarding and could lead to a lasting impact in a given field.

  4. New Developments in Mast Cell Biology: Clinical Implications.

    Science.gov (United States)

    Arthur, Greer; Bradding, Peter

    2016-09-01

    Mast cells (MCs) are present in connective tissue and at mucosal surfaces in all classes of vertebrates. In health, they contribute to tissue homeostasis, host defense, and tissue repair via multiple receptors regulating the release of a vast stockpile of proinflammatory mediators, proteases, and cytokines. However, these potentially protective cells are a double-edged sword. When there is a repeated or long-term stimulus, MC activation leads to tissue damage and dysfunction. Accordingly, MCs are implicated in the pathophysiologic aspects of numerous diseases covering all organs. Understanding the biology of MCs, their heterogeneity, mechanisms of activation, and signaling cascades may lead to the development of novel therapies for many diseases for which current treatments are lacking or are of poor efficacy. This review will focus on updates and developments in MC biology and their clinical implications, with a particular focus on their role in respiratory diseases.

  5. Using Molecular Biology to Develop Drugs for Renal Cell Carcinoma

    Science.gov (United States)

    Cowey, C. Lance; Rathmell, W. Kimryn

    2010-01-01

    Background Renal cell carcinoma is a disease marked by a unique biology which has governed it’s long history of poor response to conventional cancer treatments. The discovery of the signaling pathway activated as a result of inappropriate constitutive activation of the hypoxia inducible factors (HIF), transcription factors physiologically and transiently stabilized in response to low oxygen, has provided a primary opportunity to devise treatment strategies to target this oncogenic pathway. Objective A review of the molecular pathogenesis of renal cell cancer as well as molecularly targeted therapies, both those currently available and those in development, will be provided. In addition, trials involving combination or sequential targeted therapy are discussed. Methods A detailed review of the literature describing the molecular biology of renal cell cancer and novel therapies was performed and summarized. Results/Conclusion Therapeutics targeting angiogenesis have provided the first class of agents which provide clinical benefit in a large majority of patients and heralded renal cell carcinoma as a solid tumor paradigm for the development of novel therapeutics. Multiple strategies targeting this pathway and now other identified pathways in renal cell carcinoma provide numerous potential opportunities to make major improvements in treating this historically devastating cancer. PMID:20648240

  6. Competency development in antibody production in cancer cell biology

    Energy Technology Data Exchange (ETDEWEB)

    Park, M.S.

    1998-12-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The main objective of this project was to develop a rapid recombinant antibody production technology. To achieve the objective, the authors employed (1) production of recombinant antigens that are important for cell cycle regulation and DNA repair, (2) immunization and specific selection of antibody-producing lymphocytes using the flow cytometry and magnetic bead capturing procedure, (3) construction of single chain antibody library, (4) development of recombinant vectors that target, express, and regulate the expression of intracellular antibodies, and (5) specific inhibition of tumor cell growth in tissue culture. The authors have accomplished (1) optimization of a selection procedure to isolate antigen-specific lymphocytes, (2) optimization of the construction of a single-chain antibody library, and (3) development of a new antibody expression vector for intracellular immunization. The future direction of this research is to continue to test the potential use of the intracellular immunization procedure as a tool to study functions of biological molecules and as an immuno-cancer therapy procedure to inhibit the growth of cancer cells.

  7. METABOLIC MODELLING IN THE DEVELOPMENT OF CELL FACTORIES BY SYNTHETIC BIOLOGY

    Directory of Open Access Journals (Sweden)

    Paula Jouhten

    2012-10-01

    Full Text Available Cell factories are commonly microbial organisms utilized for bioconversion of renewable resources to bulk or high value chemicals. Introduction of novel production pathways in chassis strains is the core of the development of cell factories by synthetic biology. Synthetic biology aims to create novel biological functions and systems not found in nature by combining biology with engineering. The workflow of the development of novel cell factories with synthetic biology is ideally linear which will be attainable with the quantitative engineering approach, high-quality predictive models, and libraries of well-characterized parts. Different types of metabolic models, mathematical representations of metabolism and its components, enzymes and metabolites, are useful in particular phases of the synthetic biology workflow. In this minireview, the role of metabolic modelling in synthetic biology will be discussed with a review of current status of compatible methods and models for the in silico design and quantitative evaluation of a cell factory.

  8. WWW.Cell Biology Education: Using the World Wide Web to Develop a New Teaching Topic

    Science.gov (United States)

    Blystone, Robert V.; MacAlpine, Barbara

    2005-01-01

    "Cell Biology Education" calls attention each quarter to several Web sites of educational interest to the biology community. The Internet provides access to an enormous array of potential teaching materials. In this article, the authors describe one approach for using the World Wide Web to develop a new college biology laboratory exercise. As a…

  9. Development of an autonomous biological cell manipulator with single-cell electroporation and visual servoing capabilities.

    Science.gov (United States)

    Sakaki, Kelly; Dechev, Nikolai; Burke, Robert D; Park, Edward J

    2009-08-01

    Studies of single cells via microscopy and microinjection are a key component in research on gene functions, cancer, stem cells, and reproductive technology. As biomedical experiments become more complex, there is an urgent need to use robotic systems to improve cell manipulation and microinjection processes. Automation of these tasks using machine vision and visual servoing creates significant benefits for biomedical laboratories, including repeatability of experiments, higher throughput, and improved cell viability. This paper presents the development of a new 5-DOF robotic manipulator, designed for manipulating and microinjecting single cells. This biological cell manipulator (BCM) is capable of autonomous scanning of a cell culture followed by autonomous injection of cells using single-cell electroporation (SCE). SCE does not require piercing the cell membrane, thereby keeping the cell membrane fully intact. The BCM features high-precision 3-DOF translational and 2-DOF rotational motion, and a second z-axis allowing top-down placement of a micropipette tip onto the cell membrane for SCE. As a technical demonstration, the autonomous visual servoing and microinjection capabilities of the single-cell manipulator are experimentally shown using sea urchin eggs.

  10. Development and Evaluation of a Series of CAL Modules on Cell Biology for Undergraduate Nursing Students.

    Science.gov (United States)

    Wharrad, Heather; Kent, Christine; Allcock, Nick; Wood, Barry

    2000-01-01

    Describes a project at the University of Nottingham (United Kingdom) that developed and evaluated modules for computer assisted instruction to teach cell biology to undergraduate nursing students. Topics include instructional effectiveness, feedback, and student attitudes. (LRW)

  11. Development of an Instrument for Measuring Self-Efficacy in Cell Biology

    Science.gov (United States)

    Reeve, Suzanne; Kitchen, Elizabeth; Sudweeks, Richard R.; Bell, John D.; Bradshaw, William S.

    2011-01-01

    This article describes the development of a ten-item scale to assess biology majors' self-efficacy towards the critical thinking and data analysis skills taught in an upper-division cell biology course. The original seven-item scale was expanded to include three additional items based on the results of item analysis. Evidence of reliability and…

  12. Translational environmental biology: cell biology informing conservation.

    Science.gov (United States)

    Traylor-Knowles, Nikki; Palumbi, Stephen R

    2014-05-01

    Typically, findings from cell biology have been beneficial for preventing human disease. However, translational applications from cell biology can also be applied to conservation efforts, such as protecting coral reefs. Recent efforts to understand the cell biological mechanisms maintaining coral health such as innate immunity and acclimatization have prompted new developments in conservation. Similar to biomedicine, we urge that future efforts should focus on better frameworks for biomarker development to protect coral reefs.

  13. Insights into female germ cell biology: from in vivo development to in vitro derivations.

    Science.gov (United States)

    Jung, Dajung; Kee, Kehkooi

    2015-01-01

    Understanding the mechanisms of human germ cell biology is important for developing infertility treatments. However, little is known about the mechanisms that regulate human gametogenesis due to the difficulties in collecting samples, especially germ cells during fetal development. In contrast to the mitotic arrest of spermatogonia stem cells in the fetal testis, female germ cells proceed into meiosis and began folliculogenesis in fetal ovaries. Regulations of these developmental events, including the initiation of meiosis and the endowment of primordial follicles, remain an enigma. Studying the molecular mechanisms of female germ cell biology in the human ovary has been mostly limited to spatiotemporal characterizations of genes or proteins. Recent efforts in utilizing in vitro differentiation system of stem cells to derive germ cells have allowed researchers to begin studying molecular mechanisms during human germ cell development. Meanwhile, the possibility of isolating female germline stem cells in adult ovaries also excites researchers and generates many debates. This review will mainly focus on presenting and discussing recent in vivo and in vitro studies on female germ cell biology in human. The topics will highlight the progress made in understanding the three main stages of germ cell developments: namely, primordial germ cell formation, meiotic initiation, and folliculogenesis.

  14. Insights into female germ cell biology: from in vivo development to in vitro derivations

    Directory of Open Access Journals (Sweden)

    Dajung Jung

    2015-06-01

    Full Text Available Understanding the mechanisms of human germ cell biology is important for developing infertility treatments. However, little is known about the mechanisms that regulate human gametogenesis due to the difficulties in collecting samples, especially germ cells during fetal development. In contrast to the mitotic arrest of spermatogonia stem cells in the fetal testis, female germ cells proceed into meiosis and began folliculogenesis in fetal ovaries. Regulations of these developmental events, including the initiation of meiosis and the endowment of primordial follicles, remain an enigma. Studying the molecular mechanisms of female germ cell biology in the human ovary has been mostly limited to spatiotemporal characterizations of genes or proteins. Recent efforts in utilizing in vitro differentiation system of stem cells to derive germ cells have allowed researchers to begin studying molecular mechanisms during human germ cell development. Meanwhile, the possibility of isolating female germline stem cells in adult ovaries also excites researchers and generates many debates. This review will mainly focus on presenting and discussing recent in vivo and in vitro studies on female germ cell biology in human. The topics will highlight the progress made in understanding the three main stages of germ cell developments: namely, primordial germ cell formation, meiotic initiation, and folliculogenesis.

  15. Early embryonic development, assisted reproductive technologies, and pluripotent stem cell biology in domestic mammals

    DEFF Research Database (Denmark)

    Hall, Vanessa Jane; Hinrichs, K.; Lazzari, G.;

    2013-01-01

    Over many decades assisted reproductive technologies, including artificial insemination, embryo transfer, in vitro production (IVP) of embryos, cloning by somatic cell nuclear transfer (SCNT), and stem cell culture, have been developed with the aim of refining breeding strategies for improved...... of pre-implantation development in cattle, pigs, horses, and dogs. Biological aspects and impact of assisted reproductive technologies including IVP, SCNT, and culture of pluripotent stem cells are also addressed. © 2013 Elsevier Ltd....

  16. Systems Modelling and the Development of Coherent Understanding of Cell Biology

    Science.gov (United States)

    Verhoeff, Roald P.; Waarlo, Arend Jan; Boersma, Kerst Th.

    2008-01-01

    This article reports on educational design research concerning a learning and teaching strategy for cell biology in upper-secondary education introducing "systems modelling" as a key competence. The strategy consists of four modelling phases in which students subsequently develop models of free-living cells, a general two-dimensional model of…

  17. The neurobiology of gliomas: from cell biology to the development of therapeutic approaches.

    Science.gov (United States)

    Westphal, Manfred; Lamszus, Katrin

    2011-08-03

    Gliomas are the most common type of primary brain tumour and are often fast growing with a poor prognosis for the patient. Their complex cellular composition, diffuse invasiveness and capacity to escape therapies has challenged researchers for decades and hampered progress towards an effective treatment. Recent molecular characterization of tumour cells combined with new insights into cellular diversification that occurs during development, and the modelling of these processes in transgenic animals have enabled a more detailed understanding of the events that underlie gliomagenesis. Combining this enhanced understanding of the relationship between neural stem cell biology and the cell lineage relationships of tumour cells with model systems offers new opportunities to develop specific and effective therapies.

  18. Early embryonic development, assisted reproductive technologies, and pluripotent stem cell biology in domestic mammals

    DEFF Research Database (Denmark)

    Hall, Vanessa Jane; Hinrichs, K.; Lazzari, G.

    2013-01-01

    production and health in animal husbandry. More recently, biomedical applications of these technologies, in particular, SCNT and stem cell culture, have been pursued in domestic mammals in order to create models for human disease and therapy. The following review focuses on presenting important aspects......Over many decades assisted reproductive technologies, including artificial insemination, embryo transfer, in vitro production (IVP) of embryos, cloning by somatic cell nuclear transfer (SCNT), and stem cell culture, have been developed with the aim of refining breeding strategies for improved...... of pre-implantation development in cattle, pigs, horses, and dogs. Biological aspects and impact of assisted reproductive technologies including IVP, SCNT, and culture of pluripotent stem cells are also addressed. © 2013 Elsevier Ltd....

  19. Early embryonic development, assisted reproductive technologies, and pluripotent stem cell biology in domestic mammals.

    Science.gov (United States)

    Hall, V; Hinrichs, K; Lazzari, G; Betts, D H; Hyttel, P

    2013-08-01

    Over many decades assisted reproductive technologies, including artificial insemination, embryo transfer, in vitro production (IVP) of embryos, cloning by somatic cell nuclear transfer (SCNT), and stem cell culture, have been developed with the aim of refining breeding strategies for improved production and health in animal husbandry. More recently, biomedical applications of these technologies, in particular, SCNT and stem cell culture, have been pursued in domestic mammals in order to create models for human disease and therapy. The following review focuses on presenting important aspects of pre-implantation development in cattle, pigs, horses, and dogs. Biological aspects and impact of assisted reproductive technologies including IVP, SCNT, and culture of pluripotent stem cells are also addressed.

  20. The female gametophyte: an emerging model for cell type-specific systems biology in plant development

    Directory of Open Access Journals (Sweden)

    Marc William Schmid

    2015-11-01

    Full Text Available Systems biology, a holistic approach describing a system emerging from the interactions of its molecular components, critically depends on accurate qualitative determination and quantitative measurements of these components. Development and improvement of large-scale profiling methods (omics now facilitates comprehensive measurements of many relevant molecules. For multicellular organisms, such as animals, fungi, algae, and plants, the complexity of the system is augmented by the presence of specialized cell types and organs, and a complex interplay within and between them. Cell type-specific analyses are therefore crucial for the understanding of developmental processes and environmental responses. This review first gives an overview of current methods used for large-scale profiling of specific cell types exemplified by recent advances in plant biology. The focus then lies on suitable model systems to study plant development and cell type specification. We introduce the female gametophyte of flowering plants as an ideal model to study fundamental developmental processes. Moreover, the female reproductive lineage is of importance for the emergence of evolutionary novelties such as an unequal parental contribution to the tissue nurturing the embryo or the clonal production of seeds by asexual reproduction (apomixis. Understanding these processes is not only interesting from a developmental or evolutionary perspective, but bears great potential for further crop improvement and the simplification of breeding efforts. We finally highlight novel methods, which are already available or which will likely soon facilitate large-scale profiling of the specific cell types of the female gametophyte in both model and non-model species. We conclude that it may take only few years until an evolutionary systems biology approach toward female gametogenesis may decipher some of its biologically most interesting and economically most valuable processes.

  1. Development of an improved immunoassay for detection of sorLA in cells and biological samples

    DEFF Research Database (Denmark)

    Andersen, Olav Michael; Thakurta, Ishita Guha; West, Mark J.

    , or traditional sandwich ELISA assays which are time consuming and less sensitive. Hence, the purpose of the present study is to develop a new assay called AlphaLISA which is fast and very sensitive, to measure sorLA in extremely small volumes of cells and biological samples. Methods: The Alpha......, which can be automated suitably for determination of sorLA in large sample batches. It also shows high recovery and signal to noise ratio. Conclusions: The results support the development of an improved method for measuring sorLA quantitatively, which could further prove as an important tool...

  2. Neocortex expansion in development and evolution - from cell biology to single genes.

    Science.gov (United States)

    Wilsch-Bräuninger, Michaela; Florio, Marta; Huttner, Wieland B

    2016-08-01

    Neocortex expansion in development and evolution reflects an increased and prolonged activity of neural progenitor cells. Insight into key aspects of the underlying cell biology has recently been obtained. First, the restriction of apical progenitors to undergo mitosis at the ventricular surface is overcome by generation of basal progenitors, which are free to undergo mitosis at abventricular location, typically the subventricular zone. This process involves basolateral ciliogenesis, delamination from the apical adherens junction belt, and loss of apical cell polarity. Second, proliferative capacity of basal progenitors is supported by self-produced extracellular matrix constituents, which in turn promote growth factor signalling. Humans amplify these processes by characteristic alterations in expression of key regulatory genes (PAX6), and via human-specific genes (ARHGAP11B).

  3. [Cell biology and cosmetology].

    Science.gov (United States)

    Traniello, S; Cavalletti, T

    1991-01-01

    Cellular biology can become the natural support of research in the field of cosmetics because it is able to provide alternative experimental models which can partially replace the massive use of laboratory animals. Cultures of human skin cells could be used in tests investigating irritation of the skin. We have developed an "in vitro" experimental model that allows to evaluate the damage caused by the free radicals to the fibroblasts in culture and to test the protective action of the lipoaminoacids. Experimenting on human cell cultures presents the advantage of eliminating the extrapolation between the different species, of allowing a determination of the biological action of a substance and of evaluating its dose/response effect. This does not mean that "in vitro" experimenting could completely replace experimenting on living animals, but the "in vitro" model can be introduced in the realisation of preliminary screenings.

  4. Cell biology perspectives in phage biology.

    Science.gov (United States)

    Ansaldi, Mireille

    2012-01-01

    Cellular biology has long been restricted to large cellular organisms. However, as the resolution of microscopic methods increased, it became possible to study smaller cells, in particular bacterial cells. Bacteriophage biology is one aspect of bacterial cell biology that has recently gained insight from cell biology. Despite their small size, bacteriophages could be successfully labeled and their cycle studied in the host cells. This review aims to put together, although non-extensively, several cell biology studies that recently pushed the elucidation of key mechanisms in phage biology, such as the lysis-lysogeny decision in temperate phages or genome replication and transcription, one step further.

  5. In vivo cell biology in zebrafish - providing insights into vertebrate development and disease.

    Science.gov (United States)

    Vacaru, Ana M; Unlu, Gokhan; Spitzner, Marie; Mione, Marina; Knapik, Ela W; Sadler, Kirsten C

    2014-02-01

    Over the past decades, studies using zebrafish have significantly advanced our understanding of the cellular basis for development and human diseases. Zebrafish have rapidly developing transparent embryos that allow comprehensive imaging of embryogenesis combined with powerful genetic approaches. However, forward genetic screens in zebrafish have generated unanticipated findings that are mirrored by human genetic studies: disruption of genes implicated in basic cellular processes, such as protein secretion or cytoskeletal dynamics, causes discrete developmental or disease phenotypes. This is surprising because many processes that were assumed to be fundamental to the function and survival of all cell types appear instead to be regulated by cell-specific mechanisms. Such discoveries are facilitated by experiments in whole animals, where zebrafish provides an ideal model for visualization and manipulation of organelles and cellular processes in a live vertebrate. Here, we review well-characterized mutants and newly developed tools that underscore this notion. We focus on the secretory pathway and microtubule-based trafficking as illustrative examples of how studying cell biology in vivo using zebrafish has broadened our understanding of the role fundamental cellular processes play in embryogenesis and disease.

  6. Mesangial cell biology

    Energy Technology Data Exchange (ETDEWEB)

    Abboud, Hanna E., E-mail: Abboud@uthscsa.edu

    2012-05-15

    Mesangial cells originate from the metanephric mesenchyme and maintain structural integrity of the glomerular microvascular bed and mesangial matrix homeostasis. In response to metabolic, immunologic or hemodynamic injury, these cells undergo apoptosis or acquire an activated phenotype and undergo hypertrophy, proliferation with excessive production of matrix proteins, growth factors, chemokines and cytokines. These soluble factors exert autocrine and paracrine effects on the cells or on other glomerular cells, respectively. MCs are primary targets of immune-mediated glomerular diseases such as IGA nephropathy or metabolic diseases such as diabetes. MCs may also respond to injury that primarily involves podocytes and endothelial cells or to structural and genetic abnormalities of the glomerular basement membrane. Signal transduction and oxidant stress pathways are activated in MCs and likely represent integrated input from multiple mediators. Such responses are convenient targets for therapeutic intervention. Studies in cultured MCs should be supplemented with in vivo studies as well as examination of freshly isolated cells from normal and diseases glomeruli. In addition to ex vivo morphologic studies in kidney cortex, cells should be studied in their natural environment, isolated glomeruli or even tissue slices. Identification of a specific marker of MCs should help genetic manipulation as well as selective therapeutic targeting of these cells. Identification of biological responses of MCs that are not mediated by the renin–angiotensin system should help development of novel and effective therapeutic strategies to treat diseases characterized by MC pathology.

  7. Illuminating Cell Biology

    Science.gov (United States)

    2002-01-01

    NASA's Ames Research Center awarded Ciencia, Inc., a Small Business Innovation Research contract to develop the Cell Fluorescence Analysis System (CFAS) to address the size, mass, and power constraints of using fluorescence spectroscopy in the International Space Station's Life Science Research Facility. The system will play an important role in studying biological specimen's long-term adaptation to microgravity. Commercial applications for the technology include diverse markets such as food safety, in situ environmental monitoring, online process analysis, genomics and DNA chips, and non-invasive diagnostics. Ciencia has already sold the system to the private sector for biosensor applications.

  8. Systems cell biology.

    Science.gov (United States)

    Mast, Fred D; Ratushny, Alexander V; Aitchison, John D

    2014-09-15

    Systems cell biology melds high-throughput experimentation with quantitative analysis and modeling to understand many critical processes that contribute to cellular organization and dynamics. Recently, there have been several advances in technology and in the application of modeling approaches that enable the exploration of the dynamic properties of cells. Merging technology and computation offers an opportunity to objectively address unsolved cellular mechanisms, and has revealed emergent properties and helped to gain a more comprehensive and fundamental understanding of cell biology.

  9. Cell Biological Characterization of Male Meiosis and Pollen Development in Rice

    Institute of Scientific and Technical Information of China (English)

    Chang-Bin CHEN; Yun-Yuan XU; Hong MA; Kang CHONG

    2005-01-01

    Little systematic analysis has been undertaken in rice (Oryza sativa L.) on the stages of male meiosis from leptotene to telophase Ⅱ or of pollen development from microspores to mature pollen grains.The present study describes multiple stages in detail from analysis of rice chromosome spreading with staining of 4',6-diamidino-2-phenylindole. The description of normal wild-type male meiosis provides an important morphological reference for analyses of meiotic mutants. Meiosis in rice is largely similar to those of the well characterizing model plants Arabidopsis thaliana L. and Zea mays L. However, rice meiosis differs from that in Arabidopsis in that rice meiosis I is followed by the formation of a cell plate, instead of an organelle band that forms between the two nuclei and persist through meiosis Ⅱ. This suggests a difference in the control of organelle biogenesis and distribution and cytokinesis. Our results should facilitate studies of rice meiosis and pollen development using molecular genetic and cell biological approaches.

  10. Paul Ehrlich's mastzellen: a historical perspective of relevant developments in mast cell biology.

    Science.gov (United States)

    Ghably, Jack; Saleh, Hana; Vyas, Harsha; Peiris, Emma; Misra, Niva; Krishnaswamy, Guha

    2015-01-01

    Following the discovery of mast cells (or mastzellen) by the prolific physician researcher, Paul Ehrlich, many advances have improved our understanding of these cells and their fascinating biology. The discovery of immunoglobulin E and receptors for IgE and IgG on mast cells heralded further in vivo and in vitro studies, using molecular technologies and gene knockout models. Mast cells express an array of inflammatory mediators including tryptase, histamine, cytokines, chemokines, and growth factors. They play a role in many varying disease states, from atopic diseases, parasitic infections, hematological malignancies, and arthritis to osteoporosis. This review will attempt to summarize salient evolving areas in mast cell research over the last few centuries that have led to our current understanding of this pivotal multifunctional cell.

  11. Space biology research development

    Science.gov (United States)

    Bonting, Sjoerd L.

    1993-01-01

    The purpose of the Search for Extraterrestrial Intelligence (SETI) Institute is to conduct and promote research related activities regarding the search for extraterrestrial life, particularly intelligent life. Such research encompasses the broad discipline of 'Life in the Universe', including all scientific and technological aspects of astronomy and the planetary sciences, chemical evolution, the origin of life, biological evolution, and cultural evolution. The primary purpose was to provide funding for the Principal Investigator to collaborate with the personnel of the SETI Institute and the NASA-Ames Research center in order to plan and develop space biology research on and in connection with Space Station Freedom; to promote cooperation with the international partners in the space station; to conduct a study on the use of biosensors in space biology research and life support system operation; and to promote space biology research through the initiation of an annual publication 'Advances in Space Biology and Medicine'.

  12. The cell biology of neurogenesis: toward an understanding of the development and evolution of the neocortex.

    Science.gov (United States)

    Taverna, Elena; Götz, Magdalena; Huttner, Wieland B

    2014-01-01

    Neural stem and progenitor cells have a central role in the development and evolution of the mammalian neocortex. In this review, we first provide a set of criteria to classify the various types of cortical stem and progenitor cells. We then discuss the issue of cell polarity, as well as specific subcellular features of these cells that are relevant for their modes of division and daughter cell fate. In addition, cortical stem and progenitor cell behavior is placed into a tissue context, with consideration of extracellular signals and cell-cell interactions. Finally, the differences across species regarding cortical stem and progenitor cells are dissected to gain insight into key developmental and evolutionary mechanisms underlying neocortex expansion.

  13. Biological atomism and cell theory.

    Science.gov (United States)

    Nicholson, Daniel J

    2010-09-01

    Biological atomism postulates that all life is composed of elementary and indivisible vital units. The activity of a living organism is thus conceived as the result of the activities and interactions of its elementary constituents, each of which individually already exhibits all the attributes proper to life. This paper surveys some of the key episodes in the history of biological atomism, and situates cell theory within this tradition. The atomistic foundations of cell theory are subsequently dissected and discussed, together with the theory's conceptual development and eventual consolidation. This paper then examines the major criticisms that have been waged against cell theory, and argues that these too can be interpreted through the prism of biological atomism as attempts to relocate the true biological atom away from the cell to a level of organization above or below it. Overall, biological atomism provides a useful perspective through which to examine the history and philosophy of cell theory, and it also opens up a new way of thinking about the epistemic decomposition of living organisms that significantly departs from the physicochemical reductionism of mechanistic biology.

  14. Systems biology approach to developing S(2)RM-based "systems therapeutics" and naturally induced pluripotent stem cells.

    Science.gov (United States)

    Maguire, Greg; Friedman, Peter

    2015-05-26

    The degree to, and the mechanisms through, which stem cells are able to build, maintain, and heal the body have only recently begun to be understood. Much of the stem cell's power resides in the release of a multitude of molecules, called stem cell released molecules (SRM). A fundamentally new type of therapeutic, namely "systems therapeutic", can be realized by reverse engineering the mechanisms of the SRM processes. Recent data demonstrates that the composition of the SRM is different for each type of stem cell, as well as for different states of each cell type. Although systems biology has been successfully used to analyze multiple pathways, the approach is often used to develop a small molecule interacting at only one pathway in the system. A new model is emerging in biology where systems biology is used to develop a new technology acting at multiple pathways called "systems therapeutics". A natural set of healing pathways in the human that uses SRM is instructive and of practical use in developing systems therapeutics. Endogenous SRM processes in the human body use a combination of SRM from two or more stem cell types, designated as S(2)RM, doing so under various state dependent conditions for each cell type. Here we describe our approach in using state-dependent SRM from two or more stem cell types, S(2)RM technology, to develop a new class of therapeutics called "systems therapeutics." Given the ubiquitous and powerful nature of innate S(2)RM-based healing in the human body, this "systems therapeutic" approach using S(2)RM technology will be important for the development of anti-cancer therapeutics, antimicrobials, wound care products and procedures, and a number of other therapeutics for many indications.

  15. Biology of Schwann cells.

    Science.gov (United States)

    Kidd, Grahame J; Ohno, Nobuhiko; Trapp, Bruce D

    2013-01-01

    The fundamental roles of Schwann cells during peripheral nerve formation and regeneration have been recognized for more than 100 years, but the cellular and molecular mechanisms that integrate Schwann cell and axonal functions continue to be elucidated. Derived from the embryonic neural crest, Schwann cells differentiate into myelinating cells or bundle multiple unmyelinated axons into Remak fibers. Axons dictate which differentiation path Schwann cells follow, and recent studies have established that axonal neuregulin1 signaling via ErbB2/B3 receptors on Schwann cells is essential for Schwann cell myelination. Extracellular matrix production and interactions mediated by specific integrin and dystroglycan complexes are also critical requisites for Schwann cell-axon interactions. Myelination entails expansion and specialization of the Schwann cell plasma membrane over millimeter distances. Many of the myelin-specific proteins have been identified, and transgenic manipulation of myelin genes have provided novel insights into myelin protein function, including maintenance of axonal integrity and survival. Cellular events that facilitate myelination, including microtubule-based protein and mRNA targeting, and actin based locomotion, have also begun to be understood. Arguably, the most remarkable facet of Schwann cell biology, however, is their vigorous response to axonal damage. Degradation of myelin, dedifferentiation, division, production of axonotrophic factors, and remyelination all underpin the substantial regenerative capacity of the Schwann cells and peripheral nerves. Many of these properties are not shared by CNS fibers, which are myelinated by oligodendrocytes. Dissecting the molecular mechanisms responsible for the complex biology of Schwann cells continues to have practical benefits in identifying novel therapeutic targets not only for Schwann cell-specific diseases but other disorders in which axons degenerate.

  16. Early embryonic development, assisted reproductive technologies, and pluripotent stem cell biology in domestic mammals

    OpenAIRE

    Hall, V.; Hinrichs, K.; Lazzari, G.; Betts, D.H.; Hyttel, P.

    2013-01-01

    Over many decades assisted reproductive technologies, including artificial insemination, embryo transfer, in vitro production (IVP) of embryos, cloning by somatic cell nuclear transfer (SCNT), and stem cell culture, have been developed with the aim of refining breeding strategies for improved production and health in animal husbandry. More recently, biomedical applications of these technologies, in particular, SCNT and stem cell culture, have been pursued in domestic mammals in order to creat...

  17. Cutting the gordian knot-development and biological relevance of hepatitis C virus cell culture systems

    DEFF Research Database (Denmark)

    Gottwein, Judith Margarete; Bukh, Jens

    2008-01-01

    described. Research on the viral life cycle, efficient therapeutics, and a vaccine has been hampered by the absence of suitable cell culture systems. The first system permitting studies of the full viral life cycle was intrahepatic transfection of RNA transcripts of HCV consensus complementary DNA (c...... isolate JFH1, which for unknown reasons showed an exceptional replication capability and resulted in formation of infectious viral particles in the human hepatoma cell line Huh7, led in 2005 to the development of the first full viral life cycle in vitro systems. JFH1-based systems now enable in vitro...... studies of the function of viral proteins, their interaction with each other and host proteins, new antivirals, and neutralizing antibodies in the context of the full viral life cycle. However, several challenges remain, including development of cell culture systems for all major HCV genotypes...

  18. Development of an Integrated Microfluidic Perfusion Cell Culture System for Real-Time Microscopic Observation of Biological Cells

    Directory of Open Access Journals (Sweden)

    Chih-Chin Oh-Yang

    2011-08-01

    Full Text Available This study reports an integrated microfluidic perfusion cell culture system consisting of a microfluidic cell culture chip, and an indium tin oxide (ITO glass-based microheater chip for micro-scale perfusion cell culture, and its real-time microscopic observation. The system features in maintaining both uniform, and stable chemical or thermal environments, and providing a backflow-free medium pumping, and a precise thermal control functions. In this work, the performance of the medium pumping scheme, and the ITO glass microheater were experimentally evaluated. Results show that the medium delivery mechanism was able to provide pumping rates ranging from 15.4 to 120.0 μL·min−1. In addition, numerical simulation and experimental evaluation were conducted to verify that the ITO glass microheater was capable of providing a spatially uniform thermal environment, and precise temperature control with a mild variation of ±0.3 °C. Furthermore, a perfusion cell culture was successfully demonstrated, showing the cultured cells were kept at high cell viability of 95 ± 2%. In the process, the cultured chondrocytes can be clearly visualized microscopically. As a whole, the proposed cell culture system has paved an alternative route to carry out real-time microscopic observation of biological cells in a simple, user-friendly, and low cost manner.

  19. Development of Biologically Modified Anodes for Energy Harvesting Using Microbial Fuel Cells

    Science.gov (United States)

    2012-09-01

    possibly due to physically blocking passages in the hydrogel that allow for food to reach the cells and waste products to escape the biofilm . Proc...practical power source can be engineered. This is being achieved by developing a three dimensional matrix as an artificial, conductive biofilm . These...artificial biofilms will allow the capture of a consortium of microbes designed for efficient metabolism of the available fuel source. Also it will

  20. Cell biology of fat storage.

    Science.gov (United States)

    Cohen, Paul; Spiegelman, Bruce M

    2016-08-15

    The worldwide epidemic of obesity and type 2 diabetes has greatly increased interest in the biology and physiology of adipose tissues. Adipose (fat) cells are specialized for the storage of energy in the form of triglycerides, but research in the last few decades has shown that fat cells also play a critical role in sensing and responding to changes in systemic energy balance. White fat cells secrete important hormone-like molecules such as leptin, adiponectin, and adipsin to influence processes such as food intake, insulin sensitivity, and insulin secretion. Brown fat, on the other hand, dissipates chemical energy in the form of heat, thereby defending against hypothermia, obesity, and diabetes. It is now appreciated that there are two distinct types of thermogenic fat cells, termed brown and beige adipocytes. In addition to these distinct properties of fat cells, adipocytes exist within adipose tissue, where they are in dynamic communication with immune cells and closely influenced by innervation and blood supply. This review is intended to serve as an introduction to adipose cell biology and to familiarize the reader with how these cell types play a role in metabolic disease and, perhaps, as targets for therapeutic development.

  1. Systems biology of yeast: enabling technology for development of cell factories for production of advanced biofuels.

    Science.gov (United States)

    de Jong, Bouke; Siewers, Verena; Nielsen, Jens

    2012-08-01

    Transportation fuels will gradually shift from oil based fuels towards alternative fuel resources like biofuels. Current bioethanol and biodiesel can, however, not cover the increasing demand for biofuels and there is therefore a need for advanced biofuels with superior fuel properties. Novel cell factories will provide a production platform for advanced biofuels. However, deep cellular understanding is required for improvement of current biofuel cell factories. Fast screening and analysis (-omics) methods and metabolome-wide mathematical models are promising techniques. An integrated systems approach of these techniques drives diversity and quantity of several new biofuel compounds. This review will cover the recent technological developments that support improvement of the advanced biofuels 1-butanol, biodiesels and jetfuels.

  2. Development of radiation biological dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chul Koo; Kim, Tae Hwan; Lee, Yun Sil; Son, Young Sook; Kim, Soo Kwan; Jang, Won Suk; Le, Sun Joo; Jee, Young Heun; Jung, Woo Jung

    1999-04-01

    Up until now, only a few methods have been developed for radiation biological dosimetry such as conventional chromosome aberration and micronucleus in peripheral blood cell. However, because these methods not only can be estimated by the expert, but also have a little limitation due to need high technique and many times in the case of radiation accident, it is very difficult to evaluate the absorbed dose of victims. Therefore, we should develop effective, easy, simple and rapid biodosimetry and its guideline (triage) to be able to be treated the victims as fast as possible. We established the premature chromosome condensation assay and apoptotic fragment assay which was the significant relationship between dose and cell damages to evaluate the irradiation dose as correct and rapid as possible using lymphocytes and crypt cells, and compared with conventional chromosome aberration assay and micronuclei assay.

  3. The development of graphene-based devices for cell biology research

    Science.gov (United States)

    Yan, Zhi-Qin; Zhang, Wei

    2014-06-01

    Graphene has emerged as a new carbon nanoform with great potential in many applications due to its exceptional physical and chemical properties. Especially, graphene and its derivatives are also gaining a lot of interest in the biomedical field as new components for biosensors, tissue engineering, and drug delivery. This review presents unique properties of graphene, the bio-effects of graphene and its derivatives, especially their interactions with cells and the development of graphene-based biosensors and nanomedicines for cancer diagnosis and treatment.

  4. Networks in Cell Biology

    Science.gov (United States)

    Buchanan, Mark; Caldarelli, Guido; De Los Rios, Paolo; Rao, Francesco; Vendruscolo, Michele

    2010-05-01

    Introduction; 1. Network views of the cell Paolo De Los Rios and Michele Vendruscolo; 2. Transcriptional regulatory networks Sarath Chandra Janga and M. Madan Babu; 3. Transcription factors and gene regulatory networks Matteo Brilli, Elissa Calistri and Pietro Lió; 4. Experimental methods for protein interaction identification Peter Uetz, Björn Titz, Seesandra V. Rajagopala and Gerard Cagney; 5. Modeling protein interaction networks Francesco Rao; 6. Dynamics and evolution of metabolic networks Daniel Segré; 7. Hierarchical modularity in biological networks: the case of metabolic networks Erzsébet Ravasz Regan; 8. Signalling networks Gian Paolo Rossini; Appendix 1. Complex networks: from local to global properties D. Garlaschelli and G. Caldarelli; Appendix 2. Modelling the local structure of networks D. Garlaschelli and G. Caldarelli; Appendix 3. Higher-order topological properties S. Ahnert, T. Fink and G. Caldarelli; Appendix 4. Elementary mathematical concepts A. Gabrielli and G. Caldarelli; References.

  5. Evolutionary cell biology: two origins, one objective.

    Science.gov (United States)

    Lynch, Michael; Field, Mark C; Goodson, Holly V; Malik, Harmit S; Pereira-Leal, José B; Roos, David S; Turkewitz, Aaron P; Sazer, Shelley

    2014-12-02

    All aspects of biological diversification ultimately trace to evolutionary modifications at the cellular level. This central role of cells frames the basic questions as to how cells work and how cells come to be the way they are. Although these two lines of inquiry lie respectively within the traditional provenance of cell biology and evolutionary biology, a comprehensive synthesis of evolutionary and cell-biological thinking is lacking. We define evolutionary cell biology as the fusion of these two eponymous fields with the theoretical and quantitative branches of biochemistry, biophysics, and population genetics. The key goals are to develop a mechanistic understanding of general evolutionary processes, while specifically infusing cell biology with an evolutionary perspective. The full development of this interdisciplinary field has the potential to solve numerous problems in diverse areas of biology, including the degree to which selection, effectively neutral processes, historical contingencies, and/or constraints at the chemical and biophysical levels dictate patterns of variation for intracellular features. These problems can now be examined at both the within- and among-species levels, with single-cell methodologies even allowing quantification of variation within genotypes. Some results from this emerging field have already had a substantial impact on cell biology, and future findings will significantly influence applications in agriculture, medicine, environmental science, and synthetic biology.

  6. Stochastic processes in cell biology

    CERN Document Server

    Bressloff, Paul C

    2014-01-01

    This book develops the theory of continuous and discrete stochastic processes within the context of cell biology.  A wide range of biological topics are covered including normal and anomalous diffusion in complex cellular environments, stochastic ion channels and excitable systems, stochastic calcium signaling, molecular motors, intracellular transport, signal transduction, bacterial chemotaxis, robustness in gene networks, genetic switches and oscillators, cell polarization, polymerization, cellular length control, and branching processes. The book also provides a pedagogical introduction to the theory of stochastic process – Fokker Planck equations, stochastic differential equations, master equations and jump Markov processes, diffusion approximations and the system size expansion, first passage time problems, stochastic hybrid systems, reaction-diffusion equations, exclusion processes, WKB methods, martingales and branching processes, stochastic calculus, and numerical methods.   This text is primarily...

  7. Label-Free Biosensors for Cell Biology

    Directory of Open Access Journals (Sweden)

    Ye Fang

    2011-01-01

    Full Text Available Label-free biosensors for studying cell biology have finally come of age. Recent developments have advanced the biosensors from low throughput and high maintenance research tools to high throughput and low maintenance screening platforms. In parallel, the biosensors have evolved from an analytical tool solely for molecular interaction analysis to powerful platforms for studying cell biology at the whole cell level. This paper presents historical development, detection principles, and applications in cell biology of label-free biosensors. Future perspectives are also discussed.

  8. Computational Tools for Stem Cell Biology.

    Science.gov (United States)

    Bian, Qin; Cahan, Patrick

    2016-12-01

    For over half a century, the field of developmental biology has leveraged computation to explore mechanisms of developmental processes. More recently, computational approaches have been critical in the translation of high throughput data into knowledge of both developmental and stem cell biology. In the past several years, a new subdiscipline of computational stem cell biology has emerged that synthesizes the modeling of systems-level aspects of stem cells with high-throughput molecular data. In this review, we provide an overview of this new field and pay particular attention to the impact that single cell transcriptomics is expected to have on our understanding of development and our ability to engineer cell fate.

  9. Systems biology approach to developing S2RM-based "systemstherapeutics" and naturally induced pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    The degree to, and the mechanisms through, whichstem cells are able to build, maintain, and heal the bodyhave only recently begun to be understood. Much of thestem cell's power resides in the release of a multitudeof molecules, called stem cell released molecules (SRM).A fundamentally new type of therapeutic, namely"systems therapeutic", can be realized by reverseengineering the mechanisms of the SRM processes.Recent data demonstrates that the composition of theSRM is different for each type of stem cell, as well asfor different states of each cell type. Although systemsbiology has been successfully used to analyze multiplepathways, the approach is often used to develop a smallmolecule interacting at only one pathway in the system.A new model is emerging in biology where systemsbiology is used to develop a new technology actingat multiple pathways called "systems therapeutics". Anatural set of healing pathways in the human that usesSRM is instructive and of practical use in developingsystems therapeutics. Endogenous SRM processes inthe human body use a combination of SRM from twoor more stem cell types, designated as S2RM, doing sounder various state dependent conditions for each celltype. Here we describe our approach in using statedependentSRM from two or more stem cell types,S2RM technology, to develop a new class of therapeuticscalled "systems therapeutics." Given the ubiquitous andpowerful nature of innate S2RM-based healing in thehuman body, this "systems therapeutic" approach usingS2RM technology will be important for the developmentof anti-cancer therapeutics, antimicrobials, woundcare products and procedures, and a number of othertherapeutics for many indications.

  10. Morphological and biological characterization of cell line developed from bovine Echinococcus granulosus.

    Science.gov (United States)

    Echeverría, Claudia I; Isolabella, Dora M; Prieto Gonzalez, Elio A; Leonardelli, Araceli; Prada, Laura; Perrone, Alina; Fuchs, Alicia G

    2010-10-01

    The taeniid tapeworm Echinococcus granulosus is the causative agent of echinococcal disease, a major zoonosis with worldwide distribution. Several efforts to establish an in vitro model of E. granulosus have been undertaken; however, many of them have been designed for Echinococcus multilocularis. In the present study, we have described and characterized a stable cell line obtained from E. granulosus bovine protoscoleces maintained 3 yr in vitro. Growth characterization, morphology by light, fluorescent and electronic microscopy, and karyotyping were carried out. Cell culture origin was confirmed by immunofluorescent detection of AgB4 antigen and by PCR for the mitochondrial cytochrome c-oxidase subunit 1 (DCO1) gene. Cells seeded in agarose biphasic culture resembled a cystic structure, similar to the one formed in secondary hosts. This cell line could be a useful tool to research equinococcal behavior, allowing additional physiological and pharmacological studies, such as the effect of growth factors, nutrients, and antiparasitic drugs on cell viability and growth and on cyst formation.

  11. Chemical approaches to studying stem cell biology

    Institute of Scientific and Technical Information of China (English)

    Wenlin Li; Kai Jiang; Wanguo Wei; Yan Shi; Sheng Ding

    2013-01-01

    Stem cells,including both pluripotent stem cells and multipotent somatic stem cells,hold great potential for interrogating the mechanisms of tissue development,homeostasis and pathology,and for treating numerous devastating diseases.Establishment of in vitro platforms to faithfully maintain and precisely manipulate stem cell fates is essential to understand the basic mechanisms of stem cell biology,and to translate stem cells into regenerative medicine.Chemical approaches have recently provided a number of small molecules that can be used to control cell selfrenewal,lineage differentiation,reprogramming and regeneration.These chemical modulators have been proven to be versatile tools for probing stem cell biology and manipulating cell fates toward desired outcomes.Ultimately,this strategy is promising to be a new frontier for drug development aimed at endogenous stem cell modulation.

  12. Open source bioimage informatics for cell biology.

    Science.gov (United States)

    Swedlow, Jason R; Eliceiri, Kevin W

    2009-11-01

    Significant technical advances in imaging, molecular biology and genomics have fueled a revolution in cell biology, in that the molecular and structural processes of the cell are now visualized and measured routinely. Driving much of this recent development has been the advent of computational tools for the acquisition, visualization, analysis and dissemination of these datasets. These tools collectively make up a new subfield of computational biology called bioimage informatics, which is facilitated by open source approaches. We discuss why open source tools for image informatics in cell biology are needed, some of the key general attributes of what make an open source imaging application successful, and point to opportunities for further operability that should greatly accelerate future cell biology discovery.

  13. Lipid Rafts in Mast Cell Biology

    Directory of Open Access Journals (Sweden)

    Adriana Maria Mariano Silveira e Souza

    2011-01-01

    Full Text Available Mast cells have long been recognized to have a direct and critical role in allergic and inflammatory reactions. In allergic diseases, these cells exert both local and systemic responses, including allergic rhinitis and anaphylaxis. Mast cell mediators are also related to many chronic inflammatory conditions. Besides the roles in pathological conditions, the biological functions of mast cells include roles in innate immunity, involvement in host defense mechanisms against parasites, immunomodulation of the immune system, tissue repair, and angiogenesis. Despite their growing significance in physiological and pathological conditions, much still remains to be learned about mast cell biology. This paper presents evidence that lipid rafts or raft components modulate many of the biological processes in mast cells, such as degranulation and endocytosis, play a role in mast cell development and recruitment, and contribute to the overall preservation of mast cell structure and organization.

  14. An Audiovisual Program in Cell Biology

    Science.gov (United States)

    Fedoroff, Sergey; Opel, William

    1978-01-01

    A subtopic of cell biology, the structure and function of cell membranes, has been developed as a series of seven self-instructional slide-tape units and tested in five medical schools. Organization of advisers, analysis and definition of objectives and content, and development and evaluation of scripts and storyboards are discussed. (Author/LBH)

  15. Fostering synergy between cell biology and systems biology

    OpenAIRE

    2015-01-01

    In the shared pursuit of elucidating detailed mechanisms of cell function, systems biology presents a natural complement to ongoing efforts in cell biology. Systems biology aims to characterize biological systems through integrated and quantitative modeling of cellular information. The process of model building and analysis provides value through synthesizing and cataloging information about cells and molecules; predicting mechanisms and identifying generalizable themes; generating hypotheses...

  16. Mechanics rules cell biology

    Directory of Open Access Journals (Sweden)

    Wang James HC

    2010-07-01

    Full Text Available Abstract Cells in the musculoskeletal system are subjected to various mechanical forces in vivo. Years of research have shown that these mechanical forces, including tension and compression, greatly influence various cellular functions such as gene expression, cell proliferation and differentiation, and secretion of matrix proteins. Cells also use mechanotransduction mechanisms to convert mechanical signals into a cascade of cellular and molecular events. This mini-review provides an overview of cell mechanobiology to highlight the notion that mechanics, mainly in the form of mechanical forces, dictates cell behaviors in terms of both cellular mechanobiological responses and mechanotransduction.

  17. The Development and Application of Affective Assessment in an Upper-Level Cell Biology Course

    Science.gov (United States)

    Kitchen, Elizabeth; Reeve, Suzanne; Bell, John D.; Sudweeks, Richard R.; Bradshaw, William S.

    2007-01-01

    This study exemplifies how faculty members can develop instruments to assess affective responses of students to the specific features of the courses they teach. Means for assessing three types of affective responses are demonstrated: (a) student attitudes towards courses with differing instructional objectives and methodologies, (b) student…

  18. Molecular biology of the cell

    CERN Document Server

    Alberts, Bruce; Lewis, Julian

    2000-01-01

    Molecular Biology of the Cell is the classic in-dept text reference in cell biology. By extracting the fundamental concepts from this enormous and ever-growing field, the authors tell the story of cell biology, and create a coherent framework through which non-expert readers may approach the subject. Written in clear and concise language, and beautifully illustrated, the book is enjoyable to read, and it provides a clear sense of the excitement of modern biology. Molecular Biology of the Cell sets forth the current understanding of cell biology (completely updated as of Autumn 2001), and it explores the intriguing implications and possibilities of the great deal that remains unknown. The hallmark features of previous editions continue in the Fourth Edition. The book is designed with a clean and open, single-column layout. The art program maintains a completely consistent format and style, and includes over 1,600 photographs, electron micrographs, and original drawings by the authors. Clear and concise concept...

  19. When cell biology meets theory

    Science.gov (United States)

    Gonzalez-Gaitan, Marcos

    2015-01-01

    Cell biologists now have tools and knowledge to generate useful quantitative data. But how can we make sense of these data, and are we measuring the correct parameters? Moreover, how can we test hypotheses quantitatively? To answer these questions, the theory of physics is required and is essential to the future of quantitative cell biology. PMID:26416957

  20. When cell biology meets theory.

    Science.gov (United States)

    Gonzalez-Gaitan, Marcos; Roux, Aurélien

    2015-09-28

    Cell biologists now have tools and knowledge to generate useful quantitative data. But how can we make sense of these data, and are we measuring the correct parameters? Moreover, how can we test hypotheses quantitatively? To answer these questions, the theory of physics is required and is essential to the future of quantitative cell biology.

  1. Teaching Cell Biology in Primary Schools

    Directory of Open Access Journals (Sweden)

    Francele de Abreu Carlan

    2014-01-01

    Full Text Available Basic concepts of cell biology are essential for scientific literacy. However, because many aspects of cell theory and cell functioning are quite abstract, students experience difficulties understanding them. In this study, we investigated whether diverse teaching resources such as the use of replicas of Leeuwenhoek’s microscope, visualization of cells using an optical microscope, construction of three-dimensional cell models, and reading of a comic book about cells could mitigate the difficulties encountered when teaching cell biology to 8th-grade primary school students. The results suggest that these didactic activities improve students’ ability to learn concrete concepts about cell biology, such as the composition of living beings, growth, and cicatrization. Also, the development of skills was observed, as, for example, the notion of cell size. However, no significant improvements were observed in students’ ability to learn about abstract topics, such as the structures of subcellular organelles and their functions. These results suggest that many students in this age have not yet concluded Piaget’s concrete operational stage, indicating that the concepts required for the significant learning of abstract subjects need to be explored more thoroughly in the process of designing programs that introduce primary school students to cell biology.

  2. Rhomboids, signalling and cell biology.

    Science.gov (United States)

    Freeman, Matthew

    2016-06-15

    Here, I take a somewhat personal perspective on signalling control, focusing on the rhomboid-like superfamily of proteins that my group has worked on for almost 20 years. As well as describing some of the key and recent advances, I attempt to draw out signalling themes that emerge. One important message is that the genetic and biochemical perspective on signalling has tended to underplay the importance of cell biology. There is clear evidence that signalling pathways exploit the control of intracellular trafficking, protein quality control and degradation and other cell biological phenomena, as important regulatory opportunities.

  3. Cell biology of neuronal endocytosis.

    Science.gov (United States)

    Parton, R G; Dotti, C G

    1993-09-01

    Endocytosis is the process by which cells take in fluid and components of the plasma membrane. In this way cells obtain nutrients and trophic factors, retrieve membrane proteins for degradation, and sample their environment. In neuronal cells endocytosis is essential for the recycling of membrane after neurotransmitter release and plays a critical role during early developmental stages. Moreover, alterations of the endocytic pathway have been attributed a crucial role in the pathophysiology of certain neurological diseases. Although well characterized at the ultrastructural level, little is known of the dynamics and molecular organization of the neuronal endocytic pathways. In this respect most of our knowledge comes from studies of non-neuronal cells. In this review we will examine the endocytic pathways in neurons from a cell biological viewpoint by making comparisons with non-neuronal cells and in particular with another polarized cell, the epithelial cell.

  4. Impact on disease development, genomic location and biological function of copy number alterations in non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Yen-Tsung Huang

    Full Text Available Lung cancer, of which more than 80% is non-small cell, is the leading cause of cancer-related death in the United States. Copy number alterations (CNAs in lung cancer have been shown to be positionally clustered in certain genomic regions. However, it remains unclear whether genes with copy number changes are functionally clustered. Using a dense single nucleotide polymorphism array, we performed genome-wide copy number analyses of a large collection of non-small cell lung tumors (n = 301. We proposed a formal statistical test for CNAs between different groups (e.g., non-involved lung vs. tumors, early vs. late stage tumors. We also customized the gene set enrichment analysis (GSEA algorithm to investigate the overrepresentation of genes with CNAs in predefined biological pathways and gene sets (i.e., functional clustering. We found that CNAs events increase substantially from germline, early stage to late stage tumor. In addition to genomic position, CNAs tend to occur away from the gene locations, especially in germline, non-involved tissue and early stage tumors. Such tendency decreases from germline to early stage and then to late stage tumors, suggesting a relaxation of selection during tumor progression. Furthermore, genes with CNAs in non-small cell lung tumors were enriched in certain gene sets and biological pathways that play crucial roles in oncogenesis and cancer progression, demonstrating the functional aspect of CNAs in the context of biological pathways that were overlooked previously. We conclude that CNAs increase with disease progression and CNAs are both positionally and functionally clustered. The potential functional capabilities acquired via CNAs may be sufficient for normal cells to transform into malignant cells.

  5. Embryonic stem cells: prospects for developmental biology and cell therapy.

    Science.gov (United States)

    Wobus, Anna M; Boheler, Kenneth R

    2005-04-01

    Stem cells represent natural units of embryonic development and tissue regeneration. Embryonic stem (ES) cells, in particular, possess a nearly unlimited self-renewal capacity and developmental potential to differentiate into virtually any cell type of an organism. Mouse ES cells, which are established as permanent cell lines from early embryos, can be regarded as a versatile biological system that has led to major advances in cell and developmental biology. Human ES cell lines, which have recently been derived, may additionally serve as an unlimited source of cells for regenerative medicine. Before therapeutic applications can be realized, important problems must be resolved. Ethical issues surround the derivation of human ES cells from in vitro fertilized blastocysts. Current techniques for directed differentiation into somatic cell populations remain inefficient and yield heterogeneous cell populations. Transplanted ES cell progeny may not function normally in organs, might retain tumorigenic potential, and could be rejected immunologically. The number of human ES cell lines available for research may also be insufficient to adequately determine their therapeutic potential. Recent molecular and cellular advances with mouse ES cells, however, portend the successful use of these cells in therapeutics. This review therefore focuses both on mouse and human ES cells with respect to in vitro propagation and differentiation as well as their use in basic cell and developmental biology and toxicology and presents prospects for human ES cells in tissue regeneration and transplantation.

  6. Progeria: translational insights from cell biology.

    Science.gov (United States)

    Gordon, Leslie B; Cao, Kan; Collins, Francis S

    2012-10-01

    Cell biologists love to think outside the box, pursuing many surprising twists and unexpected turns in their quest to unravel the mysteries of how cells work. But can cell biologists think outside the bench? We are certain that they can, and clearly some already do. To encourage more cell biologists to venture into the realm of translational research on a regular basis, we would like to share a handful of the many lessons that we have learned in our effort to develop experimental treatments for Hutchinson-Gilford progeria syndrome (HGPS), an endeavor that many view as a "poster child" for how basic cell biology can be translated to the clinic.

  7. The cell biology of aging

    Science.gov (United States)

    DiLoreto, Race; Murphy, Coleen T.

    2015-01-01

    One of the original hypotheses of organismal longevity posits that aging is the natural result of entropy on the cells, tissues, and organs of the animal—a slow, inexorable slide into nonfunctionality caused by stochastic degradation of its parts. We now have evidence that aging is instead at least in part genetically regulated. Many mutations have been discovered to extend lifespan in organisms of all complexities, from yeast to mammals. The study of metazoan model organisms, such as Caenorhabditis elegans, has been instrumental in understanding the role of genetics in the cell biology of aging. Longevity mutants across the spectrum of model organisms demonstrate that rates of aging are regulated through genetic control of cellular processes. The regulation and subsequent breakdown of cellular processes represent a programmatic decision by the cell to either continue or abandon maintenance procedures with age. Our understanding of cell biological processes involved in regulating aging have been particularly informed by longevity mutants and treatments, such as reduced insulin/IGF-1 signaling and dietary restriction, which are critical in determining the distinction between causes of and responses to aging and have revealed a set of downstream targets that participate in a range of cell biological activities. Here we briefly review some of these important cellular processes. PMID:26668170

  8. Biologicals and Fetal Cell Therapy for Wound and Scar Management

    OpenAIRE

    Hirt-Burri, Nathalie; Ramelet, Albert-Adrien; Raffoul, Wassim; de Buys Roessingh, Anthony; Scaletta, Corinne; Pioletti, Dominique; Applegate, Lee Ann

    2011-01-01

    Few biopharmaceutical preparations developed from biologicals are available for tissue regeneration and scar management. When developing biological treatments with cellular therapy, selection of cell types and establishment of consistent cell banks are crucial steps in whole-cell bioprocessing. Various cell types have been used in treatment of wounds to reduce scar to date including autolog and allogenic skin cells, platelets, placenta, and amniotic extracts. Experience with fetal cells show ...

  9. Cell biology solves mysteries of reproduction.

    Science.gov (United States)

    Sutovsky, Peter

    2012-09-01

    Reproduction and fertility have been objects of keen inquiry since the dawn of humanity. Medieval anatomists provided the first accurate depictions of the female reproductive system, and early microscopists were fascinated by the magnified sight of sperm cells. Initial successes were achieved in the in vitro fertilization of frogs and the artificial insemination of dogs. Gamete and embryo research was in the cradle of modern cell biology, providing the first evidence of the multi-cellular composition of living beings and pointing out the importance of chromosomes for heredity. In the 20th century, reproductive research paved the way for the study of the cytoskeleton, cell signaling, and the cell cycle. In the last three decades, the advent of reproductive cell biology has brought us human in vitro fertilization, animal cloning, and human and animal embryonic stem cells. It has contributed to the development of transgenesis, proteomics, genomics, and epigenetics. This Special Issue represents a sample of the various areas of reproductive biology, with emphasis on molecular and cell biological aspects. Advances in spermatology, ovarian function, fertilization, and maternal-fetal interactions are discussed within the framework of fertility and diseases such as endometriosis and diabetes.

