WorldWideScience

Sample records for cell arrays reveal

  1. Time-dependent c-Myc transactomes mapped by Array-based nuclear run-on reveal transcriptional modules in human B cells.

    Directory of Open Access Journals (Sweden)

    Jinshui Fan

    Full Text Available BACKGROUND: The definition of transcriptional networks through measurements of changes in gene expression profiles and mapping of transcription factor binding sites is limited by the moderate overlap between binding and gene expression changes and the inability to directly measure global nuclear transcription (coined "transactome". METHODOLOGY/PRINCIPAL FINDINGS: We developed a method to measure nascent nuclear gene transcription with an Array-based Nuclear Run-On (ANRO assay using commercial microarray platforms. This strategy provides the missing component, the transactome, to fully map transcriptional networks. ANRO measurements in an inducible c-Myc expressing human P493-6 B cell model reveals time-dependent waves of transcription, with a transactome early after c-Myc induction that does not persist at a late, steady-state phase, when genes that are regulated by c-Myc and E2F predominate. Gene set matrix analysis further uncovers functionally related groups of genes putatively regulated by waves of transcription factor motifs following Myc induction, starting with AP1 and CREB that are followed by EGR1, NFkB and STAT, and ending with E2F, Myc and ARNT/HIF motifs. CONCLUSIONS/SIGNIFICANCE: By coupling ANRO with previous global mapping of c-Myc binding sites by chromatin immunoprecipitation (ChIP in P493-6 cells, we define a set of transcriptionally regulated direct c-Myc target genes and pave the way for the use of ANRO to comprehensively map any transcriptional network.

  2. Array-based comparative genomic hybridization analysis reveals chromosomal copy number aberrations associated with clinical outcome in canine diffuse large B-cell lymphoma.

    Directory of Open Access Journals (Sweden)

    Arianna Aricò

    Full Text Available Canine Diffuse Large B-cell Lymphoma (cDLBCL is an aggressive cancer with variable clinical response. Despite recent attempts by gene expression profiling to identify the dog as a potential animal model for human DLBCL, this tumor remains biologically heterogeneous with no prognostic biomarkers to predict prognosis. The aim of this work was to identify copy number aberrations (CNAs by high-resolution array comparative genomic hybridization (aCGH in 12 dogs with newly diagnosed DLBCL. In a subset of these dogs, the genetic profiles at the end of therapy and at relapse were also assessed. In primary DLBCLs, 90 different genomic imbalances were counted, consisting of 46 gains and 44 losses. Two gains in chr13 were significantly correlated with clinical stage. In addition, specific regions of gains and losses were significantly associated to duration of remission. In primary DLBCLs, individual variability was found, however 14 recurrent CNAs (>30% were identified. Losses involving IGK, IGL and IGH were always found, and gains along the length of chr13 and chr31 were often observed (>41%. In these segments, MYC, LDHB, HSF1, KIT and PDGFRα are annotated. At the end of therapy, dogs in remission showed four new CNAs, whereas three new CNAs were observed in dogs at relapse compared with the previous profiles. One ex novo CNA, involving TCR, was present in dogs in remission after therapy, possibly induced by the autologous vaccine. Overall, aCGH identified small CNAs associated with outcome, which, along with future expression studies, may reveal target genes relevant to cDLBCL.

  3. B cell depletion with rituximab in patients with rheumatoid arthritis: Multiplex bead array reveals the kinetics of IgG and IgA antibodies to citrullinated antigens.

    Science.gov (United States)

    Cambridge, Geraldine; Leandro, Maria J; Lahey, Lauren J; Fairhead, Thomas; Robinson, William H; Sokolove, Jeremy

    2016-06-01

    The serology of patients with Rheumatoid arthritis (RA) is characterized by persistently raised levels of autoantibodies: Rheumatoid Factors (RhF) against Fc of IgG, and to citrullinated (Cit) protein/peptide sequences: ACPA, recognizing multiple Cit-sequences. B cell depletion therapy based on rituximab delivers good clinical responses in RA patients, particularly in the seropositive group, with responses sometimes lasting beyond the phase of B cell reconstitution. In general, ACPA levels fall following rituximab, but fluctuations with respect to predicting relapse have proved disappointing. In order to identify possible immunodominant specificities within either IgG- or IgA-ACPA we used a Multiplex bead-based array consisting of 30 Cit-peptides/proteins and 22 corresponding native sequences. The kinetics of the serum ACPA response to individual specificities was measured at key points (Baseline, B cell depletion phase, Relapse) within an initial cycle of rituximab therapy in 16 consecutive patients with severe, active RA. All had achieved significant decreases in Disease Activity Scores-28 and maintained B cell depletion in the peripheral blood (<5 CD19+cells/μl) for at least 3 months. At Baseline, mean fluorescence intensity shown by individual IgG- and IgA-ACPA were strongly correlated (R(2) = 0.75; p < 0.0001) but IgA-ACPA were approximately 10-fold lower. Data were Z-normalised in order to compare serial results and antibody classes. At Baseline, a total of 68 IgG- and 51 IgA-ACPA had Z-scores ≥ 1 (above population mean) were identified, with at least one Cit-antigen identified in each serum. ACPA to individual specificities subsequently fluctuated with 3 different patterns. Most 51/68 (75%) IgG- and 48/51 IgA-ACPA (94%) fell between Baseline and Depletion, of which 57% IgG- and 65% IgA-ACPA rebounded pre-Relapse. Interestingly, 17/68 IgG-ACPA (25%) and some IgA-ACPA (3/51; 6%) transiently increased from Baseline, subsequently falling pre

  4. Sorting white blood cells in microfabricated arrays

    Science.gov (United States)

    Castelino, Judith Andrea Rose

    Fractionating white cells in microfabricated arrays presents the potential for detecting cells with abnormal adhesive or deformation properties. A possible application is separating nucleated fetal red blood cells from maternal blood. Since fetal cells are nucleated, it is possible to extract genetic information about the fetus from them. Separating fetal cells from maternal blood would provide a low cost noninvasive prenatal diagnosis for genetic defects, which is not currently available. We present results showing that fetal cells penetrate further into our microfabricated arrays than adult cells, and that it is possible to enrich the fetal cell fraction using the arrays. We discuss modifications to the array which would result in further enrichment. Fetal cells are less adhesive and more deformable than adult white cells. To determine which properties limit penetration, we compared the penetration of granulocytes and lymphocytes in arrays with different etch depths, constriction size, constriction frequency, and with different amounts of metabolic activity. The penetration of lymphocytes and granulocytes into constrained and unconstrained arrays differed qualitatively. In constrained arrays, the cells were activated by repeated shearing, and the number of cells stuck as a function of distance fell superexponentially. In unconstrained arrays the number of cells stuck fell slower than an exponential. We attribute this result to different subpopulations of cells with different sticking parameters. We determined that penetration in unconstrained arrays was limited by metabolic processes, and that when metabolic activity was reduced penetration was limited by deformability. Fetal cells also contain a different form of hemoglobin with a higher oxygen affinity than adult hemoglobin. Deoxygenated cells are paramagnetic and are attracted to high magnetic field gradients. We describe a device which can separate cells using 10 μm magnetic wires to deflect the paramagnetic

  5. Multijunction Ultralight Solar Cells and Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — There is a continuing need within NASA for solar cells and arrays with very high specific power densities (1000-5000 kW/kg) for generating power in a new generation...

  6. Electrostatic mechanism of nucleosomal array folding revealed by computer simulation

    OpenAIRE

    Sun, Jian; Zhang, Qing; Schlick, Tamar

    2005-01-01

    Although numerous experiments indicate that the chromatin fiber displays salt-dependent conformations, the associated molecular mechanism remains unclear. Here, we apply an irregular Discrete Surface Charge Optimization (DiSCO) model of the nucleosome with all histone tails incorporated to describe by Monte Carlo simulations salt-dependent rearrangements of a nucleosomal array with 12 nucleosomes. The ensemble of nucleosomal array conformations display salt-dependent condensation in good agre...

  7. Ion-selective microelectrode arrays for cell culture monitoring

    OpenAIRE

    Generelli, Silvia; De Rooij, Nicolas-F.

    2008-01-01

    The design, microfabrication and characterization of a platform comprising an array of ion-selective microelectrodes (µISE) aimed at in vitro cellular physiology and toxicology is described. This study focusses on K+ and Ca2+ monitoring in cell culture environments. A potential promising application of such a platform is based on recent findings in molecular biology, revealing connections between certain diseases, as for example some types of cancer or parkinsonism, and a malfunction in cellu...

  8. Si microwire-array solar cells

    OpenAIRE

    Putnam, Morgan C.; Boettcher, Shannon W.; Kelzenberg, Michael D.; Turner-Evans, Daniel B.; Spurgeon, Joshua M.; Warren, Emily L.; Briggs, Ryan M.; Lewis, Nathan S.; Atwater, Harry A.

    2010-01-01

    Si microwire-array solar cells with Air Mass 1.5 Global conversion efficiencies of up to 7.9% have been fabricated using an active volume of Si equivalent to a 4 μm thick Si wafer. These solar cells exhibited open-circuit voltages of 500 mV, short-circuit current densities (J_(sc)) of up to 24 mA cm^(-2), and fill factors >65% and employed Al_2O_3 dielectric particles that scattered light incident in the space between the wires, a Ag back reflector that prevented the escape of incident illumi...

  9. Automated image analysis reveals the dynamic 3-dimensional organization of multi-ciliary arrays

    Directory of Open Access Journals (Sweden)

    Domenico F. Galati

    2016-01-01

    Full Text Available Multi-ciliated cells (MCCs use polarized fields of undulating cilia (ciliary array to produce fluid flow that is essential for many biological processes. Cilia are positioned by microtubule scaffolds called basal bodies (BBs that are arranged within a spatially complex 3-dimensional geometry (3D. Here, we develop a robust and automated computational image analysis routine to quantify 3D BB organization in the ciliate, Tetrahymena thermophila. Using this routine, we generate the first morphologically constrained 3D reconstructions of Tetrahymena cells and elucidate rules that govern the kinetics of MCC organization. We demonstrate the interplay between BB duplication and cell size expansion through the cell cycle. In mutant cells, we identify a potential BB surveillance mechanism that balances large gaps in BB spacing by increasing the frequency of closely spaced BBs in other regions of the cell. Finally, by taking advantage of a mutant predisposed to BB disorganization, we locate the spatial domains that are most prone to disorganization by environmental stimuli. Collectively, our analyses reveal the importance of quantitative image analysis to understand the principles that guide the 3D organization of MCCs.

  10. Nanotubular array solid oxide fuel cell.

    Science.gov (United States)

    Motoyama, Munekazu; Chao, Cheng-Chieh; An, Jihwan; Jung, Hee Joon; Gür, Turgut M; Prinz, Friedrich B

    2014-01-28

    This report presents a demonstration and characterization of a nanotubular array of solid oxide fuel cells (SOFCs) made of one-end-closed hollow tube Ni/yttria-stabilized zirconia/Pt membrane electrode assemblies (MEAs). The tubular MEAs are nominally ∼5 μm long and have building the nanotubular MEA architecture as an important step toward achieving high surface area ultrathin SOFCs operating in the intermediate to low-temperature regime. A fabricated nanotubular SOFC theoretically attains a 20-fold increase in the effective surface, while projections indicate the possibility of achieving up to 40-fold. PMID:24266776

  11. Enhanced photovoltaic performance of an inclined nanowire array solar cell.

    Science.gov (United States)

    Wu, Yao; Yan, Xin; Zhang, Xia; Ren, Xiaomin

    2015-11-30

    An innovative solar cell based on inclined p-i-n nanowire array is designed and analyzed. The results show that the inclined geometry can sufficiently increase the conversion efficiency of solar cells by enhancing the absorption of light in the active region. By tuning the nanowire array density, nanowire diameter, nanowire length, as well as the proportion of intrinsic region of the inclined nanowire solar cell, a remarkable efficiency in excess of 16% can be obtained in GaAs. Similar results have been obtained in InP and Si nanowire solar cells, demonstrating the universality of the performance enhancement of inclined nanowire arrays. PMID:26698807

  12. Periodic nano/micro-hole array silicon solar cell

    OpenAIRE

    Lai, Guan-Yu; Kumar, Dinesh P; Pei, Zingway

    2014-01-01

    In this study, we applied a metal catalyst etching method to fabricate a nano/microhole array on a Si substrate for application in solar cells. In addition, the surface of an undesigned area was etched because of the attachment of metal nanoparticles that is dissociated in a solution. The nano/microhole array exhibited low specular reflectance (

  13. Fingerprinting the Asterid species using subtracted diversity array reveals novel species-specific sequences.

    Directory of Open Access Journals (Sweden)

    Nitin Mantri

    Full Text Available BACKGROUND: Asterids is one of the major plant clades comprising of many commercially important medicinal species. One of the major concerns in medicinal plant industry is adulteration/contamination resulting from misidentification of herbal plants. This study reports the construction and validation of a microarray capable of fingerprinting medicinally important species from the Asterids clade. METHODOLOGY/PRINCIPAL FINDINGS: Pooled genomic DNA of 104 non-asterid angiosperm and non-angiosperm species was subtracted from pooled genomic DNA of 67 asterid species. Subsequently, 283 subtracted DNA fragments were used to construct an Asterid-specific array. The validation of Asterid-specific array revealed a high (99.5% subtraction efficiency. Twenty-five Asterid species (mostly medicinal representing 20 families and 9 orders within the clade were hybridized onto the array to reveal its level of species discrimination. All these species could be successfully differentiated using their hybridization patterns. A number of species-specific probes were identified for commercially important species like tea, coffee, dandelion, yarrow, motherwort, Japanese honeysuckle, valerian, wild celery, and yerba mate. Thirty-seven polymorphic probes were characterized by sequencing. A large number of probes were novel species-specific probes whilst some of them were from chloroplast region including genes like atpB, rpoB, and ndh that have extensively been used for fingerprinting and phylogenetic analysis of plants. CONCLUSIONS/SIGNIFICANCE: Subtracted Diversity Array technique is highly efficient in fingerprinting species with little or no genomic information. The Asterid-specific array could fingerprint all 25 species assessed including three species that were not used in constructing the array. This study validates the use of chloroplast genes for bar-coding (fingerprinting plant species. In addition, this method allowed detection of several new loci that can be

  14. Cell integrated multi-junction thermocouple array for solid oxide fuel cell temperature sensing: N+1 architecture

    Science.gov (United States)

    Ranaweera, Manoj; Kim, Jung-Sik

    2016-05-01

    Understanding the cell temperature distribution of solid oxide fuel cell (SOFC) stacks during normal operation has multifaceted advantages in performance and degradation studies. Present efforts on measuring temperature from operating SOFCs measure only the gas channel temperature and do not reveal the cell level temperature distribution, which is more important for understanding a cell's performance and its temperature-related degradation. The authors propose a cell-integrated, multi-junction thermocouple array for in-situ cell surface temperature monitoring of an operational SOFC. The proposed thermocouple array requires far fewer numbers of thermoelements than that required by sets of thermocouples for the same number of temperature sensing points. Hence, the proposed array causes lower disturbance to cell performance than thermocouples. The thermoelement array was sputter deposited on the cathode of a commercial SOFC using alumel (Ni:Al:Mn:Si - 95:2:2:1 by wt.) and chromel (Ni:Cr - 90:10 by wt.). The thermocouple array was tested in a furnace over the entire operating temperature range of a typical SOFC. The individual sensing points of the array were shown to measure temperature independently from each other with equivalent accuracy to a thermocouple. Thus, the concept of multi-junction thermocouples is experimentally validated and its stability on a porous SOFC cathode is confirmed.

  15. A gate array structure for the efficient project of digital circuits: The unit cell array

    Science.gov (United States)

    Geisler, Olaf

    In this study the principles for the development of a unit-cell-array-master, which shows all the advantages of gate-arrays, are presented. By taking the cabling influence on the chip surface into account, a stochastic model of cabling for sea-of-gates-structures is used, which allows establishment of the minimal dimensions of the master-components for the cabling. As regards the cell architecture, the gate isolation technique and smaller asymmetric p-n channel transistor pairs are employed. With logical structures such as Ram, Rom or PLA (programmed logic array), the Gt density increases. The analysis of gate-array cabling capacity shows that transistors with commercial gate-arrays are often of too great dimension. A greater transistor density and a lower dissipation without any performance decrease are possible by using smaller transistors and a parallel connection in circuit paths with higher cabling capacity. Apart from its initial high cost, unit cell array is interesting from an economical point of view.

  16. TAB interconnects for space concentrator solar cell arrays

    Science.gov (United States)

    Avery, J.; Bauman, J. S.; Gallagher, P.; Yerkes, J. W.

    1993-05-01

    The Boeing Company has evaluated the use of Tape Automated Bonding (TAB) and Surface Mount Technology (SMT) for a highly reliable, low cost interconnect for concentrator solar cell arrays. TAB and SMT are currently used in the electronics industry for chip interconnects and printed circuit board assembly. TAB tape consists of sixty-four 3-mil/1-oz tin-plated copper leads on 8-mil centers. The leads are thermocompression gang bonded to GaAs concentrator solar cell with silver contacts. This bond, known as an Inner Lead Bond (ILB), allows for pretesting and sorting capability via nondestruct wire bond pull and flash testing. Destructive wire pull tests resulted in preferred mid-span failures. Improvements in fill factor were attributed to decreased contact resistance on TAB bonded cells. Preliminary thermal cycling and aging tests were shown excellent bond strength and metallurgical results. Auger scans of bond sites reveals an Ag-Cu-Tin composition. Improper bonds are identified through flash testing as a performance degradation. On going testing of cells are underway at Lewis Research Center. SMT techniques are utilized to excise and form TAB leads post ILB. The formed leads' shape isolates thermal mismatches between the cells and the flex circuit they are mounted on. TABed cells are picked and placed with a gantry x-y-z positioning system with pattern recognition. Adhesives are selected to avoid thermal expansion mismatch and promote thermal transfer to the flex circuit. TAB outer lead bonds are parallel gap welded (PGW) to the flex circuit to finish the concentrator solar cell subassembly.

  17. Integration of Antenna Array with Multicrystalline Silicon Solar Cell

    OpenAIRE

    O'Conchubhair, Oisin; McEvoy, Patrick; Ammann, Max

    2015-01-01

    The integration of a low-profile antenna array with a multicrystalline silicon solar cell capable of powering a low-power wireless sensor at 2.45 GHz is reported. Lattice bus bars on the cell are exploited to minimize antenna shadows from low-profile antennas and transmission lines for a higher output power. The dual inverted-F array improves gain, and beam switching enables the array to sweep a wider coverage angle with larger beamwidths compared to other solar integrated antennas.

  18. Performance analysis of solar cell arrays in concentrating light intensity

    International Nuclear Information System (INIS)

    Performance of concentrating photovoltaic/thermal system is researched by experiment and simulation calculation. The results show that the I-V curve of the GaAs cell array is better than that of crystal silicon solar cell arrays and the exergy produced by 9.51% electrical efficiency of the GaAs solar cell array can reach 68.93% of the photovoltaic/thermal system. So improving the efficiency of solar cell arrays can introduce more exergy and the system value can be upgraded. At the same time, affecting factors of solar cell arrays such as series resistance, temperature and solar irradiance also have been analyzed. The output performance of a solar cell array with lower series resistance is better and the working temperature has a negative impact on the voltage in concentrating light intensity. The output power has a -20 W/V coefficient and so cooling fluid must be used. Both heat energy and electrical power are then obtained with a solar trough concentrating photovoltaic/thermal system. (semiconductor devices)

  19. Wire Array Solar Cells: Fabrication and Photoelectrochemical Studies

    Science.gov (United States)

    Spurgeon, Joshua Michael

    Despite demand for clean energy to reduce our addiction to fossil fuels, the price of these technologies relative to oil and coal has prevented their widespread implementation. Solar energy has enormous potential as a carbon-free resource but is several times the cost of coal-produced electricity, largely because photovoltaics of practical efficiency require high-quality, pure semiconductor materials. To produce current in a planar junction solar cell, an electron or hole generated deep within the material must travel all the way to the junction without recombining. Radial junction, wire array solar cells, however, have the potential to decouple the directions of light absorption and charge-carrier collection so that a semiconductor with a minority-carrier diffusion length shorter than its absorption depth (i.e., a lower quality, potentially cheaper material) can effectively produce current. The axial dimension of the wires is long enough for sufficient optical absorption while the charge-carriers are collected along the shorter radial dimension in a massively parallel array. This thesis explores the wire array solar cell design by developing potentially low-cost fabrication methods and investigating the energy-conversion properties of the arrays in photoelectrochemical cells. The concept was initially investigated with Cd(Se, Te) rod arrays; however, Si was the primary focus of wire array research because its semiconductor properties make low-quality Si an ideal candidate for improvement in a radial geometry. Fabrication routes for Si wire arrays were explored, including the vapor-liquid-solid growth of wires using SiCl4. Uniform, vertically aligned Si wires were demonstrated in a process that permits control of the wire radius, length, and spacing. A technique was developed to transfer these wire arrays into a low-cost, flexible polymer film, and grow multiple subsequent arrays using a single Si(111) substrate. Photoelectrochemical measurements on Si wire array

  20. Collision rates for rare cell capture in periodic obstacle arrays strongly depend on density of cell suspension.

    Science.gov (United States)

    Cimrák, I

    2016-11-01

    Recently, computational modelling has been successfully used for determination of collision rates for rare cell capture in periodic obstacle arrays. The models were based on particle advection simulations where the cells were advected according to velocity field computed from two dimensional Navier-Stokes equations. This approach may be used under the assumption of very dilute cell suspensions where no mutual cell collisions occur. We use the object-in-fluid framework to demonstrate that even with low cell-to-fluid ratio, the optimal geometry of the obstacle array significantly changes. We show computational simulations for ratios of 3.5, 6.9 and 10.4% determining the optimal geometry of the periodic obstacle arrays. It was already previously demonstrated that cells in periodic obstacle arrays follow trajectories in two modes: the colliding mode and the zig-zag mode. The colliding mode maximizes the cell-obstacle collision frequency. Our simulations reveal that for dilute suspensions and for suspensions with cell-to-fluid ratio 3.5%, there is a range of column shifts for which the cells follow colliding trajectories. However we showed, that for 6.9 and 10.4%, the cells never follow colliding trajectories. PMID:27023645

  1. Optimized light absorption in Si wire array solar cells

    International Nuclear Information System (INIS)

    Reducing reflection and transmission losses in photovoltaic devices is essential for realizing highly efficient power conversion. Here, we theoretically investigate arrays of radial junction silicon wires to determine the optimal geometry for maximized light absorption. Using a generalized rigorous coupled wave analysis, we calculate the scattering spectra of arrays of varying wire radii, length, and lattice filling factors. Near unity absorption, far exceeding that of conventional thin film devices, is calculated for a square array of 20 µm long wires with radii of 200 nm and a filling fraction of 30%. These results suggest a potentially cost-effective route toward high efficiency solar cells

  2. Large area magnetic micropallet arrays for cell colony sorting.

    Science.gov (United States)

    Cox-Muranami, Wesley A; Nelson, Edward L; Li, G P; Bachman, Mark

    2016-01-01

    A new micropallet array platform for adherent cell colony sorting has been developed. The platform consisted of thousands of square plastic pallets, 270 μm by 270 μm on each side, large enough to hold a single colony of cells. Each pallet included a magnetic core, allowing them to be collected with a magnet after being released using a microscope mounted laser system. The micropallets were patterned from 1002F epoxy resist and were fabricated on translucent, gold coated microscope slides. The gold layer was used as seed for electroplating the ferromagnetic cores within every individual pallet. The gold layer also facilitated the release of each micropallet during laser release. This array allows for individual observation, sorting and collection of isolated cell colonies for biological cell colony research. In addition to consistent release and recovery of individual colonies, we demonstrated stable biocompatibility and minimal loss in imaging quality compared to previously developed micropallet arrays. PMID:26606460

  3. Modular thermoelectric cell is easily packaged in various arrays

    Science.gov (United States)

    Epstein, J.

    1965-01-01

    Modular thermoelectric cells are easily packaged in various arrays to form power supplies and have desirable voltage and current output characteristics. The cells employ two pairs of thermoelectric elements, each pair being connected in parallel between two sets of aluminum plates. They can be used as solar energy conversion devices.

  4. Optoelectronic analysis of multijunction wire array solar cells

    OpenAIRE

    Turner-Evans, Daniel B.; Chen, Christopher T.; Emmer, Hal; McMahon, William E.; Atwater, Harry A.

    2013-01-01

    Wire arrays have demonstrated promising photovoltaic performance as single junction solar cells and are well suited to defect mitigation in heteroepitaxy. These attributes can combine in tandem wire array solar cells, potentially leading to high efficiencies. Here, we demonstrate initial growths of GaAs on Si_(0.9)Ge_(0.1) structures and investigate III-V on Si_(1-x)Ge_x device design with an analytical model and optoelectronic simulations. We consider Si_(0.1)Ge_(0.9) wires coated with a GaA...

  5. RoboSCell: An automated single cell arraying and analysis instrument

    KAUST Repository

    Sakaki, Kelly

    2009-09-09

    Single cell research has the potential to revolutionize experimental methods in biomedical sciences and contribute to clinical practices. Recent studies suggest analysis of single cells reveals novel features of intracellular processes, cell-to-cell interactions and cell structure. The methods of single cell analysis require mechanical resolution and accuracy that is not possible using conventional techniques. Robotic instruments and novel microdevices can achieve higher throughput and repeatability; however, the development of such instrumentation is a formidable task. A void exists in the state-of-the-art for automated analysis of single cells. With the increase in interest in single cell analyses in stem cell and cancer research the ability to facilitate higher throughput and repeatable procedures is necessary. In this paper, a high-throughput, single cell microarray-based robotic instrument, called the RoboSCell, is described. The proposed instrument employs a partially transparent single cell microarray (SCM) integrated with a robotic biomanipulator for in vitro analyses of live single cells trapped at the array sites. Cells, labeled with immunomagnetic particles, are captured at the array sites by channeling magnetic fields through encapsulated permalloy channels in the SCM. The RoboSCell is capable of systematically scanning the captured cells temporarily immobilized at the array sites and using optical methods to repeatedly measure extracellular and intracellular characteristics over time. The instrument\\'s capabilities are demonstrated by arraying human T lymphocytes and measuring the uptake dynamics of calcein acetoxymethylester-all in a fully automated fashion. © 2009 Springer Science+Business Media, LLC.

  6. Recent Advances in Genetic Technique of Microbial Report Cells and Their Applications in Cell Arrays

    OpenAIRE

    Kim, Do Hyun; Kim, Moon Il; Park, Hyun Gyu

    2015-01-01

    Microbial cell arrays have attracted consistent attention for their ability to provide unique global data on target analytes at low cost, their capacity for readily detectable and robust cell growth in diverse environments, their high degree of convenience, and their capacity for multiplexing via incorporation of molecularly tailored reporter cells. To highlight recent progress in the field of microbial cell arrays, this review discusses research on genetic engineering of reporter cells, tech...

  7. Advanced Data Mining of Leukemia Cells Micro-Arrays

    Directory of Open Access Journals (Sweden)

    Ryan M. Pierce

    2009-12-01

    Full Text Available This paper provides continuation and extensions of previous research by Segall and Pierce (2009a that discussed data mining for micro-array databases of Leukemia cells for primarily self-organized maps (SOM. As Segall and Pierce (2009a and Segall and Pierce (2009b the results of applying data mining are shown and discussed for the data categories of microarray databases of HL60, Jurkat, NB4 and U937 Leukemia cells that are also described in this article. First, a background section is provided on the work of others pertaining to the applications of data mining to micro-array databases of Leukemia cells and micro-array databases in general. As noted in predecessor article by Segall and Pierce (2009a, micro-array databases are one of the most popular functional genomics tools in use today. This research in this paper is intended to use advanced data mining technologies for better interpretations and knowledge discovery as generated by the patterns of gene expressions of HL60, Jurkat, NB4 and U937 Leukemia cells. The advanced data mining performed entailed using other data mining tools such as cubic clustering criterion, variable importance rankings, decision trees, and more detailed examinations of data mining statistics and study of other self-organized maps (SOM clustering regions of workspace as generated by SAS Enterprise Miner version 4. Conclusions and future directions of the research are also presented.

  8. Efficient Multiterminal Spectrum Splitting via a Nanowire Array Solar Cell

    OpenAIRE

    Dorodnyy, Alexander; Alarcon-Llado, Esther; Shklover, Valery; Hafner, Christian; Fontcuberta i Morral, Anna; Leuthold, Juerg

    2015-01-01

    Nanowire-based solar cells opened a new avenue for increasing conversion efficiency and rationalizing material use by growing different III–V materials on silicon substrates. Here, we propose a multiterminal nanowire solar cell design with a theoretical conversion efficiency of 48.3% utilizing an efficient lateral spectrum splitting between three different III–V material nanowire arrays grown on a flat silicon substrate. This allows choosing an ideal material combination to achieve the proper...

  9. Single cell transcriptional analysis reveals novel innate immune cell types

    Directory of Open Access Journals (Sweden)

    Linda E. Kippner

    2014-06-01

    Full Text Available Single-cell analysis has the potential to provide us with a host of new knowledge about biological systems, but it comes with the challenge of correctly interpreting the biological information. While emerging techniques have made it possible to measure inter-cellular variability at the transcriptome level, no consensus yet exists on the most appropriate method of data analysis of such single cell data. Methods for analysis of transcriptional data at the population level are well established but are not well suited to single cell analysis due to their dependence on population averages. In order to address this question, we have systematically tested combinations of methods for primary data analysis on single cell transcription data generated from two types of primary immune cells, neutrophils and T lymphocytes. Cells were obtained from healthy individuals, and single cell transcript expression data was obtained by a combination of single cell sorting and nanoscale quantitative real time PCR (qRT-PCR for markers of cell type, intracellular signaling, and immune functionality. Gene expression analysis was focused on hierarchical clustering to determine the existence of cellular subgroups within the populations. Nine combinations of criteria for data exclusion and normalization were tested and evaluated. Bimodality in gene expression indicated the presence of cellular subgroups which were also revealed by data clustering. We observed evidence for two clearly defined cellular subtypes in the neutrophil populations and at least two in the T lymphocyte populations. When normalizing the data by different methods, we observed varying outcomes with corresponding interpretations of the biological characteristics of the cell populations. Normalization of the data by linear standardization taking into account technical effects such as plate effects, resulted in interpretations that most closely matched biological expectations. Single cell transcription

  10. Micro-magnet arrays for specific single bacterial cell positioning

    Energy Technology Data Exchange (ETDEWEB)

    Pivetal, Jérémy, E-mail: jeremy.piv@netcmail.com [Ecole Centrale de Lyon, CNRS UMR 5005, Laboratoire Ampère, F-69134 Écully (France); Royet, David [Ecole Centrale de Lyon, CNRS UMR 5005, Laboratoire Ampère, F-69134 Écully (France); Ciuta, Georgeta [Univ. Grenoble Alpes, Inst NEEL, F-38042 Grenoble (France); CNRS, Inst NEEL, F-38042 Grenoble (France); Frenea-Robin, Marie [Université de Lyon, Université Lyon 1, CNRS UMR 5005, Laboratoire Ampère, F-69622 Villeurbanne (France); Haddour, Naoufel [Ecole Centrale de Lyon, CNRS UMR 5005, Laboratoire Ampère, F-69134 Écully (France); Dempsey, Nora M. [Univ. Grenoble Alpes, Inst NEEL, F-38042 Grenoble (France); CNRS, Inst NEEL, F-38042 Grenoble (France); Dumas-Bouchiat, Frédéric [Univ Limoges, CNRS, SPCTS UMR 7513, 12 Rue Atlantis, F-87068 Limoges (France); Simonet, Pascal [Ecole Centrale de Lyon, CNRS UMR 5005, Laboratoire Ampère, F-69134 Écully (France)

    2015-04-15

    In various contexts such as pathogen detection or analysis of microbial diversity where cellular heterogeneity must be taken into account, there is a growing need for tools and methods that enable microbiologists to analyze bacterial cells individually. One of the main challenges in the development of new platforms for single cell studies is to perform precise cell positioning, but the ability to specifically target cells is also important in many applications. In this work, we report the development of new strategies to selectively trap single bacterial cells upon large arrays, based on the use of micro-magnets. Escherichia coli bacteria were used to demonstrate magnetically driven bacterial cell organization. In order to provide a flexible approach adaptable to several applications in the field of microbiology, cells were magnetically and specifically labeled using two different strategies, namely immunomagnetic labeling and magnetic in situ hybridization. Results show that centimeter-sized arrays of targeted, isolated bacteria can be successfully created upon the surface of a flat magnetically patterned hard magnetic film. Efforts are now being directed towards the integration of a detection tool to provide a complete micro-system device for a variety of microbiological applications. - Highlights: 1.We report a new approach to selectively micropattern bacterial cells individually upon micro-magnet arrays. 2.Permanent micro-magnets of a size approaching that of bacteria could be fabricated using a Thermo-Magnetic Patterning process. 3.Bacterial cells were labeled using two different magnetic labeling strategies providing flexible approach adaptable to several applications in the field of microbiology.

  11. Micro-magnet arrays for specific single bacterial cell positioning

    International Nuclear Information System (INIS)

    In various contexts such as pathogen detection or analysis of microbial diversity where cellular heterogeneity must be taken into account, there is a growing need for tools and methods that enable microbiologists to analyze bacterial cells individually. One of the main challenges in the development of new platforms for single cell studies is to perform precise cell positioning, but the ability to specifically target cells is also important in many applications. In this work, we report the development of new strategies to selectively trap single bacterial cells upon large arrays, based on the use of micro-magnets. Escherichia coli bacteria were used to demonstrate magnetically driven bacterial cell organization. In order to provide a flexible approach adaptable to several applications in the field of microbiology, cells were magnetically and specifically labeled using two different strategies, namely immunomagnetic labeling and magnetic in situ hybridization. Results show that centimeter-sized arrays of targeted, isolated bacteria can be successfully created upon the surface of a flat magnetically patterned hard magnetic film. Efforts are now being directed towards the integration of a detection tool to provide a complete micro-system device for a variety of microbiological applications. - Highlights: 1.We report a new approach to selectively micropattern bacterial cells individually upon micro-magnet arrays. 2.Permanent micro-magnets of a size approaching that of bacteria could be fabricated using a Thermo-Magnetic Patterning process. 3.Bacterial cells were labeled using two different magnetic labeling strategies providing flexible approach adaptable to several applications in the field of microbiology

  12. Cell adhesion and guidance by micropost-array chemical sensors

    Science.gov (United States)

    Pantano, Paul; Quah, Soo-Kim; Danowski, Kristine L.

    2002-06-01

    An array of ~50,000 individual polymeric micropost sensors was patterned across a glass coverslip by a photoimprint lithographic technique. Individual micropost sensors were ~3-micrometers tall and ~8-micrometers wide. The O2-sensitive micropost array sensors (MPASs) comprised a ruthenium complex encapsulated in a gas permeable photopolymerizable siloxane. The pH-sensitive MPASs comprised a fluorescein conjugate encapsulated in a photocrosslinkable poly(vinyl alcohol)-based polymer. PO2 and pH were quantitated by acquiring MPAS luminescence images with an epifluorescence microscope/charge coupled device imaging system. O2-sensitive MPASs displayed linear Stern-Volmer quenching behavior with a maximum Io/I of ~8.6. pH-sensitive MPASs displayed sigmoidal calibration curves with a pKa of ~5.8. The adhesion of undifferentiated rat pheochromocytoma (PC12) cells across these two polymeric surface types was investigated. The greatest PC12 cell proliferation and adhesion occurred across the poly(vinyl alcohol)-based micropost arrays relative to planar poly(vinyl alcohol)-based surfaces and both patterned and planar siloxane surfaces. An additional advantage of the patterned MPAS layers relative to planar sensing layers was the ability to direct the growth of biological cells. Preliminary data is presented whereby nerve growth factor-differentiated PC12 cells grew neurite-like processes that extended along paths defined by the micropost architecture.

  13. Predicted efficiency of Si wire array solar cells

    OpenAIRE

    Kelzenberg, M. D.; Putnam, M. C.; Turner-Evans, D. B.; Lewis, N. S.; Atwater, H. A.

    2010-01-01

    Solar cells based on arrays of CVD-grown Si nano- or micro-wires have attracted interest as potentially low-cost alternatives to conventional wafer-based Si photovoltaics [1-6], and single-wire solar cells have been reported with efficiencies of up to 3.4% [7]. We recently presented device physics simulations which predicted efficiencies exceeding 17%, based on experimentally observed diffusion lengths within our wires [8]. However, this model did not take into account the optical properties ...

  14. Nylon Filter Arrays Reveal Differential Expression of Expressed Sequence Tags in Wheat Roots Under Aluminum Stress

    Institute of Scientific and Technical Information of China (English)

    Kai XIAO; Gui-Hua BAI; Brett F CARVER

    2005-01-01

    To enrich differentially expressed sequence tags (ESTs) for aluminum (Al) tolerance, cDNA subtraction libraries were generated from Al-stressed roots of two wheat (Triticum aestivum L.) nearisogenic lines (NILs) contrasting in Al-tolerance gene(s) from the Al-tolerant cultivar Atlas 66, using suppression subtractive hybridization (SSH). Expression patterns of the ESTs were investigated with nylon filter arrays containing 614 cDNA clones from the subtraction library. Gene expression profiles from macroarray analysis indicated that 25 ESTs were upregulated in the tolerant NIL in response to Al stress. The result from Northern analysis of selected upregulated ESTs was similar to that from macroarray analysis. These highly expressed ESTs showed high homology with genes involved in signal transduction, oxidative stress alleviation, membrane structure, Mg2+ transportation, and other functions. Under Al stress, the Al-tolerant NIL may possess altered structure or function of the cell wall, plasma membrane, and mitochondrion. The wheat response to Al stress may involve complicated defense-related signaling and metabolic pathways.The present experiment did not detect any induced or activated genes involved in the synthesis of malate and other organic acids in wheat under Al-stress.

  15. Solar cell array design handbook - The principles and technology of photovoltaic energy conversion

    Science.gov (United States)

    Rauschenbach, H. S.

    1980-01-01

    Photovoltaic solar cell array design and technology for ground-based and space applications are discussed from the user's point of view. Solar array systems are described, with attention given to array concepts, historical development, applications and performance, and the analysis of array characteristics, circuits, components, performance and reliability is examined. Aspects of solar cell array design considered include the design process, photovoltaic system and detailed array design, and the design of array thermal, radiation shielding and electromagnetic components. Attention is then given to the characteristics and design of the separate components of solar arrays, including the solar cells, optical elements and mechanical elements, and the fabrication, testing, environmental conditions and effects and material properties of arrays and their components are discussed.

  16. Mathematical modeling of interdigitated electrode arrays in finite electrochemical cells

    CERN Document Server

    Guajardo, Cristian; Surareungchai, Werasak

    2016-01-01

    Accurate theoretical results for interdigitated array of electrodes (IDAE) in semi-infinite cells can be found in the literature. However, these results are not always applicable when using finite cells. In this study, theoretical expressions for IDAE in a finite geometry cell are presented. At known current density, transient and steady state concentration profiles were obtained as well as the response time to a current step. Concerning the diffusion limited current, a lower bound was derived from the concentration profile and an upper bound was obtained from the limiting current of the semi-infinite case. The lower bound, which is valid when Kirchhoff's current law applies to the unit cell, can be useful to ensure a minimum current level during the design of the electrochemical cell. Finally, a criterion was developed defining when the behaviors of finite and semi-infinite cells are comparable. This allows to obtain higher current levels in finite cells, approaching that of the semi-infinite case. Examples ...

  17. The Influence of Immunization Route, Tissue Microenvironment, and Cytokine Cell Milieu on HIV-Specific CD8+ T Cells Measured Using Fluidigm Dynamic Arrays

    OpenAIRE

    Trivedi, Shubhanshi; Ranasinghe, Charani

    2015-01-01

    Thirty different genes including cytokines, chemokines, granzymes, perforin and specifically integrins were evaluated in Peyer's patch-KdGag197–205-specific CD8+ T cells (pools of 100 cells) using Fluidigm 48.48 Dynamic arrays following three different prime-boost immunization strategies. Data revealed that the route of prime or the booster immunization differentially influenced the integrin expression profile on gut KdGag197–205-specific CD8+ T cells. Specifically, elevated numbers of integr...

  18. Self-Partitioned Droplet Array on Laser-Patterned Superhydrophilic Glass Surface for Wall-less Cell Arrays.

    Science.gov (United States)

    Xu, Kerui; Wang, Xiaopu; Ford, Roseanne M; Landers, James P

    2016-03-01

    In this work, we report a novel method for the creation of superhydrophilic patterns on the surface of hydrophobically coated glass through CO2 laser cleaning. This mask-free approach requires no photolithography for the print of the features, and only a single-step surface pretreatment is needed. The laser-cleaned glass surface enables self-partitioning of liquid into droplet arrays with controllable, quantitative volumes. We further designed wall-less cell arrays for the mapping of culturing conditions and demonstrated the potential of this droplet-arraying method. PMID:26878418

  19. Topographical control of cell-cell interaction in C6 glioma by nanodot arrays

    Science.gov (United States)

    Lee, Chia-Hui; Cheng, Ya-Wen; Huang, G. Steven

    2014-05-01

    Nanotopography modulates the physiological behavior of cells and cell-cell interactions, but the manner of communication remains unclear. Cell networking (syncytium) of astroglia provides the optimal microenvironment for communication of the nervous system. C6 glioma cells were seeded on nanodot arrays with dot diameters ranging from 10 to 200 nm. Cell viability, morphology, cytoskeleton, and adhesion showed optimal cell growth on 50-nm nanodots if sufficient incubation was allowed. In particular, the astrocytic syncytium level maximized at 50 nm. The gap junction protein Cx43 showed size-dependent and time-dependent transport from the nucleus to the cell membrane. The transport efficiency was greatly enhanced by incubation on 50-nm nanodots. In summary, nanotopography is capable of modulating cell behavior and influencing the cell-cell interactions of astrocytes. By fine-tuning the nanoenvironment, it may be possible to regulate cell-cell communications and optimize the biocompatibility of neural implants.

  20. DNA methylation arrays as surrogate measures of cell mixture distribution

    Directory of Open Access Journals (Sweden)

    Houseman Eugene

    2012-05-01

    Full Text Available Abstract Background There has been a long-standing need in biomedical research for a method that quantifies the normally mixed composition of leukocytes beyond what is possible by simple histological or flow cytometric assessments. The latter is restricted by the labile nature of protein epitopes, requirements for cell processing, and timely cell analysis. In a diverse array of diseases and following numerous immune-toxic exposures, leukocyte composition will critically inform the underlying immuno-biology to most chronic medical conditions. Emerging research demonstrates that DNA methylation is responsible for cellular differentiation, and when measured in whole peripheral blood, serves to distinguish cancer cases from controls. Results Here we present a method, similar to regression calibration, for inferring changes in the distribution of white blood cells between different subpopulations (e.g. cases and controls using DNA methylation signatures, in combination with a previously obtained external validation set consisting of signatures from purified leukocyte samples. We validate the fundamental idea in a cell mixture reconstruction experiment, then demonstrate our method on DNA methylation data sets from several studies, including data from a Head and Neck Squamous Cell Carcinoma (HNSCC study and an ovarian cancer study. Our method produces results consistent with prior biological findings, thereby validating the approach. Conclusions Our method, in combination with an appropriate external validation set, promises new opportunities for large-scale immunological studies of both disease states and noxious exposures.

  1. Biophotofuel cell anode containing self-organized titanium dioxide nanotube array

    International Nuclear Information System (INIS)

    Graphical abstract: Highlights: · A photoactive anode containing highly ordered TiO2 nanotube array was made and the formation mechanism of self-organized TiO2 nanotube array on Ti was revealed. · Effect of electrolyte concentration and voltage on the size distribution of the nanotubes was investigated. · Self-organized TiO2 nanotube array anode possesses good photo-catalytic behavior of biomass decomposition under ultraviolet (UV) radiation. · The fuel cell generates electricity and hydrogen via photoelectrochemical decomposition of ethanol, apple vinegar, sugar and tissue paper. - Abstract: We made a biophotofuel cell consisting of a titanium dioxide nanotube array photosensitive anode for biomass decomposition, and a low-hydrogen overpotential metal, Pt, as the cathode for hydrogen production. The titanium dioxide nanotubes (TiO2 NTs) were prepared via electrochemical oxidation of pure Ti in NaF solutions. Scanning electron microscopy was used to analyze the morphology of the nanotubes. The average diameter, wall thickness and length of the as-prepared TiO2 NTs were 88 ± 16 nm, 10 ± 2 nm and 491 ± 56 nm, respectively. Such dimensions are affected by the NaF concentration and the applied voltage during processing. Higher NaF concentrations result in the formation of longer and thicker nanotubes. The higher the voltage is, the thicker the nanotubes. The photosensitive anode made from the highly ordered TiO2 NTs has good photo-catalytic property, as can be seen from the test results of ethanol, apple vinegar, sugar and tissue paper decomposition under ultraviolet (UV) radiation. It is concluded that the biophotofuel cell with the TiO2 nanotube photoanode and a Pt cathode can generate electricity, hydrogen and clean water depending on the pH value and the oxygen presence in the solutions.

  2. Biophotofuel cell anode containing self-organized titanium dioxide nanotube array

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Yong X., E-mail: yong.gan@utoledo.edu [Mechanical, Industrial and Manufacturing Engineering, College of Engineering, University of Toledo, 2801 W Bancroft Street, Toledo, OH 43606 (United States); Gan, Bo J. [Ottawa Hills High School, 2532 Evergreen Road, Toledo, OH 43606 (United States); Su Lusheng [Mechanical, Industrial and Manufacturing Engineering, College of Engineering, University of Toledo, 2801 W Bancroft Street, Toledo, OH 43606 (United States)

    2011-09-15

    Graphical abstract: Highlights: {center_dot} A photoactive anode containing highly ordered TiO{sub 2} nanotube array was made and the formation mechanism of self-organized TiO{sub 2} nanotube array on Ti was revealed. {center_dot} Effect of electrolyte concentration and voltage on the size distribution of the nanotubes was investigated. {center_dot} Self-organized TiO{sub 2} nanotube array anode possesses good photo-catalytic behavior of biomass decomposition under ultraviolet (UV) radiation. {center_dot} The fuel cell generates electricity and hydrogen via photoelectrochemical decomposition of ethanol, apple vinegar, sugar and tissue paper. - Abstract: We made a biophotofuel cell consisting of a titanium dioxide nanotube array photosensitive anode for biomass decomposition, and a low-hydrogen overpotential metal, Pt, as the cathode for hydrogen production. The titanium dioxide nanotubes (TiO{sub 2} NTs) were prepared via electrochemical oxidation of pure Ti in NaF solutions. Scanning electron microscopy was used to analyze the morphology of the nanotubes. The average diameter, wall thickness and length of the as-prepared TiO{sub 2} NTs were 88 {+-} 16 nm, 10 {+-} 2 nm and 491 {+-} 56 nm, respectively. Such dimensions are affected by the NaF concentration and the applied voltage during processing. Higher NaF concentrations result in the formation of longer and thicker nanotubes. The higher the voltage is, the thicker the nanotubes. The photosensitive anode made from the highly ordered TiO{sub 2} NTs has good photo-catalytic property, as can be seen from the test results of ethanol, apple vinegar, sugar and tissue paper decomposition under ultraviolet (UV) radiation. It is concluded that the biophotofuel cell with the TiO{sub 2} nanotube photoanode and a Pt cathode can generate electricity, hydrogen and clean water depending on the pH value and the oxygen presence in the solutions.

  3. Highly efficient fibrous dye-sensitized solar cells based on TiO2 nanotube arrays

    International Nuclear Information System (INIS)

    The structure of fibrous dye-sensitized solar cells, which were constructed by a TiO2 nanotube array on Ti wire as the photoanode twisted by a Pt wire counter electrode, has been first systematically investigated by accurately controlling the thread pitch distance of screwed Pt wire. It has been revealed that the thread pitch will strongly influence the photovoltaic performance and kinetic processes in fibrous solar cells. The effect of the length of the TiO2 nanotube on cell performance has also been discussed. After optimization, a relatively universal optimized thread pitch value of 1 mm for fibrous DSCs has been proved and the light-to-electricity conversion efficiency has been remarkably improved to 5.84%.

