WorldWideScience

Sample records for cell bioassay system

  1. Cell-based bioassays in microfluidic systems

    Science.gov (United States)

    Itle, Laura J.; Zguris, Jeanna C.; Pishko, Michael V.

    2004-12-01

    The development of cell-based bioassays for high throughput drug screening or the sensing of biotoxins is contingent on the development of whole cell sensors for specific changes in intracellular conditions and the integration of those systems into sample delivery devices. Here we show the feasibility of using a 5-(and-6)-carboxy SNARF-1, acetoxymethyl ester, acetate, a fluorescent dye capable of responding to changes in intracellular pH, as a detection method for the bacterial endotoxin, lipopolysaccharide. We used photolithography to entrap cells with this dye within poly(ethylene) glyocol diacrylate hydrogels in microfluidic channels. After 18 hours of exposure to lipopolysaccharide, we were able to see visible changes in the fluorescent pattern. This work shows the feasibility of using whole cell based biosensors within microfluidic networks to detect cellular changes in response to exogenous agents.

  2. Water Powered Bioassay System

    Science.gov (United States)

    2004-06-01

    capillary micropump 27 Figure 30: Slow dripping/separation of a droplet from a capillary 4.1.5 Micro Osmotic Pumping Nano Droplet...stored and delivered fluidic pressure and, with a combination of pumps and valves, formed the basic micro fluidic processing unit. The addition of...System, Microvalve, Micro -Accumulator, Micro Dialysis Needle, Bioassay System, Water Activated, Micro Osmotic Pump 16. PRICE CODE 17. SECURITY

  3. Development and characterization of a green fluorescent protein-based rat cell bioassay system for detection of AH receptor ligands

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Bin; Denison, M. [California Univ., Davis, CA (United States). Dept. of Environmental Toxicology

    2004-09-15

    Proper epidemiological, risk assessment and exposure analysis of TCDD and related HAHs requires accurate measurements of these chemicals both in the species of interest and in various exposure matrices (i.e. biological, environmental, food and feed). While high-resolution instrumental analysis techniques are established for these chemicals, these procedures are very costly, time-consuming and are impractical for large scale sampling studies. Accordingly, numerous bioanalytical methods have been developed for the detection of these chemicals in extracts from a variety of matrices, the majority of which take the advantage of the ability of these chemicals to activate one or more aspects of the AhR-dependent mechanism of action. One of the most sensitive bioassay systems developed to date is the so-called CALUX (Chemically Activated Luciferase Expression) assay, which is based on novel recombinant cell lines that contain a stably transfected dioxin (AhR)-responsive firefly luciferase gene. Treatment of these cells with TCDD and related HAHs and polycyclic aromatic hydrocarbons (PAHs), as well as other AhR ligands, results in induction of reporter gene expression in a time-, dose-, AhR-, and chemical-specific manner. The level of reporter gene expression correlates with the total concentration of the TCDD-like AhR inducers (agonists) present in the sample. Although the firefly luciferase reporter gene contributes to the high degree of sensitivity of the assay, it also has limitations with respect to our need for a rapid and inexpensive bioassay for high-throughput screening analysis. Accordingly, we previously developed a stably transfected murine cell line containing an AhRresponsive enhanced green fluorescent protein (EGFP) reporter gene. This cell line provided us with a high-throughput cell bioassay system for identification and characterization of AhR agonists and antagonists. Here we have extended these studies and describe the development, optimization, and

  4. Bioassay for investigation of auxin transport in single cell layers

    Directory of Open Access Journals (Sweden)

    Alina B. Wodzicki

    2014-02-01

    Full Text Available Auxin was collected from the cambial region of Pinus sylvestris by applying agar strips to the cut surfaces of stem sections which comprised a single layer of 2 to 4-mm long, mainly intact fusiform cells. Sections of the agar strips were either bioassayed immediately to determine their auxin content or stored for several months at -80oC, extracted with 80% MeOH and redissolved in hot agar prior to bioassay. Auxin concentrations were determined by Went's oat coleoptile test, as described by Funke, which was modified considerably to give highly reproducible results. The modifications proved essential for good replication of results and are described in detail together with the use of the bioassay to determine changes in cambial cell polarity during ageing and senescence in P. sylvestris.

  5. Microfluidic System for Solution Array Based Bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Dougherty, G M; Tok, J B; Pannu, S S; Rose, K A

    2006-02-10

    The objective of this project is to demonstrate new enabling technology for multiplex biodetection systems that are flexible, miniaturizable, highly automated, low cost, and high performance. It builds on prior successes at LLNL with particle-based solution arrays, such as those used in the Autonomous Pathogen Detection System (APDS) successfully field deployed to multiple locations nationwide. We report the development of a multiplex solution array immunoassay based upon engineered metallic nanorod particles. Nanobarcodes{reg_sign} particles are fabricated by sequential electrodeposition of dissimilar metals within porous alumina templates, yielding optically encoded striping patterns that can be read using standard laboratory microscope optics and PC-based image processing software. The addition of self-assembled monolayer (SAM) coatings and target-specific antibodies allows each encoded class of nanorod particles to be directed against a different antigen target. A prototype assay panel directed against bacterial, viral, and soluble protein targets demonstrates simultaneous detection at sensitivities comparable to state of the art immunoassays, with minimal cross-reactivity. Studies have been performed to characterize the colloidal properties (zeta potential) of the suspended nanorod particles as a function of pH, the ionic strength of the suspending solution, and surface functionalization state. Additional studies have produced means for the non-contact manipulation of the particles, including the insertion of magnetic nickel stripes within the encoding pattern, and control via externally applied electromagnetic fields. Using the results of these studies, the novel Nanobarcodes{reg_sign} based assay was implemented in a prototype automated system with the sample processing functions and optical readout performed on a microfluidic card. The unique physical properties of the nanorod particles enable the development of integrated microfluidic systems for

  6. Development of a bioassay system for human growth hormone determination with close correlation to immunoassay.

    Science.gov (United States)

    Maimaiti, M; Tanahashi, Y; Mohri, Z; Fujieda, K

    2012-09-01

    Serum growth hormone (GH) level is measured largely through immunoassays in clinical practice. However, a few cases with bioinactive and immunoreactive GH have also been reported. We describe here a new bioassay system for GH determination using the BaF/GM cell line, which proliferates in a dose-dependent manner on hGH addition; cell proliferation was blocked by anti-hGH antibody. This bioassay had the lowest detection limit (∼0.02 ng/ml) reported thus far and the highest specificity for GH. The bioassay results were compared with those of an immunoradiometric assay across 163 patient samples in various endocrine states. A close correlation (the ratio of bioactivity/immunoreactivity was 1.04 ± 0.33, mean ± SD) was observed between bioactivity and immunoreactivity in these samples. The newly developed system is a specific, sensitive, easy, and fast bioassay system for GH determination; we consider it useful for evaluating GH bioactivity in various endocrine states.

  7. [Thyroid stimulating immunoglobulin bioassay using cultured normal human thyroid cells].

    Science.gov (United States)

    Ando, M; Yamauchi, K; Tanaka, H; Mori, Y; Takatsuki, K; Yamamoto, M; Matsui, N; Tomita, A

    1985-08-20

    It is currently believed that the thyroid stimulating immunoglobulin (TSI) of Graves' disease is involved in the pathogenesis of hyperthyroidism through the stimulation of the adenylate cyclase-cyclic AMP system. To evaluate this mechanism, TSI in the serum of patients with Graves' disease was determined by its ability to generate cyclic AMP (cAMP) in monolayer cells prepared from a normal thyroid gland. The thyroid tissue was digested with collagenase, and the liberated follicles were collected from the supernatant and cultured for 7 days. One gram of thyroid tissue yielded more than 1 X 10(7) monolayer cells which were stored in aliquots at -80C. Cells (1 approximately 2 X 10(4)/0.28 cm2 microtiter well) were incubated for 4 hours in 0.2 ml Hanks solution poor in NaCl, with various amounts of bovine TSH (bTSH) or 1.5 mg/ml Graves' serum IgG extracted by polyethylene glycol. cAMP accumulated in medium and cells was measured by RIA. Total cAMP (both medium and cells) was about 4 times higher when NaCl was deleted from Hanks solution. Moreover, as more than 90% of the cAMP was released into the medium, it was possible to omit the measurement of cellular cAMP, which requires extraction. The increase in medium cAMP concentration was dependent upon the number of cells, incubation time, and dose of bTSH. Time course and dose response curves in medium cAMP stimulated by IgG from 3 Graves' patients paralleled those of bTSH equivalent units. Accordingly, TSI activity could be expressed in bTSH equivalent units (bTSH microUeq). The assay could detect 1.0 or 3.3 microU/ml of bTSH and was highly reproducible. TSI activity in all of 16 IgGs from normal subjects was under 3.3 bTSH microUeq/ml, while it was greater than 3.3 bTSH microUeq/ml in IgGs from 33 of 37 (89%) untreated patients with Graves disease. Of the 13 patients followed for 2 to 7 months while on antithyroid drugs, 12 had greater than 3.3 bTSH microUeq/ml and, with the exception of one, all showed a decrease in

  8. Enhancing the response of CALUX and CAFLUX cell bioassays for quantitative detection of dioxin-like compounds

    Institute of Scientific and Technical Information of China (English)

    BASTON; David; S.; KHAN; Elaine; SORRENTINO; Claudio; DENISON; Michael; S.

    2010-01-01

    Reporter genes produce a protein product in transfected cells that can be easily measured in intact or lysed cells and they have been extensively used in numerous basic and applied research applications.Over the past 10 years,reporter gene assays have been widely accepted and used for analysis of 2,3,7,8-tetrachlorodibenzo-p-dioxin and related dioxin-like compounds in various types of matrices,such as biological,environmental,food and feed samples,given that high-resolution instrumental analysis techniques are impractical for large-scale screening analysis.The most sensitive cell-based reporter gene bioassay systems developed are the mechanism-based CALUX(Chemically Activated Luciferase Expression) and CAFLUX(Chemically Activated Fluorescent Expression) bioassays,which utilize recombinant cell lines containing stably transfected dioxin(AhR) responsive firefly luciferase or enhanced green fluorescent protein(EGFP) reporter genes,respectively.While the current CALUX and CAFLUX bioassays are very sensitive,increasing their lower limit of sensitivity,magnitude of response and dynamic range for chemical detection would significantly increase their utility,particularly for those samples that contain low levels of dioxin-like HAHs(i.e.,serum) .In this study,we report that the addition of modulators of cell signaling pathways or modification of cell culture conditions results in significant improvement in the magnitude and overall responsiveness of the existing CALUX and CAFLUX cell bioassays.

  9. Development of a cell-based bioassay for phospholipase A2-triggered liposomal drug release.

    Science.gov (United States)

    Arouri, Ahmad; Trojnar, Jakub; Schmidt, Steffen; Hansen, Anders H; Mollenhauer, Jan; Mouritsen, Ole G

    2015-01-01

    The feasibility of exploiting secretory phospholipase A2 (sPLA2) enzymes, which are overexpressed in tumors, to activate drug release from liposomes precisely at the tumor site has been demonstrated before. Although the efficacy of the developed formulations was evaluated using in vitro and in vivo models, the pattern of sPLA2-assisted drug release is unknown due to the lack of a suitable bio-relevant model. We report here on the development of a novel bioluminescence living-cell-based luciferase assay for the monitoring of sPLA2-triggered release of luciferin from liposomes. To this end, we engineered breast cancer cells to produce both luciferase and sPLA2 enzymes, where the latter is secreted to the extracellular medium. We report on setting up a robust and reproducible bioassay for testing sPLA2-sensitive, luciferin remote-loaded liposomal formulations, using 1,2-distearoyl-sn-glycero-3-phosphatidylcholine/1,2-distearoyl-sn-glycero-3-phosphatidylglycerol (DSPC/DSPG) 7:3 and DSPC/DSPG/cholesterol 4:3:3 as initial test systems. Upon their addition to the cells, the liposomes were degraded almost instantaneously by sPLA2 releasing the encapsulated luciferin, which provided readout from the luciferase-expressing cells. Cholesterol enhanced the integrity of the formulation without affecting its susceptibility to sPLA2. PEGylation of the liposomes only moderately broadened the release profile of luciferin. The provided bioassay represents a useful tool for monitoring active drug release in situ in real time as well as for testing and optimizing of sPLA2-sensitive lipid formulations. In addition, the bioassay will pave the way for future in-depth in vitro and in vivo studies.

  10. Multiple Applications of Alamar Blue as an Indicator of Metabolic Function and Cellular Health in Cell Viability Bioassays

    Directory of Open Access Journals (Sweden)

    Sephra N. Rampersad

    2012-09-01

    Full Text Available Accurate prediction of the adverse effects of test compounds on living systems, detection of toxic thresholds, and expansion of experimental data sets to include multiple toxicity end-point analysis are required for any robust screening regime. Alamar Blue is an important redox indicator that is used to evaluate metabolic function and cellular health. The Alamar Blue bioassay has been utilized over the past 50 years to assess cell viability and cytotoxicity in a range of biological and environmental systems and in a number of cell types including bacteria, yeast, fungi, protozoa and cultured mammalian and piscine cells. It offers several advantages over other metabolic indicators and other cytotoxicity assays. However, as with any bioassay, suitability must be determined for each application and cell model. This review seeks to highlight many of the important considerations involved in assay use and design in addition to the potential pitfalls.

  11. Detection of estrogen receptor endocrine disruptor potency of commonly used organochlorine pesticides using the LUMI-CELL ER bioassay

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, J.D.; Chu, A.C.; Clark, G.C. [Xenobiotic Detection Systems, Inc., Durham, NC (United States); Chu, M.D. [Alta Analytical Perspectives, Wilmington, NC (United States); Denison, M.S. [Dept. of Environmental Toxicology, Univ. of California, Davis, CA (United States)

    2004-09-15

    In order to detect the endocrine disrupting potency of organochlorine pesticides and other compounds, BG-1 (human ovarian carcinoma) cells containing a stably transfected estrogenresponsive luciferase reporter gene plasmid (BG1Luc4E2), was used. This cell line, termed the LUMI-CELL trademark ER estrogenic cell bioassay system, responds in a time-, dose dependent- and chemical-specific manner with the induction of luciferase gene expression in response to exposure to estrogen (but not other steroid hormones) and estrogenic chemicals in a high-throughput screening (HTPS) format6. Here we describe studies in which the LUMI-CELL trademark ER estrogenic cell bioassay system was used for high throughput screening (HTPS) analysis of the estrogenic disrupting potency of several commonly used pesticides and organochlorines: p,p'DDT; p,p'-DDE; DDD; {alpha}a-chlordane; {psi}-chlordane; Kepone; Methoxychlor; Vinclozolin; Fenarimol; 2,4,5-Trichlorophenoxyacetic Acid; and Dieldrin. Our results demonstrate the utility of XDS's LUMI-CELL trademark ER bioassay HTPS system for screening chemicals for estrogenic activity.

  12. Phototoxicity activity of Psoralea drupacea L. using Atremia salina bioassay system

    Directory of Open Access Journals (Sweden)

    Mohammad Ramezani

    2011-07-01

    Conclusion: The result showed that P. drupacea methanolic extract and chloroform fraction have phototoxicity in A. salina bioassay system and their toxic effect is related to phototoxic constituents such as psoralen.

  13. Cell bioassays for detection of aryl hydrocarbon (AhR) and estrogen receptor (ER) mediated activity in environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Hilscherova, K. [Dept. of Environmental Chemistry and Toxicology, Faculty of Science, Masaryk Univ., Brno (Czech Republic); Machala, M. [Veterinary Research Inst. of Veterinary Medicine, Brno (Czech Republic); Kannan, K.; Giesy, J.P. [Dept. of Zoology, National Food Safety and Toxicology Center, Inst. for Environmental Toxicology, Michigan State Univ., East Lansing, MI (United States); Blankenship, A.L. [Dept. of Zoology, National Food Safety and Toxicology Center, Inst. for Environmental Toxicology, Michigan State Univ., East Lansing, MI (United States); ENTRIX Inc., East Lansing, MI (United States)

    2000-07-01

    In vitro cell bioassays are useful techniques for the determination of receptor-mediated activities in environmental samples containing complex mixtures of contaminants. The cell bioassays determine contamination by pollutants that act through specific modes of action. This article presents strategies for the evaluation of aryl hydrocarbon receptor (AhR)- (hereafter referred as dioxin-like) or estrogen receptor (ER)-mediated activities of potential endocrine disrupting compounds (EDCs) in complex environmental mixtures. Extracts from various types of environmental or food matrices can be tested by this technique to evaluate their 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (TCDD-EQs) or estrogenic equivalents (E{sub 2}-EQs) and to identify contaminated samples that need further investigation using resource-intensive instrumental analyses. Fractionation of sample extracts exhibiting significant activities, and subsequent reanalysis with the bioassays can identify important classes of contaminants that are responsible for the observed activity. Effect-directed chemical analysis is performed only for the active fractions to determine the responsible compounds. Mass-balance estimates of all major compounds contributing to the observed effects can be calculated to determine if all of the activity has been identified, and to assess the potential for interactions such as synergism or antagonism among contaminants present in the complex mixtures. The bioassay approach is an efficient (fast and cost effective) screening system to identify the samples of interest and to provide basic information for further analysis and risk evaluation. (orig.)

  14. Critical parameters in the MCF-7 cell proliferation bioassay (E-Screen)

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Høj; Nielsen, Jesper Bo

    2002-01-01

    The MCF-7 cell proliferation bioassay has grown in popularity as a rapid test for detecting potentially oestrogenic compounds. Several MCF-7 cell sublines with different sensitivities to oestrogens are currently used, with maximal proliferation responses ranging from two- to 10-fold above those o...... hormone-free controls. The specificity was characterized by examining the effects of oestradiol-17beta, the anti-oestrogen ICI 182,780, and dieldrin, a recognized xeno-oestrogen. The improved proliferation bioassay will be a useful tool in identifying potential xeno-oestrogens....

  15. Does co-extracted dissolved organic carbon cause artefacts in cell-based bioassays?

    Science.gov (United States)

    Neale, Peta A; Escher, Beate I

    2014-08-01

    Bioanalytical tools are increasingly being employed for water quality monitoring, with applications including samples that are rich in natural organic matter (or dissolved organic carbon, DOC), such as wastewater. While issues associated with co-extracted DOC have been identified for chemical analysis and for bioassays with isolated enzymes, little is known about its effect on cell-based bioassays. Using mixture experiments as diagnostic tools, this study aims to assess whether different molecular weight fractions of wastewater-derived DOC adversely affect cell-based bioassays, specifically the bioluminescence inhibition test with the bacteria Vibrio fischeri, the combined algae assay with Pseudokirchneriella subcapitata and the human cell line AREc32 assay for oxidative stress. DOC did not cause suppressive effects in mixtures with reference compounds. Binary mixtures further indicated that co-extracted DOC did not disturb cell-based bioassays, while slight deviations from toxicity predictions for low molecular weight fractions may be partially due to the availability of natural components to V. fischeri, in addition to organic micropollutants.

  16. Role of initial cell density of algal bioassay of toxic chemicals.

    Science.gov (United States)

    Singh, Prashant Kumar; Shrivastava, Alok Kumar

    2016-07-01

    A variety of toxicants such as, metal ions, pesticides, dyes, etc. are continuously being introduced anthropogenically in the environment and adversely affect to the biotic component of the ecosystem. Therefore, the assessment of negative effects of these toxicants is required. However, toxicity assessment anticipated by chemical analysis are extremely poor, therefore the application of the living systems for the same is an excellent approach. Concentration of toxicant as well as cell density both influenced the result of the algal toxicity assay. Here, Scenedesmus sp, a very fast growing green microalgae was selected for study the effects of initial cell densities on the toxicity of Cu(II), Cd(II), Zn(II), paraquat and 2,4-D. Results demonstrated concentration dependent decrease in biomass and specific growth rate of Scenedesmus sp. on exposure of abovesaid toxicants. Paraquat and 2,4-D emerged as extremely toxic to the test alga which reflected from the lowest EC value and very steep decline in biomass was evident with increasing concentration of paraquat and 2,4-D in the medium. Result also demonstrated that initial cell density is a very important parameter than specific growth rate for algal bioassay of various toxicants. Present study clearly illustrated that the use of smaller cell density is always recommended for assaying toxicity of chemicals in algal assays. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Development of androgen- and estrogen-responsive bioassays, members of a panel of human cell line-based highly selective steroid-responsive bioassays.

    Science.gov (United States)

    Sonneveld, Edwin; Jansen, Hendrina J; Riteco, Jacoba A C; Brouwer, Abraham; van der Burg, Bart

    2005-01-01

    We have established highly sensitive and specific androgen and estrogen reporter cell lines which we have named AR (androgen receptor) and ERalpha (estrogen receptor alpha) CALUX (Chemically Activated LUciferase eXpression), respectively. Both bioassays are member of a panel of CALUX reporter cell lines derived from the human U2-OS osteosarcoma cell line, all using highly selective reporter constructs based with a basal promoter element linked to multimerized response elements, allowing efficient and specific measurement of compounds interfering with androgen, estrogen, progesterone, and glucocorticoid receptors. The AR CALUX bioassay contains the human androgen receptor and a luciferase reporter construct containing three androgen-responsive elements coupled to a minimal TATA promoter. This cell line was characterized by its stable expression of AR protein, its highly selective response to low levels of different natural and synthetic androgens, and its insignificant response to other nuclear hormone receptor ligands such as estrogens, progestins, and glucocorticoids. The EC50 of dihydrotestosterone (DHT) was found to be 0.13 nM, consistent with the high affinity of this ligand to the human AR. Flutamide, cyproterone acetate, and the environmental contaminants vinclozolin, DDT, methoxychlor, its metabolite HPTE, and penta-BFR showed clear antagonistic activity in the AR CALUX bioassay, competitively inhibiting DHT-mediated transactivation. The established AR CALUX bioassay proved to excel in terms of easy cell line maintenance, high fold induction range (typical 30 times over solvent control), low minimal detection limit (3.6 pM), and high androgen selectivity. Potential applications such as testing the androgenic or estrogenic activity of pure chemicals and pharmaceuticals and complex mixtures (environmental, food, feed, and clinical) are discussed.

  18. A new in vitro bioassay system for discovery and quantitative evaluation of mosquito repellents

    Science.gov (United States)

    Mosquitoes are vectors of many pathogens that cause human diseases. Although prevention and control of immature stages is the best method to control mosquitoes, repellents play a significant role in reducing the risk of these diseases by preventing mosquito bites. The In vitro K & D bioassay system ...

  19. Recombinant cell bioassays for the detection of (gluco) corticosteroids and endocrine-disrupting potencies of several enviromental PCB contaminants

    NARCIS (Netherlands)

    Bovee, T.F.H.; Helsdingen, J.R.; Hamers, A.R.M.; Brouwer, B.A.; Nielen, M.W.F.

    2011-01-01

    Sensitive and robust bioassays for glucocorticoids are very useful for the pharmaceutical industry, environmental scientists and veterinary control. Here, a recombinant yeast cell was constructed that expresses the human glucocorticoid receptor alpha and a green fluorescent reporter protein in

  20. Toxicity of pyrrolizidine alkaloids to Spodoptera exigua using insect cell lines and injection bioassays.

    Science.gov (United States)

    Nuringtyas, Tri R; Verpoorte, Robert; Klinkhamer, Peter G L; van Oers, Monique M; Leiss, Kirsten A

    2014-06-01

    Pyrrolizidine alkaloids (PAs) are feeding deterrents and toxic compounds to generalist herbivores. Among the PAs of Jacobaea vulgaris Gaertn, jacobine and erucifoline are the most effective against insect herbivores as indicated by correlative studies. Because little is known about the effect of jacobine and erucifoline as individual PAs, we isolated these compounds from their respective Jacobaea chemotypes. These PAs and other commercially available senecionine-like PAs, including senecionine, seneciphylline, retrorsine, and senkirkine, were tested as free base and N-oxide forms at a range of 0-70 ppm. Feeding bioassays using live insects are closer to the natural pattern but require relatively large amounts of test compounds. We, therefore, compared the toxicity of PAs using both Spodoptera exigua cell line and larval injection bioassays. Both bioassays led to similar results in the order of PA toxicity, indicating that the cell lines are a valuable tool for a first toxicity screen. Testing individual PAs, jacobine and erucifoline were the most toxic PAs, suggesting their major role in plant defense against generalist herbivores. Senkirkine and seneciphylline were less toxic than jacobine and erucifoline but more toxic than retrorsine. Senecionine was not toxic at the tested concentrations. For all toxic PAs, the free base form was more toxic than the N-oxide form. Our results demonstrate that structural variation of PAs influences their effectiveness in plant defense.

  1. The H4IIE cell bioassay as an indicator of dioxin-like chemicals in wildlife and the environment.

    Science.gov (United States)

    Whyte, J J; Schmitt, C J; Tillitt, D E

    2004-01-01

    The H4IIE cell bioassay has proven utility as a screening tool for planar halogenated hydrocarbons (PHHs) and structurally similar chemicals accumulated in organisms from the wild. This bioassay has additional applications in hazard assessment of PHH exposed populations. In this review, the toxicological principles, current protocols, performance criteria, and field applications for the assay are described. The H4IIE cell bioassay has several advantages over the analytical measurement of PHHs in environmental samples, but conclusions from studies can be strengthened when both bioassay and analytical chemistry data are presented together. Often, the bioassay results concur with biological effects in organisms and support direct measures of PHHs. For biomonitoring purposes and prioritization of PHH-contaminated environments, the H4IIE bioassay may be faster and less expensive than analytical measurements. The H4IIE cell bioassay can be used in combination with other biomarkers such as in vivo measurements of CYP1A1 induction to help pinpoint the sources and identities of dioxin-like chemicals. The number of studies that measure H4IIE-derived TCDD-EQs continues to increase, resulting in subtle improvements over time. Further experiments are required to determine if TCDD-EQs derived from mammalian cells are adequate predictors of toxicity to non-mammalian species. The H4IIE cell bioassay has been used in over 300 published studies, and its combination of speed, simplicity, and ability to integrate the effects of complex contaminant mixtures makes it a valuable addition to hazard assessment and biomonitoring studies.

  2. Pharmacodynamics of TRPV1 Agonists in a Bioassay Using Human PC-3 Cells

    Directory of Open Access Journals (Sweden)

    Daniel Alvarez-Berdugo

    2014-01-01

    Full Text Available Purpose. TRPV1 is a multimodal channel mainly expressed in sensory neurons. We aimed to explore the pharmacodynamics of the TRPV1 agonists, capsaicin, natural capsaicinoids, and piperine in an in vitro bioassay using human PC-3 cells and to examine desensitization and the effect of the specific antagonist SB366791. Methods. PC-3 cells expressing TRPV1 were incubated with Fluo-4. Fluorescence emission changes following exposition to agonists with and without preincubation with antagonists were assessed and referred to maximal fluorescence following the addition of ionomycin. Concentration-response curves were fitted to the Hill equation. Results. Capsaicin and piperine had similar pharmacodynamics (Emax 204.8 ± 184.3% piperine versus 176.6 ± 35.83% capsaicin, P=0.8814, Hill coefficient 0.70 ± 0.50 piperine versus 1.59 ± 0.86 capsaicin, P=0.3752. In contrast, capsaicinoids had lower Emax (40.99 ± 6.14% capsaicinoids versus 176.6 ± 35.83% capsaicin, P<0.001. All the TRPV1 agonists showed significant desensitization after the second exposition and their effects were strongly inhibited by SB366791. Conclusion. TRPV1 receptor is successfully stimulated by capsaicin, piperine, and natural capsaicinoids. These agonists present desensitization and their effect is significantly reduced by a TRPV1-specific antagonist. In addition, PC-3 cell bioassays proved useful in the study of TRPV1 pharmacodynamics.

  3. Bioassay for follicle stimulating activity of equine gonadotropic hormone in mare serum using frozen/thawed transiently transfected reporter cells.

    Science.gov (United States)

    Sahmi, F; Nicola, E; Price, C A

    2012-09-01

    The objective was to establish a cell line-based bioassay for FSH in horse serum for screening samples with high eCG bioactivity. A cell line (HEK293) was transiently cotransfected with an FSH reporter expression plasmid and a cAMP-responsive β-galactosidase reporter plasmid. Cells were bulk frozen, and thawed for assay purposes. This assay was specific for FSH, with no cross-reaction with LH or insulin-like growth factor-1. Standard curves (eCG) and serum samples from pregnant mares passed parallel line bioassay validity tests (linearity and parallelism). Estimates of bioactivity with this bioassay were highly correlated with estimates obtained with the Steelman-Pohley hCG augmentation assay. The colorimetric end point permitted the use of this assay as a rapid screen for FSH bioactivity without the need for animal use or complex cell culture facilities.

  4. Botulinum neurotoxin serotype A specific cell-based potency assay to replace the mouse bioassay.

    Science.gov (United States)

    Fernández-Salas, Ester; Wang, Joanne; Molina, Yanira; Nelson, Jeremy B; Jacky, Birgitte P S; Aoki, K Roger

    2012-01-01

    Botulinum neurotoxin serotype A (BoNT/A), a potent therapeutic used to treat various disorders, inhibits vesicular neurotransmitter exocytosis by cleaving SNAP25. Development of cell-based potency assays (CBPAs) to assess the biological function of BoNT/A have been challenging because of its potency. CBPAs can evaluate the key steps of BoNT action: receptor binding, internalization-translocation, and catalytic activity; and therefore could replace the current mouse bioassay. Primary neurons possess appropriate sensitivity to develop potential replacement assays but those potency assays are difficult to perform and validate. This report describes a CBPA utilizing differentiated human neuroblastoma SiMa cells and a sandwich ELISA that measures BoNT/A-dependent intracellular increase of cleaved SNAP25. Assay sensitivity is similar to the mouse bioassay and measures neurotoxin biological activity in bulk drug substance and BOTOX® product (onabotulinumtoxinA). Validation of a version of this CBPA in a Quality Control laboratory has led to FDA, Health Canada, and European Union approval for potency testing of BOTOX®, BOTOX® Cosmetic, and Vistabel®. Moreover, we also developed and optimized a BoNT/A CBPA screening assay that can be used for the discovery of novel BoNT/A inhibitors to treat human disease.

  5. Bioassay Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Bioassay Laboratory is an accredited laboratory capable of conducting standardized and innovative environmental testing in the area of aquatic ecotoxicology. The...

  6. Murine CD4 T cells produce a new form of TGF-β as measured by a newly developed TGF-β bioassay.

    Directory of Open Access Journals (Sweden)

    Takatoku Oida

    Full Text Available BACKGROUND: It is generally assumed that T cells do not produce active TGF-β since active TGF-β as measured in supernatants by ELISA without acidification is usually not detectable. However, it is possible that active TGF-β from T cells may take a special form which is not detectable by ELISA. METHODOLOGY/PRINCIPAL FINDINGS: We constructed a TGF-β bioassay which can detect both soluble and membrane-bound forms of TGF-β from T cells. For this bioassay, 293T cells were transduced with (caga(12 Smad binding element-luciferase along with CD32 (Fc receptor and CD86. The resulting cells act as artificial antigen presenting cells in the presence of anti-CD3 and produce luciferase in response to biologically active TGF-β. We co-cultured pre-activated murine CD4(+CD25(- T cells or CD4(+CD25(+ T cells with the 293T-caga-Luc-CD32-CD86 reporter cells in the presence of anti-CD3 and IL-2. CD4(+CD25(- T cells induced higher luciferase in the reporter cells than CD4(+CD25(+ T cells. This T cell-produced TGF-β is in a soluble form since T cell culture supernatants contained the TGF-β activity. The TGF-β activity was neutralized with an anti-mouse LAP mAb or an anti-latent TGF-β/pro-TGF-β mAb, but not with anti-active TGF-β Abs. An anti-mouse LAP mAb removed virtually all acid activatable latent TGF-β from the T cell culture supernatant, but not the ability to induce TGF-β signaling in the reporter cells. The induction of TGF-β signaling by T cell culture supernatants was cell type-specific. CONCLUSIONS/SIGNIFICANCE: A newly developed 293T-caga-Luc-CD32-CD86 reporter cell bioassay demonstrated that murine CD4 T cells produce an unconventional form of TGF-β which can induce TGF-β signaling. This new form of TGF-β contains LAP as a component. Our finding of a new form of T cell-produced TGF-β and the newly developed TGF-β bioassay system will provide a new avenue to investigate T cell function of the immune system.

  7. Shell growth of unfed oysters in the laboratory: a sublethal bioassay system for pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Conger, K.A.; Swift, M.L.; Reeves, J.B. III; Lakshmanan, S.

    1978-01-16

    Unfed oysters, Crassostrea virginica Gmelin, in 12 g/l commercial grade artificial sea-water supplemented with calcium bicarbonate (approximately 7 mM Ca/sup 2 +/ and HCO/sub 3//sup -/) deposit shell for four to six weeks. A no-growth critical calcium ion concentration of 1.5 mM was determined in this study. A simple sublethal bioassay system can be developed utilizing the observed shell growth. Significant (p < 0.001) inhibition of shell deposition in oysters subjected to an initial concentration of 0.25 mg Cd/sup 2 +//l demonstrates the efficacy of the proposed method.

  8. DOSEXPRT: A bioassay dosimetry code for Martin Marietta Energy Systems, Inc.

    Energy Technology Data Exchange (ETDEWEB)

    Ward, R.C.; Eckerman, K.F.

    1992-04-01

    The bioassay code DOSEXPRT was developed for Martin Marietta Energy Systems, Inc., to provide compliance with Department of Energy (DOE) Order 5480, Chapter 11. DOSEXPRT computes the intake of a radionuclide in any year (considering both acute and chronic intakes) from in vivo measurements of the retained activity and/or measurements of the activity in excreta. The committed effective and organ doses for the intake are computed as well as the effective and organ doses expected to be received in each calendar year out to 50 years beyond the year of intake. The bioassay records used as input for DOSEXPRT are extracted from the Martin Marietta Energy Systems Occupational Health Information System (OHIS). DOSEXPRT implements a set of algorithms with parameters governing the translocation, retention, and excretion of the nuclide contained in data files specific to the nuclide. These files also contain dose-per-unit-intake coefficients used to compute the committed dose equivalent for the intakes in the year. Annual organ and effective doses are computed using additional dose-rate files that contain data on the dose rate at various times following a unit intake. If measurements are presented for more than one assay for a given nuclide, DOSEXPRT estimates the intake by applying weights assigned in the nuclide file for each assay. DOSEXPRT is accessed off the OHIS MENU No. 4 and designed to be run as a batch processor, but can also be run interactively for testing purposes.

  9. DOSEXPRT: A bioassay dosimetry code for Martin Marietta Energy Systems, Inc

    Energy Technology Data Exchange (ETDEWEB)

    Ward, R.C.; Eckerman, K.F.

    1992-04-01

    The bioassay code DOSEXPRT was developed for Martin Marietta Energy Systems, Inc., to provide compliance with Department of Energy (DOE) Order 5480, Chapter 11. DOSEXPRT computes the intake of a radionuclide in any year (considering both acute and chronic intakes) from in vivo measurements of the retained activity and/or measurements of the activity in excreta. The committed effective and organ doses for the intake are computed as well as the effective and organ doses expected to be received in each calendar year out to 50 years beyond the year of intake. The bioassay records used as input for DOSEXPRT are extracted from the Martin Marietta Energy Systems Occupational Health Information System (OHIS). DOSEXPRT implements a set of algorithms with parameters governing the translocation, retention, and excretion of the nuclide contained in data files specific to the nuclide. These files also contain dose-per-unit-intake coefficients used to compute the committed dose equivalent for the intakes in the year. Annual organ and effective doses are computed using additional dose-rate files that contain data on the dose rate at various times following a unit intake. If measurements are presented for more than one assay for a given nuclide, DOSEXPRT estimates the intake by applying weights assigned in the nuclide file for each assay. DOSEXPRT is accessed off the OHIS MENU No. 4 and designed to be run as a batch processor, but can also be run interactively for testing purposes.

  10. Bioassays and Inactivation of Prions.

    Science.gov (United States)

    Giles, Kurt; Woerman, Amanda L; Berry, David B; Prusiner, Stanley B

    2017-08-01

    The experimental study of prions requires a model for their propagation. However, because prions lack nucleic acids, the simple techniques used to replicate bacteria and viruses are not applicable. For much of the history of prion research, time-consuming bioassays in animals were the only option for measuring infectivity. Although cell models and other in vitro tools for the propagation of prions have been developed, they all suffer limitations, and animal bioassays remain the gold standard for measuring infectivity. A wealth of recent data argues that both β-amyloid (Aβ) and tau proteins form prions that cause Alzheimer's disease, and α-synuclein forms prions that cause multiple system atrophy and Parkinson's disease. Cell and animal models that recapitulate some of the key features of cell-to-cell spreading and distinct strains of prions can now be measured. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  11. Test System Stability and Natural Variability of a Lemna Gibba L. Bioassay

    Science.gov (United States)

    Scherr, Claudia; Simon, Meinhard; Spranger, Jörg; Baumgartner, Stephan

    2008-01-01

    Background In ecotoxicological and environmental studies Lemna spp. are used as test organisms due to their small size, rapid predominantly vegetative reproduction, easy handling and high sensitivity to various chemicals. However, there is not much information available concerning spatial and temporal stability of experimental set-ups used for Lemna bioassays, though this is essential for interpretation and reliability of results. We therefore investigated stability and natural variability of a Lemna gibba bioassay assessing area-related and frond number-related growth rates under controlled laboratory conditions over about one year. Methology/Principal Findings Lemna gibba L. was grown in beakers with Steinberg medium for one week. Area-related and frond number-related growth rates (r(area) and r(num)) were determined with a non-destructive image processing system. To assess inter-experimental stability, 35 independent experiments were performed with 10 beakers each in the course of one year. We observed changes in growth rates by a factor of two over time. These did not correlate well with temperature or relative humidity in the growth chamber. In order to assess intra-experimental stability, we analysed six systematic negative control experiments (nontoxicant tests) with 96 replicate beakers each. Evaluation showed that the chosen experimental set-up was stable and did not produce false positive results. The coefficient of variation was lower for r(area) (2.99%) than for r(num) (4.27%). Conclusions/Significance It is hypothesised that the variations in growth rates over time under controlled conditions are partly due to endogenic periodicities in Lemna gibba. The relevance of these variations for toxicity investigations should be investigated more closely. Area-related growth rate seems to be more precise as non-destructive calculation parameter than number-related growth rate. Furthermore, we propose two new validity criteria for Lemna gibba bioassays

  12. A bioassay for thyroid stimulating immunoglobulins of patients with Graves' disease using porcine thyroid monolayer cells.

    Science.gov (United States)

    Fukue, Y; Uchimura, H; Kuzuya, N; Okano, S; Kanaji, Y; Takaku, F

    1986-06-01

    A bioassay for thyroid stimulating immunoglobulins (TSI) of patients with Graves' disease was developed by porcine thyroid monolayer cells. Thyroid cells were prepared by dispersion using collagenase and trypsin. Aliquots of the cell suspension (2 X 10(6) cells/1.5 ml/dish) in Ham's F-12 medium (pH 7.2) containing 10% calf serum and 1.5 mM Hepes were seeded and cultured in air at 36 C. On day 6 of culture, cells were incubated with test samples (IgG or bTSH) in 1 ml of serum-free, 0.5 mM IMX-included fresh medium for an additional time, and cAMP in the cells was measured by radioimmunoassay. Intracellular cAMP was increased within 5 minutes after the addition of bTSH and the maximal increase was observed after 30 min. Responses of cAMP were in a dose-related manner up to 10 mU/ml of bTSH. With the addition of IgG from untreated Graves' patients, dose-related increases in cAMP were also observed up to 10 mg/ml IgG and the maximal response was seen at 2 hours incubation. Thyroid stimulating activity in IgG's from normal subjects and patients with Graves' disease was tested with a dose of 10 mg/ml and 2 hours incubation and the activity was expressed as a percent of the control (incubated in the same experiment without IgG). One hundred forty one of 145 untreated patients showed higher activity (228 +/- 51.8%, mean +/- SD; 127-393%, range) than normal subjects (103 +/- 13.3%, mean +/- SD, n = 24; 80-129%, range). Sequential changes in TSI activity in 27 patients after initiating thionamide drugs were studied for 24 months. Initially all 27 patients showed positive TSI and 6 months later 15 remained positive. At 6 months after that, 10 of 23, 4 of 16, and 2 of 6 followed patients showed positive TSI. These results indicate that this bioassay is clinically useful for detecting TSI.

  13. A new reliable bioassay for determining the biological activity of human interleukin-12 by using human NK cell line NKG cells.

    Science.gov (United States)

    Cheng, Min; Fei, Baozhen; Zheng, Xiaodong; Chen, Yongyan; Sun, Rui; Wei, Haiming; Tian, Zhigang

    2012-05-01

    A specific and accurate bioassay for determining the biological activity of human interleukin-12 (hIL-12), an important typical Th1 cytokine in both innate and adaptive immunity, is extensively required for biomedical and clinical study. In this paper, we used a new established NK cell line NKG cells as the responder to hIL-12 stimulation by detecting their IFN-γ production. It was found that NKG cells produced high level of IFN-γ when simulated by hIL-12, and the dose-response curve became the best Sigmoid curve (R(2)=0.9977, pbioassay was precise and reproducible. Furthermore, no obvious cross-effects of other cytokines such as IL-2 and IL-18 was observed on the bioassay. Addition of the neutralizing anti-hIL-12 antibody to the bioassay significantly inhibited the IFN-γ production in a dose dependent manner, indicating that the bioactivity was actually mediated by hIL-12. The bioassay by using NKG cells was also suitable for determining the biological activity of recombinant hIL-12 in the form of purified product or culture supernatant by CHO-hIL-12 cell line. In conclusion, a reliable hIL-12 bioassay for determining its biological activity was established by using NKG cells as a responder and measuring their production of IFN-γ.

  14. Estrogen Receptor Agonists and Antagonists in the Yeast Estrogen Bioassay.

    Science.gov (United States)

    Wang, Si; Bovee, Toine F H

    2016-01-01

    Cell-based bioassays can be used to predict the eventual biological activity of a substance on a living organism. In vitro reporter gene bioassays are based on recombinant vertebrate cell lines or yeast strains and especially the latter are easy-to-handle, cheap, and fast. Moreover, yeast cells do not express estrogen, androgen, progesterone or glucocorticoid receptors, and are thus powerful tools in the development of specific reporter gene systems that are devoid of crosstalk from other hormone pathways. This chapter describes our experience with an in-house developed RIKILT yeast estrogen bioassay for testing estrogen receptor agonists and antagonists, focusing on the applicability of the latter.

  15. Phytochemical and toxicity evaluation ofPhaleria macrocarpa (Scheff.) Boerl by MCF-7 cell line and brine shrimp lethality bioassay

    Institute of Scientific and Technical Information of China (English)

    Abul Kalam Azad; Wan Mohd Azizi Wan Sulaiman; Nushrat Khan Sunzida

    2016-01-01

    Objective:To evaluate the cytotoxicity ofPhaleria macrocarpa fruits extracts. Methods: The cytotoxicity test was carried out byin vitroMCF-7 cell line andin vivo brine shrimp lethality bioassay. Results: The preliminary phytochemical test showed the presence of alkaloids, carbohydrate, glycosides, saponin, terpene, steroids, phenols and flavonoids. TheMTT-assay results showed that the highest percentage of cell viability was 106.23% at concentration of 1.25µL and the lowest percentage was 13.04% at concentration of 10µL. Conclusions:TheMTT-assay and brine shrimp lethality bioassay results showed that the extract was non-toxic and it would be consumable as a herbal remedy.

  16. Bioassay data and a retention-excretion model for systemic plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Leggett, R.W.

    1984-05-01

    The estimation of systemic burdens from urinalyses has been the most common and useful method of quantifying occupational exposures to plutonium. Problems arise in using this technique, however, because of inadequate modeling of human retention, translocation, and excretion of this element. Present methods for estimating the systemic burden from urinalyses were derived to a large extent from patterns observed in the first few months after exposure, but there is now evidence that these same patterns do not persist over long periods. In this report we collect and discuss data needed for the interpretation of bioassay results for Pu. These data are used to develop a model that describes the movement, retention, and excretion of systemic Pu in the human body in terms of explicitly identified anatomical compartments. This model may be used in conjunction with existing models and/or case-specific information concerning the translocation of Pu from the respiratory or gastrointestinal tract or from wounds to the bloodstream. Attention is restricted to the behavior of Pu after it has gained access to the bloodstream. There remain significant uncertainties concerning some aspects of the movement of Pu, particularly its translocation from the liver. An attempt has been made to construct the model in such a way as to elucidate those areas needing further attention. 98 references, 18 figures, 16 tables.

  17. Determining UV Inactivation of Toxoplasma gondii Oocysts by Using Cell Culture and a Mouse Bioassay

    Science.gov (United States)

    The effect of UV exposure on Toxoplasma gondii oocysts has not been completely defined for use in water disinfection. This study evaluated UV irradiated oocysts by three assays: a SCID mouse bioassay, an in vitro T. gondii oocyst plaque assay (TOP-assay), and a quantitative reve...

  18. Estrogenic and progestagenic activities coexisting in steroidal drugs: quantitative evaluation by in vitro bioassays with human cells.

    Science.gov (United States)

    Markiewicz, L; Gurpide, E

    1994-01-01

    The progestin-specific stimulation of alkaline phosphatase (AP) activity in cells of the T47D human breast cancer line was applied to the development of a sensitive microtiter plate bioassay for the quantitative evaluation of progestagenic and antiprogestagenic potencies of natural and synthetic compounds. Some of the steroids tested (viz. progesterone, medroxyprogesterone acetate, norethynodrel) behaved as full-agonists, capable of inducing AP activities to the same maximal levels (equal efficacy), while others (norethindrone, gestrinone, R5020, norgestrel, Org OD 14 and its 4-ene metabolite) behaved as partial agonists, eliciting lower maximal effects. Efficacy, EC50 values (concentrations at which they induce one-half of the maximal response) and "slope factors" serve to characterize agonistic effects. Relative progestagenic potencies among the full-agonists were evaluated by comparing EC50 concentrations. Several 19-nor synthetic progestins (norethynodrel, norethindrone, Org OD 14 and its 4-ene isomer, dl-norgestrel, levo-norgestrel, RU2323), but none of the tested progestins with the pregnane structure, showed intrinsic estrogenic activity, as evaluated by using a similar in vitro bioassay based on a previously reported estrogen-specific induction of AP in human endometrial adenocarcinoma cells of the Ishikawa Var-1 line. Maximal estrogenic effects of all the tested progestins with dual activity were as high as those of estradiol. However, these compounds widely varied in their EC50 values for estrogenic activity. Consequently, the in vitro bioassays can reveal differences in the ratio of progestagenic and estrogenic activities intrinsic to these compounds. The reduced capability of the partial agonists to exert progestagenic or estrogenic effects on AP expression may reflect an impeded, receptor-mediated action, a mechanism that would also account for their inhibitory effects on the induction of AP activity by full agonists. Partial progestagenic agonists

  19. Assessment of the ecotoxicological risk of combined sewer overflows for an aquatic system using a coupled "substance and bioassay" approach.

    Science.gov (United States)

    Gooré Bi, Eustache; Monette, Frederic; Gasperi, Johnny; Perrodin, Yves

    2015-03-01

    Very few tools are available for assessing the impact of combined sewer overflows (CSOs) on receiving aquatic environments. The main goal of the study was to assess the ecotoxicological risk of CSOs for a surface aquatic ecosystem using a coupled "substance and bioassay" approach. Wastewater samples from the city of Longueuil, Canada CSO were collected for various rainfall events during one summer season and analyzed for a large panel of substances (n = 116). Four bioassays were also conducted on representative organisms of surface aquatic systems (Pimephales promelas, Ceriodaphnia dubia, Daphnia magna, and Oncorhynchus mykiss). The analytical data did not reveal any ecotoxicological risk for St. Lawrence River organisms, mainly due to strong effluent dilution. However, the substance approach showed that, because of their contribution to the ecotoxicological hazard posed by the effluent, total phosphorus (Ptot), aluminum (Al), total residual chlorine, chromium (Cr), copper (Cu), pyrene, ammonia (N-NH4 (+)), lead (Pb), and zinc (Zn) require more targeted monitoring. While chronic ecotoxicity tests revealed a potential impact of CSO discharges on P. promelas and C. dubia, acute toxicity tests did not show any effect on D. magna or O. mykiss, thus underscoring the importance of chronic toxicity tests as part of efforts aimed at characterizing effluent toxicity. Ultimately, the study leads to the conclusion that the coupled "substance and bioassay" approach is a reliable and robust method for assessing the ecotoxicological risk associated with complex discharges such as CSOs.

  20. Bioassay as monitoring system for lead phytoremediation through Crinum asiaticum L.

    Science.gov (United States)

    Varun, Mayank; D'Souza, Rohan; Kumar, Devendra; Paul, Manoj S

    2011-07-01

    Toxicity of lead in soil is well documented and established. Phytoremediation has gained attention as a cheap, easily applicable, and eco-friendly clean-up technology. Chemical methods are used to assess exact levels and type of pollutants but heavy metal content in soil can also be evaluated indirectly by estimation of phytotoxicity levels using bioassays. Plant bioassays through fast germinating cereals can indicate not only the level of pollution and its effects on growth and survival but also the progress of phytoremediation process. The performance of barley Hordeum vulgare L. seedlings as bioassay for assessment of changes in the levels of lead (Pb) at three concentrations, i.e., 300 (T(1)), 600 (T(2)), and 1,200 ppm (T(3)) in the soil was evaluated while testing the efficiency of Crinum asiaticum L. as a phytoremedial tool. At the first assessment, i.e., 30 DAT (days after treatment) shoot and root lengths of seedlings decreased with increasing concentrations of Pb. As the study progressed, a decrease in levels of Pb was accompanied by better germinability and growth of barley. At 120 DAT seedling growth in all the treatments were comparable to control. In T(1), T(2), and T(3) soils, 74.5%, 83.7%, and 91.2% reduction in lead content was observed at 120 DAT. Highly significant correlations between decreasing pollutant (Pb) content in the soil, seed germination, and seedling growth of barley H. vulgare were found. The differences in root and shoot length as well as overall growth pattern are indicative of the suitability of barley as a bio-monitoring tool.

  1. Bioassays for TSH receptor autoantibodies, from FRTL-5 cells to TSH receptor–LH/CG receptor chimeras: the contribution of Leonard D. Kohn

    Directory of Open Access Journals (Sweden)

    Cesidio Giuliani

    2016-07-01

    Full Text Available Since the discovery 60 years ago of the long-acting thyroid stimulator by Adams and Purves, great progress has been made in the detection of thyroid-stimulating hormone (TSH receptor autoantibodies (TRAbs in Graves’ disease. Today, commercial assays are available that can detect TRAbs with high accuracy and provide diagnostic and prognostic evaluation of patients with Graves’ disease. The present review focuses on the development of TRAbs bioassays, and particularly on the role that Leonard D. Kohn had in this. Indeed, 30 years ago, the Kohn group developed a bioassay based on the use of FRTL-5 cells that was characterized by high reproducibility, feasibility, and diagnostic accuracy. Using this FRTL-5 bioassay, Kohn and his colleagues were the first to develop monoclonal antibodies against the TSH receptor. Furthermore, they demonstrated the multifaceted functional nature of TRAbs in patients with Graves’ disease, with the identification of stimulating and blocking TRAbs, and even antibodies that activated pathways other than cAMP. After the cloning of the TSH receptor, the Kohn laboratory constructed human TSH receptor–rat luteinizing hormone/ chorionic gonadotropin receptor chimeras. This paved the way to a new bioassay based on the use of nonthyroid cells transfected with the Mc4 chimera. The new Mc4 bioassay is characterized by high diagnostic and prognostic accuracy, greater than for other assays. The availability of a commercial kit based on the Mc4 chimera is spreading the use of this assay worldwide, indicating its benefits for these patients with Graves’ disease. This review also describes the main contributions made by others researchers in TSH receptor molecular biology and TRAbs assay, especially with the development of highly potent monoclonal antibodies. A comparison of the diagnostic accuracies of the main TRAbs assays, as both immunoassays and bioassays, is also provided.

  2. Bioassays for TSH Receptor Autoantibodies, from FRTL-5 Cells to TSH Receptor–LH/CG Receptor Chimeras: The Contribution of Leonard D. Kohn

    Science.gov (United States)

    Giuliani, Cesidio; Saji, Motoyasu; Bucci, Ines; Napolitano, Giorgio

    2016-01-01

    Since the discovery 60 years ago of the “long-acting thyroid stimulator” by Adams and Purves, great progress has been made in the detection of thyroid-stimulating hormone (TSH) receptor (TSHR) autoantibodies (TRAbs) in Graves’ disease. Today, commercial assays are available that can detect TRAbs with high accuracy and provide diagnostic and prognostic evaluation of patients with Graves’ disease. The present review focuses on the development of TRAbs bioassays, and particularly on the role that Leonard D. Kohn had in this. Indeed, 30 years ago, the Kohn group developed a bioassay based on the use of FRTL-5 cells that was characterized by high reproducibility, feasibility, and diagnostic accuracy. Using this FRTL-5 bioassay, Kohn and his colleagues were the first to develop monoclonal antibodies (moAbs) against the TSHR. Furthermore, they demonstrated the multifaceted functional nature of TRAbs in patients with Graves’ disease, with the identification of stimulating and blocking TRAbs, and even antibodies that activated pathways other than cAMP. After the cloning of the TSHR, the Kohn laboratory constructed human TSHR–rat luteinizing hormone/chorionic gonadotropin receptor chimeras. This paved the way to a new bioassay based on the use of non-thyroid cells transfected with the Mc4 chimera. The new Mc4 bioassay is characterized by high diagnostic and prognostic accuracy, greater than for other assays. The availability of a commercial kit based on the Mc4 chimera is spreading the use of this assay worldwide, indicating its benefits for these patients with Graves’ disease. This review also describes the main contributions made by other researchers in TSHR molecular biology and TRAbs assay, especially with the development of highly potent moAbs. A comparison of the diagnostic accuracies of the main TRAbs assays, as both immunoassays and bioassays, is also provided. PMID:27504107

  3. Bioassays for TSH Receptor Autoantibodies, from FRTL-5 Cells to TSH Receptor-LH/CG Receptor Chimeras: The Contribution of Leonard D. Kohn.

    Science.gov (United States)

    Giuliani, Cesidio; Saji, Motoyasu; Bucci, Ines; Napolitano, Giorgio

    2016-01-01

    Since the discovery 60 years ago of the "long-acting thyroid stimulator" by Adams and Purves, great progress has been made in the detection of thyroid-stimulating hormone (TSH) receptor (TSHR) autoantibodies (TRAbs) in Graves' disease. Today, commercial assays are available that can detect TRAbs with high accuracy and provide diagnostic and prognostic evaluation of patients with Graves' disease. The present review focuses on the development of TRAbs bioassays, and particularly on the role that Leonard D. Kohn had in this. Indeed, 30 years ago, the Kohn group developed a bioassay based on the use of FRTL-5 cells that was characterized by high reproducibility, feasibility, and diagnostic accuracy. Using this FRTL-5 bioassay, Kohn and his colleagues were the first to develop monoclonal antibodies (moAbs) against the TSHR. Furthermore, they demonstrated the multifaceted functional nature of TRAbs in patients with Graves' disease, with the identification of stimulating and blocking TRAbs, and even antibodies that activated pathways other than cAMP. After the cloning of the TSHR, the Kohn laboratory constructed human TSHR-rat luteinizing hormone/chorionic gonadotropin receptor chimeras. This paved the way to a new bioassay based on the use of non-thyroid cells transfected with the Mc4 chimera. The new Mc4 bioassay is characterized by high diagnostic and prognostic accuracy, greater than for other assays. The availability of a commercial kit based on the Mc4 chimera is spreading the use of this assay worldwide, indicating its benefits for these patients with Graves' disease. This review also describes the main contributions made by other researchers in TSHR molecular biology and TRAbs assay, especially with the development of highly potent moAbs. A comparison of the diagnostic accuracies of the main TRAbs assays, as both immunoassays and bioassays, is also provided.

  4. Expression Patterns of Cancer Stem Cell Markers During Specific Celecoxib Therapy in Multistep Rat Colon Carcinogenesis Bioassays.

    Science.gov (United States)

    Salim, Elsayed I; Hegazi, Mona M; Kang, Jin Seok; Helmy, Hager M

    2016-01-01

    The purpose of this study was to investigate the role of colon cancer stem cells (CSCs) during chemicallyinduced rat multi-step colon carcinogenesis with or without the treatment with a specific cyclooxygenase-2 inhibitor drug (celecoxib). Two experiments were performed, the first, a short term 12 week colon carcinogenesis bioassay in which only surrogate markers for colon cancer, aberrant crypt foci (ACF) lesions, were formed. The other experiment was a medium term colon cancer rat assay in which tumors had developed after 32 weeks. Treatment with celecoxib lowered the numbers of ACF, as well as the tumor volumes and multiplicities after 32 weeks. Immunohistochemical proliferating cell nuclear antigen (PCNA) labeling indexes LI (%) were downregulated after treatment by celecoxib. Also different cell surface antigens known to associate with CSCs such as the epithelial cell adhesion molecule (EpCAM), CD44 and CD133 were compared between the two experiments and showed differential expression patterns depending on the stage of carcinogenesis and treatment with celecoxib. Flow cytometric analysis demonstrated that the numbers of CD133 cells were increased in the colonic epithelium after 12 weeks while those of CD44 but not CD133 cells were increased after 32 weeks. Moreover, aldehyde dehydrogenase-1 activity levels in the colonic epithelium (a known CSC marker) detected by ELISA assay were found down-regulated after 12 weeks, but were up-regulated after 32 weeks. The data have also shown that the protective effect of celecoxib on these specific markers and populations of CSCs and on other molecular processes such as apoptosis targeted by this drug may vary depending on the genetic and phenotypic stages of carcinogenesis. Therefore, uncovering these distinction roles of CSCs during different phases of carcinogenesis and during specific treatment could be useful for targeted therapy.

  5. Endothelial cell adhesion and growth within a bioassay chamber using microstamped ECM proteins

    Science.gov (United States)

    Rubenstein, David A.; Frame, Mary D.

    2011-06-01

    Our goal was to evaluate microvascular endothelial cell growth on microstamped patterns of extracellular matrix proteins (ECM). A combination of photo- and soft-lithography was used to make features ˜100 μm deep and 150μm wide. Polydimethylsiloxane imprints of features produced positive molds used to stamp collagen I, IV, laminin and fibronectin onto cleaned hydrophilic or hydrophobic glass coverslips. Human dermal microvascular endothelial cells were seeded at an initial density of 800 cells cm-2, and cultured for three days. Explanted murine aortas, serving as an initial source for autologous endothelial cells, were perfused at 240 μL min-1 for 1 day. Cell morphology was also quantified on both the non-patterned glass and within the microstamped patterns. Viability was high (>90%) on all microstamped proteins, regardless of glass hydrophobicity. Viability was reduced on bare hydrophobic glass. Cell density was 4 or 8 fold higher on microstamped ECM proteins compared with hydrophilic or hydrophobic glass, respectively. Confluence was approached more rapidly on microstamped proteins. Thus, rapid concentrated growth of endothelial cells was markedly enhanced within microstamped ECM patterns on hydrophilic and hydrophobic glass.

  6. Ecotoxicological classification of the Berlin river system using bioassays in respect to the European Water Framework Directive.

    Science.gov (United States)

    Huschek, Gerd; Hansen, P-D

    2006-10-01

    Bioassays as well as biochemical responses (biomarkers) in ecosystems due to environmental stress provide us with signals (environmentally signalling) of potential damage in the environment. If these responses are perceived in this early stage in ecosystems, the eventual damage can be prevented. Once ecosystem damage has occurred, the remedial action processes for recovery could be expensive and pose certain logistical problems. Ideally, "early warning signals" in ecosystems using sensing systems of biochemical responses (biomarkers) would not only tell us the initial levels of damage, but these signals will also provide us with answers by the development of control strategies and precautionary measures in respect to the European Water Framework Directive (WFD). Clear technical guidelines or technical specifications on monitoring are necessary to establish and characterise reference conditions for use in an ecological status classification system for surface water bodies. For the Ecotoxicological Risk Assessment (ERA) of endocrine effects we used an approach of the exposure - dose - response concept. Based on the "Ecototoxicological Classification System of Sediments" that uses pT-values to classify effects in different river systems, we transferred the bio-monitoring data to the five-level ecological system of the WFD. To understand the complexity of the structure of populations and processes behind the health of populations, communities and ecosystems an ERA should establish links between natural factors, chemicals, and biological responses so as to assess causality. So, our ecological monitoring assessment has incorporated exposure & effects data.

  7. Development of a cell-based bioassay for phospholipase A2-triggered liposomal drug release

    DEFF Research Database (Denmark)

    Arouri, Ahmad; Trojnar, Jakub; Schmidt, Steffen

    2015-01-01

    models, the pattern of sPLA2-assisted drug release is unknown due to the lack of a suitable bio-relevant model. We report here on the development of a novel bioluminescence living-cell-based luciferase assay for the monitoring of sPLA2-triggered release of luciferin from liposomes. To this end, we...

  8. Design and construction of a whole cell bacterial 4-hydroxyphenylacetic acid and 2-phenylacetic acid bioassay

    Directory of Open Access Journals (Sweden)

    Seppe eDierckx

    2015-06-01

    Full Text Available IntroductionAuxins are hormones that regulate plant growth and development. To accurately quantify the low levels of auxins present in plant and soil samples, sensitive detection methods are needed. In this study, the design and construction of two different whole cell auxin biosensors is illustrated. Both use the auxin responsive element HpaA as an input module and differ in output module. The first biosensor is combined with the gfp gene to produce a fluorescent biosensor. Whereas the second one is combined with the genes textit and phzS to produce a pyocyanin producing biosensor whose product can be measured electrochemically.section{Results} The fluorescent biosensor is able to detect 4-hydroxyphenylacetic acid (4-HPA and 2-phenylacetic acid (PAA concentrations from 15 µM to 3 mM in a dose-responsive manner. The pyocyanin producing biosensor is able to detect 4-HPA concentrations from 1.9 µM to 15.625 µM and PAA concentrations from 15.625 µM to 125 µM, both in a dose-responsive manner.ConclusionsA fluorescent whole cell auxin biosensor and an electrochemical whole cell auxin biosensor have been constructed and tested. Both are able to detect 4-HPA and PAA concentrations that are environmentally relevant in respect to plant growth.

  9. Green Synthesized Zinc Oxide (ZnO Nanoparticles Induce Oxidative Stress and DNA Damage in Lathyrus sativus L. Root Bioassay System

    Directory of Open Access Journals (Sweden)

    Kamal K. Panda

    2017-05-01

    Full Text Available Zinc oxide nanoparticles (ZnONP-GS were synthesised from the precursor zinc acetate (Zn(CH3COO2 through the green route using the milky latex from milk weed (Calotropis gigantea L. R. Br by alkaline precipitation. Formation of the ZnONP-GS was monitored by UV-visible spectroscopy followed by characterization and confirmation by energy-dispersive X-ray spectroscopy (EDX, transmission electron microscopy (TEM, and X-ray diffraction (XRD. Both the ZnONP-GS and the commercially available ZnONP-S (Sigma-Aldrich and cationic Zn2+ from Zn(CH3COO2 were tested in a dose range of 0–100 mg·L−1 for their potency (i to induce oxidative stress as measured by the generation reactive oxygen species (ROS: O2•−, H2O2 and •OH, cell death, and lipid peroxidation; (ii to modulate the activities of antioxidant enzymes: catalase (CAT, superoxide dismutase (SOD, guaiacol peroxidase (GPX, and ascorbate peroxidase (APX; and (iii to cause DNA damage as determined by Comet assay in Lathyrus sativus L. root bioassay system. Antioxidants such as Tiron and dimethylthiourea significantly attenuated the ZnONP-induced oxidative and DNA damage, suggesting the involvement of ROS therein. Our study demonstrated that both ZnONP-GS and ZnONP-S induced oxidative stress and DNA damage to a similar extent but were significantly less potent than Zn2+ alone.

  10. Metabolites, their decomposition, production of tomato and bioassays from open and closed rockwool systems

    NARCIS (Netherlands)

    Kreij, de C.; Runia, W.T.; Burg, van der A.M.M.

    2004-01-01

    Growth, decrease in yield and other, undefined problems are reported to be due to the recirculation of the nutrient solution, which is compulsory for crops grown on substrates in the Netherlands. In a trial with tomato grown on rockwool, open and closed systems were compared. Drain water from both s

  11. Establishment of a bioassay system for cancer risk assessment in energy technology

    Energy Technology Data Exchange (ETDEWEB)

    Ts' o, P.O.P.; Bruce, S.A.; Brown, A. (eds.)

    1983-09-01

    Separate abstracts were prepared for 20 papers in this report. For several years the Department of Energy (DOE), Office of Health and Environmental Research (OHER), has supported a research program aimed at developing new experimental approaches for the improvement of cancer risk assessments. The central issue is to overcome the organizational, species and other barriers that make it difficult to extrapolate laboratory-based data to predict risk to man. Most of the participants at the meeting are involved in research aimed at understanding the mechanism(s) of chemical carcinogenesis. Complex mixtures of chemicals are associated with many energy technologies. DOE's initial program emphasis focused on semi-applied research aimed at quantitative evaluation of carcinogenic activity of complex materials. Since much progress has been made in DOE integrated technology-specific chemical-biological characterization studies, the number and kinds of chemicals of concern has been reduced to a relatively few well-defined classes. Although the classes of compounds seem to be unique to some of the synfuel technologies, they are quite similar to compounds of general interest, for example, poly-nuclear aromatic hydrocarbons. Special emphasis was placed on molecular and cellular dosimetry as one of the key requirements for quantitative comparison of effects at the cell level in vivo and in vitro. Although it is relatively easy to measure cell, tissue, organ and whole organism doses associated with radiation exposures, we are just learning how to do this for chemical agents. Several methods have been developed in the past several years which can be used.

  12. Rapid, label-free, electrical whole blood bioassay based on nanobiosensor systems.

    Science.gov (United States)

    Chang, Hsiao-Kang; Ishikawa, Fumiaki N; Zhang, Rui; Datar, Ram; Cote, Richard J; Thompson, Mark E; Zhou, Chongwu

    2011-12-27

    Biomarker detection based on nanowire biosensors has attracted a significant amount of research effort in recent years. However, only very limited research work has been directed toward biomarker detection directly from physiological fluids mainly because of challenges caused by the complexity of media. This limitation significantly reduces the practical impact generated by the aforementioned nanobiosensors. In this study, we demonstrate an In(2)O(3) nanowire-based biosensing system that is capable of performing rapid, label-free, electrical detection of cancer biomarkers directly from human whole blood collected by a finger prick. Passivating the nanowire surface successfully blocked the signal induced by nonspecific binding when performing active measurement in whole blood. Passivated devices showed markedly smaller signals induced by nonspecific binding of proteins and other biomaterials in serum and higher sensitivity to target biomarkers than bare devices. The detection limit of passivated sensors for biomarkers in whole blood was similar to the detection limit for the same analyte in purified buffer solutions at the same ionic strength, suggesting minimal decrease in device performance in the complex media. We then demonstrated detection of multiple cancer biomarkers with high reliability at clinically meaningful concentrations from whole blood collected by a finger prick using this sensing system.

  13. Primate polonium metabolic models and their use in estimation of systemic radiation doses from bioassay data. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, N. [New York Univ. Medical Center, Tuxedo, NY (United States). Dept. of Environmental Medicine

    1989-03-15

    A Polonium metabolic model was derived and incorporated into a Fortran algorithm which estimates the systemic radiation dose from {sup 210}Po when applied to occupational urine bioassay data. The significance of the doses estimated are examined by defining the degree of uncertainty attached to them through comprehensive statistical testing procedures. Many parameters necessary for dosimetry calculations (such as organ partition coefficients and excretion fractions), were evaluated from metabolic studies of {sup 210}Po in non-human primates. Two tamarins and six baboons were injected intravenously with {sup 210}Po citrate. Excreta and blood samples were collected. Five of the baboons were sacrificed at times ranging from 1 day to 3 months post exposure. Complete necropsies were performed and all excreta and the majority of all skeletal and tissue samples were analyzed radiochemically for their {sup 210}Po content. The {sup 210}Po excretion rate in the baboon was more rapid than in the tamarin. The biological half-time of {sup 210}Po excretion in the baboon was approximately 15 days while in the tamarin, the {sup 210}Po excretion rate was in close agreement with the 50 day biological half-time predicted by ICRP 30. Excretion fractions of {sup 210}Po in the non-human primates were found to be markedly different from data reported elsewhere in other species, including man. A thorough review of the Po urinalysis procedure showed that significant recovery losses resulted when metabolized {sup 210}Po was deposited out of raw urine. Polonium-210 was found throughout the soft tissues of the baboon but not with the partition coefficients for liver, kidneys, and spleen that are predicted by the ICRP 30 metabolic model. A fractional distribution of 0.29 for liver, 0.07 for kidneys, and 0.006 for spleen was determined. Retention times for {sup 210}Po in tissues are described by single exponential functions with biological half-times ranging from 15 to 50 days.

  14. Androgenic and Estrogenic Response of Green Mussel Extracts from Singapore’s Coastal Environment Using a Human Cell-Based Bioassay

    Science.gov (United States)

    Bayen, Stéphane; Gong, Yinhan; Chin, Hong Soon; Lee, Hian Kee; Leong, Yong Eu; Obbard, Jeffrey Philip

    2004-01-01

    In the last decade, evidence of endocrine disruption in biota exposed to environmental pollutants has raised serious concern. Human cell-based bioassays have been developed to evaluate induced androgenic and estrogenic activities of chemical compounds. However, bioassays have been sparsely applied to environmental samples. In this study we present data on sex hormone activities in the green mussel, Perna viridis, in Singapore’s coastal waters. P. viridis is a common bioindicator of marine contamination, and this study is a follow-up to an earlier investigation that reported the presence of sex hormone activities in seawater samples from Singapore’s coastal environment. Specimens were collected from eight locations around the Singapore coastline and analyzed for persistent organic pollutants (POPs) and heavy metals. Tissue extracts were then screened for activities on androgen receptors (ARs) and estrogen receptors (ER-α and ER-β) using a reporter gene bio-assay based on a HeLa human cell line. Mussel extracts alone did not exhibit AR activity, but in the presence of the reference androgenic hormone dihydrotestosterone (DHT), activities were up to 340% higher than those observed for DHT alone. Peak activities were observed in locations adjacent to industrial and shipping activities. Estrogenic activities of the mussel extract both alone and in the presence of reference hormone were positive. Correlations were statistically investigated between sex hormone activities, levels of pollutants in the mussel tissues, and various biological parameters (specimen size, sex ratio, lipid and moisture content). Significant correlations exist between AR activities, in the presence of DHT, and total concentration of POPs (r = 0.725, p < 0.05). PMID:15531429

  15. In vitro antiestrogenic effects of aryl methyl sulfone metabolites of polychlorinated biphenyls and 2,2-bis(4-chlorophenyl)-1,1-dichloroethene on 17beta-estradiol-induced gene expression in several bioassay systems.