  10. Development of drug loaded nanoparticles for tumor targeting. Part 1: synthesis, characterization, and biological evaluation in 2D cell cultures

    Science.gov (United States)

    El-Dakdouki, Mohammad H.; Puré, Ellen; Huang, Xuefei

    2013-04-01

    Nanoparticles (NPs) are being extensively studied as carriers for drug delivery, but they often have limited penetration inside tumors. We envision that by targeting an endocytic receptor on the cell surface, the uptake of NPs can be significantly enhanced through receptor mediated endocytosis. In addition, if the receptor is recycled to the cell surface, the NP cargo can be transported out of the cells, which is then taken up by neighboring cells thus enhancing solid tumor penetration. To validate our hypothesis, in the first of two articles, we report the synthesis of doxorubicin (DOX)-loaded, hyaluronan (HA) coated silica nanoparticles (SNPs) containing a highly fluorescent core to target CD44, a receptor expressed on the cancer cell surface. HA was conjugated onto amine-functionalized SNPs prepared through an oil-water microemulsion method. The immobilization of the cytotoxic drug DOX was achieved through an acid sensitive hydrazone linkage. The NPs were fully characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential measurements, thermogravimetric analysis (TGA), UV-vis absorbance, and nuclear magnetic resonance (NMR). Initial biological evaluation experiments demonstrated that compared to ligand-free SNPs, the uptake of HA-SNPs by the CD44-expressing SKOV-3 ovarian cancer cells was significantly enhanced when evaluated in the 2D monolayer cell culture. Mechanistic studies suggested that cellular uptake of HA-SNPs was mainly through CD44 mediated endocytosis. HA-SNPs with immobilized DOX were endocytosed efficiently by the SKOV-3 cells as well. The enhanced tumor penetration and drug delivery properties of HA-SNPs will be evaluated in 3D tumor models in the subsequent paper.Nanoparticles (NPs) are being extensively studied as carriers for drug delivery, but they often have limited penetration inside tumors. We envision that by targeting an endocytic receptor on the cell surface, the uptake of NPs can be

  11. Nanotechnologies and chemical tools for cell biology

    Science.gov (United States)

    Chen, Xing

    This dissertation describes several nanotechnologies and chemical tools that I have developed to probe living cells. Chapter one gives a brief overview on the current status of biomedical and biotechnological applications of carbon nanotubes (CNTs). In this chapter, strategies for functionalization of CNTs with emphasis on biological applications are reviewed. Representative developments in biosensing, bioimaging, intracellular delivery, and tissue engineering are presented. Recent studies on toxicity of CNTs are also discussed. Chapter two describes the development of a nanoscale cell injector for delivery of cargo to the interior of living cells without physiological harm. A CNT attached to an atomic force microscope tip was functionalized with cargo via a disulfide linker. Penetration of cell membranes with this "nanoneedle", followed by reductive cleavage of the disulfide bonds within the cell's interior, resulted in the release of cargo inside the cells. Chapter three presents a biomimetic functionalization strategy for interfacing CNTs with biological systems. The potential biological applications of CNTs have been limited by their insolubility in aqueous environment and their intrinsic toxicity. We developed a biomimetic surface modification of CNTs using glycosylated polymers designed to mimic natural cell surface mucin glycoproteins interactions. Chapter four further extends the biomimetic strategy for functionalization of CNTs to glycosylated dendrimers. We developed a new class of amphiphilic bifunctional glycodendrimers that comprised carbohydrate units displayed in the periphery and a pyrene tail that bound to SWNT surface via pi-pi interactions. The glycodendrimer-coated CNTs were soluble in water, and noncytotoxic. We also demonstrated that the coated CNTs could interface with biological systems including proteins and cells. Chapter five presents a biosensing application of glycodenderimer-coated CNTs. SWNTN-FETs coated with glycodendrimers were

  12. Micro and nanoplatforms for biological cell analysis

    DEFF Research Database (Denmark)

    Svendsen, Winnie Edith; Castillo, Jaime; Moresco, Jacob Lange

    2010-01-01

    In this paper some of the technological platforms developed in our group for biological cell analysis will be highlighted. The paper first presents a short introduction pinpointing the advantages of using micro and nano technology in cellular studies. The issues of requiring transient analysis...

  13. Class I Homeobox Genes, "The Rosetta Stone of the Cell Biology", in the Regulation of Cardiovascular Development.

    Science.gov (United States)

    Procino, Alfredo

    2016-01-01

    Class I homeobox genes (Hox in mice and HOX in humans), encode for 39 transcription factors and display a unique genomic network organization mainly involved in the regulation of embryonic development and in the cell memory program. The HOX network controls the aberrant epigenetic modifications involving in the cell memory program. In details, the HOX cluster plays a crucial role in the generation and evolution of several diseases: congenic malformation, oncogenesis, metabolic processes and deregulation of cell cycle. In this review, I discussed about the role of HOX gene network in the control of cardiovascular development.

  14. Celebrating Plant Cells: A Special Issue on Plant Cell Biology

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ A special issue on plant cell biology is long overdue for JIPB! In the last two decades or so, the plant biology community has been thrilled by explosive discoveries regarding the molecular and genetic basis of plant growth, development, and responses to the environment, largely owing to recent maturation of model systems like Arabidopsis thaliana and the rice Oryza sativa, as well as the rapid development of high throughput technologies associated with genomics and proteomics.

  15. Progress in nemertean biology: development and phylogeny.

    Science.gov (United States)

    Turbeville, J M

    2002-07-01

    This paper reviews progress in developmental biology and phylogeny of the Nemertea, a common but poorly studied spiralian taxon of considerable ecological and evolutionary significance. Analyses of reproductive biology (including calcium dynamics during fertilization and oocyte maturation), larval morphology and development and developmental genetics have significantly extended our knowledge of spiralian developmental biology. Developmental genetics studies have in addition provided characters useful for reconstructing metazoan phylogeny. Reinvestigation of the cell lineage of Cerebratulus lacteus using fluorescent tracers revealed that endomesoderm forms from the 4d cell as in other spiralians and that ectomesoderm is derived from the 3a and 3b cells as in annelids, echiurans and molluscs. Studies examining blastomere specification show that cell fates are established precociously in direct developers and later in indirect developers. Morphological characters used to estimate the phylogenetic position of nemerteans are critically re-evaluated, and cladistic analyses of morphology reveal that conflicting hypotheses of nemertean relationships result because of different provisional homology statements. Analyses that include disputed homology statements (1, gliointerstitial cell system 2, coelomic circulatory system) suggest that nemerteans form the sister taxon to the coelomate spiralian taxa rather than the sister taxon to Platyhelminthes. Analyses of small subunit rRNA (18S rDNA) sequences alone or in combination with morphological characters support the inclusion of the nemerteans in a spiralian coelomate clade nested within a more inclusive lophotrochozoan clade. Ongoing evaluation of nemertean relationships with mitochondrial gene rearrangements and other molecular characters is discussed.

  16. Development of an Interdisciplinary Experimental Series for the Laboratory Courses of Cell and Molecular Biology and Advance Inorganic Chemistry

    Science.gov (United States)

    Smith, Montserrat Rabago; McAllister, Robert; Newkirk, Kiera; Basing, Alexander; Wang, Lihua

    2012-01-01

    An interdisciplinary approach to education has become more important in the development of science and technology, which requires universities to have graduates with broad knowledge and skills and to apply these skills in solving real-world problems. An interdisciplinary experimental series has been developed for the laboratories in cell and…

  17. Adipogenic placenta-derived mesenchymal stem cells are not lineage restricted by withdrawing extrinsic factors: developing a novel visual angle in stem cell biology.

    Science.gov (United States)

    Hu, C; Cao, H; Pan, X; Li, J; He, J; Pan, Q; Xin, J; Yu, X; Li, J; Wang, Y; Zhu, D; Li, L

    2016-03-17

    Current evidence implies that differentiated bone marrow mesenchymal stem cells (BMMSCs) can act as progenitor cells and transdifferentiate across lineage boundaries. However, whether this unrestricted lineage has specificities depending on the stem cell type is unknown. Placental-derived mesenchymal stem cells (PDMSCs), an easily accessible and less invasive source, are extremely useful materials in current stem cell therapies. No studies have comprehensively analyzed the transition in morphology, surface antigens, metabolism and multilineage potency of differentiated PDMSCs after their dedifferentiation. In this study, we showed that after withdrawing extrinsic factors, adipogenic PDMSCs reverted to a primitive cell population and retained stem cell characteristics. The mitochondrial network during differentiation and dedifferentiation may serve as a marker of absent or acquired pluripotency in various stem cell models. The new population proliferated faster than unmanipulated PDMSCs and could be differentiated into adipocytes, osteocytes and hepatocytes. The cell adhesion molecules (CAMs) signaling pathway and extracellular matrix (ECM) components modulate cell behavior and enable the cells to proliferate or differentiate during the differentiation, dedifferentiation and redifferentiation processes in our study. These observations indicate that the dedifferentiated PDMSCs are distinguishable from the original PDMSCs and may serve as a novel source in stem cell biology and cell-based therapeutic strategies. Furthermore, whether PDMSCs differentiated into other lineages can be dedifferentiated to a primitive cell population needs to be investigated.

  18. Adipogenic placenta-derived mesenchymal stem cells are not lineage restricted by withdrawing extrinsic factors: developing a novel visual angle in stem cell biology

    Science.gov (United States)

    Hu, C; Cao, H; Pan, X; Li, J; He, J; Pan, Q; Xin, J; Yu, X; Li, J; Wang, Y; Zhu, D; Li, L

    2016-01-01

    Current evidence implies that differentiated bone marrow mesenchymal stem cells (BMMSCs) can act as progenitor cells and transdifferentiate across lineage boundaries. However, whether this unrestricted lineage has specificities depending on the stem cell type is unknown. Placental-derived mesenchymal stem cells (PDMSCs), an easily accessible and less invasive source, are extremely useful materials in current stem cell therapies. No studies have comprehensively analyzed the transition in morphology, surface antigens, metabolism and multilineage potency of differentiated PDMSCs after their dedifferentiation. In this study, we showed that after withdrawing extrinsic factors, adipogenic PDMSCs reverted to a primitive cell population and retained stem cell characteristics. The mitochondrial network during differentiation and dedifferentiation may serve as a marker of absent or acquired pluripotency in various stem cell models. The new population proliferated faster than unmanipulated PDMSCs and could be differentiated into adipocytes, osteocytes and hepatocytes. The cell adhesion molecules (CAMs) signaling pathway and extracellular matrix (ECM) components modulate cell behavior and enable the cells to proliferate or differentiate during the differentiation, dedifferentiation and redifferentiation processes in our study. These observations indicate that the dedifferentiated PDMSCs are distinguishable from the original PDMSCs and may serve as a novel source in stem cell biology and cell-based therapeutic strategies. Furthermore, whether PDMSCs differentiated into other lineages can be dedifferentiated to a primitive cell population needs to be investigated. PMID:26986509

  19. CellNet: network biology applied to stem cell engineering.

    Science.gov (United States)

    Cahan, Patrick; Li, Hu; Morris, Samantha A; Lummertz da Rocha, Edroaldo; Daley, George Q; Collins, James J

    2014-08-14

    Somatic cell reprogramming, directed differentiation of pluripotent stem cells, and direct conversions between differentiated cell lineages represent powerful approaches to engineer cells for research and regenerative medicine. We have developed CellNet, a network biology platform that more accurately assesses the fidelity of cellular engineering than existing methodologies and generates hypotheses for improving cell derivations. Analyzing expression data from 56 published reports, we found that cells derived via directed differentiation more closely resemble their in vivo counterparts than products of direct conversion, as reflected by the establishment of target cell-type gene regulatory networks (GRNs). Furthermore, we discovered that directly converted cells fail to adequately silence expression programs of the starting population and that the establishment of unintended GRNs is common to virtually every cellular engineering paradigm. CellNet provides a platform for quantifying how closely engineered cell populations resemble their target cell type and a rational strategy to guide enhanced cellular engineering.

  20. Cell biology of mitotic recombination

    DEFF Research Database (Denmark)

    Lisby, Michael; Rothstein, Rodney

    2015-01-01

    Homologous recombination provides high-fidelity DNA repair throughout all domains of life. Live cell fluorescence microscopy offers the opportunity to image individual recombination events in real time providing insight into the in vivo biochemistry of the involved proteins and DNA molecules...... of this review include the stoichiometry and dynamics of recombination complexes in vivo, the choreography of assembly and disassembly of recombination proteins at sites of DNA damage, the mobilization of damaged DNA during homology search, and the functional compartmentalization of the nucleus with respect...... as well as the cellular organization of the process of homologous recombination. Herein we review the cell biological aspects of mitotic homologous recombination with a focus on Saccharomyces cerevisiae and mammalian cells, but will also draw on findings from other experimental systems. Key topics...

  1. Basic statistics in cell biology.

    Science.gov (United States)

    Vaux, David L

    2014-01-01

    The physicist Ernest Rutherford said, "If your experiment needs statistics, you ought to have done a better experiment." Although this aphorism remains true for much of today's research in cell biology, a basic understanding of statistics can be useful to cell biologists to help in monitoring the conduct of their experiments, in interpreting the results, in presenting them in publications, and when critically evaluating research by others. However, training in statistics is often focused on the sophisticated needs of clinical researchers, psychologists, and epidemiologists, whose conclusions depend wholly on statistics, rather than the practical needs of cell biologists, whose experiments often provide evidence that is not statistical in nature. This review describes some of the basic statistical principles that may be of use to experimental biologists, but it does not cover the sophisticated statistics needed for papers that contain evidence of no other kind.

  2. Laboratory of Cell and Molecular Biology

    Data.gov (United States)

    Federal Laboratory Consortium — The Laboratory of Cell and Molecular Biology investigates the organization, compartmentalization, and biochemistry of eukaryotic cells and the pathology associated...

  3. The biology of cancer stem cells.

    Science.gov (United States)

    Lobo, Neethan A; Shimono, Yohei; Qian, Dalong; Clarke, Michael F

    2007-01-01

    Cancers originally develop from normal cells that gain the ability to proliferate aberrantly and eventually turn malignant. These cancerous cells then grow clonally into tumors and eventually have the potential to metastasize. A central question in cancer biology is, which cells can be transformed to form tumors? Recent studies elucidated the presence of cancer stem cells that have the exclusive ability to regenerate tumors. These cancer stem cells share many characteristics with normal stem cells, including self-renewal and differentiation. With the growing evidence that cancer stem cells exist in a wide array of tumors, it is becoming increasingly important to understand the molecular mechanisms that regulate self-renewal and differentiation because corruption of genes involved in these pathways likely participates in tumor growth. This new paradigm of oncogenesis has been validated in a growing list of tumors. Studies of normal and cancer stem cells from the same tissue have shed light on the ontogeny of tumors. That signaling pathways such as Bmi1 and Wnt have similar effects in normal and cancer stem cell self-renewal suggests that common molecular pathways regulate both populations. Understanding the biology of cancer stem cells will contribute to the identification of molecular targets important for future therapies.

  4. Atomic force microscopy in cell biology

    Institute of Scientific and Technical Information of China (English)

    LU Zhexue; ZHANG Zhiling; PANG Daiwen

    2005-01-01

    The history, characteristic, operation modes and coupling techniques of atomic force microscopy (AFM) are introduced. Then the application in cell biology is reviewed in four aspects: cell immobilization methods, cell imaging, force spectrum study and cell manipulation. And the prospect of AFM application in cell biology is discussed.

  5. The biology of zinc transport in mammary epithelial cells: implications for mammary gland development, lactation, and involution.

    Science.gov (United States)

    McCormick, Nicholas H; Hennigar, Stephen R; Kiselyov, Kirill; Kelleher, Shannon L

    2014-03-01

    Zinc plays a critical role in a vast array of cellular functions including gene transcription, protein translation, cell proliferation, differentiation, bioenergetics, and programmed cell death. The mammary gland depends upon tight coordination of these processes during development and reproduction for optimal expansion, differentiation, and involution. For example, zinc is required for activation of matrix metalloproteinases, intracellular signaling cascades such as MAPK and PKC, and the activation of both mitochondrial-mediated apoptosis and lysosomal-mediated cell death. In addition to functional needs, during lactation the mammary gland must balance providing optimal zinc for cellular requirements with the need to secrete a substantial amount of zinc into milk to meet the requirements of the developing neonate. Finally, the mammary gland exhibits the most profound example of programmed cell death, which is driven by both apoptotic and lysosomal-mediated cell death. Two families of zinc-specific transporters regulate zinc delivery for these diverse functions. Members of the ZIP family of zinc transporters (ZIP1-14) import zinc into the cytoplasm from outside the cell or from subcellular organelles, while members of the ZnT family (ZnT1-10) export zinc from the cytoplasm. Recently, the ion channel transient receptor potential mucolipin 1 (TRPML1) has also been implicated in zinc transport. Herein, we review our current understanding of the molecular mechanisms through which mammary epithelial cells utilize zinc with a focus on the transport of zinc into discrete subcellular organelles for specific cellular functions during mammary gland development, lactation, and involution.

  6. Recent progress in histochemistry and cell biology.

    Science.gov (United States)

    Hübner, Stefan; Efthymiadis, Athina

    2012-04-01

    Studies published in Histochemistry and Cell Biology in the year 2011 represent once more a manifest of established and newly sophisticated techniques being exploited to put tissue- and cell type-specific molecules into a functional context. The review is therefore the Histochemistry and Cell Biology's yearly intention to provide interested readers appropriate summaries of investigations touching the areas of tissue biology, developmental biology, the biology of the immune system, stem cell research, the biology of subcellular compartments, in order to put the message of such studies into natural scientific-/human- and also pathological-relevant correlations.

  7. The effect of glia-glia interactions on oligodendrocyte precursor cell biology during development and in demyelinating diseases

    Directory of Open Access Journals (Sweden)

    Diego eClemente

    2013-12-01

    Full Text Available Oligodendrocyte precursor cells (OPCs originate in specific areas of the developing central nervous system (CNS. Once generated, they migrate towards their destinations where they differentiate into mature oligodendrocytes. In the adult, 5-8% of all cells in the CNS are OPCs, cells that retain the capacity to proliferate, migrate and differentiate into oligodendrocytes. Indeed, these endogenous OPCs react to damage in demyelinating diseases, like multiple sclerosis (MS, representing a key element in spontaneous remyelination. In the present work, we review the specific interactions between OPCs and other glial cells (astrocytes, microglia during CNS development and in the pathological scenario of MS. We focus on: i the role of astrocytes in maintaining the homeostasis and spatial distribution of different secreted cues that determine OPC proliferation, migration and differentiation during CNS development; ii the role of microglia and astrocytes in the redistribution of iron, which is crucial for myelin synthesis during CNS development and for myelin repair in MS; iii how microglia secrete different molecules, e.g. growth factors, that favor the recruitment of OPCs in acute phases of MS lesions; and iv how astrocytes modify the extracellular matrix in MS lesions, affecting the ability of OPCs to attempt spontaneous remyelination. Together, these issues demonstrate how both astroglia and microglia influence OPCs in physiological and pathological situations, reinforcing the concept that both development and neural repair are complex and global phenomena. Understanding the molecular and cellular mechanisms that control OPC survival, proliferation, migration and differentiation during development, as well as in the mature CNS, may open new opportunities in the search for reparative therapies in demyelinating diseases like MS.

  8. Product development of probiotics as biological drugs.

    Science.gov (United States)

    Sutton, Ann

    2008-02-01

    Elements of product and manufacturing-process design are described for product development of live biotherapeutic biological drugs. Product design uses the history and the phenotypic and genotypic characterization of the selected strain. The quality and integrity of the selected strain can be ensured by preservation in a qualified cell-bank system. Manufacturing-process design includes step-by-step description, including the necessary process-input parameters and the expected output results. The active ingredients in the biological drug are usually manufactured using aseptic processing. The manufacture of the final dosage form of live biotherapeutics requires bioburden control or aseptic manufacture, as appropriate. Specifications for live biotherapeutics must comply with regulations for licensed biological products. Evidence of stability for the duration of the shelf life, as well as stability under the recommended conditions of use, must be provided for licensure.

  9. Biological impact of human embryonic stem cells.

    Science.gov (United States)

    Martín, Miguel; Menéndez, Pablo

    2012-01-01

    Research on human embryonic stem cells (hESCs) and induced pluripotent (iPS) stem cells is currently a field of great potential in biomedicine. These cells represent a highly valuable tool for developmental biology studies, disease models, and drug screening and toxicity. The ultimate goal of hESCs and iPS cell research is the treatment of diseases or disorders for which there is currently no treatment or existing therapies are only partially effective. Despite the disproportionate short-term hopes generated, which are putting too much pressure on scientists, the international scientific community is making rapid progress in understanding hESCs and iPS cells. Nonetheless, great efforts have to be made to provide an answer to still quite basic questions concerning their biology. Moreover, translation to clinical applications in cell replacement therapy requires prior solution to ethical barriers. The recent development of iPS cells has provided a strong alternative to overcome ethical issues concerning hESCs. However, an in-depth characterization of their genetic and epigenetic features, as well as their differentiation potential still remains to be undertaken. This chapter will describe, precisely, what the critical issues are, where scientific and ethical barriers stand, and how we are to overcome them. Only then, we shall finally discover whether hESCs and iPS cells will allow building reproducible disease models, and whether they really are a safe tool, with great potential for regenerative medicine.

  10. Learning Cell Biology as a Team: A Project-Based Approach to Upper-Division Cell Biology

    Science.gov (United States)

    Wright, Robin; Boggs, James

    2002-01-01

    To help students develop successful strategies for learning how to learn and communicate complex information in cell biology, we developed a quarter-long cell biology class based on team projects. Each team researches a particular human disease and presents information about the cellular structure or process affected by the disease, the cellular…

  11. Fostering synergy between cell biology and systems biology.

    Science.gov (United States)

    Eddy, James A; Funk, Cory C; Price, Nathan D

    2015-08-01

    In the shared pursuit of elucidating detailed mechanisms of cell function, systems biology presents a natural complement to ongoing efforts in cell biology. Systems biology aims to characterize biological systems through integrated and quantitative modeling of cellular information. The process of model building and analysis provides value through synthesizing and cataloging information about cells and molecules, predicting mechanisms and identifying generalizable themes, generating hypotheses and guiding experimental design, and highlighting knowledge gaps and refining understanding. In turn, incorporating domain expertise and experimental data is crucial for building towards whole cell models. An iterative cycle of interaction between cell and systems biologists advances the goals of both fields and establishes a framework for mechanistic understanding of the genome-to-phenome relationship.

  12. Emerging molecular approaches in stem cell biology.

    Science.gov (United States)

    Jaishankar, Amritha; Vrana, Kent

    2009-04-01

    Stem cells are characterized by their ability to self-renew and differentiate into multiple adult cell types. Although substantial progress has been made over the last decade in understanding stem cell biology, recent technological advances in molecular and systems biology may hold the key to unraveling the mystery behind stem cell self-renewal and plasticity. The most notable of these advances is the ability to generate induced pluripotent cells from somatic cells. In this review, we discuss our current understanding of molecular similarities and differences among various stem cell types. Moreover, we survey the current state of systems biology and forecast future needs and direction in the stem cell field.

  13. Biological Fuel Cells and Membranes.

    Science.gov (United States)

    Ghassemi, Zahra; Slaughter, Gymama

    2017-01-17

    Biofuel cells have been widely used to generate bioelectricity. Early biofuel cells employ a semi-permeable membrane to separate the anodic and cathodic compartments. The impact of different membrane materials and compositions has also been explored. Some membrane materials are employed strictly as membrane separators, while some have gained significant attention in the immobilization of enzymes or microorganisms within or behind the membrane at the electrode surface. The membrane material affects the transfer rate of the chemical species (e.g., fuel, oxygen molecules, and products) involved in the chemical reaction, which in turn has an impact on the performance of the biofuel cell. For enzymatic biofuel cells, Nafion, modified Nafion, and chitosan membranes have been used widely and continue to hold great promise in the long-term stability of enzymes and microorganisms encapsulated within them. This article provides a review of the most widely used membrane materials in the development of enzymatic and microbial biofuel cells.

  14. Towards developing algal synthetic biology.

    Science.gov (United States)

    Scaife, Mark Aden; Smith, Alison Gail

    2016-06-15

    The genetic, physiological and metabolic diversity of microalgae has driven fundamental research into photosynthesis, flagella structure and function, and eukaryotic evolution. Within the last 10 years these organisms have also been investigated as potential biotechnology platforms, for example to produce high value compounds such as long chain polyunsaturated fatty acids, pigments and antioxidants, and for biodiesel precursors, in particular triacylglycerols (TAGs). Transformation protocols, molecular tools and genome sequences are available for a number of model species including the green alga Chlamydomonas reinhardtii and the diatom Phaeodactylum tricornutum, although for both species there are bottlenecks to be overcome to allow rapid and predictable genetic manipulation. One approach to do this would be to apply the principles of synthetic biology to microalgae, namely the cycle of Design-Build-Test, which requires more robust, predictable and high throughput methods. In this mini-review we highlight recent progress in the areas of improving transgene expression, genome editing, identification and design of standard genetic elements (parts), and the use of microfluidics to increase throughput. We suggest that combining these approaches will provide the means to establish algal synthetic biology, and that application of standard parts and workflows will avoid parallel development and capitalize on lessons learned from other systems.

  15. Progeria: Translational insights from cell biology

    Science.gov (United States)

    Gordon, Leslie B.; Cao, Kan

    2012-01-01

    Cell biologists love to think outside the box, pursuing many surprising twists and unexpected turns in their quest to unravel the mysteries of how cells work. But can cell biologists think outside the bench? We are certain that they can, and clearly some already do. To encourage more cell biologists to venture into the realm of translational research on a regular basis, we would like to share a handful of the many lessons that we have learned in our effort to develop experimental treatments for Hutchinson-Gilford progeria syndrome (HGPS), an endeavor that many view as a “poster child” for how basic cell biology can be translated to the clinic. PMID:23027899

  16. Stem cells - biological update and cell therapy progress.

    Science.gov (United States)

    Girlovanu, Mihai; Susman, Sergiu; Soritau, Olga; Rus-Ciuca, Dan; Melincovici, Carmen; Constantin, Anne-Marie; Mihu, Carmen Mihaela

    2015-01-01

    In recent years, the advances in stem cell research have suggested that the human body may have a higher plasticity than it was originally expected. Until now, four categories of stem cells were isolated and cultured in vivo: embryonic stem cells, fetal stem cells, adult stem cells and induced pluripotent stem cells (hiPSCs). Although multiple studies were published, several issues concerning the stem cells are still debated, such as: the molecular mechanisms of differentiation, the methods to prevent teratoma formation or the ethical and religious issues regarding especially the embryonic stem cell research. The direct differentiation of stem cells into specialized cells: cardiac myocytes, neural cells, pancreatic islets cells, may represent an option in treating incurable diseases such as: neurodegenerative diseases, type I diabetes, hematologic or cardiac diseases. Nevertheless, stem cell-based therapies, based on stem cell transplantation, remain mainly at the experimental stages and their major limitation is the development of teratoma and cancer after transplantation. The induced pluripotent stem cells (hiPSCs) represent a prime candidate for future cell therapy research because of their significant self-renewal and differentiation potential and the lack of ethical issues. This article presents an overview of the biological advances in the study of stem cells and the current progress made in the field of regenerative medicine.

  17. A Diagnostic Assessment for Introductory Molecular and Cell Biology

    Science.gov (United States)

    Shi, Jia; Wood, William B.; Martin, Jennifer M.; Guild, Nancy A.; Vicens, Quentin; Knight, Jennifer K.

    2010-01-01

    We have developed and validated a tool for assessing understanding of a selection of fundamental concepts and basic knowledge in undergraduate introductory molecular and cell biology, focusing on areas in which students often have misconceptions. This multiple-choice Introductory Molecular and Cell Biology Assessment (IMCA) instrument is designed…

  18. Studying cell biology in the skin.

    Science.gov (United States)

    Morrow, Angel; Lechler, Terry

    2015-11-15

    Advances in cell biology have often been driven by studies in diverse organisms and cell types. Although there are technical reasons for why different cell types are used, there are also important physiological reasons. For example, ultrastructural studies of vesicle transport were aided by the use of professional secretory cell types. The use of tissues/primary cells has the advantage not only of using cells that are adapted to the use of certain cell biological machinery, but also of highlighting the physiological roles of this machinery. Here we discuss advantages of the skin as a model system. We discuss both advances in cell biology that used the skin as a driving force and future prospects for use of the skin to understand basic cell biology. A unique combination of characteristics and tools makes the skin a useful in vivo model system for many cell biologists.

  19. Studying cell biology in the skin

    Science.gov (United States)

    Morrow, Angel; Lechler, Terry

    2015-01-01

    Advances in cell biology have often been driven by studies in diverse organisms and cell types. Although there are technical reasons for why different cell types are used, there are also important physiological reasons. For example, ultrastructural studies of vesicle transport were aided by the use of professional secretory cell types. The use of tissues/primary cells has the advantage not only of using cells that are adapted to the use of certain cell biological machinery, but also of highlighting the physiological roles of this machinery. Here we discuss advantages of the skin as a model system. We discuss both advances in cell biology that used the skin as a driving force and future prospects for use of the skin to understand basic cell biology. A unique combination of characteristics and tools makes the skin a useful in vivo model system for many cell biologists. PMID:26564861

  20. Systems Biology and Stem Cell Pluripotency

    DEFF Research Database (Denmark)

    Mashayekhi, Kaveh; Hall, Vanessa; Freude, Kristine

    2016-01-01

    Recent breakthroughs in stem cell biology have accelerated research in the area of regenerative medicine. Over the past years, it has become possible to derive patient-specific stem cells which can be used to generate different cell populations for potential cell therapy. Systems biological...... modeling of stem cell pluripotency and differentiation have largely been based on prior knowledge of signaling pathways, gene regulatory networks, and epigenetic factors. However, there is a great need to extend the complexity of the modeling and to integrate different types of data, which would further...... improve systems biology and its uses in the field. In this chapter, we first give a general background on stem cell biology and regenerative medicine. Stem cell potency is introduced together with the hierarchy of stem cells ranging from pluripotent embryonic stem cells (ESCs) and induced pluripotent stem...

  1. Industrial systems biology and its impact on synthetic biology of yeast cell factories.

    Science.gov (United States)

    Fletcher, Eugene; Krivoruchko, Anastasia; Nielsen, Jens

    2016-06-01

    Engineering industrial cell factories to effectively yield a desired product while dealing with industrially relevant stresses is usually the most challenging step in the development of industrial production of chemicals using microbial fermentation processes. Using synthetic biology tools, microbial cell factories such as Saccharomyces cerevisiae can be engineered to express synthetic pathways for the production of fuels, biopharmaceuticals, fragrances, and food flavors. However, directing fluxes through these synthetic pathways towards the desired product can be demanding due to complex regulation or poor gene expression. Systems biology, which applies computational tools and mathematical modeling to understand complex biological networks, can be used to guide synthetic biology design. Here, we present our perspective on how systems biology can impact synthetic biology towards the goal of developing improved yeast cell factories. Biotechnol. Bioeng. 2016;113: 1164-1170. © 2015 Wiley Periodicals, Inc.

  2. Cell sorting in development.

    Science.gov (United States)

    Krens, S F Gabby; Heisenberg, Carl-Philipp

    2011-01-01

    During the development of multicellular organisms, cell fate specification is followed by the sorting of different cell types into distinct domains from where the different tissues and organs are formed. Cell sorting involves both the segregation of a mixed population of cells with different fates and properties into distinct domains, and the active maintenance of their segregated state. Because of its biological importance and apparent resemblance to fluid segregation in physics, cell sorting was extensively studied by both biologists and physicists over the last decades. Different theories were developed that try to explain cell sorting on the basis of the physical properties of the constituent cells. However, only recently the molecular and cellular mechanisms that control the physical properties driving cell sorting, have begun to be unraveled. In this review, we will provide an overview of different cell-sorting processes in development and discuss how these processes can be explained by the different sorting theories, and how these theories in turn can be connected to the molecular and cellular mechanisms driving these processes.

  3. Cell Wall Biology: Perspectives from Cell Wall Imaging

    Institute of Scientific and Technical Information of China (English)

    Kieran J.D.Lee; Susan E.Marcus; J.Paul Knox

    2011-01-01

    Polysaccharide-rich plant cell walls are important biomaterials that underpin plant growth,are major repositories for photosynthetically accumulated carbon,and,in addition,impact greatly on the human use of plants. Land plant cell walls contain in the region of a dozen major polysaccharide structures that are mostly encompassed by cellulose,hemicelluloses,and pectic polysaccharides. During the evolution of land plants,polysaccharide diversification appears to have largely involved structural elaboration and diversification within these polysaccharide groups. Cell wall chemistry is well advanced and a current phase of cell wall science is aimed at placing the complex polysaccharide chemistry in cellular contexts and developing a detailed understanding of cell wall biology. Imaging cell wall glycomes is a challenging area but recent developments in the establishment of cell wall molecular probe panels and their use in high throughput procedures are leading to rapid advances in the molecular understanding of the spatial heterogeneity of individual cell walls and also cell wall differences at taxonomic levels. The challenge now is to integrate this knowledge of cell wall heterogeneity with an understanding of the molecular and physiological mechanisms that underpin cell wall properties and functions.

  4. Cell-free synthetic biology: thinking outside the cell.

    Science.gov (United States)

    Hodgman, C Eric; Jewett, Michael C

    2012-05-01

    Cell-free synthetic biology is emerging as a powerful approach aimed to understand, harness, and expand the capabilities of natural biological systems without using intact cells. Cell-free systems bypass cell walls and remove genetic regulation to enable direct access to the inner workings of the cell. The unprecedented level of control and freedom of design, relative to in vivo systems, has inspired the rapid development of engineering foundations for cell-free systems in recent years. These efforts have led to programmed circuits, spatially organized pathways, co-activated catalytic ensembles, rational optimization of synthetic multi-enzyme pathways, and linear scalability from the micro-liter to the 100-liter scale. It is now clear that cell-free systems offer a versatile test-bed for understanding why nature's designs work the way they do and also for enabling biosynthetic routes to novel chemicals, sustainable fuels, and new classes of tunable materials. While challenges remain, the emergence of cell-free systems is poised to open the way to novel products that until now have been impractical, if not impossible, to produce by other means.

  5. Systems Biology for Organotypic Cell Cultures

    Energy Technology Data Exchange (ETDEWEB)

    Grego, Sonia [RTI International, Research Triangle Park, NC (United States); Dougherty, Edward R. [Texas A & M Univ., College Station, TX (United States); Alexander, Francis J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Auerbach, Scott S. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Berridge, Brian R. [GlaxoSmithKline, Research Triangle Park, NC (United States); Bittner, Michael L. [Translational Genomics Research Inst., Phoenix, AZ (United States); Casey, Warren [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Cooley, Philip C. [RTI International, Research Triangle Park, NC (United States); Dash, Ajit [HemoShear Therapeutics, Charlottesville, VA (United States); Ferguson, Stephen S. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Fennell, Timothy R. [RTI International, Research Triangle Park, NC (United States); Hawkins, Brian T. [RTI International, Research Triangle Park, NC (United States); Hickey, Anthony J. [RTI International, Research Triangle Park, NC (United States); Kleensang, Andre [Johns Hopkins Univ., Baltimore, MD (United States). Center for Alternatives to Animal Testing; Liebman, Michael N. [IPQ Analytics, Kennett Square, PA (United States); Martin, Florian [Phillip Morris International, Neuchatel (Switzerland); Maull, Elizabeth A. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Paragas, Jason [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Qiao, Guilin [Defense Threat Reduction Agency, Ft. Belvoir, VA (United States); Ramaiahgari, Sreenivasa [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Sumner, Susan J. [RTI International, Research Triangle Park, NC (United States); Yoon, Miyoung [The Hamner Inst. for Health Sciences, Research Triangle Park, NC (United States); ScitoVation, Research Triangle Park, NC (United States)

    2016-08-04

    Translating in vitro biological data into actionable information related to human health holds the potential to improve disease treatment and risk assessment of chemical exposures. While genomics has identified regulatory pathways at the cellular level, translation to the organism level requires a multiscale approach accounting for intra-cellular regulation, inter-cellular interaction, and tissue/organ-level effects. Tissue-level effects can now be probed in vitro thanks to recently developed systems of three-dimensional (3D), multicellular, “organotypic” cell cultures, which mimic functional responses of living tissue. However, there remains a knowledge gap regarding interactions across different biological scales, complicating accurate prediction of health outcomes from molecular/genomic data and tissue responses. Systems biology aims at mathematical modeling of complex, non-linear biological systems. We propose to apply a systems biology approach to achieve a computational representation of tissue-level physiological responses by integrating empirical data derived from organotypic culture systems with computational models of intracellular pathways to better predict human responses. Successful implementation of this integrated approach will provide a powerful tool for faster, more accurate and cost-effective screening of potential toxicants and therapeutics. On September 11, 2015, an interdisciplinary group of scientists, engineers, and clinicians gathered for a workshop in Research Triangle Park, North Carolina, to discuss this ambitious goal. Participants represented laboratory-based and computational modeling approaches to pharmacology and toxicology, as well as the pharmaceutical industry, government, non-profits, and academia. Discussions focused on identifying critical system perturbations to model, the computational tools required, and the experimental approaches best suited to generating key data. This consensus report summarizes the discussions held.

  6. Skin melanocytes: biology and development

    OpenAIRE

    Cichorek, Mirosława; Wachulska, Małgorzata; Stasiewicz, Aneta; Tymińska, Agata

    2013-01-01

    In the human skin, melanocytes are present in the epidermis and hair follicles. The basic features of these cells are the ability to melanin production and the origin from neural crest cells. This last element is important because there are other cells able to produce melanin but of different embryonic origin (pigmented epithelium of retina, some neurons, adipocytes). The life cycle of melanocyte consists of several steps including differentiation of melanocyte lineage/s from neural crest, mi...

  7. Development of a Novel Method to Detect Prostate Cancer Circulating Tumor Cells (CTCs) Based on Epithelial-Mesenchymal Transition Biology

    Science.gov (United States)

    2015-12-01

    samples. Nat Protoc 2014;9:694–710. 75. Diamond E, Lee GY, Akhtar NH, et al. Isolation and character- ization of circulating tumor cells in prostate...Campisi, J., Higano, C., Beer, T. M., Porter , P., Coleman, I., True, L., & Nelson, P. S. (2012). Treatment-induced damage to the Cancer Metastasis

  8. BIOLOGICALLY INSPIRED HARDWARE CELL ARCHITECTURE

    DEFF Research Database (Denmark)

    2010-01-01

    Disclosed is a system comprising: - a reconfigurable hardware platform; - a plurality of hardware units defined as cells adapted to be programmed to provide self-organization and self-maintenance of the system by means of implementing a program expressed in a programming language defined as DNA...... language, where each cell is adapted to communicate with one or more other cells in the system, and where the system further comprises a converter program adapted to convert keywords from the DNA language to a binary DNA code; where the self-organisation comprises that the DNA code is transmitted to one...... or more of the cells, and each of the one or more cells is adapted to determine its function in the system; where if a fault occurs in a first cell and the first cell ceases to perform its function, self-maintenance is performed by that the system transmits information to the cells that the first cell has...

  9. Industrial systems biology and its impact on synthetic biology of yeast cell factories

    DEFF Research Database (Denmark)

    Fletcher, Eugene; Krivoruchko, Anastasia; Nielsen, Jens

    2016-01-01

    Engineering industrial cell factories to effectively yield a desired product while dealing with industrially relevant stresses is usually the most challenging step in the development of industrial production of chemicals using microbial fermentation processes. Using synthetic biology tools......, microbial cell factories such as Saccharomyces cerevisiae can be engineered to express synthetic pathways for the production of fuels, biopharmaceuticals, fragrances, and food flavors. However, directing fluxes through these synthetic pathways towards the desired product can be demanding due to complex...... regulation or poor gene expression. Systems biology, which applies computational tools and mathematical modeling to understand complex biological networks, can be used to guide synthetic biology design. Here, we present our perspective on how systems biology can impact synthetic biology towards the goal...

  10. Building a path in cell biology.

    Science.gov (United States)

    Voeltz, Gia; Cheeseman, Iain

    2012-11-01

    Setting up a new lab is an exciting but challenging prospect. We discuss our experiences in finding a path to tackle some of the key current questions in cell biology and the hurdles that we have encountered along the way.

  11. A chemist building paths to cell biology.

    Science.gov (United States)

    Weibel, Douglas B

    2013-11-01

    Galileo is reported to have stated, "Measure what is measurable and make measurable what is not so." My group's trajectory in cell biology has closely followed this philosophy, although it took some searching to find this path.

  12. Cell Biology of Prokaryotic Organelles

    OpenAIRE

    Murat, Dorothee; Byrne, Meghan; Komeili, Arash

    2010-01-01

    Mounting evidence in recent years has challenged the dogma that prokaryotes are simple and undefined cells devoid of an organized subcellular architecture. In fact, proteins once thought to be the purely eukaryotic inventions, including relatives of actin and tubulin control prokaryotic cell shape, DNA segregation, and cytokinesis. Similarly, compartmentalization, commonly noted as a distinguishing feature of eukaryotic cells, is also prevalent in the prokaryotic world in the form of protein-...

  13. Chemistry and biology of the compounds that modulate cell migration.

    Science.gov (United States)

    Tashiro, Etsu; Imoto, Masaya

    2016-03-01

    Cell migration is a fundamental step for embryonic development, wound repair, immune responses, and tumor cell invasion and metastasis. Extensive studies have attempted to reveal the molecular mechanisms behind cell migration; however, they remain largely unclear. Bioactive compounds that modulate cell migration show promise as not only extremely powerful tools for studying the mechanisms behind cell migration but also as drug seeds for chemotherapy against tumor metastasis. Therefore, we have screened cell migration inhibitors and analyzed their mechanisms for the inhibition of cell migration. In this mini-review, we introduce our chemical and biological studies of three cell migration inhibitors: moverastin, UTKO1, and BU-4664L.

  14. Cell and molecular biology of epidermal growth factor receptor.

    Science.gov (United States)

    Ceresa, Brian P; Peterson, Joanne L

    2014-01-01

    The epidermal growth factor receptor (EGFR) has been one of the most intensely studied cell surface receptors due to its well-established roles in developmental biology, tissue homeostasis, and cancer biology. The EGFR has been critical for creating paradigms for numerous aspects of cell biology, such as ligand binding, signal transduction, and membrane trafficking. Despite this history of discovery, there is a continual stream of evidence that only the surface has been scratched. New ways of receptor regulation continue to be identified, each of which is a potential molecular target for manipulating EGFR signaling and the resultant changes in cell and tissue biology. This chapter is an update on EGFR-mediated signaling, and describes some recent developments in the regulation of receptor biology.

  15. Developments in Biological Treatment of Industrial Wastewaters

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The characteristics and biological treatment technologies of several kinds of industrial wastewater are summarised. Biological treatment of industrial wastewater is a well-established system with applications going back for over a century. However, developments are still taking place but at the design stage, more emphasis will be placed on small "footprint" systems, odour control and minimization of excess sludge production.

  16. Development of Special Biological Products

    Science.gov (United States)

    1981-01-01

    5 TOTAL GAPS - 4 DICENTRICS - 1 MARKER CHROMOSOMES - 98 Hyperdiploidy was 89% while only 10% was diploidy. This indicates CV-1 (P41) is no longer...cells observed (98%) had chromosome aberration(s), which included breaks, gaps, dicentric and stable marker chromosomes . Most of the marker chromosomes ...9 No. 4 Chromosome Analysis on Three Lots of FRhL-2 (P17) ------------- 10 No. 5 Certification and Testing Status of Three Lots

  17. Neural crest cells: from developmental biology to clinical interventions.

    Science.gov (United States)

    Noisa, Parinya; Raivio, Taneli

    2014-09-01

    Neural crest cells are multipotent cells, which are specified in embryonic ectoderm in the border of neural plate and epiderm during early development by interconnection of extrinsic stimuli and intrinsic factors. Neural crest cells are capable of differentiating into various somatic cell types, including melanocytes, craniofacial cartilage and bone, smooth muscle, and peripheral nervous cells, which supports their promise for cell therapy. In this work, we provide a comprehensive review of wide aspects of neural crest cells from their developmental biology to applicability in medical research. We provide a simplified model of neural crest cell development and highlight the key external stimuli and intrinsic regulators that determine the neural crest cell fate. Defects of neural crest cell development leading to several human disorders are also mentioned, with the emphasis of using human induced pluripotent stem cells to model neurocristopathic syndromes.

  18. Quantitative cell biology: the essential role of theory.

    Science.gov (United States)

    Howard, Jonathon

    2014-11-05

    Quantitative biology is a hot area, as evidenced by the recent establishment of institutes, graduate programs, and conferences with that name. But what is quantitative biology? What should it be? And how can it contribute to solving the big questions in biology? The past decade has seen very rapid development of quantitative experimental techniques, especially at the single-molecule and single-cell levels. In this essay, I argue that quantitative biology is much more than just the quantitation of these experimental results. Instead, it should be the application of the scientific method by which measurement is directed toward testing theories. In this view, quantitative biology is the recognition that theory and models play critical roles in biology, as they do in physics and engineering. By tying together experiment and theory, quantitative biology promises a deeper understanding of underlying mechanisms, when the theory works, or to new discoveries, when it does not.

  19. Cell biology of prokaryotic organelles.

    Science.gov (United States)

    Murat, Dorothee; Byrne, Meghan; Komeili, Arash

    2010-10-01

    Mounting evidence in recent years has challenged the dogma that prokaryotes are simple and undefined cells devoid of an organized subcellular architecture. In fact, proteins once thought to be the purely eukaryotic inventions, including relatives of actin and tubulin control prokaryotic cell shape, DNA segregation, and cytokinesis. Similarly, compartmentalization, commonly noted as a distinguishing feature of eukaryotic cells, is also prevalent in the prokaryotic world in the form of protein-bounded and lipid-bounded organelles. In this article we highlight some of these prokaryotic organelles and discuss the current knowledge on their ultrastructure and the molecular mechanisms of their biogenesis and maintenance.

  20. Interfacing nanostructures to biological cells

    Science.gov (United States)

    Chen, Xing; Bertozzi, Carolyn R.; Zettl, Alexander K.

    2012-09-04

    Disclosed herein are methods and materials by which nanostructures such as carbon nanotubes, nanorods, etc. are bound to lectins and/or polysaccharides and prepared for administration to cells. Also disclosed are complexes comprising glycosylated nanostructures, which bind selectively to cells expressing glycosylated surface molecules recognized by the lectin. Exemplified is a complex comprising a carbon nanotube functionalized with a lipid-like alkane, linked to a polymer bearing repeated .alpha.-N-acetylgalactosamine sugar groups. This complex is shown to selectively adhere to the surface of living cells, without toxicity. In the exemplified embodiment, adherence is mediated by a multivalent lectin, which binds both to the cells and the .alpha.-N-acetylgalactosamine groups on the nanostructure.

  1. Cell biology: More than skin deep

    Science.gov (United States)

    Fuchs, Elaine

    2015-01-01

    In studying how stem cells make and maintain tissues, nearly every chapter of a cell biology textbook is of interest. The field even allows us to venture where no chapters have yet been written. In studying this basic problem, we are continually bombarded by nature’s surprises and challenges. PMID:26056136

  2. In silico cell biology and biochemistry: a systems biology approach

    OpenAIRE

    Camacho, Diogo Mayo

    2007-01-01

    In the post-"omic" era the analysis of high-throughput data is regarded as one of the major challenges faced by researchers. One focus of this data analysis is uncovering biological network topologies and dynamics. It is believed that this kind of research will allow the development of new mathematical models of biological systems as well as aid in the improvement of already existing ones. The work that is presented in this dissertation addresses the problem of the analysis of highly complex ...

  3. ``Physical Concepts in Cell Biology,'' an upper level interdisciplinary course in cell biophysics/mathematical biology

    Science.gov (United States)

    Vavylonis, Dimitrios

    2009-03-01

    I will describe my experience in developing an interdisciplinary biophysics course addressed to students at the upper undergraduate and graduate level, in collaboration with colleagues in physics and biology. The students had a background in physics, biology and engineering, and for many the course was their first exposure to interdisciplinary topics. The course did not depend on a formal knowledge of equilibrium statistical mechanics. Instead, the approach was based on dynamics. I used diffusion as a universal ``long time'' law to illustrate scaling concepts. The importance of statistics and proper counting of states/paths was introduced by calculating the maximum accuracy with which bacteria can measure the concentration of diffuse chemicals. The use of quantitative concepts and methods was introduced through specific biological examples, focusing on model organisms and extremes at the cell level. Examples included microtubule dynamic instability, the search and capture model, molecular motor cooperativity in muscle cells, mitotic spindle oscillations in C. elegans, polymerization forces and propulsion of pathogenic bacteria, Brownian ratchets, bacterial cell division and MinD oscillations.

  4. Cold Spring Harbor symposia on quantitative biology: Volume L, Molecular biology of development

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    This volume contains contributions by contributors to the 1985 Cold Springs Harbor Symposium on Quantitative Biology. This year's theme was Molecular Biology of Development. The volume consists of 104 articles organized by content into sections entitled Nuclear/Cytoplasmic Interactions in Early Development; Lineage and Segmentation/Pattern Formation; Homeotic Mutants; Homeo Boxes; Tissue Specificity/Position Effects; Expression of Genes Introduced into Transgenic Mice; Induced Developmental Defects; Control of Gene Expression; Sex Determination; Cell-cycle Effects; Pluripotent Cells/Oncogenes; Cellular Differentiation; and Developmental Neurobiology.

  5. Cell biology experiments conducted in space

    Science.gov (United States)

    Taylor, G. R.

    1977-01-01

    A review of cell biology experiments conducted during the first two decades of space flight is provided. References are tabulated for work done with six types of living test system: isolated viruses, bacteriophage-host, bacteria, yeasts and filamentous fungi, protozoans, and small groups of cells (such as hamster cell tissue and fertilized frog eggs). The general results of studies involving the survival of cells in space, the effect of space flight on growing cultures, the biological effects of multicharged high-energy particles, and the effects of space flight on the genetic apparatus of microorganisms are summarized. It is concluded that cell systems remain sufficiently stable during space flight to permit experimentation with models requiring a fixed cell line during the space shuttle era.

  6. Toward Network Biology in E. coli Cell.

    Science.gov (United States)

    Mori, Hirotada; Takeuchi, Rikiya; Otsuka, Yuta; Bowden, Steven; Yokoyama, Katsushi; Muto, Ai; Libourel, Igor; Wanner, Barry L

    2015-01-01

    E. coli has been a critically important model research organism for more than 50 years, particularly in molecular biology. In 1997, the E. coli draft genome sequence was published. Post-genomic techniques and resources were then developed that allowed E. coli to become a model organism for systems biology. Progress made since publication of the E. coli genome sequence will be summarized.

  7. Spatial Modeling Tools for Cell Biology

    Science.gov (United States)

    2006-10-01

    Capillary blood flow is shown circling both sides of the cell and entering from the bottom part of the figure. Species are transported in and out of...replication molecules, mitochondria – in which most of he cell energy metabolism takes place, endoplasmic reticula – build of complex membranes... part of the cell biology problem. Numerical solutions of even large scale ODE systems are very fast (seconds to minutes on powerful PCs). Numerical

  8. Measuring cell identity in noisy biological systems

    OpenAIRE

    Kenneth D Birnbaum; Kussell, Edo

    2011-01-01

    Global gene expression measurements are increasingly obtained as a function of cell type, spatial position within a tissue and other biologically meaningful coordinates. Such data should enable quantitative analysis of the cell-type specificity of gene expression, but such analyses can often be confounded by the presence of noise. We introduce a specificity measure Spec that quantifies the information in a gene's complete expression profile regarding any given cell type, and an uncertainty me...

  9. The evolving biology of cell reprogramming

    OpenAIRE

    Wilmut, Ian; Sullivan, Gareth; Chambers, Ian

    2011-01-01

    Modern stem cell biology has achieved a transformation that was thought by many to be every bit as unattainable as the ancient alchemists' dream of transforming base metals into gold. Exciting opportunities arise from the process known as ‘cellular reprogramming’ in which cells can be reliably changed from one tissue type to another. This is enabling novel approaches to more deeply investigate the fundamental basis of cell identity. In addition, new opportunities have also been created to stu...

  10. Synthetic biology: programming cells for biomedical applications.

    Science.gov (United States)

    Hörner, Maximilian; Reischmann, Nadine; Weber, Wilfried

    2012-01-01

    The emerging field of synthetic biology is a novel biological discipline at the interface between traditional biology, chemistry, and engineering sciences. Synthetic biology aims at the rational design of complex synthetic biological devices and systems with desired properties by combining compatible, modular biological parts in a systematic manner. While the first engineered systems were mainly proof-of-principle studies to demonstrate the power of the modular engineering approach of synthetic biology, subsequent systems focus on applications in the health, environmental, and energy sectors. This review describes recent approaches for biomedical applications that were developed along the synthetic biology design hierarchy, at the level of individual parts, of devices, and of complex multicellular systems. It describes how synthetic biological parts can be used for the synthesis of drug-delivery tools, how synthetic biological devices can facilitate the discovery of novel drugs, and how multicellular synthetic ecosystems can give insight into population dynamics of parasites and hosts. These examples demonstrate how this new discipline could contribute to novel solutions in the biopharmaceutical industry.

  11. Glial cell biology in the Great Lakes region.

    Science.gov (United States)

    Feinstein, Douglas L; Skoff, Robert P

    2016-03-31

    We report on the tenth bi-annual Great Lakes Glial meeting, held in Traverse City, Michigan, USA, September 27-29 2015. The GLG meeting is a small conference that focuses on current research in glial cell biology. The array of functions that glial cells (astrocytes, microglia, oligodendrocytes, Schwann cells) play in health and disease is constantly increasing. Despite this diversity, GLG meetings bring together scientists with common interests, leading to a better understanding of these cells. This year's meeting included two keynote speakers who presented talks on the regulation of CNS myelination and the consequences of stress on Schwann cell biology. Twenty-two other talks were presented along with two poster sessions. Sessions covered recent findings in the areas of microglial and astrocyte activation; age-dependent changes to glial cells, Schwann cell development and pathology, and the role of stem cells in glioma and neural regeneration.

  12. PREFACE: Scales of understanding in biological development Scales of understanding in biological development

    Science.gov (United States)

    Newman, Timothy

    2011-08-01

    The development of an adult organism from a fertilized egg remains one of the deep mysteries of biology. Great strides have been made in the past three decades, primarily through ever more sophisticated genetic analyses and the advent of live-cell imaging, yet the underlying principles governing development are elusive. Recently, a new generation of biological physicists has entered the field, attracted by the hallmarks of development— coordinated dynamics and pattern formation arising from cell-cell interactions—which reflect tantalizing analogs with many-body systems in condensed matter physics and related fields. There have been corresponding influxes of researchers from other quantitative disciplines. With new workers come new questions and foci at different scales in space, time and complexity. The reductionist philosophy of developmental genetics has become increasingly complemented by a search for effective mechanisms at higher scales, a strategy which has a proven track record of success in the study of complex systems in physics. Are there new and universal mechanisms of development, supra-genetic in nature, waiting to be discovered by focusing on higher scales, or is development fundamentally the intricately scripted unfolding of complex genetic instructions? In this special focus issue of Physical Biology, we present cutting-edge research into embryo development from a broad spectrum of groups representing cell and developmental biology, biological physics, bioengineering and biomathematics. We are provided with a sense of how this multidisciplinary community views the fundamental issue of scale in development and are given some excellent examples of how we can bridge these scales through interdisciplinary collaboration, in order to create new levels of understanding. We start with two reviews which will provide newcomers with a guide to some of the outstanding questions in the field. Winklbauer and Müller use the phenomenon of mesoderm spreading as

  13. Biology of Metastatic Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Michele Milella, Alessandra Felici

    2011-01-01

    Full Text Available In the past ten years we have made exceptional progresses in the understanding of RCC biology, particularly by recognizing the crucial pathogenetic role of activation of the HIF/VEGF and mTOR pathways. This has resulted in the successful clinical development of anti-angiogenic and mTOR-targeted drugs, which have profoundly impacted on the natural history of the disease and have improved the duration and quality of RCC patient lives. However, further improvements are still greatly needed: 1 even in patients who obtain striking clinical responses early in the course of treatment, disease will ultimately escape control and progress to a treatment-resistant state, leading to therapeutic failure; 2 prolonged disease control usually requires 'continuous' treatment, even across different treatment lines, making the impact of chronic, low-grade, toxicities on quality of life greater and precluding, for most patients, the possibility of experiencing 'drug-free holidays'; 3 although we have successfully identified classes of drugs (or molecular mechanisms of action that are effective in a substantial proportion of patients, we still fall short of molecular predictive factors that identify individual patients who will (or will not benefit from a specific intervention and still proceed on a trial-and-error basis, far from a truly 'personalized' therapeutic approach; 4 finally (and perhaps most importantly, even in the best case scenario, currently available treatments inevitably fail to definitively 'cure' metastatic RCC patients. In this review we briefly summarize recent developments in the understanding of the molecular pathogenesis of RCC, the development of resistance/escape mechanisms, the rationale for sequencing agents with different mechanisms of action, and the importance of host-related factors. Unraveling the complex mechanisms by which RCC shapes host microenvironment and immune response and therapeutic treatments, in turn, shape both cancer

  14. Micro/nano-fabrication technologies for cell biology.

    Science.gov (United States)

    Qian, Tongcheng; Wang, Yingxiao

    2010-10-01

    Micro/nano-fabrication techniques, such as soft lithography and electrospinning, have been well-developed and widely applied in many research fields in the past decade. Due to the low costs and simple procedures, these techniques have become important and popular for biological studies. In this review, we focus on the studies integrating micro/nano-fabrication work to elucidate the molecular mechanism of signaling transduction in cell biology. We first describe different micro/nano-fabrication technologies, including techniques generating three-dimensional scaffolds for tissue engineering. We then introduce the application of these technologies in manipulating the physical or chemical micro/nano-environment to regulate the cellular behavior and response, such as cell life and death, differentiation, proliferation, and cell migration. Recent advancement in integrating the micro/nano-technologies and live cell imaging are also discussed. Finally, potential schemes in cell biology involving micro/nano-fabrication technologies are proposed to provide perspectives on the future research activities.

  15. Cell Science and Cell Biology Research at MSFC: Summary

    Science.gov (United States)

    2003-01-01

    The common theme of these research programs is that they investigate regulation of gene expression in cells, and ultimately gene expression is controlled by the macromolecular interactions between regulatory proteins and DNA. The NASA Critical Path Roadmap identifies Muscle Alterations and Atrophy and Radiation Effects as Very Serious Risks and Severe Risks, respectively, in long term space flights. The specific problem addressed by Dr. Young's research ("Skeletal Muscle Atrophy and Muscle Cell Signaling") is that skeletal muscle loss in space cannot be prevented by vigorous exercise. Aerobic skeletal muscles (i.e., red muscles) undergo the most extensive atrophy during long-term space flight. Of the many different potential avenues for preventing muscle atrophy, Dr. Young has chosen to study the beta-adrenergic receptor (betaAR) pathway. The reason for this choice is that a family of compounds called betaAR agonists will preferentially cause an increase in muscle mass of aerobic muscles (i.e., red muscle) in animals, potentially providing a specific pharmacological solution to muscle loss in microgravity. In addition, muscle atrophy is a widespread medical problem in neuromuscular diseases, spinal cord injury, lack of exercise, aging, and any disease requiring prolonged bedridden status. Skeletal muscle cells in cell culture are utilized as a model system to study this problem. Dr. Richmond's research ("Radiation & Cancer Biology of Mammary Cells in Culture") is directed toward developing a laboratory model for use in risk assessment of cancer caused by space radiation. This research is unique because a human model will be developed utilizing human mammary cells that are highly susceptible to tumor development. This approach is preferential over using animal cells because of problems in comparing radiation-induced cancers between humans and animals.