  4. Cell manipulation tool with combined microwell array and optical tweezers for cell isolation and deposition

    International Nuclear Information System (INIS)

    Isolation from rare cells and deposition of sorted cells with high accuracy for further study are critical to a wide range of biomedical applications. In the current paper, we report an automated cell manipulation tool with combined optical tweezers and a uniquely designed microwell array, which functions for recognition, isolation, assembly, transportation and deposition of the interesting cells. The microwell array allows the passive hydrodynamic docking of cells, while offering the opportunity to inspect the interesting cell phenotypes with high spatio-temporal resolution based on the flexible image processing technique. In addition, dynamic and parallel cell manipulation in three dimensions can realize the target cell levitation from microwell and pattern assembly with multiple optical traps. Integrated with the programmed motorized stage, the optically levitated and assembled cells can be transported and deposited to the predefined microenvironment, so the tool can facilitate the integration of other on-chip functionalities for further study without removing these isolated cells from the chip. Experiments on human embryonic stem cells and yeast cells are performed to demonstrate the effectiveness of the proposed cell manipulation tool. Besides the application to cell isolation and deposition, three other biological applications with this tool are also presented. (paper)

  5. Fabrication of gold nanodot arrays on a transparent substrate as a nanobioplatform for label-free visualization of living cells

    International Nuclear Information System (INIS)

    Two-dimensional gold (Au) nanodot arrays on a transparent substrate were fabricated for imaging of living cells. A nanoporous alumina mask with large-area coverage capability was prepared by a two-step chemical wet etching process after a second anodization. Highly ordered Au nanodot arrays were formed on indium-tin-oxide (ITO) glass using very thin nanoporous alumina of approximately 200 nm thickness as an evaporation mask. The large-area Au nanodot arrays on ITO glass were modified with RGD peptide (arginine; glycine; aspartic acid) containing a cysteine (Cys) residue and then used to immobilize human cancer HeLa cells, the morphology of which was observed by confocal microscopy. The confocal micrographs of living HeLa cells on Au nanodot arrays revealed enhanced contrast and resolution, which enabled discernment of cytoplasmic organelles more clearly. These results suggest that two-dimensional Au nanodot arrays modified with RGD peptide on ITO glass have potential as a biocompatible nanobioplatform for the label-free visualization and adhesion of living cells.

  6. GaP/Si wire array solar cells

    OpenAIRE

    Tamboli, Adele C.; Turner-Evans, Daniel B.; Malhotra, Manav; Kelzenberg, Michael D.; Atwater, Harry A.

    2010-01-01

    Si wire arrays have recently demonstrated their potential as photovoltaic devices [1-3]. Using these arrays as a base, we consider a next generation, multijunction wire array architecture consisting of Si wire arrays with a conformal GaN_xP_(1-x-y)As_y coating. Optical absorption and device physics simulations provide insight into the design of such devices. In particular, the simulations show that much of the solar spectrum can be absorbed as the angle of illumination...

  7. III-nitride core–shell nanowire arrayed solar cells

    International Nuclear Information System (INIS)

    A solar cell based on a hybrid nanowire–film architecture consisting of a vertically aligned array of InGaN/GaN multi-quantum well core–shell nanowires which are electrically connected by a coalesced p-InGaN canopy layer is demonstrated. This unique hybrid structure allows for standard planar device processing, solving a key challenge with nanowire device integration, while enabling various advantages by the nanowire absorbing region such as higher indium composition InGaN layers by elastic strain relief, more efficient carrier collection in thinner layers, and enhanced light trapping from nano-scale optical index changes. This hybrid structure is fabricated into working solar cells exhibiting photoresponse out to 2.1 eV and short-circuit current densities of ∼1 mA cm−2 under 1 sun AM1.5G. This proof-of-concept nanowire-based device demonstrates a route forward for high-efficiency III-nitride solar cells. (paper)

  8. Cancer Cell Analyses at the Single Cell-Level Using Electroactive Microwell Array Device.

    Directory of Open Access Journals (Sweden)

    Marina Kobayashi

    Full Text Available Circulating tumor cells (CTCs, shed from primary tumors and disseminated into peripheral blood, are playing a major role in metastasis. Even after isolation of CTCs from blood, the target cells are mixed with a population of other cell types. Here, we propose a new method for analyses of cell mixture at the single-cell level using a microfluidic device that contains arrayed electroactive microwells. Dielectrophoretic (DEP force, induced by the electrodes patterned on the bottom surface of the microwells, allows efficient trapping and stable positioning of single cells for high-throughput biochemical analyses. We demonstrated that various on-chip analyses including immunostaining, viability/apoptosis assay and fluorescent in situ hybridization (FISH at the single-cell level could be conducted just by applying specific reagents for each assay. Our simple method should greatly help discrimination and analysis of rare cancer cells among a population of blood cells.

  9. Genome-wide array comparative genomic hybridization analysis reveals distinct amplifications in osteosarcoma

    International Nuclear Information System (INIS)

    Osteosarcoma is a highly malignant bone neoplasm of children and young adults. It is characterized by extremely complex karyotypes and high frequency of chromosomal amplifications. Currently, only the histological response (degree of necrosis) to therapy represent gold standard for predicting the outcome in a patient with non-metastatic osteosarcoma at the time of definitive surgery. Patients with lower degree of necrosis have a higher risk of relapse and poor outcome even after chemotherapy and complete resection of the primary tumor. Therefore, a better understanding of the underlying molecular genetic events leading to tumor initiation and progression could result in the identification of potential diagnostic and therapeutic targets. We used a genome-wide screening method – array based comparative genomic hybridization (array-CGH) to identify DNA copy number changes in 48 patients with osteosarcoma. We applied fluorescence in situ hybridization (FISH) to validate some of amplified clones in this study. Clones showing gains (79%) were more frequent than losses (66%). High-level amplifications and homozygous deletions constitute 28.6% and 3.8% of tumor genome respectively. High-level amplifications were present in 238 clones, of which about 37% of them showed recurrent amplification. Most frequently amplified clones were mapped to 1p36.32 (PRDM16), 6p21.1 (CDC5L, HSPCB, NFKBIE), 8q24, 12q14.3 (IFNG), 16p13 (MGRN1), and 17p11.2 (PMP22 MYCD, SOX1,ELAC27). We validated some of the amplified clones by FISH from 6p12-p21, 8q23-q24, and 17p11.2 amplicons. Homozygous deletions were noted for 32 clones and only 7 clones showed in more than one case. These 7 clones were mapped to 1q25.1 (4 cases), 3p14.1 (4 cases), 13q12.2 (2 cases), 4p15.1 (2 cases), 6q12 (2 cases), 6q12 (2 cases) and 6q16.3 (2 cases). This study clearly demonstrates the utility of array CGH in defining high-resolution DNA copy number changes and refining amplifications. The resolution of array CGH

  10. Evaluation of solar cells and arrays for potential solar power satellite applications

    Science.gov (United States)

    Almgren, D. W.; Csigi, K.; Gaudet, A. D.

    1978-01-01

    Proposed solar array designs and manufacturing methods are evaluated to identify options which show the greatest promise of leading up to the develpment of a cost-effective SPS solar cell array design. The key program elements which have to be accomplished as part of an SPS solar cell array development program are defined. The issues focussed on are: (1) definition of one or more designs of a candidate SPS solar array module, using results from current system studies; (2) development of the necessary manufacturing requirements for the candidate SPS solar cell arrays and an assessment of the market size, timing, and industry infrastructure needed to produce the arrays for the SPS program; (3) evaluation of current DOE, NASA and DOD photovoltaic programs to determine the impacts of recent advances in solar cell materials, array designs and manufacturing technology on the candidate SPS solar cell arrays; and (4) definition of key program elements for the development of the most promising solar cell arrays for the SPS program.

  11. Is cell migration or proliferation dominant in the formation of linear arrays of oligodendrocytes?

    Science.gov (United States)

    Walsh, Darragh M; Röth, Philipp T; Holmes, William R; Landman, Kerry A; Merson, Tobias D; Hughes, Barry D

    2016-10-01

    Oligodendrocytes are the myelin-producing cells of the central nervous system that are responsible for electrically insulating axons to speed the propagation of electrical impulses. A striking feature of oligodendrocyte development within white matter is that the cell bodies of many oligodendrocyte progenitor cells become organised into discrete linear arrays of three or more cells before they differentiate into myelin-producing oligodendrocytes. These linear arrays align parallel to the direction of the axons within white matter tracts and are believed to play an important role in the co-ordination of myelination. Guided by experimental data on the abundance and composition of linear arrays in the corpus callosum of the postnatal mouse brain, we construct discrete and continuous models of linear array generation to specifically investigate the relative influence of cell migration, proliferation, differentiation and death of oligodendroglia upon the genesis of linear arrays during early postnatal development. We demonstrate that only models that incorporate significant cell migration can replicate all of the experimental observations on number of arrays, number of cells in arrays and total cell count of oligodendroglia within a given area of the corpus callosum. These models are also necessary to accurately reflect experimental data on the abundance of linear arrays composed of oligodendrocytes that derive from progenitors of different clonal origins. PMID:27343034

  12. Independent component analysis reveals new and biologically significant structures in micro array data

    Directory of Open Access Journals (Sweden)

    Veerla Srinivas

    2006-06-01

    Full Text Available Abstract Background An alternative to standard approaches to uncover biologically meaningful structures in micro array data is to treat the data as a blind source separation (BSS problem. BSS attempts to separate a mixture of signals into their different sources and refers to the problem of recovering signals from several observed linear mixtures. In the context of micro array data, "sources" may correspond to specific cellular responses or to co-regulated genes. Results We applied independent component analysis (ICA to three different microarray data sets; two tumor data sets and one time series experiment. To obtain reliable components we used iterated ICA to estimate component centrotypes. We found that many of the low ranking components indeed may show a strong biological coherence and hence be of biological significance. Generally ICA achieved a higher resolution when compared with results based on correlated expression and a larger number of gene clusters with significantly enriched for gene ontology (GO categories. In addition, components characteristic for molecular subtypes and for tumors with specific chromosomal translocations were identified. ICA also identified more than one gene clusters significant for the same GO categories and hence disclosed a higher level of biological heterogeneity, even within coherent groups of genes. Conclusion Although the ICA approach primarily detects hidden variables, these surfaced as highly correlated genes in time series data and in one instance in the tumor data. This further strengthens the biological relevance of latent variables detected by ICA.

  13. CAMSAP3 orients the apical-to-basal polarity of microtubule arrays in epithelial cells.

    Science.gov (United States)

    Toya, Mika; Kobayashi, Saeko; Kawasaki, Miwa; Shioi, Go; Kaneko, Mari; Ishiuchi, Takashi; Misaki, Kazuyo; Meng, Wenxiang; Takeichi, Masatoshi

    2016-01-12

    Polarized epithelial cells exhibit a characteristic array of microtubules that are oriented along the apicobasal axis of the cells. The minus-ends of these microtubules face apically, and the plus-ends face toward the basal side. The mechanisms underlying this epithelial-specific microtubule assembly remain unresolved, however. Here, using mouse intestinal cells and human Caco-2 cells, we show that the microtubule minus-end binding protein CAMSAP3 (calmodulin-regulated-spectrin-associated protein 3) plays a pivotal role in orienting the apical-to-basal polarity of microtubules in epithelial cells. In these cells, CAMSAP3 accumulated at the apical cortices, and tethered the longitudinal microtubules to these sites. Camsap3 mutation or depletion resulted in a random orientation of these microtubules; concomitantly, the stereotypic positioning of the nucleus and Golgi apparatus was perturbed. In contrast, the integrity of the plasma membrane was hardly affected, although its structural stability was decreased. Further analysis revealed that the CC1 domain of CAMSAP3 is crucial for its apical localization, and that forced mislocalization of CAMSAP3 disturbs the epithelial architecture. These findings demonstrate that apically localized CAMSAP3 determines the proper orientation of microtubules, and in turn that of organelles, in mature mammalian epithelial cells. PMID:26715742

  14. Technical evaluation of Solar Cells, Inc., CdTe module and array at NREL

    Energy Technology Data Exchange (ETDEWEB)

    Kroposki, B.; Strand, T.; Hansen, R. [National Renewable Energy Lab., Golden, CO (United States); Powell, R.; Sasala, R. [Solar Cells, Inc., Toledo, OH (United States)

    1996-05-01

    The Engineering and Technology Validation Team at the National Renewable Energy Laboratory (NREL) conducts in-situ technical evaluations of polycrystalline thin-film photovoltaic (PV) modules and arrays. This paper focuses on the technical evaluation of Solar Cells, Inc., (SCI) cadmium telluride (CdTe) module and array performance by attempting to correlate individual module and array performance. This is done by examining the performance and stability of the modules and array over a period of more than one year. Temperature coefficients for module and array parameters (P{sub max}, V{sub oc}, V{sub max}, I{sub sc}, I{sub max}) are also calculated.

  15. A Nanodot Array Modulates Cell Adhesion and Induces an Apoptosis-Like Abnormality in NIH-3T3 Cells

    Directory of Open Access Journals (Sweden)

    Hung Yao-Ching

    2009-01-01

    Full Text Available Abstract Micro-structures that mimic the extracellular substratum promote cell growth and differentiation, while the cellular reaction to a nanostructure is poorly defined. To evaluate the cellular response to a nanoscaled surface, NIH 3T3 cells were grown on nanodot arrays with dot diameters ranging from 10 to 200 nm. The nanodot arrays were fabricated by AAO processing on TaN-coated wafers. A thin layer of platinum, 5 nm in thickness, was sputtered onto the structure to improve biocompatibility. The cells grew normally on the 10-nm array and on flat surfaces. However, 50-nm, 100-nm, and 200-nm nanodot arrays induced apoptosis-like events. Abnormality was triggered after as few as 24 h of incubation on a 200-nm dot array. For cells grown on the 50-nm array, the abnormality started after 72 h of incubation. The number of filopodia extended from the cell bodies was lower for the abnormal cells. Immunostaining using antibodies against vinculin and actin filament was performed. Both the number of focal adhesions and the amount of cytoskeleton were decreased in cells grown on the 100-nm and 200-nm arrays. Pre-coatings of fibronectin (FN or type I collagen promoted cellular anchorage and prevented the nanotopography-induced programed cell death. In summary, nanotopography, in the form of nanodot arrays, induced an apoptosis-like abnormality for cultured NIH 3T3 cells. The occurrence of the abnormality was mediated by the formation of focal adhesions.

  16. Differentiation of cancer cell type and phenotype using quantum dot-gold nanoparticle sensor arrays

    OpenAIRE

    Liu, Qian; Yeh, Yi-Cheun; Rana, Subinoy; Jiang, Ying; Guo, Lin; Rotello, Vincent M.

    2012-01-01

    We demonstrate rapid and efficient sensing of mammalian cell types and states using nanoparticle-based sensor arrays. These arrays are comprised of cationic quantum dots (QDs) and gold nanoparticles (AuNPs) that interact with cell surfaces to generate distinguishable fluorescence responses based on cell surface signatures. The use of QDs as the recognition elements as well as the signal transducers presents the potential for direct visualization of selective cell surface interactions. Notably...

  17. Induction of Human iPSC-Derived Cardiomyocyte Proliferation Revealed by Combinatorial Screening in High Density Microbioreactor Arrays.

    Science.gov (United States)

    Titmarsh, Drew M; Glass, Nick R; Mills, Richard J; Hidalgo, Alejandro; Wolvetang, Ernst J; Porrello, Enzo R; Hudson, James E; Cooper-White, Justin J

    2016-01-01

    Inducing cardiomyocyte proliferation in post-mitotic adult heart tissue is attracting significant attention as a therapeutic strategy to regenerate the heart after injury. Model animal screens have identified several candidate signalling pathways, however, it remains unclear as to what extent these pathways can be exploited, either individually or in combination, in the human system. The advent of human cardiac cells from directed differentiation of human pluripotent stem cells (hPSCs) now provides the ability to interrogate human cardiac biology in vitro, but it remains difficult with existing culture formats to simply and rapidly elucidate signalling pathway penetrance and interplay. To facilitate high-throughput combinatorial screening of candidate biologicals or factors driving relevant molecular pathways, we developed a high-density microbioreactor array (HDMA) - a microfluidic cell culture array containing 8100 culture chambers. We used HDMAs to combinatorially screen Wnt, Hedgehog, IGF and FGF pathway agonists. The Wnt activator CHIR99021 was identified as the most potent molecular inducer of human cardiomyocyte proliferation, inducing cell cycle activity marked by Ki67, and an increase in cardiomyocyte numbers compared to controls. The combination of human cardiomyocytes with the HDMA provides a versatile and rapid tool for stratifying combinations of factors for heart regeneration. PMID:27097795

  18. Electropolymerization of Uniform Polyaniline Nanorod Arrays on Conducting Oxides as Counter Electrodes in Dye-Sensitized Solar Cells.

    Science.gov (United States)

    He, Ziming; Liu, Jing; Khoo, Si Yun; Tan, Timothy Thatt Yang

    2016-01-01

    Conventional techniques for the synthesis of oriented polyaniline (PANI) nanostructures are often complex or time consuming. Through an innovative reduced graphene oxide (rGO) modified FTO and a low-potential electropolymerization strategy, the rapid and template-free growth of a highly ordered PANI nanorod array on the FTO substrate is realized. The highly ordered nanostructure of the PANI array leads to a high electrocatalytic activity and chemical stability. The importance of the polymerization potential and rGO surface modification to achieve this nanostructure is revealed. Compared to platinum, the PANI nanorod array exhibits an enhanced performance and stability as counter electrodes in dye-sensitized solar cells, with a 17.6 % enhancement in power conversion efficiency. PMID:26732134

  19. Performance study of solar cell arrays based on a Trough Concentrating Photovoltaic/Thermal system

    International Nuclear Information System (INIS)

    Highlights: → The performances of solar cell arrays based on a Trough Concentrating Photovoltaic/Thermal (TCPV/T) system have been studied. → The optimum concentration ratios for the single crystalline silicon cell, the Super cells and the GaAs cells were studied by experiments. → The influences between the solar cell's performance and the series resistances, the working temperature, solar irradiation intensity were explored. - Abstract: The performances of solar cell arrays based on a Trough Concentrating Photovoltaic/Thermal (TCPV/T) system have been studied via both experiment and theoretical calculation. The I-V characteristics of the solar cell arrays and the output performances of the TCPV/T system demonstrated that among the investigated four types of solar cell arrays, the triple junction GaAs cells possessed good performance characteristics and the polysilicon cells exhibited poor performance characteristics under concentrating conditions. The optimum concentration ratios for the single crystalline silicon cell, the Super cells and the GaAs cells were also studied by experiments. The optimum concentration ratios for the single crystalline silicon cells and Super cells were 4.23 and 8.46 respectively, and the triple junction GaAs cells could work well at higher concentration ratio. Besides, some theoretical calculations and experiments were performed to explore the influences of the series resistances and the working temperature. When the series resistances Rs changed from 0 Ω to 1 Ω, the maximum power Pm of the single crystalline silicon, the polycrystalline silicon, the Super cell and the GaAs cell arrays decreased by 67.78%, 74.93%, 77.30% and 58.07% respectively. When the cell temperature increased by 1 K, the short circuit current of the four types of solar cell arrays decreased by 0.11818 A, 0.05364 A, 0.01387 A and 0.00215 A respectively. The research results demonstrated that the output performance of the solar cell arrays with lower series

  20. The impact of solar cell technology on planar solar array performance

    Science.gov (United States)

    Mills, Michael W.; Kurland, Richard M.

    1989-01-01

    The results of a study into the potential impact of advanced solar cell technologies on the characteristics (weight, cost, area) of typical planar solar arrays designed for low, medium and geosynchronous altitude earth orbits are discussed. The study considered planar solar array substrate designs of lightweight, rigid-panel graphite epoxy and ultra-lightweight Kapton. The study proposed to answer the following questions: Do improved cell characteristics translate into array-level weight, size and cost improvements; What is the relative importance of cell efficiency, weight and cost with respect to array-level performance; How does mission orbital environment affect array-level performance. Comparisons were made at the array level including all mechanisms, hinges, booms, and harnesses. Array designs were sized to provide 5kW of array power (not spacecraft bus power, which is system dependent but can be scaled from given values). The study used important grass roots issues such as use of the GaAs radiation damage coefficients as determined by Anspaugh. Detailed costing was prepared, including cell and cover costs, and manufacturing attrition rates for the various cell types.

  1. Equivalent circuit-based analysis of CMUT cell dynamics in arrays.

    Science.gov (United States)

    Oguz, H K; Atalar, Abdullah; Köymen, Hayrettin

    2013-05-01

    Capacitive micromachined ultrasonic transducers (CMUTs) are usually composed of large arrays of closely packed cells. In this work, we use an equivalent circuit model to analyze CMUT arrays with multiple cells. We study the effects of mutual acoustic interactions through the immersion medium caused by the pressure field generated by each cell acting upon the others. To do this, all the cells in the array are coupled through a radiation impedance matrix at their acoustic terminals. An accurate approximation for the mutual radiation impedance is defined between two circular cells, which can be used in large arrays to reduce computational complexity. Hence, a performance analysis of CMUT arrays can be accurately done with a circuit simulator. By using the proposed model, one can very rapidly obtain the linear frequency and nonlinear transient responses of arrays with an arbitrary number of CMUT cells. We performed several finite element method (FEM) simulations for arrays with small numbers of cells and showed that the results are very similar to those obtained by the equivalent circuit model. PMID:23661137

  2. NeuroArray: A Universal Interface for Patterning and Interrogating Neural Circuitry with Single Cell Resolution

    OpenAIRE

    Li, Wei; Xu, Zhen; Huang, Junzhe; Lin, Xudong; Luo, Rongcong; Chen, Chia-Hung; Shi, Peng

    2014-01-01

    Recreation of neural network in vitro with designed topology is a valuable tool to decipher how neurons behave when interacting in hierarchical networks. In this study, we developed a simple and effective platform to pattern primary neurons in array formats for interrogation of neural circuitry with single cell resolution. Unlike many surface-chemistry-based patterning methods, our NeuroArray technique is specially designed to accommodate neuron's polarized morphologies to make regular arrays...

  3. Nanoprobe arrays for multiple single cell insertion using heterogeneous nanosphere lithography (HNSL)

    Science.gov (United States)

    Seo, Yoon Ho; Kim, Lo Hyun; Kim, Young-Beom; Ryu, Wonhyoung

    2013-08-01

    Nanoprobe arrays for multiple single cell insertion were developed using heterogeneous nanosphere lithography. Using two heterogeneous nanoparticles as sacrificial and masking particles, high aspect ratio Si nanoprobes were fabricated in an array with spacing between the nanoprobes ranging from a few to tens of micrometers. For registered single cell analysis, multiple and precise insertion of nanoprobes into multiple single cells in a parallel fashion was demonstrated using micropipette suction and micromanipulators.

  4. Rapid Assembly of Heterogeneous 3D Cell Microenvironments in a Microgel Array.

    Science.gov (United States)

    Li, Yiwei; Chen, Pu; Wang, Yachao; Yan, Shuangqian; Feng, Xiaojun; Du, Wei; Koehler, Stephan A; Demirci, Utkan; Liu, Bi-Feng

    2016-05-01

    Heterogeneous 3D cell microenvironment arrays are rapidly assembled by combining surface-wettability-guided assembly and microdroplet-array-based operations. This approach enables precise control over individual shapes, sizes, chemical concentrations, cell density, and 3D spatial distribution of multiple components. This technique provides a cost-effective solution to meet the increasing demand of stem cell research, tissue engineering, and drug screening. PMID:26991071

  5. Differentiation of cancer cell type and phenotype using quantum dot-gold nanoparticle sensor arrays.

    Science.gov (United States)

    Liu, Qian; Yeh, Yi-Cheun; Rana, Subinoy; Jiang, Ying; Guo, Lin; Rotello, Vincent M

    2013-07-01

    We demonstrate rapid and efficient sensing of mammalian cell types and states using nanoparticle-based sensor arrays. These arrays are comprised of cationic quantum dots (QDs) and gold nanoparticles (AuNPs) that interact with cell surfaces to generate distinguishable fluorescence responses based on cell surface signatures. The use of QDs as the recognition elements as well as the signal transducers presents the potential for direct visualization of selective cell surface interactions. Notably, this sensor is unbiased, precluding the requirement of pre-knowledge of cell state biomarkers and thus providing a general approach for phenotypic profiling of cell states, with additional potential for imaging applications. PMID:23022266

  6. Microlens array induced light absorption enhancement in polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yuqing [Ames Laboratory; Elshobaki, Moneim [Iowa State University; Ye, Zhuo [Ames Laboratory; Park, Joong-Mok [Ames Laboratory; Noack, Max A. [Iowa State University; Ho, Kai-Ming [Ames Laboratory; Chaudhary, Sumit [Ames Laboratory

    2013-01-24

    Over the last decade, polymer solar cells (PSCs) have attracted a lot of attention and highest power conversion efficiencies (PCE) are now close to 10%. Here we employ an optical structure – the microlens array (MLA) – to increase light absorption inside the active layer, and PCE of PSCs increased even for optimized devices. Normal incident light rays are refracted at the MLA and travel longer optical paths inside the active layers. Two PSC systems – poly(3-hexylthiophene-2,5-diyl):(6,6)-phenyl C61 butyric acid methyl ester (P3HT:PCBM) and poly[[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophenediyl]:(6,6)-phenyl C71 butyric acid methyl ester (PCDTBT:PC70BM) – were investigated. In the P3HT:PCBM system, MLA increased the absorption, absolute external quantum efficiency, and the PCE of an optimized device by [similar]4.3%. In the PCDTBT:PC70BM system, MLA increased the absorption, absolute external quantum efficiency, and PCE by more than 10%. In addition, simulations incorporating optical parameters of all structural layers were performed and they support the enhancement of absorption in the active layer with the assistance of MLA. Our results show that utilizing MLA is an effective strategy to further increase light absorption in PSCs, in which optical losses account for [similar]40% of total losses. MLA also does not pose materials processing challenges to the active layers since it is on the other side of the transparent substrate.

  7. Patterning pallet arrays for cell selection based on high-resolution measurements of fluorescent biosensors.

    Science.gov (United States)

    Shadpour, Hamed; Zawistowski, Jon S; Herman, Annadele; Hahn, Klaus; Allbritton, Nancy L

    2011-06-24

    Pallet arrays enable cells to be separated while they remain adherent to a surface and provide a much greater range of cell selection criteria relative to that of current technologies. However there remains a need to further broaden cell selection criteria to include dynamic intracellular signaling events. To demonstrate the feasibility of measuring cellular protein behavior on the arrays using high resolution microscopy, the surfaces of individual pallets were modified to minimize the impact of scattered light at the pallet edges. The surfaces of the three-dimensional pallets on an array were patterned with a coating such as fibronectin using a customized stamping tool. Micropatterns of varying shape and size were printed in designated regions on the pallets in single or multiple steps to demonstrate the reliability and precision of patterning molecules on the pallet surface. Use of a fibronectin matrix stamped at the center of each pallet permitted the localization of H1299 and mouse embryonic fibroblast (MEF) cells to the pallet centers and away from the edges. Compared to pallet arrays with fibronectin coating the entire top surface, arrays with a central fibronectin pattern increased the percentage of cells localized to the pallet center by 3-4-fold. Localization of cells to the pallet center also enabled the physical separation of cells from optical artifacts created by the rough pallet side walls. To demonstrate the measurement of dynamic intracellular signaling on the arrays, fluorescence measurements of high spatial resolution were performed using a RhoA GTPase biosensor. This biosensor utilized fluorescence resonance energy transfer (FRET) between cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) to measure localized RhoA activity in cellular ruffles at the cell periphery. These results demonstrated the ability to perform spatially resolved measurements of fluorescence-based sensors on the pallet arrays. Thus, the patterned pallet arrays

  8. An array of asymmetries in Saturn's structure revealed by its rings

    Science.gov (United States)

    Hedman, Matthew M.; Nicholson, Philip D.; El Moutamid, Maryame; Graven, Stephanie

    2016-05-01

    Previous investigations of high-resolution stellar occultation data obtained by the Cassini spacecraft have revealed that Saturn's C ring contains numerous density waves that are probably generated by structures inside the planet. In particular, five features were attributed to long-lived asymmetries in the planet's gravity field because they had pattern speeds similar to the range of rotation rates found in Saturn's winds. Using wavelet-based techniques, we have performed a more comprehensive search for similar structures, and found that the above five waves are just the most obvious members of an entire population of ring disturbances spread over several thousand kilometers of the C ring. These structures should provide new insights into the dynamics of Saturn's deep atmosphere.

  9. Anticarbohydrate Antibody Repertoires in Patients Transplanted with Fetal Pig Islets Revealed by Glycan Arrays

    DEFF Research Database (Denmark)

    Blixt, Klas Ola; Kumagai-Braesch, A.; Tibell, A.;

    2009-01-01

    Ten patients with type I diabetes were transplanted with porcine fetal islet-like cell clusters (ICC) between 1990 and 1993. A significant rise in the anti-a-Gal antibody titers was seen posttransplant, but also non-a-Gal-specific antibodies were detected in some patients. We have reanalyzed the...... appeared after transplantation. In conclusion, anti-a-Gal antibodies are the predominant anticarbohydrate antibodies detected after porcine ICC transplantation, with some patients also developing Neu5Gc-specific antibodies. Their clinical significance needs to be established....

  10. Deformable L-shaped microwell array for trapping pairs of heterogeneous cells

    International Nuclear Information System (INIS)

    To study cell-to-cell interactions, there has been a continuous demand on developing microsystems for trapping pairs of two different cells in microwell arrays. Here, we propose an L-shaped microwell (L-microwell) array that relies on the elasticity of a polydimethylsiloxane (PDMS) substrate for trapping and pairing heterogeneous cells. We designed an L-microwell suitable for trapping single cell in each branch via stretching/releasing the PDMS substrate, and also performed 3D time-dependent diffusion simulations to visualize how cell-secreted molecules diffuse in the L-microwell and communicate with the partner cell. The computational results showed that the secreted molecule first contacted the partner cell after 35 min, and the secreted molecule fully covered the partner cell in 4 h (when referenced to 10% of the secreted molecular concentration). The molecules that diffused to the outside of the L-microwell were significantly diluted by the bulk solution, which prevented unwanted cellular communication between neighboring L-microwells. We produced over 5000 cell pairs in one 2.25 cm2 array with about 30 000 L-microwells. The proposed L-microwell array offers a versatile and convenient cell pairing method to investigate cell-to-cell interactions in, for example, cell fusion, immune reactions, and cancer metastasis. (paper)

  11. Multilayer nanoparticle arrays for broad spectrum absorption enhancement in thin film solar cells

    CERN Document Server

    Krishnan, Aravind; Krishna, Siva Rama; Khan, Mohammed Zafar Ali

    2013-01-01

    In this paper, we present a theoretical study on the absorption efficiency enhancement of a thin film amorphous Silicon (a-Si) photovoltaic cell over a broad spectrum of wavelengths using multiple nanoparticle arrays. The light absorption efficiency is enhanced in the lower wavelengths by a nanoparticle array on the surface and in the higher wavelengths by another nanoparticle array embedded in the active region. The efficiency at intermediate wavelengths is enhanced by the constructive interference of plasmon coupled light. We optimize this design by tuning the radius of particles in both arrays, the period of the array and the distance between the two arrays. The optimization results in 61.44% increase in total quantum efficiency for a 500 nm thick a-Si substrate.

  12. Photovoltaic cell and array technology development for future unique NASA missions

    Science.gov (United States)

    Bailey, S.; Curtis, H.; Piszczor, M.; Surampudi, R.; Hamilton, T.; Rapp, D.; Stella, P.; Mardesich, N.; Mondt, J.; Bunker, R.; Nesmith, B.; Gaddy, E.; Marvin, D.; Kazmerski, L.

    2002-01-01

    A technology review committee from NASA, the U.S. Department of Energy (DOE), and the Air Force Research Lab, was formed to assess solar cell and array technologies required for future NASA science missions.

  13. Microarray Analyses Reveal Marked Differences in Growth Factor and Receptor Expression Between 8-Cell Human Embryos and Pluripotent Stem Cells.

    Science.gov (United States)

    Vlismas, Antonis; Bletsa, Ritsa; Mavrogianni, Despina; Mamali, Georgina; Pergamali, Maria; Dinopoulou, Vasiliki; Partsinevelos, George; Drakakis, Peter; Loutradis, Dimitris; Kiessling, Ann A

    2016-01-15

    Previous microarray analyses of RNAs from 8-cell (8C) human embryos revealed a lack of cell cycle checkpoints and overexpression of core circadian oscillators and cell cycle drivers relative to pluripotent human stem cells [human embryonic stem cells/induced pluripotent stem (hES/iPS)] and fibroblasts, suggesting growth factor independence during early cleavage stages. To explore this possibility, we queried our combined microarray database for expression of 487 growth factors and receptors. Fifty-one gene elements were overdetected on the 8C arrays relative to hES/iPS cells, including 14 detected at least 80-fold higher, which annotated to multiple pathways: six cytokine family (CSF1R, IL2RG, IL3RA, IL4, IL17B, IL23R), four transforming growth factor beta (TGFB) family (BMP6, BMP15, GDF9, ENG), one fibroblast growth factor (FGF) family [FGF14(FH4)], one epidermal growth factor member (GAB1), plus CD36, and CLEC10A. 8C-specific gene elements were enriched (73%) for reported circadian-controlled genes in mouse tissues. High-level detection of CSF1R, ENG, IL23R, and IL3RA specifically on the 8C arrays suggests the embryo plays an active role in blocking immune rejection and is poised for trophectoderm development; robust detection of NRG1, GAB1, -2, GRB7, and FGF14(FHF4) indicates novel roles in early development in addition to their known roles in later development. Forty-four gene elements were underdetected on the 8C arrays, including 11 at least 80-fold under the pluripotent cells: two cytokines (IFITM1, TNFRSF8), five TGFBs (BMP7, LEFTY1, LEFTY2, TDGF1, TDGF3), two FGFs (FGF2, FGF receptor 1), plus ING5, and WNT6. The microarray detection patterns suggest that hES/iPS cells exhibit suppressed circadian competence, underexpression of early differentiation markers, and more robust expression of generic pluripotency genes, in keeping with an artificial state of continual uncommitted cell division. In contrast, gene expression patterns of the 8C embryo suggest that

  14. Disturbance characteristics of half-selected cells in a cross-point resistive switching memory array

    Science.gov (United States)

    Chen, Zhe; Li, Haitong; Chen, Hong-Yu; Chen, Bing; Liu, Rui; Huang, Peng; Zhang, Feifei; Jiang, Zizhen; Ye, Hongfei; Gao, Bin; Liu, Lifeng; Liu, Xiaoyan; Kang, Jinfeng; Wong, H.-S. Philip; Yu, Shimeng

    2016-05-01

    Disturbance characteristics of cross-point resistive random access memory (RRAM) arrays are comprehensively studied in this paper. An analytical model is developed to quantify the number of pulses (#Pulse) the cell can bear before disturbance occurs under various sub-switching voltage stresses based on physical understanding. An evaluation methodology is proposed to assess the disturb behavior of half-selected (HS) cells in cross-point RRAM arrays by combining the analytical model and SPICE simulation. The characteristics of cross-point RRAM arrays such as energy consumption, reliable operating cycles and total error bits are evaluated by the methodology. A possible solution to mitigate disturbance is proposed.

  15. Molecular profiling reveals primary mesothelioma cell lines recapitulate human disease.

    Science.gov (United States)

    Chernova, T; Sun, X M; Powley, I R; Galavotti, S; Grosso, S; Murphy, F A; Miles, G J; Cresswell, L; Antonov, A V; Bennett, J; Nakas, A; Dinsdale, D; Cain, K; Bushell, M; Willis, A E; MacFarlane, M

    2016-07-01

    Malignant mesothelioma (MM) is an aggressive, fatal tumor strongly associated with asbestos exposure. There is an urgent need to improve MM patient outcomes and this requires functionally validated pre-clinical models. Mesothelioma-derived cell lines provide an essential and relatively robust tool and remain among the most widely used systems for candidate drug evaluation. Although a number of cell lines are commercially available, a detailed comparison of these commercial lines with freshly derived primary tumor cells to validate their suitability as pre-clinical models is lacking. To address this, patient-derived primary mesothelioma cell lines were established and characterized using complementary multidisciplinary approaches and bioinformatic analysis. Clinical markers of mesothelioma, transcriptional and metabolic profiles, as well as the status of p53 and the tumor suppressor genes CDKN2A and NF2, were examined in primary cell lines and in two widely used commercial lines. Expression of MM-associated markers, as well as the status of CDKN2A, NF2, the 'gatekeeper' in MM development, and their products demonstrated that primary cell lines are more representative of the tumor close to its native state and show a degree of molecular diversity, thus capturing the disease heterogeneity in a patient cohort. Molecular profiling revealed a significantly different transcriptome and marked metabolic shift towards a greater glycolytic phenotype in commercial compared with primary cell lines. Our results highlight that multiple, appropriately characterised, patient-derived tumor cell lines are required to enable concurrent evaluation of molecular profiles versus drug response. Furthermore, application of this approach to other difficult-to-treat tumors would generate improved cellular models for pre-clinical evaluation of novel targeted therapies. PMID:26891694

  16. Timing and Controlling Dissolution of Cell Repellent Poly(Vinyl Alcohol) Thin Films for Patterned Cell Micro-Arrays

    OpenAIRE

    Lindboe, Frederic Menard

    2014-01-01

    Recently, a novel, high-throughput, patterned cell micro-array has been developed using polydopamine and poly(vinyl alcohol) (PVA) as cell adhesive and cell repellent surfaces, respectively. The step converting the cell repellent surface to an adhesive one was shown to be toxic, so this project set out to investigate whether the cell repellent PVA surface could be dissolved instead through timed or controlled dissolution. PVA film solubility was tested in water and in cell compatible media. V...

  17. A microwell array device capable of measuring single-cell oxygen consumption rates

    OpenAIRE

    Molter, Timothy W.; McQuaide, Sarah C.; Suchorolski, Martin T.; Strovas, Tim J.; Burgess, Lloyd W.; Meldrum, Deirdre R.; Lidstrom, Mary E.

    2009-01-01

    Due to interest in cell population heterogeneity, the development of new technology and methodologies for studying single cells has dramatically increased in recent years. The ideal single cell measurement system would be high throughput for statistical relevance, would measure the most important cellular parameters, and minimize disruption of normal cell function. We have developed a microwell array device capable of measuring single cell oxygen consumption rates (OCR). This OCR device is ab...

  18. Self-Assembled Wire Arrays and ITO Contacts for Silicon Nanowire Solar Cell Applications

    Institute of Scientific and Technical Information of China (English)

    YANG Cheng; ZHANG Gang; LEE Dae-Young; LI Hua-Min; LIM Young-Dae; Y00 Won Jong; PARK Young-Jun; KIM Jong-Min

    2011-01-01

    Self-assembly of silicon nanowire(SiNW)arrays is studied using SF6/02 plasma treatment. The self-assembly method can be applied to single- and poly-crystalline Si substrates. Plasma conditions can control the length and diameter of the SiNW arrays. Lower reflectance of the wire arrays over the wavelength range 200-1100nm is obtained. The conducting transparent indium-tin-oxide(ITO) electrode can be fully coated on the self-assembled SiNW arrays by sputtering. The ITO-coated SiNW solar cells show the same low surface light reflectance and a higher carrier collection efficiency than SiNW solar cells without ITO coating. An efficiency enhancement of around 3 times for ITO coated SiNW solar cells is demonstrated via experiments.

  19. Self-Assembled Wire Arrays and ITO Contacts for Silicon Nanowire Solar Cell Applications

    International Nuclear Information System (INIS)

    Self-assembly of silicon nanowire (SiNW) arrays is studied using SF6/O2 plasma treatment. The self-assembly method can be applied to single- and poly-crystalline Si substrates. Plasma conditions can control the length and diameter of the SiNW arrays. Lower reflectance of the wire arrays over the wavelength range 200–1100 nm is obtained. The conducting transparent indium-tin-oxide (ITO) electrode can be fully coated on the self-assembled SiNW arrays by sputtering. The ITO-coated SiNW solar cells show the same low surface light reflectance and a higher carrier collection efficiency than SiNW solar cells without ITO coating. An efficiency enhancement of around 3 times for ITO coated SiNW solar cells is demonstrated via experiments. (physics of gases, plasmas, and electric discharges)

  20. Efficiency improvement of silicon solar cells enabled by ZnO nanowhisker array coating

    OpenAIRE

    Yu, Xuegong; Wang, Dong; Lei, Dong; Li, Genhu; Yang, Deren

    2012-01-01

    An efficient antireflection coating is critical for the improvement of silicon solar cell performance via increased light coupling. Here, we have grown well-aligned ZnO nanowhisker (NW) arrays on Czochralski silicon solar cells by a seeding-growth two-step process. It is found that the ZnO NWs have a great effect on the macroscopic antireflection effect and, therefore, improves the solar cell performance. The ZnO NW array-coated solar cells display a broadband reflection suppression from 500 ...

  1. Analysis of leakage current in GaAs micro-solar cell arrays

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The output characteristics of micro-solar cell arrays are analyzed on the basis of a modified model in which the shunt resistance between cell lines results in current leakage.The modification mainly consists of adding a shunt resistor network to the traditional model.The obtained results agree well with the reported experimental results.The calculation results demonstrate that leakage current in substrate affects seriously the performance of GaAs micro-solar cell arrays.The performance of arrays can be improved by reducing the number of cells per line.In addition,at a certain level of integration,an appropriate space occupancy rate of the single cell is recommended for ensuring high open circuit voltages,and it is more appropriate to set the rates at 80%-90% through the calculation.

  2. Effects of nanopillar array diameter and spacing on cancer cell capture and cell behaviors

    Science.gov (United States)

    Wang, Shunqiang; Wan, Yuan; Liu, Yaling

    2014-10-01

    While substrates with nanopillars (NPs) have emerged as promising platforms for isolation of circulating tumor cells (CTCs), the influence of diameter and spacing of NPs on CTC capture is still unclear. In this paper, CTC-capture yield and cell behaviors have been investigated by using antibody functionalized NPs of various diameters (120-1100 nm) and spacings (35-800 nm). The results show a linear relationship between the cell capture yield and effective contact area of NP substrates where a NP array of small diameter and reasonable spacing is preferred; however, spacing that is too small or too large adversely impairs the capture efficiency and specificity, respectively. In addition, the formation of pseudopodia between captured cells and the substrate is found to be dependent not only on cell adhesion status but also on elution strength and shear direction. These findings provide essential guidance in designing NP substrates for more efficient capture of CTCs and manipulation of cytomorphology in future.While substrates with nanopillars (NPs) have emerged as promising platforms for isolation of circulating tumor cells (CTCs), the influence of diameter and spacing of NPs on CTC capture is still unclear. In this paper, CTC-capture yield and cell behaviors have been investigated by using antibody functionalized NPs of various diameters (120-1100 nm) and spacings (35-800 nm). The results show a linear relationship between the cell capture yield and effective contact area of NP substrates where a NP array of small diameter and reasonable spacing is preferred; however, spacing that is too small or too large adversely impairs the capture efficiency and specificity, respectively. In addition, the formation of pseudopodia between captured cells and the substrate is found to be dependent not only on cell adhesion status but also on elution strength and shear direction. These findings provide essential guidance in designing NP substrates for more efficient capture of CTCs

  3. Microtubule plus-end and minus-end capture at adherens junctions is involved in the assembly of apico-basal arrays in polarised epithelial cells.

    Science.gov (United States)

    Bellett, Gemma; Carter, Jane M; Keynton, Jennifer; Goldspink, Deborah; James, Colin; Moss, David K; Mogensen, Mette M

    2009-10-01

    Apico-basal polarisation of epithelial cells involves a dramatic reorganisation of the microtubule cytoskeleton. The classic radial array of microtubules focused on a centrally located centrosome typical of many animal cells is lost or greatly reduced and a non-centrosomal apico-basal array develops. The molecules and mechanisms responsible for the assembly and positioning of these non-centrosomal microtubules have not been fully elucidated. Using a Nocodazole induced regrowth assay in invitro culture (MDCK) and in situ epithelial (cochlear Kolliker's) cell models we establish that the apico-basal array originates from the centrosome and that the non-centrosomal microtubule minus-end anchoring sites do not contribute significantly to their nucleation. Confocal and electron microscopy revealed that an extended radial array assembles with microtubule plus-ends targeting cadheren sites at adherens junctions and EB1 and CLIP-170 co-localising with beta-catenin and dynein clusters at the junction sites. The extended radial array is likely to be a vital intermediate step in the assembly process with cortical anchored dynein providing the mechanical force required for microtubule release, translocation and capture. Ultrastructural analyses of the apico-basal arrays in fully polarised MDCK and Kolliker's cells revealed microtubule minus-end association with the most apical adherens junction (Zonula adherens). We propose that a release and capture model involving both microtubule plus- and minus-end capture at adherens junctions is responsible for the generation of non-centrosomal apico-basal arrays in most centrosome containing polarised epithelial cells. PMID:19479825

  4. Engineering complex tissue-like microgel arrays for evaluating stem cell differentiation

    Science.gov (United States)

    Guermani, Enrico; Shaki, Hossein; Mohanty, Soumyaranjan; Mehrali, Mehdi; Arpanaei, Ayyoob; Gaharwar, Akhilesh K.; Dolatshahi-Pirouz, Alireza

    2016-01-01

    Development of tissue engineering scaffolds with native-like biology and microarchitectures is a prerequisite for stem cell mediated generation of off-the-shelf-tissues. So far, the field of tissue engineering has not full-filled its grand potential of engineering such combinatorial scaffolds for engineering functional tissues. This is primarily due to the many challenges associated with finding the right microarchitectures and ECM compositions for optimal tissue regeneration. Here, we have developed a new microgel array to address this grand challenge through robotic printing of complex stem cell-laden microgel arrays. The developed microgel array platform consisted of various microgel environments that where composed of native-like cellular microarchitectures resembling vascularized and bone marrow tissue architectures. The feasibility of our array system was demonstrated through localized cell spreading and osteogenic differentiation of human mesenchymal stem cells (hMSCs) into complex tissue-like structures. In summary, we have developed a tissue-like microgel array for evaluating stem cell differentiation within complex and heterogeneous cell microenvironments. We anticipate that the developed platform will be used for high-throughput identification of combinatorial and native-like scaffolds for tissue engineering of functional organs. PMID:27465860

  5. A microneedle array able to inject tens of thousands of cells simultaneously

    International Nuclear Information System (INIS)

    This paper presents a biological microelectromechanical system for injecting foreign particles into thousands of cells simultaneously. The system inserts an array of microneedles into a monolayer of cells, and the foreign particles enter the cells by diffusion. The needle array is fabricated using a series of deep reactive ion etches and produces about 4 million needles that average 1 μm in diameter and 8 μm in length with 10 μm spacing. The insertion of the needles is controlled through a compliant suspension. The compliant suspension was designed to provide for needle motion into the cells while restraining rotations or transverse motions that could result in tearing of the cell membranes. Testing was performed using propidium iodide, a membrane impermeable dye, injected into HeLa cells. Average cell survivability was found to be 97.7%, and up to 97.9% of the surviving cells received the propidium iodide. (paper)

  6. Improvement of inverted type organic solar cells performance by incorporating Mg dopant into hydrothermally grown ZnO nanorod arrays

    Energy Technology Data Exchange (ETDEWEB)

    Ginting, Riski Titian [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Yap, Chi Chin, E-mail: ccyap@ukm.my [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Yahaya, Muhammad [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Mat Salleh, Muhamad [Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2014-02-05

    Highlights: • Mg-doped ZnO nanorod arrays were synthesized by hydrothermal method. • Growth of ZnO nanorods was strongly correlated to Mg concentration. • The PCE of device with optimum Mg concentration increased by 225%. • The mechanism of PCE improvement by Mg doping was revealed. -- Abstract: The Mg concentration dependence of the performance of inverted type organic solar cells based on Mg-doped ZnO nanorod arrays and poly(3-hexylthiophene) (P3HT) has been investigated. The Mg dopants with various concentrations (0, 1, 3 and 5 at.%) were introduced during the hydrothermal growth of the ZnO nanorod arrays on fluorine-doped tin oxide (FTO) glass substrate. The P3HT was deposited onto Mg-doped ZnO nanorod arrays by spin coating technique, followed by deposition of Ag as anode using magnetron sputtering technique. The length and density of Mg-doped ZnO nanorods increased, whereas the diameter decreased with the Mg concentration. The short circuit current density (J{sub sc}) and open circuit voltage (V{sub oc}) improved with increasing of Mg concentration up to 3 at.%, which could be attributed to increased interfacial area for more efficient exciton dissociation and reduced charge recombination as a result of lower number of oxygen interstitials which act as electron traps in ZnO. However, the J{sub sc} and V{sub oc} started to decrease at Mg concentration of 5 at.%, mainly due to poor infiltration of P3HT into the high-density 5 at.% Mg-doped ZnO nanorod arrays and increase of Mg dopant-related trapping centers. The highest power conversion efficiency of 0.36 ± 0.02% was achieved at Mg doping concentration of 3 at.%, an enhancement of 225% as compared to that based on undoped ZnO nanorod arrays.