    Science.gov (United States)

    Letcher, Robert J; Lemmen, Josephine G; van der Burg, Bart; Brouwer, Abraham; Bergman, Ake; Giesy, John P; van den Berg, Martin

    2002-10-01

    Methylsulfonyl (MeSO(2)) metabolites of polychlorinated biphenyls (PCBs) and 2,2-bis(4-chlorophenyl)-1,1-dichloroethene (4,4'-DDE), itself a metabolite of the insecticide 4,4'-DDT, are emerging as a major class of contaminants in the tissues of wildlife and humans. We investigated the antiestrogenic capacity and potencies of 3'- and 4'-MeSO(2)-2,2',4,5,5'-pentachlorobiphenyl (CB101) and -2,2',4,5'-tetrachlorobiphenyl (CB49), which are among the most environmentally persistent MeSO(2)-PCBs, and 3-MeSO(2)-4,4'-DDE on estrogen receptor (ER)-dependent gene expression in four cell-based bioassay systems. Congener- and concentration-dependent antagonism of 17beta-estradiol (E2)-induced gene expression, rather than induction of ER-dependent gene expression, was observed for the MeSO(2)-PCBs on lucifierase activity in stably transfected human breast adenocarcinoma T47D cells (ER-CALUX) and vitellogenin (vtg) production in primary hepatocytes from male carp fish (Cyprinus carpio) (CARP-HEP/vtg). 4'-MeSO(2)-CB101 and -CB49 had the highest antagonistic potency (i.e., maximum inhibition of about 70%, LOECs of 1.0 microM and 2.5 microM), whereas 3'-MeSO(2)-CB101 and -CB49 were less antagonistic; the precursor CB101 and MeSO(2)-PCB analog MeSO(2)-2,5-dichlorobenzene had no effect. Relative to the 4-MeSO(2)-PCBs, tamoxifen (IC(50), 0.06 microM and 0.7 microM) was about 40 and 7 times more potent in the ER-CALUX and CARP-HEP/vtg assays, respectively. Congener- and concentration-dependent effects on aryl hydrocarbon receptor-mediated induction of EROD activity (carp hepatocytes), luciferase expression (H4IIE rat hepatoma [H4IIE.luc] cell line), or cell viability were not observed. 3-MeSO(2)-4,4'-DDE was neither estrogenic nor antiestrogenic in either of the bioassays. Inhibitory trends for the MeSO(2)-PCBs in a bioassay based on stably transfected human embryonic kidney cell (HEK293-ERalpha-ERE) were similar to the ER-CALUX and CARP-HEP/vtg bioassays, whereas the antagonism was

  16. Benchmarking organic micropollutants in wastewater, recycled water and drinking water with in vitro bioassays.

    Science.gov (United States)

    Escher, Beate I; Allinson, Mayumi; Altenburger, Rolf; Bain, Peter A; Balaguer, Patrick; Busch, Wibke; Crago, Jordan; Denslow, Nancy D; Dopp, Elke; Hilscherova, Klara; Humpage, Andrew R; Kumar, Anu; Grimaldi, Marina; Jayasinghe, B Sumith; Jarosova, Barbora; Jia, Ai; Makarov, Sergei; Maruya, Keith A; Medvedev, Alex; Mehinto, Alvine C; Mendez, Jamie E; Poulsen, Anita; Prochazka, Erik; Richard, Jessica; Schifferli, Andrea; Schlenk, Daniel; Scholz, Stefan; Shiraishi, Fujio; Snyder, Shane; Su, Guanyong; Tang, Janet Y M; van der Burg, Bart; van der Linden, Sander C; Werner, Inge; Westerheide, Sandy D; Wong, Chris K C; Yang, Min; Yeung, Bonnie H Y; Zhang, Xiaowei; Leusch, Frederic D L

    2014-01-01

    Thousands of organic micropollutants and their transformation products occur in water. Although often present at low concentrations, individual compounds contribute to mixture effects. Cell-based bioassays that target health-relevant biological endpoints may therefore complement chemical analysis for water quality assessment. The objective of this study was to evaluate cell-based bioassays for their suitability to benchmark water quality and to assess efficacy of water treatment processes. The selected bioassays cover relevant steps in the toxicity pathways including induction of xenobiotic metabolism, specific and reactive modes of toxic action, activation of adaptive stress response pathways and system responses. Twenty laboratories applied 103 unique in vitro bioassays to a common set of 10 water samples collected in Australia, including wastewater treatment plant effluent, two types of recycled water (reverse osmosis and ozonation/activated carbon filtration), stormwater, surface water, and drinking water. Sixty-five bioassays (63%) showed positive results in at least one sample, typically in wastewater treatment plant effluent, and only five (5%) were positive in the control (ultrapure water). Each water type had a characteristic bioanalytical profile with particular groups of toxicity pathways either consistently responsive or not responsive across test systems. The most responsive health-relevant endpoints were related to xenobiotic metabolism (pregnane X and aryl hydrocarbon receptors), hormone-mediated modes of action (mainly related to the estrogen, glucocorticoid, and antiandrogen activities), reactive modes of action (genotoxicity) and adaptive stress response pathway (oxidative stress response). This study has demonstrated that selected cell-based bioassays are suitable to benchmark water quality and it is recommended to use a purpose-tailored panel of bioassays for routine monitoring.

  17. Effects of conidial densities and spray volume of Metarhizium anisopliae and Beauveria bassiana fungal suspensions on conidial viability, droplet size and deposition coverage in bioassay using a novel bioassay spray system

    Science.gov (United States)

    Experiments were conducted to study the conidial viability during bioassay spray with different suspensions of Metarhizium anisopliae ATCC 62176 and Beauveria bassiana NI8, and to investigate the effects of conidial density and spray volume on the distribution of droplet size and deposit coverage us...

  18. Modeling Exposure in the Tox21 in Vitro Bioassays.

    Science.gov (United States)

    Fischer, Fabian C; Henneberger, Luise; König, Maria; Bittermann, Kai; Linden, Lukas; Goss, Kai-Uwe; Escher, Beate I

    2017-05-15

    High-throughput in vitro bioassays are becoming increasingly important in the risk characterization of anthropogenic chemicals. Large databases gather nominal effect concentrations (Cnom) for diverse modes of action. However, the biologically effective concentration can substantially deviate due to differences in chemical partitioning. In this study, we modeled freely dissolved (Cfree), cellular (Ccell), and membrane concentrations (Cmem) in the Tox21 GeneBLAzer bioassays for a set of neutral and ionogenic organic chemicals covering a large physicochemical space. Cells and medium constituents were experimentally characterized for their lipid and protein content, and partition constants were either collected from the literature or predicted by mechanistic models. The chemicals exhibited multifaceted partitioning to proteins and lipids with distribution ratios spanning over 8 orders of magnitude. Modeled Cfree deviated over 5 orders of magnitude from Cnom and can be compared to in vivo effect data, environmental concentrations, and the unbound fraction in plasma, which is needed for the in vitro to in vivo extrapolation. Ccell was relatively constant for chemicals with membrane lipid-water distribution ratios of 1000 or higher and proportional to Cnom. Representing a sum parameter for exposure that integrates the entire dose from intracellular partitioning, Ccell is particularly suitable for the effect characterization of chemicals with multiple target sites and the calculation of their relative effect potencies. Effective membrane concentrations indicated that the specific effects of very hydrophobic chemicals in multiple bioassays are occurring at concentrations close to baseline toxicity. The equilibrium partitioning model including all relevant system parameters and a generic bioassay setup is attached as an excel workbook to this paper and can readily be applied to diverse in vitro bioassays.

  19. The neutralization of interferons by antibody. I. Quantitative and theoretical analyses of the neutralization reaction in different bioassay systems.

    Science.gov (United States)

    Grossberg, S E; Kawade, Y; Kohase, M; Yokoyama, H; Finter, N

    2001-09-01

    The highly specific ability of antibodies to inhibit the biologic activity of cytokines or other therapeutic proteins is widely used in research and a subject of increasing clinical importance. The need exists for a standardized approach to the reporting of neutralizing antibody potency soundly based on theoretical and practical considerations and tested by experimental data. Pursuant to the original studies of Kawade on the theoretical and functional aspects of neutralization of interferons (IFN), experimental data were obtained by different laboratories employing varied methodology to address two hypotheses concerning the nature of IFN neutralization reactions, based on a derived formula that allows expression of neutralizing power as the reduction of 10 laboratory units (LU)/ml to 1 LU/ml, the end point of most bioassays. Two hypotheses are posed: (1) antibody acts to neutralize a fixed amount of biologically active IFN molecules, or (2) antibody reduces IFN activity in a set ratio of added/residual biologically active IFN. The first, or fixed amount, hypothesis relates to the reactivity of high-affinity antibodies neutralizing equimolar amounts of antigen, whereas the second, or constant proportion, hypothesis postulates a reduction in the ratio of total added IFN to residual active IFN molecules, such as a low-affinity antibody might exhibit. Analyses of data of the neutralization of IFN-alpha and IFN-beta are presented, employing human polyclonal antibodies and murine monoclonal antibodies (mAb). The theoretical constructs of Kawade are extended in the Appendix and correlated with new experimental data in the text. The data clearly indicate that the low-antibody affinity, constant proportion hypothesis, rather than the high-antibody affinity, fixed amount hypothesis, is applicable, if the bioassay is sensitive to IFN. The findings presented here and in the following paper (pp. 743-755, this issue) taken together provide the basis for a standardized method of

  20. Bioassay of Estrogenic Activity of Effluent and Influent in a Farm Wastewater Treatment Plant Using an in vitro Recombinant Assay with Yeast Cells

    Institute of Scientific and Technical Information of China (English)

    XIANG-MING LI; FANG-NI LUO; GuI-XIA LIU; PING-TING ZHU

    2008-01-01

    Objective Environmental estrogens at an elevated concentration are known to produce adverse effects on human and animal life. However, the majority of researches have been focused on ndustrial discharges, while the impact of livestock wastes as a source of endocrine disrupters in aquatic environments has been rarely elucidated. In order to investigate the contribution of environmental estrogens from livestock, the estrogenic activity in water samples from a farm wastewater treatment plant was analyzed by a recombinant yeast screening method. Methods The extracts prepared from 15 selected water samples from the farm wastewater treatment plant, among which 6 samples were from pre-treatment section (influents) and 9 from post-treatment section (effluents), were analyzed for estrogenic activity by cellar bioassay. Yeast cells transfected with the expression plasmid of human estrogen receptor and the Lac Z reporter plasmid encoding β-galactossidase, were used to measure the estrogen-like compounds in the farm wastewater treatment plant. Results The wastewater samples from influents showed a higher estrogenic potency than the effluent samples showing a low induction of β-galactossidase relative to solvent control condition. By comparison with a standard curve for 1713-estradiol (E2), estrogenic potency in water samples from the influents was calculated as E2-equivalent and ranged from 0.1 to 150 pM E2-equivalent. The estrogenic potency in water samples from the effluents was significantly lower than that in the influents, and 7 water samples had less detectable limit in the total of 9 samples. Conclusion Yeast bioassay of estrogenic activity in most of the samples from the farm wastewater after disposal by traditional sewage treatment showed negative results.

  1. Improved bioassay for detecting autoinducer of Rhodovulum sulfidophilum

    Science.gov (United States)

    Terada, T.; Kikuchi, Y.; Umekage, S.

    2015-02-01

    Quorum sensing is a bacterial gene regulation system that enables prompt environmental adaptation in response to cell density. Quorum sensing is driven by an extracellularly secreted chemical signal called autoinducer. Gram-negative bacteria produce one or several types of N-acylhomoserine lactone (AHL) as autoinducers. Our previous study suggests that the gram-negative marine photosynthetic bacterium Rhodovulum sulfidophilum produces AHL in the early stationary phase and plays a role in maintaining the bacterial cell aggregates called "floc". We performed conventional bioassay to identify AHL production by using Chromobacterium violaceum VIR07, which produces violet pigment (violacein) in response to AHL with side chains ranging from C10 to C18 in length. However, we were not able to observe the violacein with good reproducibility, suggesting that inhibitory chemical compounds co-existed in the AHL extract. Therefore, we improved the extraction method; the ethyl acetate-extracted AHLs were fractionated by using reverse phase TLC. By using the re-extracted AHLs for the bioassay, we observed an obvious production of violacein. This result clearly indicates that R. sulfidophilum produces AHLs with side chains ranging from C10 to C18 in length and suggests the utility of improved bioassay for AHL detection.

  2. Multiplex bio-assay with inductively coupled plasma mass spectrometry: Towards a massively multivariate single-cell technology

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, Scott D. [Institute of Biomaterials and Biomedical Engineering, University of Toronto, Room 407, 164 College Street, Toronto, Ontario, M5S 3G9 (Canada)], E-mail: sd.tanner@utoronto.ca; Ornatsky, Olga; Bandura, Dmitry R.; Baranov, Vladimir I. [Institute of Biomaterials and Biomedical Engineering, University of Toronto, Room 407, 164 College Street, Toronto, Ontario, M5S 3G9 (Canada)

    2007-03-15

    Recent progress in the development of massively multiplexed bioanalytical assays using element tags with inductively coupled plasma mass spectrometry detection is reviewed. Feasibility results using commercially available secondary immunolabeling reagents for leukemic cell lines are presented. Multiplex analysis of higher order is shown with first generation tag reagents based on functionalized carriers that bind lanthanide ions. DNA quantification using metallointercalation allows for cell enumeration or mitotic state differentiation. In situ hybridization permits the determination of cellular RNA. The results provide a feasibility basis for the development of a multivariate assay tool for individual cell analysis based on inductively coupled plasma mass spectrometry in a cytometer configuration.

  3. Chemopreventive Activity of Ferulago angulate against Breast Tumor in Rats and the Apoptotic Effect of Polycerasoidin in MCF7 Cells: A Bioassay-Guided Approach.

    Science.gov (United States)

    Karimian, Hamed; Fadaeinasab, Mehran; Zorofchian Moghadamtousi, Soheil; Hajrezaei, Maryam; Razavi, Mahboubeh; Safi, Sher Zaman; Ameen Abdulla, Mahmood; Mohd Ali, Hapipah; Ibrahim Noordin, Mohamad

    2015-01-01

    Ferulago angulata leaf hexane extract (FALHE) was found to be a potent inducer of MCF7 cell apoptosis. The aims of the present study were to investigate the in vivo chemopreventive effect of FALHE in rats, to identify the contributing anticancer compound in FALHE and to determine its potential mechanism of action against MCF7 cells. Thirty rats harboring LA7-induced breast tumors were divided into five groups: tumor control, low-dose FALHE, high-dose FALHE, treatment control (tamoxifen) and normal control. Breast tissues were then subjected to histopathological and immunohistochemical analyses. A bioassay-guided investigation on FALHE was performed to identify the cytotoxic compound and its mechanism of action through flow cytometry, real-time qPCR and western blotting analyses. An in vivo study showed that FALHE suppressed the expression of the tumor markers PCNA and Ki67. The tumor size was reduced from 2031 ± 281 mm3 to 432 ± 201 mm3 after FALHE treatment. FALHE administration induced apoptosis in breast tumor cells, and this was confirmed by high expression levels of Bax, p53 and caspase 3. Cell cycle arrest was suggested by the expression of p21 and p27. The in vitro experimental results resulted in the isolation of polycerasoidin as a bioactive ingredient of FALHE with an IC50 value of 3.16 ± 0.31 μg/ml against MCF7 cells. Polycerasoidin induced mitochondrial-dependent apoptosis in breast cancer cells via caspase activation and changes in the mRNA and protein expression of Bax and Bcl-2. In addition, flow cytometric analysis demonstrated that the treated MCF7 cells were arrested at the G1 phase, and this was associated with the up-regulation of p21 and p27 at both the mRNA and protein levels. The results of the present study reinforce further investigations scrutinizing the promising potential of the F. angulata chemical constituents as breast cancer chemopreventive agents.

  4. Optimisation of the CT h4S bioassay for detection of human interleukin-4 secreted by mononuclear cells stimulated by phytohaemaglutinin or by human leukocyte antigen mismatched mixed lymphocyte culture

    DEFF Research Database (Denmark)

    Petersen, Søren Lykke; Russell, Charlotte Astrid; Bendtzen, Klaus;

    2002-01-01

    bioassay with regards to specificity, sensitivity, detection limit, and reproducibility. We have found the optimal assay conditions to be 1 x 10 (4) CT.h4S cells/well deprived of IL-4 for 24 h and preincubated for 7 h followed by 18 h of incubation with tritiated methyl-thymidine. In this setting the CT.h4......S bioassay detects 5 pg/ml of human recombinant IL-4 with no detection of IL-2 in concentrations below 500 pg/ml. We have found 72 h of culture optimal for detection of IL-2 and IL-4 produced by human mononuclear cells (MNC) in response to stimulation with phytohaemaglutinin and for detection of IL...... of IL-4 detection was not due to high amounts of soluble IL-4 receptor. With the use of 1x10(6) responder cells/well in HLA-mismatched MLC, we found limited IL-4 accumulation still increasing at day 12. We conclude that the CT.h4S bioassay is a reliable and specific method for quantification of IL-4...

  5. Bioassay of Eucalyptus extracts for anticancer activity against Ehrlich ascites carcinoma (eac) cells in Swiss albino mice

    Institute of Scientific and Technical Information of China (English)

    Farhadul Islam; Hasina Khatun; Soby Ghosh; MM Ali; JA Khanam

    2012-01-01

    Objective: To evaluate the antineoplastic activity of Eucalyptus extract (EuE) against Ehrlich ascites carcinoma (EAC) in Swiss albino mice. Methods: Preliminary examination of four plant extracts (namely Eucalyptus, Costus, Azadirachta, Feronia) has been done by observing the reduction ability of number of EAC cells in previously inoculated Swiss albino mice. Among them as EuE showed maximum capability, the whole study has been conducted with EuE only. Important parameters viz. enhancement of life span, reduction of average tumor weight etc. have been studied. In addition the effects of EuE on hematological parameters in both normal and EAC inoculated mice have been measured. Effect of EuE on normal peritoneal cells has also been studied. Results: EuE reduced tumor burden remarkably. It reduced the tumor growth rate and enhanced the life span of EAC bearing mice noticeably. It reversed back the hematological parameters towards normal, reduced the trasplantability of EAC cells and enhanced the immunomodulatory effects in mice. The host toxic effect of EuE in mice is minimum and mostly reversible with time. All such data have been compared with those obtained by running parallel experiments with bleomycin at dose 0.3 mg/kg (i.p.). Conclusions: The Eucalyptus extract may be considered as a potent anticancer agent for advanced researches.

  6. A versatile electrowetting-based digital microfluidic platform for quantitative homogeneous and heterogeneous bio-assays

    Science.gov (United States)

    Vergauwe, Nicolas; Witters, Daan; Ceyssens, Frederik; Vermeir, Steven; Verbruggen, Bert; Puers, Robert; Lammertyn, Jeroen

    2011-05-01

    Electrowetting-on-dielectric (EWOD) lab-on-a-chip systems have already proven their potential within a broad range of bio-assays. Nevertheless, research on the analytical performance of those systems is limited, yet crucial for a further breakthrough in the diagnostic field. Therefore, this paper presents the intrinsic possibilities of an EWOD lab-on-a-chip as a versatile platform for homogeneous and heterogeneous bio-assays with high analytical performance. Both droplet dispensing and splitting cause variations in droplet size, thereby directly influencing the assay's performance. The extent to which they influence the performance is assessed by a theoretical sensitivity analysis, which allows the definition of a basic framework for the reduction of droplet size variability. Taking advantage of the optimized droplet manipulations, both homogeneous and heterogeneous bio-assays are implemented in the EWOD lab-on-a-chip to demonstrate the analytical capabilities and versatility of the device. A fully on-chip enzymatic assay is realized with high analytical performance. It demonstrates the promising capabilities of an EWOD lab-on-a-chip in food-related and medical applications, such as nutritional and blood analyses. Further, a magnetic bio-assay for IgE detection using superparamagnetic nanoparticles is presented whereby the nanoparticles are used as solid carriers during the bio-assay. Crucial elements are the precise manipulation of the superparamagnetic nanoparticles with respect to dispensing and separation. Although the principle of using nano-carriers is demonstrated for protein detection, it can be easily extended to a broader range of bio-related applications like DNA sensing. In heterogeneous bio-assays the chip surface is actively involved during the execution of the bio-assay. Through immobilization of specific biological compounds like DNA, proteins and cells a reactive chip surface is realized, which enhances the bio-assay performance. To demonstrate

  7. BIOASSAY VESSEL FAILURE ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Vormelker, P

    2008-09-22

    Two high-pressure bioassay vessels failed at the Savannah River Site during a microwave heating process for biosample testing. Improper installation of the thermal shield in the first failure caused the vessel to burst during microwave heating. The second vessel failure is attributed to overpressurization during a test run. Vessel failure appeared to initiate in the mold parting line, the thinnest cross-section of the octagonal vessel. No material flaws were found in the vessel that would impair its structural performance. Content weight should be minimized to reduce operating temperature and pressure. Outer vessel life is dependent on actual temperature exposure. Since thermal aging of the vessels can be detrimental to their performance, it was recommended that the vessels be used for a limited number of cycles to be determined by additional testing.

  8. A cell-based fascin bioassay identifies compounds with potential anti-metastasis or cognition-enhancing functions

    Directory of Open Access Journals (Sweden)

    Robert Kraft

    2013-01-01

    The actin-bundling protein fascin is a key mediator of tumor invasion and metastasis and its activity drives filopodia formation, cell-shape changes and cell migration. Small-molecule inhibitors of fascin block tumor metastasis in animal models. Conversely, fascin deficiency might underlie the pathogenesis of some developmental brain disorders. To identify fascin-pathway modulators we devised a cell-based assay for fascin function and used it in a bidirectional drug screen. The screen utilized cultured fascin-deficient mutant Drosophila neurons, whose neurite arbors manifest the ‘filagree’ phenotype. Taking a repurposing approach, we screened a library of 1040 known compounds, many of them FDA-approved drugs, for filagree modifiers. Based on scaffold distribution, molecular-fingerprint similarities, and chemical-space distribution, this library has high structural diversity, supporting its utility as a screening tool. We identified 34 fascin-pathway blockers (with potential anti-metastasis activity and 48 fascin-pathway enhancers (with potential cognitive-enhancer activity. The structural diversity of the active compounds suggests multiple molecular targets. Comparisons of active and inactive compounds provided preliminary structure-activity relationship information. The screen also revealed diverse neurotoxic effects of other drugs, notably the ‘beads-on-a-string’ defect, which is induced solely by statins. Statin-induced neurotoxicity is enhanced by fascin deficiency. In summary, we provide evidence that primary neuron culture using a genetic model organism can be valuable for early-stage drug discovery and developmental neurotoxicity testing. Furthermore, we propose that, given an appropriate assay for target-pathway function, bidirectional screening for brain-development disorders and invasive cancers represents an efficient, multipurpose strategy for drug discovery.

  9. Embryonic Stem Cell-Derived Neurons Grown on Multi-Electrode Arrays as a Novel In vitro Bioassay for the Detection of Clostridium botulinum Neurotoxins

    Science.gov (United States)

    Jenkinson, Stephen P.; Grandgirard, Denis; Heidemann, Martina; Tscherter, Anne; Avondet, Marc-André; Leib, Stephen L.

    2017-01-01

    Clostridium botulinum neurotoxins (BoNTs) are the most poisonous naturally occurring protein toxins known to mankind and are the causative agents of the severe and potentially life-threatening disease botulism. They are also known for their application as cosmetics and as unique bio-pharmaceuticals to treat an increasing number of neurological and non-neurological disorders. Currently, the potency of biologically active BoNT for therapeutic use is mainly monitored by the murine LD50-assay, an ethically disputable test causing suffering and death of a considerable number of mice. The aim of this study was to establish an in vitro assay as an alternative to the widely used in vivo mouse bioassay. We report a novel BoNT detection assay using mouse embryonic stem cell-derived neurons (mESN) cultured on multi-electrode arrays (MEAs). After 21 days in culture, the mESN formed a neuronal network showing spontaneous bursting activity based on functional synapses and express the necessary target proteins for BoNTs. Treating cultures for 6 h with 16.6 pM of BoNT serotype A and incubation with 1.66 pM BoNT/A or 33 Units/ml of Botox® for 24 h lead to a significant reduction of both spontaneous network bursts and average spike rate. This data suggests that mESN cultured on MEAs pose a novel, biologically relevant model that can be used to detect and quantify functional BoNT effects, thus accelerating BoNT research while decreasing animal use. PMID:28280466

  10. Screening complex effluents for estrogenic activity with the T47D-KBluc cell bioassay: assay optimization and comparison with in vivo responses in fish.

    Science.gov (United States)

    Wehmas, Leah C; Cavallin, Jenna E; Durhan, Elizabeth J; Kahl, Michael D; Martinovic, Dalma; Mayasich, Joe; Tuominen, Tim; Villeneuve, Daniel L; Ankley, Gerald T

    2011-02-01

    Wastewater treatment plant (WWTP) effluents can contain estrogenic chemicals, which potentially disrupt fish reproduction and development. The current study focused on the use of an estrogen-responsive in vitro cell bioassay (T47D-KBluc), to quantify total estrogenicity of WWTP effluents. We tested a novel sample preparation method for the T47D-KBluc assay, using powdered media prepared with direct effluent. Results of the T47D-KBluc assay were compared with the induction of estrogen receptor-regulated gene transcription in male fathead minnows (Pimephales promelas) exposed to the same effluents. Effluent samples for the paired studies were collected over the course of three months. According to the T47D-KBluc assay, the effluent estrogenicity ranged from 1.13 to 2.00 ng 17β-estradiol (E2) equivalents/L. Corresponding in vivo studies exposing male fathead minnows to 0, 10, 50, and 100% effluent dilutions demonstrated that exposure to 100% effluent significantly increased hepatic vitellogenin (VTG) and estrogen receptor α subunit transcripts relative to controls. The induction was also significant in males exposed to 250 ng E2/L or 100 ng E2/L. The in vitro and in vivo results support the conclusion that the effluent contains significant estrogenic activity, but there was a discrepancy between in vitro- and in vivo-based E2 equivalent estimates. Our results suggest that the direct effluent preparation method for the T47D-KBluc assay is a reasonable approach to estimate the estrogenicity of wastewater effluent.

  11. Implementation of design of experiments (DOE) in the development and validation of a cell-based bioassay for the detection of anti-drug neutralizing antibodies in human serum.

    Science.gov (United States)

    Chen, Xinyi C; Zhou, Lei; Gupta, Shalini; Civoli, Francesca

    2012-02-28

    The administration of biological therapeutics can potentially elicit the development of neutralizing antibodies (NAbs) to the therapeutic drug in patients, which could have a significant impact on drug efficacy and safety. A rigorous in vitro cell-based assay for the detection of NAbs is critical for the assessment of the immunogenicity profile of the therapeutic drug. Conatumumab is a fully human monoclonal agonist antibody directed against the extracellular domain of human TRAIL receptor 2 (TR-2). It is being investigated as a cancer treatment because it is able to induce apoptosis in sensitive tumor cells. This report demonstrates how statistically designed experiments could be employed effectively in different stages of a NAb bioassay life cycle in order to characterize, optimize and stabilize the assay with added benefit of resource efficiency. By combining the approach of design of experiments (DOE) with subject matter expertise and experience, we were able to understand thoroughly how assay parameters affect the performance of the assay individually and interactively, identify the key assay parameters, define assay operating ranges and finally achieve a robust and sensitive cell-based assay for the detection of NAbs to Conatumumab. With the goal of developing a cell-based bioassay that is highly optimized for sensitivity, specificity, precision, and robustness, we performed 2 DOE experiments for assay optimization and 1 DOE experiment to validate assay robustness. We evaluated key operating parameters of the assay such as cell number, percentage of serum matrix, concentration of the therapeutic drug, concentration of the cross-linker, length of various incubation steps, cell age, interval between cell subculture and bioassay time, and detection equipment.

  12. Overview of bioassays for mutagens, carcinogens, and teratogens

    Energy Technology Data Exchange (ETDEWEB)

    Dumont, J.N.

    1982-01-01

    Bioassays to determine the risk of health hazards of man-made chemical substances are reviewed. The standard approach to testing a substance is the tier system, consisting of three levels of testing that are increasingly complex, lengthy, and costly. The paper describes the biological basis of bioassays, identifies various assays for mutagens, carcinogens and teratogens, and explains the problems involved in extrapolating test data to human risk estimates. Future improvements in assay techniques are discussed. (CR)

  13. Vicia faba bioassay for environmental toxicity monitoring: A review.

    Science.gov (United States)

    Iqbal, Munawar

    2016-02-01

    Higher plants are recognized as excellent genetic models to detect cytogenetic and mutagenic agents and are frequently used in environmental monitoring studies. Vicia faba (V. faba) bioassay have been used to study DNA damages i.e., chromosomal and nuclear aberrations induced by metallic compounds, pesticides, complex mixtures, petroleum derivates, toxins, nanoparticles and industrial effluents. The main advantages of using V. faba is its availability round the year, economical to use, easy to grow and handle; its use does not require sterile conditions, rate of cell division is fast, chromosomes are easy to score, less expensive and more sensitive as compared to other short-term tests that require pre-preparations. The V. faba test offers evaluation of different endpoints and tested agents can be classified as cytotoxic/genotoxic/mutagenic. This test also provides understanding about mechanism of action, whether the tested agent is clastogenic or aneugenic in nature. In view of advantages offered by V. faba test system, it is used extensively to assess toxic agents and has been emerged as an important bioassay for ecotoxicological studies. Based on the applications of V. faba test to assess the environmental quality, this article offers an overview of this test system and its efficiency in assessing the cytogenetic and mutagenic agents in different classes of the environmental concerns.

  14. PubChem BioAssay: 2017 update

    Science.gov (United States)

    Wang, Yanli; Bryant, Stephen H.; Cheng, Tiejun; Wang, Jiyao; Gindulyte, Asta; Shoemaker, Benjamin A.; Thiessen, Paul A.; He, Siqian; Zhang, Jian

    2017-01-01

    PubChem's BioAssay database (https://pubchem.ncbi.nlm.nih.gov) has served as a public repository for small-molecule and RNAi screening data since 2004 providing open access of its data content to the community. PubChem accepts data submission from worldwide researchers at academia, industry and government agencies. PubChem also collaborates with other chemical biology database stakeholders with data exchange. With over a decade's development effort, it becomes an important information resource supporting drug discovery and chemical biology research. To facilitate data discovery, PubChem is integrated with all other databases at NCBI. In this work, we provide an update for the PubChem BioAssay database describing several recent development including added sources of research data, redesigned BioAssay record page, new BioAssay classification browser and new features in the Upload system facilitating data sharing. PMID:27899599

  15. Glycomics Approaches for the Bioassay and Structural Analysis of Heparin/Heparan Sulphates

    Directory of Open Access Journals (Sweden)

    Jeremy E. Turnbull

    2012-11-01

    Full Text Available The glycosaminoglycan heparan sulphate (HS has a heterogeneous structure; evidence shows that specific structures may be responsible for specific functions in biological processes such as blood coagulation and regulation of growth factor signalling. This review summarises the different experimental tools and methods developed to provide more rapid methods for studying the structure and functions of HS. Rapid and sensitive methods for the facile purification of HS, from tissue and cell sources are reviewed. Data sets for the structural analysis are often complex and include multiple sample sets, therefore different software and tools have been developed for the analysis of different HS data sets. These can be readily applied to chromatographic data sets for the simplification of data (e.g., charge separation using strong anion exchange chromatography and from size separation using gel filtration techniques. Finally, following the sequencing of the human genome, research has rapidly advanced with the introduction of high throughput technologies to carry out simultaneous analyses of many samples. Microarrays to study macromolecular interactions (including glycan arrays have paved the way for bioassay technologies which utilize cell arrays to study the effects of multiple macromolecules on cells. Glycan bioassay technologies are described in which immobilisation techniques for saccharides are exploited to develop a platform to probe cell responses such as signalling pathway activation. This review aims at reviewing available techniques and tools for the purification, analysis and bioassay of HS saccharides in biological systems using “glycomics” approaches.

  16. A novel bioassay to monitor fungicide sensitivity in Mycosphaerella fijiensis.

    Science.gov (United States)

    Ngando, Josué E; Rieux, Adrien; Nguidjo, Oscar; Pignolet, Luc; Dubois, Cécile; Mehl, Andreas; Zapater, Marie-Françoise; Carlier, Jean; de Lapeyre de Bellaire, Luc

    2015-03-01

    Black leaf streak disease (BLSD) is the most important disease of bananas for export. The successful control of BLSD requires an intensive use of systemic fungicides, leading to the build-up of resistance and failure of control. Early detection of fungicide resistance is crucial to drive rational chemical strategies. Present methods relying on ascospore germination bioassays have several drawbacks that could be overcome using conidia. Generally, a single genotype is present on the conidial population derived from one lesion. Conidial germination tests with thiabendazole (5 mg L(-1)) enable a clear detection of strains resistant to methyl benzimidazole carbamates. Germination bioassays on azoxystrobin (10 mg L(-1)) enable the detection of most QoI-resistant strains, but their proportion might be underestimated with cut-off limits of germ tube length (L > 120 µm) or growth inhibition (GI < 50%). The level of fungicide resistance differs at different canopy levels of a banana tree, which should be considered for sampling. The ascospore germination bioassay provided more variable estimations of the level of resistance by comparison with the new conidial germination bioassay. Germination bioassays performed with conidia obtained from young lesions overcome most drawbacks encountered with ascospore germination bioassays and could be considered as a new reference method for fungicide resistance monitoring in this species. Different steps are proposed, from sampling to microscopic examinations, for the implementation of this technique. © 2014 Society of Chemical Industry.

  17. Microwave-accelerated bioassay technique for rapid and quantitative detection of biological and environmental samples.

    Science.gov (United States)

    Mohammed, Muzaffer; Syed, Maleeha F; Aslan, Kadir

    2016-01-15

    Quantitative detection of molecules of interest from biological and environmental samples in a rapid manner, particularly with a relevant concentration range, is imperative to the timely assessment of human diseases and environmental issues. In this work, we employed the microwave-accelerated bioassay (MAB) technique, which is based on the combined use of circular bioassay platforms and microwave heating, for rapid and quantitative detection of Glial Fibrillary Acidic Protein (GFAP) and Shiga like toxin (STX 1). The proof-of-principle use of the MAB technique with the circular bioassay platforms for the rapid detection of GFAP in buffer based on colorimetric and fluorescence readouts was demonstrated with a 900W kitchen microwave. We also employed the MAB technique with a new microwave system (called the iCrystal system) for the detection of GFAP from mice with brain injuries and STX 1 from a city water stream. Control bioassays included the commercially available gold standard bioassay kits run at room temperature. Our results show that the lower limit of detection (LLOD) of the colorimetric and fluorescence based bioassays for GFAP was decreased by ~1000 times using the MAB technique and our circular bioassay platforms as compared to the commercially available bioassay kits. The overall bioassay time for GFAP and STX 1 was reduced from 4h using commercially available bioassay kits to 10min using the MAB technique.

  18. Optimisation of the CT h4S bioassay for detection of human interleukin-4 secreted by mononuclear cells stimulated by phytohaemaglutinin or by human leukocyte antigen mismatched mixed lymphocyte culture

    DEFF Research Database (Denmark)

    Petersen, Søren Lykke; Russell, Charlotte Astrid; Bendtzen, Klaus;

    2002-01-01

    bioassay with regards to specificity, sensitivity, detection limit, and reproducibility. We have found the optimal assay conditions to be 1 x 10 (4) CT.h4S cells/well deprived of IL-4 for 24 h and preincubated for 7 h followed by 18 h of incubation with tritiated methyl-thymidine. In this setting the CT.h4...... of IL-4 detection was not due to high amounts of soluble IL-4 receptor. With the use of 1x10(6) responder cells/well in HLA-mismatched MLC, we found limited IL-4 accumulation still increasing at day 12. We conclude that the CT.h4S bioassay is a reliable and specific method for quantification of IL-4......Limiting dilution analysis has been used in the context of allogeneic bone marrow transplantation to determine anti-recipient interleukin-2 (IL-2) producing helper T lymphocyte precursor (HTLp) frequencies, which in several studies have been predictive of graft-versus-host disease (GVHD). Recently...

  19. Collagen Extracted from Persian Gulf Squid Exhibits Anti-Cytotoxic Properties on Apple Pectic Treated Cells: Assessment in an In Vitro Bioassay Model

    Directory of Open Access Journals (Sweden)

    Ladan DELPHI

    2016-10-01

    Full Text Available Background: Collagen-based three-dimensional (3D in vitro systems have been introduced to study the physiological states of cells. As a biomolecule, collagen is usually extracted from terrestrial animals whilst aquatic animals like squid contain large amounts of collagen.Methods: In order to make effective use of marine organisms, we selected Persian Gulf squid in 2015 to extract the required collagen. Then, a 3D culture system based on the extracted collagen was applied to investigate cellular mechanisms in a native microenvironment. The formed collagen gel was used to investigate the growth of MDA-MB-231 breast cancer cells as well as responses to pectic acid.Results: The results revealed that the extracted collagen contained α, ß and γ components with high water holding capacity. This collagen formed a gel-like structure, which could promote the proliferation of MDA-MB-231 breast cancer cells. The MDA-MB-231 cells’ viability in presence of pectic acid, demonstrating the cells’ behavior in a 3D culture system. Conclusion: It seems that the collagen extracted from squid skin has type I collagen properties. It might be used as a substrate in 3D cell culture systems. Keywords: Cell culture, Collagen, Pectic acid, Squid, 3D culture system 

  20. Cytotoxicity of Spent Pot Liner on Allium cepa root tip cells: A comparative analysis in meristematic cell type on toxicity bioassays.

    Science.gov (United States)

    Palmieri, Marcel José; Andrade-Vieira, Larissa Fonseca; Campos, José Marcello Salabert; Dos Santos Gedraite, Leonardo; Davide, Lisete Chamma

    2016-11-01

    Spent Pot Liner (SPL) is a waste generated during the production of aluminum. It is comprised of a mixture of substances most of which, like cyanide, aluminum and fluoride, are toxic. Previous studies indicate the highly toxic nature of SPL. However studies using cells of the differentiation/elongation zone of the root meristem (referred as M2 cells in this study) after a proper recovery period in water were never considered. Using these cells could be useful to further understanding the toxicity mechanisms of SPL. A comparative approach between the effects on M2 cells and meristematic cells of the proximal meristem zone (referred as M1 cells in this study) could lead to understanding how DNA damage caused by SPL behaves on successive generations of cells. Allium cepa cells were exposed to 4 different concentrations of SPL (2.5, 5, 7.5 and 10gL(-1)) mixed with soil and diluted in a CaCl2 0.01M to simulate the ionic forces naturally encountered on the environment. A solution containing only soil diluted on CaCl2 0.01M was used as control. M1 and M2 cells were evaluated separately, taking into account four different parameters: (1) mitotic alterations (MA); (2) presence of condensed nuclei (CN); (3) mitotic index (MI); (4) presence of micronucleus (MCN). Significant differences were observed between M1 and M2 roots tip cells for these four parameters accessed. M1 cells was more prompt to reveal citogenotoxicity through the higher frequency of MA observed. Meanwhile, for M2 cells higher frequencies of MCN and CN was noticed, followed by a reduction of MI. Also, it was possible to detect significant differences between the tested treatments and the control on every case. These results indicate SPL toxic effects carries on to future cells generations. This emphasizes the need to properly manage this waste. Joint evaluation of cells from both M1 and M2 regions was proven valuable for the evaluation of a series of parameters on all toxicity tests.

  1. An Enzymatic Bioassay for Perchlorate

    Science.gov (United States)

    2010-07-01

    equilibrated in 25 mM Trishydroxmethylamine buffer with 1 mM sodium dithionite (pH 8.5). Neither PCR nor chlorite dismutase bind to the resin, and...13  The  chlorite  bioassay... chlorite (ClO2-) with the purified perchlorate reductase from Dechloromonas agitata. It was hypothesized that the purified perchlorate reductase would

  2. [Determination of Escherichia coli Shiga-like toxins by means of the MTT bioassay].

    Science.gov (United States)

    Hörmansdorfer, S; Gareis, M; Bauer, J; Mayr, A

    1995-09-01

    Tissue culture cells' metabolism and viability are measured by the mitochondrial reduction rate of a yellow tetrazolium salt (MTT) to blue formazan crystals in the MTT-bioassay. Thus the MTT-bioassay is a standardizable and reproducible bioassay for measuring cytotoxicity or cytostimulation. It is shown that the MTT-bioassay is also very suitable for determining bacterial cytotoxins using Escherichia coli's Shiga-like toxins as example. 177 strains of E. coli, isolated from carcasses and organs of cattle, are classified biochemically and tested for cytotoxin production by means of the MTT-bioassay. One of these strains is recognized as producer of Shiga-like toxin 2. 4 Enterohemolysin-producing strains of E. coli are cultivated from a feces sample of a diarrhoeic nubian ibex and identified as Shiga-like toxin 1 producers by help of the MTT-bioassay.

  3. 77 FR 14837 - Bioassay at Uranium Mills

    Science.gov (United States)

    2012-03-13

    ... COMMISSION Bioassay at Uranium Mills AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide... for public comment draft regulatory guide (DG), DG-8051, ``Bioassay at Uranium Mills.'' This guide describes a bioassay program acceptable to the NRC staff for uranium mills and applicable portions...

  4. A Multichannel Bioluminescence Determination Platform for Bioassays.

    Science.gov (United States)

    Kim, Sung-Bae; Naganawa, Ryuichi

    2016-01-01

    The present protocol introduces a multichannel bioluminescence determination platform allowing a high sample throughput determination of weak bioluminescence with reduced standard deviations. The platform is designed to carry a multichannel conveyer, an optical filter, and a mirror cap. The platform enables us to near-simultaneously determine ligands in multiple samples without the replacement of the sample tubes. Furthermore, the optical filters beneath the multichannel conveyer are designed to easily discriminate colors during assays. This optical system provides excellent time- and labor-efficiency to users during bioassays.

  5. Optimisation of the CT h4S bioassay for detection of human interleukin-4 secreted by mononuclear cells stimulated by phytohaemaglutinin or by human leukocyte antigen mismatched mixed lymphocyte culture

    DEFF Research Database (Denmark)

    Petersen, Søren Lykke; Russell, Charlotte Astrid; Bendtzen, Klaus

    2002-01-01

    Limiting dilution analysis has been used in the context of allogeneic bone marrow transplantation to determine anti-recipient interleukin-2 (IL-2) producing helper T lymphocyte precursor (HTLp) frequencies, which in several studies have been predictive of graft-versus-host disease (GVHD). Recently...... of IL-4 detection was not due to high amounts of soluble IL-4 receptor. With the use of 1x10(6) responder cells/well in HLA-mismatched MLC, we found limited IL-4 accumulation still increasing at day 12. We conclude that the CT.h4S bioassay is a reliable and specific method for quantification of IL-4...... accumulation in cultures of human MNC. The difference in optimal timing for IL-2 (day 3) and IL-4 (>/=day 12) detection and evidence of very low IL-4 producing HTLp frequencies makes the relevance of a combined IL-2/IL-4 HTLp assay questionable....

  6. Systems cell biology.

    Science.gov (United States)

    Mast, Fred D; Ratushny, Alexander V; Aitchison, John D

    2014-09-15

    Systems cell biology melds high-throughput experimentation with quantitative analysis and modeling to understand many critical processes that contribute to cellular organization and dynamics. Recently, there have been several advances in technology and in the application of modeling approaches that enable the exploration of the dynamic properties of cells. Merging technology and computation offers an opportunity to objectively address unsolved cellular mechanisms, and has revealed emergent properties and helped to gain a more comprehensive and fundamental understanding of cell biology.

  7. Bioassay for nisin in milk, processed cheese, salad dressings, canned tomatoes, and liquid egg products.

    Science.gov (United States)

    Hakovirta, J; Reunanen, J; Saris, P E J

    2006-02-01

    A sensitive nisin quantification bioassay was constructed, based on Lactococcus lactis chromosomally encoding the nisin regulatory proteins NisK and NisR and a plasmid with a green fluorescent protein (GFP) variant gfp(uv) gene under the control of the nisin-inducible nisA promoter. This strain, LAC275, was capable of transducing the signal from extracellular nisin into measurable GFPuv fluorescence through the NisRK signal transduction system. The LAC275 cells detected nisin concentrations of 10 pg/ml in culture supernatant, 0.2 ng/ml in milk, 3.6 ng/g in processed cheese, 1 ng/g in salad dressings and crushed, canned tomatoes, and 2 ng/g in liquid egg. This method was up to 1,000 times more sensitive than a previously described GFP-based nisin bioassay. This new assay made it possible to detect significantly smaller amounts of nisin than the presently most sensitive published nisin bioassay based on nisin-induced bioluminescence. The major advantage of this sensitivity was that foods could be extensively diluted prior to the assay, avoiding potential inhibitory and interfering substances present in most food products.

  8. The Chemopreventive Effect of Tanacetum Polycephalum Against LA7-Induced Breast Cancer in Rats and the Apoptotic Effect of a Cytotoxic Sesquiterpene Lactone in MCF7 Cells: A Bioassay-Guided Approach

    Directory of Open Access Journals (Sweden)

    Hamed Karimian

    2015-06-01

    Full Text Available Background: Tanacetum polycephalum L. Schultz-Bip is a member of the Asteraceae family. This study evaluated the chemopreventive effect of a T. polycephalum hexane extract (TPHE using in in vivo and in vitro models. Methods and Results: Five groups of rats: normal control, cancer control, TPHE low dose, TPHE high dose and positive control (tamoxifen were used for the in vivo study. Histopathological examination showed that TPHE significantly suppressed the carcinogenic effect of LA7 tumour cells. The tumour sections from TPHE-treated rats demonstrated significantly reduced expression of Ki67 and PCNA compared to the cancer control group. Using a bioassay-guided approach, the cytotoxic compound of TPHE was identified as a tricyclic sesquiterpene lactone, namely, 8β- hydroxyl- 4β, 15- dihydrozaluzanin C (HDZC. Signs of early and late apoptosis were observed in MCF7 cells treated with HDZC and were attributed to the mitochondrial intrinsic pathway based on the up-regulation of Bax and the down-regulation of Bcl-2. HDZC induced cell cycle arrest in MCF7 cells and increased the expression of p21 and p27 at the mRNA and protein levels. Conclusion: This results of this study substantiate the anticancer effect of TPHE and highlight the involvement of HDZC as one of the contributing compounds that act by initiating mitochondrial-mediated apoptosis.

  9. Nanomaterial-Based Electrochemical Biosensors and Bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guodong; Mao, Xun; Gurung, Anant; Baloda, Meenu; Lin, Yuehe; He, Yuqing

    2010-08-31

    This book chapter summarizes the recent advance in nanomaterials for electrochemical biosensors and bioassays. Biofunctionalization of nanomaterials for biosensors fabrication and their biomedical applications are discussed.

  10. Cell Radiation Experiment System

    Science.gov (United States)

    Morrison, Dennis R.

    2010-01-01

    The cell radiation experiment system (CRES) is a perfused-cell culture apparatus, within which cells from humans or other animals can (1) be maintained in homeostasis while (2) being exposed to ionizing radiation during controlled intervals and (3) being monitored to determine the effects of radiation and the repair of radiation damage. The CRES can be used, for example, to determine effects of drug, radiation, and combined drug and radiation treatments on both normal and tumor cells. The CRES can also be used to analyze the effects of radiosensitive or radioprotectant drugs on cells subjected to radiation. The knowledge gained by use of the CRES is expected to contribute to the development of better cancer treatments and of better protection for astronauts, medical-equipment operators, and nuclear-power-plant workers, and others exposed frequently to ionizing radiation.

  11. Microbiological bioassay using Bacillus pumilus to detect tetracycline in milk.

    Science.gov (United States)

    Tumini, Melisa; Nagel, Orlando Guillermo; Althaus, Rafael Lisandro

    2015-05-01

    The tetracyclines (TCs) are widely used in the treatment of several diseases of cattle and their residues may be present in milk. To control these residues it is necessary to have available inexpensive screening methods, user-friendly and capable of analysing a high number of samples. The purpose of this study was to design a bioassay of microbiological inhibition in microtiter plates with spores of Bacillus pumilus to detect TCs at concentrations corresponding to the Maximum Residue Limits (MRLs). Several complementary experiments were performed to design the bioassay. In the first study, we determined the concentration of spores that produce a change in the bioassay's relative absorbance in a short time period. Subsequently, we assessed the concentration of chloramphenicol required to decrease the detection limit (DL) of TCs at MRLs levels. Thereafter, specificity, DL and cross-specificity of the bioassay were estimated. The most appropriate microbiological inhibition assay had a B. pumilus concentration of 1.6 × 10(9) spores/ml, fortified with 2500 μg chloramphenicol/l (CAP) in Mueller Hinton culture medium using brilliant black and toluidine blue as redox indicator. This bioassay detected 117 μg chlortetracycline/l, 142 μg oxytetracycline/l and 105 μg tetracycline/l by means of a change in the indicator's colour in a period of 5 h. The method showed good specificity (97.9%) which decreased slightly (93.3%) in milk samples with high somatic cell counts (>250,000 cells/ml). Furthermore, other antimicrobials studied (except neomycin) must be present in milk at high concentrations (from >5 to >100 MRLs) to produce positive results in this assay, indicating a low cross specificity.

  12. Nanoparticle-Based Biosensors and Bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guodong; Wang, Jun; Lin, Yuehe; Wang, Joseph

    2007-10-11

    In this book chapter, we review the recent advances in nanoparticles based bioassay. The nanoparticles include quantum dots, silica nanoparticles and apoferritin nanoparticles. The new nanoparticles-based labels hold great promise for multiplex protein and DNA detection and for enhancing the sensitivity of other bioassays.

  13. Experimental Investigations of Water Quality: The Bioassay.

    Science.gov (United States)

    Havel, John E.; And Others

    1997-01-01

    Describes a bioassay laboratory exercise designed to introduce students to both acute and chronic bioassay procedures. Reinforces ecological principles and provides opportunities for students to use knowledge learned in the classroom in a realistic and ecologically-relevant situation. Contains 11 references. (JRH)

  14. Rapid bioassay for oil-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Ashworth, J. [ALS Environmental, Edmonton, AB (Canada); Oosterbroek, L. [HydroQual, Calgary, AB (Canada)

    2010-07-01

    This PowerPoint presentation described a study conducted to develop a rapid bioassay for soils contaminated with oil. The bioassay method was designed for a weight of evidence (WoE) approach and eco-contact guideline derivation protocol. Microtox bioassays were conducted on cyclodextrin extracts of soil quantified by solvent extraction and gas chromatography. The method was demonstrated using straight {beta}-cyclodextrin soil extracts and activated {beta}-cyclodextrin soil extracts. An analysis of the methods showed that the activation step weakens or breaks the cyclodextrin and polycyclic hydrocarbon (PHC) inclusion complex. The released PHC became toxic to the microtox organism. Results from the bioassays were then correlated with earthworm reproduction bioassay results. tabs., figs.

  15. Bioassays Based on Molecular Nanomechanics

    Directory of Open Access Journals (Sweden)

    Arun Majumdar

    2002-01-01

    Full Text Available Recent experiments have shown that when specific biomolecular interactions are confined to one surface of a microcantilever beam, changes in intermolecular nanomechanical forces provide sufficient differential torque to bend the cantilever beam. This has been used to detect single base pair mismatches during DNA hybridization, as well as prostate specific antigen (PSA at concentrations and conditions that are clinically relevant for prostate cancer diagnosis. Since cantilever motion originates from free energy change induced by specific biomolecular binding, this technique is now offering a common platform for label-free quantitative analysis of protein-protein binding, DNA hybridization DNA-protein interactions, and in general receptor-ligand interactions. Current work is focused on developing “universal microarrays” of microcantilever beams for high-throughput multiplexed bioassays.

  16. Bioassays for the determination of nitrification inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Grunditz, Camilla

    1999-07-01

    Requirements for nitrogen reduction in wastewater treatment plants were introduced in Sweden in the early 1990's. This was a governmental move to reduce the nitrogen discharges to the Baltic and Kattegat in order to prevent eutrophication. The nitrification process in wastewater treatment plants is performed by nitrifying bacteria. These are susceptible to inhibition and it is of great importance that the influent water does not contain toxic compounds. Therefore, there is a need for assays for the determination of nitrification inhibition. This thesis describes the development and applications of such bioassays. Pure cultures of Nitrosomonas sp. and Nitrobacter sp. were isolated from activated sludge of a wastewater treatment plant. These cultures were used as test organisms in the development of bioassays for nitrification inhibition measurements. The assays are based on two different principles; cell suspensions of the bacteria, performed in test tubes, and mediated amperometric biosensors with the bacteria immobilised. Ammonia oxidation and nitrite oxidation are studied separately without interference from other organisms, which makes it easier to interpret the results. The cell suspension assays were applied to samples of industrial and municipal wastewater. The Nitrosomonas and Nitrobacter assays showed to have different inhibition patterns. A large percentage of the Swedish municipal wastewater treatment plants were found to receive inhibitory influent water, but the inhibition level was generally low. Compared to an assay based on activated sludge, the screening method, the pure culture assays found more samples of influent water strongly inhibitory or stimulating. The highest correlation was found between the screening method and the Nitrosomonas assay. The Nitrobacter assay was found to be the most sensitive method. Assessment of toxicity of a number of chemical substances was studied using the biosensors, together with the cell suspension assays

  17. Screening for the presence of lipophilic marine biotoxins in shellfish samples using the neuro-2a bioassay

    NARCIS (Netherlands)

    Bodero Baeza, Marcia; Bovee, Toine F.H.; Wang, S.; Hoogenboom, Ron L.A.P.; Klijnstra, Mirjam D.; Portier, Liza; Hendriksen, Peter J.M.; Gerssen, Arjen

    2017-01-01

    The neuro-2a bioassay is considered as one of the most promising cell-based in vitro bioassays for the broad screening of seafood products for the presence of marine biotoxins. The neuro-2a assay has been shown to detect a wide array of toxins like paralytic shellfish poisons (PSPs), ciguatoxins,

  18. Fuel cell system with interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhien; Goettler, Richard

    2016-12-20

    The present invention includes an integrated planar, series connected fuel cell system having electrochemical cells electrically connected via interconnects, wherein the anodes of the electrochemical cells are protected against Ni loss and migration via an engineered porous anode barrier layer.

  19. A Shrinkage Estimator for Combination of Bioassays

    Institute of Scientific and Technical Information of China (English)

    Jian Xiong; D.G. Chen; Zhen-hai Yang

    2007-01-01

    A shrinkage estimator and a maximum likelihood estimator are proposed in this paper for combination of bioassays. The shrinkage estimator is obtained in closed form which incorporates prior information just on the common log relative potency after the homogeneity test for combination of bioassays is accepted. It is a practical improvement over other estimators which require iterative procedure to obtain the estimator for the relative potency. A real data is also used to show the superiorities for the newly-proposed procedures.

  20. Successful identification of novel agents to control infectious diseases from screening mixture-based peptide combinatorial libraries in complex cell-based bioassays.

    Science.gov (United States)

    Boggiano, César; Reixach, Natàlia; Pinilla, Clemencia; Blondelle, Sylvie E

    2003-01-01

    Mixture-based peptide synthetic combinatorial libraries (SCLs) represent a valuable source for the development of novel agents to control infectious diseases. Indeed, a number of studies have now proven the ability of identifying active peptides from libraries composed of thousands to millions of peptides in cell-based biosystems of varying complexity. Furthermore, progressing knowledge on the importance of endogenous peptides in various immune responses lead to a regain in importance for peptides as potential therapeutic agents. This article is aimed at providing recent studies in our laboratory for the development of antimicrobial or antiviral peptides derived from mixture-based SCLs using cell-based assays, as well as a short review of the importance of such peptides in the control of infectious diseases. Furthermore, the use of positional scanning (PS) SCL-based biometrical analyses for the identification of native optimal epitopes specific to HIV-1 proteins is also presented.

  1. Development of cell-based bioassay with Sf9 cells expressing TcSKR1 and TcSKR2 and differential activation by sulfated and non-sulfated SK peptides.

    Science.gov (United States)

    Yu, Na; Swevers, Luc; Nachman, Ronald J; Smagghe, Guy

    2014-03-01

    Insect sulfakinin receptors (SKRs) are G-protein-coupled receptors (GPCRs) that interact with sulfakinins (SKs) to modulate diverse biological processes. One of the indispensable roles of SKs is in the regulation of food intake in insects. In this project we report on the development of a cell-based receptor assay system with insect Sf9 cells, expressing TcSKR1 and TcSKR2 from the red flour beetle Tribolium castaneum, a model and important pest insect in agriculture. In this system, a stable presence of the two TcSKRs was supported by Western blotting. The expressed TcSKRs were coupled to Gαs-protein upon activation and stimulated cAMP accumulation in Sf9 cells. Exposure of the transfected cell lines to sulfated SK (sSK) activated TcSKR1 at 1 nM; the EC50 of sSK to obtain 50% of receptor activation was similar for both receptors. In contrast, μM concentrations of non-sulfated SK were necessary to activate both TcSKRs. In conclusion, this cell-based TcSKR assay system is useful to screen SK-related peptides and mimetics and to better document ligand-receptor structure-activity relationships. Given the importance of SK signaling system in insects, the present study may provide new insights on the development of new methods to control pest insects.

  2. CellTracks cell analysis system for rare cell detection

    NARCIS (Netherlands)

    Kagan, Michael T.; Trainer, Michael N.; Bendele, Teresa; Rao, Chandra; Horton, Allen; Tibbe, Arjan G.; Greve, Jan; Terstappen, Leon W.M.M.

    2002-01-01

    The CellTracks system is a Compact Disk-based cell analyzer that, similar to flow cytometry, differentiates cells that are aligned while passing through focused laser beams. In CellTracks, only immuno-magnetically labeled cells are aligned and remain in position for further analysis. This feature is

  3. The chemopotential effect of Annona muricata leaves against azoxymethane-induced colonic aberrant crypt foci in rats and the apoptotic effect of Acetogenin Annomuricin E in HT-29 cells: a bioassay-guided approach.

    Science.gov (United States)

    Zorofchian Moghadamtousi, Soheil; Rouhollahi, Elham; Karimian, Hamed; Fadaeinasab, Mehran; Firoozinia, Mohammad; Ameen Abdulla, Mahmood; Abdul Kadir, Habsah

    2015-01-01

    Annona muricata has been used in folk medicine for the treatment of cancer and tumors. This study evaluated the chemopreventive properties of an ethyl acetate extract of A. muricata leaves (EEAML) on azoxymethane-induced colonic aberrant crypt foci (ACF) in rats. Moreover, the cytotoxic compound of EEAML (Annomuricin E) was isolated, and its apoptosis-inducing effect was investigated against HT-29 colon cancer cell line using a bioassay-guided approach. This experiment was performed on five groups of rats: negative control, cancer control, EEAML (250 mg/kg), EEAML (500 mg/kg) and positive control (5-fluorouracil). Methylene blue staining of colorectal specimens showed that application of EEAML at both doses significantly reduced the colonic ACF formation compared with the cancer control group. Immunohistochemistry analysis showed the down-regulation of PCNA and Bcl-2 proteins and the up-regulation of Bax protein after administration of EEAML compared with the cancer control group. In addition, an increase in the levels of enzymatic antioxidants and a decrease in the malondialdehyde level of the colon tissue homogenates were observed, suggesting the suppression of lipid peroxidation. Annomuricin E inhibited the growth of HT-29 cells with an IC50 value of 1.62 ± 0.24 μg/ml after 48 h. The cytotoxic effect of annomuricin E was further substantiated by G1 cell cycle arrest and early apoptosis induction in HT-29 cells. Annomuricin E triggered mitochondria-initiated events, including the dissipation of the mitochondrial membrane potential and the leakage of cytochrome c from the mitochondria. Prior to these events, annomuricin E activated caspase 3/7 and caspase 9. Upstream, annomuricin E induced a time-dependent upregulation of Bax and downregulation of Bcl-2 at the mRNA and protein levels. In conclusion, these findings substantiate the usage of A. muricata leaves in ethnomedicine against cancer and highlight annomuricin E as one of the contributing compounds in the

  4. The chemopotential effect of Annona muricata leaves against azoxymethane-induced colonic aberrant crypt foci in rats and the apoptotic effect of Acetogenin Annomuricin E in HT-29 cells: a bioassay-guided approach.

    Directory of Open Access Journals (Sweden)

    Soheil Zorofchian Moghadamtousi

    Full Text Available Annona muricata has been used in folk medicine for the treatment of cancer and tumors. This study evaluated the chemopreventive properties of an ethyl acetate extract of A. muricata leaves (EEAML on azoxymethane-induced colonic aberrant crypt foci (ACF in rats. Moreover, the cytotoxic compound of EEAML (Annomuricin E was isolated, and its apoptosis-inducing effect was investigated against HT-29 colon cancer cell line using a bioassay-guided approach. This experiment was performed on five groups of rats: negative control, cancer control, EEAML (250 mg/kg, EEAML (500 mg/kg and positive control (5-fluorouracil. Methylene blue staining of colorectal specimens showed that application of EEAML at both doses significantly reduced the colonic ACF formation compared with the cancer control group. Immunohistochemistry analysis showed the down-regulation of PCNA and Bcl-2 proteins and the up-regulation of Bax protein after administration of EEAML compared with the cancer control group. In addition, an increase in the levels of enzymatic antioxidants and a decrease in the malondialdehyde level of the colon tissue homogenates were observed, suggesting the suppression of lipid peroxidation. Annomuricin E inhibited the growth of HT-29 cells with an IC50 value of 1.62 ± 0.24 μg/ml after 48 h. The cytotoxic effect of annomuricin E was further substantiated by G1 cell cycle arrest and early apoptosis induction in HT-29 cells. Annomuricin E triggered mitochondria-initiated events, including the dissipation of the mitochondrial membrane potential and the leakage of cytochrome c from the mitochondria. Prior to these events, annomuricin E activated caspase 3/7 and caspase 9. Upstream, annomuricin E induced a time-dependent upregulation of Bax and downregulation of Bcl-2 at the mRNA and protein levels. In conclusion, these findings substantiate the usage of A. muricata leaves in ethnomedicine against cancer and highlight annomuricin E as one of the contributing

  5. A new P. putida instrumental toxicity bioassay.

    Science.gov (United States)

    Figueredo, Federico; Abrevaya, Ximena C; Cortón, Eduardo

    2015-05-01

    Here, we present a new toxicity bioassay (CO2-TOX), able to detect toxic or inhibitory compounds in water samples, based on the quantification of Pseudomonas putida KT2440 CO2 production. The metabolically produced CO2 was measured continuously and directly in the liquid assay media, with a potentiometric gas electrode. The optimization studies were performed using as a model toxicant 3,5-DCP (3,5-dichlorophenol); later, heavy metals (Pb(2+), Cu(2+), or Zn(2+)) and a metalloid (As(5+)) were assayed. The response to toxics was evident after 15 min of incubation and at relatively low concentrations (e.g., 1.1 mg/L of 3,5-DCP), showing that the CO2-TOX bioassay is fast and sensitive. The EC50 values obtained were 4.93, 0.12, 6.05, 32.17, and 37.81 mg/L for 3,5-DCP, Cu(2+), Zn(2+), As(5+), and Pb(2+), respectively, at neutral pH. Additionally, the effect of the pH of the sample and the use of lyophilized bacteria were also analyzed showing that the bioassay can be implemented in different conditions. Moreover, highly turbid samples and samples with very low oxygen levels were measured successfully with the new instrumental bioassay described here. Finally, simulated samples containing 3,5-DCP or a heavy metal mixture were tested using the proposed bioassay and a standard ISO bioassay, showing that our test is more sensible to the phenol but less sensible to the metal mixtures. Therefore, we propose CO2-TOX as a rapid, sensitive, low-cost, and robust instrumental bioassay that could perform as an industrial wastewater-process monitor among other applications.

  6. Single-cell gel electrophoresis assay in the ten spotted live-bearer fish, Cnesterodon decemmaculatus (Jenyns, 1842), as bioassay for agrochemical-induced genotoxicity.

    Science.gov (United States)

    Vera-Candioti, Josefina; Soloneski, Sonia; Larramendy, Marcelo L

    2013-12-01

    The ability of two 48 percent chlorpyrifos-based insecticides (Lorsban* 48E® and CPF Zamba®), two 50 percent pirimicarb-based insecticides (Aficida® and Patton Flow®), and two 48 percent glyphosate-based herbicides (Panzer® and Credit®) to induce DNA single-strand breaks in peripheral blood erythrocytes of Cnesterodon decemmaculatus (Jenyns, 1842) (Pisces, Poeciliidae) exposed under laboratory conditions was evaluated by the single-cell gel electrophoresis (SCGE) assay. In those fish exposed to Lorsban* 48E®, CPF Zamba®, Aficida®, Patton Flow®, Credit®, and Panzer®, a significant increase of the genetic damage was observed for all formulations regardless of the harvesting time. This genotoxic effect was achieved by an enhancement of Type II-IV comets and a concomitant decrease of Type 0-I comets over control values. A regression analysis revealed that the damage varied as a negative function of the exposure time in those Lorsban* 48E®- and Aficida®-treated fish. On the other hand, a positive correlation between damage increase and exposure time was achieved after Patton Flow® and Credit® treatment. Finally, no correlation was observed between increase in the genetic damage and exposure time after treatment with CPF Zamba® or Panzer®. These results highlight that all agrochemicals inflict primary genotoxic damage at the DNA level at sublethal concentrations, regardless of the exposure time of the aquatic organisms under study, at least within a period of 96 h of treatment.

  7. A rapid bioassay for detecting saxitoxins using a Daphnia acute toxicity test

    Energy Technology Data Exchange (ETDEWEB)

    Ferrao-Filho, Aloysio da S., E-mail: aloysio@ioc.fiocruz.b [Laboratorio de Avaliacao e Promocao da Saude Ambiental, Departamento de Biologia, Instituto Oswaldo Cruz, FIOCRUZ, Av. Brasil 4365, Manguinhos, Rio de Janeiro, RJ 21045-900 (Brazil); Soares, Maria Carolina S., E-mail: mcarolsoares@gmail.co [Departamento de Engenharia Sanitaria e Ambiental Faculdade de Engenharia, Universidade Federal de Juiz de Fora, Juiz de Fora, MG 36036-900 (Brazil); Freitas de Magalhaes, Valeria, E-mail: valeria@biof.ufrj.b [Laboratorio de Ecofisiologia e Toxicologia de Cianobacterias, Instituto de Biofisica Carlos Chagas Filho, CCS, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Rio de Janeiro, RJ 21949-900 (Brazil); Azevedo, Sandra M.F.O., E-mail: sazevedo@biof.ufrj.b [Laboratorio de Ecofisiologia e Toxicologia de Cianobacterias, Instituto de Biofisica Carlos Chagas Filho, CCS, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Rio de Janeiro, RJ 21949-900 (Brazil)

    2010-06-15

    Bioassays using Daphnia pulex and Moina micrura were designed to detect cyanobacterial neurotoxins in raw water samples. Phytoplankton and cyanotoxins from seston were analyzed during 15 months in a eutrophic reservoir. Effective time to immobilize 50% of the exposed individuals (ET{sub 50}) was adopted as the endpoint. Paralysis of swimming movements was observed between approx0.5-3 h of exposure to lake water containing toxic cyanobacteria, followed by an almost complete recovery of the swimming activity within 24 h after being placed in control water. The same effects were observed in bioassays with a saxitoxin-producer strain of Cylindrospermopsis raciborskii isolated from the reservoir. Regression analysis showed significant relationships between ET{sub 50}vs. cell density, biomass and saxitoxins content, suggesting that the paralysis of Daphnia in lake water samples was caused by saxitoxins found in C. raciborskii. Daphnia bioassay was found to be a sensitive method for detecting fast-acting neurotoxins in natural samples, with important advantages over mouse bioassays. - A new Daphnia bioassay, as an alternative to the mouse bioassay, is able to detect effects of fast-acting, potent neurotoxins in raw water.

  8. Bioassay, isolation and studies on the mechanism of action of neurite extension factor

    Science.gov (United States)

    Kligman, D.

    1984-01-01

    The identification and purification of molecules active in promoting neurite outgrowth requires a sensitive reproducible bioassay. A quantitative bioassay was utilized to purify a neurite extension factor (NEF) based on counting the number of phase bright neurons with processes at least equal to one cell body diameter after 20 hrs. in culture is defined, serum free medium. Using a combination of heat treatment DEAE cellulose chromatography and gel filtration, an acidic protein of M sub r = 75,000 was highly purified. Upon reduction, it yields subunits of M sub r = 37,000. Purified fractions are active half maximally at 100 ng/ml in inducing neurite outgrowth in this bioassay. Currently, monoclonal antibodies to NEF are being produced. Female Balb C mice were immunized with the antigen and fusions with mouse myeloma cells will be performed to yield hybridoma cells.

  9. Aerobic biodegradation of Azo dye by Bacillus cohnii MTCC 3616; an obligately alkaliphilic bacterium and toxicity evaluation of metabolites by different bioassay systems.

    Science.gov (United States)

    Prasad, A S Arun; Rao, K V Bhaskara

    2013-08-01

    An obligate alkaliphilic bacterium Bacillus cohnii MTCC 3616 aerobically decolorized a textile azo dye Direct Red-22 (5,000 mg l⁻¹) with 95 % efficiency at 37 °C and pH 9 in 4 h under static conditions. The decolorization of Direct Red-22 (DR-22) was possible through a broad pH (7-11), temperature (10-45 °C), salinity (1-7 %), and dye concentration (5-10 g l⁻¹) range. Decolorization of dye was assessed by UV-vis spectrophotometer with reduction of peak intensity at 549 nm (λ(max)). Biodegradation of dye was analyzed by Fourier transform infrared spectroscopy (FTIR) and high-performance liquid chromatography (HPLC). The FTIR spectrum revealed that B. cohnii specifically targeted azo bond (N=N) at 1,614.42 cm⁻¹ to break down Direct Red-22. Formation of metabolites with different retention times in HPLC analysis further confirmed the degradation of dye. The phytotoxicity test with 5,000 mg l⁻¹ of untreated dye showed 80 % germination inhibition in Vigna mungo, 70 % in Sorghum bicolor and 80 % in Vigna radiata. No germination inhibition was noticed in all three plants by DR-22 metabolites at 5,000 mg l⁻¹. Biotoxicity test with Artemia salina proved the lethality of the azo dye at LC₅₀ of 4 and 8 % for degraded metabolites by causing death of its nauplii compared to its less toxic-degraded metabolites. Bioaccumulation of dye was observed in the mid-gut of A. salina. The cytogenotoxicity assay on the meristematic root tip cells of Allium cepa further confirmed the cytotoxic nature of azo dye (DR-22) with decrease in mitotic index (0.5 % at 500 ppm) and increase in aberrant index (4.56 %) over 4-h exposure period. Genotoxic damages (lagging chromosome, metaphase cluster, chromosome bridges, and dye accumulation in cytoplasm) were noticed at different stages of cell cycle. The degraded metabolites had negligible cytotoxic and genotoxic effects.

  10. An overview of the PubChem BioAssay resource.

    Science.gov (United States)

    Wang, Yanli; Bolton, Evan; Dracheva, Svetlana; Karapetyan, Karen; Shoemaker, Benjamin A; Suzek, Tugba O; Wang, Jiyao; Xiao, Jewen; Zhang, Jian; Bryant, Stephen H

    2010-01-01

    The PubChem BioAssay database (http://pubchem.ncbi.nlm.nih.gov) is a public repository for biological activities of small molecules and small interfering RNAs (siRNAs) hosted by the US National Institutes of Health (NIH). It archives experimental descriptions of assays and biological test results and makes the information freely accessible to the public. A PubChem BioAssay data entry includes an assay description, a summary and detailed test results. Each assay record is linked to the molecular target, whenever possible, and is cross-referenced to other National Center for Biotechnology Information (NCBI) database records. 'Related BioAssays' are identified by examining the assay target relationship and activity profile of commonly tested compounds. A key goal of PubChem BioAssay is to make the biological activity information easily accessible through the NCBI information retrieval system-Entrez, and various web-based PubChem services. An integrated suite of data analysis tools are available to optimize the utility of the chemical structure and biological activity information within PubChem, enabling researchers to aggregate, compare and analyze biological test results contributed by multiple organizations. In this work, we describe the PubChem BioAssay database, including data model, bioassay deposition and utilities that PubChem provides for searching, downloading and analyzing the biological activity information contained therein.

  11. Systems biomechanics of the cell

    CERN Document Server

    Maly, Ivan V

    2013-01-01

    Systems Biomechanics of the Cell attempts to outline systems biomechanics of the cell as an emergent and promising discipline. The new field owes conceptually to cell mechanics, organism-level systems biomechanics, and biology of biochemical systems. Its distinct methodology is to elucidate the structure and behavior of the cell by analyzing the unintuitive collective effects of elementary physical forces that interact within the heritable cellular framework. The problematics amenable to this approach includes the variety of cellular activities that involve the form and movement of the cell body and boundary (nucleus, centrosome, microtubules, cortex, and membrane). Among the elementary system effects in the biomechanics of the cell, instability of symmetry, emergent irreversibility, and multiperiodic dissipative motion can be noted. Research results from recent journal articles are placed in this unifying framework. It is suggested that the emergent discipline has the potential to expand the spectrum of ques...