  16. Prion potency in stem cells biology.

    Science.gov (United States)

    Lopes, Marilene H; Santos, Tiago G

    2012-01-01

    Prion protein (PrP) can be considered a pivotal molecule because it interacts with several partners to perform a diverse range of critical biological functions that might differ in embryonic and adult cells. In recent years, there have been major advances in elucidating the putative role of PrP in the basic biology of stem cells in many different systems. Here, we review the evidence indicating that PrP is a key molecule involved in driving different aspects of the potency of embryonic and tissue-specific stem cells in self-perpetuation and differentiation in many cell types. It has been shown that PrP is involved in stem cell self-renewal, controlling pluripotency gene expression, proliferation, and neural and cardiomyocyte differentiation. PrP also has essential roles in distinct processes that regulate tissue-specific stem cell biology in nervous and hematopoietic systems and during muscle regeneration. Results from our own investigations have shown that PrP is able to modulate self-renewal and proliferation in neural stem cells, processes that are enhanced by PrP interactions with stress inducible protein 1 (STI1). Thus, the available data reveal the influence of PrP in acting upon the maintenance of pluripotent status or the differentiation of stem cells from the early embryogenesis through adulthood.

  17. Role of inositol phospholipid signaling in natural killer cell biology

    Directory of Open Access Journals (Sweden)

    Matthew eGumbleton

    2013-03-01

    Full Text Available Natural Killer (NK cells are important in the host defense against malignancy and infection. At a cellular level NK cells are activated when signals from activating receptors exceed signaling from inhibitory receptors. At a molecular level NK cells undergo an education process to prevent autoimmunity. Mouse models have shown important roles for inositol phospholipid signaling in lymphocytes. NK cells from mice with deletion in different members of the PI3K signaling pathway have defective development, natural killer cell repertoire expression (NKRR and effector function. Here we review the role of inositol phospholipid signaling in NK cell biology.

  18. Recent advances in hematopoietic stem cell biology

    DEFF Research Database (Denmark)

    Bonde, Jesper; Hess, David A; Nolta, Jan A

    2004-01-01

    PURPOSE OF REVIEW: Exciting advances have been made in the field of hematopoietic stem cell biology during the past year. This review summarizes recent progress in the identification, culture, and in vivo tracking of hematopoietic stem cells. RECENT FINDINGS: The roles of Wnt and Notch proteins...... in regulating stem cell renewal in the microenvironment, and how these molecules can be exploited in ex vivo stem cell culture, are reviewed. The importance of identification of stem cells using functional as well as phenotypic markers is discussed. The novel field of nanotechnology is then discussed...... in the context of stem cell tracking in vivo. This review concludes with a section on the unexpected potential of bone marrow-derived stem cells to contribute to the repair of damaged tissues. The contribution of cell fusion to explain the latter phenomenon is discussed. SUMMARY: Because of exciting discoveries...

  19. Cell biology. Metabolic control of cell death.

    Science.gov (United States)

    Green, Douglas R; Galluzzi, Lorenzo; Kroemer, Guido

    2014-09-19

    Beyond their contribution to basic metabolism, the major cellular organelles, in particular mitochondria, can determine whether cells respond to stress in an adaptive or suicidal manner. Thus, mitochondria can continuously adapt their shape to changing bioenergetic demands as they are subjected to quality control by autophagy, or they can undergo a lethal permeabilization process that initiates apoptosis. Along similar lines, multiple proteins involved in metabolic circuitries, including oxidative phosphorylation and transport of metabolites across membranes, may participate in the regulated or catastrophic dismantling of organelles. Many factors that were initially characterized as cell death regulators are now known to physically or functionally interact with metabolic enzymes. Thus, several metabolic cues regulate the propensity of cells to activate self-destructive programs, in part by acting on nutrient sensors. This suggests the existence of "metabolic checkpoints" that dictate cell fate in response to metabolic fluctuations. Here, we discuss recent insights into the intersection between metabolism and cell death regulation that have major implications for the comprehension and manipulation of unwarranted cell loss.

  20. Wnt Signaling in Cancer Stem Cell Biology.

    Science.gov (United States)

    de Sousa E Melo, Felipe; Vermeulen, Louis

    2016-06-27

    Aberrant regulation of Wnt signaling is a common theme seen across many tumor types. Decades of research have unraveled the epigenetic and genetic alterations that result in elevated Wnt pathway activity. More recently, it has become apparent that Wnt signaling levels identify stem-like tumor cells that are responsible for fueling tumor growth. As therapeutic targeting of these tumor stem cells is an intense area of investigation, a concise understanding on how Wnt activity relates to cancer stem cell traits is needed. This review attempts at summarizing the intricacies between Wnt signaling and cancer stem cell biology with a special emphasis on colorectal cancer.

  1. Stem Cells: A Renaissance in Human Biology Research.

    Science.gov (United States)

    Wu, Jun; Izpisua Belmonte, Juan Carlos

    2016-06-16

    The understanding of human biology and how it relates to that of other species represents an ancient quest. Limited access to human material, particularly during early development, has restricted researchers to only scratching the surface of this inherently challenging subject. Recent technological innovations, such as single cell "omics" and human stem cell derivation, have now greatly accelerated our ability to gain insights into uniquely human biology. The opportunities afforded to delve molecularly into scarce material and to model human embryogenesis and pathophysiological processes are leading to new insights of human development and are changing our understanding of disease and choice of therapy options.

  2. Development of human umbilical vein endothelial cell (HUVEC) and human umbilical vein smooth muscle cell (HUVSMC) branch/stem structures on hydrogel layers via biological laser printing (BioLP).

    Science.gov (United States)

    Wu, P K; Ringeisen, B R

    2010-03-01

    Angiogenesis is one of the prerequisite steps for viable tissue formation. The ability to influence the direction and structure in the formation of a vascular system is crucial in engineering tissue. Using biological laser printing (BioLP), we fabricated branch/stem structures of human umbilical vein endothelial cells (HUVEC) and human umbilical vein smooth muscle cells (HUVSMC). The structure is simple as to mimic vascular networks in natural tissue but also allow cells to develop new, finer structures away from the stem and branches. Additionally, we printed co-culture structures by first depositing only HUVECs, followed by 24 h incubation to allow for adequate cell-cell communication and differentiation into lumina; these cell printed scaffold layers were then removed from incubation and inserted into the BioLP apparatus so that HUVSMCs could be directly deposited on top and around the previously printed HUVEC structures. The growth and differentiation of these co-culture structures was then compared to the growth of printed samples with either HUVECs or HUVSMCs alone. Lumen formation was found to closely mimic the original branch and stem structure. The beginning of a network structure is observed. HUVSMCs acted to limit HUVEC over-growth and migration when compared to printed HUVEC structures alone. HUVSMCs and HUVECS, when printed in close contact, appear to form cell-cell junctions around lumen-like structures. They demonstrate a symbiotic relationship which affects their development of phenotype when in close proximity of each other. Our results indicate that it is possible to direct the formation and growth of lumen and lumen network using BioLP.

  3. Clinical pharmacology considerations in biologics development

    Institute of Scientific and Technical Information of China (English)

    Liang ZHAO; Tian-hua REN; Diane D WANG

    2012-01-01

    Biologics,including monoclonal antibodies (mAbs) and other therapeutic proteins such as cytokines and growth hormones,have unique characteristics compared to small molecules.This paper starts from an overview of the pharmacokinetics (PK) of biologics from a mechanistic perspective,the determination of a starting dose for first-in-human(FIH) studies,and dosing regimen optimisation for phase Ⅱ/Ⅲ clinical trials.Subsequently,typical clinical pharmacology issues along the corresponding pathways for biologics development are summarised,including drug-drug interactions,QTc prolongation,immunogenicity,and studies in specific populations.The relationships between the molecular structure of biologics,their pharmacokinetic and pharmacodynamic characteristics,and the corresponding clinical pharmacology strategies are summarised and depicted in a schematic diagram.

  4. Textbook Errors & Misconceptions in Biology: Cell Metabolism.

    Science.gov (United States)

    Storey, Richard D.

    1991-01-01

    The idea that errors and misconceptions in biology textbooks are often slow to be discovered and corrected is discussed. Selected errors, misconceptions, and topics of confusion about cell metabolism are described. Fermentation, respiration, Krebs cycle, pentose phosphate pathway, uniformity of catabolism, and metabolic pathways as models are…

  5. An electrostatic model for biological cell division

    CERN Document Server

    Faraggi, Eshel

    2010-01-01

    Probably the most fundamental processes for biological systems is their ability to create themselves through the use of cell division and cell differentiation. In this work a simple physical model is proposed for biological cell division. The model consists of a positive ionic gradient across the cell membrane, and concentration of charge at the nodes of the spindle and on the chromosomes. A simple calculation, based on Coulomb's Law, shows that under such circumstances a chromosome will tend to break up to its constituent chromatids and that the chromatids will be separated by a distance that is an order of thirty percent of the distance between the spindle nodes. Further repulsion between the nodes will tend to stretch the cell and eventually break the cell membrane between the separated chromatids, leading to cell division. The importance of this work is in continuing the understanding of the electromagnetic basis of cell division and providing it with an analytical model. A central implication of this and...

  6. Potentials of single-cell biology in identification and validation of disease biomarkers.

    Science.gov (United States)

    Niu, Furong; Wang, Diane C; Lu, Jiapei; Wu, Wei; Wang, Xiangdong

    2016-09-01

    Single-cell biology is considered a new approach to identify and validate disease-specific biomarkers. However, the concern raised by clinicians is how to apply single-cell measurements for clinical practice, translate the message of single-cell systems biology into clinical phenotype or explain alterations of single-cell gene sequencing and function in patient response to therapies. This study is to address the importance and necessity of single-cell gene sequencing in the identification and development of disease-specific biomarkers, the definition and significance of single-cell biology and single-cell systems biology in the understanding of single-cell full picture, the development and establishment of whole-cell models in the validation of targeted biological function and the figure and meaning of single-molecule imaging in single cell to trace intra-single-cell molecule expression, signal, interaction and location. We headline the important role of single-cell biology in the discovery and development of disease-specific biomarkers with a special emphasis on understanding single-cell biological functions, e.g. mechanical phenotypes, single-cell biology, heterogeneity and organization of genome function. We have reason to believe that such multi-dimensional, multi-layer, multi-crossing and stereoscopic single-cell biology definitely benefits the discovery and development of disease-specific biomarkers.

  7. Ion channels regulating mast cell biology.

    Science.gov (United States)

    Ashmole, I; Bradding, P

    2013-05-01

    Mast cells play a central role in the pathophysiology of asthma and related allergic conditions. Mast cell activation leads to the degranulation of preformed mediators such as histamine and the secretion of newly synthesised proinflammatory mediators such as leukotrienes and cytokines. Excess release of these mediators contributes to allergic disease states. An influx of extracellular Ca2+ is essential for mast cell mediator release. From the Ca2+ channels that mediate this influx, to the K+ , Cl- and transient receptor potential channels that set the cell membrane potential and regulate Ca2+ influx, ion channels play a critical role in mast cell biology. In this review we provide an overview of our current knowledge of ion channel expression and function in mast cells with an emphasis on how channels interact to regulate Ca2+ signalling.

  8. Electron Tomography in Plant Cell Biology

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This review focuses on the contribution of electron tomography-based techniques to our understanding of cellular processes in plant cells. Electron microscopy techniques have evolved to provide better three-dimensional resolution and improved preservation of the subcellular components. In particular, the combination of cryofixation/freeze substitution and electron tomography have allowed plant cell biologists to image organelles and macromolecular complexes in their native cellular context with unprecedented three-dimensional resolution (4-7 nm). Until now, electron tomography has been applied in plant cell biology for the study of cytokinesis, Golgi structure and trafficking, formation of plant endosome/prevacuolar compartments, and organization of photosynthetic membranes. We discuss in this review the new insights that these tomographic studies have brought to the plant biology field.

  9. Heart-on-a-chip based on stem cell biology.

    Science.gov (United States)

    Jastrzebska, Elzbieta; Tomecka, Ewelina; Jesion, Iwona

    2016-01-15

    Heart diseases are one of the main causes of death around the world. The great challenge for scientists is to develop new therapeutic methods for these types of ailments. Stem cells (SCs) therapy could be one of a promising technique used for renewal of cardiac cells and treatment of heart diseases. Conventional in vitro techniques utilized for investigation of heart regeneration do not mimic natural cardiac physiology. Lab-on-a-chip systems may be the solution which could allow the creation of a heart muscle model, enabling the growth of cardiac cells in conditions similar to in vivo conditions. Microsystems can be also used for differentiation of stem cells into heart cells, successfully. It will help better understand of proliferation and regeneration ability of these cells. In this review, we present Heart-on-a-chip systems based on cardiac cell culture and stem cell biology. This review begins with the description of the physiological environment and the functions of the heart. Next, we shortly described conventional techniques of stem cells differentiation into the cardiac cells. This review is mostly focused on describing Lab-on-a-chip systems for cardiac tissue engineering. Therefore, in the next part of this article, the microsystems for both cardiac cell culture and SCs differentiation into cardiac cells are described. The section about SCs differentiation into the heart cells is divided in sections describing biochemical, physical and mechanical stimulations. Finally, we outline present challenges and future research concerning Heart-on-a-chip based on stem cell biology.

  10. Muscle Satellite Cells: Exploring the Basic Biology to Rule Them.

    Science.gov (United States)

    Almeida, Camila F; Fernandes, Stephanie A; Ribeiro Junior, Antonio F; Keith Okamoto, Oswaldo; Vainzof, Mariz

    2016-01-01

    Adult skeletal muscle is a postmitotic tissue with an enormous capacity to regenerate upon injury. This is accomplished by resident stem cells, named satellite cells, which were identified more than 50 years ago. Since their discovery, many researchers have been concentrating efforts to answer questions about their origin and role in muscle development, the way they contribute to muscle regeneration, and their potential to cell-based therapies. Satellite cells are maintained in a quiescent state and upon requirement are activated, proliferating, and fusing with other cells to form or repair myofibers. In addition, they are able to self-renew and replenish the stem pool. Every phase of satellite cell activity is highly regulated and orchestrated by many molecules and signaling pathways; the elucidation of players and mechanisms involved in satellite cell biology is of extreme importance, being the first step to expose the crucial points that could be modulated to extract the optimal response from these cells in therapeutic strategies. Here, we review the basic aspects about satellite cells biology and briefly discuss recent findings about therapeutic attempts, trying to raise questions about how basic biology could provide a solid scaffold to more successful use of these cells in clinics.

  11. Using synthetic biology to make cells tomorrow's test tubes.

    Science.gov (United States)

    Garcia, Hernan G; Brewster, Robert C; Phillips, Rob

    2016-04-18

    The main tenet of physical biology is that biological phenomena can be subject to the same quantitative and predictive understanding that physics has afforded in the context of inanimate matter. However, the inherent complexity of many of these biological processes often leads to the derivation of complex theoretical descriptions containing a plethora of unknown parameters. Such complex descriptions pose a conceptual challenge to the establishment of a solid basis for predictive biology. In this article, we present various exciting examples of how synthetic biology can be used to simplify biological systems and distill these phenomena down to their essential features as a means to enable their theoretical description. Here, synthetic biology goes beyond previous efforts to engineer nature and becomes a tool to bend nature to understand it. We discuss various recent and classic experiments featuring applications of this synthetic approach to the elucidation of problems ranging from bacteriophage infection, to transcriptional regulation in bacteria and in developing embryos, to evolution. In all of these examples, synthetic biology provides the opportunity to turn cells into the equivalent of a test tube, where biological phenomena can be reconstituted and our theoretical understanding put to test with the same ease that these same phenomena can be studied in the in vitro setting.

  12. The cell biology of T-dependent B cell activation

    DEFF Research Database (Denmark)

    Owens, T; Zeine, R

    1989-01-01

    The requirement that CD4+ helper T cells recognize antigen in association with class II Major Histocompatibility Complex (MHC) encoded molecules constrains T cells to activation through intercellular interaction. The cell biology of the interactions between CD4+ T cells and antigen-presenting cells...... includes multipoint intermolecular interactions that probably involve aggregation of both polymorphic and monomorphic T cell surface molecules. Such aggregations have been shown in vitro to markedly enhance and, in some cases, induce T cell activation. The production of T-derived lymphokines that have been...... implicated in B cell activation is dependent on the T cell receptor for antigen and its associated CD3 signalling complex. T-dependent help for B cell activation is therefore similarly MHC-restricted and involves T-B intercellular interaction. Recent reports that describe antigen-independent B cell...

  13. A decade of molecular cell biology: achievements and challenges.

    Science.gov (United States)

    Akhtar, Asifa; Fuchs, Elaine; Mitchison, Tim; Shaw, Reuben J; St Johnston, Daniel; Strasser, Andreas; Taylor, Susan; Walczak, Claire; Zerial, Marino

    2011-09-23

    Nature Reviews Molecular Cell Biology celebrated its 10-year anniversary during this past year with a series of specially commissioned articles. To complement this, here we have asked researchers from across the field for their insights into how molecular cell biology research has evolved during this past decade, the key concepts that have emerged and the most promising interfaces that have developed. Their comments highlight the broad impact that particular advances have had, some of the basic understanding that we still require, and the collaborative approaches that will be essential for driving the field forward.

  14. Visualisation of the information resources for cell biology

    OpenAIRE

    Malchanau, Andrei; Nijholt, Anton; Roosendaal, Hans E.

    2005-01-01

    Intelligent multimodal interfaces can facilitate scientists in utilising available information resources. Combining scientific visualisations with interactive and intelligent tools can help create a “habitable” information space. Development of such tools remains largely iterative. We discuss an ongoing implementation of intelligent interactive visualisation of information resources in cell biology.

  15. Cells — An Open Access Journal of Cell Biology

    Directory of Open Access Journals (Sweden)

    Shu-Kun Lin

    2011-01-01

    Full Text Available To expand the open access publishing project of our newly founded company MDPI [1,2] based in Basel, Switzerland, we are in the process of launching new journals. Based on our success in running journals that represent key areas in science and technology, such as Molecules [3], Sensors [4], Energies [5], Viruses [6], Pharmaceuticals [7], Cancers [8] and Toxins [9], we are launching a new journal entitled Cells. It is an open access journal combining cell biology, molecular biology and biophysics, toward an understanding of cell structure, function and interactions. [...

  16. New frontiers in human cell biology and medicine: can pluripotent stem cells deliver?

    Science.gov (United States)

    Goldstein, Lawrence S B

    2012-11-12

    Human pluripotent stem cells provide enormous opportunities to treat disease using cell therapy. But human stem cells can also drive biomedical and cell biological discoveries in a human model system, which can be directly linked to understanding disease or developing new therapies. Finally, rigorous scientific studies of these cells can and should inform the many science and medical policy issues that confront the translation of these technologies to medicine. In this paper, I discuss these issues using amyotrophic lateral sclerosis as an example.

  17. Mutagenic Effects of Iron Oxide Nanoparticles on Biological Cells.

    Science.gov (United States)

    Dissanayake, Niluka M; Current, Kelley M; Obare, Sherine O

    2015-09-30

    In recent years, there has been an increased interest in the design and use of iron oxide materials with nanoscale dimensions for magnetic, catalytic, biomedical, and electronic applications. The increased manufacture and use of iron oxide nanoparticles (IONPs) in consumer products as well as industrial processes is expected to lead to the unintentional release of IONPs into the environment. The impact of IONPs on the environment and on biological species is not well understood but remains a concern due to the increased chemical reactivity of nanoparticles relative to their bulk counterparts. This review article describes the impact of IONPs on cellular genetic components. The mutagenic impact of IONPs may damage an organism's ability to develop or reproduce. To date, there has been experimental evidence of IONPs having mutagenic interactions on human cell lines including lymphoblastoids, fibroblasts, microvascular endothelial cells, bone marrow cells, lung epithelial cells, alveolar type II like epithelial cells, bronchial fibroblasts, skin epithelial cells, hepatocytes, cerebral endothelial cells, fibrosarcoma cells, breast carcinoma cells, lung carcinoma cells, and cervix carcinoma cells. Other cell lines including the Chinese hamster ovary cells, mouse fibroblast cells, murine fibroblast cells, Mytilus galloprovincialis sperm cells, mice lung cells, murine alveolar macrophages, mice hepatic and renal tissue cells, and vero cells have also shown mutagenic effects upon exposure to IONPs. We further show the influence of IONPs on microorganisms in the presence and absence of dissolved organic carbon. The results shed light on the OPEN ACCESS Int. J. Mol. Sci. 2015, 16 23483 transformations IONPs undergo in the environment and the nature of the potential mutagenic impact on biological cells.

  18. Biological Influence of Deuterium on Procariotic and Eukaryotic Cells

    Directory of Open Access Journals (Sweden)

    Oleg Mosin

    2014-03-01

    Full Text Available Biologic influence of deuterium (D on cells of various taxonomic groups of prokaryotic and eukaryotic microorganisms realizing methylotrophic, chemoheterotrophic, photo-organotrophic, and photosynthetic ways of assimilation of carbon substrates are investigated at growth on media with heavy water (D2О. The method of step by step adaptation technique of cells to D2О was developed, consisting in plating of cells on 2 % agarose nutrient media containing increasing gradient of concentration of D2О (from 0 up to 98 % D2O and the subsequent selection of stable to D2O cells. In the result of that technique were obtained adapted to maximum concentration of D2O cells, biological material of which instead of hydrogen contained deuterium with levels of enrichment 92–97,5 at.% D.

  19. Femtosecond fabricated surfaces for cell biology

    Science.gov (United States)

    Day, Daniel; Gu, Min

    2010-08-01

    Microfabrication using femtosecond pulse lasers is enabling access to a range of structures, surfaces and materials that was not previously available for scientific and engineering applications. The ability to produce micrometre sized features directly in polymer and metal substrates is demonstrated with applications in cell biology. The size, shape and aspect ratio of the etched features can be precisely controlled through the manipulation of the fluence of the laser etching process with respect to the properties of the target material. Femtosecond laser etching of poly(methyl methacrylate) and aluminium substrates has enabled the production of micrometre resolution moulds that can be accurately replicated using soft lithography. The moulded surfaces are used in the imaging of T cells and demonstrate the improved ability to observe biological events over time periods greater than 10 h. These results indicate the great potential femtosecond pulse lasers may have in the future manufacturing of microstructured surfaces and devices.

  20. Dictyostelium discoideum: Molecular approaches to cell biology

    Energy Technology Data Exchange (ETDEWEB)

    Spudich, J.A.

    1987-01-01

    The central point of this book is to present Dictyostelium as a valuable eukaryotic organism for those interested in molecular studies that require a combined biochemical, structural, and genetic approach. The book is not meant to be a comprehensive compilation of all methods involving Dictyostelium, but instead is a selective set of chapters that demonstrates the utility of the organism for molecular approaches to interesting cell biological problems.

  1. T Regulatory Cell Biology in Health and Disease.

    Science.gov (United States)

    Alroqi, Fayhan J; Chatila, Talal A

    2016-04-01

    Regulatory T (Treg) cells that express the transcription factor forkhead box protein P3 (FOXP3) play an essential role in enforcing immune tolerance to self tissues, regulating host-commensal flora interaction, and facilitating tissue repair. Their deficiency and/or dysfunction trigger unbridled autoimmunity and inflammation. A growing number of monogenic defects have been recognized that adversely impact Treg cell development, differentiation, and/or function, leading to heritable diseases of immune dysregulation and autoimmunity. In this article, we review recent insights into Treg cell biology and function, with particular attention to lessons learned from newly recognized clinical disorders of Treg cell deficiency.

  2. The cell biology of fat expansion

    Science.gov (United States)

    Rutkowski, Joseph M.; Stern, Jennifer H.

    2015-01-01

    Adipose tissue is a complex, multicellular organ that profoundly influences the function of nearly all other organ systems through its diverse metabolite and adipokine secretome. Adipocytes are the primary cell type of adipose tissue and play a key role in maintaining energy homeostasis. The efficiency with which adipose tissue responds to whole-body energetic demands reflects the ability of adipocytes to adapt to an altered nutrient environment, and has profound systemic implications. Deciphering adipocyte cell biology is an important component of understanding how the aberrant physiology of expanding adipose tissue contributes to the metabolic dysregulation associated with obesity. PMID:25733711

  3. TinkerCell: modular CAD tool for synthetic biology

    Directory of Open Access Journals (Sweden)

    Bergmann Frank T

    2009-10-01

    Full Text Available Abstract Background Synthetic biology brings together concepts and techniques from engineering and biology. In this field, computer-aided design (CAD is necessary in order to bridge the gap between computational modeling and biological data. Using a CAD application, it would be possible to construct models using available biological "parts" and directly generate the DNA sequence that represents the model, thus increasing the efficiency of design and construction of synthetic networks. Results An application named TinkerCell has been developed in order to serve as a CAD tool for synthetic biology. TinkerCell is a visual modeling tool that supports a hierarchy of biological parts. Each part in this hierarchy consists of a set of attributes that define the part, such as sequence or rate constants. Models that are constructed using these parts can be analyzed using various third-party C and Python programs that are hosted by TinkerCell via an extensive C and Python application programming interface (API. TinkerCell supports the notion of a module, which are networks with interfaces. Such modules can be connected to each other, forming larger modular networks. TinkerCell is a free and open-source project under the Berkeley Software Distribution license. Downloads, documentation, and tutorials are available at http://www.tinkercell.com. Conclusion An ideal CAD application for engineering biological systems would provide features such as: building and simulating networks, analyzing robustness of networks, and searching databases for components that meet the design criteria. At the current state of synthetic biology, there are no established methods for measuring robustness or identifying components that fit a design. The same is true for databases of biological parts. TinkerCell's flexible modeling framework allows it to cope with changes in the field. Such changes may involve the way parts are characterized or the way synthetic networks are modeled

  4. Biological cell manipulation by magnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    Frederick Gertz

    2016-02-01

    Full Text Available We report a manipulation of biological cells (erythrocytes by magnetite (Fe3O4 nanoparticles in the presence of a magnetic field. The experiment was accomplished on the top of a micro-electromagnet consisting of two magnetic field generating contours. An electric current flowing through the contour(s produces a non-uniform magnetic field, which is about 1.4 mT/μm in strength at 100 mA current in the vicinity of the current-carrying wire. In responses to the magnetic field, magnetic nanoparticles move towards the systems energy minima. In turn, magnetic nanoparticles drag biological cells in the same direction. We present experimental data showing cell manipulation through the control of electric current. This technique allows us to capture and move cells located in the vicinity (10-20 microns of the current-carrying wires. One of the most interesting results shows a periodic motion of erythrocytes between the two conducting contours, whose frequency is controlled by an electric circuit. The obtained results demonstrate the feasibility of non-destructive cell manipulation by magnetic nanoparticles with micrometer-scale precision.

  5. Autophagic regulation of smooth muscle cell biology

    Science.gov (United States)

    Salabei, Joshua K.; Hill, Bradford G.

    2014-01-01

    Autophagy regulates the metabolism, survival, and function of numerous cell types, including those comprising the cardiovascular system. In the vasculature, changes in autophagy have been documented in atherosclerotic and restenotic lesions and in hypertensive vessels. The biology of vascular smooth muscle cells appears particularly sensitive to changes in the autophagic program. Recent evidence indicates that stimuli or stressors evoked during the course of vascular disease can regulate autophagic activity, resulting in modulation of VSMC phenotype and viability. In particular, certain growth factors and cytokines, oxygen tension, and pharmacological drugs have been shown to trigger autophagy in smooth muscle cells. Importantly, each of these stimuli has a redox component, typically associated with changes in the abundance of reactive oxygen, nitrogen, or lipid species. Collective findings support the hypothesis that autophagy plays a critical role in vascular remodeling by regulating smooth muscle cell phenotype transitions and by influencing the cellular response to stress. In this graphical review, we summarize current knowledge on the role of autophagy in the biology of the smooth muscle cell in (patho)physiology. PMID:25544597

  6. Autophagic regulation of smooth muscle cell biology

    Directory of Open Access Journals (Sweden)

    Joshua K. Salabei

    2015-04-01

    Full Text Available Autophagy regulates the metabolism, survival, and function of numerous cell types, including those comprising the cardiovascular system. In the vasculature, changes in autophagy have been documented in atherosclerotic and restenotic lesions and in hypertensive vessels. The biology of vascular smooth muscle cells appears particularly sensitive to changes in the autophagic program. Recent evidence indicates that stimuli or stressors evoked during the course of vascular disease can regulate autophagic activity, resulting in modulation of VSMC phenotype and viability. In particular, certain growth factors and cytokines, oxygen tension, and pharmacological drugs have been shown to trigger autophagy in smooth muscle cells. Importantly, each of these stimuli has a redox component, typically associated with changes in the abundance of reactive oxygen, nitrogen, or lipid species. Collective findings support the hypothesis that autophagy plays a critical role in vascular remodeling by regulating smooth muscle cell phenotype transitions and by influencing the cellular response to stress. In this graphical review, we summarize current knowledge on the role of autophagy in the biology of the smooth muscle cell in (pathophysiology.

  7. Stem cell-based biological tooth repair and regeneration.

    Science.gov (United States)

    Volponi, Ana Angelova; Pang, Yvonne; Sharpe, Paul T

    2010-12-01

    Teeth exhibit limited repair in response to damage, and dental pulp stem cells probably provide a source of cells to replace those damaged and to facilitate repair. Stem cells in other parts of the tooth, such as the periodontal ligament and growing roots, play more dynamic roles in tooth function and development. Dental stem cells can be obtained with ease, making them an attractive source of autologous stem cells for use in restoring vital pulp tissue removed because of infection, in regeneration of periodontal ligament lost in periodontal disease, and for generation of complete or partial tooth structures to form biological implants. As dental stem cells share properties with mesenchymal stem cells, there is also considerable interest in their wider potential to treat disorders involving mesenchymal (or indeed non-mesenchymal) cell derivatives, such as in Parkinson's disease.

  8. Correlating the morphological and light scattering properties of biological cells

    Science.gov (United States)

    Moran, Marina

    The scattered light pattern from a biological cell is greatly influenced by the internal structure and optical properties of the cell. This research project examines the relationships between the morphological and scattering properties of biological cells through numerical simulations. The mains goals are: (1) to develop a procedure to analytically model biological cells, (2) to quantitatively study the effects of a range of cell characteristics on the features of the light scattering patterns, and (3) to classify cells based on the features of their light scattering patterns. A procedure to create an analytical cell model was developed which extracted structural information from the confocal microscopic images of cells and allowed for the alteration of the cell structure in a controlled and systematic way. The influence of cell surface roughness, nuclear size, and mitochondrial volume density, spatial distribution, size and shape on the light scattering patterns was studied through numerical simulations of light scattering using the Discrete Dipole Approximation. It was found that the light scattering intensity in the scattering angle range of 25° to 45° responded to changes in the surface fluctuation of the cell and the range of 90° to 110° was well suited for characterization of mitochondrial density and nuclear size. A comparison of light scattering pattern analysis methods revealed that the angular distribution of the scattered light and Gabor filters were most helpful in differentiating between the cell characteristics. In addition, a measured increase in the Gabor energy of the light scattering patterns in response to an increase in the complexity of the cell models suggested that a complex nuclear structure and mitochondria should be included when modeling biological cells for light scattering simulations. Analysis of the scattering pattern features with Gabor filters resulted in discrimination of the cell models according to cell surface roughness

  9. How chemistry supports cell biology: the chemical toolbox at your service.

    Science.gov (United States)

    Wijdeven, Ruud H; Neefjes, Jacques; Ovaa, Huib

    2014-12-01

    Chemical biology is a young and rapidly developing scientific field. In this field, chemistry is inspired by biology to create various tools to monitor and modulate biochemical and cell biological processes. Chemical contributions such as small-molecule inhibitors and activity-based probes (ABPs) can provide new and unique insights into previously unexplored cellular processes. This review provides an overview of recent breakthroughs in chemical biology that are likely to have a significant impact on cell biology. We also discuss the application of several chemical tools in cell biology research.

  10. Analysis of undergraduate cell biology contents in Brazilian public universities.

    Science.gov (United States)

    Mermelstein, Claudia; Costa, Manoel Luis

    2017-04-01

    The enormous amount of information available in cell biology has created a challenge in selecting the core concepts we should be teaching our undergraduates. One way to define a set of essential core ideas in cell biology is to analyze what a specific cell biology community is teaching their students. Our main objective was to analyze the cell biology content currently being taught in Brazilian universities. We collected the syllabi of cell biology courses from public universities in Brazil and analyzed the frequency of cell biology topics in each course. We also compared the Brazilian data with the contents of a major cell biology textbook. Our analysis showed that while some cell biology topics such as plasma membrane and cytoskeleton was present in ∼100% of the Brazilian curricula analyzed others such as cell signaling and cell differentiation were present in only ∼35%. The average cell biology content taught in the Brazilian universities is quite different from what is presented in the textbook. We discuss several possible explanations for these observations. We also suggest a list with essential cell biology topics for any biological or biomedical undergraduate course. The comparative discussion of cell biology topics presented here could be valuable in other educational contexts.

  11. SBR-Blood: systems biology repository for hematopoietic cells.

    Science.gov (United States)

    Lichtenberg, Jens; Heuston, Elisabeth F; Mishra, Tejaswini; Keller, Cheryl A; Hardison, Ross C; Bodine, David M

    2016-01-04

    Extensive research into hematopoiesis (the development of blood cells) over several decades has generated large sets of expression and epigenetic profiles in multiple human and mouse blood cell types. However, there is no single location to analyze how gene regulatory processes lead to different mature blood cells. We have developed a new database framework called hematopoietic Systems Biology Repository (SBR-Blood), available online at http://sbrblood.nhgri.nih.gov, which allows user-initiated analyses for cell type correlations or gene-specific behavior during differentiation using publicly available datasets for array- and sequencing-based platforms from mouse hematopoietic cells. SBR-Blood organizes information by both cell identity and by hematopoietic lineage. The validity and usability of SBR-Blood has been established through the reproduction of workflows relevant to expression data, DNA methylation, histone modifications and transcription factor occupancy profiles.

  12. Cell biology: at the center of modern biomedicine.

    Science.gov (United States)

    Budde, Priya Prakash; Williams, Elizabeth H; Misteli, Tom

    2012-10-01

    How does basic cell biology contribute to biomedicine? A new series of Features in JCB provides a cross section of compelling examples of how basic cell biology findings can lead to therapeutics. These articles highlight the fruitful, essential, and increasingly prominent bridge that exists between cell biology and the clinic.

  13. Micro and nano-platforms for biological cell analysis

    DEFF Research Database (Denmark)

    Svendsen, Winnie Edith; Castillo, Jaime; Moresco, Jacob Lange;

    2011-01-01

    In this paper some technological platforms developed for biological cell analysis will be presented and compared to existing systems. In brief, we present a novel micro cell culture chamber based on diffusion feeding of cells, into which cells can be introduced and extracted after culturing using...... normal pipettes, thus making it readily usable for clinical laboratories. To enhance the functionality of such a chamber we have been investigating the use of active or passive 3D surface modifications. Active modifications involve miniature electrodes able to record electrical or electrochemical signals...... from the cells, while passive modifications involve the presence of a peptide nanotube based scaffold for the cell culturing that mimics the in vivo environment. Two applications involving fluorescent in situ hybridization (FISH) analysis and cancer cell sorting are presented, as examples of further...

  14. The 2~(nd) Guangzhou International Forum on the Frontier of Stem Cell and Regeneration Biology Invitations

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    @@ The forum will focus on the following topics: reprogramming of stem cell, chemical biology researchin stem cell, applied research in embryonic and somatic stem cells, stem cell and drug R&D, developmentand mode animal research, stem cell biology and cloning. The Forum will invite members of the CASOverseas Innovation Team on stem cells and cloning, expert panel members of the national key projecton Development and Procreation, the nation's 973 Project chief scientists and other professionals of thearea from all over the world.

  15. Cell biology of the Koji mold Aspergillus oryzae.

    Science.gov (United States)

    Kitamoto, Katsuhiko

    2015-01-01

    Koji mold, Aspergillus oryzae, has been used for the production of sake, miso, and soy sauce for more than one thousand years in Japan. Due to the importance, A. oryzae has been designated as the national micro-organism of Japan (Koku-kin). A. oryzae has been intensively studied in the past century, with most investigations focusing on breeding techniques and developing methods for Koji making for sake brewing. However, the understanding of fundamental biology of A. oryzae remains relatively limited compared with the yeast Saccharomyces cerevisiae. Therefore, we have focused on studying the cell biology including live cell imaging of organelles, protein vesicular trafficking, autophagy, and Woronin body functions using the available genomic information. In this review, I describe essential findings of cell biology of A. oryzae obtained in our study for a quarter of century. Understanding of the basic biology will be critical for not its biotechnological application, but also for an understanding of the fundamental biology of other filamentous fungi.

  16. Probing bacterial cell biology using image cytometry.

    Science.gov (United States)

    Cass, Julie A; Stylianidou, Stella; Kuwada, Nathan J; Traxler, Beth; Wiggins, Paul A

    2017-03-01

    Advances in automated fluorescence microscopy have made snapshot and time-lapse imaging of bacterial cells commonplace, yet fundamental challenges remain in analysis. The vast quantity of data collected in high-throughput experiments requires a fast and reliable automated method to analyze fluorescence intensity and localization, cell morphology and proliferation as well as other descriptors. Inspired by effective yet tractable methods of population-level analysis using flow cytometry, we have developed a framework and tools for facilitating analogous analyses in image cytometry. These tools can both visualize and gate (generate subpopulations) more than 70 cell descriptors, including cell size, age and fluorescence. The method is well suited to multi-well imaging, analysis of bacterial cultures with high cell density (thousands of cells per frame) and complete cell cycle imaging. We give a brief description of the analysis of four distinct applications to emphasize the broad applicability of the tool.

  17. Natural killer cells: Biology, functions and clinical relevance

    Directory of Open Access Journals (Sweden)

    Vojvodić Svetlana

    2010-01-01

    Full Text Available Introduction. Natural Killer cells (NK cells represent the subset of peripheral lymphocytes that play critical role in the innate immune response to virus-infected and tumor transformed cells. Lysis of NK sensitive target cells could be mediated independently of antigen stimulation and without requirement of peptide presentation by the major histocompatibility complex (MHC molecules. NK cell activity and functions are controlled by a considerable number of cell surface receptors, which exist in both inhibitory and activating isoforms. There are several groups of NK cell surface receptors: 1 killer immunoglobulin like receptors-KIR, 2 C-type lectin receptors,3natural citotoxicity receptors-NCR and 4 Toll-like receptors-TLR. Functions of NK receptors. Defining the biology of NK cell surface receptors has contributed to the concept of the manner how NK cells selectively recognize and lyse tumor and virally infected cells while sparing normal cells. Further, identification of NK receptor ligands and their expression on the normal and transformed cells has led to the development of clinical approaches to manipulating receptor/ligand interactions that showed clinical benefit. NK cells are the first lymphocyte subset that reconstitute the peripheral blood following allogeneic HSCT and multiple roles for alloreactive donor NK cells have been demonstrated, in diminishing Graft vs. Host Disease (GvHD through selective killing recipient dendritic cells, prevention of graft rejection by killing recipient T cells and participation in Graft vs. Leukaemia (GvL effect through destruction of residual host tumor cells. Conclusion. Besides their role in HSCT, NK cell receptors have an important clinical relevance that reflects from the fact that they play a crucial role in the development of some diseases as well as in possibilities of managing all NK receptors through selective expansion and usage of NK cells in cancer immunotherapy.

  18. Cell biology and EMF safety standards.

    Science.gov (United States)

    Blank, Martin

    2015-01-01

    Living cells react defensively and start to synthesize stress proteins when exposed to potentially harmful stimuli. Electromagnetic fields (EMF) are among the many different environmental stimuli that initiate stress protein synthesis. Although there is greater energy transfer and heating due to EMF at higher frequencies, there is no greater stress response. The cellular stress response is far more sensitive to EMF than to an increase in temperature. It should be obvious that an EMF safety standard should be based on the more sensitive, natural biological response.

  19. Stem cell biology and cell transplantation therapy in the retina.

    Science.gov (United States)

    Osakada, Fumitaka; Hirami, Yasuhiko; Takahashi, Masayo

    2010-01-01

    Embryonic stem (ES) cells, which are derived from the inner cell mass of mammalian blastocyst stage embryos, have the ability to differentiate into any cell type in the body and to grow indefinitely while maintaining pluripotency. During development, cells undergo progressive and irreversible differentiation into specialized adult cell types. Remarkably, in spite of this restriction in potential, adult somatic cells can be reprogrammed and returned to the naive state of pluripotency found in the early embryo simply by forcing expression of a defined set of transcription factors. These induced pluripotent stem (iPS) cells are molecularly and functionally equivalent to ES cells and provide powerful in vitro models for development, disease, and drug screening, as well as material for cell replacement therapy. Since functional impairment results from cell loss in most central nervous system (CNS) diseases, recovery of lost cells is an important treatment strategy. Although adult neurogenesis occurs in restricted regions, the CNS has poor potential for regeneration to compensate for cell loss. Thus, cell transplantation into damaged or diseased CNS tissues is a promising approach to treating various neurodegenerative disorders. Transplantation of photoreceptors or retinal pigment epithelium cells derived from human ES cells can restore some visual function. Patient-specific iPS cells may lead to customized cell therapy. However, regeneration of retinal function will require a detailed understanding of eye development, visual system circuitry, and retinal degeneration pathology. Here, we review the current progress in retinal regeneration, focusing on the therapeutic potential of pluripotent stem cells.

  20. Single-cell sequencing in stem cell biology.

    Science.gov (United States)

    Wen, Lu; Tang, Fuchou

    2016-04-15

    Cell-to-cell variation and heterogeneity are fundamental and intrinsic characteristics of stem cell populations, but these differences are masked when bulk cells are used for omic analysis. Single-cell sequencing technologies serve as powerful tools to dissect cellular heterogeneity comprehensively and to identify distinct phenotypic cell types, even within a 'homogeneous' stem cell population. These technologies, including single-cell genome, epigenome, and transcriptome sequencing technologies, have been developing rapidly in recent years. The application of these methods to different types of stem cells, including pluripotent stem cells and tissue-specific stem cells, has led to exciting new findings in the stem cell field. In this review, we discuss the recent progress as well as future perspectives in the methodologies and applications of single-cell omic sequencing technologies.

  1. Measurements and interpretations of light scattering from intact biological cells

    Science.gov (United States)

    Wilson, Jeremy D.

    Visible light interacts with biological cells primarily through elastic scattering. The details of how cells scatter light depend on their morphology and their substructures. In this thesis we first present a series of experiments and models to discern the specific contributions of certain sub-cellular constituents to whole-cell scattering. Exploiting the findings of those studies, we report on experiments within model systems of cell death that demonstrate the potential of light scattering measurements as a tool in modern biology. Instrumentation capable of exploiting the findings of this thesis from a biology-relevant microscopy platform is designed and developed. A Mie theory based interpretation of light scattering signals originating from a collection of particles with a broad size distribution is developed. Upon applying this model to scattering data from intact cells, we find that it robustly extracts the size scale of dominant light scattering particles, suggests that scattering measurements are sensitive primarily to mitochondrial and lysosomal morphology, and unites conflicting results in the literature. Using this model as a basis, we present a collection of studies in which we use various strategies of photodynamic therapy (PDT) as a biophysical tool to perturb mitochondria and lysosomes, and observe the effects of these perturbations on whole-cell scattering. Through these experiments, we are able to discern the individual contributions of mitochondria and lysosomes to whole-cell light scattering, and demonstrate that mitochondria are responsible for roughly 80% of the scattering signal. Results of experiments aimed at demonstrating the potential role that light scattering measurements have to play in future studies of cell death biology are presented. We first show that mitochondrial-PDT-induced morphology changes measured with light scattering map into the cell killing efficacy of the therapy. We next demonstrate that mitochondrial

  2. Can molecular cell biology explain chromosome motions?

    Directory of Open Access Journals (Sweden)

    Gagliardi L

    2011-05-01

    Full Text Available Abstract Background Mitotic chromosome motions have recently been correlated with electrostatic forces, but a lingering "molecular cell biology" paradigm persists, proposing binding and release proteins or molecular geometries for force generation. Results Pole-facing kinetochore plates manifest positive charges and interact with negatively charged microtubule ends providing the motive force for poleward chromosome motions by classical electrostatics. This conceptual scheme explains dynamic tracking/coupling of kinetochores to microtubules and the simultaneous depolymerization of kinetochore microtubules as poleward force is generated. Conclusion We question here why cells would prefer complex molecular mechanisms to move chromosomes when direct electrostatic interactions between known bound charge distributions can accomplish the same task much more simply.

  3. Designer nanoparticle: nanobiotechnology tool for cell biology

    Science.gov (United States)

    Thimiri Govinda Raj, Deepak B.; Khan, Niamat Ali

    2016-09-01

    This article discusses the use of nanotechnology for subcellular compartment isolation and its application towards subcellular omics. This technology review significantly contributes to our understanding on use of nanotechnology for subcellular systems biology. Here we elaborate nanobiotechnology approach of using superparamagnetic nanoparticles (SPMNPs) optimized with different surface coatings for subcellular organelle isolation. Using pulse-chase approach, we review that SPMNPs interacted differently with the cell depending on its surface functionalization. The article focuses on the use of functionalized-SPMNPs as a nanobiotechnology tool to isolate high quality (both purity and yield) plasma membranes and endosomes or lysosomes. Such nanobiotechnology tool can be applied in generating subcellular compartment inventories. As a future perspective, this strategy could be applied in areas such as immunology, cancer and stem cell research.

  4. Conjugate Meningococcal Vaccines Development: GSK Biologicals Experience

    Directory of Open Access Journals (Sweden)

    Jacqueline M. Miller

    2011-01-01

    Full Text Available Meningococcal diseases are serious threats to global health, and new vaccines specifically tailored to meet the age-related needs of various geographical areas are required. This paper focuses on the meningococcal conjugate vaccines developed by GSK Biologicals. Two combined conjugate vaccines were developed to help protect infants and young children in countries where the incidence of meningococcal serogroup C or serogroup C and Y disease is important: Hib-MenC-TT vaccine, which offers protection against Haemophilus influenzae type b and Neisseria meningitidis serogroup C diseases, is approved in several countries; and Hib-MenCY-TT vaccine, which adds N. meningitidis serogroup Y antigen, is currently in the final stages of development. Additionally, a tetravalent conjugate vaccine (MenACWY-TT designed to help protect against four meningococcal serogroups is presently being evaluated for global use in all age groups. All of these vaccines were shown to be highly immunogenic and to have clinically acceptable safety profiles.

  5. Biological characteristics of cell lines of human dental alveolus

    Institute of Scientific and Technical Information of China (English)

    陈世璋; 黄靖香; 孙明学; 赵斌

    2003-01-01

    Objective To investigate the biological characteristics of cell lines of healthy and diseased human dental alveoli. Methods Primary cell lines from either healthy or diseased human dental alveoli were obtained. Two cell lines, H-258 and H-171 derived from healthy and diseased human tissues respectively, were selected for morphological study and research on their growth and aging, using cell counting, and histochemical and immunohistochemical staining. Results Primary cell lines were successfully established from innormal dental alveoli. After freezing and thawing for three times, cell growth was continued and no morphological alterations were observed. The doubling time was 53.4 hours and mean division index (MDI) was 4‰. Cells were kept normal after twenty generations with no obvious reduction of doubling time and MDI. Of twenty-six primary cell lines derived from healthy human dental alveoli, only three cell lines achieved generation. After freezing and thawing for twice, cultured cells were still alive at a decreased growth speed, with doubling time of 85.9 hours and MDI of 3‰. Both cell lines, H-171 and H-258, shared the characteristics of osteoblast. Conclusions Primary cell lines of diseased human dental alveoli show greater growth potential. All cell lines of dental alveoli share characteristics of osteoblast. The technique we developed may be put into practice for the treatment of abnormal dental alveoli.

  6. [Development of Zn(2+) selective fluorescent probes for biological applications].

    Science.gov (United States)

    Hagimori, Masayori

    2013-01-01

    Zn(2+) is an essential element for life and is known to play important roles in biological processes including gene expression, apoptosis, enzyme regulation, immune system and neurotransmission. To investigate physiological roles of free or chelatable Zn(2+) in living cells, Zn(2+)-selective fluorescent probes are valuable tools. A variety of fluorescent probes based on quinoline, BF2 chelated dipyrromethene, fluorescein, etc. has been developed recently. In principle, such tools can provide useful information about zinc biology. However, most of the fluorescent probes presented so far possess a fluorescent core and a separate part for binding to Zn(2+) within the molecule, so that the molecular weight is usually large and the molecules are hydrophobic. As a result, the applications of such molecules in biological systems often face difficulties. Therefore, we need to develop a new class of fluorescent probes for Zn(2+) with improved molecular characteristics. If the initial core structure is small enough, the fluorescent probes may still be molecular weight below 500 with desirable physico-chemical properties, even after the modifications. In this review, we described novel low-molecular-weight fluorescent probes for Zn(2+) based on pyridine-pyridone. Small modification of pyridine-pyridone core structure brought about a marked improvement such as aqueous solubility, affinity toward Zn(2+), and fluorescence ON/OFF switching. Fluorescence images of Zn(2+) in cells showed that the pyridine-pyridone probe can be used in biological applications.

  7. Human pluripotent stem cells: an emerging model in developmental biology.

    Science.gov (United States)

    Zhu, Zengrong; Huangfu, Danwei

    2013-02-01

    Developmental biology has long benefited from studies of classic model organisms. Recently, human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, have emerged as a new model system that offers unique advantages for developmental studies. Here, we discuss how studies of hPSCs can complement classic approaches using model organisms, and how hPSCs can be used to recapitulate aspects of human embryonic development 'in a dish'. We also summarize some of the recently developed genetic tools that greatly facilitate the interrogation of gene function during hPSC differentiation. With the development of high-throughput screening technologies, hPSCs have the potential to revolutionize gene discovery in mammalian development.

  8. In focus: molecular and cell biology research in China.

    Science.gov (United States)

    Yao, Xuebiao; Li, Dangsheng; Pei, Gang

    2013-09-01

    An interactive, intellectual environment with good funding opportunities is essential for the development and success of basic research. The fast-growing economy and investment in science, together with a visionary plan, have attracted foreign scholars to work in China, motivated world-class Chinese scientists to return and strengthened the country's international collaborations. As a result, molecular and cell biology research in China has evolved rapidly over the past decade.

  9. Molecular biology of mycoplasmas: from the minimum cell concept to the artificial cell

    Directory of Open Access Journals (Sweden)

    CAIO M.M. CORDOVA

    2016-01-01

    Full Text Available ABSTRACT Mycoplasmas are a large group of bacteria, sorted into different genera in the Mollicutes class, whose main characteristic in common, besides the small genome, is the absence of cell wall. They are considered cellular and molecular biology study models. We present an updated review of the molecular biology of these model microorganisms and the development of replicative vectors for the transformation of mycoplasmas. Synthetic biology studies inspired by these pioneering works became possible and won the attention of the mainstream media. For the first time, an artificial genome was synthesized (a minimal genome produced from consensus sequences obtained from mycoplasmas. For the first time, a functional artificial cell has been constructed by introducing a genome completely synthesized within a cell envelope of a mycoplasma obtained by transformation techniques. Therefore, this article offers an updated insight to the state of the art of these peculiar organisms' molecular biology.

  10. Molecular biology of mycoplasmas: from the minimum cell concept to the artificial cell.

    Science.gov (United States)

    Cordova, Caio M M; Hoeltgebaum, Daniela L; Machado, Laís D P N; Santos, Larissa Dos

    2016-01-01

    Mycoplasmas are a large group of bacteria, sorted into different genera in the Mollicutes class, whose main characteristic in common, besides the small genome, is the absence of cell wall. They are considered cellular and molecular biology study models. We present an updated review of the molecular biology of these model microorganisms and the development of replicative vectors for the transformation of mycoplasmas. Synthetic biology studies inspired by these pioneering works became possible and won the attention of the mainstream media. For the first time, an artificial genome was synthesized (a minimal genome produced from consensus sequences obtained from mycoplasmas). For the first time, a functional artificial cell has been constructed by introducing a genome completely synthesized within a cell envelope of a mycoplasma obtained by transformation techniques. Therefore, this article offers an updated insight to the state of the art of these peculiar organisms' molecular biology.

  11. Photoactive molecules for applications in molecular imaging and cell biology.

    Science.gov (United States)

    Shao, Qing; Xing, Bengang

    2010-08-01

    Photoactive technology has proven successful for non-invasive regulation of biological activities and processes in living cells. With the light-directed generation of biomaterials or signals, mechanisms in cell biology can be investigated at the molecular level with spatial and temporal resolution. In this tutorial review, we aim to introduce the important applications of photoactive molecules for elucidating cell biology on aspects of protein engineering, fluorescence labelling, gene regulation and cell physiological functions.

  12. Vaccines against biologic agents: uses and developments.

    Science.gov (United States)

    Ales, Noel C; Katial, Rohit K

    2004-03-01

    Although the Geneva protocol that prohibits the use of chemical and biologic weapons was ratified in 1925, many countries failed to accept this protocol: others stipulated retaliation, and some, like the United States, did not ratify the protocol for decades. This delay allowed the continued development of chemical and biologic agents. Members of the health care community are responsible for determining the best way to protect society from the potentially devastating effects of these biologic agents. Ideally,these diseases would be prevented from ever developing into systemic illnesses. In the past, vaccination has been a successful means of eradicating disease. Vaccines remain a hopeful therapy for the future, but time is short,and there are many obstacles.Information regarding bioterrorism agents and their treatments comes mainly from dated data or from in vitro or animal studies that may not apply to human treatment and disease. Additionally, the current threat of bioterrorism does not allow enough time for accurate, well-designed,controlled studies in humans before the release of investigational vaccines. Furthermore, some human studies would not be safe or ethical. Finally,many members of society suffer from illnesses that would put them at high risk to receive prophylactic vaccination. It is therefore naive to believe that vaccines would be the ultimate protection from these agents. In addition to vaccine development, there must be concurrent investigations into disease management and treatment. Even in instances in which vaccination is known to be an effective means of disease protection. biologic agents may be presented in a manner that renders vaccines ineffective. Virulent strains of organisms may be used, more than one organism may be used in tandem to increase virulence, and strains may be selected for antibiotic and vaccine resistance. Genetically engineered strains may use virulence factors other than those targeted in vaccines, and high

  13. Noninvasive Assessment of Cell Fate and Biology in Transplanted Mesenchymal Stem Cells.

    Science.gov (United States)

    Franchi, Federico; Rodriguez-Porcel, Martin

    2017-01-01

    Recently, molecular imaging has become a conditio sine qua non for cell-based regenerative medicine. Developments in molecular imaging techniques, such as reporter gene technology, have increasingly enabled the noninvasive assessment of the fate and biology of cells after cardiovascular applications. In this context, bioluminescence imaging is the most commonly used imaging modality in small animal models of preclinical studies. Here, we present a detailed protocol of a reporter gene imaging approach for monitoring the viability and biology of Mesenchymal Stem Cells transplanted in a mouse model of myocardial ischemia reperfusion injury.

  14. Tensegrity I. Cell structure and hierarchical systems biology

    Science.gov (United States)

    Ingber, Donald E.

    2003-01-01

    In 1993, a Commentary in this journal described how a simple mechanical model of cell structure based on tensegrity architecture can help to explain how cell shape, movement and cytoskeletal mechanics are controlled, as well as how cells sense and respond to mechanical forces (J. Cell Sci. 104, 613-627). The cellular tensegrity model can now be revisited and placed in context of new advances in our understanding of cell structure, biological networks and mechanoregulation that have been made over the past decade. Recent work provides strong evidence to support the use of tensegrity by cells, and mathematical formulations of the model predict many aspects of cell behavior. In addition, development of the tensegrity theory and its translation into mathematical terms are beginning to allow us to define the relationship between mechanics and biochemistry at the molecular level and to attack the larger problem of biological complexity. Part I of this two-part article covers the evidence for cellular tensegrity at the molecular level and describes how this building system may provide a structural basis for the hierarchical organization of living systems--from molecule to organism. Part II, which focuses on how these structural networks influence information processing networks, appears in the next issue.

  15. Biological effects of space radiation and development of effective countermeasures

    Science.gov (United States)

    Kennedy, Ann R.

    2014-04-01

    As part of a program to assess the adverse biological effects expected from astronauts' exposure to space radiation, numerous different biological effects relating to astronauts' health have been evaluated. There has been major focus recently on the assessment of risks related to exposure to solar particle event (SPE) radiation. The effects related to various types of space radiation exposure that have been evaluated are: gene expression changes (primarily associated with programmed cell death and extracellular matrix (ECM) remodeling), oxidative stress, gastrointestinal tract bacterial translocation and immune system activation, peripheral hematopoietic cell counts, emesis, blood coagulation, skin, behavior/fatigue (including social exploration, submaximal exercise treadmill and spontaneous locomotor activity), heart functions, alterations in biological endpoints related to astronauts' vision problems (lumbar puncture/intracranial pressure, ocular ultrasound and histopathology studies), and survival, as well as long-term effects such as cancer and cataract development. A number of different countermeasures have been identified that can potentially mitigate or prevent the adverse biological effects resulting from exposure to space radiation.

  16. History of the Department of Cell Biology at Yale School of Medicine, 1813-2010.

    Science.gov (United States)

    Lentz, Thomas L

    2011-06-01

    The Department of Cell Biology at the Yale University School of Medicine was established in 1983. It was preceded by the Section of Cell Biology, which was formed in 1973 when George E. Palade and collaborators came to Yale from the Rockefeller University. Cell Biology at Yale had its origins in the Department of Anatomy that existed from the beginning of classes at the Medical Institution of Yale College in 1813. This article reviews the history of the Department of Anatomy at Yale and its evolution into Cell Biology that began with the introduction of histology into the curriculum in the 1860s. The formation and development of the Section and Department of Cell Biology in the second half of the 20th century to the present time are described. Biographies and research activities of the chairs and key faculty in anatomy and cell biology are provided.

  17. Physical biology of human brain development.

    Science.gov (United States)

    Budday, Silvia; Steinmann, Paul; Kuhl, Ellen

    2015-01-01

    Neurodevelopment is a complex, dynamic process that involves a precisely orchestrated sequence of genetic, environmental, biochemical, and physical events. Developmental biology and genetics have shaped our understanding of the molecular and cellular mechanisms during neurodevelopment. Recent studies suggest that physical forces play a central role in translating these cellular mechanisms into the complex surface morphology of the human brain. However, the precise impact of neuronal differentiation, migration, and connection on the physical forces during cortical folding remains unknown. Here we review the cellular mechanisms of neurodevelopment with a view toward surface morphogenesis, pattern selection, and evolution of shape. We revisit cortical folding as the instability problem of constrained differential growth in a multi-layered system. To identify the contributing factors of differential growth, we map out the timeline of neurodevelopment in humans and highlight the cellular events associated with extreme radial and tangential expansion. We demonstrate how computational modeling of differential growth can bridge the scales-from phenomena on the cellular level toward form and function on the organ level-to make quantitative, personalized predictions. Physics-based models can quantify cortical stresses, identify critical folding conditions, rationalize pattern selection, and predict gyral wavelengths and gyrification indices. We illustrate that physical forces can explain cortical malformations as emergent properties of developmental disorders. Combining biology and physics holds promise to advance our understanding of human brain development and enable early diagnostics of cortical malformations with the ultimate goal to improve treatment of neurodevelopmental disorders including epilepsy, autism spectrum disorders, and schizophrenia.