  7. Improvement of inverted type organic solar cells performance by incorporating Mg dopant into hydrothermally grown ZnO nanorod arrays

    International Nuclear Information System (INIS)

    Highlights: • Mg-doped ZnO nanorod arrays were synthesized by hydrothermal method. • Growth of ZnO nanorods was strongly correlated to Mg concentration. • The PCE of device with optimum Mg concentration increased by 225%. • The mechanism of PCE improvement by Mg doping was revealed. -- Abstract: The Mg concentration dependence of the performance of inverted type organic solar cells based on Mg-doped ZnO nanorod arrays and poly(3-hexylthiophene) (P3HT) has been investigated. The Mg dopants with various concentrations (0, 1, 3 and 5 at.%) were introduced during the hydrothermal growth of the ZnO nanorod arrays on fluorine-doped tin oxide (FTO) glass substrate. The P3HT was deposited onto Mg-doped ZnO nanorod arrays by spin coating technique, followed by deposition of Ag as anode using magnetron sputtering technique. The length and density of Mg-doped ZnO nanorods increased, whereas the diameter decreased with the Mg concentration. The short circuit current density (Jsc) and open circuit voltage (Voc) improved with increasing of Mg concentration up to 3 at.%, which could be attributed to increased interfacial area for more efficient exciton dissociation and reduced charge recombination as a result of lower number of oxygen interstitials which act as electron traps in ZnO. However, the Jsc and Voc started to decrease at Mg concentration of 5 at.%, mainly due to poor infiltration of P3HT into the high-density 5 at.% Mg-doped ZnO nanorod arrays and increase of Mg dopant-related trapping centers. The highest power conversion efficiency of 0.36 ± 0.02% was achieved at Mg doping concentration of 3 at.%, an enhancement of 225% as compared to that based on undoped ZnO nanorod arrays

  8. On-line observation of cell growth in a three-dimensional matrix on surface-modified microelectrode arrays.

    Science.gov (United States)

    Lin, Shu-Ping; Kyriakides, Themis R; Chen, Jia-Jin J

    2009-06-01

    Despite many successful applications of microelectrode arrays (MEAs), typical two-dimensional in-vitro cultures do not project the full scale of the cell growth environment in the three-dimensional (3D) in-vivo setting. This study aims to on-line monitor in-vitro cell growth in a 3D matrix on the surface-modified MEAs with a dynamic perfusion culture system. A 3D matrix consisting of poly(ethylene glycol) hydrogel supplemented with poly-D-lysine was subsequently synthesized in situ on the self-assembled monolayer modified MEAs. FTIR spectrum analysis revealed a peak at 2100 cm(-1) due to the degradation of the structure of the 3D matrix. After 2 wks, microscopic examination revealed that the non-degraded area was around 1500 microm(2) and provided enough space for cell growth. Fluorescence microscopy revealed that the degraded 3D matrix was non-cytotoxic allowing the growth of NIH3T3 fibroblasts and cortical neurons in vitro. Time-course changes of total impedance including resistance and reactance were recorded for 8 days to evaluate the cell growth in the 3D matrix on the MEA. A consistent trend reflecting changes of reactance and total impedance was observed. These in-vitro assays demonstrate that our 3D matrix can construct a biomimetic system for cell growth and analysis of cell surface interactions. PMID:19344948

  9. Highly efficient ultrathin-film amorphous silicon solar cells on top of imprinted periodic nanodot arrays

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Wensheng, E-mail: yws118@gmail.com; Gu, Min, E-mail: mgu@swin.edu.au [Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Tao, Zhikuo [College of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023 (China); Ong, Thiam Min Brian [Plasma Sources and Application Center, NIE, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616 (Singapore); Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore)

    2015-03-02

    The addressing of the light absorption and conversion efficiency is critical to the ultrathin-film hydrogenated amorphous silicon (a-Si:H) solar cells. We systematically investigate ultrathin a-Si:H solar cells with a 100 nm absorber on top of imprinted hexagonal nanodot arrays. Experimental evidences are demonstrated for not only notable silver nanodot arrays but also lower-cost ITO and Al:ZnO nanodot arrays. The measured external quantum efficiency is explained by the simulation results. The J{sub sc} values are 12.1, 13.0, and 14.3 mA/cm{sup 2} and efficiencies are 6.6%, 7.5%, and 8.3% for ITO, Al:ZnO, and silver nanodot arrays, respectively. Simulated optical absorption distribution shows high light trapping within amorphous silicon layer.

  10. Highly efficient ultrathin-film amorphous silicon solar cells on top of imprinted periodic nanodot arrays

    International Nuclear Information System (INIS)

    The addressing of the light absorption and conversion efficiency is critical to the ultrathin-film hydrogenated amorphous silicon (a-Si:H) solar cells. We systematically investigate ultrathin a-Si:H solar cells with a 100 nm absorber on top of imprinted hexagonal nanodot arrays. Experimental evidences are demonstrated for not only notable silver nanodot arrays but also lower-cost ITO and Al:ZnO nanodot arrays. The measured external quantum efficiency is explained by the simulation results. The Jsc values are 12.1, 13.0, and 14.3 mA/cm2 and efficiencies are 6.6%, 7.5%, and 8.3% for ITO, Al:ZnO, and silver nanodot arrays, respectively. Simulated optical absorption distribution shows high light trapping within amorphous silicon layer

  11. Two-dimensional photonic crystal arrays for polymer:fullerene solar cells

    International Nuclear Information System (INIS)

    We report the application of two-dimensional (2D) photonic crystal (PC) array substrates for polymer:fullerene solar cells of which the active layer is made with blended films of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). The 2D PC array substrates were fabricated by employing a nanosphere lithography technique. Two different hole depths (200 and 300 nm) were introduced for the 2D PC arrays to examine the hole depth effect on the light harvesting (trapping). The optical effect by the 2D PC arrays was investigated by the measurement of optical transmittance either in the direction normal to the substrate (direct transmittance) or in all directions (integrated transmittance). The results showed that the integrated transmittance was higher for the 2D PC array substrates than the conventional planar substrate at the wavelengths of ca. 400 nm, even though the direct transmittance of 2D PC array substrates was much lower over the entire visible light range. The short circuit current density (JSC) was higher for the device with the 2D PC array (200 nm hole depth) than the reference device. However, the device with the 2D PC array (300 nm hole depth) showed a slightly lower JSC value at a high light intensity in spite of its light harvesting effect proven at a lower light intensity.

  12. Single-Cell RNA-Sequencing Reveals a Continuous Spectrum of Differentiation in Hematopoietic Cells

    Directory of Open Access Journals (Sweden)

    Iain C. Macaulay

    2016-02-01

    Full Text Available The transcriptional programs that govern hematopoiesis have been investigated primarily by population-level analysis of hematopoietic stem and progenitor cells, which cannot reveal the continuous nature of the differentiation process. Here we applied single-cell RNA-sequencing to a population of hematopoietic cells in zebrafish as they undergo thrombocyte lineage commitment. By reconstructing their developmental chronology computationally, we were able to place each cell along a continuum from stem cell to mature cell, refining the traditional lineage tree. The progression of cells along this continuum is characterized by a highly coordinated transcriptional program, displaying simultaneous suppression of genes involved in cell proliferation and ribosomal biogenesis as the expression of lineage specific genes increases. Within this program, there is substantial heterogeneity in the expression of the key lineage regulators. Overall, the total number of genes expressed, as well as the total mRNA content of the cell, decreases as the cells undergo lineage commitment.

  13. Tissue matrix arrays for high-throughput screening and systems analysis of cell function.

    Science.gov (United States)

    Beachley, Vince Z; Wolf, Matthew T; Sadtler, Kaitlyn; Manda, Srikanth S; Jacobs, Heather; Blatchley, Michael R; Bader, Joel S; Pandey, Akhilesh; Pardoll, Drew; Elisseeff, Jennifer H

    2015-12-01

    Cell and protein arrays have demonstrated remarkable utility in the high-throughput evaluation of biological responses; however, they lack the complexity of native tissue and organs. Here we spotted tissue extracellular matrix (ECM) particles as two-dimensional (2D) arrays or incorporated them with cells to generate three-dimensional (3D) cell-matrix microtissue arrays. We then investigated the responses of human stem, cancer and immune cells to tissue ECM arrays originating from 11 different tissues. We validated the 2D and 3D arrays as representative of the in vivo microenvironment by means of quantitative analysis of tissue-specific cellular responses, including matrix production, adhesion and proliferation, and morphological changes after culture. The biological outputs correlated with tissue proteomics, and network analysis identified several proteins linked to cell function. Our methodology enables broad screening of ECMs to connect tissue-specific composition with biological activity, providing a new resource for biomaterials research and further understanding of regeneration and disease mechanisms. PMID:26480475

  14. Low power and reliable SRAM memory cell and array design

    CERN Document Server

    Ishibashi, Koichiro

    2011-01-01

    Success in the development of recent advanced semiconductor device technologies is due to the success of SRAM memory cells. This book addresses various issues for designing SRAM memory cells for advanced CMOS technology. To study LSI design, SRAM cell design is the best materials subject because issues about variability, leakage and reliability have to be taken into account for the design.

  15. ZnO nanowire arrays as substrates for cell proliferation and differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Ciofani, Gianni, E-mail: g.ciofani@sssup.it [Italian Institute of Technology, Center of MicroBioRobotics c/o Scuola Superiore Sant' Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa) (Italy); Genchi, Giada Graziana [BioRobotics Institute, Scuola Superiore Sant' Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera (Pisa) (Italy); Mattoli, Virgilio [Italian Institute of Technology, Center of MicroBioRobotics c/o Scuola Superiore Sant' Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa (Italy)

    2012-02-01

    In the latest years, the use of zinc oxide (ZnO) nanostructures has been proposed in different biomedical applications, however, to date, only a few contrasting results concerning their biocompatibility can be found in the literature. In particular, the application of the extraordinary piezoelectric properties of ZnO nanostructures has poorly been explored for the culture of electrically excitable cells, and, for this reason, systematic investigations of their interactions with these living systems appear to be necessary. In this paper, we report about adhesion, proliferation and differentiation of two mammalian cell lines (PC12, as model of neuronal cells, and H9c2, as model of muscle cells) over ZnO nanowire arrays. We demonstrate suitability of these arrays in sustaining cellular functions, and their potential in applications that range from tissue engineering to minimally invasive sensing and/or stimulation. - Highlights: Black-Right-Pointing-Pointer ZnO nanowire arrays were exploited as mammalian cell substrates. Black-Right-Pointing-Pointer Two cell lines were investigated: PC12 (neuronal-like) and H9c2 (muscle-like). Black-Right-Pointing-Pointer An intimate connection between cells and nanostructured substrates was highlighted. Black-Right-Pointing-Pointer Adhesion, proliferation and differentiation was well sustained by ZnO nanowire arrays.

  16. ZnO nanowire arrays as substrates for cell proliferation and differentiation

    International Nuclear Information System (INIS)

    In the latest years, the use of zinc oxide (ZnO) nanostructures has been proposed in different biomedical applications, however, to date, only a few contrasting results concerning their biocompatibility can be found in the literature. In particular, the application of the extraordinary piezoelectric properties of ZnO nanostructures has poorly been explored for the culture of electrically excitable cells, and, for this reason, systematic investigations of their interactions with these living systems appear to be necessary. In this paper, we report about adhesion, proliferation and differentiation of two mammalian cell lines (PC12, as model of neuronal cells, and H9c2, as model of muscle cells) over ZnO nanowire arrays. We demonstrate suitability of these arrays in sustaining cellular functions, and their potential in applications that range from tissue engineering to minimally invasive sensing and/or stimulation. - Highlights: ► ZnO nanowire arrays were exploited as mammalian cell substrates. ► Two cell lines were investigated: PC12 (neuronal-like) and H9c2 (muscle-like). ► An intimate connection between cells and nanostructured substrates was highlighted. ► Adhesion, proliferation and differentiation was well sustained by ZnO nanowire arrays.

  17. Electricity from photovoltaic solar cells: Flat-Plate Solar Array Project final report. Volume IV: High-efficiency solar cells

    OpenAIRE

    Leipold, M.; L. Cheng; Daud, T.; Mokashi, A; Burger, D.

    1986-01-01

    The Flat-Plate Solar Array (FSA) Project, funded by the U.S. Government and managed by the Jet Propulsion Laboratory, was formed in 1975 to develop the module/array technology needed to attain widespread terrestrial use of photovoltaics by 1985. To accomplish this, the FSA Project established and managed an Industry, University, and Federal Government Team to perform the needed research and development (R&D). The High-Efficiency Solar Cells Task was assigned the objective of understandin...

  18. Solar Cell and Array Technology Development for NASA Solar Electric Propulsion Missions

    Science.gov (United States)

    Piszczor, Michael; McNatt, Jeremiah; Mercer, Carolyn; Kerslake, Tom; Pappa, Richard

    2012-01-01

    NASA is currently developing advanced solar cell and solar array technologies to support future exploration activities. These advanced photovoltaic technology development efforts are needed to enable very large (multi-hundred kilowatt) power systems that must be compatible with solar electric propulsion (SEP) missions. The technology being developed must address a wide variety of requirements and cover the necessary advances in solar cell, blanket integration, and large solar array structures that are needed for this class of missions. Th is paper will summarize NASA's plans for high power SEP missions, initi al mission studies and power system requirements, plans for advanced photovoltaic technology development, and the status of specific cell and array technology development and testing that have already been conducted.

  19. Supportless Platinum Nanotubes Array by Atomic Layer Deposition as PEM Fuel Cell Electrode

    International Nuclear Information System (INIS)

    Highlights: • A simple process for the fabrication of Pt nanotubes arrays has been developed. • The nanotubes array is stuck on a Nafion membrane and is coated by thin Nafion film. • Demonstration of the Pt nanotubes array MEA towards ORR in half-cell. - Abstract: This work reports the fabrication and the test of a novel type of electrode for polymer electrolyte fuel cells, based on an array of oriented and self-supported platinum nanotubes. The dense array of nanotubes is produced by coating the surface of a porous Anodized Aluminum Oxide template by Pt using the Atomic Layer Deposition technique. The nanotubes have a length of around 2 μm, an external diameter of around 180 nm and 20 nm thick Pt walls. As a consequence the tubes are stiff and self-standing with no need for a supporting structure. The array of nanotubes has a density of approximately 109 tubes cm−2 and is stuck onto a Nafion® membrane with excellent adhesion. The electrochemical response of the platinum nanotubes array electrode is investigated by means of half-cell tests and it is compared with the response of a conventional electrode based on a Pt/C dispersion. The nanotubes array shows excellent surface utilization and gas accessibility. The surface specific activity of the nanotubes array towards oxygen reduction reaction is comparable to the one of the conventional electrode: 37 μA cmPt−2 vs 28 μA cmPt−2 of the Pt/C dispersion. Conversely, the mass activity still remains low: 5.5 A/gPt vs 15 A/gPt of the Pt/C dispersion, therefore future actions to decrease the Pt loading and increase the mass activity are outlined. The scale-up of this prototype of supportless nanotubes array electrode from half–cell to fuel cell size is also demonstrated, opening the way to its test under real operating conditions

  20. Life on magnets: stem cell networking on micro-magnet arrays.

    Science.gov (United States)

    Zablotskii, Vitalii; Dejneka, Alexandr; Kubinová, Šárka; Le-Roy, Damien; Dumas-Bouchiat, Frédéric; Givord, Dominique; Dempsey, Nora M; Syková, Eva

    2013-01-01

    Interactions between a micro-magnet array and living cells may guide the establishment of cell networks due to the cellular response to a magnetic field. To manipulate mesenchymal stem cells free of magnetic nanoparticles by a high magnetic field gradient, we used high quality micro-patterned NdFeB films around which the stray field's value and direction drastically change across the cell body. Such micro-magnet arrays coated with parylene produce high magnetic field gradients that affect the cells in two main ways: i) causing cell migration and adherence to a covered magnetic surface and ii) elongating the cells in the directions parallel to the edges of the micro-magnet. To explain these effects, three putative mechanisms that incorporate both physical and biological factors influencing the cells are suggested. It is shown that the static high magnetic field gradient generated by the micro-magnet arrays are capable of assisting cell migration to those areas with the strongest magnetic field gradient, thereby allowing the build up of tunable interconnected stem cell networks, which is an elegant route for tissue engineering and regenerative medicine. PMID:23936425

  1. Quantifying the Traction Force of a Single Cell by Aligned Silicon Nanowire Array

    KAUST Repository

    Li, Zhou

    2009-10-14

    The physical behaviors of stationary cells, such as the morphology, motility, adhesion, anchorage, invasion and metastasis, are likely to be important for governing their biological characteristics. A change in the physical properties of mammalian cells could be an indication of disease. In this paper, we present a silicon-nanowire-array based technique for quantifying the mechanical behavior of single cells representing three distinct groups: normal mammalian cells, benign cells (L929), and malignant cells (HeLa). By culturing the cells on top of NW arrays, the maximum traction forces of two different tumor cells (HeLa, L929) have been measured by quantitatively analyzing the bending of the nanowires. The cancer cell exhibits a larger traction force than the normal cell by ∼20% for a HeLa cell and ∼50% for a L929 cell. The traction forces have been measured for the L929 cells and mechanocytes as a function of culture time. The relationship between cells extending area and their traction force has been investigated. Our study is likely important for studying the mechanical properties of single cells and their migration characteristics, possibly providing a new cellular level diagnostic technique. © 2009 American Chemical Society.

  2. Simulations of solar cell absorption enhancement using resonant modes of a nanosphere array

    OpenAIRE

    Grandidier, Jonathan; Deceglie, Michael G.; Callahan, Dennis M.; Atwater, Harry A.

    2012-01-01

    We propose an approach for enhancing the absorption of thin-film amorphous silicon solar cells using periodic arrangements of resonant dielectric nanospheres deposited as a continuous film on top of a thin planar cell. We numerically demonstrate this enhancement using three dimensional (3D) full field, finite difference time domain simulations and 3D finite element device physics simulations of a nanosphere array above a thin-film amorphous silicon solar cell structure featuring back reflecto...

  3. Microfluidic sorting and multimodal typing of cancer cells in self-assembled magnetic arrays

    OpenAIRE

    Saliba, Antoine-Emmanuel; Saias, Laure; Psychari, Eleni; Minc, Nicolas; Simon, Damien; Bidard, François-Clément; Mathiot, Claire; Pierga, Jean-Yves; Fraisier, Vincent; Salamero, Jean; Saada, Véronique; Farace, Françoise; Vielh, Philippe; Malaquin, Laurent; Viovy, Jean-Louis

    2010-01-01

    We propose a unique method for cell sorting, “Ephesia,” using columns of biofunctionalized superparamagnetic beads self-assembled in a microfluidic channel onto an array of magnetic traps prepared by microcontact printing. It combines the advantages of microfluidic cell sorting, notably the application of a well controlled, flow-activated interaction between cells and beads, and those of immunomagnetic sorting, notably the use of batch-prepared, well characterized antibody-bearing beads. On c...

  4. Formation of organic crystalline nanopillar arrays and their application to organic photovoltaic cells.

    Science.gov (United States)

    Hirade, Masaya; Nakanotani, Hajime; Yahiro, Masayuki; Adachi, Chihaya

    2011-01-01

    To enhance the performance of organic photovoltaic (OPV) cells, preparation of organic nanometer-sized pillar arrays is fascinating because a significantly large area of a donor/acceptor heterointerface having continuous conduction path to both anode and cathode electrodes can be realized. In this study, we grew cupper phthalocyanine (CuPc) crystalline nanopillar arrays by conventional thermal gradient sublimation technique using a few-nanometer-sized trigger seeds composed of a CuPc and 3,4,9,10-perylene-tetracarboxylic-dianhydride (PTCDA) stacked layer. We optimized the pillar density by tuning crystal growth condition in order to apply it to OPV cells. PMID:21194207

  5. Micro-electrode array recordings reveal reductions in both excitation and inhibition in cultured cortical neuron networks lacking Shank3.

    Science.gov (United States)

    Lu, C; Chen, Q; Zhou, T; Bozic, D; Fu, Z; Pan, J Q; Feng, G

    2016-02-01

    Numerous risk genes have recently been implicated in susceptibility to autism and schizophrenia. Translating such genetic findings into disease-relevant neurobiological mechanisms is challenging due to the lack of throughput assays that can be used to assess their functions on an appropriate scale. To address this issue, we explored the feasibility of using a micro-electrode array (MEA) as a potentially scalable assay to identify the electrical network phenotypes associated with risk genes. We first characterized local and global network firing in cortical neurons with MEAs, and then developed methods to analyze the alternation between the network active period (NAP) and the network inactive period (NIP), each of which lasts tens of seconds. We then evaluated the electric phenotypes of neurons derived from Shank3 knockout (KO) mice. Cortical neurons cultured on MEAs displayed a rich repertoire of spontaneous firing, and Shank3 deletion led to reduced firing activity. Enhancing excitation with CX546 rescued the deficit in the spike rate in the Shank3 KO network. In addition, the Shank3 KO network produced a shorter NIP, and this altered network firing pattern was normalized by clonazepam, a positive modulator of the GABAA receptor. MEA recordings revealed electric phenotypes that displayed altered excitation and inhibition in the network lacking Shank3. Thus, our study highlights MEAs as an experimental framework for measuring multiple robust neurobiological end points in dynamic networks and as an assay system that could be used to identify electric phenotypes in cultured neuronal networks and to analyze additional risk genes identified in psychiatric genetics. PMID:26598066

  6. High resolution array-CGH analysis of single cells

    OpenAIRE

    Fiegler, Heike; Geigl, Jochen B.; Langer, Sabine; Rigler, Diane; Porter, Keith; Unger, Kristian; Carter, Nigel P; Speicher, Michael R.

    2006-01-01

    Heterogeneity in the genome copy number of tissues is of particular importance in solid tumor biology. Furthermore, many clinical applications such as pre-implantation and non-invasive prenatal diagnosis would benefit from the ability to characterize individual single cells. As the amount of DNA from single cells is so small, several PCR protocols have been developed in an attempt to achieve unbiased amplification. Many of these approaches are suitable for subsequent cytogenetic analyses usin...

  7. Inverted heterojunction solar cells incorporating fullerene/polythiophene composite core/shell nanorod arrays

    International Nuclear Information System (INIS)

    We have fabricated inverted heterojunction solar cell devices incorporating [6,6]-phenyl-C61-butyric acid methyl ester/poly(3-hexylthiophene) core/shell nanorod arrays by using an anodic alumina oxide template. The internal quantum efficiencies and external quantum efficiencies of these core/shell nanorod inverted solar cells were higher than those of the corresponding conventional inverted bulk heterojunction device. The optimized nanorod array structure had a high hole mobility that was over one order magnitude greater than that of the conventional bulk heterojunction structure, as determined by fitting the dark J-V curves into the space charge limited current model. The more efficient carrier transport of the device incorporating the core/shell nanorod arrays provided it with both a higher short-circuit current density and power conversion efficiency.

  8. Light absorption processes and optimization of ZnO/CdTe core-shell nanowire arrays for nanostructured solar cells

    Science.gov (United States)

    Michallon, Jérôme; Bucci, Davide; Morand, Alain; Zanuccoli, Mauro; Consonni, Vincent; Kaminski-Cachopo, Anne

    2015-02-01

    The absorption processes of extremely thin absorber solar cells based on ZnO/CdTe core-shell nanowire (NW) arrays with square, hexagonal or triangular arrangements are investigated through systematic computations of the ideal short-circuit current density using three-dimensional rigorous coupled wave analysis. The geometrical dimensions are optimized for optically designing these solar cells: the optimal NW diameter, height and array period are of 200 ± 10 nm, 1-3 μm and 350-400 nm for the square arrangement with CdTe shell thickness of 40-60 nm. The effects of the CdTe shell thickness on the absorption of ZnO/CdTe NW arrays are revealed through the study of two optical key modes: the first one is confining the light into individual NWs, the second one is strongly interacting with the NW arrangement. It is also shown that the reflectivity of the substrate can improve Fabry-Perot resonances within the NWs: the ideal short-circuit current density is increased by 10% for the ZnO/fluorine-doped tin oxide (FTO)/ideal reflector as compared to the ZnO/FTO/glass substrate. Furthermore, the optimized square arrangement absorbs light more efficiently than both optimized hexagonal and triangular arrangements. Eventually, the enhancement factor of the ideal short-circuit current density is calculated as high as 1.72 with respect to planar layers, showing the high optical potentiality of ZnO/CdTe core-shell NW arrays.

  9. Light absorption processes and optimization of ZnO/CdTe core–shell nanowire arrays for nanostructured solar cells

    International Nuclear Information System (INIS)

    The absorption processes of extremely thin absorber solar cells based on ZnO/CdTe core–shell nanowire (NW) arrays with square, hexagonal or triangular arrangements are investigated through systematic computations of the ideal short-circuit current density using three-dimensional rigorous coupled wave analysis. The geometrical dimensions are optimized for optically designing these solar cells: the optimal NW diameter, height and array period are of 200 ± 10 nm, 1–3 μm and 350–400 nm for the square arrangement with CdTe shell thickness of 40–60 nm. The effects of the CdTe shell thickness on the absorption of ZnO/CdTe NW arrays are revealed through the study of two optical key modes: the first one is confining the light into individual NWs, the second one is strongly interacting with the NW arrangement. It is also shown that the reflectivity of the substrate can improve Fabry–Perot resonances within the NWs: the ideal short-circuit current density is increased by 10% for the ZnO/fluorine-doped tin oxide (FTO)/ideal reflector as compared to the ZnO/FTO/glass substrate. Furthermore, the optimized square arrangement absorbs light more efficiently than both optimized hexagonal and triangular arrangements. Eventually, the enhancement factor of the ideal short-circuit current density is calculated as high as 1.72 with respect to planar layers, showing the high optical potentiality of ZnO/CdTe core–shell NW arrays. (paper)

  10. Combined array-comparative genomic hybridization and single-nucleotide polymorphism-loss of heterozygosity analysis reveals complex changes and multiple forms of chromosomal instability in colorectal cancers

    DEFF Research Database (Denmark)

    Gaasenbeek, Michelle; Howarth, Kimberley; Rowan, Andrew J;

    2006-01-01

    Cancers with chromosomal instability (CIN) are held to be aneuploid/polyploid with multiple large-scale gains/deletions, but the processes underlying CIN are unclear and different types of CIN might exist. We investigated colorectal cancer cell lines using array-comparative genomic hybridization ...

  11. Genomic Alteration in Head and Neck Squamous Cell Carcinoma (HNSCC) Cell Lines Inferred from Karyotyping, Molecular Cytogenetics, and Array Comparative Genomic Hybridization

    Science.gov (United States)

    Rerkarmnuaychoke, Budsaba; Suntronpong, Aorarat; Fu, Beiyuan; Bodhisuwan, Winai; Peyachoknagul, Surin; Yang, Fengtang; Koontongkaew, Sittichai; Srikulnath, Kornsorn

    2016-01-01

    Genomic alteration in head and neck squamous cell carcinoma (HNSCC) was studied in two cell line pairs (HN30-HN31 and HN4-HN12) using conventional C-banding, multiplex fluorescence in situ hybridization (M-FISH), and array comparative genomic hybridization (array CGH). HN30 and HN4 were derived from primary lesions in the pharynx and base of tongue, respectively, and HN31 and HN12 were derived from lymph-node metastatic lesions belonging to the same patients. Gain of chromosome 1, 7, and 11 were shared in almost all cell lines. Hierarchical clustering revealed that HN31 was closely related to HN4, which shared eight chromosome alteration cases. Large C-positive heterochromatins were found in the centromeric region of chromosome 9 in HN31 and HN4, which suggests complex structural amplification of the repetitive sequence. Array CGH revealed amplification of 7p22.3p11.2, 8q11.23q12.1, and 14q32.33 in all cell lines involved with tumorigenesis and inflammation genes. The amplification of 2p21 (SIX3), 11p15.5 (H19), and 11q21q22.3 (MAML2, PGR, TRPC6, and MMP family) regions, and deletion of 9p23 (PTPRD) and 16q23.1 (WWOX) regions were identified in HN31 and HN12. Interestingly, partial loss of PTPRD (9p23) and WWOX (16q23.1) genes was identified in HN31 and HN12, and the level of gene expression tended to be the down-regulation of PTPRD, with no detectable expression of the WWOX gene. This suggests that the scarcity of PTPRD and WWOX genes might have played an important role in progression of HNSCC, and could be considered as a target for cancer therapy or a biomarker in molecular pathology. PMID:27501229

  12. Genomic Alteration in Head and Neck Squamous Cell Carcinoma (HNSCC) Cell Lines Inferred from Karyotyping, Molecular Cytogenetics, and Array Comparative Genomic Hybridization.

    Science.gov (United States)

    Singchat, Worapong; Hitakomate, Ekarat; Rerkarmnuaychoke, Budsaba; Suntronpong, Aorarat; Fu, Beiyuan; Bodhisuwan, Winai; Peyachoknagul, Surin; Yang, Fengtang; Koontongkaew, Sittichai; Srikulnath, Kornsorn

    2016-01-01

    Genomic alteration in head and neck squamous cell carcinoma (HNSCC) was studied in two cell line pairs (HN30-HN31 and HN4-HN12) using conventional C-banding, multiplex fluorescence in situ hybridization (M-FISH), and array comparative genomic hybridization (array CGH). HN30 and HN4 were derived from primary lesions in the pharynx and base of tongue, respectively, and HN31 and HN12 were derived from lymph-node metastatic lesions belonging to the same patients. Gain of chromosome 1, 7, and 11 were shared in almost all cell lines. Hierarchical clustering revealed that HN31 was closely related to HN4, which shared eight chromosome alteration cases. Large C-positive heterochromatins were found in the centromeric region of chromosome 9 in HN31 and HN4, which suggests complex structural amplification of the repetitive sequence. Array CGH revealed amplification of 7p22.3p11.2, 8q11.23q12.1, and 14q32.33 in all cell lines involved with tumorigenesis and inflammation genes. The amplification of 2p21 (SIX3), 11p15.5 (H19), and 11q21q22.3 (MAML2, PGR, TRPC6, and MMP family) regions, and deletion of 9p23 (PTPRD) and 16q23.1 (WWOX) regions were identified in HN31 and HN12. Interestingly, partial loss of PTPRD (9p23) and WWOX (16q23.1) genes was identified in HN31 and HN12, and the level of gene expression tended to be the down-regulation of PTPRD, with no detectable expression of the WWOX gene. This suggests that the scarcity of PTPRD and WWOX genes might have played an important role in progression of HNSCC, and could be considered as a target for cancer therapy or a biomarker in molecular pathology. PMID:27501229

  13. Integrated ZnO nanotube arrays as efficient dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Highlights: ► Tuning the reaction parameters, we got the best reaction conditions on ITO glass. ► Introduce ZnO NTs design of photoanode featuring high aspect ratio structure. ► The design strategy integrates the optical fibers or ITO with ZnO NTs grown. - Abstract: Zinc oxide (ZnO) is a wide band gap semiconducting material and has been considered as an alternative material in dye-sensitized solar cell (DSSC) applications. A high-performance nanotube (NT) photoanode must have a large surface area for dye adsorption in order to enhance conversion efficiency. In this work, the way of hydrothermally grown ZnO NT arrays on the indium tin oxide (ITO) substrate is presented by utilizing a systematic study. By adjusting the hydrothermal reaction parameters, we attained the optimizing reaction conditions on the ITO substrate. Moreover, ZnO NT arrays are introduced as a photoanode on various substrates, such as optical fiber and ITO glass, for DSSCs applications. We took the contrast test with conversion efficiency of the DSSC based on ZnO NT arrays versus ZnO nanowire arrays on the ITO substrate, which the DSSC based on ZnO NT arrays shows significantly enhanced power conversion efficiency. Furthermore, the conversion efficiency of DSSC based on the ZnO NT arrays grown on an optical fiber substrate is enhanced up to 1.44%.

  14. Stochastic model explains formation of cell arrays on H/O-diamond patterns

    Czech Academy of Sciences Publication Activity Database

    Ukraintsev, Egor; Brož, A.; Hubálek Kalbáčová, M.; Kromka, Alexander; Rezek, Bohuslav

    2015-01-01

    Roč. 10, č. 4 (2015), "041006-1"-"041006-9". ISSN 1934-8630 R&D Projects: GA ČR GA15-01687S Institutional support: RVO:68378271 Keywords : cell migration * biofilm array * diamond surface * stochastic simulations Subject RIV: BO - Biophysics Impact factor: 3.374, year: 2014

  15. Characterization of a Ga-assisted GaAs nanowire array solar cell on si substrate

    DEFF Research Database (Denmark)

    Boulanger, J. P.; Chia, A. C. E.; Wood, B.; Yazdi, Sadegh; Kasama, Takeshi; Aagesen, M.; LaPierre, R. R.

    2016-01-01

    A single-junction core-shell GaAs nanowire (NW) solar cell on Si (1 1 1) substrates is presented. A Ga-assisted vapor–liquid–solid growth mechanism was used for the formation of a patterned array of radial p-i-n GaAs NWs encapsulated in AlInP passivation. Novel device fabrication utilizing facet...

  16. A New Method of Solving Kernels in Algebraic Decomposition for the Synthesis of Logic Cell Array

    Institute of Scientific and Technical Information of China (English)

    马光胜; 张忠伟; 等

    1995-01-01

    In this paper,an improvement has been made on the algorithm of solving the kernels of new functions which are generated after a common divisor appearing in the original functions is replaced by a new intermediate variable.And an efficient method based on kernel heritage is presented.This method has been successfully used in synthesis of LCA (Logic Cell Array).

  17. Single-cell transcriptome analyses reveal signals to activate dormant neural stem cells.

    Science.gov (United States)

    Luo, Yuping; Coskun, Volkan; Liang, Aibing; Yu, Juehua; Cheng, Liming; Ge, Weihong; Shi, Zhanping; Zhang, Kunshan; Li, Chun; Cui, Yaru; Lin, Haijun; Luo, Dandan; Wang, Junbang; Lin, Connie; Dai, Zachary; Zhu, Hongwen; Zhang, Jun; Liu, Jie; Liu, Hailiang; deVellis, Jean; Horvath, Steve; Sun, Yi Eve; Li, Siguang

    2015-05-21

    The scarcity of tissue-specific stem cells and the complexity of their surrounding environment have made molecular characterization of these cells particularly challenging. Through single-cell transcriptome and weighted gene co-expression network analysis (WGCNA), we uncovered molecular properties of CD133(+)/GFAP(-) ependymal (E) cells in the adult mouse forebrain neurogenic zone. Surprisingly, prominent hub genes of the gene network unique to ependymal CD133(+)/GFAP(-) quiescent cells were enriched for immune-responsive genes, as well as genes encoding receptors for angiogenic factors. Administration of vascular endothelial growth factor (VEGF) activated CD133(+) ependymal neural stem cells (NSCs), lining not only the lateral but also the fourth ventricles and, together with basic fibroblast growth factor (bFGF), elicited subsequent neural lineage differentiation and migration. This study revealed the existence of dormant ependymal NSCs throughout the ventricular surface of the CNS, as well as signals abundant after injury for their activation. PMID:26000486

  18. Protein Arrays for Multidrug-resistance in Human Leukemia Cell Determination

    Directory of Open Access Journals (Sweden)

    Zuhong Lu

    2005-05-01

    Full Text Available A novel technique was developed, that was high throughput simultaneousscreening of multiple resistance protein expression based on a protein array system. Themethod combined the advantage of the specificity of enzyme-linked immunosorbentassays with the sensitivity and high throughput of microspot. In this system, the multipleresistance protein arrays were created by spotting the captured antibodies onto the glassslide. The arrays were then incubated with cell samples of leukemia patients. The boundproteins were recognized by biotin-conjugated antibodies and detected by CCD.Experiments demonstrated that three multiple resistance proteins, including Pgp, MRPand BCRP which are members of the ATP-binding-cassette (ABC superfamily ofmembrane transporters could be simultaneously detected using this new approach.Research work shows the result is coincident with flow cytometry (FCM (P>0.01. Itprovided a methodology to develop many high-density protein array systems to detect avariety of proteins. The protein arrays will provide a powerful tool to identify theleukemia cell protein expression and rapidly validate their MDR determination.

  19. Optical modeling-assisted characterization of dye-sensitized solar cells using TiO2 nanotube arrays as photoanodes

    Directory of Open Access Journals (Sweden)

    Jung-Ho Yun

    2014-06-01

    Full Text Available Photovoltaic characteristics of dye-sensitized solar cells (DSSCs using TiO2 nanotube (TNT arrays as photoanodes were investigated. The TNT arrays were 3.3, 11.5, and 20.6 μm long with the pore diameters of 50, 78.6, and 98.7 nm, respectively. The longest TNT array of 20.6 μm in length showed enhanced photovoltaic performances of 3.87% with significantly increased photocurrent density of 8.26 mA·cm−2. This improvement is attributed to the increased amount of the adsorbed dyes and the improved electron transport property with an increase in TNT length. The initial charge generation rate was improved from 4 × 1021 s−1·cm−3 to 7 × 1021 s−1·cm−3 in DSSCs based on optical modelling analysis. The modelling analysis of optical processes inside TNT-based DSSCs using generalized transfer matrix method (GTMM revealed that the amount of dye and TNT lengths were critical factors influencing the performance of DSSCs, which is consistent with the experimental results.

  20. Cell-to-Cell Diversity in a Synchronized Chlamydomonas Culture As Revealed by Single-Cell Analyses

    OpenAIRE

    Garz, Andreas; Sandmann, Michael; Rading, Michael; Ramm, Sascha; Menzel, Ralf; Steup, Martin

    2012-01-01

    In a synchronized photoautotrophic culture of Chlamydomonas reinhardtii, cell size, cell number, and the averaged starch content were determined throughout the light-dark cycle. For single-cell analyses, the relative cellular starch was quantified by measuring the second harmonic generation (SHG). In destained cells, amylopectin essentially represents the only biophotonic structure. As revealed by various validation procedures, SHG signal intensities are a reliable relative measure of the cel...

  1. Shear Force at the Cell-Matrix Interface: Enhanced Analysis for Microfabricated Post Array Detectors

    OpenAIRE

    Lemmon, Christopher A.; Sniadecki, Nathan J.; Ruiz, Sami Alom; Tan, John L.; Romer, Lewis H.; Chen, Christopher S.

    2005-01-01

    The interplay of mechanical forces between the extracellular environment and the cytoskeleton drives development, repair, and senescence in many tissues. Quantitative definition of these forces is a vital step in understanding cellular mechanosensing. Microfabricated post array detectors (mPADs) provide direct measurements of cell-generated forces during cell adhesion to extracellular matrix. A new approach to mPAD post labeling, volumetric imaging, and an analysis of post bending mechanics d...

  2. Enhanced Electron Photoemission by Collective Lattice Resonances in Plasmonic Nanoparticle-Array Photodetectors and Solar Cells

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Babicheva, Viktoriia; Uskov, Alexander; Protsenko, Igor E.; Lavrinenko, Andrei

    2014-01-01

    We propose to use collective lattice resonances in plasmonic nanoparticle arrays to enhance and tailor photoelectron emission in Schottky barrier photodetectors and solar cells. We show that the interaction between narrow-band lattice resonances (the Rayleigh anomaly) and broader-band individual......, tunable spectral response, which are able to detect photons with the energy below the semiconductor bandgap. The findings can also be used to develop solar cells with increased efficiency....

  3. In-flight performance of the SBS-1A solar array featuring ultrathin, high efficiency solar cells

    International Nuclear Information System (INIS)

    Ultrathin (0.0025 inch) solar cells were selected for use on the Satellite Business System (SBS) 1A solar array, launched in September, 1988, to achieve minimum solar array weight and maximum end-of-life solar array power. The design of the ultrathin cell was predicted to produce an improved resistance to radiation degradation and superior current collection efficiency, thus increasing the power per unit area at end of life compared to conventional thickness silicon solar cells. The ultrathin solar cells were qualified for flight and characterized prior to fabrication of the SBS-1A array. Performance predictions in the mission environment were based on these characteristics and by the measured photovoltaic output of the flight solar cells. The predicted solar array performance has been validated to date within two percent by in-flight test data

  4. Design, fabrication and performance test of a planar array module-type micro fuel cell stack

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • A new and novel planar array module. • Easy handling/assembling as well as fast fabrication upon its commercialization. • Compact configuration design and geometry could be secured. - Abstract: We proposed and tested a new and novel planar array module (4 N style; N is an integer) consisting of 4, 8, 12 and 16 single polymer electrotype membrane (PEM) fuel cells connected in series on a plane with two different pin electrode flowfield configurations. This module has the potential to be not only easily handled and assembled but also to be fabricated quickly upon its commercialization. Using a Lithography Galvanic Abformung (LIGA)-like microfabrication technique, copper metal sheets were used to make two different flowfield plates with serpentine flow channels. A 4-cell (short stack), 8-cell, 12-cell and 16-cell (long stack) stack were developed and tested for performance study under different operating conditions. These were connected in a series of micro fuel cells consisting of an anode/cathode and Membrane Electrode Assembly (MEA). Performance results for a short stack/unit module (4 cells), 8 cells, 12 cells and a long stack/four modules (16 cells) were presented; it was found that significant improvements in VI/PI characteristics could be attained due to uniform and compact configuration design and geometry

  5. A photonic crystal hydrogel suspension array for the capture of blood cells from whole blood

    Science.gov (United States)

    Zhang, Bin; Cai, Yunlang; Shang, Luoran; Wang, Huan; Cheng, Yao; Rong, Fei; Gu, Zhongze; Zhao, Yuanjin

    2016-02-01

    Diagnosing hematological disorders based on the separation and detection of cells in the patient's blood is a significant challenge. We have developed a novel barcode particle-based suspension array that can simultaneously capture and detect multiple types of blood cells. The barcode particles are polyacrylamide (PAAm) hydrogel inverse opal microcarriers with characteristic reflection peak codes that remain stable during cell capture on their surfaces. The hydrophilic PAAm hydrogel scaffolds of the barcode particles can entrap various plasma proteins to capture different cells in the blood, with little damage to captured cells.Diagnosing hematological disorders based on the separation and detection of cells in the patient's blood is a significant challenge. We have developed a novel barcode particle-based suspension array that can simultaneously capture and detect multiple types of blood cells. The barcode particles are polyacrylamide (PAAm) hydrogel inverse opal microcarriers with characteristic reflection peak codes that remain stable during cell capture on their surfaces. The hydrophilic PAAm hydrogel scaffolds of the barcode particles can entrap various plasma proteins to capture different cells in the blood, with little damage to captured cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06368j

  6. Nanowire/nanotube array tandem cells for overall solar neutral water splitting

    OpenAIRE

    Kargar, A.; Khamwannah, J; Liu, CH; Park, N.; Wang, D; Dayeh, SA; Jin, S

    2016-01-01

    © 2015. In this study, we report the fabrication and characterization of a novel PEC tandem cell, consisting of p-Si/TiO2/Fe2O3 core/shell/hierarchical nanowire (csh-NW) array photocathode and TiO2/TiO2 core/shell nanotube (cs-NT) array photoanode, for overall solar water splitting in a neutral pH water. The p-Si/n-TiO2/n-Fe2O3 csh-NWs, made mainly by solution-processed methods, offer significantly improved performance in the neutral pH water with a low (positive) onset potential and photoact...

  7. Space satellite power system. [conversion of solar energy by photovoltaic solar cell arrays

    Science.gov (United States)

    Glaser, P. E.

    1974-01-01

    The concept of a satellite solar power station was studied. It is shown that it offers the potential to meet a significant portion of future energy needs, is pollution free, and is sparing of irreplaceable earth resources. Solar energy is converted by photovoltaic solar cell arrays to dc energy which in turn is converted into microwave energy in a large active phased array. The microwave energy is beamed to earth with little attenuation and is converted back to dc energy on the earth. Economic factors are considered.

  8. Reproducible isolation of lymph node stromal cells reveals site-dependent differences in fibroblastic reticular cells

    Directory of Open Access Journals (Sweden)

    Anne L Fletcher

    2011-09-01

    Full Text Available Within lymph nodes, non-hematopoietic stromal cells organize and interact with leukocytes in an immunologically important manner. In addition to organizing T and B cell segregation and expressing lymphocyte survival factors, several recent studies have shown that lymph node stromal cells shape the naïve T cell repertoire, expressing self-antigens which delete self-reactive T cells in a unique and non-redundant fashion. A fundamental role in peripheral tolerance, in addition to an otherwise extensive functional portfolio, necessitates closer study of lymph node stromal cell subsets using modern immunological techniques; however this has not routinely been possible in the field, due to difficulties reproducibly isolating these rare subsets. Techniques were therefore developed for successful ex vivo and in vitro manipulation and characterization of lymph node stroma. Here we discuss and validate these techniques in mice and humans, and apply them to address several unanswered questions regarding lymph node composition. We explored the steady-state stromal composition of lymph nodes isolated from mice and humans, and found that marginal reticular cells and lymphatic endothelial cells required lymphocytes for their normal maturation in mice. We also report alterations in the proportion and number of fibroblastic reticular cells (FRCs between skin-draining and mesenteric lymph nodes. Similarly, transcriptional profiling of FRCs revealed changes in cytokine production from these sites. Together, these methods permit highly reproducible stromal cell isolation, sorting, and culture.

  9. Cytokine-dependent and–independent gene expression changes and cell cycle block revealed in Trypanosoma cruzi-infected host cells by comparative mRNA profiling

    Directory of Open Access Journals (Sweden)

    Burleigh Barbara A

    2009-05-01

    Full Text Available Abstract Background The requirements for growth and survival of the intracellular pathogen Trypanosoma cruzi within mammalian host cells are poorly understood. Transcriptional profiling of the host cell response to infection serves as a rapid read-out for perturbation of host physiology that, in part, reflects adaptation to the infective process. Using Affymetrix oligonucleotide array analysis we identified common and disparate host cell responses triggered by T. cruzi infection of phenotypically diverse human cell types. Results We report significant changes in transcript abundance in T. cruzi-infected fibroblasts, endothelial cells and smooth muscle cells (2852, 2155 and 531 genes respectively; fold-change ≥ 2, p-value T. cruzi-infected fibroblasts and endothelial cells transwell plates were used to distinguish cytokine-dependent and -independent gene expression profiles. This approach revealed the induction of metabolic and signaling pathways involved in cell proliferation, amino acid catabolism and response to wounding as common themes in T. cruzi-infected cells. In addition, the downregulation of genes involved in mitotic cell cycle and cell division predicted that T. cruzi infection may impede host cell cycle progression. The observation of impaired cytokinesis in T. cruzi-infected cells, following nuclear replication, confirmed this prediction. Conclusion Metabolic pathways and cellular processes were identified as significantly altered at the transcriptional level in response to T. cruzi infection in a cytokine-independent manner. Several of these alterations are supported by previous studies of T. cruzi metabolic requirements or effects on the host. However, our methods also revealed a T. cruzi-dependent block in the host cell cycle, at the level of cytokinesis, previously unrecognized for this pathogen-host cell interaction.