  12. Comparison of the sensitivities of fish, Microtox and Daphnia-magna bioassays to amoxycillin in anaerobic/aerobic sequential reactor systems.

    Science.gov (United States)

    Çelebi, H; Sponza, D T

    2012-01-01

    In this study the anaerobic treatability of amoxycillin (AMX) was investigated in a laboratory-scale anaerobic multi-chamber bed reactor (AMCBR)/aerobic continuously stirred tank reactor (CSTR) system. The chemical oxygen demand (COD) and AMX removal efficiencies were around 94% in the AMCBR reactor at hydraulic retention times (HRTs) between 2.25 and 5.5 days. Decreasing the HRT appeared not to have a significant effect on the performance of the AMCBR up to a HRT of 1.13 days. The maximum methane production rate and methane percentage were around 1,100-1,200 mL/day and 55%, respectively, at HRTs between 2.25 and 5.5 days. The decrease in HRT to 1.5 days decreased slightly the gas productions (1,000 mL/day and 500 mL for total and methane gases) and methane percentage (45%). The AMCBR recovered back to its baseline performance within a couple of days. The acute toxicity of 150 mg/L AMX was monitored with Daphnia magna, Lepistes sp., and Vibrio fischeri acute toxicity tests. The acute toxicity removals were 98, 96 and 96% for V. fischeri, D. magna and Lepistes sp. in the effluent of the sequential system treating 150 mg/L AMX at HRTs of 2.25-5.5 days. Among the trophic organisms used in the acute toxicity tests the most sensitive organism was found to be bacteria (V. fischeri) while the most resistant organism was found to be fish (Lepistes sp.).

  13. Development by flow cytometry of bioassays based on chlorella for environmental monitoring

    Directory of Open Access Journals (Sweden)

    Petrescu C-M,

    2016-05-01

    Full Text Available In ecotoxicological assessments, bioassays (ecotoxicity tests or biotests are one of the main tools, defined as methods which use living cells, tissues, organism or communities to assess exposure-related effects of chemicals. The increasing complexity of environmental degradation requires an increase in the capacity of scientific approach in monitoring and notification as early as possible risks. Our own objective concerns the detection of aquatic environment pollution in Romania and particularly in the Danube basin. For assessing aquatic environment pollution degree or for assessing cytotoxicity or ecotoxicity of pollutants (heavy metals, nanoparticles, pesticides, etc. we developed news experimental bioassays based on the use of viability and apoptosis biomarkers of Chlorella cells by flow cytometry. Our proposed bioassays could be rapid and very sensitive tests for in laboratory aquatic risk assessment and biomonitoring.

  14. In vitro bioassays of non-steroidal phytoestrogens.

    Science.gov (United States)

    Markiewicz, L; Garey, J; Adlercreutz, H; Gurpide, E

    1993-05-01

    Some of the isoflavonoids present in human diet as well as in urine are expected to exert biologic effects as they have been reported to bind to estrogen receptors and to be estrogenic in other species. This report describes the in vitro assessment of estrogenic effects of isoflavonoids using human endometrial cells and tissue. The relative estrogenic potencies (EC50 values) of estradiol, 3 dietary isoflavonoids (coumestrol, genistein and daidzein) and one of their metabolites (equol), were estimated by using a recently developed multiwell plate in vitro bioassay based on the estrogen-specific enhancement of alkaline phosphatase (AlkP) activity in human endometrial adenocarcinoma cells of the Ishikawa-Var I line. The maximal AlkP activity elicited by the isoflavonoids tested was as high as that achieved with estradiol and their effects were suppressed by the antiestrogens 4-hydroxytamoxifen and ICI 164,384. These results indicate that estradiol and the isoflavonoids exert their effects on AlkP by similar interactions with the estrogen receptor, with potencies depending on binding affinities. The estrogenic effect of equol was confirmed by another in vitro bioassay, based on the estrogen-stimulated enhancement of prostaglandin F2 alpha output by fragments of human secretory endometrium.

  15. Fuel cell system with interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhien; Goettler, Richard; Delaforce, Philip Mark

    2016-03-08

    The present invention includes a fuel cell system having an interconnect that reduces or eliminates diffusion (leakage) of fuel and oxidant by providing an increased densification, by forming the interconnect as a ceramic/metal composite.

  16. Bioassay Labels Based on Apoferritin Nanovehicles

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guodong; Wang, Jun; Lea, Alan S.; Lin, Yuehe

    2006-09-04

    Here we report a nanoparticle label based on apoferritin nanovehicle loaded internally with markers for sensitive electrochemical DNA detection. The central cavity structure, the dissociation and reconstitute properties at different pHs of apoferritin provide a facile method to load and release markers. Hexacynoferrate(III) was used as model marker to load into the cavity of apoferritin protein cage. The loaded nanoparticle surface was functionalized with amino-modified DNA probe. Electrochemical DNA hybridization assay based on the hexacynoferrate loaded apoferritin nanovehicle could detect 23 atmol DNA targets in 50 ul sample solution. The concept could be readily extended to load other redox and fluorescence markers for bioassay applications. The new nanoparticle labels hold great promise for multi-target detection (in connection to nanoparticles loaded with different markers) and for enhancing the sensitivity of other bioassays.

  17. Applicability of the CALUX bioassay for screening of dioxin levels in human milk samples

    DEFF Research Database (Denmark)

    Laier, P.; Cederberg, Tommy Licht; Larsen, John Christian;

    2003-01-01

    . The results obtained with the bioassay when testing milk extracts fractionated into dioxins/furans, non-ortho PCB and mono/di-ortho PCB fractions indicated that the correlation between the bioassay and the chemical analyses depends primarily on the A receptor activity observed in the mono/di-ortho PCB......The CALUX (chemically activated luciferase expression) bioassay based on rat hepatoma (H4IIE) cells is a sensitive assay for the detection of Ah receptor agonists like 2,3,7,8-substituted chlorinated dibenzo-p-dioxins and dibenzofurans and related PCBs. In this paper, the assay was optimized...... and applied for monitoring levels of dioxins in human milk samples. Combination effects of dioxin-like compounds were evaluated by testing potential mechanisms of interaction between seven of the major dioxin-like compounds in human milk using the isobole method. Results showed that the compounds acted...

  18. Strategies for Transferring Mixtures of Organic Contaminants from Aquatic Environments into Bioassays

    DEFF Research Database (Denmark)

    Jahnke, Annika; Mayer, Philipp; Schäfer, Sabine

    2016-01-01

    into bioassays, while conserving (or re-establishing) their chemical composition at adjustable levels for concentration-effect assessment. This article outlines various strategies for quantifiable transfer from environmental samples including water, sediment, and biota into bioassays using total extraction...... and monitoring of such mixtures, a variety of cell-based in vitro and low-complexity in vivo bioassays based on algae, daphnids or fish embryos are available. A very important and sometimes unrecognized challenge is how to combine sampling, extraction and dosing to transfer the mixtures from the environment......Mixtures of organic contaminants are ubiquitous in the environment. Depending on their persistence and physicochemical properties, individual chemicals that make up the mixture partition and distribute within the environment and might then jointly elicit toxicological effects. For the assessment...

  19. Strategies for Transferring Mixtures of Organic Contaminants from Aquatic Environments into Bioassays.

    Science.gov (United States)

    Jahnke, Annika; Mayer, Philipp; Schäfer, Sabine; Witt, Gesine; Haase, Nora; Escher, Beate I

    2016-06-07

    Mixtures of organic contaminants are ubiquitous in the environment. Depending on their persistence and physicochemical properties, individual chemicals that make up the mixture partition and distribute within the environment and might then jointly elicit toxicological effects. For the assessment and monitoring of such mixtures, a variety of cell-based in vitro and low-complexity in vivo bioassays based on algae, daphnids or fish embryos are available. A very important and sometimes unrecognized challenge is how to combine sampling, extraction and dosing to transfer the mixtures from the environment into bioassays, while conserving (or re-establishing) their chemical composition at adjustable levels for concentration-effect assessment. This article outlines various strategies for quantifiable transfer from environmental samples including water, sediment, and biota into bioassays using total extraction or polymer-based passive sampling combined with either solvent spiking or passive dosing.

  20. White blood cell counting system

    Science.gov (United States)

    1972-01-01

    The design, fabrication, and tests of a prototype white blood cell counting system for use in the Skylab IMSS are presented. The counting system consists of a sample collection subsystem, sample dilution and fluid containment subsystem, and a cell counter. Preliminary test results show the sample collection and the dilution subsystems are functional and fulfill design goals. Results for the fluid containment subsystem show the handling bags cause counting errors due to: (1) adsorption of cells to the walls of the container, and (2) inadequate cleaning of the plastic bag material before fabrication. It was recommended that another bag material be selected.

  1. Compatibility of hydroxypropyl-{beta}-cyclodextrin with algal toxicity bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Fai, Patricia Bi; Grant, Alastair [School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ (United Kingdom); Reid, Brian J. [School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ (United Kingdom)], E-mail: b.reid@uea.ac.uk

    2009-01-15

    Numerous reports have indicated that hydrophobic organic compound bioaccessibility in sediment and soil can be determined by extraction using aqueous hydroxypropyl-{beta}-cyclodextrin (HPCD) solutions. This study establishes the compatibility of HPCD with Selenastrum capricornutum and assesses whether its presence influences the toxicity of reference toxicants. Algal growth inhibition (72 h) showed no significant (P > 0.05) difference at HPCD concentrations up to and including 20 mM. HPCD presence did not influence the toxicity of the inorganic reference toxicant (ZnSO{sub 4}), with IC50 values of 0.82 {mu}M and 0.85 {mu}M, in the presence and absence of HPCD (20 mM), respectively. However, HPCD presence (20 mM) reduced the toxicity of 2,4-dichlorophenol and the herbicides diuron and isoproturon. These reductions were attributed to inclusion complex formation between the toxicants and the HPCD cavity. Liberation of complexed toxicants, by sample manipulation prior to toxicity assessment, is proposed to provide a sensitive, high throughput, bioassay that reflects compound bioaccessibility. - Compatibility of the biomimetic HPCD extraction method with algal cell growth inhibition bioassays to assess toxicity of reference toxicants and environmental relevant herbicides.

  2. Ethyl acetate fraction of Garcina epunctata induces apoptosis in human promyelocytic cells (HL-60) through the ROS generation and G0/G1 cell cycle arrest: a bioassay-guided approach.

    Science.gov (United States)

    Constant Anatole, Pieme; Guru, Santoh Kumar; Bathelemy, Ngamegni; Jeanne, Ngogang; Bhushan, Shashi; Murayama, Tetsuya; Saxena, Ajit Kumar

    2013-11-01

    Number of deaths due to cancer diseases is increasing in the world. There is an urgent need to develop alternative therapeutic measures against the disease. Our study reports the cytotoxicity activity of Garcina epunctata (gutifferae) in human promyelocytic leukemia cells (HL-60) and prostate cancer cells (PC-3) was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Changes in mitochondrial membrane potential (MMP), reactive oxygen species (ROS) and morphological changes associated with apoptosis were examined by flow cytometry and Hoescht staining respectively. The results of in vitro antiproliferative screening of fractions and extract from G. epunctata indicated that three fractions inhibited the viability of PC-3 cells with IC₅₀ varied from 50 to 88 μ/ml while two fractions inhibited the proliferation of HL-60 cells with IC₅₀ range between 47.5 and 12 μg/ml. Among the entire fraction tested, Hex-EtOAc (75:25) showed cytotoxic effects on the two cell lines and EtOAc fraction was most active only HL-60 cells (12 μg/ml). Treatment of HL-60 cells with G. epunctata (20, 50, 100 μg/ml) for 24 h led to a significant dose-dependent increase in the percentage of cells in sub-G1 phase by analysis of the content of DNA in cells, and a number of apoptotic bodies containing nuclear fragments were observed in cells treated with 100 μg/ml. The EtOAc fraction of G. epunctata treatment significantly arrested HL-60 cells at the G0/G1 phase (pHL-60 cells, leading to cell cycle arrest and programmed cell death, which was confirmed to occur through the mitochondrial pathway.

  3. Laboratory bioassay for assessing the effects of sludge supernatant on plant growth and vesicular-arbuscular mycorrhiza formation

    Energy Technology Data Exchange (ETDEWEB)

    Bohn, K.S.; Liberta, A.E.

    1982-12-01

    A laboratory bioassay is described for assessing the effects of sludge supernatant on juvenile corn growth and the ability of vesicular-arbuscular (VA) mycorrhizal fungi, indigenous to coal spoil, to form mycorrhizae. The bioassay demonstrated that application rates can be identified that have the potential to promote increased plant dry weight without suppressing the formation of VA mycorrhizae in a plant's root system.

  4. Genotoxic evaluation of an industrial effluent from an oil refinery using plant and animal bioassays

    Directory of Open Access Journals (Sweden)

    Fernando Postalli Rodrigues

    2010-01-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are genotoxic chemicals commonly found in effluents from oil refineries. Bioassays using plants and cells cultures can be employed for assessing environmental safety and potential genotoxicity. In this study, the genotoxic potential of an oil refinery effluent was analyzed by means of micronucleus (MN testing of Alium cepa, which revealed no effect after 24 h of treatment. On the other hand, primary lesions in the DNA of rat (Rattus norvegicus hepatoma cells (HTC were observed through comet assaying after only 2 h of exposure. On considering the capacity to detect DNA damage of a different nature and of these cells to metabolize xenobiotics, we suggest the association of the two bioassays with these cell types, plant (Allium cepa and mammal (HTC cells, for more accurately assessing genotoxicity in environmental samples.

  5. In-situ bioassays using caged bivalves

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, M.H.; Salazar, S.M.

    1995-12-31

    It is important to make the distinction between chemical measurements to assess bioaccumulation potential versus biological measurements to assess potential bioeffects because bioaccumulation is not a bioeffect. Caging provides a unique opportunity to make synoptic measurements of each and facilitates making these measurements over space and time. Measuring bioaccumulation in resident and transplanted bivalves has probably been the most frequently used form of an in-situ bioassay because bivalves concentrate chemicals in their tissues. They are also easy to collect, cage, and measure. The authors have refined bivalve bioassay methods by minimizing the size range of test animals, making repetitive measurements of the same individuals, and standardizing test protocols for a variety of applications. They are now attempting to standardize criteria for accepting and interpreting data in the same way that laboratory bioassays have been standardized. Growth measurements can serve two purposes in this assessment strategy: (1) An integrated biological response endpoint that is easily quantifiable and with significance to the population, and (2) A means of calibrating bioaccumulation by assessing the relative health and physiological state of tissues that have accumulated the chemicals. In general, the authors have found the highest bioconcentration factors associated with the highest growth rates, the highest concentrations ({micro}g/g) of chemicals in juvenile mussels, and the highest chemical content ({micro}g/animal) in adult mussels. Without accounting for possible dilution of chemical concentrations by tissue growth or magnification through degrowth, contaminant concentrations can be misleading. Examples are provided for the Sudbury River in Massachusetts (Elliptio complanata), San Diego Bay (Mytilus galloprovincialis), and the Harbor Island Superfund Site in Puget Sound (Mytilus trossulus).

  6. Aspartame bioassay findings portend human cancer hazards.

    Science.gov (United States)

    Huff, James; LaDou, Joseph

    2007-01-01

    The U.S. Food and Drug Administration (FDA) should reevaluate its position on aspartame as being safe under all conditions. Animal bioassay results predict human cancer risks, and a recent animal study confirms that there is a potential aspartame risk to humans. Aspartame is produced and packaged in China for domestic use and global distribution. Japan, France, and the United States are also major producers. No study of long-term adverse occupational health effects on aspartame workers have been conducted. The FDA should consider sponsoring a prospective epidemiologic study of aspartame workers.

  7. Novel bacterial bioassay for a high-throughput screening of 4-hydroxyphenylpyruvate dioxygenase inhibitors.

    Science.gov (United States)

    Rocaboy-Faquet, Emilie; Noguer, Thierry; Romdhane, Sana; Bertrand, Cédric; Dayan, Franck Emmanuel; Barthelmebs, Lise

    2014-08-01

    Plant 4-hydroxyphenylpyruvate dioxygenase (HPPD) is the molecular target of a range of synthetic β-triketone herbicides that are currently used commercially. Their mode of action is based on an irreversible inhibition of HPPD. Therefore, this inhibitory capacity was used to develop a whole-cell colorimetric bioassay with a recombinant Escherichia coli expressing a plant HPPD for the herbicide analysis of β-triketones. The principle of the bioassay is based on the ability of the recombinant E. coli clone to produce a soluble melanin-like pigment, from tyrosine catabolism through p-hydroxyphenylpyruvate and homogentisate. The addition of sulcotrione, a HPPD inhibitor, decreased the pigment production. With the aim to optimize the assay, the E. coli recombinant clone was immobilized in sol-gel or agarose matrix in a 96-well microplate format. The limit of detection for mesotrione, tembotrione, sulcotrione, and leptospermone was 0.069, 0.051, 0.038, and 20 μM, respectively, allowing to validate the whole-cell colorimetric bioassay as a simple and cost-effective alternative tool for laboratory use. The bioassay results from sulcotrione-spiked soil samples were confirmed with high-performance liquid chromatography.

  8. Neotropical electric fishes (Gymnotiformes as model organisms for bioassays

    Directory of Open Access Journals (Sweden)

    Milena Ferreira

    2015-04-01

    Full Text Available Electric fishes (Gymnotiformes inhabit Central and South America and form a relatively large group with more than 200 species. Besides a taxonomic challenge due to their still unresolved systematic, wide distribution and the variety of habitats they occupy, these fishes have been intensively studied due to their peculiar use of bioelectricity for electrolocation and communication. Conventional analysis of cells, tissues and organs have been complemented with the studies on the electric organ discharges of these fishes. This review compiles the results of 13 bioassays developed during the last 50 years, which used the quickness, low costs and functionality of the bioelectric data collection of Gymnotiformes to evaluate the effects of environmental contaminants and neuroactive drugs.

  9. Neotropical electric fishes (Gymnotiformes) as model organisms for bioassays

    Institute of Scientific and Technical Information of China (English)

    Milena Ferreira; Isac Silva de Jesus; Eliana Feldberg; JoséAntônioAlves-Gomes

    2015-01-01

    Electric fishes (Gymnotiformes) inhabit Central and South America and form a relatively large group with more than 200 species. Besides a taxonomic challenge due to their still unresolved systematic, wide distribution and the variety of habitats they occupy, these fishes have been intensively studied due to their peculiar use of bioelectricity for electrolocation and communication. Conventional analysis of cells, tissues and organs have been complemented with the studies on the electric organ discharges of these fishes. This review compiles the results of 13 bioassays developed during the last 50 years, which used the quickness, low costs and functionality of the bioelectric data collection of Gymnotiformes to evaluate the effects of environmental contaminants and neuroactive drugs.

  10. Bioassay and radioimmunoassay of lactogens in sera from children.

    Science.gov (United States)

    Gout, P W; Tze, W J; Rennie, P S; Bruchovsky, N

    1984-05-16

    Lactogen levels in sera from children have been determined using the Nb 2 lymphoma cell bioassay (BA) and conventional radioimmunoassay (RIA). Assays were done on samples obtained under basal conditions and after pituitary stimulation induced by insulin or arginine administration. There was a close correspondence between BA and RIA results (r = 0.94; n = 43). The average ratio of the BA and RIA estimates of the lactogen levels (BA/RIA) was 0.86 +/- 0.13 (mean +/- SD) and 0.82 +/- 0.17 for basal and stimulated conditions, respectively. The increased secretion of lactogens after pituitary stimulation was not found to be associated with a change in the BA/RIA ratio.

  11. Bioassay-guided isolation of antiatherosclerotic phytochemicals from Artocarpus altilis.

    Science.gov (United States)

    Wang, Yu; Deng, Tongle; Lin, Lin; Pan, Yuanjiang; Zheng, Xiaoxiang

    2006-12-01

    The cytoprotective effects of various solvent extracts of Artocarpus altilis (Parkinson) Fosberg were evaluated. The cytoprotective effects were determined in human U937 cells incubated with oxidized LDL (OxLDL) using the 4-[3-(4-iodophenyl)-2-(4-nitrophenyl)-2H-5-tetrazolio]-1, 3-benzene disulfonate (WST-1) assay. The results demonstrated that the ethyl acetate extract showed cytoprotective activities. To identify the main cytoprotective components, a bioassay guided isolation of the ethyl acetate extract afforded b-sitosterol (1) and six flavonoids (2-7). Their chemical structures were established on the basis of spectroscopic evidence and comparison with literature data. Of these compounds, compound 6 was obtained from A. altilis for the first time. The cytoprotective effect offers good prospects for the medicinal applications of A. altilis.

  12. Development of Dendritic Cell System

    Institute of Scientific and Technical Information of China (English)

    Li Wu; Aleksandar Dakic

    2004-01-01

    The dendritic cell system contains conventional dendritic cells (DCs) and plasmacytoid pre-dendritic cells (pDCs). Both DCs and pDCs are bone marrow derived cells. Although the common functions of DCs are antigen-processing and T-lymphocyte activation, they differ in surface markers, migratory patterns, and cytokine output. These differences can determine the fate of the T cells they activate. Several subsets of mature DCs have been described in both mouse and human and the developmental processes of these specialized DC subsets have been studied extensively. The original concept that all DCs were of myeloid origin was questioned by several recent studies, which demonstrated that in addition to the DCs derived from myeloid precursors,some DCs could also be efficiently generated from lymphoid-restricted precursors. Moreover, it has been shown recently that both conventional DCs and pDCs can be generated by the Flt3 expressing hemopoietic progenitors regardless of their myeloid- or lymphoid-origin. These findings suggest an early developmental flexibility of precursors for DCs and pDCs. This review summarizes some recent observations on the development of DC system in both human and mouse.

  13. Selection of gonadotrophin surge attenuating factor phage antibodies by bioassay

    Directory of Open Access Journals (Sweden)

    Mason Helen D

    2005-09-01

    Full Text Available Abstract Background We aimed to combine the generation of "artificial" antibodies with a rat pituitary bioassay as a new strategy to overcome 20 years of difficulties in the purification of gonadotrophin surge-attenuating factor (GnSAF. Methods A synthetic single-chain antibody (Tomlinson J phage display library was bio-panned with partially purified GnSAF produced by cultured human granulosa/luteal cells. The initial screening with a simple binding immunoassay resulted in 8 clones that were further screened using our in-vitro rat monolayer bioassay for GnSAF. Initially the antibodies were screened as pooled phage forms and subsequently as individual, soluble, single-chain antibody (scAbs forms. Then, in order to improve the stability of the scAbs for immunopurification purposes, and to widen the range of labelled secondary antibodies available, these were engineered into full-length human immunoglobulins. The immunoglobulin with the highest affinity for GnSAF and a previously described rat anti-GnSAF polyclonal antiserum was then used to immunopurify bioactive GnSAF protein. The two purified preparations were electrophoresed on 1-D gels and on 7 cm 2-D gels (pH 4–7. The candidate GnSAF protein bands and spots were then excised for peptide mass mapping. Results Three of the scAbs recognised GnSAF bioactivity and subsequently one clone of the purified scAb-derived immunoglobulin demonstrated high affinity for GnSAF bioactivity, also binding the molecule in such as way as to block its bioactivity. When used for repeated immunopurification cycles and then Western blot, this antibody enabled the isolation of a GnSAF-bioactive protein band at around 66 kDa. Similar results were achieved using the rat anti-GnSAF polyclonal antiserum. The main candidate molecules identified from the immunopurified material by excision of 2-D gel protein spots was human serum albumin precursor and variants. Conclusion This study demonstrates that the combination of

  14. Development of cell-based bioassay with SF9 cells expressing TcSKR1 and TcSKR2 and differential activation by sulfated and non-sulfated SK peptides involved in food intake regulation

    Science.gov (United States)

    Insect sulfakinin receptors (SKRs) are G-protein-coupled receptors (GPCRs) that interact with sulfakinins (SKs) to modulate diverse biological processes. One of the indispensable roles of SKs is in the regulation of food intake in insects. In this project we report on the development of a cell-bas...

  15. A novel high-throughput irradiator for in vitro radiation sensitivity bioassays

    Science.gov (United States)

    Fowler, Tyler L.

    Given the emphasis on more personalized radiation therapy there is an ongoing and compelling need to develop high-throughput screening tools to further examine the biological effects of ionizing radiation on cells, tissues and organ systems in either the research or clinical setting. Conventional x-ray irradiators are designed to provide maximum versatility to radiobiology researchers, typically accommodating small animals, tissue or blood samples, and cellular applications. This added versatility often impedes the overall sensitivity and specificity of an experiment resulting in a trade-off between the number of absorbed doses (or dose rates) and biological endpoints that can be investigated in vitro in a reasonable amount of time. Therefore, modern irradiator designs are incompatible with current high-throughput bioassay technologies. Furthermore, important dosimetry and calibration characteristics (i.e. dose build-up region, beam attenuation, and beam scatter) of these irradiators are typically unknown to the end user, which can lead to significant deviation between delivered dose and intended dose to cells that adversely impact experimental results. Therefore, the overarching goal of this research is to design and develop a robust and fully automated high-throughput irradiator for in vitro radiation sensitivity investigations. Additionally, in vitro biological validation of this system was performed by assessing intracellular reactive oxygen species production, physical DNA double strand breaks, and activation of cellular DNA repair mechanisms. Finally, the high-throughput irradiator was used to investigate autophagic flux, a cellular adaptive response, as a potential biomarker of radiation sensitivity.

  16. A rapid and high-throughput quantum dots bioassay for monitoring of perfluorooctane sulfonate in environmental water samples

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jiong; Wan Yanjian; Li Yuanyuan; Zhang Qiongfang; Xu Shunqing [Minister of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030 (China); Zhu Huijun [Cranfield Health, Cranfield University, Kempston, Bedfordshire, MK43 0AL (United Kingdom); Shu Baihua, E-mail: shubaihua@hotmail.com [Minister of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030 (China)

    2011-05-15

    Currently HPLC/MS is the state of the art tool for environmental/drinking water perfluorooctane sulfonate (PFOS) monitoring. PFOS can bind to peroxisomal proliferator-activated receptor-alpha (PPAR{alpha}), which forms heterodimers with retinoid X receptors (RXRs) and binds to PPAR response elements. In this bioassay free PFOS in water samples competes with immobilized PFOS in ELISA plates for a given amount of PPAR{alpha}-RXR{alpha}. It can be determined indirectly by immobilizing PPAR{alpha}-RXR{alpha}-PFOS complex to another plate coated with PPAR{alpha} antibody and subsequent measuring the level of PPAR{alpha}-RXR{alpha} by using biotin-modified PPAR{alpha}-RXR{alpha} probes-quantum dots-streptavidin detection system. The rapid and high-throughput bioassay demonstrated a detection limit of 2.5 ng L{sup -1} with linear range between 2.5 ng L{sup -1} and 75 ng L{sup -1}. Detection results of environmental water samples were highly consistent between the bioassay and HPLC/MS. - We developed a rapid and high-throughput bioassay for monitoring of PFOS in environmental water samples. - Highlights: > We developed a rapid and high-throughput bioassay for monitoring of PFOS in water. > We detected the PFOS concentration of water samples by two methods. > The bioassay is effective for evaluating PFOS contamination level.

  17. Zebrafish bioassay-guided natural product discovery: isolation of angiogenesis inhibitors from East African medicinal plants.

    Directory of Open Access Journals (Sweden)

    Alexander D Crawford

    Full Text Available Natural products represent a significant reservoir of unexplored chemical diversity for early-stage drug discovery. The identification of lead compounds of natural origin would benefit from therapeutically relevant bioassays capable of facilitating the isolation of bioactive molecules from multi-constituent extracts. Towards this end, we developed an in vivo bioassay-guided isolation approach for natural product discovery that combines bioactivity screening in zebrafish embryos with rapid fractionation by analytical thin-layer chromatography (TLC and initial structural elucidation by high-resolution electrospray mass spectrometry (HRESIMS. Bioactivity screening of East African medicinal plant extracts using fli-1:EGFP transgenic zebrafish embryos identified Oxygonum sinuatum and Plectranthus barbatus as inhibiting vascular development. Zebrafish bioassay-guided fractionation identified the active components of these plants as emodin, an inhibitor of the protein kinase CK2, and coleon A lactone, a rare abietane diterpenoid with no previously described bioactivity. Both emodin and coleon A lactone inhibited mammalian endothelial cell proliferation, migration, and tube formation in vitro, as well as angiogenesis in the chick chorioallantoic membrane (CAM assay. These results suggest that the combination of zebrafish bioassays with analytical chromatography methods is an effective strategy for the rapid identification of bioactive natural products.

  18. Zebrafish Bioassay-Guided Natural Product Discovery: Isolation of Angiogenesis Inhibitors from East African Medicinal Plants

    Science.gov (United States)

    Crawford, Alexander D.; Liekens, Sandra; Kamuhabwa, Appolinary R.; Maes, Jan; Munck, Sebastian; Busson, Roger; Rozenski, Jef; Esguerra, Camila V.; de Witte, Peter A. M.

    2011-01-01

    Natural products represent a significant reservoir of unexplored chemical diversity for early-stage drug discovery. The identification of lead compounds of natural origin would benefit from therapeutically relevant bioassays capable of facilitating the isolation of bioactive molecules from multi-constituent extracts. Towards this end, we developed an in vivo bioassay-guided isolation approach for natural product discovery that combines bioactivity screening in zebrafish embryos with rapid fractionation by analytical thin-layer chromatography (TLC) and initial structural elucidation by high-resolution electrospray mass spectrometry (HRESIMS). Bioactivity screening of East African medicinal plant extracts using fli-1:EGFP transgenic zebrafish embryos identified Oxygonum sinuatum and Plectranthus barbatus as inhibiting vascular development. Zebrafish bioassay-guided fractionation identified the active components of these plants as emodin, an inhibitor of the protein kinase CK2, and coleon A lactone, a rare abietane diterpenoid with no previously described bioactivity. Both emodin and coleon A lactone inhibited mammalian endothelial cell proliferation, migration, and tube formation in vitro, as well as angiogenesis in the chick chorioallantoic membrane (CAM) assay. These results suggest that the combination of zebrafish bioassays with analytical chromatography methods is an effective strategy for the rapid identification of bioactive natural products. PMID:21379387

  19. The Intersection of CMOS Microsystems and Upconversion Nanoparticles for Luminescence Bioimaging and Bioassays

    Directory of Open Access Journals (Sweden)

    Liping Wei

    2014-09-01

    Full Text Available Organic fluorophores and quantum dots are ubiquitous as contrast agents for bio-imaging and as labels in bioassays to enable the detection of biological targets and processes. Upconversion nanoparticles (UCNPs offer a different set of opportunities as labels in bioassays and for bioimaging. UCNPs are excited at near-infrared (NIR wavelengths where biological molecules are optically transparent, and their luminesce in the visible and ultraviolet (UV wavelength range is suitable for detection using complementary metal-oxide-semiconductor (CMOS technology. These nanoparticles provide multiple sharp emission bands, long lifetimes, tunable emission, high photostability, and low cytotoxicity, which render them particularly useful for bio-imaging applications and multiplexed bioassays. This paper surveys several key concepts surrounding upconversion nanoparticles and the systems that detect and process the corresponding luminescence signals. The principle of photon upconversion, tuning of emission wavelengths, UCNP bioassays, and UCNP time-resolved techniques are described. Electronic readout systems for signal detection and processing suitable for UCNP luminescence using CMOS technology are discussed. This includes recent progress in miniaturized detectors, integrated spectral sensing, and high-precision time-domain circuits. Emphasis is placed on the physical attributes of UCNPs that map strongly to the technical features that CMOS devices excel in delivering, exploring the interoperability between the two technologies.

  20. Application of bioassays in toxicological hazard, risk and impact assessments of dredged sediments.

    Science.gov (United States)

    Schipper, C A; Rietjens, I M C M; Burgess, R M; Murk, A J

    2010-11-01

    Given the potential environmental consequences of dumped dredged harbour sediments it is vital to establish the potential risks from exposure before disposal at sea. Currently, European legislation for disposal of contaminated sediments at sea is based on chemical analysis of a limited number of well-known contaminants for which maximum acceptable concentrations, action levels (ALs), have been set. The present paper addresses the issue of the applicability of in vitro and in vivo bioassays for hazard, risk and local impact assessment of dredged polluted sediments to be disposed of at sea. It discusses how and to what extent selected bioassays can fill in the gaps left open by chemical analysis and the way in which the bioassays may contribute to the present licensing system for disposal. Three different purposes for application were distinguished: the most basic application (A) is a rapid determination of the hazard (potential toxicity) of dredged sediments which is then compared to ALs in a licensing system. As with chemical analysis on whole sediment extracts, the bioavailability of the chemicals is not taken into account. As in vitro assays with sediment extracts are not sensitive to matrix effects, a selection of specific in vitro bioassays can be suitable fast and standardized additions for the licensing system. When the outcome of (A) does not convincingly demonstrate whether the sediment is clean enough or too polluted, further bioanalysis can help the decision making process (B). More aspects of the mostly unknown complex chemical mixtures are taken into account, including the bioavailability and chronic toxicity focusing on ecologically relevant endpoints. The ecotoxicological pressure imposed by the dredged sediments can be quantified as the potentially affected fraction (PAF) based on chemical or biological analysis of levels of contaminants in sediment or biota. To validate the predicted risk, the actual impact of dumped harbour sediments on local

  1. Development of Dendritic Cell System

    Institute of Scientific and Technical Information of China (English)

    LiWu; AleksandarDakic

    2004-01-01

    The dendritic cell system contains conventional dendritic cells (DCs) and plasmacytoid pre-dendritic cells (pDCs). Both DCs and pDCs are bone marrow derived calls. Although the common functions of DCs are antigen-processing and T-lymphocyte activation, they differ in surface markers, migratory patterns, and cytokine output. These differences can determine the fate of the T cells they activate. Several subsets of mature DCs have been described in both mouse and human and the developmental processes of these specialized DC subsets have been studied extensively. The original concept that all DCs were of myeloid origin was questioned by several recent studies, which demonstrated that in addition to the DCs derived from myeloid precursors, some DCs could also be efficiently generated from lymphoid-restricted precursors. Moreover, it has been shown recently that both conventional DCs and pDCs can be generated by the Fit3 expressing hemopoietic progenitors regardless of their myeloid- or lymphoid-origin. These findings suggest an early developmental flexibility of precursors for DCs and pDCs. This review summarizes some recent observations on the development of DC system in both human and mouse. Cellular & Molecular Immunology. 2004;1(2):112-118.

  2. Bioassay for Toxic and Hazardous Materials. Training Manual.

    Science.gov (United States)

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    This course is intended for personnel who have an operational or administrative responsibility for the design and use of bioassay and biomonitoring, and who have no experience in conducting static bioassays. The training consists of classroom discussions, laboratory exercises and demonstrations, and demonstration and observation activities. (CO)

  3. Mechatronics in fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Stefanopoulou, Anna G.; Kyungwon Suh [Mechanical Engineering Department, University of Michigan, 1231 Beal Avenue, Ann Arbor, MI 48109, (United States)

    2007-03-15

    Power generation from fuel cells (FCs) requires the integration of chemical, fluid, mechanical, thermal, electrical, and electronic subsystems. This integration presents many challenges and opportunities in the mechatronics field. This paper highlights important design issues and poses problems that require mechatronics solutions. The paper begins by describing the process of designing a toy school bus powered by hydrogen for an undergraduate student project. The project was an effective and rewarding educational activity that revealed complex systems issues associated with FC technology. (Author)

  4. Comprehensive integration of homogeneous bioassays via centrifugo-pneumatic cascading.

    Science.gov (United States)

    Godino, Neus; Gorkin, Robert; Linares, Ana V; Burger, Robert; Ducrée, Jens

    2013-02-21

    This work for the first time presents the full integration and automation concept for a range of bioassays leveraged by cascading a centrifugo-pneumatic valving scheme to sequentially move several liquids through shared channel segments for multi-step sample preparation into the detection zone. This novel centrifugo-pneumatic liquid handling significantly simplifies system manufacture by obviating the need for complex surface functionalization procedures or hybrid material integration, as it is common in conventional valving methods such as capillary burst valves or sacrificial valves. Based on the centrifugo-pneumatic valving scheme, this work presents a toolkit of operational elements implementing liquid loading/transfer, metering, mixing and sedimentation in a microstructured polymer disc. As a proof of concept for the broad class of homogeneous bioassays, the full integration and automation of a colorimetric nitrate/nitrite test for the detection of clinically relevant nitric oxide (NO) in whole blood is implemented. First, 40 μL of plasma is extracted from a 100 μL sample of human blood, incubated for one hour with the enzymatic mixture (60 μL), and finally reacted with 100 μL of colorimetric (Greiss) reagents. Following just a single loading phase at the beginning of the process, all of these steps are automated through the centrifugo-pneumatic cascade with a high level of flow control and synchronization. Our system shows good correlation with controls up to 50 μM of nitrate, which adequately covers the healthy human range (4 to 45.3 μM).

  5. Plasmonically amplified fluorescence bioassay with microarray format

    Science.gov (United States)

    Gogalic, S.; Hageneder, S.; Ctortecka, C.; Bauch, M.; Khan, I.; Preininger, Claudia; Sauer, U.; Dostalek, J.

    2015-05-01

    Plasmonic amplification of fluorescence signal in bioassays with microarray detection format is reported. A crossed relief diffraction grating was designed to couple an excitation laser beam to surface plasmons at the wavelength overlapping with the absorption and emission bands of fluorophore Dy647 that was used as a label. The surface of periodically corrugated sensor chip was coated with surface plasmon-supporting gold layer and a thin SU8 polymer film carrying epoxy groups. These groups were employed for the covalent immobilization of capture antibodies at arrays of spots. The plasmonic amplification of fluorescence signal on the developed microarray chip was tested by using interleukin 8 sandwich immunoassay. The readout was performed ex situ after drying the chip by using a commercial scanner with high numerical aperture collecting lens. Obtained results reveal the enhancement of fluorescence signal by a factor of 5 when compared to a regular glass chip.

  6. Role of dispersion in fuel oil bioassay

    Energy Technology Data Exchange (ETDEWEB)

    Vanderhorst, J.R.; Gibson, C.I.; Moore, L.J.

    1976-01-01

    Three methods of oil-seawater contact were used to measure aqueous phase concentrations of No. 2 fuel oil and the resulting mortality of shrimp, PANDALUS DANAE. Oil--water entry methods included: (1) separate inflow below the water surface, (2) mixture inflow above the water surface, and (3) separate inflow above the water surface. The importance of standardizing the conditions under which oil and water are mixed prior to use in bioassay studies and the amount of dispersion that occurs during the exposure period was noted. Under the three sets of mixing conditions, identical volumes of oil and water resulted in significant differences in observed mortality and measured amounts of oil in the water column, as either total or soluble oil.

  7. Modelling larval movement data from individual bioassays.

    Science.gov (United States)

    McLellan, Chris R; Worton, Bruce J; Deasy, William; Birch, A Nicholas E

    2015-05-01

    We consider modelling the movements of larvae using individual bioassays in which data are collected at a high-frequency rate of five observations per second. The aim is to characterize the behaviour of the larvae when exposed to attractant and repellent compounds. Mixtures of diffusion processes, as well as Hidden Markov models, are proposed as models of larval movement. These models account for directed and localized movements, and successfully distinguish between the behaviour of larvae exposed to attractant and repellent compounds. A simulation study illustrates the advantage of using a Hidden Markov model rather than a simpler mixture model. Practical aspects of model estimation and inference are considered on extensive data collected in a study of novel approaches for the management of cabbage root fly.

  8. Paper-based chromatic toxicity bioassay by analysis of bacterial ferricyanide reduction.

    Science.gov (United States)

    Pujol-Vila, F; Vigués, N; Guerrero-Navarro, A; Jiménez, S; Gómez, D; Fernández, M; Bori, J; Vallès, B; Riva, M C; Muñoz-Berbel, X; Mas, J

    2016-03-03

    Water quality assessment requires a continuous and strict analysis of samples to guarantee compliance with established standards. Nowadays, the increasing number of pollutants and their synergistic effects lead to the development general toxicity bioassays capable to analyse water pollution as a whole. Current general toxicity methods, e.g. Microtox(®), rely on long operation protocols, the use of complex and expensive instrumentation and sample pre-treatment, which should be transported to the laboratory for analysis. These requirements delay sample analysis and hence, the response to avoid an environmental catastrophe. In an attempt to solve it, a fast (15 min) and low-cost toxicity bioassay based on the chromatic changes associated to bacterial ferricyanide reduction is here presented. E. coli cells (used as model bacteria) were stably trapped on low-cost paper matrices (cellulose-based paper discs, PDs) and remained viable for long times (1 month at -20 °C). Apart from bacterial carrier, paper matrices also acted as a fluidic element, allowing fluid management without the need of external pumps. Bioassay evaluation was performed using copper as model toxic agent. Chromatic changes associated to bacterial ferricyanide reduction were determined by three different transduction methods, i.e. (i) optical reflectometry (as reference method), (ii) image analysis and (iii) visual inspection. In all cases, bioassay results (in terms of half maximal effective concentrations, EC50) were in agreement with already reported data, confirming the good performance of the bioassay. The validation of the bioassay was performed by analysis of real samples from natural sources, which were analysed and compared with a reference method (i.e. Microtox). Obtained results showed agreement for about 70% of toxic samples and 80% of non-toxic samples, which may validate the use of this simple and quick protocol in the determination of general toxicity. The minimum instrumentation

  9. A new PCR-based bioassay strategy for the detection of type A trichothecenes in food.

    Science.gov (United States)

    Bowens, Priscilla; Lancova, Katerina; Dip, Ramiro; Povilaityte, Vitalija; Stroka, Jörg; Naegeli, Hanspeter

    2009-05-01

    Type A trichothecenes (primarily T-2 and HT-2 toxins) are common fungal metabolites found in a wide range of grains and other field crops grown in temperate climatic zones. By acting as potent inhibitors of protein synthesis, T-2 and HT-2 exert adverse effects particularly against rapidly proliferating tissues, including the bone marrow, the immune system and epithelial cells. Based on toxicity studies in laboratory and farm animals, a temporary tolerable daily intake for the sum of T-2 and HT-2 has been issued in the European Union. However, exposure assessments suggest that the combined intake of these natural compounds exceeds in many cases the proposed threshold. To further protect the consumers, it is therefore necessary to screen a large number of food samples for parts per billion levels of both T-2 and HT-2. Towards that goal, we are the first to report that these two type A trichothecenes induce fast and high-amplitude transcriptional changes in cultured human breast cancer cells. This specific response involving marker gene inductions by more than 1000-fold has been exploited to develop a real-time PCR-based screening method that displays a limit of detection of 5 ng g(-1) for T-2 and 10 ng g(-1) for HT-2. The practicability of this bioassay is demonstrated by its application to the detection of type A trichothecenes in different food matrices.

  10. Fluorescent multiplex cell flow systems and methods

    KAUST Repository

    Merzaban, Jasmeen

    2017-06-01

    Systems and methods are provided for simultaneously assaying cell adhesion or cell rolling for multiple cell specimens. One embodiment provides a system for assaying adhesion or cell rolling of multiple cell specimens that includes a confocal imaging system containing a parallel plate flow chamber, a pump in fluid communication with the parallel plate flow chamber via a flow chamber inlet line and a cell suspension in fluid communication with the parallel plate flow chamber via a flow chamber outlet line. The system also includes a laser scanning system in electronic communication with the confocal imaging system, and a computer in communication with the confocal imaging system and laser scanning system. In certain embodiments, the laser scanning system emits multiple electromagnetic wavelengths simultaneously it cause multiple fluorescent labels having different excitation wavelength maximums to fluoresce. The system can simultaneously capture real-time fluorescence images from at least seven cell specimens in the parallel plate flow chamber.

  11. Applicability of toxicity bioassays to ecological risk assessment in arid and semiarid ecosystems.

    Energy Technology Data Exchange (ETDEWEB)

    Markwiese, J. T.; Ryti, R. T.; Hooten, M. M.; Michael, D. I.; Hlohowskyj, I.; Environmental Assessment; Neptune and Company, Inc.

    2001-01-01

    Substantial tracts of land in the southwestern and western U.S. are undergoing or will require ERA. Toxicity bioassays employed in baseline ERAs are, for the most part. representative of mesic systems, and highly standardized test species (e.g., lettuce, earthworm) are generally not relevant to arid system toxicity testing. Conversely, relevant test species are often poorly characterized with regard to toxicant sensitivity and culture conditions. The applicability of toxicity bioassays to ecological risk assessment in arid and semiarid ecosystems was reviewed for bacteria and fungi, plants, terrestrial invertebrates, and terrestrial vertebrates. Bacteria and fungi are critical to soil processes, and understanding their ecology is important to understanding the ecological relevance of bioassays targeting either group. Terrestrial bacteria require a water film around soil particles to be active, while soil fungi can remain active in extremely dry soils. It is therefore expected that fungi will be of greater importance to arid and semiarid systems (Whitford 1989). If microbial processes are to be measured in soils of arid environments, it is recommended that bioassays target fungi. Regardless of the taxa studied, problems are associated with the standardization and interpretability of microbial tests, and regulatory acceptance may hinder widespread incorporation of microbial toxicity bioassays in arid system risk assessments. Plant toxicity bioassays are gaining recognition as sensitive indicators of soil conditions because they can provide a cost-effective and relatively rapid assessment of soil quality for both pre- and postremediation efforts. Although the choices of suitable plant species for assessing mesic system soils are numerous, the choices for arid system soils are limited. Guidance is provided for evaluating plant species with regard to their suitability for serving as representative arid system flora. Terrestrial invertebrates can survive and flourish in

  12. Biocomputing system of living cells

    Directory of Open Access Journals (Sweden)

    Aurelia Profir

    2002-11-01

    Full Text Available The aim of this paper1 is to show that the process of gene transcription can be represented as a finite automaton illustrating the processing of input/output signals in living cells at DNA level. It is proved that the expression regulation process of λ-phage genes cI and cro represents a molecular-genetic trigger (MGT which is a self-organizing structure with two stable states. It is shown that MGT can be described as a finite automaton fulfilling logical function NOT AND. A living cell can be represented as DNA-based molecular-genetic machine which has the following characteristics: input, output, transition states, language of computation, predetermined genetic program, memory and energy source. We propose a formal model of biocomputing system (having depth two that consists of three E.coli bacterium cell cultures. This model corresponding to an elementary logical scheme can solve a class of formula in the conjunctive normal form (like formula (1.

  13. Low-Level Plutonium Bioassay Measurements at the Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, T; Brown, T; Hickman, D; Marchetti, A; Williams, R; Kehl, S

    2007-06-18

    Plutonium-239 ({sup 239}Pu) and plutonium-240 ({sup 240}Pu) are important alpha emitting radionuclides contained in radioactive debris from nuclear weapons testing. {sup 239}Pu and {sup 240}Pu are long-lived radionuclides with half-lives of 24,400 years and 6580 years, respectively. Concerns over human exposure to plutonium stem from knowledge about the persistence of plutonium isotopes in the environment and the high relative effectiveness of alpha-radiation to cause potential harm to cells once incorporated into the human body. In vitro bioassay tests have been developed to assess uptakes of plutonium based on measured urinary excretion patterns and modeled metabolic behaviors of the absorbed radionuclides. Systemic plutonium absorbed by the deep lung or from the gastrointestinal tract after ingestion is either excreted or distributed to other organs, primarily to the liver and skeleton, where it is retained for biological half-times of around 20 and 50 years, respectively. Dose assessment and atoll rehabilitation programs in the Marshall Islands have historically given special consideration to residual concentrations of plutonium in the environment even though the predicted dose from inhalation and/or ingestion of plutonium accounts for less than 5% of the annual effective dose from exposure to fallout contamination. Scientists from the Lawrence Livermore National Laboratory (LLNL) have developed a state-of-the-art bioassay test to assess urinary excretion rates of plutonium from Marshallese populations. This new heavy-isotope measurement system is based on Accelerator Mass Spectrometry (AMS). The AMS system at LLNL far exceeds the standard measurement requirements established under the latest United States Department of Energy (DOE) regulation, 10CFR 835, for occupational monitoring of plutonium, and offers several advantages over classical as well as competing new technologies for low-level detection and measurement of plutonium isotopes. The United States

  14. Bioassay-Directed Fractionation of Diesel and Biodiesel Emissions

    Science.gov (United States)

    Biofuels are being developed as alternatives to petroleum-derived products, but published research is contradictory regarding the mutagenic activity of such emissions relative to those from petroleum diesel. We performed bioassay-directed fractionation and analyzed the polycyclic...

  15. Bioassay Phantoms Using Medical Images and Computer Aided Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Dr. X. Geroge Xu

    2011-01-28

    A radiation bioassay program relies on a set of standard human phantoms to calibrate and assess radioactivity levels inside a human body for radiation protection and nuclear medicine imaging purposes. However, the methodologies in the development and application of anthropomorphic phantoms, both physical and computational, had mostly remained the same for the past 40 years. We herein propose a 3-year research project to develop medical image-based physical and computational phantoms specifically for radiation bioassay applications involving internally deposited radionuclides. The broad, long-term objective of this research was to set the foundation for a systematic paradigm shift away from the anatomically crude phantoms in existence today to realistic and ultimately individual-specific bioassay methodologies. This long-term objective is expected to impact all areas of radiation bioassay involving nuclear power plants, U.S. DOE laboratories, and nuclear medicine clinics.

  16. Battery Cell Balancing System and Method

    Science.gov (United States)

    Davies, Francis J. (Inventor)

    2014-01-01

    A battery cell balancing system is operable to utilize a relatively small number of transformers interconnected with a battery having a plurality of battery cells to selectively charge the battery cells. Windings of the transformers are simultaneously driven with a plurality of waveforms whereupon selected battery cells or groups of cells are selected and charged. A transformer drive circuit is operable to selectively vary the waveforms to thereby vary a weighted voltage associated with each of the battery cells.

  17. Modular PEM Fuel Cell SCADA & Simulator System

    Directory of Open Access Journals (Sweden)

    Francisca Segura

    2015-09-01

    Full Text Available The paper presents a Supervision, Control, Data Acquisition and Simulation (SCADA & Simulator system that allows for real-time training in the actual operation of a modular PEM fuel cell system. This SCADA & Simulator system consists of a free software tool that operates in real time and simulates real situations like failures and breakdowns in the system. This developed SCADA & Simulator system allows us to properly operate a fuel cell and helps us to understand how fuel cells operate and what devices are needed to configure and run the fuel cells, from the individual stack up to the whole fuel cell system. The SCADA & Simulator system governs a modular system integrated by three PEM fuel cells achieving power rates higher than tens of kilowatts.

  18. Assessing the genotoxicity of urban air pollutants using two in situ plant bioassays.

    Science.gov (United States)

    Villarini, M; Fatigoni, C; Dominici, L; Maestri, S; Ederli, L; Pasqualini, S; Monarca, S; Moretti, M

    2009-12-01

    Genotoxicity of urban air has been analysed almost exclusively in airborne particulates. We monitored the genotoxic effects of airborne pollutants in the urban air of Perugia (Central Italy). Two plant bioindicators with different genetic endpoints were used: micronuclei in meiotic pollen mother cells using Tradescantia-micronucleus bioassay (Trad-MCN) and DNA damage in nuclei of Nicotiana tabacum leaves using comet assay (Nicotiana-comet). Buds of Tradescantia clone # 4430 and young N. tabacum cv. Xanthi plants were exposed for 24 h at three sites with different pollution levels. One control site (indoor control) was also used. The two bioassays showed different sensitivities toward urban pollutants: Trad-MCN assay was the most sensitive, but DNA damage in N. tabacum showed a better correlation with the pollutant concentrations. In situ biomonitoring of airborne genotoxins using higher plants combined with chemical analysis is thus recommended for characterizing genotoxicity of urban air.

  19. Bioassays as one of the Green Chemistry tools for assessing environmental quality: A review.

    Science.gov (United States)

    Wieczerzak, M; Namieśnik, J; Kudłak, B

    2016-09-01

    For centuries, mankind has contributed to irreversible environmental changes, but due to the modern science of recent decades, scientists are able to assess the scale of this impact. The introduction of laws and standards to ensure environmental cleanliness requires comprehensive environmental monitoring, which should also meet the requirements of Green Chemistry. The broad spectrum of Green Chemistry principle applications should also include all of the techniques and methods of pollutant analysis and environmental monitoring. The classical methods of chemical analyses do not always match the twelve principles of Green Chemistry, and they are often expensive and employ toxic and environmentally unfriendly solvents in large quantities. These solvents can generate hazardous and toxic waste while consuming large volumes of resources. Therefore, there is a need to develop reliable techniques that would not only meet the requirements of Green Analytical Chemistry, but they could also complement and sometimes provide an alternative to conventional classical analytical methods. These alternatives may be found in bioassays. Commercially available certified bioassays often come in the form of ready-to-use toxkits, and they are easy to use and relatively inexpensive in comparison with certain conventional analytical methods. The aim of this study is to provide evidence that bioassays can be a complementary alternative to classical methods of analysis and can fulfil Green Analytical Chemistry criteria. The test organisms discussed in this work include single-celled organisms, such as cell lines, fungi (yeast), and bacteria, and multicellular organisms, such as invertebrate and vertebrate animals and plants.

  20. Comparison and evaluation of a novel bioassay and high-performance liquid chromatography for the clinical measurement of serum voriconazole concentrations.

    Science.gov (United States)

    Steinmann, Joerg; Huelsewede, Joerg; Buer, Jan; Rath, Peter-Michael

    2011-09-01

    The aim of this study was to develop and validate a novel bioassay for determining serum voriconazole (VRC) concentrations and to compare its routine clinical performance with that of high-performance liquid chromatography (HPLC). The biological activity of VRC was measured by a plate diffusion assay using a VRC-hypersusceptible Candida kefyr strain. The bioassay's utility was tested by measuring steady-state VRC concentrations in 100 serum probes from VRC-treated patients. The HPLC system used solvent extraction with hexane:dichloromethane followed by reversed-phase HPLC with ultraviolet detection. The intra-day and inter-day accuracy of the bioassay was bioassay (0.5 mg l(-1)). The result of linear regression analysis was HPLC = 1.0178 (bioassay) + 0.328; R(2) = 0.88; n = 100. Results of the serum panel ranged from 0.5 to more than 8.0 mg l(-1) for the bioassay and from 0.26 to 10.1 mg l(-1) for HPLC. Especially in laboratories without access to HPLC, the bioassay may be a clinically useful tool for therapeutic drug monitoring.

  1. A Novel in vitro Bioassay to Explore the Repellent Effects of Compounds Against Mosquito Aedes aegypti (Diptera: Culicidae).

    Science.gov (United States)

    Rehman, Junaid U; Tabanca, Nurhayat; Khan, Ikhlas A

    2016-01-01

    Mosquitoes are vectors for many pathogens resulting in many deaths of humans. Repellents play an important role in reducing mosquito bites and the spread of mosquito-borne diseases. Currently, Klun & Debboun (K & D) and human-arm-based bioassay systems are used to identify repellent properties of compounds, extracts, and essential oils. Risks involved with human-arm-based systems are allergic reactions and limited replicates. We are reporting an in vitro bioassay method “NCNPR repellent bioassay (NCNPR-RB)” that can closely simulate the results of the cloth patch bioassay system used to determine repellency against mosquitoes. The NCNPRRB method uses heat to attract mosquito and edible collagen sheets as an alternate to human skin. Multiple plant compounds with documented repellency were tested. DEET (N,N-diethyl-3-methylbenzamide) was used as a positive control. Treatments were prepared in EtOH and applied in dosages ranging from 0.011–1.5mg/cm2 to a 20-cm2 collagen sheet. The number of mosquitoes commencing to bite per probe was recorded visually for 1 min. The minimum effective dosage (mg/cm2) of compounds: DEET (0.021), carvacrol (0.011), thymol (0.013), undecanoic acid (0.023), thymol methyl ether (0.269), and 2-nonanone (>0.375 mg/cm2) determined in NCNPRRB were similar to those reported in literature using a cloth patch bioassay system. The NCNPR-RB can be used to screen compounds with reasonable reproducibility of the data at a faster rate than the cloth patch bioassay, which involves the use of human subjects.

  2. Comparison of laboratory batch and flow-through microcosm bioassays.

    Science.gov (United States)

    Clément, Bernard J P; Delhaye, Hélène L; Triffault-Bouchet, Gaëlle G

    2014-10-01

    Since 1997, we have been developing a protocol for ecotoxicological bioassays in 2-L laboratory microcosms and have applied it to the study of various pollutants and ecotoxicological risk assessment scenarios in the area of urban facilities and transport infrastructures. The effects on five different organisms (micro-algae, duckweeds, daphnids, amphipods, chironomids) are assessed using biological responses such as growth, emergence (chironomids), reproduction (daphnids) and survival, with a duration of exposure of 3 weeks. This bioassay has mainly been used as a batch bioassay, i.e., the water was not renewed during the test. A flow-through microcosm bioassay has been developed recently, with the assumption that conditions for the biota should be improved, variability reduced, and the range of exposure patterns enlarged (e.g., the possibility of maintaining constant exposure in the water column). This paper compares the results obtained in batch and flow-through microcosm bioassays, using cadmium as a model toxicant. As expected, the stabilization of physico-chemical parameters, increased organism fitness and reduced variability were observed in the flow-through microcosm bioassay.

  3. Single-core magnetic markers in rotating magnetic field based homogeneous bioassays and the law of mass action

    Energy Technology Data Exchange (ETDEWEB)

    Dieckhoff, Jan, E-mail: j.dieckhoff@tu-bs.de [Institut fuer Elektrische Messtechnik und Grundlagen der Elektrotechnik, TU Braunschweig, Braunschweig (Germany); Schrittwieser, Stefan; Schotter, Joerg [Molecular Diagnostics, AIT Austrian Institute of Technology, Vienna (Austria); Remmer, Hilke; Schilling, Meinhard; Ludwig, Frank [Institut fuer Elektrische Messtechnik und Grundlagen der Elektrotechnik, TU Braunschweig, Braunschweig (Germany)

    2015-04-15

    In this work, we report on the effect of the magnetic nanoparticle (MNP) concentration on the quantitative detection of proteins in solution with a rotating magnetic field (RMF) based homogeneous bioassay. Here, the phase lag between 30 nm iron oxide single-core particles and the RMF is analyzed with a fluxgate-based measurement system. As a test analyte anti-human IgG is applied which binds to the protein G functionalized MNP shell and causes a change of the phase lag. The measured phase lag changes for a fixed MNP and a varying analyte concentration are modeled with logistic functions. A change of the MNP concentration results in a nonlinear shift of the logistic function with the analyte concentration. This effect results from the law of mass action. Furthermore, the bioassay results are used to determine the association constant of the binding reaction. - Highlights: • A rotating magnetic field based homogeneous bioassay concept was presented. • Here, single-core iron oxide nanoparticles are applied as markers. • The impact of the particle concentration on the bioassay results is investigated. • The relation between particle concentration and bioassay sensitivity is nonlinear. • This finding can be reasonably explained by the law of mass action.

  4. Acarine attractants: Chemoreception, bioassay, chemistry and control.

    Science.gov (United States)

    Carr, Ann L; Roe, Michael

    2016-07-01

    The Acari are of significant economic importance in crop production and human and animal health. Acaricides are essential for the control of these pests, but at the same time, the number of available pesticides is limited, especially for applications in animal production. The Acari consist of two major groups, the mites that demonstrate a wide variety of life strategies, i.e., herbivory, predation and ectoparasitism, and ticks which have evolved obligatory hematophagy. The major sites of chemoreception in the acarines are the chelicerae, palps and tarsi on the forelegs. A unifying name, the "foretarsal sensory organ" (FSO), is proposed for the first time in this review for the sensory site on the forelegs of all acarines. The FSO has multiple sensory functions including olfaction, gustation, and heat detection. Preliminary transcriptomic data in ticks suggest that chemoreception in the FSO is achieved by a different mechanism from insects. There are a variety of laboratory and field bioassay methods that have been developed for the identification and characterization of attractants but minimal techniques for electrophysiology studies. Over the past three to four decades, significant progress has been made in the chemistry and analysis of function for acarine attractants in mites and ticks. In mites, attractants include aggregation, immature female, female sex and alarm pheromones; in ticks, the attraction-aggregation-attachment, assembly and sex pheromones; in mites and ticks host kairomones and plant allomones; and in mites, fungal allomones. There are still large gaps in our knowledge of chemical communication in the acarines compared to insects, especially relative to acarine pheromones, and more so for mites than ticks. However, the use of lure-and-kill and lure-enhanced biocontrol strategies has been investigated for tick and mite control, respectively, with significant environmental advantages which warrant further study.

  5. Development of microbial engineered whole-cell systems for environmental benzene determination.

    Science.gov (United States)

    Di Gennaro, P; Bruzzese, N; Anderlini, D; Aiossa, M; Papacchini, M; Campanella, L; Bestetti, G

    2011-03-01

    This paper reports the development of two recombinant bacterial systems that can be used to monitor environmental benzene contamination based on Escherichia coli, which carry genes coding for benzene dioxygenase and benzene dihydrodiol dehydrogenase from Pseudomonas putida MST. E. coli strains express these two enzymes under the control of the Ptac promoter or without any induction. These activities can be detected electrochemically or colorimetrically and used to monitor benzene pollution in environmental air samples collected from an oil refinery assessing benzene by different laboratory experimental procedures. The procedures involving whole-cell bioassays determine the concentration of benzene through benzene dioxygenase activity, which allows for direct correlation of oxygen consumption, and through the benzene dihydrodiol dehydrogenase that causes catechol accumulation and restores NADH necessary for the activity of the first enzyme. Oxygen consumption and catechol production deriving from both enzymatic activities are related to benzene concentration and their measurements determined the sensitivity of the system. The results indicated that the sensitivity was enough to detect the benzene vapor at a lower concentration level of 0.01 mM in about 30 min. The possibility for on-line monitoring of benzene concentration by our new recombinant cells results from the fact that no particular treatment of environmental samples is required. This is a major advantage over other biosensors or assays. Moreover, the development of microbial cells that did not require any addition or effectors for the transcription of the specific enzymes, allowed these systems to be more versatile in automated environmental benzene monitoring.

  6. Cell boundary fault detection system

    Science.gov (United States)

    Archer, Charles Jens; Pinnow, Kurt Walter; Ratterman, Joseph D.; Smith, Brian Edward

    2009-05-05

    A method determines a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  7. Cell Delivery System for Traumatic Brain Injury

    Science.gov (United States)

    2008-03-21

    REPORT Cell Delivery System for Traumatic Brain Injury 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: We have met all of the milestones outlined in this...COVERED (From - To) 18-Sep-2006 Standard Form 298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 - 17-Mar-2008 Cell Delivery System for Traumatic Brain Injury Report...Manassero*, Justin Kim*, Maureen St Georges*, Nicole Esclamado* and Elizabeth Orwin. “Development of a Cell Delivery System for Traumatic Brain Injury Using

  8. Inkjet-printed bioassays for direct reading with a multimode DVD/Blu-Ray optical drive.

    Science.gov (United States)

    Li, Xiaochun; Shi, Maolin; Cui, Caie; Yu, Hua-Zhong

    2014-09-16

    Compact disc-based bioassays have been developed as novel point-of-care (POC) tools for various applications in chemical analysis and biomedical diagnosis. For the fabrication of assay discs, the surface patterning and sample introduction have been restricted to manual delivery that is unfavorable for on-demand high throughput medical screening. Herein, we have adapted a conventional inkjet printer to prepare bioassays on regular DVD-Rs and accomplished quantitative analysis with a multimode DVD/Blu-Ray optical drive in conjunction with free disc diagnostic software. The feasibility and accuracy of this method have been demonstrated by the quantitative analysis of inkjet-printed biotin-streptavidin binding assays on DVD, which serves as a trial system for other complex, medically relevant sandwich-format or competitive immunoassays.

  9. Biomarkers and bioassays for detecting dioxin-like compounds in the marine environment.

    Science.gov (United States)

    Hahn, Mark E

    2002-04-22

    The presence of toxic chemical contaminants in some marine organisms, including those consumed by humans, is well known. Monitoring the levels of such contaminants and their geographic and temporal variability is important for assessing and maintaining the safety of seafood and the health of the marine environment. Chemical analyses are sensitive and specific, but can be expensive and provide little information on the actual or potential biological activity of the contaminants. Biologically-based assays can be used to indicate the presence and potential effects of contaminants in marine animals, and therefore, have potential for routine monitoring of the marine environment. Halogenated aromatic hydrocarbons (HAHs) such as chlorinated dioxins, dibenzofurans, and biphenyls comprise a major group of marine contaminants. The most toxic HAHs (dioxin-like compounds) act through an intracellular receptor protein, the aryl hydrocarbon receptor, which is present in humans and many, but not all, marine animals. A toxic equivalency approach based on an understanding of this mechanism provides an integrated measure of the biological potency or activity of HAH mixtures. Biomarkers measured in marine animals indicate their exposure to these chemicals in vivo. Similarly, in vitro biomarker responses measured in cell culture bioassays can be used to assess the concentration of 'dioxin equivalents' in extracts of environmental matrices. Here, I have reviewed the types and relative sensitivities of mechanistically-based, in vitro bioassays for dioxin-like compounds, including assays of receptor-binding, DNA-binding and transcriptional activation of native (CYP1A) or reporter (luciferase) genes. Examples of their use in environmental monitoring are provided. Cell culture bioassays are rapid and inexpensive, and thus have great potential for routine monitoring of marine resources, including seafood. Several such assays exist, or are being developed, for a variety of marine

  10. Fluorescence-Based Bioassays for the Detection and Evaluation of Food Materials

    Science.gov (United States)

    Nishi, Kentaro; Isobe, Shin-Ichiro; Zhu, Yun; Kiyama, Ryoiti

    2015-01-01

    We summarize here the recent progress in fluorescence-based bioassays for the detection and evaluation of food materials by focusing on fluorescent dyes used in bioassays and applications of these assays for food safety, quality and efficacy. Fluorescent dyes have been used in various bioassays, such as biosensing, cell assay, energy transfer-based assay, probing, protein/immunological assay and microarray/biochip assay. Among the arrays used in microarray/biochip assay, fluorescence-based microarrays/biochips, such as antibody/protein microarrays, bead/suspension arrays, capillary/sensor arrays, DNA microarrays/polymerase chain reaction (PCR)-based arrays, glycan/lectin arrays, immunoassay/enzyme-linked immunosorbent assay (ELISA)-based arrays, microfluidic chips and tissue arrays, have been developed and used for the assessment of allergy/poisoning/toxicity, contamination and efficacy/mechanism, and quality control/safety. DNA microarray assays have been used widely for food safety and quality as well as searches for active components. DNA microarray-based gene expression profiling may be useful for such purposes due to its advantages in the evaluation of pathway-based intracellular signaling in response to food materials. PMID:26473869

  11. Assessing the genotoxicity of urban air pollutants using two in situ plant bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Villarini, M.; Fatigoni, C.; Dominici, L.; Maestri, S. [Department of Medical-Surgical Specialties and Public Health, University of Perugia, I-06126 (Italy); Ederli, L.; Pasqualini, S. [Department of Applied Biology, University of Perugia, I-06121 (Italy); Monarca, S. [Department of Medical-Surgical Specialties and Public Health, University of Perugia, I-06126 (Italy); Moretti, M., E-mail: massimo.moretti@unipg.i [Department of Medical-Surgical Specialties and Public Health, University of Perugia, I-06126 (Italy)

    2009-12-15

    Genotoxicity of urban air has been analysed almost exclusively in airborne particulates. We monitored the genotoxic effects of airborne pollutants in the urban air of Perugia (Central Italy). Two plant bioindicators with different genetic endpoints were used: micronuclei in meiotic pollen mother cells using Tradescantia-micronucleus bioassay (Trad-MCN) and DNA damage in nuclei of Nicotiana tabacum leaves using comet assay (Nicotiana-comet). Buds of Tradescantia clone no. 4430 and young N. tabacum cv. Xanthi plants were exposed for 24 h at three sites with different pollution levels. One control site (indoor control) was also used. The two bioassays showed different sensitivities toward urban pollutants: Trad-MCN assay was the most sensitive, but DNA damage in N. tabacum showed a better correlation with the pollutant concentrations. In situ biomonitoring of airborne genotoxins using higher plants combined with chemical analysis is thus recommended for characterizing genotoxicity of urban air. - Plant bioassays used to explore in situ the correlation between air pollution and genotoxicity.

  12. Fluorescence-Based Bioassays for the Detection and Evaluation of Food Materials

    Directory of Open Access Journals (Sweden)

    Kentaro Nishi

    2015-10-01

    Full Text Available We summarize here the recent progress in fluorescence-based bioassays for the detection and evaluation of food materials by focusing on fluorescent dyes used in bioassays and applications of these assays for food safety, quality and efficacy. Fluorescent dyes have been used in various bioassays, such as biosensing, cell assay, energy transfer-based assay, probing, protein/immunological assay and microarray/biochip assay. Among the arrays used in microarray/biochip assay, fluorescence-based microarrays/biochips, such as antibody/protein microarrays, bead/suspension arrays, capillary/sensor arrays, DNA microarrays/polymerase chain reaction (PCR-based arrays, glycan/lectin arrays, immunoassay/enzyme-linked immunosorbent assay (ELISA-based arrays, microfluidic chips and tissue arrays, have been developed and used for the assessment of allergy/poisoning/toxicity, contamination and efficacy/mechanism, and quality control/safety. DNA microarray assays have been used widely for food safety and quality as well as searches for active components. DNA microarray-based gene expression profiling may be useful for such purposes due to its advantages in the evaluation of pathway-based intracellular signaling in response to food materials.

  13. Toxicity assessment through multiple endpoint bioassays in soils posing environmental risk according to regulatory screening values.

    Science.gov (United States)

    Rodriguez-Ruiz, A; Asensio, V; Zaldibar, B; Soto, M; Marigómez, I

    2014-01-01

    Toxicity profiles of two soils (a brownfield in Legazpi and an abandoned iron mine in Zugaztieta; Basque Country) contaminated with several metals (As, Zn, Pb and Cu in Legazpi; Zn, Pb, Cd and Cu in Zugaztieta) and petroleum hydrocarbons (in Legazpi) were determined using a multi-endpoint bioassay approach. Investigated soils exceeded screening values (SVs) of regulatory policies in force (Basque Country; Europe). Acute and chronic toxicity bioassays were conducted with a selected set of test species (Vibrio fischeri, Dictyostelium discoideum, Lactuca sativa, Raphanus sativus and Eisenia fetida) in combination with chemical analysis of soils and elutriates, as well as with bioaccumulation studies in earthworms. The sensitivity of the test species and the toxicity endpoints varied depending on the soil. It was concluded that whilst Zugaztieta soil showed very little or no toxicity, Legazpi soil was toxic according to almost all the toxicity tests (solid phase Microtox, D. discoideum inhibition of fruiting body formation and developmental cycle solid phase assays, lettuce seed germination and root elongation test, earthworm acute toxicity and reproduction tests, D. discoideum cell viability and replication elutriate assays). Thus, albeit both soils had similar SVs, their ecotoxicological risk, and therefore the need for intervening, was different for each soil as unveiled after toxicity profiling based on multiple endpoint bioassays. Such a toxicity profiling approach is suitable to be applied for scenario-targeted soil risk assessment in those cases where applicable national/regional soil legislation based on SVs demands further toxicity assessment.

  14. A rapid resazurin bioassay for assessing the toxicity of fungicides.

    Science.gov (United States)

    Fai, Patricia Bi; Grant, Alastair

    2009-03-01

    Fungicides are widely used in agriculture, and released in large amounts to the environment. Methods used for antifungal susceptibility testing are cumbersome and time-consuming. As a result, very little attention has been paid to including fungal tests in the routine screening of pesticides and there are no reports in the literature of fungicide focussed effects directed analysis (EDA). In addition very little is known on the toxicity of fungicides to environmentally significant fungi. Here we report a rapid microplate-based resorufin fluorescence inhibition bioassay and compare it with a 24h microplate-based yeast growth inhibition bioassay using eight fungicides. The growth inhibition bioassay was sensitive, giving IC50 and IC90 values comparable to previously reported IC50 or MICs of these fungicides for Saccharomyces cerevisiae and other fungi. The resorufin fluorescence inhibition bioassay was both faster and more sensitive than the growth inhibition bioassay. Inhibitory concentrations obtained just after 30min of incubation with amphotericin B (AMB) and captan were at least a hundred fold lower than IC50s in the literature for fungi. The fluorescence bioassay showed only a small response to pyrazophos and thiabendazole but these only inhibited growth at high concentrations so this may reflect low sensitivity of S. cerevisiae to these particular fungicides. This bioassay can detect toxic effects of a range of fungicides from different chemical classes with different modes of action. It will be valuable for screening chemical libraries for fungicides and as a biomarker for detecting the effects of fungicides to non-target fungi.