  18. Physical biology of human brain development

    Directory of Open Access Journals (Sweden)

    Silvia eBudday

    2015-07-01

    Full Text Available Neurodevelopment is a complex, dynamic process that involves a precisely orchestrated sequence of genetic, environmental, biochemical, and physical events. Developmental biology and genetics have shaped our understanding of the molecular and cellular mechanisms during neurodevelopment. Recent studies suggest that physical forces play a central role in translating these cellular mechanisms into the complex surface morphology of the human brain. However, the precise impact of neuronal differentiation, migration, and connection on the physical forces during cortical folding remains unknown. Here we review the cellular mechanisms of neurodevelopment with a view towards surface morphogenesis, pattern selection, and evolution of shape. We revisit cortical folding as the instability problem of constrained differential growth in a multi-layered system. To identify the contributing factors of differential growth, we map out the timeline of neurodevelopment in humans and highlight the cellular events associated with extreme radial and tangential expansion. We demonstrate how computational modeling of differential growth can bridge the scales-from phenomena on the cellular level towards form and function on the organ level-to make quantitative, personalized predictions. Physics-based models can quantify cortical stresses, identify critical folding conditions, rationalize pattern selection, and predict gyral wavelengths and gyrification indices. We illustrate that physical forces can explain cortical malformations as emergent properties of developmental disorders. Combining biology and physics holds promise to advance our understanding of human brain development and enable early diagnostics of cortical malformations with the ultimate goal to improve treatment of neurodevelopmental disorders including epilepsy, autism spectrum disorders, and schizophrenia.

  19. The biology of circulating tumor cells.

    Science.gov (United States)

    Pantel, K; Speicher, M R

    2016-03-10

    Metastasis is a biologically complex process consisting of numerous stochastic events which may tremendously differ across various cancer types. Circulating tumor cells (CTCs) are cells that are shed from primary tumors and metastatic deposits into the blood stream. CTCs bear a tremendous potential to improve our understanding of steps involved in the metastatic cascade, starting from intravasation of tumor cells into the circulation until the formation of clinically detectable metastasis. These efforts were propelled by novel high-resolution approaches to dissect the genomes and transcriptomes of CTCs. Furthermore, capturing of viable CTCs has paved the way for innovative culturing technologies to study fundamental characteristics of CTCs such as invasiveness, their kinetics and responses to selection barriers, such as given therapies. Hence the study of CTCs is not only instrumental as a basic research tool, but also allows the serial monitoring of tumor genotypes and may therefore provide predictive and prognostic biomarkers for clinicians. Here, we review how CTCs have contributed to significant insights into the metastatic process and how they may be utilized in clinical practice.

  20. Cell biology apps for Apple devices.

    Science.gov (United States)

    Stark, Louisa A

    2012-01-01

    Apps for touch-pad devices hold promise for guiding and supporting learning. Students may use them in the classroom or on their own for didactic instruction, just-in-time learning, or review. Since Apple touch-pad devices (i.e., iPad and iPhone) have a substantial share of the touch-pad device market (Campbell, 2012), this Feature will explore cell biology apps available from the App Store. My review includes iPad and iPhone apps available in June 2012, but does not include courses, lectures, podcasts, audiobooks, texts, or other books. I rated each app on a five-point scale (1 star = lowest; 5 stars = highest) for educational and production values; I also provide an overall score.

  1. The emerging age of cell-free synthetic biology.

    Science.gov (United States)

    Smith, Mark Thomas; Wilding, Kristen M; Hunt, Jeremy M; Bennett, Anthony M; Bundy, Bradley C

    2014-08-25

    The engineering of and mastery over biological parts has catalyzed the emergence of synthetic biology. This field has grown exponentially in the past decade. As increasingly more applications of synthetic biology are pursued, more challenges are encountered, such as delivering genetic material into cells and optimizing genetic circuits in vivo. An in vitro or cell-free approach to synthetic biology simplifies and avoids many of the pitfalls of in vivo synthetic biology. In this review, we describe some of the innate features that make cell-free systems compelling platforms for synthetic biology and discuss emerging improvements of cell-free technologies. We also select and highlight recent and emerging applications of cell-free synthetic biology.

  2. Islet cell development.

    Science.gov (United States)

    Rojas, Anabel; Khoo, Adrian; Tejedo, Juan R; Bedoya, Francisco J; Soria, Bernat; Martín, Franz

    2010-01-01

    Over the last years, there has been great success in driving stem cells toward insulin-expressing cells. However, the protocols developed to date have some limitations, such as low reliability and low insulin production. The most successful protocols used for generation of insulin-producing cells from stem cells mimic in vitro pancreatic organogenesis by directing the stem cells through stages that resemble several pancreatic developmental stages. Islet cell fate is coordinated by a complex network of inductive signals and regulatory transcription factors that, in a combinatorial way, determine pancreatic organ specification, differentiation, growth, and lineage. Together, these signals and factors direct the progression from multipotent progenitor cells to mature pancreatic cells. Later in development and adult life, several of these factors also contribute to maintain the differentiated phenotype of islet cells. A detailed understanding of the processes that operate in the pancreas during embryogenesis will help us to develop a suitable source of cells for diabetes therapy. In this chapter, we will discuss the main transcription factors involved in pancreas specification and beta-cell formation.

  3. 绿豆根边缘细胞发育特性%Biological Characters of Root Border Cell Development in Phaseolus radiatus

    Institute of Scientific and Technical Information of China (English)

    姜华; 王亚男; 何兵; 王煜; 马丹炜

    2012-01-01

    以东北绿豆为试验材料,采用琼脂悬空培养法,研究了绿豆边缘细胞的发育特性.结果表明:绿豆根尖发育初期根边缘细胞呈球形,随着根尖伸长逐渐发育形成椭圆形、长椭圆形和长条形;发育过程中,根边缘细胞具有较高的存活率,在根长大于10 mm后根边缘细胞的存活率均在70%~80%之间并趋于稳定;在根长为25~30 mm时根边缘细胞数目达到最大值(约13000个);根冠果胶甲基酯酶(PME)活性在根长5 mm时达到最高值(1.486H+ μmol·root cap-1·h-1),此后随着根的伸长,根冠PME活性在1.107~1.256 H+ μmol·root cap-1·h-1间变化并趋于稳定.%Northeast mung bean (.Phaseolus radiatus) as materials were used to study development characteristics of border cells by suspended culture with agar pour plate. The results showed that bean border cells were spherical shape with early development,and develop into oval shape,long oval shape and strip shape with growth gradually. The root border cells have high viability in development process and the viability were at 70%—80% and tended to be stable when the root length was greater than 10 mm;The number of root border cells reached maximum (about 13 000) when the root length was 25 ~30 mmj Pectin methylesterase activity of root cap reached the highest valued. 486 H+ fitnol · root cap-1 · h-1) with 5 mm root length,then changed in 1. 107~1. 256 H+μimol · root cap-1 · h-1 and tended to be stable with the root elongation.

  4. From cell biology to the microbiome: An intentional infinite loop

    OpenAIRE

    Garrett, Wendy S

    2015-01-01

    Cell biology is the study of the structure and function of the unit or units of living organisms. Enabled by current and evolving technologies, cell biologists today are embracing new scientific challenges that span many disciplines. The eclectic nature of cell biology is core to its future and remains its enduring legacy.

  5. From cell biology to the microbiome: An intentional infinite loop.

    Science.gov (United States)

    Garrett, Wendy S

    2015-07-01

    Cell biology is the study of the structure and function of the unit or units of living organisms. Enabled by current and evolving technologies, cell biologists today are embracing new scientific challenges that span many disciplines. The eclectic nature of cell biology is core to its future and remains its enduring legacy.

  6. Identification of biologically relevant enhancers in human erythroid cells.

    Science.gov (United States)

    Su, Mack Y; Steiner, Laurie A; Bogardus, Hannah; Mishra, Tejaswini; Schulz, Vincent P; Hardison, Ross C; Gallagher, Patrick G

    2013-03-22

    Identification of cell type-specific enhancers is important for understanding the regulation of programs controlling cellular development and differentiation. Enhancers are typically marked by the co-transcriptional activator protein p300 or by groups of cell-expressed transcription factors. We hypothesized that a unique set of enhancers regulates gene expression in human erythroid cells, a highly specialized cell type evolved to provide adequate amounts of oxygen throughout the body. Using chromatin immunoprecipitation followed by massively parallel sequencing, genome-wide maps of candidate enhancers were constructed for p300 and four transcription factors, GATA1, NF-E2, KLF1, and SCL, using primary human erythroid cells. These data were combined with gene expression analyses, and candidate enhancers were identified. Consistent with their predicted function as candidate enhancers, there was statistically significant enrichment of p300 and combinations of co-localizing erythroid transcription factors within 1-50 kb of the transcriptional start site (TSS) of genes highly expressed in erythroid cells. Candidate enhancers were also enriched near genes with known erythroid cell function or phenotype. Candidate enhancers exhibited moderate conservation with mouse and minimal conservation with nonplacental vertebrates. Candidate enhancers were mapped to a set of erythroid-associated, biologically relevant, SNPs from the genome-wide association studies (GWAS) catalogue of NHGRI, National Institutes of Health. Fourteen candidate enhancers, representing 10 genetic loci, mapped to sites associated with biologically relevant erythroid traits. Fragments from these loci directed statistically significant expression in reporter gene assays. Identification of enhancers in human erythroid cells will allow a better understanding of erythroid cell development, differentiation, structure, and function and provide insights into inherited and acquired hematologic disease.

  7. Computational cell biology at the home of the helix.

    Science.gov (United States)

    Ward, Jonathan J; Nédélec, Francois J

    2010-06-01

    The Computational Cell Biology Conference, held jointly by the Cold Spring Harbor Laboratory and the Wellcome Trust, was convened in the grand surroundings of Hinxton Hall near Cambridge, UK. The high quality of the research presented at the meeting confirmed that the field of computational cell biology is maturing rapidly, which mirrors the progression of cell biology from being mostly descriptive to a more quantitative discipline.

  8. Cell Biology of Thiazide Bone Effects

    Science.gov (United States)

    Gamba, Gerardo; Riccardi, Daniela

    2008-09-01

    The thiazide-sensitive Na+:Cl- cotransporter (NCC) is the major pathway for salt reabsorption in the mammalian kidney. The activity of NCC is not only related to salt metabolism, but also to calcium and magnesium homeostasis due to the inverse relationship between NCC activity and calcium reabsorption. Hence, the thiazide-type diuretics that specifically block NCC have been used for years, not only for treatment of hypertension and edematous disease, but also for the management of renal stone disease. Epidemiological studies have shown that chronic thiazide treatment is associated with higher bone mineral density and reduced risk of bone fractures, which can only partly be explained in terms of their effects on the kidney. In this regard, we have recently shown that NCC is expressed in bone cells and that inhibition of NCC in bone, either by thiazides or by reduction of NCC protein with specific siRNA, is associated with increased mineralization in vitro. These observations open a field of study to begin to understand the cell biology of the beneficial effects of thiazides in bone.

  9. Developing Molecular Interaction Database and Searching for Similar Pathways (MOLECULAR BIOLOGY AND INFORMATION-Biological Information Science)

    OpenAIRE

    Kawashima, Shuichi; Katayama, Toshiaki; Kanehisa, Minoru

    1998-01-01

    We have developed a database named BRITE, which contains knowledge of interacting molecules and/or genes concering cell cycle and early development. Here, we report an overview of the database and the method of automatic search for functionally common sub-pathways between two biological pathways in BRITE.

  10. Synthetic biology of minimal living cells: primitive cell models and semi-synthetic cells.

    Science.gov (United States)

    Stano, Pasquale

    2010-09-01

    This article summarizes a contribution presented at the ESF 2009 Synthetic Biology focused on the concept of the minimal requirement for life and on the issue of constructive (synthetic) approaches in biological research. The attempts to define minimal life within the framework of autopoietic theory are firstly described, and a short report on the development of autopoietic chemical systems based on fatty acid vesicles, which are relevant as primitive cell models is given. These studies can be used as a starting point for the construction of more complex systems, firstly being inspired by possible origins of life scenarioes (and therefore by considering primitive functions), then by considering an approach based on modern biomacromolecular-encoded functions. At this aim, semi-synthetic minimal cells are defined as those man-made vesicle-based systems that are composed of the minimal number of genes, proteins, biomolecules and which can be defined as living. Recent achievements on minimal sized semi-synthetic cells are then discussed, and the kind of information obtained is recognized as being distinctively derived by a constructive approach. Synthetic biology is therefore a fundamental tool for gaining basic knowledge about biosystems, and it should not be confined at all to the engineering side.

  11. Shedding light on biology of bacterial cells.

    Science.gov (United States)

    Schneider, Johannes P; Basler, Marek

    2016-11-01

    To understand basic principles of living organisms one has to know many different properties of all cellular components, their mutual interactions but also their amounts and spatial organization. Live-cell imaging is one possible approach to obtain such data. To get multiple snapshots of a cellular process, the imaging approach has to be gentle enough to not disrupt basic functions of the cell but also have high temporal and spatial resolution to detect and describe the changes. Light microscopy has become a method of choice and since its early development over 300 years ago revolutionized our understanding of living organisms. As most cellular components are indistinguishable from the rest of the cellular contents, the second revolution came from a discovery of specific labelling techniques, such as fusions to fluorescent proteins that allowed specific tracking of a component of interest. Currently, several different tags can be tracked independently and this allows us to simultaneously monitor the dynamics of several cellular components and from the correlation of their dynamics to infer their respective functions. It is, therefore, not surprising that live-cell fluorescence microscopy significantly advanced our understanding of basic cellular processes. Current cameras are fast enough to detect changes with millisecond time resolution and are sensitive enough to detect even a few photons per pixel. Together with constant improvement of properties of fluorescent tags, it is now possible to track single molecules in living cells over an extended period of time with a great temporal resolution. The parallel development of new illumination and detection techniques allowed breaking the diffraction barrier and thus further pushed the resolution limit of light microscopy. In this review, we would like to cover recent advances in live-cell imaging technology relevant to bacterial cells and provide a few examples of research that has been possible due to imaging

  12. Shedding light on biology of bacterial cells

    Science.gov (United States)

    2016-01-01

    To understand basic principles of living organisms one has to know many different properties of all cellular components, their mutual interactions but also their amounts and spatial organization. Live-cell imaging is one possible approach to obtain such data. To get multiple snapshots of a cellular process, the imaging approach has to be gentle enough to not disrupt basic functions of the cell but also have high temporal and spatial resolution to detect and describe the changes. Light microscopy has become a method of choice and since its early development over 300 years ago revolutionized our understanding of living organisms. As most cellular components are indistinguishable from the rest of the cellular contents, the second revolution came from a discovery of specific labelling techniques, such as fusions to fluorescent proteins that allowed specific tracking of a component of interest. Currently, several different tags can be tracked independently and this allows us to simultaneously monitor the dynamics of several cellular components and from the correlation of their dynamics to infer their respective functions. It is, therefore, not surprising that live-cell fluorescence microscopy significantly advanced our understanding of basic cellular processes. Current cameras are fast enough to detect changes with millisecond time resolution and are sensitive enough to detect even a few photons per pixel. Together with constant improvement of properties of fluorescent tags, it is now possible to track single molecules in living cells over an extended period of time with a great temporal resolution. The parallel development of new illumination and detection techniques allowed breaking the diffraction barrier and thus further pushed the resolution limit of light microscopy. In this review, we would like to cover recent advances in live-cell imaging technology relevant to bacterial cells and provide a few examples of research that has been possible due to imaging. This

  13. Genome Annotation in a Community College Cell Biology Lab

    Science.gov (United States)

    Beagley, C. Timothy

    2013-01-01

    The Biology Department at Salt Lake Community College has used the IMG-ACT toolbox to introduce a genome mapping and annotation exercise into the laboratory portion of its Cell Biology course. This project provides students with an authentic inquiry-based learning experience while introducing them to computational biology and contemporary learning…

  14. Glucose Transport in Cultured Animal Cells: An Exercise for the Undergraduate Cell Biology Laboratory

    Science.gov (United States)

    Ledbetter, Mary Lee S.; Lippert, Malcolm J.

    2002-01-01

    Membrane transport is a fundamental concept that undergraduate students of cell biology understand better with laboratory experience. Formal teaching exercises commonly used to illustrate this concept are unbiological, qualitative, or intricate and time consuming to prepare. We have developed an exercise that uses uptake of radiolabeled nutrient…

  15. Molecular biology of normal melanocytes and melanoma cells.

    Science.gov (United States)

    Bandarchi, Bizhan; Jabbari, Cyrus Aleksandre; Vedadi, Ali; Navab, Roya

    2013-08-01

    Malignant melanoma is one of the most aggressive malignancies in humans and is responsible for 60-80% of deaths from skin cancers. The 5-year survival of patients with metastatic malignant melanoma is about 14%. Its incidence has been increasing in the white population over the past two decades. The mechanisms leading to malignant transformation of melanocytes and melanocytic lesions are poorly understood. In developing malignant melanoma, there is a complex interaction of environmental and endogenous (genetic) factors, including: dysregulation of cell proliferation, programmed cell death (apoptosis) and cell-to-cell interactions. The understanding of genetic alterations in signalling pathways of primary and metastatic malignant melanoma and their interactions may lead to therapeutics modalities, including targeted therapies, particularly in advanced melanomas that have high mortality rates and are often resistant to chemotherapy and radiotherapy. Our knowledge regarding the molecular biology of malignant melanoma has been expanding. Even though several genes involved in melanocyte development may also be associated with melanoma cell development, it is still unclear how a normal melanocyte becomes a melanoma cell. This article reviews the molecular events and recent findings associated with malignant melanoma.

  16. Synthetic biology outside the cell: linking computational tools to cell-free systems.

    Science.gov (United States)

    Lewis, Daniel D; Villarreal, Fernando D; Wu, Fan; Tan, Cheemeng

    2014-01-01

    As mathematical models become more commonly integrated into the study of biology, a common language for describing biological processes is manifesting. Many tools have emerged for the simulation of in vivo synthetic biological systems, with only a few examples of prominent work done on predicting the dynamics of cell-free synthetic systems. At the same time, experimental biologists have begun to study dynamics of in vitro systems encapsulated by amphiphilic molecules, opening the door for the development of a new generation of biomimetic systems. In this review, we explore both in vivo and in vitro models of biochemical networks with a special focus on tools that could be applied to the construction of cell-free expression systems. We believe that quantitative studies of complex cellular mechanisms and pathways in synthetic systems can yield important insights into what makes cells different from conventional chemical systems.

  17. Development of the biology card sorting task to measure conceptual expertise in biology.

    Science.gov (United States)

    Smith, Julia I; Combs, Elijah D; Nagami, Paul H; Alto, Valerie M; Goh, Henry G; Gourdet, Muryam A A; Hough, Christina M; Nickell, Ashley E; Peer, Adrian G; Coley, John D; Tanner, Kimberly D

    2013-01-01

    There are widespread aspirations to focus undergraduate biology education on teaching students to think conceptually like biologists; however, there is a dearth of assessment tools designed to measure progress from novice to expert biological conceptual thinking. We present the development of a novel assessment tool, the Biology Card Sorting Task, designed to probe how individuals organize their conceptual knowledge of biology. While modeled on tasks from cognitive psychology, this task is unique in its design to test two hypothesized conceptual frameworks for the organization of biological knowledge: 1) a surface feature organization focused on organism type and 2) a deep feature organization focused on fundamental biological concepts. In this initial investigation of the Biology Card Sorting Task, each of six analytical measures showed statistically significant differences when used to compare the card sorting results of putative biological experts (biology faculty) and novices (non-biology major undergraduates). Consistently, biology faculty appeared to sort based on hypothesized deep features, while non-biology majors appeared to sort based on either surface features or nonhypothesized organizational frameworks. Results suggest that this novel task is robust in distinguishing populations of biology experts and biology novices and may be an adaptable tool for tracking emerging biology conceptual expertise.

  18. Development of the Biology Card Sorting Task to Measure Conceptual Expertise in Biology

    Science.gov (United States)

    Smith, Julia I.; Combs, Elijah D.; Nagami, Paul H.; Alto, Valerie M.; Goh, Henry G.; Gourdet, Muryam A. A.; Hough, Christina M.; Nickell, Ashley E.; Peer, Adrian G.; Coley, John D.; Tanner, Kimberly D.

    2013-01-01

    There are widespread aspirations to focus undergraduate biology education on teaching students to think conceptually like biologists; however, there is a dearth of assessment tools designed to measure progress from novice to expert biological conceptual thinking. We present the development of a novel assessment tool, the Biology Card Sorting Task,…

  19. [Better understanding of the biology of cancer cells].

    Science.gov (United States)

    Klein, G

    2000-09-25

    Most forms of cancer arise through a Darwinian evolutionary process. The natural selection that ultimately leads to cancer takes place in somatic tissues although it may be triggered by inherited mutations in a small but significant minority. It favors the growth of clones and subclones that are less and less responsive to normal intra- and extracellular growth control mechanisms. The development of molecular biology has led to the identification of many genes that participate in this somatic evolution. They belong to the following groups: Oncogenes, constitutively activated by structural and/or regulatory changes that drive the cell to continuous proliferation; Tumor suppressor genes, that can inhibit the illegitimately activated cell cycle. They contribute to tumor development by loss mutations or permanent down-regulation, e.g. by methylation; Apoptosis inhibitory genes that can contribute to tumor development by raising the apoptotic threshold, and apoptosis promoting genes that can favor the growth of apoptosis prone tumor cells by their loss or inactivation; DNA repair genes whose inactivation can counteract the normal elimination of cells that carry potentially cancer promoting mutations. Inherited mutations in DNA repair genes can lead to familial cancer syndromes. Immortalizing genes that counteract cellular senescence; Angiogenesis promoting genes whose products may stimulate the vascular supply of tumors; Genes whose structural or functional changes may facilitate the escape of tumor cells from immune rejection; The multi-step development of individual tumors can encompass changes in most or all of these genes. They occur independently of each other and without any fixed order or timing. Tumor emancipation from growth control can therefore proceed along various pathways. It follows that each tumor must be regarded as a biologically unique individual.

  20. Peroxisystem: harnessing systems cell biology to study peroxisomes.

    Science.gov (United States)

    Schuldiner, Maya; Zalckvar, Einat

    2015-04-01

    In recent years, high-throughput experimentation with quantitative analysis and modelling of cells, recently dubbed systems cell biology, has been harnessed to study the organisation and dynamics of simple biological systems. Here, we suggest that the peroxisome, a fascinating dynamic organelle, can be used as a good candidate for studying a complete biological system. We discuss several aspects of peroxisomes that can be studied using high-throughput systematic approaches and be integrated into a predictive model. Such approaches can be used in the future to study and understand how a more complex biological system, like a cell and maybe even ultimately a whole organism, works.

  1. Molecular biology of testicular germ cell tumors.

    Science.gov (United States)

    Gonzalez-Exposito, R; Merino, M; Aguayo, C

    2016-06-01

    Testicular germ cell tumors (TGCTs) are the most common solid tumors in young adult men. They constitute a unique pathology because of their embryonic and germ origin and their special behavior. Genetic predisposition, environmental factors involved in their development and genetic aberrations have been under study in many works throughout the last years trying to explain the susceptibility and the transformation mechanism of TGCTs. Despite the high rate of cure in this type of tumors because its particular sensitivity to cisplatin, there are tumors resistant to chemotherapy for which it is needed to find new therapies. In the present work, it has been carried out a literature review on the most important molecular aspects involved in the onset and development of such tumors, as well as a review of the major developments regarding prognostic factors, new prognostic biomarkers and the possibility of new targeted therapies.

  2. An update: improvements in imaging perfluorocarbon-mounted plant leaves with implications for studies of plant pathology, physiology, development and cell biology.

    Directory of Open Access Journals (Sweden)

    George R Littlejohn

    2014-04-01

    Full Text Available Plant leaves are optically complex, which makes them difficult to image by light microscopy. Careful sample preparation is therefore required to enable researchers to maximise the information gained from advances in fluorescent protein labelling, cell dyes and innovations in microscope technologies and techniques. We have previously shown that mounting leaves in the non-toxic, non-fluorescent perfluorocarbon (PFC, perfluorodecalin (PFD enhances the optical properties of the leaf with minimal impact on physiology. Here, we assess the use of the perfluorocarbons PFD, and perfluoroperhydrophenanthrene (PP11 for in vivo plant leaf imaging using 4 advanced modes of microscopy: laser scanning confocal microscopy (LSCM, Two-photon fluorescence (TPF microscopy, second harmonic generation (SHG microscopy and stimulated Raman scattering (SRS microscopy. For every mode of imaging tested, we observed an improved signal when leaves were mounted in PFD or in PP11, compared to mounting the samples in water. Using an image analysis technique based on autocorrelation to quantitatively assess LSCM image deterioration with depth, we show that PP11 outperformed PFD as a mounting medium by enabling the acquisition of clearer images deeper into the tissue. In addition, we show that SRS microscopy can be used to image perfluorocarbons directly in the mesophyll and thereby easily delimit the negative space within a leaf, which may have important implications for studies of leaf development. Direct comparison of on and off resonance SRS micrographs show that PFCs do not to form intracellular aggregates in live plants. We conclude that the application of PFCs as mounting media substantially increases advanced microscopy image quality of living mesophyll and leaf vascular bundle cells.

  3. Cell Biology and Microbiology: A Continuous Cross-Feeding.

    Science.gov (United States)

    Pizarro-Cerdá, Javier; Cossart, Pascale

    2016-07-01

    Microbiology and cell biology both involve the study of cells, albeit at different levels of complexity and scale. Interactions between both fields during the past 25 years have led to major conceptual and technological advances that have reshaped the whole biology landscape and its biomedical applications.

  4. The Histochemistry and Cell Biology compendium: a review of 2012.

    Science.gov (United States)

    Taatjes, Douglas J; Roth, Jürgen

    2013-06-01

    The year 2012 was another exciting year for Histochemistry and Cell Biology. Innovations in immunohistochemical techniques and microscopy-based imaging have provided the means for advances in the field of cell biology. Over 130 manuscripts were published in the journal during 2012, representing methodological advancements, pathobiology of disease, and cell and tissue biology. This annual review of the manuscripts published in the previous year in Histochemistry and Cell Biology serves as an abbreviated reference for the readership to quickly peruse and discern trends in the field over the past year. The review has been broadly divided into multiple sections encompassing topics such as method advancements, subcellular components, extracellular matrix, and organ systems. We hope that the creation of this subdivision will serve to guide the reader to a specific topic of interest, while simultaneously providing a concise and easily accessible encapsulation of other topics in the broad area of Histochemistry and Cell Biology.

  5. Development of technology for biological dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Gyu; Kim, Kug Chan; Lee, Kang Sik; Kim, Jin Kyu; Chun, Ki Jung; Shim, Hye Won; Park, Seon Young

    1997-07-01

    Adult male rats were treated a single, whole body exposure to a dose of 0.1, 0.5, 1, 2, 3, 5, 7 and 9 Gy. The animal were sacrificed 6, 24, 48, 72, 96 and 212 hours following exposure. Enzyme activity changes such as alkaline phosphatase, GOT, creating kinase, MDH and LDH in rat serum as biochemical indicators useful for evaluating radiation exposure were measured. An competitive enzyme linked immunosorbent assay (ELISA) has been developed to measure acute phase reactants (APRs) in rat serum after gamma-irradiation. Rat alpha-2 macroglobulin, alpha-1 acid glycoprotein, haptoglobin, ceruloplasmin, C-reactive protein and alpha-1 antitrypsin were purified from the plasma of turpentine treated rats. In vitro somatic mutation induced by gamma-irradiation and pentachlorophenol (PCP) which is representative of chemical pollutant was measured at the hypoxanthine-guanine phosphorybosyl transferase (HPRT) locus in human T-lymphocytes by a cell cloning assay. Mutant cells were selected by their ability to form a clone in the presence of purine analogue 6-thioguanine. Reverse transcriptase/polymerase chain reaction technique was needed for the mutation spectrum to discriminate combined exposure to radiation and chemicals. (author). 98 refs., 7 tabs., 47 figs.

  6. Cell and developmental biology of arbuscular mycorrhiza symbiosis.

    Science.gov (United States)

    Gutjahr, Caroline; Parniske, Martin

    2013-01-01

    The default mineral nutrient acquisition strategy of land plants is the symbiosis with arbuscular mycorrhiza (AM) fungi. Research into the cell and developmental biology of AM revealed fascinating insights into the plasticity of plant cell development and of interorganismic communication. It is driven by the prospect of increased exploitation of AM benefits for sustainable agriculture. The plant cell developmental program for intracellular accommodation of AM fungi is activated by a genetically defined signaling pathway involving calcium spiking in the nucleus as second messenger. Calcium spiking is triggered by chitooligosaccharides released by AM fungi that are probably perceived via LysM domain receptor kinases. Fungal infection and calcium spiking are spatiotemporally coordinated, and only cells committed to accommodating the fungus undergo high-frequency spiking. Delivery of mineral nutrients by AM fungi occurs at tree-shaped hyphal structures, the arbuscules, in plant cortical cells. Nutrients are taken up at a plant-derived periarbuscular membrane, which surrounds fungal hyphae and carries a specific transporter composition that is of direct importance for symbiotic efficiency. An elegant study has unveiled a new and unexpected mechanism for specific protein localization to the periarbuscular membrane, which relies on the timing of gene expression to synchronize protein biosynthesis with a redirection of secretion. The control of AM development by phytohormones is currently subject to active investigation and has led to the rediscovery of strigolactones. Nearly all tested phytohormones regulate AM development, and major insights into the mechanisms of this regulation are expected in the near future.

  7. Skeletal muscle stem cells from animals I. Basic cell biology

    Science.gov (United States)

    Skeletal muscle stem cells from food-producing animals have been of interest to agricultural life scientists seeking to develop a better understanding of the molecular regulation of lean tissue (skeletal muscle protein hypertrophy) and intramuscular fat (marbling) development. Enhanced understanding...

  8. Deducing protein function by forensic integrative cell biology.

    Directory of Open Access Journals (Sweden)

    William C Earnshaw

    2013-12-01

    Full Text Available Our ability to sequence genomes has provided us with near-complete lists of the proteins that compose cells, tissues, and organisms, but this is only the beginning of the process to discover the functions of cellular components. In the future, it's going to be crucial to develop computational analyses that can predict the biological functions of uncharacterised proteins. At the same time, we must not forget those fundamental experimental skills needed to confirm the predictions or send the analysts back to the drawing board to devise new ones.

  9. The state of the union: the cell biology of fertilization.

    Science.gov (United States)

    Evans, Janice P; Florman, Harvey M

    2002-10-01

    Fertilization is the process by which sperm and egg unite. An expanded understanding of the mechanisms that underlie these events has provided insights into an important aspect of early development and also has proven to be a valuable model in which to study cellular function. In addition, many emerging strategies for contraception and for the treatment of infertility are based on the mechanism of gamete interaction. Here, we discuss the cell and molecular biology of mammalian fertilization, highlight selected recent breakthroughs and attempt to identify key unanswered questions.

  10. Deducing protein function by forensic integrative cell biology.

    Science.gov (United States)

    Earnshaw, William C

    2013-12-01

    Our ability to sequence genomes has provided us with near-complete lists of the proteins that compose cells, tissues, and organisms, but this is only the beginning of the process to discover the functions of cellular components. In the future, it's going to be crucial to develop computational analyses that can predict the biological functions of uncharacterised proteins. At the same time, we must not forget those fundamental experimental skills needed to confirm the predictions or send the analysts back to the drawing board to devise new ones.

  11. Autotaxin: Its Role in Biology of Melanoma Cells and as a Pharmacological Target

    Directory of Open Access Journals (Sweden)

    Maciej Jankowski

    2011-01-01

    Full Text Available Autotaxin (ATX is an extracellular lysophospholipase D (lysoPLD released from normal cells and cancer cells. Activity of ATX is detected in various biological fluids. The lysophosphatidic acid (LPA is the main product of ATX. LPA acting through specific G protein-coupled receptors (LPA1-LPA6 affects immunological response, normal development, and malignant tumors' formation and progression. In this review, the impact of autotoxin on biology of melanoma cells and potential treatment is discussed.

  12. Omnis cellula e cellula revisited: cell biology as the foundation of pathology.

    Science.gov (United States)

    Wright, Nicholas A; Poulsom, Richard

    2012-01-01

    This 2012 Annual Review Issue of The Journal of Pathology argues strongly that cell biology, in its many disciplines, underpins the foundation of our understanding of the mechanisms of disease-the holy grail of pathology. Our increasing knowledge of the human genome will not be enough to attain this goal without parallel developments in our comprehension of the results, at the cellular level, of these genetic changes. In the end, it is cell biology and cell biologists who will deliver this mission.

  13. A quick guide to light microscopy in cell biology

    Science.gov (United States)

    Thorn, Kurt

    2016-01-01

    Light microscopy is a key tool in modern cell biology. Light microscopy has several features that make it ideally suited for imaging biology in living cells: the resolution is well-matched to the sizes of subcellular structures, a diverse range of available fluorescent probes makes it possible to mark proteins, organelles, and other structures for imaging, and the relatively nonperturbing nature of light means that living cells can be imaged for long periods of time to follow their dynamics. Here I provide a brief introduction to using light microscopy in cell biology, with particular emphasis on factors to be considered when starting microscopy experiments. PMID:26768859

  14. Single cell induced optical confinement in biological lasers

    Science.gov (United States)

    Karl, M.; Dietrich, C. P.; Schubert, M.; Samuel, I. D. W.; Turnbull, G. A.; Gather, M. C.

    2017-03-01

    Biological single cell lasers have shown great potential for fundamental research and next generation sensing applications. In this study, the potential of fluorescent biological cells as refractive index landscapes and active optical elements is investigated using a combined Fourier- and hyperspectral imaging technique. We show that the refractive index contrast between cell and surrounding leads to 3D confinement of photons inside living cells. The Fourier- and real-space emission characteristics of these biological lasers are closely related and can be predicted from one another. Investigations of the lasing threshold for different energy and momentum position in Fourier-space give insight into the fundamental creation of longitudinal and transverse lasing modes within the cell. These findings corroborate the potential of living biological materials for precision engineering of photonic structures and may pave the way towards low threshold polariton lasing from single cells.

  15. A Personal Journey of Discovery: Developing Technology and Changing Biology

    Science.gov (United States)

    Hood, Lee

    2008-07-01

    This autobiographical article describes my experiences in developing chemically based, biological technologies for deciphering biological information: DNA, RNA, proteins, interactions, and networks. The instruments developed include protein and DNA sequencers and synthesizers, as well as ink-jet technology for synthesizing DNA chips. Diverse new strategies for doing biology also arose from novel applications of these instruments. The functioning of these instruments can be integrated to generate powerful new approaches to cloning and characterizing genes from a small amount of protein sequence or to using gene sequences to synthesize peptide fragments so as to characterize various properties of the proteins. I also discuss the five paradigm changes in which I have participated: the development and integration of biological instrumentation; the human genome project; cross-disciplinary biology; systems biology; and predictive, personalized, preventive, and participatory (P4) medicine. Finally, I discuss the origins, the philosophy, some accomplishments, and the future trajectories of the Institute for Systems Biology.

  16. Essential and distinct roles for cdc42 and rac1 in the regulation of Schwann cell biology during peripheral nervous system development

    DEFF Research Database (Denmark)

    Benninger, Yves; Thurnherr, Tina; Pereira, Jorge A

    2007-01-01

    During peripheral nervous system (PNS) myelination, Schwann cells must interpret extracellular cues to sense their environment and regulate their intrinsic developmental program accordingly. The pathways and mechanisms involved in this process are only partially understood. We use tissue-specific......During peripheral nervous system (PNS) myelination, Schwann cells must interpret extracellular cues to sense their environment and regulate their intrinsic developmental program accordingly. The pathways and mechanisms involved in this process are only partially understood. We use tissue......-specific conditional gene targeting to show that members of the Rho GTPases, cdc42 and rac1, have different and essential roles in axon sorting by Schwann cells. Our results indicate that although cdc42 is required for normal Schwann cell proliferation, rac1 regulates Schwann cell process extension and stabilization...

  17. Cell biology: Death drags down the neighbourhood

    Science.gov (United States)

    Vasquez, Claudia G.; Martin, Adam C.

    2015-02-01

    An analysis of dying cells reveals that they play an active part in modifying tissue shape by pulling on neighbouring cells. This induces neighbouring cells to contract at their apices, which results in tissue folding. See Letter p.245

  18. The development of a biological interface for transition metal implants

    Science.gov (United States)

    Melton, Kim R.

    The specific goal of this research was to develop an in vitro model for a root-form endosseous dental implant that contains a periodontal ligament and that is biologically integratable into alveolar bone. This objective was based on the following two hypotheses. (1) The chemical attachment of extracellular matrix proteins to the surface of transition metals increases the number of fibroblast cells attached to the surface of the metal. (2) The chemical attachment of extracellular matrix proteins to the surface of transition metals increases the strength of the fibroblast cell attachment to the surface of the metal. The model needed to have a well-controlled surface that was reproducible. Thus, a layer of Au was deposited over a Ti base, and dithiobis(succinimidylpropionate) (DSP) a chemical containing disulfide groups was adsorbed to the Au. Next, extracellular matrix proteins which are periodontal ligament components were attached to the free end group of the chemical that was adsorbed to the Au. This surface served as an attachment substrate on which additional periodontal ligament components such as fibroblast cells could grow. From this model a new implant interface may be developed. This model was tested using the following polypeptides; collagen type I, collagen type IV, fibronectin, and poly-D-lysine. L929 cells were grown on Ti, Ti + Au, Ti + Au + polypeptide, and Ti + Au + DSP + polypeptide. After 72 hours, the live cells were stained with neutral red. The substrates were then subjected to increasing centrifugal forces. The viable stained cells were fixed onto the substrates and cells were counted. The hypotheses were proven for three polypeptides: fibronectin, collagen type I, and poly-D-lysine. The strongest attachment was found with collagen type I. Collagen type IV did not provide any advantage for attachment over uncoated transition metals.

  19. Biological conversion of synthesis gas culture development

    Energy Technology Data Exchange (ETDEWEB)

    Klasson, K.T.; Basu, R.; Johnson, E.R.; Clausen, E.C.; Gaddy, J.L.

    1992-03-01

    Research continues on the conversion of synthesis by shift reactions involving bacteria. Topics discussed here include: biological water gas shift, sulfur gas utilization, experimental screening procedures, water gas shift studies, H{sub 2}S removal studies, COS degradation by selected CO-utilizing bacteria, and indirect COS utilization by Chlorobia. (VC)

  20. Targeted development of registries of biological parts.

    Directory of Open Access Journals (Sweden)

    Jean Peccoud

    Full Text Available BACKGROUND: The design and construction of novel biological systems by combining basic building blocks represents a dominant paradigm in synthetic biology. Creating and maintaining a database of these building blocks is a way to streamline the fabrication of complex constructs. The Registry of Standard Biological Parts (Registry is the most advanced implementation of this idea. METHODS/PRINCIPAL FINDINGS: By analyzing inclusion relationships between the sequences of the Registry entries, we build a network that can be related to the Registry abstraction hierarchy. The distribution of entry reuse and complexity was extracted from this network. The collection of clones associated with the database entries was also analyzed. The plasmid inserts were amplified and sequenced. The sequences of 162 inserts could be confirmed experimentally but unexpected discrepancies have also been identified. CONCLUSIONS/SIGNIFICANCE: Organizational guidelines are proposed to help design and manage this new type of scientific resources. In particular, it appears necessary to compare the cost of ensuring the integrity of database entries and associated biological samples with their value to the users. The initial strategy that permits including any combination of parts irrespective of its potential value leads to an exponential and economically unsustainable growth that may be detrimental to the quality and long-term value of the resource to its users.

  1. Logical Development of the Cell Ontology

    Directory of Open Access Journals (Sweden)

    Blake Judith A

    2011-01-01

    Full Text Available Abstract Background The Cell Ontology (CL is an ontology for the representation of in vivo cell types. As biological ontologies such as the CL grow in complexity, they become increasingly difficult to use and maintain. By making the information in the ontology computable, we can use automated reasoners to detect errors and assist with classification. Here we report on the generation of computable definitions for the hematopoietic cell types in the CL. Results Computable definitions for over 340 CL classes have been created using a genus-differentia approach. These define cell types according to multiple axes of classification such as the protein complexes found on the surface of a cell type, the biological processes participated in by a cell type, or the phenotypic characteristics associated with a cell type. We employed automated reasoners to verify the ontology and to reveal mistakes in manual curation. The implementation of this process exposed areas in the ontology where new cell type classes were needed to accommodate species-specific expression of cellular markers. Our use of reasoners also inferred new relationships within the CL, and between the CL and the contributing ontologies. This restructured ontology can be used to identify immune cells by flow cytometry, supports sophisticated biological queries involving cells, and helps generate new hypotheses about cell function based on similarities to other cell types. Conclusion Use of computable definitions enhances the development of the CL and supports the interoperability of OBO ontologies.

  2. Cytoview: Development of a cell modelling framework

    Indian Academy of Sciences (India)

    Prashant Khodade; Samta Malhotra; Nirmal Kumar; M Sriram Iyengar; N Balakrishnan; Nagasuma Chandra

    2007-08-01

    The biological cell, a natural self-contained unit of prime biological importance, is an enormously complex machine that can be understood at many levels. A higher-level perspective of the entire cell requires integration of various features into coherent, biologically meaningful descriptions. There are some efforts to model cells based on their genome, proteome or metabolome descriptions. However, there are no established methods as yet to describe cell morphologies, capture similarities and differences between different cells or between healthy and disease states. Here we report a framework to model various aspects of a cell and integrate knowledge encoded at different levels of abstraction, with cell morphologies at one end to atomic structures at the other. The different issues that have been addressed are ontologies, feature description and model building. The framework describes dotted representations and tree data structures to integrate diverse pieces of data and parametric models enabling size, shape and location descriptions. The framework serves as a first step in integrating different levels of data available for a biological cell and has the potential to lead to development of computational models in our pursuit to model cell structure and function, from which several applications can flow out.

  3. Developments in the tools and methodologies of synthetic biology

    Directory of Open Access Journals (Sweden)

    Richard eKelwick

    2014-11-01

    Full Text Available Synthetic biology is principally concerned with the rational design and engineering of biologically based parts, devices or systems. However, biological systems are generally complex and unpredictable and are therefore intrinsically difficult to engineer. In order to address these fundamental challenges, synthetic biology is aiming to unify a ‘body of knowledge’ from several foundational scientific fields, within the context of a set of engineering principles. This shift in perspective is enabling synthetic biologists to address complexity, such that robust biological systems can be designed, assembled and tested as part of a biological design cycle. The design cycle takes a forward-design approach in which a biological system is specified, modeled, analyzed, assembled and its functionality tested. At each stage of the design cycle an expanding repertoire of tools is being developed. In this review we highlight several of these tools in terms of their applications and benefits to the synthetic biology community.

  4. Molecular cell biology of androgen receptor signalling.

    Science.gov (United States)

    Bennett, Nigel C; Gardiner, Robert A; Hooper, John D; Johnson, David W; Gobe, Glenda C

    2010-06-01

    The classical action of androgen receptor (AR) is to regulate gene transcriptional processes via AR nuclear translocation, response element binding and recruitment of, or crosstalk with, transcription factors. AR also utilises non-classical, non-genomic mechanisms of signal transduction. These precede gene transcription or protein synthesis, and involve steroid-induced modulation of cytoplasmic or cell membrane-bound regulatory proteins. Despite many decades of investigation, the role of AR in gene regulation of cells and tissues remains only partially characterised. AR exerts most of its effects in sex hormone-dependent tissues of the body, but the receptor is also expressed in many tissues not previously thought to be androgen sensitive. Thus it is likely that a complex, more over-arching, role for AR exists. Each AR domain co-ordinates a multitude of individual and vital roles via a diverse array of interacting partner molecules that are necessary for cellular and tissue development and maintenance. Aberrant AR activity, promoted by mutations or binding partner misregulation, can present as many clinical manifestations including androgen insensitivity syndrome and prostate cancer. In the case of malignant prostate cancer, treatment generally revolves around androgen deprivation therapies designed to interfere with AR action and the androgen signalling axis. Androgen therapies for prostate cancer often fail, highlighting a real need for increased research into AR function.

  5. Evolutionary cell biology: functional insight from "endless forms most beautiful".

    Science.gov (United States)

    Richardson, Elisabeth; Zerr, Kelly; Tsaousis, Anastasios; Dorrell, Richard G; Dacks, Joel B

    2015-12-15

    In animal and fungal model organisms, the complexities of cell biology have been analyzed in exquisite detail and much is known about how these organisms function at the cellular level. However, the model organisms cell biologists generally use include only a tiny fraction of the true diversity of eukaryotic cellular forms. The divergent cellular processes observed in these more distant lineages are still largely unknown in the general scientific community. Despite the relative obscurity of these organisms, comparative studies of them across eukaryotic diversity have had profound implications for our understanding of fundamental cell biology in all species and have revealed the evolution and origins of previously observed cellular processes. In this Perspective, we will discuss the complexity of cell biology found across the eukaryotic tree, and three specific examples of where studies of divergent cell biology have altered our understanding of key functional aspects of mitochondria, plastids, and membrane trafficking.

  6. Cell-free synthetic biology for environmental sensing and remediation.

    Science.gov (United States)

    Karig, David K

    2017-02-19

    The fields of biosensing and bioremediation leverage the phenomenal array of sensing and metabolic capabilities offered by natural microbes. Synthetic biology provides tools for transforming these fields through complex integration of natural and novel biological components to achieve sophisticated sensing, regulation, and metabolic function. However, the majority of synthetic biology efforts are conducted in living cells, and concerns over releasing genetically modified organisms constitute a key barrier to environmental applications. Cell-free protein expression systems offer a path towards leveraging synthetic biology, while preventing the spread of engineered organisms in nature. Recent efforts in the areas of cell-free approaches for sensing, regulation, and metabolic pathway implementation, as well as for preserving and deploying cell-free expression components, embody key steps towards realizing the potential of cell-free systems for environmental sensing and remediation.

  7. Development of radiological emergency preparedness and biological dosimetry technology

    Energy Technology Data Exchange (ETDEWEB)

    Han, Moon Hee; Kim, In Gyoo; Kim, Kook Chan; Kim, Eun Han; Suh, Kyung Suk; Hwang, Won Tae; Choi, Young Gil; Shim, Hae Won; Lee, Jeong Ho; Lee, Kang Suk

    1999-04-01

    Large-scale field tracer experiments have been conducted on Ulchin and Wolsung nuclear sites for the purpose of validating FADAS and of analyzing the environmental characteristics around the nuclear site. The most influential factor in atmospheric dispersion is the meteorological condition. During the experiment, meteorological data were measured on the release point and the selected positions among sampling points. Once radioactive materials are released to the atmosphere, members of public may be exposed through the environmental media such as air, soil and foods. Therefore, to protect the public, adequate countermeasures should be taken at due time for those exposure pathways. Both processes of justification and optimization are applied to a countermeasure simultaneously for decision-making. The work scope of biological research for the radiation protection had contained the search of biological microanalytic methods for the assessment of health effect by radiation and toxic agents, the standardization of human t-lymphocyte cell culture and polymerase chain reaction, T-cell clonal assay, and the quantification of mutation frequency in hypoxanthine (guanine) phosphoribosyl transferase (hprt) gene locus by single exposure or combined exposure. Especially, the polymerase chain reaction methods by usage of reverse transcriptase had been developed to analyze of gene product by {gamma} - radiation and chemical (pentachlorophenol) agent exposure, and investigate the point mutation in hprt gene locus of T-lymphocytes. (author)

  8. Advancing cell biology through proteomics in space and time (PROSPECTS)

    DEFF Research Database (Denmark)

    Lamond, A.I.; Uhlen, M.; Horning, S.

    2012-01-01

    a range of sensitive and quantitative approaches for measuring protein structures and dynamics that promise to revolutionize our understanding of cell biology and molecular mechanisms in both human cells and model organisms. The Proteomics Specification in Time and Space (PROSPECTS) Network is a unique EU...... the proteomics field is moving beyond simply identifying proteins with high sensitivity toward providing a powerful and versatile set of assay systems for characterizing proteome dynamics and thereby creating a new "third generation" proteomics strategy that offers an indispensible tool for cell biology...... and molecular medicine. © 2012 by The American Society for Biochemistry and Molecular Biology, Inc....

  9. Recent progress in development of synthetic biology platforms and metabolic engineering of Corynebacterium glutamicum.

    Science.gov (United States)

    Woo, Han Min; Park, Jin-Byung

    2014-06-20

    The paradigm of synthetic biology has been evolving, along with relevant engineering, to achieve designed bio-systems. Synthetic biology has reached the point where it is possible to develop microbial strains to produce desired chemicals. Recent advances in this field have promoted metabolic engineering of Corynebacterium glutamicum as an amino-acid producer for use in intelligent microbial-cell factories. Here, we review recent advances that address C. glutamicum as a potential model organism for synthetic biology, and evaluate their industrial applications. Finally, we highlight the perspective of developing C. glutamicum as a step toward advanced microbial-cell factories that could produce valuable chemicals from renewable resources.

  10. Embryonic stem cell biology: insights from molecular imaging.

    Science.gov (United States)

    Sallam, Karim; Wu, Joseph C

    2010-01-01

    Embryonic stem (ES) cells have therapeutic potential in disorders of cellular loss such as myocardial infarction, type I diabetes and neurodegenerative disorders. ES cell biology in living subjects was largely poorly understood until incorporation of molecular imaging into the field. Reporter gene imaging works by integrating a reporter gene into ES cells and using a reporter probe to induce a signal detectable by normal imaging modalities. Reporter gene imaging allows for longitudinal tracking of ES cells within the same host for a prolonged period of time. This has advantages over postmortem immunohistochemistry and traditional imaging modalities. The advantages include expression of reporter gene is limited to viable cells, expression is conserved between generations of dividing cells, and expression can be linked to a specific population of cells. These advantages were especially useful in studying a dynamic cell population such as ES cells and proved useful in elucidating the biology of ES cells. Reporter gene imaging identified poor integration of differentiated ES cells transplanted into host tissue as well as delayed donor cell death as reasons for poor long-term survival in vivo. This imaging technology also confirmed that ES cells indeed have immunogenic properties that factor into cell survival and differentiation. Finally, reporter gene imaging improved our understanding of the neoplastic risk of undifferentiated ES cells in forming teratomas. Despite such advances, much remains to be understood about ES cell biology to translate this technology to the bedside, and reporter gene imaging will certainly play a key role in formulating this understanding.

  11. Modeling cell-in-cell structure into its biological significance

    OpenAIRE

    He, M-f; Wang, S.; Wang, Y; Wang, X-N.

    2013-01-01

    Although cell-in-cell structure was noted 100 years ago, the molecular mechanisms of ‘entering' and the destination of cell-in-cell remain largely unclear. It takes place among the same type of cells (homotypic cell-in-cell) or different types of cells (heterotypic cell-in-cell). Cell-in-cell formation affects both effector cells and their host cells in multiple aspects, while cell-in-cell death is under more intensive investigation. Given that cell-in-cell has an important role in maintainin...

  12. Applied Developmental Biology: Making Human Pancreatic Beta Cells for Diabetics.

    Science.gov (United States)

    Melton, Douglas A

    2016-01-01

    Understanding the genes and signaling pathways that determine the differentiation and fate of a cell is a central goal of developmental biology. Using that information to gain mastery over the fates of cells presents new approaches to cell transplantation and drug discovery for human diseases including diabetes.

  13. Sub-terahertz resonance spectroscopy of biological macromolecules and cells

    Science.gov (United States)

    Globus, Tatiana; Moyer, Aaron; Gelmont, Boris; Khromova, Tatyana; Sizov, Igor; Ferrance, Jerome

    2013-05-01

    Recently we introduced a Sub-THz spectroscopic system for characterizing vibrational resonance features from biological materials. This new, continuous-wave, frequency-domain spectroscopic sensor operates at room temperature between 315 and 480 GHz with spectral resolution of at least 1 GHz and utilizes the source and detector components from Virginia Diode, Inc. In this work we present experimental results and interpretation of spectroscopic signatures from bacterial cells and their biological macromolecule structural components. Transmission and absorption spectra of the bacterial protein thioredoxin, DNA and lyophilized cells of Escherichia coli (E. coli), as well as spores of Bacillus subtillis and B. atrophaeus have been characterized. Experimental results for biomolecules are compared with absorption spectra calculated using molecular dynamics simulation, and confirm the underlying physics for resonance spectroscopy based on interactions between THz radiation and vibrational modes or groups of modes of atomic motions. Such interactions result in multiple intense and narrow specific resonances in transmission/absorption spectra from nano-gram samples with spectral line widths as small as 3 GHz. The results of this study indicate diverse relaxation dynamic mechanisms relevant to sub-THz vibrational spectroscopy, including long-lasting processes. We demonstrate that high sensitivity in resolved specific absorption fingerprints provides conditions for reliable detection, identification and discrimination capability, to the level of strains of the same bacteria, and for monitoring interactions between biomaterials and reagents in near real-time. Additionally, it creates the basis for the development of new types of advanced biological sensors through integrating the developed system with a microfluidic platform for biomaterial samples.

  14. Advancement in bioprocess technology: parallels between microbial natural products and cell culture biologics.

    Science.gov (United States)

    Bandyopadhyay, Arpan A; Khetan, Anurag; Malmberg, Li-Hong; Zhou, Weichang; Hu, Wei-Shou

    2017-02-09

    The emergence of natural products and industrial microbiology nearly eight decades ago propelled an era of bioprocess innovation. Half a century later, recombinant protein technology spurred the tremendous growth of biologics and added mammalian cells to the forefront of industrial producing cells in terms of the value of products generated. This review highlights the process technology of natural products and protein biologics. Despite the separation in time, there is a remarkable similarity in their progression. As the new generation of therapeutics for gene and cell therapy emerges, its process technology development can take inspiration from that of natural products and biologics.

  15. Stem cells: a plant biology perspective

    NARCIS (Netherlands)

    Scheres, B.J.G.

    2005-01-01

    A recent meeting at the Juan March Foundation in Madrid, Spain brought together plant biologists to discuss the characteristics of plant stem cells that are unique and those that are shared by stem cells from the animal kingdom

  16. Concise Review: Stem Cell Population Biology: Insights from Hematopoiesis.

    Science.gov (United States)

    MacLean, Adam L; Lo Celso, Cristina; Stumpf, Michael P H

    2017-01-01

    Stem cells are fundamental to human life and offer great therapeutic potential, yet their biology remains incompletely-or in cases even poorly-understood. The field of stem cell biology has grown substantially in recent years due to a combination of experimental and theoretical contributions: the experimental branch of this work provides data in an ever-increasing number of dimensions, while the theoretical branch seeks to determine suitable models of the fundamental stem cell processes that these data describe. The application of population dynamics to biology is amongst the oldest applications of mathematics to biology, and the population dynamics perspective continues to offer much today. Here we describe the impact that such a perspective has made in the field of stem cell biology. Using hematopoietic stem cells as our model system, we discuss the approaches that have been used to study their key properties, such as capacity for self-renewal, differentiation, and cell fate lineage choice. We will also discuss the relevance of population dynamics in models of stem cells and cancer, where competition naturally emerges as an influential factor on the temporal evolution of cell populations. Stem Cells 2017;35:80-88.

  17. Evaluation of the Redesign of an Undergraduate Cell Biology Course

    Science.gov (United States)

    McEwen, Laura April; Harris, dik; Schmid, Richard F.; Vogel, Jackie; Western, Tamara; Harrison, Paul

    2009-01-01

    This article offers a case study of the evaluation of a redesigned and redeveloped laboratory-based cell biology course. The course was a compulsory element of the biology program, but the laboratory had become outdated and was inadequately equipped. With the support of a faculty-based teaching improvement project, the teaching team redesigned the…

  18. Current view of mesenchymal stem cells biology (brief review

    Directory of Open Access Journals (Sweden)

    Maslova O. A.

    2012-06-01

    Full Text Available Although mesenchymal stem cells (MSC are in a focus of attention, some aspects of their biology are still unclear. This paper is a review of current research on MSC biology. The use of MSC in regenerative medicine is also briefly discussed.

  19. Integration of culture and biology in human development.

    Science.gov (United States)

    Mistry, Jayanthi

    2013-01-01

    The challenge of integrating biology and culture is addressed in this chapter by emphasizing human development as involving mutually constitutive, embodied, and epigenetic processes. Heuristically rich constructs extrapolated from cultural psychology and developmental science, such as embodiment, action, and activity, are presented as promising approaches to the integration of cultural and biology in human development. These theoretical notions are applied to frame the nascent field of cultural neuroscience as representing this integration of culture and biology. Current empirical research in cultural neuroscience is then synthesized to illustrate emerging trends in this body of literature that examine the integration of biology and culture.

  20. Cell Biology: Cohesin Rings Leave Loose Ends

    Science.gov (United States)

    Skibbens, Robert V.

    2016-01-01

    Cohesins function in almost all aspects of chromosome biology. Two new studies confirm that a subset of cohesin subunits form a flexible but compressed ring that can be opened through degradation. X-ray crystallography supports potentially differing regulation of subunit associations. PMID:25649818

  1. Bacterial cell biology outside the streetlight.

    Science.gov (United States)

    Bulgheresi, Silvia

    2016-09-01

    As much as vertical transmission of microbial symbionts requires their deep integration into the host reproductive and developmental biology, symbiotic lifestyle might profoundly affect bacterial growth and proliferation. This review describes the reproductive oddities displayed by bacteria associated - more or less intimately - with multicellular eukaryotes.

  2. Advances in Retinal Stem Cell Biology

    Directory of Open Access Journals (Sweden)

    Andrea S Viczian

    2013-01-01

    Full Text Available Tremendous progress has been made in recent years to generate retinal cells from pluripotent cell sources. These advances provide hope for those suffering from blindness due to lost retinal cells. Understanding the intrinsic genetic network in model organisms, like fly and frog, has led to a better understanding of the extrinsic signaling pathways necessary for retinal progenitor cell formation in mouse and human cell cultures. This review focuses on the culture methods used by different groups, which has culminated in the generation of laminated retinal tissue from both embryonic and induced pluripotent cells. The review also briefly describes advances made in transplantation studies using donor retinal progenitor and cultured retinal cells.

  3. Exploring Osmosis and Diffusion in Cells: A Guided-Inquiry Activity for Biology Classes, Developed through the Lesson-Study Process

    Science.gov (United States)

    Maguire, Lauren; Myerowitz, Lindsay; Sampson, Victor

    2010-01-01

    Guided inquiry is an instructional technique that requires students to answer a teacher-proposed research question, design an investigation, collect and analyze data, and then develop a conclusion (Bell, Smetana, and Binns 2005; NRC 2000). In this article, the authors describe a guided-inquiry lesson developed through the lesson-study process…

  4. The Comparison of Biologic Characteristics between Mice Embryonic Stem Cells and Bone Marrow Derived Dendritic Cells

    Institute of Scientific and Technical Information of China (English)

    Junfeng Liu; Zhixu He; Dong Shen; Jin Huang; Haowen Wang

    2009-01-01

    OBJECTIVE This research was to induce dendritic cells (DCs)from mice embryonic stem cells and bone marrow mononuclear cells in vitro, and then compare the biologic characteristics of them.METHODS Embryonic stem cells (ESCs) suspending cultured in petri dishes were induced to generate embryonic bodies (EBs).Fourteen-day well-developed EBs were transferred to histological culture with the same medium and supplemented 25 ng/ml GM-CSF and 25 ng/ml IL-3. In the next 2 weeks, there were numerous immature DCs outgrown. Meantime, mononuclear cells isolated from mice bone marrow were induced to derive dendritic cells by supplementing 25 ng/ml GM-CSF and 25 ng/ml IL-4, and then the morphology, phenotype and function of both dendritic cells from different origins were examined.RESULTS Growing mature through exposure to lipopolysaccharide (LPS), both ESC-DCs and BM-DCs exhibited dramatic veils of cytoplasm and extensive dendrites on their surfaces, highly expressed CD11c, MHC-Ⅱ and CD86 with strong capacity to stimulate primary T cell responses in mixed leukocyte reaction (MLR).CONCLUSION ESC-DC has the same biologic characteristics as BM-DC, and it provides a new, reliable source for the functional research of DC and next produce corresponding anti-tumor vaccine.