  10. Integrated Antenna/Solar Array Cell (IA/SAC) System for Flexible Access Communications

    Science.gov (United States)

    Lee, Ricard Q.; Clark, Eric B.; Pal, Anna Maria T.; Wilt, David M.; Mueller, Carl H.

    2004-01-01

    Present satellite communications systems normally use separate solar cells and antennas. Since solar cells generally account for the largest surface area of the spacecraft, co-locating the antenna and solar cells on the same substrate opens the possibility for a number of data-rate-enhancing communications link architecture that would have minimal impact on spacecraft weight and size. The idea of integrating printed planar antenna and solar array cells on the same surface has been reported in the literature. The early work merely attempted to demonstrate the feasibility by placing commercial solar cells besides a patch antenna. Recently, Integrating multiple antenna elements and solar cell arrays on the same surface was reported for both space and terrestrial applications. The application of photovoltaic solar cell in a planar antenna structure where the radiating patch antenna is replaced by a Si solar cell has been demonstrated in wireless communication systems (C. Bendel, J. Kirchhof and N. Henze, 3rd Would Photovotaic Congress, Osaka, Japan, May 2003). Based on a hybrid approach, a 6x1 slot array with circularly polarized crossdipole elements co-located on the same surface of the solar cells array has been demonstrated (S. Vaccaro, J. R. Mosig and P. de Maagt, IEEE Trans. Ant. and Propag., Vol. 5 1, No. 8, Aug. 2003). Amorphous silicon solar cells with about 5-10% efficiency were used in these demonstrations. This paper describes recent effort to integrate advanced solar cells with printed planar antennas. Compared to prior art, the proposed WSAC concept is unique in the following ways: 1) Active antenna element will be used to achieve dynamic beam steering; 2) High efficiency (30%) GaAs multi-junction solar cells will be used instead of Si, which has an efficiency of about 15%; 3) Antenna and solar cells are integrated on a common GaAs substrate; and 4) Higher data rate capability. The IA/SAC is designed to operate at X-band (8-12 GH) and higher frequencies

  11. Dielectrophoretic characterization of cells in a stationary nanoliter droplet array with generated chemical gradients.

    Science.gov (United States)

    Ben-Arye, Tom; Park, Sinwook; Shemesh, Jonathan; Peer, Dan; Levenberg, Shulamit; Yossifon, Gilad

    2015-10-01

    A novel design of reusable microfluidic platform that generates a stationary nanoliter droplet array (SNDA) for cell incubation and analysis, equipped with a complementary array of individually addressable electrodes for each microwell is studied. Various solute concentration gradients were generated between the wells where dielectrophoresis (DEP) was used to characterize the effect of the gradients on the cell's response. The feasibility of generating concentration gradients and observation of DEP responses was demonstrated using a gradient of salts in combination with microparticles and viable cells. L1210 Lymphoma cells were used as the model cells in these experiments. Lymphoma cells' cross-over frequency (COF) decreased with increasing stress conditions. Specifically, a linear decrease in the cell COF was measured as a function of solution tonicity and blebbistatin dose. Lymphoma cells were incubated under a gradient of the chemotherapeutic agent doxorubicin (DOX), which led to saturation in the cell-COF response at 30 nM DOX, demonstrating the potential of the platform in screening of label-free drugs. PMID:26286862

  12. Flexible complementary metal oxide semiconductor microelectrode arrays with applications in single cell characterization

    Science.gov (United States)

    Pajouhi, H.; Jou, A. Y.; Jain, R.; Ziabari, A.; Shakouri, A.; Savran, C. A.; Mohammadi, S.

    2015-11-01

    A highly flexible microelectrode array with an embedded complementary metal oxide semiconductor (CMOS) instrumentation amplifier suitable for sensing surfaces of biological entities is developed. The array is based on ultrathin CMOS islands that are thermally isolated from each other and are interconnected by meandered nano-scale wires that can adapt to cellular surfaces with micro-scale curvatures. CMOS temperature sensors are placed in the islands and are optimally biased to have high temperature sensitivity. While no live cell thermometry is conducted, a measured temperature sensitivity of 0.15 °C in the temperature range of 35 to 40 °C is achieved by utilizing a low noise CMOS lock-in amplifier implemented in the same technology. The monolithic nature of CMOS sensors and amplifier circuits and their versatile flexible interconnecting wires overcome the sensitivity and yield limitations of microelectrode arrays fabricated in competing technologies.

  13. Submicrometer-scale ZnO Composite Aggregate Arrays Photoanodes for Dye-sensitized Solar Cells

    Institute of Scientific and Technical Information of China (English)

    Wei Jia; Suihu Dang; Hairui Liu; Zhuxia Zhang; Tianbao Li; Xuguang Liu; Bingshe Xu

    2013-01-01

    Submicrometer-scale ZnO composite aggregate arrays of nanorods and nanoparticles were prepared by simple wet-chemical route and studied as dye-sensitized solar cells (DSSCs) photoanodes.The ZnO composite aggregate arrays significantly improved the efficiency of DSSCs due to their relatively high surface area,fast electron transport,and enhanced light-scattering capability.A short current density (Jsc) of 11.7 mA/cm2 and an overall solar-to-electric energy conversion efficiency (η) of 3.17% were achieved for the ZnO composite aggregate DSSCs,which were much higher than those obtained for the monodisperse aggregate DSSCs (Jsc=6.9mA/cm2,η=1.51 %) and ZnO nanorod array DSSCs (Jsc =4.2 mA/cm2,η=0.61%).

  14. High efficiency, broadband solar cell architectures based on arrays of volumetrically distributed narrowband photovoltaic fibers.

    Science.gov (United States)

    O'Connor, Brendan; Nothern, Denis; Pipe, Kevin P; Shtein, Max

    2010-09-13

    We propose a novel solar cell architecture consisting of multiple fiber-based photovoltaic (PV) cells. Each PV fiber element is designed to maximize the power conversion efficiency within a narrow band of the incident solar spectrum, while reflecting other spectral components through the use of optical microcavity effects and distributed Bragg reflector (DBR) coatings. Combining PV fibers with complementary absorption and reflection characteristics into volume-filling arrays enables spectrally tuned modules having an effective dispersion element intrinsic to the architecture, resulting in high external quantum efficiency over the incident spectrum. While this new reflective tandem architecture is not limited to one particular material system, here we apply the concept to organic PV (OPV) cells that use a metal-organic-metal-dielectric layer structure, and calculate the expected performance of such arrays. Using realistic material properties for organic absorbers, transport layers, metallic electrodes, and DBR coatings, 17% power conversion efficiency can be reached. PMID:21165073

  15. Silicon nanowire array/polymer hybrid solar cell incorporating carbon nanotubes

    International Nuclear Information System (INIS)

    Here we present a simple and novel approach of fabricating three dimensional (3D) n-Si nanowires (NWs) and poly(3-octylthiophene) hybrid solar cells incorporating carbon nanotubes (CNTs). Vertically aligned n-Si NWs arrays were fabricated by electroless chemical etching of a n-Si [1 1 1] wafer. n-Si NWs/poly(3-octylthiophene) hybrid solar cells were fabricated with and without functionalized CNTs incorporation. Fabricated solar cells incorporating CNTs show open circuit voltage (Voc), short circuit current density (Jsc) fill factor (FF) and conversion efficiency as 0.353, 7.85 mA cm-2, 22% and 0.61%, respectively. In fabricated devices n-Si NWs arrays form multiple heterojunctions with the polymer and provide efficient electron collection and transportation, whereas CNTs provide efficient hole transportation.

  16. Design of coated standing nanowire array solar cell performing beyond the planar efficiency limits

    Science.gov (United States)

    Zeng, Yang; Ye, Qinghao; Shen, Wenzhong

    2016-05-01

    The single standing nanowire (SNW) solar cells have been proven to perform beyond the planar efficiency limits in both open-circuit voltage and internal quantum efficiency due to the built-in concentration and the shifting of the absorption front. However, the expandability of these nano-scale units to a macro-scale photovoltaic device remains unsolved. The main difficulty lies in the simultaneous preservation of an effective built-in concentration in each unit cell and a broadband high absorption capability of their array. Here, we have provided a detailed theoretical guideline for realizing a macro-scale solar cell that performs furthest beyond the planar limits. The key lies in a complementary design between the light-trapping of the single SNWs and that of the photonic crystal slab formed by the array. By tuning the hybrid HE modes of the SNWs through the thickness of a coaxial dielectric coating, the optimized coated SNW array can sustain an absorption rate over 97.5% for a period as large as 425 nm, which, together with the inherited carrier extraction advantage, leads to a cell efficiency increment of 30% over the planar limit. This work has demonstrated the viability of a large-size solar cell that performs beyond the planar limits.

  17. Cell culture arrays using micron-sized ferromagnetic ring-shaped thin films

    International Nuclear Information System (INIS)

    Cell patterning has become an important technology for tissue engineering. In this research, domain walls are formed at the two ends of a ferromagnetic ring thin film after applying a strong external magnetic field, which can effectively attract magnetically labeled cells and control the position for biological cell. Magnetophoresis experiment was conducted to quantify the magnetic nanoparticle inside the cells. A ring-shaped magnetic thin films array was fabricated through photolithography. It is observed that magnetically labeled cells can be successfully attracted to the two ends of the ring-shaped magnetic thin film structure and more cells were attracted and further attached to the structures. The cells are co-cultured with the structure and kept proliferating; therefore, such ring thin film can be an important candidate for in-vitro biomedical chips or tissue engineering

  18. Cell culture arrays using micron-sized ferromagnetic ring-shaped thin films

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chen-Yu; Wei, Zung-Hang, E-mail: wei@pme.nthu.edu.tw [Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu City 300, Taiwan (China); Lai, Mei-Feng; Ger, Tzong-Rong [Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu City 300, Taiwan (China)

    2015-05-07

    Cell patterning has become an important technology for tissue engineering. In this research, domain walls are formed at the two ends of a ferromagnetic ring thin film after applying a strong external magnetic field, which can effectively attract magnetically labeled cells and control the position for biological cell. Magnetophoresis experiment was conducted to quantify the magnetic nanoparticle inside the cells. A ring-shaped magnetic thin films array was fabricated through photolithography. It is observed that magnetically labeled cells can be successfully attracted to the two ends of the ring-shaped magnetic thin film structure and more cells were attracted and further attached to the structures. The cells are co-cultured with the structure and kept proliferating; therefore, such ring thin film can be an important candidate for in-vitro biomedical chips or tissue engineering.

  19. Current Approach in Surface Plasmons for Thin Film and Wire Array Solar Cell Applications

    Directory of Open Access Journals (Sweden)

    Keya Zhou

    2015-07-01

    Full Text Available Surface plasmons, which exist along the interface of a metal and a dielectric, have been proposed as an efficient alternative method for light trapping in solar cells during the past ten years. With unique properties such as superior light scattering, optical trapping, guide mode coupling, near field concentration, and hot-electron generation, metallic nanoparticles or nanostructures can be tailored to a certain geometric design to enhance solar cell conversion efficiency and to reduce the material costs. In this article, we review current approaches on different kinds of solar cells, such as crystalline silicon (c-Si and amorphous silicon (a-Si thin film solar cells, organic solar cells, nanowire array solar cells, and single nanowire solar cells.

  20. A microfluidic microbial fuel cell array that supports long-term multiplexed analyses of electricigens.

    Science.gov (United States)

    Hou, Huijie; Li, Lei; Ceylan, Cemile Ümran; Haynes, Abria; Cope, Julia; Wilkinson, Heather H; Erbay, Celal; de Figueiredo, Paul; Han, Arum

    2012-10-21

    Microbial fuel cells (MFCs) are green energy technologies that exploit microbial metabolism to generate electricity. The widespread implementation of MFC technologies has been stymied by their high cost and limited power. MFC arrays in which device configurations or microbial consortia can be screened have generated significant interest because of their potential for defining aspects that will improve performance featuring high throughput characteristics. However, current miniature MFCs and MFC array systems do not support long-term studies that mimic field conditions, and hence, have limitations in fully characterizing and understanding MFC performances in varieties of conditions. Here, we describe an MFC array device that incorporates microfluidic technology to enable continuous long-term analysis of MFC performance at high throughput utilizing periodic anolyte/catholyte replenishment. The system showed 360% higher power output and 700% longer operating time when compared to MFC arrays without catholyte replenishment. We further demonstrate the utility of the system by reporting its successful use in screening microbial consortia collected from geographically diverse environments for communities that support enhanced MFC performance. Taken together, this work demonstrates that anolyte/catholyte replenishment can significantly improve the long-term performance of microfabricated MFC arrays, and support the characterization of diverse microbial consortia. PMID:22868338

  1. Closing the gaps on human chromosome 19 revealed genes with a high density of repetitive tandemly arrayed elements.

    Energy Technology Data Exchange (ETDEWEB)

    Leem, Sun-Hee; Kouprina, Natalay; Grimwood, Jane; Kim, Jung-Hyun; Mullokandov, Michael; Yoon, Young-Ho; Chae, Ji-Youn; Morgan, Jenna; Lucas, Susan; Richardson, Paul; Detter, Chris; Glavina, Tijana; Rubin, Eddy; Barrett, J. Carl; Larionov, Vladimir

    2003-09-01

    The reported human genome sequence includes about 400 gaps of unknown sequence that were not found in the bacterial artificial chromosome (BAC) and cosmid libraries used for sequencing of the genome. These missing sequences correspond to {approx} 1 percent of euchromatic regions of the human genome. Gap filling is a laborious process because it relies on analysis of random clones of numerous genomic BAC or cosmid libraries. In this work we demonstrate that closing the gaps can be accelerated by a selective recombinational capture of missing chromosomal segments in yeast. The use of both methodologies allowed us to close the four remaining gaps on the human chromosome 19. Analysis of the gap sequences revealed that they contain several abnormalities that could result in instability of the sequences in microbe hosts, including large blocks of micro- and minisatellites and a high density of Alu repeats. Sequencing of the gap regions, in both BAC and YAC forms, allowed us to generate a complete sequence of four genes, including the neuronal cell signaling gene SCK1/SLI. The SCK1/SLI gene contains a record number of minisatellites, most of which are polymorphic and transmitted through meiosis following a Mendelian inheritance. In conclusion, the use of the alternative recombinational cloning system in yeast may greatly accelerate work on closing the remaining gaps in the human genome (as well as in other complex genomes) to achieve the goal of annotation of all human genes.

  2. Cell motility regulation on a stepped micro pillar array device (SMPAD) with a discrete stiffness gradient.

    Science.gov (United States)

    Lee, Sujin; Hong, Juhee; Lee, Junghoon

    2016-02-28

    Our tissues consist of individual cells that respond to the elasticity of their environment, which varies between and within tissues. To better understand mechanically driven cell migration, it is necessary to manipulate the stiffness gradient across a substrate. Here, we have demonstrated a new variant of the microfabricated polymeric pillar array platform that can decouple the stiffness gradient from the ECM protein area. This goal is achieved via a "stepped" micro pillar array device (SMPAD) in which the contact area with the cell was kept constant while the diameter of the pillar bodies was altered to attain the proper mechanical stiffness. Using double-step SU-8 mold fabrication, the diameter of the top of every pillar was kept uniform, whereas that of the bottom was changed, to achieve the desired substrate rigidity. Fibronectin was immobilized on the pillar tops, providing a focal adhesion site for cells. C2C12, HeLa and NIH3T3 cells were cultured on the SMPAD, and the motion of the cells was observed by time-lapse microscopy. Using this simple platform, which produces a purely physical stimulus, we observed that various types of cell behavior are affected by the mechanical stimulus of the environment. We also demonstrated directed cell migration guided by a discrete rigidity gradient by varying stiffness. Interestingly, cell velocity was highest at the highest stiffness. Our approach enables the regulation of the mechanical properties of the polymeric pillar array device and eliminates the effects of the size of the contact area. This technique is a unique tool for studying cellular motion and behavior relative to various stiffness gradients in the environment. PMID:26787193

  3. Matlab / simulink based study of photovoltaic cells / modules / array and their experimental verification

    OpenAIRE

    Savita Nema, R.K.Nema, Gayatri Agnihotri

    2010-01-01

    A Matlab-Simulink based simulation study of PV cell/PV module/PV array is carried out and presented in this paper. The simulation model makes use of basic circuit equations of PV solar cell based on its behaviour as diode and comprehensive behavioural study is performed under varying conditions of solar insolation, temperature, varying diode model parameters, series and shunt resistance etc. The study is helpful in outlining the principle and intricacies of PV cell/modules and may be used to ...

  4. Biomimetic emulsions reveal the effect of homeostatic pressure on cell-cell adhesion

    CERN Document Server

    Pontani, Lea-Laetitia; Viasnoff, Virgile; Brujic, Jasna

    2012-01-01

    Cell-cell contacts in tissues are continuously subject to mechanical forces due to homeostatic pressure and active cytoskeleton dynamics. While much is known about the molecular pathways of adhesion, the role of mechanics is less well understood. To isolate the role of pressure we present a dense packing of functionalized emulsion droplets in which surface interactions are tuned to mimic those of real cells. By visualizing the microstructure in 3D we find that a threshold compression force is necessary to overcome electrostatic repulsion and surface elasticity and establish protein-mediated adhesion. Varying the droplet interaction potential maps out a phase diagram for adhesion as a function of force and salt concentration. Remarkably, fitting the data with our theoretical model predicts binder concentrations in the adhesion areas that are similar to those found in real cells. Moreover, we quantify the adhesion size dependence on the applied force and thus reveal adhesion strengthening with increasing homeos...

  5. Phenomic Assessment of Genetic Buffering by Kinetic Analysis of Cell Arrays

    Science.gov (United States)

    Rodgers, John; Guo, Jingyu; Hartman, John L.

    2016-01-01

    Summary Quantitative high throughput cell array phenotyping (Q-HTCP) is applied to the genomic collection of yeast gene deletion mutants for systematic, comprehensive assessment of the contribution of genes and gene combinations to any phenotype of interest (phenomic analysis). Interacting gene networks influence every phenotype. Genetic buffering refers to how gene interaction networks stabilize or destabilize a phenotype. Like genomics, phenomics varies in its resolution with there being a tradeoff allocating a greater number of measurements per sample to enhance quantification of the phenotype vs. increasing the number of different samples by obtaining fewer measurement per sample. The Q-HTCP protocol we describe assesses 50,000–70,000 cultures per experiment by obtaining kinetic growth curves from time series imaging of agar cell arrays. This approach was developed for the yeast gene deletion strains, but it could be applied as well to other microbial mutant arrays grown on solid agar media. The methods we describe are for creation and maintenance of frozen stocks, liquid source array preparation, agar destination plate printing, image scanning, image analysis, curve fitting and evaluation of gene interaction. PMID:25213246

  6. A 16 × 16 CMOS Capacitive Biosensor Array Towards Detection of Single Bacterial Cell.

    Science.gov (United States)

    Couniot, Numa; Francis, Laurent A; Flandre, Denis

    2016-04-01

    We present a 16 × 16 CMOS biosensor array aiming at impedance detection of whole-cell bacteria. Each 14 μm × 16 μm pixel comprises high-sensitive passivated microelectrodes connected to an innovative readout interface based on charge sharing principle for capacitance-to-voltage conversion and subthreshold gain stage to boost the sensitivity. Fabricated in a 0.25 μm CMOS process, the capacitive array was experimentally shown to perform accurate dielectric measurements of the electrolyte up to electrical conductivities of 0.05 S/m, with maximal sensitivity of 55 mV/fF and signal-to-noise ratio (SNR) of 37 dB. As biosensing proof of concept, real-time detection of Staphylococcus epidermidis binding events was experimentally demonstrated and provides detection limit of ca. 7 bacteria per pixel and sensitivity of 2.18 mV per bacterial cell. Models and simulations show good matching with experimental results and provide a comprehensive analysis of the sensor and circuit system. Advantages, challenges and limits of the proposed capacitive biosensor array are finally described with regards to literature. With its small area and low power consumption, the present capacitive array is particularly suitable for portable point-of-care (PoC) diagnosis tools and lab-on-chip (LoC) systems. PMID:25974947

  7. Phenomic assessment of genetic buffering by kinetic analysis of cell arrays.

    Science.gov (United States)

    Rodgers, John; Guo, Jingyu; Hartman, John L

    2014-01-01

    Quantitative high-throughput cell array phenotyping (Q-HTCP) is applied to the genomic collection of yeast gene deletion mutants for systematic, comprehensive assessment of the contribution of genes and gene combinations to any phenotype of interest (phenomic analysis). Interacting gene networks influence every phenotype. Genetic buffering refers to how gene interaction networks stabilize or destabilize a phenotype. Like genomics, phenomics varies in its resolution with there being a trade-off allocating a greater number of measurements per sample to enhance quantification of the phenotype vs. increasing the number of different samples by obtaining fewer measurements per sample. The Q-HTCP protocol we describe assesses 50,000-70,000 cultures per experiment by obtaining kinetic growth curves from time series imaging of agar cell arrays. This approach was developed for the yeast gene deletion strains, but it could be applied as well to other microbial mutant arrays grown on solid agar media. The methods we describe are for creation and maintenance of frozen stocks, liquid source array preparation, agar destination plate printing, image scanning, image analysis, curve fitting, and evaluation of gene interaction. PMID:25213246

  8. Aluminum oxide passivated radial junction sub-micrometre pillar array textured silicon solar cells

    International Nuclear Information System (INIS)

    We report radial, p–n junction, sub-micrometre, pillar array textured solar cells, fabricated on an n-type Czochralski silicon wafer. Relatively simple processing schemes such as metal-assisted chemical etching and spin on dopant techniques were employed for the fabrication of the proposed solar cells. Atomic layer deposition (ALD) grown aluminum oxide (Al2O3) was employed as a surface passivation layer on the B-doped emitter surface. In spite of the fact that the sub-micrometre pillar array textured surface has a relatively high surface-to-volume ratio, we observed an open circuit voltage (VOC) and a short circuit current density (JSC) as high as 572 mV and 29.9 mA cm−2, respectively, which leads to a power conversion efficiency in excess of 11.30%, for the optimized structure of the solar cell described herein. Broadband omnidirectional antireflection effects along with the light trapping property of the sub-micrometre, pillar array textured surface and the excellent passivation quality of the ALD-grown Al2O3 on the B-doped emitter surface were responsible for the enhanced electrical performance of the proposed solar cells. (paper)

  9. Cell-based drug combination screening with a microfluidic droplet array system.

    Science.gov (United States)

    Du, Guan-Sheng; Pan, Jian-Zhang; Zhao, Shi-Ping; Zhu, Ying; den Toonder, Jaap M J; Fang, Qun

    2013-07-16

    We performed cell-based drug combination screening using an integrated droplet-based microfluidic system based on the sequential operation droplet array (SODA) technique. In the system, a tapered capillary connected with a syringe pump was used for multistep droplet manipulations. An oil-covered two-dimensional droplet array chip fixed in an x-y-z translation stage was used as the platform for cell culture and analysis. Complex multistep operations for drug combination screening involving long-term cell culture, medium changing, schedule-dependent drug dosage and stimulation, and cell viability testing were achieved in parallel in the semiopen droplet array, using multiple droplet manipulations including liquid metering, aspirating, depositing, mixing, and transferring. Long-term cell culture as long as 11 days was performed in oil-covered 500 nL droplets by changing the culture medium in each droplet every 24 h. The present system was applied in parallel schedule-dependent drug combination screening for A549 nonsmall lung cancer cells with the cell cycle-dependent drug flavopiridol and two anticancer drugs of paclitaxel and 5-fluorouracil. The highest inhibition efficiency was obtained with a schedule combination of 200 nM flavopiridol followed by 100 μM 5-fluorouracil. The drug consumption for each screening test was substantially decreased to 5 ng-5 μg, corresponding to 10-1000-fold reductions compared with traditional drug screening systems with 96-well or 384-well plates. The present work provides a novel and flexible droplet-based microfluidic approach for performing cell-based screening with complex and multistep operation procedures. PMID:23786644

  10. Raman-Spectroscopy Based Cell Identification on a Microhole Array Chip

    Directory of Open Access Journals (Sweden)

    Ute Neugebauer

    2014-04-01

    Full Text Available Circulating tumor cells (CTCs from blood of cancer patients are valuable prognostic markers and enable monitoring responses to therapy. The extremely low number of CTCs makes their isolation and characterization a major technological challenge. For label-free cell identification a novel combination of Raman spectroscopy with a microhole array platform is described that is expected to support high-throughput and multiplex analyses. Raman spectra were registered from regularly arranged cells on the chip with low background noise from the silicon nitride chip membrane. A classification model was trained to distinguish leukocytes from myeloblasts (OCI-AML3 and breast cancer cells (MCF-7 and BT-20. The model was validated by Raman spectra of a mixed cell population. The high spectral quality, low destructivity and high classification accuracy suggests that this approach is promising for Raman activated cell sorting.

  11. Fabrication of TiO2 nanotube–nanocube array composite electrode for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    One dimensional TiO2 nanotube structure recently plays an important role in the application of dye sensitized solar cells (DSSCs) due to its faster electron transport. The fabrication of photoanode using the TiO2 nanotube structures mixed with the TiO2 nanoparticles was investigated to enhance the photovoltaic efficiency of DSSCs by increasing the surface area of electrode. In this work, self-organized and vertically-oriented TiO2 nanotube arrays (TNAs) covered with uniformly distributed TiO2 nanocubes (TNCs) were fabricated in a simple one-step anodization process. The X-ray diffraction patterns reveal that both TNAs and TNCs are in anatase phase. The scanning electron microscopy analysis demonstrates that the wall thickness and inner diameter of hexagonal close-packed TiO2 nanotubes from chemically polished Ti foils are 10–15 and 100–120 nm, respectively, and the particle size of TNCs is 60–75 nm. The DSSC fabricated by the mixed morphological TNAs with TNCs shows an enhanced photoconversion efficiency of ∼ 63% than that of TNAs alone, due to the increase of both dye adsorption and electron transportation rate. - Highlights: ► Fabrication of TiO2 nanotube arrays on Ti foils was performed using anodization process. ► Nitrogen blow influences the growth of TiO2 nanocube particles on the TiO2 nanotube arrays. ► Mixed morphological nanotube–nanocube TiO2 photoanode in dye-sensitized solar cell achieved improved efficiency of 1.98%

  12. Essential oils affect populations of some rumen bacteria in vitro as revealed by microarray (RumenBactArray) analysis

    OpenAIRE

    Patra, Amlan K.; Yu, Zhongtang

    2015-01-01

    In a previous study origanum oil (ORO), garlic oil (GAO), and peppermint oil (PEO) were shown to effectively lower methane production, decrease abundance of methanogens, and change abundances of several bacterial populations important to feed digestion in vitro. In this study, the impact of these essential oils (EOs, at 0.50 g/L) on the rumen bacterial community composition and population was further examined using the recently developed RumenBactArray. Species richness (expressed as number o...

  13. Essential oils affect populations of some rumen bacteria in vitro as revealed by microarray (RumenBactArray) analysis

    OpenAIRE

    Amlan Kumar Patra; Zhongtang eYu

    2015-01-01

    In a previous study origanum oil (ORO), garlic oil (GAO), and peppermint oil (PEO) were shown to effectively lower methane production, decrease abundance of methanogens, and change abundances of several bacterial populations important to feed digestion in vitro. In this study, the impact of these essential oils (EOs, at 0.50 g/L), on the rumen bacterial community composition and population was further examined using the recently developed RumenBactArray. Species richness (expressed as number ...

  14. The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming

    Institute of Scientific and Technical Information of China (English)

    Athanasia D Panopoulos; Margaret Lutz; W Travis Berggren; Kun Zhang; Ronald M Evans; Gary Siuzdak; Juan Carlos Izpisua Belmonte; Oscar Yanes; SergioRuiz; Yasuyuki S Kida; Dinh Diep; Ralf Tautenhahn; Aida Herrerias; Erika M Batchelder; Nongluk Plongthongkum

    2012-01-01

    Metabolism is vital to every aspect of cell function,yet the metabolome of induced pluripotent stem cells (iPSCs)remains largely unexplored.Here we report,using an untargeted metabolomics approach,that human iPSCs share a pluripotent metabolomic signature with embryonic stem cells (ESCs) that is distinct from their parental cells,and that is characterized by changes in metabolites involved in cellular respiration.Examination of cellular bioenergetics corroborated with our metabolomic analysis,and demonstrated that somatic cells convert from an oxidative state to a glycolytic state in pluripotency.Interestingly,the bioenergetics of various somatic cells correlated with their reprogramming efficiencies.We further identified metabolites that differ between iPSCs and ESCs,which revealed novel metabolic pathways that play a critical role in regulating somatic cell reprogramming.Our findings are the first to globally analyze the metabolome of iPSCs,and provide mechanistic insight into a new layer of regulation involved in inducing pluripotency,and in evaluating iPSC and ESC equivalence.

  15. Molecular analysis of endothelial progenitor cell (EPC subtypes reveals two distinct cell populations with different identities

    Directory of Open Access Journals (Sweden)

    Simpson David A

    2010-05-01

    Full Text Available Abstract Background The term endothelial progenitor cells (EPCs is currently used to refer to cell populations which are quite dissimilar in terms of biological properties. This study provides a detailed molecular fingerprint for two EPC subtypes: early EPCs (eEPCs and outgrowth endothelial cells (OECs. Methods Human blood-derived eEPCs and OECs were characterised by using genome-wide transcriptional profiling, 2D protein electrophoresis, and electron microscopy. Comparative analysis at the transcript and protein level included monocytes and mature endothelial cells as reference cell types. Results Our data show that eEPCs and OECs have strikingly different gene expression signatures. Many highly expressed transcripts in eEPCs are haematopoietic specific (RUNX1, WAS, LYN with links to immunity and inflammation (TLRs, CD14, HLAs, whereas many transcripts involved in vascular development and angiogenesis-related signalling pathways (Tie2, eNOS, Ephrins are highly expressed in OECs. Comparative analysis with monocytes and mature endothelial cells clusters eEPCs with monocytes, while OECs segment with endothelial cells. Similarly, proteomic analysis revealed that 90% of spots identified by 2-D gel analysis are common between OECs and endothelial cells while eEPCs share 77% with monocytes. In line with the expression pattern of caveolins and cadherins identified by microarray analysis, ultrastructural evaluation highlighted the presence of caveolae and adherens junctions only in OECs. Conclusions This study provides evidence that eEPCs are haematopoietic cells with a molecular phenotype linked to monocytes; whereas OECs exhibit commitment to the endothelial lineage. These findings indicate that OECs might be an attractive cell candidate for inducing therapeutic angiogenesis, while eEPC should be used with caution because of their monocytic nature.

  16. Capillary hydrodynamic chromatography reveals temporal profiles of cell aggregates.

    Science.gov (United States)

    Tang, Ya-Ru; Huang, Hsin-Yi; Hu, Jie-Bi; Rattinam, Rajesh; Li, Chun-Hsien; Chen, Yu-Chie; Urban, Pawel L

    2016-03-01

    Microbial cells are known to form aggregates. Such aggregates can be found in various matrices; for example, functional drinks. Capillary hydrodynamic chromatography (HDC) enables separation of particles by size using nanoliter-scale volumes of samples. Here we propose an approach based on HDC for characterisation of real samples containing aggregated and non-aggregated bacterial and fungal cells. Separation of cells and cell aggregates in HDC arises from the parabolic flow profile under laminar flow conditions. In the presented protocol, hydrodynamic separation is coupled with different on-line and off-line detectors (light absorption/scattering and microscopy). The method has successfully been applied in the monitoring of dynamic changes in the microbiome of probiotic drinks. Chromatographic profiles of yogurt and kefir samples obtained at different times during fermentation are in a good agreement with microscopic images. Moreover, thanks to the implementation of an area imaging detector, capillary HDC could be multiplexed and used to profile spatial gradients in cell suspensions, which arise in the course of sedimentation of cells and cell aggregates. This result shows compatibility of sedimentation analysis and capillary HDC. We believe that the approach may find applications in the profiling of functional foods and other matrices containing aggregated bioparticles. PMID:26873471

  17. Live cell imaging reveals at novel view of DNA

    International Nuclear Information System (INIS)

    Non-homologous end-joining (NHEJ) is the major repair pathway for DNA double-strand breaks (DSBs) that are the most severe form of DNA damages. Recently, live cell imaging techniques coupled with laser micro-irradiation were used to analyze the spatio-temporal behavior of the NHEJ core factors upon DSB induction in living cells. Based on the live cell imaging studies, we proposed a novel two-phase model for DSB sensing and protein assembly in the NHEJ pathway. This new model provides a novel view of the dynamic protein behavior on DSBs and broad implications for the molecular mechanism of NHEJ. (author)

  18. An Automated High-throughput Array Microscope for Cancer Cell Mechanics

    OpenAIRE

    Cribb, Jeremy A.; Osborne, Lukas D.; Kellie Beicker; Matthew Psioda; Jian Chen; E. Timothy O’Brien; Taylor II, Russell M.; Leandra Vicci; Joe Ping-Lin Hsiao; Chong Shao; Michael Falvo; Ibrahim, Joseph G.; Wood, Kris C.; Blobe, Gerard C.; Richard Superfine

    2016-01-01

    Changes in cellular mechanical properties correlate with the progression of metastatic cancer along the epithelial-to-mesenchymal transition (EMT). Few high-throughput methodologies exist that measure cell compliance, which can be used to understand the impact of genetic alterations or to screen the efficacy of chemotherapeutic agents. We have developed a novel array high-throughput microscope (AHTM) system that combines the convenience of the standard 96-well plate with the ability to image ...

  19. Enhanced Electron Photoemission by Collective Lattice Resonances in Plasmonic Nanoparticle-Array Photodetectors and Solar Cells

    OpenAIRE

    Zhukovsky, Sergei V.; Babicheva, Viktoriia E.; Uskov, Alexander V.; Protsenko, Igor E.; Lavrinenko, Andrei V.

    2014-01-01

    We propose to use collective lattice resonances in plasmonic nanoparticle arrays to enhance and tailor photoelectron emission in Schottky barrier photodetectors and solar cells. We show that the interaction between narrow-band lattice resonances (the Rayleigh anomaly) and broader-band individual-particle excitations (localized surface plasmon resonances) leads to stronger local field enhancement. In turn, this causes a significant increase of the photocurrent compared to the case when only in...

  20. Fabrication of a novel microsystem for the electrical characterisation of cell array

    OpenAIRE

    Hediger, S.; Sayah, A.; M.A.M. Gijs

    1999-01-01

    We have designed and realised a new type of microsystem for the electrical characterisation of arrays of living cells for biomedical diagnostic purposes. We have used deep plasma etching for the fabrication of microholes and micro-fluidic channels in silicon substrates. After oxidation and electrical contact fabrication, these structured silicon wafers have been anodically bonded with Pyrex wafers. The fabrication is completed by the gluing of micro-patterned polyimide foils on top of the sil...

  1. Core-Shell Nanopillar Array Solar Cells using Cadmium Sulfide Coating on Indium Phosphide Nanopillars

    OpenAIRE

    Tu, Bor-An Clayton

    2013-01-01

    This thesis presents a new strategy to fabricate nanostructured indium phosphide and cadmium sulfide photovoltaics. The cells are formed by chemical bath deposition (electroless deposition) of cadmium sulfide onto indium phosphide nanopillar arrays grown by selective-area metalorganic chemical vapor deposition. Characterizations through electrical and optical measurements show that the devices consisting of p-InP core and CdS shell have a conversion efficiency, open circuit voltage, short cir...

  2. Prognostic CpG Methylation Biomarkers Identified by Methylation Array in Esophageal Squamous Cell Carcinoma Patients

    OpenAIRE

    Kuo, I-Ying; Chang, Jia-Ming; Jiang, Shih-Sheng; Chen, Chung-Hsin; Chang, I-Shou; Sheu, Bor-Shyang; Lu, Pei-Jung; Chang, Wei-Lun; Lai, Wu-Wei; Wang, Yi-Ching

    2014-01-01

    Background: Esophageal squamous cell carcinoma (ESCC) is an aggressive cancer with poor prognosis. We aimed to identify a panel of CpG methylation biomarkers for prognosis prediction of ESCC patients. Methods: Illumina's GoldenGate methylation array, supervised principal components, Kaplan-Meier survival analyses and Cox regression model were conducted on dissected tumor tissues from a training cohort of 40 ESCC patients to identify potential CpG methylation biomarkers. Pyrosequencing quantit...

  3. The status of lightweight photovoltaic space array technology based on amorphous silicon solar cells

    Science.gov (United States)

    Hanak, Joseph J.; Kaschmitter, Jim

    1991-01-01

    Ultralight, flexible photovoltaic (PV) array of amorphous silicon (a-Si) was identified as a potential low cost power source for small satellites. A survey was conducted of the status of the a-Si PV array technology with respect to present and future performance, availability, cost, and risks. For existing, experimental array blankets made of commercial cell material, utilizing metal foil substrates, the Beginning of Life (BOL) performance at Air Mass Zero (AM0) and 35 C includes total power up to 200 W, power per area of 64 W/sq m and power per weight of 258 W/kg. Doubling of power per weight occurs when polyimide substrates are used. Estimated End of Life (EOL) power output after 10 years in a nominal low earth orbit would be 80 pct. of BOL, the degradation being due to largely light induced effects (-10 to -15 pct.) and in part (-5 pct.) to space radiation. Predictions for the year 1995 for flexible PV arrays, made on the basis of published results for rigid a-Si modules, indicate EOL power output per area and per weight of 105 W/sq m and 400 W/kg, respectively, while predictions for the late 1990s based on existing U.S. national PV program goals indicate EOL values of 157 W/sq m and 600 W/kg. Cost estimates by vendors for 200 W ultralight arrays in volume of over 1000 units range from $100/watt to $125/watt. Identified risks include the lack of flexible, space compatible encapsulant, the lack of space qualification effort, recent partial or full acquisitions of US manufacturers of a-Si cells by foreign firms, and the absence of a national commitment for a long range development program toward developing of this important power source for space.

  4. Transcriptome network analysis reveals candidate genes for renal cell carcinoma

    OpenAIRE

    Wei Zhai; Yun-Fei Xu; Min Liu; Jun-Hua Zheng

    2012-01-01

    Context: Renal cell carcinoma (RCC) is a kidney cancer that originates in renal parenchyma and it is the most common type of kidney cancer with approximately 80% lethal cases. Aims: To interpret the mechanism, explore the regulation of TF-target genes and TF-pathway, and identify the potential key genes of renal cell carcinoma. Settings and Design: After constructing a regulation network from differently expressed genes and transcription factors, pathway regulation network and gene onto...

  5. Revealing the Dynamics of Thylakoid Membranes in Living Cyanobacterial Cells

    OpenAIRE

    Laura-Roxana Stingaciu; Hugh O’Neill; Michelle Liberton; Urban, Volker S.; Himadri B. Pakrasi; Michael Ohl

    2016-01-01

    Cyanobacteria are photosynthetic prokaryotes that make major contributions to the production of the oxygen in the Earth atmosphere. The photosynthetic machinery in cyanobacterial cells is housed in flattened membrane structures called thylakoids. The structural organization of cyanobacterial cells and the arrangement of the thylakoid membranes in response to environmental conditions have been widely investigated. However, there is limited knowledge about the internal dynamics of these membran...

  6. Fabrication of nanowire arrays over micropyramids for efficient Si solar cell

    Science.gov (United States)

    Pant, Namrata; Singh, Prashant; Srivastava, Sanjay Kumar; Shukla, Vivek Kumar

    2016-05-01

    To improve the efficiency of solar cell, trapping the sunlight and using it to its maximum limit has been the area of research for past several decades. In the present work, texturisation of silicon surface has been done to make nanowire arrays over micropyramids. Micropyramids on Si surface increases the surface area, reduce the reflectivity and hence help to enhance the solar cell performance. Additionally, with the aim to further reduce the reflectance of Si surface, nanowire arrays over micro pyramids were fabricated. For this, samples with variation in their nanotexturisation time (etching time) were prepared. Measurements like SEM and UV-Vis reflectance spectroscopy were performed on the samples to investigate the changes with etching time. It was observed that the reflectance of planar Si in the spectral range 400 to 1000 nm is ˜35%. The reflectance of microtextured (micropyramid) Si surface is significantly reduced to ˜11%. A further decrease in reflectivity was observed when nanowire arrays were grown over the micropyramids. This may be attributed to the effective light trapping caused by multiple scattering of the incident light from the nanowires over micropyramids. Hence, it may improve silicon solar cell efficiency.

  7. Genomic and expression array profiling of chromosome 20q amplicon in human colon cancer cells

    Directory of Open Access Journals (Sweden)

    Carter Jennifer

    2005-01-01

    Full Text Available Background: Gain of the q arm of chromosome 20 in human colorectal cancer has been associated with poorer survival time and has been reported to increase in frequency from adenomas to metastasis. The increasing frequency of chromosome 20q amplification during colorectal cancer progression and the presence of this amplification in carcinomas of other tissue origin has lead us to hypothesize that 20q11-13 harbors one or more genes which, when over expressed promote tumor invasion and metastasis. Aims: Generate genomic and expression profiles of the 20q amplicon in human cancer cell lines in order to identify genes with increased copy number and expression. Materials and Methods: Utilizing genomic sequencing clones and amplification mapping data from our lab and other previous studies, BAC/ PAC tiling paths spanning the 20q amplicon and genomic microarrays were generated. Array-CGH on the custom array with human cancer cell line DNAs was performed to generate genomic profiles of the amplicon. Expression array analysis with RNA from these cell lines using commercial oligo microarrays generated expression profiles of the amplicon. The data were then combined in order to identify genes with increased copy number and expression. Results: Over expressed genes in regions of increased copy number were identified and a list of potential novel genetic tumor markers was assembled based on biological functions of these genes Conclusions: Performing high-resolution genomic microarray profiling in conjunction with expression analysis is an effective approach to identify potential tumor markers.

  8. Embedded Ultra High Density Flash Memory Cell and Corresponding Array Architecture

    Science.gov (United States)

    Lee, Kung-Hong; Wu, Meng-Yi; Dai, Sen-Hue; King, Ya-Chin

    2005-04-01

    A novel flash memory cell fabricated by standard complementary metal oxide semiconductor (CMOS) logic process and its corresponding array architecture is presented. The cell which consists of two metal-oxide-semiconductor field effect transistors (MOSFET) in series is programmed by channel current induced drain avalanche hot hole and erased by channel hot electron injection. With novel operation principles and array architecture, a feature-sized n-MOSFET per non-volatile memory bit is successfully demonstrated and the CMOS-process-based flash cell size can be as small as multi-gated flash memory. The smallest bit area of a CMOS-process-based flash memory cell with good programming and erasing characteristics along with endurance up to 105 cycles, 10 years excellent read disturbance and data retention characteristics of data retention at 150°C is proposed. With its small cell size and full compatibility with standard CMOS logic process, the novel flash memory cell can be easily adapted in highly integrated very large scale integration (VLSI) systems.

  9. Silicon microhole arrays architecture for stable and efficient photoelectrochemical cells using ionic liquids electrolytes

    Science.gov (United States)

    Shen, Xiaojuan; Chen, Ling; Li, Junnan; Zhao, Jie

    2016-06-01

    Silicon microhole arrays (SiMHs) structure is constructed and fabricated by a low-cost maskless anodic etching process, which is applied as the photoanode for the silicon photoelectrochemical (PEC) cells. The depths of silicon microhole arrays can be independently controlled by the etching time. The light-scattering properties are also investigated. Additionally, surface morphology analysis show that large hole diameters of SiMHs is very favourable for the full-filling of ionic liquids electrolyte. Therefore, better electrochemical contact as well as high ionic conductivity of the ionic liquids electrolyte renders the PEC SiMHs solar cells to exhibit more excellent performance. After optimization, the maximum PCE could be achieved at 4.04% for the SiMHs cell. The performance of the SiMHs cell is highly comparable to that of silicon nanowires cell. More importantly, the liquid-state electrolyte is confined in the unique microhole structure, which can obviously prevent the leakage of the ionic liquids electrolyte, resulting in much better long-term stability than the reference devices. These preliminary results validate the concept of interpenetrating networks with semiconductor structure/ILs junction to develop stable and efficient PEC cells.

  10. HIV-host interactome revealed directly from infected cells.

    Science.gov (United States)

    Luo, Yang; Jacobs, Erica Y; Greco, Todd M; Mohammed, Kevin D; Tong, Tommy; Keegan, Sarah; Binley, James M; Cristea, Ileana M; Fenyö, David; Rout, Michael P; Chait, Brian T; Muesing, Mark A

    2016-01-01

    Although genetically compact, HIV-1 commandeers vast arrays of cellular machinery to sustain and protect it during cycles of viral outgrowth. Transposon-mediated saturation linker scanning mutagenesis was used to isolate fully replication-competent viruses harbouring a potent foreign epitope tag. Using these viral isolates, we performed differential isotopic labelling and affinity-capture mass spectrometric analyses on samples obtained from cultures of human lymphocytes to classify the vicinal interactomes of the viral Env and Vif proteins as they occur during natural infection. Importantly, interacting proteins were recovered without bias, regardless of their potential for positive, negative or neutral impact on viral replication. We identified specific host associations made with trimerized Env during its biosynthesis, at virological synapses, with innate immune effectors (such as HLA-E) and with certain cellular signalling pathways (for example, Notch1). We also defined Vif associations with host proteins involved in the control of nuclear transcription and nucleoside biosynthesis as well as those interacting stably or transiently with the cytoplasmic protein degradation apparatus. Our approach is broadly applicable to elucidating pathogen-host interactomes, providing high-certainty identification of interactors by their direct access during cycling infection. Understanding the pathophysiological consequences of these associations is likely to provide strategic targets for antiviral intervention. PMID:27572969

  11. Investigation of the fill factor of dye-sensitized solar cell based on ZnO nanowire arrays

    International Nuclear Information System (INIS)

    The fill factor of dye-sensitized solar cells based on the ZnO nanowire array is very low, which is usually ascribed to a rapid charge recombination. In this article, the influence on the fill factor of ZnO nanowire array cell is investigated and discussed by comparing dark current and decay rate of open circuit potential of the ZnO nanowire array cell with those of the ZnO nanoparticle cell, TiO2 nanoparticle cell and TiO2-coated ZnO nanowire array cell. The results demonstrate that the low fill factor of the ZnO nanowire array cell is largely caused by a rapid decrease of electron injection efficiency rather than a rapid charge recombination, which is decided by the absorption nature of Ru-complexed dye molecules on ZnO surface and repellency of radial electric field. The fill factor of the ZnO nanowire array cell can be improved by coating ZnO nanowires with a wide band gap semiconductor material or metal oxide insulator.

  12. Platinum nanowire microelectrode arrays for neurostimulation applications: Fabrication, characterization, and in-vitro retinal cell stimulation

    Science.gov (United States)

    Whalen, John J., III

    Implantable electrical neurostimulating devices are being developed for a number of applications, including artificial vision through retinal stimulation. The epiretinal prosthesis will use a two-dimensional array microelectrodes to address individual cells of the retina. MEMS fabrication processes can produce arrays of microelectrodes with these dimensions, but there are two critical issues that they cannot satisfy. One, the stimulating electrodes are the only part of the implanted electrical device that penetrate through the water impermeable package, and must do so without sacrificing hermeticity. Two, As electrode size decreases, the current density (A cm-2 ) increases, due to increased electrochemical impedance. This reduces the amount of charge that can be safely injected into the tissue. To date, MEMS processing method, cannot produce electrode arrays with good, prolonged hermetic properties. Similarly, MEMS approaches do not account for the increased impedance caused by decreased surface area. For these reasons there is a strong motivation for the development of a water-impermeable, substrate-penetrating electrode array with low electrochemical impedance. This thesis presents a stimulating electrode array fabricated from platinum nanowires using a modified electrochemical template synthesis approach. Nanowires are electrochemically deposited from ammonium hexachloroplatinate solution into lithographically patterned nanoporous anodic alumina templates to produce microarrays of platinum nanowires. The platinum nanowires penetrating through the ceramic aluminum oxide template serve as parallel electrical conduits through the water impermeable, electrically insulating substrate. Electrode impedance can be adjusted by either controlling the nanowire hydrous platinum oxide content or by partially etching the alumina template to expose additional surface area. A stepwise approach to this project was taken. First, the electrochemistry of ammonium

  13. Preliminary study of the influence of solar cell degradation due to ESD on solar array power generation

    OpenAIRE

    Okumura, Teppei; Toyoda, Kazuhiro; Kawakita, Shiro; Imaizumi, Mitsuru; 奥村 哲平; 豊田 和弘; 川北 史朗; 今泉 充; Cho, Mengu

    2008-01-01

    In space, an ElectroStatic Discharge (ESD) can occur on a solar array due to the plasma interaction. One of the issues of ESD is the degradation of solar cell electric performance. To establish the power degradation estimation method due to ESD in solar arrays, light current-voltage characteristics are evaluated in the current value at maximum power. From the results of the calculation, InGaP/GaAs/Ge solar arrays potentially suffer more serious power degradation than Si solar array.