  15. Carcinogenic risk of copper gluconate evaluated by a rat medium-term liver carcinogenicity bioassay protocol

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Masayoshi; Usuda, Koji; Hayashi, Seigo; Ogawa, Izumi; Furukawa, Satoshi [Nissan Chemical Industries Limited, Toxicology and Environmental Science Department, Biological Research Laboratories, Saitama (Japan); Igarashi, Maki [Tokyo University of Agriculture, Laboratory of Protection of Body Function, Department of Food and Nutritional Science, Graduate School of Agriculture, Tokyo (Japan); Nakae, Dai [Tokyo University of Agriculture, Laboratory of Protection of Body Function, Department of Food and Nutritional Science, Graduate School of Agriculture, Tokyo (Japan); Tokyo Metropolitan Institute of Public Health, Tokyo (Japan)

    2008-08-15

    Carcinogenic risk and molecular mechanisms underlying the liver tumor-promoting activity of copper gluconate, an additive of functional foods, were investigated using a rat medium-term liver carcinogenicity bioassay protocol (Ito test) and a 2-week short-term administration experiment. In the medium-term liver bioassay, Fischer 344 male rats were given a single i.p. injection of N-nitrosodiethylamine at a dose of 200 mg/kg b.w. as a carcinogenic initiator. Starting 2 weeks thereafter, rats received 0, 10, 300 or 6,000 ppm of copper gluconate in diet for 6 weeks. All rats underwent 2/3 partial hepatectomy at the end of week 3, and all surviving rats were killed at the end of week 8. In the short-term experiment, rats were given 0, 10, 300 or 6,000 ppm of copper gluconate for 2 weeks. Numbers of glutathione S-transferase placental form (GST-P) positive lesions, single GST-P-positive hepatocytes and 8-oxoguanine-positive hepatocytes, and levels of cell proliferation and apoptosis in the liver were significantly increased by 6,000 ppm of copper gluconate in the medium-term liver bioassay. Furthermore, hepatic mRNA expression of genes relating to the metal metabolism, inflammation and apoptosis were elevated by 6,000 ppm of copper gluconate both in the medium-term liver bioassay and the short-term experiments. These results indicate that copper gluconate possesses carcinogenic risk toward the liver at the high dose level, and that oxidative stress and inflammatory and pro-apoptotic signaling statuses may participate in its underlying mechanisms. (orig.)

  16. Systems Biology and Stem Cell Pluripotency

    DEFF Research Database (Denmark)

    Mashayekhi, Kaveh; Hall, Vanessa; Freude, Kristine

    2016-01-01

    Recent breakthroughs in stem cell biology have accelerated research in the area of regenerative medicine. Over the past years, it has become possible to derive patient-specific stem cells which can be used to generate different cell populations for potential cell therapy. Systems biological...... modeling of stem cell pluripotency and differentiation have largely been based on prior knowledge of signaling pathways, gene regulatory networks, and epigenetic factors. However, there is a great need to extend the complexity of the modeling and to integrate different types of data, which would further...... improve systems biology and its uses in the field. In this chapter, we first give a general background on stem cell biology and regenerative medicine. Stem cell potency is introduced together with the hierarchy of stem cells ranging from pluripotent embryonic stem cells (ESCs) and induced pluripotent stem...

  17. Luminescent Lanthanide Reporters for High-Sensitivity Novel Bioassays.

    Energy Technology Data Exchange (ETDEWEB)

    Anstey, Mitchell R.; Fruetel, Julia A.; Foster, Michael E.; Hayden, Carl C.; Buckley, Heather L.; Arnold, John

    2013-09-01

    Biological imaging and assay technologies rely on fluorescent organic dyes as reporters for a number of interesting targets and processes. However, limitations of organic dyes such as small Stokes shifts, spectral overlap of emission signals with native biological fluorescence background, and photobleaching have all inhibited the development of highly sensitive assays. To overcome the limitations of organic dyes for bioassays, we propose to develop lanthanide-based luminescent dyes and demonstrate them for molecular reporting applications. This relatively new family of dyes was selected for their attractive spectral and chemical properties. Luminescence is imparted by the lanthanide atom and allows for relatively simple chemical structures that can be tailored to the application. The photophysical properties offer unique features such as narrow and non-overlapping emission bands, long luminescent lifetimes, and long wavelength emission, which enable significant sensitivity improvements over organic dyes through spectral and temporal gating of the luminescent signal.Growth in this field has been hindered due to the necessary advanced synthetic chemistry techniques and access to experts in biological assay development. Our strategy for the development of a new lanthanide-based fluorescent reporter system is based on chelation of the lanthanide metal center using absorbing chromophores. Our first strategy involves "Click" chemistry to develop 3-fold symmetric chelators and the other involves use of a new class of tetrapyrrole ligands called corroles. This two-pronged approach is geared towards the optimization of chromophores to enhance light output.

  18. Fuel cell power generation system. Nenryo denchi hatsuden system

    Energy Technology Data Exchange (ETDEWEB)

    Sato, M.; Shiba, Y.

    1993-06-11

    It is general to fabricate the primary cooling water system including the fuel cell main body using corrosion resistant stainless steel, while the secondary cooling system including absorption type freezer is made of carbon steel. For this structure, returning the cooling water of the secondary cooling system to the primary cooling system can cause the corrosion of the primary cooling system. That is, the water of inferior quality in the secondary system can corrode the primary system including the fuel cell. This invention solves the problem. The fuel cell bypass which is branched from the fuel cell cooling water inlet, detours the fuel cell, and it is connected to the water-vapor separator installed to the fuel cell. And the heat exchanger is installed at any of fuel cooling water outlet line, fuel cell cooling water inlet line, or fuel cell bypass line. With this structure, recovering the heat generated during the power generation by the fuel cell at the secondary side of the heat exchanger can be achieved while separating the primary and secondary cooling water. So that the trouble of fuel cell operation caused by the contamination of the primary cooling water with the secondary cooling water which contains corrosive impurities can be avoided. 6 figs.

  19. Long-Distance Signaling in bypass1 Mutants:Bioassay Development Reveals the bps Signal to Be a Metabolite

    Institute of Scientific and Technical Information of China (English)

    Emma Adhikari; Dong-Keun Lee; Patrick Giavalisco; Leslie E. Sieburth

    2013-01-01

    Root-to-shoot signaling is used by plants to coordinate shoot development with the conditions experienced by the roots.A mobile and biologically active compound,the bps signal,is over-produced in roots of an Arabidopsis thaliana mutant called bypass1 (bps1),and might also be a normally produced signaling molecule in wild-type plants.Our goal is to identify the bps signal chemically,which will then allow us to assess its production in normal plants.To identify any signaling molecule,a bioassay is required,and here we describe the development of a robust,simple,and quantitative bioassay for the bps signal.The developed bioassay follows the growth-reducing activity of the bps signal using the pCYCB1;1::GUS cell cycle marker.Wild-type plants carrying this marker,and provided the bps signal through either grafts or metabolite extracts,showed reduced cell division.By contrast,control grafts and treatment with control extracts showed no change in pCYCB1;1::GUS expression.To determine the chemical nature of the bps signal,extracts were treated with RNase A,Proteinase K,or heat.None of these treatments diminished the activity of bps1 extracts,suggesting that the active molecule might be a metabolite.This bioassay will be useful for future biochemical fractionation and analysis directed toward bps signal identification.

  20. Evaluation of bioassays versus contaminant concentrations in explaining the macroinvertebrate community structure in the Rhine-Meuse delta, The Netherlands.

    Science.gov (United States)

    Peeters, E T; Dewitte, A; Koelmans, A A; van der Velden, J A; den Besten, P J

    2001-12-01

    It is often assumed that bioassays are better descriptors of sediment toxicity than toxicant concentrations and that ecological factors are more important than toxicants in structuring macroinvertebrate communities. In the period 1992 to 1995, data were collected in the enclosed Rhine-Meuse delta, The Netherlands, on macroinvertebrates, sediment toxicity, sediment contaminant concentrations, and ecological factors. The effect of various groups of pollutants (polycyclic aromatic hydrocarbons, trace metals, oil, polychlorinated biphenyls) and of ecological variables on the structure of the macroinvertebrate community were quantified. Ecological factors explained 17.3% of the macroinvertebrate variation, while contaminants explained 13.8%. Another 14.7% was explained by the covariation between ecological variables and contaminants. Polycyclic aromatic hydrocarbons explained a larger part of the variation than trace metals. The contributions of oil and polychlorinated biphenyls were small but significant. Elevated contaminant concentrations were significantly associated with differences in the macroinvertebrate food web structure. The response in bioassays (Vibrio fischeri, Daphnia magna, Chironomus riparius) was susceptible to certain contaminants but also to certain ecological factors. There was a weak correlation between in situ species composition and bioassays; 1.9% of in situ macroinvertebrate variation was explained by the bioassay responses. This seems to contradict the validity of using bioassays for a system-oriented risk assessment. Possible reasons for this discrepancy might be the manipulations of the sediment before the test and a higher pollutant tolerance of the in situ macroinvertebrates. Thus, macroinvertebrate field surveys and laboratory bioassays yield different types of information on ecotoxicological effects, and both are recommended in sediment risk assessment procedures.

  1. Innovative High Temperature Fuel Cell systems

    NARCIS (Netherlands)

    Au, Siu Fai

    2003-01-01

    The world's energy consumption is growing extremely rapidly. Fuel cell systems are of interest by researchers and industry as the more efficient alternative to conventional thermal systems for power generation. The principle of fuel cell conversion does not involve thermal combustion and hence in th

  2. About supramolecular systems for dynamically probing cells

    NARCIS (Netherlands)

    Brinkmann, J.; Cavatorta, E.; Sankaran, S.; Schmidt, B.; van Weerd, Jasper; Jonkheijm, Pascal

    2014-01-01

    This article reviews the state of the art in the development of strategies for generating supramolecular systems for dynamic cell studies. Dynamic systems are crucial to further our understanding of cell biology and are consequently at the heart of many medical applications. Increasing interest has

  3. Innovative High Temperature Fuel Cell systems

    NARCIS (Netherlands)

    Au, Siu Fai

    2003-01-01

    The world's energy consumption is growing extremely rapidly. Fuel cell systems are of interest by researchers and industry as the more efficient alternative to conventional thermal systems for power generation. The principle of fuel cell conversion does not involve thermal combustion and hence in th

  4. Bioassay- and liquid chromatography/mass spectrometry-guided acetylcholinesterase inhibitors from Picriafel-terrae

    Directory of Open Access Journals (Sweden)

    Lu Wen

    2013-01-01

    Full Text Available Background: Picria fel-terrae is a traditional Chinese medicine. Materials and Methods: A new approach to the search for acetylcholinesterase (AChE inhibitors from Picria fel-terrae is presented. Results: Bioassay- and LC-MS-guided fractionation of the ethyl acetate extract was from traditional Chinese medicine P.fel-terrae. Following primary extraction, the ethyl acetate extracts fraction of P.fel-terrae showed strong AChE inhibitory activities. So the sample was separated using highperformance liquid chromatography (HPLC. The effluent was split towards two identical 96-well fraction collectors, and the presence of the biologically interesting portion and chromatographic fractions could be readily detected by analyzing selected ion chromatograms through an electrophoresis-electrospray ionization mass spectrometry (ESIMS system for accurate mass measurement. One 96-well plate was used for a bioassay (AChE-inhibitory assay and detected the bioactivity and position of the relevant peak in the chromatogram. The positive well in the second 96-well plate was used for identification by LC-(+ ESIMS. Conclusion: As abovementioned, the AChE inhibitory constituents from P.fel-terrae by LC-bioassay-ESIMS were rapid identified. Liquid chromatography/ mass spectrometry (LC-MS screening detected the presence of six active compounds, identified as picfeltarraenin IA (1, picfeltarraenin IB (2, picfeltarraenin IV (3, picfeltarraenin X (4, picfeltarraenin XI (5, and one unknown compound. The structures were further determined by 13C NMR. The six compounds expressed stronger AChE inhibition than the known AChE inhibitorTacrine. Above all, the value of this LC-bioassay-ESIMS methodology is highlighted by the finding and structure elucidation of the active constituents from many other structural families of natural products.

  5. [Investigation on pattern and methods of quality control for Chinese materia medica based on dao-di herbs and bioassay - bioassay for Coptis chinensis].

    Science.gov (United States)

    Yan, Dan; Xiao, Xiao-he

    2011-05-01

    Establishment of bioassay methods is the technical issues to be faced with in the bioassay of Chinese materia medica. Taking the bioassay of Coptis chinensis Franch. as an example, the establishment process and application of the bioassay methods (including bio-potency and bio-activity fingerprint) were explained from the aspects of methodology, principle of selection, experimental design, method confirmation and data analysis. The common technologies were extracted and formed with the above aspects, so as to provide technical support for constructing pattern and method of the quality control for Chinese materia medica based on the dao-di herbs and bioassay.

  6. Cell or Cell Membrane-Based Drug Delivery Systems

    Science.gov (United States)

    Tan, Songwei; Wu, Tingting; Zhang, Dan; Zhang, Zhiping

    2015-01-01

    Natural cells have been explored as drug carriers for a long period. They have received growing interest as a promising drug delivery system (DDS) until recently along with the development of biology and medical science. The synthetic materials, either organic or inorganic, are found to be with more or less immunogenicity and/or toxicity. The cells and extracellular vesicles (EVs), are endogenous and thought to be much safer and friendlier. Furthermore, in view of their host attributes, they may achieve different biological effects and/or targeting specificity, which can meet the needs of personalized medicine as the next generation of DDS. In this review, we summarized the recent progress in cell or cell membrane-based DDS and their fabrication processes, unique properties and applications, including the whole cells, EVs and cell membrane coated nanoparticles. We expect the continuing development of this cell or cell membrane-based DDS will promote their clinic applications. PMID:26000058

  7. Are bioassays useful tools to assess redox processes and biodegradation?

    DEFF Research Database (Denmark)

    Albrechtsen, Hans-Jørgen; Pedersen, Philip Grinder; Ludvigsen, L.

    2002-01-01

    When evaluating potentials for natural attenuation, assessment of ongoing redox processes are important. Terminal electron accepting processes (TEAPs) such as denitrification, Fe(Ill), Mn(IV), and sulphate reduction and methane production have been assessed by several approaches including redox...... sensitive hydrochemical or geochemical parameters, levels of hydrogen, and redox potential. However, all these approaches have to be evaluated against TEAP-bioassays as the most direct measure. We assessed successfully ongoing microbial-mediated redox processes by TEAP-bioassays in degradation studies...... of aromatic and chlorinated aliphatic compounds in landfill leachate plumes, and of pesticides in aquifers with various redox conditions....

  8. [Ecotoxicological bioassays on aquatic sediments: experimental problems of exposure matrices].

    Science.gov (United States)

    Miniero, Roberto; Dellatte, Elena; Lupi, Carlo; Di Domenico, Alessandro

    2005-01-01

    In this review a discussion on some factors influencing the exposure matrices which, in turn, influences the reliability of ecotoxicological bioassays on aquatic sediments, has been carried out. These factors include the variability induced on sediments by the sampling, storage, handling, and preparative operations. The exposure matrices-sediments in toto, interstitial water and elutriate, can be deeply modified by these actions, which alter the chemicals bioavailability and, therefore, the bioassay meaning. In order to obtain reproducible and scientifically valid data, to be used in the ecological risk assessment, all these factors need to be considered and kept under control.

  9. An emergency bioassay method for actinides in urine.

    Science.gov (United States)

    Dai, Xiongxin; Kramer-Tremblay, Sheila

    2011-08-01

    A rapid bioassay method has been developed for the sequential measurements of actinides in human urine samples. The method involves actinide separation from a urine matrix by co-precipitation with hydrous titanium oxide (HTiO), followed by anion exchange and extraction chromatography column purification, and final counting by alpha spectrometry after cerium fluoride micro-precipitation. The minimal detectable activities for the method were determined to be 20 mBq L(-1) or less for plutonium, uranium, americium and curium isotopes, with an 8-h sample turn-around time. Spike tests showed that this method would meet the requirements for actinide bioassay following a radiation emergency.

  10. Water reactive hydrogen fuel cell power system

    Science.gov (United States)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  11. Water reactive hydrogen fuel cell power system

    Science.gov (United States)

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  12. Cleavable DNA-protein hybrid molecular beacon: A novel efficient signal translator for sensitive fluorescence anisotropy bioassay.

    Science.gov (United States)

    Hu, Pan; Yang, Bin

    2016-01-15

    Due to its unique features such as high sensitivity, homogeneous format, and independence on fluorescent intensity, fluorescence anisotropy (FA) assay has become a hotspot of study in oligonucleotide-based bioassays. However, until now most FA probes require carefully customized structure designs, and thus are neither generalizable for different sensing systems nor effective to obtain sufficient signal response. To address this issue, a cleavable DNA-protein hybrid molecular beacon was successfully engineered for signal amplified FA bioassay, via combining the unique stable structure of molecular beacon and the large molecular mass of streptavidin. Compared with single DNA strand probe or conventional molecular beacon, the DNA-protein hybrid molecular beacon exhibited a much higher FA value, which was potential to obtain high signal-background ratio in sensing process. As proof-of-principle, this novel DNA-protein hybrid molecular beacon was further applied for FA bioassay using DNAzyme-Pb(2+) as a model sensing system. This FA assay approach could selectively detect as low as 0.5nM Pb(2+) in buffer solution, and also be successful for real samples analysis with good recovery values. Compatible with most of oligonucleotide probes' designs and enzyme-based signal amplification strategies, the molecular beacon can serve as a novel signal translator to expand the application prospect of FA technology in various bioassays.

  13. High-throughput tri-colour flow cytometry technique to assess Plasmodium falciparum parasitaemia in bioassays

    DEFF Research Database (Denmark)

    Tiendrebeogo, Regis W; Adu, Bright; Singh, Susheel K

    2014-01-01

    BACKGROUND: Unbiased flow cytometry-based methods have become the technique of choice in many laboratories for high-throughput, accurate assessments of malaria parasites in bioassays. A method to quantify live parasites based on mitotracker red CMXRos was recently described but consistent...... distinction of early ring stages of Plasmodium falciparum from uninfected red blood cells (uRBC) remains a challenge. METHODS: Here, a high-throughput, three-parameter (tri-colour) flow cytometry technique based on mitotracker red dye, the nucleic acid dye coriphosphine O (CPO) and the leucocyte marker CD45...

  14. A statistical treatment of bioassay pour fractions

    Science.gov (United States)

    Barengoltz, Jack; Hughes, David

    A bioassay is a method for estimating the number of bacterial spores on a spacecraft surface for the purpose of demonstrating compliance with planetary protection (PP) requirements (Ref. 1). The details of the process may be seen in the appropriate PP document (e.g., for NASA, Ref. 2). In general, the surface is mechanically sampled with a damp sterile swab or wipe. The completion of the process is colony formation in a growth medium in a plate (Petri dish); the colonies are counted. Consider a set of samples from randomly selected, known areas of one spacecraft surface, for simplicity. One may calculate the mean and standard deviation of the bioburden density, which is the ratio of counts to area sampled. The standard deviation represents an estimate of the variation from place to place of the true bioburden density commingled with the precision of the individual sample counts. The accuracy of individual sample results depends on the equipment used, the collection method, and the culturing method. One aspect that greatly influences the result is the pour fraction, which is the quantity of fluid added to the plates divided by the total fluid used in extracting spores from the sampling equipment. In an analysis of a single sample’s counts due to the pour fraction, one seeks to answer the question: What is the probability that if a certain number of spores are counted with a known pour fraction, that there are an additional number of spores in the part of the rinse not poured. This is given for specific values by the binomial distribution density, where detection (of culturable spores) is success and the probability of success is the pour fraction. A special summation over the binomial distribution, equivalent to adding for all possible values of the true total number of spores, is performed. This distribution when normalized will almost yield the desired quantity. It is the probability that the additional number of spores does not exceed a certain value. Of course

  15. Automated live cell imaging systems reveal dynamic cell behavior.

    Science.gov (United States)

    Chirieleison, Steven M; Bissell, Taylor A; Scelfo, Christopher C; Anderson, Jordan E; Li, Yong; Koebler, Doug J; Deasy, Bridget M

    2011-07-01

    Automated time-lapsed microscopy provides unique research opportunities to visualize cells and subcellular components in experiments with time-dependent parameters. As accessibility to these systems is increasing, we review here their use in cell science with a focus on stem cell research. Although the use of time-lapsed imaging to answer biological questions dates back nearly 150 years, only recently have the use of an environmentally controlled chamber and robotic stage controllers allowed for high-throughput continuous imaging over long periods at the cell and subcellular levels. Numerous automated imaging systems are now available from both companies that specialize in live cell imaging and from major microscope manufacturers. We discuss the key components of robots used for time-lapsed live microscopic imaging, and the unique data that can be obtained from image analysis. We show how automated features enhance experimentation by providing examples of uniquely quantified proliferation and migration live cell imaging data. In addition to providing an efficient system that drastically reduces man-hours and consumes fewer laboratory resources, this technology greatly enhances cell science by providing a unique dataset of temporal changes in cell activity. Copyright © 2011 American Institute of Chemical Engineers (AIChE).

  16. An Automatic Indirect Immunofluorescence Cell Segmentation System

    Directory of Open Access Journals (Sweden)

    Yung-Kuan Chan

    2014-01-01

    Full Text Available Indirect immunofluorescence (IIF with HEp-2 cells has been used for the detection of antinuclear autoantibodies (ANA in systemic autoimmune diseases. The ANA testing allows us to scan a broad range of autoantibody entities and to describe them by distinct fluorescence patterns. Automatic inspection for fluorescence patterns in an IIF image can assist physicians, without relevant experience, in making correct diagnosis. How to segment the cells from an IIF image is essential in developing an automatic inspection system for ANA testing. This paper focuses on the cell detection and segmentation; an efficient method is proposed for automatically detecting the cells with fluorescence pattern in an IIF image. Cell culture is a process in which cells grow under control. Cell counting technology plays an important role in measuring the cell density in a culture tank. Moreover, assessing medium suitability, determining population doubling times, and monitoring cell growth in cultures all require a means of quantifying cell population. The proposed method also can be used to count the cells from an image taken under a fluorescence microscope.

  17. Detection of genotoxic effects of heavy metal contaminated soils with plant bioassays.

    Science.gov (United States)

    Knasmüller, S; Gottmann, E; Steinkellner, H; Fomin, A; Pickl, C; Paschke, A; Göd, R; Kundi, M

    1998-12-03

    Aim of the present study was the development of a bioassay which enables the detection of genotoxic effects of heavy metal contaminated soils. In the first part of the present study, the data base on metal effects in plant bioassays was extended. Four metal salts, namely Cr(VI)O3, Cr(III)Cl3, Ni(II)Cl2 and Sb(III)Cl3 were tested comparatively in MN tests with pollen tetrad cells of Tradescantia clone #4430 and in meristematic root tip cells of Vicia faba. With Cr6+ and Ni2+, clear-cut dose-effects were observed in a range between 0.75 and 10.0 mM, whereas this was not the case with Cr3+ (range tested 1.25-10 mM) and Sb3+ (range 0.30-5.25 mM). In Vicia, negative results were obtained with the four metal salts under all conditions of test. To compare the mutagenic potencies of the metals, the increases of the regression curves (k-values) were calculated, they indicate the number of MN induced per mM in 100 tetrad cells. The corresponding values for Cr6+ and Ni2+ are 0.87 and 1.05, respectively. It appears that the Tradescantia system is in particular sensitive towards those metal species which cause DNA damage in animals and man such as Cr6+, Cd2+, Ni2+, and Zn2+, whereas no clear positive results were obtained with less harmful metal ions such as Cu2+, Cr3+ or Sb3+. In the second part of the study, the mutagenic effects of four metal contaminated soils and two types of standardized leachates (pH 4.0 and pH 7.0) of these soils were tested in Tradescantia and in Vicia. In addition, chemical analyses were carried out to determine the metal concentrations in the soils and in the extracts. Two of the samples contained highly elevated levels of a number of metals (Zn, Pb, Cu, Cd, Sb, As), one soil came from the Central Austrian Alps and contained high As levels only. Direct exposure of the Tradescantia plants in the soils resulted in a drastic increase of the MN frequencies over the background. The lowest effect was seen with the Slovakian soil which contained in

  18. US Army Radiological Bioassay and Dosimetry: The RBD software package

    Energy Technology Data Exchange (ETDEWEB)

    Eckerman, K. F.; Ward, R. C.; Maddox, L. B.

    1993-01-01

    The RBD (Radiological Bioassay and Dosimetry) software package was developed for the U. S. Army Material Command, Arlington, Virginia, to demonstrate compliance with the radiation protection guidance 10 CFR Part 20 (ref. 1). Designed to be run interactively on an IBM-compatible personal computer, RBD consists of a data base module to manage bioassay data and a computational module that incorporates algorithms for estimating radionuclide intake from either acute or chronic exposures based on measurement of the worker's rate of excretion of the radionuclide or the retained activity in the body. In estimating the intake,RBD uses a separate file for each radionuclide containing parametric representations of the retention and excretion functions. These files also contain dose-per-unit-intake coefficients used to compute the committed dose equivalent. For a given nuclide, if measurements exist for more than one type of assay, an auxiliary module, REPORT, estimates the intake by applying weights assigned in the nuclide file for each assay. Bioassay data and computed results (estimates of intake and committed dose equivalent) are stored in separate data bases, and the bioassay measurements used to compute a given result can be identified. The REPORT module creates a file containing committed effective dose equivalent for each individual that can be combined with the individual's external exposure.

  19. Bioassays for evaluation of medical products derived from bacterial toxins.

    Science.gov (United States)

    Sesardic, Thea

    2012-06-01

    Bioassays play central role in evaluation of biological products and those derived from bacterial toxins often rely exclusively on in vivo models for assurance of safety and potency. This chapter reviews existing regulatory approved methods designed to provide information on potency and safety of complex biological medicines with an insight into strategies considered for alternative procedures.

  20. Microplate Bioassay for Determining Substrate Selectivity of "Candida rugosa" Lipase

    Science.gov (United States)

    Wang, Shi-zhen; Fang, Bai-shan

    2012-01-01

    Substrate selectivity of "Candida rugosa" lipase was tested using "p"-nitrophenyl esters of increasing chain length (C[subscript 1], C[subscript 7], C[subscript 15]) using the high-throughput screening method. A fast and easy 96-well microplate bioassay was developed to help students learn and practice biotechnological specificity screen. The…

  1. Assessment of acrylamide toxicity using a battery of standardised bioassays.

    Science.gov (United States)

    Zovko, Mira; Vidaković-Cifrek, Željka; Cvetković, Želimira; Bošnir, Jasna; Šikić, Sandra

    2015-12-01

    Acrylamide is a monomer widely used as an intermediate in the production of organic chemicals, e.g. polyacrylamides (PAMs). Since PAMs are low cost chemicals with applications in various industries and waste- and drinking water treatment, a certain amount of non-polymerised acrylamide is expected to end up in waterways. PAMs are non-toxic but acrylamide induces neurotoxic effects in humans and genotoxic, reproductive, and carcinogenic effects in laboratory animals. In order to evaluate the effect of acrylamide on freshwater organisms, bioassays were conducted on four species: algae Desmodesmus subspicatus and Pseudokirchneriella subcapitata, duckweed Lemna minor and water flea Daphnia magna according to ISO (International Organization for Standardisation) standardised methods. This approach ensures the evaluation of acrylamide toxicity on organisms with different levels of organisation and the comparability of results, and it examines the value of using a battery of low-cost standardised bioassays in the monitoring of pollution and contamination of aquatic ecosystems. These results showed that EC50 values were lower for Desmodesmus subspicatus and Pseudokirchneriella subcapitata than for Daphnia magna and Lemna minor, which suggests an increased sensitivity of algae to acrylamide. According to the toxic unit approach, the values estimated by the Lemna minor and Daphnia magna bioassays, classify acrylamide as slightly toxic (TU=0-1; Class 1). The results obtained from algal bioassays (Desmodesmus subspicatus and Pseudokirchneriella subcapitata) revealed the toxic effect of acrylamide (TU=1-10; Class 2) on these organisms.

  2. Soil plate bioassay: an effective method to determine ecotoxicological risks.

    Science.gov (United States)

    Boluda, R; Roca-Pérez, L; Marimón, L

    2011-06-01

    Heavy metals have become one of the most serious anthropogenic stressors for plants and other living organisms. Having efficient and feasible bioassays available to assess the ecotoxicological risks deriving from soil pollution is necessary. This work determines pollution by Cd, Co, Cr, Cu, Ni, Pb, V and Zn in two soils used for growing rice from the Albufera Natural Park in Valencia (Spain). Both were submitted to a different degree of anthropic activity, and their ecotoxicological risk was assessed by four ecotoxicity tests to compare their effectiveness: Microtox test, Zucconi test, pot bioassay (PB) and soil plate bioassay (SPB). The sensitivity of three plant species (barley, cress and lettuce) was also assessed. The results reveal a different degree of effectiveness and level of inhibition in the target organisms' growth depending on the test applied, to such an extent that the one-way analysis of variance showed significant differences only for the plate bioassay results, with considerable inhibition of root and shoot elongation in seedlings. Of the three plant species selected, lettuce was the most sensitive species to toxic effects, followed by cress and barley. Finally, the results also indicate that the SPB is an efficient, simple and economic alternative to other ecotoxicological assays to assess toxicity risks deriving from soil pollution.

  3. Microplate Bioassay for Determining Substrate Selectivity of "Candida rugosa" Lipase

    Science.gov (United States)

    Wang, Shi-zhen; Fang, Bai-shan

    2012-01-01

    Substrate selectivity of "Candida rugosa" lipase was tested using "p"-nitrophenyl esters of increasing chain length (C[subscript 1], C[subscript 7], C[subscript 15]) using the high-throughput screening method. A fast and easy 96-well microplate bioassay was developed to help students learn and practice biotechnological specificity screen. The…

  4. Proof of concept for a novel insecticide bioassay based on sugar feeding by adult Aedes aegypti (Stegomyia aegypti).

    Science.gov (United States)

    Stell, F M; Roe, R M; Arellano, C; Kennedy, L; Thornton, H; Saavedra-Rodriguez, K; Wesson, D M; Black, W C; Apperson, C S

    2013-09-01

    Aedes aegypti L. (Stegomyia aegypti) (Diptera: Culicidae) is the principal vector of dengue and yellow fever viruses in tropical and subtropical regions of the world. Disease management is largely based on mosquito control achieved by insecticides applied to interior resting surfaces and through space sprays. Population monitoring to detect insecticide resistance is a significant component of integrated disease management programmes. We developed a bioassay method for assessing insecticide susceptibility based on the feeding activity of mosquitoes on plant sugars. Our prototype sugar-insecticide feeding bioassay system was composed of inexpensive, disposable components, contained minimal volumes of insecticide, and was compact and highly transportable. Individual mosquitoes were assayed in a plastic cup that contained a sucrose-permethrin solution. Trypan blue dye was added to create a visual marker in the mosquito's abdomen for ingested sucrose-permethrin solution. Blue faecal spots provided further evidence of solution ingestion. With the sugar-insecticide feeding bioassay, the permethrin susceptibility of Ae. aegypti females from two field-collected strains was characterized by probit analysis of dosage-response data. The field strains were also tested by forced contact of females with permethrin residues on filter paper. Dosage-response patterns were similar, indicating that the sugar-insecticide feeding bioassay had appropriately characterized the permethrin susceptibility of the two strains.

  5. A fish-feeding laboratory bioassay to assess the antipredatory activity of secondary metabolites from the tissues of marine organisms.

    Science.gov (United States)

    Marty, Micah J; Pawlik, Joseph R

    2015-01-11

    Marine chemical ecology is a young discipline, having emerged from the collaboration of natural products chemists and marine ecologists in the 1980s with the goal of examining the ecological functions of secondary metabolites from the tissues of marine organisms. The result has been a progression of protocols that have increasingly refined the ecological relevance of the experimental approach. Here we present the most up-to-date version of a fish-feeding laboratory bioassay that enables investigators to assess the antipredatory activity of secondary metabolites from the tissues of marine organisms. Organic metabolites of all polarities are exhaustively extracted from the tissue of the target organism and reconstituted at natural concentrations in a nutritionally appropriate food matrix. Experimental food pellets are presented to a generalist predator in laboratory feeding assays to assess the antipredatory activity of the extract. The procedure described herein uses the bluehead, Thalassoma bifasciatum, to test the palatability of Caribbean marine invertebrates; however, the design may be readily adapted to other systems. Results obtained using this laboratory assay are an important prelude to field experiments that rely on the feeding responses of a full complement of potential predators. Additionally, this bioassay can be used to direct the isolation of feeding-deterrent metabolites through bioassay-guided fractionation. This feeding bioassay has advanced our understanding of the factors that control the distribution and abundance of marine invertebrates on Caribbean coral reefs and may inform investigations in diverse fields of inquiry, including pharmacology, biotechnology, and evolutionary ecology.

  6. Development of a pneumatically driven active cover lid for multi-well microplates for use in perfusion three-dimensional cell culture

    OpenAIRE

    Song-Bin Huang; Dean Chou; Yu-Han Chang; Ke-Cing Li; Tzu-Keng Chiu; Yiannis Ventikos; Min-Hsien Wu

    2015-01-01

    Before microfluidic-based cell culture models can be practically utilized for bioassays, there is a need for a transitional cell culture technique that can improve conventional cell culture models. To address this, a hybrid cell culture system integrating an active cover lid and a multi-well microplate was proposed to achieve perfusion 3-D cell culture. In this system, a microfluidic-based pneumatically-driven liquid transport mechanism was integrated into the active cover lid to realize 6-un...

  7. Microfluidics and cancer analysis: cell separation, cell/tissue culture, cell mechanics, and integrated analysis systems.

    Science.gov (United States)

    Pappas, Dimitri

    2016-01-21

    Among the growing number of tools available for cancer studies, microfluidic systems have emerged as a promising analytical tool to elucidate cancer cell and tumor function. Microfluidic methods to culture cells have created approaches to provide a range of environments from single-cell analysis to complex three-dimensional devices. In this review we discuss recent advances in tumor cell culture, cancer cell analysis, and advanced studies enabled by microfluidic systems.

  8. Development of a bioassay to screen for chemicals mimicking the anti-aging effects of calorie restriction

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, Takuya, E-mail: takuya@nagasaki-u.ac.jp [Department of Investigative Pathology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523 (Japan); Tsuchiya, Tomoshi [Division of Surgical Oncology, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8501 (Japan); Komatsu, Toshimitsu; Mori, Ryoichi; Hayashi, Hiroko [Department of Investigative Pathology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523 (Japan); Shimano, Hitoshi [Department of Internal Medicine (Endocrinology and Metabolism), Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba Ibaraki 305-8575 (Japan); Spindler, Stephen R. [Department of Biochemistry, Room 5478, Boyce Hall, University of California - Riverside, Riverside, CA 92521 (United States); Shimokawa, Isao [Department of Investigative Pathology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523 (Japan)

    2010-10-15

    Research highlights: {yields} We identified four sequence motifs lying upstream of putative pro-longevity genes. {yields} One of these motifs binds to HNF-4{alpha}. {yields} HNF-4{alpha}/PGC-1{alpha} could up-regulate the transcription of a reporter gene linked to this motif. {yields} The reporter system described here could be used to screen candidate anti-aging molecules. -- Abstract: Suppression of the growth hormone/insulin-like growth factor-I pathway in Ames dwarf (DF) mice, and caloric restriction (CR) in normal mice extends lifespan and delays the onset of age-related disorders. In combination, these interventions have an additive effect on lifespan in Ames DF mice. Therefore, common signaling pathways regulated by DF and CR could have additive effects on longevity. In this study, we tried to identity the signaling mechanism and develop a system to assess pro-longevity status in cells and mice. We previously identified genes up-regulated in the liver of DF and CR mice by DNA microarray analysis. Motif analysis of the upstream sequences of those genes revealed four major consensus sequence motifs, which have been named dwarfism and calorie restriction-responsive elements (DFCR-REs). One of the synthesized sequences bound to hepatocyte nuclear factor-4{alpha} (HNF-4{alpha}), an important transcription factor involved in liver metabolism. Furthermore, using this sequence information, we developed a highly sensitive bioassay to identify chemicals mimicking the anti-aging effects of CR. When the reporter construct, containing an element upstream of a secreted alkaline phosphatase (SEAP) gene, was co-transfected with HNF-4{alpha} and its regulator peroxisome proliferator-activated receptor (PPAR) {gamma} coactivator-1{alpha} (PGC-1{alpha}), SEAP activity was increased compared with untransfected controls. Moreover, transient transgenic mice established using this construct showed increased SEAP activity in CR mice compared with ad libitum-fed mice. These data

  9. [Immune system evolution. (From cells to humans)].

    Science.gov (United States)

    Belek, A S

    1992-01-01

    The great variety of cells and molecules observed in the mammalian immune system can be explained by stepwise acquisition of them during phylogeny. Self/nonself discrimination and cell-mediated immunity have been present since the early stages of evolution. Although some inducible antimicrobial molecules have been demonstrated in invertebrates, immunoglobulins appear in vertebrates. T and B cell diversity, development of the lymphoid organs, MHC molecules, complement and cytokines are the characteristics that appear through the evolution of vertebrates. Further knowledge that will be obtained from phylogenetic studies will improve our understanding of the immune system of human.

  10. Bioassay for aquatic ecosystems review and classification; Rassegna dei principali test di ecotossicologia acquatica

    Energy Technology Data Exchange (ETDEWEB)

    Sanci, Antonella; Rosa, Silvia [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Ambiente

    1997-09-01

    Bioassay play a crucial role in assessing the actual or potential impacts of anthropogenic agents on the natural environment. In this technical report, literature on bioassays for aquatic ecosystems has been reviewed and classified. Problems associated with the choice and application of bioassays are discussed.

  11. Assessing toxicity of copper, cadmium and chromium levels relevant to discharge limits of industrial effluents into inland surface waters using common onion, Allium cepa bioassay.

    Science.gov (United States)

    Hemachandra, Chamini K; Pathiratne, Asoka

    2015-02-01

    Toxicity of copper, cadmium and chromium relevant to established tolerance limits for the discharge of industrial effluents into inland surface waters was evaluated by Allium cepa bioassay. The roots of A. cepa bulbs exposed to Cu(2+) (3 mg L(-1)) individually or in mixtures with Cd(2+) (0.1 mg L(-1)) or/and Cr(6+) (0.1 mg L(-1)) exhibited the highest growth inhibition, mitotic index depression and nuclear abnormalities. Root tip cells exposed to Cr(6+) or Cd(2+) alone or in mixture displayed significant chromosomal aberrations in comparison to the controls. EC50s for root growth inhibition followed the order Cu(2+) < Cd(2+) < Cr(6+) indicating greater toxicity of copper. The results show that the industrial effluent discharge regulatory limits for these metals need to be reviewed considering potential cyto-genotoxicity to biological systems.

  12. Direct methanol feed fuel cell and system

    Science.gov (United States)

    Surampudi, Subbarao (Inventor); Frank, Harvey A. (Inventor); Narayanan, Sekharipuram R. (Inventor); Chun, William (Inventor); Jeffries-Nakamura, Barbara (Inventor); Kindler, Andrew (Inventor); Halpert, Gerald (Inventor)

    2009-01-01

    Improvements to non acid methanol fuel cells include new formulations for materials. The platinum and ruthenium are more exactly mixed together. Different materials are substituted for these materials. The backing material for the fuel cell electrode is specially treated to improve its characteristics. A special sputtered electrode is formed which is extremely porous. The fuel cell system also comprises a fuel supplying part including a meter which meters an amount of fuel which is used by the fuel cell, and controls the supply of fuel based on said metering.

  13. Regenerative fuel cell systems R and D

    Energy Technology Data Exchange (ETDEWEB)

    Mitlitsky, F.; Myers, B.; Weisberg, A.H. [Lawrence Livermore National Lab., Livermore, CA (United States)

    1998-08-01

    Regenerative fuel cell (RFC) systems produce power and electrolytically regenerate their reactants using stacks of electrochemical cells. Energy storage systems with extremely high specific energy (> 400 Wh/kg) have been designed that use lightweight pressure vessels to contain the gases generated by reversible (unitized) regenerative fuel cells (URFCs). Progress is reported on the development, integration, and operation of rechargeable energy storage systems with such high specific energy. Lightweight pressure vessels that enable high specific energies have been designed with performance factors (burst pressure/internal volume/tank weight) > 50 km (2.0 million inches), and a vessel with performance factor of 40 km (1.6 million inches) was fabricated. New generations of both advanced and industry-supplied hydrogen tankage are under development. A primary fuel cell test rig with a single cell (46 cm{sup 2} active area) has been modified and operated reversibly as a URFC (for up to 2010 cycles on a single cell). This URFC uses bifunctional electrodes (oxidation and reduction electrodes reverse roles when switching from charge to discharge, as with a rechargeable battery) and cathode feed electrolysis (water is fed from the hydrogen side of the cell). Recent modifications also enable anode feed electrolysis (water is fed from the oxygen side of the cell). Hydrogen/halogen URFCs, capable of higher round-trip efficiency than hydrogen/oxygen URFCs, have been considered, and will be significantly heavier. Progress is reported on higher performance hydrogen/oxygen URFC operation with reduced catalyst loading.

  14. Fuel cell power system for utility vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Graham, M.; Barbir, F.; Marken, F.; Nadal, M. [Energy Partners, Inc., West Palm Beach, FL (United States)

    1996-12-31

    Based on the experience of designing and building the Green Car, a fuel cell/battery hybrid vehicle, and Genesis, a hydrogen/oxygen fuel cell powered transporter, Energy Partners has developed a fuel cell power system for propulsion of an off-road utility vehicle. A 10 kW hydrogen/air fuel cell stack has been developed as a prototype for future mass production. The main features of this stack are discussed in this paper. Design considerations and selection criteria for the main components of the vehicular fuel cell system, such as traction motor, air compressor and compressor motor, hydrogen storage and delivery, water and heat management, power conditioning, and control and monitoring subsystem are discussed in detail.

  15. Single cell microfluidics for systems oncology

    Science.gov (United States)

    Fan, Rong

    2012-02-01

    The singular term ``cancer'' is never one kind of disease, but deceivingly encompasses a large number of heterogeneous disease states, which makes it impossible to completely treat cancer using a generic approach. Rather systems approaches are urgently required to assess cancer heterogeneity, stratify patients and enable the most effective, individualized treatment. The heterogeneity of tumors at the single cell level is reflected by the hierarchical complexity of the tumor microenvironment. To identify all the cellular components, including both tumor and infiltrating immune cells, and to delineate the associated cell-to-cell signaling network that dictates tumor initiation, progression and metastasis, we developed a single cell microfluidics chip that can analyze a panel of proteins that are potentially associated inter-cellular signaling network in tumor microenvironment from hundreds of single cells in parallel. This platform integrates two advanced technologies -- microfluidic single cell handling and ultra-high density protein array. This device was first tested for highly multiplexed profiling of secreted proteins including tumor-immune signaling molecules from monocytic leukemia cells. We observed profound cellular heterogeneity with all functional phenotypes quantitatively identified. Correlation analysis further indicated the existence of an intercellular cytokine network in which TNFα-induced secondary signaling cascades further increased functional cellular diversity. It was also exploited to evaluate polyfunctionality of tumor antigen-specific T cells from melanoma patients being treated with adoptive T cell transfer immunotherapy. This platform could be further extended to analyze both solid tumor cells (e.g. human lung carcinoma cells) and infiltrating immune cells (e.g. macrophages) so as to enable systems analysis of the complex tumor microenvironment from small amounts of clinical specimens, e.g. skinny needle biopsies. Thus, it could potentially

  16. BioAssay Ontology (BAO: a semantic description of bioassays and high-throughput screening results

    Directory of Open Access Journals (Sweden)

    Smith Robin P

    2011-06-01

    Full Text Available Abstract Background High-throughput screening (HTS is one of the main strategies to identify novel entry points for the development of small molecule chemical probes and drugs and is now commonly accessible to public sector research. Large amounts of data generated in HTS campaigns are submitted to public repositories such as PubChem, which is growing at an exponential rate. The diversity and quantity of available HTS assays and screening results pose enormous challenges to organizing, standardizing, integrating, and analyzing the datasets and thus to maximize the scientific and ultimately the public health impact of the huge investments made to implement public sector HTS capabilities. Novel approaches to organize, standardize and access HTS data are required to address these challenges. Results We developed the first ontology to describe HTS experiments and screening results using expressive description logic. The BioAssay Ontology (BAO serves as a foundation for the standardization of HTS assays and data and as a semantic knowledge model. In this paper we show important examples of formalizing HTS domain knowledge and we point out the advantages of this approach. The ontology is available online at the NCBO bioportal http://bioportal.bioontology.org/ontologies/44531. Conclusions After a large manual curation effort, we loaded BAO-mapped data triples into a RDF database store and used a reasoner in several case studies to demonstrate the benefits of formalized domain knowledge representation in BAO. The examples illustrate semantic querying capabilities where BAO enables the retrieval of inferred search results that are relevant to a given query, but are not explicitly defined. BAO thus opens new functionality for annotating, querying, and analyzing HTS datasets and the potential for discovering new knowledge by means of inference.

  17. Biotesting of radioactively contaminated forest soils using barley-based bioassay

    Science.gov (United States)

    Mel'nikova, T. V.; Polyakova, L. P.; Oudalova, A. A.

    2017-01-01

    Findings from radioactivity and phytotoxicity study are presented for soils from nine study-sites of the Klintsovsky Forestry located in the Bryansk region that were radioactively contaminated after the Chernobyl accident. According to the bioassay based on barley as test-species, stimulating effect of the soils analyzed is revealed for biological indexes of the length of barley roots and sprouts. From data on 137Cs specific activities in soils and plant biomass, the migration potential of radionuclide in the "soil-plant" system is assessed as a transfer factor. With correlation analysis, an impact of 137Cs in soil on the biological characteristics of barley is estimated.

  18. Stem cells and the aging hematopoietic system.

    Science.gov (United States)

    Beerman, Isabel; Maloney, William J; Weissmann, Irving L; Rossi, Derrick J

    2010-08-01

    Advancing age is accompanied by a number of clinically significant conditions arising in the hematopoietic system that include: diminution and decreased competence of the adaptive immune system, elevated incidence of certain autoimmune diseases, increased hematological malignancies, and elevated incidence of age-associated anemia. As with most tissues, the aged hematopoietic system also exhibits a reduced capacity to regenerate and return to normal homeostasis after injury or stress. Evidence suggests age-dependent functional alterations within the hematopoietic stem cell compartment significantly contribute to many of these pathophysiologies. Recent developments have shed light on how aging of the hematopoietic stem cell compartment contributes to hematopoietic decline through diverse mechanisms.

  19. Assessment of the environmental quality of coastal sediments by using a combination of in vitro bioassays.

    Science.gov (United States)

    Pérez-Albaladejo, Elisabet; Rizzi, Juliane; Fernandes, Denise; Lille-Langøy, Roger; Karlsen, Odd André; Goksøyr, Anders; Oros, Andra; Spagnoli, Federico; Porte, Cinta

    2016-07-15

    The environmental quality of marine sediments collected in the area of influence of the Po and Danube Rivers was assessed by using a battery of bioassays based on the use of PLHC-1 cells, zebrafish-Pxr-transfected COS-7 cells, and sea bass ovarian subcellular fractions. This allowed the determination of multiple endpoints, namely, cytotoxicity, oxidative stress, induction of CYP1A, activation of zebrafish Pxr and inhibition of ovarian aromatase. Organic extracts of sediments influenced by the Danube River and collected near harbors and urban discharges showed significant cytotoxicity, CYP1A induction and inhibition of aromatase activity. An analogous response of CYP1A induction and zfPxr activation was observed, which suggests the existence of common ligands of AhR and PXR in the sediment extracts. The study highlights the usefulness of the selected bioassays to identify those sediments that could pose a risk to aquatic organisms and that require further action in order to improve their environmental quality.

  20. Assessing the detoxication efficiencies of wastewater treatment processes using a battery of bioassays/biomarkers.

    Science.gov (United States)

    Ma, Mei; Li, Jian; Wang, Zijian

    2005-11-01

    A battery of in vitro bioassays, including a Neutral Red (NR) assay using MCF-7 cells for predicting cytotoxic chemicals, an ethoxy resorufin-O-deethylase (EROD) activity assay using H4IIE cells to check for dioxin-like chemicals, and a recombinant gene yeast assay for screening estrogenic chemicals, was conducted to assess the removal efficiencies of trace toxic chemicals by different treatment processes in the waste water treatment plant (WWTP). The effluents were extracted by solid phase extraction (SPE) and were fractionated into three fractions based on polarities. The battery of bioassays was performed for each fraction. In the battery, the toxicities of the effluents were described according to their modes of actions (MOA) or biomarkers and the properties of the toxic chemicals were categorized by their polarities and MOAs. The proposed procedure could be used as a tool to diagnose the toxic characteristics of the complicate mixture. The results showed that cytotoxic, dioxin-like and estrogenic chemicals could be detected in all samples. In the influent, cytotoxic and dioxin-like chemicals were mainly in polar fraction and estrogenic chemicals were in non-polar and moderate-polar fractions. The secondary treatment (active sludge) could remove a small amount of these toxicants. Among different types of advanced treatments, flocculation was good enough to remove most of the cytotoxic chemicals and a combination of flocculation, ozone oxidation, and post-biological treatment could eliminate most of the dioxin-like and estrogenic chemicals.

  1. A new and rapid bioassay for the detection of gliotoxin and related epipolythiodioxopiperazines produced by fungi.

    Science.gov (United States)

    Grovel, Olivier; Kerzaon, Isabelle; Petit, Karina; Robiou Du Pont, Thibaut; Pouchus, Yves-François

    2006-08-01

    Gliotoxin is an immunosuppressive cytotoxin produced by numerous environmental or pathogenic fungal species. For this reason, it is one of the mycotoxins which must be systematically searched for in samples for biological control. In this study, a new, rapid and sensitive method for detecting gliotoxin has been developed. This bioassay is based on the induction of morphological changes in cultured cells (human KB cell line) by gliotoxin. Interpretation of the assay can be carried out after 1 h of incubation, either by direct microscopic observation, or with an automated microplate-reader at 630 nm. The limit of detection is 18-20 ng of gliotoxin in the well, depending on the used observation method. A high degree of specificity of the detection is brought about by the ability of the reducing reactant dithiothreitol to inhibit the biological activities of epipolythiodioxopiperazines (ETPs), such as gliotoxin, by reducing their polysulfide bridge. The bioassay allows a rapid primary screening of samples and a semi-quantitative evaluation of the gliotoxin concentration in extracts. The method has been used to study the gliotoxin production by different fungal strains, allowing to highlight 3 strains of Aspergillus fumigatus producing gliotoxin in various extracts.

  2. Mammalian Cell-Based Sensor System

    Science.gov (United States)

    Banerjee, Pratik; Franz, Briana; Bhunia, Arun K.

    Use of living cells or cellular components in biosensors is receiving increased attention and opens a whole new area of functional diagnostics. The term "mammalian cell-based biosensor" is designated to biosensors utilizing mammalian cells as the biorecognition element. Cell-based assays, such as high-throughput screening (HTS) or cytotoxicity testing, have already emerged as dependable and promising approaches to measure the functionality or toxicity of a compound (in case of HTS); or to probe the presence of pathogenic or toxigenic entities in clinical, environmental, or food samples. External stimuli or changes in cellular microenvironment sometimes perturb the "normal" physiological activities of mammalian cells, thus allowing CBBs to screen, monitor, and measure the analyte-induced changes. The advantage of CBBs is that they can report the presence or absence of active components, such as live pathogens or active toxins. In some cases, mammalian cells or plasma membranes are used as electrical capacitors and cell-cell and cell-substrate contact is measured via conductivity or electrical impedance. In addition, cytopathogenicity or cytotoxicity induced by pathogens or toxins resulting in apoptosis or necrosis could be measured via optical devices using fluorescence or luminescence. This chapter focuses mainly on the type and applications of different mammalian cell-based sensor systems.

  3. IBCIS:Intelligent blood cell identification system

    Institute of Scientific and Technical Information of China (English)

    Adnan Khashman

    2008-01-01

    The analysis of blood cells in microscope images can provide useful information concerning the health of patients.There are three major blood cell types,namely,erythrocytes (red),leukocytes (white),and platelets.Manual classification is time consuming and susceptible to error due to the different morphological features of the cells.This paper presents an intelligent system that simulates a human visual inspection and classification of the three blood cell types.The proposed system comprises two phases:The image preprocessing phase where blood cell features are extracted via global pattern averaging,and the neural network arbitration phase where training is the first and then classification is carried out.Experimental results suggest that the proposed method performs well in identifying blood cell types regardless of their irregular shapes,sizes and orientation,thus providing a fast,simple and efficient rotational and scale invariant blood cell identification system which can be used in automating laboratory reporting.

  4. Application of a lux-based bioassay to assess soil toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Paton, G.I. [Macaulay Land Use Research Inst., Aberdeen (United Kingdom)]|[Univ. of Aberdeen (United Kingdom); Campbell, C.D. [Macaulay Land Use Research Inst., Aberdeen (United Kingdom); Rattray, E.A.S.; Glover, L.A.; Killham, K. [Univ. of Aberdeen (United Kingdom)

    1995-12-31

    The expression of prokaryotic bioluminescence is linked with cell metabolism and accordingly bioassays have been developed using naturally bioluminescent bacteria to assess ecotoxicity. Advances in biotechnology have allowed the isolation of the lux genes (responsible for bioluminescence) from marine organisms and their insertion into terrestrial bacteria. This has enabled the use of ecologically relevant bacteria to assess toxicity by measuring bioluminescence response in the presence of toxins. The lux genes were inserted into Pseudomonas fluorescens and Rhizobium leguminosarum biovar trifolii as a multi-copy plasmid and also integrated into the chromosome. It was found that in aqueous solutions the plasmid constructs were more sensitive than the chromosomal constructs to a range of toxins. The order of toxicity for Ps. fluorescens was Zn = Cu > Cd > Ni > Cr > DCP and for R. trifolii Zn > Cu > Cd > DCP > Cr. The lux based bioassays were more reproducible and sensitive than ATP and dehydrogenase assays and offered greater sensitivity than Photobacterium phosphoreum assays to assess toxicity of inorganic pollutants. Extracts from 4 soil types were spiked with a range of toxins and when EC{sub 50} values were determined it was shown that toxicity was related to soil characteristics. This enabled the assay to be used to assess the Lee Valley soil experiment which represents an important international study of the effect of the application of contaminated sewage to land. High metal application rates had been shown to have serious implications for soil ecology. Chemical analysis, carried out 26 years after sewage addition confirmed that soil extracts still had increased metal concentrations. The lux-based bioassays, which proved to be rapid, reproducible and sensitive confirmed that the metals were still biologically available and hence toxic.

  5. Bioassays for estrogenic activity: development and validation of estrogen receptor (ERalpha/ERbeta) and breast cancer proliferation bioassays to measure serum estrogenic activity in clinical studies.

    Science.gov (United States)

    Li, J; Lee, L; Gong, Y; Shen, P; Wong, S P; Wise, Stephen D; Yong, E L

    2009-02-01

    Standard estrogenic prodrugs such as estradiol valerate (E2V) and increasingly popular phytoestrogen formulations are commonly prescribed to improve menopausal health. These drugs are metabolized to numerous bioactive compounds, known or unknown, which may exert combinatorial estrogenic effects in vivo. The aim of this study is to develop and validate estrogen receptor (ER) alpha/ERbeta reporter gene and MCF-7 breast cancer cell proliferation bioassays to quantify serum estrogenic activities in a clinical trial setting. We measured changes in serum estrogenicity following ingestion of E2V and compared this to mass spectrometric measurements of its bioactive metabolites, estrone and 17beta-stradiol. ERalpha bioactivity of the 192 serum samples correlated well (R = 79%) with 17beta-estradiol levels, and adding estrone improved R to 0.83 (likelihood ratio test, P estrogenic activity and that these assays suggest that the Epimedium formulation tested is unlikely to exert significant estrogenic effects in humans.

  6. New Polymer Electrolyte Cell Systems

    Science.gov (United States)

    Smyrl, William H.; Owens, Boone B.; Mann, Kent; Pappenfus, T.; Henderson, W.

    2004-01-01

    PAPERS PUBLISHED: 1. Pappenfus, Ted M.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; Smyrl, William H. Complexes of Lithium Imide Salts with Tetraglyme and Their Polyelectrolyte Composite Materials. Journal of the Electrochemical Society (2004), 15 1 (2), A209-A2 15. 2. Pappenfus, Ted M.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; Smyrl, William H. Ionic-liquidlpolymer electrolyte composite materials for electrochemical device applications. Polymeric Materials Science and Engineering (2003), 88 302. 3. Pappenfus, Ted R.; Henderson, Wesley A.; Owens, Boone B.; Mann, Kent R.; and Smyrl, William H. Ionic Conductivity of a poly(vinylpyridinium)/Silver Iodide Solid Polymer Electrolyte System. Solid State Ionics (in press 2004). 4. Pappenfus Ted M.; Mann, Kent R; Smyrl, William H. Polyelectrolyte Composite Materials with LiPFs and Tetraglyme. Electrochemical and Solid State Letters, (2004), 7(8), A254.

  7. Stem cell genome-to-systems biology.

    Science.gov (United States)

    Chia, Na-Yu; Ng, Huck-Hui

    2012-01-01

    Stem cells are capable of extended proliferation and concomitantly differentiating into a plethora of specialized cell types that render them apropos for their usage as a form of regenerative medicine for cell replacement therapies. The molecular processes that underlie the ability for stem cells to self-renew and differentiate have been intriguing, and elucidating the intricacies within the genome is pertinent to enhance our understanding of stem cells. Systems biology is emerging as a crucial field in the study of the sophisticated nature of stem cells, through the adoption of multidisciplinary approaches which couple high-throughput experimental techniques with computational and mathematical analysis. This allows for the determination of the molecular constituents that govern stem cell characteristics and conjointly with functional validations via genetic perturbation and protein location binding analysis necessitate the construction of the complex transcriptional regulatory network. With the elucidation of protein-protein interaction, protein-DNA regulation, microRNA involvement as well as the epigenetic modifications, it is possible to comprehend the defining features of stem cells at the system level. Copyright © 2011 John Wiley & Sons, Inc.

  8. A novel bioassay for anti-thyrotrophin receptor autoantibodies detects both thyroid-blocking and stimulating activity.

    Science.gov (United States)

    Li, Y; Kim, J; Diana, T; Klasen, R; Olivo, P D; Kahaly, G J

    2013-09-01

    Autoantibodies to the thyrotrophin (TSH) receptor (anti-TSHR) are unique, in that they are involved directly in the pathophysiology of certain autoimmune thyroid diseases (AITD). Thyroid-stimulating antibodies (TSAb) act as agonists that activate the thyroid gland and cause Graves' disease. Other anti-TSHR antibodies block TSH and can cause hypothyroidism. Thyroid-blocking antibodies (TBAb) have not been studied as extensively as TSAb. We developed a TBAb bioassay based on a cell line that expresses a chimeric TSHR. The 50% inhibitory concentration of the chimeric Chinese hamster ovary (CHO)-Luc cells was more than five-fold lower compared with the wild-type CHO-Luc cells. We tested the performance of this bioassay using a thyroid-blocking monoclonal antibody K1-70, established an assay cut-off and detected TBAb in 15 of 50 (30%) patients with AITD. Interestingly, the assay detects both TSAb and TBAb and measures the net activity of a mixture of both types of antibodies. There was a high correlation (R(2) 0·9, P < 0·0001) between the results of the TSAb assay and the negative percentage inhibition of the TBAb assay. The TBAb bioassay was approximately 20-fold more sensitive than a commercially available TSHR binding assay (TRAb). In contrast to TRAb, sera with high levels of TBAb activity were able to be diluted several hundred-fold and still exhibit blocking activity above the cut-off level. Thus, this TBAb bioassay provides a useful tool for measuring the activity of anti-TSHR antibodies and may help clinicians to characterize the diverse clinical presentations of patients with AITD.

  9. A novel bioassay for the activity determination of therapeutic human brain natriuretic peptide (BNP.

    Directory of Open Access Journals (Sweden)

    Lei Yu

    Full Text Available BACKGROUND: Recombinant human brain natriuretic peptide (rhBNP is an important peptide-based therapeutic drug indicated for the treatment of acute heart failure. Accurate determination of the potency of therapeutic rhBNP is crucial for the safety and efficacy of the drug. The current bioassay involves use of rabbit aortic strips, with experiments being complicated and time-consuming and markedly variable in results. Animal-less methods with better precision and accuracy should be explored. We have therefore developed an alternative cell-based assay, which relies on the ability of BNP to induce cGMP production in HEK293 cells expressing BNP receptor guanylyl cyclase-A. METHODOLOGY/PRINCIPAL FINDINGS: An alternative assay based on the measurement of BNP-induced cGMP production was developed. Specifically, the bioassay employs cells engineered to express BNP receptor guanylyl cyclase-A (GCA. Upon rhBNP stimulation, the levels of the second messager cGMP in these cells drastically increased and subsequently secreted into culture supernatants. The quantity of cGMP, which corresponds to the rhBNP activity, was determined using a competitive ELISA developed by us. Compared with the traditional assay, the novel cell-based assay demonstrated better reproducibility and precision. CONCLUSION/SIGNIFICANCE: The optimized cell-based assay is much simpler, more rapid and precise compared with the traditional assay using animal tissues. To our knowledge, this is the first report on a novel and viable alternative assay for rhBNP potency analysis.

  10. Effect-based trigger values for in vitro bioassays: Reading across from existing water quality guideline values.

    Science.gov (United States)

    Escher, Beate I; Neale, Peta A; Leusch, Frederic D L

    2015-09-15

    Cell-based bioassays are becoming increasingly popular in water quality assessment. The new generations of reporter-gene assays are very sensitive and effects are often detected in very clean water types such as drinking water and recycled water. For monitoring applications it is therefore imperative to derive trigger values that differentiate between acceptable and unacceptable effect levels. In this proof-of-concept paper, we propose a statistical method to read directly across from chemical guideline values to trigger values without the need to perform in vitro to in vivo extrapolations. The derivation is based on matching effect concentrations with existing chemical guideline values and filtering out appropriate chemicals that are responsive in the given bioassays at concentrations in the range of the guideline values. To account for the mixture effects of many chemicals acting together in a complex water sample, we propose bioanalytical equivalents that integrate the effects of groups of chemicals with the same mode of action that act in a concentration-additive manner. Statistical distribution methods are proposed to derive a specific effect-based trigger bioanalytical equivalent concentration (EBT-BEQ) for each bioassay of environmental interest that targets receptor-mediated toxicity. Even bioassays that are indicative of the same mode of action have slightly different numeric trigger values due to differences in their inherent sensitivity. The algorithm was applied to 18 cell-based bioassays and 11 provisional effect-based trigger bioanalytical equivalents were derived as an illustrative example using the 349 chemical guideline values protective for human health of the Australian Guidelines for Water Recycling. We illustrate the applicability using the example of a diverse set of water samples including recycled water. Most recycled water samples were compliant with the proposed triggers while wastewater effluent would not have been compliant with a few

  11. Endocrine disrupting potentials of Bisphenol A, Bisphenol A dimethacrylate, 4-n-Nonyl-phenol and 4-Octylphenol assessed in cell model systems for effects on the estrogen-, androgen-, aryl hydrocarbon-receptor and aromatase activity

    DEFF Research Database (Denmark)

    Bonefeld-Jørgensen, Eva Cecilie; Long, Manhai; Hofmeister, Marlene V;

    used as surfactants. We have investigated the effect in vitro of these four plasticizers in four cell culture model systems.The estrogenic potencies were analyzed using the stable ERE-luciferase transfected cell line MVLN measuring the relative estrogen receptor (ER) transactivated luciferase units...... in the conversion of androgens to estrogens in an array of cells, were assessed in the human choriocarcinoma JEG-3 cells using the classical [3H]2O assay. Trans-activation of the Aryl hydrocarbon receptor (AhR) was determined in the mouse hepatoma Hepa1.12cR cell line, stable transfected by an AhR-CALUX construct...... determining RLU. All four compounds elicited a response in each of the four bioassays. Thus, our in vitro data clearly indicates that the four tested plasticizers have ED potentials and that such effects can be mediated via several cellular pathway systems including the estrogen- and the androgen hormones...

  12. An Improved Bioassay for Cytokinins Using Cucumber Cotyledons 1

    Science.gov (United States)

    Fletcher, R. A.; Kallidumbil, V.; Steele, P.

    1982-01-01

    The cucumber cotyledon greening bioassay is frequently used for detecting cytokinins. Beneficial modifications of the original technique included using 5-day-old cucumber (Cucumus sativus L., cv. National Pickling) cotyledons treated with combinations of 40 millimolar KCl and various concentrations of cytokinins. A dark incubation period of 20 hours was followed by an exposure to light for 3.5 hours. Under these conditions, extremely low (0.0001 milligram per liter) concentrations of N6-benzyladenine, zeatin, kinetin, or zeatin riboside can be detected. Of the four cytokinins tested, kinetin appeared to be the least active. With these improvements, the assay is 10 times more sensitive than is the previously described cucumber cotyledon greening bioassay for cytokinins. PMID:16662273

  13. An improved bioassay for cytokinins using cucumber cotyledons.

    Science.gov (United States)

    Fletcher, R A; Kallidumbil, V; Steele, P

    1982-03-01

    The cucumber cotyledon greening bioassay is frequently used for detecting cytokinins. Beneficial modifications of the original technique included using 5-day-old cucumber (Cucumus sativus L., cv. National Pickling) cotyledons treated with combinations of 40 millimolar KCl and various concentrations of cytokinins. A dark incubation period of 20 hours was followed by an exposure to light for 3.5 hours. Under these conditions, extremely low (0.0001 milligram per liter) concentrations of N(6)-benzyladenine, zeatin, kinetin, or zeatin riboside can be detected. Of the four cytokinins tested, kinetin appeared to be the least active. With these improvements, the assay is 10 times more sensitive than is the previously described cucumber cotyledon greening bioassay for cytokinins.

  14. The use of cultivars of Raphanus sativus for cytokinin bioassay

    Directory of Open Access Journals (Sweden)

    Dorota Kubowicz

    2013-12-01

    Full Text Available Six cultivars of radish (Raphanus sativus were tested for their usefulness in radish cytokinin bioassay by the method of Letham (1971. The best cultivar was found to be 'Sopel Lodu' which responds well to both zeatin and 2iP over a wide range of concentrations. The fresh weight of cotyledons increased at most by 71.5% (if treated with zeatin or 101.0% (if treated with 2iP compared to untreated cotyledons. This cultivar is also sensitive to the partially purified cytokinin-like fraction isolated from the pine (Pinus silvestris cambial region. The cultivar 'Sopel Lodu' is therefore proposed to be a suitable plant for cytokinin bioassays.

  15. Efficient Experimental Design Strategies in Toxicology and Bioassay

    Directory of Open Access Journals (Sweden)

    Timothy E. O'Brien

    2016-06-01

    Full Text Available Modelling in bioassay often uses linear or nonlinear logistic regression models, and relative potency is often the focus when two or more compounds are to be compared.  Estimation in these settings is typically based on likelihood methods.  Here, we focus on the 3-parameter model representation given in Finney (1978 in which the relative potency is a model parameter.  Using key matrix results and the general equivalence theorem of Kiefer & Wolfowitz (1960, this paper establishes key design properties of the optimal design for relative potency using this model.  We also highlight aspects of subset designs for the relative potency parameter and extend geometric designs to efficient design settings of bioassay.  These latter designs are thus useful for both parameter estimation and checking for goodness-of-fit.  A typical yet insightful example is provided from the field of toxicology to illustrate our findings.

  16. Solid oxide fuel cell power system development

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, Rick [Delphi Automotive Systems, LLC., Troy, MI (United States); Wall, Mark [Independent Energy Partners Technology, LLC., Parker, CO (United States); Sullivan, Neal [Colorado School of Mines, Golden, CO (United States)

    2015-06-26

    This report summarizes the progress made during this contractual period in achieving the goal of developing the solid oxide fuel cell (SOFC) cell and stack technology to be suitable for use in highly-efficient, economically-competitive, commercially deployed electrical power systems. Progress was made in further understanding cell and stack degradation mechanisms in order to increase stack reliability toward achieving a 4+ year lifetime, in cost reduction developments to meet the SECA stack cost target of $175/kW (in 2007 dollars), and in operating the SOFC technology in a multi-stack system in a real-world environment to understand the requirements for reliably designing and operating a large, stationary power system.

  17. Detection of Organic Compounds with Whole-Cell Bioluminescent Bioassays

    OpenAIRE

    Xu, Tingting; Close, Dan; Smartt, Abby; Ripp, Steven; Sayler, Gary

    2014-01-01

    Natural and manmade organic chemicals are widely deposited across a diverse range of ecosystems including air, surface water, groundwater, wastewater, soil, sediment, and marine environments. Some organic compounds, despite their industrial values, are toxic to living organisms and pose significant health risks to humans and wildlife. Detection and monitoring of these organic pollutants in environmental matrices therefore is of great interest and need for remediation and health risk assessmen...

  18. Mimicking Daphnia magna bioassay performance by an electronic tongue for urban water quality control

    Energy Technology Data Exchange (ETDEWEB)

    Kirsanov, Dmitry, E-mail: d.kirsanov@gmail.com [Laboratory of Chemical Sensors, St. Petersburg State University, St. Petersburg (Russian Federation); Laboratory of Artificial Sensor Systems, ITMO University, St. Petersburg (Russian Federation); Legin, Evgeny [Laboratory of Artificial Sensor Systems, ITMO University, St. Petersburg (Russian Federation); Sensor Systems LLC, St. Petersburg (Russian Federation); Zagrebin, Anatoly; Ignatieva, Natalia; Rybakin, Vladimir [Institute of Limnology, Russian Academy of Sciences, St. Petersburg (Russian Federation); Legin, Andrey [Laboratory of Chemical Sensors, St. Petersburg State University, St. Petersburg (Russian Federation); Laboratory of Artificial Sensor Systems, ITMO University, St. Petersburg (Russian Federation)

    2014-05-01

    Highlights: • -Daphnia magna bioassay can be simulated with multisensor system. • Urban water toxicity can be predicted from potentiometric ET data. • Independent test set validation confirms statistical significance of the results. - Abstract: Toxicity is one of the key parameters of water quality in environmental monitoring. However, being evaluated as a response of living beings (as their mobility, fertility, death rate, etc.) to water quality, toxicity can only be assessed with the help of these living beings. This imposes certain restrictions on toxicity bioassay as an analytical method: biotest organisms must be properly bred, fed and kept under strictly regulated conditions and duration of tests can be quite long (up to several days), thus making the whole procedure the prerogative of the limited number of highly specialized laboratories. This report describes an original application of potentiometric multisensor system (electronic tongue) when the set of electrochemical sensors was calibrated against Daphnia magna death rate in order to perform toxicity assessment of urban waters without immediate involvement of living creatures. PRM (partial robust M) and PLS (projections on latent structures) regression models based on the data from this multisensor system allowed for prediction of toxicity of unknown water samples in terms of biotests but in the fast and simple instrumental way. Typical errors of water toxicity predictions were below 20% in terms of Daphnia death rate which can be considered as a good result taking into account the complexity of the task.