  5. The Cell Biology of Fission Yeast Septation.

    Science.gov (United States)

    García Cortés, Juan C; Ramos, Mariona; Osumi, Masako; Pérez, Pilar; Ribas, Juan Carlos

    2016-09-01

    In animal cells, cytokinesis requires the formation of a cleavage furrow that divides the cell into two daughter cells. Furrow formation is achieved by constriction of an actomyosin ring that invaginates the plasma membrane. However, fungal cells contain a rigid extracellular cell wall surrounding the plasma membrane; thus, fungal cytokinesis also requires the formation of a special septum wall structure between the dividing cells. The septum biosynthesis must be strictly coordinated with the deposition of new plasma membrane material and actomyosin ring closure and must occur in such a way that no breach in the cell wall occurs at any time. Because of the high turgor pressure in the fungal cell, even a minor local defect might lead to cell lysis and death. Here we review our knowledge of the septum structure in the fission yeast Schizosaccharomyces pombe and of the recent advances in our understanding of the relationship between septum biosynthesis and actomyosin ring constriction and how the two collaborate to build a cross-walled septum able to support the high turgor pressure of the cell. In addition, we discuss the importance of the septum biosynthesis for the steady ingression of the cleavage furrow.

  6. Cell Division and Evolution of Biological Tissues

    Science.gov (United States)

    Rivier, Nicolas; Arcenegui-Siemens, Xavier; Schliecker, Gudrun

    A tissue is a geometrical, space-filling, random cellular network; it remains in this steady state while individual cells divide. Cell division (fragmentation) is a local, elementary topological transformation which establishes statistical equilibrium of the structure. Statistical equilibrium is characterized by observable relations (Lewis, Aboav) between cell shapes, sizes and those of their neighbours, obtained through maximum entropy and topological correlation extending to nearest neighbours only, i.e. maximal randomness. For a two-dimensional tissue (epithelium), the distribution of cell shapes and that of mother and daughter cells can be obtained from elementary geometrical and physical arguments, except for an exponential factor favouring division of larger cells, and exponential and combinatorial factors encouraging a most symmetric division. The resulting distributions are very narrow, and stationarity severely restricts the range of an adjustable structural parameter

  7. Advancing cell biology through proteomics in space and time (PROSPECTS).

    Science.gov (United States)

    Lamond, Angus I; Uhlen, Mathias; Horning, Stevan; Makarov, Alexander; Robinson, Carol V; Serrano, Luis; Hartl, F Ulrich; Baumeister, Wolfgang; Werenskiold, Anne Katrin; Andersen, Jens S; Vorm, Ole; Linial, Michal; Aebersold, Ruedi; Mann, Matthias

    2012-03-01

    The term "proteomics" encompasses the large-scale detection and analysis of proteins and their post-translational modifications. Driven by major improvements in mass spectrometric instrumentation, methodology, and data analysis, the proteomics field has burgeoned in recent years. It now provides a range of sensitive and quantitative approaches for measuring protein structures and dynamics that promise to revolutionize our understanding of cell biology and molecular mechanisms in both human cells and model organisms. The Proteomics Specification in Time and Space (PROSPECTS) Network is a unique EU-funded project that brings together leading European research groups, spanning from instrumentation to biomedicine, in a collaborative five year initiative to develop new methods and applications for the functional analysis of cellular proteins. This special issue of Molecular and Cellular Proteomics presents 16 research papers reporting major recent progress by the PROSPECTS groups, including improvements to the resolution and sensitivity of the Orbitrap family of mass spectrometers, systematic detection of proteins using highly characterized antibody collections, and new methods for absolute as well as relative quantification of protein levels. Manuscripts in this issue exemplify approaches for performing quantitative measurements of cell proteomes and for studying their dynamic responses to perturbation, both during normal cellular responses and in disease mechanisms. Here we present a perspective on how the proteomics field is moving beyond simply identifying proteins with high sensitivity toward providing a powerful and versatile set of assay systems for characterizing proteome dynamics and thereby creating a new "third generation" proteomics strategy that offers an indispensible tool for cell biology and molecular medicine.

  8. Stem cell biology and drug discovery

    Directory of Open Access Journals (Sweden)

    Haston Kelly M

    2011-06-01

    Full Text Available Abstract There are many reasons to be interested in stem cells, one of the most prominent being their potential use in finding better drugs to treat human disease. This article focuses on how this may be implemented. Recent advances in the production of reprogrammed adult cells and their regulated differentiation to disease-relevant cells are presented, and diseases that have been modeled using these methods are discussed. Remaining difficulties are highlighted, as are new therapeutic insights that have emerged.

  9. Biology of the Sertoli Cell in the Fetal, Pubertal, and Adult Mammalian Testis.

    Science.gov (United States)

    Chojnacka, Katarzyna; Zarzycka, Marta; Mruk, Dolores D

    A healthy man typically produces between 50 × 10(6) and 200 × 10(6) spermatozoa per day by spermatogenesis; in the absence of Sertoli cells in the male gonad, this individual would be infertile. In the adult testis, Sertoli cells are sustentacular cells that support germ cell development by secreting proteins and other important biomolecules that are essential for germ cell survival and maturation, establishing the blood-testis barrier, and facilitating spermatozoa detachment at spermiation. In the fetal testis, on the other hand, pre-Sertoli cells form the testis cords, the future seminiferous tubules. However, the role of pre-Sertoli cells in this process is much less clear than the function of Sertoli cells in the adult testis. Within this framework, we provide an overview of the biology of the fetal, pubertal, and adult Sertoli cell, highlighting relevant cell biology studies that have expanded our understanding of mammalian spermatogenesis.

  10. Cancer stem cells in hepatocellular carcinoma: Therapeutic implications based on stem cell biology.

    Science.gov (United States)

    Chiba, Tetsuhiro; Iwama, Atsushi; Yokosuka, Osamu

    2016-01-01

    Hepatocellular carcinoma (HCC) is the sixth most common cancer and the third most frequent cause of cancer-related death worldwide. Despite advances in its diagnosis and treatment, the prognosis of patients with advanced HCC remains unfavorable. Recent advances in stem cell biology and associated technologies have enabled the identification of minor components of tumorigenic cells, termed cancer stem cells (CSC) or tumor-initiating cells, in cancers such as HCC. Furthermore, because CSC play a central role in tumor development, metastasis and recurrence, they are considered to be a therapeutic target in cancer treatment. Hepatic CSC have been successfully identified using functional and cell surface markers. The analysis of purified hepatic CSC has revealed the molecular machinery and signaling pathways involved in their maintenance. In addition, epigenetic transcriptional regulation has been shown to be important in the development and maintenance of CSC. Although inhibitors of CSC show promise as CSC-targeting drugs, novel therapeutic approaches for the eradication of CSC are yet to be established. In this review, we describe recent progress in hepatic CSC research and provide a perspective on the available therapeutic approaches based on stem cell biology.

  11. International Research and Development in Systems Biology

    Science.gov (United States)

    2005-10-01

    ecology and social insect behavior. Cellular chemotaxis of both prokaryotes and eukaryotes is another subject with a significant history of modeling...Cell organization in tissues; system organization in insect societies; protain-protein interaction networks; inflammatory mediator signaling...They are now scaling up the microarray time-series and ribonucleic acid interference ( RNAi ) knockdown work to get better identification of this pathway

  12. Computational Biology Methods for Characterization of Pluripotent Cells.

    Science.gov (United States)

    Araúzo-Bravo, Marcos J

    2016-01-01

    Pluripotent cells are a powerful tool for regenerative medicine and drug discovery. Several techniques have been developed to induce pluripotency, or to extract pluripotent cells from different tissues and biological fluids. However, the characterization of pluripotency requires tedious, expensive, time-consuming, and not always reliable wet-lab experiments; thus, an easy, standard quality-control protocol of pluripotency assessment remains to be established. Here to help comes the use of high-throughput techniques, and in particular, the employment of gene expression microarrays, which has become a complementary technique for cellular characterization. Research has shown that the transcriptomics comparison with an Embryonic Stem Cell (ESC) of reference is a good approach to assess the pluripotency. Under the premise that the best protocol is a computer software source code, here I propose and explain line by line a software protocol coded in R-Bioconductor for pluripotency assessment based on the comparison of transcriptomics data of pluripotent cells with an ESC of reference. I provide advice for experimental design, warning about possible pitfalls, and guides for results interpretation.

  13. Molecular biology of breast cancer stem cells: potential clinical applications.

    Science.gov (United States)

    Nguyen, Nam P; Almeida, Fabio S; Chi, Alex; Nguyen, Ly M; Cohen, Deirdre; Karlsson, Ulf; Vinh-Hung, Vincent

    2010-10-01

    Breast cancer stem cells (CSC) have been postulated recently as responsible for failure of breast cancer treatment. The purpose of this study is to review breast CSCs molecular biology with respect to their mechanism of resistance to conventional therapy, and to develop treatment strategies that may improve survival of breast cancer patients. A literature search has identified in vitro and in vivo studies of breast CSCs. Breast CSCs overexpress breast cancer resistance protein (BCRP) which allows cancer cells to transport actively chemotherapy agents out of the cells. Radioresistance is modulated through activation of Wnt signaling pathway and overexpression of genes coding for glutathione. Lapatinib can selectively target HER-2 positive breast CSCs and improves disease-free survival in these patients. Metformin may target basal type breast CSCs. Parthenolide and oncolytic viruses are promising targeting agents for breast CSCs. Future clinical trials for breast cancer should include anti-cancer stem cells targeting agents in addition to conventional chemotherapy. Hypofractionation radiotherapy may be indicated for residual disease post chemotherapy.

  14. Translating Stem Cell Biology Into Drug Discovery

    Science.gov (United States)

    Singeç, Ilyas; Simeonov, Anton

    2016-01-01

    Pluripotent stem cell research has made extraordinary progress over the last decade. The robustness of nuclear reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) has created entirely novel opportunities for drug discovery and personalized regenerative medicine. Patient- and disease-specific iPSCs can be expanded indefinitely and differentiated into relevant cell types of different organ systems. As the utilization of iPSCs is becoming a key enabling technology across various scientific disciplines, there are still important challenges that need to be addressed. Here we review the current state and reflect on the issues that the stem cell and translational communities are facing in bringing iPSCs closer to clinical application.

  15. Mechanistic modeling confronts the complexity of molecular cell biology.

    Science.gov (United States)

    Phair, Robert D

    2014-11-05

    Mechanistic modeling has the potential to transform how cell biologists contend with the inescapable complexity of modern biology. I am a physiologist-electrical engineer-systems biologist who has been working at the level of cell biology for the past 24 years. This perspective aims 1) to convey why we build models, 2) to enumerate the major approaches to modeling and their philosophical differences, 3) to address some recurrent concerns raised by experimentalists, and then 4) to imagine a future in which teams of experimentalists and modelers build-and subject to exhaustive experimental tests-models covering the entire spectrum from molecular cell biology to human pathophysiology. There is, in my view, no technical obstacle to this future, but it will require some plasticity in the biological research mind-set.

  16. Breeding biology and nestling development of the Grasshopper Buzzard

    NARCIS (Netherlands)

    Buij, R.; Kortekaas, K.; Folkertsma, I.; van der Velde, M.; Komdeur, J.; de Iongh, H. H.; Monadjem, A.

    2012-01-01

    Research into the effect of environmental variables on reproductive success of tropical raptors is often constrained by the lack of information on breeding biology. We provide the first detailed information of the breeding biology and nestling development of the Grasshopper Buzzard Butastur rufipenn

  17. Development of the Statistical Reasoning in Biology Concept Inventory (SRBCI)

    Science.gov (United States)

    Deane, Thomas; Nomme, Kathy; Jeffery, Erica; Pollock, Carol; Birol, Gülnur

    2016-01-01

    We followed established best practices in concept inventory design and developed a 12-item inventory to assess student ability in statistical reasoning in biology (Statistical Reasoning in Biology Concept Inventory [SRBCI]). It is important to assess student thinking in this conceptual area, because it is a fundamental requirement of being…

  18. Cell-free biology: exploiting the interface between synthetic biology and synthetic chemistry.

    Science.gov (United States)

    Harris, D Calvin; Jewett, Michael C

    2012-10-01

    Just as synthetic organic chemistry once revolutionized the ability of chemists to build molecules (including those that did not exist in nature) following a basic set of design rules, cell-free synthetic biology is beginning to provide an improved toolbox and faster process for not only harnessing but also expanding the chemistry of life. At the interface between chemistry and biology, research in cell-free synthetic systems is proceeding in two different directions: using synthetic biology for synthetic chemistry and using synthetic chemistry to reprogram or mimic biology. In the coming years, the impact of advances inspired by these approaches will make possible the synthesis of nonbiological polymers having new backbone compositions, new chemical properties, new structures, and new functions.

  19. 大麦根边缘细胞发育的生物学特性%Biological Characters of Root Border Cell Development in Barley

    Institute of Scientific and Technical Information of China (English)

    马伯军; 潘建伟; 顾青; 郑科; 叶丹; 华靖; 朱睦元

    2003-01-01

    FDA-PI(fluorescein diacetate-propidium iodide)检测结果表明,在大麦种子萌发过程中,根边缘细胞(border cells)活性约为95%.0.5 mol/L甘露醇有利于离体边缘细胞的生存.第一个边缘细胞几乎与初生根根尖同步出现,当根长为20~25 mm时,边缘细胞数目达到最大值(约1 400);移去全部边缘细胞48 h后,又有新的边缘细胞形成.与25℃相比,15和35℃明显抑制根的伸长,但不明显抑制边缘细胞的发育.在边缘细胞诱导和发育过程中,边缘细胞的游离与根冠果胶甲基酯酶活性有密切的正相关性.

  20. Systems biology applied to vaccine and immunotherapy development

    Directory of Open Access Journals (Sweden)

    Marincola Francesco M

    2011-09-01

    Full Text Available Abstract Immunotherapies, including vaccines, represent a potent tool to prevent or contain disease with high morbidity or mortality such as infections and cancer. However, despite their widespread use, we still have a limited understanding of the mechanisms underlying the induction of protective immune responses. Immunity is made of a multifaceted set of integrated responses involving a dynamic interaction of thousands of molecules; among those is a growing appreciation for the role the innate immunity (i.e. pathogen recognition receptors - PRRs plays in determining the nature and duration (immune memory of adaptive T and B cell immunity. The complex network of interactions between immune manipulation of the host (immunotherapy on one side and innate and adaptive responses on the other might be fully understood only employing the global level of investigation provided by systems biology. In this framework, the advancement of high-throughput technologies, together with the extensive identification of new genes, proteins and other biomolecules in the "omics" era, facilitate large-scale biological measurements. Moreover, recent development of new computational tools enables the comprehensive and quantitative analysis of the interactions between all of the components of immunity over time. Here, we review recent progress in using systems biology to study and evaluate immunotherapy and vaccine strategies for infectious and neoplastic diseases. Multi-parametric data provide novel and often unsuspected mechanistic insights while enabling the identification of common immune signatures relevant to human investigation such as the prediction of immune responsiveness that could lead to the improvement of the design of future immunotherapy trials. Thus, the paradigm switch from "empirical" to "knowledge-based" conduct of medicine and immunotherapy in particular, leading to patient-tailored treatment.

  1. Stochasticity in cell biology: Modeling across levels

    Science.gov (United States)

    Pedraza, Juan Manuel

    2009-03-01

    Effective modeling of biological processes requires focusing on a particular level of description, and this requires summarizing de details of lower levels into effective variables and properly accounting for the constrains that other levels impose. In the context of stochasticity in gene expression, I will show how the details of the stochastic process can be characterized by a few effective parameters, which facilitates modeling but complicates interpretation of current experiments. I will show how the resulting noise can provide advantageous or deleterious phenotypic fluctuation and how noise control in the copy number control system of plasmids can change the selective pressures. This system illustrates the direct connection between molecular dynamics and evolutionary dynamics.

  2. Cell biological analyses of anther morphogenesis and pollen viability in Arabidopsis and rice.

    Science.gov (United States)

    Chang, Fang; Zhang, Zaibao; Jin, Yue; Ma, Hong

    2014-01-01

    Major advances have been made in recent years in our understanding of anther development through a combination of genetic studies, cell biological technologies, biochemical analysis, microarray and high-throughput sequencing-based approaches. In this chapter, we summarize the widely used protocols for pollen viability staining; the investigation of anther morphogenesis by light microscopy of semi-thin sections; TUNEL assay for programmed tapetum cell death; and laser microdissection procedures to obtain specialized cells or cell layers for carrying out transcriptomics.

  3. Knowledge Gaps in Rodent Pancreas Biology: Taking Human Pluripotent Stem Cell-Derived Pancreatic Beta Cells into Our Own Hands.

    Science.gov (United States)

    Santosa, Munirah Mohamad; Low, Blaise Su Jun; Pek, Nicole Min Qian; Teo, Adrian Kee Keong

    2015-01-01

    In the field of stem cell biology and diabetes, we and others seek to derive mature and functional human pancreatic β cells for disease modeling and cell replacement therapy. Traditionally, knowledge gathered from rodents is extended to human pancreas developmental biology research involving human pluripotent stem cells (hPSCs). While much has been learnt from rodent pancreas biology in the early steps toward Pdx1(+) pancreatic progenitors, much less is known about the transition toward Ngn3(+) pancreatic endocrine progenitors. Essentially, the later steps of pancreatic β cell development and maturation remain elusive to date. As a result, the most recent advances in the stem cell and diabetes field have relied upon combinatorial testing of numerous growth factors and chemical compounds in an arbitrary trial-and-error fashion to derive mature and functional human pancreatic β cells from hPSCs. Although this hit-or-miss approach appears to have made some headway in maturing human pancreatic β cells in vitro, its underlying biology is vaguely understood. Therefore, in this mini-review, we discuss some of these late-stage signaling pathways that are involved in human pancreatic β cell differentiation and highlight our current understanding of their relevance in rodent pancreas biology. Our efforts here unravel several novel signaling pathways that can be further studied to shed light on unexplored aspects of rodent pancreas biology. New investigations into these signaling pathways are expected to advance our knowledge in human pancreas developmental biology and to aid in the translation of stem cell biology in the context of diabetes treatments.

  4. Microfluidics meet cell biology: bridging the gap by validation and application of microscale techniques for cell biological assays.

    Science.gov (United States)

    Paguirigan, Amy L; Beebe, David J

    2008-09-01

    Microscale techniques have been applied to biological assays for nearly two decades, but haven't been widely integrated as common tools in biological laboratories. The significant differences between several physical phenomena at the microscale versus the macroscale have been exploited to provide a variety of new types of assays (such as gradient production or spatial cell patterning). However, the use of these devices by biologists seems to be limited by issues regarding biological validation, ease of use, and the limited available readouts for assays done using microtechnology. Critical validation work has been done recently that highlights the current challenges for microfluidic methods and suggest ways in which future devices might be improved to better integrate with biological assays. With more validation and improved designs, microscale techniques hold immense promise as a platform to study aspects of cell biology that are not possible using current macroscale techniques.

  5. Bioinformatics approaches to single-cell analysis in developmental biology.

    Science.gov (United States)

    Yalcin, Dicle; Hakguder, Zeynep M; Otu, Hasan H

    2016-03-01

    Individual cells within the same population show various degrees of heterogeneity, which may be better handled with single-cell analysis to address biological and clinical questions. Single-cell analysis is especially important in developmental biology as subtle spatial and temporal differences in cells have significant associations with cell fate decisions during differentiation and with the description of a particular state of a cell exhibiting an aberrant phenotype. Biotechnological advances, especially in the area of microfluidics, have led to a robust, massively parallel and multi-dimensional capturing, sorting, and lysis of single-cells and amplification of related macromolecules, which have enabled the use of imaging and omics techniques on single cells. There have been improvements in computational single-cell image analysis in developmental biology regarding feature extraction, segmentation, image enhancement and machine learning, handling limitations of optical resolution to gain new perspectives from the raw microscopy images. Omics approaches, such as transcriptomics, genomics and epigenomics, targeting gene and small RNA expression, single nucleotide and structural variations and methylation and histone modifications, rely heavily on high-throughput sequencing technologies. Although there are well-established bioinformatics methods for analysis of sequence data, there are limited bioinformatics approaches which address experimental design, sample size considerations, amplification bias, normalization, differential expression, coverage, clustering and classification issues, specifically applied at the single-cell level. In this review, we summarize biological and technological advancements, discuss challenges faced in the aforementioned data acquisition and analysis issues and present future prospects for application of single-cell analyses to developmental biology.

  6. The shifting geography and language of cell biology.

    Science.gov (United States)

    Mayor, Satyajit

    2015-05-11

    With the increase in scientific activity globally, the geographical focus of basic research is shifting away from the West. At the same time, multidisciplinary approaches are uncovering new layers in our understanding of how cells work. How will these trends affect cell biology in the near future?

  7. The circadian clock and cell cycle: interconnected biological circuits.

    Science.gov (United States)

    Masri, Selma; Cervantes, Marlene; Sassone-Corsi, Paolo

    2013-12-01

    The circadian clock governs biological timekeeping on a systemic level, helping to regulate and maintain physiological processes, including endocrine and metabolic pathways with a periodicity of 24-hours. Disruption within the circadian clock machinery has been linked to numerous pathological conditions, including cancer, suggesting that clock-dependent regulation of the cell cycle is an essential control mechanism. This review will highlight recent advances on the 'gating' controls of the circadian clock at various checkpoints of the cell cycle and also how the cell cycle can influence biological rhythms. The reciprocal influence that the circadian clock and cell cycle exert on each other suggests that these intertwined biological circuits are essential and multiple regulatory/control steps have been instated to ensure proper timekeeping.

  8. The cell biology of TRIM5α.

    Science.gov (United States)

    Lukic, Zana; Campbell, Edward M

    2012-03-01

    The tripartite motif (TRIM)-containing proteins are involved in many cellular functions such as cell signaling, apoptosis, cell differentiation, and immune modulation. TRIM5 proteins, including TRIM5α and TRIM-Cyp, are known to possess antiretroviral activity against many different retroviruses. Besides being retroviral restriction factors, TRIM5 proteins participate in other cellular functions that have recently emerged in the study of TRIM5α. In this review, we discuss properties of TRIM5α such as cytoplasmic body formation, protein turnover, and trafficking. Also, we discuss recent insights into innate immune modulation mediated by TRIM5α, highlighting the various functions TRIM5α has in cellular processes.

  9. Personality Development in Infancy; A Biological Approach.

    Science.gov (United States)

    Freedman, D. G.

    This comprehensive paper proposing the use of evolutionary theory as a basis for studies in developmental psychology includes these specific sections: (1) Developmental Theories--a brief overview, (2) Individual Differences, (3) Culture and Inbreeding, (4) Sexual Dimorphism, (5) Critical Periods in the Development of Attachments, (6) Continuity…

  10. CMOS based sensor for dielectric spectroscopy of biological cell suspension

    Science.gov (United States)

    Guha, S.; Schmalz, K.; Meliani, C.; Wenger, Ch

    2013-04-01

    In this work we investigate the use of microwave frequency range to measure the concentration of cells in a biological cell suspension. A theoretical model is discussed and the advantage of high frequency, which is to avoid dispersion mechanisms due to the cell parameters at lower frequencies (for example membrane capacitance), has been described. Interdigitated capacitor (IDC) has been proposed as the sensor for analysing the concentration of a cell species in the suspension. The read-out circuit is a VCO using the IDC and a pair of inductors as resonator. The capacitance of the IDC which is the function of the permittivity of the biological cell suspension determines the resonant frequency of the LC tank oscillator. Thus the concentration of cells in a solution, affecting its permittivity, is read out as the frequency of the oscillator.

  11. Cell Biology: ERADicating Survival with BOK.

    Science.gov (United States)

    Chipuk, Jerry Edward; Luna-Vargas, Mark P

    2016-06-01

    Mechanistic insights into the function of the pro-apoptotic BCL-2 family member BOK have remained elusive. A recent study shows that healthy cells constitutively degrade BOK via the ER-associated degradation and ubiquitin-proteasome pathways; following proteasome inhibition, BOK is stabilized to initiate a unique pro-apoptotic death program.

  12. Synthetic biology of cyanobacterial cell factories

    NARCIS (Netherlands)

    Angermayr, S.A.

    2014-01-01

    In the field of microbial biotechnology rational design approaches are employed for the generation of microbial cells with desired functions, such as the ability to produce precursor molecules for biofuels or bioplastics. In essence, that is the introduction of a (new) biosynthetic pathway into a mi

  13. Cell biology of homologous recombination in yeast

    DEFF Research Database (Denmark)

    Eckert-Boulet, Nadine Valerie; Rothstein, Rodney; Lisby, Michael

    2011-01-01

    Homologous recombination is an important pathway for error-free repair of DNA lesions, such as single- and double-strand breaks, and for rescue of collapsed replication forks. Here, we describe protocols for live cell imaging of single-lesion recombination events in the yeast Saccharomyces...

  14. Recent Developments in Biological Hydrogen Production Processes

    Directory of Open Access Journals (Sweden)

    DEBABRATA DAS

    2008-07-01

    Full Text Available Biohydrogen production technology can utilize renewable energy sources like biomass for the generation of hydrogen, the cleanest form of energy for the use of mankind. However, major constraints to the commercialization of these processes include lower hydrogen yields and rates of hydrogen production. To overcome these bottlenecks intensive research work has already been carried out on the advancement of these processes such as the development of genetically modified microorganisms, the improvement of the bioreactor design, molecular engineering of the key enzyme hydrogenases, the development of two stage processes, etc. The present paper explores the recent advancements that have been made till date and also presents the state of the art in molecular strategies to improve the hydrogen production.

  15. Cell-by-Cell Fabrication of Biological Systems by Laser Forward Transfer

    Science.gov (United States)

    Chrisey, Doug

    2004-03-01

    Through a series of experiments performed at the US Naval Research Laboratory, we have demonstrated the ability to fabricate novel 3-D tissue constructs using a unique laser transfer process. At the heart of this technology is the ability to rapidly build, by a CAD/CAM process (i.e., Rapidly Prototype), engineered tissue constructs cell-by-cell, layer-by-layer, and unit-by-unit in order to simulate or facilitate native structured tissue. Powered by this breakthrough in biomaterial processing, we can now enhance understanding, development, and exploitation of the field of tissue engineering by the ability to group and order specific, defined populations of cells and bioscaffolding with precision. The eventual goal is to demonstrate specific biological function by engineering tissue constructs consisting of defined mammalian cell populations. This presentation will then summarize the contribution our laser transfer approach makes to rapid prototyping as it applies to tissue engineering.

  16. The development of synthetic biology: a patent analysis.

    Science.gov (United States)

    van Doren, Davy; Koenigstein, Stefan; Reiss, Thomas

    2013-12-01

    In the past decades, synthetic biology has gained interest regarding research and development efforts within the biotechnology domain. However, it is unclear to what extent synthetic biology has matured already into being commercially exploitable. By means of a patent analysis, this study shows that there is an increasing trend regarding synthetic biology related patent applications. The majority of retrieved patents relates to innovations facilitating the realisation of synthetic biology through improved understanding of biological systems. In addition, there is increased activity concerning the development of synthetic biology based applications. When looking at potential application areas, the majority of synthetic biology patents seems most relevant for the medical, energy and industrial sector. Furthermore, the analysis shows that most activity has been carried out by the USA, with Japan and a number of European countries considerably trailing behind. In addition, both universities and companies are major patent applicant actor types. The results presented here form a starting point for follow-up studies concerning the identification of drivers explaining the observed patent application trends in synthetic biology.

  17. Development and application of biological technologies in fish genetic breeding.

    Science.gov (United States)

    Xu, Kang; Duan, Wei; Xiao, Jun; Tao, Min; Zhang, Chun; Liu, Yun; Liu, ShaoJun

    2015-02-01

    Fish genetic breeding is a process that remolds heritable traits to obtain neotype and improved varieties. For the purpose of genetic improvement, researchers can select for desirable genetic traits, integrate a suite of traits from different donors, or alter the innate genetic traits of a species. These improved varieties have, in many cases, facilitated the development of the aquaculture industry by lowering costs and increasing both quality and yield. In this review, we present the pertinent literatures and summarize the biological bases and application of selection breeding technologies (containing traditional selective breeding, molecular marker-assisted breeding, genome-wide selective breeding and breeding by controlling single-sex groups), integration breeding technologies (containing cross breeding, nuclear transplantation, germline stem cells and germ cells transplantation, artificial gynogenesis, artificial androgenesis and polyploid breeding) and modification breeding technologies (represented by transgenic breeding) in fish genetic breeding. Additionally, we discuss the progress our laboratory has made in the field of chromosomal ploidy breeding of fish, including distant hybridization, gynogenesis, and androgenesis. Finally, we systematically summarize the research status and known problems associated with each technology.

  18. Laboratory investigations in cell biology. Second edition

    Energy Technology Data Exchange (ETDEWEB)

    Bregman, A.A.

    1987-01-01

    This text contains 18 lab projects that explore the structural, biochemical, and physiological nature of eukaryotic cells. Topics are largely traditional, however, several investigations employ new methodologies. Offers extended coverage of biochemistry. Materials have been selected for availability and ease of handling: e.g. Project 4 - extraction of DNA and RNA done with calf liver, Project 9 - succinate dehydrogenase activity studied in mitochondria isolated from cauliflower. There is more procedural detail than found in most lab manuals, negating the need for constant instructional details. And a variety of methodologies is introduced, such as Cytochemistry, Spectrophotometry, Electrophoresis, Cell Fractionation, silver staining of active sites of RNA transcription, and many more. Pages are perforated for collecting and grading.

  19. Environmental scanning electron microscopy in cell biology.

    Science.gov (United States)

    McGregor, J E; Staniewicz, L T L; Guthrie Neé Kirk, S E; Donald, A M

    2013-01-01

    Environmental scanning electron microscopy (ESEM) (1) is an imaging technique which allows hydrated, insulating samples to be imaged under an electron beam. The resolution afforded by this technique is higher than conventional optical microscopy but lower than conventional scanning electron microscopy (CSEM). The major advantage of the technique is the minimal sample preparation needed, making ESEM quick to use and the images less susceptible to the artifacts that the extensive sample preparation usually required for CSEM may introduce. Careful manipulation of both the humidity in the microscope chamber and the beam energy are nevertheless essential to prevent dehydration and beam damage artifacts. In some circumstances it is possible to image live cells in the ESEM (2).In the following sections we introduce the fundamental principles of ESEM imaging before presenting imaging protocols for plant epidermis, mammalian cells, and bacteria. In the first two cases samples are imaged using the secondary electron (topographic) signal, whereas a transmission technique is employed to image bacteria.

  20. Mesenchymal stem cells: cell biology and potential use in therapy

    DEFF Research Database (Denmark)

    Kassem, Moustapha; Kristiansen, Malthe; Abdallah, Basem M

    2004-01-01

    Mesenchymal stem cells are clonogenic, non-haematopoietic stem cells present in the bone marrow and are able to differentiate into multiple mesoderm-type cell lineages e.g. osteoblasts, chondrocytes, endothelial-cells and also non-mesoderm-type lineages e.g. neuronal-like cells. Several methods...... are currently available for isolation of the mesenchymal stem cells based on their physical and immunological characteristics. Because of the ease of their isolation and their extensive differentiation potential, mesenchymal stem cells are among the first stem cell types to be introduced in the clinic. Recent...... studies have demonstrated that the life span of mesenchymal stem cells in vitro can be extended by increasing the levels of telomerase expression in the cells and thus allowing culture of large number of cells needed for therapy. In addition, it has been shown that it is possible to culture the cells...

  1. Models to Study NK Cell Biology and Possible Clinical Application.

    Science.gov (United States)

    Zamora, Anthony E; Grossenbacher, Steven K; Aguilar, Ethan G; Murphy, William J

    2015-08-03

    Natural killer (NK) cells are large granular lymphocytes of the innate immune system, responsible for direct targeting and killing of both virally infected and transformed cells. NK cells rapidly recognize and respond to abnormal cells in the absence of prior sensitization due to their wide array of germline-encoded inhibitory and activating receptors, which differs from the receptor diversity found in B and T lymphocytes that is due to the use of recombination-activation gene (RAG) enzymes. Although NK cells have traditionally been described as natural killers that provide a first line of defense prior to the induction of adaptive immunity, a more complex view of NK cells is beginning to emerge, indicating they may also function in various immunoregulatory roles and have the capacity to shape adaptive immune responses. With the growing appreciation for the diverse functions of NK cells, and recent technological advancements that allow for a more in-depth understanding of NK cell biology, we can now begin to explore new ways to manipulate NK cells to increase their clinical utility. In this overview unit, we introduce the reader to various aspects of NK cell biology by reviewing topics ranging from NK cell diversity and function, mouse models, and the roles of NK cells in health and disease, to potential clinical applications. © 2015 by John Wiley & Sons, Inc.

  2. Finding the key - cell biology and science education.

    Science.gov (United States)

    Miller, Kenneth R

    2010-12-01

    No international research community, cell biology included, can exist without an educational community to renew and replenish it. Unfortunately, cell biology researchers frequently regard their work as independent of the process of education and see little reason to reach out to science teachers. For cell biology to continue to prosper, I argue that researchers must support education in at least three ways. First, we must view education and research as part of a single scientific community. Second, we should take advantage of new technologies to connect the research laboratory to the classroom. Finally, we must take the initiative in defending the integrity of science teaching, particularly when education is under attack for political or religious reasons.

  3. Concise Review: Asymmetric Cell Divisions in Stem Cell Biology

    Directory of Open Access Journals (Sweden)

    Florian Murke

    2015-11-01

    Full Text Available Somatic stem cells are rare cells with unique properties residing in many organs and tissues. They are undifferentiated cells responsible for tissue regeneration and homeostasis, and contain both the capacity to self-renew in order to maintain their stem cell potential and to differentiate towards tissue-specific, specialized cells. However, the knowledge about the mechanisms controlling somatic stem cell fate decisions remains sparse. One mechanism which has been described to control daughter cell fates in selected somatic stem cell systems is the process of asymmetric cell division (ACD. ACD is a tightly regulated and evolutionary conserved process allowing a single stem or progenitor cell to produce two differently specified daughter cells. In this concise review, we will summarize and discuss current concepts about the process of ACD as well as different ACD modes. Finally, we will recapitulate the current knowledge and our recent findings about ACD in human hematopoiesis.

  4. Identification of new pancreatic beta cell targets for in vivo imaging by a systems biology approach.

    Science.gov (United States)

    Bouckenooghe, Thomas; Flamez, Daisy; Ortis, Fernanda; Goldman, Serge; Eizirik, Decio L

    2010-05-01

    Systems biology is an emergent field that aims to understand biological systems at system-level. The increasing power of genome sequencing techniques and ranges of other molecular biology techniques is enabling the accumulation of in-depth knowledge of biological systems. This growing information, properly quantified, analysed and presented, will eventually allow the establishment of a system-based cartography of different cellular populations within the organism, and of their interactions at the tissue and organ levels. It will also allow the identification of specific markers of individual cell types. Systems biology approaches to discover diagnostic markers may have an important role in diabetes. There are presently no reliable ways to quantify beta cell mass (BCM) in vivo, which hampers the understanding of the pathogenesis and natural history of diabetes, and the development of novel therapies to preserve BCM. To solve this problem, novel and specific beta cell biomarkers must be identified to enable adequate in vivo imaging by methods such as Positron Emission Tomography (PET). The ideal biomarker should allow measurements by a minimally invasive technology enabling repeated examinations over time, should identify the early stages of decreased BCM, and should provide information on progression of beta cell loss and eventual responses to agents aiming to arrest or revert beta cell loss in diabetes. The present review briefly describes the "state-of-the-art" in the field, and then proposes a step-by-step systems biology approach for the identification and initial testing of novel candidates for beta cell imaging.

  5. Germ cell development in the postnatal testis

    DEFF Research Database (Denmark)

    Hutson, John M; Li, Ruili; Southwell, Bridget R;

    2012-01-01

    , which leads to secondary germ cell loss and later infertility and risk of cancer. Recent studies suggest that neonatal gonocytes transform into the putative spermatogenic stem cells between 3 and 9 months, and this initial postnatal step is deranged in cryptorchid testes. In addition, it is thought...... the abnormality high temperature may also impair apoptosis of remaining gonocytes, allowing some to persist to become the possible source of carcinoma in situ and malignancy after puberty. The biology of postnatal germ cell development is of intense interest, as it is likely to be the key to the optimal timing...

  6. Apoptotic cell clearance: basic biology and therapeutic potential.

    Science.gov (United States)

    Poon, Ivan K H; Lucas, Christopher D; Rossi, Adriano G; Ravichandran, Kodi S

    2014-03-01

    The prompt removal of apoptotic cells by phagocytes is important for maintaining tissue homeostasis. The molecular and cellular events that underpin apoptotic cell recognition and uptake, and the subsequent biological responses, are increasingly better defined. The detection and disposal of apoptotic cells generally promote an anti-inflammatory response at the tissue level, as well as immunological tolerance. Consequently, defects in apoptotic cell clearance have been linked with various inflammatory diseases and autoimmunity. Conversely, under certain conditions, such as the killing of tumour cells by specific cell-death inducers, the recognition of apoptotic tumour cells can promote an immunogenic response and antitumour immunity. Here, we review the current understanding of the complex process of apoptotic cell clearance in physiology and pathology, and discuss how this knowledge could be harnessed for new therapeutic strategies.

  7. Breeding biology and nestling development of the Grasshopper Buzzard

    OpenAIRE

    Buij, R.; Kortekaas, K.; Folkertsma, I.; Van Der Velde, M.; Komdeur, J.; H. H. de Iongh; A. Monadjem

    2012-01-01

    Research into the effect of environmental variables on reproductive success of tropical raptors is often constrained by the lack of information on breeding biology. We provide the first detailed information of the breeding biology and nestling development of the Grasshopper Buzzard Butastur rufipennis, an Afrotropical migratory raptor threatened by extensive land transformation in its breeding range. Breeding coincided with the transition from the dry to the wet season. The mean incubation pe...

  8. A data integration approach for cell cycle analysis oriented to model simulation in systems biology

    Directory of Open Access Journals (Sweden)

    Mosca Ettore

    2007-08-01

    Full Text Available Abstract Background The cell cycle is one of the biological processes most frequently investigated in systems biology studies and it involves the knowledge of a large number of genes and networks of protein interactions. A deep knowledge of the molecular aspect of this biological process can contribute to making cancer research more accurate and innovative. In this context the mathematical modelling of the cell cycle has a relevant role to quantify the behaviour of each component of the systems. The mathematical modelling of a biological process such as the cell cycle allows a systemic description that helps to highlight some features such as emergent properties which could be hidden when the analysis is performed only from a reductionism point of view. Moreover, in modelling complex systems, a complete annotation of all the components is equally important to understand the interaction mechanism inside the network: for this reason data integration of the model components has high relevance in systems biology studies. Description In this work, we present a resource, the Cell Cycle Database, intended to support systems biology analysis on the Cell Cycle process, based on two organisms, yeast and mammalian. The database integrates information about genes and proteins involved in the cell cycle process, stores complete models of the interaction networks and allows the mathematical simulation over time of the quantitative behaviour of each component. To accomplish this task, we developed, a web interface for browsing information related to cell cycle genes, proteins and mathematical models. In this framework, we have implemented a pipeline which allows users to deal with the mathematical part of the models, in order to solve, using different variables, the ordinary differential equation systems that describe the biological process. Conclusion This integrated system is freely available in order to support systems biology research on the cell cycle and

  9. Natural killer cell biology: an update and future directions.

    Science.gov (United States)

    Campbell, Kerry S; Hasegawa, Jun

    2013-09-01

    Natural killer (NK) cells constitute a minor subset of normal lymphocytes that initiate innate immune responses toward tumor and virus-infected cells. They can mediate spontaneous cytotoxicity toward these abnormal cells and rapidly secrete numerous cytokines and chemokines to promote subsequent adaptive immune responses. Significant progress has been made in the past 2 decades to improve our understanding of NK cell biology. Here we review recent discoveries, including a better comprehension of the "education" of NK cells to achieve functional competence during their maturation and the discovery of "memory" responses by NK cells, suggesting that they might also contribute to adaptive immunity. The improved understanding of NK cell biology has forged greater awareness that these cells play integral early roles in immune responses. In addition, several promising clinical therapies have been used to exploit NK cell functions in treating patients with cancer. As our molecular understanding improves, these and future immunotherapies should continue to provide promising strategies to exploit the unique functions of NK cells to treat cancer, infections, and other pathologic conditions.

  10. Orbital rotation of biological cells using two fibre probes

    Science.gov (United States)

    Huang, J.; Liu, X.; Zhang, Y.; Li, B.

    2017-03-01

    We report the orbital rotation of biological cells using two tapered fibre probes. We launched laser beams into the probes at a wavelength of 980 nm and rotated 5 µm-diameter yeast cells and 13.5 µm-diameter human leukemic K562 by optical force. The rotation period varied from 1.59 to 2.41 s for the yeast cells and was 4.83 s for the human leukemic K562. The rotation direction of the cells can be controlled by adjusting the position of the two probes. The experimental results were interpreted by theoretical analysis and numerical simulations.

  11. The Emerging Role of PEDF in Stem Cell Biology

    Directory of Open Access Journals (Sweden)

    Mina Elahy

    2012-01-01

    Full Text Available Encoded by a single gene, PEDF is a 50 kDa glycoprotein that is highly conserved and is widely expressed among many tissues. Most secreted PEDF deposits within the extracellular matrix, with cell-type-specific functions. While traditionally PEDF is known as a strong antiangiogenic factor, more recently, as this paper highlights, PEDF has been linked with stem cell biology, and there is now accumulating evidence demonstrating the effects of PEDF in a variety of stem cells, mainly in supporting stem cell survival and maintaining multipotency.

  12. Investigating the role of retinal Müller cells with approaches in genetics and cell biology.

    Science.gov (United States)

    Fu, Suhua; Zhu, Meili; Ash, John D; Wang, Yunchang; Le, Yun-Zheng

    2014-01-01

    Müller cells are major macroglia and play many essential roles as a supporting cell in the retina. As Müller cells only constitute a small portion of retinal cells, investigating the role of Müller glia in retinal biology and diseases is particularly challenging. To overcome this problem, we first generated a Cre/lox-based conditional gene targeting system that permits the genetic manipulation and functional dissection of gene of interests in Müller cells. To investigate diabetes-induced alteration of Müller cells, we recently adopted methods to analyze Müller cells survival/death in vitro and in vivo. We also used normal and genetically altered primary cell cultures to reveal the mechanistic insights for Müller cells in biological and disease processes. In this article, we will discuss the applications and limitations of these methodologies, which may be useful for research in retinal Müller cell biology and pathophysiology.

  13. Innate immune pattern recognition: a cell biological perspective.

    Science.gov (United States)

    Brubaker, Sky W; Bonham, Kevin S; Zanoni, Ivan; Kagan, Jonathan C

    2015-01-01

    Receptors of the innate immune system detect conserved determinants of microbial and viral origin. Activation of these receptors initiates signaling events that culminate in an effective immune response. Recently, the view that innate immune signaling events rely on and operate within a complex cellular infrastructure has become an important framework for understanding the regulation of innate immunity. Compartmentalization within this infrastructure provides the cell with the ability to assign spatial information to microbial detection and regulate immune responses. Several cell biological processes play a role in the regulation of innate signaling responses; at the same time, innate signaling can engage cellular processes as a form of defense or to promote immunological memory. In this review, we highlight these aspects of cell biology in pattern-recognition receptor signaling by focusing on signals that originate from the cell surface, from endosomal compartments, and from within the cytosol.

  14. Microcontact printing of proteins for cell biology.

    Science.gov (United States)

    Shen, Keyue; Qi, Jie; Kam, Lance C

    2008-01-01

    The ability to pattern proteins and other biomolecules onto substrates is important for capturing the spatial complexity of the extracellular environment. Development of microcontact printing by the Whitesides group (http://gmwgroup.harvard.edu/) in the mid-1990s revolutionalized this field by making microelectronics/microfabrication techniques accessible to laboratories focused on the life sciences. Initial implementations of this method used polydimethylsiloxane (PDMS) stamps to create patterns of functionalized chemicals on material surfaces. Since then, a range of innovative approaches have been developed to pattern other molecules, including proteins. This video demonstrates the basic process of creating PDMS stamps and uses them to pattern proteins, as these steps are difficult to accurately express in words. We focus on patterning the extracellular matrix protein fibronectin onto glass coverslips as a specific example of patterning. An important component of the microcontact printing process is a topological master, from which the stamps are cast; the raised and lowered regions of the master are mirrored into the stamp and define the final pattern. Typically, a master consists of a silicon wafer coated with photoresist and then patterned by photolithography, as is done here. Creation of masters containing a specific pattern requires specialized equipment, and is best approached in consultation with a fabrication center or facility. However, almost any substrate with topology can be used as a master, such as plastic diffraction gratings (see Reagents for one example), and such serendipitous masters provide readily available, simple patterns. This protocol begins at the point of having a master in hand.

  15. 42nd Annual Meeting of the American Society for Cell Biology, San Francisco, California, USA, 14–18 December 2002

    OpenAIRE

    Kenny, Paraic A; Rizki, Aylin

    2003-01-01

    The Annual Meeting of the American Society for Cell Biology (ASCB) is a diverse conference covering all topics in cell biology. While all of the basic biology presented at this meeting may potentially contribute to breast cancer research, there were a significant number of presentations and posters directly pertinent to this field. Here we have summarized the research that is of greatest immediate relevance to breast cancer, with particular emphasis on mammary gland development and tumorigene...

  16. [New insights into adipose cell biology].

    Science.gov (United States)

    Burcelin, Rémy

    2013-01-01

    Our research focuses on the molecular mechanisms controlling glycemia in healthy and diabetic individuals. Diabetes is now considered as a worldwide epidemic by WHO, and is predicted to affect several hundred million people in the near future. Current therapies have failed to prevent or control hyperglycemia, as well as the deleterious cardiovascular consequences of the disease have increased. New paradigms are thus needed to develop novel therapeutic strategies. Over the last 15 years, we have been studying the intestine as a major regulator of the integrated cross-talk between the brain, liver, pancreas, muscles and blood vessels required for glycemic control. As a first example, we identified that during a meal the glucose transporter GLUT2 and the intestinal hormone glucagon-like peptide-1 (GLP-1) are involved in glucose detection by the entero-portal system. This was done using highly innovative experimental techniques in the awake free moving mouse. We then found that the enteric-vagal nervous system transmits this nutritional information towards the brain stem and hypothalamus, where leptin, neuropeptide Y and GLP-1 relay the enteric signal to control the endocrine pancreas (insulin-glucagon secretion), the liver (glycogen metabolism), the vascular system (vasodilation, arterial flow), and muscle metabolism. This "anticipatory metabolic reflex " is altered during diabetes and might thus represent a new pharmacological target. Subsequently, while investigating the molecular mechanisms responsible for regulating this new physiological pathway, we discovered that a fat-rich diabetogenic diet alters the intestinal microbiota and permeability. This leads to an increase in the concentration of plasma lipopolysaccharides (LPS), which causes metabolic endotoxemia responsible for the induction of low-grade inflammation that characterizes type 2 diabetes, insulin resistance, adipose tissue development and hepatic lipid storage. We then showed that bacteria can be

  17. A unified cell biological perspective on axon-myelin injury

    OpenAIRE

    Simons, Mikael; Misgeld, Thomas; Kerschensteiner, Martin

    2014-01-01

    Demyelination and axon loss are pathological hallmarks of the neuroinflammatory disorder multiple sclerosis (MS). Although we have an increasingly detailed understanding of how immune cells can damage axons and myelin individually, we lack a unified view of how the axon–myelin unit as a whole is affected by immune-mediated attack. In this review, we propose that as a result of the tight cell biological interconnection of axons and myelin, damage to either can spread, which might convert a loc...

  18. The cell biology of HIV-1 and other retroviruses

    Directory of Open Access Journals (Sweden)

    Mouland Andrew J

    2006-11-01

    Full Text Available Abstract In recognition of the growing influence of cell biology in retrovirus research, we recently organized a Summer conference sponsored by the American Society for Cell Biology (ASCB on the Cell Biology of HIV-1 and other Retroviruses (July 20–23, 2006, Emory University, Atlanta, Georgia. The meeting brought together a number of leading investigators interested in the interplay between cell biology and retrovirology with an emphasis on presentation of new and unpublished data. The conference was arranged from early to late events in the virus replication cycle, with sessions on viral fusion, entry, and transmission; post-entry restrictions to retroviral infection; nuclear import and integration; gene expression/regulation of retroviral Gag and genomic RNA; and assembly/release. In this review, we will attempt to touch briefly on some of the highlights of the conference, and will emphasize themes and trends that emerged at the meeting. Meeting report The conference began with a keynote address from W. Sundquist on the biochemistry of HIV-1 budding. This presentation will be described in the section on Assembly and Release of Retroviruses.

  19. Teaching Cell and Molecular Biology for Gender Equity

    Science.gov (United States)

    Sible, Jill C.; Wilhelm, Dayna E.; Lederman, Muriel

    2006-01-01

    Science, technology, engineering, and math (STEM) fields, including cell biology, are characterized by the "leaky pipeline" syndrome in which, over time, women leave the discipline. The pipeline itself and the pond into which it empties may not be neutral. Explicating invisible norms, attitudes, and practices by integrating social…

  20. The time is right: proteome biology of stem cells.

    NARCIS (Netherlands)

    Whetton, A.D.; Williamson, A.J.K.; Krijgsveld, J.; Lee, B.H.; Lemischka, I.; Oh, S.; Pera, M.; Mummery, C.L.; Heck, A.J.R.

    2008-01-01

    In stem cell biology, there is a growing need for advanced technologies that may help to unravel the molecular mechanisms of self-renewal and differentiation. Proteomics, the comprehensive analysis of proteins, is such an emerging technique. To facilitate interactions between specialists in proteomi

  1. Biology 23. Unit One -- The Cell: Structure and Physiology.

    Science.gov (United States)

    Nederland Independent School District, TX.

    GRADES OR AGES: Not given. SUBJECT MATTER: Biology, the structure and physiology of the cell. ORGANIZATION AND PHYSICAL APPEARANCE: There are four sections: a) objectives for the unit, b) bibliography, c) activities, and d) evaluation. The guide is directed to the student rather than the teacher. The guide is mimeographed and stapled, with no…

  2. Textbook Errors and Misconceptions in Biology: Cell Energetics.

    Science.gov (United States)

    Storey, Richard D.

    1992-01-01

    Discusses misconceptions and outdated models appearing in biology textbooks for concepts involving bioenergetics and chemical reactions; adenosine triphosphate (ATP) as the energy currency of cells; the myth of high energy phosphate bonds; structural properties of ATP; ATP production from respiration and fermentation; ATP as an energy storage…

  3. Human mesenchymal stromal cells : biological characterization and clinical application

    NARCIS (Netherlands)

    Bernardo, Maria Ester

    2010-01-01

    This thesis focuses on the characterization of the biological and functional properties of human mesenchymal stromal cells (MSCs), isolated from different tissue sources. The differentiation capacity of MSCs from fetal and adult tissues has been tested and compared. Umbilical cord blood (UCB) has be

  4. The Palade symposium: celebrating cell biology at its best.

    Science.gov (United States)

    Schmid, Sandra L; Farquhar, Marilyn G

    2010-07-15

    A symposium was held at the University of California, San Diego, to honor the contributions of Nobel Laureate, George Palade, to cell biology. The speakers included Günter Blobel, on the structure and function of nuclear pore complexes; Peter Walter, on the unfolded protein response in health and disease; Randy Schekman, on human disease-linked mutations in the COPII machinery; Scott Emr, on the regulation of plasma membrane composition by selective endocytosis; Roger Kornberg, on the structure and function of the transcription machinery; Peter Novick, on the regulation of rab GTPases along the secretory pathway; Jim Spudich, on the mechanism of the enigmatic myosin VI motor; and Joe Goldstein, on the function of the Niemann-Pick C (NPC)-linked gene products, NPC1 and NPC2, in cholesterol transport. Their work showcased the multidisciplinary nature, diversity, and vitality of cell biology. In the words of George Palade, their talks also illustrated "how cell biology could be used to understand disease and how disease could be used to discover normal cell biology." An integrated understanding of the cellular machinery will be essential in tackling the plethora of questions and challenges posed by completion of the human genome and for understanding the molecular mechanisms underlying human disease.

  5. Proteomics-based systems biology modeling of bovine germinal vesicle stage oocyte and cumulus cell interaction.

    Directory of Open Access Journals (Sweden)

    Divyaswetha Peddinti

    Full Text Available BACKGROUND: Oocytes are the female gametes which establish the program of life after fertilization. Interactions between oocyte and the surrounding cumulus cells at germinal vesicle (GV stage are considered essential for proper maturation or 'programming' of oocytes, which is crucial for normal fertilization and embryonic development. However, despite its importance, little is known about the molecular events and pathways involved in this bidirectional communication. METHODOLOGY/PRINCIPAL FINDINGS: We used differential detergent fractionation multidimensional protein identification technology (DDF-Mud PIT on bovine GV oocyte and cumulus cells and identified 811 and 1247 proteins in GV oocyte and cumulus cells, respectively; 371 proteins were significantly differentially expressed between each cell type. Systems biology modeling, which included Gene Ontology (GO and canonical genetic pathway analysis, showed that cumulus cells have higher expression of proteins involved in cell communication, generation of precursor metabolites and energy, as well as transport than GV oocytes. Our data also suggests a hypothesis that oocytes may depend on the presence of cumulus cells to generate specific cellular signals to coordinate their growth and maturation. CONCLUSIONS/SIGNIFICANCE: Systems biology modeling of bovine oocytes and cumulus cells in the context of GO and protein interaction networks identified the signaling pathways associated with the proteins involved in cell-to-cell signaling biological process that may have implications in oocyte competence and maturation. This first comprehensive systems biology modeling of bovine oocytes and cumulus cell proteomes not only provides a foundation for signaling and cell physiology at the GV stage of oocyte development, but are also valuable for comparative studies of other stages of oocyte development at the molecular level.

  6. Biology and clinical application of CAR T cells for B cell malignancies.

    Science.gov (United States)

    Davila, Marco L; Sadelain, Michel

    2016-07-01

    Chimeric antigen receptor (CAR)-modified T cells have generated broad interest in oncology following a series of dramatic clinical successes in patients with chemorefractory B cell malignancies. CAR therapy now appears to be on the cusp of regulatory approval as a cell-based immunotherapy. We review here the T cell biology and cell engineering research that led to the development of second generation CARs, the selection of CD19 as a CAR target, and the preclinical studies in animal models that laid the foundation for clinical trials targeting CD19+ malignancies. We further summarize the status of CD19 CAR clinical therapy for non-Hodgkin lymphoma and B cell acute lymphoblastic leukemia, including their efficacy, toxicities (cytokine release syndrome, neurotoxicity and B cell aplasia) and current management in humans. We conclude with an overview of recent pre-clinical advances in CAR design that argues favorably for the advancement of CAR therapy to tackle other hematological malignancies as well as solid tumors.

  7. WHOLE CELL TOMOGRAPHY/MOLECULAR BIOLOGY/STRUCTURAL BIOLOGY: Affordable x-ray microscopy with nanoscale resolution

    Energy Technology Data Exchange (ETDEWEB)

    Evans, James E.; Blackborow, Paul; Horne, Stephen J.; Gelb, Jeff

    2013-03-01

    Biological research spans 10 orders of magnitude from angstroms to meters. While electron microscopy can reveal structural details at most of these spatial length scales, transmission electron tomography only reliably reconstructs three-dimensional (3-D) volumes of cellular material with a spatial resolution between 1-5 nm from samples less than 500 nm thick1. Most biological cells are 2-30 times thicker than this threshold, which means that a cell must be cut into consecutive slices with each slice reconstructed individually in order to approximate the contextual information of the entire cell. Fortunately, due to a larger penetration depth2, X-ray computed tomography bypasses the need to physically section a cell and enables imaging of intact cells and tissues on the micrometer or larger scale with tens to hundreds of nanometer spatial resolution. While the technique of soft x-ray microscopy has been extensively developed in synchrotron facilities, advancements in laboratory x-ray source designs now increase its accessibility by supporting commercial systems suitable for a standard laboratory. In this paper, we highlight a new commercial compact cryogenic soft x-ray microscope designed for a standard laboratory setting and explore its capabilities for mesoscopic investigations of intact prokaryotic and eukaryotic cells.

  8. Cystitis: From Urothelial Cell Biology to Clinical Applications

    Directory of Open Access Journals (Sweden)

    Gilho Lee

    2014-01-01

    Full Text Available Cystitis is a urinary bladder disease with many causes and symptoms. The severity of cystitis ranges from mild lower abdominal discomfort to life-threatening haemorrhagic cystitis. The course of disease is often chronic or recurrent. Although cystitis represents huge economical and medical burden throughout the world and in many cases treatments are ineffective, the mechanisms of its origin and development as well as measures for effective treatment are still poorly understood. However, many studies have demonstrated that urothelial dysfunction plays a crucial role. In the present review we first discuss fundamental issues of urothelial cell biology, which is the core for comprehension of cystitis. Then we focus on many forms of cystitis, its current treatments, and advances in its research. Additionally we review haemorrhagic cystitis with one of the leading causative agents being chemotherapeutic drug cyclophosphamide and summarise its management strategies. At the end we describe an excellent and widely used animal model of cyclophosphamide induced cystitis, which gives researches the opportunity to get a better insight into the mechanisms involved and possibility to develop new therapy approaches.