  14. Natural Dye-Sensitized Solar Cells Based on Highly Ordered TiO2 Nanotube Arrays

    OpenAIRE

    Na Li; Nengqian Pan; Danhong Li; Shiwei Lin

    2013-01-01

    The dye-sensitized solar cells (DSSCs) have been fabricated using highly ordered TiO2 nanotube arrays as photoelectrode and natural dyes as photosensitizers. The natural dyes were extracted from the abundant plants in the tropical region, such as Tradescantia zebrina, kapok, and pitaya. The dyes could chemically couple with TiO2 nanotubes and effectively convert visible light into electricity in DSSCs. A power conversion efficiency could be achieved up to 0.3% in the solar cell sensitized by ...

  15. Enhanced electron photoemission by collective lattice resonances in plasmonic nanoparticle-array photodetectors and solar cells

    CERN Document Server

    Zhukovsky, Sergei V; Uskov, Alexander V; Protsenko, Igor E; Lavrinenko, Andrei V

    2013-01-01

    We propose to use collective lattice resonances in plasmonic nanoparticle arrays to enhance photoelectron emission in Schottky-barrier photodetectors and solar cells. We show that the interaction of lattice resonances (the Rayleigh anomaly) and individual particle excitations (localized surface plasmon resonances) leads to stronger local field enhancement and significant increase of the photocurrent compared to the case when only individual particle excitations are present. The results can be used to design new photodetectors with highly selective, tunable spectral response, able to detect photons with the energy below the semiconductor bandgap, and to develop solar cells with increased efficiency.

  16. A Nanoprinted Model of Interstitial Cancer Migration Reveals a Link between Cell Deformability and Proliferation.

    Science.gov (United States)

    Panagiotakopoulou, Magdalini; Bergert, Martin; Taubenberger, Anna; Guck, Jochen; Poulikakos, Dimos; Ferrari, Aldo

    2016-07-26

    Metastatic progression of tumors requires the coordinated dissemination of cancerous cells through interstitial tissues and their replication in distant body locations. Despite their importance in cancer treatment decisions, key factors, such as cell shape adaptation and the role it plays in dense tissue invasion by cancerous cells, are not well understood. Here, we employ a 3D electrohydrodynamic nanoprinting technology to generate vertical arrays of topographical pores that mimic interstitial tissue resistance to the mesenchymal migration of cancerous cells, in order to determine the effect of nuclear size, cell deformability, and cell-to-substrate adhesion on tissue invasion efficiency. The high spatial and temporal resolution of our analysis demonstrates that the ability of cells to deform depends on the cell cycle phase, peaks immediately after mitosis, and is key to the invasion process. Increased pore penetration efficiency by cells in early G1 phase also coincided with their lower nuclear volume and higher cell deformability, compared with the later cell cycle stages. Furthermore, artificial decondensation of chromatin induced an increase in cell and nuclear deformability and improved pore penetration efficiency of cells in G1. Together, these results underline that along the cell cycle cells have different abilities to dynamically remodel their actin cytoskeleton and induce nuclear shape changes, which determines their pore penetration efficiency. Thus, our results support a mechanism in which cell proliferation and pore penetration are functionally linked to favor the interstitial dissemination of metastatic cells. PMID:27268411

  17. Simultaneous positioning of cells into two-dimensional arrays using ultrasound.

    Science.gov (United States)

    Neild, Adrian; Oberti, Stefano; Radziwill, Gerald; Dual, Jürg

    2007-08-01

    Contactless simultaneous positioning of micrometer-sized particles in suspension (e.g., copolymer beads, living cells, silicon microparts) can be performed using ultrasound. Current devices are capable of collecting particles into planes or lines by exciting a resonance in the fluid by means of a piezoelectric transducer located beneath the fluidic cavity and are designed such that a one-dimensional pressure field is created. The focus of this work is to collect cells in distinct point locations for potential drug screening array applications. A device to create two-dimensional arrays of cells within a micromachined chamber is described. The chamber is etched into a silicon wafer and sealed with glass; on the underside of the silicon layer a piezoelectric actuator is attached. A signal is applied to each of two orthogonally aligned strips electrodes defined on the surface of the piezoelectric plate. These two strip electrodes create independently addressable approximately one-dimensional pressure fields. It is shown that by applying the same signal to each electrode a diagonally aligned grid of cells can be produced. However, the independence of the two electrodes allows the application of two signals with slightly different frequencies to be applied which creates a grid of circular cell clumps highly suitable for the identified application. (c) PMID:17187440

  18. A novel stretchable micro-electrode array (SMEA) design for directional stretching of cells

    International Nuclear Information System (INIS)

    Stretchable micro-electrode arrays (SMEAs) are useful tools to study the electrophysiology of living cells seeded on the devices under mechanical stimulation. For such applications, the SMEAs are used as cell culture substrates; therefore, the surface topography and mechanical properties of the devices should be minimally affected by the embedded stretchable electrical interconnects. In this paper, a novel design and micro-fabrication technology for a pneumatically actuated SMEA are presented to achieve stretchability with minimal surface area dedicated to the electrical interconnects and a well-defined surface strain distribution combined with integrated diverse micro-patterns to enable alignment and directional stretching of cells. The special mechanical design also enables the SMEA to have a prolonged electro-mechanical fatigue life time required for long-term cyclic stretching of the cell cultures (stable resistance of electrical interconnects for more than 160 thousand cycles of 20% stretching and relaxing). The proposed fabrication method is based on the state of the art micro-fabrication techniques and materials and circumvents the processing problems associated with using unconventional methods and materials to fabricate stretchable electrode arrays. The electrochemical impedance spectroscopy characterization of the SMEA shows 4.5 MΩ impedance magnitude at 1 kHz for a TiN electrode 12 um in diameter. Cell culture experiments demonstrate the robustness of the SMEAs for long-term culturing experiments and compatibility with inverted fluorescent microscopy. (paper)

  19. Plasma nitriding induced growth of Pt-nanowire arrays as high performance electrocatalysts for fuel cells.

    Science.gov (United States)

    Du, Shangfeng; Lin, Kaijie; Malladi, Sairam K; Lu, Yaxiang; Sun, Shuhui; Xu, Qiang; Steinberger-Wilckens, Robert; Dong, Hanshan

    2014-01-01

    In this work, we demonstrate an innovative approach, combing a novel active screen plasma (ASP) technique with green chemical synthesis, for a direct fabrication of uniform Pt nanowire arrays on large-area supports. The ASP treatment enables in-situ N-doping and surface modification to the support surface, significantly promoting the uniform growth of tiny Pt nuclei which directs the growth of ultrathin single-crystal Pt nanowire (2.5-3 nm in diameter) arrays, forming a three-dimensional (3D) nano-architecture. Pt nanowire arrays in-situ grown on the large-area gas diffusion layer (GDL) (5 cm(2)) can be directly used as the catalyst electrode in fuel cells. The unique design brings in an extremely thin electrocatalyst layer, facilitating the charge transfer and mass transfer properties, leading to over two times higher power density than the conventional Pt nanoparticle catalyst electrode in real fuel cell environment. Due to the similar challenges faced with other nanostructures and the high availability of ASP for other material surfaces, this work will provide valuable insights and guidance towards the development of other new nano-architectures for various practical applications. PMID:25241800

  20. Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes

    Science.gov (United States)

    Paulose, Maggie; Shankar, Karthik; Varghese, Oomman K.; Mor, Gopal K.; Hardin, Brian; Grimes, Craig A.

    2006-03-01

    Backside illuminated solar cells based on 6 µm long highly-ordered nanotube-array films sensitized by a self-assembled monolayer of bis(tetrabutylammonium)-cis-(dithiocyanato)- N,N'-bis(4-carboxylato-4'-carboxylic acid-2, 2'-bipyridine)ruthenium(II) (commonly called 'N719') show a short-circuit current density of 8.79 mA cm-2, 841 mV open circuit potential and a 0.57 fill factor yielding a power conversion efficiency of 4.24% under AM 1.5 sun. The solvent used to infiltrate the dye into the nanotube arrays, made by potentiostatic anodization of a titanium foil, was found to significantly influence the electrical characteristics of the resulting solar cell. A superior photoresponse was obtained with acetonitrile as the dye solvent. This is attributed to the improved wetting characteristics of the dye solution in acetonitrile enabling self-assembled monolayers with higher surface coverage to be formed inside the nanotubes. In comparison to nanocrystalline films, the nanotube-array films consistently exhibit larger open circuit photovoltage values; the origins of this enhancement are discussed.

  1. Oligonucleotide array discovery of polymorphisms in cultivated tomato (Solanum lycopersicum L. reveals patterns of SNP variation associated with breeding

    Directory of Open Access Journals (Sweden)

    Zhu Tong

    2009-10-01

    Full Text Available Abstract Background Cultivated tomato (Solanum lycopersicum L. has narrow genetic diversity that makes it difficult to identify polymorphisms between elite germplasm. We explored array-based single feature polymorphism (SFP discovery as a high-throughput approach for marker development in cultivated tomato. Results Three varieties, FL7600 (fresh-market, OH9242 (processing, and PI114490 (cherry were used as a source of genomic DNA for hybridization to oligonucleotide arrays. Identification of SFPs was based on outlier detection using regression analysis of normalized hybridization data within a probe set for each gene. A subset of 189 putative SFPs was sequenced for validation. The rate of validation depended on the desired level of significance (α used to define the confidence interval (CI, and ranged from 76% for polymorphisms identified at α ≤ 10-6 to 60% for those identified at α ≤ 10-2. Validation percentage reached a plateau between α ≤ 10-4 and α ≤ 10-7, but failure to identify known SFPs (Type II error increased dramatically at α ≤ 10-6. Trough sequence validation, we identified 279 SNPs and 27 InDels in 111 loci. Sixty loci contained ≥ 2 SNPs per locus. We used a subset of validated SNPs for genetic diversity analysis of 92 tomato varieties and accessions. Pairwise estimation of θ (Fst suggested significant differentiation between collections of fresh-market, processing, vintage, Latin American (landrace, and S. pimpinellifolium accessions. The fresh-market and processing groups displayed high genetic diversity relative to vintage and landrace groups. Furthermore, the patterns of SNP variation indicated that domestication and early breeding practices have led to progressive genetic bottlenecks while modern breeding practices have reintroduced genetic variation into the crop from wild species. Finally, we examined the ratio of non-synonymous (Ka to synonymous substitutions (Ks for 20 loci with multiple SNPs (≥ 4 per

  2. Research of Bulk Erase Operation in Vertical Three-Dimensional Cell Array Architecture

    Science.gov (United States)

    Yang, Hyung-jun; Lee, Gae-hun; Kim, Kyeong-rok; Song, Yun-heub

    2013-04-01

    A bit-cost scalable (BiCS) NAND flash memory with a bulk erasing method is investigated in view of cell characteristics and uniformity. The proposed cell array has an additional electrode layer for a bulk erase operation in the middle of a vertical channel string cell. Here, under a bias condition of 20 V, a programming threshold voltage of 4.2 V at 1 ms and an erasing threshold voltage of Vth = -1.5 V at 10 ms are confirmed, which is acceptable for flash memories. Furthermore, the shielding transistor close to an erase electrode is also investigated, which gives better erase characteristics for the cells adjacent to the erase electrode. From this result, we expect that a bulk erasable-BiCS technology with a shielding transistor can be a candidate three-dimensional (3D) NAND flash memory.

  3. Tunable fluorescence from patterned silver nano-island arrays for sensitive sub-cell imaging

    International Nuclear Information System (INIS)

    Surface-enhanced fluorescence, a burgeoning technique in biological detection, provides largely enhanced fluorescence signal by exciting localized surfaces plasmons resonance with fluorescent dyes. Nanostructure and surroundings brings great impact on the emission signal, however, insufficient physics about the process limits further improvement on the nanostructure design. In this study, optical properties of Rhodamin-6G molecules on patterned silver nano-island arrays are tailored by precisely controlling the distance between the dyes and silver arrays. The fluorescence signal depends on the distance and the largest enhancement of 10 folds is achieved when the distance is 10 nm. The results are theoretically corroborated by finite difference time domain simulation and applied to cytoskeleton fluorescence imaging using phalloidin–fluorescein isothiocyanate. Our study provides insights into the physical mechanisms associated with the fluorescence enhancement and quenching, and our experiments suggest potential applications to high-sensitivity sub-cell imaging. (paper)

  4. Studying nanostructured nipple arrays of moth eye facets helps to design better thin film solar cells

    International Nuclear Information System (INIS)

    Nipples on the surface of moth eye facets exhibit almost perfect broadband anti-reflection properties. We have studied the facet surface micro-protuberances, known as corneal nipples, of the chestnut leafminer moth Cameraria ohridella by atomic force microscopy, and simulated the optics of the nipple arrays by three-dimensional electromagnetic simulation. The influence of the dimensions and shapes of the nipples on the optics was studied. In particular, the shape of the nipples has a major influence on the anti-reflection properties. Furthermore, we transferred the structure of the almost perfect broadband anti-reflection coatings to amorphous silicon thin film solar cells. The coating that imitates the moth-eye array allows for an increase of the short circuit current and conversion efficiency of more than 40%.

  5. A Low Velocity Zone along the Chaochou Fault in Southern Taiwan: Seismic Image Revealed by a Linear Seismic Array

    Directory of Open Access Journals (Sweden)

    Hsin-Chieh Pu

    2010-01-01

    Full Text Available The Chaochou fault is one of the major boundary faults in southern Taiwan where strong convergence has taken place between the Eurasian and Philippine Sea plates. The surface fault trace between the Pingtung plain and the Central Range follows a nearly N-S direction and stretches to 80 km in length. In order to examine the subsurface structures along the Chaochou fault, a linear seismic array with 14 short-period stations was deployed across the fault to record seismic data between August and December 2001. Detailed examination of seismic data generated by 10 local earthquakes and recorded by the linear array has shown that the incidence angles of the first P-waves recorded by several seismic stations at the fault zone were significantly larger than those located farther away from the fault zone. This difference might reflect the lateral variation of velocity structures across the Chaochou fault. Further examination of ray-paths of seismic wave propagation indicates that a low-velocity zone along the Chaochou fault is needed to explain the significant change in incidence angles across the fault zone. Although we do not have adequate information to calculate the exact geometry of the fault zone well, the variation in incidence angles across the fault can be explained by the existence of a low-velocity zone that is about 3 km in width on the surface and extends downward to a depth of 5 km. The low-velocity zone along the Chaochou fault might imply that the fault system consists of several splay faults on the hanging wall in the Central Range.

  6. Microfluidic sorting and multimodal typing of cancer cells in self-assembled magnetic arrays

    Science.gov (United States)

    Saliba, Antoine-Emmanuel; Saias, Laure; Psychari, Eleni; Minc, Nicolas; Simon, Damien; Bidard, François-Clément; Mathiot, Claire; Pierga, Jean-Yves; Fraisier, Vincent; Salamero, Jean; Saada, Véronique; Farace, Françoise; Vielh, Philippe; Malaquin, Laurent; Viovy, Jean-Louis

    2010-01-01

    We propose a unique method for cell sorting, “Ephesia,” using columns of biofunctionalized superparamagnetic beads self-assembled in a microfluidic channel onto an array of magnetic traps prepared by microcontact printing. It combines the advantages of microfluidic cell sorting, notably the application of a well controlled, flow-activated interaction between cells and beads, and those of immunomagnetic sorting, notably the use of batch-prepared, well characterized antibody-bearing beads. On cell lines mixtures, we demonstrated a capture yield better than 94%, and the possibility to cultivate in situ the captured cells. A second series of experiments involved clinical samples—blood, pleural effusion, and fine needle aspirates— issued from healthy donors and patients with B-cell hematological malignant tumors (leukemia and lymphoma). The immunophenotype and morphology of B-lymphocytes were analyzed directly in the microfluidic chamber, and compared with conventional flow cytometry and visual cytology data, in a blind test. Immunophenotyping results using Ephesia were fully consistent with those obtained by flow cytometry. We obtained in situ high resolution confocal three-dimensional images of the cell nuclei, showing intranuclear details consistent with conventional cytological staining. Ephesia thus provides a powerful approach to cell capture and typing allowing fully automated high resolution and quantitative immunophenotyping and morphological analysis. It requires at least 10 times smaller sample volume and cell numbers than cytometry, potentially increasing the range of indications and the success rate of microbiopsy-based diagnosis, and reducing analysis time and cost. PMID:20679245

  7. Microfluidic sorting and multimodal typing of cancer cells in self-assembled magnetic arrays.

    Science.gov (United States)

    Saliba, Antoine-Emmanuel; Saias, Laure; Psychari, Eleni; Minc, Nicolas; Simon, Damien; Bidard, François-Clément; Mathiot, Claire; Pierga, Jean-Yves; Fraisier, Vincent; Salamero, Jean; Saada, Véronique; Farace, Françoise; Vielh, Philippe; Malaquin, Laurent; Viovy, Jean-Louis

    2010-08-17

    We propose a unique method for cell sorting, "Ephesia," using columns of biofunctionalized superparamagnetic beads self-assembled in a microfluidic channel onto an array of magnetic traps prepared by microcontact printing. It combines the advantages of microfluidic cell sorting, notably the application of a well controlled, flow-activated interaction between cells and beads, and those of immunomagnetic sorting, notably the use of batch-prepared, well characterized antibody-bearing beads. On cell lines mixtures, we demonstrated a capture yield better than 94%, and the possibility to cultivate in situ the captured cells. A second series of experiments involved clinical samples--blood, pleural effusion, and fine needle aspirates--issued from healthy donors and patients with B-cell hematological malignant tumors (leukemia and lymphoma). The immunophenotype and morphology of B-lymphocytes were analyzed directly in the microfluidic chamber, and compared with conventional flow cytometry and visual cytology data, in a blind test. Immunophenotyping results using Ephesia were fully consistent with those obtained by flow cytometry. We obtained in situ high resolution confocal three-dimensional images of the cell nuclei, showing intranuclear details consistent with conventional cytological staining. Ephesia thus provides a powerful approach to cell capture and typing allowing fully automated high resolution and quantitative immunophenotyping and morphological analysis. It requires at least 10 times smaller sample volume and cell numbers than cytometry, potentially increasing the range of indications and the success rate of microbiopsy-based diagnosis, and reducing analysis time and cost. PMID:20679245

  8. Cell-controlled and spatially arrayed gene delivery from fibrin hydrogels.

    Science.gov (United States)

    Lei, Pedro; Padmashali, Roshan M; Andreadis, Stelios T

    2009-08-01

    We investigated fibrin-mediated gene transfer by embedding pDNA within the hydrogel during polymerization and using two modes of gene transfection with cells placed either on the surface (2D transfection) or within the hydrogel (3D transfection). Using this model, we found that cell transfection depended strongly on the local cell-pDNA microenvironment as defined by the 2D vs. 3D context, target cell type and density, as well as fibrinogen and pDNA concentrations. When cells were embedded within the fibrin matrix lipofectamine-induced cell death decreased significantly, especially at low target cell density. Addition of fibrinolytic inhibitors decreased gene transfer in a dose-dependent manner, suggesting that fibrin degradation may be necessary for efficient gene transfer. We also provided proof-of-concept that fibrin-mediated gene transfer can be used for spatially localized gene delivery, which is required in cell-transfection microarrays. When lipoplex-containing hydrogels were spotted in an array format gene transfer was strictly confined to pDNA-containing fibrin spots with no cross-contamination between neighboring sites. Collectively, our data suggest that fibrin may be used as a biomaterial to deliver genes in an efficient, cell-controlled and spatially localized manner for potential applications in vitro or in vivo. PMID:19395019

  9. Solution-derived 40 μm vertically aligned ZnO nanowire arrays as photoelectrodes in dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Well-aligned ZnO nanowire arrays with a long length of more than 40 μm were prepared successfully by using the polyethylenimine (PEI)-assisted preheating hydrothermal method (PAPHT). Several important synthetic parameters such as PEI content, growth time, preheating time and zinc salt concentration were found to determine the growth of ultralong ZnO nanowire arrays, including length, diameter, density and alignment degree. The photoluminescence (PL) spectrum of as-grown ultralong ZnO nanowire arrays revealed a UV emission and a yellow emission, which was attributed to the absorbed hydroxyl group based on the peak shift after annealing in various atmospheres. The performance of dye-sensitized solar cells (DSSCs) increased with increasing length of ZnO nanowire arrays, which was mainly ascribed to the aggrandized photocurrent and reduced recombination loss according to electrochemical impedance spectroscopy (EIS). A maximum efficiency of 1.3% for a cell with a short-circuit current density (Jsc) = 4.26 mA cm2, open-circuit voltage (Voc) = 0.69 V and (fill factor) FF = 0.42 was achieved with a length of 40 μm.

  10. Fabrication and characterization of CaP-coated nanotube arrays

    International Nuclear Information System (INIS)

    Modified anodization techniques have been shown to improve the biocompatibility of titanium. This study demonstrated the anodic formation of self-organized nanotube arrays on titanium from an electrolyte solution containing 1 M H3PO4 and 1 wt% hydrofluoric acid (HF). Our aim was to investigate the effects of sputter-deposited CaP on nanotube arrays. SEM images revealed a surface with uniform morphology and an average pore diameter of 29 nm. XRD results indicated that the phase of the nanotube arrays was amorphous. Electron spectroscopy for chemical analysis (ESCA) confirmed that the nanotube arrays were coated with calcium and phosphorus. Cell culture experiments using human osteosarcoma (HOS) cells demonstrated that the CaP/nanotube arrays had a pronounced effect on initial cell attachment as well as on the number of cells at 1, 7, and 14 days. Compared to as-polished titanium, the CaP/nanotube arrays accelerated cell proliferation, attachment, and spreading. Our results demonstrate the pronounced effects of CaP/nanotube arrays on the biological responses of HOS cells. - Highlights: • Self-organized nanotube arrays were anodically formed on titanium. • Surfaces of nanotube arrays exhibited uniform morphology and pore size. • According to ESCA results, Ca and P were successfully coated on nanotube arrays. • CaP/nanotube arrays accelerated the attachment and spreading of cells. • CaP/nanotube arrays were shown to affect biological responses of cells

  11. Fabrication and characterization of CaP-coated nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Kung, Kuan-Chen; Chen, Jia-Ling [Institute of Oral Medicine, National Cheng Kung University, Tainan 701, Taiwan (China); Liu, Yen-Ting [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan (China); Lee, Tzer-Min, E-mail: tmlee@mail.ncku.edu.tw [Institute of Oral Medicine, National Cheng Kung University, Tainan 701, Taiwan (China); Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan (China); School of Dentistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China)

    2015-03-01

    Modified anodization techniques have been shown to improve the biocompatibility of titanium. This study demonstrated the anodic formation of self-organized nanotube arrays on titanium from an electrolyte solution containing 1 M H{sub 3}PO{sub 4} and 1 wt% hydrofluoric acid (HF). Our aim was to investigate the effects of sputter-deposited CaP on nanotube arrays. SEM images revealed a surface with uniform morphology and an average pore diameter of 29 nm. XRD results indicated that the phase of the nanotube arrays was amorphous. Electron spectroscopy for chemical analysis (ESCA) confirmed that the nanotube arrays were coated with calcium and phosphorus. Cell culture experiments using human osteosarcoma (HOS) cells demonstrated that the CaP/nanotube arrays had a pronounced effect on initial cell attachment as well as on the number of cells at 1, 7, and 14 days. Compared to as-polished titanium, the CaP/nanotube arrays accelerated cell proliferation, attachment, and spreading. Our results demonstrate the pronounced effects of CaP/nanotube arrays on the biological responses of HOS cells. - Highlights: • Self-organized nanotube arrays were anodically formed on titanium. • Surfaces of nanotube arrays exhibited uniform morphology and pore size. • According to ESCA results, Ca and P were successfully coated on nanotube arrays. • CaP/nanotube arrays accelerated the attachment and spreading of cells. • CaP/nanotube arrays were shown to affect biological responses of cells.

  12. Nanoparticle-Based Immunocytochemistry Reveals Microarchitecture of the Cell Nucleus

    Czech Academy of Sciences Publication Activity Database

    Hozák, Pavel

    Kyoto : International Federation of Societies for Histochemistry and Cytochemistry, Japan Society of Histochemistry, 2012. [14th International Congress of Histochemistry and Cytochemistry. Kyoto (JP), 26.08.2012-29.08.2012] R&D Projects: GA ČR GAP305/11/2232; GA MŠk LC545; GA MŠk(CZ) LC06063; GA MPO(CZ) FRTI3588 Institutional research plan: CEZ:AV0Z50520514 Institutional support: RVO:68378050 Keywords : PIP2 * NMI * cell nucleus Subject RIV: EB - Genetics ; Molecular Biology

  13. Nanoparticle-based immunocytochemistry reveals microarchitecture of the cell nucleus

    Czech Academy of Sciences Publication Activity Database

    Hozák, Pavel

    Mérida : CIASEM, AMM, 2011. ---. [Inter-American Congress on Microscopy /11./. 25.09.2011-29.09.2011, Mérida] R&D Projects: GA ČR GAP305/11/2232; GA ČR(CZ) GD204/09/H084; GA MŠk LC545; GA MŠk(CZ) LC06063; GA AV ČR KAN200520704 Institutional research plan: CEZ:AV0Z50520514 Keywords : nanoparticles * immunogold detection * histochemistry * cell nucleus Subject RIV: EB - Genetics ; Molecular Biology

  14. Nanoparticle-based immunocytochemistry reveals microarchitecture of the cell nucleus

    Czech Academy of Sciences Publication Activity Database

    Hozák, Pavel

    Istanbul: Turkish Society for Electron Microscopy, 2011. ---. [National Electron Microscopy Congress /20./. 25.10.2011-28.10.2011, Kemer] R&D Projects: GA ČR GAP305/11/2232; GA ČR(CZ) GD204/09/H084; GA MŠk LC545; GA MŠk(CZ) LC06063; GA MŠk 2B06063; GA AV ČR KAN200520704 Institutional research plan: CEZ:AV0Z50520514 Keywords : nanoparticles * immunogold detection * histochemistry * cell nucleus Subject RIV: EB - Genetics ; Molecular Biology

  15. Physicochemical properties of peptide-coated microelectrode arrays and their in vitro effects on neuroblast cells.

    Science.gov (United States)

    Ghane-Motlagh, Bahareh; Javanbakht, Taraneh; Shoghi, Fatemeh; Wilkinson, Kevin J; Martel, Richard; Sawan, Mohamad

    2016-11-01

    Silicon micromachined neural electrode arrays, which act as an interface between bioelectronic devices and neural tissues, play an important role in chronic implants, in vivo. The biological compatibility of chronic microelectrode arrays (MEA) is an essential factor that must be taken into account in their design and fabrication. In order to improve biocompatibility of the MEAs, the surface of the electrodes was coated with polyethylene glycol (PEG) and parylene-C, which are biocompatible polymers. An in vitro study was performed to test the capacity of poly-d-lysine (PDL) to improve neural-cell adhesion and proliferation. Increased proliferation of the neuroblast cells on the microelectrodes was observed in the presence of the PDL. The presence of the peptide on the electrode surface was confirmed using Fourier transform infrared spectroscopy and scanning electron microscopy (SEM). The impedance of the electrodes was not changed significantly before and after PDL deposition. Mouse neuroblast cells were seeded and cultured on the PDL coated and uncoated neural MEAs with different tip-coatings such as platinum, molybdenum, gold, sputtered iridium oxide, and carbon nanotubes. The neuroblast cells grew preferentially on and around peptide coated-microelectrode tips, as compared to the uncoated microelectrodes. PMID:27524064

  16. Single cell activity reveals direct electron transfer in methanotrophic consortia

    Science.gov (United States)

    McGlynn, Shawn E.; Chadwick, Grayson L.; Kempes, Christopher P.; Orphan, Victoria J.

    2015-10-01

    Multicellular assemblages of microorganisms are ubiquitous in nature, and the proximity afforded by aggregation is thought to permit intercellular metabolic coupling that can accommodate otherwise unfavourable reactions. Consortia of methane-oxidizing archaea and sulphate-reducing bacteria are a well-known environmental example of microbial co-aggregation; however, the coupling mechanisms between these paired organisms is not well understood, despite the attention given them because of the global significance of anaerobic methane oxidation. Here we examined the influence of interspecies spatial positioning as it relates to biosynthetic activity within structurally diverse uncultured methane-oxidizing consortia by measuring stable isotope incorporation for individual archaeal and bacterial cells to constrain their potential metabolic interactions. In contrast to conventional models of syntrophy based on the passage of molecular intermediates, cellular activities were found to be independent of both species intermixing and distance between syntrophic partners within consortia. A generalized model of electric conductivity between co-associated archaea and bacteria best fit the empirical data. Combined with the detection of large multi-haem cytochromes in the genomes of methanotrophic archaea and the demonstration of redox-dependent staining of the matrix between cells in consortia, these results provide evidence for syntrophic coupling through direct electron transfer.

  17. Revealing the Dynamics of Thylakoid Membranes in Living Cyanobacterial Cells

    Science.gov (United States)

    Stingaciu, Laura-Roxana; O'Neill, Hugh; Liberton, Michelle; Urban, Volker S.; Pakrasi, Himadri B.; Ohl, Michael

    2016-01-01

    Cyanobacteria are photosynthetic prokaryotes that make major contributions to the production of the oxygen in the Earth atmosphere. The photosynthetic machinery in cyanobacterial cells is housed in flattened membrane structures called thylakoids. The structural organization of cyanobacterial cells and the arrangement of the thylakoid membranes in response to environmental conditions have been widely investigated. However, there is limited knowledge about the internal dynamics of these membranes in terms of their flexibility and motion during the photosynthetic process. We present a direct observation of thylakoid membrane undulatory motion in vivo and show a connection between membrane mobility and photosynthetic activity. High-resolution inelastic neutron scattering experiments on the cyanobacterium Synechocystis sp. PCC 6803 assessed the flexibility of cyanobacterial thylakoid membrane sheets and the dependence of the membranes on illumination conditions. We observed softer thylakoid membranes in the dark that have three-to four fold excess mobility compared to membranes under high light conditions. Our analysis indicates that electron transfer between photosynthetic reaction centers and the associated electrochemical proton gradient across the thylakoid membrane result in a significant driving force for excess membrane dynamics. These observations provide a deeper understanding of the relationship between photosynthesis and cellular architecture.

  18. Recent progress in all-solid-state quantum dot-sensitized TiO2 nanotube array solar cells

    International Nuclear Information System (INIS)

    All-solid-state quantum dot-sensitized TiO2 nanotube array solar cells have been drawing great attention to solar energy conversion, which break through restrictions in traditional solar cells, such as the high recombination at interfaces of porous TiO2 films/sensitizers/hole conductors/counter electrodes, instability of dyes, and leakage of solution electrolyte, and so the novel solar cells exhibit promising applications in the future. In this Minireview article, the assembling of solar cells including the preparation of TiO2 nanotube array photoanodes, quantum dot preparation and sensitization on photoanodes, filling of hole conductors in TiO2 nanotubes, and selection of counter electrodes are overviewed, and the development course of all-solid-state quantum dot-sensitized TiO2 nanotube array solar cells in recent years are summarized in detail. Moreover, the influences of TiO2 nanotube array photoanodes, quantum dots, solid electrolyte, and counter electrodes on photon-to-current efficiencies of solar cells are summarized. In addition, current problems of solid-state quantum dot-sensitized TiO2 nanotube array solar cells are analyzed, and the corresponding improvements, such as multisensitizers and passivation layers, are proposed to improve the photoelectric conversion efficiency. Finally, this Minireview provides a perspective for the future development of this novel solar cell

  19. Recent progress in all-solid-state quantum dot-sensitized TiO{sub 2} nanotube array solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qingyao, E-mail: wangqingyao0532@163.com [Ludong University, School of Chemistry and Materials Science (China); Chen, Chao; Liu, Wei [Tongji University, School of Materials Science and Engineering (China); Gao, Shanmin [Ludong University, School of Chemistry and Materials Science (China); Yang, Xiuchun, E-mail: yangxc@tongji.edu.cn [Tongji University, School of Materials Science and Engineering (China)

    2016-01-15

    All-solid-state quantum dot-sensitized TiO{sub 2} nanotube array solar cells have been drawing great attention to solar energy conversion, which break through restrictions in traditional solar cells, such as the high recombination at interfaces of porous TiO{sub 2} films/sensitizers/hole conductors/counter electrodes, instability of dyes, and leakage of solution electrolyte, and so the novel solar cells exhibit promising applications in the future. In this Minireview article, the assembling of solar cells including the preparation of TiO{sub 2} nanotube array photoanodes, quantum dot preparation and sensitization on photoanodes, filling of hole conductors in TiO{sub 2} nanotubes, and selection of counter electrodes are overviewed, and the development course of all-solid-state quantum dot-sensitized TiO{sub 2} nanotube array solar cells in recent years are summarized in detail. Moreover, the influences of TiO{sub 2} nanotube array photoanodes, quantum dots, solid electrolyte, and counter electrodes on photon-to-current efficiencies of solar cells are summarized. In addition, current problems of solid-state quantum dot-sensitized TiO{sub 2} nanotube array solar cells are analyzed, and the corresponding improvements, such as multisensitizers and passivation layers, are proposed to improve the photoelectric conversion efficiency. Finally, this Minireview provides a perspective for the future development of this novel solar cell.

  20. Development of a Microforce Sensor and Its Array Platform for Robotic Cell Microinjection Force Measurement

    Science.gov (United States)

    Xie, Yu; Zhou, Yunlei; Lin, Yuzi; Wang, Lingyun; Xi, Wenming

    2016-01-01

    Robot-assisted cell microinjection, which is precise and can enable a high throughput, is attracting interest from researchers. Conventional probe-type cell microforce sensors have some real-time injection force measurement limitations, which prevent their integration in a cell microinjection robot. In this paper, a novel supported-beam based cell micro-force sensor with a piezoelectric polyvinylidine fluoride film used as the sensing element is described, which was designed to solve the real-time force-sensing problem during a robotic microinjection manipulation, and theoretical mechanical and electrical models of the sensor function are derived. Furthermore, an array based cell-holding device with a trapezoidal microstructure is micro-fabricated, which serves to improve the force sensing speed and cell manipulation rates. Tests confirmed that the sensor showed good repeatability and a linearity of 1.82%. Finally, robot-assisted zebrafish embryo microinjection experiments were conducted. These results demonstrated the effectiveness of the sensor working with the robotic cell manipulation system. Moreover, the sensing structure, theoretical model, and fabrication method established in this study are not scale dependent. Smaller cells, e.g., mouse oocytes, could also be manipulated with this approach. PMID:27058545

  1. Single-Cell Electric Lysis on an Electroosmotic-Driven Microfluidic Chip with Arrays of Microwells

    Directory of Open Access Journals (Sweden)

    Yu-Hung Chen

    2012-05-01

    Full Text Available Accurate analysis at the single-cell level has become a highly attractive tool for investigating cellular content. An electroosmotic-driven microfluidic chip with arrays of 30-µm-diameter microwells was developed for single-cell electric lysis in the present study. The cellular occupancy in the microwells when the applied voltage was 5 V (82.4% was slightly higher than that at an applied voltage of 10 V (81.8%. When the applied voltage was increased to 15 V, the cellular occupancy in the microwells dropped to 64.3%. More than 50% of the occupied microwells contain individual cells. The results of electric lysis experiments at the single-cell level indicate that the cells were gradually lysed as the DC voltage of 30 V was applied; the cell was fully lysed after 25 s. Single-cell electric lysis was demonstrated in the proposed microfluidic chip, which is suitable for high-throughput cell lysis.

  2. Development of a Microforce Sensor and Its Array Platform for Robotic Cell Microinjection Force Measurement

    Directory of Open Access Journals (Sweden)

    Yu Xie

    2016-04-01

    Full Text Available Robot-assisted cell microinjection, which is precise and can enable a high throughput, is attracting interest from researchers. Conventional probe-type cell microforce sensors have some real-time injection force measurement limitations, which prevent their integration in a cell microinjection robot. In this paper, a novel supported-beam based cell micro-force sensor with a piezoelectric polyvinylidine fluoride film used as the sensing element is described, which was designed to solve the real-time force-sensing problem during a robotic microinjection manipulation, and theoretical mechanical and electrical models of the sensor function are derived. Furthermore, an array based cell-holding device with a trapezoidal microstructure is micro-fabricated, which serves to improve the force sensing speed and cell manipulation rates. Tests confirmed that the sensor showed good repeatability and a linearity of 1.82%. Finally, robot-assisted zebrafish embryo microinjection experiments were conducted. These results demonstrated the effectiveness of the sensor working with the robotic cell manipulation system. Moreover, the sensing structure, theoretical model, and fabrication method established in this study are not scale dependent. Smaller cells, e.g., mouse oocytes, could also be manipulated with this approach.

  3. Development of a Microforce Sensor and Its Array Platform for Robotic Cell Microinjection Force Measurement.

    Science.gov (United States)

    Xie, Yu; Zhou, Yunlei; Lin, Yuzi; Wang, Lingyun; Xi, Wenming

    2016-01-01

    Robot-assisted cell microinjection, which is precise and can enable a high throughput, is attracting interest from researchers. Conventional probe-type cell microforce sensors have some real-time injection force measurement limitations, which prevent their integration in a cell microinjection robot. In this paper, a novel supported-beam based cell micro-force sensor with a piezoelectric polyvinylidine fluoride film used as the sensing element is described, which was designed to solve the real-time force-sensing problem during a robotic microinjection manipulation, and theoretical mechanical and electrical models of the sensor function are derived. Furthermore, an array based cell-holding device with a trapezoidal microstructure is micro-fabricated, which serves to improve the force sensing speed and cell manipulation rates. Tests confirmed that the sensor showed good repeatability and a linearity of 1.82%. Finally, robot-assisted zebrafish embryo microinjection experiments were conducted. These results demonstrated the effectiveness of the sensor working with the robotic cell manipulation system. Moreover, the sensing structure, theoretical model, and fabrication method established in this study are not scale dependent. Smaller cells, e.g., mouse oocytes, could also be manipulated with this approach. PMID:27058545

  4. HIGH VELOCITY PRECESSING JETS FROM THE WATER FOUNTAIN IRAS 18286–0959 REVEALED BY VERY LONG BASELINE ARRAY OBSERVATIONS

    International Nuclear Information System (INIS)

    We report the results of multi-epoch Very Long Baseline Array observations of the 22.2 GHz H2O maser emission associated with the 'water fountain' IRAS 18286–0959. We suggest that this object is the second example of a highly collimated bipolar precessing outflow traced by H2O maser emission, the other is W 43A. The detected H2O emission peaks are distributed over a velocity range from –50 km s–1 to 150 km s–1. The spatial distribution of over 70% of the identified maser features is found to be highly collimated along a spiral jet (jet 1) extended southeast to northwest; the remaining features appear to trace another spiral jet (jet 2) with a different orientation. The two jets form a 'double-helix' pattern which lies across ∼200 mas. The maser distribution is reasonably fit by a model consisting of two bipolar precessing jets. The three-dimensional velocities of jet 1 and jet 2 are derived to be 138 km s–1 and 99 km s–1, respectively. The precession period of jet 1 is about 56 years. For jet 2, three possible models are tested and they give different values for the kinematic parameters. We propose that the appearance of two jets is the result of a single driving source with significant proper motion.

  5. Naturally death-resistant precursor cells revealed as the origin of retinoblastoma

    DEFF Research Database (Denmark)

    Trinh, Emmanuelle; Lazzerini Denchi, Eros; Helin, Kristian

    2004-01-01

    The molecular mechanisms and the cell-of-origin leading to retinoblastoma are not well defined. In this issue of Cancer Cell, Bremner and colleagues describe the first inheritable model of retinoblastoma, revealing that loss of the pocket proteins pRb and p107 deregulates cell cycle exit in retin...

  6. A smart fully integrated micromachined separator with soft magnetic micro-pillar arrays for cell isolation

    Science.gov (United States)

    Dong, Tao; Su, Qianhua; Yang, Zhaochu; Zhang, Yulong; Egeland, Eirik B.; Gu, Dan D.; Calabrese, Paolo; Kapiris, Matteo J.; Karlsen, Frank; Minh, Nhut T.; Wang, K.; Jakobsen, Henrik

    2010-11-01

    A smart fully integrated micromachined separator with soft magnetic micro-pillar arrays has been developed and demonstrated, which can merely employ one independent lab-on-chip to realize cell isolation. The simulation, design, microfabrication and test for the new electromagnetic micro separator were executed. The simulation results of the electromagnetic field in the separator show that special soft magnetic micro-pillar arrays can amplify and redistribute the electromagnetic field generated by the micro-coils. The separator can be equipped with a strong magnetic field to isolate the target cells with a considerably low input current. The micro separator was fabricated by micro-processing technology. An electroplating bath was hired to deposit NiCo/NiFe to fabricate the micro-pillar arrays. An experimental system was set up to verify the function of the micro separator by isolating the lymphocytes, in which the human whole blood mixed with Dynabeads® FlowComp Flexi and monoclonal antibody MHCD2704 was used as the sample. The results show that the electromagnetic micro separator with an extremely low input current can recognize and capture the target lymphocytes with a high efficiency, the separation ratio reaching more than 90% at a lower flow rate. For the electromagnetic micro separator, there is no external magnetizing field required, and there is no extra cooling system because there is less Joule heat generated due to the lower current. The magnetic separator is totally reusable, and it can be used to separate cells or proteins with common antigens.

  7. Template-directed synthesis of Ag nanowire arrays by a simple paired cell method for SERS

    Science.gov (United States)

    Mo, Jia-qing; Hou, Jun-wei; Lü, Xiao-yi

    2015-11-01

    The silver (Ag) nanowire arrays with regular and uniform size were successfully fabricated inside the nanochannels of anodic aluminum oxide (AAO) template by a simple paired cell method. X-ray diffraction (XRD) and scanning electron microscopy (SEM) results indicate that the as-synthesized samples are composed of face-centered cubic structure, and the average diameter is about 60-70 nm. Transmission electron microscopy (TEM) and the corresponding fast Fourier transformation (FFT) results show that Ag nanowires have a preferred single-crystal structure. Ultraviolet- visible (UV-vis) spectrum of Ag nanowire arrays exhibits UV emission band at 383 nm which can be attributed to the transverse dipole resonance of Ag nanowire arrays. A good surface-enhanced Raman scattering (SERS) spectrum is observed by excitation with a 514.5 nm laser, and the intensity of the SERS peak is about 23 times higher than that of the normal Raman peak measured from an empty AAO template. The high enhancement factor suggests that this method can be used to fabricate SERS sensor with high efficiency.

  8. Graphene/enzyme-encrusted three-dimensional carbon micropillar arrays for mediatorless micro-biofuel cells

    Science.gov (United States)

    Song, Yin; Chen, Chunhui; Wang, Chunlei

    2015-04-01

    Two-dimensional graphene is a promising candidate material for use in high-performance enzymatic biofuel cells (EBFCs). In this work, graphene/enzyme has been integrated onto three-dimensional (3D) micropillar arrays in order to obtain efficient enzyme immobilisation and enhanced enzyme loading and facilitate direct electron transfer. The fabrication process of this system combines top-down carbon microelectromechanical systems (C-MEMS) to fabricate the 3D micropillar array platform and bottom-up electrophoretic deposition (EPD) to deposit the graphene/enzyme onto the electrode surface. The amperometric response of the graphene-based bioelectrode exhibited excellent electrochemical activity, which indicated the successful co-deposition of graphene with the enzymes. The developed 3D graphene/enzyme network-based EBFC generated a maximum power density of 136.3 μW cm-2 at 0.59 V, which is almost seven times the maximum power density of the bare 3D carbon micropillar array-based EBFC.

  9. Human cell-based micro electrode array platform for studying neurotoxicity

    Directory of Open Access Journals (Sweden)

    Laura eYlä-Outinen

    2010-09-01

    Full Text Available At present, most of the neurotoxicological analyses are based on in vitro and in vivo models utilizing animal cells or animal models. In addition, the used in vitro models are mostly based on molecular biological end-point analyses. Thus, for neurotoxicological screening, human cell-based analysis platforms in which the functional neuronal networks responses for various neurotoxicants can be also detected real-time are highly needed. Microelectrode array (MEA is a method which enables the measurement of functional activity of neuronal cell networks in vitro for long periods of time. Here, we utilize MEA to study the neurotoxicity of methyl mercury chloride (MeHgCl, concentrations 0.5-500 nM to human embryonic stem cell (hESC-derived neuronal cell networks exhibiting spontaneous electrical activity. The neuronal cell cultures were matured on MEAs into networks expressing spontaneous spike train-like activity before exposing the cells to MeHgCl for 72 hours. MEA measurements were performed acutely and 24, 48, and 72 hours after the onset of the exposure. Finally, exposed cells were analyzed with traditional molecular biological methods for cell proliferation, cell survival, and gene and protein expression. Our results show that 500 nM MeHgCl decreases the electrical signaling and alters the pharmacologic response of hESC-derived neuronal networks in delayed manner whereas effects can not be detected with qRT-PCR, immunostainings, or proliferation measurements. Thus, we conclude that human cell-based MEA-platform is a sensitive online method for neurotoxicological screening.

  10. Essential oils affect populations of some rumen bacteria in vitro as revealed by microarray (RumenBactArray) analysis.

    Science.gov (United States)

    Patra, Amlan K; Yu, Zhongtang

    2015-01-01

    In a previous study origanum oil (ORO), garlic oil (GAO), and peppermint oil (PEO) were shown to effectively lower methane production, decrease abundance of methanogens, and change abundances of several bacterial populations important to feed digestion in vitro. In this study, the impact of these essential oils (EOs, at 0.50 g/L) on the rumen bacterial community composition and population was further examined using the recently developed RumenBactArray. Species richness (expressed as number of operational taxonomic units, OTUs) in the phylum Firmicutes, especially those in the class Clostridia, was decreased by ORO and GAO, but increased by PEO, while that in the phylum Bacteroidetes was increased by ORO and PEO. Species richness in the genus Butyrivibrio was lowered by all the EOs. Increases of Bacteroidetes OTUs mainly resulted from increases of Prevotella OTUs. Overall, 67 individual OTUs showed significant differences (P ≤ 0.05) in relative abundance across the EO treatments. The predominant OTUs affected by EOs were diverse, including those related to Syntrophococcus sucromutans, Succiniclasticum ruminis, and Lachnobacterium bovis, and those classified to Prevotella, Clostridium, Roseburia, Pseudobutyrivibrio, Lachnospiraceae, Ruminococcaceae, Prevotellaceae, Bacteroidales, and Clostridiales. In total, 60 OTUs were found significantly (P ≤ 0.05) correlated with feed degradability, ammonia concentration, and molar percentage of volatile fatty acids. Taken together, this study demonstrated extensive impact of EOs on rumen bacterial communities in an EO type-dependent manner, especially those in the predominant families Prevotellaceae, Lachnospiraceae, and Ruminococcaceae. The information from this study may aid in understanding the effect of EOs on feed digestion and fermentation by rumen bacteria. PMID:25914694

  11. Essential oils affect populations of some rumen bacteria in vitro as revealed by microarray (RumenBactArray analysis

    Directory of Open Access Journals (Sweden)

    Amlan Kumar Patra

    2015-04-01

    Full Text Available In a previous study origanum oil (ORO, garlic oil (GAO, and peppermint oil (PEO were shown to effectively lower methane production, decrease abundance of methanogens, and change abundances of several bacterial populations important to feed digestion in vitro. In this study, the impact of these essential oils (EOs, at 0.50 g/L, on the rumen bacterial community composition and population was further examined using the recently developed RumenBactArray. Species richness (expressed as number of operational taxonomic units, OTUs in the phylum Firmicutes, especially those in the class Clostridia, was decreased by ORO and GAO, but increased by PEO, while that in the phylum Bacteroidetes was increased by ORO and PEO. Species richness in the genus Butyrivibrio was lowered by all the EOs. Increases of Bacteroidetes OTUs mainly resulted from increases of Prevotella OTUs. Overall, 67 individual OTUs showed significant differences (P≤0.05 in relative abundance across the EO treatments. The predominant OTUs affected by EOs were diverse, including those related to Syntrophococcus sucromutans, Succiniclasticum ruminis, and Lachnobacterium bovis, and those classified to Prevotella, Clostridium, Roseburia, Pseudobutyrivibrio, Lachnospiraceae, Ruminococcaceae, Prevotellaceae, Bacteroidales, and Clostridiales. In total, 60 OTUs were found significantly (P≤0.05 correlated with feed degradability, ammonia concentration, and molar percentage of volatile fatty acids. Taken together, this study demonstrated extensive impact of EOs on rumen bacterial communities in an EO type-dependent manner, especially those in the predominant families Prevotellaceae, Lachnospiraceae and Ruminococcaceae. The information from this study may aid in understanding the effect of EOs on feed digestion and fermentation by rumen bacteria.