  19. BioAssay templates for the semantic web

    Directory of Open Access Journals (Sweden)

    Alex M. Clark

    2016-05-01

    Full Text Available Annotation of bioassay protocols using semantic web vocabulary is a way to make experiment descriptions machine-readable. Protocols are communicated using concise scientific English, which precludes most kinds of analysis by software algorithms. Given the availability of a sufficiently expressive ontology, some or all of the pertinent information can be captured by asserting a series of facts, expressed as semantic web triples (subject, predicate, object. With appropriate annotation, assays can be searched, clustered, tagged and evaluated in a multitude of ways, analogous to other segments of drug discovery informatics. The BioAssay Ontology (BAO has been previously designed for this express purpose, and provides a layered hierarchy of meaningful terms which can be linked to. Currently the biggest challenge is the issue of content creation: scientists cannot be expected to use the BAO effectively without having access to software tools that make it straightforward to use the vocabulary in a canonical way. We have sought to remove this barrier by: (1 defining a BioAssay Template (BAT data model; (2 creating a software tool for experts to create or modify templates to suit their needs; and (3 designing a common assay template (CAT to leverage the most value from the BAO terms. The CAT was carefully assembled by biologists in order to find a balance between the maximum amount of information captured vs. low degrees of freedom in order to keep the user experience as simple as possible. The data format that we use for describing templates and corresponding annotations is the native format of the semantic web (RDF triples, and we demonstrate some of the ways that generated content can be meaningfully queried using the SPARQL language. We have made all of these materials available as open source (http://github.com/cdd/bioassay-template, in order to encourage community input and use within diverse projects, including but not limited to our own

  20. Guidance document for prepermit bioassay testing of low-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, S.L.; Harrison, F.L.

    1990-11-01

    In response to the mandate of Public Law 92-532, the Marine Protection, Research, and Sanctuaries Act (MPRSA) of 1972, as amended, the Environmental Protection Agency (EPA) has developed a program to promulgate regulations and criteria to control the ocean disposal of radioactive wastes. The EPA seeks to understand the mechanisms for biological response of marine organisms to the low levels of radioactivity that may arise from the release of these wastes as a result of ocean-disposal practices. Such information will play an important role in determining the adequacy of environmental assessments provided to the EPA in support of any disposal permit application. Although the EPA requires packaging of low-level radioactive waste to prevent release during radiodecay of the materials, some release of radioactive material into the deep-sea environment may occur when a package deteriorates. Therefore, methods for evaluating the impact on biota are being evaluated. Mortality and phenotypic responses are not anticipated at the expected low environmental levels that might occur if radioactive materials were released from the low-level waste packages. Therefore, traditional bioassay systems are unsuitable for assessing sublethal effects on biota in the marine environment. The EPA Office of Radiation Programs (ORP) has had an ongoing program to examine sublethal responses to radiation at the cellular level, using cytogenetic end points. This technical guidance report represents prepermit bioassay procedures that potentially may be applicable to the assessment of effects from a mixture of radionuclides that could be released from a point source at the ocean bottom. Methodologies along with rationale and a discussion of uncertainty are presented for the sediment benthic bioassay protocols identified in this report.

  1. In vivo genotoxicity of furan in F344 rats at cancer bioassay doses

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Wei, E-mail: Wei.Ding@fda.hhs.gov [Division of Genetic and Molecular Toxicology, US FDA/National Center for Toxicological Research, Jefferson, AR 72079 (United States); Petibone, Dayton M. [Division of Genetic and Molecular Toxicology, US FDA/National Center for Toxicological Research, Jefferson, AR 72079 (United States); Latendresse, John R. [Toxicologic Pathology Associates, US FDA/National Center for Toxicological Research, Jefferson, AR 72079 (United States); Pearce, Mason G. [Division of Genetic and Molecular Toxicology, US FDA/National Center for Toxicological Research, Jefferson, AR 72079 (United States); Muskhelishvili, Levan; White, Gene A. [Toxicologic Pathology Associates, US FDA/National Center for Toxicological Research, Jefferson, AR 72079 (United States); Chang, Ching-Wei [Division of Personalized Nutrition and Medicine, US FDA/National Center for Toxicological Research, Jefferson, AR 72079 (United States); Mittelstaedt, Roberta A.; Shaddock, Joseph G.; McDaniel, Lea P. [Division of Genetic and Molecular Toxicology, US FDA/National Center for Toxicological Research, Jefferson, AR 72079 (United States); Doerge, Daniel R. [Division of Biochemical Toxicology, US FDA/National Center for Toxicological Research, Jefferson, AR 72079 (United States); Morris, Suzanne M.; Bishop, Michelle E.; Manjanatha, Mugimane G.; Aidoo, Anane; Heflich, Robert H. [Division of Genetic and Molecular Toxicology, US FDA/National Center for Toxicological Research, Jefferson, AR 72079 (United States)

    2012-06-01

    Furan, a potent rodent liver carcinogen, is found in many cooked food items and thus represents a human cancer risk. Mechanisms for furan carcinogenicity were investigated in male F344 rats using the in vivo Comet and micronucleus assays, combined with analysis of histopathological and gene expression changes. In addition, formamidopyrimidine DNA glycosylase (Fpg) and endonuclease III (EndoIII)-sensitive DNA damage was monitored as a measure of oxidative DNA damage. Rats were treated by gavage on four consecutive days with 2, 4, and 8 mg/kg bw furan, doses that were tumorigenic in 2-year cancer bioassays, and with two higher doses, 12 and 16 mg/kg. Rats were killed 3 h after the last dose, a time established as producing maximum levels of DNA damage in livers of furan-treated rats. Liver Comet assays indicated that both DNA strand breaks and oxidized purines and pyrimidines increased in a near-linear dose-responsive fashion, with statistically significant increases detected at cancer bioassay doses. No DNA damage was detected in bone marrow, a non-target tissue for cancer, and peripheral blood micronucleus assays were negative. Histopathological evaluation of liver from furan-exposed animals produced evidence of inflammation, single-cell necrosis, apoptosis, and cell proliferation. In addition, genes related to apoptosis, cell-cycle checkpoints, and DNA-repair were expressed at a slightly lower level in the furan-treated livers. Although a mixed mode of action involving direct DNA binding cannot be ruled out, the data suggest that furan induces cancer in rat livers mainly through a secondary genotoxic mechanism involving oxidative stress, accompanied by inflammation, cell proliferation, and toxicity. -- Highlights: ► Furan is a potent rodent liver carcinogen and represents a human cancer risk. ► Furan induces DNA damage in rat liver at cancer bioassay doses. ► Furan induces oxidative stress, inflammation and cell proliferation in rat liver. ► Expression of

  2. A Cytotoxic, Co-operative Interaction Between Energy Deprivation and Glutamate Release From System xc− Mediates Aglycemic Neuronal Cell Death

    Directory of Open Access Journals (Sweden)

    Trista L. Thorn

    2015-11-01

    Full Text Available The astrocyte cystine/glutamate antiporter (system xc− contributes substantially to the excitotoxic neuronal cell death facilitated by glucose deprivation. The purpose of this study was to determine the mechanism by which this occurred. Using pure astrocyte cultures, as well as, mixed cortical cell cultures containing both neurons and astrocytes, we found that neither an enhancement in system xc− expression nor activity underlies the excitotoxic effects of aglycemia. In addition, using three separate bioassays, we demonstrate no change in the ability of glucose-deprived astrocytes—either cultured alone or with neurons—to remove glutamate from the extracellular space. Instead, we demonstrate that glucose-deprived cultures are 2 to 3 times more sensitive to the killing effects of glutamate or N-methyl-D-aspartate when compared with their glucose-containing controls. Hence, our results are consistent with the weak excitotoxic hypothesis such that a bioenergetic deficiency, which is measureable in our mixed but not astrocyte cultures, allows normally innocuous concentrations of glutamate to become excitotoxic. Adding to the burgeoning literature detailing the contribution of astrocytes to neuronal injury, we conclude that under our experimental paradigm, a cytotoxic, co-operative interaction between energy deprivation and glutamate release from astrocyte system xc− mediates aglycemic neuronal cell death.

  3. A Cytotoxic, Co-operative Interaction Between Energy Deprivation and Glutamate Release From System xc- Mediates Aglycemic Neuronal Cell Death.

    Science.gov (United States)

    Thorn, Trista L; He, Yan; Jackman, Nicole A; Lobner, Doug; Hewett, James A; Hewett, Sandra J

    2015-01-01

    The astrocyte cystine/glutamate antiporter (system xc(-)) contributes substantially to the excitotoxic neuronal cell death facilitated by glucose deprivation. The purpose of this study was to determine the mechanism by which this occurred. Using pure astrocyte cultures, as well as, mixed cortical cell cultures containing both neurons and astrocytes, we found that neither an enhancement in system xc(-) expression nor activity underlies the excitotoxic effects of aglycemia. In addition, using three separate bioassays, we demonstrate no change in the ability of glucose-deprived astrocytes--either cultured alone or with neurons--to remove glutamate from the extracellular space. Instead, we demonstrate that glucose-deprived cultures are 2 to 3 times more sensitive to the killing effects of glutamate or N-methyl-D-aspartate when compared with their glucose-containing controls. Hence, our results are consistent with the weak excitotoxic hypothesis such that a bioenergetic deficiency, which is measureable in our mixed but not astrocyte cultures, allows normally innocuous concentrations of glutamate to become excitotoxic. Adding to the burgeoning literature detailing the contribution of astrocytes to neuronal injury, we conclude that under our experimental paradigm, a cytotoxic, co-operative interaction between energy deprivation and glutamate release from astrocyte system xc(-) mediates aglycemic neuronal cell death.

  4. Automated microinjection system for adherent cells

    Science.gov (United States)

    Youoku, Sachihiro; Suto, Yoshinori; Ando, Moritoshi; Ito, Akio

    2007-07-01

    We have developed an automated microinjection system that can handle more than 500 cells an hour. Microinjection injects foreign agents directly into cells using a micro-capillary. It can randomly introduce agents such as DNA, proteins and drugs into various types of cells. However, conventional methods require a skilled operator and suffer from low throughput. The new automated microinjection techniques we have developed consist of a Petri dish height measuring method and a capillary apex position measuring method. The dish surface height is measured by analyzing the images of cells that adhere to the dish surface. The contrast between the cell images is minimized when the focus plane of an object lens coincides with the dish surface. We have developed an optimized focus searching method with a height accuracy of +/-0.2 um. The capillary apex position detection method consists of three steps: rough, middle, and precise. These steps are employed sequentially to cover capillary displacements of up to +/-2 mm, and to ultimately accomplish an alignment accuracy of less than one micron. Experimental results using this system we developed show that it can introduce fluorescent material (Alexa488) into adherent cells, HEK293, with a success rate of 88.5%.

  5. Bioassays for assessing jasmonate-dependent defenses triggered by pathogens, herbivorous insects, or beneficial rhizobacteria.

    Science.gov (United States)

    Van Wees, Saskia C M; Van Pelt, Johan A; Bakker, Peter A H M; Pieterse, Corné M J

    2013-01-01

    Jasmonates, together with other plant hormones, are important orchestrators of the plant immune system. The different hormone-controlled signaling pathways cross-communicate in an antagonistic or a synergistic manner, providing the plant with a powerful capacity to finely regulate its immune response. Jasmonic acid (JA) signaling is required for plant resistance to harmful organisms, such as necrotrophic pathogens and herbivorous insects. Furthermore, JA signaling is essential in interactions of plants with beneficial microbes that induce systemic resistance to pathogens and insects. The role of JA signaling components in plant immunity can be studied by performing bioassays with different interacting organisms. Determination of the level of resistance and the induction of defense responses in plants with altered JA components, through mutation or ectopic expression, will unveil novel mechanisms of JA signaling. We provide detailed protocols of bioassays with the model plant Arabidopsis thaliana challenged with the pathogens Botrytis cinerea and Pseudomonas syringae, the insect herbivore Pieris rapae, and the beneficial microbe Pseudomonas fluorescens. In addition, we describe pharmacological assays to study the modulation of JA-regulated responses by exogenous application of combinations of hormones, because a simultaneous rise in hormone levels occurs during interaction of plants with other organisms.

  6. Coal Integrated Gasification Fuel Cell System Study

    Energy Technology Data Exchange (ETDEWEB)

    Chellappa Balan; Debashis Dey; Sukru-Alper Eker; Max Peter; Pavel Sokolov; Greg Wotzak

    2004-01-31

    This study analyzes the performance and economics of power generation systems based on Solid Oxide Fuel Cell (SOFC) technology and fueled by gasified coal. System concepts that integrate a coal gasifier with a SOFC, a gas turbine, and a steam turbine were developed and analyzed for plant sizes in excess of 200 MW. Two alternative integration configurations were selected with projected system efficiency of over 53% on a HHV basis, or about 10 percentage points higher than that of the state-of-the-art Integrated Gasification Combined Cycle (IGCC) systems. The initial cost of both selected configurations was found to be comparable with the IGCC system costs at approximately $1700/kW. An absorption-based CO2 isolation scheme was developed, and its penalty on the system performance and cost was estimated to be less approximately 2.7% and $370/kW. Technology gaps and required engineering development efforts were identified and evaluated.

  7. Coal Integrated Gasification Fuel Cell System Study

    Energy Technology Data Exchange (ETDEWEB)

    Chellappa Balan; Debashis Dey; Sukru-Alper Eker; Max Peter; Pavel Sokolov; Greg Wotzak

    2004-01-31

    This study analyzes the performance and economics of power generation systems based on Solid Oxide Fuel Cell (SOFC) technology and fueled by gasified coal. System concepts that integrate a coal gasifier with a SOFC, a gas turbine, and a steam turbine were developed and analyzed for plant sizes in excess of 200 MW. Two alternative integration configurations were selected with projected system efficiency of over 53% on a HHV basis, or about 10 percentage points higher than that of the state-of-the-art Integrated Gasification Combined Cycle (IGCC) systems. The initial cost of both selected configurations was found to be comparable with the IGCC system costs at approximately $1700/kW. An absorption-based CO2 isolation scheme was developed, and its penalty on the system performance and cost was estimated to be less approximately 2.7% and $370/kW. Technology gaps and required engineering development efforts were identified and evaluated.

  8. Polyvinyl polypyrrolidone attenuates genotoxicity of silver nanoparticles synthesized via green route, tested in Lathyrus sativus L. root bioassay.

    Science.gov (United States)

    Panda, Kamal K; Achary, V Mohan M; Phaomie, Ganngam; Sahu, Hrushi K; Parinandi, Narasimham L; Panda, Brahma B

    2016-08-01

    The silver nanoparticles (AgNPs) were synthesized extracellularly from silver nitrate (AgNO3) using kernel extract from ripe mango Mengifera indica L. under four different reaction conditions of the synthesis media such as the (i) absence of the reducing agent, trisodium citrate (AgNPI), (ii) presence of the reducing agent (AgNPII), (iii) presence of the cleansing agent, polyvinyl polypyrrolidone, PVPP (AgNPIII), and (iv) presence of the capping agent, polyvinyl pyrrolidone, PVP (AgNPIV). The synthesis of the AgNPs was monitored by UV-vis spectrophotometry. The AgNPs were characterised by the energy-dispersive X-ray spectroscopy, transmission electron microscopy, X-ray diffraction, and small-angle X-ray scattering. Functional groups on the AgNPs were established by the Fourier transform infrared spectroscopy. The AgNPs (AgNPI, AgNPII, AgNPIII and AgNPIV) were spherical in shape with the diameters and size distribution-widths of 14.0±5.4, 19.2±6.6, 18.8±6.6 and 44.6±13.2nm, respectively. Genotoxicity of the AgNPs at concentrations ranging from 1 to 100mgL(-1) was determined by the Lathyrus sativus L. root bioassay and several endpoint assays including the generation of reactive oxygen species and cell death, lipid peroxidation, mitotic index, chromosome aberrations (CA), micronucleus formation (MN), and DNA damage as determined by the Comet assay. The dose-dependent induction of genotoxicity of the silver ion (Ag(+)) and AgNPs was in the order Ag(+)>AgNPII>AgNPI>AgNPIV>AgNPIII that corresponded with their relative potencies of induction of DNA damage and oxidative stress. Furthermore, the findings underscored the CA and MN endpoint-based genotoxicity assay which demonstrated the genotoxicity of AgNPs at concentrations (≤10mgL(-1)) lower than that (≥10mgL(-1)) tested in the Comet assay. This study demonstrated the protective action of PVPP against the genotoxicity of AgNPIII which was independent of the size of the AgNPs in the L. sativus L. root bioassay

  9. The large-scale digital cell analysis system: an open system for nonperturbing live cell imaging.

    Science.gov (United States)

    Davis, Paul J; Kosmacek, Elizabeth A; Sun, Yuansheng; Ianzini, Fiorenza; Mackey, Michael A

    2007-12-01

    The Large-Scale Digital Cell Analysis System (LSDCAS) was designed to provide a highly extensible open source live cell imaging system. Analysis of cell growth data has demonstrated a lack of perturbation in cells imaged using LSDCAS, through reference to cell growth data from cells growing in CO(2) incubators. LSDCAS consists of data acquisition, data management and data analysis software, and is currently a Core research facility at the Holden Comprehensive Cancer Center at the University of Iowa. Using LSDCAS analysis software, this report and others show that although phase-contrast imaging has no apparent effect on cell growth kinetics and viability, fluorescent image acquisition in the cell lines tested caused a measurable level of growth perturbation using LSDCAS. This report describes the current design of the system, reasons for the implemented design, and details its basic functionality. The LSDCAS software runs on the GNU/Linux operating system, and provides easy to use, graphical programs for data acquisition and quantitative analysis of cells imaged with phase-contrast or fluorescence microscopy (alone or in combination), and complete source code is freely available under the terms of the GNU Public Software License at the project website (http://lsdcas.engineering.uiowa.edu).

  10. Solar recharging system for hearing aid cells.

    Science.gov (United States)

    Gòmez Estancona, N; Tena, A G; Torca, J; Urruticoechea, L; Muñiz, L; Aristimuño, D; Unanue, J M; Torca, J; Urruticoechea, A

    1994-09-01

    We present a solar recharging system for nickel-cadmium cells of interest in areas where batteries for hearing aids are difficult to obtain. The charger has sun cells at the top. Luminous energy is converted into electrical energy, during the day and also at night if there is moonlight. The cost of the charger and hearing aid is very low at 35 US$. The use of solar recharging for hearing aids would be useful in alleviating the problems of deafness in parts of developing countries where there is no electricity.

  11. Comparison of various bioassays for dioxins measurements in fuel gas, fly ash and bottom ash

    Energy Technology Data Exchange (ETDEWEB)

    Ota, S.; Kin-ichi, S. [Ministry of the Environment, Tokyo (Japan); Masatoshi, M.; Shin-ichi, S. [National Institute for Environmental Studies, Tsukuba (Japan)

    2004-09-15

    In Japan, the control standards for dioxins (PCDDs, PCDFs and Co-PCBs) in the emission gas, fly and bottom ashes from waste incinerators have been defined in the Law Concerning Special Measures against Dioxins (Dioxins Law). Based on the Dioxins law, an installation personnel of waste incinerators of specified facilities shall measure dioxins in the emission gas and fly and bottom ashes more than once every year followed by reporting the results to their prefectural governor. The present regulating procedure has been set to use high-resolution gas chromatography/ high-resolution mass spectrometry (HRGC/HRMS, hereafter GC/MS) systems to determine dioxin-concentrations. However, the GC/MS measurements are often money- and timeconsuming, since they need complicated steps for sample preparation, expensive equipments and highly skilled technicians. Therefore, it is of high priority to develop rapid and economical alternative methods to measure dioxins. Recently, various assays using biological reactions have drawn a high degree of attention as a candidate for alternative measurement methods of dioxins. During the past decade several studies demonstrated the utility of a chemical (GC/MS) and biological (bioassays/biomarkers) control of waste thermal recycling processes like pyrolysis or incineration treatment. In this paper, we report the results of our recent examinations on the possibility to apply various bioassays to supplementary methods for the present procedure.

  12. Identification of antifungal natural products via Saccharomyces cerevisiae bioassay: insights into macrotetrolide drug spectrum, potency and mode of action.

    Science.gov (United States)

    Tebbets, Brad; Yu, Zhiguo; Stewart, Douglas; Zhao, Li-Xing; Jiang, Yi; Xu, Li-Hua; Andes, David; Shen, Ben; Klein, Bruce

    2013-04-01

    Since current antifungal drugs have not kept pace with the escalating medical demands of fungal infections, new, effective medications are required. However, antifungal drug discovery is hindered by the evolutionary similarity of mammalian and fungal cells, which results in fungal drug targets having human homologs and drug non-selectivity. The group III hybrid histidine kinases (HHKs) are an attractive drug target since they are conserved in fungi and absent in mammals. We used a Saccharomyces cerevisiae reporter strain that conditionally expresses HHK to establish a high-throughput bioassay to screen microbial extracts natural products for antifungals. We identified macrotetrolides, a group of related ionophores thought to exhibit restricted antifungal activity. In addition to confirming the use of this bioassay for the discovery of antifungal natural products, we demonstrated broader, more potent fungistatic activity of the macrotetrolides against multiple Candida spp., Cryptococcus spp., and Candida albicans in biofilms. Macrotetrolides were also active in an animal model of C. albicans biofilm, but were found to have inconsistent activity against fluconazole-resistant C. albicans, with most isolates resistant to this natural product. The macrotetrolides do not directly target HHKs, but their selective activity against S. cerevisiae grown in galactose (regardless of Drk1 expression) revealed potential new insight into the role of ion transport in the mode of action of these promising antifungal compounds. Thus, this simple, high-throughput bioassay permitted us to screen microbial extracts, identify natural products as antifungal drugs, and expand our understanding of the activity of macrotetrolides.

  13. Evidence for Existence of Immunoglobulins that Block Ovarian Granulosa Cell Growth in Vitro. A Putative Role in Resistant Ovary Syndrome?

    NARCIS (Netherlands)

    WEISSENBRUCH, MIRJAM M. van; HOEK, ANNEMIEKE; VLIET-BLEEKER, INGRID van; SCHOEMAKER, JOOP; DREXHAGE, HEMMO

    1991-01-01

    The sera of 26 patients with premature ovarian failure were examined in order to detect immunoglobulin-G (IgGs) that can block FSH-induced in vitro granulosa cell DNA synthesis via, a Feulgen cytochemical bioassay system. The IgGs of four patients with polycystic ovary-like disease, five postmenopau

  14. Immunoassay and Nb2 lymphoma bioassay prolactin levels and mammographic density in premenopausal and postmenopausal women the Nurses' Health Studies.

    Science.gov (United States)

    Rice, Megan S; Tworoger, Shelley S; Bertrand, Kimberly A; Hankinson, Susan E; Rosner, Bernard A; Feeney, Yvonne B; Clevenger, Charles V; Tamimi, Rulla M

    2015-01-01

    Higher circulating prolactin levels have been associated with higher percent mammographic density among postmenopausal women in some, but not all studies. However, few studies have examined associations with dense area and non-dense breast area breast or considered associations with prolactin Nb2 lymphoma cell bioassay levels. We conducted a cross-sectional study among 1,124 premenopausal and 890 postmenopausal women who were controls in breast cancer case-control studies nested in the Nurses' Health Study (NHS) and NHSII. Participants provided blood samples in 1989-1990 (NHS) or 1996-1999 (NHSII) and mammograms were obtained from around the time of blood draw. Multivariable linear models were used to assess the associations between prolactin levels (measured by immunoassay or bioassay) with percent density, dense area, and non-dense area. Among 1,124 premenopausal women, percent density, dense area, and non-dense area were not associated with prolactin immunoassay levels in multivariable models (p trends = 0.10, 0.18, and 0.69, respectively). Among 890 postmenopausal women, those with prolactin immunoassay levels in the highest versus lowest quartile had modestly, though significantly, higher percent density (difference = 3.01 percentage points, 95 % CI 0.22, 5.80) as well as lower non-dense area (p trend = 0.02). Among women with both immunoassay and bioassay levels, there were no consistent differences in the associations with percent density between bioassay and immunoassay levels. Postmenopausal women with prolactin immunoassay levels in the highest quartile had significantly higher percent density as well as lower non-dense area compared to those in the lowest quartile. Future studies should examine the underlying biologic mechanisms, particularly for non-dense area.

  15. Quantitative evaluation of besifloxacin ophthalmic suspension by HPLC, application to bioassay method and cytotoxicity studies.

    Science.gov (United States)

    Costa, Márcia C N; Barden, Amanda T; Andrade, Juliana M M; Oppe, Tércio P; Schapoval, Elfrides E S

    2014-02-01

    Besifloxacin (BSF) is a synthetic chiral fluoroquinolone developed for the topical treatment of ophthalmic infections. The present study reports the development and validation of a microbiological assay, applying the cylinder-plate method, for determination of BSF in ophthalmic suspension. To assess this methodology, the development and validation of the method was performed for the quantification of BSF by high performance liquid chromatography (HPLC). The HPLC method showed specificity, linearity in the range of 20-80 µg mL(-1) (r=0.9998), precision, accuracy and robustness. The microbiological method is based on the inhibitory effect of BSF upon the strain of Staphylococcus epidermidis ATCC 12228 used as a test microorganism. The bioassay validation method yielded excellent results and included linearity, precision, accuracy, robustness and selectivity. The assay results were treated statistically by analysis of variance (ANOVA) and were found to be linear (r=0.9974) in the range of 0.5-2.0 µg mL(-1), precise (inter-assay: RSD=0.84), accurate (101.4%), specific and robust. The bioassay and the previously validated high performance liquid chromatographic (HPLC) method were compared using Student's t test, which indicated that there was no statistically significant difference between these two methods. These results confirm that the proposed microbiological method can be used as routine analysis for the quantitative determination of BSF in an ophthalmic suspension. A preliminary stability study during the HPLC validation was performed and demonstrated that BSF is unstable under UV conditions. The photodegradation kinetics of BSF in water showed a first-order reaction for the drug product (ophthalmic suspension) and a second-order reaction for the reference standard (RS) under UVA light. UVA degraded samples of BSF were also studied in order to determine the preliminary in vitro cytotoxicity against mononuclear cells. The results indicated that BSF does not alter

  16. Fluorescent bioassays for toxic metals in milk and yoghurt

    Science.gov (United States)

    2012-01-01

    Background From a human health viewpoint, contaminated milk and its products could be a source of long-term exposure to toxic metals. Simple, inexpensive, and on-site assays would enable constant monitoring of their contents. Bioassays that can measure toxic metals in milk or yoghurt might reduce the risk. For this purpose, the green fluorescent protein (GFP)-tagged trans factors, ArsR-GFP and CadC-GFP, together with their cis elements were used to develop such bioassays. Results ArsR-GFP or CadC-GFP, which binds either toxic metal or DNA fragment including cis element, was directly mixed with cow’s milk or yoghurt within a neutral pH range. The fluorescence of GFP, which is reflected by the association/dissociation ratio between cis element and trans factor, significantly changed with increasing externally added As (III) or Cd (II) whereas smaller responses to externally added Pb (II) and Zn (II) were found. Preparation and dilution of whey fraction at low pH were essential to intrinsic zinc quantification using CadC-GFP. Using the extraction procedure and bioassay, intrinsic Zn (II) concentrations ranging from 1.4 to 4.8 mg/l for milk brands and from 1.2 to 2.9 mg/kg for yoghurt brands were determined, which correlated to those determined using inductively coupled plasma atomic emission spectroscopy. Conclusions GFP-tagged bacterial trans factors and cis elements can work in the neutralized whole composition and diluted whey fraction of milk and yoghurt. The feature of regulatory elements is advantageous for establishment of simple and rapid assays of toxic metals in dairy products. PMID:23098077

  17. Fluorescent bioassays for toxic metals in milk and yoghurt.

    Science.gov (United States)

    Siddiki, Mohammad Shohel Rana; Ueda, Shunsaku; Maeda, Isamu

    2012-10-25

    From a human health viewpoint, contaminated milk and its products could be a source of long-term exposure to toxic metals. Simple, inexpensive, and on-site assays would enable constant monitoring of their contents. Bioassays that can measure toxic metals in milk or yoghurt might reduce the risk. For this purpose, the green fluorescent protein (GFP)-tagged trans factors, ArsR-GFP and CadC-GFP, together with their cis elements were used to develop such bioassays. ArsR-GFP or CadC-GFP, which binds either toxic metal or DNA fragment including cis element, was directly mixed with cow's milk or yoghurt within a neutral pH range. The fluorescence of GFP, which is reflected by the association/dissociation ratio between cis element and trans factor, significantly changed with increasing externally added As (III) or Cd (II) whereas smaller responses to externally added Pb (II) and Zn (II) were found. Preparation and dilution of whey fraction at low pH were essential to intrinsic zinc quantification using CadC-GFP. Using the extraction procedure and bioassay, intrinsic Zn (II) concentrations ranging from 1.4 to 4.8 mg/l for milk brands and from 1.2 to 2.9 mg/kg for yoghurt brands were determined, which correlated to those determined using inductively coupled plasma atomic emission spectroscopy. GFP-tagged bacterial trans factors and cis elements can work in the neutralized whole composition and diluted whey fraction of milk and yoghurt. The feature of regulatory elements is advantageous for establishment of simple and rapid assays of toxic metals in dairy products.

  18. Fluorescent bioassays for toxic metals in milk and yoghurt

    Directory of Open Access Journals (Sweden)

    Siddiki Mohammad Shohel

    2012-10-01

    Full Text Available Abstract Background From a human health viewpoint, contaminated milk and its products could be a source of long-term exposure to toxic metals. Simple, inexpensive, and on-site assays would enable constant monitoring of their contents. Bioassays that can measure toxic metals in milk or yoghurt might reduce the risk. For this purpose, the green fluorescent protein (GFP-tagged trans factors, ArsR-GFP and CadC-GFP, together with their cis elements were used to develop such bioassays. Results ArsR-GFP or CadC-GFP, which binds either toxic metal or DNA fragment including cis element, was directly mixed with cow’s milk or yoghurt within a neutral pH range. The fluorescence of GFP, which is reflected by the association/dissociation ratio between cis element and trans factor, significantly changed with increasing externally added As (III or Cd (II whereas smaller responses to externally added Pb (II and Zn (II were found. Preparation and dilution of whey fraction at low pH were essential to intrinsic zinc quantification using CadC-GFP. Using the extraction procedure and bioassay, intrinsic Zn (II concentrations ranging from 1.4 to 4.8 mg/l for milk brands and from 1.2 to 2.9 mg/kg for yoghurt brands were determined, which correlated to those determined using inductively coupled plasma atomic emission spectroscopy. Conclusions GFP-tagged bacterial trans factors and cis elements can work in the neutralized whole composition and diluted whey fraction of milk and yoghurt. The feature of regulatory elements is advantageous for establishment of simple and rapid assays of toxic metals in dairy products.

  19. In vitro bioassay as a predictor of in vivo response

    Directory of Open Access Journals (Sweden)

    Gurevich Konstantin G

    2005-02-01

    Full Text Available Abstract Background There is a substantial discrepancy between in vitro and in vivo experiments. The purpose of the present work was development of a theoretical framework to enable improved prediction of in vivo response from in vitro bioassay results. Results For dose-response curve reaches a plateau in vitro we demonstrated that the in vivo response has only one maximum. For biphasic patterns of biological response in vitro both the bimodal and biphasic in vivo responses might be observed. Conclusion As the main result of this work we have demonstrated that in vivo responses might be predicted from dose-effect curves measured in vitro.

  20. Aspirator Gun for High-Throughput Mosquito Bioassays

    Science.gov (United States)

    2012-01-01

    surveillance of Aedes aegypti in San Juan, Puerto Rico. J Am Mosq Control Assoc 10:119–124. Dietrick EJ. 1961. An improved backpack motor fan for suction...Bioassays Author(s): Robert L. Aldridge, W. Wayne Wynn, Seth C. Britch, and Kenneth J. Linthicum Source: Journal of the American Mosquito Control ...Association, 28(1):65-68. 2012. Published By: The American Mosquito Control Association DOI: http://dx.doi.org/10.2987/11-6195.1 URL: http://www.bioone.org

  1. An emergency bioassay method for (210)Po in urine.

    Science.gov (United States)

    Guérin, Nicolas; Dai, Xiongxin

    2015-09-01

    A rapid method was developed to efficiently measure (210)Po in urine samples in an emergency situation. Polonium-210 in small urine samples (10 mL) was spontaneously deposited on a stainless steel disc in 1 M HCl at room temperature for 4 h in a polyethylene bottle. The metallic disc was then counted for 4 h by alpha spectrometry. The developed method allowed the preparation of large sample batch in a short time. The method meets the requirements for an emergency bioassay procedure.

  2. Restructuring the syllabus for MD Pharmacology: Retrospection of bioassay

    Directory of Open Access Journals (Sweden)

    Sarita Mulkalwar

    2014-01-01

    Full Text Available Introduction: Career prospects in Pharmacology are witnessing a sea change due to fast and unanticipated development in the field of clinical research. Numerous openings exist now in academia, pharmaceutical industry, Clinical Research Organizations (CRO or as regulatory consultants, experimental pharmacologists, etc. In short, there are various options to choose from, depending on one′s interest. It′s high time we ponder now over the training programme for post-graduate students in Pharmacology. It needs to be revised keeping in mind the job prospects & uniqueness of the MD Pharmacology degree. Aim: To take suggestions of experienced pharmacologists on the present syllabus for MD Pharmacology and their opinion on continuation of Bioassay experiment which is currently an important part of it . Materials and Methods: A structured questionnaire was given to 30 experienced pharmacologists to seek their opinion on MD Pharmacology syllabus & continuation of Bioassay as a part of MD practical. Results: Out of 30 participants, 29 (96.6% did not use their knowledge of Bioassay during their 10 years of post MD career, whether in pharmaceutical industry or in academics. Only 5 of them (16.6% feel that experiment on bioassay should be continued in the current state. 76.7% of them wish it to be modified to a Dose Response Curve ( DRC . 6.71% feel that it should be totally scrapped. All the participants feel the need of revising current MD Pharmacology syllabus. Current syllabus is inclined more towards preparing good academicians but it lacks the proper training for creating good clinical research professionals. Medical writing, writing necessary documents for clinical trials including regulatory documents, writing an article for medical journals, marketing communication, product monograph and patient information of a clinical trial could be incorporated. They should be aware of the regulatory requirements for conducting studies on investigational drugs

  3. Endothelial cells and the IGF system.

    Science.gov (United States)

    Bach, Leon A

    2015-02-01

    Endothelial cells line blood vessels and modulate vascular tone, thrombosis, inflammatory responses and new vessel formation. They are implicated in many disease processes including atherosclerosis and cancer. IGFs play a significant role in the physiology of endothelial cells by promoting migration, tube formation and production of the vasodilator nitric oxide. These actions are mediated by the IGF1 and IGF2/mannose 6-phosphate receptors and are modulated by a family of high-affinity IGF binding proteins. IGFs also increase the number and function of endothelial progenitor cells, which may contribute to protection from atherosclerosis. IGFs promote angiogenesis, and dysregulation of the IGF system may contribute to this process in cancer and eye diseases including retinopathy of prematurity and diabetic retinopathy. In some situations, IGF deficiency appears to contribute to endothelial dysfunction, whereas IGF may be deleterious in others. These differences may be due to tissue-specific endothelial cell phenotypes or IGFs having distinct roles in different phases of vascular disease. Further studies are therefore required to delineate the therapeutic potential of IGF system modulation in pathogenic processes. © 2015 Society for Endocrinology.

  4. Evaluation of effectiveness of entomopathogenic fungi Beauveria bassiana using a standard laboratory bioassay

    OpenAIRE

    2011-01-01

    In laboratory bioassays, the efficacy of the entomopathogenic fungus Beauveria bassiana against the yellow mealworm (Tenebrio molitor) was tested under various temperature conditions. Six different strains of fungus B. bassiana was investigated. The evaluation was based on vitality bioassays including germination and growth index assessment and the bioassay of virulence based on target organism T. molitor was also assessed growth and yield of conidia different strains of fungus B. bassiana on...

  5. Herbicide impact on Hormosira banksii gametes measured by fluorescence and germination bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Seery, Cliff R. [Institute for Water and Environmental Resource Management, Department of Environmental Sciences, University of Technology, Sydney, Westbourne Street, Gore Hill, 2065 NSW (Australia); Gunthorpe, Leanne [Primary Industries Research Victoria (PIRVic), VIC (Australia); Ralph, Peter J. [Institute for Water and Environmental Resource Management, Department of Environmental Sciences, University of Technology, Sydney, Westbourne Street, Gore Hill, 2065 NSW (Australia)]. E-mail: peter.ralph@uts.edu.au

    2006-03-15

    The innovative bioassay described here involves chlorophyll a fluorescence measurements of gametes from the macroalgae, Hormosira banksii, where gametes (eggs) were exposed to Diuron, Irgarol and Bromacil. Response was assessed as percent inhibition from control of effective quantum yield ({delta}F/Fm') of photosystem II, herein referred to as % PSII Inhibition. This was measured with the dual-channelled pulse amplitude modulated (PAM) fluorometer, ToxY-PAM. The fluorescence bioassay was run simultaneously with an established H. banksii germination bioassay to compare sensitivity, precision, and time-to-result. The fluorescence bioassay gave highly sensitive results evidenced by EC{sub 5}s (% PSII Inhibition) for Diuron, Irgarol and Bromacil being three, four and three orders of magnitude (respectively) lower than EC{sub 5}s generated from the germination bioassays. Precision of the fluorescence bioassay was demonstrated with low coefficient of variations (<30%) for all three toxicants. With regard to time, the fluorescence bioassay gave results within 6 h, as opposed to more than 50 h for the germination bioassay. - Chlorophyll a fluorescence measurements form the basis of a macroalgal bioassay with many advantages over germination-based methods.

  6. Integration of Microfractionation, qNMR and zebrafish screening for the in vivo bioassay-guided isolation and quantitative bioactivity analysis of natural products.

    Science.gov (United States)

    Bohni, Nadine; Cordero-Maldonado, María Lorena; Maes, Jan; Siverio-Mota, Dany; Marcourt, Laurence; Munck, Sebastian; Kamuhabwa, Appolinary R; Moshi, Mainen J; Esguerra, Camila V; de Witte, Peter A M; Crawford, Alexander D; Wolfender, Jean-Luc

    2013-01-01

    Natural products (NPs) are an attractive source of chemical diversity for small-molecule drug discovery. Several challenges nevertheless persist with respect to NP discovery, including the time and effort required for bioassay-guided isolation of bioactive NPs, and the limited biomedical relevance to date of in vitro bioassays used in this context. With regard to bioassays, zebrafish have recently emerged as an effective model system for chemical biology, allowing in vivo high-content screens that are compatible with microgram amounts of compound. For the deconvolution of the complex extracts into their individual constituents, recent progress has been achieved on several fronts as analytical techniques now enable the rapid microfractionation of extracts, and microflow NMR methods have developed to the point of allowing the identification of microgram amounts of NPs. Here we combine advanced analytical methods with high-content screening in zebrafish to create an integrated platform for microgram-scale, in vivo NP discovery. We use this platform for the bioassay-guided fractionation of an East African medicinal plant, Rhynchosia viscosa, resulting in the identification of both known and novel isoflavone derivatives with anti-angiogenic and anti-inflammatory activity. Quantitative microflow NMR is used both to determine the structure of bioactive compounds and to quantify them for direct dose-response experiments at the microgram scale. The key advantages of this approach are (1) the microgram scale at which both biological and analytical experiments can be performed, (2) the speed and the rationality of the bioassay-guided fractionation - generic for NP extracts of diverse origin - that requires only limited sample-specific optimization and (3) the use of microflow NMR for quantification, enabling the identification and dose-response experiments with only tens of micrograms of each compound. This study demonstrates that a complete in vivo bioassay

  7. Cascade bioassay evidence for the existence of urothelium-derived inhibitory factor in Guinea pig urinary bladder.

    Science.gov (United States)

    Guan, Na N; Thor, Anna; Hallén, Katarina; Wiklund, N Peter; Gustafsson, Lars E

    2014-01-01

    Our aim was to investigate whether guinea pig urothelium-derived bioactivities compatible with the existence of urothelium-derived inhibitory factor could be demonstrated by in vitro serial bioassay and whether purinergic P1 receptor agonists, nitric oxide, nitrite or prostaglandins might explain observed activities. In a cascade superfusion system, urothelium-denuded guinea pig ureters were used as bioassay tissues, recording their spontaneous rhythmic contractions in presence of scopolamine. Urothelium-intact or -denuded guinea pig urinary bladders were used as donor tissues, stimulated by intermittent application of carbachol before or during the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME), the adenosine/P1 nucleoside receptor antagonist 8-(p-sulfophenyl)theophylline (8-PST) or the cyclo-oxygenase inhibitor diclofenac infused to bath donor and bioassay tissues. The spontaneous contractions of bioassay ureters were unaltered by application of carbachol 1-5 µM in the presence of scopolamine 5-30 µM. When carbachol was applied over the urothelium-denuded bladder, the assay ureter contraction rate was unaltered. Introducing carbachol over the everted urothelium-intact bladder significantly inhibited the contraction frequency of the assay ureter, suggesting the transfer of an inhibitory activity from the bladder to the assay ureter. The transmissible inhibitory activity was not markedly antagonized by L-NAME, 8-PST or diclofenac, while L-NAME nearly abolished nitrite release from the urothelium-intact bladder preparations. We suggest that urothelium-derived inhibitory factor is a transmissible entity over a significant distance as demonstrated in this novel cascade superfusion assay and seems less likely to be nitric oxide, nitrite, an adenosine receptor agonist or subject to inhibition by administration of a cyclo-oxygenase inhibitor.

  8. [Evaluation of Antilles fish ciguatoxicity by mouse and chick bioassays].

    Science.gov (United States)

    Pottier, I; Vernoux, J P

    2003-03-01

    Ciguatera is a common seafood poisoning in Western Atlantic and French West Indies. Ciguatera fish poisoning in the Caribbean is a public health problem. A toxicological study was carried out on 178 Caribbean fish specimens (26 species) captured off Guadeloupe and Saint Barthelemy between 1993 and 1999. The mouse bioassay and the chick feeding test were used to control fish edibility. Ciguatoxins presence was assumed when symptomatology was typical of ciguatera in mouse and chick. Fishes were classified in three groups: non toxic fish (edible), low toxic fish (not edible) and toxic fish (not edible). 75% of fishes were non toxic. Toxic fish specimens belonged to four families of high trophic level carnivores: Carangidae, Lutjanidae, Serranidae et Sphyraenidae. Percentages of toxic fishes to humans reached 55% for Caranx latus and 33% for Caranx bartholomaei and Caranx lugubris. Only a significant correlation between weight and toxicity was only found for C. latus and snappers. Small carnivorous groupers (Serranidae) were also toxic. Atoxic fish species were (a) pelagic fish (Coryphaena hippurus, Auxis thazard and Euthynnus pelamis), (b) invertebrates feeders (Malacanthus plumieri, Balistes vetula), (c) small high-risk fish or (d) fish of edible benthic fish families. Liver of four fishes (Mycteroperca venenosa, Caranx bartholomaei, Seriola rivoliana, Gymnothorax funebris) contained ciguatoxins at a significant level although their flesh was safe. This study confirms the usefulness of mouse and chick bioassays for sanitary control of fish.

  9. Assessment of toxicological interactions of benzene and its primary degradation products (catechol and phenol) using a lux-modified bacterial bioassay

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, E.M. [Inst. of Terrestrial Ecology, Huntingdon (United Kingdom)]|[Univ. of Aberdeen (United Kingdom). Dept. of Plant and Soil Science; Meharg, A.A.; Wright, J. [Inst. of Terrestrial Ecology, Huntingdon (United Kingdom); Killham, K. [Univ. of Aberdeen (United Kingdom). Dept. of Plant and Soil Science

    1997-05-01

    A bacterial bioassay has been developed to assess the relative toxicities of xenobiotics commonly found in contaminated soils, river waters, and ground waters. The assay utilized decline in luminescence of lux-marked Pseudomonas fluorescens on exposure to xenobiotics. Pseudomonas fluorescens is a common bacterium in the terrestrial environment, providing environmental relevance to soil, river, and ground water systems. Three principal environmental contaminants associated with benzene degradation were exposed to the luminescence-marked bacterial biosensor to assess their toxicity individually and in combination. Median effective concentration (EC50) values for decline in luminescence were determined for benzene, catechol, and phenol and were found to be 39.9, 0.77, and 458.6 mg/L, respectively. Catechol, a fungal and bacterial metabolite of benzene, was found to be significantly more toxic to the biosensor than was the parent compound benzene, showing that products of xenobiotic biodegradation may be more toxic than the parent compounds. Combinations of parent compounds and metabolites were found to be significantly more toxic to the bioassay than were the individual compounds themselves. Development of this bioassay has provided a rapid screening system suitable for assessing the toxicity of xenobiotics commonly found in contaminated soil, river, and ground-water environments. The assay can be utilized over a wide pH range is therefore more applicable to such environmental systems than bioluminescence-based bioassays that utilize marine organisms and can only be applied over a limited pH and salinity range.

  10. EVIDENCE FOR EXISTENCE OF IMMUNOGLOBULINS THAT BLOCK OVARIAN GRANULOSA-CELL GROWTH-INVITRO - A PUTATIVE ROLE IN RESISTANT OVARY SYNDROME

    NARCIS (Netherlands)

    VANWEISSENBRUCH, MM; HOEK, A; VAN VLIET BLEEKER, I.; SCHOEMAKER, J; DREXHAGE, H

    1991-01-01

    The sera of 26 patients with premature ovarian failure were examined in order to detect immunoglobulin-G (IgGs) that can block FSH-induced in vitro granulosa cell DNA synthesis via, a Feulgen cytochemical bioassay system. The IgGs of four patients with polycystic ovary-like disease, five postmenopau

  11. Fostering synergy between cell biology and systems biology

    OpenAIRE

    2015-01-01

    In the shared pursuit of elucidating detailed mechanisms of cell function, systems biology presents a natural complement to ongoing efforts in cell biology. Systems biology aims to characterize biological systems through integrated and quantitative modeling of cellular information. The process of model building and analysis provides value through synthesizing and cataloging information about cells and molecules; predicting mechanisms and identifying generalizable themes; generating hypotheses...

  12. Automated microscopy system for peripheral blood cells

    Science.gov (United States)

    Boev, Sergei F.; Sazonov, Vladimir V.; Kozinets, Gennady I.; Pogorelov, Valery M.; Gusev, Alexander A.; Korobova, Farida V.; Vinogradov, Alexander G.; Verdenskaya, Natalya V.; Ivanova, Irina A.

    2000-11-01

    The report describes the instrument ASPBS (Automated Screening of Peripheral Blood Cells) designed for an automated analysis of dry blood smears. The instrument is based on computer microscopy and uses dry blood smears prepared according to the standard Romanovskii-Giemza procedure. In comparison with the well-known flow cytometry systems, our instrument provides more detailed information and offers an opporunity of visualizing final results. The basic performances of the instrument are given. Software of this instrument is based on digital image processing and image recognition procedures. It is pointed out that the instrument can be used as a fairly universal tool in scientific research, public demonstrations, in medical treatment, and in medical education. The principle used as the basis of the instrument appeared adequate for creating an instrument version serviceable even during space flights where standard manual procedures and flow cytometry systems fail. The benefit of the use of the instrument in clinical laboratories is described.

  13. A Bioassay for Determining Resistance Levels in Tarnished Plant Bug Populations to Neonicotinoid Insecticides

    Science.gov (United States)

    A laboratory bioassay was developed and used to test field populations of the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois), for resistance development to the neonicitinoid insecticides imidacloprid (Trimax®) and thiamethoxam (Centric®). The bioassay determined LC50 values by feeding...

  14. Combined effects of copper and food on the midge Chironomus riparius in whole sediment bioassays

    NARCIS (Netherlands)

    Haas, de E.M.; Paumen, M.L.; Koelmans, A.A.; Kraak, M.H.S.

    2004-01-01

    Effects observed in whole-sediment bioassays must be seen as the joint effect of all sediment characteristics. In whole-sediment bioassays. however. adverse effects oil test organisms are usually attributed to the presence of contaminants and effects of food are often ignored. The aim of this study

  15. Trigger values for investigation of hormonal activity in drinking water and its sources using CALUX bioassays

    NARCIS (Netherlands)

    Brand, W.; de Jongh, C.M.; Linden, S.C.; Mennes, W.; Puijker, L.M.; van Leeuwen, C.J.|info:eu-repo/dai/nl/071976817; van Wezel, Annemarie; Schriks, M.; Heringa, M.B.

    2013-01-01

    To screen for hormonal activity in water samples, highly sensitive in vitro CALUX bioassays are available which allow detection of estrogenic (ERα), androgenic (AR), progestagenic (PR), and glucocorticoid (GR) activities. This paper presents trigger values for the ERα, AR, PR, and GR CALUX bioassays

  16. Sample preparation for combined chemical analysis and bioassay application in water quality assessment

    NARCIS (Netherlands)

    Kolkman, A.; Schriks, M.; Brand, W; Bäuerlein, P.S.; van der Kooi, M.M.E.; van Doorn, R.H.; Emke, E.; Reus, A.; van der Linden, S.; de Voogt, P.; Heringa, M.B.

    2013-01-01

    The combination of in vitro bioassays and chemical screening can provide a powerful toolbox to determine biologically relevant compounds in water extracts. In this study, a sample preparation method is evaluated for the suitability for both chemical analysis and in vitro bioassays. A set of 39 chemi

  17. Ecological quality assessment of Dutch surface waters using a new bioassay with the cladoceran Chydorus sphaericus

    NARCIS (Netherlands)

    Pieters, B.J.; Bosman-Meijerman, D.; Steenbergen, E.; van den Brandhof, E.J.; van Beelen, P.; van der Grinten, E.; Verweij, W.; Kraak, M.H.S.

    2008-01-01

    Routine chemical monitoring gives insight in the presence of contaminants in surface waters, but not in their joint ecological effects. Therefore ecological water quality is assessed with bioassays. Recently, a new bioassay using the chydorid Chydorus sphaericus has been developed. Working with smal

  18. Trigger values for investigation of hormonal activity in drinking water and its sources using CALUX bioassays

    NARCIS (Netherlands)

    Brand, W.; de Jongh, C.M.; Linden, S.C.; Mennes, W.; Puijker, L.M.; van Leeuwen, C.J.; van Wezel, Annemarie; Schriks, M.; Heringa, M.B.

    2013-01-01

    To screen for hormonal activity in water samples, highly sensitive in vitro CALUX bioassays are available which allow detection of estrogenic (ERα), androgenic (AR), progestagenic (PR), and glucocorticoid (GR) activities. This paper presents trigger values for the ERα, AR, PR, and GR CALUX bioassays

  19. Exploratory studies on some electrochemical cell systems

    Science.gov (United States)

    Chaudhuri, Srikumar; Guha, D.

    Exploratory studies were conducted on cell systems with different metal anodes, and iodine and sulphur mixed with graphite powder in a polymer matrix as cathodes, using different electrolytes in non-aqueous and aqueous media as ionic charge carriers. The electrical conductance of the electrolyte solutions in aqueous and non-aqueous solvents, the open circuit voltage (OCV) and short circuit current (SCC) for the different cell systems were measured. To date, the non-aqueous solvents used in our studies were dimethylformamide, formamide, dioxan, and nitrobenzene, and the electrolytes used were potassium iodide, caustic potash, cetyltrimethylammonium bromide (CTAB), sodium lauryl sulphate (SLS) and calcium chloride. These electrolytes were used in both non-aqueous and aqueous media. In general, aqueous electrolyte solutions gave a better performance than non-aqueous electrolyte solutions. Of the aqueous electrolytes, the highest conductance was shown by potassium chloride solution in water (conductance=0.0334 mho). However, the best OCV and SCC were shown by aluminium as anode and iodine as cathode with a saturated solution of caustic potash in water. The OCV was 1.85 V and the SCC was 290 mA cm -2. The highest conductance among the non-aqueous systems was shown by caustic potash in formamide. (Conductance=0.013 mho.) The best OCV and SCC, however, were shown by a zinc anode and iodine cathode with saturated potassium chloride in formamide, having an OCV of 1.55 V and an SCC of 150 mA cm -2. Further studies are in progress to obtain detailed performance data and recharging characteristics of some of the more promising systems reported here.

  20. The knockdown resistance mutation and knockdown time in Anopheles gambiae collected from Mali evaluated through a bottle bioassay and a novel insecticide-treated net bioassay.

    Science.gov (United States)

    Fryxell, Rebecca T Trout; Seifert, Stephanie N; Lee, Yoosook; Sacko, Adama; Lanzaro, Gregory; Cornel, Anthony

    2012-06-01

    Successful malaria management in Mali includes the use of pyrethroids and insecticide-treated nets (ITNs) for mosquito control; however, management is threatened by the spread of insecticide resistance detected via the knockdown resistance (kdr) allele. In a preliminary study, we compared the knockdown times of Anopheles gambiae from Mali using a novel ITN bioassay and the World Health Organization (WHO) bottle bioassay. Additionally, the frequency and relationship between kdr genotypes, molecular forms, and pyrethroid resistance were analyzed. The S molecular form was predominant and accounted for 76% of the assayed population. Both kdr resistant alleles, West Africa resistant (kdr-w) and East Africa resistant (kdr-e), were observed. There was no significant difference in knockdown time based on kdr genotype or molecular form of individual mosquitoes, but mosquitoes in the ITN bioassay homozygous for the kdr-w allele were knocked down significantly faster than those in the WHO bottle bioassay. The ITN bioassay provides an additional indicator of insecticide efficacy because ITNs, frequently used within homes, are the most common form of vector control and malaria prevention, and the ITN bioassays can evaluate seasonal field effects.

  1. Long-term maintenance of human induced pluripotent stem cells by automated cell culture system.

    Science.gov (United States)

    Konagaya, Shuhei; Ando, Takeshi; Yamauchi, Toshiaki; Suemori, Hirofumi; Iwata, Hiroo

    2015-11-17

    Pluripotent stem cells, such as embryonic stem cells and induced pluripotent stem (iPS) cells, are regarded as new sources for cell replacement therapy. These cells can unlimitedly expand under undifferentiated conditions and be differentiated into multiple cell types. Automated culture systems enable the large-scale production of cells. In addition to reducing the time and effort of researchers, an automated culture system improves the reproducibility of cell cultures. In the present study, we newly designed a fully automated cell culture system for human iPS maintenance. Using an automated culture system, hiPS cells maintained their undifferentiated state for 60 days. Automatically prepared hiPS cells had a potency of differentiation into three germ layer cells including dopaminergic neurons and pancreatic cells.

  2. Dynamic cell culture system (7-IML-1)

    Science.gov (United States)

    Cogoli, Augusto

    1992-01-01

    This experiment is one of the Biorack experiments being flown on the International Microgravity Laboratory 1 (MIL-1) mission as part of an investigation studying cell proliferation and performance in space. One of the objectives of this investigation is to assess the potential benefits of bioprocessing in space with the ultimate goal of developing a bioreactor for continuous cell cultures in space. This experiment will test the operation of an automated culture chamber that was designed for use in a Bioreactor in space. The device to be tested is called the Dynamic Cell Culture System (DCCS). It is a simple device in which media are renewed or chemicals are injected automatically, by means of osmotic pumps. This experiment uses four Type I/O experiment containers. One DCCS unit, which contains a culture chamber with renewal of medium and a second chamber without a medium supply fits in each container. Two DCCS units are maintained under zero gravity conditions during the on-orbit period. The other two units are maintained under 1 gh conditions in a 1 g centrifuge. The schedule for incubator transfer is given.

  3. Submicron polyacrolein particles in situ embedded with upconversion nanoparticles for bioassay

    Science.gov (United States)

    Generalova, A. N.; Kochneva, I. K.; Khaydukov, E. V.; Semchishen, V. A.; Guller, A. E.; Nechaev, A. V.; Shekhter, A. B.; Zubov, V. P.; Zvyagin, A. V.; Deyev, S. M.

    2015-01-01

    We report a new surface modification approach of upconversion nanoparticles (UCNPs) structured as inorganic hosts NaYF4 codoped with Yb3+ and Er3+ based on their encapsulation in a two-stage process of precipitation polymerization of acrolein under alkaline conditions in the presence of UCNPs. The use of tetramethylammonium hydroxide both as an initiator of acrolein polymerization and as an agent for UCNP hydrophilization made it possible to increase the polyacrolein yield up to 90%. This approach enabled the facile, lossless embedment of UCNPs into the polymer particles suitable for bioassay. These particles are readily dispersible in aqueous and physiological buffers, exhibiting excellent photoluminescence properties, chemical stability, and also allow the control of particle diameters. The feasibility of the as-produced photoluminescent polymer particles mean-sized 260 nm for in vivo optical whole-animal imaging was also demonstrated using a home-built epi-luminescence imaging system.We report a new surface modification approach of upconversion nanoparticles (UCNPs) structured as inorganic hosts NaYF4 codoped with Yb3+ and Er3+ based on their encapsulation in a two-stage process of precipitation polymerization of acrolein under alkaline conditions in the presence of UCNPs. The use of tetramethylammonium hydroxide both as an initiator of acrolein polymerization and as an agent for UCNP hydrophilization made it possible to increase the polyacrolein yield up to 90%. This approach enabled the facile, lossless embedment of UCNPs into the polymer particles suitable for bioassay. These particles are readily dispersible in aqueous and physiological buffers, exhibiting excellent photoluminescence properties, chemical stability, and also allow the control of particle diameters. The feasibility of the as-produced photoluminescent polymer particles mean-sized 260 nm for in vivo optical whole-animal imaging was also demonstrated using a home-built epi-luminescence imaging

  4. Phase Space Cell in Nonextensive Classical Systems

    Directory of Open Access Journals (Sweden)

    Piero Quarati

    2003-06-01

    Full Text Available Abstract: We calculate the phase space volume Ω occupied by a nonextensive system of N classical particles described by an equilibrium (or steady-state, or long-term stationary state of a nonequilibrium system distribution function, which slightly deviates from Maxwell-Boltzmann (MB distribution in the high energy tail. We explicitly require that the number of accessible microstates does not change respect to the extensive MB case. We also derive, within a classical scheme, an analytical expression of the elementary cell that can be seen as a macrocell, different from the third power of Planck constant. Thermodynamic quantities like entropy, chemical potential and free energy of a classical ideal gas, depending on elementary cell, are evaluated. Considering the fractional deviation from MB distribution we can deduce a physical meaning of the nonextensive parameter q of the Tsallis nonextensive thermostatistics in terms of particle correlation functions (valid at least in the case, discussed in this work, of small deviations from MB standard case.

  5. Characterization of estrogen and androgen activity of food contact materials by different in vitro bioassays (YES, YAS, ERα and AR CALUX) and chromatographic analysis (GC-MS, HPLC-MS).

    Science.gov (United States)

    Mertl, Johannes; Kirchnawy, Christian; Osorio, Veronica; Grininger, Angelika; Richter, Alexander; Bergmair, Johannes; Pyerin, Michael; Washüttl, Michael; Tacker, Manfred

    2014-01-01

    Endocrine active substances (EAS) show structural similarities to natural hormones and are suspected to affect the human endocrine system by inducing hormone dependent effects. Recent studies with in vitro tests suggest that EAS can leach from packaging into food and may therefore pose a risk to human health. Sample migrates from food contact materials were tested for estrogen and androgen agonists and antagonists with different commonly used in vitro tests. Additionally, chemical trace analysis by GC-MS and HPLC-MS was used to identify potential hormone active substances in sample migrates. A GC-MS method to screen migrates for 29 known or potential endocrine active substances was established and validated. Samples were migrated according to EC 10/2011, concentrated by solid phase extraction and tested with estrogen and androgen responsive reporter gene assays based on yeast cells (YES and YAS) or human osteoblast cells (ERα and AR CALUX). A high level of agreement between the different bioassays could be observed by screening for estrogen agonists. Four out of 18 samples tested showed an estrogen activity in a similar range in both, YES and ERα CALUX. Two more samples tested positive in ERα CALUX due to the lower limits of detection in this assay. Androgen agonists could not be detected in any of the tested samples, neither with YAS nor with AR CALUX. When testing for antagonists, significant differences between yeast and human cell-based bioassays were noticed. Using YES and YAS many samples showed a strong antagonistic activity which was not observed using human cell-based CALUX assays. By GC-MS, some known or supposed EAS were identified in sample migrates that showed a biological activity in the in vitro tests. However, no firm conclusions about the sources of the observed hormone activity could be obtained from the chemical results.

  6. Improvement of Chemically-activated Luciferase Gene Expression Bioassay for Detection of Dioxin-like Chemicals

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    To improve the chemically-activated luciferase expression (CALUX)bioassay for detection of dioxin-like chemicals (DLCs) based on the toxicity mechanisms of DLCs. Method A recombinant vector was constructed and used to transfect human hepatoma (HepG2). The expression of this vector was 10-100 folds higher than that of pGL2used in previous experiments. The transfected cells showed aromatic hydrocarbon receptor (AhR)-meditated luciferase gene expression. The reliability of luciferase induction in this cell line as a reporter of AhR-mediated toxicity was evaluated, the optimal detection time was examined and a comparison was made by using the commonly used ethoxyresoufin-Odeethylase (EROD) activity induction assay. Result The results suggested that the luciferase activity in recombinant cells was peaked at about 4 h and then decreased to a stable activity by 14 h after TCDD treatment. The detection limit of this cell line was 0.1 lpmol/L, or 10-fold lower than in previous studies, with a linear range from 1 to 100pmol/L, related coefficient of 0.997, and the coefficient of variability (CV) of 15-30%,Conclusion The luciferase induction is 30-fold more sensitive than EROD induction, the detection time is 68 h shorter and the detection procedure is also simpler.

  7. Systems Biology for Organotypic Cell Cultures

    Energy Technology Data Exchange (ETDEWEB)

    Grego, Sonia [RTI International, Research Triangle Park, NC (United States); Dougherty, Edward R. [Texas A & M Univ., College Station, TX (United States); Alexander, Francis J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Auerbach, Scott S. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Berridge, Brian R. [GlaxoSmithKline, Research Triangle Park, NC (United States); Bittner, Michael L. [Translational Genomics Research Inst., Phoenix, AZ (United States); Casey, Warren [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Cooley, Philip C. [RTI International, Research Triangle Park, NC (United States); Dash, Ajit [HemoShear Therapeutics, Charlottesville, VA (United States); Ferguson, Stephen S. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Fennell, Timothy R. [RTI International, Research Triangle Park, NC (United States); Hawkins, Brian T. [RTI International, Research Triangle Park, NC (United States); Hickey, Anthony J. [RTI International, Research Triangle Park, NC (United States); Kleensang, Andre [Johns Hopkins Univ., Baltimore, MD (United States). Center for Alternatives to Animal Testing; Liebman, Michael N. [IPQ Analytics, Kennett Square, PA (United States); Martin, Florian [Phillip Morris International, Neuchatel (Switzerland); Maull, Elizabeth A. [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Paragas, Jason [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Qiao, Guilin [Defense Threat Reduction Agency, Ft. Belvoir, VA (United States); Ramaiahgari, Sreenivasa [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (United States); Sumner, Susan J. [RTI International, Research Triangle Park, NC (United States); Yoon, Miyoung [The Hamner Inst. for Health Sciences, Research Triangle Park, NC (United States); ScitoVation, Research Triangle Park, NC (United States)

    2016-08-04

    Translating in vitro biological data into actionable information related to human health holds the potential to improve disease treatment and risk assessment of chemical exposures. While genomics has identified regulatory pathways at the cellular level, translation to the organism level requires a multiscale approach accounting for intra-cellular regulation, inter-cellular interaction, and tissue/organ-level effects. Tissue-level effects can now be probed in vitro thanks to recently developed systems of three-dimensional (3D), multicellular, “organotypic” cell cultures, which mimic functional responses of living tissue. However, there remains a knowledge gap regarding interactions across different biological scales, complicating accurate prediction of health outcomes from molecular/genomic data and tissue responses. Systems biology aims at mathematical modeling of complex, non-linear biological systems. We propose to apply a systems biology approach to achieve a computational representation of tissue-level physiological responses by integrating empirical data derived from organotypic culture systems with computational models of intracellular pathways to better predict human responses. Successful implementation of this integrated approach will provide a powerful tool for faster, more accurate and cost-effective screening of potential toxicants and therapeutics. On September 11, 2015, an interdisciplinary group of scientists, engineers, and clinicians gathered for a workshop in Research Triangle Park, North Carolina, to discuss this ambitious goal. Participants represented laboratory-based and computational modeling approaches to pharmacology and toxicology, as well as the pharmaceutical industry, government, non-profits, and academia. Discussions focused on identifying critical system perturbations to model, the computational tools required, and the experimental approaches best suited to generating key data. This consensus report summarizes the discussions held.

  8. Use of a chemically induced-colon carcinogenesis-prone Apc-mutant rat in a chemotherapeutic bioassay

    Directory of Open Access Journals (Sweden)

    Yoshimi Kazuto

    2012-10-01

    Full Text Available Abstract Background Chemotherapeutic bioassay for colorectal cancer (CRC with a rat model bearing chemically-induced CRCs plays an important role in the development of new anti-tumor drugs and regimens. Although several protocols to induce CRCs have been developed, the incidence and number of CRCs are not much enough for the efficient bioassay. Recently, we established the very efficient system to induce CRCs with a chemically induced-colon carcinogenesis-prone Apc-mutant rat, Kyoto Apc Delta (KAD rat. Here, we applied the KAD rat to the chemotherapeutic bioassay for CRC and showed the utility of the KAD rat. Methods The KAD rat has been developed by the ENU mutagenesis and carries a homozygous nonsense mutation in the Apc gene (S2523X. Male KAD rats were given a single subcutaneous injection of AOM (20 mg/kg body weight at 5 weeks of age. Starting at 1 week after the AOM injection, they were given 2% DSS in drinking water for 7 days. Tumor-bearing KAD rats were divided into experimental and control groups on the basis of the number of tumors observed by endoscopy at week 8. The 5-fluorouracil (5-FU was administrated intravenously a dose of 50 or 75 mg/kg weekly at week 9, 10, and 11. After one-week interval, the 5-FU was given again at week 13, 14, and 15. At week 16, animals were sacrificed and tumor number and volume were measured macroscopically and microscopically. Results In total 48 tumors were observed in 27 KAD rats with a 100% incidence at week 8. The maximum tolerated dose for the KAD rat was 50 mg/kg of 5-FU. Macroscopically, the number or volume of tumors in the 5-FU treated rats was not significantly different from the control. Microscopically, the number of adenocarcinoma in the 5-FU treated rats was not significantly different (p Conclusion The use of the AOM/DSS-treated tumor-bearing KAD rats could shorten the experimental period and reduce the number of animals examined in the chemotherapeutic bioassay. The

  9. Evolving BioAssay Ontology (BAO): modularization, integration and applications.

    Science.gov (United States)

    Abeyruwan, Saminda; Vempati, Uma D; Küçük-McGinty, Hande; Visser, Ubbo; Koleti, Amar; Mir, Ahsan; Sakurai, Kunie; Chung, Caty; Bittker, Joshua A; Clemons, Paul A; Brudz, Steve; Siripala, Anosha; Morales, Arturo J; Romacker, Martin; Twomey, David; Bureeva, Svetlana; Lemmon, Vance; Schürer, Stephan C

    2014-01-01

    The lack of established standards to describe and annotate biological assays and screening outcomes in the domain of drug and chemical probe discovery is a severe limitation to utilize public and proprietary drug screening data to their maximum potential. We have created the BioAssay Ontology (BAO) project (http://bioassayontology.org) to develop common reference metadata terms and definitions required for describing relevant information of low-and high-throughput drug and probe screening assays and results. The main objectives of BAO are to enable effective integration, aggregation, retrieval, and analyses of drug screening data. Since we first released BAO on the BioPortal in 2010 we have considerably expanded and enhanced BAO and we have applied the ontology in several internal and external collaborative projects, for example the BioAssay Research Database (BARD). We describe the evolution of BAO with a design that enables modeling complex assays including profile and panel assays such as those in the Library of Integrated Network-based Cellular Signatures (LINCS). One of the critical questions in evolving BAO is the following: how can we provide a way to efficiently reuse and share among various research projects specific parts of our ontologies without violating the integrity of the ontology and without creating redundancies. This paper provides a comprehensive answer to this question with a description of a methodology for ontology modularization using a layered architecture. Our modularization approach defines several distinct BAO components and separates internal from external modules and domain-level from structural components. This approach facilitates the generation/extraction of derived ontologies (or perspectives) that can suit particular use cases or software applications. We describe the evolution of BAO related to its formal structures, engineering approaches, and content to enable modeling of complex assays and integration with other ontologies and

  10. Susceptibility of cat fleas (Siphonaptera: Pulicidae) to fipronil and imidacloprid using adult and larval bioassays.

    Science.gov (United States)

    Rust, M K; Vetter, R; Denholm, I; Blagburn, B; Williamson, M S; Kopp, S; Coleman, G; Hostetler, J; Davis, W; Mencke, N; Rees, R; Foit, S; Tetzner, K

    2014-05-01

    The monitoring of the susceptibility offleas to insecticides has typically been conducted by exposing adults on treated surfaces. Other methods such as topical applications of insecticides to adults and larval bioassays on treated rearing media have been developed. Unfortunately, baseline responses of susceptible strains of cat flea, Ctenocephalides felis (Bouchè), except for imidacloprid, have not been determined for all on-animal therapies and new classes of chemistry now being used. However, the relationship between adult and larval bioassays of fleas has not been previously investigated. The adult and larval bioassays of fipronil and imidacloprid were compared for both field-collected isolates and laboratory strains. Adult topical bioassays of fipronil and imidacloprid to laboratory strains and field-collected isolates demonstrated that LD50s of fipronil and imidacloprid ranged from 0.11 to 0.40 nanograms per flea and 0.02 to 0.18 nanograms per flea, respectively. Resistance ratios for fipronil and imidacloprid ranged from 0.11 to 2.21. Based on the larval bioassay published for imidacloprid, a larval bioassay was established for fipronil and reported in this article. The ranges of the LC50s of fipronil and imidacloprid in the larval rearing media were 0.07-0.16 and 0.11-0.21 ppm, respectively. Resistance ratios for adult and larval bioassays ranged from 0.11 to 2.2 and 0.58 to 1.75, respectively. Both adult and larval bioassays provided similar patterns for fipronil and imidacloprid. Although the adult bioassays permitted a more precise dosage applied, the larval bioassays allowed for testing isolates without the need to maintain on synthetic or natural hosts.

  11. A choline oxidase amperometric bioassay for the detection of mustard agents based on screen-printed electrodes modified with Prussian Blue nanoparticles.

    Science.gov (United States)

    Arduini, Fabiana; Scognamiglio, Viviana; Covaia, Corrado; Amine, Aziz; Moscone, Danila; Palleschi, Giuseppe

    2015-02-13

    In this work a novel bioassay for mustard agent detection was proposed. The bioassay is based on the capability of these compounds to inhibit the enzyme choline oxidase. The enzymatic activity, which is correlated to the mustard agents, was electrochemically monitored measuring the enzymatic product, hydrogen peroxide, by means of a screen-printed electrode modified with Prussian Blue nanoparticles. Prussian Blue nanoparticles are able to electrocatalyse the hydrogen peroxide concentration reduction at low applied potential (-50 mV vs. Ag/AgCl), thus allowing the detection of the mustard agents with no electrochemical interferences. The suitability of this novel bioassay was tested with the nitrogen mustard simulant bis(2-chloroethyl)amine and the sulfur mustard simulants 2-chloroethyl ethyl sulfide and 2-chloroethyl phenyl sulfide. The bioassay proposed in this work allowed the detection of mustard agent simulants with good sensitivity and fast response, which are excellent premises for the development of a miniaturised sensor well suited for an alarm system in case of terrorist attacks.

  12. Drug delivery system and breast cancer cells

    Science.gov (United States)

    Colone, Marisa; Kaliappan, Subramanian; Calcabrini, Annarica; Tortora, Mariarosaria; Cavalieri, Francesca; Stringaro, Annarita

    2016-06-01

    Recently, nanomedicine has received increasing attention for its ability to improve the efficacy of cancer therapeutics. Nanosized polymer therapeutic agents offer the advantage of prolonged circulation in the blood stream, targeting to specific sites, improved efficacy and reduced side effects. In this way, local, controlled delivery of the drug will be achieved with the advantage of a high concentration of drug release at the target site while keeping the systemic concentration of the drug low, thus reducing side effects due to bioaccumulation. Various drug delivery systems such as nanoparticles, liposomes, microparticles and implants have been demonstrated to significantly enhance the preventive/therapeutic efficacy of many drugs by increasing their bioavailability and targetability. As these carriers significantly increase the therapeutic effect of drugs, their administration would become less cost effective in the near future. The purpose of our research work is to develop a delivery system for breast cancer cells using a microvector of drugs. These results highlight the potential uses of these responsive platforms suited for biomedical and pharmaceutical applications. At the request of all authors of the paper an updated version was published on 12 July 2016. The manuscript was prepared and submitted without Dr. Francesca Cavalieri's contribution and her name was added without her consent. Her name has been removed in the updated and re-published article.