  9. Virtual Reconstruction and Three-Dimensional Printing of Blood Cells as a Tool in Cell Biology Education.

    Science.gov (United States)

    Augusto, Ingrid; Monteiro, Douglas; Girard-Dias, Wendell; Dos Santos, Thaisa Oliveira; Rosa Belmonte, Simone Letícia; Pinto de Oliveira, Jairo; Mauad, Helder; da Silva Pacheco, Marcos; Lenz, Dominik; Stefanon Bittencourt, Athelson; Valentim Nogueira, Breno; Lopes Dos Santos, Jorge Roberto; Miranda, Kildare; Guimarães, Marco Cesar Cunegundes

    2016-01-01

    The cell biology discipline constitutes a highly dynamic field whose concepts take a long time to be incorporated into the educational system, especially in developing countries. Amongst the main obstacles to the introduction of new cell biology concepts to students is their general lack of identification with most teaching methods. The introduction of elaborated figures, movies and animations to textbooks has given a tremendous contribution to the learning process and the search for novel teaching methods has been a central goal in cell biology education. Some specialized tools, however, are usually only available in advanced research centers or in institutions that are traditionally involved with the development of novel teaching/learning processes, and are far from becoming reality in the majority of life sciences schools. When combined with the known declining interest in science among young people, a critical scenario may result. This is especially important in the field of electron microscopy and associated techniques, methods that have greatly contributed to the current knowledge on the structure and function of different cell biology models but are rarely made accessible to most students. In this work, we propose a strategy to increase the engagement of students into the world of cell and structural biology by combining 3D electron microscopy techniques and 3D prototyping technology (3D printing) to generate 3D physical models that accurately and realistically reproduce a close-to-the native structure of the cell and serve as a tool for students and teachers outside the main centers. We introduce three strategies for 3D imaging, modeling and prototyping of cells and propose the establishment of a virtual platform where different digital models can be deposited by EM groups and subsequently downloaded and printed in different schools, universities, research centers and museums, thereby modernizing teaching of cell biology and increasing the accessibility to

  10. Virtual Reconstruction and Three-Dimensional Printing of Blood Cells as a Tool in Cell Biology Education

    Science.gov (United States)

    Girard-Dias, Wendell; dos Santos, Thaisa Oliveira; Rosa Belmonte, Simone Letícia; Pinto de Oliveira, Jairo; Mauad, Helder; da Silva Pacheco, Marcos; Lenz, Dominik; Stefanon Bittencourt, Athelson; Valentim Nogueira, Breno; Lopes dos Santos, Jorge Roberto; Miranda, Kildare; Guimarães, Marco Cesar Cunegundes

    2016-01-01

    The cell biology discipline constitutes a highly dynamic field whose concepts take a long time to be incorporated into the educational system, especially in developing countries. Amongst the main obstacles to the introduction of new cell biology concepts to students is their general lack of identification with most teaching methods. The introduction of elaborated figures, movies and animations to textbooks has given a tremendous contribution to the learning process and the search for novel teaching methods has been a central goal in cell biology education. Some specialized tools, however, are usually only available in advanced research centers or in institutions that are traditionally involved with the development of novel teaching/learning processes, and are far from becoming reality in the majority of life sciences schools. When combined with the known declining interest in science among young people, a critical scenario may result. This is especially important in the field of electron microscopy and associated techniques, methods that have greatly contributed to the current knowledge on the structure and function of different cell biology models but are rarely made accessible to most students. In this work, we propose a strategy to increase the engagement of students into the world of cell and structural biology by combining 3D electron microscopy techniques and 3D prototyping technology (3D printing) to generate 3D physical models that accurately and realistically reproduce a close-to-the native structure of the cell and serve as a tool for students and teachers outside the main centers. We introduce three strategies for 3D imaging, modeling and prototyping of cells and propose the establishment of a virtual platform where different digital models can be deposited by EM groups and subsequently downloaded and printed in different schools, universities, research centers and museums, thereby modernizing teaching of cell biology and increasing the accessibility to

  11. Biologic characteristics of fibroblast cells cultured from the knee ligaments

    Institute of Scientific and Technical Information of China (English)

    陈鸿辉; 唐毅; 李斯明; 沈雁; 刘向荣; 钟灿灿

    2002-01-01

    Objective: To culture fibroblast cells from the kneeligaments and to study the biological characteristics of thesecells.Methods: Cells of the anterior cruciate ligament(ACL) and the medial collateral ligament (MCL) fromNew Zealand white rabbit were cultured in vitro. Cellulargrowth and expression of the collagen were analyzed.Moreover, an in vitro wound closure model was establishedand the healing of the ACL and the MCL cells wascompared.Results: Maximal growth for all these cells wereobtained with Dulbecco's modified Eagle's mediumsupplemented with 10% fetal bovine serum, but RPMI 1640and Ham's F12 media were not suitable to maintain thesecells. Morphology of both ACL and MCL cells from NewZealand white rabbit was alike in vitro, but the MCL cellsgrew faster than the ACL cells. Both cell types producedsimilar amount of collagen in culture, but the ratio ofcollage type I to type III produced by ACL cells was higherthan that produced by MCL cells. Wound closure assayshowed that at 36 hours after injury, cell-free zones createdin the ACL cultures were occupied partially by the ACLcells; in contrast, the wounded zone in the MCL cultureswas almost completely covered by the cells.Conclusions: Although the ACL cells and the MCLcells from New Zealand white rabbit show similarappearance in morphology in culture, the cellular growthand the biochemical synthesis of collagen as well as thehealing in vitro were significantly different. Thesedifferences in intrinsic properties of the two types of cells invitro might contribute to the differential healing potentialsof these ligaments in vivo.

  12. At the cutting edge: applications and perspectives of laser nanosurgery in cell biology.

    Science.gov (United States)

    Ronchi, Paolo; Terjung, Stefan; Pepperkok, Rainer

    2012-04-01

    Laser-mediated nanosurgery has become popular in the last decade because of the previously unexplored possibility of ablating biological material inside living cells with sub-micrometer precision. A number of publications have shown the potential applications of this technique, ranging from the dissection of sub-cellular structures to surgical ablations of whole cells or tissues in model systems such as Drosophila melanogaster or Danio rerio . In parallel, the recent development of micropatterning techniques has given cell biologists the possibility to shape cells and reproducibly organize the intracellular space. The integration of these two techniques has only recently started yet their combination has proven to be very interesting. The aim of this review is to present recent applications of laser nanosurgery in cell biology and to discuss the possible developments of this approach, particularly in combination with micropattern-mediated endomembrane organization.

  13. Characterization of mast cell secretory granules and their cell biology.

    Science.gov (United States)

    Azouz, Nurit Pereg; Hammel, Ilan; Sagi-Eisenberg, Ronit

    2014-10-01

    Exocytosis and secretion of secretory granule (SG) contained inflammatory mediators is the primary mechanism by which mast cells exert their protective immune responses in host defense, as well as their pathological functions in allergic reactions and anaphylaxis. Despite their central role in mast cell function, the molecular mechanisms underlying the biogenesis and secretion of mast cell SGs remain largely unresolved. Early studies have established the lysosomal nature of the mast cell SGs and implicated SG homotypic fusion as an important step occurring during both their biogenesis and compound secretion. However, the molecular mechanisms that account for key features of this process largely remain to be defined. A novel high-resolution imaging based methodology allowed us to screen Rab GTPases for their phenotypic and functional impact and identify Rab networks that regulate mast cell secretion. This screen has identified Rab5 as a novel regulator of homotypic fusion of the mast cell SGs that thereby regulates their size and cargo composition.

  14. Single Cell Analysis: From Technology to Biology and Medicine.

    Science.gov (United States)

    Pan, Xinghua

    2014-01-01

    Single-cell analysis heralds a new era that allows "omics" analysis, notably genomics, transcriptomics, epigenomics and proteomics at the single-cell level. It enables the identification of the minor subpopulations that may play a critical role in a biological process of a population of cells, which conventionally are regarded as homogeneous. It provides an ultra-sensitive tool to clarify specific molecular mechanisms and pathways and reveal the nature of cell heterogeneity. It also facilitates the clinical investigation of patients when a very low quantity or a single cell is available for analysis, such as noninvasive prenatal diagnosis and cancer screening, and genetic evaluation for in vitro fertilization. Within a few short years, single-cell analysis, especially whole genomic sequencing and transcriptomic sequencing, is becoming robust and broadly accessible, although not yet a routine practice. Here, with single cell RNA-seq emphasized, an overview of the discipline, progresses, and prospects of single-cell analysis and its applications in biology and medicine are given with a series of logic and theoretical considerations.

  15. Cell fate regulation in early mammalian development

    Science.gov (United States)

    Oron, Efrat; Ivanova, Natalia

    2012-08-01

    Preimplantation development in mammals encompasses a period from fertilization to implantation and results in formation of a blastocyst composed of three distinct cell lineages: epiblast, trophectoderm and primitive endoderm. The epiblast gives rise to the organism, while the trophectoderm and the primitive endoderm contribute to extraembryonic tissues that support embryo development after implantation. In many vertebrates, such as frog or fish, maternally supplied lineage determinants are partitioned within the egg. Cell cleavage that follows fertilization results in polarization of these factors between the individual blastomeres, which become restricted in their developmental fate. In contrast, the mouse oocyte and zygote lack clear polarity and, until the eight-cell stage, individual blastomeres retain the potential to form all lineages. How are cell lineages specified in the absence of a maternally supplied blueprint? This is a fundamental question in the field of developmental biology. The answer to this question lies in understanding the cell-cell interactions and gene networks involved in embryonic development prior to implantation and using this knowledge to create testable models of the developmental processes that govern cell fates. We provide an overview of classic and contemporary models of early lineage development in the mouse and discuss the emerging body of work that highlights similarities and differences between blastocyst development in the mouse and other mammalian species.

  16. Recent development of miniatured enzymatic biofuel cell

    Science.gov (United States)

    Song, Yin; Penmatsa, Varun; Wang, Chunlei

    2011-06-01

    Enzymatic biofuel cells (EBFCs) that oxidize biological fuels using enzyme-modified electrodes are considered a promising candidate for implantable power sources. However, there are still challenges to overcome before biofuel cells become competitive in any practical applications. Currently, the short lifespan of the catalytic enzymes and poor power density are the most critical issues in developing EBFCs. In this paper, we will review the recent development of biofuel cells and highlight the progress in Carbon-microelectromechanical system (C-MEMS) based micro biofuel cells by both computational modeling and experimental work. Also, our effort on utilizing a covalent immobilization technique for the attachment of enzymes onto the substrate which is expected to increase the enzyme loading efficiency and the power density of devices is discussed in this paper.

  17. Hydraulic fracturing in cells and tissues: fracking meets cell biology.

    Science.gov (United States)

    Arroyo, Marino; Trepat, Xavier

    2016-12-06

    The animal body is largely made of water. A small fraction of body water is freely flowing in blood and lymph, but most of it is trapped in hydrogels such as the extracellular matrix (ECM), the cytoskeleton, and chromatin. Besides providing a medium for biological molecules to diffuse, water trapped in hydrogels plays a fundamental mechanical role. This role is well captured by the theory of poroelasticity, which explains how any deformation applied to a hydrogel causes pressure gradients and water flows, much like compressing a sponge squeezes water out of it. Here we review recent evidence that poroelastic pressures and flows can fracture essential biological barriers such as the nuclear envelope, the cellular cortex, and epithelial layers. This type of fracture is known in engineering literature as hydraulic fracturing or 'fracking'.

  18. Extending the knowledge in histochemistry and cell biology.

    Science.gov (United States)

    Heupel, Wolfgang-Moritz; Drenckhahn, Detlev

    2010-01-01

    Central to modern Histochemistry and Cell Biology stands the need for visualization of cellular and molecular processes. In the past several years, a variety of techniques has been achieved bridging traditional light microscopy, fluorescence microscopy and electron microscopy with powerful software-based post-processing and computer modeling. Researchers now have various tools available to investigate problems of interest from bird's- up to worm's-eye of view, focusing on tissues, cells, proteins or finally single molecules. Applications of new approaches in combination with well-established traditional techniques of mRNA, DNA or protein analysis have led to enlightening and prudent studies which have paved the way toward a better understanding of not only physiological but also pathological processes in the field of cell biology. This review is intended to summarize articles standing for the progress made in "histo-biochemical" techniques and their manifold applications.

  19. The cell biology of Tobacco mosaic virus replication and movement.

    Science.gov (United States)

    Liu, Chengke; Nelson, Richard S

    2013-01-01

    Successful systemic infection of a plant by Tobacco mosaic virus (TMV) requires three processes that repeat over time: initial establishment and accumulation in invaded cells, intercellular movement, and systemic transport. Accumulation and intercellular movement of TMV necessarily involves intracellular transport by complexes containing virus and host proteins and virus RNA during a dynamic process that can be visualized. Multiple membranes appear to assist TMV accumulation, while membranes, microfilaments and microtubules appear to assist TMV movement. Here we review cell biological studies that describe TMV-membrane, -cytoskeleton, and -other host protein interactions which influence virus accumulation and movement in leaves and callus tissue. The importance of understanding the developmental phase of the infection in relationship to the observed virus-membrane or -host protein interaction is emphasized. Utilizing the latest observations of TMV-membrane and -host protein interactions within our evolving understanding of the infection ontogeny, a model for TMV accumulation and intracellular spread in a cell biological context is provided.

  20. Third international congress of plant molecular biology: Molecular biology of plant growth and development

    Energy Technology Data Exchange (ETDEWEB)

    Hallick, R.B. [ed.

    1995-02-01

    The Congress was held October 6-11, 1991 in Tucson with approximately 3000 scientists attending and over 300 oral presentations and 1800 posters. Plant molecular biology is one of the most rapidly developing areas of the biological sciences. Recent advances in the ability to isolate genes, to study their expression, and to create transgenic plants have had a major impact on our understanding of the many fundamental plant processes. In addition, new approaches have been created to improve plants for agricultural purposes. This is a book of presentation and posters from the conference.

  1. Bovine mammary stem cells: Cell biology meets production agriculture

    Science.gov (United States)

    Mammary stem cells (MaSC) provide for net growth, renewal and turnover of mammary epithelial cells, and are therefore potential targets for strategies to increase production efficiency. Appropriate regulation of MaSC can potentially benefit milk yield, persistency, dry period management and tissue ...

  2. Cdc48: A Swiss Army Knife of Cell Biology

    Directory of Open Access Journals (Sweden)

    Guem Hee Baek

    2013-01-01

    Full Text Available Cdc48 (also called VCP and p97 is an abundant protein that plays essential regulatory functions in a broad array of cellular processes. Working with various cofactors, Cdc48 utilizes its ATPase activity to promote the assembly and disassembly of protein complexes. Here, we review key biological functions and regulation of Cdc48 in ubiquitin-related events. Given the broad employment of Cdc48 in cell biology and its intimate ties to human diseases (e.g., amyotrophic lateral sclerosis, studies of Cdc48 will bring significant insights into the mechanism and function of ubiquitin in health and diseases.

  3. Extracellular Vesicles: Evolving Factors in Stem Cell Biology

    Science.gov (United States)

    Nawaz, Muhammad; Fatima, Farah; Vallabhaneni, Krishna C.; Penfornis, Patrice; Valadi, Hadi; Ekström, Karin; Kholia, Sharad; Whitt, Jason D.; Fernandes, Joseph D.; Pochampally, Radhika; Squire, Jeremy A.; Camussi, Giovanni

    2016-01-01

    Stem cells are proposed to continuously secrete trophic factors that potentially serve as mediators of autocrine and paracrine activities, associated with reprogramming of the tumor microenvironment, tissue regeneration, and repair. Hitherto, significant efforts have been made to understand the level of underlying paracrine activities influenced by stem cell secreted trophic factors, as little is known about these interactions. Recent findings, however, elucidate this role by reporting the effects of stem cell derived extracellular vesicles (EVs) that mimic the phenotypes of the cells from which they originate. Exchange of genetic information utilizing persistent bidirectional communication mediated by stem cell-EVs could regulate stemness, self-renewal, and differentiation in stem cells and their subpopulations. This review therefore discusses stem cell-EVs as evolving communication factors in stem cell biology, focusing on how they regulate cell fates by inducing persistent and prolonged genetic reprogramming of resident cells in a paracrine fashion. In addition, we address the role of stem cell-secreted vesicles in shaping the tumor microenvironment and immunomodulation and in their ability to stimulate endogenous repair processes during tissue damage. Collectively, these functions ensure an enormous potential for future therapies. PMID:26649044

  4. Aspects of the political economy of development and synthetic biology.

    Science.gov (United States)

    Wellhausen, Rachel; Mukunda, Gautam

    2009-12-01

    What implications might synthetic biology's potential as a wholly new method of production have for the world economy, particularly developing countries? Theories of political economy predict that synthetic biology can shift terms of trade and displace producers in developing countries. Governments, however, retain the ability to mitigate negative changes through social safety nets and to foster adaptation to some changes through research, education and investment. We consider the effects the synthetic production of otherwise naturally derived molecules are likely to have on trade and investment, particularly in developing countries. Both rubber in Malaysia and indigo dyes in India provide historical examples of natural molecules that faced market dislocations from synthetic competitors. Natural rubber was able to maintain significant market share, while natural indigo vanished from world markets. These cases demonstrate the two extremes of the impact synthetic biology might have on naturally derived products. If developing countries can cushion the pain of technological changes by providing producers support as they retool or exit, the harmful effects of synthetic biology can be mitigated while its benefits can still be captured.

  5. Development of the Biological Experimental Design Concept Inventory (BEDCI)

    Science.gov (United States)

    Deane, Thomas; Nomme, Kathy; Jeffery, Erica; Pollock, Carol; Birol, Gulnur

    2014-01-01

    Interest in student conception of experimentation inspired the development of a fully validated 14-question inventory on experimental design in biology (BEDCI) by following established best practices in concept inventory (CI) design. This CI can be used to diagnose specific examples of non-expert-like thinking in students and to evaluate the…

  6. [Experimental models in oncology: contribution of cell culture on understanding the biology of cancer].

    Science.gov (United States)

    Cruz, Mariana; Enes, Margarida; Pereira, Marta; Dourado, Marília; Sarmento Ribeiro, Ana Bela

    2009-01-01

    In the beginning of the 20th century, tissue culture was started with the aim of studying the behaviour of animal cells in normal and stress conditions. The cell study at molecular level depends on their capacity of growing and how they can be manipulated in laboratory. In vitro cell culture allows us the possibility of studying biological key processes, such as growth, differentiation and cell death, and also to do genetic manipulations essential to the knowledge of structure and genes function. Human stem cells culture provides strategies to circumvent other models' deficiencies. It seems that cancer stem cells remain quiescent until activation by appropriated micro-environmental stimulation. Several studies reveal that different cancer types could be due to stem cell malignant transformations. Removal of these cells is essential to the development of more effective cancer therapies for advanced disease. On the other hand, dendritic cells modified in culture may be used as a therapeutic vaccine in order to induce tumour withdraw.

  7. A muscle stem cell for every muscle: variability of satellite cell biology among different muscle groups

    Directory of Open Access Journals (Sweden)

    Matthew Emerson Randolph

    2015-10-01

    Full Text Available The human body contains approximately 640 individual skeletal muscles. Despite the fact that all of these muscles are composed of striated muscle tissue, the biology of these muscles and their associated muscle stem cell populations are quite diverse. Skeletal muscles are affected differentially by various muscular dystrophies, such that certain genetic mutations specifically alter muscle function in only a subset of muscles. Additionally, defective muscle stem cells have been implicated in the pathology of some muscular dystrophies. The biology of muscle stem cells varies depending on their embryologic origins and the muscles with which they are associated. Here we review the biology of skeletal muscle stem cell populations of eight different muscle groups. Understanding the biological variation of skeletal muscles and their resident stem cells could provide valuable insight into mechanisms underlying the susceptibility of certain muscles to myopathic disease.

  8. The 'omics revolution and our understanding of sperm cell biology

    Institute of Scientific and Technical Information of China (English)

    Mark A Baker

    2011-01-01

    The foundations of proteomics are to study gene products and their regulatory roles within cells. Paradoxically, the only evidence that sperm cells make new proteins is through mitochondrial protein synthesis. Yet despite this, spermatozoa are the perfect candidates for mass spectrometry and hence, proteomic analysis. These enterprising cells use a plethora of post-translational modifications in order to gain functionality following their production within the testis. By using a combination of two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), and more recently liquid chromatography-mass spectrometry (LC-MS)/MS, recent advances in sperm cell biology, through the use of proteomics, is making unparalleled progress. The protein inventory lists being generated have shed light on transmembrane proteins, kinases and chaperones never previously recognized. In addition, the ability to isolate either phosphopeptides or glycopeptides and quantify the differences between cells of two different populations make proteomic analysis of spermatozoa a real chance to finally answer some age old questions.

  9. High-Content Screening for Quantitative Cell Biology.

    Science.gov (United States)

    Mattiazzi Usaj, Mojca; Styles, Erin B; Verster, Adrian J; Friesen, Helena; Boone, Charles; Andrews, Brenda J

    2016-08-01

    High-content screening (HCS), which combines automated fluorescence microscopy with quantitative image analysis, allows the acquisition of unbiased multiparametric data at the single cell level. This approach has been used to address diverse biological questions and identify a plethora of quantitative phenotypes of varying complexity in numerous different model systems. Here, we describe some recent applications of HCS, ranging from the identification of genes required for specific biological processes to the characterization of genetic interactions. We review the steps involved in the design of useful biological assays and automated image analysis, and describe major challenges associated with each. Additionally, we highlight emerging technologies and future challenges, and discuss how the field of HCS might be enhanced in the future.

  10. Cell biology and genetics of minimal change disease

    Science.gov (United States)

    Saleem, Moin A.; Kobayashi, Yasuko

    2016-01-01

    Minimal change disease (MCD) is an important cause of nephrotic syndrome and is characterized by massive proteinuria and hypoalbuminemia, resulting in edema and hypercholesterolemia. The podocyte plays a key role in filtration and its disruption results in a dramatic loss of function leading to proteinuria. Immunologic disturbance has been suggested in the pathogenesis of MCD. Because of its clinical features, such as recurrent relapse/remission course, steroid response in most patients, and rare familial cases, a genetic defect has been thought to be less likely in MCD. Recent progress in whole-exome sequencing reveals pathogenic mutations in familial cases in steroid-sensitive nephrotic syndrome (SSNS) and sheds light on possible mechanisms and key molecules in podocytes in MCD. On the other hand, in the majority of cases, the existence of circulating permeability factors has been implicated along with T lymphocyte dysfunction. Observations of benefit with rituximab added B cell involvement to the disease. Animal models are unsatisfactory, and the humanized mouse may be a good model that well reflects MCD pathophysiology to investigate suggested “T cell dysfunction” directly related to podocytes in vivo. Several candidate circulating factors and their effects on podocytes have been proposed but are still not sufficient to explain whole mechanisms and clinical features in MCD. Another circulating factor disease is focal segmental glomerulosclerosis (FSGS), and it is not clear if this is a distinct entity, or on the same spectrum, implicating the same circulating factor(s). These patients are mostly steroid resistant and often have a rapid relapse after transplantation. In clinical practice, predicting relapse or disease activity and response to steroids is important and is an area where novel biomarkers can be developed based on our growing knowledge of podocyte signaling pathways. In this review, we discuss recent findings in genetics and podocyte biology in

  11. Cell biology and genetics of minimal change disease.

    Science.gov (United States)

    Saleem, Moin A; Kobayashi, Yasuko

    2016-01-01

    Minimal change disease (MCD) is an important cause of nephrotic syndrome and is characterized by massive proteinuria and hypoalbuminemia, resulting in edema and hypercholesterolemia. The podocyte plays a key role in filtration and its disruption results in a dramatic loss of function leading to proteinuria. Immunologic disturbance has been suggested in the pathogenesis of MCD. Because of its clinical features, such as recurrent relapse/remission course, steroid response in most patients, and rare familial cases, a genetic defect has been thought to be less likely in MCD. Recent progress in whole-exome sequencing reveals pathogenic mutations in familial cases in steroid-sensitive nephrotic syndrome (SSNS) and sheds light on possible mechanisms and key molecules in podocytes in MCD. On the other hand, in the majority of cases, the existence of circulating permeability factors has been implicated along with T lymphocyte dysfunction. Observations of benefit with rituximab added B cell involvement to the disease. Animal models are unsatisfactory, and the humanized mouse may be a good model that well reflects MCD pathophysiology to investigate suggested "T cell dysfunction" directly related to podocytes in vivo. Several candidate circulating factors and their effects on podocytes have been proposed but are still not sufficient to explain whole mechanisms and clinical features in MCD. Another circulating factor disease is focal segmental glomerulosclerosis (FSGS), and it is not clear if this is a distinct entity, or on the same spectrum, implicating the same circulating factor(s). These patients are mostly steroid resistant and often have a rapid relapse after transplantation. In clinical practice, predicting relapse or disease activity and response to steroids is important and is an area where novel biomarkers can be developed based on our growing knowledge of podocyte signaling pathways. In this review, we discuss recent findings in genetics and podocyte biology in MCD.

  12. Education Catching up with Science: Preparing Students for Three-Dimensional Literacy in Cell Biology

    Science.gov (United States)

    Kramer, IJsbrand M.; Dahmani, Hassen-Reda; Delouche, Pamina; Bidabe, Marissa; Schneeberger, Patricia

    2012-01-01

    The large number of experimentally determined molecular structures has led to the development of a new semiotic system in the life sciences, with increasing use of accurate molecular representations. To determine how this change impacts students' learning, we incorporated image tests into our introductory cell biology course. Groups of students…

  13. Human embryonic stem cells : advancing biology and cardiogenesis towards functional applications l

    NARCIS (Netherlands)

    Braam, Stefan Robbert

    2010-01-01

    Human embryonic stem cells (hESC) hold great potential as a model for human development, disease pathology, drug discovery and safety pharmacology. All these applications will depend on comprehensive knowledge of their biology and control of their signaling mechanisms and fate choices. To begin to a

  14. New biological assay to test viability of cultured cells for in vitro research applications

    NARCIS (Netherlands)

    Buijtenhuijs, P.; Buttafoco, L.; Poot, A.A.; Sterk, L.M.Th.; Vos, de R.A.I.; Geelkerken, R.H.; Feijen, J.; Vermes, I.

    2004-01-01

    The balance between apoptosis and proliferation of vascular smooth muscle cells (SMCs) is responsible for mediating profound changes in vascular architecture in development and disease. New insights in the biology of SMCs can be important to our understanding of (patho) physiological mechanisms and

  15. Role of cell-cell adhesion complexes in embryonic stem cell biology.

    Science.gov (United States)

    Pieters, Tim; van Roy, Frans

    2014-06-15

    Pluripotent embryonic stem cells (ESCs) can self-renew or differentiate into any cell type within an organism. Here, we focus on the roles of cadherins and catenins - their cytoplasmic scaffold proteins - in the fate, maintenance and differentiation of mammalian ESCs. E-cadherin is a master stem cell regulator that is required for both mouse ESC (mESC) maintenance and differentiation. E-cadherin interacts with key components of the naive stemness pathway and ablating it prevents stem cells from forming well-differentiated teratomas or contributing to chimeric animals. In addition, depleting E-cadherin converts naive mouse ESCs into primed epiblast-like stem cells (EpiSCs). In line with this, a mesenchymal-to-epithelial transition (MET) occurs during reprogramming of somatic cells towards induced pluripotent stem cells (iPSCs), leading to downregulation of N-cadherin and acquisition of high E-cadherin levels. β-catenin exerts a dual function; it acts in cadherin-based adhesion and in WNT signaling and, although WNT signaling is important for stemness, the adhesive function of β-catenin might be crucial for maintaining the naive state of stem cells. In addition, evidence is rising that other junctional proteins are also important in ESC biology. Thus, precisely regulated levels and activities of several junctional proteins, in particular E-cadherin, safeguard naive pluripotency and are a prerequisite for complete somatic cell reprogramming.

  16. Positive feelings in learning and interest development in biology education

    DEFF Research Database (Denmark)

    Petersen, Morten Rask; Dohn, Niels Bonderup

    2015-01-01

    that students who changed conceptual understanding in the tests also experienced deeper learning and understanding of natural selection and evolution. These students also experience positive feelings towards learning and learning can enhance their interest in evolution and biology in general. These findings...... for learning (e.g. Krapp, 2002). Here we turn the interplay and see learning as a facilitator for interest development. This interplay was studied in upper secondary biology education. Student’s conducted an exercise on modelling natural selection with LEGO® bricks (Christensen-Dalsgaard & Kanneworf, 2009...

  17. Integrative multicellular biological modeling: a case study of 3D epidermal development using GPU algorithms

    Directory of Open Access Journals (Sweden)

    Christley Scott

    2010-08-01

    Full Text Available Abstract Background Simulation of sophisticated biological models requires considerable computational power. These models typically integrate together numerous biological phenomena such as spatially-explicit heterogeneous cells, cell-cell interactions, cell-environment interactions and intracellular gene networks. The recent advent of programming for graphical processing units (GPU opens up the possibility of developing more integrative, detailed and predictive biological models while at the same time decreasing the computational cost to simulate those models. Results We construct a 3D model of epidermal development and provide a set of GPU algorithms that executes significantly faster than sequential central processing unit (CPU code. We provide a parallel implementation of the subcellular element method for individual cells residing in a lattice-free spatial environment. Each cell in our epidermal model includes an internal gene network, which integrates cellular interaction of Notch signaling together with environmental interaction of basement membrane adhesion, to specify cellular state and behaviors such as growth and division. We take a pedagogical approach to describing how modeling methods are efficiently implemented on the GPU including memory layout of data structures and functional decomposition. We discuss various programmatic issues and provide a set of design guidelines for GPU programming that are instructive to avoid common pitfalls as well as to extract performance from the GPU architecture. Conclusions We demonstrate that GPU algorithms represent a significant technological advance for the simulation of complex biological models. We further demonstrate with our epidermal model that the integration of multiple complex modeling methods for heterogeneous multicellular biological processes is both feasible and computationally tractable using this new technology. We hope that the provided algorithms and source code will be a

  18. Positron Emission Tomography Detector Development for Plant Biology

    Energy Technology Data Exchange (ETDEWEB)

    Weisenberger, A G; McKisson, J; Stolin, A; Zorn, C; Howell, C R; Crowell, A S; Reid, C D; Majewski, S

    2010-01-01

    There are opportunities for the development of new tools to advance plant biology research through the use of radionuclides. Thomas Jefferson National Accelerator Facility, Duke University, West Virginia University and the University of Maryland are collaborating on the development of radionuclide imaging technologies to facilitate plant biology research. Biological research into optimizing plant productivity under various environmental constraints, biofuel and carbon sequestration research are areas that could potentially benefit from new imaging technologies. Using 11CO2 tracers, the investigators at Triangle University Nuclear Laboratory / Duke University Phytotron are currently researching the dynamical responses of plants to environmental changes forecasted from increasing greenhouse trace gases involved in global change. The biological research primary focus is to investigate the impact of elevated atmospheric CO2 and nutrients limitation on carbon and nitrogen dynamics in plants. We report here on preliminary results of 11CO2 plant imaging experiments involving barley plants using Jefferson Lab dual planar positron emission tomography detectors to image 11CO2 in live barley plants. New detector designs will be developed based on the preliminary studies reported here and further planned.

  19. Molecularly engineered surfaces for cell biology: from static to dynamic surfaces.

    Science.gov (United States)

    Gooding, J Justin; Parker, Stephen G; Lu, Yong; Gaus, Katharina

    2014-04-01

    Surfaces with a well-defined presentation of ligands for receptors on the cell membrane can serve as models of the extracellular matrix for studying cell adhesion or as model cell surfaces for exploring cell-cell contacts. Because such surfaces can provide exquisite control over, for example, the density of these ligands or when the ligands are presented to the cell, they provide a very precise strategy for understanding the mechanisms by which cells respond to external adhesive cues. In the present feature article, we present an overview of the basic biology of cell adhesion before discussing surfaces that have a static presentation of immobile ligands. We outline the biological information that such surfaces have given us, before progressing to recently developed switchable surfaces and surfaces that mimic the lipid bilayer, having adhesive ligands that can move around the membrane and be remodeled by the cell. Finally, the feature article closes with some of the biological information that these new types of surfaces could provide.

  20. Membrane curvature in cell biology: An integration of molecular mechanisms.

    Science.gov (United States)

    Jarsch, Iris K; Daste, Frederic; Gallop, Jennifer L

    2016-08-15

    Curving biological membranes establishes the complex architecture of the cell and mediates membrane traffic to control flux through subcellular compartments. Common molecular mechanisms for bending membranes are evident in different cell biological contexts across eukaryotic phyla. These mechanisms can be intrinsic to the membrane bilayer (either the lipid or protein components) or can be brought about by extrinsic factors, including the cytoskeleton. Here, we review examples of membrane curvature generation in animals, fungi, and plants. We showcase the molecular mechanisms involved and how they collaborate and go on to highlight contexts of curvature that are exciting areas of future research. Lessons from how membranes are bent in yeast and mammals give hints as to the molecular mechanisms we expect to see used by plants and protists.

  1. 100 years after Smoluchowski: stochastic processes in cell biology

    Science.gov (United States)

    Holcman, D.; Schuss, Z.

    2017-03-01

    100 years after Smoluchowski introduced his approach to stochastic processes, they are now at the basis of mathematical and physical modeling in cellular biology: they are used for example to analyse and to extract features from a large number (tens of thousands) of single molecular trajectories or to study the diffusive motion of molecules, proteins or receptors. Stochastic modeling is a new step in large data analysis that serves extracting cell biology concepts. We review here Smoluchowski’s approach to stochastic processes and provide several applications for coarse-graining diffusion, studying polymer models for understanding nuclear organization and finally, we discuss the stochastic jump dynamics of telomeres across cell division and stochastic gene regulation.

  2. Metastasis in renal cell carcinoma: Biology and implications for therapy

    Directory of Open Access Journals (Sweden)

    Jun Gong

    2016-10-01

    Full Text Available Although multiple advances have been made in systemic therapy for renal cell carcinoma (RCC, metastatic RCC remains incurable. In the current review, we focus on the underlying biology of RCC and plausible mechanisms of metastasis. We further outline evolving strategies to combat metastasis through adjuvant therapy. Finally, we discuss clinical patterns of metastasis in RCC and how distinct systemic therapy approaches may be considered based on the anatomic location of metastasis.

  3. Nanodomain stabilization dynamics in plasma membranes of biological cells

    Science.gov (United States)

    Das, Tamal; Maiti, Tapas K.; Chakraborty, Suman

    2011-02-01

    We discover that a synergistically amplifying role of stabilizing membrane proteins and continuous lipid recycling can explain the physics governing the stability, polydispersity, and dynamics of lipid raft domains in plasma membranes of biological cells. We establish the conjecture using a generalized order parameter based on theoretical formalism, endorsed by detailed scaling arguments and domain mapping. Quantitative agreements with morphological distributions of raft complexes, as obtained from Förster resonance energy transfer based visualization, support the present theoretical conjecture.

  4. [Effects of decitabine on biological behavior of U266 cells].

    Science.gov (United States)

    Wang, Mei-Fang; Yang, Lin-Hua; Dong, Chun-Xia; Zhang, Rui-Juan; Zhang, Jian-Hua; Guo, Zhi-Ping; Chen, Jian-Fang; Zhagn, Li; Feng, Da-Wei

    2011-08-01

    This study was aimed to explore the effects of decitabine on the biological behaviour of U266 cells in vitro so as to provide a new thinking and experiment basis, as well as new evidences for the pathogenesis of multiple myeloma. MTT and colony formation assays were used to evaluate the impact of decitabine on the ability of proliferation of U266 cells; flow cytometry was used to analyze the cell distribution in cell cycle; transwell chamber and matrigel assays were used to observe the ability of migration and invasion. The results indicated that decitabine could significantly suppress the proliferation of U266 cells in time-and dose-dependent manners. The flow cytometric analysis demonstrated that the cells in G(0)-G(1) phase significantly increased while the cells in S and G(2)/M phase decreased. The migration and matrigel invading tests showed that the number of cells moving into under chamber of transwell decreased after U266 cells treated with decitabine. It is concluded that decitabine may act as an effective drug for MM by inhibiting the proliferation, migration and invasion ability, and the specific mechanism needs to be deeply explored.

  5. Women in cell biology: a seat at the table and a place at the podium.

    Science.gov (United States)

    Masur, Sandra Kazahn

    2013-01-01

    The Women in Cell Biology (WICB) committee of the American Society for Cell Biology (ASCB) was started in the 1970s in response to the documented underrepresentation of women in academia in general and cell biology in particular. By coincidence or causal relationship, I am happy to say that since WICB became a standing ASCB committee, women have been well represented in ASCB's leadership and as symposium speakers at the annual meeting. However, the need to provide opportunities and information useful to women in developing their careers in cell biology is still vital, given the continuing bias women face in the larger scientific arena. With its emphasis on mentoring, many of WICB's activities benefit the development of both men and women cell biologists. The WICB "Career Column" in the monthly ASCB Newsletter is a source of accessible wisdom. At the annual ASCB meeting, WICB organizes the career discussion and mentoring roundtables, childcare awards, Mentoring Theater, career-related panel and workshop, and career recognition awards. Finally, the WICB Speaker Referral Service provides a list of outstanding women whom organizers of scientific meetings, scientific review panels, and university symposia/lecture series can reach out to when facing the proverbial dilemma, "I just don't know any women who are experts."

  6. Plant Cell and Signaling Biology Blooms in the Wuyi Mountain

    Institute of Scientific and Technical Information of China (English)

    Jianping Hu

    2011-01-01

    @@ INTRODUCTION The Eighth International Conference on Plant Biology Fron-tiers, organized by Zhenbiao Yang, Chentao Lin, and Xing-wang Deng, was convened in the Wuyi Mountain Yeohwa Resort in Fujian, China, 23-27 September 2010.The meeting's main theme was Cells and Signals, featuring four keynote speeches, 45 plenary talks, and over 40 poster presentations that covered a wide range of topics, from dynamic cellular structures to how developmental and environmental signals control various plant processes at the juncture of cells.

  7. A new view into prokaryotic cell biology from electron cryotomography.

    Science.gov (United States)

    Oikonomou, Catherine M; Jensen, Grant J

    2016-04-01

    Electron cryotomography (ECT) enables intact cells to be visualized in 3D in an essentially native state to 'macromolecular' (∼4 nm) resolution, revealing the basic architectures of complete nanomachines and their arrangements in situ. Since its inception, ECT has advanced our understanding of many aspects of prokaryotic cell biology, from morphogenesis to subcellular compartmentalization and from metabolism to complex interspecies interactions. In this Review, we highlight how ECT has provided structural and mechanistic insights into the physiology of bacteria and archaea and discuss prospects for the future.

  8. Topological Quantum Computation and Error Correction by Biological Cells

    CERN Document Server

    Lofthouse, J T

    2005-01-01

    A Topological examination of phospholipid dynamics in the Far from Equilibrium state has demonstrated that metabolically active cells use waste heat to generate spatially patterned membrane flows by forced convection and shear. This paper explains the resemblance between this nonlinear membrane model and Witten Kitaev type Topological Quantum Computation systems, and demonstrates how this self-organising membrane enables biological cells to circumvent the decoherence problem, perform error correction procedures, and produce classical level output as shielded current flow through cytoskeletal protein conduit. Cellular outputs are shown to be Turing compatible as they are determined by computable in principle hydromagnetic fluid flows, and importantly, are Adaptive from an Evolutionary perspective.

  9. A unified cell biological perspective on axon-myelin injury.

    Science.gov (United States)

    Simons, Mikael; Misgeld, Thomas; Kerschensteiner, Martin

    2014-08-04

    Demyelination and axon loss are pathological hallmarks of the neuroinflammatory disorder multiple sclerosis (MS). Although we have an increasingly detailed understanding of how immune cells can damage axons and myelin individually, we lack a unified view of how the axon-myelin unit as a whole is affected by immune-mediated attack. In this review, we propose that as a result of the tight cell biological interconnection of axons and myelin, damage to either can spread, which might convert a local inflammatory disease process early in MS into the global progressive disorder seen during later stages. This mode of spreading could also apply to other neurological disorders.

  10. Micrasterias as a Model System in Plant Cell Biology

    Science.gov (United States)

    Lütz-Meindl, Ursula

    2016-01-01

    The unicellular freshwater alga Micrasterias denticulata is an exceptional organism due to its complex star-shaped, highly symmetric morphology and has thus attracted the interest of researchers for many decades. As a member of the Streptophyta, Micrasterias is not only genetically closely related to higher land plants but shares common features with them in many physiological and cell biological aspects. These facts, together with its considerable cell size of about 200 μm, its modest cultivation conditions and the uncomplicated accessibility particularly to any microscopic techniques, make Micrasterias a very well suited cell biological plant model system. The review focuses particularly on cell wall formation and composition, dictyosomal structure and function, cytoskeleton control of growth and morphogenesis as well as on ionic regulation and signal transduction. It has been also shown in the recent years that Micrasterias is a highly sensitive indicator for environmental stress impact such as heavy metals, high salinity, oxidative stress or starvation. Stress induced organelle degradation, autophagy, adaption and detoxification mechanisms have moved in the center of interest and have been investigated with modern microscopic techniques such as 3-D- and analytical electron microscopy as well as with biochemical, physiological and molecular approaches. This review is intended to summarize and discuss the most important results obtained in Micrasterias in the last 20 years and to compare the results to similar processes in higher plant cells. PMID:27462330

  11. Micrasterias as a model system in plant cell biology

    Directory of Open Access Journals (Sweden)

    Ursula Luetz-Meindl

    2016-07-01

    Full Text Available The unicellular freshwater alga Micrasterias denticulata is an exceptional organism due to its extraordinary star-shaped, highly symmetric morphology and has thus attracted the interest of researchers for many decades. As a member of the Streptophyta, Micrasterias is not only genetically closely related to higher land plants but shares common features with them in many physiological and cell biological aspects. These facts, together with its considerable cell size of about 200 µm, its modest cultivation conditions and the uncomplicated accessibility particularly to any microscopic techniques, make Micrasterias a very well suited cell biological plant model system. The review focuses particularly on cell wall formation and composition, dictyosomal structure and function, cytoskeleton control of growth and morphogenesis as well as on ionic regulation and signal transduction. It has been also shown in the recent years that Micrasterias is a highly sensitive indicator for environmental stress impact such as heavy metals, high salinity, oxidative stress or starvation. Stress induced organelle degradation, autophagy, adaption and detoxification mechanisms have moved in the center of interest and have been investigated with modern microscopic techniques such as 3-D- and analytical electron microscopy as well as with biochemical, physiological and molecular approaches. This review is intended to summarize and discuss the most important results obtained in Micrasterias in the last 20 years and to compare the results to similar processes in higher plant cells.

  12. Induced Pluripotent Stem Cell Technology in Regenerative Medicine and Biology

    Science.gov (United States)

    Pei, Duanqing; Xu, Jianyong; Zhuang, Qiang; Tse, Hung-Fat; Esteban, Miguel A.

    The potential of human embryonic stem cells (ESCs) for regenerative medicine is unquestionable, but practical and ethical considerations have hampered clinical application and research. In an attempt to overcome these issues, the conversion of somatic cells into pluripotent stem cells similar to ESCs, commonly termed nuclear reprogramming, has been a top objective of contemporary biology. More than 40 years ago, King, Briggs, and Gurdon pioneered somatic cell nuclear reprogramming in frogs, and in 1981 Evans successfully isolated mouse ESCs. In 1997 Wilmut and collaborators produced the first cloned mammal using nuclear transfer, and then Thomson obtained human ESCs from in vitro fertilized blastocysts in 1998. Over the last 2 decades we have also seen remarkable findings regarding how ESC behavior is controlled, the importance of which should not be underestimated. This knowledge allowed the laboratory of Shinya Yamanaka to overcome brilliantly conceptual and technical barriers in 2006 and generate induced pluripotent stem cells (iPSCs) from mouse fibroblasts by overexpressing defined combinations of ESC-enriched transcription factors. Here, we discuss some important implications of human iPSCs for biology and medicine and also point to possible future directions.

  13. Theories and models on the biological of cells in space

    Science.gov (United States)

    Todd, P.; Klaus, D. M.

    1996-01-01

    A wide variety of observations on cells in space, admittedly made under constraining and unnatural conditions in may cases, have led to experimental results that were surprising or unexpected. Reproducibility, freedom from artifacts, and plausibility must be considered in all cases, even when results are not surprising. The papers in symposium on 'Theories and Models on the Biology of Cells in Space' are dedicated to the subject of the plausibility of cellular responses to gravity -- inertial accelerations between 0 and 9.8 m/sq s and higher. The mechanical phenomena inside the cell, the gravitactic locomotion of single eukaryotic and prokaryotic cells, and the effects of inertial unloading on cellular physiology are addressed in theoretical and experimental studies.

  14. Theories and models on the Biology of Cells in Space

    Science.gov (United States)

    Todd, P.; Klaus, D. M.

    A wide variety of observations on cells in space, admittedly made under constraining and unnatural conditions in many cases, have led to experimental results that were surprising or unexpected. Reproducibility, freedom from artifacts, and plausibility must be considered in all cases, even when results are not surprising. The papers in the symposium on ``Theories and Models on the Biology of Cells in Space'' are dedicated to the subject of theplausibility of cellular responses to gravity -- inertial accelerations between 0 and 9.8 m/s^2 and higher. The mechanical phenomena inside the cell, the gravitactic locomotion of single eukaryotic and prokaryotic cells, and the effects of inertial unloading on cellular physiology are addressed in theoretical and experimental studies.

  15. Synthetic Biology and Microbial Fuel Cells: Towards Self-Sustaining Life Support Systems

    Science.gov (United States)

    Hogan, John Andrew

    2014-01-01

    NASA ARC and the J. Craig Venter Institute (JCVI) collaborated to investigate the development of advanced microbial fuels cells (MFCs) for biological wastewater treatment and electricity production (electrogenesis). Synthetic biology techniques and integrated hardware advances were investigated to increase system efficiency and robustness, with the intent of increasing power self-sufficiency and potential product formation from carbon dioxide. MFCs possess numerous advantages for space missions, including rapid processing, reduced biomass and effective removal of organics, nitrogen and phosphorus. Project efforts include developing space-based MFC concepts, integration analyses, increasing energy efficiency, and investigating novel bioelectrochemical system applications

  16. The Impact of Epigenetics on Mesenchymal Stem Cell Biology.

    Science.gov (United States)

    Ozkul, Yusuf; Galderisi, Umberto

    2016-11-01

    Changes in epigenetic marks are known to be important regulatory factors in stem cell fate determination and differentiation. In the past years, the investigation of the epigenetic regulation of stem cell biology has largely focused on embryonic stem cells (ESCs). Contrarily, less is known about the epigenetic control of gene expression during differentiation of adult stem cells (AdSCs). Among AdSCs, mesenchymal stem cells (MSCs) are the most investigated stem cell population because of their enormous potential for therapeutic applications in regenerative medicine and tissue engineering. In this review, we analyze the main studies addressing the epigenetic changes in MSC landscape during in vitro cultivation and replicative senescence, as well as follow osteocyte, chondrocyte, and adipocyte differentiation. In these studies, histone acetylation, DNA methylation, and miRNA expression are among the most investigated phenomena. We describe also epigenetic changes that are associated with in vitro MSC trans-differentiation. Although at the at initial stage, the epigenetics of MSCs promise to have profound implications for stem cell basic and applied research. J. Cell. Physiol. 231: 2393-2401, 2016. © 2016 Wiley Periodicals, Inc.

  17. Natural Killer Cells: Biology and Clinical Use in Cancer Therapy

    Institute of Scientific and Technical Information of China (English)

    William H. D. Hallett; William J. Murphy

    2004-01-01

    Natural killer (NK) cells have the ability to mediate both bone marrow rejection and promote engraftment, as well as the ability to elicit potent anti-tumor effects. However the clinical results for these processes are still elusive. Greater understanding of NK cell biology, from activating and inhibitory receptor functions to the role of NK cells in allogeneic transplantation, needs to be appreciated in order to draw out the clinical potential of NK cells. Mechanisms of bone marrow cell (BMC) rejection are known to be dependant on inhibitory receptors specific for major histocompatibility complex (MHC) molecules and on activating receptors that have many potential ligands. The modulation of activating and inhibitory receptors may hold the key to clinical success involving NK cells. Pre-clinical studies in mice have shown that different combinations of activating and inhibitory receptors on NK cells can reduce graft-versus-host disease (GVHD), promote engraftment, and provide superior graft-versus-tumor (GVT) responses. Recent clinical data have shown that the use of KIR-ligand incompatibility produces tremendous graft-versus-leukemia effect in patients with acute myeloid leukemia at high risk of relapse. This review will attempt to be a synthesis of current knowledge concerning NK cells, their involvement in BMT, and their use as an immunotherapy for cancer and other hematologic malignancies. Cellular & Molecular Immunology. 2004;1(1):12-21.

  18. Boletus edulis biologically active biopolymers induce cell cycle arrest in human colon adenocarcinoma cells.

    Science.gov (United States)

    Lemieszek, Marta Kinga; Cardoso, Claudia; Ferreira Milheiro Nunes, Fernando Hermínio; Ramos Novo Amorim de Barros, Ana Isabel; Marques, Guilhermina; Pożarowski, Piotr; Rzeski, Wojciech

    2013-04-25

    The use of biologically active compounds isolated from edible mushrooms against cancer raises global interest. Anticancer properties are mainly attributed to biopolymers including mainly polysaccharides, polysaccharopeptides, polysaccharide proteins, glycoproteins and proteins. In spite of the fact that Boletus edulis is one of the widely occurring and most consumed edible mushrooms, antitumor biopolymers isolated from it have not been exactly defined and studied so far. The present study is an attempt to extend this knowledge on molecular mechanisms of their anticancer action. The mushroom biopolymers (polysaccharides and glycoproteins) were extracted with hot water and purified by anion-exchange chromatography. The antiproliferative activity in human colon adenocarcinoma cells (LS180) was screened by means of MTT and BrdU assays. At the same time fractions' cytotoxicity was examined on the human colon epithelial cells (CCD 841 CoTr) by means of the LDH assay. Flow cytometry and Western blotting were applied to cell cycle analysis and protein expression involved in anticancer activity of the selected biopolymer fraction. In vitro studies have shown that fractions isolated from Boletus edulis were not toxic against normal colon epithelial cells and in the same concentration range elicited a very prominent antiproliferative effect in colon cancer cells. The best results were obtained in the case of the fraction designated as BE3. The tested compound inhibited cancer cell proliferation which was accompanied by cell cycle arrest in the G0/G1-phase. Growth inhibition was associated with modulation of the p16/cyclin D1/CDK4-6/pRb pathway, an aberration of which is a critical step in the development of many human cancers including colon cancer. Our results indicate that a biopolymer BE3 from Boletus edulis possesses anticancer potential and may provide a new therapeutic/preventive option in colon cancer chemoprevention.

  19. Model for biological communication in a nanofabricated cell-mimic driven by stochastic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Karig, David K [ORNL; Siuti, Piro [ORNL; Dar, Roy D. [University of Tennessee, Knoxville (UTK); Retterer, Scott T [ORNL; Doktycz, Mitchel John [ORNL; Simpson, Michael L [ORNL

    2011-01-01

    Cells offer natural examples of highly efficient networks of nanomachines. Accordingly, both intracellular and intercellular communication mechanisms in nature are looked to as a source of inspiration and instruction for engineered nanocommunication. Harnessing biological functionality in this manner requires an interdisciplinary approach that integrates systems biology, synthetic biology, and nanofabrication. Recent years have seen the amassing of a tremendous wealth of data from the sequencing of new organisms and from high throughput expression experiments. At the same time, a deeper fundamental understanding of individual cell function has been developed, as exemplified by the growth of fields such as noise biology, which seeks to characterize the role of noise in gene expression. The availability of well characterized biological components coupled with a deeper understanding of cell function has led to efforts to engineer both living cells and to create bio-like functionality in non-living substrates in the field of synthetic biology. Here, we present a model system that exemplifies the synergism between these realms of research. We propose a synthetic gene network for operation in a nanofabricated cell mimic array that propagates a biomolecular signal over long distances using the phenomenon of stochastic resonance. Our system consists of a bacterial quorum sensing signal molecule, a bistable genetic switch triggered by this signal, and an array of nanofabricated cell mimic wells that contain the genetic system. An optimal level of noise in the system helps to propagate a time-varying AHL signal over long distances through the array of mimics. This noise level is determined both by the system volume and by the parameters of the genetic network. Our proposed genetically driven stochastic resonance system serves as a testbed for exploring the potential harnessing of gene expression noise to aid in the transmission of a time-varying molecular signal.

  20. Solar cell materials developing technologies

    CERN Document Server

    Conibeer, Gavin J

    2014-01-01

    This book presents a comparison of solar cell materials, including both new materials based on organics, nanostructures and novel inorganics and developments in more traditional photovoltaic materials. It surveys the materials and materials trends in the field including third generation solar cells (multiple energy level cells, thermal approaches and the modification of the solar spectrum) with an eye firmly on low costs, energy efficiency and the use of abundant non-toxic materials.

  1. Obstructive renal injury: from fluid mechanics to molecular cell biology

    Directory of Open Access Journals (Sweden)

    Alvaro C Ucero

    2010-04-01

    Full Text Available Alvaro C Ucero1,*, Sara Gonçalves2,*, Alberto Benito-Martin1, Beatriz Santamaría1, Adrian M Ramos1, Sergio Berzal1, Marta Ruiz-Ortega1, Jesus Egido1, Alberto Ortiz11Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Fundación Renal Iñigo Alvarez de Toledo, Madrid, Spain; 2Nefrologia e Transplantação Renal, Hospital de Santa Maria EPE, Lisbon, Portugal *Both authors contributed equally to the manuscriptAbstract: Urinary tract obstruction is a frequent cause of renal impairment. The physiopathology of obstructive nephropathy has long been viewed as a mere mechanical problem. However, recent advances in cell and systems biology have disclosed a complex physiopathology involving a high number of molecular mediators of injury that lead to cellular processes of apoptotic cell death, cell injury leading to inflammation and resultant fibrosis. Functional studies in animal models of ureteral obstruction using a variety of techniques that include genetically modified animals have disclosed an important role for the renin-angiotensin system, transforming growth factor-β1 (TGF-β1 and other mediators of inflammation in this process. In addition, high throughput techniques such as proteomics and transcriptomics have identified potential biomarkers that may guide clinical decision-making.Keywords: urinary tract obstruction, renal injury, fluid mechanics, molecular cell biology

  2. Review: Biological relevance of disseminated tumor cells in cancer patients.

    Science.gov (United States)

    Riethdorf, Sabine; Wikman, Harriet; Pantel, Klaus

    2008-11-01

    The prognosis of cancer patients is largely determined by the occurrence of distant metastases. In patients with primary tumors, this relapse is mainly due to clinically occult micrometastasis present in secondary organs at primary diagnosis but not detectable even with high resolution imaging procedures. Sensitive and specific immunocytochemical and molecular assays enable the detection and characterization of disseminated tumor cells (DTC) at the single cell level in bone marrow (BM) as the common homing site of DTC and circulating tumor cells (CTC) in peripheral blood. Because of the high variability of results in DTC and CTC detection, there is an urgent need for standardized methods. In this review, we will focus on BM and present currently available methods for the detection and characterization of DTC. Furthermore, we will discuss data on the biology of DTC and the clinical relevance of DTC detection. While the prognostic impact of DTC in BM has clearly been shown for primary breast cancer patients, less is known about the clinical relevance of DTC in patients with other carcinomas. Current findings suggest that DTC are capable to survive chemotherapy and persist in a dormant nonproliferating state over years. To what extent these DTC have stem cell properties is subject of ongoing investigations. Further characterization is required to understand the biology of DTC and to identify new targets for improved risk prevention and tailoring of therapy. Our review will focus on breast, colon, lung, and prostate cancer as the main tumor entities in Europe and the United States.

  3. Development of the Biological Experimental Design Concept Inventory (BEDCI)

    OpenAIRE

    2014-01-01

    Interest in student conception of experimentation inspired the development of a fully validated 14-question inventory on experimental design in biology (BEDCI) by following established best practices in concept inventory (CI) design. This CI can be used to diagnose specific examples of non–expert-like thinking in students and to evaluate the success of teaching strategies that target conceptual changes. We used BEDCI to diagnose non–expert-like student thinking in experimental design at the p...

  4. The planarian flatworm: an in vivo model for stem cell biology and nervous system regeneration

    Directory of Open Access Journals (Sweden)

    Luca Gentile

    2011-01-01

    Full Text Available Planarian flatworms are an exception among bilaterians in that they possess a large pool of adult stem cells that enables them to promptly regenerate any part of their body, including the brain. Although known for two centuries for their remarkable regenerative capabilities, planarians have only recently emerged as an attractive model for studying regeneration and stem cell biology. This revival is due in part to the availability of a sequenced genome and the development of new technologies, such as RNA interference and next-generation sequencing, which facilitate studies of planarian regeneration at the molecular level. Here, we highlight why planarians are an exciting tool in the study of regeneration and its underlying stem cell biology in vivo, and discuss the potential promises and current limitations of this model organism for stem cell research and regenerative medicine.

  5. Enhancing Scientific Literacy in the Undergraduate Cell Biology Laboratory Classroom

    Directory of Open Access Journals (Sweden)

    Hadiya Woodham

    2016-12-01

    Full Text Available This paper describes the implementation of the Scientific Literacy in Cell Biology (SLCB curriculum in an undergraduate biology laboratory course. The SLCB curriculum incorporated the reading and discussion of primary literature into hands-on and collaborative practical experiences. It was implemented in five stages over an 11-week period, during which students were also introduced to the theory and practice of common cell biology techniques. We report on the effectiveness of the course, as measured by pre- and post-course survey data probing students’ content knowledge and their level of familiarity, confidence, and experience with different skills pertaining to analyzing (reading, interpreting, and discussing primary literature. In the spring 2015 semester, 287 (72% of the 396 students who were enrolled in the laboratory completed both the pre- and post-course survey. The average score on the content questions of the post-course survey was significantly higher (p < 0.0001 than the average score on the pre-course survey. Students reported that they gained greater familiarity, experience, and confidence in the skills that were measured. Our findings may aid in reforming higher-education science laboratory courses to better promote writing, reading, data processing, and presentation skills.

  6. A brief review of recent advances in stem cell biology

    Institute of Scientific and Technical Information of China (English)

    Jinhui Chen; Libing Zhou; Su-yue Pan

    2014-01-01

    Stem cells have the remarkable potential to develop into many different cell types, essentially with-out limit to replenish other cells as long as the person or animal is still alive, offering immense hope of curing Alzheimer’s disease, repairing damaged spinal cords, treating kidney, liver and lung diseases and making damaged hearts whole. Until recently, scientists primarily worked with two kinds of stem cells from animals and humans:embryonic stem cells and non-embryonic“somatic”or“adult”stem cells. Recent breakthrough make it possible to convert or“reprogram”specialized adult cells to assume a stem stem-like cells with different technologies. The review will brielfy dis-cuss the recent progresses in this area.

  7. Isolation of biologically active nanomaterial (inclusion bodies from bacterial cells

    Directory of Open Access Journals (Sweden)

    Peternel Špela

    2010-09-01

    Full Text Available Abstract Background In recent years bacterial inclusion bodies (IBs were recognised as highly pure deposits of active proteins inside bacterial cells. Such active nanoparticles are very interesting for further downstream protein isolation, as well as for many other applications in nanomedicine, cosmetic, chemical and pharmaceutical industry. To prepare large quantities of a high quality product, the whole bioprocess has to be optimised. This includes not only the cultivation of the bacterial culture, but also the isolation step itself, which can be of critical importance for the production process. To determine the most appropriate method for the isolation of biologically active nanoparticles, three methods for bacterial cell disruption were analyzed. Results In this study, enzymatic lysis and two mechanical methods, high-pressure homogenization and sonication, were compared. During enzymatic lysis the enzyme lysozyme was found to attach to the surface of IBs, and it could not be removed by simple washing. As this represents an additional impurity in the engineered nanoparticles, we concluded that enzymatic lysis is not the most suitable method for IBs isolation. During sonication proteins are released (lost from the surface of IBs and thus the surface of IBs appears more porous when compared to the other two methods. We also found that the acoustic output power needed to isolate the IBs from bacterial cells actually damages proteins structures, thereby causing a reduction in biological activity. High-pressure homogenization also caused some damage to IBs, however the protein loss from the IBs was negligible. Furthermore, homogenization had no side-effects on protein biological activity. Conclusions The study shows that among the three methods tested, homogenization is the most appropriate method for the isolation of active nanoparticles from bacterial cells.