  12. Design, development, manufacture, testing, and delivery of devices for connection of solar cell panel circuitry to flat conductor cable solar cell array harness

    Science.gov (United States)

    Dillard, P. A.; Waddington, D.

    1971-01-01

    The technology status and problem areas which exist for the application of flat conductor cabling to solar cell arrays are summarized. Details covering the design, connector manufacture, and prototype test results are also summarized.

  13. Reconstituting pancreas development from purified progenitor cells reveals genes essential for islet differentiation

    OpenAIRE

    Sugiyama, Takuya; Benitez, Cecil M.; Ghodasara, Amar; Liu, Lucy; McLean, Graeme W.; Lee, Jonghyeob; Blauwkamp, Timothy A; Nusse, Roeland; Wright, Christopher V.E.; Gu, Guoqiang; Kim, Seung K.

    2013-01-01

    Developmental biology is challenged to reveal the function of numerous candidate genes implicated by recent genome-scale studies as regulators of organ development and diseases. Recapitulating organogenesis from purified progenitor cells that can be genetically manipulated would provide powerful opportunities to dissect such gene functions. Here we describe systems for reconstructing pancreas development, including islet β-cell and α-cell differentiation, from single fetal progenitor cells. A...

  14. Genome-wide single nucleotide polymorphism array analysis reveals recurrent genomic alterations associated with histopathologic features in intrahepatic cholangiocarcinoma

    Science.gov (United States)

    Huang, Wan-Ting; Weng, Shao-Wen; Wei, Yu-Ching; You, Huey-Ling; Wang, Jui-Tzu; Eng, Hock-Liew

    2014-01-01

    Recent studies indicate that genomic alterations (GAs) are associated with many human malignancies. Genome-wide analysis of GAs involved in intrahepatic cholangiocarcinoma (ICC) and association with histopathologic features are limited. To help characterize this relatively rare neoplasm, we collected 32 frozen tissue samples of ICC to study GAs and molecular karyotypes by using single-nucleotide polymorphism array. Recurrent GAs occurring in at least 40% of the patients were further correlated with histopathologic features. Gain of 1q21.3-q23.1 and losses of 1p36.33-p35.3 and 3p26.3-p13 were significantly associated with larger tumor size more than 5 cm in diameter; and loss of 4q13.2-q35.2 with tumor multiplicity. Moreover, losses of 1p36.32-p35.3, 3p26.3-p22.2, 4q13.1-q21.23, 4q31.3-q34.3 and 4q34.3-35.2 were inclined to be associated with high histological grade. As to tumor vascular invasion, gain of 1q21.3-q23.1 and losses of 3p22.1-p12.3 and 4q13.2-q35.2 were significantly associated with tumor vascular invasion. Some regions were concurrently associated with multiple histopathologic characteristics, including loss of 4q13.2-q35.2 associated with larger tumor size, high histological grade and vascular invasion; losses of 1p36.33-p35.3 and 3p26.3-p22.2 with larger tumor size and high histological grade; and gain of 1q21.3-q23.1 with larger tumor size and vascular invasion. Our study indicates that complex chromosomal instability is characteristic of ICC. Detecting crucial GAs will enable risk stratification and development of personalized therapies. PMID:25400767

  15. Optimization of processing parameters on the controlled growth of ZnO nanorod arrays for the performance improvement of solid-state dye-sensitized solar cells

    International Nuclear Information System (INIS)

    High-transparency and high quality ZnO nanorod arrays were grown on the ITO substrates by a two-step chemical bath deposition (CBD) method. The effects of processing parameters including reaction temperature (25-95 oC) and solution concentration (0.01-0.1 M) on the crystal growth, alignment, optical and electrical properties were systematically investigated. It has been found that these process parameters are critical for the growth, orientation and aspect ratio of the nanorod arrays, showing different structural and optical properties. Experimental results reveal that the hexagonal ZnO nanorod arrays prepared under reaction temperature of 95 oC and solution concentration of 0.03 M possess highest aspect ratio of ∼21, and show the well-aligned orientation and optimum optical properties. Moreover the ZnO nanorod arrays based heterojunction electrodes and the solid-state dye-sensitized solar cells (SS-DSSCs) were fabricated with an improved optoelectrical performance. -- Graphical abstract: The ZnO nanorod arrays demonstrate well-alignment, high aspect ratio (L/D∼21) and excellent optical transmittance by low-temperature chemical bath deposition (CBD). Display Omitted Research highlights: → Investigate the processing parameters of CBD on the growth of ZnO nanorod arrays. → Optimization of CBD process parameters: 0.03 M solution concentration and reaction temperature of 95 oC. → The prepared ZnO samples possess well-alignment and high aspect ratio (L/D∼21). → An n-ZnO/p-NiO heterojunction: great rectifying behavior and low leakage current. → SS-DSSC has JSC of 0.31 mA/cm2 and VOC of 590 mV, and an improved η of 0.059%.

  16. Effect of Extended Extinction from Gold Nanopillar Arrays on the Absorbance Spectrum of a Bulk Heterojunction Organic Solar Cell

    Directory of Open Access Journals (Sweden)

    Shu-Ju Tsai

    2015-02-01

    Full Text Available We report on the effects of enhanced absorption/scattering from arrays of Au nanopillars of varied size and spacing on the spectral response of a P3HT:PCBM bulk heterojunction solar cell. Nanopillar array-patterned devices do show increased optical extinction within a narrow range of wavelengths compared to control samples without such arrays. The measured external quantum efficiency and calculated absorbance, however, both show a decrease near the corresponding wavelengths. Numerical simulations indicate that for relatively narrow nanopillars, the increased optical extinction is dominated by absorption within the nanopillars, rather than scattering, and is likely dissipated by Joule heating.

  17. Real-time imaging of microparticles and living cells with CMOS nanocapacitor arrays

    Science.gov (United States)

    Laborde, C.; Pittino, F.; Verhoeven, H. A.; Lemay, S. G.; Selmi, L.; Jongsma, M. A.; Widdershoven, F. P.

    2015-09-01

    Platforms that offer massively parallel, label-free biosensing can, in principle, be created by combining all-electrical detection with low-cost integrated circuits. Examples include field-effect transistor arrays, which are used for mapping neuronal signals and sequencing DNA. Despite these successes, however, bioelectronics has so far failed to deliver a broadly applicable biosensing platform. This is due, in part, to the fact that d.c. or low-frequency signals cannot be used to probe beyond the electrical double layer formed by screening salt ions, which means that under physiological conditions the sensing of a target analyte located even a short distance from the sensor (∼1 nm) is severely hampered. Here, we show that high-frequency impedance spectroscopy can be used to detect and image microparticles and living cells under physiological salt conditions. Our assay employs a large-scale, high-density array of nanoelectrodes integrated with CMOS electronics on a single chip and the sensor response depends on the electrical properties of the analyte, allowing impedance-based fingerprinting. With our platform, we image the dynamic attachment and micromotion of BEAS, THP1 and MCF7 cancer cell lines in real time at submicrometre resolution in growth medium, demonstrating the potential of the platform for label/tracer-free high-throughput screening of anti-tumour drug candidates.

  18. Modeling of photovoltaic cells and arrays based on singular value decomposition

    International Nuclear Information System (INIS)

    An accurate photovoltaic (PV) model is developed based on singular value decomposition (SVD) using measured or simulated data for PV current in terms of cell temperature, solar irradiance and output voltage. The SVD model projects the problem onto a space described by a small number of orthogonal basis functions (or modes). The number of modes adopted for constructing the model is determined based on the magnitudes of the singular values and the desired accuracy. This model is further implemented in a circuit simulator and applied to modeling of a PV array. Two PV test cells are used to verify the validity of the developed model. The SVD model is also demonstrated in a PV array with a non-uniform temperature profile. The developed SVD PV model requires no assumption to construct the model and is remarkably simple and accurate. To our best knowledge, this is the first application of SVD to modeling of semiconductor device characteristics and the first representation of SVD as an electric circuit. (paper)

  19. Analysis of inverter models and harmonic propagation. Part 1: A physical simulator for large solar cell arrays

    Science.gov (United States)

    Slonim, M. A.; Stanek, E. K.; Imece, A.

    1984-09-01

    Part 1 of a three part study presents the experimental and theoretical analysis of a physical simulator that simulates the output current voltage characteristics of large solar cell arrays. The simulator system is composed of a separately excited dc generator and a microcomputer based controller. The desired output characteristics of the solar cell arrays are obtained at the dc generator terminals by the control of the generator exciting current. The microcomputer generates a controlled error signal based on the simultaneous solution of the dc generator load equation and the analytical expression of the experimentally obtained solar cell characteristic. This controlled error signal changes the exciting current of the dc generator such that the output characteristics of the solar cell arrays are obtained.

  20. Process development for automated solar cell and module production. Task 4: automated array assembly

    Energy Technology Data Exchange (ETDEWEB)

    Hagerty, J.J.

    1980-06-30

    The scope of work under this contract involves specifying a process sequence which can be used in conjunction with automated equipment for the mass production of solar cell modules for terrestrial use. This process sequence is then critically analyzed from a technical and economic standpoint to determine the technological readiness of each process step for implementation. The process steps are ranked according to the degree of development effort required and according to their significance to the overall process. Under this contract the steps receiving analysis were: back contact metallization, automated cell array layup/interconnect, and module edge sealing. For automated layup/interconnect both hard automation and programmable automation (using an industrial robot) were studied. The programmable automation system was then selected for actual hardware development. Economic analysis using the SAMICS system has been performed during these studies to assure that development efforts have been directed towards the ultimate goal of price reduction. Details are given. (WHK)

  1. Indium tin oxide and indium phosphide heterojunction nanowire array solar cells

    International Nuclear Information System (INIS)

    Heterojunction solar cells were formed with a position-controlled InP nanowire array sputtered with indium tin oxide (ITO). The ITO not only acted as a transparent electrode but also as forming a photovoltaic junction. The devices exhibited an open-circuit voltage of 0.436 V, short-circuit current of 24.8 mA/cm2, and fill factor of 0.682, giving a power conversion efficiency of 7.37% under AM1.5 G illumination. The internal quantum efficiency of the device was higher than that of the world-record InP cell in the short wavelength range

  2. Plasmon-Enhanced Light Absorption in GaAs Nanowire Array Solar Cells.

    Science.gov (United States)

    Li, Yanhong; Yan, Xin; Wu, Yao; Zhang, Xia; Ren, Xiaomin

    2015-12-01

    In this paper, we propose a plasmon-enhanced solar cell structure based on a GaAs nanowire array decorated with metal nanoparticles. The results show that by engineering the metallic nanoparticles, localized surface plasmon could be excited, which can concentrate the incident light and propagate the energy to nanowires. The surface plasmon can dramatically enhance the absorbance of near-bandgap light, and the enhancement is influenced by the size and material of nanoparticles. By optimizing the particle parameters, a large absorbance enhancement of 50 % at 760 nm and a high conversion efficiency of 14.5 % can be obtained at a low diameter and period ratio (D/P ratio) of 0.3. The structure is promising for low-cost high-performance nanoscale solar cells. PMID:26546326

  3. 30% Efficient InGaP/GaAs/GaSb Cell-Interconnected-Circuits For Line-Focus Concentrator Arrays

    Science.gov (United States)

    Fraas, Lewis; Avery, James; Iles, Peter; Chu, Charlie; Piszczor, Mike

    2005-01-01

    In 1989, Fraas and Avery demonstrated a world-record 31% efficient AM0 GaAs/GaSb tandem solar cell. This record efficiency still holds today. However, the GaAs/GaSb mechanical-stacked cell was designed to work with concentrated sunlight and at that time, the space community had no experience with concentrated sunlight solar arrays.

  4. Towards fast plasma and blood cell separation - pattern and arrangement investigation of post arrays used in deterministic hydrodynamics

    NARCIS (Netherlands)

    Li, J.; Le Gac, S.; Berg, van den A.; Locascio, L.E.; Gaitan, M.; Paegel, B.M.; Ross, D.J.; Vreeland, W.N.

    2008-01-01

    We show that both the post pattern and arrangement have an influence on the cell movement (zigzag vs. bump mode) in deterministic hydrodynamics while the current theory is limited to one parameter, the array row shift ε for cylindrical posts. Besides, a new mechanism of cell movement, the “stair mov

  5. Cellular Architecture of Treponema pallidum: Novel Flagellum, Periplasmic Cone, and Cell Envelope as Revealed by Cryo-Electron Tomography

    Science.gov (United States)

    Liu, Jun; Howell, Jerrilyn K.; Bradley, Sherille D.; Zheng, Yesha; Zhou, Z. Hong; Norris, Steven J.

    2010-01-01

    High resolution cryo-electron tomography (cryo-ET) was utilized to visualize Treponema pallidum, the causative agent of syphilis, at the molecular level. Three-dimensional (3-D) reconstructions from 304 infectious organisms revealed unprecedented cellular structures of this unusual member in the spirochetal family. High resolution cryo-ET reconstructions provided the detailed structures of the cell envelope, which is significantly different from that of gram-negative bacteria. The 4 nm lipid bilayer of both outer and cytoplasmic membranes resolved in 3-D reconstructions, providing an important marker for interpreting membrane-associated structures. Abundant lipoproteins cover the outer leaflet of the cytoplasmic membrane, in contrast to the rare outer membrane proteins visible by scanning probe microscopy. High resolution cryo-ET images also provided the first observation of T. pallidum chemoreceptor arrays, as well as structural details of the periplasmically located, cone-shaped structure at both ends of bacterium. Furthermore, 3-D subvolume averages of the periplasmic flagellar motors and filaments from living organisms revealed the novel flagellar architectures that may facilitate their rotation within the confining periplasmic space. Together, our findings provide the most detailed structural understanding of the periplasmic flagella and the surrounding cell envelope, which enable this enigmatic bacterium to efficiently penetrate tissue and escape host immune responses. PMID:20850455

  6. Implementation of exon arrays: alternative splicing during T-cell proliferation as determined by whole genome analysis

    Directory of Open Access Journals (Sweden)

    Whistler Toni

    2010-09-01

    Full Text Available Abstract Background The contribution of alternative splicing and isoform expression to cellular response is emerging as an area of considerable interest, and the newly developed exon arrays allow for systematic study of these processes. We use this pilot study to report on the feasibility of exon array implementation looking to replace the 3' in vitro transcription expression arrays in our laboratory. One of the most widely studied models of cellular response is T-cell activation from exogenous stimulation. Microarray studies have contributed to our understanding of key pathways activated during T-cell stimulation. We use this system to examine whole genome transcription and alternate exon usage events that are regulated during lymphocyte proliferation in an attempt to evaluate the exon arrays. Results Peripheral blood mononuclear cells form healthy donors were activated using phytohemagglutinin, IL2 and ionomycin and harvested at 5 points over a 7 day period. Flow cytometry measured cell cycle events and the Affymetrix exon array platform was used to identify the gene expression and alternate exon usage changes. Gene expression changes were noted in a total of 2105 transcripts, and alternate exon usage identified in 472 transcript clusters. There was an overlap of 263 transcripts which showed both differential expression and alternate exon usage over time. Gene ontology enrichment analysis showed a broader range of biological changes in biological processes for the differentially expressed genes, which include cell cycle, cell division, cell proliferation, chromosome segregation, cell death, component organization and biogenesis and metabolic process ontologies. The alternate exon usage ontological enrichments are in metabolism and component organization and biogenesis. We focus on alternate exon usage changes in the transcripts of the spliceosome complex. The real-time PCR validation rates were 86% for transcript expression and 71% for

  7. An Automated High-throughput Array Microscope for Cancer Cell Mechanics

    Science.gov (United States)

    Cribb, Jeremy A.; Osborne, Lukas D.; Beicker, Kellie; Psioda, Matthew; Chen, Jian; O’Brien, E. Timothy; Taylor, Russell M., II; Vicci, Leandra; Hsiao, Joe Ping-Lin; Shao, Chong; Falvo, Michael; Ibrahim, Joseph G.; Wood, Kris C.; Blobe, Gerard C.; Superfine, Richard

    2016-06-01

    Changes in cellular mechanical properties correlate with the progression of metastatic cancer along the epithelial-to-mesenchymal transition (EMT). Few high-throughput methodologies exist that measure cell compliance, which can be used to understand the impact of genetic alterations or to screen the efficacy of chemotherapeutic agents. We have developed a novel array high-throughput microscope (AHTM) system that combines the convenience of the standard 96-well plate with the ability to image cultured cells and membrane-bound microbeads in twelve independently-focusing channels simultaneously, visiting all wells in eight steps. We use the AHTM and passive bead rheology techniques to determine the relative compliance of human pancreatic ductal epithelial (HPDE) cells, h-TERT transformed HPDE cells (HPNE), and four gain-of-function constructs related to EMT. The AHTM found HPNE, H-ras, Myr-AKT, and Bcl2 transfected cells more compliant relative to controls, consistent with parallel tests using atomic force microscopy and invasion assays, proving the AHTM capable of screening for changes in mechanical phenotype.

  8. Transcriptomic gene-network analysis of exposure to silver nanoparticle reveals potentially neurodegenerative progression in mouse brain neural cells.

    Science.gov (United States)

    Lin, Ho-Chen; Huang, Chin-Lin; Huang, Yuh-Jeen; Hsiao, I-Lun; Yang, Chung-Wei; Chuang, Chun-Yu

    2016-08-01

    Silver nanoparticles (AgNPs) are commonly used in daily living products. AgNPs can induce inflammatory response in neuronal cells, and potentially develop neurological disorders. The gene networks in response to AgNPs-induced neurodegenerative progression have not been clarified in various brain neural cells. This study found that 3-5nm AgNPs were detectable to enter the nuclei of mouse neuronal cells after 24-h of exposure. The differentially expressed genes in mouse brain neural cells exposure to AgNPs were further identified using Phalanx Mouse OneArray® chip, and permitted to explore the gene network pathway regulating in neurodegenerative progression according to Cytoscape analysis. In focal adhesion pathway of ALT astrocytes, AgNPs induced the gene expression of RasGRF1 and reduced its downstream BCL2 gene for apoptosis. In cytosolic DNA sensing pathway of microglial BV2 cells, AgNPs reduced the gene expression of TREX1 and decreased IRF7 to release pro-inflammatory cytokines for inflammation and cellular activation. In MAPK pathway of neuronal N2a cells, AgNPs elevated GADD45α gene expression, and attenuated its downstream PTPRR gene to interfere with neuron growth and differentiation. Moreover, AgNPs induced beta amyloid deposition in N2a cells, and decreased PSEN1 and PSEN2, which may disrupt calcium homeostasis and presynaptic dysfunction for Alzheimer's disease development. These findings suggested that AgNPs exposure reveals the potency to induce the progression of neurodegenerative disorder. PMID:27131904

  9. Proteotranscriptomic Analysis Reveals Stage Specific Changes in the Molecular Landscape of Clear-Cell Renal Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    Benjamin A Neely

    Full Text Available Renal cell carcinoma comprises 2 to 3% of malignancies in adults with the most prevalent subtype being clear-cell RCC (ccRCC. This type of cancer is well characterized at the genomic and transcriptomic level and is associated with a loss of VHL that results in stabilization of HIF1. The current study focused on evaluating ccRCC stage dependent changes at the proteome level to provide insight into the molecular pathogenesis of ccRCC progression. To accomplish this, label-free proteomics was used to characterize matched tumor and normal-adjacent tissues from 84 patients with stage I to IV ccRCC. Using pooled samples 1551 proteins were identified, of which 290 were differentially abundant, while 783 proteins were identified using individual samples, with 344 being differentially abundant. These 344 differentially abundant proteins were enriched in metabolic pathways and further examination revealed metabolic dysfunction consistent with the Warburg effect. Additionally, the protein data indicated activation of ESRRA and ESRRG, and HIF1A, as well as inhibition of FOXA1, MAPK1 and WISP2. A subset analysis of complementary gene expression array data on 47 pairs of these same tissues indicated similar upstream changes, such as increased HIF1A activation with stage, though ESRRA and ESRRG activation and FOXA1 inhibition were not predicted from the transcriptomic data. The activation of ESRRA and ESRRG implied that HIF2A may also be activated during later stages of ccRCC, which was confirmed in the transcriptional analysis. This combined analysis highlights the importance of HIF1A and HIF2A in developing the ccRCC molecular phenotype as well as the potential involvement of ESRRA and ESRRG in driving these changes. In addition, cofilin-1, profilin-1, nicotinamide N-methyltransferase, and fructose-bisphosphate aldolase A were identified as candidate markers of late stage ccRCC. Utilization of data collected from heterogeneous biological domains strengthened

  10. Proteotranscriptomic Analysis Reveals Stage Specific Changes in the Molecular Landscape of Clear-Cell Renal Cell Carcinoma

    Science.gov (United States)

    Wilkins, Christopher E.; Marlow, Laura A.; Malyarenko, Dariya; Kim, Yunee; Ignatchenko, Alexandr; Sasinowska, Heather; Sasinowski, Maciek; Nyalwidhe, Julius O.; Kislinger, Thomas; Copland, John A.; Drake, Richard R.

    2016-01-01

    Renal cell carcinoma comprises 2 to 3% of malignancies in adults with the most prevalent subtype being clear-cell RCC (ccRCC). This type of cancer is well characterized at the genomic and transcriptomic level and is associated with a loss of VHL that results in stabilization of HIF1. The current study focused on evaluating ccRCC stage dependent changes at the proteome level to provide insight into the molecular pathogenesis of ccRCC progression. To accomplish this, label-free proteomics was used to characterize matched tumor and normal-adjacent tissues from 84 patients with stage I to IV ccRCC. Using pooled samples 1551 proteins were identified, of which 290 were differentially abundant, while 783 proteins were identified using individual samples, with 344 being differentially abundant. These 344 differentially abundant proteins were enriched in metabolic pathways and further examination revealed metabolic dysfunction consistent with the Warburg effect. Additionally, the protein data indicated activation of ESRRA and ESRRG, and HIF1A, as well as inhibition of FOXA1, MAPK1 and WISP2. A subset analysis of complementary gene expression array data on 47 pairs of these same tissues indicated similar upstream changes, such as increased HIF1A activation with stage, though ESRRA and ESRRG activation and FOXA1 inhibition were not predicted from the transcriptomic data. The activation of ESRRA and ESRRG implied that HIF2A may also be activated during later stages of ccRCC, which was confirmed in the transcriptional analysis. This combined analysis highlights the importance of HIF1A and HIF2A in developing the ccRCC molecular phenotype as well as the potential involvement of ESRRA and ESRRG in driving these changes. In addition, cofilin-1, profilin-1, nicotinamide N-methyltransferase, and fructose-bisphosphate aldolase A were identified as candidate markers of late stage ccRCC. Utilization of data collected from heterogeneous biological domains strengthened the findings from

  11. Nanowire Arrays as Cell Force Sensors To Investigate Adhesin-Enhanced Holdfast of Single Cell Bacteria and Biofilm Stability.

    Science.gov (United States)

    Sahoo, Prasana K; Janissen, Richard; Monteiro, Moniellen P; Cavalli, Alessandro; Murillo, Duber M; Merfa, Marcus V; Cesar, Carlos L; Carvalho, Hernandes F; de Souza, Alessandra A; Bakkers, Erik P A M; Cotta, Monica A

    2016-07-13

    Surface attachment of a planktonic bacteria, mediated by adhesins and extracellular polymeric substances (EPS), is a crucial step for biofilm formation. Some pathogens can modulate cell adhesiveness, impacting host colonization and virulence. A framework able to quantify cell-surface interaction forces and their dependence on chemical surface composition may unveil adhesiveness control mechanisms as new targets for intervention and disease control. Here we employed InP nanowire arrays to dissect factors involved in the early stage biofilm formation of the phytopathogen Xylella fastidiosa. Ex vivo experiments demonstrate single-cell adhesion forces up to 45 nN, depending on the cell orientation with respect to the surface. Larger adhesion forces occur at the cell poles; secreted EPS layers and filaments provide additional mechanical support. Significant adhesion force enhancements were observed for single cells anchoring a biofilm and particularly on XadA1 adhesin-coated surfaces, evidencing molecular mechanisms developed by bacterial pathogens to create a stronger holdfast to specific host tissues. PMID:27336224

  12. Palladium nanoparticle array-mediated semiconductor bonding that enables high-efficiency multi-junction solar cells

    Science.gov (United States)

    Mizuno, Hidenori; Makita, Kikuo; Sugaya, Takeyoshi; Oshima, Ryuji; Hozumi, Yasuo; Takato, Hidetaka; Matsubara, Koji

    2016-02-01

    A detailed study on the application of Pd nanoparticle arrays, produced by self-assembled block copolymer templates, in bonding of III-V-based solar cell materials was carried out. The Pd nanoparticle array-mediated bonding (mechanical stacking) of GaAs-based thin-films (cells) was readily performed on the surface of GaAs or InP-based substrates (cells) to form multi-junction device architectures. Using the optimized Pd NP array, a 30.4%-efficiency four-junction two-terminal cell, consisting of an InGaP/GaAs top cell and an InGaAsP/InGaAs bottom cell, was achieved owing to the excellent electrical and optical bonding properties (bonding resistance, 1.81 Ω cm2; optical loss, 2.9%). Together with the verification of the long-term reliability of the Pd nanoparticle array-mediated bonding, our approach would become practically attractive for producing high-efficiency multi-junction solar cells.

  13. Simulation of the contractile response of cells on an array of micro-posts.

    LENUS (Irish Health Repository)

    McGarry, J P

    2009-09-13

    A bio-chemo-mechanical model has been used to predict the contractile responses of smooth cells on a bed of micro-posts. Predictions obtained for smooth muscle cells reveal that, by converging onto a single set of parameters, the model captures all of the following responses in a self-consistent manner: (i) the scaling of the force exerted by the cells with the number of posts; (ii) actin distributions within the cells, including the rings of actin around the micro-posts; (iii) the curvature of the cell boundaries between the posts; and (iv) the higher post forces towards the cell periphery. Similar correspondences between predictions and measurements have been demonstrated for fibroblasts and mesenchymal stem cells once the maximum stress exerted by the stress fibre bundles has been recalibrated. Consistent with measurements, the model predicts that the forces exerted by the cells will increase with both increasing post stiffness and cell area (or equivalently, post spacing). In conjunction with previous assessments, these findings suggest that this framework represents an important step towards a complete model for the coupled bio-chemo-mechanical responses of cells.

  14. Novel insights of the gastric gland organization revealed by chief cell specific expression of moesin

    Science.gov (United States)

    Zhu, Lixin; Hatakeyama, Jason; Zhang, Bing; Makdisi, Joy; Ender, Cody; Forte, John G.

    2009-01-01

    ERM (ezrin, radixin, and moesin) proteins play critical roles in epithelial and endothelial cell polarity, among other functions. In gastric glands, ezrin is mainly expressed in acid-secreting parietal cells, but not in mucous neck cells or zymogenic chief cells. In looking for other ERM proteins, moesin was found lining the lumen of much of the gastric gland, but it was not expressed in parietal cells. No significant radixin expression was detected in the gastric glands. Moesin showed an increased gradient of expression from the neck to the base of the glands. In addition, the staining pattern of moesin revealed a branched morphology for the gastric lumen. This pattern of short branches extending from the glandular lumen was confirmed by using antibody against zonula occludens-1 (ZO-1) to stain tight junctions. With a mucous neck cell probe (lectin GSII, from Griffonia simplicifolia) and a chief cell marker (pepsinogen C), immunohistochemistry revealed that the mucous neck cells at the top of the glands do not express moesin, but, progressing toward the base, mucous cells showing decreased GSII staining had low or moderate level of moesin expression. The level of moesin expression continued to increase toward the base of the glands and reached a plateau in the base where chief cells and parietal cells abound. The level of pepsinogen expression also increased toward the base. Pepsinogen C was located on cytoplasmic granules and/or more generally distributed in chief cells, whereas moesin was exclusively expressed on the apical membrane. This is a clear demonstration of distinctive cellular expression of two ERM family members in the same tissue. The results provide the first evidence that moesin is involved in the cell biology of chief cells. Novel insights on gastric gland morphology revealed by the moesin and ZO-1 staining provide the basis for a model of cell maturation and migration within the gland. PMID:19074636

  15. Novel insights of the gastric gland organization revealed by chief cell specific expression of moesin.

    Science.gov (United States)

    Zhu, Lixin; Hatakeyama, Jason; Zhang, Bing; Makdisi, Joy; Ender, Cody; Forte, John G

    2009-02-01

    ERM (ezrin, radixin, and moesin) proteins play critical roles in epithelial and endothelial cell polarity, among other functions. In gastric glands, ezrin is mainly expressed in acid-secreting parietal cells, but not in mucous neck cells or zymogenic chief cells. In looking for other ERM proteins, moesin was found lining the lumen of much of the gastric gland, but it was not expressed in parietal cells. No significant radixin expression was detected in the gastric glands. Moesin showed an increased gradient of expression from the neck to the base of the glands. In addition, the staining pattern of moesin revealed a branched morphology for the gastric lumen. This pattern of short branches extending from the glandular lumen was confirmed by using antibody against zonula occludens-1 (ZO-1) to stain tight junctions. With a mucous neck cell probe (lectin GSII, from Griffonia simplicifolia) and a chief cell marker (pepsinogen C), immunohistochemistry revealed that the mucous neck cells at the top of the glands do not express moesin, but, progressing toward the base, mucous cells showing decreased GSII staining had low or moderate level of moesin expression. The level of moesin expression continued to increase toward the base of the glands and reached a plateau in the base where chief cells and parietal cells abound. The level of pepsinogen expression also increased toward the base. Pepsinogen C was located on cytoplasmic granules and/or more generally distributed in chief cells, whereas moesin was exclusively expressed on the apical membrane. This is a clear demonstration of distinctive cellular expression of two ERM family members in the same tissue. The results provide the first evidence that moesin is involved in the cell biology of chief cells. Novel insights on gastric gland morphology revealed by the moesin and ZO-1 staining provide the basis for a model of cell maturation and migration within the gland. PMID:19074636

  16. Design for strong absorption in a nanowire array tandem solar cell

    Science.gov (United States)

    Chen, Yang; Pistol, Mats-Erik; Anttu, Nicklas

    2016-01-01

    Semiconductor nanowires are a promising candidate for next-generation solar cells. However, the optical response of nanowires is, due to diffraction effects, complicated to optimize. Here, we optimize through optical modeling the absorption in a dual-junction nanowire-array solar cell in terms of the Shockley-Quessier detailed balance efficiency limit. We identify efficiency maxima that originate from resonant absorption of photons through the HE11 and the HE12 waveguide modes in the top cell. An efficiency limit above 40% is reached in the band gap optimized Al0.10Ga0.90As/In0.34Ga0.66As system when we allow for different diameter for the top and the bottom nanowire subcell. However, for experiments, equal diameter for the top and the bottom cell might be easier to realize. In this case, we find in our modeling a modest 1–2% drop in the efficiency limit. In the Ga0.51In0.49P/InP system, an efficiency limit of η = 37.3% could be reached. These efficiencies, which include reflection losses and sub-optimal absorption, are well above the 31.0% limit of a perfectly-absorbing, idealized single-junction bulk cell, and close to the 42.0% limit of the idealized dual-junction bulk cell. Our results offer guidance in the choice of materials and dimensions for nanowires with potential for high efficiency tandem solar cells. PMID:27574019

  17. Paper-based microreactor array for rapid screening of cell signaling cascades.

    Science.gov (United States)

    Huang, Chia-Hao; Lei, Kin Fong; Tsang, Ngan-Ming

    2016-08-01

    Investigation of cell signaling pathways is important for the study of pathogenesis of cancer. However, the related operations used in these studies are time consuming and labor intensive. Thus, the development of effective therapeutic strategies may be hampered. In this work, gel-free cell culture and subsequent immunoassay has been successfully integrated and conducted in a paper-based microreactor array. Study of the activation level of different kinases of cells stimulated by different conditions, i.e., IL-6 stimulation, starvation, and hypoxia, was demonstrated. Moreover, rapid screening of cell signaling cascades after the stimulations of HGF, doxorubicin, and UVB irradiation was respectively conducted to simultaneously screen 40 kinases and transcription factors. Activation of multi-signaling pathways could be identified and the correlation between signaling pathways was discussed to provide further information to investigate the entire signaling network. The present technique integrates most of the tedious operations using a single paper substrate, reduces sample and reagent consumption, and shortens the time required by the entire process. Therefore, it provides a first-tier rapid screening tool for the study of complicated signaling cascades. It is expected that the technique can be developed for routine protocol in conventional biological research laboratories. PMID:27377153

  18. A gallbladder tumor revealing metastatic clear cell renal carcinoma: report of case and review of literature

    OpenAIRE

    Ghaouti Merieme; Znati Kaoutar; Jahid Ahmed; Zouaidia Fouad; Bernoussi Zakiya; Fakir Youssef El; Mahassini Najat

    2013-01-01

    Abstract Metastatic renal cell carcinoma in the gallbladder is extremely rare, with reported frequencies of less than 0.6% in large autopsy reviews. Only 40 cases were reported in the literature. We report a first case of gallbladder polypoid tumor revealing metastatic clear cell renal cell carcinoma, which demonstrates the importance of radiological tests, histology and immunohistochemistry when making a definitive diagnosis. These examinations also allow differentiating metastatic clear cel...

  19. Real-time monitoring of cellular dynamics using a microfluidic cell culture system with integrated electrode array and potentiostat

    DEFF Research Database (Denmark)

    Zor, Kinga; Vergani, M.; Heiskanen, Arto;

    2011-01-01

    A versatile microfluidic, multichamber cell culture and analysis system with an integrated electrode array and potentiostat suitable for electrochemical detection and microscopic imaging is presented in this paper. The system, which allows on-line electrode cleaning and modification, was developed...... for real-time monitoring of cellular dynamics, exemplified in this work by monitoring of redox metabolism inside living yeast cells and dopamine release from PC12 cells....

  20. Gene expression profiling revealed novel mechanism of action of Taxotere and Furtulon in prostate cancer cells

    International Nuclear Information System (INIS)

    Both Taxotere and Capecitabine have shown anti-cancer activity against various cancers including prostate cancer. In combination, Taxotere plus Capecitabine has demonstrated higher anti-cancer activity in advanced breast cancers. However, the molecular mechanisms of action of Taxotere and Capecitabine have not been fully elucidated in prostate cancer. The total RNA from PC3 and LNCaP prostate cells untreated and treated with 2 nM Taxotere, 110 μM Furtulon (active metabolite of Capecitabine), or 1 nM Taxotere plus 50 μM Furtulon for 6, 36, and 72 hours, was subjected to Affymetrix Human Genome U133A Array analysis. Real-time PCR and Western Blot analysis were conducted to confirm microarray data. Taxotere and Furtulon down-regulated some genes critical for cell proliferation, cell cycle progression, transcription factor, cell signaling, and oncogenesis, and up-regulated some genes related to the induction of apoptosis, cell cycle arrest, and differentiation in both cell lines. Taxotere and Furtulon also up-regulated some genes responsible for chemotherapeutic resistance, suggesting the induction of cancer cell resistance to these agents. Taxotere and Furtulon caused the alternation of a large number of genes, many of which may contribute to the molecular mechanisms by which Taxotere and Furtulon inhibit the growth of prostate cancer cells. This information could be utilized for further mechanistic research and for devising optimized therapeutic strategies against prostate cancer

  1. Single-cell lineage tracking analysis reveals that an established cell line comprises putative cancer stem cells and their heterogeneous progeny

    Science.gov (United States)

    Sato, Sachiko; Rancourt, Ann; Sato, Yukiko; Satoh, Masahiko S.

    2016-01-01

    Mammalian cell culture has been used in many biological studies on the assumption that a cell line comprises putatively homogeneous clonal cells, thereby sharing similar phenotypic features. This fundamental assumption has not yet been fully tested; therefore, we developed a method for the chronological analysis of individual HeLa cells. The analysis was performed by live cell imaging, tracking of every single cell recorded on imaging videos, and determining the fates of individual cells. We found that cell fate varied significantly, indicating that, in contrast to the assumption, the HeLa cell line is composed of highly heterogeneous cells. Furthermore, our results reveal that only a limited number of cells are immortal and renew themselves, giving rise to the remaining cells. These cells have reduced reproductive ability, creating a functionally heterogeneous cell population. Hence, the HeLa cell line is maintained by the limited number of immortal cells, which could be putative cancer stem cells. PMID:27003384

  2. Solid-state dye-sensitized solar cells based on ZnO nanoparticle and nanorod array hybrid photoanodes

    Directory of Open Access Journals (Sweden)

    Sue Hung-Jue

    2011-01-01

    Full Text Available Abstract The effect of ZnO photoanode morphology on the performance of solid-state dye-sensitized solar cells (DSSCs is reported. Four different structures of dye-loaded ZnO layers have been fabricated in conjunction with poly(3-hexylthiophene. A significant improvement in device efficiency with ZnO nanorod arrays as photoanodes has been achieved by filling the interstitial voids of the nanorod arrays with ZnO nanoparticles. The overall power conversion efficiency increases from 0.13% for a nanorod-only device to 0.34% for a device with combined nanoparticles and nanorod arrays. The higher device efficiency in solid-state DSSCs with hybrid nanorod/nanoparticle photoanodes is originated from both large surface area provided by nanoparticles for dye adsorption and efficient charge transport provided by the nanorod arrays to reduce the recombinations of photogenerated carriers.

  3. Light coupling into the Whispering Gallery Modes of a fiber array thin film solar cell for fixed partial Sun tracking

    OpenAIRE

    Marina Mariano; Rodríguez, Francisco J.; Pablo Romero-Gomez; Gregory Kozyreff; Jordi Martorell

    2014-01-01

    We propose the use of whispering gallery mode coupling in a novel configuration based on implementing a thin film cell on the backside of an array of parallel fibers. We performed numerical calculations using the parameters of a thin film organic cell which demonstrate that light coupling becomes more effective as the angle for the incident light relative to the fiber array normal increases up to an optimal angle close to 55 deg. At this angle the power conversion efficiency of the fiber arra...

  4. Cellular Taxonomy of the Mouse Striatum as Revealed by Single-Cell RNA-Seq.

    Science.gov (United States)

    Gokce, Ozgun; Stanley, Geoffrey M; Treutlein, Barbara; Neff, Norma F; Camp, J Gray; Malenka, Robert C; Rothwell, Patrick E; Fuccillo, Marc V; Südhof, Thomas C; Quake, Stephen R

    2016-07-26

    The striatum contributes to many cognitive processes and disorders, but its cell types are incompletely characterized. We show that microfluidic and FACS-based single-cell RNA sequencing of mouse striatum provides a well-resolved classification of striatal cell type diversity. Transcriptome analysis revealed ten differentiated, distinct cell types, including neurons, astrocytes, oligodendrocytes, ependymal, immune, and vascular cells, and enabled the discovery of numerous marker genes. Furthermore, we identified two discrete subtypes of medium spiny neurons (MSNs) that have specific markers and that overexpress genes linked to cognitive disorders and addiction. We also describe continuous cellular identities, which increase heterogeneity within discrete cell types. Finally, we identified cell type-specific transcription and splicing factors that shape cellular identities by regulating splicing and expression patterns. Our findings suggest that functional diversity within a complex tissue arises from a small number of discrete cell types, which can exist in a continuous spectrum of functional states. PMID:27425622

  5. Cellular Taxonomy of the Mouse Striatum as Revealed by Single-Cell RNA-Seq

    Directory of Open Access Journals (Sweden)

    Ozgun Gokce

    2016-07-01

    Full Text Available The striatum contributes to many cognitive processes and disorders, but its cell types are incompletely characterized. We show that microfluidic and FACS-based single-cell RNA sequencing of mouse striatum provides a well-resolved classification of striatal cell type diversity. Transcriptome analysis revealed ten differentiated, distinct cell types, including neurons, astrocytes, oligodendrocytes, ependymal, immune, and vascular cells, and enabled the discovery of numerous marker genes. Furthermore, we identified two discrete subtypes of medium spiny neurons (MSNs that have specific markers and that overexpress genes linked to cognitive disorders and addiction. We also describe continuous cellular identities, which increase heterogeneity within discrete cell types. Finally, we identified cell type-specific transcription and splicing factors that shape cellular identities by regulating splicing and expression patterns. Our findings suggest that functional diversity within a complex tissue arises from a small number of discrete cell types, which can exist in a continuous spectrum of functional states.

  6. Advanced Solar Cell and Array Technology for NASA Deep Space Missions

    Science.gov (United States)

    Piszczor, Michael; Benson, Scott; Scheiman, David; Finacannon, Homer; Oleson, Steve; Landis, Geoffrey

    2008-01-01

    A recent study by the NASA Glenn Research Center assessed the feasibility of using photovoltaics (PV) to power spacecraft for outer planetary, deep space missions. While the majority of spacecraft have relied on photovoltaics for primary power, the drastic reduction in solar intensity as the spacecraft moves farther from the sun has either limited the power available (severely curtailing scientific operations) or necessitated the use of nuclear systems. A desire by NASA and the scientific community to explore various bodies in the outer solar system and conduct "long-term" operations using using smaller, "lower-cost" spacecraft has renewed interest in exploring the feasibility of using photovoltaics for to Jupiter, Saturn and beyond. With recent advances in solar cell performance and continuing development in lightweight, high power solar array technology, the study determined that photovoltaics is indeed a viable option for many of these missions.

  7. Ultralong Rutile TiO2 Nanowire Arrays for Highly Efficient Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Li, Hailiang; Yu, Qingjiang; Huang, Yuewu; Yu, Cuiling; Li, Renzhi; Wang, Jinzhong; Guo, Fengyun; Jiao, Shujie; Gao, Shiyong; Zhang, Yong; Zhang, Xitian; Wang, Peng; Zhao, Liancheng

    2016-06-01

    Vertically aligned rutile TiO2 nanowire arrays (NWAs) with lengths of ∼44 μm have been successfully synthesized on transparent, conductive fluorine-doped tin oxide (FTO) glass by a facile one-step solvothermal method. The length and wire-to-wire distance of NWAs can be controlled by adjusting the ethanol content in the reaction solution. By employing optimized rutile TiO2 NWAs for dye-sensitized solar cells (DSCs), a remarkable power conversion efficiency (PCE) of 8.9% is achieved. Moreover, in combination with a light-scattering layer, the performance of a rutile TiO2 NWAs based DSC can be further enhanced, reaching an impressive PCE of 9.6%, which is the highest efficiency for rutile TiO2 NWA based DSCs so far. PMID:27097727

  8. Solid-state dye-sensitized solar cells based on ordered ZnO nanowire arrays

    International Nuclear Information System (INIS)

    A solid-state dye-sensitized solar cell (DSC) is fabricated by using arrays of 11–12 µm long, vertically oriented ZnO nanowires as the anode and CuSCN as the solid hole-transport material. The fabricated DSC yields a remarkably higher photocurrent density (JSC = 8 mA cm−2) compared to previously reported data for solid-state DSCs based on either one-dimensional nanostructures (JSC = 0.34 mA cm−2) or nanoporous nanocrystalline structures (JSC = 4.5 mA cm−2) of ZnO. A power conversion efficiency of 1.7% under an irradiation of AM 1.5 G simulated sunlight is reported. (paper)

  9. Bifacial dye-sensitized solar cells based on vertically oriented TiO2 nanotube arrays

    International Nuclear Information System (INIS)

    In this work we describe a novel bifacial design concept for dye-sensitized solar cells (DSCs). Bifacial DSCs are fabricated with ruthenium complex chemisorbed double-sided TiO2 nanotube arrays on a Ti metal substrate, in combination with two electron-collecting counter electrodes. Our investigation shows that the present bifacial DSCs have similar conversion efficiencies when illuminated from either their front or rear side, and a summated output power when illuminated on both sides. Furthermore, this type of bifacial DSC is also able to summate the output power of each side when working at an 'unsymmetrical' mode, in which much different output powers are generated by the front and rear sides. Therefore, this bifacial design concept exhibits a promising potential to reduce the cost of solar electricity when DSCs are operated at a location where a high albedo radiation is available.

  10. Bifacial dye-sensitized solar cells based on vertically oriented TiO2 nanotube arrays

    Science.gov (United States)

    Liu, Zhaoyue; Misra, Mano

    2010-03-01

    In this work we describe a novel bifacial design concept for dye-sensitized solar cells (DSCs). Bifacial DSCs are fabricated with ruthenium complex chemisorbed double-sided TiO2 nanotube arrays on a Ti metal substrate, in combination with two electron-collecting counter electrodes. Our investigation shows that the present bifacial DSCs have similar conversion efficiencies when illuminated from either their front or rear side, and a summated output power when illuminated on both sides. Furthermore, this type of bifacial DSC is also able to summate the output power of each side when working at an 'unsymmetrical' mode, in which much different output powers are generated by the front and rear sides. Therefore, this bifacial design concept exhibits a promising potential to reduce the cost of solar electricity when DSCs are operated at a location where a high albedo radiation is available.

  11. Patterns of cell division revealed by transcriptional regulation of genes during the cell cycle in plants.

    OpenAIRE

    Fobert, P R; Coen, E S; Murphy, G. J.; Doonan, J H

    1994-01-01

    Transcripts from five cell cycle related genes accumulate in isolated cells dispersed throughout the actively dividing regions of plant meristems. We propose that this pattern reflects gene expression during particular phases of the cell division cycle. The high proportion of isolated cells suggests that synchrony between daughter cells is rapidly lost following mitosis. This is the first time that such a cell specific expression pattern has been described in a higher organism. Counterstainin...

  12. Live cell linear dichroism imaging reveals extensive membrane ruffling within the docking structure of natural killer cell immune synapses

    DEFF Research Database (Denmark)

    Benninger, Richard K P; Vanherberghen, Bruno; Young, Stephen;

    2009-01-01

    We have applied fluorescence imaging of two-photon linear dichroism to measure the subresolution organization of the cell membrane during formation of the activating (cytolytic) natural killer (NK) cell immune synapse (IS). This approach revealed that the NK cell plasma membrane is convoluted into...... absent from the center of the mature synapse. Understanding the role of such extensive membrane ruffling in the assembly of cytolytic synapses is an intriguing new goal....