  13. Phytotoxicity and Cytotoxicity of Essential Oil from Leaves of Plectranthus amboinicus, Carvacrol, and Thymol in Plant Bioassays.

    Science.gov (United States)

    Pinheiro, Patrícia Fontes; Costa, Adilson Vidal; Alves, Thammyres de Assis; Galter, Iasmini Nicoli; Pinheiro, Carlos Alexandre; Pereira, Alexandre Fontes; Oliveira, Carlos Magno Ramos; Fontes, Milene Miranda Praça

    2015-10-21

    The essential oil of Plectranthus amboinicus and its chemotypes, carvacrol and thymol, were evaluated on the germination and root and aerial growth of Lactuca sativa and Sorghum bicolor and in acting on the cell cycle of meristematic root cells of L. sativa. The main component found in the oil by analysis in gas chromatography-mass spectrometry and gas chromatography flame ionization detection was carvacrol (88.61% in area). At a concentration of 0.120% (w v(-1)), the oil and its chemotypes retarded or inhibited the germination and decreased root and aerial growth in monocot and dicot species used in the bioassays. In addition, all substances caused changes in the cell cycle of the meristematic cells of L. sativa, with chromosomal alterations occurring from the 0.015% (w v(-1)) concentration. The essential oil of P. amboinicus, carvacrol, and thymol have potential for use as bioherbicides.

  14. An Integrated Experimental Design for the Assessment of Multiple Toxicological End Points in Rat Bioassays.

    Science.gov (United States)

    Manservisi, Fabiana; Marquillas, Clara Babot; Buscaroli, Annalisa; Huff, James; Lauriola, Michelina; Mandrioli, Daniele; Manservigi, Marco; Panzacchi, Simona; Silbergeld, Ellen K; Belpoggi, Fiorella

    2017-03-01

    For nearly five decades long-term studies in rodents have been the accepted benchmark for assessing chronic long-term toxic effects, particularly carcinogenicity, of chemicals. The European Food Safety Authority (EFSA) and the World Health Organization (WHO) have pointed out that the current set of internationally utilized test methods capture only some of the potential adverse effects associated with exposures to these agents over the lifetime. In this paper, we propose the adaption of the carcinogenicity bioassay to integrate additional protocols for comprehensive long-term toxicity assessment that includes developmental exposures and long-term outcomes, capable of generating information on a broad spectrum of different end points. An integrated study design based on a stepwise process is described that includes the priority end points of the Economic Co-operation and Development and the National Toxicology Program guidelines on carcinogenicity and chronic toxicity and developmental and reproductive toxicity. Integrating a comprehensive set of relevant toxicological end points in a single protocol represents an opportunity to optimize animal use in accordance with the 3Rs (replacement, reduction and refinement). This strategy has the potential to provide sufficient data on multiple windows of susceptibility of specific interest for risk assessments and public health decision-making by including prenatal, lactational, neonatal exposures and evaluating outcomes over the lifespan. This integrated study design is efficient in that the same generational cohort of rats used for evaluating long-term outcomes can be monitored in satellite parallel experiments to measure biomarkers and other parameters related to system-specific responses including metabolic alterations and endocrine disturbances. Citation: Manservisi F, Babot Marquillas C, Buscaroli A, Huff J, Lauriola M, Mandrioli D, Manservigi M, Panzacchi S, Silbergeld EK, Belpoggi F. 2017. An integrated experimental

  15. Age-Related Differences in Susceptibility to Carcinogenesis: A Quantitative Analysis of Empirical Animal Bioassay Data

    Science.gov (United States)

    Hattis, Dale; Goble, Robert; Russ, Abel; Chu, Margaret; Ericson, Jen

    2004-01-01

    In revising cancer risk assessment guidelines, the U.S. Environmental Protection Agency (EPA) analyzed animal cancer bioassay data over different periods of life. In this article, we report an improved analysis of these data (supplemented with some chemical carcinogenesis observations not included in the U.S. EPA’s original analysis) and animal bioassay studies of ionizing radiation. We use likelihood methods to avoid excluding cases where no tumors were observed in specific groups. We express dosage for animals of different weights on a metabolically consistent basis (concentration in air or food, or per unit body weight to the three-quarters power). Finally, we use a system of dummy variables to represent exposures during fetal, preweaning, and weaning–60-day postnatal periods, yielding separate estimates of relative sensitivity per day of dosing in these intervals. Central estimate results indicate a 5- to 60-fold increased carcinogenic sensitivity in the birth–weaning period per dose ÷ (body weight0.75-day) for mutagenic carcinogens and a somewhat smaller increase—centered about 5-fold—for radiation carcinogenesis per gray. Effects were greater in males than in females. We found a similar increased sensitivity in the fetal period for direct-acting nitrosoureas, but no such increased fetal sensitivity was detected for carcinogens requiring metabolic activation. For the birth–weaning period, we found an increased sensitivity for direct administration to the pups similar to that found for indirect exposure via lactation. Radiation experiments indicated that carcinogenic sensitivity is not constant through the “adult” period, but the dosage delivered in 12- to 21-month-old animals appears a few-fold less effective than the comparable dosage delivered in young adults (90–105 days of age). PMID:15289159

  16. Heat recovery subsystem and overall system integration of fuel cell on-site integrated energy systems

    Science.gov (United States)

    Mougin, L. J.

    1983-01-01

    The best HVAC (heating, ventilating and air conditioning) subsystem to interface with the Engelhard fuel cell system for application in commercial buildings was determined. To accomplish this objective, the effects of several system and site specific parameters on the economic feasibility of fuel cell/HVAC systems were investigated. An energy flow diagram of a fuel cell/HVAC system is shown. The fuel cell system provides electricity for an electric water chiller and for domestic electric needs. Supplemental electricity is purchased from the utility if needed. An excess of electricity generated by the fuel cell system can be sold to the utility. The fuel cell system also provides thermal energy which can be used for absorption cooling, space heating and domestic hot water. Thermal storage can be incorporated into the system. Thermal energy is also provided by an auxiliary boiler if needed to supplement the fuel cell system output. Fuel cell/HVAC systems were analyzed with the TRACE computer program.

  17. Direct hydrogen fuel cell systems for hybrid vehicles

    Science.gov (United States)

    Ahluwalia, Rajesh K.; Wang, X.

    Hybridizing a fuel cell system with an energy storage system offers an opportunity to improve the fuel economy of the vehicle through regenerative braking and possibly to increase the specific power and decrease the cost of the combined energy conversion and storage systems. Even in a hybrid configuration it is advantageous to operate the fuel cell system in a load-following mode and use the power from the energy storage system when the fuel cell alone cannot meet the power demand. This paper discusses an approach for designing load-following fuel cell systems for hybrid vehicles and illustrates it by applying it to pressurized, direct hydrogen, polymer-electrolyte fuel cell (PEFC) systems for a mid-size family sedan. The vehicle level requirements relative to traction power, response time, start-up time and energy conversion efficiency are used to select the important parameters for the PEFC stack, air management system, heat rejection system and the water management system.

  18. Enhanced red-emitting railroad worm luciferase for bioassays and bioimaging.

    Science.gov (United States)

    Li, Xueyan; Nakajima, Yoshihiro; Niwa, Kazuki; Viviani, Vadim R; Ohmiya, Yoshihiro

    2010-01-01

    A luciferase from the railroad worm (Phrixothrix hirtus) is the only red-emitting bioluminescent enzyme in nature that is advantageous in multicolor luciferase assays and in bioluminescence imaging (BLI). However, it is not used widely in scientific or industrial applications because of its low activity and stability. By using site-directed mutagenesis, we produced red-emitting mutants with higher activity and better stability. Compared with the wild-type (WT), the luminescent activities from extracts of cultured mammalian cells expressing mutant luciferase were 9.8-fold in I212L/N351K, 8.4-fold in I212L, and 7.8-fold in I212L/S463R; and the cell-based activities were 3.6-fold in I212L/N351K and 3.4-fold in N351K. The remaining activities after incubation at 37 degrees C for 10 min were 50.0% for I212L/S463R, 31.8% for I212L, and 23.0% for I212L/N351K, but only 5.2% for WT. To demonstrate an application of I212L/N351K, cell-based BLI was performed, and the luminescence signal was 3.6-fold higher than in WT. These results indicate that the mutants might improve the practicability of this signaling in bioassays and BLI.

  19. A new highly specific and robust yeast androgen bioassay for the detection of agonists and antagonists.

    Science.gov (United States)

    Bovee, Toine F H; Helsdingen, Richard J R; Hamers, Astrid R M; van Duursen, Majorie B M; Nielen, Michel W F; Hoogenboom, Ron L A P

    2007-11-01

    Public concern about the presence of natural and anthropogenic compounds which affect human health by modulating normal endocrine functions is continuously growing. Fast and simple high-throughput screening methods for the detection of hormone activities are thus indispensable. During the last two decades, a panel of different in vitro assays has been developed, mainly for compounds with an estrogenic mode of action. Here we describe the development of an androgen transcription activation assay that is easy to use in routine screening. Recombinant yeast cells were constructed that express the human androgen receptor and yeast enhanced green fluorescent protein (yEGFP), the latter in response to androgens. Compared with other reporters, the yEGFP reporter protein is very convenient because it is directly measurable in intact living cells, i.e., cell wall disruption and the addition of a substrate are not needed. When yeast was exposed to 17beta-testosterone, the concentration where half-maximal activation is reached (EC(50)) was 50 nM. The relative androgenic potencies, defined as the ratio between the EC(50) of 17beta-testosterone and the EC(50) of the compound, of 5alpha-dihydrotestosterone, methyltrienolone, and 17beta-boldenone are 2.3, 1.4, and 0.15 respectively. The results presented in this paper demonstrate that this new yeast androgen bioassay is fast, sensitive, and very specific and also suited to detect compounds that have an antiandrogenic mode of action.

  20. Innate immune cells in the pathogenesis of primary systemic vasculitis.

    Science.gov (United States)

    Misra, Durga Prasanna; Agarwal, Vikas

    2016-02-01

    Innate immune system forms the first line of defense against foreign substances. Neutrophils, eosinophils, erythrocytes, platelets, monocytes, macrophages, dendritic cells, γδ T cells, natural killer and natural killer T cells comprise the innate immune system. Genetic polymorphisms influencing the activation of innate immune cells predispose to development of vasculitis and influence its severity. Abnormally activated innate immune cells cross-talk with other cells of the innate immune system, present antigens more efficiently and activate T and B lymphocytes and cause tissue destruction via cell-mediated cytotoxicity and release of pro-inflammatory cytokines. These secreted cytokines further recruit other cells to the sites of vascular injury. They are involved in both the initiation as well as the perpetuation of vasculitis. Evidences suggest reversal of aberrant activation of immune cells in response to therapy. Understanding the role of innate immune cells in vasculitis helps understand the potential of therapeutic modulation of their activation to treat vasculitis.

  1. System-level modeling and simulation of the cell culture microfluidic biochip ProCell

    DEFF Research Database (Denmark)

    Minhass, Wajid Hassan; Pop, Paul; Madsen, Jan

    2010-01-01

    -defined micro-channels using valves and pumps. We present an approach to the system-level modeling and simulation of a cell culture microfluidic biochip called ProCell, Programmable Cell Culture Chip. ProCell contains a cell culture chamber, which is envisioned to run 256 simultaneous experiments (viewed...

  2. A Simple Bioassay for the Evaluation of Vascular Endothelial Growth Factors.

    Science.gov (United States)

    Stacker, Steven A; Halford, Michael M; Roufail, Sally; Caesar, Carol; Achen, Marc G

    2016-03-15

    The analysis of receptor tyrosine kinases and their interacting ligands involved in vascular biology is often challenging due to the constitutive expression of families of related receptors, a broad range of related ligands and the difficulty of dealing with primary cultures of specialized endothelial cells. Here we describe a bioassay for the detection of ligands to the vascular endothelial growth factor receptor-2 (VEGFR-2), a key transducer of signals that promote angiogenesis and lymphangiogenesis. A cDNA encoding a fusion of the extracellular (ligand-binding) region of VEGFR-2 with the transmembrane and cytoplasmic regions of the erythropoietin receptor (EpoR) is expressed in the factor-dependent cell line Ba/F3. This cell line grows in the presence of interleukin-3 (IL-3) and withdrawal of this factor results in death of the cells within 24 hr. Expression of the VEGFR-2/EpoR receptor fusion provides an alternative mechanism to promote survival and potentially proliferation of stably transfected Ba/F3 cells in the presence of a ligand capable of binding and cross-linking the extracellular portion of the fusion protein (i.e., one that can cross-link the VEGFR-2 extracellular region). The assay can be performed in two ways: a semi-quantitative approach in which small volumes of ligand and cells permit a rapid result in 24 hr, and a quantitative approach involving surrogate markers of a viable cell number. The assay is relatively easy to perform, is highly responsive to known VEGFR-2 ligands and can accommodate extracellular inhibitors of VEGFR-2 signaling such as monoclonal antibodies to the receptor or ligands, and soluble ligand traps.

  3. Simplified Load-Following Control for a Fuel Cell System

    Science.gov (United States)

    Vasquez, Arturo

    2010-01-01

    A simplified load-following control scheme has been proposed for a fuel cell power system. The scheme could be used to control devices that are important parts of a fuel cell system but are sometimes characterized as parasitic because they consume some of the power generated by the fuel cells.

  4. PEM Fuel Cell System Replacement for BA-559O Battery

    Science.gov (United States)

    2007-11-02

    H Power Corp. developed a fuel cell system to demonstrate that fuel cells can be effectively designed for missions requiring a high degree of...equivalent in size to that of a BA-5590 battery. The system comprised an air-cooled fuel cell stack, a metal-hydride-based fuel storage section, and a

  5. Sensitivity of several cell systems to acrylamide

    NARCIS (Netherlands)

    Hooisma, J.; Groot, D.M.G.de; Magchielse, T.; Muijser, H.

    1980-01-01

    Chick spinal ganglia, chick muscle cells combined with mouse spinal cord explants, C1300 neuroblastoma cells, Chinese hamster ovary cells and newborn rat cerebral cells were exposed to various concentrations of acrylamide in culture. Four morphological and 1 electrophysiological parameter were

  6. Sensitivity of several cell systems to acrylamide

    NARCIS (Netherlands)

    Hooisma, J.; Groot, D.M.G.de; Magchielse, T.; Muijser, H.

    1980-01-01

    Chick spinal ganglia, chick muscle cells combined with mouse spinal cord explants, C1300 neuroblastoma cells, Chinese hamster ovary cells and newborn rat cerebral cells were exposed to various concentrations of acrylamide in culture. Four morphological and 1 electrophysiological parameter were appli

  7. Comparison of solid and liquid-phase bioassays using ecoscores to assess contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Lors, Christine [Universite Lille Nord de France, 1bis rue Georges Lefevre, 59044 Lille Cedex (France); Ecole des Mines de Douai, LGCgE-MPE-GCE, 941 rue Charles-Bourseul, 59500 Douai (France); Centre National de Recherche sur les Sites et Sols Pollues, 930 Boulevard Lahure, BP 537, 59505 Douai Cedex (France); Ponge, Jean-Francois, E-mail: ponge@mnhn.fr [Museum National d' Histoire Naturelle, Departement Ecologie et Gestion de la Biodiversite, CNRS UMR 7179, 4 Avenue du Petit-Chateau, 91800 Brunoy (France); Martinez Aldaya, Maite [Museum National d' Histoire Naturelle, Departement Ecologie et Gestion de la Biodiversite, CNRS UMR 7179, 4 Avenue du Petit-Chateau, 91800 Brunoy (France); Damidot, Denis [Universite Lille Nord de France, 1bis rue Georges Lefevre, 59044 Lille Cedex (France); Ecole des Mines de Douai, LGCgE-MPE-GCE, 941 rue Charles-Bourseul, 59500 Douai (France)

    2011-10-15

    Bioassays on aqueous and solid phases of contaminated soils were compared, belonging to a wide array of trophic and response levels and using ecoscores for evaluating ecotoxicological and genotoxicological endpoints. The method was applied to four coke factory soils contaminated mainly with PAHs, but also to a lesser extent by heavy metals and cyanides. Aquatic bioassays do not differ from terrestrial bioassays when scaling soils according to toxicity but they are complementary from the viewpoint of ecological relevance. Both aquatic and terrestrial endpoints are strongly correlated with concentrations of 3-ring PAHs. This evaluation procedure allows us to propose a cost-effective battery which embraces a wide array of test organisms and response levels: it includes two rapid bioassays (Microtox) and springtail avoidance), a micronucleus test and three bioassays of a longer duration (algal growth, lettuce germination and springtail reproduction). This battery can be recommended for a cost-effective assessment of polluted/remediated soils. - Highlights: > Comparison of liquid- and solid-phase bioassays on contaminated soils, using ecoscores. > Complementarity of liquid- and solid-phase bioassays for the evaluation of environmental hazards. > Proposal for a restricted battery of 5 most sensitive tests. > Use of this restricted battery for a cost-effective assessment of polluted/remediated soils. - Aqueous and solid phases of contaminated soils give similar results in terms of toxicity but are complementary for the evaluation of environmental hazards by ecoscores.

  8. Establishment of a bioassay for the toxicity evaluation and quality control of Aconitum herbs

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Yi [Integrative Medicine Center, 302 Military Hospital, Beijing 100039 (China); Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500 (China); Wang, Jia-bo, E-mail: pharm_sci@126.com [China Military Institute of Chinese Materia Medica, 302 Military Hospital, Beijing 100039 (China); Zhao, Yan-ling; Shan, Li-mei [Integrative Medicine Center, 302 Military Hospital, Beijing 100039 (China); Li, Bao-cai [Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500 (China); Fang, Fang; Jin, Cheng [Integrative Medicine Center, 302 Military Hospital, Beijing 100039 (China); Xiao, Xiao-he, E-mail: pharmacy302@126.com [Integrative Medicine Center, 302 Military Hospital, Beijing 100039 (China)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer A new bioassay was optimized to evaluate the toxicity of Aconitum herbs. Black-Right-Pointing-Pointer Characterizing total toxicity is its unique advantage over chemical analysis methods. Black-Right-Pointing-Pointer The application of this bioassay promotes the safe use of Aconitum herbs in clinic. - Abstract: Currently, no bioassay is available for evaluating the toxicity of Aconitum herbs, which are well known for their lethal cardiotoxicity and neurotoxicity. In this study, we established a bioassay to evaluate the toxicity of Aconitum herbs. Test sample and standard solutions were administered to rats by intravenous infusion to determine their minimum lethal doses (MLD). Toxic potency was calculated by comparing the MLD. The experimental conditions of the method were optimized and standardized to ensure the precision and reliability of the bioassay. The application of the standardized bioassay was then tested by analyzing 18 samples of Aconitum herbs. Additionally, three major toxic alkaloids (aconitine, mesaconitine, and hypaconitine) in Aconitum herbs were analyzed using a liquid chromatographic method, which is the current method of choice for evaluating the toxicity of Aconitum herbs. We found that for all Aconitum herbs, the total toxicity of the extract was greater than the toxicity of the three alkaloids. Therefore, these three alkaloids failed to account for the total toxicity of Aconitum herbs. Compared with individual chemical analysis methods, the chief advantage of the bioassay is that it characterizes the total toxicity of Aconitum herbs. An incorrect toxicity evaluation caused by quantitative analysis of the three alkaloids might be effectively avoided by performing this bioassay. This study revealed that the bioassay is a powerful method for the safety assessment of Aconitum herbs.

  9. Modeling Of Proton Exchange Membrane Fuel Cell Systems

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh

    The objective of this doctoral thesis was to develop reliable steady-state and transient component models suitable to asses-, develop- and optimize proton exchange membrane (PEM) fuel cell systems. Several components in PEM fuel cell systems were characterized and modeled. The developed component...... cell systems. Consequences of indirectly fueling PEM stacks with hydrocarbons using reforming technology were investigated using a PEM stack model including CO poisoning kinetics and a transient Simulink steam reforming system model. Aspects regarding the optimization of PEM fuel cell systems...

  10. An Optically Controlled 3D Cell Culturing System

    Directory of Open Access Journals (Sweden)

    Kelly S. Ishii

    2011-01-01

    Full Text Available A novel 3D cell culture system was developed and tested. The cell culture device consists of a microfluidic chamber on an optically absorbing substrate. Cells are suspended in a thermoresponsive hydrogel solution, and optical patterns are utilized to heat the solution, producing localized hydrogel formation around cells of interest. The hydrogel traps only the desired cells in place while also serving as a biocompatible scaffold for supporting the cultivation of cells in 3D. This is demonstrated with the trapping of MDCK II and HeLa cells. The light intensity from the optically induced hydrogel formation does not significantly affect cell viability.

  11. Mathematical Model Developed for Environmental Samples: Prediction of GC/MS Dioxin TEQ from XDS-CALUX Bioassay Data

    Science.gov (United States)

    Brown, David J.; Orelien, Jean; Gordon, John D.; Chu, Andrew C.; Chu, Michael D.; Nakamura, Masafumi; Handa, Hiroshi; Kayama, Fujio; Denison, Michael S.; Clark, George C.

    2010-01-01

    Remediation of hazardous waste sites requires efficient and cost-effective methods to assess the extent of contamination by toxic substances including dioxin-like chemicals. Traditionally, dioxin-like contamination has been assessed by gas chromatography/high-resolution mass spectrometry (GC/MS) analysis for specific polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyl congeners. Toxic equivalency factors for these congeners are then used to estimate the overall dioxin toxic equivalency (TEQ) of complex mixtures found in samples. The XDS-CALUX bioassay estimates contamination by dioxin-like chemicals in a sample extract by measuring expression of a sensitive reporter gene in genetically engineered cells. The output of the XDS-CALUX assay is a CALUX-TEQ value, calibrated based on TCDD standards. Soil samples taken from a variety of hazardous waste sites were measured using the XDS-CALUX bioassay and GC/MS. TEQ and CALUX-TEQ from these methods were compared, and a mathematical model was developed describing the relationship between these two data sets: log(TEQ) = 0.654 × log(CALUX-TEQ) + 0.058-(log(CALUX-TEQ))2. Applying this equation to these samples showed that predicted and GC/MS measured TEQ values strongly correlate (R2 = 0.876) and that TEQ values predicted from CALUX-TEQ were on average nearly identical to the GC/MS-TEQ. The ability of XDS-CALUX bioassay data to predict GC/MS-derived TEQ data should make this procedure useful in risk assessment and management decisions. PMID:17626436

  12. Rapid bioassay-guided screening of toxic substances in vegetable oils that shorten the life of SHRSP rats

    Directory of Open Access Journals (Sweden)

    Lewandowski Paul

    2010-02-01

    Full Text Available Abstract It has been consistently reported that vegetable oils including canola oil have a life shortening effect in Stroke-Prone Spontaneously Hypertensive Rats (SHRSP and this toxic effect is not due to the fatty acid composition of the oil. Although it is possible that the phytosterol content or type of phytosterol present in vegetable oils may play some role in the life shortening effect observed in SHRSP rats this is still not completely resolved. Furthermore supercritical CO2 fractionation of canola oil with subsequent testing in SHRSP rats identified safe and toxic fractions however, the compounds responsible for life shortening effect were not characterised. The conventional approach to screen toxic substances in oils using rats takes more than six months and involves large number of animals. In this article we describe how rapid bioassay-guided screening could be used to identify toxic substances derived from vegetable oils and/or processed foods fortified with vegetable oils. The technique incorporates sequential fractionation of oils/processed foods and subsequent treatment of human cell lines that can be used in place of animal studies to determine cytotoxicity of the fractions with structural elucidation of compounds of interest determined via HPLC-MS and GC-MS. The rapid bioassay-guided screening proposed would require two weeks to test multiple fractions from oils, compared with six months if animal experiments were used to screen toxic effects. Fractionation of oil before bio-assay enhances the effectiveness of the detection of active compounds as fractionation increases the relative concentration of minor components.

  13. Rapid bioassay-guided screening of toxic substances in vegetable oils that shorten the life of SHRSP rats.

    Science.gov (United States)

    Ratnayake, Sunil; Lewandowski, Paul

    2010-02-02

    It has been consistently reported that vegetable oils including canola oil have a life shortening effect in Stroke-Prone Spontaneously Hypertensive Rats (SHRSP) and this toxic effect is not due to the fatty acid composition of the oil. Although it is possible that the phytosterol content or type of phytosterol present in vegetable oils may play some role in the life shortening effect observed in SHRSP rats this is still not completely resolved. Furthermore supercritical CO2 fractionation of canola oil with subsequent testing in SHRSP rats identified safe and toxic fractions however, the compounds responsible for life shortening effect were not characterised. The conventional approach to screen toxic substances in oils using rats takes more than six months and involves large number of animals. In this article we describe how rapid bioassay-guided screening could be used to identify toxic substances derived from vegetable oils and/or processed foods fortified with vegetable oils. The technique incorporates sequential fractionation of oils/processed foods and subsequent treatment of human cell lines that can be used in place of animal studies to determine cytotoxicity of the fractions with structural elucidation of compounds of interest determined via HPLC-MS and GC-MS. The rapid bioassay-guided screening proposed would require two weeks to test multiple fractions from oils, compared with six months if animal experiments were used to screen toxic effects. Fractionation of oil before bio-assay enhances the effectiveness of the detection of active compounds as fractionation increases the relative concentration of minor components.

  14. A novel multilayer immunoisolating encapsulation system overcoming protrusion of cells

    NARCIS (Netherlands)

    Bhujbal, Swapnil V.; de Haan, Bart; Niclou, Simone P.; de Vos, Paul

    2014-01-01

    Application of alginate-microencapsulated therapeutic cells is a promising approach for diseases that require a local and constant supply of therapeutic molecules. However most conventional alginate microencapsulation systems are associated with low mechanical stability and protrusion of cells which

  15. Stem cells in the nervous system.

    Science.gov (United States)

    Maldonado-Soto, Angel R; Oakley, Derek H; Wichterle, Hynek; Stein, Joel; Doetsch, Fiona K; Henderson, Christopher E

    2014-11-01

    Given their capacity to regenerate cells lost through injury or disease, stem cells offer new vistas into possible treatments for degenerative diseases and their underlying causes. As such, stem cell biology is emerging as a driving force behind many studies in regenerative medicine. This review focuses on the current understanding of the applications of stem cells in treating ailments of the human brain, with an emphasis on neurodegenerative diseases. Two types of neural stem cells are discussed: endogenous neural stem cells residing within the adult brain and pluripotent stem cells capable of forming neural cells in culture. Endogenous neural stem cells give rise to neurons throughout life, but they are restricted to specialized regions in the brain. Elucidating the molecular mechanisms regulating these cells is key in determining their therapeutic potential as well as finding mechanisms to activate dormant stem cells outside these specialized microdomains. In parallel, patient-derived stem cells can be used to generate neural cells in culture, providing new tools for disease modeling, drug testing, and cell-based therapies. Turning these technologies into viable treatments will require the integration of basic science with clinical skills in rehabilitation.

  16. Evaluation on the Joint Action Between Chlorsulfuron and Haloxyfop-R by Bioassay

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The joint action between chlorsulfuron and haloxyfop-R was evaluated by bioassay with wheat and com.respectivly. The dose-response curve derived from wheat bioassay showed that the inhibition of haloxyfop-Rto wheat root growth wasn't affected by the increasing rate of chlorsulfuron. It indicated that chlorsulfuron had no antagonism to haloxyfop-R. Meanwhile ,the variation analysis of corn bioassay indicated that these two herbicides had joint action on inhibition to corn primary root growth. The joint action was evaluated as addis tive action by using Isobole Method. So chlorsulfuron and haloxyfop-R could be used as tank mixture.

  17. [Application of bioassay in quality control of Chinese materia medica-taking Radix Isatidis as an example].

    Science.gov (United States)

    Yan, Dan; Ren, Yongshen; Luo, Jiaoyang; Li, Hanbing; Feng, Xue; Xiao, Xiaohe

    2010-10-01

    Bioassay, which construct the characteristics consistents with Chinese medical science, is the core mode and methods for the quality control of Chinese materia medica. Taking the bioassay of Radix Isatidis as an example, the contribution, status and application of bioassay in the quality control of Chinese materia medica were introduced in this article, and two key issue (the selection of reference and measurement methods) in the process of establishing bioassay were also explained. This article expects to provide a reference for the development and improvement of the bioassay of Chinese materia medica in a practical manipulation level.

  18. Generation of a patterned co-culture system composed of adherent cells and immobilized nonadherent cells.

    Science.gov (United States)

    Yamazoe, Hironori; Ichikawa, Takashi; Hagihara, Yoshihisa; Iwasaki, Yasuhiko

    2016-02-01

    Patterned co-culture is a promising technique used for fundamental investigation of cell-cell communication and tissue engineering approaches. However, conventional methods are inapplicable to nonadherent cells. In this study, we aimed to establish a patterned co-culture system composed of adherent and nonadherent cells. Nonadherent cells were immobilized on a substrate using a cell membrane anchoring reagent conjugated to a protein, in order to incorporate them into the co-culture system. Cross-linked albumin film, which has unique surface properties capable of regulating protein adsorption, was used to control their spatial localization. The utility of our approach was demonstrated through the fabrication of a patterned co-culture consisting of micropatterned neuroblastoma cells surrounded by immobilized myeloid cells. Furthermore, we also created a co-culture system composed of cancer cells and immobilized monocytes. We observed that monocytes enhanced the drug sensitivity of cancer cells and its influence was limited to cancer cells located near the monocytes. Therefore, the incorporation of nonadherent cells into a patterned co-culture system is useful for creating culture systems containing immune cells, as well as investigating the influence of these immune cells on cancer drug sensitivity. Various methods have been proposed for creating patterned co-culture systems, in which multiple cell types are attached to a substrate with a desired pattern. However, conventional methods, including our previous report published in Acta Biomaterialia (2010, 6, 526-533), are unsuitable for nonadherent cells. Here, we developed a novel method that incorporates nonadherent cells into the co-culture system, which allows us to precisely manipulate and study microenvironments containing nonadherent and adherent cells. Using this technique, we demonstrated that monocytes (nonadherent cells) could enhance the drug sensitivity of cancer cells and that their influence had a

  19. Evaluation of coriander spice as a functional food by using in vitro bioassays.

    Science.gov (United States)

    Zhang, Chuan-Rui; Dissanayake, Amila A; Kevseroğlu, Kudret; Nair, Muraleedharan G

    2015-01-15

    Coriander leaves and seeds are widely used as a condiment and spice. The use of roasted coriander seeds in food and beverage is very common. In this study, we investigated raw and roasted coriander seeds for their functional food quality using antioxidant, anti-inflammatory and human tumour cell proliferation inhibitory assays. The hexane and methanolic extracts of raw and roasted coriander seeds showed identical chromatographic and bioassay profiles. Chromatographic purification of the roasted seed extracts afforded tripetroselinin as the predominant component. Other isolates were petroselinic acid, 1,3-dipetroselinin, 2-C-methyl-d-erythritol, 2-C-methyl-d-erythritol 4-O-β-d-glucopyranoside and linalool. Hexane and methanolic extracts of both raw and roasted seeds and pure isolates from them showed comparable antioxidant and anti-inflammatory activities to the positive controls used in the assays, and inhibited the growth of human tumour cells AGS (gastric carcinoma), DU-145 and LNCaP (prostate carcinoma), HCT-116 (colon carcinoma), MCF-7 (breast carcinoma) and NCI-H460 (lung carcinoma) by 4-34%, respectively.

  20. Methotrexate intercalated layered double hydroxides with the mediation of surfactants: Mechanism exploration and bioassay study

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Chao-Fan; Tian, De-Ying; Li, Shu-Ping, E-mail: lishuping@njnu.edu.cn; Li, Xiao-Dong

    2015-12-01

    Methotrexatum intercalated layered double hydroxides (MTX/LDHs) hybrids were synthesized by the co-precipitation method and three kinds of nonionic surfactants with different hydrocarbon chain lengths were used. The resulting hybrids were then characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM). XRD and FTIR investigations manifest the successful intercalation of MTX anions into the interlayer of LDHs. TEM graphs indicate that the morphology of the hybrids changes with the variation of the chain length of the surfactants, i.e., the particles synthesized using polyethylene glycol (PEG-7) present regular disc morphology with good monodispersity, while samples with the mediation of alkyl polyglycoside (APG-14) are heavily aggregated and samples with the addition of polyvinylpyrrolidone (PVP-10) exhibit irregular branches. Furthermore, the release and bioassay experiments show that monodisperse MTX/LDHs present good controlled-release and are more efficient in the suppression of the tumor cells. - Highlights: • Surfactants could be used to modify the dispersing state of MTX/LDHs hybrids. • Surfactants have great effect on the morphology of MTX/LDHs hybrids. • MTX/LDHs with good monodisperse degree are more efficient in the suppression of the tumor cells.

  1. Detection of genotoxic effects of drinking water disinfection by-products using Vicia faba bioassay.

    Science.gov (United States)

    Hu, Yu; Tan, Li; Zhang, Shao-Hui; Zuo, Yu-Ting; Han, Xue; Liu, Na; Lu, Wen-Qing; Liu, Ai-Lin

    2017-01-01

    Plant-based bioassays have gained wide use among the toxicological and/or ecotoxicological assessment procedures because of their simplicity, sensitivity, low cost, and reliability. The present study describes the use of Vicia faba (V. faba) micronucleus (MN) test and V. faba comet assay in the evaluation of the genotoxic potential of disinfection by-products (DBPs) commonly found in chlorine-disinfected drinking water. Five haloacetic acids and three halogenated acetonitriles were chosen as representatives of DBPs in this study because they are of potentially great public health risk. Results of the MN test indicated that monochloroacetic acid (MCA), monobromoacetic acid (MBA), dichloroacetic acid (DCA), dibromoacetic acid (DBA), trichloroacetic acid (TCA), and trichloroacetonitrile (TCAN) caused a statistically significant increase in MN frequency in V. faba root tip cells. However, no genotoxic response was observed for dichloroacetonitrile (DCAN) and dibromoacetonitrile (DBAN). Results of the comet assay showed that all tested DBPs induced a statistically significant increase in genomic DNA damage to V. faba root tip cells. On considering the capacity to detect genomic damage of a different nature, we suggest that a combination of V. faba MN test and V. faba comet assay is a useful tool for the detection of genotoxic effects of DBPs. It is worthy of assessing the feasibility of using V. faba comet assay combined with V. faba MN test to screen for the genotoxic activity of chlorinated drinking water in future work.

  2. Novel solar cell systems. Neue Solarzellen

    Energy Technology Data Exchange (ETDEWEB)

    Bucher, E.; Lux-Steiner, M.H.; Berner, H.; Jaeger-Waldau, R.; Klein, A.; Keppner, H.; Stuecheli, N.; Willeke, G.; Kloc, C.; Waldvogel, W.; Bender, H.; Meier, J.; Kragler, G.; Voegt, M.; Doell, G.; Baumgartner, F.; Friedrich, E.; Jaeger-Waldau, A.; Sailer, B.; Schweikardt, H.P.; Burkhardt, R.; Reetz, W.; Dolatzoglou, P.; Keil, M.; Riazi-Nejad, H.; Hufnagl, J. (Konstanz Univ. (Germany, F.R.). Fakultaet fuer Physik); Shah, A.V.; Curtins, H. (Neuchatel Univ. (Switzerland). Inst. de Microtechnique); Widmer, A.E.; Fehlmann, R. (Paul Scherrer Inst. (PSI), Zurich (Switzerland)); Frommeyer, G. (Max-Planck-Institut fuer Eisenforschung GmbH, Duesseldorf (Germany, F.R.))

    1990-01-01

    Efficiency needs to be improved for a number of photovoltaic applications. There are two ways of doing this: (a) Cells with good efficiency can be modified i.e.by moving away from the conventional n{sup +}/p (or p{sup +}/n) and thinking up complicated, more efficient photovolta structures. This idea was pursued initially in two directions in the case of silicon: R. Swanson's point of contact cells and Green's PESC cells. Both were successful, and efficiency levels of over 23% were achieved under Am1.5. The highest value achieved under concentration (250 suns) was eta = 28.3. (b) The other way would be the development of an efficient (thin film) tandem cell. The optimum band gaps for 2-component tandem cells are 1.0 and 1.6 eV. High (tandem cell) efficiency levels can only be realised if both cell types are of a high standard individually. A project to study issue (a) has already been undertaken. It is the SIPOS cell, which offers an alternative to Swanson's point of contact cell and Green's PESC cell, both of which have the drawback of requiring several very expensive and complex process steps. The SIPOS cell, for which a maximum efficiency level of almost 30 % has been calculated, is somewhat simpler in structure and technology. The report concerns initial results and experience with the development of the SIPOS cell. (orig./ORU).

  3. T cells and the humoral immune system

    NARCIS (Netherlands)

    W.B. van Muiswinkel (Willem)

    1975-01-01

    textabstractLymphoid cells and macrophages play an important role in the development and rnaintance of humoral and cellular immunity in mammals. The lymphoid cells in the peripheral lymphoid organs are divided into two major classes: (1) thymus-derived lymphocytes or T cells and (2) bursa-equivalent

  4. T cells and the humoral immune system

    NARCIS (Netherlands)

    W.B. van Muiswinkel (Willem)

    1975-01-01

    textabstractLymphoid cells and macrophages play an important role in the development and rnaintance of humoral and cellular immunity in mammals. The lymphoid cells in the peripheral lymphoid organs are divided into two major classes: (1) thymus-derived lymphocytes or T cells and (2) bursa-equivalent

  5. Analyzing bioassay data using Bayesian methods -- A primer

    Energy Technology Data Exchange (ETDEWEB)

    Miller, G.; Inkret, W.C.; Schillaci, M.E.

    1997-10-16

    The classical statistics approach used in health physics for the interpretation of measurements is deficient in that it does not allow for the consideration of needle in a haystack effects, where events that are rare in a population are being detected. In fact, this is often the case in health physics measurements, and the false positive fraction is often very large using the prescriptions of classical statistics. Bayesian statistics provides an objective methodology to ensure acceptably small false positive fractions. The authors present the basic methodology and a heuristic discussion. Examples are given using numerically generated and real bioassay data (Tritium). Various analytical models are used to fit the prior probability distribution, in order to test the sensitivity to choice of model. Parametric studies show that the normalized Bayesian decision level k{sub {alpha}}-L{sub c}/{sigma}{sub 0}, where {sigma}{sub 0} is the measurement uncertainty for zero true amount, is usually in the range from 3 to 5 depending on the true positive rate. Four times {sigma}{sub 0} rather than approximately two times {sigma}{sub 0}, as in classical statistics, would often seem a better choice for the decision level.

  6. Tobacco specific N-nitrosamines: occurrence and bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, D.; Adams, J.D.; Brunnemann, K.D.; Rivenson, A.; Hecht, S.S.

    1982-01-01

    A new GC-TEA method for the analysis of tobacco-specific N-nitrosamines (TSNA) has been developed. Four TSNA have thus far been identified; these are N'-nitrosonornicotine (NNN), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), N'-nitrosoanatabine (NAT) and N'-nitrosoanabasine (NAB). The method is currently being applied to the development of cigarette filter-tips which will selectively remove these carcinogens from cigarette smoke. Since recent epidemiological studies have established a correlation between snuff dipping and oral cancer, we have analysed leading snuff brands for TSNA. Snuff products from Sweden, Denmark, Bavaria and the USA contained 5-106 mg/kg of the TSNA and the saliva of snuff dippers had TSNA levels of 20-890 micrograms/kg. NNN, NNK and NAB induce benign and malignant tumours of the respiratory tract of mice and rats. We have shown that NNN and NNK induce tumours in the upper respiratory tract of hamsters and that NNK is the most active carcinogen of the TSNA, also inducing adenoma and adenocarcinoma in the hamster lung. The reported chemical analyses and bioassay results support the epidemiological findings on the causal association of tobacco use and cancer in man.

  7. Antioxidant, antimicrobial and cytotoxic bioassay of Mollugo oppositifolius L

    Directory of Open Access Journals (Sweden)

    Md. Torequl Islam

    2011-01-01

    Full Text Available The present study was conducted according to the traditional uses of Mollugo oppositifolius L. by the kabiraj (traditional practioner for the treatment of infectious diseases of the ill fated and poor people of Bangladesh. For this antioxidant, antimicrobial and biolethality potentials were conducted by methanol (MOME, ethanol (MOEE and petroleum ether (MOPE extractives of the suspected species. To determine the antioxidant activity the DPPH inhibition method was used. For antimicrobial test, antibacterial and antifungal sensitivities were performed by disc diffusion method and serial tube dilution method was carried out to determine the minimum inhibitory concentrations on some human pathogenic bacteria and fungi. For cytotoxicity test, brine shrimp lethality bioassay was conducted. Among the three crude extracts, MOEE produced more significant inhibition of DPPH (IC 50 ; 27 μg/ml; MOPE produced highest zone of inhibition against Bacillus subtilis (16.67 mm and Microsporum spp. (16.0 mm. On the other hand, MOME produced mild cytotoxicity as 50% and 90% mortality (LC 50 and LC 90 8.0 μg/ml and 85.12 μg/ml.

  8. Biomarkers and Bioassays for Cardiovascular Diseases: Present and Future

    Directory of Open Access Journals (Sweden)

    Derek S. Sim

    2008-01-01

    Full Text Available Stratification of cardiac patients arriving at the emergency department is now being made according to the levels of acute cardiac biomarkers (i.e. cardiac troponin (cTn or creatine kinase myocardial band (CK-MB. Ongoing efforts are undertaken in an attempt to identify and validate additional cardiac biomarkers, for example, interleukin-6, soluble CD40L, and C-reactive protein, in order to further risk stratify patients with acute coronary syndrome. Several studies have also now shown an association of platelet transcriptome and genomic single nucleotide polymorphisms with myocardial infarction by using advanced genomic tools. A number of markers, such as myeloid-related protein 14 (MRP-14, cyclooxygenase-1 (COX-1, 5-lipoxygenase activating protein (FLAP, leukotriene A4 hydrolase (LTA4H and myocyte enhancing factor 2A (MEF2A, have been linked to acute coronary syndromes, including myocardial infarction. In the future, these novel markers may pave the way toward personalized disease-prevention programs based on a person’s genomic, thrombotic and cardiovascular profiles. Current and future biomarkers and bioassays for identifying at-risk patients will be discussed in this review.

  9. Headspace-free setup of in vitro bioassays for the evaluation of volatile disinfection by-products.

    Science.gov (United States)

    Stalter, Daniel; Dutt, Mriga; Escher, Beate I

    2013-11-18

    The conventional setup of in vitro bioassays in microplates does not prevent the loss of volatile compounds, which hampers the toxicological characterization of waterborne volatile disinfection by-products (DBPs). To minimize the loss of volatile test chemicals, we adapted four in vitro bioassays to a headspace-free setup using eight volatile organic compounds (four trihalomethanes, 1,1-dichloroethene, bromoethane, and two haloacetonitriles) that cover a wide range of air-water partition coefficients. The nominal effect concentrations of the test chemicals decreased by up to three orders of magnitude when the conventional setup was changed to a headspace-free setup for the bacterial cytotoxicity assay using bioluminescence inhibition of Vibrio fischeri. The increase of apparent sensitivity correlated significantly with the air-water partition coefficient. Purge and trap GC/MS analysis revealed a reduced loss of dosed volatile compounds in the headspace free setup (78-130% of nominal concentration) compared to a substantial loss in the conventional set up (2-13% of the nominal concentration). The experimental effect concentrations converged with the headspace-free setup to the effect concentrations predicted by a QSAR model, confirming the suitability of the headspace-free approach to minimize the loss of volatile test chemicals. The analogue headspace-free design of the bacterial bioassays for genotoxicity (umuC assay) and mutagenicity (Ames fluctuation assay) increased the number of compounds detected as genotoxic or mutagenic from one to four and zero to two, respectively. In a bioassay with a mammalian cell line applied for detecting the induction of the Nrf-2-mediated oxidative stress response (AREc32 assay), the headspace-free setup improved the apparent sensitivity by less than one order of magnitude, presumably due to the retaining effect of the serum components in the medium, which is also reflected in the reduced aqueous concentrations of compounds. This

  10. Validation and use of the CALUX-bioassay for the determination of dioxins and PCBs in bovine milk.

    Science.gov (United States)

    Bovee, T F; Hoogenboom, L A; Hamers, A R; Traag, W A; Zuidema, T; Aarts, J M; Brouwer, A; Kuiper, H A

    1998-01-01

    There is a strong need for the development of relatively cheap and rapid bioassays for the determination of dioxins and related compounds in food. A newly developed CALUX (Chemical-Activated LUciferase gene eXpression) bioassay was tested for its possible use to determine low levels of dioxins in bovine milk. Data show that this mammalian cell-based test is very sensitive for 2,3,7,8-substituted dioxins and related PCBs, thereby reflecting the relative potencies of these compounds in comparison to TCDD (TEF-values). The limit of detection was about 50 fg of TCDD. Furthermore, the response obtained with a mixture of dioxins was additive, in accordance with the TEF-principle. Milk fat was isolated by centrifugation followed by clean-up of the fat with n-pentane, removal of the fat on a 33% H2SO4 silica column, and determination of Ah receptor agonist activity with the CALUX-bioassay. An equivalent of 67 mg fat was tested per experimental unit, resulting in a limit of quantification around 1 pg i-TEQ/g fat. To investigate the performance of the method, butter fat was cleaned and spiked with a mixture of 17 different 2,3,7,8-substituted PCDD and PCDF congeners at 1, 3, 6, 9, 12 and 15 pg TEQ/g fat, as confirmed by GC/MS. In this concentration range, the method showed a recovery of TEQs around 67% (58-87%). The reproducibility, determined in three independent series showed a CV varying between 4% and 54%, with the exception of the sample spiked at 1 pg i-TEQ (CV 97%). The repeatability determined with the sample spiked at 6 pg i-TEQ/g showed a CV of 10%. Testing of 22 bovine milk samples, taken at different sites in The Netherlands, in the CALUX-assay showed combined dioxin and dioxin-like PCB levels equivalent to 1.6 pg TCDD/g fat (range 0.2-4.6). GC/MS analysis of these samples revealed an average level of 1.7 pg i-TEQ/g fat, varying between 0.5 and 4.7 pg i-TEQ/g fat. All five samples showing a GC/MS determined dioxin content of more than 2 pg i-TEQ/g fat gave a

  11. Acute toxicity of drainage ditch water from a Washington State cranberry-growing region to Daphnia pulex in laboratory bioassays.

    Science.gov (United States)

    Wood, Barbara; Stark, John D

    2002-10-01

    High concentrations of organophosphorous insecticides resulting from cranberry bog applications were detected in the Grayland Drainage Ditch (GDD) system in Grayland, Washington State, during the 1994-1996 Washington State Department of Ecology Pesticide Monitoring Program. This drainage ditch system drains cranberry bogs and enters the Pacific Ocean via the North Cove and Supon Inlet. Concerns about the impact of these pesticides on human and environmental health led to this investigation of the potential impact on an indicator species, Daphnia pulex. To determine the toxic effects of multiple pesticides entering the GDD, standardized laboratory toxicity tests with D. pulex were conducted concurrently with the Washington State Department of Ecology pesticide sampling. Concentrations of three insecticides, diazinon, chlorpyrifos, and azinphosmethyl, were the highest ever detected in state waters. The GDD water was found to cause acute toxicity in 33% of the laboratory bioassays conducted. Regression analysis, however, detected a poor correlation between total insecticide detected and percentage mortality of D. pulex at the two drainage ditch sites studied, Grays Harbor County site and the Pacific County site. However, the relationship between mortality of D. pulex and detected concentrations of diazinon and chlorpyrifos were significant. Sampling schedules for chemical analysis and bioassay testing appear to be the primary reason that statistical analysis failed to correlate mortality with detected OP pesticide concentrations. Grab samples used in toxicity testing may over- or underestimate actual concentrations of contaminants present in the system being studied.

  12. Advanced Fuel Cell System Thermal Management for NASA Exploration Missions

    Science.gov (United States)

    Burke, Kenneth A.

    2009-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA exploration program. An analysis of a state-of-the-art fuel cell cooling systems was done to benchmark the portion of a fuel cell system s mass that is dedicated to thermal management. Additional analysis was done to determine the key performance targets of the advanced passive thermal management technology that would substantially reduce fuel cell system mass.

  13. Cell fate control in the developing central nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Guérout, Nicolas; Li, Xiaofei; Barnabé-Heider, Fanie, E-mail: Fanie.Barnabe-Heider@ki.se

    2014-02-01

    The principal neural cell types forming the mature central nervous system (CNS) are now understood to be diverse. This cellular subtype diversity originates to a large extent from the specification of the earlier proliferating progenitor populations during development. Here, we review the processes governing the differentiation of a common neuroepithelial cell progenitor pool into mature neurons, astrocytes, oligodendrocytes, ependymal cells and adult stem cells. We focus on studies performed in mice and involving two distinct CNS structures: the spinal cord and the cerebral cortex. Understanding the origin, specification and developmental regulators of neural cells will ultimately impact comprehension and treatments of neurological disorders and diseases. - Highlights: • Similar mechanisms regulate cell fate in different CNS cell types and structures. • Cell fate regulators operate in a spatial–temporal manner. • Different neural cell types rely on the generation of a diversity of progenitor cells. • Cell fate decision is dictated by the integration of intrinsic and extrinsic signals.

  14. Economics of Direct Hydrogen Polymer Electrolyte Membrane Fuel Cell Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevan, Kathyayani

    2011-10-04

    Battelle's Economic Analysis of PEM Fuel Cell Systems project was initiated in 2003 to evaluate the technology and markets that are near-term and potentially could support the transition to fuel cells in automotive markets. The objective of Battelle?s project was to assist the DOE in developing fuel cell systems for pre-automotive applications by analyzing the technical, economic, and market drivers of direct hydrogen PEM fuel cell adoption. The project was executed over a 6-year period (2003 to 2010) and a variety of analyses were completed in that period. The analyses presented in the final report include: Commercialization scenarios for stationary generation through 2015 (2004); Stakeholder feedback on technology status and performance status of fuel cell systems (2004); Development of manufacturing costs of stationary PEM fuel cell systems for backup power markets (2004); Identification of near-term and mid-term markets for PEM fuel cells (2006); Development of the value proposition and market opportunity of PEM fuel cells in near-term markets by assessing the lifecycle cost of PEM fuel cells as compared to conventional alternatives used in the marketplace and modeling market penetration (2006); Development of the value proposition of PEM fuel cells in government markets (2007); Development of the value proposition and opportunity for large fuel cell system application at data centers and wastewater treatment plants (2008); Update of the manufacturing costs of PEM fuel cells for backup power applications (2009).

  15. Biological screening of selected Pacific Northwest forest plants using the brine shrimp (Artemia salina) toxicity bioassay

    National Research Council Canada - National Science Library

    Karchesy, Yvette M; Kelsey, Rick G; Constantine, George; Karchesy, Joseph J

    2016-01-01

    The brine shrimp (Artemia salina) bioassay was used to screen 211 methanol extracts from 128 species of Pacific Northwest plants in search of general cytotoxic activity. Strong toxicity (LC50 < 100 µg/ml...

  16. Development, validation and routine application of the in vitro REA and DR-CALUX reporter gene bioassays for the screening of estrogenic compounds and dioxins in food and feed

    NARCIS (Netherlands)

    Bovee, T.F.H.

    2006-01-01

    A dedicated cell-line was developed by the Department of Toxicology of Wageningen University in a joined project with the University of California in Davis and the RIKILT-WUR - Institute of Food Safety in Wageningen. This DR-CALUX ® bioassay was tested, optimised and validated for its use

  17. Development, validation and routine application of the in vitro REA and DR-CALUX reporter gene bioassays for the screening of estrogenic compounds and dioxins in food and feed

    NARCIS (Netherlands)

    Bovee, T.F.H.

    2006-01-01

    A dedicated cell-line was developed by the Department of Toxicology of Wageningen University in a joined project with the University of California in Davis and the RIKILT-WUR - Institute of Food Safety in Wageningen. This DR-CALUX ® bioassay was tested, optimised and validated for its use

  18. Rotating cell culture systems for human cell culture: human trophoblast cells as a model.

    Science.gov (United States)

    Zwezdaryk, Kevin J; Warner, Jessica A; Machado, Heather L; Morris, Cindy A; Höner zu Bentrup, Kerstin

    2012-01-18

    The field of human trophoblast research aids in understanding the complex environment established during placentation. Due to the nature of these studies, human in vivo experimentation is impossible. A combination of primary cultures, explant cultures and trophoblast cell lines support our understanding of invasion of the uterine wall and remodeling of uterine spiral arteries by extravillous trophoblast cells (EVTs), which is required for successful establishment of pregnancy. Despite the wealth of knowledge gleaned from such models, it is accepted that in vitro cell culture models using EVT-like cell lines display altered cellular properties when compared to their in vivo counterparts. Cells cultured in the rotating cell culture system (RCCS) display morphological, phenotypic, and functional properties of EVT-like cell lines that more closely mimic differentiating in utero EVTs, with increased expression of genes mediating invasion (e.g. matrix metalloproteinases (MMPs)) and trophoblast differentiation. The Saint Georges Hospital Placental cell Line-4 (SGHPL-4) (kindly donated by Dr. Guy Whitley and Dr. Judith Cartwright) is an EVT-like cell line that was used for testing in the RCCS. The design of the RCCS culture vessel is based on the principle that organs and tissues function in a three-dimensional (3-D) environment. Due to the dynamic culture conditions in the vessel, including conditions of physiologically relevant shear, cells grown in three dimensions form aggregates based on natural cellular affinities and differentiate into organotypic tissue-like assemblies. The maintenance of a fluid orbit provides a low-shear, low-turbulence environment similar to conditions found in vivo. Sedimentation of the cultured cells is countered by adjusting the rotation speed of the RCCS to ensure a constant free-fall of cells. Gas exchange occurs through a permeable hydrophobic membrane located on the back of the bioreactor. Like their parental tissue in vivo, RCCS

  19. Review of Bioassays for Monitoring Fate and Transport of Estrogenic Endocrine Disrupting Compounds in Water

    OpenAIRE

    Campbell, Chris G.; Borglin, Sharon E.; Stringfellow, William T.; Green, F. Bailey; Grayson, Allen

    2004-01-01

    Endocrine disrupting compounds (EDCs) are recognized contaminants threatening water quality. Despite efforts in source identification, few strategies exist for characterization or treatment of this environmental pollution. Given that there are numerous EDCs that can negatively affect humans and wildlife, general screening techniques like bioassays and biosensors provide an essential rapid and intensive analysis capacity. Commonly applied bioassays include the ELISA and YES assays, but pr...

  20. A Standardized Lepidopteran Bioassay to Investigate the Bioactivity of Insecticidal Proteins Produced in Transgenic Crops.

    Science.gov (United States)

    Graser, Gerson; Walters, Frederick S

    2016-01-01

    Insecticidal bioassays are the only reliable method to investigate the biological activity of an insecticidal protein and therefore provide an essential toolkit for the characterization and potency determination of these proteins. Here we present a standardized method for a lepidopteran larval bioassay, which is optimized to specifically estimate activity of insecticidal proteins produced in transgenic plants. The treatment can be either applied to the surface of the artificial diet, or blended into the diet.

  1. Design of gasifiers to optimize fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The objective of this project is to configure coal gasification/carbonate fuel cell systems that can significantly improve the economics, performance, and efficiency of electric power generation systems. (VC)

  2. Design of gasifiers to optimize fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The objective of this project is to configure coal gasification/carbonate fuel cell systems that can significantly improve the economics, performance, and efficiency of electric power generation systems. (VC)

  3. The analysis of dose-response curve from bioassays with quantal response: Deterministic or statistical approaches?

    Science.gov (United States)

    Mougabure-Cueto, G; Sfara, V

    2016-04-25

    Dose-response relations can be obtained from systems at any structural level of biological matter, from the molecular to the organismic level. There are two types of approaches for analyzing dose-response curves: a deterministic approach, based on the law of mass action, and a statistical approach, based on the assumed probabilities distribution of phenotypic characters. Models based on the law of mass action have been proposed to analyze dose-response relations across the entire range of biological systems. The purpose of this paper is to discuss the principles that determine the dose-response relations. Dose-response curves of simple systems are the result of chemical interactions between reacting molecules, and therefore are supported by the law of mass action. In consequence, the shape of these curves is perfectly sustained by physicochemical features. However, dose-response curves of bioassays with quantal response are not explained by the simple collision of molecules but by phenotypic variations among individuals and can be interpreted as individual tolerances. The expression of tolerance is the result of many genetic and environmental factors and thus can be considered a random variable. In consequence, the shape of its associated dose-response curve has no physicochemical bearings; instead, they are originated from random biological variations. Due to the randomness of tolerance there is no reason to use deterministic equations for its analysis; on the contrary, statistical models are the appropriate tools for analyzing these dose-response relations.

  4. Measuring cell identity in noisy biological systems

    OpenAIRE

    Kenneth D Birnbaum; Kussell, Edo

    2011-01-01

    Global gene expression measurements are increasingly obtained as a function of cell type, spatial position within a tissue and other biologically meaningful coordinates. Such data should enable quantitative analysis of the cell-type specificity of gene expression, but such analyses can often be confounded by the presence of noise. We introduce a specificity measure Spec that quantifies the information in a gene's complete expression profile regarding any given cell type, and an uncertainty me...

  5. Bioassay-guided extraction of crude fucose-containing sulphated polysaccharides from Sargassum fusiforme with response surface methodology

    Science.gov (United States)

    Fu, Zhifei; Li, Haihua; Liu, Hongbing; Hu, Shuman; Li, Yueying; Wang, Mengxue; Guan, Huashi

    2016-06-01

    The response surface methodology (RSM) combined with bioassays was employed to optimize the extraction process of crude fucose-containing sulphated polysaccharides (cFCSP) from Sargassum fusiforme. The central composite design (CCD) was used with four variables, five levels, and four responses. The four variables were pH value of hydrochloric acid solution, extraction temperature (°C), ratio of liquid to raw material (mL g-1), and extraction time (h), respectively. Chemical and bioassay indices were used in combination as the response parameters, which included the yield of cFCSP, fucose content, proliferation rate of spleen cells, and lipopolysaccharide-induced proliferation of splenocytes. The experimental data were fitted to a second-order polynomial equation using multiple regression analysis, and examined using the appropriate statistical methods. The best extraction conditions were as follows: the pH value of hydrochloric acid solution was 3.50; the extraction temperature was 100°C; the ratio of liquid to raw material was 15.00 mL g-1 and the extraction time was 2.50 h. The experimental yield was close to the predicted from the model. The extract could promote spleen lymphocyte proliferation, especially the lipopolysaccharide-induced lymphocyte proliferation in vitro, which suggested that its immunomodulatory effect on B lymphocytes. Therefore, cFCSP extracted from S. fusiforme could be utilized as an immunostimulant in functional foods and pharmaceutical industry in future.

  6. Genotoxic and mutagenic effects of polluted surface water in the midwestern region of Brazil using animal and plant bioassays

    Directory of Open Access Journals (Sweden)

    Priscila Leocádia Rosa Dourado

    Full Text Available Abstract This study aimed to evaluate DNA damage in animal and plant cells exposed to water from the Água Boa stream (Dourados, Mato Grosso do Sul, Brazil by using bioassays, and to identify the chemical compounds in the water to determine the water quality in the area. Through the cytotoxicity bioassay with Allium cepa, using micronucleus test, and comet assay, using Astyanax altiparanae fish, the results indicated that biological samples were genetically altered. Micronuclei were observed in erythrocytes of A. altiparanae after exposure to water from locations close to industrial waste discharge. The highest DNA damage observed with the comet assay in fish occurred with the exposure to water from locations where the presence of metals (Cu, Pb, Cd, Ni was high, indicating the possibility of genotoxic effects of these compounds. Thus, these results reinforce the importance of conducting genotoxicity tests for developing management plans to improve water quality, and indicate the need for waste management before domestic and industrial effluents are released into the rivers and streams.

  7. Neuronal chemokines : Versatile messengers in central nervous system cell interaction

    NARCIS (Netherlands)

    de Haas, A. H.; van Weering, H. R. J.; de Jong, E. K.; Boddeke, H. W. G. M.; Biber, K. P. H.

    2007-01-01

    Whereas chemokines are well known for their ability to induce cell migration, only recently it became evident that chemokines also control a variety of other cell functions and are versatile messengers in the interaction between a diversity of cell types. In the central nervous system (CNS), chemoki

  8. Facile synthesis of methotrexate intercalated layered double hydroxides: Particle control, structure and bioassay explore

    Energy Technology Data Exchange (ETDEWEB)

    Tian, De-Ying; Liu, Zhen-Lei [Jiangsu Key Laboratory of Biofunctional Material, College of Chemistry and Material Science, Nanjing Normal University, Nanjing 210023 (China); Li, Shu-Ping, E-mail: lishuping@njnu.edu.cn [Jiangsu Key Laboratory of Biofunctional Material, College of Chemistry and Material Science, Nanjing Normal University, Nanjing 210023 (China); Li, Xiao-Dong [Jiangsu Key Laboratory of Biofunctional Material, College of Chemistry and Material Science, Nanjing Normal University, Nanjing 210023 (China); Shenzhen Research Institute of Xiamen University, Shenzhen 518057 (China)

    2014-12-01

    dropping way, volume ratio of PEG-400 to water and hydrothermal treatment time and the release mechanism and the bioassay tests had been systematically investigated. Our study indicated that nanohybrids with larger diameters have higher tumor suppression efficiency. - Highlights: • The particle size can be precisely controlled between 90 and 140 nm. • Different dropping ways can affect the morphology greatly. • Larger particles are more efficient in the suppression of the tumor cells. • Longer time treatment will weaken the bond between the MTX and LDH layers.

  9. Plasmonically amplified bioassay - Total internal reflection fluorescence vs. epifluorescence geometry.

    Science.gov (United States)

    Hageneder, Simone; Bauch, Martin; Dostalek, Jakub

    2016-08-15

    This paper investigates plasmonic amplification in two commonly used optical configurations for fluorescence readout of bioassays - epifluorescence (EPF) and total internal reflection fluorescence (TIRF). The plasmonic amplification in the EPF configuration was implemented by using crossed gold diffraction grating and Kretschmann geometry of attenuated total reflection method (ATR) was employed in the TIRF configuration. Identical assay, surface architecture for analyte capture, and optics for the excitation, collection and detection of emitted fluorescence light intensity were used in both TIRF and EPF configurations. Simulations predict that the crossed gold diffraction grating (EPF) can amplify the fluorescence signal by a factor of 10(2) by the combination of surface plasmon-enhanced excitation and directional surface plasmon-coupled emission in the red part of spectrum. This factor is about order of magnitude higher than that predicted for the Kretschmann geometry (TIRF) which only took advantage of the surface plasmon-enhanced excitation. When applied for the readout of sandwich interleukin 6 (IL-6) immunoassay, the plasmonically amplified EPF geometry designed for Alexa Fluor 647 labels offered 4-times higher fluorescence signal intensity compared to TIRF. Interestingly, both geometries allowed reaching the same detection limit of 0.4pM despite of the difference in the fluorescence signal enhancement. This is attributed to inherently lower background of fluorescence signal for TIRF geometry compared to that for EPF which compensates for the weaker fluorescence signal enhancement. The analysis of the inflammation biomarker IL-6 in serum at medically relevant concentrations and the utilization of plasmonic amplification for the fluorescence measurement of kinetics of surface affinity reactions are demonstrated for both EPF and TIRF readout.

  10. Modeling Of Proton Exchange Membrane Fuel Cell Systems

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh

    The objective of this doctoral thesis was to develop reliable steady-state and transient component models suitable to asses-, develop- and optimize proton exchange membrane (PEM) fuel cell systems. Several components in PEM fuel cell systems were characterized and modeled. The developed component...

  11. Neutrophils and macrophages: The main partners of phagocyte cell systems

    Directory of Open Access Journals (Sweden)

    Manuel T. Silva

    2012-07-01

    Full Text Available Biological cellular systems are groups of cells sharing a set of characteristics, mainly key function and origin. Phagocytes are crucial in the host defense against microbial infection. The previously proposed phagocyte cell systems including the most recent and presently prevailing one, the Mononuclear Phagocyte System (MPS, grouped mononuclear cells but excluded neutrophils, creating an unacceptable situation. As neutrophils are archetypical phagocytes that must be members of comprehensive phagocyte systems, M. T. Silva recently proposed the creation of a Myeloid Phagocyte System (MYPS that adds neutrophils to the MPS. The phagocytes grouped in the MYPS include the leukocytes neutrophils, inflammatory monocytes, macrophages and immature myeloid DCs. Here the justifications behind the inclusion of neutrophils in a phagocyte system is expanded and the MYPS are further characterized as a group of dedicated phagocytic cells that function in an interacting and cooperative way in the host defense against microbial infection. Neutrophils and macrophages are considered the main arms of this system.

  12. Miniature Bioreactor System for Long-Term Cell Culture

    Science.gov (United States)

    Gonda, Steve R.; Kleis, Stanley J.; Geffert, Sandara K.

    2010-01-01

    A prototype miniature bioreactor system is designed to serve as a laboratory benchtop cell-culturing system that minimizes the need for relatively expensive equipment and reagents and can be operated under computer control, thereby reducing the time and effort required of human investigators and reducing uncertainty in results. The system includes a bioreactor, a fluid-handling subsystem, a chamber wherein the bioreactor is maintained in a controlled atmosphere at a controlled temperature, and associated control subsystems. The system can be used to culture both anchorage-dependent and suspension cells, which can be either prokaryotic or eukaryotic. Cells can be cultured for extended periods of time in this system, and samples of cells can be extracted and analyzed at specified intervals. By integrating this system with one or more microanalytical instrument(s), one can construct a complete automated analytical system that can be tailored to perform one or more of a large variety of assays.

  13. Review of cell and particle trapping in microfluidic systems

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, J.; Evander, M.; Hammarstroem, B. [Department of Measurement Technology and Industrial Electrical Engineering, Div. of Nanobiotechnology, Lund University, P.O. Box 118, Lund (Sweden); Laurell, T., E-mail: thomas.laurell@elmat.lth.se [Department of Measurement Technology and Industrial Electrical Engineering, Div. of Nanobiotechnology, Lund University, P.O. Box 118, Lund (Sweden)

    2009-09-07

    The ability to obtain ideal conditions for well-defined chemical microenvironments and controlled temporal chemical and/or thermal variations holds promise of high-resolution cell response studies, cell-cell interactions or e.g. proliferation conditions for stem cells. It is a major motivation for the rapid increase of lab-on-a-chip based cell biology research. In view of this, new chip-integrated technologies are at an increasing rate being presented to the research community as potential tools to offer spatial control and manipulation of cells in microfluidic systems. This is becoming a key area of interest in the emerging lab-on-a-chip based cell biology research field. This review focuses on the different technical approaches presented to enable trapping of particles and cells in microfluidic system.

  14. Effects of Jatropha curcas oil in Lactuca sativa root tip bioassays.

    Science.gov (United States)

    Andrade-Vieira, Larissa F; Botelho, Carolina M; Laviola, Bruno G; Palmieri, Marcel J; Praça-Fontes, Milene M

    2014-03-01

    Jatropha curcas L. (Euphorbiaceae) is important for biofuel production and as a feed ingredient for animal. However, the presence of phorbol esters in the oil and cake renders the seeds toxic. The toxicity of J. curcas oil is currently assessed by testing in animals, leading to their death. The identification of toxic and nontoxic improved varieties is important for the safe use of J. curcas seeds and byproducts to avoid their environmental toxicity. Hence, the aim of this study was to propose a short-term bioassay using a plant as a model to screen the toxicity of J. curcas oil without the need to sacrifice any animals. The toxicity of J. curcas oil was evident in germination, root elongation and chromosomal aberration tests in Lactuca sativa. It was demonstrated that J. curcas seeds contain natural compounds that exert phyto-, cyto- and genotoxic effects on lettuce, and that phorbol esters act as aneugenic agents, leading to the formation of sticky chromosomes and c-metaphase cells. In conclusion, the tests applied have shown reproducibility, which is important to verify the extent of detoxification and to determine toxic doses, thus reducing the numbers of animals that would be used for toxicity tests.

  15. Effects of Jatropha curcas oil in Lactuca sativa root tip bioassays

    Directory of Open Access Journals (Sweden)

    LARISSA F. ANDRADE-VIEIRA

    2014-03-01

    Full Text Available Jatropha curcas L. (Euphorbiaceae is important for biofuel production and as a feed ingredient for animal. However, the presence of phorbol esters in the oil and cake renders the seeds toxic. The toxicity of J. curcas oil is currently assessed by testing in animals, leading to their death. The identification of toxic and nontoxic improved varieties is important for the safe use of J. curcas seeds and byproducts to avoid their environmental toxicity. Hence, the aim of this study was to propose a short-term bioassay using a plant as a model to screen the toxicity of J. curcas oil without the need to sacrifice any animals. The toxicity of J. curcas oil was evident in germination, root elongation and chromosomal aberration tests in Lactuca sativa. It was demonstrated that J. curcas seeds contain natural compounds that exert phyto-, cyto- and genotoxic effects on lettuce, and that phorbol esters act as aneugenic agents, leading to the formation of sticky chromosomes and c-metaphase cells. In conclusion, the tests applied have shown reproducibility, which is important to verify the extent of detoxification and to determine toxic doses, thus reducing the numbers of animals that would be used for toxicity tests.

  16. Toxicological evaluation of landfill leachate using plant (Allium cepa) and fish (Leporinus obtusidens) bioassays.

    Science.gov (United States)

    Klauck, Cláudia Regina; Rodrigues, Marco Antonio Siqueira; da Silva, Luciano Basso

    2013-11-01

    The disposal of municipal waste in landfills may pose an environmental problem because the product of the decomposition of these residues generates large volumes of leachate, which may present high toxicity. The aim of this study was to assess the toxic and genotoxic effects of a sample of untreated leachate in fish (Leporinus obtusidens) and onions (Allium cepa). The leachate was collected in a landfill located in the region of Vale do Rio dos Sinos, southern Brazil. The fish were exposed to raw leachate, at concentrations of 0.5%, 1.0%, 5%, 10% and 20% for 6 days, while the bulbs of A. cepa were exposed to concentrations of 5%, 10%, 25%, 50% and 100% for 48 h. For fish, the concentrations of 5%, 10% and 20% were lethal, thus indicating high toxicity; however, sublethal concentrations (0.5% and 1.0%) showed no genotoxicity by micronucleus test when compared with the control group. In the bioassays involving onions, high toxicity was observed, with significant reduction of root growth and mitotic index in bulbs exposed to the 100% concentration of the leachate. An increase in the frequency of chromosome abnormalities in the A. cepa root cells in anaphase-telophase was observed in accordance with the increase in the concentration of leachate (5%, 10%, 25% and 50%), with values significantly greater than the control, at the highest concentration. The results showed that the leachate contains toxic and genotoxic substances, thus representing a major source of environmental pollution if not handled properly.

  17. A fluorescence-based bioassay for antibacterials and its application in screening natural product extracts.

    Science.gov (United States)

    Michels, Katharina; Heinke, Ramona; Schöne, Pia; Kuipers, Oscar P; Arnold, Norbert; Wessjohann, Ludger A

    2015-12-01

    The reliable assessment of the biological activity of a minor component embedded in a complex matrix of several hundred compounds is a difficult but common task in the search for natural product-based antibiotics, for example, by bioassay-guided fractionation. To quantify the antibiotic properties, it is necessary to assess the cell viability. Direct measurements use CFU counts, OD measurements or detection via fluorescent or reducible dyes. However, natural extracts often already possess intrinsic dye, fluorescent, reducing or protein denaturing properties, or they contain insoluble compounds or general protein-binding (tanning) polyphenols as disturbing features, while at the same time very little of the selective antibiotic sought after is present. A promising alternative is provided by intrinsically produced bright fluorescent proteins. In this paper, a rapid, robust and concentration-dependent assay for screening antibiotics with genetically modified mutants of Bacillus subtilis 168 (PabrB-iyfp) is presented. The Gram-positive bacteria exhibit a native fluorescence during their exponential growth phase due to the expression of improved yellow fluorescent protein. To demonstrate the applicability in the field of natural product research, several compounds and extracts were screened for antibacterial activity, with an emphasis on those from the fungal genus Hygrophorus (waxy caps).