  8. Obstructive renal injury: from fluid mechanics to molecular cell biology.

    Science.gov (United States)

    Ucero, Alvaro C; Gonçalves, Sara; Benito-Martin, Alberto; Santamaría, Beatriz; Ramos, Adrian M; Berzal, Sergio; Ruiz-Ortega, Marta; Egido, Jesus; Ortiz, Alberto

    2010-04-22

    Urinary tract obstruction is a frequent cause of renal impairment. The physiopathology of obstructive nephropathy has long been viewed as a mere mechanical problem. However, recent advances in cell and systems biology have disclosed a complex physiopathology involving a high number of molecular mediators of injury that lead to cellular processes of apoptotic cell death, cell injury leading to inflammation and resultant fibrosis. Functional studies in animal models of ureteral obstruction using a variety of techniques that include genetically modified animals have disclosed an important role for the renin-angiotensin system, transforming growth factor-β1 (TGF-β1) and other mediators of inflammation in this process. In addition, high throughput techniques such as proteomics and transcriptomics have identified potential biomarkers that may guide clinical decision-making.

  9. An update of human mesenchymal stem cell biology and their clinical uses

    DEFF Research Database (Denmark)

    Zaher, Walid; Harkness, Linda; Kermani, Abbas Jafari

    2014-01-01

    and in vivo. Consequently, stromal (mesenchymal) stem cells (MSCs) are being introduced into many clinical trials due to their ease of isolation and efficacy in treating a number of disease conditions in animal preclinical disease models. The aim of this review is to revise MSC biology, their potential......In the past decade, an increasing urge to develop new and novel methods for the treatment of degenerative diseases where there is currently no effective therapy has lead to the emerging of the cell therapy or cellular therapeutics approach for the management of those conditions where organ...... functions are restored through transplantation of healthy and functional cells. Stem cells, because of their nature, are currently considered among the most suitable cell types for cell therapy. There are an increasing number of studies that have tested the stromal stem cell functionality both in vitro...

  10. No question about exciting questions in cell biology.

    Directory of Open Access Journals (Sweden)

    Thomas D Pollard

    2013-12-01

    Full Text Available Although we have a good grasp of many important processes in cell biology, including knowledge of many molecules involved and how they interact with each other, we still do not understand most of the dynamical features that are the essence of living systems. Fortunately, we now have the ability to dissect biological systems in enough detail to understand their dynamics, including the use of mathematical models to account for past observations and predict future experiments. This deep level of mechanistic understanding should be our goal—not simply to satisfy our scientific curiosity, but also to understand the causes of disease well enough to predict risks, make early diagnoses, and treat effectively. Many big questions remain to be answered before we reach this goal of understanding cellular dynamics.

  11. No question about exciting questions in cell biology.

    Science.gov (United States)

    Pollard, Thomas D

    2013-12-01

    Although we have a good grasp of many important processes in cell biology, including knowledge of many molecules involved and how they interact with each other, we still do not understand most of the dynamical features that are the essence of living systems. Fortunately, we now have the ability to dissect biological systems in enough detail to understand their dynamics, including the use of mathematical models to account for past observations and predict future experiments. This deep level of mechanistic understanding should be our goal—not simply to satisfy our scientific curiosity, but also to understand the causes of disease well enough to predict risks, make early diagnoses, and treat effectively. Many big questions remain to be answered before we reach this goal of understanding cellular dynamics.

  12. The biology and clinical development of MEK inhibitors for cancer.

    Science.gov (United States)

    Luke, Jason J; Ott, Patrick A; Shapiro, Geoffrey I

    2014-12-01

    The mitogen-activated protein kinase kinases (MAPKK) MEK1 and MEK2 are integral members of the MAPK/ERK signaling pathway and are of interest in the development of anti-cancer therapeutics. The MAPK/ERK pathway is dysregulated in more than 30 % of cancers, predominately by mutations in RAS and BRAF proteins, and MEK serves as a potential downstream target for both of these. The biology of MEK inhibition is complex, as the molecule is differentially regulated by upstream RAS or RAF. This has impacted on the past development of MEK inhibitors as treatments for cancer and may be exploited in more rational, molecularly selected drug development plans in the future. The role of MEK in cancer and the mechanism of action of MEK inhibitors is reviewed. Furthermore, MEK inhibitors that are available in standard practice, as well as those most advanced in clinical development, are discussed. Finally, next steps in the development of MEK inhibitors are considered.

  13. Quantifying Cell Fate Decisions for Differentiation and Reprogramming of a Human Stem Cell Network: Landscape and Biological Paths

    Science.gov (United States)

    Li, Chunhe; Wang, Jin

    2013-01-01

    Cellular reprogramming has been recently intensively studied experimentally. We developed a global potential landscape and kinetic path framework to explore a human stem cell developmental network composed of 52 genes. We uncovered the underlying landscape for the stem cell network with two basins of attractions representing stem and differentiated cell states, quantified and exhibited the high dimensional biological paths for the differentiation and reprogramming process, connecting the stem cell state and differentiated cell state. Both the landscape and non-equilibrium curl flux determine the dynamics of cell differentiation jointly. Flux leads the kinetic paths to be deviated from the steepest descent gradient path, and the corresponding differentiation and reprogramming paths are irreversible. Quantification of paths allows us to find out how the differentiation and reprogramming occur and which important states they go through. We show the developmental process proceeds as moving from the stem cell basin of attraction to the differentiation basin of attraction. The landscape topography characterized by the barrier heights and transition rates quantitatively determine the global stability and kinetic speed of cell fate decision process for development. Through the global sensitivity analysis, we provided some specific predictions for the effects of key genes and regulation connections on the cellular differentiation or reprogramming process. Key links from sensitivity analysis and biological paths can be used to guide the differentiation designs or reprogramming tactics. PMID:23935477

  14. Mobile Applications in Cell Biology Present New Approaches for Cell Modelling

    Science.gov (United States)

    de Oliveira, Mayara Lustosa; Galembeck, Eduardo

    2016-01-01

    Cell biology apps were surveyed in order to identify whether there are new approaches for modelling cells allowed by the new technologies implemented in tablets and smartphones. A total of 97 apps were identified in 3 stores surveyed (Apple, Google Play and Amazon), they are presented as: education 48.4%, games 26.8% and medicine 15.4%. The apps…

  15. The cell biology of Tobacco mosaic virus replication and movement

    Directory of Open Access Journals (Sweden)

    Chengke eLiu

    2013-02-01

    Full Text Available Successful systemic infection of a plant by Tobacco mosaic virus (TMV requires three processes that repeat over time: initial establishment and accumulation in invaded cells, intercellular movement and systemic transport. Accumulation and intercellular movement of TMV necessarily involves intracellular transport by complexes containing virus and host proteins and virus RNA during a dynamic process that can be visualized. Multiple membranes appear to assist TMV accumulation, while membranes, microfilaments and microtubules appear to assist TMV movement. Here we review cell biological studies that describe TMV-membrane, -cytoskeleton and -other host protein interactions which influence virus accumulation and movement in leaves and callus tissue. The importance of understanding the developmental phase of the infection in relationship to the observed virus-membrane or -host protein interaction is emphasized. Utilizing the latest observations of TMV-membrane and -host protein interactions within our evolving understanding of the infection ontogeny, a model for TMV accumulation and intracellular spread in a cell biological context is provided.

  16. Biologic Agents for Periodontal Regeneration and Implant Site Development

    Science.gov (United States)

    Suárez-López del Amo, Fernando; Monje, Alberto; Padial-Molina, Miguel; Tang, ZhiHui; Wang, Hom-Lay

    2015-01-01

    The advancement of molecular mediators or biologic agents has increased tremendously during the last decade in periodontology and dental implantology. Implant site development and reconstruction of the lost periodontium represent main fields in which these molecular mediators have been employed and investigated. Different growth factors trigger different reactions in the tissues of the periodontium at various cellular levels. Proliferation, migration, and differentiation constitute the main target areas of these molecular mediators. It was the purpose of this comprehensive review to describe the origin and rationale, evidence, and the most current understanding of the following biologic agents: Recombinant Human Platelet-Derived Growth Factor-BB (rhPDGF-BB), Enamel Matrix Derivate (EMD), Platelet-Rich Plasma (PRP) and Platelet-Rich Fibrin (PRF), Recombinant Human Fibroblast Growth Factor-2 (rhFGF-2), Bone Morphogenic Proteins (BMPs, BMP-2 and BMP-7), Teriparatide PTH, and Growth Differential Factor-5 (GDF-5). PMID:26509173

  17. Biologic Agents for Periodontal Regeneration and Implant Site Development

    Directory of Open Access Journals (Sweden)

    Fernando Suárez-López del Amo

    2015-01-01

    Full Text Available The advancement of molecular mediators or biologic agents has increased tremendously during the last decade in periodontology and dental implantology. Implant site development and reconstruction of the lost periodontium represent main fields in which these molecular mediators have been employed and investigated. Different growth factors trigger different reactions in the tissues of the periodontium at various cellular levels. Proliferation, migration, and differentiation constitute the main target areas of these molecular mediators. It was the purpose of this comprehensive review to describe the origin and rationale, evidence, and the most current understanding of the following biologic agents: Recombinant Human Platelet-Derived Growth Factor-BB (rhPDGF-BB, Enamel Matrix Derivate (EMD, Platelet-Rich Plasma (PRP and Platelet-Rich Fibrin (PRF, Recombinant Human Fibroblast Growth Factor-2 (rhFGF-2, Bone Morphogenic Proteins (BMPs, BMP-2 and BMP-7, Teriparatide PTH, and Growth Differential Factor-5 (GDF-5.

  18. Peroxidase Biocathodes for a Biofuel Cell Development

    DEFF Research Database (Denmark)

    Gomes, Celso; Shipovskov, Stepan; Ferapontova, Elena

    Among such efficient sustainable energy sources, as wind and solar power, photovoltaics, geothermal and water power and other1-3, biofuels are ranked as less efficient. The latest 2009 report of the International Energy Agency4 plans approximately 100% increase of the contribution of the renewable...... energy sources in the world energy consumption within the period from 2006 to 2030, with a biomass conversion mentioned only briefly. Along with this, the expedient development of new bioenergy technologies may change the future role of biological sources. One example is production of bioethanol...... as alternative fuel5,6; another example is a steadily expanding field of biofuel cells development7-10, with a number of scientific publications and patent applications increased more than 40 times during the last decade11. In terms of sustainable energy production, enzymatic biofuel cells are attractive...

  19. Diffusion wave and signal transduction in biological live cells

    CERN Document Server

    Fan, Tian You

    2012-01-01

    Transduction of mechanical stimuli into biochemical signals is a fundamental subject for cell physics. In the experiments of FRET signal in cells a wave propagation in nanoscope was observed. We here develop a diffusion wave concept and try to give an explanation to the experimental observation. The theoretical prediction is in good agreement to result of the experiment.

  20. iPS-Cinderella Story in Cell Biology

    Directory of Open Access Journals (Sweden)

    Editorial

    2010-01-01

    Full Text Available As we step through the frontiers of modern Science, we are all witnesses to the Cinderella story repeating itself in the form of the iPS. The process of re-programming adult somatic cells to derive Induced Pluripotent stem cells (iPS with the wand of transcription factors and then differentiating them back to adult somatic cells resembles the transformation of Cinderella from a Cinder girl to princess and back to a Cinder girl after the ball; but the iPS-Cinderella is the most fascinating thing ever in cell biology!From the day iPS first made its headlines when it was first produced by Shinya Yamanaka at Kyoto University in Japan, Stem Cell scientists all over the world are re- doing their experiments so far done using other sources like embryonic and adult Stem cells with the iPS cells exploring their potential to the fullest. A Stem Cell science news page without this magic word of iPS is difficult to imagine these days and Scientists have been successful in growing most of the adult Cell types from iPS cells.iPS cells was the key to solve the problems of Immune rejection and Immunosupression required when using other allogeneic Stem cell types which had baffled scientists previously. But the issues raised by scientists about the use of viruses and Oncogenes in producing iPS cells were made groundless when scientists in February 2008 published the discovery of a technique that could remove oncogenes after the induction of pluripotency and now it is possible to induce pluripotency using plasmid transfection, piggyback transposon system and piggyback transposon system combined with a non viral vector system. The word of the day is pIPS which are protein-induced Pluripotent stem cells which are iPS cells that were generated without any genetic alteration of the adult cell. This research by the group of Sheng Ding in La Jolla, California made public in April 2009 showed that the generation of poly-arginine anchors was sufficient to induce

  1. The virtual cell animation collection: tools for teaching molecular and cellular biology.

    Science.gov (United States)

    Reindl, Katie M; White, Alan R; Johnson, Christina; Vender, Bradley; Slator, Brian M; McClean, Phillip

    2015-04-01

    A cell is a minifactory in which structures and molecules are assembled, rearranged, disassembled, packaged, sorted, and transported. Because cellular structures and molecules are invisible to the human eye, students often have difficulty conceptualizing the dynamic nature of cells that function at multiple scales across time and space. To represent these dynamic cellular processes, the Virtual Cell Productions team at North Dakota State University develops freely available multimedia materials to support molecular and cellular biology learning inside and outside the high school and university classroom.

  2. The Virtual Cell Animation Collection: Tools for Teaching Molecular and Cellular Biology

    Science.gov (United States)

    Reindl, Katie M.; White, Alan R.; Johnson, Christina; Vender, Bradley; Slator, Brian M.; McClean, Phillip

    2015-01-01

    A cell is a minifactory in which structures and molecules are assembled, rearranged, disassembled, packaged, sorted, and transported. Because cellular structures and molecules are invisible to the human eye, students often have difficulty conceptualizing the dynamic nature of cells that function at multiple scales across time and space. To represent these dynamic cellular processes, the Virtual Cell Productions team at North Dakota State University develops freely available multimedia materials to support molecular and cellular biology learning inside and outside the high school and university classroom. PMID:25856580

  3. Holistic systems biology approaches to molecular mechanisms of human helper T cell differentiation to functionally distinct subsets.

    Science.gov (United States)

    Chen, Z; Lönnberg, T; Lahesmaa, R

    2013-08-01

    Current knowledge of helper T cell differentiation largely relies on data generated from mouse studies. To develop therapeutical strategies combating human diseases, understanding the molecular mechanisms how human naïve T cells differentiate to functionally distinct T helper (Th) subsets as well as studies on human differentiated Th cell subsets is particularly valuable. Systems biology approaches provide a holistic view of the processes of T helper differentiation, enable discovery of new factors and pathways involved and generation of new hypotheses to be tested to improve our understanding of human Th cell differentiation and immune-mediated diseases. Here, we summarize studies where high-throughput systems biology approaches have been exploited to human primary T cells. These studies reveal new factors and signalling pathways influencing T cell differentiation towards distinct subsets, important for immune regulation. Such information provides new insights into T cell biology and into targeting immune system for therapeutic interventions.

  4. Structure of Development or Development and Topology of Biological Shapeexemplified on the early embryology in the egg of the nematode C. elegans

    OpenAIRE

    Krämer, Alexander

    2002-01-01

    The pre-morpho-genetic development of nematode Caenorhabditis elegans in the egg is studied to formulate a base system, in which rules that govern the formation of shape and functions in biological organisms can be defined. The spatial cell positions and the cell movements are subject of analysis by mathematical means, with respect to the determination of biological form and function . The mathematical concepts of Vector space chains, Matrix and Boundary operations are made available for the ...

  5. Biological effects of IL-21 on different immune cells and its role in autoimmune diseases.

    Science.gov (United States)

    Gharibi, Tohid; Majidi, Jafar; Kazemi, Tohid; Dehghanzadeh, Rashedeh; Motallebnezhad, Morteza; Babaloo, Zohreh

    2016-02-01

    Interleukin-21 (IL-21) is a member of the common γ-chain cytokines with broad pleiotropic actions that affects different immune and nonimmune cells. IL-21 can affect differentiation, proliferation and function of T and B cells; it can also induce the maturation and enhance the cytotoxicity of CD8+ T cells and Natural killer (NK) cells. IL-21 exerts major effects on B-cell activation and differentiation or apoptosis during humoral immune responses and induces differentiation of naïve B cells and memory B cells into plasma cells. IL-21 also affects different subtypes of T cells including T helper-17 (TH17), T follicular helper (TFH) and regulatory T (Treg) cells and thereby promotes the development of autoimmune disorders and inflammatory diseases. Observations have shown that the blockade of IL-21 has therapeutic effects on various autoimmune diseases in animal models. A better understanding of the regulation of cell differentiation and stabilization by IL-21 in the context of each specific autoimmune disease or tissue-specific pathological microenvironments will be helpful in developing novel treatments to control autoimmune diseases. Herein, we review the biological effects of IL-21 on different immune cells and uncover the emerging role of this interesting cytokine in autoimmune diseases.

  6. Hematopoietic and nature killer cell development from human pluripotent stem cells.

    Science.gov (United States)

    Ni, Zhenya; Knorr, David A; Kaufman, Dan S

    2013-01-01

    Natural killer (NK) cells are key effectors of the innate immune system, protecting the host from a variety of infections, as well as malignant cells. Recent advances in the field of NK cell biology have led to a better understanding of how NK cells develop. This progress has directly translated to improved outcomes in patients receiving hematopoietic stem cell transplants to treat potentially lethal malignancies. However, key differences between mouse and human NK cell development and biology limits the use of rodents to attain a more in depth understanding of NK cell development. Therefore, a readily accessible and genetically tractable cell source to study human NK cell development is warranted. Our lab has pioneered the development of lymphocytes, specifically NK cells, from human embryonic stem cells (hESCs) and more recently induced pluripotent stem cells (iPSCs). This chapter describes a reliable method to generate NK cells from hESCs and iPSCs using murine stromal cell lines. Additionally, we include an updated approach using a spin-embryoid body (spin-EB) differentiation system that allows for human NK cell development completely defined in vitro conditions.

  7. Lithium-Air Cell Development

    Science.gov (United States)

    Reid, Concha M.; Dobley, Arthur; Seymour, Frasier W.

    2014-01-01

    Lithium-air (Li-air) primary batteries have a theoretical specific capacity of 11,400 Wh/kg, the highest of any common metal-air system. NASA is developing Li-air technology for a Mobile Oxygen Concentrator for Spacecraft Emergencies, an application which requires an extremely lightweight primary battery that can discharge over 24 hours continuously. Several vendors were funded through the NASA SBIR program to develop Li-air technology to fulfill the requirements of this application. New catalysts and carbon cathode structures were developed to enhance the oxygen reduction reaction and increase surface area to improve cell performance. Techniques to stabilize the lithium metal anode surface were explored. Experimental results for prototype laboratory cells are given. Projections are made for the performance of hypothetical cells constructed from the materials that were developed.

  8. Distinguishing Pattern Formation Phenotypes: Applying Minkowski Functionals to Cell Biology Systems

    Science.gov (United States)

    Rericha, Erin; Guven, Can; Parent, Carole; Losert, Wolfgang

    2011-03-01

    Spatial Clustering of proteins within cells or cells themselves frequently occur in cell biology systems. However quantifying the underlying order and determining the regulators of these cluster patterns have proved difficult due to the inherent high noise levels in the systems. For instance the patterns formed by wild type and cyclic-AMP regulatory mutant Dictyostelium cells are visually distinctive, yet the large error bars in measurements of the fractal number, area, Euler number, eccentricity, and wavelength making it difficult to quantitatively distinguish between the patterns. We apply a spatial analysis technique based on Minkowski functionals and develop metrics which clearly separate wild type and mutant cell lines into distinct categories. Having such a metric facilitated the development of a computational model for cellular aggregation and its regulators. Supported by NIH-NGHS Nanotechnology (R01GM085574) and the Burroughs Wellcome Fund.

  9. Physics in cell biology: on the physics of biopolymers and molecular motors.

    Science.gov (United States)

    Frey, Erwin

    2002-03-12

    "What is Life?" is the title of a book by Erwin Schrödinger, first published in 1944. This book is a bold attempt to try to understand some of the wonders of life in terms of physics, in particular statistical mechanics. Since the publication of this visionary book, we have seen a revolution in molecular biology complemented by the development of new physical tools like single-molecule spectroscopy. The goal of this article is to highlight some examples where physics can contribute to questions in cell biology. One might hope that through interdisciplinary research one can get closer to answering Schrödinger's fundamental question.

  10. Embryological origin of the endocardium and derived valve progenitor cells: from developmental biology to stem cell-based valve repair.

    Science.gov (United States)

    Pucéat, Michel

    2013-04-01

    The cardiac valves are targets of both congenital and acquired diseases. The formation of valves during embryogenesis (i.e., valvulogenesis) originates from endocardial cells lining the myocardium. These cells undergo an endothelial-mesenchymal transition, proliferate and migrate within an extracellular matrix. This leads to the formation of bilateral cardiac cushions in both the atrioventricular canal and the outflow tract. The embryonic origin of both the endocardium and prospective valve cells is still elusive. Endocardial and myocardial lineages are segregated early during embryogenesis and such a cell fate decision can be recapitulated in vitro by embryonic stem cells (ESC). Besides genetically modified mice and ex vivo heart explants, ESCs provide a cellular model to study the early steps of valve development and might constitute a human therapeutic cell source for decellularized tissue-engineered valves. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.

  11. Heterogeneity, Cell Biology and Tissue Mechanics of Pseudostratified Epithelia: Coordination of Cell Divisions and Growth in Tightly Packed Tissues.

    Science.gov (United States)

    Strzyz, P J; Matejcic, M; Norden, C

    2016-01-01

    Pseudostratified epithelia (PSE) are tightly packed proliferative tissues that are important precursors of the development of diverse organs in a plethora of species, invertebrate and vertebrate. PSE consist of elongated epithelial cells that are attached to the apical and basal side of the tissue. The nuclei of these cells undergo interkinetic nuclear migration (IKNM) which leads to all mitotic events taking place at the apical surface of the epithelium. In this review, we discuss the intricacies of proliferation in PSE, considering cell biological, as well as the physical aspects. First, we summarize the principles governing the invariability of apical nuclear migration and apical cell division as well as the importance of apical mitoses for tissue proliferation. Then, we focus on the mechanical and structural features of these tissues. Here, we discuss how the overall architecture of pseudostratified tissues changes with increased cell packing. Lastly, we consider possible mechanical cues resulting from these changes and their potential influence on cell proliferation.

  12. The Histochemistry and Cell Biology omnium-gatherum: the year 2015 in review.

    Science.gov (United States)

    Taatjes, Douglas J; Roth, Jürgen

    2016-03-01

    We provide here our annual review/synopsis of all of the articles published in Histochemistry and Cell Biology (HCB) for the preceding year. In 2015, HCB published 102 articles, representing a wide variety of topics and methodologies. For ease of access to these differing topics, we have created categories, as determined by the types of articles presented to provide a quick index representing the general areas covered. This year, these categories include: (1) advances in methodologies; (2) molecules in health and disease; (3) organelles, subcellular structures, and compartments; (4) the nucleus; (5) stem cells and tissue engineering; (6) cell cultures: properties and capabilities; (7) connective tissues and extracellular matrix; (8) developmental biology; (9) nervous system; (10) musculoskeletal system; (11) respiratory and cardiovascular system; (12) liver and gastrointestinal tract; and (13) male and female reproductive systems. Of note, the categories proceed from methods development, to molecules, intracellular compartments, stem cells and cell culture, extracellular matrix, developmental biology, and finishing with various organ systems, hopefully presenting a logical journey from methods to organismal molecules, cells, and whole tissue systems.

  13. BioNumbers--the database of key numbers in molecular and cell biology.

    Science.gov (United States)

    Milo, Ron; Jorgensen, Paul; Moran, Uri; Weber, Griffin; Springer, Michael

    2010-01-01

    BioNumbers (http://www.bionumbers.hms.harvard.edu) is a database of key numbers in molecular and cell biology--the quantitative properties of biological systems of interest to computational, systems and molecular cell biologists. Contents of the database range from cell sizes to metabolite concentrations, from reaction rates to generation times, from genome sizes to the number of mitochondria in a cell. While always of importance to biologists, having numbers in hand is becoming increasingly critical for experimenting, modeling, and analyzing biological systems. BioNumbers was motivated by an appreciation of how long it can take to find even the simplest number in the vast biological literature. All numbers are taken directly from a literature source and that reference is provided with the number. BioNumbers is designed to be highly searchable and queries can be performed by keywords or browsed by menus. BioNumbers is a collaborative community platform where registered users can add content and make comments on existing data. All new entries and commentary are curated to maintain high quality. Here we describe the database characteristics and implementation, demonstrate its use, and discuss future directions for its development.

  14. Survey of cell biology experiments in reduced gravity

    Science.gov (United States)

    Taylor, G. R.

    1977-01-01

    The effects of spaceflight on terrestrial cell systems are discussed. With some important exceptions, static cell systems carried aboard U.S.A. and U.S.S.R. space flights have failed to reveal space related anomalies. Some sophisticated devices which were developed for viewing directly, or continuously recording, the growth of cells, tissue cultures and eggs in flight, are described and the results summarized. The unique presence of high energy, multicharged (HZE) particles and full-range ultraviolet irradiation in space prompted evaluation of the response of single cells to these factors. Summary results and general conclusions are presented. Potential areas of research in future space flights are identified.

  15. Study on biological characters of SGC7901 gastric cancer cell-dendritic cell fusion vaccines

    Institute of Scientific and Technical Information of China (English)

    Kun Zhang; Peng-Fen Gao; Pei-Wu Yu; Yun Rao; Li-Xin Zhou

    2006-01-01

    AIM: To detect the biological characters of the SGC7901 gastric cancer cell-dendritic cell fusion vaccines.METHODS: The suspending living SGC7901 gastric cancer cells and dendritic cells were induced to be fusioned by polyethylene glycol. Pure fusion cells were obtained by selective culture with the HAT/HT culture systems.The fusion cells were counted at different time points of culture and their growth curves were drawn to reflect their proliferative activities. The fusion cells were also cultured in culture medium to investigate whether they could grow into cell clones. MTT method was used to test the stimulating abilities of the fusion cells on T lymphocytes' proliferations. Moreover, the fusion cells were planted into nude mice to observe whether they could grow into new planted tumors in this kind of immunodeficiency animals.RESULTS: The fusion cells had weaker proliferative activity and clone abilities than their parental cells. When they were cultured, the counts of cells did not increase remarkably, nor could they grow into cell clones in culture medium. The fusion cells could not grow into new planted tumors after planted into nude mice. The stimulating abilities of the fusion cells on T lymphocytes' proliferations were remarkably increased than their parental dendritic cells.CONCLUSION: The SGC7901 gastric cancer cell-dendritic cell fusion vaccines have much weaker proliferative abilities than their parental cells, but they keep strong abilities to irritate the T lymphocytes and have no abilities to grow into new planted tumors in immunodeficiency animals. These are the biological basis for their antitumor biotherapies.

  16. Cell biology in neuroscience: Architects in neural circuit design: glia control neuron numbers and connectivity.

    Science.gov (United States)

    Corty, Megan M; Freeman, Marc R

    2013-11-11

    Glia serve many important functions in the mature nervous system. In addition, these diverse cells have emerged as essential participants in nearly all aspects of neural development. Improved techniques to study neurons in the absence of glia, and to visualize and manipulate glia in vivo, have greatly expanded our knowledge of glial biology and neuron-glia interactions during development. Exciting studies in the last decade have begun to identify the cellular and molecular mechanisms by which glia exert control over neuronal circuit formation. Recent findings illustrate the importance of glial cells in shaping the nervous system by controlling the number and connectivity of neurons.

  17. Notch signaling and EMT in non-small cell lung cancer: biological significance and therapeutic application.

    Science.gov (United States)

    Yuan, Xun; Wu, Hua; Han, Na; Xu, Hanxiao; Chu, Qian; Yu, Shiying; Chen, Yuan; Wu, Kongming

    2014-12-05

    Through epithelial-mesenchymal transition (EMT), cancer cells acquire enhanced ability of migration and invasion, stem cell like characteristics and therapeutic resistance. Notch signaling regulates cell-cell connection, cell polarity and motility during organ development. Recent studies demonstrate that Notch signaling plays an important role in lung cancer initiation and cross-talks with several transcriptional factors to enhance EMT, contributing to the progression of non-small cell lung cancer (NSCLC). Correspondingly, blocking of Notch signaling inhibits NSCLC migration and tumor growth by reversing EMT. Clinical trials have showed promising effect in some cancer patients received treatment with Notch1 inhibitor. This review attempts to provide an overview of the Notch signal in NSCLC: its biological significance and therapeutic application.

  18. Cell biology and biotechnology research for exploration of the Moon and Mars

    Science.gov (United States)

    Pellis, N.; North, R.

    Health risks generated by human long exposure to radiation, microgravity, and unknown factors in the planetary environment are the major unresolved issues for human space exploration. A complete characterization of human and other biological systems adaptation processes to long-duration space missions is necessary for the development of countermeasures. The utilization of cell and engineered tissue cultures in space research and exploration complements research in human, animal, and plant subjects. We can bring a small number of humans, animals, or plants to the ISS, Moon, and Mars. However, we can investigate millions of their cells during these missions. Furthermore, many experiments can not be performed on humans, e.g. radiation exposure, cardiac muscle. Cells from critical tissues and tissue constructs per se are excellent subjects for experiments that address underlying mechanisms important to countermeasures. The development of cell tissue engineered for replacement, implantation of biomaterial to induce tissue regeneration (e.g. absorbable collagen matrix for guiding tissue regeneration in periodontal surgery), and immunoisolation (e.g. biopolymer coating on transplanted tissues to ward off immunological rejection) are good examples of cell research and biotechnology applications. NASA Cell Biology and Biotechnology research include Bone/Muscle and Cardiovascular cell culture and tissue engineering; Environmental Health and Life Support Systems; Immune System; Radiation; Gravity Thresholds ; and Advanced Biotechnology Development to increase the understanding of animal and plant cell adaptive behavior when exposed to space, and to advance technologies that facilitates exploration. Cell systems can be used to investigate processes related to food, microbial proliferation, waste management, biofilms and biomaterials. The NASA Cell Science Program has the advantage of conducting research in microgravity based on significantly small resources, and the ability to

  19. Effects of Oxidative Stress on Mesenchymal Stem Cell Biology

    Science.gov (United States)

    2016-01-01

    Mesenchymal stromal/stem cells (MSCs) are multipotent stem cells present in most fetal and adult tissues. Ex vivo culture-expanded MSCs are being investigated for tissue repair and immune modulation, but their full clinical potential is far from realization. Here we review the role of oxidative stress in MSC biology, as their longevity and functions are affected by oxidative stress. In general, increased reactive oxygen species (ROS) inhibit MSC proliferation, increase senescence, enhance adipogenic but reduce osteogenic differentiation, and inhibit MSC immunomodulation. Furthermore, aging, senescence, and oxidative stress reduce their ex vivo expansion, which is critical for their clinical applications. Modulation of sirtuin expression and activity may represent a method to reduce oxidative stress in MSCs. These findings have important implications in the clinical utility of MSCs for degenerative and immunological based conditions. Further study of oxidative stress in MSCs is imperative in order to enhance MSC ex vivo expansion and in vivo engraftment, function, and longevity. PMID:27413419

  20. Electroporation of Biological Cells Embedded in a Polycarbonate Filter

    CERN Document Server

    Hercules, W A; Lindesay, J; Schmukler, R; Hercules, William A.; Lindesay, James; Coble, Anna; Schmukler, Robert

    2003-01-01

    The electropermeabilization of biological cell membranes by the application of an external field occurs whenever an applied field exceeds a threshold value. For fields above this threshold value but less than another critical value, the pores formed in the membrane are transient or reversible. Several mechanisms have been proposed for the formation of these transient pores. Here we examine the local electric fields generated for the configuration of cells embedded in a polycarbonate filter, both in the region in and around the pore. We consider the shear forces created in the membrane due to the gradient of the field along the surface of the membrane, and the interaction of the charged molecules in the membrane with this field. A relationship between the electric field strength and the size of the pore formed is derived.

  1. Overloaded and stressed: whole-cell considerations for bacterial synthetic biology.

    Science.gov (United States)

    Borkowski, Olivier; Ceroni, Francesca; Stan, Guy-Bart; Ellis, Tom

    2016-10-01

    The predictability and robustness of engineered bacteria depend on the many interactions between synthetic constructs and their host cells. Expression from synthetic constructs is an unnatural load for the host that typically reduces growth, triggers stresses and leads to decrease in performance or failure of engineered cells. Work in systems and synthetic biology has now begun to address this through new tools, methods and strategies that characterise and exploit host-construct interactions in bacteria. Focusing on work in E. coli, we review here a selection of the recent developments in this area, highlighting the emerging issues and describing the new solutions that are now making the synthetic biology community consider the cell just as much as they consider the construct.

  2. Lessons learned about spaceflight and cell biology experiments

    Science.gov (United States)

    Hughes-Fulford, Millie

    2004-01-01

    Conducting cell biology experiments in microgravity can be among the most technically challenging events in a biologist's life. Conflicting events of spaceflight include waiting to get manifested, delays in manifest schedules, training astronauts to not shake your cultures and to add reagents slowly, as shaking or quick injection can activate signaling cascades and give you erroneous results. It is important to select good hardware that is reliable. Possible conflicting environments in flight include g-force and vibration of launch, exposure of cells to microgravity for extended periods until hardware is turned on, changes in cabin gases and cosmic radiation. One should have an on-board 1-g control centrifuge in order to eliminate environmental differences. Other obstacles include getting your funding in a timely manner (it is not uncommon for two to three years to pass between notification of grant approval for funding and actually getting funded). That said, it is important to note that microgravity research is worthwhile since all terrestrial life evolved in a gravity field and secrets of biological function may only be answered by removing the constant of gravity. Finally, spaceflight experiments are rewarding and worth your effort and patience.

  3. Machine learning in cell biology - teaching computers to recognize phenotypes.

    Science.gov (United States)

    Sommer, Christoph; Gerlich, Daniel W

    2013-12-15

    Recent advances in microscope automation provide new opportunities for high-throughput cell biology, such as image-based screening. High-complex image analysis tasks often make the implementation of static and predefined processing rules a cumbersome effort. Machine-learning methods, instead, seek to use intrinsic data structure, as well as the expert annotations of biologists to infer models that can be used to solve versatile data analysis tasks. Here, we explain how machine-learning methods work and what needs to be considered for their successful application in cell biology. We outline how microscopy images can be converted into a data representation suitable for machine learning, and then introduce various state-of-the-art machine-learning algorithms, highlighting recent applications in image-based screening. Our Commentary aims to provide the biologist with a guide to the application of machine learning to microscopy assays and we therefore include extensive discussion on how to optimize experimental workflow as well as the data analysis pipeline.

  4. Systems genomics analysis centered on epigenetic inheritance supports development of a unified theory of biology.

    Science.gov (United States)

    Sharma, Abhay

    2015-11-01

    New discoveries are increasingly demanding integration of epigenetics, molecular biology, genomic networks and physiology with evolution. This article provides a proof of concept for evolutionary transgenerational systems biology, proposed recently in the context of epigenetic inheritance in mammals. Gene set enrichment analysis of available genome-level mammalian data presented here seem consistent with the concept that: (1) heritable information about environmental effects in somatic cells is communicated to the germline by circulating microRNAs (miRNAs) or other RNAs released in physiological fluids; (2) epigenetic factors including miRNA-like small RNAs, DNA methylation and histone modifications are propagated across generations via gene networks; and (3) inherited epigenetic variations in the form of methylated cytosines are fixed in the population as thymines over the evolutionary time course. The analysis supports integration of physiology and epigenetics with inheritance and evolution. This may catalyze efforts to develop a unified theory of biology.

  5. Cell biology of diabetic nephropathy: Roles of endothelial cells, tubulointerstitial cells and podocytes.

    Science.gov (United States)

    Maezawa, Yoshiro; Takemoto, Minoru; Yokote, Koutaro

    2015-01-01

    Diabetic nephropathy is the major cause of end-stage renal failure throughout the world in both developed and developing countries. Diabetes affects all cell types of the kidney, including endothelial cells, tubulointerstitial cells, podocytes and mesangial cells. During the past decade, the importance of podocyte injury in the formation and progression of diabetic nephropathy has been established and emphasized. However, recent findings provide additional perspectives on pathogenesis of diabetic nephropathy. Glomerular endothelial damage is already present in the normoalbuminuric stage of the disease when podocyte injury starts. Genetic targeting of mice that cause endothelial injury leads to accelerated diabetic nephropathy. Tubulointerstitial damage, previously considered to be a secondary effect of glomerular protein leakage, was shown to have a primary significance in the progression of diabetic nephropathy. Emerging evidence suggests that the glomerular filtration barrier and tubulointerstitial compartment is a composite, dynamic entity where any injury of one cell type spreads to other cell types, and leads to the dysfunction of the whole apparatus. Accumulation of novel knowledge would provide a better understanding of the pathogenesis of diabetic nephropathy, and might lead to a development of a new therapeutic strategy for the disease.

  6. Cell Factory Stability and Genetic Circuits for Improved Strain Development

    DEFF Research Database (Denmark)

    Rugbjerg, Peter

    Development of new chemical-­‐producing microbial cell factories is an iterative trial-­and-­error process, and to screen candidate cells at high throughput, genetic biosensor systems are appealing. Each biosensor has distinct biological parameters, making modular tuning networks attractive....... However, all synthetic gene systems -­ including the target metabolic pathways themselves -­ represent a possible fitness burden to the cell and thus constitute a threat to strain stability. In this thesis, several studies served to develop genetic systems for optimizing cell factory development...... factories in future....

  7. Engineering molecular circuits using synthetic biology in mammalian cells.

    Science.gov (United States)

    Wieland, Markus; Fussenegger, Martin

    2012-01-01

    Synthetic biology has made significant leaps over the past decade, and it now enables rational and predictable reprogramming of cells to conduct complex physiological activities. The bases for cellular reprogramming are mainly genetic control components affecting gene expression. A huge variety of these modules, ranging from engineered fusion proteins regulating transcription to artificial RNA devices affecting translation, is available, and they often feature a highly modular scaffold. First endeavors to combine these modules have led to autoregulated expression systems and genetic cascades. Analogous to the rational engineering of electronic circuits, the existing repertoire of artificial regulatory elements has further enabled the ambitious reprogramming of cells to perform Boolean calculations or to mimic the oscillation of circadian clocks. Cells harboring synthetic gene circuits are not limited to cell culture, as they have been successfully implanted in animals to obtain tailor-made therapeutics that have made it possible to restore urea or glucose homeostasis as well as to offer an innovative approach to artificial insemination.

  8. High-Magnification In Vivo Imaging of Xenopus Embryos for Cell and Developmental Biology

    OpenAIRE

    sprotocols

    2014-01-01

    Authors: Esther K. Kieserman, Chanjae Lee, Ryan S. Gray, Tae Joo Park and John B. Wallingford Corresponding author ([]()). ### INTRODUCTION Embryos of the frog *Xenopus laevis* are an ideal model system for in vivo imaging of dynamic biological processes, from the inner workings of individual cells to the reshaping of tissues during embryogenesis. Their externally developing embryos are more amenable to in vivo analysis than in...

  9. Emerging Stem Cell Therapies: Treatment, Safety, and Biology

    Directory of Open Access Journals (Sweden)

    Joel Sng

    2012-01-01

    Full Text Available Stem cells are the fundamental building blocks of life and contribute to the genesis and development of all higher organisms. The discovery of adult stem cells has led to an ongoing revolution of therapeutic and regenerative medicine and the proposal of novel therapies for previously terminal conditions. Hematopoietic stem cell transplantation was the first example of a successful stem cell therapy and is widely utilized for treating various diseases including adult T-cell leukemia-lymphoma and multiple myeloma. The autologous transplantation of mesenchymal stem cells is increasingly employed to catalyze the repair of mesenchymal tissue and others, including the lung and heart, and utilized in treating various conditions such as stroke, multiple sclerosis, and diabetes. There is also increasing interest in the therapeutic potential of other adult stem cells such as neural, mammary, intestinal, inner ear, and testicular stem cells. The discovery of induced pluripotent stem cells has led to an improved understanding of the underlying epigenetic keys of pluripotency and carcinogenesis. More in-depth studies of these epigenetic differences and the physiological changes that they effect will lead to the design of safer and more targeted therapies.

  10. Effects of Magnetic Field on Biological Cells and Applications

    Science.gov (United States)

    Chen, Ching-Jen

    2001-03-01

    While there has been extensive research performed in the physics of magnetic fields and the physics and chemistry in life sciences, independent of each other, there has been a paucity of scientific research and development investigating the possible applications of magnetic fields in life sciences. The focus of this presentation is to present the stimulation mechanism by which magnetic fields affect (a) yeast cells (b) plant cells and (c) mammalian normal and cancer cells. Recently we have found that the Saccharomyces Cerevsa yeast growth increases by about 30to a 1 tesla field and the production of CO2 increases by about 30of yeast metabolism may be due to an increase in intercellular interaction and protein channel alignment, the introduction of an alteration in the DNA from the magnetic field exposure or a combination of these mechanisms. We also have found that the application of high magnetic fields (1 tesla and above) can have marked effects on the germination and growth of plants, especially corn, beans and peas. This finding has opened up the possibility of technology developments in botanical growth systems to accelerate seed germination and crop harvesting. Most recently we have investigated the application of high magnetic fields on leukemia, CaCoII and HEP G2 cancer cell lines. We found that when leukemia are exposed to a 12 tesla field for 2 hours has an increase in cell death by about 30that were not exposed to the magnetic field. Viability of CaCoII cells sandwiched between permanent magnets of maximum strength of 1.2 tesla was measured. A decrease in viable cells by 33unexposed cells. HSP 70 was measured for HEPG2 cells that were exposed to permanent magnetic field of 1.2 tesla for 40 minutes and for unexposed cells. It was found that the exposed cells produce 19 times more HSP70 compared to unexposed cells. Our results together with other investigators report suggest a strong evidence of a reduction in the cell growth rate for cancer cells when

  11. In vivo cell biology of cancer cells visualized with fluorescent proteins.

    Science.gov (United States)

    Hoffman, Robert M

    2005-01-01

    This chapter describes a new cell biology where the behavior of individual cells can be visualized in the living animal. Previously it has been demonstrated that fluorescent proteins can be used for whole-body imaging of metastatic tumor growth, bacterial infection, and gene expression. An example of the new cell biology is dual-color fluorescence imaging using red fluorescent protein (RFP)-expressing tumors transplanted in green fluorescent protein (GFP)-expressing transgenic mice. These models show with great clarity the details of tumor-stroma interactions and especially tumor-induced angiogenesis, tumor-infiltrating lymphocytes, stromal fibroblasts, and macrophages. Another example is the color coding of cells with RFP or GFP such that both cell types can be simultaneously visualized in vivo. Stem cells can also be visualized and tracked in vivo. Mice in which the regulatory elements of the stem cell marker nestin drive GFP expression enable nascent vasculature to be visualized interacting with transplanted RFP-expressing cancer cells. Nestin-driven GFP expression can also be used to visualize hair follicle stem cells. Dual-color cells expressing GFP in the nucleus and RFP in the cytoplasm enable real-time visualization of nuclear-cytoplasm dynamics including cell cycle events and apoptosis. Highly elongated cancer cells in capillaries in living mice were observed within skin flaps. The migration velocities of the cancer cells in the capillaries were measured by capturing images of the dual-color fluorescent cells over time. The cells in the capillaries elongated to fit the width of these vessels. The use of the dual-color cancer cells differentially labeled in the cytoplasm and nucleus and associated fluorescent imaging provide a powerful tool to understand the mechanism of cancer cell migration and deformation in small vessels.

  12. Cells from icons to symbols: molecularizing cell biology in the 1980s.

    Science.gov (United States)

    Serpente, Norberto

    2011-12-01

    Over centuries cells have been the target of optical and electronic microscopes as well as others technologies, with distinctive types of visual output. Whilst optical technologies produce images 'evident to the eye', the electronic and especially the molecular create images that are more elusive to conceptualization and assessment. My study applies the semiotic approach to the production of images in cell biology to capture the shift from microscopic images to non-traditional visual technologies around 1980. Here I argue that the visual shift that coincides with the growing dominance of molecular biology involves a change from iconic to symbolic forms.

  13. Development as adaptation: a paradigm for gravitational and space biology

    Science.gov (United States)

    Alberts, Jeffrey R.; Ronca, April E.

    2005-01-01

    Adaptation is a central precept of biology; it provides a framework for identifying functional significance. We equate mammalian development with adaptation, by viewing the developmental sequence as a series of adaptations to a stereotyped sequence of habitats. In this way development is adaptation. The Norway rat is used as a mammalian model, and the sequence of habitats that is used to define its adaptive-developmental sequence is (a) the uterus, (b) the mother's body, (c) the huddle, and (d) the coterie of pups as they gain independence. Then, within this framework and in relation to each of the habitats, we consider problems of organismal responses to altered gravitational forces (micro-g to hyper-g), especially those encountered during space flight and centrifugation. This approach enables a clearer identification of simple "effects" and active "responses" with respect to gravity. It focuses our attention on functional systems and brings to the fore the manner in which experience shapes somatic adaptation. We argue that this basic developmental approach is not only central to basic issues in gravitational biology, but that it provides a natural tool for understanding the underlying processes that are vital to astronaut health and well-being during long duration flights that will involve adaptation to space flight conditions and eventual re-adaptation to Earth's gravity.

  14. Biological targets in the treatment of rheumatoid arthritis: a comprehensive review of current and in-development biological disease modifying anti-rheumatic drugs

    Directory of Open Access Journals (Sweden)

    Manil Kukar

    2009-09-01

    Full Text Available Manil Kukar1, Olga Petryna1, Petros Efthimiou21Rheumatology Division, Lincoln Medical and Mental Health Center, New York, NY, USA; 2Lincoln Medical and Mental Health Center, Weill Cornell Medical College, New York, NY, USAAbstract: Enhanced understanding of the rheumatoid arthritis (RA pathophysiology and the role of cytokines has enabled the development of innovative biological agents in the last 10 years that target specific parts of the immune response. Failure to achieve adequate response with traditional disease modifying anti-rheumatic drugs (DMARDs and increasing evidence of ongoing radiographic deterioration of the affected joints despite seemingly clinical response were essential stimuli for the development of biologics. The current and upcoming biological agents are primarily aimed at neutralizing circulating and cell-bound pro-inflammatory cytokines, interfering in the interaction of antigen-presenting and T-lymphocytes, eliminating circulating B-lymphocytes or by interfering with the intracellular signaling mechanisms of immuno-competent cells that lead to inflammation. These agents have improved the currently available treatments due to greater efficacy, fast action and greater tolerability. However, use of these agents has also been associated with significant, although rare, adverse events and considerable cost. Therefore, these agents should be used with caution by experienced clinicians. The present work aims to provide a global and updated review of the current and in-development biological DMARDs for the treatment of RA.Keywords: biological agents, rheumatoid arthritis, immunomodulators, treatment, cytokines

  15. Cell reprogramming: a new chemical approach to stem cell biology and tissue regeneration.

    Science.gov (United States)

    Anastasia, L; Piccoli, M; Garatti, A; Conforti, E; Scaringi, R; Bergante, S; Castelvecchio, S; Venerando, B; Menicanti, L; Tettamanti, G

    2011-02-01

    Generation of pluripotent stem cells (iPSCs) from adult fibroblasts starts a "new era" in stem cell biology, as it overcomes several key issues associated with previous approaches, including the ethical concerns associated with human embryonic stem cells. However, as the genetic approach for cell reprogramming has already shown potential safety issues, a chemical approach may be a safer and easier alternative. Moreover, a chemical approach could be advantageous not only for the de-differentiation phase, but also for inducing reprogrammed cells into the desired cell type with higher efficiency than current methodologies. Finally, a chemical approach may be envisioned to activate resident adult stem cells to proliferate and regenerate damaged tissues in situ, without the need for exogenous cell injections.

  16. Positive feelings in learning and interest development in biology education

    DEFF Research Database (Denmark)

    Petersen, Morten Rask; Dohn, Niels Bonderup

    2015-01-01

    support our initial hypothesis that learning can be a facilitator for interest development. This is an argument for focusing more on didactical approaches and learning environments if the goal is to have interested students. As stated by Dewey: “If we can discover a child’s urgent needs and powers...... as an optimal state that combines positive affective qualities (e.g., feelings of immediate enjoyment, good moods etc.) and positive cognitive qualities (e.g. striving for meaningful goals, relevance etc., cf. Rathunde & Csikszentmihalyi, 1993). In the literature interest is typically described as a facilitator...... for learning (e.g. Krapp, 2002). Here we turn the interplay and see learning as a facilitator for interest development. This interplay was studied in upper secondary biology education. Student’s conducted an exercise on modelling natural selection with LEGO® bricks (Christensen-Dalsgaard & Kanneworf, 2009...

  17. Comparative Pathogenesis and Systems Biology for Biodefense Virus Vaccine Development

    Directory of Open Access Journals (Sweden)

    Gavin C. Bowick

    2010-01-01

    Full Text Available Developing vaccines to biothreat agents presents a number of challenges for discovery, preclinical development, and licensure. The need for high containment to work with live agents limits the amount and types of research that can be done using complete pathogens, and small markets reduce potential returns for industry. However, a number of tools, from comparative pathogenesis of viral strains at the molecular level to novel computational approaches, are being used to understand the basis of viral attenuation and characterize protective immune responses. As the amount of basic molecular knowledge grows, we will be able to take advantage of these tools not only to rationally attenuate virus strains for candidate vaccines, but also to assess immunogenicity and safety in silico. This review discusses how a basic understanding of pathogenesis, allied with systems biology and machine learning methods, can impact biodefense vaccinology.

  18. Plasmodium in the postgenomic era: new insights into the molecular cell biology of malaria parasites.

    Science.gov (United States)

    Garcia, Celia R S; de Azevedo, Mauro F; Wunderlich, Gerhard; Budu, Alexandre; Young, Jason A; Bannister, Lawrence

    2008-01-01

    In this review, we bring together some of the approaches toward understanding the cellular and molecular biology of Plasmodium species and their interaction with their host red blood cells. Considerable impetus has come from the development of new methods of molecular genetics and bioinformatics, and it is important to evaluate the wealth of these novel data in the context of basic cell biology. We describe how these approaches are gaining valuable insights into the parasite-host cell interaction, including (1) the multistep process of red blood cell invasion by the merozoite; (2) the mechanisms by which the intracellular parasite feeds on the red blood cell and exports parasite proteins to modify its cytoadherent properties; (3) the modulation of the cell cycle by sensing the environmental tryptophan-related molecules; (4) the mechanism used to survive in a low Ca(2+) concentration inside red blood cells; (5) the activation of signal transduction machinery and the regulation of intracellular calcium; (6) transfection technology; and (7) transcriptional regulation and genome-wide mRNA studies in Plasmodium falciparum.

  19. Mitochondrial uptake of thiamin pyrophosphate: physiological and cell biological aspects.

    Directory of Open Access Journals (Sweden)

    Veedamali S Subramanian

    Full Text Available Mammalian cells obtain vitamin B1 (thiamin from their surrounding environment and convert it to thiamin pyrophosphate (TPP in the cytoplasm. Most of TPP is then transported into the mitochondria via a carrier-mediated process that involves the mitochondrial thiamin pyrophosphate transporter (MTPPT. Knowledge about the physiological parameters of the MTPP-mediated uptake process, MTPPT targeting and the impact of clinical mutations in MTPPT in patients with Amish lethal microcephaly and neuropathy and bilateral striatal necrosis are not fully elucidated, and thus, were addressed in this study using custom-made (3H-TPP as a substrate and mitochondria isolated from mouse liver and human-derived liver HepG2 cells. Results showed (3H-TPP uptake by mouse liver mitochondria to be pH-independent, saturable (Km = 6.79±0.53 µM, and specific for TPP. MTPPT protein was expressed in mouse liver and HepG2 cells, and confocal images showed a human (hMTPPT-GFP construct to be targeted to mitochondria of HepG2 cells. A serial truncation analysis revealed that all three modules of hMTPPT protein cooperated (although at different levels of efficiency in mitochondrial targeting rather than acting autonomously as independent targeting module. Finally, the hMTPPT clinical mutants (G125S and G177A showed proper mitochondrial targeting but displayed significant inhibition in (3H-TPP uptake and a decrease in level of expression of the MTPPT protein. These findings advance our knowledge of the physiology and cell biology of the mitochondrial TPP uptake process. The results also show that clinical mutations in the hMTPPT system impair its functionality via affecting its level of expression with no effect on its targeting to mitochondria.

  20. In situ single molecule imaging of cell membranes: linking basic nanotechniques to cell biology, immunology and medicine.

    Science.gov (United States)

    Pi, Jiang; Jin, Hua; Yang, Fen; Chen, Zheng W; Cai, Jiye

    2014-11-01

    The cell membrane, which consists of a viscous phospholipid bilayer, different kinds of proteins and various nano/micrometer-sized domains, plays a very important role in ensuring the stability of the intracellular environment and the order of cellular signal transductions. Exploring the precise cell membrane structure and detailed functions of the biomolecules in a cell membrane would be helpful to understand the underlying mechanisms involved in cell membrane signal transductions, which could further benefit research into cell biology, immunology and medicine. The detection of membrane biomolecules at the single molecule level can provide some subtle information about the molecular structure and the functions of the cell membrane. In particular, information obtained about the molecular mechanisms and other information at the single molecule level are significantly different from that detected from a large amount of biomolecules at the large-scale through traditional techniques, and can thus provide a novel perspective for the study of cell membrane structures and functions. However, the precise investigations of membrane biomolecules prompts researchers to explore cell membranes at the single molecule level by the use of in situ imaging methods, as the exact conformation and functions of biomolecules are highly controlled by the native cellular environment. Recently, the in situ single molecule imaging of cell membranes has attracted increasing attention from cell biologists and immunologists. The size of biomolecules and their clusters on the cell surface are set at the nanoscale, which makes it mandatory to use high- and super-resolution imaging techniques to realize the in situ single molecule imaging of cell membranes. In the past few decades, some amazing imaging techniques and instruments with super resolution have been widely developed for molecule imaging, which can also be further employed for the in situ single molecule imaging of cell membranes. In

  1. Isolation and biological analysis of tumor stem cells from pancreatic adenocarcinoma

    Institute of Scientific and Technical Information of China (English)

    Peng Huang; Chun-You Wang; Shan-Miao Gou; He-Shui Wu; Tap Liu; Jiang-Xin Xiong

    2008-01-01

    AIM: To explore the method of isolation and biological analysis of tumor stem cells from pancreatic adenocarcinoma cell line PANC-1.METHODS: The PANC-1 cells were cultured in Dulbecco modified eagle medium F12 (1:1 volume)(DMEM-F12) supplemented with 20% fetal bovine serum (FBS).Subpopulation cells with properties of tumor stem cells were isolated from pancreatic adenocarcinoma cell line PANC-1 according to the cell surface markers CD44 and CD24 by flow cytometry.The proliferative capability of these cells in vitro were estimated by 3-[4,5-dimehyl-2-thiazolyl]-2,5-diphenyl-2H-tetrazolium bromide (MTT) method.And the tumor growth of different subpopulation cells which were injected into the hypodermisof right and left armpit of nude mice was studied,and expression of CD44 and CD24 of the CD44+CD24+ cell-formed nodules and PANC-1 cells were detected by avidin-biotin-peroxidase complex (ABC) immunohistochemical staining.RESULTS: The 5.1%-17.5% of sorted PANC-1 cells expressed the cell surface marker CD44,57.8% -70.1% expressed CD24,only 2.1%-3.5% of cells were CD44+ CD24+.Compared with CD44-CD24- cells,CD44+CD24+ cells had a lower growth rate in vitro.Implantation of 104 CD44 CD24- cells in nude mice showed no evident tumor growth at wk 12.In contrast,large tumors were found in nude mice implanted with 103 CD44+CD24+ cells at wk 4 (2/8),a 20-fold increase in tumorigenic potential (P<0.05 or P<0.01).There was no obvious histological difference between the cells of the CD44+CD24+ cell-formed nodules and PANC-1 cells.CONCLUSION: CD44 and CD24 may be used as the cell surface markers for isolation of pancreatic cancer stem cells from pancreatic adenocarcinoma cell line PANC-1.Subpopulation cells CD44+CD24+ have properties of tumor stem cells.Because cancer stem cells are thought to be responsible for tumor initiation and its recurrence after an initial response to chemotherapy,it may be a very promising target for new drug development.

  2. [Adhesive cell interactions in the biology of cancer].

    Science.gov (United States)

    Bocharova, O A

    2002-01-01

    The present review describes a hypothesis for a critical role of cell adhesive interactions in tumorigenesis. Dysregulation of tissue cell-cell interactions initiates first of all local (in the tissue) and then general (in whole body) conditions for tumor growth. Otherwise imbalance of tissue-specific adhesion factor at the very beginning of carcinogenesis is considered to trigger a cascade of pathological reactions responsible for more severe adhesive disorders that are in turn critical for the "totalitarian" behavior of a tumor and its "colonization" of other tissues and organs. Impaired disturbance is likely to be the key mechanism of carcinogenesis since it is significantly associated with the main features of a tumor: tissue proliferation control loss, anaplasia, invasion, metastasis, and immune surveillance deficit. The hypothesis is supported by evolutionary, biological, histological, immunological, and clinical arguments whose combination does not characterize any other known mechanisms of oncogenesis. The concept of adhesiveness opens new possibilities for the diagnosis, prevention, and treatment of tumors and also improves a strategy for designing new drugs.

  3. ICRP Publication 131: Stem Cell Biology with Respect to Carcinogenesis Aspects of Radiological Protection.

    Science.gov (United States)

    Niwa, O; Barcellos-Hoff, M H; Globus, R K; Harrison, J D; Hendry, J H; Jacob, P; Martin, M T; Seed, T M; Shay, J W; Story, M D; Suzuki, K; Yamashita, S

    2015-12-01

    This report provides a review of stem cells/progenitor cells and their responses to ionising radiation in relation to issues relevant to stochastic effects of radiation that form a major part of the International Commission on Radiological Protection's system of radiological protection. Current information on stem cell characteristics, maintenance and renewal, evolution with age, location in stem cell 'niches', and radiosensitivity to acute and protracted exposures is presented in a series of substantial reviews as annexes concerning haematopoietic tissue, mammary gland, thyroid, digestive tract, lung, skin, and bone. This foundation of knowledge of stem cells is used in the main text of the report to provide a biological insight into issues such as the linear-no-threshold (LNT) model, cancer risk among tissues, dose-rate effects, and changes in the risk of radiation carcinogenesis by age at exposure and attained age. Knowledge of the biology and associated radiation biology of stem cells and progenitor cells is more developed in tissues that renew fairly rapidly, such as haematopoietic tissue, intestinal mucosa, and epidermis, although all the tissues considered here possess stem cell populations. Important features of stem cell maintenance, renewal, and response are the microenvironmental signals operating in the niche residence, for which a well-defined spatial location has been identified in some tissues. The identity of the target cell for carcinogenesis continues to point to the more primitive stem cell population that is mostly quiescent, and hence able to accumulate the protracted sequence of mutations necessary to result in malignancy. In addition, there is some potential for daughter progenitor cells to be target cells in particular cases, such as in haematopoietic tissue and in skin. Several biological processes could contribute to protecting stem cells from mutation accumulation: (a) accurate DNA repair; (b) rapidly induced death of injured stem cells

  4. Microfabricated devices for cell biology: all for one and one for all.

    Science.gov (United States)

    Lautenschläger, Franziska; Piel, Matthieu

    2013-02-01

    Individual cells in their native physiological states face a dynamic multi-factorial environment. This is true of both single-celled and multi-cellular organisms. A key challenge in cell biology is the design of experimental methods and specific assays to disentangle the contribution of each of the parameters governing cell behavior. After decades of studying cells cultured in Petri dishes or on glass coverslips, researchers can now benefit from a range of recent technological developments that allow them to study cells in a variety of contexts, with different levels of complexity and control over a range of environmental parameters. These technologies include new types of microscopy for detailed imaging of large cell aggregates or even whole tissues, and the development of cell culture substrates, such as 3D matrices. Here we will review the contribution of a third type of tool, collectively known as microfabricated tools. Derived from techniques originally developed for microelectronics, these tools range in size from hundreds of microns to hundreds of nanometers.