  13. A biocompatible microchip and methodology for efficiently trapping and positioning living cells into array based on negative dielectrophoresis

    Science.gov (United States)

    Guo, Xiaoliang; Zhu, Rong

    2015-06-01

    We present a microchip and trapping methodology based on negative dielectrophoresis (nDEP), whereby living cells were manipulated and positioned into an array with high trapping efficiency while maintaining good viability. The main factors that ensured good viability of cells were investigated including temperature of medium, extra transmembrane potential on cells, and electrolysis effect in DEP-based trapping. Optimum DEP conditions for the microchip were determined by considering both biocompatibility and trapping efficiency. Experiments demonstrated that under a voltage of 3.6-4 Vpp and at a frequency of 100 kHz, HeLa cells could be trapped and positioned into an array in less than 10 s while maintaining good viability. The normal adherence morphology and fluorescence of the cells, dyed with propidium iodide and Calcein-AM, were observed and verified the biocompatibility of the microchip and trapping methodology.

  14. Real-time estimation of paracellular permeability of cerebral endothelial cells by capacitance sensor array

    Science.gov (United States)

    Hyun Jo, Dong; Lee, Rimi; Hyoung Kim, Jin; Oh Jun, Hyoung; Geol Lee, Tae; Hun Kim, Jeong

    2015-06-01

    Vascular integrity is important in maintaining homeostasis of brain microenvironments. In various brain diseases including Alzheimer’s disease, stroke, and multiple sclerosis, increased paracellular permeability due to breakdown of blood-brain barrier is linked with initiation and progression of pathological conditions. We developed a capacitance sensor array to monitor dielectric responses of cerebral endothelial cell monolayer, which could be utilized to evaluate the integrity of brain microvasculature. Our system measured real-time capacitance values which demonstrated frequency- and time-dependent variations. With the measurement of capacitance at the frequency of 100 Hz, we could differentiate the effects of vascular endothelial growth factor (VEGF), a representative permeability-inducing factor, on endothelial cells and quantitatively analyse the normalized values. Interestingly, we showed differential capacitance values according to the status of endothelial cell monolayer, confluent or sparse, evidencing that the integrity of monolayer was associated with capacitance values. Another notable feature was that we could evaluate the expression of molecules in samples in our system with the reference of real-time capacitance values. We suggest that this dielectric spectroscopy system could be successfully implanted as a novel in vitro assay in the investigation of the roles of paracellular permeability in various brain diseases.

  15. A transgenic mouse marking live replicating cells reveals in vivo transcriptional program of proliferation

    DEFF Research Database (Denmark)

    Klochendler, Agnes; Weinberg-Corem, Noa; Moran, Maya;

    2012-01-01

    biological material. We describe a transgenic mouse strain, expressing a CyclinB1-GFP fusion reporter, that marks replicating cells in the S/G2/M phases of the cell cycle. Using flow cytometry, we isolate live replicating cells from the liver and compare their transcriptome to that of quiescent cells to......Most adult mammalian tissues are quiescent, with rare cell divisions serving to maintain homeostasis. At present, the isolation and study of replicating cells from their in vivo niche typically involves immunostaining for intracellular markers of proliferation, causing the loss of sensitive...... reveal gene expression programs associated with cell proliferation in vivo. We find that replicating hepatocytes have reduced expression of genes characteristic of liver differentiation. This reporter system provides a powerful platform for gene expression and metabolic and functional studies of...

  16. Metabolomics reveals mycoplasma contamination interferes with the metabolism of PANC-1 cells.

    Science.gov (United States)

    Yu, Tao; Wang, Yongtao; Zhang, Huizhen; Johnson, Caroline H; Jiang, Yiming; Li, Xiangjun; Wu, Zeming; Liu, Tian; Krausz, Kristopher W; Yu, Aiming; Gonzalez, Frank J; Huang, Min; Bi, Huichang

    2016-06-01

    Mycoplasma contamination is a common problem in cell culture and can alter cellular functions. Since cell metabolism is either directly or indirectly involved in every aspect of cell function, it is important to detect changes to the cellular metabolome after mycoplasma infection. In this study, liquid chromatography mass spectrometry (LC/MS)-based metabolomics was used to investigate the effect of mycoplasma contamination on the cellular metabolism of human pancreatic carcinoma cells (PANC-1). Multivariate analysis demonstrated that mycoplasma contamination induced significant metabolic changes in PANC-1 cells. Twenty-three metabolites were identified and found to be involved in arginine and purine metabolism and energy supply. This study demonstrates that mycoplasma contamination significantly alters cellular metabolite levels, confirming the compelling need for routine checking of cell cultures for mycoplasma contamination, particularly when used for metabolomics studies. Graphical abstract Metabolomics reveals mycoplasma contamination changes the metabolome of PANC-1 cells. PMID:27074779

  17. Single-Cell Transcriptome Analyses Reveal Signals to Activate Dormant Neural Stem Cells

    OpenAIRE

    Luo, Yuping; Coskun, Volkan; Liang, Aibing; Yu, Juehua; Cheng, Liming; Ge, Weihong; Shi, Zhanping; Zhang, Kunshan; Li, Chun; Cui, Yaru; Lin, Haijun; Luo, Dandan; Wang, Junbang; Lin, Connie; Dai, Zachary

    2015-01-01

    The scarcity of tissue-specific stem cells and the complexity of their surrounding environment have made molecular characterization of these cells particularly challenging. Through single-cell transcriptome and weighted gene co-expression network analysis (WGCNA), we uncovered molecular properties of CD133+/GFAP− ependymal (E) cells in the adult mouse forebrain neurogenic zone. Surprisingly, prominent hub genes of the gene network unique to ependymal CD133+/GFAP− quiescent cells were enriched...

  18. Hydrogel Microwell Arrays Allow the Assessment of Protease-Associated Enhancement of Cancer Cell Aggregation and Survival

    Directory of Open Access Journals (Sweden)

    Dietmar W. Hutmacher

    2013-08-01

    Full Text Available Current routine cell culture techniques are only poorly suited to capture the physiological complexity of tumor microenvironments, wherein tumor cell function is affected by intricate three-dimensional (3D, integrin-dependent cell-cell and cell-extracellular matrix (ECM interactions. 3D cell cultures allow the investigation of cancer-associated proteases like kallikreins as they degrade ECM proteins and alter integrin signaling, promoting malignant cell behaviors. Here, we employed a hydrogel microwell array platform to probe using a high-throughput mode how ovarian cancer cell aggregates of defined size form and survive in response to the expression of kallikreins and treatment with paclitaxel, by performing microscopic, quantitative image, gene and protein analyses dependent on the varying microwell and aggregate sizes. Paclitaxel treatment increased aggregate formation and survival of kallikrein-expressing cancer cells and levels of integrins and integrin-related factors. Cancer cell aggregate formation was improved with increasing aggregate size, thereby reducing cell death and enhancing integrin expression upon paclitaxel treatment. Therefore, hydrogel microwell arrays are a powerful tool to screen the viability of cancer cell aggregates upon modulation of protease expression, integrin engagement and anti-cancer treatment providing a micro-scaled yet high-throughput technique to assess malignant progression and drug-resistance.

  19. Microchannel-connected SU-8 honeycombs by single-step projection photolithography for positioning cells on silicon oxide nanopillar arrays

    International Nuclear Information System (INIS)

    We report on the fabrication, functionalization and testing of SU-8 microstructures for cell culture and positioning over large areas. The microstructure consists of a honeycomb arrangement of cell containers interconnected by microchannels and centered on nanopillar arrays designed for promoting cell positioning. The containers have been dimensioned to trap single cells and, with a height of 50 µm, prevent cells from escaping. The structures are fabricated using a single ultraviolet photolithography exposure with focus depth in the lower part of the SU-8 resist. With optimized process parameters, microchannels of various aspect ratios are thus produced. The cell containers and microchannels serve for the organization of axonal growth between neurons. The roughly 2 µm-high and 500 nm-wide nanopillars are made of silicon oxide structured by deep reactive ion etching. In future work, beyond their cell positioning purpose, the nanopillars could be functionalized as sensors. The proof of concept of the novel microstructure for organized cell culture is given by the successful growth of interconnected PC12 cells. Promoted by the honeycomb geometry, a dense network of interconnections between the cells has formed and the intended intimate contact of cells with the nanopillar arrays was observed by scanning electron microscopy. This proves the potential of these new devices as tools for the controlled cell growth in an interconnected container system with well-defined 3D geometry. (paper)

  20. Microchannel-connected SU-8 honeycombs by single-step projection photolithography for positioning cells on silicon oxide nanopillar arrays

    Science.gov (United States)

    Larramendy, Florian; Charline Blatche, Marie; Mazenq, Laurent; Laborde, Adrian; Temple-Boyer, Pierre; Paul, Oliver

    2015-04-01

    We report on the fabrication, functionalization and testing of SU-8 microstructures for cell culture and positioning over large areas. The microstructure consists of a honeycomb arrangement of cell containers interconnected by microchannels and centered on nanopillar arrays designed for promoting cell positioning. The containers have been dimensioned to trap single cells and, with a height of 50 µm, prevent cells from escaping. The structures are fabricated using a single ultraviolet photolithography exposure with focus depth in the lower part of the SU-8 resist. With optimized process parameters, microchannels of various aspect ratios are thus produced. The cell containers and microchannels serve for the organization of axonal growth between neurons. The roughly 2 µm-high and 500 nm-wide nanopillars are made of silicon oxide structured by deep reactive ion etching. In future work, beyond their cell positioning purpose, the nanopillars could be functionalized as sensors. The proof of concept of the novel microstructure for organized cell culture is given by the successful growth of interconnected PC12 cells. Promoted by the honeycomb geometry, a dense network of interconnections between the cells has formed and the intended intimate contact of cells with the nanopillar arrays was observed by scanning electron microscopy. This proves the potential of these new devices as tools for the controlled cell growth in an interconnected container system with well-defined 3D geometry.

  1. Creation of defined single cell resolution neuronal circuits on microelectrode arrays

    Science.gov (United States)

    Pirlo, Russell Kirk

    2009-12-01

    The way cell-cell organization of neuronal networks influences activity and facilitates function is not well understood. Microelectrode arrays (MEAs) and advancing cell patterning technologies have enabled access to and control of in vitro neuronal networks spawning much new research in neuroscience and neuroengineering. We propose that small, simple networks of neurons with defined circuitry may serve as valuable research models where every connection can be analyzed, controlled and manipulated. Towards the goal of creating such neuronal networks we have applied microfabricated elastomeric membranes, surface modification and our unique laser cell patterning system to create defined neuronal circuits with single-cell precision on MEAs. Definition of synaptic connectivity was imposed by the 3D physical constraints of polydimethylsiloxane elastomeric membranes. The membranes had 20mum clear-through holes and 2-3mum deep channels which when applied to the surface of the MEA formed microwells to confine neurons to electrodes connected via shallow tunnels to direct neurite outgrowth. Tapering and turning of channels was used to influence neurite polarity. Biocompatibility of the membranes was increased by vacuum baking, oligomer extraction, and autoclaving. Membranes were bound to the MEA by oxygen plasma treatment and heated pressure. The MEA/membrane surface was treated with oxygen plasma, poly-D-lysine and laminin to improve neuron attachment, survival and neurite outgrowth. Prior to cell patterning the outer edge of culture area was seeded with 5x10 5 cells per cm and incubated for 2 days. Single embryonic day 7 chick forebrain neurons were then patterned into the microwells and onto the electrodes using our laser cell patterning system. Patterned neurons successfully attached to and were confined to the electrodes. Neurites extended through the interconnecting channels and connected with adjacent neurons. These results demonstrate that neuronal circuits can be

  2. A novel fabrication of MEH-PPV/Al:ZnO nanorod arrays based ordered bulk heterojunction hybrid solar cells

    International Nuclear Information System (INIS)

    Vertically aligned Al:ZnO nanorod arrays has been used as window layer in the fabrication of ordered bulk heterojuction hybrid solar cells. The utilization of the nanorod arrays will enhance the electron transport in vertical direction and also for light harvesting applications for high performance devices. The performance of this hybrid polymer/metal oxide photovoltaic devices based on MEH-PPV [poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene)] and oriented Al:ZnO nanorod arrays is studied. The Al:ZnO nanorod arrays with a diameter of about 70–80 nm and thickness of approximately 500 nm were successfully grown on Al:ZnO-coated ITO substrate by sonicated sol–gel immersion technique. The photovoltaic performance of a short-circuit current density of 5.320 mA/cm2, an open-circuit voltage of 195 mV and a fill factor of 27.71%, with a power conversion efficiency of about 0.287% under AM 1.5 illumination (100 mW/cm2). To the best of our knowledge, preparation of aligned Al:ZnO nanorod arrays for this type of solar cell fabrication has not been reported by any research group.

  3. Transcriptome analysis reveals a classical interferon signature induced by IFNλ4 in human primary cells

    DEFF Research Database (Denmark)

    Lauber, Chris; Vieyres, Gabrielle; Terczynska-Dyla, Ewa;

    2015-01-01

    4 could be a tissue-specific regulation of an unknown subset of genes. To address both tissue and subtype specificity in the interferon response, we treated primary human hepatocytes and airway epithelial cells with IFNα, IFNλ3 or IFNλ4 and assessed interferon mediated gene regulation using...... transcriptome sequencing. Our data show a surprisingly similar response to all three subtypes of interferon. We also addressed the tissue specificity of the response, and identified a subset of tissue-specific genes. However, the interferon response is robust in both tissues with the majority of the identified...... genes being regulated in hepatocytes as well as airway epithelial cells. Thus we provide an in-depth analysis of the liver interferon response seen over an array of interferon subtypes and compare it to the response in the lung epithelium....

  4. Inkjet-Print Micromagnet Array on Glass Slides for Immunomagnetic Enrichment of Circulating Tumor Cells.

    Science.gov (United States)

    Chen, Peng; Huang, Yu-Yen; Bhave, Gauri; Hoshino, Kazunori; Zhang, Xiaojing

    2016-05-01

    We report an inkjet-printed microscale magnetic structure that can be integrated on regular glass slides for the immunomagnetic screening of rare circulating tumor cells (CTCs). CTCs detach from the primary tumor site, circulate with the bloodstream, and initiate the cancer metastasis process. Therefore, a liquid biopsy in the form of capturing and analyzing CTCs may provide key information for cancer prognosis and diagnosis. Inkjet printing technology provides a non-contact, layer-by-layer and mask-less approach to deposit defined magnetic patterns on an arbitrary substrate. Such thin film patterns, when placed in an external magnetic field, significantly enhance the attractive force in the near-field close to the CTCs to facilitate the separation. We demonstrated the efficacy of the inkjet-print micromagnet array integrated immunomagnetic assay in separating COLO205 (human colorectal cancer cell line) from whole blood samples. The micromagnets increased the capture efficiency by 26% compared with using plain glass slide as the substrate. PMID:26289942

  5. Gene array identification of Ipf1/Pdx1-/- regulated genes in pancreatic progenitor cells

    Directory of Open Access Journals (Sweden)

    Rydén Patrik

    2007-11-01

    Full Text Available Abstract Background The homeodomain transcription factor IPF1/PDX1 exerts a dual role in the pancreas; Ipf1/Pdx1 global null mutants fail to develop a pancreas whereas conditional inactivation of Ipf1/Pdx1 in β-cells leads to impaired β-cell function and diabetes. Although several putative target genes have been linked to the β-cell function of Ipf1/Pdx1, relatively little is known with respect to genes regulated by IPF1/PDX1 in early pancreatic progenitor cells. Results Microarray analyses identified a total of 111 genes that were differentially expressed in e10.5 pancreatic buds of Ipf1/Pdx1-/- embryos. The expression of one of these, Spondin 1, which encodes an extracellular matrix protein, has not previously been described in the pancreas. Quantitative real-time RT-PCR analyses and immunohistochemical analyses also revealed that the expression of FgfR2IIIb, that encodes the receptor for FGF10, was down-regulated in Ipf1/Pdx1-/- pancreatic progenitor cells. Conclusion This microarray analysis has identified a number of candidate genes that are differentially expressed in Ipf1/Pdx1-/- pancreatic buds. Several of the differentially expressed genes were known to be important for pancreatic progenitor cell proliferation and differentiation whereas others have not previously been associated with pancreatic development.

  6. Kinetic modeling reveals a common death niche for newly formed and mature B cells.

    Directory of Open Access Journals (Sweden)

    Gitit Shahaf

    Full Text Available BACKGROUND: B lymphocytes are subject to elimination following strong BCR ligation in the absence of appropriate second signals, and this mechanism mediates substantial cell losses during late differentiation steps in the bone marrow and periphery. Mature B cells may also be eliminated through this mechanism as well as through normal turnover, but the population containing mature cells destined for elimination has not been identified. Herein, we asked whether the transitional 3 (T3 subset, which contains most newly formed cells undergoing anergic death, could also include mature B cells destined for elimination. METHODOLOGY/PRINCIPAL FINDINGS: To interrogate this hypothesis and its implications, we applied mathematical models to previously generated in vivo labeling data. Our analyses reveal that the death rate of T3 B cells is far higher than the death rates of all other splenic B cell subpopulations. Further, the model, in which the T3 pool includes both newly formed and mature primary B cells destined for apoptotic death, shows that this cell loss may account for nearly all mature B cell turnover. CONCLUSIONS/SIGNIFICANCE: This finding has implications for the mechanism of normal mature B cell turnover.

  7. Disposable micro-fluidic biosensor array for online parallelized cell adhesion kinetics analysis on quartz crystal resonators

    DEFF Research Database (Denmark)

    Cama, G.; Jacobs, T.; Dimaki, Maria;

    2010-01-01

    In this contribution we present a new disposable micro-fluidic biosensor array for the online analysis of adherent Madin Darby canine kidney (MDCK-II) cells on quartz crystal resonators (QCRs). The device was conceived for the parallel cultivation of cells providing the same experimental conditions...... with focus on the comparison of the resulting sensor signals influenced by different cell distributions on the sensor surface. To prove the assumption of equal flow circulation within the symmetric micro-channel network and support the hypothesis of identical cultivation conditions for the cells living...

  8. A Silicon-Based Nanothin Film Solid Oxide Fuel Cell Array with Edge Reinforced Support for Enhanced Thermal Mechanical Stability.

    Science.gov (United States)

    Baek, Jong Dae; Yu, Chen-Chiang; Su, Pei-Chen

    2016-04-13

    A silicon-based micro-solid oxide fuel cell (μ-SOFC) with electrolyte membrane array embedded in a thin silicon supporting membrane, featuring a unique edge reinforcement structure, was demonstrated by utilizing simple silicon micromachining processes. The square silicon supporting membrane, fabricated by combining deep reactive ion etching and through-wafer wet etching processes, has thicker edges and corners than the center portion of the membrane, which effectively improved the mechanical stability of the entire fuel cell array during cell fabrication and cell operation. The 20 μm thick single crystalline silicon membrane supports a large number of 80 nm thick free-standing yttria-stabilized zirconia (YSZ) electrolytes. The fuel cell array was stably maintained at the open circuit voltage (OCV) of 1.04 V for more than 30 h of operation at 350 °C. A high peak power density of 317 mW/cm(2) was obtained at 400 °C. During a rigorous in situ thermal cycling between 150 and 400 °C at a fast cooling and heating rate of 25 °C/min, the OCV of the μ-SOFC recovered to its high value of 1.07 V without any drop caused by membrane failure, which justifies the superior thermal stability of this novel cell architecture. PMID:26990604

  9. Detection of Chromosomal Structural Alterations in Single Cells by SNP Arrays: A Systematic Survey of Amplification Bias and Optimized Workflow

    Science.gov (United States)

    Iwamoto, Kazuya; Bundo, Miki; Ueda, Junko; Nakano, Yoko; Ukai, Wataru; Hashimoto, Eri; Saito, Toshikazu; Kato, Tadafumi

    2007-01-01

    Background In single-cell human genome analysis using whole-genome amplified product, a strong amplification bias involving allele dropout and preferential amplification hampers the quality of results. Using an oligonucleotide single nucleotide polymorphism (SNP) array, we systematically examined the nature of this amplification bias, including frequency, degree, and preference for genomic location, and we assessed the effects of this amplification bias on subsequent genotype and chromosomal copy number analyses. Methodology/Principal Findings We found a large variability in amplification bias among the amplified products obtained by multiple displacement amplification (MDA), and this bias had a severe effect on the genotype and chromosomal copy number analyses. We established optimal experimental conditions for pre-screening for high-quality amplified products, processing array data, and analyzing chromosomal structural alterations. Using this optimized protocol, we successfully detected previously unidentified chromosomal structural alterations in single cells from a lymphoblastoid cell line. These alterations were subsequently confirmed by karyotype analysis. In addition, we successfully obtained reproducible chromosomal copy number profiles of single cells from the cell line with a complex karyotype, indicating the applicability and potential of our optimized workflow. Conclusions/Significance Our results suggest that the quality of amplification products should be critically assessed before using them for genomic analyses. The method of MDA-based whole-genome amplification followed by SNP array analysis described here will be useful for exploring chromosomal alterations in single cells. PMID:18074030

  10. Global discovery of erythroid long noncoding RNAs reveals novel regulators of red cell maturation

    OpenAIRE

    Alvarez-Dominguez, Juan R.; Hu, Wenqian; Yuan, Bingbing; Shi, Jiahai; Park, Staphany S.; Gromatzky, Austin A.; van Oudenaarden, Alexander; Lodish, Harvey F.

    2014-01-01

    Global lncRNA discovery reveals novel erythroid-specific lncRNAs that are dynamically expressed and targeted by GATA1, TAL1, and KLF1.Multiple types of lncRNAs promote red cell maturation by regulating neighboring loci, including DLEU2 and a novel Band 3 enhancer lncRNA.

  11. Structures of inactive retinoblastoma protein reveal multiple mechanisms for cell cycle control

    OpenAIRE

    Burke, Jason R.; Hura, Greg L.; Rubin, Seth M.

    2012-01-01

    Rubin and colleagues describe the first structures of full-length and phosphorylated Retinoblastoma (Rb) protein. These structures reveal the mechanism of Rb inactivation and provide valuable insight into this critical tumor suppressor protein's allosteric inhibition via multisite Cdk phosphorylation and its E2F and cell cycle regulation.

  12. Revealing the Differences Between Free and Complexed Enzyme Mechanisms and Factors Contributing to Cell Wall Recalcitrance

    Energy Technology Data Exchange (ETDEWEB)

    Resch, Michael G.; Donohoe, Byron; Ciesielski, Peter; Nill, Jennifer; McKinney, Kellene; Mittal, Ashutosh; Katahira, Rui; Himmel, Michael; Biddy, Mary; Beckham, Gregg; Decker, Steve

    2014-09-08

    Enzymatic depolymerization of polysaccharides is a key step in the production of fuels and chemicals from lignocellulosic biomass, and discovery of synergistic biomass-degrading enzyme paradigms will enable improved conversion processes. Historically, revealing insights into enzymatic saccharification mechanisms on plant cell walls has been hindered by uncharacterized substrates and low resolution.

  13. Surface-enhanced Raman scattering reveals adsorption of mitoxantrone on plasma membrane of living cells

    International Nuclear Information System (INIS)

    Surface-enhanced Raman scattering (SERS) spectroscopy was applied to analyze mitoxantrone (MTX) adsorption on the plasma membrane microenvironment of sensitive (HCT-116 S) or BCRP/MXR-type resistant (HCT-116 R) cells. The addition of silver colloid to MTX-treated cells revealed an enhanced Raman scattering of MTX. Addition of extracellular DNA induced a total extinction of MTX Raman intensity for both cell lines, which revealed an adsorption of MTX on plasma membrane. A threefold higher MTX Raman intensity was observed for HCT-116 R, suggesting a tight MTX adsorption in the plasma membrane microenvironment. Fluorescence confocal microscopy confirmed a relative MTX emission around plasma membrane for HCT-116 R. After 30 min at 4 deg. C, a threefold decrease of the MTX Raman scattering was observed for HCT-116 R, contrary to HCT-116 S. Permeation with benzyl alcohol revealed a threefold decrease of membrane MTX adsorption on HCT-116 R, exclusively. This additional MTX adsorption should correspond to the drug bound to an unstable site on the HCT-116 R membrane. This study showed that SERS spectroscopy could be a direct method to reveal drug adsorption to the membrane environment of living cells

  14. Large-diameter titanium dioxide nanotube arrays as a scattering layer for high-efficiency dye-sensitized solar cell

    OpenAIRE

    Liu, Xiaolin; Guo, Min; Cao, Jianjun; Lin, Jia; Tsang, Yuen Hong; Chen, Xianfeng; Huang, Haitao

    2014-01-01

    Large-sized titanium dioxide (TiO2) nanotube arrays with an outer diameter of approximately 500 nm have been successfully synthesized by potentiostatic anodization at 180 V in a used electrolyte with the addition of 1.5 M lactic acid. It is found that the synthesized large-diameter TiO2 nanotube array shows a superior light scattering ability, which can be used as a light scattering layer to significantly enhance the efficiency of TiO2 nanoparticle-based dye-sensitized solar cells from 5.18% ...

  15. Dynamics inside the cancer cell attractor reveal cell heterogeneity, limits of stability, and escape.

    Science.gov (United States)

    Li, Qin; Wennborg, Anders; Aurell, Erik; Dekel, Erez; Zou, Jie-Zhi; Xu, Yuting; Huang, Sui; Ernberg, Ingemar

    2016-03-01

    The observed intercellular heterogeneity within a clonal cell population can be mapped as dynamical states clustered around an attractor point in gene expression space, owing to a balance between homeostatic forces and stochastic fluctuations. These dynamics have led to the cancer cell attractor conceptual model, with implications for both carcinogenesis and new therapeutic concepts. Immortalized and malignant EBV-carrying B-cell lines were used to explore this model and characterize the detailed structure of cell attractors. Any subpopulation selected from a population of cells repopulated the whole original basin of attraction within days to weeks. Cells at the basin edges were unstable and prone to apoptosis. Cells continuously changed states within their own attractor, thus driving the repopulation, as shown by fluorescent dye tracing. Perturbations of key regulatory genes induced a jump to a nearby attractor. Using the Fokker-Planck equation, this cell population behavior could be described as two virtual, opposing influences on the cells: one attracting toward the center and the other promoting diffusion in state space (noise). Transcriptome analysis suggests that these forces result from high-dimensional dynamics of the gene regulatory network. We propose that they can be generalized to all cancer cell populations and represent intrinsic behaviors of tumors, offering a previously unidentified characteristic for studying cancer. PMID:26929366

  16. On-chip clearing of arrays of 3-D cell cultures and micro-tissues.

    Science.gov (United States)

    Grist, S M; Nasseri, S S; Poon, T; Roskelley, C; Cheung, K C

    2016-07-01

    Three-dimensional (3-D) cell cultures are beneficial models for mimicking the complexities of in vivo tissues, especially in tumour studies where transport limitations can complicate response to cancer drugs. 3-D optical microscopy techniques are less involved than traditional embedding and sectioning, but are impeded by optical scattering properties of the tissues. Confocal and even two-photon microscopy limit sample imaging to approximately 100-200 μm depth, which is insufficient to image hypoxic spheroid cores. Optical clearing methods have permitted high-depth imaging of tissues without physical sectioning, but they are difficult to implement for smaller 3-D cultures due to sample loss in solution exchange. In this work, we demonstrate a microfluidic platform for high-throughput on-chip optical clearing of breast cancer spheroids using the SeeDB, Clear(T2), and ScaleSQ clearing methods. Although all three methods are able to effectively clear the spheroids, we find that SeeDB and ScaleSQ more effectively clear the sample than Clear(T2); however, SeeDB induces green autofluorescence while ScaleS causes sample expansion. Our unique on-chip implementation permits clearing arrays of 3-D cultures using perfusion while monitoring the 3-D cultures throughout the process, enabling visualization of the clearing endpoint as well as monitoring of transient changes that could induce image artefacts. Our microfluidic device is compatible with on-chip 3-D cell culture, permitting the use of on-chip clearing at the endpoint after monitoring the same spheroids during their culture. This on-chip method has the potential to improve readout from 3-D cultures, facilitating their use in cell-based assays for high-content drug screening and other applications. PMID:27493703

  17. Genomic profiling of oral squamous cell carcinoma by array-based comparative genomic hybridization.

    Directory of Open Access Journals (Sweden)

    Shunichi Yoshioka

    Full Text Available We designed a study to investigate genetic relationships between primary tumors of oral squamous cell carcinoma (OSCC and their lymph node metastases, and to identify genomic copy number aberrations (CNAs related to lymph node metastasis. For this purpose, we collected a total of 42 tumor samples from 25 patients and analyzed their genomic profiles by array-based comparative genomic hybridization. We then compared the genetic profiles of metastatic primary tumors (MPTs with their paired lymph node metastases (LNMs, and also those of LNMs with non-metastatic primary tumors (NMPTs. Firstly, we found that although there were some distinctive differences in the patterns of genomic profiles between MPTs and their paired LNMs, the paired samples shared similar genomic aberration patterns in each case. Unsupervised hierarchical clustering analysis grouped together 12 of the 15 MPT-LNM pairs. Furthermore, similarity scores between paired samples were significantly higher than those between non-paired samples. These results suggested that MPTs and their paired LNMs are composed predominantly of genetically clonal tumor cells, while minor populations with different CNAs may also exist in metastatic OSCCs. Secondly, to identify CNAs related to lymph node metastasis, we compared CNAs between grouped samples of MPTs and LNMs, but were unable to find any CNAs that were more common in LNMs. Finally, we hypothesized that subpopulations carrying metastasis-related CNAs might be present in both the MPT and LNM. Accordingly, we compared CNAs between NMPTs and LNMs, and found that gains of 7p, 8q and 17q were more common in the latter than in the former, suggesting that these CNAs may be involved in lymph node metastasis of OSCC. In conclusion, our data suggest that in OSCCs showing metastasis, the primary and metastatic tumors share similar genomic profiles, and that cells in the primary tumor may tend to metastasize after acquiring metastasis-associated CNAs.

  18. Principles of bacterial cell-size determination revealed by cell wall synthesis perturbations

    OpenAIRE

    Carolina Tropini; Timothy K. Lee; Jen Hsin; Samantha M. Desmarais; Tristan Ursell; Russell D. Monds; Kerwyn Casey Huang

    2014-01-01

    Although bacterial cell morphology is tightly controlled, the principles of size regulation remain elusive. In Escherichia coli, perturbation of cell-wall synthesis often results in similar morphologies, making it difficult to deconvolve the complex genotype-phenotype relationships underlying morphogenesis. Here we modulated cell width through heterologous expression of sequences encoding the essential enzyme PBP2 and through sublethal treatments with drugs that inhibit PBP2 and the MreB cyto...

  19. Reconfigurable Pico-cell Antenna Array for Indoor Coverage in GSM 900 Band

    Directory of Open Access Journals (Sweden)

    B. Ivsic

    2009-12-01

    Full Text Available This paper proposes a simple antenna array based on three stacked shorted patches aimed to be used as GSM (900 MHz indoor base station antenna. Three same linearly polarized stacked patches are set in three orthogonal planes in space forming pyramid-like structure. The antenna array can be used for nearly omnidirectional coverage as well as for covering three 120º sectors. The proposed array also offers the possibility of polarization diversity.

  20. Identification of biomarkers to measure HIV-specific mucosal and systemic CD8(+) T-cell immunity using single cell Fluidigm 48.48 Dynamic arrays.

    Science.gov (United States)

    Trivedi, Shubhanshi; Neeman, Teresa; Jackson, Ronald J; Ranasinghe, Roshanka; Jack, Cameron; Ranasinghe, Charani

    2015-12-16

    Thirty genes composed of cytokines, chemokines, granzymes, perforin and integrins were evaluated in gut and splenic K(d)Gag197-205-specific single CD8(+) T cells using Fluidigm 48.48 Dynamic arrays, with the aim of identifying biomarkers to predict effective mucosal and systemic vaccine efficacy. The mRNA expression profiles were analyzed in three ways: (i) the "number" of K(d)Gag197-205-specific CD8(+) T cells expressing the biomarker, (ii) "level" of mRNA expression using principal component analysis (PCA) and (iii) poly-functionality in relation to RANTES expression. In total, 21 genes were found to be differentially expressed between the vaccine groups and the immune compartments tested. Overall, the PCA indicated that IL-13Rα2 or IL-4R antagonist adjuvanted vaccines that previously induced high-avidity mucosal/systemic CD8(+) T cells with better protective efficacy, the "level" of mRNA expression, specifically RANTES, MIP-1β, and integrin α4 in gut K(d)Gag197-205-specific single CD8(+) T cells, were significantly elevated compared to unadjuvanted vaccine. Furthermore, significantly elevated granzymes/perforin levels were detected in IL-13(-/-) mice given the unadjuvanted vaccine, indicating that the degree of IL-13 inhibition (total, transient or no inhibition) can considerably alter the level of T-cell activity/poly-functionality. When splenic- and gut-K(d)Gag197-205-specific CD8(+) T cells were compared, PC1 vs. PC2 scores revealed that not only RANTES, MIP-1β, and integrin α4 mRNA, but also perforin, granzymes A/B, and integrins β1 and β2 mRNA were elevated in spleen. Collectively, data suggest that RANTES, MIP-1β, perforin, and integrins α4, β1 and β7 mRNA in single HIV-specific CD8(+) T cells could be used as a measure of effective mucosal and systemic vaccine efficacy. PMID:26519547

  1. The Influence of Immunization Route, Tissue Microenvironment, and Cytokine Cell Milieu on HIV-Specific CD8+ T Cells Measured Using Fluidigm Dynamic Arrays.

    Science.gov (United States)

    Trivedi, Shubhanshi; Ranasinghe, Charani

    2015-01-01

    Thirty different genes including cytokines, chemokines, granzymes, perforin and specifically integrins were evaluated in Peyer's patch-KdGag197-205-specific CD8+ T cells (pools of 100 cells) using Fluidigm 48.48 Dynamic arrays following three different prime-boost immunization strategies. Data revealed that the route of prime or the booster immunization differentially influenced the integrin expression profile on gut KdGag197-205-specific CD8+ T cells. Specifically, elevated numbers of integrin αE and αD expressing gut KdGag197-205-specific CD8+ T cells were detected following mucosal but not systemic priming. Also, αE/β7 and αD/β2 heterodimerization were more noticeable in an intranasal (i.n.)/i.n. vaccination setting compared to i.n./intramuscular (i.m) or i.m./i.m. vaccinations. Moreover, in all vaccine groups tested α4 appeared to heterodimerize more closely with β7 then β1. Also MIP-1β, RANTES, CCR5, perforin and integrin α4 bio-markers were significantly elevated in i.n./i.m. and i.m./i.m. immunization groups compared to purely mucosal i.n./i.n. delivery. Furthermore, when wild type (WT) BALB/c and IL-13 knockout (KO) mice were immunized using i.n./i.m. strategy, MIP-1α, MIP-1β, RANTES, integrins α4, β1 and β7 mRNA expression levels were found to be significantly different, in mucosal verses systemic KdGag197-205-specific CD8+ T cells. Interestingly, the numbers of gut KdGag197-205-specific CD8+ T cells expressing gut-homing markers α4β7 and CCR9 protein were also significantly elevated in IL-13 KO compared to WT control. Collectively, our findings further corroborate that the route of vaccine delivery, tissue microenvironment and IL-13 depleted cytokine milieu can significantly alter the antigen-specific CD8+ T cell gene expression profiles and in turn modulate their functional avidities as well as homing capabilities. PMID:25946028

  2. The Influence of Immunization Route, Tissue Microenvironment, and Cytokine Cell Milieu on HIV-Specific CD8+ T Cells Measured Using Fluidigm Dynamic Arrays.

    Directory of Open Access Journals (Sweden)

    Shubhanshi Trivedi

    Full Text Available Thirty different genes including cytokines, chemokines, granzymes, perforin and specifically integrins were evaluated in Peyer's patch-KdGag197-205-specific CD8+ T cells (pools of 100 cells using Fluidigm 48.48 Dynamic arrays following three different prime-boost immunization strategies. Data revealed that the route of prime or the booster immunization differentially influenced the integrin expression profile on gut KdGag197-205-specific CD8+ T cells. Specifically, elevated numbers of integrin αE and αD expressing gut KdGag197-205-specific CD8+ T cells were detected following mucosal but not systemic priming. Also, αE/β7 and αD/β2 heterodimerization were more noticeable in an intranasal (i.n./i.n. vaccination setting compared to i.n./intramuscular (i.m or i.m./i.m. vaccinations. Moreover, in all vaccine groups tested α4 appeared to heterodimerize more closely with β7 then β1. Also MIP-1β, RANTES, CCR5, perforin and integrin α4 bio-markers were significantly elevated in i.n./i.m. and i.m./i.m. immunization groups compared to purely mucosal i.n./i.n. delivery. Furthermore, when wild type (WT BALB/c and IL-13 knockout (KO mice were immunized using i.n./i.m. strategy, MIP-1α, MIP-1β, RANTES, integrins α4, β1 and β7 mRNA expression levels were found to be significantly different, in mucosal verses systemic KdGag197-205-specific CD8+ T cells. Interestingly, the numbers of gut KdGag197-205-specific CD8+ T cells expressing gut-homing markers α4β7 and CCR9 protein were also significantly elevated in IL-13 KO compared to WT control. Collectively, our findings further corroborate that the route of vaccine delivery, tissue microenvironment and IL-13 depleted cytokine milieu can significantly alter the antigen-specific CD8+ T cell gene expression profiles and in turn modulate their functional avidities as well as homing capabilities.

  3. Patterned cell arrays and patterned co-cultures on polydopamine-modified poly(vinyl alcohol) hydrogels

    International Nuclear Information System (INIS)

    Live cell arrays are an emerging tool that expand traditional 2D in vitro cell culture, increasing experimental precision and throughput. A patterned cell system was developed by combining the cell-repellent properties of polyvinyl alcohol hydrogels with the cell adhesive properties of self-assembled films of dopamine (polydopamine). It was shown that polydopamine could be patterned onto spin-cast polyvinyl alcohol hydrogels by microcontact printing, which in turn effectively patterned the growth of several cell types (HeLa, human embryonic kidney, human umbilical vein endothelial cells (HUVEC) and prostate cancer). The cells could be patterned in geometries down to single-cell confinement, and it was demonstrated that cell patterns could be maintained for at least 3 weeks. Furthermore, polydopamine could be used to modify poly(vinyl alcohol) in situ using a cell-compatible deposition buffer (1 mg mL−1 dopamine in 25 mM tris with a physiological salt balance). The treatment switched the PVA hydrogel from cell repellent to cell adhesive. Finally, by combining microcontact printing and in situ deposition of polydopamine, patterned co-cultures of the same cell type (HeLa/HeLa) and dissimilar cell types (HeLa/HUVEC) were realized through simple chemistry and could be studied over time. The combination of polyvinyl alcohol and polydopamine was shown to be an attractive route to versatile, patterned cell culture experiments with minimal infrastructure requirements and low complexity. (paper)

  4. Remodelling in the array of cell aggregates in somatotopic representation of the facial vibrissae through the trigeminal sensory system of the mouse.

    Science.gov (United States)

    Yamakado, M

    1995-11-01

    The disposition of the facial vibrissae of the mouse is represented as a matrix-like array of cell aggregates in rows and columns at every station of the whisker-to-barrel pathway. In order to evaluate the role of each station in this pathway, lesions were made in the facial vibrissae of the mystacial group on P0-P3, and the animals were sacrificed on P8. The effects of the lesions on the cell aggregates in the array were analyzed by using cytochrome oxidase and gallocyanin cell-staining methods. Division of cell aggregates in the array was controlled by row basis interactions through the pathway up to the cerebral cortex. In this organization, affected cell aggregates which corresponded to the damaged vibrissae were eliminated and/or fused together in the array of the thalamic relay nucleus. On the basis of thalamic modification, the final array of cell aggregates was remodelled in the cerebral cortex. In contrast, affected cell aggregates remained degenerative spaces at the original sites in the array in relation to the damaged vibrissae in the brain stem trigeminal nuclear complex. These results indicate that a protoframework with row basis orientation for the division of cell aggregates is prepared in every station of the pathway at the time of lesioning, and adjustment of subcortical alterations in the thalamic relay nucleus is a decisive process to let the cerebral cortex remodel the topographic array of cell aggregates. PMID:8602280

  5. Heterogeneity of Mesp1+ mesoderm revealed by single-cell RNA-seq.

    Science.gov (United States)

    Chan, Sunny Sun-Kin; Chan, Howe H W; Kyba, Michael

    2016-06-01

    Mesp1 is a transcription factor that promotes differentiation of pluripotent cells into different mesoderm lineages including hematopoietic, cardiac and skeletal myogenic. This occurs via at least two transient cell populations: a common hematopoietic/cardiac progenitor population and a common cardiac/skeletal myogenic progenitor population. It is not established whether Mesp1-induced mesoderm cells are intrinsically heterogeneous, or are simply capable of multiple lineage decisions. In the current study, we applied single-cell RNA-seq to analyze Mesp1+ mesoderm. Initial whole transcriptome analysis showed a surprising homogeneity among Mesp1-induced mesoderm cells. However, this apparent global homogeneity masked an intrinsic heterogeneity revealed by interrogating a panel of early mesoderm patterning factors. This approach enabled discovery of subpopulations primed for hematopoietic or cardiac development. These studies demonstrate the heterogeneic nature of Mesp1+ mesoderm. PMID:27131741

  6. False positive rate of an arrayCGH platform for single-cell preimplantation genetic screening and subsequent clinical application on day-3

    OpenAIRE

    Mir, Pere; Rodrigo, Lorena; Mercader, Amparo; Buendía Segura, Maria del Pilar; Mateu, Emilia; Milán-Sánchez, Miguel; Peinado, Vanessa; Pellicer Martínez, Antonio; Remohí Giménez, José; Simón, Carlos; Rubio Lluesa, Carmen

    2012-01-01

    In this work, false positive rate of an arrayCGH platform for its use in day-3 single-blastomere analysis was calculated. For this purpose, 38 embryos diagnosed as abnormal on day-3 by FISH were re-biopsied on day-4. Single-cell day-4 arrayCGH diagnosis was then performed. A successful amplification was obtained in 97.4 % (37/38) of the day-4 cells analysed by arrayCGH. Day-3 FISH and day-4 arrayCGH diagnosis were concordant in 35/37 cases. The two discordant embryos were spread and all the c...

  7. Broadband photocurrent enhancement and light-trapping in thin film Si solar cells with periodic Al nanoparticle arrays on the front

    DEFF Research Database (Denmark)

    Uhrenfeldt, Christian; Villesen, Thorbjørn Falk; Tetu, Amelie;

    2015-01-01

    Plasmonic resonances in metal nanoparticles are considered candidates for improved thin film Si photovoltaics. In periodic arrays the influence of collective modes can enhance the resonant properties of such arrays. We have investigated the use of periodic arrays of Al nanoparticles placed on the...... front of a thin film Si test solar cell. It is demonstrated that the resonances from the Al nanoparticle array cause a broadband photocurrent enhancement ranging from the ultraviolet to the infrared with respect to a reference cell. From the experimental results as well as from numerical simulations it...

  8. Genomic instability of micronucleated cells revealed by single-cell comparative genomic hybridization.

    NARCIS (Netherlands)

    Imle, A.; Polzer, B.; Alexander, S.; Klein, C.A.; Friedl, P.H.A.

    2009-01-01

    Nuclear variation in size and shape and genomic instability are hallmarks of dedifferentiated cancer cells. Although micronuclei are a typical long-term consequence of DNA damage, their contribution to chromosomal instability and clonal diversity in cancer disease is unclear. We isolated cancer cell

  9. Single cell mass cytometry reveals remodeling of human T cell phenotypes by varicella zoster virus.

    Science.gov (United States)

    Sen, Nandini; Mukherjee, Gourab; Arvin, Ann M

    2015-11-15

    The recent application of mass cytometry (CyTOF) to biology provides a 'systems' approach to monitor concurrent changes in multiple host cell factors at the single cell level. We used CyTOF to evaluate T cells infected with varicella zoster virus (VZV) infection, documenting virus-mediated phenotypic and functional changes caused by this T cell tropic human herpesvirus. Here we summarize our findings using two complementary panels of antibodies against surface and intracellular signaling proteins to elucidate the consequences of VZV-mediated perturbations on the surface and in signaling networks of infected T cells. CyTOF data was analyzed by several statistical, analytical and visualization tools including hierarchical clustering, orthogonal scaling, SPADE, viSNE, and SLIDE. Data from the mass cytometry studies demonstrated that VZV infection led to 'remodeling' of the surface architecture of T cells, promoting skin trafficking phenotypes and associated with concomitant activation of T-cell receptor and PI3-kinase pathways. This method offers a novel approach for understanding viral interactions with differentiated host cells important for pathogenesis. PMID:26213183

  10. Pathway-focused PCR array profiling of enriched populations of laser capture microdissected hippocampal cells after traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Deborah R Boone

    Full Text Available Cognitive deficits in survivors of traumatic brain injury (TBI are associated with irreversible neurodegeneration in brain regions such as the hippocampus. Comparative gene expression analysis of dying and surviving neurons could provide insight into potential therapeutic targets. We used two pathway-specific PCR arrays (RT2 Profiler Apoptosis and Neurotrophins & Receptors PCR arrays to identify and validate TBI-induced gene expression in dying (Fluoro-Jade-positive or surviving (Fluoro-Jade-negative pyramidal neurons obtained by laser capture microdissection (LCM. In the Apoptosis PCR array, dying neurons showed significant increases in expression of genes associated with cell death, inflammation, and endoplasmic reticulum (ER stress compared with adjacent, surviving neurons. Pro-survival genes with pleiotropic functions were also significantly increased in dying neurons compared to surviving neurons, suggesting that even irreversibly injured neurons are able to mount a protective response. In the Neurotrophins & Receptors PCR array, which consists of genes that are normally expected to be expressed in both groups of hippocampal neurons, only a few genes were expressed at significantly different levels between dying and surviving neurons. Immunohistochemical analysis of selected, differentially expressed proteins supported the gene expression data. This is the first demonstration of pathway-focused PCR array profiling of identified populations of dying and surviving neurons in the brain after TBI. Combining precise laser microdissection of identifiable cells with pathway-focused PCR array analysis is a practical, low-cost alternative to microarrays that provided insight into neuroprotective signals that could be therapeutically targeted to ameliorate TBI-induced neurodegeneration.

  11. Use of human antigen presenting cell gene array profiling to examine the effect of human T-cell leukemia virus type 1 Tax on primary human dendritic cells.

    Science.gov (United States)

    Ahuja, Jaya; Kampani, Karan; Datta, Suman; Wigdahl, Brian; Flaig, Katherine E; Jain, Pooja

    2006-02-01

    Human T-cell leukemia virus type 1 (HTLV-1) is etiologically linked to adult T-cell leukemia and a progressive demyelinating disorder termed HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). One of the most striking features of the immune response in HAM/TSP centers on the expansion of HTLV-1-specific CD8(+) cytotoxic T lymphocyte (CTL) compartment in the peripheral blood and cerebrospinal fluid. More than 90% of the HTLV-1-specific CTLs are directed against the viral Tax (11-19) peptide implying that Tax is available for immune recognition by antigen presenting cells, such as dendritic cells (DCs). DCs obtained from HAM/TSP patients have been shown to be infected with HTLV-1 and exhibit rapid maturation. Therefore, we hypothesized that presentation of Tax peptides by activated DCs to naIve CD8(+) T cells may play an important role in the induction of a Tax-specific CTL response and neurologic dysfunction. In this study, a pathway-specific antigen presenting cell gene array was used to study transcriptional changes induced by exposure of monocyte-derived DCs to extracellular HTLV-1 Tax protein. Approximately 100 genes were differentially expressed including genes encoding toll-like receptors, cell surface receptors, proteins involved in antigen uptake and presentation and adhesion molecules. The differential regulation of chemokines and cytokines characteristic of functional DC activation was also observed by the gene array analyses. Furthermore, the expression pattern of signal transduction genes was also significantly altered. These results have suggested that Tax-mediated DC gene regulation might play a critical role in cellular activation and the mechanisms resulting in HTLV-1-induced disease. PMID:16595374

  12. Chicken-Specific Kinome Array Reveals that Salmonella enterica Serovar Enteritidis Modulates Host Immune Signaling Pathways in the Cecum to Establish a Persistence Infection

    Science.gov (United States)

    Kogut, Michael H.; Swaggerty, Christina L.; Byrd, James Allen; Selvaraj, Ramesh; Arsenault, Ryan J.