  18. Fuel Cells: Power System Option for Space Research

    Science.gov (United States)

    Shaneeth, M.; Mohanty, Surajeet

    2012-07-01

    Fuel Cells are direct energy conversion devices and, thereby, they deliver electrical energy at very high efficiency levels. Hydrogen and Oxygen gases are electrochemically processed, producing clean electric power with water as the only by product. A typical, Fuel Cell based power system involve a Electrochemical power converter, gas storage and management systems, thermal management systems and relevant control units. While there exists different types of Fuel cells, Proton Exchange Membrane (PEM) Fuel Cells are considered as the most suitable one for portable applications. Generally, Fuel Cells are considered as the primary power system option in space missions requiring high power ( > 5kW) and long durations and also where water is a consumable, such as manned missions. This is primarily due to the advantage that fuel cell based power systems offer, in terms of specific energy. Fuel cells have the potential to attain specific energy > 500Wh/kg, specific power >500W/kg, energy density > 400Whr/L and also power density > 200 W/L. This apart, a fuel cell system operate totally independent of sun light, whereas as battery based system is fully dependent on the same. This uniqueness provides added flexibility and capabilities to the missions and modularity for power system. High power requiring missions involving reusable launch vehicles, manned missions etc are expected to be richly benefited from this. Another potential application of Fuel Cell would be interplanetary exploration. Unpredictable and dusty atmospheres of heavenly bodies limits sun light significantly and there fuel cells of different types, eg, Bio-Fuel Cells, PEMFC, DMFCs would be able to work effectively. Manned or unmanned lunar out post would require continuous power even during extra long lunar nights and high power levels are expected. Regenerative Fuel Cells, a combination of Fuel Cells and Electrolysers, are identified as strong candidate. While application of Fuel Cells in high power

  19. A fully automated system for adherent cells microinjection.

    Science.gov (United States)

    Becattini, Gabriele; Mattos, Leonardo S; Caldwell, Darwin G

    2014-01-01

    This paper proposes an automated robotic system to perform cell microinjections to relieve human operators from this highly difficult and tedious manual procedure. The system, which uses commercial equipment currently found on most biomanipulation laboratories, consists of a multitask software framework combining computer vision and robotic control elements. The vision part features an injection pipette tracker and an automatic cell targeting system that is responsible for defining injection points within the contours of adherent cells in culture. The main challenge is the use of bright-field microscopy only, without the need for chemical markers normally employed to highlight the cells. Here, cells are identified and segmented using a threshold-based image processing technique working on defocused images. Fast and precise microinjection pipette positioning over the automatically defined targets is performed by a two-stage robotic system which achieves an average injection rate of 7.6 cells/min with a pipette positioning precision of 0.23 μm. The consistency of these microinjections and the performance of the visual targeting framework were experimentally evaluated using two cell lines (CHO-K1 and HEK) and over 500 cells. In these trials, the cells were automatically targeted and injected with a fluorescent marker, resulting in a correct cell detection rate of 87% and a successful marker delivery rate of 67.5%. These results demonstrate that the new system is capable of better performances than expert operators, highlighting its benefits and potential for large-scale application.

  20. Predicting adverse drug reactions using publicly available PubChem BioAssay data.

    Science.gov (United States)

    Pouliot, Y; Chiang, A P; Butte, A J

    2011-07-01

    Adverse drug reactions (ADRs) can have severe consequences, and therefore the ability to predict ADRs prior to market introduction of a drug is desirable. Computational approaches applied to preclinical data could be one way to inform drug labeling and marketing with respect to potential ADRs. Based on the premise that some of the molecular actors of ADRs involve interactions that are detectable in large, and increasingly public, compound screening campaigns, we generated logistic regression models that correlate postmarketing ADRs with screening data from the PubChem BioAssay database. These models analyze ADRs at the level of organ systems, using the system organ classes (SOCs). Of the 19 SOCs under consideration, nine were found to be significantly correlated with preclinical screening data. With regard to six of the eight established drugs for which we could retropredict SOC-specific ADRs, prior knowledge was found that supports these predictions. We conclude this paper by predicting that SOC-specific ADRs will be associated with three unapproved or recently introduced drugs.

  1. Two-dimensional diffusion limited system for cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Hlatky, L.

    1985-11-01

    A new cell system, the ''sandwich'' system, was developed to supplement multicellular spheroids as tumor analogues. Sandwiches allow new experimental approaches to questions of diffusion, cell cycle effects and radiation resistance in tumors. In this thesis the method for setting up sandwiches is described both theoretically and experimentally followed by its use in x-ray irradiation studies. In the sandwich system, cells are grown in a narrow gap between two glass slides. Where nutrients and waste products can move into or out of the local environment of the cells only by diffusing through the narrow gap between the slides. Due to the competition between cells, self-created gradients of nutrients and metabolic products are set up resulting in a layer of cells which resembles a living spheroid cross section. Unlike the cells of the spheroid, however, cells in all regions of the sandwich are visible. Therefore, the relative sizes of the regions and their time-dependent growth can be monitored visually without fixation or sectioning. The oxygen and nutrient gradients can be ''turned off'' at any time without disrupting the spatial arrangement of the cells by removing the top slide of the assembly and subsequently turned back on if desired. Removal of the top slide also provides access to all the cells, including those near the necrotic center, of the sandwich. The cells can then be removed for analysis outside the sandwich system. 61 refs., 17 figs.

  2. Creating a completely "cell-free" system for protein synthesis.

    Science.gov (United States)

    Smith, Mark Thomas; Bennett, Anthony M; Hunt, Jeremy M; Bundy, Bradley C

    2015-01-01

    Cell-free protein synthesis is a promising tool to take biotechnology outside of the cell. A cell-free approach provides distinct advantages over in vivo systems including open access to the reaction environment and direct control over all chemical components for facile optimization and synthetic biology integration. Promising applications of cell-free systems include portable diagnostics, biotherapeutics expression, rational protein engineering, and biocatalyst production. The highest yielding and most economical cell-free systems use an extract composed of the soluble component of lysed Escherichia coli. Although E. coli lysis can be highly efficient (>99.999%), one persistent challenge is that the extract remains contaminated with up to millions of cells per mL. In this work, we examine the potential of multiple decontamination strategies to further reduce or eliminate bacteria in cell-free systems. Two strategies, sterile filtration and lyophilization, effectively eliminate contaminating cells while maintaining the systems' protein synthesis capabilities. Lyophilization provides the additional benefit of long-term stability at storage above freezing. Technologies for personalized, portable medicine and diagnostics can be expanded based on these foundational sterilized and completely "cell-free" systems.

  3. Investigating the resistance of wild oat (Avena ludoviciana Durieu.) to fenoxaprop-p-ethyl by whole plant bioassay and seed bioassay.

    Science.gov (United States)

    Kashani, Fatemeh Bena; Alizadeh, Hasan Mohammad; Zand, Eskandar

    2007-01-01

    Greenhouse and laboratory experiments were performed to evaluate the resistant of wild oat Avena luduviciana Durieu. populations to fenoxaprop-p-ethyl. Populations of A. ludoviciana were collected from different locations in Iran, showed indications of resistance to this herbicide. Whole plant assay experiments included screening tests and dose response experiments whereas; seed bioassay experiment consisted of ID50 determination and dose response experiments. Whole plant assay experiments were conducted as a randomized complete block design in four replications. The treatments were wild oat populations included FR1, FR2, FR3, FR4 (collected from Fars province), MR1, MR2, MR3 (collected from Markazi province), KS, KR1, KR2, KR3 (collected from Khuzestan province) and S (collected from location which had never been treated previously with any graminicide). Seed bioassay experiments were conducted using a randomized design with 4 replications. On the whole plant basis, resistance was found in, KR1, KR2, KR3 and FR4 and based on a seed bioassay, these populations were also resistant to fenoxaprop-p-ethyl. Resistance ratios (R/S) of resistant populations were different. Present findings also revealed that the seed bioassay could be used as a simple, comparatively rapid, inexpensive and accurate method for identifying wild oat populations resistant to Acetyl CoA carboxylase (ACCase) inhibitors.

  4. Episodic acidification of small streams in the northeastern united states: Fish mortality in field bioassays

    Science.gov (United States)

    Van Sickle, J.; Baker, J.P.; Simonin, H.A.; Baldigo, Barry P.; Kretser, W.A.; Sharpe, W.E.

    1996-01-01

    In situ bioassays were performed as part of the Episodic Response Project, to evaluate the effects of episodic stream acidification on mortality of brook trout (Salvelinus fontinalis) and forage fish species. We report the results of 122 bioassays in 13 streams of the three study regions: the Adirondack mountains of New York, the Catskill mountains of New York, and the Northern Appalachian Plateau of Pennsylvania. Bioassays during acidic episodes had significantly higher mortality than did bioassays conducted under nonacidic conditions, but there was little difference in mortality rates in bioassays experiencing acidic episodes and those experiencing acidic conditions throughout the test period. Multiple logistic regression models were used to relate bioassay mortality rates to summary statistics of time-varying stream chemistry (inorganic monomeric aluminum, calcium, pH, and dissolved organic carbon) estimated for the 20-d bioassay periods. The large suite of candidate regressors also included biological, regional, and seasonal factors, as well as several statistics summarizing various features of aluminum exposure duration and magnitude. Regressor variable selection and model assessment were complicated by multicol-linearity and overdispersion. For the target fish species, brook trout, bioassay mortality was most closely related to time-weighted median inorganic aluminum. Median Ca and minimum pH offered additional explanatory power, as did stream-specific aluminum responses. Due to high multicollinearity, the relative importance of different aluminum exposure duration and magnitude variables was difficult to assess, but these variables taken together added no significant explanatory power to models already containing median aluminum. Between 59 and 79% of the variation in brook trout mortality was explained by models employing between one and five regressors. Simpler models were developed for smaller sets of bioassays that tested slimy and mottled sculpin

  5. High Temperature PEM Fuel Cell Systems, Control and Diagnostics

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl; Kær, Søren Knudsen; Justesen, Kristian Kjær

    2015-01-01

    Various system topologies are available when it comes to designing high temperature PEM fuel cell systems. Very simple system designs are possible using pure hydrogen, and more complex system designs present themselves when alternative fuels are desired, using reformer systems. The use of reformed...... fuels utilizes one of the main advantages of the high temperature PEM fuel cell: robustness to fuel quality and impurities. In order for such systems to provide efficient, robust, and reliable energy, proper control strategies are needed. The complexity and nonlinearity of many of the components...

  6. 60-WATT HYDRAZINE-AIR FUEL CELL SYSTEM.

    Science.gov (United States)

    fuel cell system as presented in our Design Plan. Prior to preparation of the Design Plan, a systems analysis of the basic electrochemical system was made. From the results of this analysis, the operating parameters of the support equipment were defined and an initial selection of components made. System components defined were: the cell stack, electrolyte tank, hydrazine feed system, cooling and chemical air blowers, voltage regulator, and thermal control system. A package design was then made for these components and the final detail design completed.

  7. Microbial cell surfaces and secretion systems

    NARCIS (Netherlands)

    Tommassen, J.P.M.; Wosten, H.A.B.

    2015-01-01

    Microbial cell surfaces, surface-exposed organelles, and secreted proteins are important for the interaction with the environment, including adhesion to hosts, protection against host defense mechanisms, nutrient acquisition, and intermicrobial competition. Here, we describe the structures of the ce

  8. Development of a functional bioassay for arylsulfatase B using the natural substrates of the enzyme.

    Science.gov (United States)

    Pungor, Erno; Hague, Charles M; Chen, Ginger; Lemontt, Jeffrey F; Dvorak-Ewell, Melita; Prince, William S

    2009-12-15

    A functional bioassay has been developed for measuring the intracellular activity of recombinant human arylsulfatase B (rhASB) on its natural glycosaminoglycan (GAG) substrates, dermatan sulfate (DS), and chondroitin sulfate (CS) when the enzyme is taken up into cultured ASB-deficient human fibroblasts (GM00519). The enzyme ASB is a lysosomal exohydrolase, cleaving sulfate from the N-acetylgalactosamine-4-sulfate (GalNAc-4S) residue at the nonreducing terminal of GAG structures. ASB-deficient cells accumulate DS and CS, which may be partially hydrolyzed by other lysosomal hydrolases, with the reactions stopping if a GalNAc-4S residue is reached on the nonreducing end of the oligosaccharide. When rhASB is added to the culture medium, the enzyme is taken up and translocates to the lysosomes and the intracellular DS and CS are depleted, demonstrating that the uptake of rhASB is able to restore lysosomal function in an in vitro cell-based assay. The accumulation and depletion of DS and CS are measured by digesting the residual intracellular DS and CS content with chondroitin ABC lyase and monitoring a characteristic disaccharide digestion product by laser-induced fluorescence-capillary zone electrophoresis (LIF-CZE). In the proposed assay format, GM00519 cells are cultured 5 weeks postconfluence to accumulate DS/CS, followed by incubation with rhASB (1-20 pM) for 5 days, and the CS/DS depletion profiles are compared between samples. The assay measures depletion of DS/CS independently of their molecular size or processing state; in this approach, all DS- and CS-like substances accumulating in the absence of ASB activity are considered to be natural substrates of the enzyme.

  9. Assessment of genotoxicity and acute toxic effect of the imatinib mesylate in plant bioassays.

    Science.gov (United States)

    Pichler, Clemens; Filipič, Metka; Kundi, Michael; Rainer, Bernhard; Knasmueller, Siegfried; Mišík, Miroslav

    2014-11-01

    Imatinib mesylate (IM) is at present one of the most widely used cytostatic drugs in developed countries but information on its ecotoxicological activities is scarce. This article describes the results of the first investigation in which genotoxic and acute toxic properties of the drug were studied in higher plants. IM was tested in two widely used plant bioassays namely in micronucleus (MN) assays with meiotic tetrad cells of Tradescantia (clone #4430) and in mitotic root tip cells of Allium cepa. Additionally, acute toxic effects (inhibition of cell division and growth of roots) were monitored in the onions. Furthermore, we studied the impact of the drug on the fertility of higher plants in pollen abortion experiments with three wildlife species (Chelidonium majus, Tradescantia palludosa and Arabidopsis thaliana). In MN assays with Tradesacantia a significant effect was seen with doses ⩾10μM; the Allium MN assay was even more sensitive (LOEL⩾1.0μM). A significant decrease of the mitotic indices was detected at levels ⩾10μM in the onions and reduction of root growth with ⩾100μM. In the pollen fertility assays clear effects were observed at doses ⩾147.3mgkg(-1). Data concerning the annual use of the drug in European countries (France, Germany, Slovenia) enable the calculation of the predicted environmental concentration (PEC) values which are in the range between 3.3 and 5.0ngL(-1). Although comparisons with the genotoxic potencies of other commonly used cytostatic drugs and with highly active heavy metal compounds show that IM is an extremely potent genotoxin in higher plants, it is evident that the environmental concentrations are ⩾5 orders of magnitude lower as the levels which are required to cause adverse effects. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Programmed cell death in the plant immune system.

    Science.gov (United States)

    Coll, N S; Epple, P; Dangl, J L

    2011-08-01

    Cell death has a central role in innate immune responses in both plants and animals. Besides sharing striking convergences and similarities in the overall evolutionary organization of their innate immune systems, both plants and animals can respond to infection and pathogen recognition with programmed cell death. The fact that plant and animal pathogens have evolved strategies to subvert specific cell death modalities emphasizes the essential role of cell death during immune responses. The hypersensitive response (HR) cell death in plants displays morphological features, molecular architectures and mechanisms reminiscent of different inflammatory cell death types in animals (pyroptosis and necroptosis). In this review, we describe the molecular pathways leading to cell death during innate immune responses. Additionally, we present recently discovered caspase and caspase-like networks regulating cell death that have revealed fascinating analogies between cell death control across both kingdoms.

  11. Environmental tests of metallization systems for terrestrial photovoltaic cells

    Science.gov (United States)

    Alexander, P., Jr.

    1985-01-01

    Seven different solar cell metallization systems were subjected to temperature cycling tests and humidity tests. Temperature cycling excursions were -50 deg C to 150 deg C per cycle. Humidity conditions were 70 deg C at 98% relative humidity. The seven metallization systems were: Ti/Ag, Ti/Pd/Ag, Ti/Pd/Cu, Ni/Cu, Pd/Ni/Solder, Cr/Pd/Ag, and thick film Ag. All metallization systems showed a slight to moderate decrease in cell efficiencies after subjection to 1000 temperature cycles. Six of the seven metallization systems also evidenced slight increases in cell efficiencies after moderate numbers of cycles, generally less than 100 cycles. The copper based systems showed the largest decrease in cell efficiencies after temperature cycling. All metallization systems showed moderate to large decreases in cell efficiencies after 123 days of humidity exposure. The copper based systems again showed the largest decrease in cell efficiencies after humidity exposure. Graphs of the environmental exposures versus cell efficiencies are presented for each metallization system, as well as environmental exposures versus fill factors or series resistance.

  12. Alkaline fuel cells for the regenerative fuel cell energy storage system

    Science.gov (United States)

    Martin, R. E.

    1983-01-01

    The development of the alkaline Regenerative Fuel Cell System, whose fuel cell module would be a derivative of the 12-kW fuel cell power plant currently being produced for the Space Shuttle Orbiter, is reviewed. Long-term endurance testing of full-size fuel cell modules has demonstrated: (1) the extended endurance capability of potassium titanate matrix cells, (2) the long-term performance stability of the anode catalyst, and (3) the suitability of a lightweight graphite structure for use at the anode. These approaches, developed in the NASA-sponsored fuel cell technology advancement program, would also reduce cell weight by nearly one half.

  13. A Web-Server of Cell Type Discrimination System

    Directory of Open Access Journals (Sweden)

    Anyou Wang

    2014-01-01

    Full Text Available Discriminating cell types is a daily request for stem cell biologists. However, there is not a user-friendly system available to date for public users to discriminate the common cell types, embryonic stem cells (ESCs, induced pluripotent stem cells (iPSCs, and somatic cells (SCs. Here, we develop WCTDS, a web-server of cell type discrimination system, to discriminate the three cell types and their subtypes like fetal versus adult SCs. WCTDS is developed as a top layer application of our recent publication regarding cell type discriminations, which employs DNA-methylation as biomarkers and machine learning models to discriminate cell types. Implemented by Django, Python, R, and Linux shell programming, run under Linux-Apache web server, and communicated through MySQL, WCTDS provides a friendly framework to efficiently receive the user input and to run mathematical models for analyzing data and then to present results to users. This framework is flexible and easy to be expended for other applications. Therefore, WCTDS works as a user-friendly framework to discriminate cell types and subtypes and it can also be expended to detect other cell types like cancer cells.

  14. A web-server of cell type discrimination system.

    Science.gov (United States)

    Wang, Anyou; Zhong, Yan; Wang, Yanhua; He, Qianchuan

    2014-01-01

    Discriminating cell types is a daily request for stem cell biologists. However, there is not a user-friendly system available to date for public users to discriminate the common cell types, embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and somatic cells (SCs). Here, we develop WCTDS, a web-server of cell type discrimination system, to discriminate the three cell types and their subtypes like fetal versus adult SCs. WCTDS is developed as a top layer application of our recent publication regarding cell type discriminations, which employs DNA-methylation as biomarkers and machine learning models to discriminate cell types. Implemented by Django, Python, R, and Linux shell programming, run under Linux-Apache web server, and communicated through MySQL, WCTDS provides a friendly framework to efficiently receive the user input and to run mathematical models for analyzing data and then to present results to users. This framework is flexible and easy to be expended for other applications. Therefore, WCTDS works as a user-friendly framework to discriminate cell types and subtypes and it can also be expended to detect other cell types like cancer cells.

  15. Flow cell system for miscible displacement experiments

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, S.H.; Kirkham, D.

    1971-02-01

    The use of a continuous graphic recording system for flow-component measurement in miscible displacement experiments is described. This system measures and continuously records radioactive tracer concentrations of effluents of miscible displacement columns. The recordings are needed breakthrough curves. The use of the system obviates fraction collectors.

  16. Selection of a bioassay battery to assess toxicity in the affluents and effluents of three water-treatment plants

    Directory of Open Access Journals (Sweden)

    Paola Bohórquez-Echeverry

    2012-08-01

    Full Text Available The assessment of water quality includes the analysis of both physical-chemical and microbiological parameters. However,none of these evaluates the biological effect that can be generated in ecosystems or humans. In order to define the most suitable organismsto evaluate the toxicity in the affluent and effluent of three drinking-water treatment plants, five acute toxicity bioassays were used,incorporating three taxonomic groups of the food chain. Materials and methods. The bioassays used were Daphnia magna and Hydraattenuata as animal models, Lactuca sativa and Pseudokirchneriella subcapitata as plant models, and Photobacterium leioghnathi asbacterial model. To meet this objective, selection criteria of the organisms evaluated and cluster analysis were used to identify the mostsensitive in the affluent and effluent of each plant. Results. All organisms are potentially useful in the assessment of water quality bymeeting four essential requirements and 17 desirable requirements equivalent to 100% acceptability, except P. leioghnathi which doesnot meet two essential requirements that are the IC50 for the toxic reference and the confidence interval. The animal, plant and bacterialmodels showed different levels of sensitivity at the entrance and exit of the water treatment systems. Conclusions. H. attenuata, P.subcapitata and P. leioghnathi were the most effective organisms in detecting toxicity levels in the affluents and D. magna, P. subcapitataand P. leioghnathi in the effluents.

  17. Fundulus heteroclitus gonadotropins.5: Small scale chromatographic fractionation of pituitary extracts into components with different steroidogenic activities using homologous bioassays

    Directory of Open Access Journals (Sweden)

    Petrino Teresa R

    2004-03-01

    Full Text Available Abstract Fractionation and characterization of gonadotropins (GtH from Fundulus heteroclitus pituitary extracts were carried out using a biocompatible liquid chromatographic procedure (Pharmacia FPLC system. Chromatographic fractions were monitored for gonadotropic activities (induction of oocyte maturation and steroid production using homologous follicle bioassays in vitro. Size-exclusion chromatography eluted gonadotropic activity in one major protein peak (Mr ~ 30,000. Anion-exchange and hydrophobic-interaction chromatography (HIC yielded two distinct peaks of 17beta-estradiol (E2- and 17alpha-hydroxy,20beta-dihydroprogesterone (DHP-promoting activity with associated oocyte maturation. Two-dimensional chromatography (chromatofocusing followed by HIC resolved pituitary extracts into two active fractions; both induced E2 synthesis, but one was relatively poor in eliciting DHP and testosterone production. Thus, using homologous bioassays, at least two quantitatively different gonadotropic (steroidogenic activities: an E2-promoting gonadotropin (GtH I-like and a DHP-promoting gonadotropin (GtH II-like, which has a lower isoelectric point but greater hydrophobicity than the former, can be distinguished from F. heteroclitus pituitaries by a variety of chromatographic procedures. This study complements previous biochemical and molecular data in F. heteroclitus and substantiates the duality of GtH function in a multiple-spawning teleost.

  18. Fundulus heteroclitus gonadotropins.5: Small scale chromatographic fractionation of pituitary extracts into components with different steroidogenic activities using homologous bioassays

    Science.gov (United States)

    Lin, Yu-Wai Peter; Petrino, Teresa R; Wallace, Robin A

    2004-01-01

    Fractionation and characterization of gonadotropins (GtH) from Fundulus heteroclitus pituitary extracts were carried out using a biocompatible liquid chromatographic procedure (Pharmacia FPLC system). Chromatographic fractions were monitored for gonadotropic activities (induction of oocyte maturation and steroid production) using homologous follicle bioassays in vitro. Size-exclusion chromatography eluted gonadotropic activity in one major protein peak (Mr ~ 30,000). Anion-exchange and hydrophobic-interaction chromatography (HIC) yielded two distinct peaks of 17beta-estradiol (E2)- and 17alpha-hydroxy,20beta-dihydroprogesterone (DHP)-promoting activity with associated oocyte maturation. Two-dimensional chromatography (chromatofocusing followed by HIC) resolved pituitary extracts into two active fractions; both induced E2 synthesis, but one was relatively poor in eliciting DHP and testosterone production. Thus, using homologous bioassays, at least two quantitatively different gonadotropic (steroidogenic) activities: an E2-promoting gonadotropin (GtH I-like) and a DHP-promoting gonadotropin (GtH II-like), which has a lower isoelectric point but greater hydrophobicity than the former, can be distinguished from F. heteroclitus pituitaries by a variety of chromatographic procedures. This study complements previous biochemical and molecular data in F. heteroclitus and substantiates the duality of GtH function in a multiple-spawning teleost. PMID:15040801

  19. Toxicity of sucrose octanoate to egg, nymphal, and adult Bemisia tabaci (Hemiptera: Aleyrodidae) using a novel plant-based bioassay.

    Science.gov (United States)

    McKenzie, C L; Weathersbee, A A; Puterka, Gary J

    2005-08-01

    The sweetpotato whitefly, Bemisia tabaci (Gennadius), B biotype, presents a unique problem for vegetable growers by serving as a vector of plant viruses and by inducing physiological disorders of leaves and fruit. An action threshold of a single whitefly is necessary because of the threat of disease in many areas and growers rely heavily on a single class of insecticides (neonicotinoids) for whitefly control. Additional control methods are needed to manage this pest in commercial vegetables. Extracts of wild tobacco contain natural sugar esters that have previously been shown effective in controlling many soft-bodied insects. We developed a novel tomato leaf bioassay system to assess a synthetic sugar ester derivative, sucrose octanoate, for insecticidal activity against the eggs, nymphs, and adults of B. tabaci. The LC50 values for sucrose octanoate against adults, second instars, and fourth instars of the whitefly were 880, 686, and 1,571 ppm, respectively. The LC50 against whitefly eggs was higher (11,446 ppm) but indicated that some egg mortality occurred at the recommended application rate of 0.8-1.2% (3,200-4,800 ppm [Al]). Toxicity of sugar esters to whitefly eggs has not been reported previously. The tomato leaf bioassay produced reliable and repeatable results for whitefly toxicity studies and predicted that effective nymph and adult whitefly control can be achieved with sucrose octanoate at application rates < or = 1% (4,000 ppm [AI]). Field efficacy studies are warranted to determine whether this biorational pesticide has application in commercial tomato production.

  20. Using short-term bioassays to evaluate the endocrine disrupting capacity of the pesticides linuron and fenoxycarb.

    Science.gov (United States)

    Spirhanzlova, Petra; De Groef, Bert; Nicholson, Freda E; Grommen, Sylvia V H; Marras, Giulia; Sébillot, Anthony; Demeneix, Barbara A; Pallud-Mothré, Sophie; Lemkine, Gregory F; Tindall, Andrew J; Du Pasquier, David

    2017-10-01

    Several short-term whole-organism bioassays based on transgenic aquatic models are now under validation by the OECD (Organization for Economic Co-operation and Development) to become standardized test guidelines for the evaluation of the endocrine activity of substances. Evaluation of the endocrine disrupting capacity of pesticides will be a domain of applicability of these future reference tests. The herbicide linuron and the insecticide fenoxycarb are two chemicals commonly used in agricultural practices. While numerous studies indicate that linuron is likely to be an endocrine disruptor, there is little information available on the effect of fenoxycarb on vertebrate endocrine systems. Using whole-organism bioassays based on transgenic Xenopus laevis tadpoles and medaka fry we assessed the potential of fenoxycarb and linuron to disrupt thyroid, androgen and estrogen signaling. In addition we used in silico approach to simulate the affinity of these two pesticides to human hormone receptors. Linuron elicited thyroid hormone-like activity in tadpoles at all concentrations tested and, showed an anti-estrogenic activity in medaka at concentrations 2.5mg/L and higher. Our experiments suggest that, in addition to its previously established anti-androgenic action, linuron exhibits thyroid hormone-like responses, as well as acting at the estrogen receptor level to inhibit estrogen signaling. Fenoxycarb on the other hand, did not cause any changes in thyroid, androgen or estrogen signaling at the concentrations tested. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Investigation of the photovoltaic cell/ thermoelectric element hybrid system performance

    Science.gov (United States)

    Cotfas, D. T.; Cotfas, P. A.; Machidon, O. M.; Ciobanu, D.

    2016-06-01

    The PV/TEG hybrid system, consisting of the photovoltaic cells and thermoelectric element, is presented in the paper. The dependence of the PV/TEG hybrid system parameters on the illumination levels and the temperature is analysed. The maxim power values of the photovoltaic cell, of the thermoelectric element and of the PV/TEG system are calculated and a comparison between them is presented and analysed. An economic analysis is also presented.

  2. Antigen presentation for priming T cells in central system.

    Science.gov (United States)

    Dasgupta, Shaoni; Dasgupta, Subhajit

    2017-01-01

    Generation of myelin antigen-specific T cells is a major event in neuroimmune responses that causes demyelination. The antigen-priming of T cells and its location is important in chronic and acute inflammation. In autoimmune multiple sclerosis, the effector T cells are considered to generate in periphery. However, the reasons for chronic relapsing-remitting events are obscure. Considering mechanisms, a feasible aim of research is to investigate the role of antigen-primed T cells in lupus cerebritis. Last thirty years of investigations emphasize the relevance of microglia and infiltrated dendritic cells/macrophages as antigen presenting cells in the central nervous system. The recent approach towards circulating B-lymphocytes is an important area in the context. Here, we analyze the existing findings on antigen presentation in the central nervous system. The aim is to visualize signaling events of myelin antigen presentation to T cells and lead to the strategy of future goals on immunotherapy research.

  3. A single-cell and feeder-free culture system for monkey embryonic stem cells.

    Science.gov (United States)

    Ono, Takashi; Suzuki, Yutaka; Kato, Yosuke; Fujita, Risako; Araki, Toshihiro; Yamashita, Tomoko; Kato, Hidemasa; Torii, Ryuzo; Sato, Naoya

    2014-01-01

    Primate pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), hold great potential for research and application in regenerative medicine and drug discovery. To maximize primate PSC potential, a practical system is required for generating desired functional cells and reproducible differentiation techniques. Much progress regarding their culture systems has been reported to date; however, better methods would still be required for their practical use, particularly in industrial and clinical fields. Here we report a new single-cell and feeder-free culture system for primate PSCs, the key feature of which is an originally formulated serum-free medium containing FGF and activin. In this culture system, cynomolgus monkey ESCs can be passaged many times by single-cell dissociation with traditional trypsin treatment and can be propagated with a high proliferation rate as a monolayer without any feeder cells; further, typical PSC properties and genomic stability can be retained. In addition, it has been demonstrated that monkey ESCs maintained in the culture system can be used for various experiments such as in vitro differentiation and gene manipulation. Thus, compared with the conventional culture system, monkey ESCs grown in the aforementioned culture system can serve as a cell source with the following practical advantages: simple, stable, and easy cell maintenance; gene manipulation; cryopreservation; and desired differentiation. We propose that this culture system can serve as a reliable platform to prepare primate PSCs useful for future research and application.

  4. Fuel cells and electrolysers in future energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad

    in which fuel cell appli‐ cations create synergy effects with other components of the system, as well as in which the efficiency improvements achieved by using fuel cells are lost elsewhere in the system. In order to identify suitable applications of fuel cells and electrolysers in future energy sys‐ tems...... be considered which fuels such technologies can utilise and how these fuels can be distributed. Natural gas is not an option in future renewable energy systems and the de‐ mand for gaseous fuels, such as biogas or syngas, will increase significantly. Hence, fuel cell CHP plants represent a more fuel...... of transport, battery electric vehicles are more suitable than hydrogen fuel cell vehicles in future energy system. Battery electric ve‐ hicles may, for a part of the transport demand, have limitations in their range. Hybrid tech‐ nologies may provide a good option, which can combine the high fuel efficiency...

  5. Fostering synergy between cell biology and systems biology.

    Science.gov (United States)

    Eddy, James A; Funk, Cory C; Price, Nathan D

    2015-08-01

    In the shared pursuit of elucidating detailed mechanisms of cell function, systems biology presents a natural complement to ongoing efforts in cell biology. Systems biology aims to characterize biological systems through integrated and quantitative modeling of cellular information. The process of model building and analysis provides value through synthesizing and cataloging information about cells and molecules, predicting mechanisms and identifying generalizable themes, generating hypotheses and guiding experimental design, and highlighting knowledge gaps and refining understanding. In turn, incorporating domain expertise and experimental data is crucial for building towards whole cell models. An iterative cycle of interaction between cell and systems biologists advances the goals of both fields and establishes a framework for mechanistic understanding of the genome-to-phenome relationship. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  6. Novel Fuel Cells for Coal Based Systems

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Tao

    2011-12-31

    The goal of this project was to acquire experimental data required to assess the feasibility of a Direct Coal power plant based upon an Electrochemical Looping (ECL) of Liquid Tin Anode Solid Oxide Fuel Cell (LTA-SOFC). The objective of Phase 1 was to experimentally characterize the interaction between the tin anode, coal fuel and cell component electrolyte, the fate of coal contaminants in a molten tin reactor (via chemistry) and their impact upon the YSZ electrolyte (via electrochemistry). The results of this work will provided the basis for further study in Phase 2. The objective of Phase 2 was to extend the study of coal impurities impact on fuel cell components other than electrolyte, more specifically to the anode current collector which is made of an electrically conducting ceramic jacket and broad based coal tin reduction. This work provided a basic proof-of-concept feasibility demonstration of the direct coal concept.

  7. Assessing arsenic bioavailability through the use of bioassays

    Science.gov (United States)

    Diesel, E.; Nadimpalli, M.; Hull, M.; Schreiber, M. E.; Vikesland, P.

    2009-12-01

    Various methods have been used to characterize the bioavailability of a contaminant, including chemical extractions from soils, toxicity tests, bioaccumulation measurements, estimation from soil properties, in vitro/in vivo tests, and microbial biossays. Unfortunately, these tests are all unique (i.e. they measure bioavailability through different mechanisms) and it is difficult to compare measurements collected using one method to those collected from another. Additionally, there are fundamental aspects of bioavailability research that require further study. In particular, changes in bioavailability over time are not well understood, as well as what the geochemical controls are on changes in bioavailability. In addition, there are no studies aimed at the integration of bioavailability measurements and potential geochemical controls. This research project seeks to find a standard set of assays and sensors that can be used to assess arsenic bioavailability at any field site, as well as to use these tools and techniques to better understand changes in, and controls on, arsenic bioavailability. The bioassays to be utilized in this research are a bioluminescent E. coli assay and a Corbicula fluminea (Asian clam) assay. Preliminary experiments to determine the suitability of the E. coli and C. fluminea assays have been completed. The E. coli assay can be utilized to analyze As(III) and As(V) with a linear standard curve between 5 and 200 ppb for As(III) and 100 ppb and 5 ppm for As(V); no bioluminescent response above background was elicited in the presence of Roxarsone, an organoarsenical. The C. fluminea assay is capable of bioaccumulating As(III), As(V), Roxarsone, and MSMA, with As(III) being the most readily accumulated, followed by As(V), Roxarsone and MSMA, respectively. Additional research will include assessing bioavailability of various arsenic species adsorbed to natural colloidal materials (i.e. clays, iron oxides, NOM) to the E. coli and C. fluminea assays

  8. Control of Fuel Cell Power System

    OpenAIRE

    KOCALMIŞ BİLHAN, Ayşe; Wang, Caisheng

    2017-01-01

    In recent years, it is gettingattention for renewable energy sources such as Fuel Cell (FC), batteries,ultracapacitors or photovoltaic panels (PV) for distributed power generationsystems (DG) or electrical vehicles. This paper proposes a DC/DC converter andDC/AC inverter scheme to combine the Fuel Cell Stack (FC). The power systemconsist of a FC stack, a DC/DC converter, inverter and load. A FC mostly couldnot produce necessary output voltage, the DC/DC boost converter is used forobtaining th...

  9. Cell replacement therapy for central nervous system diseases

    Institute of Scientific and Technical Information of China (English)

    Danju Tso; Randall D. McKinnon

    2015-01-01

    The brain and spinal cord can not replace neurons or supporting glia that are lost through trau-matic injury or disease. In pre-clinical studies, however, neural stem and progenitor cell transplants can promote functional recovery. Thus the central nervous system is repair competent but lacks endogenous stem cell resources. To make transplants clinically feasible, this ifeld needs a source of histocompatible, ethically acceptable and non-tumorgenic cells. One strategy to generate pa-tient-speciifc replacement cells is to reprogram autologous cells such as ifbroblasts into pluripotent stem cells which can then be differentiated into the required cell grafts. However, the utility of pluripotent cell derived grafts is limited since they can retain founder cells with intrinsic neoplastic potential. A recent extension of this technology directly reprograms ifbroblasts into the ifnal graft-able cells without an induced pluripotent stem cell intermediate, avoiding the pluripotent caveat. For both types of reprogramming the conversion efficiency is very low resulting in the need to amplify the cells in culture which can lead to chromosomal instability and neoplasia. Thus to make reprogramming biology clinically feasible, we must improve the efifciency. The ultimate source of replacement cells may reside in directly reprogramming accessible cells within the brain.

  10. Application of cell co-culture system to study fat and muscle cells.

    Science.gov (United States)

    Pandurangan, Muthuraman; Hwang, Inho

    2014-09-01

    Animal cell culture is a highly complex process, in which cells are grown under specific conditions. The growth and development of these cells is a highly unnatural process in vitro condition. Cells are removed from animal tissues and artificially cultured in various culture vessels. Vitamins, minerals, and serum growth factors are supplied to maintain cell viability. Obtaining result homogeneity of in vitro and in vivo experiments is rare, because their structure and function are different. Living tissues have highly ordered complex architecture and are three-dimensional (3D) in structure. The interaction between adjacent cell types is quite distinct from the in vitro cell culture, which is usually two-dimensional (2D). Co-culture systems are studied to analyze the interactions between the two different cell types. The muscle and fat co-culture system is useful in addressing several questions related to muscle modeling, muscle degeneration, apoptosis, and muscle regeneration. Co-culture of C2C12 and 3T3-L1 cells could be a useful diagnostic tool to understand the muscle and fat formation in animals. Even though, co-culture systems have certain limitations, they provide a more realistic 3D view and information than the individual cell culture system. It is suggested that co-culture systems are useful in evaluating the intercellular communication and composition of two different cell types.

  11. Photovoltaic Test and Demonstration Project. [for solar cell power systems

    Science.gov (United States)

    Forestieri, A. F.; Brandhorst, H. W., Jr.; Deyo, J. N.

    1976-01-01

    The Photovoltaic Test and Demonstration Project was initiated by NASA in June, 1975, to develop economically feasible photovoltaic power systems suitable for a variety of terrestrial applications. Objectives include the determination of operating characteristic and lifetimes of a variety of solar cell systems and components and development of methodology and techniques for accurate measurements of solar cell and array performance and diagnostic measurements for solar power systems. Initial work will be concerned with residential applications, with testing of the first prototype system scheduled for June, 1976. An outdoor 10 kW array for testing solar power systems is under construction.

  12. Research on Software-Cell-Based Software System

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The aim of research on software architecture is to improve the quality attributes of software sys tems, such as security, reliability, maintainability, testability , reassembility , evolvability. However, a sin gle running system is hard to achieve all these goals. In this paper, software-cell is introduced as the basic u nit throughout developing process. Then it is further advanced that a robust, safe and high-quality software system is composed of a running system and four supportive systems. This paper especially discusses the structure of software-cell, the construction of the five systems, and the relations between them.

  13. Toxicity assessment of fumonisins using the brine shrimp (Artemia salina) bioassay.

    Science.gov (United States)

    Hartl, M; Humpf, H U

    2000-12-01

    The Fusarium mycotoxins fumonisin B(1) (FB(1)) (1) and B(2) (FB(2)) (2), their hydrolysed analogues HFB(1) (3) and HFB(2) (4) and the recently discovered fumonisin derivatives N-palmitoyl-HFB(1) (5) and N-carboxymethyl-FB(1) (6) were compared for their toxicity in a short term bioassay using brine shrimp (Artemia salina). The brine shrimp were hatched in artificial sea water and exposed to the fumonisins in microwell plates with a mortality endpoint after 48 hours. LC(50) values were calculated after Probit transformation of the resulting data. Of the substances tested, fumonisin B(1) emerged to be the most toxic whereas its N-carboxymethyl analogue was 100-fold less effective. The hydrolysed fumonisins showed a four- to sixfold reduced toxicity compared to FB(1). N-Palmitoyl-HFB(1) had a higher LC(50) value than its precursor HFB(1). The brine shrimp assay proved to be a convenient and rapid system for toxicity assessment of this group of mycotoxins.

  14. Application of bioassay technique to determine onduty herbicide resistance in soil

    Science.gov (United States)

    Bakar, F. A. A.; Ismail, B. S.; Bajrai, F. S. M.

    2016-11-01

    A study was conducted to determine the resistance of OnDuty herbicide in paddy soil with different concentrations by using a broadleaf plant, Brassica juncea. The herbicide was used in the Clearfield® Production System that was adopted in Malaysia to overcome problems mainly caused by weedy rice. Evaluation of herbicide half-life was based on bioassay technique with different concentrations, i.e 0% (control), 50% (half dose), 100% (recommended dose) and 200% (double dose). The study was done in three replicates and followed the Complete Randomized Block Design (CRBD). Results showed that there was a correlation between the amount of herbicide doses and degradation period. The highest half-life value was shown by root inhibition in the double dose concentration of 33 days half-life, followed by the recommended dose with 23 days half-life. Meanwhile, the half dose treatment indicated a half-life value of 17 days for root and 11 days for shoot. Therefore, application of herbicides should follow the recommended dose as the degradation period will not be too long, hence providing maximum effectiveness of the herbicide to overcome weed infestation problems.

  15. Multiple linear and principal component regressions for modelling ecotoxicity bioassay response.

    Science.gov (United States)

    Gomes, Ana I; Pires, José C M; Figueiredo, Sónia A; Boaventura, Rui A R

    2014-01-01

    The ecotoxicological response of the living organisms in an aquatic system depends on the physical, chemical and bacteriological variables, as well as the interactions between them. An important challenge to scientists is to understand the interaction and behaviour of factors involved in a multidimensional process such as the ecotoxicological response. With this aim, multiple linear regression (MLR) and principal component regression were applied to the ecotoxicity bioassay response of Chlorella vulgaris and Vibrio fischeri in water collected at seven sites of Leça river during five monitoring campaigns (February, May, June, August and September of 2006). The river water characterization included the analysis of 22 physicochemical and 3 microbiological parameters. The model that best fitted the data was MLR, which shows: (i) a negative correlation with dissolved organic carbon, zinc and manganese, and a positive one with turbidity and arsenic, regarding C. vulgaris toxic response; (ii) a negative correlation with conductivity and turbidity and a positive one with phosphorus, hardness, iron, mercury, arsenic and faecal coliforms, concerning V. fischeri toxic response. This integrated assessment may allow the evaluation of the effect of future pollution abatement measures over the water quality of Leça River.

  16. Reducing concentrations of ammonia to nontoxic levels prior to initiating whole-sediment bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Barrows, E.S.; Pinza, M.R.; Word, J.O. [Battelle/Marine Sciences Lab., Sequim, WA (United States); Greges, M.

    1994-12-31

    Determining the suitability of dredged material for ocean disposal requires whole-sediment toxicity tests with marine organisms. In addition to potential contaminants in dredged sediment, factors including grain size, salinity, hydrogen sulfide and ammonia can contribute to observed toxicity, thereby confounding test results. The presence of ammonia, a non-persistent but toxic compound, is particularly interesting because in open-water dredge and disposal situations, ammonia may not be a contaminant of concern. Sediment porewater ammonia concentrations in bioassays can be reduced to nontoxic levels before exposing organisms to permit evaluation of sediment contaminants without the additional toxicity effects of ammonia. Ten-day acute toxicity tests were conducted on sediments with Ampelisca abdita, Rhepoxynius abronius, Eohaustorius estuarius, and Mysidopsis bahia. Two procedures were followed to reduce ammonia prior to test initiation. In one, sediments in test chambers stood for 7 to 1 2 days while natural, nitrogen-reducing processes took place. In the other, sediments were tested in modified, flow-through systems. Ammonia was monitored in sediment porewater during ``purging`` periods, at test initiation and termination, and in overlying water during testing. Results were compared to the measured dose response of each species to ammonia, as determined by water-only reference toxicant tests. The question remains whether other sediment characteristics are affected by these procedures.

  17. Standardization of a fluconazole bioassay and correlation of results with those obtained by high-pressure liquid chromatography.

    OpenAIRE

    Rex, J H; Hanson, L H; Amantea, M A; Stevens, D.A.; BENNETT,J.E.

    1991-01-01

    An improved bioassay for fluconazole was developed. This assay is sensitive in the clinically relevant range (2 to 40 micrograms/ml) and analyzes plasma, serum, and cerebrospinal fluid specimens; bioassay results correlate with results obtained by high-pressure liquid chromatography (HPLC). Bioassay and HPLC analyses of spiked plasma, serum, and cerebrospinal fluid samples (run as unknowns) gave good agreement with expected values. Analysis of specimens from patients gave equivalent results b...

  18. Process modeling of fuel cell vehicle power system

    Institute of Scientific and Technical Information of China (English)

    CHEN LiMing; LIN ZhaoJia; MA ZiFeng

    2009-01-01

    Constructed here is a mathematic model of PEM Fuel Cell Vehicle Power System which is composed of fuel supply model, fuel cell stack model and water-heat management model. The model was developed by Matiab/Simulink to evaluate how the major operating variables affect the output performances. Itshows that the constructed model can represent characteristics of the power system closely by comparing modeling results with experimental data, and it can be used in the study and design of fuel cell vehicle power system.

  19. A review of fuel cell systems for maritime applications

    Science.gov (United States)

    van Biert, L.; Godjevac, M.; Visser, K.; Aravind, P. V.

    2016-09-01

    Progressing limits on pollutant emissions oblige ship owners to reduce the environmental impact of their operations. Fuel cells may provide a suitable solution, since they are fuel efficient while they emit few hazardous compounds. Various choices can be made with regard to the type of fuel cell system and logistic fuel, and it is unclear which have the best prospects for maritime application. An overview of fuel cell types and fuel processing equipment is presented, and maritime fuel cell application is reviewed with regard to efficiency, gravimetric and volumetric density, dynamic behaviour, environmental impact, safety and economics. It is shown that low temperature fuel cells using liquefied hydrogen provide a compact solution for ships with a refuelling interval up to a tens of hours, but may result in total system sizes up to five times larger than high temperature fuel cells and more energy dense fuels for vessels with longer mission requirements. The expanding infrastructure of liquefied natural gas and development state of natural gas-fuelled fuel cell systems can facilitate the introduction of gaseous fuels and fuel cells on ships. Fuel cell combined cycles, hybridisation with auxiliary electricity storage systems and redundancy improvements are identified as topics for further study.

  20. Integral reactor system and method for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Neil Edward; Brown, Michael S.; Cheekatamaria, Praveen; Deng, Thomas; Dimitrakopoulos, James; Litka, Anthony F.

    2017-03-07

    A reactor system is integrated internally within an anode-side cavity of a fuel cell. The reactor system is configured to convert higher hydrocarbons to smaller species while mitigating the lower production of solid carbon. The reactor system may incorporate one or more of a pre-reforming section, an anode exhaust gas recirculation device, and a reforming section.

  1. Integral reactor system and method for fuel cells

    Science.gov (United States)

    Fernandes, Neil Edward; Brown, Michael S; Cheekatamarla, Praveen; Deng, Thomas; Dimitrakopoulos, James; Litka, Anthony F

    2013-11-19

    A reactor system is integrated internally within an anode-side cavity of a fuel cell. The reactor system is configured to convert hydrocarbons to smaller species while mitigating the lower production of solid carbon. The reactor system may incorporate one or more of a pre-reforming section, an anode exhaust gas recirculation device, and a reforming section.

  2. Chip based electroanalytical systems for cell analysis

    DEFF Research Database (Denmark)

    Spegel, C.; Heiskanen, A.; Skjolding, L.H.D.

    2008-01-01

    This review with 239 references has as its aim to give the reader an introduction to the kinds of methods used for developing microchip based electrode systems as well as to cover the existing literature on electroanalytical systems where microchips play a crucial role for 'nondestructive' measur...

  3. Bioassay-Guided Isolation of Sesquiterpene Coumarins from Ferula narthex Bioss: A New Anticancer Agent

    Science.gov (United States)

    Alam, Mahboob; Khan, Ajmal; Wadood, Abdul; Khan, Ayesha; Bashir, Shumaila; Aman, Akhtar; Jan, Abdul Khaliq; Rauf, Abdur; Ahmad, Bashir; Khan, Abdur Rahman; Farooq, Umar

    2016-01-01

    The main objective of cancer management with chemotherapy (anticancer drugs) is to kill the neoplastic (cancerous) cell instead of a normal healthy cell. The bioassay-guided isolation of two new sesquiterpene coumarins (compounds 1 and 2) have been carried out from Ferula narthex collected from Chitral, locally known as “Raw.” Anticancer activity of crude and all fractions have been carried out to prevent carcinogenesis by using MTT assay. The n-hexane fraction showed good activity with an IC50 value of 5.434 ± 0.249 μg/mL, followed by crude MeFn extract 7.317 ± 0.535 μg/mL, and CHCl3 fraction 9.613 ± 0.548 μg/mL. Compounds 1 and 2 were isolated from chloroform fraction. Among tested pure compounds, compound 1 showed good anticancer activity with IC50 value of 14.074 ± 0.414 μg/mL. PASS (Prediction of Activity Spectra) analysis of the compound 1 was carried out, in order to predicts their binding probability with anti-cancer target. As a results the compound 1 showed binding probability with human histone acetyltransferase with Pa (probability to be active) value of 0.303. The compound 1 was docked against human histone acetyltransferase (anti-cancer drug target) by using molecular docking simulations. Molecular docking results showed that compound 1 accommodate well in the anti-cancer drug target. Moreover the activity support cancer chemo preventive activity of different compounds isolated from the genus Ferula, in accordance with the previously reported anticancer activities of the genus. PMID:26909039

  4. Medium-term multi-organ carcinogenesis bioassay of ethyl tertiary-butyl ether in rats.

    Science.gov (United States)

    Hagiwara, Akihiro; Doi, Yuko; Imai, Norio; Nakashima, Hironao; Ono, Takahiro; Kawabe, Mayumi; Furukawa, Fumio; Tamano, Seiko; Nagano, Kasuke; Fukushima, Shoji

    2011-11-18

    The modifying potential of ethyl tertiary-butyl ether (ETBE) on tumor development was investigated in a medium-term multi-organ carcinogenesis bioassay using male F344 rats. Animals were sequentially given 5 carcinogens with different target sites in the first 4 weeks for multi-organ initiation. After one week they received ETBE by gavage at dose levels of 0 (control), 300 or 1000mg/kg/day until experimental week 28. Further groups were also given ETBE at doses of 0 or 1000mg/kg/day without prior carcinogen application. Incidences and multiplicities of follicular cell hyperplasias and neoplasms in the thyroid were significantly increased at dose levels of more than 300mg/kg/day. Combined incidences of squamous cell hyperplasias and papillomas of the forestomach were also significantly increased at 300 and 1000mg/kg/day. Incidences and multiplicities of adenocarcinomas in the colon were increased at 1000mg/kg/day. The numbers and areas of glutathione S-transferase placental form (GST-P) positive foci per unit area of the liver sections, and the incidence of hepatocellular adenomas were also significantly increased at 1000mg/kg/day, along with multiplicities of atypical hyperplasias of renal tubules of the kidney and the incidence of papillomatosis of the urinary bladder. This latter lesion was also seen at low incidence at 1000mg/kg/day without initiation. Thus, the current results indicate that ETBE has tumor promoting potential for the thyroid and forestomach at dose levels of 300mg/kg/day and more, and for the colon, liver, kidney and urinary bladder at 1000mg/kg/day, under the present experimental conditions.

  5. Comparison of solid-phase bioassays and ecoscores to evaluate the toxicity of contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Lors, Christine [Universite Lille Nord de France, 1bis rue Georges Lefevre, 59044 Lille Cedex (France); Ecole des Mines de Douai, MPE-GCE, 941 rue Charles-Bourseul, 59500 Douai (France); Centre National de Recherche sur les Sites et Sols Pollues, 930 Boulevard Lahure, BP 537, 59505 Douai Cedex (France); Ponge, Jean-Francois, E-mail: ponge@mnhn.f [Museum National d' Histoire Naturelle, CNRS UMR 7179, 4 Avenue du Petit-Chateau, 91800 Brunoy (France); Martinez Aldaya, Maite [Museum National d' Histoire Naturelle, CNRS UMR 7179, 4 Avenue du Petit-Chateau, 91800 Brunoy (France); Damidot, Denis [Universite Lille Nord de France, 1bis rue Georges Lefevre, 59044 Lille Cedex (France); Ecole des Mines de Douai, MPE-GCE, 941 rue Charles-Bourseul, 59500 Douai (France)

    2010-08-15

    Five bioassays (inhibition of lettuce germination and growth, earthworm mortality, inhibition of springtail population growth, avoidance by springtails) were compared, using four coke factory soils contaminated by PAHs and trace elements, before and after biotreatment. For each bioassay, several endpoints were combined in an 'ecoscore', a measure of test sensitivity. Ecoscores pooled over all tested bioassays revealed that most organisms were highly sensitive to the concentration of 3-ring PAHs. When four soils were combined, behavioural tests using the springtail Folsomia candida showed higher ecoscores, i.e. they were most sensitive to soil contamination. However, despite overall higher sensitivity of behavioural tests, which could be used for cheap and rapid assessment of soil toxicity, especially at low levels of contamination, some test endpoints were more sensitive than others, and this may differ from a soil to another, pointing to the need for a battery of bioassays when more itemized results are expected. - The avoidance test using the soil springtail Folsomia candida is globally more sensitive to PAH contamination than acute and chronic toxicity bioassays using plants and animals but a battery of tests could reveal better in detail.

  6. Use of bioassays to assess hazard of food contact material extracts: State of the art.

    Science.gov (United States)

    Severin, Isabelle; Souton, Emilie; Dahbi, Laurence; Chagnon, Marie Christine

    2017-07-01

    This review focuses on the use of in vitro bioassays for the hazard assessment of food contact materials (FCM) as a relevant strategy, in complement to analytical methods. FCM may transfer constituents to foods, not always detected by analytical chemistry, resulting in low but measurable human exposures. Testing FCM extracts with bioassays represents the biological response of a combination of substances, able to be released from the finished materials. Furthermore, this approach is particularly useful regarding the current risk assessment challenges with unpredicted/unidentified non-intentionally added substances (NIAS) that can be leached from the FCM in the food. Bioassays applied to assess hazard of different FCM types are described for, to date, the toxicological endpoints able to be expressed at low levels; cytotoxicity, genotoxicity and endocrine disruption potential. The bioassay strengths and relative key points needed to correctly use and improve the performance of bioassays for an additional FCM risk assessment is developed. This review compiles studies showing that combining both chemical and toxicological analyses presents a very promising and pragmatic tool for identifying new undesirable NIAS (not predicted) which can represent a great part of the migrating substances and/or "cocktail effect". Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Characterization of chemical waste site contamination and its extent using bioassays

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, J.M.; Callahan, C.A.; Cline, J.F.; Greene, J.C.; McShane, M.C.; Miller, W.E.; Peterson, S.A.; Simpson, J.C.; Skalski, J.R.

    1984-12-01

    Bioassays were used in a three-phase research project to assess the comparative sensitivity of test organisms to known chemicals, determine if the chemical components in field soil and water samples containing unknown contaminants could be inferred from our laboratory studies using known chemicals, and to investigate kriging (a relatively new statistical mapping technique) and bioassays as methods to define the areal extent of chemical contamination. The algal assay generally was most sensitive to samples of pure chemicals, soil elutriates and water from eight sites with known chemical contamination. Bioassays of nine samples of unknown chemical composition from the Rocky Mountain Arsenal (RMA) site showed that a lettuce seed soil contact phytoassay was most sensitive. In general, our bioassays can be used to broadly identify toxic components of contaminated soil. Nearly pure compounds of insecticides and herbicides were less toxic in the sensitive bioassays than were the counterpart commercial formulations. This finding indicates that chemical analysis alone may fail to correctly rate the severity of environmental toxicity. Finally, we used the lettuce seed phytoassay and kriging techniques in a field study at RMA to demonstrate the feasibility of mapping contamination to aid in cleanup decisions. 25 references, 9 figures, 9 tables.

  8. Mineral deficiency and the use of the FETAX bioassay to study environmental teratogens.

    Science.gov (United States)

    Garber, Eric A E

    2002-01-01

    The Frog Embryo Teratogenesis Assay: Xenopus (FETAX) bioassay has been employed extensively to screen compounds for teratogenic activity. Recent laboratory studies have indicated that low potassium concentrations retard Xenopus laevis development. The effects of varying concentrations of minerals on Xenopus laevis embryo length and development were examined to determine the utility of the FETAX bioassay in the study of environmental teratogens. Water samples collected from 18 wetlands in Minnesota and North Dakota correlated with low mineral levels, causing delayed embryonic development in the FETAX bioassay. When the concentration of sodium or potassium was teratogenic activity after 96 h of incubation. Furthermore, the length of the embryos-an indication of development-paralleled changes in mineral composition. Comparisons between different wetlands based on changes in one specific mineral were not possible due to a synergism between various minerals. If the concentration of sodium and/or potassium was or =2 ppm, extension of the FETAX bioassay to 120 h allowed organogenesis to proceed through stage 46, as required for scoring in accordance with ASTM guidelines for the FETAX bioassay. In those cases in which the concentration of sodium and/or potassium were teratogenic activity. Published in 2002 by John Wiley & Sons, Ltd.

  9. Development and validation of microbial bioassay for quantification of Levofloxacin in pharmaceutical preparations

    Institute of Scientific and Technical Information of China (English)

    Nishant A. Dafale; Uttam P. Semwal; Piyush K. Agarwal; Pradeep Sharma; G.N. Singh

    2015-01-01

    The aim of this study was to develop and validate a simple, sensitive, precise and cost-effective one-level agar diffusion (5þ1) bioassay for estimation of potency and bioactivity of Levofloxacin in pharmaceutical preparation which has not yet been reported in any pharmacopoeia. Among 16 microbial strains, Bacillus pumilus ATCC-14884 was selected as the most significant strain against Levofloxacin. Bioassay was optimized by investigating several factors such as buffer pH, inoculums concentration and reference standard concentration. Identification of Levofloxacin in commercial sample Levoflox tablet was done by FTIR spectroscopy. Mean potency recovery value for Levofloxacin in Levoflox tablet was estimated as 100.90%. A validated bioassay method showed linearity (r2 ¼ 0.988), precision (Interday RSD ¼ 1.05%, between analyst RSD ¼ 1.02%) and accuracy (101.23%, RSD ¼ 0.72%). Bioassay was correlated with HPLC using same sample and estimated potencies were 100.90%and 99.37%, respectively. Results show that bioassay is a suitable method for estimation of potency and bioactivity of Levofloxacin pharmaceutical preparations.

  10. The usefulness of a sediment bioassay with the gastropod Nassarius reticulatus in tributyltin monitoring programs.

    Science.gov (United States)

    Laranjeiro, Filipe; Pérez, Sara; Navarro, Patricia; Carrero, José Antonio; Beiras, Ricardo

    2015-11-01

    Despite the use of tributyltin (TBT) had been banned worldwide in 2008 there is still evidence of its deleterious presence in environment. We evaluate the usefulness of a 28days sediment bioassay with Nassarius reticulatus females to monitor TBT pollution, using imposex as endpoint. In addition, butyltins were determined in sediments and tissues, and, whenever posible, imposex was assessed in native N. reticulatus at the same sites where sediments were sampled. In the bioassay, a significant increase in imposex parameters was obtained with three sediments (Vi2, Vi3, and Vi4). No correlation was found between this and TBT concentrations in sediment although good correlations were obtained for TBT in tissues, putting in evidence TBT bioavailability in sediment. A significant decrease in imposex from 2008 to 2013 in native snails was only observed at sites that did not cause any effect in the bioassay. In contrast, imposex levels in 2013 were kept as high as 2008 in one of the sites where a significant imposex increase in the bioassay was observed. The bioassay proves thus to be a practical and ecological relevant tool, as: (i) it can be conducted in sites with no native populations of snails, (ii) it provides early identification of polluted sites, anticipating future imposex levels or early identification of recovering, and (iii) it yields information on the bioavailable fraction of the TBT in the sediment. Therefore, this tool can be of extreme usefulness under the scope of recent European legislative frameworks.

  11. Comparison of five in vitro bioassays to measure estrogenic activity in environmental waters.

    Science.gov (United States)

    Leusch, Frederic D L; de Jager, Christiaan; Levi, Yves; Lim, Richard; Puijker, Leo; Sacher, Frank; Tremblay, Louis A; Wilson, Vickie S; Chapman, Heather F

    2010-05-15

    Bioassays are well established in the pharmaceutical industry and single compound analysis, but there is still uncertainty about their usefulness in environmental monitoring. We compared the responses of five bioassays designed to measure estrogenic activity (the yeast estrogen screen, ER-CALUX, MELN, T47D-KBluc, and E-SCREEN assays) and chemical analysis on extracts from four different water sources (groundwater, raw sewage, treated sewage, and river water). All five bioassays displayed similar trends and there was good agreement with analytical chemistry results. The data from the ER-CALUX and E-SCREEN bioassays were robust and predictable, and well-correlated with predictions from chemical analysis. The T47D-KBluc appeared likewise promising, but with a more limited sample size it was less compelling. The YES assay was less sensitive than the other assays by an order of magnitude, which resulted in a larger number of nondetects. The MELN assay was less predictable, although the possibility that this was due to laboratory-specific difficulties cannot be discounted. With standardized bioassay data analysis and consistency of operating protocols, bioanalytical tools are a promising advance in the development of a tiered approach to environmental water quality monitoring.

  12. A Good Neighborhood for Cells: Bioreactor Demonstration System (BDS-05)

    Science.gov (United States)

    Chung, Leland W. K.; Goodwin, Thomas J. (Technical Monitor)

    2002-01-01

    Good neighborhoods help you grow. As with a city, the lives of a cell are governed by its neighborhood connections Connections that do not work are implicated in a range of diseases. One of those connections - between prostate cancer and bone cells - will be studied on STS-107 using the Bioreactor Demonstration System (BDS-05). To improve the prospects for finding novel therapies, and to identify biomarkers that predict disease progression, scientists need tissue models that behave the same as metastatic or spreading cancer. This is one of several NASA-sponsored lines of cell science research that use the microgravity environment of orbit in an attempt to grow lifelike tissue models for health research. As cells replicate, they "self associate" to form a complex matrix of collagens, proteins, fibers, and other structures. This highly evolved microenvironment tells each cell who is next door, how it should grow arid into what shapes, and how to respond to bacteria, wounds, and other stimuli. Studying these mechanisms outside the body is difficult because cells do not easily self-associate outside a natural environment. Most cell cultures produce thin, flat specimens that offer limited insight into how cells work together. Ironically, growing cell cultures in the microgravity of space produces cell assemblies that more closely resemble what is found in bodies on Earth. NASA's Bioreactor comprises a miniature life support system and a rotating vessel containing cell specimens in a nutrient medium. Orbital BDS experiments that cultured colon and prostate cancers have been highly promising.

  13. Usability and Applicability of Microfluidic Cell Culture Systems

    DEFF Research Database (Denmark)

    Hemmingsen, Mette

    Microfluidic cell culture has been a research area with great attention the last decade due to its potential to mimic the in vivo cellular environment more closely compared to what is possible by conventional cell culture methods. Many exciting and complex devices have been presented providing...... possibilities for, for example, precise control of the chemical environment, 3D cultures, controlled co-culture of different cell types or automated, individual control of up to 96 cell culture chambers in one integrated system. Despite the great new opportunities to perform novel experimental designs......, these devices still lack general implementation into biological research laboratories. In this project, the usability and applicability of microfluidic cell culture systems have been investigated. The tested systems display good properties regarding optics and compatibility with standard laboratory equipment...

  14. Cell-based microfluidic platform for mimicking human olfactory system.

    Science.gov (United States)

    Lee, Seung Hwan; Oh, Eun Hae; Park, Tai Hyun

    2015-12-15

    Various attempts have been made to mimic the human olfactory system using human olfactory receptors (hORs). In particular, OR-expressed cell-based odorant detection systems mimic the smell sensing mechanism of humans, as they exploit endogenous cellular signaling pathways. However, the majority of such cell-based studies have been performed in the liquid phase to maintain cell viability, and liquid odorants were used as detection targets. Here, we present a microfluidic device for the detection of gaseous odorants which more closely mimics the human olfactory system. Cells expressing hOR were cultured on a porous membrane. The membrane was then flipped over and placed between two compartments. The upper compartment is the gaseous part where gaseous odorants are supplied, while the lower compartment is the aqueous part where viable cells are maintained in the liquid medium. Using this simple microfluidic device, we were able to detect gaseous odorant molecules by a fluorescence signal. The fluorescence signal was generated by calcium influx resulting from the interaction between odorant molecules and the hOR. The system allowed detection of gaseous odorant molecules in real-time, and the findings showed that the fluorescence responses increased dose-dependently in the range of 0-2 ppm odorant. In addition, the system can discriminate among gaseous odorant molecules. This microfluidic system closely mimics the human olfactory system in the sense that the submerged cells detect gaseous odorants.

  15. Bioassay-Guided Isolation of Cytotoxic Cycloartane Triterpenoid Glycosides from the Traditionally Used Medicinal Plant Leea indica

    Directory of Open Access Journals (Sweden)

    Yau Hsiung Wong

    2012-01-01

    Full Text Available Leea indica is a medicinal plant used traditionally to cure cancer. In this study, the cytotoxic compounds of L. indica were isolated using bioassay-guided approach. Two cycloartane triterpenoid glycosides, mollic acid arabinoside (MAA and mollic acid xyloside (MAX, were firstly isolated from L. indica. They inhibited the growth of Ca Ski cervical cancer cells with IC50 of 19.21 μM (MAA and 33.33 μM (MAX. MRC5 normal cell line was used to calculate selectivity index. MAA and MAX were about 8 and 4 times more cytotoxic to Ca Ski cells compared to MRC5. The cytotoxicity of MAA was characterized by both cytostatic and cytocidal effects. MAA decreased the expression of proliferative cell nuclear antigen, increased sub-G1 cells, and arrested cells in S and G2/M phases. This study provides the evidence for the ethnomedicinal use of L. indica and paves the way for future mechanism studies on the anticancer effects of MAA.

  16. Power Conversion System Strategies for Fuel Cell Vehicles

    Institute of Scientific and Technical Information of China (English)

    Kaushik Rajashekara

    2005-01-01

    Power electronics is an enabling technology for the development of environmental friendly fuel cell vehicles, and to implement the various vehicle electrical architectures to obtain the best performance. In this paper, power conversion strategies for propulsion and auxiliary power unit applications are described. The power electronics strategies for the successful development of the fuel cell vehicles are presented. The fuel cell systems for propulsion and for auxiliary power unit applications are also discussed.

  17. Baculovirus integration with the vertebrate cells in system in vitro

    Directory of Open Access Journals (Sweden)

    Strokovskaya L. I.

    2010-11-01

    Full Text Available In this review the literature data are analyzed relative to the study of a new vector system for the cells of vertebrates, based on the insect viruses – baculoviruses. The ways and mechanisms of recombinant baculoviruses penetration into cells, the factors, which influence the effectiveness of transduction, the principles of the modification of virus display, and the reaction of the different types of cells on virus introduction are examined. The prospects of using recombinant baculoviruses in cellular engineering are discussed.

  18. Screening for the presence of lipophilic marine biotoxins in shellfish samples using the neuro-2a bioassay.

    Science.gov (United States)

    Bodero, Marcia; Bovee, Toine F H; Wang, Si; Hoogenboom, Ron L A P; Klijnstra, Mirjam D; Portier, Liza; Hendriksen, Peter J M; Gerssen, Arjen

    2017-09-08

    The neuro-2a bioassay is considered as one of the most promising cell-based in vitro bioassays for the broad screening of seafood products for the presence of marine biotoxins. The neuro-2a assay has been shown to detect a wide array of toxins like paralytic shellfish poisons (PSPs), ciguatoxins, and also lipophilic marine biotoxins (LMBs). However, the neuro-2a assay is rarely used for routine testing of samples due to matrix effects that, for example, lead to false positives when testing for LMBs. As a result there are only limited data on validation and evaluation of its performance on real samples. In the present study, the standard extraction procedure for LMBs was adjusted by introducing an additional clean-up step with n-hexane. Recovery losses due to this extra step were less than 10%. This wash step was a crucial addition in order to eliminate false-positive outcomes due to matrix effects. Next, the applicability of this assay was assessed by testing a broad range of shellfish samples contaminated with various LMBs, including diarrhetic shellfish toxins/poisons (DSPs). For comparison, the samples were also analysed by LC-MS/MS. Standards of all regulated LMBs were tested, including analogues of some of these toxins. The neuro-2a cells showed good sensitivity towards all compounds. Extracts of 87 samples, both blank and contaminated with various toxins, were tested. The neuro-2a outcomes were in line with those of LC-MS/MS analysis and support the applicability of this assay for the screening of samples for LMBs. However, for use in a daily routine setting, the test might be further improved and we discuss several recommended modifications which should be considered before a full validation is carried out.

  19. Characterization and Modeling of a Methanol Reforming Fuel Cell System

    DEFF Research Database (Denmark)

    Sahlin, Simon Lennart

    topologies is the Reformed Methanol Fuel Cell (RMFC) system that operates on a mix of methanol and water. The fuel is reformed with a steam reforming to a hydrogen rich gas, however with additional formation of Carbon Monoxide and Carbon Dioxide. High Temperature Polymer Electrolyte Membrane Fuel Cell (HT...... to heat up the steam reforming process. However, utilizing the excess hydrogen in the system complicates the RMFC system as the amount of hydrogen can vary depending on the fuel methanol supply, fuel cell load and the reformer gas composition. This PhD study has therefore been involved in investigating......Many fuel cells systems today are operated with compressed hydrogen which has great benefits because of the purity of the hydrogen and the relatively simple storage of the fuel. However, compressed hydrogen is stored in the range of 800 bar, which can be expensive to compress.One of the interesting...

  20. Immobilized yeast cell systems for continuous fermentation applications.

    Science.gov (United States)

    Verbelen, Pieter J; De Schutter, David P; Delvaux, Filip; Verstrepen, Kevin J; Delvaux, Freddy R

    2006-10-01

    In several yeast-related industries, continuous fermentation systems offer important economical advantages in comparison with traditional systems. Fermentation rates are significantly improved, especially when continuous fermentation is combined with cell immobilization techniques to increase the yeast concentration in the fermentor. Hence the technique holds a great promise for the efficient production of fermented beverages, such as beer, wine and cider as well as bio-ethanol. However, there are some important pitfalls, and few industrial-scale continuous systems have been implemented. Here, we first review the various cell immobilization techniques and reactor setups. Then, the impact of immobilization on cell physiology and fermentation performance is discussed. In a last part, we focus on the practical use of continuous fermentation and cell immobilization systems for beer production.

  1. High Efficiency Direct Methane Solid Oxide Fuel Cell System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has a defined need for energy dense and highly efficient energy storage and power delivery systems for future space missions. Compared to other fuel cell...

  2. Integrating fuel cell power systems into building physical plants

    Energy Technology Data Exchange (ETDEWEB)

    Carson, J. [KCI Technologies, Inc., Hunt Valley, MD (United States)

    1996-12-31

    This paper discusses the integration of fuel cell power plants and absorption chillers to cogenerate chilled water or hot water/steam for all weather air conditioning as one possible approach to building system applications. Absorption chillers utilize thermal energy in an absorption based cycle to chill water. It is feasible to use waste heat from fuel cells to provide hydronic heating and cooling. Performance regimes will vary as a function of the supply and quality of waste heat. Respective performance characteristics of fuel cells, absorption chillers and air conditioning systems will define relationships between thermal and electrical load capacities for the combined systems. Specifically, this paper develops thermodynamic relationships between bulk electrical power and cooling/heating capacities for combined fuel cell and absorption chiller system in building applications.