  5. The untapped cell biology of neglected tropical diseases

    Science.gov (United States)

    Sullivan, William

    2016-01-01

    The World Health Organization lists a constellation of 17 tropical diseases that afflict approximately one in six individuals on the planet and, until recently, few resources have been devoted to the treatment and eradication of those diseases. They are often referred to as the diseases of the “bottom billion,” because they are most prevalent among the poorest individuals in impoverished tropical nations. However, the few studies that have been performed reveal an extraordinary world of molecular and cellular adaptations that facilitate the pathogens’ survival in hosts ranging from insects to humans. A compelling case can be made that even a modest investment toward understanding the basic molecular and cell biology of these neglected pathogens has a high probability of yielding exciting new cellular mechanisms and insights into novel ways of combating these diseases. PMID:26915691

  6. Towards Modelling and Simulation of Crowded Environments in Cell Biology

    Science.gov (United States)

    Bittig, Arne T.; Jeschke, Matthias; Uhrmacher, Adelinde M.

    2010-09-01

    In modelling and simulation of cell biological processes, spatial homogeneity in the distribution of components is a common but not always valid assumption. Spatial simulation methods differ in computational effort and accuracy, and usually rely on tool-specific input formats for model specification. A clear separation between modelling and simulation allows a declarative model specification thereby facilitating reuse of models and exploiting different simulators. We outline a modelling formalism covering both stochastic spatial simulation at the population level and simulation of individual entities moving in continuous space as well as the combination thereof. A multi-level spatial simulator is presented that combines populations of small particles simulated according to the Next Subvolume Method with individually represented large particles following Brownian motion. This approach entails several challenges that need to be overcome, but nicely balances between calculation effort and required levels of detail.

  7. Developing 3D SEM in a broad biological context.

    Science.gov (United States)

    Kremer, A; Lippens, S; Bartunkova, S; Asselbergh, B; Blanpain, C; Fendrych, M; Goossens, A; Holt, M; Janssens, S; Krols, M; Larsimont, J-C; Mc Guire, C; Nowack, M K; Saelens, X; Schertel, A; Schepens, B; Slezak, M; Timmerman, V; Theunis, C; VAN Brempt, R; Visser, Y; Guérin, C J

    2015-08-01

    When electron microscopy (EM) was introduced in the 1930s it gave scientists their first look into the nanoworld of cells. Over the last 80 years EM has vastly increased our understanding of the complex cellular structures that underlie the diverse functions that cells need to maintain life. One drawback that has been difficult to overcome was the inherent lack of volume information, mainly due to the limit on the thickness of sections that could be viewed in a transmission electron microscope (TEM). For many years scientists struggled to achieve three-dimensional (3D) EM using serial section reconstructions, TEM tomography, and scanning EM (SEM) techniques such as freeze-fracture. Although each technique yielded some special information, they required a significant amount of time and specialist expertise to obtain even a very small 3D EM dataset. Almost 20 years ago scientists began to exploit SEMs to image blocks of embedded tissues and perform serial sectioning of these tissues inside the SEM chamber. Using first focused ion beams (FIB) and subsequently robotic ultramicrotomes (serial block-face, SBF-SEM) microscopists were able to collect large volumes of 3D EM information at resolutions that could address many important biological questions, and do so in an efficient manner. We present here some examples of 3D EM taken from the many diverse specimens that have been imaged in our core facility. We propose that the next major step forward will be to efficiently correlate functional information obtained using light microscopy (LM) with 3D EM datasets to more completely investigate the important links between cell structures and their functions.

  8. Development of biological platform for the autotrophic production of biofuels

    Science.gov (United States)

    Khan, Nymul

    The research described herein is aimed at developing an advanced biofuel platform that has the potential to surpass the natural rate of solar energy capture and CO2 fixation. The underlying concept is to use the electricity from a renewable source, such as wind or solar, to capture CO 2 via a biological agent, such as a microbe, into liquid fuels that can be used for the transportation sector. In addition to being renewable, the higher rate of energy capture by photovoltaic cells than natural photosynthesis is expected to facilitate higher rate of liquid fuel production than traditional biofuel processes. The envisioned platform is part of ARPA-E's (Advanced Research Projects Agency - Energy) Electrofuels initiative which aims at supplementing the country's petroleum based fuel production with renewable liquid fuels that can integrate easily with the existing refining and distribution infrastructure (http://arpae. energy.gov/ProgramsProjects/Electrofuels.aspx). The Electrofuels initiative aimed to develop liquid biofuels that avoid the issues encountered in the current generation of biofuels: (1) the reliance of biomass-derived technologies on the inefficient process of photosynthesis, (2) the relatively energy- and resource-intensive nature of agronomic processes, and (3) the occupation of large areas of arable land for feedstock production. The process proceeds by the capture of solar energy into electrical energy via photovoltaic cells, using the generated electricity to split water into molecular hydrogen (H2) and oxygen (O2), and feeding these gases, along with carbon dioxide (CO2) emitted from point sources such as a biomass or coal-fired power plant, to a microbial bioprocessing platform. The proposed microbial bioprocessing platform leverages a chemolithoautotrophic microorganism (Rhodobacter capsulatus or Ralstonia eutropha) naturally able to utilize these gases as growth substrates, and genetically modified to produce a triterpene hydrocarbon fuel

  9. Anomalous transport in the crowded world of biological cells.

    Science.gov (United States)

    Höfling, Felix; Franosch, Thomas

    2013-04-01

    A ubiquitous observation in cell biology is that the diffusive motion of macromolecules and organelles is anomalous, and a description simply based on the conventional diffusion equation with diffusion constants measured in dilute solution fails. This is commonly attributed to macromolecular crowding in the interior of cells and in cellular membranes, summarizing their densely packed and heterogeneous structures. The most familiar phenomenon is a sublinear, power-law increase of the mean-square displacement (MSD) as a function of the lag time, but there are other manifestations like strongly reduced and time-dependent diffusion coefficients, persistent correlations in time, non-Gaussian distributions of spatial displacements, heterogeneous diffusion and a fraction of immobile particles. After a general introduction to the statistical description of slow, anomalous transport, we summarize some widely used theoretical models: Gaussian models like fractional Brownian motion and Langevin equations for visco-elastic media, the continuous-time random walk model, and the Lorentz model describing obstructed transport in a heterogeneous environment. Particular emphasis is put on the spatio-temporal properties of the transport in terms of two-point correlation functions, dynamic scaling behaviour, and how the models are distinguished by their propagators even if the MSDs are identical. Then, we review the theory underlying commonly applied experimental techniques in the presence of anomalous transport like single-particle tracking, fluorescence correlation spectroscopy (FCS) and fluorescence recovery after photobleaching (FRAP). We report on the large body of recent experimental evidence for anomalous transport in crowded biological media: in cyto- and nucleoplasm as well as in cellular membranes, complemented by in vitro experiments where a variety of model systems mimic physiological crowding conditions. Finally, computer simulations are discussed which play an important

  10. Development of radiation biological dosimetry and treatment of radiation-induced damaged tissue

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Chul Koo; Kim, Tae Hwan; Lee, Yun Sil [and others

    2000-04-01

    Util now, only a few methods have been developed for radiation biological dosimetry such as conventional chromosome aberration and micronucleus in peripheral blood cell. However, because these methods not only can be estimated by the expert, but also have a little limitation due to need high technique and many times in the case of radiation accident, it is very difficult to evaluate the absorbed dose of victims. Therefore, we should develop effective, easy, simple and rapid biodosimetry and its guideline(triage) to be able to be treated the victims as fast as possible. We established the apoptotic fragment assay, PCC, comet assay, and micronucleus assay which was the significant relationship between dose and cell damages to evaluate the irradiated dose as correct and rapid as possible using lymphocytes and crypt cells, and compared with chromosome dosimetry and micronucleus assay.

  11. From stem cells to dopamine neurons: developmental biology meets neurodegeneration.

    Science.gov (United States)

    Tailor, Jignesh; Andreska, Thomas; Kittappa, Raja

    2012-11-01

    Neurodegenerative disease affects tens of millions of people, worldwide, and comes at a cost to the public of billions of dollars. Stem cell therapy, in recent years, has generated a lot of enthusiasm as a novel treatment for neurodegenerative disease. In particular, Parkinson's disease has been identified as the ideal neurodegenerative disease to be treated using stem cells. Despite years of setbacks, recent experimental results have renewed optimism in the validity of stem cell therapy for the treatment of Parkinson's disease. In this review, we discuss advances in our understanding of the embryonic development of the dopamine system and the importance of these discoveries in the continued efforts towards stem cell therapy for Parkinson's disease.

  12. Cumulative biological impacts of The Geysers geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    Brownell, J.A.

    1981-10-01

    The cumulative nature of current and potential future biological impacts from full geothermal development in the steam-dominated portion of The Geysers-Calistoga KGRA are identified by the California Energy Commission staff. Vegetation, wildlife, and aquatic resources information have been reviewed and evaluated. Impacts and their significance are discussed and staff recommendations presented. Development of 3000 MW of electrical energy will result in direct vegetation losses of 2790 acres, based on an estimate of 11.5% loss per lease-hold of 0.93 acres/MW. If unmitigated, losses will be greater. Indirect vegetation losses and damage occur from steam emissions which contain elements (particularly boron) toxic to vegetation. Other potential impacts include chronic low-level boron exposure, acid rain, local climate modification, and mechanical damage. A potential exists for significant reduction and changes in wildlife from direct habitat loss and development influences. Highly erosive soils create the potential for significant reduction of aquatic resources, particularly game fish. Toxic spills have caused some temporary losses of aquatic species. Staff recommends monitoring and implementation of mitigation measures at all geothermal development stages.

  13. The role of cell hydration in realization of biological effects of non-ionizing radiation (NIR).

    Science.gov (United States)

    Ayrapetyan, Sinerik

    2015-09-01

    The weak knowledge on the nature of cellular and molecular mechanisms of biological effects of NIR such as static magnetic field, infrasound frequency of mechanical vibration, extremely low frequency of electromagnetic fields and microwave serves as a main barrier for adequate dosimetry from the point of Public Health. The difficulty lies in the fact that the biological effects of NIR depend not only on their thermodynamic characteristics but also on their frequency and intensity "windows", chemical and physical composition of the surrounding medium, as well as on the initial metabolic state of the organism. Therefore, only biomarker can be used for adequate estimation of biological effect of NIR on organisms. Because of the absence of such biomarker(s), organizations having the mission to monitor hazardous effects of NIR traditionally base their instruction on thermodynamic characteristics of NIR. Based on the high sensitivity to NIR of both aqua medium structure and cell hydration, it is suggested that cell bathing medium is one of the primary targets and cell hydration is a biomarker for NIR effects on cells and organisms. The purpose of this article is to present a short review of literature and our own experimental data on the effects of NIR on plants' seeds germination, microbe growth and development, snail neurons and heart muscle, rat's brain and heart tissues.

  14. Mesenchymal Stem Cells as a Biological Drug for Heart Disease: Where Are We With Cardiac Cell-Based Therapy?

    Science.gov (United States)

    Sanina, Cristina; Hare, Joshua M

    2015-07-17

    Cell-based treatment represents a new generation in the evolution of biological therapeutics. A prototypic cell-based therapy, the mesenchymal stem cell, has successfully entered phase III pivotal trials for heart failure, signifying adequate enabling safety and efficacy data from phase I and II trials. Successful phase III trials can lead to approval of a new biological therapy for regenerative medicine.

  15. Human NK Cell Subsets in Pregnancy and Disease: Toward a New Biological Complexity

    Science.gov (United States)

    Cristiani, Costanza Maria; Palella, Eleonora; Sottile, Rosa; Tallerico, Rossana; Garofalo, Cinzia; Carbone, Ennio

    2016-01-01

    In humans, NK cells are mainly identified by the surface expression levels of CD56 and CD16, which differentiate between five functionally different NK cell subsets. However, nowadays NK cells are considered as a more heterogeneous population formed by various subsets differing in function, surface phenotype, and anatomic localization. In human CMV- and hantaviruses-infected subjects, an increased frequency of a NKG2A−CD57+NKG2C+ NK cell subset has been observed, while the phenotype of the NK cell subpopulation associated with cancer may vary according to the specific kind of tumor and its anatomical location. The healthy human lymph nodes contain mainly the CD56bright NK cell subset while in melanoma metastatic lymph nodes the CD56dimCD57+KIR+CCR7+ NK cell subpopulation prevails. The five NK cell subpopulations are found in breast cancer patients, where they differ for expression pattern of chemokine receptors, maturation stage, functional capabilities. In pregnancy, uterine NK cells show a prevalence of the CD56brightCD16− NK cell compartment, whose activity is influenced by KIRs repertoire. This NK cell subset’s super specialization could be explained by (i) the expansion of single mature CD56dim clones, (ii) the recruitment and maturation of CD56bright NK cells through specific stimuli, and (iii) the in situ development of tumor-resident NK cells from tissue-resident CD56bright NK cells independently of the circulating NK cell compartment. This new and unexpected biological feature of the NK cell compartment could be an important source of new biomarkers to improve patients’ diagnosis. PMID:28082990

  16. Enzyme- and affinity biomolecule-mediated polymerization systems for biological signal amplification and cell screening.

    Science.gov (United States)

    Malinowska, Klara H; Nash, Michael A

    2016-06-01

    Enzyme-mediated polymerization and polymerization-based signal amplification have emerged as two closely related techniques that are broadly applicable in the nanobio sciences. We review recent progress on polymerization systems mediated by biological molecules (e.g., affinity molecules and enzymes), and highlight newly developed formats and configurations of these systems to perform such tasks as non-instrumented biodetection, synthesis of core-shell nanomaterials, isolation of rare cells, and high-throughput screening. We discuss useful features of biologically mediated polymerization systems, such as multiple mechanisms of amplification (e.g., enzymatic, radical chain propagation), and the ability to localize structures at interfaces and at cell surfaces with microscopic spatial confinement. We close with a perspective on desirable improvements that need to be addressed to adapt these molecular systems to future applications.

  17. Mesenchymal stem cells: biological characteristics and potential clinical applications

    DEFF Research Database (Denmark)

    Kassem, Moustapha

    2004-01-01

    and organs in tissue engineering protocols. Before their widespread use in therapy, methods allowing the generation of large number of cells without affecting their differentiation potential as well as technologies that overcome immunological rejection (in case allogenic transplantation) must be developed....

  18. Microfluidics/CMOS orthogonal capabilities for cell biology

    NARCIS (Netherlands)

    Linder, Vincent; Koster, Sander; Franks, Wendy; Kraus, Tobias; Verpoorte, Elisabeth; Heer, Flavio; Hierlemann, Andreas; de Rooij, Nico F.

    2006-01-01

    The study of individual cells and cellular networks can greatly benefit from the capabilities of microfabricated devices for the stimulation and the recording of electrical cellular events. In this contribution, we describe the development of a device, which combines capabilities for both electrical

  19. Molecular biology of liver disorders: the hepatitis C virus and moleculartargets for drug development

    Institute of Scientific and Technical Information of China (English)

    Howard J. Worman; Feng Lin

    2000-01-01

    Advances in molecular biology made possible the discovery of the virus that causes hepatitis C. However,little is known about the fundamental aspects of hepatitis C virus (HCV) replication, primarily because arobust cell culture has not been established. As a result, the currently available drugs for the treatment ofhepatitis C are not specifically directed against HCV. Based on what is known about the molecular biology ofHCV, however, drugs can now be developed against specific viral and cellular targets. The next generationof drugs for the treatment of hepatitis C will likely be directed against non-structural HCV proteins withknown enzymatic activities, such as the proteases, RNA helicase and RNA polymerase. Others agentstargeted against the viral RNA, core protein that assembles into the virion capsid and putative cellular“receptors” that bind HCV envelope proteins are also being developed. These drugs should have fewer sideeffects than those currently available and be much more effective for the treatment of chronic hepatitis C.

  20. Discovery and development of Seliciclib. How systems biology approaches can lead to better drug performance.

    Science.gov (United States)

    Khalil, Hilal S; Mitev, Vanio; Vlaykova, Tatyana; Cavicchi, Laura; Zhelev, Nikolai

    2015-05-20

    Seliciclib (R-Roscovitine) was identified as an inhibitor of CDKs and has undergone drug development and clinical testing as an anticancer agent. In this review, the authors describe the discovery of Seliciclib and give a brief summary of the biology of the CDKs Seliciclib inhibits. An overview of the published in vitro and in vivo work supporting the development as an anti-cancer agent, from in vitro experiments to animal model studies ending with a summary of the clinical trial results and trials underway is presented. In addition some potential non-oncology applications are explored and the potential mode of action of Seliciclib in these areas is described. Finally the authors argue that optimisation of the therapeutic effects of kinase inhibitors such as Seliciclib could be enhanced using a systems biology approach involving mathematical modelling of the molecular pathways regulating cell growth and division.

  1. Technology developments in biological tools for targeted genome surgery.

    Science.gov (United States)

    Teimourian, Shahram; Abdollahzadeh, Rasoul

    2015-01-01

    Different biological tools for targeted genome engineering have recently appeared and these include tools like meganucleases, zinc-finger nucleases and newer technologies including TALENs and CRISPR/Cas systems. transcription activator-like effector nucleases (TALENs) have greatly improved genome editing efficiency by making site-specific DNA double-strand breaks. Several studies have shown the prominence of TALENs in comparison to the meganucleases and zinc-finger nucleases. The most important feature of TALENs that makes them suitable tools for targeted genome editing is the modularity of central repeat domains, meaning that they can be designed to recognize any desirable DNA sequence. In this review, we present a comprehensive and concise description of TALENs technology developments for targeted genome surgery with to the point description and comparison of other tools.

  2. Development of alkaline fuel cells.

    Energy Technology Data Exchange (ETDEWEB)

    Hibbs, Michael R.; Jenkins, Janelle E.; Alam, Todd Michael; Janarthanan, Rajeswari; Horan, James L.; Caire, Benjamin R.; Ziegler, Zachary C.; Herring, Andrew M.; Yang, Yuan; Zuo, Xiaobing; Robson, Michael H.; Artyushkova, Kateryna; Patterson, Wendy; Atanassov, Plamen Borissov

    2013-09-01

    This project focuses on the development and demonstration of anion exchange membrane (AEM) fuel cells for portable power applications. Novel polymeric anion exchange membranes and ionomers with high chemical stabilities were prepared characterized by researchers at Sandia National Laboratories. Durable, non-precious metal catalysts were prepared by Dr. Plamen Atanassovs research group at the University of New Mexico by utilizing an aerosol-based process to prepare templated nano-structures. Dr. Andy Herrings group at the Colorado School of Mines combined all of these materials to fabricate and test membrane electrode assemblies for single cell testing in a methanol-fueled alkaline system. The highest power density achieved in this study was 54 mW/cm2 which was 90% of the project target and the highest reported power density for a direct methanol alkaline fuel cell.

  3. Student Perceptions of the Cell Biology Laboratory Learning Environment in Four Undergraduate Science Courses in Spain

    Science.gov (United States)

    De Juan, Joaquin; Pérez-Cañaveras, Rosa M.; Segovia, Yolanda; Girela, Jose Luis; Martínez-Ruiz, Noemi; Romero-Rameta, Alejandro; Gómez-Torres, Maria José; Vizcaya-Moreno, M. Flores

    2016-01-01

    Cell biology is an academic discipline that organises and coordinates the learning of the structure, function and molecular composition of cells in some undergraduate biomedical programs. Besides course content and teaching methodologies, the laboratory environment is considered a key element in the teaching of and learning of cell biology. The…

  4. Phenotypic evolutionary models in stem cell biology: replacement, quiescence, and variability.

    Directory of Open Access Journals (Sweden)

    Marc Mangel

    Full Text Available Phenotypic evolutionary models have been used with great success in many areas of biology, but thus far have not been applied to the study of stem cells except for investigations of cancer. We develop a framework that allows such modeling techniques to be applied to stem cells more generally. The fundamental modeling structure is the stochastic kinetics of stem cells in their niche and of transit amplifying and fully differentiated cells elsewhere in the organism, with positive and negative feedback. This formulation allows graded signals to be turned into all or nothing responses, and shows the importance of looking beyond the niche for understanding how stem cells behave. Using the deterministic version of this framework, we show how competition between different stem cell lines can be analyzed, and under what circumstances stem cells in a niche will be replaced by other stem cells with different phenotypic characteristics. Using the stochastic version of our framework and state dependent life history theory, we show that the optimal behavior of a focal stem cell will involve long periods of quiescence and that a population of identical stem cells will show great variability in the times at which activity occurs; we compare our results with classic ones on quiescence and variability in the hematopoietic system.

  5. Discovery of HeLa Cell Contamination in HES Cells: Call for Cell Line Authentication in Reproductive Biology Research.

    Science.gov (United States)

    Kniss, Douglas A; Summerfield, Taryn L

    2014-08-01

    Continuous cell lines are used frequently in reproductive biology research to study problems in early pregnancy events and parturition. It has been recognized for 50 years that many mammalian cell lines contain inter- or intraspecies contaminations with other cells. However, most investigators do not routinely test their culture systems for cross-contamination. The most frequent contributor to cross-contamination of cell lines is the HeLa cell isolated from an aggressive cervical adenocarcinoma. We report on the discovery of HeLa cell contamination of the human endometrial epithelial cell line HES isolated in our laboratory. Short tandem repeat analysis of 9 unique genetic loci demonstrated molecular identity between HES and HeLa cells. In addition, we verified that WISH cells, isolated originally from human amnion epithelium, were also contaminated with HeLa cells. Inasmuch as our laboratory did not culture HeLa cells at the time of HES cell derivations, the source of contamination was the WISH cell line. These data highlight the need for continued diligence in authenticating cell lines used in reproductive biology research.

  6. Tiny cells meet big questions: a closer look at bacterial cell biology.

    Science.gov (United States)

    Goley, Erin D

    2013-04-01

    While studying actin assembly as a graduate student with Matt Welch at the University of California at Berkeley, my interest was piqued by reports of surprising observations in bacteria: the identification of numerous cytoskeletal proteins, actin homologues fulfilling spindle-like functions, and even the presence of membrane-bound organelles. Curiosity about these phenomena drew me to Lucy Shapiro's lab at Stanford University for my postdoctoral research. In the Shapiro lab, and now in my lab at Johns Hopkins, I have focused on investigating the mechanisms of bacterial cytokinesis. Spending time as both a eukaryotic cell biologist and a bacterial cell biologist has convinced me that bacterial cells present the same questions as eukaryotic cells: How are chromosomes organized and accurately segregated? How is force generated for cytokinesis? How is polarity established? How are signals transduced within and between cells? These problems are conceptually similar between eukaryotes and bacteria, although their solutions can differ significantly in specifics. In this Perspective, I provide a broad view of cell biological phenomena in bacteria, the technical challenges facing those of us who peer into bacterial cells, and areas of common ground as research in eukaryotic and bacterial cell biology moves forward.

  7. Development of portable fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Nakatou, K.; Sumi, S.; Nishizawa, N. [Sanyo Electric Co., Ltd., Osaka (Japan)

    1996-12-31

    Sanyo Electric has been concentrating on developing a marketable portable fuel cell using phosphoric acid fuel cells (PAFC). Due to the fact that this power source uses PAFC that operate at low temperature around 100{degrees} C, they are easier to handle compared to conventional fuel cells that operate at around 200{degrees} C , they can also be expected to provide extended reliable operation because corrosion of the electrode material and deterioration of the electrode catalyst are almost completely nonexistent. This power source is meant to be used independently and stored at room temperature. When it is started up, it generates electricity itself using its internal load to raise the temperature. As a result, the phosphoric acid (the electolyte) absorbs the reaction water when the temperature starts to be raised (around room temperature). At the same time the concentration and volume of the phosphoric acid changes, which may adversely affect the life time of the cell. We have studied means for starting, operating PAFC stack using methods that can simply evaluate changes in the concentration of the electrolyte in the stack with the aim of improving and extending cell life and report on them in this paper.

  8. Development of Dendritic Cell System

    Institute of Scientific and Technical Information of China (English)

    Li Wu; Aleksandar Dakic

    2004-01-01

    The dendritic cell system contains conventional dendritic cells (DCs) and plasmacytoid pre-dendritic cells (pDCs). Both DCs and pDCs are bone marrow derived cells. Although the common functions of DCs are antigen-processing and T-lymphocyte activation, they differ in surface markers, migratory patterns, and cytokine output. These differences can determine the fate of the T cells they activate. Several subsets of mature DCs have been described in both mouse and human and the developmental processes of these specialized DC subsets have been studied extensively. The original concept that all DCs were of myeloid origin was questioned by several recent studies, which demonstrated that in addition to the DCs derived from myeloid precursors,some DCs could also be efficiently generated from lymphoid-restricted precursors. Moreover, it has been shown recently that both conventional DCs and pDCs can be generated by the Flt3 expressing hemopoietic progenitors regardless of their myeloid- or lymphoid-origin. These findings suggest an early developmental flexibility of precursors for DCs and pDCs. This review summarizes some recent observations on the development of DC system in both human and mouse.

  9. Electromechanics: An analytic solution for graded biological cell.

    Science.gov (United States)

    Chan, Kin Lok; Yu, K. W.

    2007-03-01

    Electromechanics of graded material has been established recently to study the effective response of inhomogeneous graded spherical particles under an external ac electric field.[1, 2]Such particles having a complex dielectric profile varies along the radius of the particles. The gradation in the colloidal particles is modeled by assuming both the dielectric and conductivity vary along the radius. More precisely, both the dielectric and conductivity function are assumed to be a isotopic linear function dependence on the radius variable r, namely, ɛ(r)=ɛ(0)+A1r, σ(r)=σ(0)+A2r.In this talk, we will present the exact analytical solutions of the dipole moment of such particle in terms of the hypergeometric functions, and the effective electric response in dilute limit. Moreover, we applied the dielectric dispersion spectral representation (DDSR) to study the Debye Behavior of the cell. Our exact results may be applied to graded biological cell suspensions, as their interior must be inhomogeneous in nature. [1] En-Bo Wei, L. Dong, K. W. Yu, Journal of Applied Physics 99, 054101(2006) [2] L. Dong, Mikko Karttunen, K. W. Yu, Phys. Rev. E, Vol. 72, art. no. 016613 (2005)

  10. Statins as Modulators of Regulatory T-Cell Biology

    Directory of Open Access Journals (Sweden)

    David A. Forero-Peña

    2013-01-01

    Full Text Available Statins are pharmacological inhibitors of the activity of 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR, an enzyme responsible for the synthesis of cholesterol. Some recent experimental studies have shown that besides their effects on the primary and secondary prevention of cardiovascular diseases, statins may also have beneficial anti-inflammatory effects through diverse mechanisms. On the other hand, the induction and activity of regulatory T cells (Treg are key processes in the prevention of pathology during chronic inflammatory and autoimmune diseases. Hence, strategies oriented towards the therapeutic expansion of Tregs are gaining special attention among biomedical researchers. The potential effects of statins on the biology of Treg are of particular importance because of their eventual application as in vivo inducers of Treg in the treatment of multiple conditions. In this paper we review the experimental evidence pointing out to a potential effect of statins on the role of regulatory T cells in different conditions and discuss its potential clinical significance.

  11. Classification of biological cells using a sound wave based flow cytometer

    Science.gov (United States)

    Strohm, Eric M.; Gnyawali, Vaskar; Van De Vondervoort, Mia; Daghighi, Yasaman; Tsai, Scott S. H.; Kolios, Michael C.

    2016-03-01

    A flow cytometer that uses sound waves to determine the size of biological cells is presented. In this system, a microfluidic device made of polydimethylsiloxane (PDMS) was developed to hydrodynamically flow focus cells in a single file through a target area. Integrated into the microfluidic device was an ultrasound transducer with a 375 MHz center frequency, aligned opposite the transducer was a pulsed 532 nm laser focused into the device by a 10x objective. Each passing cell was insonfied with a high frequency ultrasound pulse, and irradiated with the laser. The resulting ultrasound and photoacoustic waves from each cell were analyzed using signal processing methods, where features in the power spectra were compared to theoretical models to calculate the cell size. Two cell lines with different size distributions were used to test the system: acute myeloid leukemia cells (AML) and melanoma cells. Over 200 cells were measured using this system. The average calculated diameter of the AML cells was 10.4 +/- 2.5 μm using ultrasound, and 11.4 +/- 2.3 μm using photoacoustics. The average diameter of the melanoma cells was 16.2 +/- 2.9 μm using ultrasound, and 18.9 +/- 3.5 μm using photoacoustics. The cell sizes calculated using ultrasound and photoacoustic methods agreed with measurements using a Coulter Counter, where the AML cells were 9.8 +/- 1.8 μm and the melanoma cells were 16.0 +/- 2.5 μm. These results demonstrate a high speed method of assessing cell size using sound waves, which is an alternative method to traditional flow cytometry techniques.

  12. Can stem cells really regenerate the human heart? Use your noggin, dickkopf! Lessons from developmental biology.

    Science.gov (United States)

    Sommer, Paula

    2013-06-01

    The human heart is the first organ to develop and its development is fairly well characterised. In theory, the heart has the capacity to regenerate, as its cardiomyocytes may be capable of cell division and the adult heart contains a cardiac stem cell niche, presumably capable of differentiating into cardiomyocytes and other cardiac-associated cell types. However, as with most other organs, these mechanisms are not activated upon serious injury. Several experimental options to induce regeneration of the damaged heart tissue are available: activate the endogenous cardiomyocytes to divide, coax the endogenous population of stem cells to divide and differentiate, or add exogenous cell-based therapy to replace the lost cardiac tissue. This review is a summary of the recent research into all these avenues, discussing the reasons for the limited successes of clinical trials using stem cells after cardiac injury and explaining new advances in basic science. It concludes with a reiteration that chances of successful regeneration would be improved by understanding and implementing the basics of heart development and stem cell biology.

  13. From microbiology to cell biology: when an intracellular bacterium becomes part of its host cell.

    Science.gov (United States)

    McCutcheon, John P

    2016-08-01

    Mitochondria and chloroplasts are now called organelles, but they used to be bacteria. As they transitioned from endosymbionts to organelles, they became more and more integrated into the biochemistry and cell biology of their hosts. Work over the last 15 years has shown that other symbioses show striking similarities to mitochondria and chloroplasts. In particular, many sap-feeding insects house intracellular bacteria that have genomes that overlap mitochondria and chloroplasts in terms of size and coding capacity. The massive levels of gene loss in some of these bacteria suggest that they, too, are becoming highly integrated with their host cells. Understanding these bacteria will require inspiration from eukaryotic cell biology, because a traditional microbiological framework is insufficient for understanding how they work.

  14. Combined ion conductance and fluorescence confocal microscopy for biological cell membrane transport studies

    Science.gov (United States)

    Shevchuk, A. I.; Novak, P.; Velazquez, M. A.; Fleming, T. P.; Korchev, Y. E.

    2013-09-01

    Optical visualization of nanoscale morphological changes taking place in living biological cells during such important processes as endo- and exocytosis is challenging due to the low refractive index of lipid membranes. In this paper we summarize and discuss advances in the powerful combination of two complementary live imaging techniques, ion conductance and fluorescence confocal microscopy, that allows cell membrane topography to be related with molecular-specific fluorescence at high spatial and temporal resolution. We demonstrate the feasibility of the use of ion conductance microscopy to image apical plasma membrane of mouse embryo trophoblast outgrowth cells at a resolution sufficient to depict single endocytic pits. This opens the possibility to study individual endocytic events in embryo trophoblast outgrowth cells where endocytosis plays a crucial role during early stages of embryo development.

  15. Implementation of ion-beam techniques in microsystems manufacturing: opportunities in cell biology

    Science.gov (United States)

    Campo, E. M.; Lopez-Martinez, M. J.; Fernández, E.; Esteve, J..; Plaza, J. A.

    2009-05-01

    Micromachining techniques are proposed to mass-manufacture innovative silicon oxide micropipettes and conventional boron-silicate pipettes with highly customized tips to address increasingly demanding cell handling procedures. Cell handling has become a crucial procedure in cell biology, especially in nuclear transfer, DNA injection, and in assisted reproductive techniques. Most pipette manufacturing procedures involve tedious artisanal methods prone to failure and with limited functionality. We expect high tip customization to have a large impact in current and future cell manipulation, paving the way for augmented functionality. Although proper biocompatibility assessments remain to be explored, initial pierced embryos are seen to continue their division procedure up to at least 24 hours. The continued cellular division is a good sign of biocompatibility. These results suggest that residual chemical agents or gallium ions injected during milling could be harmless to life development. We conclude that we have produced a novel technique combining microfabrication and Focus Ion Beam processes with great potential for industrial applications.

  16. Eph/ephrins mediated thymocyte-thymic epithelial cell interactions control numerous processes of thymus biology

    Directory of Open Access Journals (Sweden)

    Javier eGarcia-Ceca

    2015-06-01

    Full Text Available Numerous studies emphasize the relevance of thymocyte-thymic epithelial cell (TECs interactions for the functional maturation of intrathymic T lymphocytes. The tyrosine kinase receptors Ephs (Erythropoietin-producing hepatocyte kinases and their ligands, ephrins (Eph receptor interaction proteins, are molecules known to be involved in the regulation of numerous biological systems in which cell-to-cell interactions are particularly relevant. In the last years, we and other authors have demonstrated the importance of these molecules in the thymic functions and the T-cell development. In the present report, we review data on the effects of Ephs and ephrins, in the functional maturation of both thymic epithelial microenvironment and thymocyte maturation as well as on their role in the lymphoid progenitor recruitment into the thymus.

  17. The role of Protein Kinase Cη in T cell biology

    Directory of Open Access Journals (Sweden)

    Nicholas R.J. Gascoigne

    2012-06-01

    Full Text Available Protein kinase Cη (PKCη is a member of the novel PKC subfamily, which also includes δ, ε, and θ isoforms. Compared to the other novel PKCs, the function of PKCη in the immune system is largely unknown. Several studies have started to reveal the role of PKCη, particularly in T cells. PKCη is highly expressed in T cells, and is upregulated during thymocyte positive selection. Interestingly, like the θ isoform, PKCη is also recruited to the immunological synapse that is formed between a T cell and an antigen-presenting cell. However, unlike PKCθ, which becomes concentrated to the central region of the synapse, PKCη remains in a diffuse pattern over the whole area of the synapse, suggesting distinctive roles of these two isoforms in signal transduction. Although PKCη is dispensable for thymocyte development, further analysis of PKCη− or PKCθ−deficient and double knockout mice revealed the redundancy of these two isoforms in thymocyte development. In contrast, PKCη rather than PKCθ, plays an important role for T cell homeostatic proliferation, which requires recognition of self-antigen. Another piece of evidence demonstrating that PKCη and PKCθ have isoform specific as well as redundant roles come from the analysis of CD4 to CD8 T cell ratios in the periphery of these knockout mice. Deficiency in PKCη or PKCθ had opposing effects as PKCη knockout mice had a higher ratio of CD4 to CD8 T cells compared to that of wild-type mice, whereas PKCθ-deficient mice had a lower ratio. Biochemical studies showed that calcium flux and NFκB translocation is impaired in PKCη-deficient T cells upon TCR crosslinking stimulation, a character shared with PKCθ-deficient T cells. However, unlike the case with PKCθ, the mechanistic study of PKCη is at early stage and the signaling pathways involving PKCη, at least in T cells, are essentially unknown. In this review, we will cover the topics mentioned above as well as provide some

  18. Retinoic acid signalling in thymocytes regulates T cell development

    DEFF Research Database (Denmark)

    Wendland, Kerstin; Sitnik, Katarzyna Maria; Kotarsky, Knut

    The Vitamin A derivative retinoic acid (RA) has emerged as an important regulator of peripheral T cell responses. However, whether there is endogenous retinoic acid receptor (RAR) signaling in developing thymocytes and the potential impact of such signals in thymocyte development remains unclear...... further enhanced in recently generated CD69+ CD4+ SP cells. To address the potential biological significance of RA signaling in developing thymocytes, we evaluated T cell development in CD4Cre-dnRAR mice, where RA signaling is blocked in thymocytes from the CD4+CD8+ double positive (DP) stage onwards due...... of this cell subset. Collectively, our data suggest a direct role for RA signaling in regulating thymocyte homeostasis and T cell development....

  19. Genome-editing tools for stem cell biology.

    Science.gov (United States)

    Vasileva, E A; Shuvalov, O U; Garabadgiu, A V; Melino, G; Barlev, N A

    2015-07-23

    Human pluripotent stem cells provide a versatile platform for regenerative studies, drug testing and disease modeling. That the expression of only four transcription factors, Oct4, Klf4, Sox2 and c-Myc (OKSM), is sufficient for generation of induced pluripotent stem cells (iPSCs) from differentiated somatic cells has revolutionized the field and also highlighted the importance of OKSM as targets for genome editing. A number of novel genome-editing systems have been developed recently. In this review, we focus on successful applications of several such systems for generation of iPSCs. In particular, we discuss genome-editing systems based on zinc-finger fusion proteins (ZFs), transcription activator-like effectors (TALEs) and an RNA-guided DNA-specific nuclease, Cas9, derived from the bacterial defense system against viruses that utilizes clustered regularly interspaced short palindromic repeats (CRISPR).

  20. New insights on Schwann cell development.

    Science.gov (United States)

    Monk, Kelly R; Feltri, M Laura; Taveggia, Carla

    2015-08-01

    In the peripheral nervous system, Schwann cells are glial cells that are in intimate contact with axons throughout development. Schwann cells generate the insulating myelin sheath and provide vital trophic support to the neurons that they ensheathe. Schwann cell precursors arise from neural crest progenitor cells, and a highly ordered developmental sequence controls the progression of these cells to become mature myelinating or nonmyelinating Schwann cells. Here, we discuss both seminal discoveries and recent advances in our understanding of the molecular mechanisms that drive Schwann cell development and myelination with a focus on cell-cell and cell-matrix signaling events.

  1. Alkaloids and acetogenins in Annonaceae development: biological considerations

    Directory of Open Access Journals (Sweden)

    Alma Rosa González-Esquinca

    2014-01-01

    Full Text Available Chemical studies of the plant family Annonaceae have intensified in the last several decades due to the discovery of annonaceous molecules with medicinal potential (e.g., benzylisoquinoline alkaloids and acetogenins. Approximately 500 alkaloids have been identified in 138 Annonaceae species in 43 genera. In addition, until 2004, 593 annonaceous acetogenins (ACGs had been identified, from 51 species in 13 genera.This suggests that plants from this family allocate important resources to the biosynthesis of these compounds. Despite the diversity of these molecules, their biological roles, including their physiological and/or ecological functions, are not well understood. In this study, it was provided new data describing the variety and distribution of certain alkaloids and ACGs in annonaceous plants in distinct stages of development. The potential relationships among some of these compounds and the seasonally climatic changes occurring in the plant habitat are also discussed. These data will improve our understanding of the secondary metabolism of these pharmacologically important molecules and their expression patterns during development, which will help to determine the optimal growth conditions and harvest times for their production.

  2. Waveguide evanescent field fluorescence microscopy & its application in cell biology

    Science.gov (United States)

    Hassanzadeh, Abdollah

    There are many powerful microscopy technologies available for the investigation of bulk materials as well as for thin film samples. Nevertheless, for imaging an interface, especially live cells on a substrate and ultra thin-films, only Total Internal Reflection Fluorescence (TIRF) microscopy is available. This TIRF microscopy allows imaging without interference of the bulk. Various approaches are employed in fluorescence microscopy applications to restrict the excitation and detection of fluorophores to a thin region of the specimen. Elimination of background fluorescence from outside the focal plane can dramatically improve the signal-to-noise ratio, and consequently, the spatial resolution of the features or events of interest. TIRF microscopy is an evanescent field based microscopy. In this method, fluorescent dyes are only excited within an evanescent field: roughly within 100 nm above a glass coverslip. This will allow imaging surface and interfacial issues of the glass coverslip and an adjacent material. Waveguide evanescent field fluorescence (WEFF) microscopy is a new development for imaging cell-substrate interactions in real time and in vitro. It is an alternative to TIRF microscopy. In this method the light is coupled into a waveguide via an optical grating. The coupled light propagates as a waveguide mode and exhibits an evanescent field on top of the waveguide. This can be used as a surface-bound illumination source to excite fluorophores. This evanescent field serves as an extremely powerful tool for quality control of thin films, to study cell-substrate contacts, and investigating the effect of external agents and drugs on the cell-substrate interaction in real time and in vitro. This new method has been established and optimized to minimize non-uniformity, scattering and photo bleaching issues. Visualizing and quantifying of the cell-substrates and solid thin films have been carried out by WEFF microscopy. The images of the cell-substrate interface

  3. Development of Dendritic Cell System

    Institute of Scientific and Technical Information of China (English)

    LiWu; AleksandarDakic

    2004-01-01

    The dendritic cell system contains conventional dendritic cells (DCs) and plasmacytoid pre-dendritic cells (pDCs). Both DCs and pDCs are bone marrow derived calls. Although the common functions of DCs are antigen-processing and T-lymphocyte activation, they differ in surface markers, migratory patterns, and cytokine output. These differences can determine the fate of the T cells they activate. Several subsets of mature DCs have been described in both mouse and human and the developmental processes of these specialized DC subsets have been studied extensively. The original concept that all DCs were of myeloid origin was questioned by several recent studies, which demonstrated that in addition to the DCs derived from myeloid precursors, some DCs could also be efficiently generated from lymphoid-restricted precursors. Moreover, it has been shown recently that both conventional DCs and pDCs can be generated by the Fit3 expressing hemopoietic progenitors regardless of their myeloid- or lymphoid-origin. These findings suggest an early developmental flexibility of precursors for DCs and pDCs. This review summarizes some recent observations on the development of DC system in both human and mouse. Cellular & Molecular Immunology. 2004;1(2):112-118.

  4. Biological Effects of Culture Substrates on Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Yohei Hayashi

    2016-01-01

    Full Text Available In recent years, as human pluripotent stem cells (hPSCs have been commonly cultured in feeder-free conditions, a number of cell culture substrates have been applied or developed. However, the functional roles of these substrates in maintaining hPSC self-renewal remain unclear. Here in this review, we summarize the types of these substrates and their effect on maintaining hPSC self-renewal. Endogenous extracellular matrix (ECM protein expression has been shown to be crucial in maintaining hPSC self-renewal. These ECM molecules interact with integrin cell-surface receptors and transmit their cellular signaling. We discuss the possible effect of integrin-mediated signaling pathways on maintaining hPSC self-renewal. Activation of integrin-linked kinase (ILK, which transmits ECM-integrin signaling to AKT (also known as protein kinase B, has been shown to be critical in maintaining hPSC self-renewal. Also, since naïve pluripotency has been widely recognized as an alternative pluripotent state of hPSCs, we discuss the possible effects of culture substrates and integrin signaling on naïve hPSCs based on the studies of mouse embryonic stem cells. Understanding the role of culture substrates in hPSC self-renewal and differentiation enables us to control hPSC behavior precisely and to establish scalable or microfabricated culture technologies for regenerative medicine and drug development.

  5. Antigen-specific memory B cell development.

    Science.gov (United States)

    McHeyzer-Williams, Louise J; McHeyzer-Williams, Michael G

    2005-01-01

    Helper T (Th) cell-regulated B cell immunity progresses in an ordered cascade of cellular development that culminates in the production of antigen-specific memory B cells. The recognition of peptide MHC class II complexes on activated antigen-presenting cells is critical for effective Th cell selection, clonal expansion, and effector Th cell function development (Phase I). Cognate effector Th cell-B cell interactions then promote the development of either short-lived plasma cells (PCs) or germinal centers (GCs) (Phase II). These GCs expand, diversify, and select high-affinity variants of antigen-specific B cells for entry into the long-lived memory B cell compartment (Phase III). Upon antigen rechallenge, memory B cells rapidly expand and differentiate into PCs under the cognate control of memory Th cells (Phase IV). We review the cellular and molecular regulators of this dynamic process with emphasis on the multiple memory B cell fates that develop in vivo.

  6. Pediatric glioma stem cells: biologic strategies for oncolytic HSV virotherapy

    Directory of Open Access Journals (Sweden)

    Gregory K Friedman

    2013-02-01

    Full Text Available While glioblastoma multiforme (GBM is the most common adult malignant brain tumor, GBMs in childhood represent less than 10% of pediatric malignant brain tumors and are phenotypically and molecularly distinct from adult GBMs. Similar to adult patients, outcomes for children with high-grade gliomas (HGGs remain poor. Furthermore, the significant morbidity and mortality yielded by pediatric GBM is compounded by neurotoxicity for the developing brain caused by current therapies. Poor outcomes have been attributed to a subpopulation of chemotherapy and radiotherapy resistant cells, termed ‘glioma stem cells’ (GSCs, ‘glioma progenitor cells’, or ‘glioma-initiating cells', which have the ability to initiate and maintain the tumor and to repopulate the recurring tumor after conventional therapy. Future innovative therapies for pediatric HGGs must be able to eradicate these therapy-resistant GSCs. Oncolytic herpes simplex viruses, genetically engineered to be safe for normal cells and to express diverse foreign anti-tumor therapeutic genes, have been demonstrated in preclinical studies to infect and kill GSCs and tumor cells equally while sparing normal brain cells. In this review, we discuss the unique aspects of pediatric GSCs, including markers to identify them, the microenvironment they reside in, signaling pathways that regulate them, mechanisms of cellular resistance, and approaches to target GSCs, with a focus on the promising therapeutic, genetically engineered oncolytic herpes simplex virus (HSV.

  7. Integrated Raman and angular scattering of single biological cells

    Science.gov (United States)

    Smith, Zachary J.

    2009-12-01

    epi- and trans-illumination modalities are also discussed. In addition, transilluminated Raman and elastic-scattering spectra were obtained from several biological test-cases, including Streptococcus pneumoniae, baker's yeast, and single human immune cells. Both the Raman and elastic-scattering channels extract information from these samples that are well in line with their known characteristics from the literature. Finally, we report on an experiment in which CD8+ T lymphocytes were stimulated by exposure to the antigens staphylococcal enterotoxin B and phorbol myristate acetate. Clear chemical and morphological differences were observed between the activated and unactivated cells, with the results correlating well to analysis performed on parallel samples using fluorescent stains and a flow cytometer.

  8. Cell biology of the future: Nanometer-scale cellular cartography.

    Science.gov (United States)

    Taraska, Justin W

    2015-10-26

    Understanding cellular structure is key to understanding cellular regulation. New developments in super-resolution fluorescence imaging, electron microscopy, and quantitative image analysis methods are now providing some of the first three-dimensional dynamic maps of biomolecules at the nanometer scale. These new maps--comprehensive nanometer-scale cellular cartographies--will reveal how the molecular organization of cells influences their diverse and changeable activities.

  9. The cell biology of cross-presentation and the role of dendritic cell subsets.

    Science.gov (United States)

    Lin, Ming-Lee; Zhan, Yifan; Villadangos, Jose A; Lew, Andrew M

    2008-01-01

    The cell biology of cross-presentation is reviewed regarding exogenous antigen uptake, antigen degradation and entry into the major histocompatibility complex class I pathway. Whereas cross-presentation is not associated with enhanced phagocytic ability, certain receptors may favour uptake for cross-presentation for example mannose receptor for soluble glycoproteins. Perhaps, the defining property of the cross-presenting cell is some specialization in host machinery for handling and transport of antigen across organelles. Both cytosolic and vacuolar pathways are discussed. Which dendritic cell (DC) subset is the cross-presenting cell is explored. Cross-presentation is found within the CD8(+) subset resident in lymphoid organs. The role of other DC subsets (especially the migratory CD8(-) DC) and the route of antigen delivery are also discussed. Further consideration is given to antigen transfer between DC subsets and differential presentation to naive vs memory T cells.

  10. A few nascent methods for measuring mechanical properties of the biological cell.

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, Gayle Echo; de Boer, Maarten Pieter; Corvalan, Carlos (Purdue University, West Lafayette, IN); Corwin, Alex David; Campanella, Osvaldo H. (Purdue University, West Lafayette, IN); Nivens, David (Purdue University, West Lafayette, IN); Werely, Steven (Purdue University, West Lafayette, IN); Sumali, Anton Hartono; Koch, Steven John

    2006-01-01

    This report summarizes a survey of several new methods for obtaining mechanical and rheological properties of single biological cells, in particular: (1) The use of laser Doppler vibrometry (LDV) to measure the natural vibrations of certain cells. (2) The development of a novel micro-electro-mechanical system (MEMS) for obtaining high-resolution force-displacement curves. (3) The use of the atomic force microscope (AFM) for cell imaging. (4) The adaptation of a novel squeezing-flow technique to micro-scale measurement. The LDV technique was used to investigate the recent finding reported by others that the membranes of certain biological cells vibrate naturally, and that the vibration can be detected clearly with recent instrumentation. The LDV has been reported to detect motions of certain biological cells indirectly through the motion of a probe. In this project, trials on Saccharomyces cerevisiae tested and rejected the hypothesis that the LDV could measure vibrations of the cell membranes directly. The MEMS investigated in the second technique is a polysilicon surface-micromachined force sensor that is able to measure forces to a few pN in both air and water. The simple device consists of compliant springs with force constants as low as 0.3 milliN/m and Moire patterns for nanometer-scale optical displacement measurement. Fields from an electromagnet created forces on magnetic micro beads glued to the force sensors. These forces were measured and agreed well with finite element prediction. It was demonstrated that the force sensor was fully functional when immersed in aqueous buffer. These results show the force sensors can be useful for calibrating magnetic forces on magnetic beads and also for direct measurement of biophysical forces on-chip. The use of atomic force microscopy (AFM) for profiling the geometry of red blood cells was the third technique investigated here. An important finding was that the method commonly used for attaching the cells to a

  11. Method and apparatus for sustaining viability of biological cells on a substrate

    Science.gov (United States)

    McKnight, Timothy E.; Melechko, Anatoli V.; Simpson, Michael L.

    2011-12-13

    A method for the transient transformation of a living biological cell having an intact cell membrane defining an intracellular domain, and an apparatus for the transient transformation of biological cells. The method and apparatus include introducing a compartmentalized extracellular component fixedly attached to a cellular penetrant structure to the intracellular domain of the cell, wherein the cell is fixed in a predetermined location and wherein the component is expressed within in the cell while being retained within the compartment and wherein the compartment restricts the mobility and interactions of the component within the cell and prevents transference of the component to the cell.

  12. Fuel cell development for transportation: Catalyst development

    Energy Technology Data Exchange (ETDEWEB)

    Doddapaneni, N. [Sandia National Lab., Albuquerque, NM (United States)

    1996-04-01

    Fuel cells are being considered as alternate power sources for transportation and stationary applications. With proton exchange membrane (PEM) fuel cells the fuel crossover to cathodes causes severe thermal management and cell voltage drop due to oxidation of fuel at the platinized cathodes. The main goal of this project was to design, synthesize, and evaluate stable and inexpensive transition metal macrocyclic catalysts for the reduction of oxygen and be electrochemically inert towards anode fuels such as hydrogen and methanol.

  13. Before the long journey. [the development of space biology and medicine

    Science.gov (United States)

    Gazenko, O. G.

    1978-01-01

    One of the leading specialists in space biology and medicine Oleg Geogiyevich Gazenko discusses the development of space biology and medicine and the problems which its specialists solve. The application of space medicine discoveries to terrestrial medicine is also discussed.

  14. The Development and Implementation of an Instrument to Assess Students’ Data Analysis Skills in Molecular Biology

    Directory of Open Access Journals (Sweden)

    Brian J. Rybarczyk

    2014-03-01

    Full Text Available Developing visual literacy skills is an important component of scientific literacy in undergraduate science education.  Comprehension, analysis, and interpretation are parts of visual literacy that describe related data analysis skills important for learning in the biological sciences. The Molecular Biology Data Analysis Test (MBDAT was developed to measure students’ data analysis skills connected with scientific reasoning when analyzing and interpreting scientific data generated from experimental research.  The skills analyzed included basic skills such as identification of patterns and trends in data and connecting a method that generated the data and advanced skills such as distinguishing positive and negative controls, synthesizing conclusions, determining if data supports a hypothesis, and predicting alternative or next-step experiments.  Construct and content validity were established and calculated statistical parameters demonstrate that the MBDAT is valid and reliable for measuring students’ data analysis skills in molecular and cell biology contexts.  The instrument also measures students’ perceived confidence in their data interpretation abilities.  As scientific research continues to evolve in complexity, interpretation of scientific information in visual formats will continue to be an important component of scientific literacy.  Thus science education will need to support and assess students’ development of these skills as part of students’ scientific training.

  15. Dendritic Cells Coordinate the Development and Homeostasis of Organ-Specific Regulatory T Cells.

    Science.gov (United States)

    Leventhal, Daniel S; Gilmore, Dana C; Berger, Julian M; Nishi, Saki; Lee, Victoria; Malchow, Sven; Kline, Douglas E; Kline, Justin; Vander Griend, Donald J; Huang, Haochu; Socci, Nicholas D; Savage, Peter A

    2016-04-19

    Although antigen recognition mediated by the T cell receptor (TCR) influences many facets of Foxp3(+) regulatory T (Treg) cell biology, including development and function, the cell types that present antigen to Treg cells in vivo remain largely undefined. By tracking a clonal population of Aire-dependent, prostate-specific Treg cells in mice, we demonstrated an essential role for dendritic cells (DCs) in regulating organ-specific Treg cell biology. We have shown that the thymic development of prostate-specific Treg cells required antigen presentation by DCs. Moreover, Batf3-dependent CD8α(+) DCs were dispensable for the development of this clonotype and had negligible impact on the polyclonal Treg cell repertoire. In the periphery, CCR7-dependent migratory DCs coordinated the activation of organ-specific Treg cells in the prostate-draining lymph nodes. Our results demonstrate that the development and peripheral regulation of organ-specific Treg cells are dependent on antigen presentation by DCs, implicating DCs as key mediators of organ-specific immune tolerance.

  16. Translational research in ovarian carcinoma : cell biological aspects of drug resistance and tumor aggressiveness

    NARCIS (Netherlands)

    Zee, Ate Gerard Jan van der

    1994-01-01

    In this thesis diverse cell biological features that in cultured (ovarian) tumor cells have been linked to drug resistance and/or tumor aggressiveness are studied in tumor specimens of epithelial ovarian carcinomas.

  17. Toward total synthesis of cell function: Reconstituting cell dynamics with synthetic biology.

    Science.gov (United States)

    Kim, Allen K; DeRose, Robert; Ueno, Tasuku; Lin, Benjamin; Komatsu, Toru; Nakamura, Hideki; Inoue, Takanari

    2016-02-09

    Biological phenomena, such as cellular differentiation and phagocytosis, are fundamental processes that enable cells to fulfill important physiological roles in multicellular organisms. In the field of synthetic biology, the study of these behaviors relies on the use of a broad range of molecular tools that enable the real-time manipulation and measurement of key components in the underlying signaling pathways. This Review will focus on a subset of synthetic biology tools known as bottom-up techniques, which use technologies such as optogenetics and chemically induced dimerization to reconstitute cellular behavior in cells. These techniques have been crucial not only in revealing causal relationships within signaling networks but also in identifying the minimal signaling components that are necessary for a given cellular function. We discuss studies that used these systems in a broad range of cellular and molecular phenomena, including the time-dependent modulation of protein activity in cellular proliferation and differentiation, the reconstitution of phagocytosis, the reconstitution of chemotaxis, and the regulation of actin reorganization. Finally, we discuss the potential contribution of synthetic biology to medicine.

  18. Molecular Biological and Biochemical Studies Reveal New Pathways Important for Cotton Fiber Development

    Institute of Scientific and Technical Information of China (English)

    Yu Xu; Hong-Bin Li; Yu-Xian Zhu

    2007-01-01

    As one of the longest single-celled seed trichomes, fibers provide an excellent model for studying fundamental biological processes such as cell differentiation, cell expansion, and cell wall biosynthesis. In this review, we summarize recent progress in cotton functional genomic studies that characterize the dynamic changes in the transcriptomes of fiber cells. Extensive expression profilings of cotton fiber transcriptomes have provided comprehensive information, as quite a number of transcription factors and enzyme-coding genes have been shown to express preferentially during the fiber elongation period. Biosynthesis of the plant hormone ethylene is found significantly upregulated during the fiber growth period as revealed by both microarray analysis and by biochemical and physiological studies. It is suggested that genetic engineering of the ethylene pathway may improve the quality and the productivity of cotton lint. Many metabolic pathways, such as biosynthesis of celiulose and matrix polysaccharides are preferentially expressed in actively growing fiber cells. Five gene families, including proline-rich proteins (PRP), arabinogalactan proteins (AGP), expansins, tubulins and lipid transfer proteins (LTP) are activated during early fiber development,indicating that they may also be needed for cell elongation. In conclusion, we identify a few areas of future research for cotton functional genomic studies.

  19. The binding, transport and fate of aluminium in biological cells.

    Science.gov (United States)

    Exley, Christopher; Mold, Matthew J

    2015-04-01

    Aluminium is the most abundant metal in the Earth's crust and yet, paradoxically, it has no known biological function. Aluminium is biochemically reactive, it is simply that it is not required for any essential process in extant biota. There is evidence neither of element-specific nor evolutionarily conserved aluminium biochemistry. This means that there are no ligands or chaperones which are specific to its transport, there are no transporters or channels to selectively facilitate its passage across membranes, there are no intracellular storage proteins to aid its cellular homeostasis and there are no pathways which evolved to enable the metabolism and excretion of aluminium. Of course, aluminium is found in every compartment of every cell of every organism, from virus through to Man. Herein we have investigated each of the 'silent' pathways and metabolic events which together constitute a form of aluminium homeostasis in biota, identifying and evaluating as far as is possible what is known and, equally importantly, what is unknown about its uptake, transport, storage and excretion.

  20. Cell Culture in Microgravity: Opening the Door to Space Cell Biology

    Science.gov (United States)

    Pellis, Neal R.; Dawson, David L. (Technical Monitor)

    1999-01-01

    Adaptational response of human cell populations to microgravity is investigated using simulation, short-term Shuttle experiments, and long-term microgravity. Simulation consists of a clinostatically-rotated cell culture system. The system is a horizontally-rotated cylinder completely filled with culture medium. Low speed rotation results in continuous-fall of the cells through the fluid medium. In this setting, cells: 1) aggregate, 2) propagate in three dimensions, 3) synthesize matrix, 4) differentiate, and 5) form sinusoids that facilitate mass transfer. Space cell culture is conducted in flight bioreactors and in static incubators. Cells grown in microgravity are: bovine cartilage, promyelocytic leukemia, kidney proximal tubule cells, adrenal medulla, breast and colon cancer, and endothelium. Cells were cultured in space to test specific hypotheses. Cartilage cells were used to determine structural differences in cartilage grown in space compared to ground-based bioreactors. Results from a 130-day experiment on Mir revealed that cartilage grown in space was substantially more compressible due to insufficient glycosaminoglycan in the matrix. Interestingly, earth-grown cartilage conformed better to the dimensions of the scaffolding material, while the Mir specimens were spherical. The other cell populations are currently being analyzed for cell surface properties, gene expression, and differentiation. Results suggest that some cells spontaneously differentiate in microgravity. Additionally, vast changes in gene expression may occur in response to microgravity. In conclusion, the transition to microgravity may constitute a physical perturbation in cells resulting in unique gene expressions, the consequences of which may be useful in tissue engineering, disease modeling, and space cell biology.