  3. Cell Analysis System Based on Compact Disk Technology

    NARCIS (Netherlands)

    Tibbe, Arjan G.J.; de Grooth, B.G.; Greve, Jan; Rao, Chandra; Dolan, Gerald J.; Terstappen, Leonardus Wendelinus Mathias Marie

    2002-01-01

    Background: A cell analysis system was developed to enumerate and differentiate magnetically aligned cells selected from whole blood. The cellular information extracted is similar to the readout of musical information from a compact disk (CD). Here we describe the optical design and data processing

  4. Method of operating a direct dme fuel cell system

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to a method of operating a fuel cell system comprising one or more fuel cells with a proton exchange membrane, wherein the membrane is composed of a polymeric material comprising acid-doped polybenzimidazole (PBI). The method comprises adjusting the operating...

  5. Method of operating a direct dme fuel cell system

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to a method of operating a fuel cell system comprising one or more fuel cells with a proton exchange membrane, wherein the membrane is composed of a polymeric material comprising acid-doped polybenzimidazole (PBI). The method comprises adjusting the operating...

  6. T-cell-directed therapies in systemic lupus erythematosus.

    Science.gov (United States)

    Nandkumar, P; Furie, R

    2016-09-01

    Drug development for the treatment of systemic lupus erythematosus (SLE) has largely focused on B-cell therapies. A greater understanding of the immunopathogenesis of SLE coupled with advanced bioengineering has allowed for clinical trials centered on other targets for SLE therapy. The authors discuss the benefits and shortcomings of focusing on T-cell-directed therapies in SLE and lupus nephritis clinical trials.

  7. GATE Center for Automotive Fuel Cell Systems at Virginia Tech

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Douglas [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2011-09-30

    The Virginia Tech GATE Center for Automotive Fuel Cell Systems (CAFCS) achieved the following objectives in support of the domestic automotive industry: Expanded and updated fuel cell and vehicle technologies education programs; Conducted industry directed research in three thrust areas development and characterization of materials for PEM fuel cells; performance and durability modeling for PEM fuel cells; and fuel cell systems design and optimization, including hybrid and plug-in hybrid fuel cell vehicles; Developed MS and Ph.D. engineers and scientists who are pursuing careers related to fuel cells and automotive applications; Published research results that provide industry with new knowledge which contributes to the advancement of fuel cell and vehicle systems commercialization. With support from the Dept. of Energy, the CAFCS upgraded existing graduate course offerings; introduced a hands-on laboratory component that make use of Virginia Tech's comprehensive laboratory facilities, funded 15 GATE Fellowships over a five year period; and expanded our program of industry interaction to improve student awareness of challenges and opportunities in the automotive industry. GATE Center graduate students have a state-of-the-art research experience preparing them for a career to contribute to the advancement fuel cell and vehicle technologies.

  8. Systems biology approaches to understanding stem cell fate choice.

    Science.gov (United States)

    Peltier, J; Schaffer, D V

    2010-01-01

    Stem cells have the capability to self-renew and maintain their undifferentiated state or to differentiate into one or more specialised cell types. Stem cell expansion and manipulation ex vivo is a promising approach for engineering cell replacement therapies, and endogenous stem cells represent potential drugable targets for tissue repair. Before we can harness stem cells' therapeutic potential, we must first understand the intracellular mechanisms controlling their fate choices. These mechanisms involve complex signal transduction and gene regulation networks that feature, for example, intricate feed-forward loops, feedback loops and cross-talk between multiple signalling pathways. Systems biology applies computational and experimental approaches to investigate the emergent behaviour of collections of molecules and strives to explain how these numerous components interact to regulate molecular, cellular and organismal behaviour. Here we review systems biology, and in particular computational, efforts to understand the intracellular mechanisms of stem cell fate choice. We first discuss deterministic and stochastic models that synthesise molecular knowledge into mathematical formalism, enable simulation of important system behaviours and stimulate further experimentation. In addition, statistical analyses such as Bayesian networks and principal components analysis (PCA)/partial least squares (PLS) regression can distill large datasets into more readily managed networks and principal components that provide insights into the critical aspects and components of regulatory networks. Collectively, integrating modelling with experimentation has strong potential for enabling a deeper understanding of stem cell fate choice and thereby aiding the development of therapies to harness stem cells' therapeutic potential.

  9. The Mast Cell, Contact, and Coagulation System Connection in Anaphylaxis

    Directory of Open Access Journals (Sweden)

    Mar Guilarte

    2017-07-01

    Full Text Available Anaphylaxis is the most severe form of allergic reaction, resulting from the effect of mediators and chemotactic substances released by activated cells. Mast cells and basophils are considered key players in IgE-mediated human anaphylaxis. Beyond IgE-mediated activation of mast cells/basophils, further mechanisms are involved in the occurrence of anaphylaxis. New insights into the potential relevance of pathways other than mast cell and basophil degranulation have been unraveled, such as the activation of the contact and the coagulation systems. Mast cell heparin released upon activation provides negatively charged surfaces for factor XII (FXII binding and auto-activation. Activated FXII, the initiating serine protease in both the contact and the intrinsic coagulation system, activates factor XI and prekallikrein, respectively. FXII-mediated bradykinin (BK formation has been proven in the human plasma of anaphylactic patients as well as in experimental models of anaphylaxis. Moreover, the severity of anaphylaxis is correlated with the increase in plasma heparin, BK formation and the intensity of contact system activation. FXII also activates plasminogen in the fibrinolysis system. Mast cell tryptase has been shown to participate in fibrinolysis through plasmin activation and by facilitating the degradation of fibrinogen. Some usual clinical manifestations in anaphylaxis, such as angioedema or hypotension, or other less common, such as metrorrhagia, may be explained by the direct effect of the activation of the coagulation and contact system driven by mast cell mediators.

  10. Laser Micro-beam Manipulation System for Cells

    Institute of Scientific and Technical Information of China (English)

    孟祥旺; 李岩; 张书练; 张志诚; 赵南明

    2002-01-01

    This paper introduces a laser micro-beam system for cells manipulation. The laser micro-beam system comprises a laser scissors and a laser tweezers, which are focused by a Nd∶YAG laser and a He-Ne laser through a microscope objective, respectively. Not only the overall design of the laser micro-beam system is discussed, but also the design and choice of the critical components. A laser micro-beam system was constructed and anticipated experiment results were gained. Yeast cells can be successfully manipulated with the laser tweezers. Chromosomes can be successfully incised with the laser scissors.

  11. Design of solar cell lighting and sun tracking system

    Energy Technology Data Exchange (ETDEWEB)

    Khaing, A.A. [Mandalay Technological Univ., Mandalay (Myanmar); Ministry of Science, Yangon (Myanmar)

    2008-07-01

    A solar cell lighting and sun tracking system was discussed and the characteristics of solar cells were studied. An SM50H solar module was analyzed with a maximum power rating of 50 W and a current rate of 3.15 A. The main components of the system include solar cells, charged controllers, and a sun tracking system. The solar tracker is an automatic control system designed to track the solar modules in relation to the sun's direction. A linear drive actuator was used to track the modules with an energy consumption rate between 24 and 36 DC voltages. Power output solar cell equations were presented along with a review of batteries used for stationary and portable solar energy equipment. Issues related to cost of tracking systems were discussed. System sizing recommendations were provided, and solar cell design requirements were reviewed. A comparison of tracking and fixed solar energy systems was presented for a day in Yangon, Myanmar. It was concluded that solar tracking systems can be used to provide energy in rural and remote areas. 18 refs., 4 tabs., 5 figs.

  12. PV-Wind System with Fuel Cell & Electrolyzer

    Directory of Open Access Journals (Sweden)

    Deepa Sharma

    2015-12-01

    Full Text Available In this paper, a detailed modeling and simulation of solar cell/ wind turbine/ fuel cell hybrid power system is developed using a novel topology to complement each other and to alleviate the effects of environmental variations. Comparing with the other sources , the renewable energy is inexhaustible and has non-pollution characteristics. The solar energy, wind power, hydraulic power and tidal energy are natural resources of the interest to generate electrical power. As the wind turbine output power varies with the wind speed and the solar cell output power varies with both the ambient temperature and radiation, a fuel cell with ultra capacitor bank can be integrated to ensure that the system performs under all conditions. Excess wind and solar energies when available are converted to hydrogen using electrolysis for later use in the fuel cell. In this paper dynamic modeling of various components of this isolated system system is presented. Transient responses of the system to step change in the load, ambient temperature, radiation, and wind speed in a number of possible situations are studied. Modeling and simulations are conducted using MATLAB/Simulink software packages to verify the effectiveness of the proposed system. The results show that the proposed hybrid power system can tolerate the rapid change in natural conditions and suppress the effects of these fluctuations on the voltage within the acceptable range.The proposed system can be used for off grid power generation in non interconnected areas or remote isolated communities of nation.

  13. Porcine skin flow-through diffusion cell system.

    Science.gov (United States)

    Baynes, R E

    2001-11-01

    Porcine Skin Flow-Through Diffusion Cell System (Ronald E. Baynes, North Carolina State University, Raleigh, North Carolina). Porcine skin can be used in a diffusion cell apparatus to study the rate and extent of absorption of topically applied chemicals through the skin. Although the skin of a number of animals can be used in this system, that of the pig most closely approximates human skin anatomically and physiologically.

  14. Horizontally rotated cell culture system with a coaxial tubular oxygenator

    Science.gov (United States)

    Wolf, David A. (Inventor); Schwarz, Ray P. (Inventor); Trinh, Tinh T. (Inventor)

    1991-01-01

    The present invention relates to a horizontally rotating bioreactor useful for carrying out cell and tissue culture. For processing of mammalian cells, the system is sterilized and fresh fluid medium, microcarrier beads, and cells are admitted to completely fill the cell culture vessel. An oxygen containing gas is admitted to the interior of the permeable membrane which prevents air bubbles from being introduced into the medium. The cylinder is rotated at a low speed within an incubator so that the circular motion of the fluid medium uniformly suspends the microbeads throughout the cylinder during the cell growth period. The unique design of this cell and tissue culture device was initially driven by two requirements imposed by its intended use for feasibility studies for three dimensional culture of living cells and tissues in space by JSC. They were compatible with microgravity and simulation of microgravity in one G. The vessels are designed to approximate the extremely quiescent low shear environment obtainable in space.

  15. The ubiquitin-proteasome system in glioma cell cycle control

    Directory of Open Access Journals (Sweden)

    Vlachostergios Panagiotis J

    2012-07-01

    Full Text Available Abstract A major determinant of cell fate is regulation of cell cycle. Tight regulation of this process is lost during the course of development and progression of various tumors. The ubiquitin-proteasome system (UPS constitutes a universal protein degradation pathway, essential for the consistent recycling of a plethora of proteins with distinct structural and functional roles within the cell, including cell cycle regulation. High grade tumors, such as glioblastomas have an inherent potential of escaping cell cycle control mechanisms and are often refractory to conventional treatment. Here, we review the association of UPS with several UPS-targeted proteins and pathways involved in regulation of the cell cycle in malignant gliomas, and discuss the potential role of UPS inhibitors in reinstitution of cell cycle control.

  16. Toxicity Assessment of Sediments with Natural Anomalous Concentrations in Heavy Metals by the Use of Bioassay

    Directory of Open Access Journals (Sweden)

    Francisco Martín

    2010-01-01

    Full Text Available The potential toxicity in riverbed sediments was assessed with a bioassay using the bioluminescent bacteria Vibrio fischeri. The selected area was characterized by the presence of ultramafic rocks (peridotites, and the sediments had high values in Ni, Cr, and Co. For the toxicity bioassay with Vibrio fischeri, water-soluble forms were used. The results indicated that most of the samples had a very low degree of toxicity, with 10% of reduction in luminescence in relation to the control; meanwhile 25% of the samples had a moderate degree of toxicity with a reduction in luminescence between 13 and 21% in relation to the control. The toxicity index correlated significantly with the concentrations of Ni and Cr in the water extracts. This toxicity bioassay was proved to be a sensitive and useful tool to detect potential toxicity in solutions, even with anomalous concentrations in heavy metals of natural origin.

  17. Shielded corneosurfametry and corneoxenometry: novel bioassays for the assessment of skin barrier products.

    Science.gov (United States)

    Goffin, V; Piérard-Franchimont, C; Piérard, G E

    1998-01-01

    One of the most frequent occupational and environmental insults to the skin is linked to chronic exposure to weak irritants. There is a need for new predictive tests assessing the efficacy of barrier creams. Shielded variants of corneosurfametry and corneoxenometry are introduced as novel ex vivo bioassays applicable for comparing protection to surfactants and organic solvents. Both bioassays showed good reproducibility for each offending agent and skin-protective products. Significant differences in efficacy were indicated between the presumptive barrier products. Shielded corneosurfametry and corneoxenometry may be convenient bioassays to compare the protection afforded by topical products against specific offending compounds to the skin. They avoid animal testing and toxicological hazards in human testing. In addition, they are cheap, rapid and reproducible.

  18. Optimal fractionation and bioassay plans for isolation of synergistic chemicals: The subtractive-combination method.

    Science.gov (United States)

    Byers, J A

    1992-09-01

    Studies of chemical ecology of an organism are founded on the isolation and identification of a semiochemical, often comprised of two or more synergistic compounds (each Synergist alone has little activity, but presented together they are bioactive). Chromatographie fractionation and bioassay methods of binary splitting, additive combination, and subtractive combination are compared for efficiency in isolating synergists. Formulas are derived for the latter two methods that calculate the expected number of bioassay tests required for isolation of from two to five synergists from biological extracts with any number of compounds, depending on the number of initial (major) Chromatographic fractions. A computer program based on the formulas demonstrates the superiority of the subtractive-combination method. Simulations with the program were used to determine the optimal number of initial fractions for the additive- and subtractive-combination methods when isolating two to five synergists from extracts of from 25 to 1200 compounds. Methods of bioassay, isolation, identification, and field testing of semiochemicals are discussed.

  19. Label-free nanopore proximity bioassay for platelet-derived growth factor detection.

    Science.gov (United States)

    Zhang, Ling; Zhang, Kaixiang; Liu, Guangchao; Liu, Mengjia; Liu, Yang; Li, Jinghong

    2015-06-02

    Rapid and sensitive detection of biomarkers with ultralow concentrations remains a great challenge in disease diagnostics. Herein, we present a label-free α-hemolysin (α-HL) nanopore proximity bioassay for protein biomarker detection by a binding-induced DNA strand displacement strategy. In this bioassay, an individual target protein, platelet-derived growth factor B-chain (PDGF-BB), was selectively recognized by two oligonucleotide affinity ligands in which an output DNA was released and translocated through α-HL nanopore with a spikelike short current block. The frequency of the current block events had a linear relationship with the concentration of PDGF-BB with a wide linear dynamic range of 5 orders of magnitude and a detection limit at 500 fM. The selectivity and anti-interference capability of this bioassay show great potential for biomarker detection in bioanalytical chemistry.

  20. In vitro bioassays to evaluate complex chemical mixtures in recycled water.

    Science.gov (United States)

    Jia, Ai; Escher, Beate I; Leusch, Frederic D L; Tang, Janet Y M; Prochazka, Erik; Dong, Bingfeng; Snyder, Erin M; Snyder, Shane A

    2015-09-01

    With burgeoning population and diminishing availability of freshwater resources, the world continues to expand the use of alternative water resources for drinking, and the quality of these sources has been a great concern for the public as well as public health professionals. In vitro bioassays are increasingly being used to enable rapid, relatively inexpensive toxicity screening that can be used in conjunction with analytical chemistry data to evaluate water quality and the effectiveness of water treatment. In this study, a comprehensive bioassay battery consisting of 36 bioassays covering 18 biological endpoints was applied to screen the bioactivity of waters of varying qualities with parallel treatments. Samples include wastewater effluent, ultraviolet light (UV) and/or ozone advanced oxidation processed (AOP) recycled water, and infiltrated recycled groundwater. Based on assay sensitivity and detection frequency in the samples, several endpoints were highlighted in the battery, including assays for genotoxicity, mutagenicity, estrogenic activity, glucocorticoid activity, arylhydrocarbon receptor activity, oxidative stress response, and cytotoxicity. Attenuation of bioactivity was found to be dependent on the treatment process and bioassay endpoint. For instance, ozone technology significantly removed oxidative stress activity, while UV based technologies were most efficient for the attenuation of glucocorticoid activity. Chlorination partially attenuated genotoxicity and greatly decreased herbicidal activity, while groundwater infiltration efficiently attenuated most of the evaluated bioactivity with the exception of genotoxicity. In some cases, bioactivity (e.g., mutagenicity, genotoxicity, and arylhydrocarbon receptor) increased following water treatment, indicating that transformation products of water treatment may be a concern. Furthermore, several types of bioassays with the same endpoint were compared in this study, which could help guide the selection

  1. Bioassay for estimating the biogenic methane-generating potential of coal samples

    Science.gov (United States)

    Jones, E.J.P.; Voytek, M.A.; Warwick, P.D.; Corum, M.D.; Cohn, A.; Bunnell, J.E.; Clark, A.C.; Orem, W.H.

    2008-01-01

    Generation of secondary biogenic methane in coal beds is likely controlled by a combination of factors such as the bioavailability of coal carbon, the presence of a microbial community to convert coal carbon to methane, and an environment supporting microbial growth and methanogenesis. A set of treatments and controls was developed to bioassay the bioavailability of coal for conversion to methane under defined laboratory conditions. Treatments included adding a well-characterized consortium of bacteria and methanogens (enriched from modern wetland sediments) and providing conditions to support endemic microbial activity. The contribution of desorbed methane in the bioassays was determined in treatments with bromoethane sulfonic acid, an inhibitor of microbial methanogenesis. The bioassay compared 16 subbituminous coal samples collected from beds in Texas (TX), Wyoming (WY), and Alaska (AK), and two bituminous coal samples from Pennsylvania (PA). New biogenic methane was observed in several samples of subbituminous coal with the microbial consortium added, but endemic activity was less commonly observed. The highest methane generation [80????mol methane/g coal (56??scf/ton or 1.75??cm3/g)] was from a south TX coal sample that was collected from a non-gas-producing well. Subbituminous coals from the Powder River Basin, WY and North Slope Borough, AK contained more sorbed (original) methane than the TX coal sample and generated 0-23????mol/g (up to 16??scf/ton or 0.5??cm3/g) new biogenic methane in the bioassay. Standard indicators of thermal maturity such as burial depth, nitrogen content, and calorific value did not explain differences in biogenic methane among subbituminous coal samples. No original methane was observed in two bituminous samples from PA, nor was any new methane generated in bioassays of these samples. The bioassay offers a new tool for assessing the potential of coal for biogenic methane generation, and provides a platform for studying the

  2. Global behavior of gear system using mixed cell mapping

    Institute of Scientific and Technical Information of China (English)

    SHEN Yunwen; LIU Mengjun; DONG Haijun

    2004-01-01

    In some mechanical nonlinear systems, the transient motion will be undergoing a very long process and the attractor-basin boundaries are so complicated that some difficulties occur in analyzing the system global behavior. To solve this problem a mixed cell mapping method based on the point mapping and the principle of simple cell mapping is developed. The algorithm of the mixed cell mapping is studied. A dynamic model of a gear pair is established with the backlash, damping, transmission error and the time-varying stiffness taken into consideration. The global behaviors of this system are analyzed. The coexistence of the system attractors and the respective attractor-basin of each attractor with different parameters are obtained, thus laying a theoretical basis for improvement of the dynamic behaviors of gear system.

  3. AUTOMATED SYSTEM FOR CELL PHONES PRECISE DIRECTION FINDING

    Directory of Open Access Journals (Sweden)

    H. M. Gadzhiev

    2016-01-01

    Full Text Available It is proved that the navigation system use for direction finding of cell phones will greatly expand the functionality and services of telephone networks mobile operators. The direction-finding system advantages and creation of automated system of direction finding cell phones proposed, which significantly expand the possibilities of services of operators of cellular communication in the cell using standard computer equipment operators themselves have been revelead. The developed system has a modular design, which allows modifying software packages, expanding the functionality. The procedure and algorithm of direction finding, allowing piecewise linear approximation of the graph of the displacement of each subscriber is outlined. The developed direction-finding system application for statistical information and optimization of urban public services processing, choice of speed, route and other activities improving the quality of human life is proposed.

  4. Modeling, analysis and control of fuel cell hybrid power systems

    Science.gov (United States)

    Suh, Kyung Won

    Transient performance is a key characteristic of fuel cells, that is sometimes more critical than efficiency, due to the importance of accepting unpredictable electric loads. To fulfill the transient requirement in vehicle propulsion and portable fuel cell applications, a fuel cell stack is typically coupled with a battery through a DC/DC converter to form a hybrid power system. Although many power management strategies already exist, they all rely on low level controllers that realize the power split. In this dissertation we design controllers that realize various power split strategies by directly manipulating physical actuators (low level commands). We maintain the causality of the electric dynamics (voltage and current) and investigate how the electric architecture affects the hybridization level and the power management. We first establish the performance limitations associated with a stand-alone and power-autonomous fuel cell system that is not supplemented by an additional energy storage and powers all its auxiliary components by itself. Specifically, we examine the transient performance in fuel cell power delivery as it is limited by the air supplied by a compressor driven by the fuel cell itself. The performance limitations arise from the intrinsic coupling in the fluid and electrical domain between the compressor and the fuel cell stack. Feedforward and feedback control strategies are used to demonstrate these limitations analytically and with simulations. Experimental tests on a small commercial fuel cell auxiliary power unit (APU) confirm the dynamics and the identified limitations. The dynamics associated with the integration of a fuel cell system and a DC/DC converter is then investigated. Decentralized and fully centralized (using linear quadratic techniques) controllers are designed to regulate the power system voltage and to prevent fuel cell oxygen starvation. Regulating these two performance variables is a difficult task and requires a compromise

  5. A Cell-in-the-Loop Approach to Systems Modelling and Simulation of Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    James Marco

    2015-08-01

    Full Text Available This research is aligned with the engineering challenge of scaling-up individual battery cells into a complete energy storage system (ESS. Manufacturing tolerances, coupled with thermal gradients and the differential electrical loading of adjacent cells, can result in significant variations in the rate of cell degradation, energy distribution and ESS performance. The uncertain transition from cell to system often manifests itself in over-engineered, non-optimal ESS designs within both the transport and energy sectors. To alleviate these issues, the authors propose a novel model-based framework for cell-in-the-loop simulation (CILS in which a physical cell may be integrated within a complete model of an ESS and exercised against realistic electrical and thermal loads in real-time. This paper focuses on the electrical integration of both real and simulated cells within the CILS test environment. Validation of the CILS approach using real-world electric vehicle data is presented for an 18650 cell. The cell is integrated within a real-time simulation model of a series string of similar cells in a 4sp1 configuration. Results are presented that highlight the impact of cell variability (i.e., capacity and impedance on the energy available from the multi-cell system and the useable capacity of the physical cell.

  6. Hydrogen-fueled polymer electrolyte fuel cell systems for transportation.

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, R.; Doss, E.D.; Kumar, R.

    1998-10-19

    The performance of a polymer electrolyte fuel cell (PEFC) system that is fueled directly by hydrogen has been evaluated for transportation vehicles. The performance was simulated using a systems analysis code and a vehicle analysis code. The results indicate that, at the design point for a 50-kW PEFC system, the system efficiency is above 50%. The efficiency improves at partial load and approaches 60% at 40% load, as the fuel cell operating point moves to lower current densities on the voltage-current characteristic curve. At much lower loads, the system efficiency drops because of the deterioration in the performance of the compressor, expander, and, eventually, the fuel cell. The results also indicate that the PEFC system can start rapidly from ambient temperatures. Depending on the specific weight of the fuel cell (1.6 kg/kW in this case), the system takes up to 180s to reach its design operating conditions. The PEFC system has been evaluated for three mid-size vehicles: the 1995 Chrysler Sedan, the near-term Ford AIV (Aluminum Intensive Vehicle) Sable, and the future P2000 vehicle. The results show that the PEFC system can meet the demands of the Federal Urban Driving Schedule and the Highway driving cycles, for both warm and cold start-up conditions. The results also indicate that the P2000 vehicle can meet the fuel economy goal of 80 miles per gallon of gasoline (equivalent).

  7. WORKING PARK-FUEL CELL COMBINED HEAT AND POWER SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Allan Jones

    2003-09-01

    This report covers the aims and objectives of the project which was to design, install and operate a fuel cell combined heat and power (CHP) system in Woking Park, the first fuel cell CHP system in the United Kingdom. The report also covers the benefits that were expected to accrue from the work in an understanding of the full technology procurement process (including planning, design, installation, operation and maintenance), the economic and environmental performance in comparison with both conventional UK fuel supply and conventional CHP and the commercial viability of fuel cell CHP energy supply in the new deregulated energy markets.

  8. High Energy Density Regenerative Fuel Cell Systems for Terrestrial Applications

    Science.gov (United States)

    Burke, Kenneth A.

    1999-01-01

    Regenerative Fuel Cell System (RFCS) technology for energy storage has been a NASA power system concept for many years. Compared to battery-based energy storage systems, RFCS has received relatively little attention or resources for development because the energy density and electrical efficiency were not sufficiently attractive relative to advanced battery systems. Even today, RFCS remains at a very low technology readiness level (TRL of about 2 indicating feasibility has been demonstrated). Commercial development of the Proton Exchange Membrane (PEM) fuel cells for automobiles and other terrestrial applications and improvements in lightweight pressure vessel design to reduce weight and improve performance make possible a high energy density RFCS energy storage system. The results from this study of a lightweight RFCS energy storage system for a remotely piloted, solar-powered, high altitude aircraft indicate an energy density up to 790 w-h/kg with electrical efficiency of 53.4% is attainable. Such an energy storage system would allow a solar-powered aircraft to carry hundreds of kilograms of payload and remain in flight indefinitely for use in atmospheric research, earth observation, resource mapping. and telecommunications. Future developments in the areas of hydrogen and oxygen storage, pressure vessel design, higher temperature and higher- pressure fuel cell operation, unitized regenerative fuel cells, and commercial development of fuel cell technology will improve both the energy density and electrical efficiency of the RFCS.

  9. Review of Bioassays for Monitoring Fate and Transport ofEstrogenic Endocrine Disrupting Compounds in Water

    Energy Technology Data Exchange (ETDEWEB)

    CGCampbell@lbl.gov

    2004-01-30

    Endocrine disrupting compounds (EDCs) are recognizedcontaminants threatening water quality. Despite efforts in sourceidentification, few strategies exist for characterization or treatment ofthis environmental pollution. Given that there are numerous EDCs that cannegatively affect humans and wildlife, general screening techniques likebioassays and biosensors provide an essential rapid and intensiveanalysis capacity. Commonly applied bioassays include the ELISA and YESassays, but promising technologies include ER-CALUXa, ELRA, Endotecta,RIANA, and IR-bioamplification. Two biosensors, Endotecta and RIANA, arefield portable using non-cellular biological detection strategies.Environmental management of EDCs in water requires integration ofbiosensors and bioassays for monitoring and assessment.

  10. A portable power system using PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Long, E. [Ball Aerospace and Technologies Corp., Boulder, CO (United States)

    1997-12-31

    Ball has developed a proof-of-concept, small, lightweight, portable power system. The power system uses a proton exchange membrane (PEM) fuel cell stack, stored hydrogen, and atmospheric oxygen as the oxidant to generate electrical power. Electronics monitor the system performance to control cooling air and oxidant flow, and automatically do corrective measures to maintain performance. With the controller monitoring the system health, the system can operate in an ambient environment from 0 C to +50 C. The paper describes system testing, including load testing, thermal and humidity testing, vibration and shock testing, field testing, destructive testing of high-pressure gas tanks, and test results on the fuel cell power system, metal hydride hydrogen storage, high-pressure hydrogen gas storage, and chemical hydride hydrogen storage.

  11. THE PROGRAMED CELL DEATH REGULATORS OF ISOLATED MODEL SYSTEMS

    Directory of Open Access Journals (Sweden)

    D. V. Vatlitsov

    2016-06-01

    Full Text Available The technology evolution creates the prerequisites for the emergence of new informational concept and approaches to the formation of a fundamentally new principles of biological objects understanding. The aim was to study the activators of the programmed cell death in an isolated system model. Cell culture aging parameters were performed on flow cytometer. It had formed the theory that the changes in the concentrations of metal ions and increase their extracellular concentration had formed a negative gradient into the cells.regulation of cell death. It was shown that the metals ions concentrations.

  12. Synthetic biology outside the cell: linking computational tools to cell-free systems.

    Science.gov (United States)

    Lewis, Daniel D; Villarreal, Fernando D; Wu, Fan; Tan, Cheemeng

    2014-01-01

    As mathematical models become more commonly integrated into the study of biology, a common language for describing biological processes is manifesting. Many tools have emerged for the simulation of in vivo synthetic biological systems, with only a few examples of prominent work done on predicting the dynamics of cell-free synthetic systems. At the same time, experimental biologists have begun to study dynamics of in vitro systems encapsulated by amphiphilic molecules, opening the door for the development of a new generation of biomimetic systems. In this review, we explore both in vivo and in vitro models of biochemical networks with a special focus on tools that could be applied to the construction of cell-free expression systems. We believe that quantitative studies of complex cellular mechanisms and pathways in synthetic systems can yield important insights into what makes cells different from conventional chemical systems.

  13. Human fetal bone cells in delivery systems for bone engineering.

    Science.gov (United States)

    Tenorio, Diene M H; Scaletta, Corinne; Jaccoud, Sandra; Hirt-Burri, Nathalie; Pioletti, Dominique P; Jaques, Bertrand; Applegate, Lee Ann

    2011-11-01

    The aim of this study was to culture human fetal bone cells (dedicated cell banks of fetal bone derived from 14 week gestation femurs) within both hyaluronic acid gel and collagen foam, to compare the biocompatibility of both matrices as potential delivery systems for bone engineering and particularly for oral application. Fetal bone cell banks were prepared from one organ donation and cells were cultured for up to 4 weeks within hyaluronic acid (Mesolis®) and collagen foams (TissueFleece®). Cell survival and differentiation were assessed by cell proliferation assays and histology of frozen sections stained with Giemsa, von Kossa and ALP at 1, 2 and 4 weeks of culture. Within both materials, fetal bone cells could proliferate in three-dimensional structure at ∼70% capacity compared to monolayer culture. In addition, these cells were positive for ALP and von Kossa staining, indicating cellular differentiation and matrix production. Collagen foam provides a better structure for fetal bone cell delivery if cavity filling is necessary and hydrogels would permit an injectable technique for difficult to treat areas. In all, there was high biocompatibility, cellular differentiation and matrix deposition seen in both matrices by fetal bone cells, allowing for easy cell delivery for bone stimulation in vivo. Copyright © 2011 John Wiley & Sons, Ltd.

  14. Bovine myoblast cell production in a microcarriers-based system.

    Science.gov (United States)

    Verbruggen, Sanne; Luining, Daan; van Essen, Anon; Post, Mark J

    2017-05-03

    For several tissue engineering applications, in particular food products, scaling up culture of mammalian cells is a necessary task. The prevailing method for large scale cell culture is the stirred tank bioreactor where anchor dependent cells are grown on microcarriers suspended in medium. We use a spinner flask system with cells grown on microcarriers to optimize the growth of bovine myoblasts. Freshly isolated primary cells were seeded on microcarriers (Synthemax(®), CellBIND(®) and Cytodex(®) 1 MCs). In this study, we provide proof of principle that bovine myoblasts can be cultured on microcarriers. No major differences were observed between the three tested microcarriers, except that sparsely populated beads were more common with CellBIND(®) and Synthemax(®) II beads suggesting a slower initiation of exponential growth than on Cytodex(®). We also provide direct evidence that bovine myoblasts display bead-to-bead transfer. A remarkable pick up of growth was observed by adding new MCs. Bovine myoblasts seem to behave like human mesenchymal stem cells. Thus, our results provide valuable data to further develop and scale-up the production of bovine myoblasts as a prerequisite for efficient and cost-effective development of cultured meat. Applicability to other anchorage dependent cells can extend the importance of these results to cell culture for medical tissue engineering or cell therapy.

  15. Hematopoietic stem cells and the aging hematopoietic system.

    Science.gov (United States)

    Gazit, Roi; Weissman, Irving L; Rossi, Derrick J

    2008-10-01

    The etiology of the age-associated pathophysiological changes of the hematopoietic system including the onset of anemia, diminished adaptive immune competence, and myelogenous disease development are underwritten by the loss of normal homeostatic control. As tissue and organ homeostasis in adults is primarily mediated by the activity of stem and progenitor cells, it has been suggested that the imbalances accompanying aging of the hematopoietic system may stem from alterations in the prevalence and/or functional capacity of hematopoietic stem cells (HSCs) and progenitors. In this review, we examine evidence implicating a role for stem cells in the aging of the hematopoietic system, and focus on the mechanisms suggested to contribute to stem cell aging.

  16. Engineered cells as biosensing systems in biomedical analysis.

    Science.gov (United States)

    Raut, Nilesh; O'Connor, Gregory; Pasini, Patrizia; Daunert, Sylvia

    2012-04-01

    Over the past two decades there have been great advances in biotechnology, including use of nucleic acids, proteins, and whole cells to develop a variety of molecular analytical tools for diagnostic, screening, and pharmaceutical applications. Through manipulation of bacterial plasmids and genomes, bacterial whole-cell sensing systems have been engineered that can serve as novel methods for analyte detection and characterization, and as more efficient and cost-effective alternatives to traditional analytical techniques. Bacterial cell-based sensing systems are typically sensitive, specific and selective, rapid, easy to use, low-cost, and amenable to multiplexing, high-throughput, and miniaturization for incorporation into portable devices. This critical review is intended to provide an overview of available bacterial whole-cell sensing systems for assessment of a variety of clinically relevant analytes. Specifically, we examine whole-cell sensing systems for detection of bacterial quorum sensing molecules, organic and inorganic toxic compounds, and drugs, and for screening of antibacterial compounds for identification of their mechanisms of action. Methods used in the design and development of whole-cell sensing systems are also reviewed.

  17. Stem cell therapy for central nerve system injuries:glial cells hold the key

    Institute of Scientific and Technical Information of China (English)

    Li Xiao; Chikako Saiki; Ryoji Ide

    2014-01-01

    Mammalian adult central nerve system (CNS) injuries are devastating because of the intrinsic dififculties for effective neuronal regeneration. The greatest problem to be overcome for CNS recovery is the poor regeneration of neurons and myelin-forming cells, oligodendrocytes. En-dogenous neural progenitors and transplanted exogenous neuronal stem cells can be the source for neuronal regeneration. However, because of the harsh local microenvironment, they usually have very low efifcacy for functional neural regeneration which cannot compensate for the loss of neurons and oligodendrocytes. Glial cells (including astrocytes, microglia, oligodendrocytes and NG2 glia) are the majority of cells in CNS that provide support and protection for neurons. Inside the local microenvironment, glial cells largely inlfuence local and transplanted neural stem cells survival and fates. This review critically analyzes current ifnding of the roles of glial cells in CNS regeneration, and highlights strategies for regulating glial cells’ behavior to create a permis-sive microenvironment for neuronal stem cells.

  18. Muscle Stem Cells: A Model System for Adult Stem Cell Biology.

    Science.gov (United States)

    Cornelison, Ddw; Perdiguero, Eusebio

    2017-01-01

    Skeletal muscle stem cells, originally termed satellite cells for their position adjacent to differentiated muscle fibers, are absolutely required for the process of skeletal muscle repair and regeneration. In the last decade, satellite cells have become one of the most studied adult stem cell systems and have emerged as a standard model not only in the field of stem cell-driven tissue regeneration but also in stem cell dysfunction and aging. Here, we provide background in the field and discuss recent advances in our understanding of muscle stem cell function and dysfunction, particularly in the case of aging, and the potential involvement of muscle stem cells in genetic diseases such as the muscular dystrophies.

  19. Trypanocidal Activity of Smallanthus sonchifolius: Identification of Active Sesquiterpene Lactones by Bioassay-Guided Fractionation

    Directory of Open Access Journals (Sweden)

    F. M. Frank

    2013-01-01

    Full Text Available In order to find novel plant-derived biologically active compounds against Trypanosoma cruzi, we isolated, from the organic extract of Smallanthus sonchifolius, the sesquiterpene lactones enhydrin (1, uvedalin (2, and polymatin B (3 by bioassay-guided fractionation technique. These compounds showed a significant trypanocidal activity against the epimastigote forms of the parasite with IC50 values of 0.84 μM (1, 1.09 μM (2, and 4.90 μM (3. After a 24 h treatment with 10 μg/mL of enhydrin or uvedalin, parasites were not able to recover their replication rate. Compounds 1 and 2 showed IC50 values of 33.4 μM and 25.0 μM against T. cruzi trypomastigotes, while polymatin B was not active. When the three compounds were tested against the intracellular forms of T. cruzi, they were able to inhibit the amastigote replication with IC50 of 5.17 μM, 3.34 μM, and 9.02 μM for 1, 2, and 3, respectively. The cytotoxicity of the compounds was evaluated in Vero cells obtaining CC50 values of 46.5 μM (1, 46.8 μM (2, and 147.3 μM (3 and the selectivity index calculated. According to these results, enhydrin and uvedalin might have potentials as agents against Chagas disease and could serve as lead molecules to develop new drugs.

  20. Sharp-bounded zones link to the effect in planar chromatography-bioassay-mass spectrometry.

    Science.gov (United States)

    Klingelhöfer, Ines; Morlock, Gertrud E

    2014-09-19

    The traditional direct bioautography workflow was substantially altered to yield narrow, sharp-bounded effective zones. For the first time, microorganisms quantitatively detected the single effective compounds in complex samples, separated in parallel on a planar chromatogram. This novel effect-directed workflow was demonstrated and optimized for the discovery of endocrine disrupting compounds (EDCs) reacting with the human estrogen receptor down to the femtogram-per-zone range, like 250fg/zone for 17β-estradiol (E2). For application volumes of up to 0.5mL, estrogen-effective compounds could directly be detected in complex samples at the ultratrace level (ng/kg-range). Sharp-bounded, estrogen-effective zones discovered were further characterized by direct elution into the mass spectrometer. HPTLC-ESI-MS mass spectra of (xeno)estrogens were shown for the first time. Owed to the substantially improved zone resolution, compound assignment was reliable and a comparison of the receptor affinities was conducted for six (xeno)estrogens. Also, long-term cell cultivation of the genetically modified yeast was demonstrated on the HPTLC plate. The optimized HPTLC-pYES workflow was proven for real food samples, exemplarily shown for beer. The general applicability of generating sharp-bounded zones was successfully proven by transfer of the fundamentally improved workflow to the Bacillus subtilis bioassay used for discovery of antibiotics in plant extracts. This new era of quantitative direct bioautography in combination with mass spectrometry will accelerate the scientific understanding in a wide application field via the streamlined access to fast and reliable information on effective components in complex samples.

  1. Allelopathy in a leguminous mangrove plant, Derris indica: protoplast co-culture bioassay and rotenone effect.

    Science.gov (United States)

    Inoue, Aya; Mori, Daisuke; Minagawa, Reiko; Fujii, Yoshiharu; Sasamoto, Hamako

    2015-05-01

    To investigate allelopathic activity of a leguminous mangrove plant, Derris indica, the 'Protoplasts Co-culture Method' for bioassay of allelopathy was developed using suspension culture. A suspension culture was induced from immature seed and sub-cultured in Murashige and Skoog's (MS) basal medium containing 10 μM each of 2,4-dichlorophenoxyacetic acid (2,4-D) and 6-benzyladenine (BA). The protoplasts were isolated using the separate wells method with 2% each of Cellulase RS, Driselase 20 and Macerozyme R10 in 0.4 M mannitol solution. Protoplast cultures of D. indica revealed that high concentrations of cytokinins, BA and thidiazuron, were effective for cell divisions. The co-cultures of D. indica protoplasts with recipient lettuce protoplasts using 96 multi-well culture plates were performed in MS basal medium containing 0.4 M mannitol solution and 1 μM 2,4-D and 0.1 μM BA. The protoplast density of D. indica used in co-culturing varied from 6 x 10(3) - 10(5) / mL. Very strong inhibitory allelopathic effects of D. indica protoplasts on lettuce protoplast growth were found. A similar strong inhibitory allelopathic activity of dried young leaves on lettuce seedling growth was also observed by using the sandwich method. Rotenone, which is a component of Derris root, dissolved in DMSO, was highly inhibitory on the growth of lettuce protoplasts in culture and this could be one of the causes of the strong allelopathic activity of D. indica.

  2. Changes in cell adhesion molecule expression on T cells associated with systemic virus infection

    DEFF Research Database (Denmark)

    Andersson, E C; Christensen, Jan Pravsgaard; Marker, O

    1994-01-01

    Virus-induced changes in adhesion molecule expression on T cells were investigated to understand how antiviral effector cells migrate into infectious foci. FACS analysis revealed that after systemic infection with lymphocytic choriomeningitis virus a number of cell adhesion molecules, including VLA...... analyses showed that T cells with a changed adhesion molecule profile tended to present other cell surface markers indicating a state of cellular activation, e.g., IL-2R, and included all virus-specific CTL effectors. Regarding the physiologic significance of these changes in adhesion molecule expression...

  3. Fuel quality issues in stationary fuel cell systems.

    Energy Technology Data Exchange (ETDEWEB)

    Papadias, D.; Ahmed, S.; Kumar, R. (Chemical Sciences and Engineering Division)

    2012-02-07

    Fuel cell systems are being deployed in stationary applications for the generation of electricity, heat, and hydrogen. These systems use a variety of fuel cell types, ranging from the low temperature polymer electrolyte fuel cell (PEFC) to the high temperature solid oxide fuel cell (SOFC). Depending on the application and location, these systems are being designed to operate on reformate or syngas produced from various fuels that include natural gas, biogas, coal gas, etc. All of these fuels contain species that can potentially damage the fuel cell anode or other unit operations and processes that precede the fuel cell stack. These detrimental effects include loss in performance or durability, and attenuating these effects requires additional components to reduce the impurity concentrations to tolerable levels, if not eliminate the impurity entirely. These impurity management components increase the complexity of the fuel cell system, and they add to the system's capital and operating costs (such as regeneration, replacement and disposal of spent material and maintenance). This project reviewed the public domain information available on the impurities encountered in stationary fuel cell systems, and the effects of the impurities on the fuel cells. A database has been set up that classifies the impurities, especially in renewable fuels, such as landfill gas and anaerobic digester gas. It documents the known deleterious effects on fuel cells, and the maximum allowable concentrations of select impurities suggested by manufacturers and researchers. The literature review helped to identify the impurity removal strategies that are available, and their effectiveness, capacity, and cost. A generic model of a stationary fuel-cell based power plant operating on digester and landfill gas has been developed; it includes a gas processing unit, followed by a fuel cell system. The model includes the key impurity removal steps to enable predictions of impurity breakthrough

  4. Automotive Fuel Processor Development and Demonstration with Fuel Cell Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nuvera Fuel Cells

    2005-04-15

    The potential for fuel cell systems to improve energy efficiency and reduce emissions over conventional power systems has generated significant interest in fuel cell technologies. While fuel cells are being investigated for use in many applications such as stationary power generation and small portable devices, transportation applications present some unique challenges for fuel cell technology. Due to their lower operating temperature and non-brittle materials, most transportation work is focusing on fuel cells using proton exchange membrane (PEM) technology. Since PEM fuel cells are fueled by hydrogen, major obstacles to their widespread use are the lack of an available hydrogen fueling infrastructure and hydrogen's relatively low energy storage density, which leads to a much lower driving range than conventional vehicles. One potential solution to the hydrogen infrastructure and storage density issues is to convert a conventional fuel such as gasoline into hydrogen onboard the vehicle using a fuel processor. Figure 2 shows that gasoline stores roughly 7 times more energy per volume than pressurized hydrogen gas at 700 bar and 4 times more than liquid hydrogen. If integrated properly, the fuel processor/fuel cell system would also be more efficient than traditional engines and would give a fuel economy benefit while hydrogen storage and distribution issues are being investigated. Widespread implementation of fuel processor/fuel cell systems requires improvements in several aspects of the technology, including size, startup time, transient response time, and cost. In addition, the ability to operate on a number of hydrocarbon fuels that are available through the existing infrastructure is a key enabler for commercializing these systems. In this program, Nuvera Fuel Cells collaborated with the Department of Energy (DOE) to develop efficient, low-emission, multi-fuel processors for transportation applications. Nuvera's focus was on (1) developing fuel

  5. FPGA based Control of a Production Cell System

    NARCIS (Netherlands)

    Groothuis, Marcel A.; Zuijlen, van Jasper J.P.; Broenink, Jan F.

    2008-01-01

    Most motion control systems for mechatronic systems are implemented on digital computers. In this paper we present an FPGA based solution implemented on a low cost Xilinx Spartan III FPGA. A Production Cell setup with multiple parallel operating units is chosen as a test case. The embedded control s

  6. Establishment of sorghum cell suspension culture system for ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-03-18

    Mar 18, 2008 ... Total soluble proteins (TSP) and culture filtrate (CF) proteins were extracted from the cell culture ... Even though. Arabidopsis provides for an excellent model system for .... stained, destained and imaged using a Molecular Imager PharosFX ... system, are dynamic and heterogeneous, being com- posed of a ...

  7. Fuel cells and electrolysers in future energy systems

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad

    in individual households are not suitable for renewable en‐ ergy systems. This is due to the high losses associated with the conversion to hydrogen and the lower regulation abilities of such systems. In a short‐term perspective, natural gas mi‐ cro‐fuel cell CHP may spread the CHP production more than locally...

  8. Flexible UL/DL in Small Cell TDD Systems

    DEFF Research Database (Denmark)

    Catania, Davide; Gatnau, Marta; Cattoni, Andrea Fabio;

    2015-01-01

    Time division duplex (TDD) systems offer a substantial amount of freedom to deal with downlink (DL) and uplink (UL) traffic asymmetries. Most TDD-based systems define either multiple static configurations or adaptive approaches to deal with such asymmetries. Our envisioned 5G concept embraces......, and for multi-cell scenarios where both DL and UL traffic are present....

  9. Regulation of stem cells in the zebra fish hematopoietic system.

    Science.gov (United States)

    Huang, H-T; Zon, L I

    2008-01-01

    Hematopoietic stem cells (HSCs) have been used extensively as a model for stem cell biology. Stem cells share the ability to self-renew and differentiate into multiple cell types, making them ideal candidates for tissue regeneration or replacement therapies. Current applications of stem cell technology are limited by our knowledge of the molecular mechanisms that control their proliferation and differentiation, and various model organisms have been used to fill these gaps. This chapter focuses on the contributions of the zebra fish model to our understanding of stem cell regulation within the hematopoietic system. Studies in zebra fish have been valuable for identifying new genetic and signaling factors that affect HSC formation and development with important implications for humans, and new advances in the zebra fish toolbox will allow other aspects of HSC behavior to be investigated as well, including migration, homing, and engraftment.

  10. A novel bioassay for high-throughput screening microorganisms with N-acyl homoserine lactone degrading activity.

    Science.gov (United States)

    Liu, Pengfu; Gao, Yang; Huang, Wei; Shao, Zongze; Shi, Jiping; Liu, Ziduo

    2012-05-01

    A novel biosensor strain (Escherichia coli ALM403) that responded to N-acyl homoserine lactone (AHL) was constructed using a luxR-Plux cassette as a regulatory sequence and β-mannanase as a reporter gene. Dinitrosalicylic acid method was used to detect the response of the sensor strain to N-acyl homoserine lactone. By investigating the response to a range of concentrations of N-β-oxooctanoyl-L-homoserine lactone (OOHL), it was demonstrated that the expression of mannanase in E. coli ALM403 could be greatly enhanced by OOHL and resulted in an assayable phenotype. A high-throughput screening approach was developed to isolate AHL-degrading microorganisms, and a marine Halomonas sp. S66-4 showing a marked AHL-degrading ability was successfully isolated. In conclusion, the bioassay system provided a simple and efficient approach to isolate AHL-degrading bacteria.

  11. Bringing fuel cells to reality and reality to fuel cells: A systems perspective on the use of fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Saxe, Maria

    2008-10-15

    The hopes and expectations on fuel cells are high and sometimes unrealistically positive. However, as an emerging technology, much remains to be proven and the proper use of the technology in terms of suitable applications, integration with society and extent of use is still under debate. This thesis is a contribution to the debate, presenting results from two fuel cell demonstration projects, looking into the introduction of fuel cells on the market, discussing the prospects and concerns for the near-term future and commenting on the potential use in a future sustainable energy system. Bringing fuel cells to reality implies finding near-term niche applications and markets where fuel cell systems may be competitive. In a sense fuel cells are already a reality as they have been demonstrated in various applications world-wide. However, in many of the envisioned applications fuel cells are far from being competitive and sometimes also the environmental benefit of using fuel cells in a given application may be questioned. Bringing reality to fuel cells implies emphasising the need for realistic expectations and pointing out that the first markets have to be based on the currently available technology and not the visions of what fuel cells could be in the future. The results from the demonstration projects show that further development and research on especially the durability for fuel cell systems is crucial and a general recommendation is to design the systems for high reliability and durability rather than striving towards higher energy efficiencies. When sufficient reliability and durability are achieved, fuel cell systems may be introduced in niche markets where the added values presented by the technology compensate for the initial high cost

  12. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Faress Rahman; Nguyen Minh

    2004-01-04

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

  13. Fuel-cell-system and its components for mobile application

    Energy Technology Data Exchange (ETDEWEB)

    Venturi, Massimo [NuCellSys GmbH, Kirchheim/Teck-Nabern (Germany)

    2013-06-01

    In the past years the development of fuel cell systems for mobile applications has made significant progress in power density, performance and robustness. For a successful market introduction the cost of the fuel system powertrain needs to be competitive to diesel hybrid engine. The current development activities are therefore focusing on cost reduction. There are 3 major areas for cost reduction: functional integration, materials and design, supplier competitiveness and volume. Today unique fuel cell system components are developed by single suppliers, which lead to a monopoly. In the future the components will be developed at multiple suppliers to achieve a competitor situation, which will further reduce the component cost. Using all these cost reduction measures the fuel cell system will become a competitive alternative drive train. (orig.)

  14. Peroxisystem: harnessing systems cell biology to study peroxisomes.

    Science.gov (United States)

    Schuldiner, Maya; Zalckvar, Einat

    2015-04-01

    In recent years, high-throughput experimentation with quantitative analysis and modelling of cells, recently dubbed systems cell biology, has been harnessed to study the organisation and dynamics of simple biological systems. Here, we suggest that the peroxisome, a fascinating dynamic organelle, can be used as a good candidate for studying a complete biological system. We discuss several aspects of peroxisomes that can be studied using high-throughput systematic approaches and be integrated into a predictive model. Such approaches can be used in the future to study and understand how a more complex biological system, like a cell and maybe even ultimately a whole organism, works. © 2015 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.

  15. [Microglial cells and development of the embryonic central nervous system].

    Science.gov (United States)

    Legendre, Pascal; Le Corronc, Hervé

    2014-02-01

    Microglia cells are the macrophages of the central nervous system with a crucial function in the homeostasis of the adult brain. However, recent studies showed that microglial cells may also have important functions during early embryonic central nervous system development. In this review we summarize recent works on the extra embryonic origin of microglia, their progenitor niche, the pattern of their invasion of the embryonic central nervous system and on interactions between embryonic microglia and their local environment during invasion. We describe microglial functions during development of embryonic neuronal networks, including their roles in neurogenesis, in angiogenesis and developmental cell death. These recent discoveries open a new field of research on the functions of neural-microglial interactions during the development of the embryonic central nervous system.

  16. System level modeling and component level control of fuel cells

    Science.gov (United States)

    Xue, Xingjian

    This dissertation investigates the fuel cell systems and the related technologies in three aspects: (1) system-level dynamic modeling of both PEM fuel cell (PEMFC) and solid oxide fuel cell (SOFC); (2) condition monitoring scheme development of PEM fuel cell system using model-based statistical method; and (3) strategy and algorithm development of precision control with potential application in energy systems. The dissertation first presents a system level dynamic modeling strategy for PEM fuel cells. It is well known that water plays a critical role in PEM fuel cell operations. It makes the membrane function appropriately and improves the durability. The low temperature operating conditions, however, impose modeling difficulties in characterizing the liquid-vapor two phase change phenomenon, which becomes even more complex under dynamic operating conditions. This dissertation proposes an innovative method to characterize this phenomenon, and builds a comprehensive model for PEM fuel cell at the system level. The model features the complete characterization of multi-physics dynamic coupling effects with the inclusion of dynamic phase change. The model is validated using Ballard stack experimental result from open literature. The system behavior and the internal coupling effects are also investigated using this model under various operating conditions. Anode-supported tubular SOFC is also investigated in the dissertation. While the Nernst potential plays a central role in characterizing the electrochemical performance, the traditional Nernst equation may lead to incorrect analysis results under dynamic operating conditions due to the current reverse flow phenomenon. This dissertation presents a systematic study in this regard to incorporate a modified Nernst potential expression and the heat/mass transfer into the analysis. The model is used to investigate the limitations and optimal results of various operating conditions; it can also be utilized to perform the

  17. Bioassay-derived dioxin equivalent concentrations in gonads and livers of the Atlantic cod females from the Baltic Sea

    NARCIS (Netherlands)

    Dabrowska, H.; Murk, A.J.; Berg, van den J.H.J.

    2010-01-01

    The DR-H4IIE.Luc bioassay is based on the ability of dioxin and dioxin-like contaminants to activate the AhR and its signal transduction pathway, a mechanism through which these contaminants elicit their toxic effects. The bioassay was used to examine the total dioxin-equivalent (TEQ) toxicity in go

  18. System for tracking transplanted limbal epithelial stem cells in the treatment of corneal stem cell deficiency

    Science.gov (United States)

    Boadi, J.; Sangwal, V.; MacNeil, S.; Matcher, S. J.

    2015-03-01

    The prevailing hypothesis for the existence and healing of the avascular corneal epithelium is that this layer of cells is continually produced by stem cells in the limbus and transported onto the cornea to mature into corneal epithelium. Limbal Stem Cell Deficiency (LSCD), in which the stem cell population is depleted, can lead to blindness. LSCD can be caused by chemical and thermal burns to the eye. A popular treatment, especially in emerging economies such as India, is the transplantation of limbal stem cells onto damaged limbus with hope of repopulating the region. Hence regenerating the corneal epithelium. In order to gain insights into the success rates of this treatment, new imaging technologies are needed in order to track the transplanted cells. Optical Coherence Tomography (OCT) is well known for its high resolution in vivo images of the retina. A custom OCT system has been built to image the corneal surface, to investigate the fate of transplanted limbal stem cells. We evaluate two methods to label and track transplanted cells: melanin labelling and magneto-labelling. To evaluate melanin labelling, stem cells are loaded with melanin and then transplanted onto a rabbit cornea denuded of its epithelium. The melanin displays strongly enhanced backscatter relative to normal cells. To evaluate magneto-labelling the stem cells are loaded with magnetic nanoparticles (20-30nm in size) and then imaged with a custom-built, magneto-motive OCT system.

  19. Bioassay of environmental nickel dusts in a particle feeding ciliate

    Energy Technology Data Exchange (ETDEWEB)

    Smith-Sonneborn, J.; Leibovitz, B.; Donathan, R.; Fisher, G.L.

    1986-01-01

    The ciliated protozoan Paramecium was used to quantitate cytotoxic and genotoxic effects of nickel particles. The biological response of these eukaryotic cells to pure nickel powder and iron-nickel powder was assayed and compared to the effect of the inorganic carcinogen nickel subsulfide. Cytotoxicity was determined by the percent survival of treated cells. Genotoxicity was indicated by significant increases in the fraction of nonviable offspring (presumed index of lethal mutations) found after self-fertilization (autogamy) in parents from the nickel-treated versus neutral control groups. The cells were exposed to the dusts and the biological effects determined. Only the nickel subsulfide consistently showed a significant increase in offspring lethality.

  20. Tip cell-derived RTK signaling initiates cell movements in the Drosophila stomatogastric nervous system anlage.

    Science.gov (United States)

    González-Gaitán, M; Jäckle, H

    2000-10-01

    The stomatogastric nervous system (SNS) of Drosophila is a simply organized neural circuitry that innervates the anterior enteric system. Unlike the central and the peripheral nervous systems, the SNS derives from a compact epithelial anlage in which three invagination centers, each giving rise to an invagination fold headed by a tip cell, are generated. Tip cell selection involves lateral inhibition, a process in which Wingless (Wg) activity adjusts the range of Notch signaling. Here we show that RTK signaling mediated by the Drosophila homolog of the epidermal growth factor receptor, DER, plays a key role in two consecutive steps during early SNS development. Like Wg, DER signaling participates in adjusting the range of Notch-dependent lateral inhibition during tip cell selection. Subsequently, tip cells secrete the DER ligand Spitz and trigger local RTK signaling, which initiates morphogenetic movements resulting in the tip cell-directed invaginations within the SNS anlage.

  1. Results of long-term carcinogenicity bioassays on Coca-Cola administered to Sprague-Dawley rats.

    Science.gov (United States)

    Belpoggi, Fiorella; Soffritti, Morando; Tibaldi, Eva; Falcioni, Laura; Bua, Luciano; Trabucco, Francesca

    2006-09-01

    Coca-Cola was invented in May 1886 in Atlanta, Georgia by a pharmacist who, by accident or design, mixed carbonated water with the syrup of sugar, phosphoric acid, caffeine, and other natural flavors to create what is known as "the world's favorite soft drink." Coca-Cola is currently sold in more than 200 countries and in early 2000, the company sold its 10 billionth unit case of Coca-Cola branded products. Given the worldwide consumption of Coca-Cola, a project of experimental bioassays to study its long-term effects when administered as substitute for drinking water on male and female Sprague-Dawley rats was planned and executed. The objective of the project was to study whether and how long-term consumption of Coca-Cola affects the basic tumorigram of test animals. The bioassays were performed on rats beginning at different ages, namely: (a) on males and females exposed since embryonic life or from 7 weeks of age; and (b) on males and females exposed from 30, 39, or 55 weeks of age. Overall, the project included 1999 rats. During the biophase, data were collected on fluid and feed consumption, body weight, and survival. Animals were kept under observation until spontaneous death and underwent complete necropsy. The results indicate: (a) an increase in body weight in all treated animals; (b) a statistically significant increase of the incidence in females, both breeders and offspring, bearing malignant mammary tumors; (c) a statistically significant increase in the incidence of exocrine ademonas of the pancreas in both male and female breeders and offspring; and (d) an increased incidence, albeit not statistically significant, of pancreatic islet cell carcinomas in females, a malignant tumor which occurs very rarely in our historical controls. On the basis of the results of this study, excessive consumption of regular soft-drinks should be generally discouraged, in particular for children and adolescents.

  2. Reduction of Ca2+-transporting systems in memory T cells.

    Science.gov (United States)

    Sigova, A A; Dedkova, E N; Zinchenko, V P; Litvinov, I S

    2000-01-01

    Antigen-specific B and T lymphocytes make up the material grounds of immune memory, their main functional distinction from the so-called "naive" cells is due to the rapid and enhanced response to the antigen-pathogen. An essential distinction between the memory and naive T cells is different sensitivity of these two subpopulations of T lymphocytes to Ca2+-ionophores. Comparative analysis of Ca2+ responses of the immune memory T lymphocytes and naive T cells of mouse CBA/J line to the addition of Ca2+-mobilizing agents concanavalin A, thapsigargin, and ionomycin was carried out. These compounds in concentrations increasing [Ca2+]i in naive cells had no effect on [Ca2+]i in memory cells. Thus, the Ca2+ entrance into memory cells was not activated by exhaustion of intracellular resources. Estimation of intracellular resources of Ca2+, mobilized by ionomycin and thapsigargin in Ca2+ free medium has shown the absence in memory T cells of the intracellular Ca2+ pool, which may be one of factors of their resistance to ionophores. Reduction of the system of Ca2+ influx into memory T cells was shown using the SH-reagent thimerosal. Memory T cells appear to be resistant to "Ca2+ -paradox." Their incubation with 0.5 mM EDTA in the presence or absence of Ca2+ -mobilizing compounds followed by addition of 2 mM CaCl2 did not result in induction of Ca2+ influx into these cells.

  3. Development of bioengineering system for stem cell proliferation

    Science.gov (United States)

    Park, H. S.; Shah, R.; Shah, C.

    2016-08-01

    From last decades, intensive research in the field of stem cells proliferation had been promoted due to the unique property of stem cells to self-renew themselves into multiples and has potential to replicate into an organ or tissues and so it's highly demanding though challenging. Bioreactor, a mechanical device, works as a womb for stem cell proliferation by providing nutritious environment for the proper growth of stem cells. Various factors affecting stem cells growth are the bioreactor mechanism, feeding of continuous nutrients, healthy environment, etc., but it always remains a challenge for controlling biological parameters. The present paper unveils the design of mechanical device commonly known as bioreactor in tissues engineering and biotech field, use for proliferation of stem cells and imparts the proper growing condition for stem cells. This high functional bioreactor provides automation mixing of cell culture and stem cells. This design operates in conjunction with mechanism of reciprocating motion. Compare to commercial bioreactors, this proposed design is more convenient, easy to operate and less maintenance is required as bioreactor culture bag is made of polyethylene which is single use purpose. Development of this bioengineering system will be beneficial for better growth and expansion of stem cell

  4. Microfluidic single-cell analysis for systems immunology.

    Science.gov (United States)

    Junkin, Michael; Tay, Savaş

    2014-04-07

    The immune system constantly battles infection and tissue damage, but exaggerated immune responses lead to allergies, autoimmunity and cancer. Discrimination of self from foreign and the fine-tuning of immunity are achieved by information processing pathways, whose regulatory mechanisms are little understood. Cell-to-cell variability and stochastic molecular interactions result in diverse cellular responses to identical signaling inputs, casting doubt on the reliability of traditional population-averaged analyses. Furthermore, dynamic molecular and cellular interactions create emergent properties that change over multiple time scales. Understanding immunity in the face of complexity and noisy dynamics requires time-dependent analysis of single-cells in a proper context. Microfluidic systems create precisely defined microenvironments by controlling fluidic and surface chemistries, feature sizes, geometries and signal input timing, and thus enable quantitative multi-parameter analysis of single cells. Such qualities allow observable dynamic environments approaching in vivo levels of biological complexity. Seamless parallelization of functional units in microfluidic devices allows high-throughput measurements, an essential feature for statistically meaningful analysis of naturally variable biological systems. These abilities recapitulate diverse scenarios such as cell-cell signaling, migration, differentiation, antibody and cytokine production, clonal selection, and cell lysis, thereby enabling accurate and meaningful study of immune behaviors in vitro.

  5. Status of commercial phosphoric acid fuel cell system development

    Science.gov (United States)

    Warshay, M.; Prokopius, P. R.; Simons, S. N.; King, R. B.

    1981-01-01

    A review of the current commercial phosphoric acid fuel cell system development efforts is presented. In both the electric utility and on-site integrated energy system applications, reducing cost and increasing reliability are important. The barrier to the attainment of these goals has been materials. The differences in approach among the three major participants are their technological features, including electrodes, matrices, intercell cooling, bipolar/separator plates, electrolyte management, fuel selection and system design philosophy.

  6. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    David Deangelis; Rich Depuy; Debashis Dey; Georgia Karvountzi; Nguyen Minh; Max Peter; Faress Rahman; Pavel Sokolov; Deliang Yang

    2004-09-30

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale up strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.

  7. A novel system for xylem cell differentiation in Arabidopsis thaliana.

    Science.gov (United States)

    Kondo, Yuki; Fujita, Takashi; Sugiyama, Munetaka; Fukuda, Hiroo

    2015-04-01

    During vascular development, procambial and cambial cells give rise to xylem and phloem cells. Because the vascular tissue is deeply embedded, it has been difficult to analyze the processes of vascular development in detail. Here, we establish a novel in vitro experimental system in which vascular development is induced in Arabidopsis thaliana leaf-disk cultures using bikinin, an inhibitor of glycogen synthase kinase 3 proteins. Transcriptome analysis reveals that mesophyll cells in leaf disks synchronously turn into procambial cells and then differentiate into tracheary elements. Leaf-disk cultures from plants expressing the procambial cell markers TDR(pro):GUS and TDR(pro):YFP can be used for spatiotemporal visualization of procambial cell formation. Further analysis with the tdr mutant and TDIF (tracheary element differentiation inhibitory factor) indicates that the key signaling TDIF-TDR-GSK3s regulates xylem differentiation in leaf-disk cultures. This new culture system can be combined with analysis using the rich material resources for Arabidopsis including cell-marker lines and mutants, thus offering a powerful tool for analyzing xylem cell differentiation. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  8. Inhibition of Oxidative Stress and Lipid Peroxidation by Anthocyanins from Defatted Canarium odontophyllum Pericarp and Peel Using In Vitro Bioassays

    Science.gov (United States)

    Khoo, Hock Eng; Azlan, Azrina; Ismail, Amin; Abas, Faridah; Hamid, Muhajir

    2014-01-01

    Canarium odontophyllum, also known as CO, is a highly nutritious fruit. Defatted parts of CO fruit are potent sources of nutraceutical. This study aimed to determine oxidative stress and lipid peroxidation effects of defatted CO pericarp and peel extracts using in vitro bioassays. Cell cytotoxic effect of the CO pericarp and peel extracts were also evaluated using HUVEC and Chang liver cell lines. The crude extracts of defatted CO peel and pericarp showed cytoprotective effects in t-BHP and 40% methanol-induced cell death. The crude extracts also showed no toxic effect to Chang liver cell line. Using CD36 ELISA, NAD+ and LDL inhibition assays, inhibition of oxidative stress were found higher in the crude extract of defatted CO peel compared to the pericarp extract. Hemoglobin and LDL oxidation assays revealed both crude extracts had significantly reduced lipid peroxidation as compared to control. TBARS values among defatted CO pericarp, peel, and cyanidin-3-glucoside showed no significant differences for hemoglobin and LDL oxidation assays. The protective effects of defatted CO parts, especially its peel is related to the presence of high anthocyanin that potentially offers as a pharmaceutical ingredient for cardioprotection. PMID:24416130

  9. Inhibition of oxidative stress and lipid peroxidation by anthocyanins from defatted Canarium odontophyllum pericarp and peel using in vitro bioassays.

    Directory of Open Access Journals (Sweden)

    Hock Eng Khoo

    Full Text Available Canarium odontophyllum, also known as CO, is a highly nutritious fruit. Defatted parts of CO fruit are potent sources of nutraceutical. This study aimed to determine oxidative stress and lipid peroxidation effects of defatted CO pericarp and peel extracts using in vitro bioassays. Cell cytotoxic effect of the CO pericarp and peel extracts were also evaluated using HUVEC and Chang liver cell lines. The crude extracts of defatted CO peel and pericarp showed cytoprotective effects in t-BHP and 40% methanol-induced cell death. The crude extracts also showed no toxic effect to Chang liver cell line. Using CD36 ELISA, NAD(+ and LDL inhibition assays, inhibition of oxidative stress were found higher in the crude extract of defatted CO peel compared to the pericarp extract. Hemoglobin and LDL oxidation assays revealed both crude extracts had significantly reduced lipid peroxidation as compared to control. TBARS values among defatted CO pericarp, peel, and cyanidin-3-glucoside showed no significant differences for hemoglobin and LDL oxidation assays. The protective effects of defatted CO parts, especially its peel is related to the presence of high anthocyanin that potentially offers as a pharmaceutical ingredient for cardioprotection.

  10. Skin-derived TSLP systemically expands regulatory T cells.

    Science.gov (United States)

    Leichner, Theresa M; Satake, Atsushi; Harrison, Victor Sanoe; Tanaka, Yukinori; Archambault, Angela S; Kim, Brian S; Siracusa, Mark C; Leonard, Warren J; Naji, Ali; Wu, Gregory F; Artis, David; Kambayashi, Taku

    2017-05-01

    Regulatory T cells (Tregs) are a subset of CD4(+) T cells with suppressive function and are critical for limiting inappropriate activation of T cells. Hence, the expansion of Tregs is an attractive strategy for the treatment of autoimmune diseases. Here, we demonstrate that the skin possesses the remarkable capacity to systemically expand Treg numbers by producing thymic stromal lymphopoietin (TSLP) in response to vitamin D receptor stimulation. An ∼2-fold increase in the proportion and absolute number of Tregs was observed in mice treated topically but not systemically with the Vitamin D3 analog MC903. This expansion of Tregs was dependent on TSLP receptor signaling but not on VDR signaling in hematopoietic cells. However, TSLP receptor expression by Tregs was not required for their proliferation. Rather, skin-derived TSLP promoted Treg expansion through dendritic cells. Importantly, treatment of skin with MC903 significantly lowered the incidence of autoimmune diabetes in non-obese diabetic mice and attenuated disease score in experimental autoimmune encephalomyelitis. Together, these data demonstrate that the skin has the remarkable potential to control systemic immune responses and that Vitamin D-mediated stimulation of skin could serve as a novel strategy to therapeutically modulate the systemic immune system for the treatment of autoimmunity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen Minh

    2005-12-01

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) under Cooperative Agreement DE-FC2601NT40779 for the US Department of Energy, National Energy Technology Laboratory (DoE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a gas turbine. A conceptual hybrid system design was selected for analysis and evaluation. The selected system is estimated to have over 65% system efficiency, a first cost of approximately $650/kW, and a cost of electricity of 8.4 cents/kW-hr. A control strategy and conceptual control design have been developed for the system. A number of SOFC module tests have been completed to evaluate the pressure impact to performance stability. The results show that the operating pressure accelerates the performance degradation. Several experiments were conducted to explore the effects of pressure on carbon formation. Experimental observations on a functioning cell have verified that carbon deposition does not occur in the cell at steam-to-carbon ratios lower than the steady-state design point for hybrid systems. Heat exchanger design, fabrication and performance testing as well as oxidation testing to support heat exchanger life analysis were also conducted. Performance tests of the prototype heat exchanger yielded heat transfer and pressure drop characteristics consistent with the heat exchanger specification. Multicell stacks have been tested and performance maps were obtained under hybrid operating conditions. Successful and repeatable fabrication of large (>12-inch diameter) planar SOFC cells was demonstrated using the tape calendering process. A number of large area cells and stacks were successfully performance tested at ambient and pressurized conditions. A 25 MW plant configuration was

  12. The thioredoxin system in breast cancer cell invasion and migration

    Directory of Open Access Journals (Sweden)

    Maneet Bhatia

    2016-08-01

    Full Text Available Metastasis is the most life threatening aspect of breast cancer. It is a multi-step process involving invasion and migration of primary tumor cells with a subsequent colonization of these cells at a secondary location. The aim of the present study was to investigate the role of thioredoxin (Trx1 in the invasion and migration of breast cancer cells and to assess the strength of the association between high levels of Trx1 and thioredoxin reductase (TrxR1 expression with breast cancer patient survival. Our results indicate that the expression of both Trx1 and TrxR1 are statistically significantly increased in breast cancer patient cells compared with paired normal breast tissue from the same patient. Over-expression of Trx1 in MDA-MB-231 breast cancer cell lines enhanced cell invasion in in vitro assays while expression of a redox inactive mutant form of Trx1 (designated 1SS or the antisense mRNA inhibited cell invasion. Addition of exogenous Trx1 also enhanced cell invasion, while addition of a specific monoclonal antibody that inhibits Trx1 redox function decreased cell invasion. Over-expression of intracellular Trx1 did not increase cell migration but expression of intracellular 1SS inhibited migration. Addition of exogenous Trx1 enhanced cell migration while 1SS had no effect. Treatment with auranofin inhibited TrxR activity, cell migration and clonogenic activity of MDA-MB-231 cells, while increasing reactive oxygen species (ROS levels. Analysis of 25 independent cohorts with 5910 patients showed that Trx1 and TrxR1 were both associated with a poor patient prognosis in terms of overall survival, distant metastasis free survival and disease free survival. Therefore, targeting the Trx