    2016-01-01

    Non-typhoidal Salmonella enterica induces an early, short-lived pro-inflammatory response in chickens that is asymptomatic of clinical disease and results in a persistent colonization of the gastrointestinal (GI) tract that transmits infections to naïve hosts via fecal shedding of bacteria. The underlying mechanisms that control this persistent colonization of the ceca of chickens by Salmonella are only beginning to be elucidated. We hypothesize that alteration of host signaling pathways mediate the induction of a tolerance response. Using chicken-specific kinomic immune peptide arrays and quantitative RT-PCR of infected cecal tissue, we have previously evaluated the development of disease tolerance in chickens infected with Salmonella enterica serovar Enteritidis (S. Enteritidis) in a persistent infection model (4–14 days post infection). Here, we have further outlined the induction of an tolerance defense strategy in the cecum of chickens infected with S. Enteritidis beginning around four days post-primary infection. The response is characterized by alterations in the activation of T cell signaling mediated by the dephosphorylation of phospholipase c-γ1 (PLCG1) that inhibits NF-κB signaling and activates nuclear factor of activated T-cells (NFAT) signaling and blockage of interferon-γ (IFN-γ) production through the disruption of the JAK-STAT signaling pathway (dephosphorylation of JAK2, JAK3, and STAT4). Further, we measured a significant down-regulation reduction in IFN-γ mRNA expression. These studies, combined with our previous findings, describe global phenotypic changes in the avian cecum of Salmonella Enteritidis-infected chickens that decreases the host responsiveness resulting in the establishment of persistent colonization. The identified tissue protein kinases also represent potential targets for future antimicrobial compounds for decreasing Salmonella loads in the intestines of food animals before going to market. PMID:27472318

  13. Single-cell duplex RT-LATE-PCR reveals Oct4 and Xist RNA gradients in 8-cell embryos

    Directory of Open Access Journals (Sweden)

    Hartung Odelya

    2007-12-01

    combined with PurAmp sample preparation, for quantitative analysis of transcript levels in single cells. With this technique, copy numbers of different RNAs can be accurately measured independently from their relative abundance in a cell, a goal that cannot be achieved using symmetric PCR. The technique illustrated in this work is relevant to a wide array of applications, such as stem cell and cancer cell analysis and preimplantation genetic diagnostics.

  14. Use of highly-ordered TiO(2) nanotube arrays in dye-sensitized solar cells.

    Science.gov (United States)

    Mor, Gopal K; Shankar, Karthik; Paulose, Maggie; Varghese, Oomman K; Grimes, Craig A

    2006-02-01

    We describe the use of highly ordered transparent TiO(2) nanotube arrays in dye-sensitized solar cells (DSCs). Highly ordered nanotube arrays of 46-nm pore diameter, 17-nm wall thickness, and 360-nm length were grown perpendicular to a fluorine-doped tin oxide-coated glass substrate by anodic oxidation of a titanium thin film. After crystallization by an oxygen anneal, the nanotube arrays are treated with TiCl(4) to enhance the photogenerated current and then integrated into the DSC structure using a commercially available ruthenium-based dye. Although the negative electrode is only 360-nm-thick, under AM 1.5 illumination the generated photocurrent is 7.87 mA/cm(2), with a photocurrent efficiency of 2.9%. Voltage-decay measurements indicate that the highly ordered TiO(2) nanotube arrays, in comparison to nanoparticulate systems, have superior electron lifetimes and provide excellent pathways for electron percolation. Our results indicate that remarkable photoconversion efficiencies may be obtained, possibly to the ideal limit of approximately 31% for a single photosystem scheme, with an increase of the nanotube-array length to several micrometers. PMID:16464037

  15. Single-Cell Analyses of ESCs Reveal Alternative Pluripotent Cell States and Molecular Mechanisms that Control Self-Renewal

    Directory of Open Access Journals (Sweden)

    Dmitri Papatsenko

    2015-08-01

    Full Text Available Analyses of gene expression in single mouse embryonic stem cells (mESCs cultured in serum and LIF revealed the presence of two distinct cell subpopulations with individual gene expression signatures. Comparisons with published data revealed that cells in the first subpopulation are phenotypically similar to cells isolated from the inner cell mass (ICM. In contrast, cells in the second subpopulation appear to be more mature. Pluripotency Gene Regulatory Network (PGRN reconstruction based on single-cell data and published data suggested antagonistic roles for Oct4 and Nanog in the maintenance of pluripotency states. Integrated analyses of published genomic binding (ChIP data strongly supported this observation. Certain target genes alternatively regulated by OCT4 and NANOG, such as Sall4 and Zscan10, feed back into the top hierarchical regulator Oct4. Analyses of such incoherent feedforward loops with feedback (iFFL-FB suggest a dynamic model for the maintenance of mESC pluripotency and self-renewal.

  16. Conjugated polymer–silicon nanowire array hybrid Schottky diode for solar cell application

    International Nuclear Information System (INIS)

    The hybrid Schottky diode based on silicon nanowire arrays (SiNWs) and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) has been fabricated for high performance solar cells. The length of SiNWs on a silicon substrate, which is prepared by metal-assisted chemical etching, can be tuned by adjusting the length of the etching time. In addition, the average distances between the adjacent silicon nanowires can be controlled by changing the immersing time in a saturated PCl5 solution. The hybrid devices are made from the SiNWs with different wire lengths and various distances between adjacent wires by spin-casting PEDOT:PSS on the silicon substrates. It is found that the length and density play leading roles in the electric output characteristics. The device made from SiNWs with optimum morphology can achieve a power conversion efficiency of 7.3%, which is much improved in comparison with that of the planar one. The measurement of the transient photovoltage decay and the analysis of the current versus voltage curve indicate that the charge recombination process is a dominant factor on the device performance. (paper)

  17. Capturing power at higher voltages from arrays of microbial fuel cells without voltage reversal

    KAUST Repository

    Kim, Younggy

    2011-01-01

    Voltages produced by microbial fuel cells (MFCs) cannot be sustainably increased by linking them in series due to voltage reversal, which substantially reduces stack voltages. It was shown here that MFC voltages can be increased with continuous power production using an electronic circuit containing two sets of multiple capacitors that were alternately charged and discharged (every one second). Capacitors were charged in parallel by the MFCs, but linked in series while discharging to the circuit load (resistor). The parallel charging of the capacitors avoided voltage reversal, while discharging the capacitors in series produced up to 2.5 V with four capacitors. There were negligible energy losses in the circuit compared to 20-40% losses typically obtained with MFCs using DC-DC converters to increase voltage. Coulombic efficiencies were 67% when power was generated via four capacitors, compared to only 38% when individual MFCs were operated with a fixed resistance of 250 Ω. The maximum power produced using the capacitors was not adversely affected by variable performance of the MFCs, showing that power generation can be maintained even if individual MFCs perform differently. Longer capacitor charging and discharging cycles of up to 4 min maintained the average power but increased peak power by up to 2.6 times. These results show that capacitors can be used to easily obtain higher voltages from MFCs, allowing for more useful capture of energy from arrays of MFCs. © 2011 The Royal Society of Chemistry.

  18. An integrated cell purification and genomics strategy reveals multiple regulators of pancreas development.

    Directory of Open Access Journals (Sweden)

    Cecil M Benitez

    2014-10-01

    Full Text Available The regulatory logic underlying global transcriptional programs controlling development of visceral organs like the pancreas remains undiscovered. Here, we profiled gene expression in 12 purified populations of fetal and adult pancreatic epithelial cells representing crucial progenitor cell subsets, and their endocrine or exocrine progeny. Using probabilistic models to decode the general programs organizing gene expression, we identified co-expressed gene sets in cell subsets that revealed patterns and processes governing progenitor cell development, lineage specification, and endocrine cell maturation. Purification of Neurog3 mutant cells and module network analysis linked established regulators such as Neurog3 to unrecognized gene targets and roles in pancreas development. Iterative module network analysis nominated and prioritized transcriptional regulators, including diabetes risk genes. Functional validation of a subset of candidate regulators with corresponding mutant mice revealed that the transcription factors Etv1, Prdm16, Runx1t1 and Bcl11a are essential for pancreas development. Our integrated approach provides a unique framework for identifying regulatory genes and functional gene sets underlying pancreas development and associated diseases such as diabetes mellitus.

  19. Array-based identification of triple-negative breast cancer cells using fluorescent nanodot-graphene oxide complexes.

    Science.gov (United States)

    Tao, Yu; Auguste, Debra T

    2016-07-15

    Early and accurate diagnosis of breast cancer holds great promise to improve treatability and curability. Here, we report the usage of six luminescent nanodot-graphene oxide complexes as novel fluorescent nanoprobes in a sensing array capable of effectively identifying healthy, cancerous, and metastatic human breast cells. The sensory system is based on the utilization of nanoprobe-graphene oxide sensor elements that can be disrupted in the presence of breast cells to give fluorescent readouts. Using this multichannel sensor, we have successfully identified breast cancer cells and distinguished between estrogen receptor positive, human epidermal growth factor receptor-2 positive, and triple negative phenotypes. This approach also allows cell identification at high sensitivity (200 cells) with high reproducibility. The unknown cell sample analysis indicates that the sensor is able to identify 49 out of 50 breast cell samples correctly, with a detection accuracy of 98%. Taken together, this array-based luminescent nanoprobe-graphene oxide sensing platform presents a useful cell screening tool with potential applications in biomedical diagnostics. PMID:27003608

  20. The effect of lance geometry and carbon coating of silicon lances on propidium iodide uptake in lance array nanoinjection of HeLa 229 cells

    Science.gov (United States)

    Sessions, John W.; Lindstrom, Dallin L.; Hanks, Brad W.; Hope, Sandra; Jensen, Brian D.

    2016-04-01

    Connecting technology to biologic discovery is a core focus of non-viral gene therapy biotechnologies. One approach that leverages both the physical and electrical function of microelectromechanical systems (MEMS) in cellular engineering is a technology previously described as lance array nanoinjection (LAN). In brief, LAN consists of a silicon chip measuring 2 cm by 2 cm that has been etched to contain an array of 10 μm tall, solid lances that are spaced every 10 μm in a grid pattern. This array of lances is used to physically penetrate hundreds of thousands of cells simultaneously and to then electrically deliver molecular loads into cells. In this present work, two variables related to the microfabrication of the silicon lances, namely lance geometry and coating, are investigated. The purpose of both experimental variables is to assess these parameters’ effect on propidium iodide (PI), a cell membrane impermeable dye, uptake to injected HeLa 229 cells. For the lance geometry experimentation, three different microfabricated lance geometries were used which include a flat/narrow (FN, 1 μm diameter), flat/wide (FW, 2-2.5 μm diameter), and pointed (P, 1 μm diameter) lance geometries. From these tests, it was shown that the FN lances had a slightly better cell viability rate of 91.73% and that the P lances had the best PI uptake rate of 75.08%. For the lance coating experimentation, two different lances were fabricated, both silicon etched lances with some being carbon coated (CC) in a  <100 nm layer of carbon and the other lances being non-coated (Si). Results from this experiment showed no significant difference between lance types at three different nanoinjection protocols (0V, +1.5V DC, and  +5V Pulsed) for both cell viability and PI uptake rates. One exception to this is the comparison of CC/5V Pul and Si/5V Pul samples, where the CC/5V Pul samples had a cell viability rate 5% higher. Both outcomes were unexpected and reveal how to better

  1. The effect of lance geometry and carbon coating of silicon lances on propidium iodide uptake in lance array nanoinjection of HeLa 229 cells

    International Nuclear Information System (INIS)

    Connecting technology to biologic discovery is a core focus of non-viral gene therapy biotechnologies. One approach that leverages both the physical and electrical function of microelectromechanical systems (MEMS) in cellular engineering is a technology previously described as lance array nanoinjection (LAN). In brief, LAN consists of a silicon chip measuring 2 cm by 2 cm that has been etched to contain an array of 10 μm tall, solid lances that are spaced every 10 μm in a grid pattern. This array of lances is used to physically penetrate hundreds of thousands of cells simultaneously and to then electrically deliver molecular loads into cells. In this present work, two variables related to the microfabrication of the silicon lances, namely lance geometry and coating, are investigated. The purpose of both experimental variables is to assess these parameters’ effect on propidium iodide (PI), a cell membrane impermeable dye, uptake to injected HeLa 229 cells. For the lance geometry experimentation, three different microfabricated lance geometries were used which include a flat/narrow (FN, 1 μm diameter), flat/wide (FW, 2–2.5 μm diameter), and pointed (P, 1 μm diameter) lance geometries. From these tests, it was shown that the FN lances had a slightly better cell viability rate of 91.73% and that the P lances had the best PI uptake rate of 75.08%. For the lance coating experimentation, two different lances were fabricated, both silicon etched lances with some being carbon coated (CC) in a  <100 nm layer of carbon and the other lances being non-coated (Si). Results from this experiment showed no significant difference between lance types at three different nanoinjection protocols (0V, +1.5V DC, and  +5V Pulsed) for both cell viability and PI uptake rates. One exception to this is the comparison of CC/5V Pul and Si/5V Pul samples, where the CC/5V Pul samples had a cell viability rate 5% higher. Both outcomes were unexpected and reveal how to better

  2. Genetically Induced Cell Death in Bulge Stem Cells Reveals Their Redundancy for Hair and Epidermal Regeneration

    OpenAIRE

    Driskell, Iwona; Oeztuerk-Winder, Feride; Humphreys, Peter; Frye, Michaela

    2014-01-01

    Adult mammalian epidermis contains multiple stem cell populations in which quiescent and more proliferative stem and progenitor populations coexist. However, the precise interrelation of these populations in homeostasis remains unclear. Here, we blocked the contribution of quiescent keratin 19 (K19)-expressing bulge stem cells to hair follicle formation through genetic ablation of the essential histone methyltransferase Setd8 that is required for the maintenance of adult skin. Deletion of Set...

  3. In vivo fluorescence imaging reveals the promotion of mammary tumorigenesis by mesenchymal stromal cells.

    Directory of Open Access Journals (Sweden)

    Chien-Chih Ke

    Full Text Available Mesenchymal stromal cells (MSCs are multipotent adult stem cells which are recruited to the tumor microenvironment (TME and influence tumor progression through multiple mechanisms. In this study, we examined the effects of MSCs on the tunmorigenic capacity of 4T1 murine mammary cancer cells. It was found that MSC-conditioned medium increased the proliferation, migration, and efficiency of mammosphere formation of 4T1 cells in vitro. When co-injected with MSCs into the mouse mammary fat pad, 4T1 cells showed enhanced tumor growth and generated increased spontaneous lung metastasis. Using in vivo fluorescence color-coded imaging, the interaction between GFP-expressing MSCs and RFP-expressing 4T1 cells was monitored. As few as five 4T1 cells could give rise to tumor formation when co-injected with MSCs into the mouse mammary fat pad, but no tumor was formed when five or ten 4T1 cells were implanted alone. The elevation of tumorigenic potential was further supported by gene expression analysis, which showed that when 4T1 cells were in contact with MSCs, several oncogenes, cancer markers, and tumor promoters were upregulated. Moreover, in vivo longitudinal fluorescence imaging of tumorigenesis revealed that MSCs created a vascularized environment which enhances the ability of 4T1 cells to colonize and proliferate. In conclusion, this study demonstrates that the promotion of mammary cancer progression by MSCs was achieved through the generation of a cancer-enhancing microenvironment to increase tumorigenic potential. These findings also suggest the potential risk of enhancing tumor progression in clinical cell therapy using MSCs. Attention has to be paid to patients with high risk of breast cancer when considering cell therapy with MSCs.

  4. Effects of Surface Modification of Nanotube Arrays on the Performance of CdS Quantum-Dot-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Danhong Li

    2013-01-01

    Full Text Available CdS-sensitized TiO2 nanotube arrays have been fabricated using the method of successive ionic layer adsorption and reaction and used as a photoanode for quantum-dot-sensitized solar cells. Before being coated with CdS, the surface of TiO2 nanotube arrays was treated with TiCl4, nitric acid (HNO3, potassium hydroxide (KOH, and methyltrimethoxysilane (MTMS, respectively, for the purpose of reducing the interface transfer resistance of quantum-dot-sensitized solar cells. The surfaces of the modified samples represented the characteristics of superhydrophilic and hydrophobic which directly affect the power conversion efficiency of the solar cells. The results showed that surface modification resulted in the reduction of the surface tension, which played a significant role in the connectivity of CdS and TiO2 nanotube arrays. In addition, the solar cells based on CdS/TiO2 electrode treated by HNO3 achieved a maximum power conversion efficiency of 0.17%, which was 42% higher than the reference sample without any modification.

  5. Age-Dependent Pancreatic Gene Regulation Reveals Mechanisms Governing Human β Cell Function.

    Science.gov (United States)

    Arda, H Efsun; Li, Lingyu; Tsai, Jennifer; Torre, Eduardo A; Rosli, Yenny; Peiris, Heshan; Spitale, Robert C; Dai, Chunhua; Gu, Xueying; Qu, Kun; Wang, Pei; Wang, Jing; Grompe, Markus; Scharfmann, Raphael; Snyder, Michael S; Bottino, Rita; Powers, Alvin C; Chang, Howard Y; Kim, Seung K

    2016-05-10

    Intensive efforts are focused on identifying regulators of human pancreatic islet cell growth and maturation to accelerate development of therapies for diabetes. After birth, islet cell growth and function are dynamically regulated; however, establishing these age-dependent changes in humans has been challenging. Here, we describe a multimodal strategy for isolating pancreatic endocrine and exocrine cells from children and adults to identify age-dependent gene expression and chromatin changes on a genomic scale. These profiles revealed distinct proliferative and functional states of islet α cells or β cells and histone modifications underlying age-dependent gene expression changes. Expression of SIX2 and SIX3, transcription factors without prior known functions in the pancreas and linked to fasting hyperglycemia risk, increased with age specifically in human islet β cells. SIX2 and SIX3 were sufficient to enhance insulin content or secretion in immature β cells. Our work provides a unique resource to study human-specific regulators of islet cell maturation and function. PMID:27133132

  6. Revealing the cellular localization of STAT1 during the cell cycle by super-resolution imaging

    Science.gov (United States)

    Gao, Jing; Wang, Feng; Liu, Yanhou; Cai, Mingjun; Xu, Haijiao; Jiang, Junguang; Wang, Hongda

    2015-03-01

    Signal transducers and activators of transcription (STATs) can transduce cytokine signals and regulate gene expression. The cellular localization and nuclear trafficking of STAT1, a representative of the STAT family with multiple transcriptional functions, is tightly related with transcription process, which usually happens in the interphase of the cell cycle. However, these priority questions regarding STAT1 distribution and localization at the different cell-cycle stages remain unclear. By using direct stochastic optical reconstruction microscopy (dSTORM), we found that the nuclear expression level of STAT1 increased gradually as the cell cycle carried out, especially after EGF stimulation. Furthermore, STAT1 formed clusters in the whole cell during the cell cycle, with the size and the number of clusters also increasing significantly from G1 to G2 phase, suggesting that transcription and other cell-cycle related activities can promote STAT1 to form more and larger clusters for fast response to signals. Our work reveals that the cellular localization and clustering distribution of STAT1 are associated with the cell cycle, and further provides an insight into the mechanism of cell-cycle regulated STAT1 signal transduction.

  7. Heterogeneous distribution of exocytotic microdomains in adrenal chromaffin cells resolved by high-density diamond ultra-microelectrode arrays.

    Science.gov (United States)

    Gosso, Sara; Turturici, Marco; Franchino, Claudio; Colombo, Elisabetta; Pasquarelli, Alberto; Carbone, Emilio; Carabelli, Valentina

    2014-08-01

    Here we describe the ability of a high-density diamond microelectrode array targeted to resolve multi-site detection of fast exocytotic events from single cells. The array consists of nine boron-doped nanocrystalline diamond ultra-microelectrodes (9-Ch NCD-UMEA) radially distributed within a circular area of the dimensions of a single cell. The device can be operated in voltammetric or chronoamperometric configuration. Sensitivity to catecholamines, tested by dose-response calibrations, set the lowest detectable concentration of adrenaline to ∼5 μm. Catecholamine release from bovine or mouse chromaffin cells could be triggered by electrical stimulation or external KCl-enriched solutions. Spikes detected from the cell apex using carbon fibre microelectrodes showed an excellent correspondence with events measured at the bottom of the cell by the 9-Ch NCD-UMEA, confirming the ability of the array to resolve single quantal secretory events. Subcellular localization of exocytosis was provided by assigning each quantal event to one of the nine channels based on its location. The resulting mapping highlights the heterogeneous distribution of secretory activity in cell microdomains of 12-27 μm2. In bovine chromaffin cells, secretion was highly heterogeneous with zones of high and medium activity in 54% of the cell surface and zones of low or no activity in the remainder. The 'non-active' ('silent') zones covered 24% of the total and persisted for 6-8 min, indicating stable location. The 9-Ch NCD-UMEA therefore appears suitable for investigating the microdomain organization of neurosecretion with high spatial resolution. PMID:24879870

  8. Live Cell Imaging Reveals the Dynamics of Telomerase Recruitment to Telomeres.

    Science.gov (United States)

    Schmidt, Jens C; Zaug, Arthur J; Cech, Thomas R

    2016-08-25

    Telomerase maintains genome integrity by adding repetitive DNA sequences to the chromosome ends in actively dividing cells, including 90% of all cancer cells. Recruitment of human telomerase to telomeres occurs during S-phase of the cell cycle, but the molecular mechanism of the process is only partially understood. Here, we use CRISPR genome editing and single-molecule imaging to track telomerase trafficking in nuclei of living human cells. We demonstrate that telomerase uses three-dimensional diffusion to search for telomeres, probing each telomere thousands of times each S-phase but only rarely forming a stable association. Both the transient and stable association events depend on the direct interaction of the telomerase protein TERT with the telomeric protein TPP1. Our results reveal that telomerase recruitment to telomeres is driven by dynamic interactions between the rapidly diffusing telomerase and the chromosome end. PMID:27523609

  9. Microcavity arrays as an in vitro model system of the bone marrow niche for hematopoietic stem cells.

    Science.gov (United States)

    Wuchter, Patrick; Saffrich, Rainer; Giselbrecht, Stefan; Nies, Cordula; Lorig, Hanna; Kolb, Stephanie; Ho, Anthony D; Gottwald, Eric

    2016-06-01

    In previous studies human mesenchymal stromal cells (MSCs) maintained the "stemness" of human hematopoietic progenitor cells (HPCs) through direct cell-cell contact in two-dimensional co-culture systems. We establish a three-dimensional (3D) co-culture system based on a custom-made chip, the 3(D)-KITChip, as an in vitro model system of the human hematopoietic stem cell niche. This array of up to 625 microcavities, with 300 μm size in each orientation, was inserted into a microfluidic bioreactor. The microcavities of the 3(D)-KITChip were inoculated with human bone marrow MSCs together with umbilical cord blood HPCs. MSCs used the microcavities as a scaffold to build a complex 3D mesh. HPCs were distributed three-dimensionally inside this MSC network and formed ß-catenin- and N-cadherin-based intercellular junctions to the surrounding MSCs. Using RT(2)-PCR and western blots, we demonstrate that a proportion of HPCs maintained the expression of CD34 throughout a culture period of 14 days. In colony-forming unit assays, the hematopoietic stem cell plasticity remained similar after 14 days of bioreactor co-culture, whereas monolayer co-cultures showed increasing signs of HPC differentiation and loss of stemness. These data support the notion that the 3D microenvironment created within the microcavity array preserves vital stem cell functions of HPCs more efficiently than conventional co-culture systems. PMID:26829941

  10. Effect of different agents onto multidrug resistant cells revealed by fluorescence correlation spectroscopy

    Science.gov (United States)

    Boutin, C.; Roche, Y.; Jaffiol, R.; Millot, J.-M.; Millot, C.; Plain, J.; Deturche, R.; Jeannesson, P.; Manfait, M.; Royer, P.

    Fluorescence correlation spectroscopy (FCS), which is a sensitive and non invasive technique, has been used to characterize the plasma membrane fluidity and heterogeneity of multidrug resistant living cells. At the single cell level, the effects of different membrane agents present in the extra-cellular medium have been analyzed. Firstly, we reveal a modification of plasma membrane microviscosity according to the addition of a fluidity modulator, benzyl alcohol. In the other hand, revertant such as verapamil and cyclosporin-A appears to act more specifically on the slow diffusion sites as microdomains.

  11. Specific lectin biomarkers for isolation of human pluripotent stem cells identified through array-based glycomic analysis

    Institute of Scientific and Technical Information of China (English)

    Yu-Chieh Wang; Trevor R Leonardo; Ying Liu; Suzanne E Peterson; Louise C Laurent; Shinya Yamanaka; Jeanne F Loring; Masato Nakagawa; Ibon Garitaonandia; Ileana Slavin; Gulsah Altun; Robert M Lacharite; Kristopher L Nazor; Ha T Tran; Candace L Lynch

    2011-01-01

    Rapid and dependable methods for isolating human pluripotent stem cell (hPSC) populations are urgently needed for quality control in basic research and in cell-based therapy applications.Using lectin arrays,we analyzed glycoproteins extracted from 26 hPSC samples and 22 differentiated cell samples,and identified a small group of iectins with distinctive binding signatures that were sufficient to distinguish hPSCs from a variety of non-pluripotent cell types.These specific biomarkers were shared by all the 12 human embryonic stem cell and the 14 human induced pluripotent stem cell samples examined,regardless of the laboratory of origin,the culture conditions,the somatic cell type reprogrammed,or the reprogramming method used.We demonstrated a practical application of specific lectin binding by detecting hPSCs within a differentiated cell population with lectin-mediated staining followed by fluorescence microscopy and flow cytometry,and by enriching and purging viable hPSCs from mixed cell populations using lectin-mediated cell separation.Global gene expression analysis showed pluripotency-associated differential expression of specific fucosyltransferases and sialyltransferases,which may underlie these differences in protein glycosylation and lectin binding.Taken together,our results show that protein glycosylation differs considerably between pluripotent and non-pluripotent cells,and demonstrate that lectins may be used as biomarkers to monitor pluripotency in stem cell populations and for removal of viable hPSCs from mixed cell populations.

  12. Single-cell transcriptome analysis reveals coordinated ectopic gene expression patterns in medullary thymic epithelial cells

    Science.gov (United States)

    Brennecke, Philip; Reyes, Alejandro; Pinto, Sheena; Rattay, Kristin; Nguyen, Michelle; Küchler, Rita; Huber, Wolfgang; Kyewski, Bruno; Steinmetz, Lars M.

    2015-01-01

    Expression of tissue-restricted self-antigens (TRAs) in medullary thymic epithelial cells (mTECs) is essential for self-tolerance induction and prevents autoimmunity, with each TRA being expressed in only a few mTECs. How this process is regulated in single mTECs and coordinated at the population level, such that the varied single-cell patterns add up to faithfully represent TRAs, is poorly understood. Here we used single-cell RNA-sequencing and provide evidence for numerous recurring TRA co-expression patterns, each present in only a subset of mTECs. Co-expressed genes clustered in the genome and showed enhanced chromatin accessibility. Our findings characterize TRA expression in mTECs as a coordinated process, which might involve local re-modeling of chromatin and thus ensures a comprehensive representation of the immunological self. PMID:26237553

  13. Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells

    Science.gov (United States)

    Paulose, Maggie; Shankar, Karthik; Varghese, Oomman K.; Mor, Gopal K.; Grimes, Craig A.

    2006-06-01

    Highly-ordered TiO2 nanotube arrays are made by potentiostatic anodization of a titanium film in a fluoride containing electrolyte. Here we describe the application of this unique material architecture in both front-side and back-side illuminated dye-sensitized solar cells (DSSCs). The back-side illuminated solar cells are based on the use of 6.2 µm long (110 nm pore diameter, 20 nm wall thickness) highly-ordered nanotube-array films made by anodization of a 250 µm thick Ti foil in a KF electrolyte. Front-side illuminated solar cells use a negative electrode composed of optically transparent nanotube arrays, approximately 3600 nm in length (46 nm pore diameter, 17 nm wall thickness), grown on a fluorine doped tin oxide coated glass substrate by anodic oxidation of a previously deposited RF-sputtered titanium thin film in a HF electrolyte. After crystallization by oxygen annealling the nanotube-arrays are treated with TiCl4 to enhance photocurrent amplitudes. The arrays are then sensitized by a self-assembled monolayer of bis(tetrabutylammonium)-cis-(dithiocyanato)-N, N'- bis(4-carboxylato-4'-carboxylic acid-2, 2'-bipyridine)ruthenium(II) (commonly called 'N719'). Superior photoresponse is obtained using acetonitrile as the dye solvent. Voltage decay measurements indicate that the highly-ordered TiO2 nanotube-arrays, in comparison with nanoparticulate systems, provide excellent pathways for electron percolation with superior electron lifetimes. The front-side illuminated DSSCs, show a typical AM 1.5 photocurrent of 10.3 mA cm-2, open circuit voltage of 0.84 V, 0.54 fill factor, and 4.7% efficiency although the transparent nanotube-array negative electrode is only 360 nm thick. The back-side illuminated DSSCs show an AM 1.5 short-circuit current density of 10.6 mA cm-2, 0.82 V open circuit potential and a 0.51 fill factor yielding a solar conversion efficiency of 4.4%.

  14. Mitochondrial DNA mutations in renal cell carcinomas revealed no general impact on energy metabolism

    OpenAIRE

    Meierhofer, D.; Mayr, J. A.; Fink, K.; Schmeller, N.; Kofler, B; Sperl, W.

    2006-01-01

    Previously, renal cell carcinoma tissues were reported to display a marked reduction of components of the respiratory chain. To elucidate a possible relationship between tumourigenesis and alterations of oxidative phosphorylation, we screened for mutations of the mitochondrial DNA (mtDNA) in renal carcinoma tissues and patient-matched normal kidney cortex. Seven of the 15 samples investigated revealed at least one somatic heteroplasmic mutation as determined by denaturating HPLC analysis (DHP...

  15. Functional Features of Trans-differentiated Hair Cells Mediated by Atoh1 Reveals a Primordial Mechanism

    OpenAIRE

    Yang, Juanmei; Bouvron, Sonia; Lv, Ping; Chi, Fanglu; Yamoah, Ebenezer N.

    2012-01-01

    Evolution has transformed a simple ear with few vestibular maculae into a complex 3-dimensional structure consisting of nine distinct endorgans. It is debatable whether the sensory epithelia underwent progressive segregation or emerged from distinct sensory patches. To address these uncertainties we examined the morphological and functional phenotype of trans-differentiated rat hair cells to reveal their primitive or endorgan-specific origins. Additionally, it is uncertain how Atoh1-mediated ...

  16. Early events leading to erythroid differentiation in mouse Friend cells revealed by cell fusion experiments

    International Nuclear Information System (INIS)

    Cell fusion with two genetically marked Friend (murine erythroleukemia) cells has made it possible to characterize the very early events leading to erythroid differentiation, particularly the nature of reactions initiated by inducers such as dimethyl sulfoxide. We have found that brief exposure of Friend cells to dimethyl sulfoxide (as well as butyric acid or hexamethylene-bisacetamide) induces an early cellular activity required for erythroid differentiation which is detected only by fusion with ultraviolet-irradiated cells. The induction process of this activity consists of at least two distinct stages. In the first stage, the reaction proceeds without supply of metabolites from the medium and exhibits sensitivity to tumor promoters. The second stage is tightly coupled to cellular metabolic activity, notably protein synthesis. Under normal conditions, the induced activity is short-lived, suggesting turnover of the molecules responsible for this activity. There appears to be a signal produced following dimethyl sulfoxide pulse which acts as an inducer for this activity. The signal remains active for as long as 40 hr when protein synthesis is blocked

  17. Label-free capture of breast cancer cells spiked in buffy coats using carbon nanotube antibody micro-arrays

    Science.gov (United States)

    Khosravi, Farhad; Trainor, Patrick; Rai, Shesh N.; Kloecker, Goetz; Wickstrom, Eric; Panchapakesan, Balaji

    2016-04-01

    We demonstrate the rapid and label-free capture of breast cancer cells spiked in buffy coats using nanotube-antibody micro-arrays. Single wall carbon nanotube arrays were manufactured using photo-lithography, metal deposition, and etching techniques. Anti-epithelial cell adhesion molecule (EpCAM) antibodies were functionalized to the surface of the nanotube devices using 1-pyrene-butanoic acid succinimidyl ester functionalization method. Following functionalization, plain buffy coat and MCF7 cell spiked buffy coats were adsorbed on to the nanotube device and electrical signatures were recorded for differences in interaction between samples. A statistical classifier for the ‘liquid biopsy’ was developed to create a predictive model based on dynamic time warping to classify device electrical signals that corresponded to plain (control) or spiked buffy coats (case). In training test, the device electrical signals originating from buffy versus spiked buffy samples were classified with ˜100% sensitivity, ˜91% specificity and ˜96% accuracy. In the blinded test, the signals were classified with ˜91% sensitivity, ˜82% specificity and ˜86% accuracy. A heatmap was generated to visually capture the relationship between electrical signatures and the sample condition. Confocal microscopic analysis of devices that were classified as spiked buffy coats based on their electrical signatures confirmed the presence of cancer cells, their attachment to the device and overexpression of EpCAM receptors. The cell numbers were counted to be ˜1-17 cells per 5 μl per device suggesting single cell sensitivity in spiked buffy coats that is scalable to higher volumes using the micro-arrays.

  18. Gene expression relationship between prostate cancer cells of Gleason 3, 4 and normal epithelial cells as revealed by cell type-specific transcriptomes

    International Nuclear Information System (INIS)

    Prostate cancer cells in primary tumors have been typed CD10-/CD13-/CD24hi/CD26+/CD38lo/CD44-/CD104-. This CD phenotype suggests a lineage relationship between cancer cells and luminal cells. The Gleason grade of tumors is a descriptive of tumor glandular differentiation. Higher Gleason scores are associated with treatment failure. CD26+ cancer cells were isolated from Gleason 3+3 (G3) and Gleason 4+4 (G4) tumors by cell sorting, and their gene expression or transcriptome was determined by Affymetrix DNA array analysis. Dataset analysis was used to determine gene expression similarities and differences between G3 and G4 as well as to prostate cancer cell lines and histologically normal prostate luminal cells. The G3 and G4 transcriptomes were compared to those of prostatic cell types of non-cancer, which included luminal, basal, stromal fibromuscular, and endothelial. A principal components analysis of the various transcriptome datasets indicated a closer relationship between luminal and G3 than luminal and G4. Dataset comparison also showed that the cancer transcriptomes differed substantially from those of prostate cancer cell lines. Genes differentially expressed in cancer are potential biomarkers for cancer detection, and those differentially expressed between G3 and G4 are potential biomarkers for disease stratification given that G4 cancer is associated with poor outcomes. Differentially expressed genes likely contribute to the prostate cancer phenotype and constitute the signatures of these particular cancer cell types

  19. Quantitative proteomics reveals middle infrared radiation-interfered networks in breast cancer cells.

    Science.gov (United States)

    Chang, Hsin-Yi; Li, Ming-Hua; Huang, Tsui-Chin; Hsu, Chia-Lang; Tsai, Shang-Ru; Lee, Si-Chen; Huang, Hsuan-Cheng; Juan, Hsueh-Fen

    2015-02-01

    Breast cancer is one of the leading cancer-related causes of death worldwide. Treatment of triple-negative breast cancer (TNBC) is complex and challenging, especially when metastasis has developed. In this study, we applied infrared radiation as an alternative approach for the treatment of TNBC. We used middle infrared (MIR) with a wavelength range of 3-5 μm to irradiate breast cancer cells. MIR significantly inhibited cell proliferation in several breast cancer cells but did not affect the growth of normal breast epithelial cells. We performed iTRAQ-coupled LC-MS/MS analysis to investigate the MIR-triggered molecular mechanisms in breast cancer cells. A total of 1749 proteins were identified, quantified, and subjected to functional enrichment analysis. From the constructed functionally enriched network, we confirmed that MIR caused G2/M cell cycle arrest, remodeled the microtubule network to an astral pole arrangement, altered the actin filament formation and focal adhesion molecule localization, and reduced cell migration activity and invasion ability. Our results reveal the coordinative effects of MIR-regulated physiological responses in concentrated networks, demonstrating the potential implementation of infrared radiation in breast cancer therapy. PMID:25556991

  20. Stem cell-like differentiation potentials of endometrial side population cells as revealed by a newly developed in vivo endometrial stem cell assay.

    Directory of Open Access Journals (Sweden)

    Kaoru Miyazaki

    Full Text Available BACKGROUND: Endometrial stem/progenitor cells contribute to the cyclical regeneration of human endometrium throughout a woman's reproductive life. Although the candidate cell populations have been extensively studied, no consensus exists regarding which endometrial population represents the stem/progenitor cell fraction in terms of in vivo stem cell activity. We have previously reported that human endometrial side population cells (ESP, but not endometrial main population cells (EMP, exhibit stem cell-like properties, including in vivo reconstitution of endometrium-like tissues when xenotransplanted into immunodeficient mice. The reconstitution efficiency, however, was low presumably because ESP cells alone could not provide a sufficient microenvironment (niche to support their stem cell activity. The objective of this study was to establish a novel in vivo endometrial stem cell assay employing cell tracking and tissue reconstitution systems and to examine the stem cell properties of ESP through use of this assay. METHODOLOGY/PRINCIPAL FINDINGS: ESP and EMP cells isolated from whole endometrial cells were infected with lentivirus to express tandem Tomato (TdTom, a red fluorescent protein. They were mixed with unlabeled whole endometrial cells and then transplanted under the kidney capsule of ovariectomized immunodeficient mice. These mice were treated with estradiol and progesterone for eight weeks and nephrectomized. All of the grafts reconstituted endometrium-like tissues under the kidney capsules. Immunofluorescence revealed that TdTom-positive cells were significantly more abundant in the glandular, stromal, and endothelial cells of the reconstituted endometrium in mice transplanted with TdTom-labeled ESP cells than those with TdTom-labeled EMP cells. CONCLUSIONS/SIGNIFICANCE: We have established a novel in vivo endometrial stem cell assay in which multi-potential differentiation can be identified through cell tracking during in vivo

  1. Fabrication of silicon nanowire arrays by macroscopic galvanic cell-driven metal catalyzed electroless etching in aerated HF solution.

    Science.gov (United States)

    Liu, Lin; Peng, Kui-Qing; Hu, Ya; Wu, Xiao-Ling; Lee, Shuit-Tong

    2014-03-01

    Macroscopic galvanic cell-driven metal catalyzed electroless etching (MCEE) of silicon in aqueous hydrofluoric acid (HF) solution is devised to fabricate silicon nanowire (SiNW) arrays with dissolved oxygen acting as the one and only oxidizing agent. The key aspect of this strategy is the use of a graphite or other noble metal electrode that is electrically coupled with silicon substrate. PMID:24323873

  2. Flexible organic/inorganic hybrid solar cells based on conjugated polymer and ZnO nanorod array

    International Nuclear Information System (INIS)

    We report on the photovoltaic characteristics of organic/inorganic hybrid solar cells fabricated on ‘flexible’ transparent substrates. The solar cell device is composed of ZnO nanorod array and the bulk heterojunction structured organic layer which is the blend of poly(3-hexylthiophene) (P3HT) and (6,6)-phenyl C61 butyric acid methyl ester (PCBM). The ZnO nanorod array was grown on indium tin oxide (ITO)-coated polyethylene terephthalate (PET) substrates via a low-temperature (85 °C) aqueous solution process. The blend solution consisting of conjugated polymer P3HT and fullerene PCBM was spin coated at a low spinning rate of 400 rpm on top of the ZnO nanorod array structure and then the photoactive layer was slow dried at room temperature in air to promote its infiltration into the nanorod network. As a top electrode, silver was sputtered on top of the photoactive layer. The flexible solar cell with the structure of PET/ITO/ZnO thin film/ZnO nanorods/P3HT:PCBM/Ag exhibited a photovoltaic performance with an open circuit voltage (VOC) of 0.52 V, a short circuit current density (JSC) of 9.82 mA cm−2, a fill factor (FF) of 35% and a power conversion efficiency (η) of 1.78%. All the measurements were performed under 100 mW cm−2 of illumination with an air mass 1.5 G filter. To the best of our knowledge, this is the first presentation of investigation into the fabrication and characterization of organic/inorganic hybrid solar cells based on bulk heterojunction structured conjugated polymer/fullerene photoactive layer and ZnO nanorod array constructed on flexible transparent substrates. (paper)

  3. A novel non-overlapping bi-clustering algorithm for network generation using living cell array data

    OpenAIRE

    Yang, E.; Foteinou, P.T.; King, K.R.; Yarmush, M L; Androulakis, I.P.

    2007-01-01

    The living cell array quantifies the contribution of activated transcription factors upon the expression levels of their target genes. The direct manipulation of the regulatory mechanisms offers enormous possibilities for deciphering the machinery that activates and controls gene expression. We propose a novel bi-clustering algorithm for generating non-overlapping clusters of reporter genes and conditions and demonstrate how this information can be interpreted in order to assist in the constr...

  4. An integrated micro-electro-fluidic and protein arraying system for parallel analysis of cell responses to controlled microenvironments

    OpenAIRE

    Yin, Zhizhong; Tao, Sheng-Ce; Cheong, Raymond; Zhu, Heng; Levchenko, Andre

    2010-01-01

    Living cells have evolved sophisticated signaling networks allowing them to respond to a wide array of external stimuli. Microfluidic devices, facilitating the analysis of signaling networks through precise definition of the cellular microenvironment often lack the capacity of delivering multiple combinations of different signaling cues, thus limiting the throughput of the analysis. To address this limitation, we developed a microfabricated platform combining microfluidic definition of the ce...

  5. Single step generation of protein arrays from DNA by cell-free expression and in situ immobilisation (PISA method)

    OpenAIRE

    He, Mingyue; Michael J. Taussig

    2001-01-01

    We describe a format for production of protein arrays termed ‘protein in situ array’ (PISA). A PISA is rapidly generated in one step directly from PCR-generated DNA fragments by cell-free protein expression and in situ immobilisation at a surface. The template for expression is DNA encoding individual proteins or domains, which is produced by PCR using primers designed from information in DNA databases. Coupled transcription and translation is carried out on a surface ...

  6. Chick embryo xenograft model reveals a novel perineural niche for human adipose-derived stromal cells

    Directory of Open Access Journals (Sweden)

    Ingrid R. Cordeiro

    2015-09-01

    Full Text Available Human adipose-derived stromal cells (hADSC are a heterogeneous cell population that contains adult multipotent stem cells. Although it is well established that hADSC have skeletal potential in vivo in adult organisms, in vitro assays suggest further differentiation capacity, such as into glia. Thus, we propose that grafting hADSC into the embryo can provide them with a much more instructive microenvironment, allowing the human cells to adopt diverse fates or niches. Here, hADSC spheroids were grafted into either the presumptive presomitic mesoderm or the first branchial arch (BA1 regions of chick embryos. Cells were identified without previous manipulations via human-specific Alu probes, which allows efficient long-term tracing of heterogeneous primary cultures. When grafted into the trunk, in contrast to previous studies, hADSC were not found in chondrogenic or osteogenic territories up to E8. Surprisingly, 82.5% of the hADSC were associated with HNK1+ tissues, such as peripheral nerves. Human skin fibroblasts showed a smaller tropism for nerves. In line with other studies, hADSC also adopted perivascular locations. When grafted into the presumptive BA1, 74.6% of the cells were in the outflow tract, the final goal of cardiac neural crest cells, and were also associated with peripheral nerves. This is the first study showing that hADSC could adopt a perineural niche in vivo and were able to recognize cues for neural crest cell migration of the host. Therefore, we propose that xenografts of human cells into chick embryos can reveal novel behaviors of heterogeneous cell populations, such as response to migration cues.

  7. Gene expression profiling reveals novel regulation by bisphenol-A in estrogen receptor-α-positive human cells

    International Nuclear Information System (INIS)

    Bisphenol-A (BPA) shows proliferative actions in uterus and mammary glands and may influence the development of male and female reproductive tracts in utero or during early postnatal life. Because of its ability to function as an estrogen receptor (ER) agonist, BPA has the potential to disrupt normal endocrine signaling through regulation of ER target genes. Some genes are regulated by both estradiol (E2) and BPA, but those exclusive to either agent have not been described. Using a yeast strain incorporating a vitellogenin A2 ERE-LacZ reporter gene into the genome, we found that BPA induced expression of the reporter in colonies transformed with the ERα expression plasmid, illustrating BPA-mediated regulation within a chromatin context. Additionally, a reporter gene transiently transfected into the endometrial cancer (Ishikawa) cell line also showed BPA activity, although at 100-fold less potency than E2. To compare global gene expression in response to BPA and E2, we used a variant of the MCF-7 breast cancer cell line stably expressing HA-tagged ERα. Cultures were treated for 3 h with an ethanol vehicle, E2 (10-8 M), or BPA (10-6 M), followed by isolation of RNA and microarray analysis with the human U95A probe array (Affymetrix, Santa Clara, CA, USA). More than 300 genes were changed 2-fold or more by either or both agents, with roughly half being up-regulated and half down-regulated. A number of growth- and development-related genes, such as HOXC1 and C6, Wnt5A, Frizzled, TGFβ-2, and STAT inhibitor 2, were found to be affected exclusively by BPA. We used quantitative real-time PCR to verify regulation of the HOXC6 gene, which showed decreased expression of approximately 2.5-fold by BPA. These results reveal novel effects by BPA and E2, raising interesting possibilities regarding the role of endocrine disruptors in sexual development

  8. Integration of TiO2 nanotube arrays into solid-state dye-sensitized solar cells

    Science.gov (United States)

    Bandara, J.; Shankar, K.; Basham, J.; Wietasch, H.; Paulose, M.; Varghese, O. K.; Grimes, C. A.; Thelakkat, M.

    2011-02-01

    In this investigation, transparent TiO2 nanotube arrays prepared on a FTO substrate are employed as 1D nanostructures providing elongated direct pathways for electron transport and collection in solid-state dye-sensitized solar cell (SDSC). Donor-antenna (D-A) dyes provide an exciting route for improving the light harvesting efficiency in dye sensitized solar cells owing to their high molar extinction coefficients and the effective spatial separation of charges in the charge-separated state. Hence in this study we fabricated SDSC devices with different thicknesses of transparent TiO2 nanotube array electrodes sensitized with Ru-(II)-donor-antenna dye and spiro-OMeTAD as a hole conductor. At AM 1.5 G, 100 mW/cm2 illumination intensity, a power conversion efficiency of 1.94% was achieved when the TiO2 nanotubes are initially subjected to TiCl4 treatment. Furthermore, a linear increase in the cell current without loss in fill factor is observed for increasing length of TiO2 nanotubes. The structural and morphological characteristics of the transparent TiO2 nanotube arrays as well as the optimal conditions for the fabrication of SDSCs with transparent TiO2 nanotubes on FTO glass are reported.

  9. Zinc oxide–zinc stannate core–shell nanorod arrays for CdS quantum dot sensitized solar cells

    International Nuclear Information System (INIS)

    Highlights: ► Use of ZnO–Zn2SnO4 core–shell nanorod arrays for CdS quantum dot sensitized solar cells has been reported here. ► The ZnO–Zn2SnO4 core–shell nanorod arrays were prepared by a simple two step hydrothermal process. ► Due to the high surface area and improved charge separation, the core–shell CdS QDSSC demonstrated high photocurrent and photovoltage. ► A maximum power conversion efficiency of 1.24% was achieved for the ZnO–Zn2SnO4 core–shell CdS QDSSC. - Abstract: Nanorod arrays of zinc oxide–zinc stannate core–shell photoelectrodes were prepared by a simple hydrothermal process and cadmium sulfide (CdS) quantum dot sensitized solar cells were fabricated. The photocurrent density of the core–shell photoelectrode was found to improve by ∼2.4 times compared to ZnO nanorod photoelectrodes, due to improved surface area and charge transport in the core–shell photoelectrodes. With a thin layer of ZnS on the CdS quantum dot surface, the core–shell quantum dot sensitized solar cell demonstrated maximum power conversion efficiency of 1.24% under 1 sun illumination (AM1.5).

  10. Prognostic Impact of Array-based Genomic Profiles in Esophageal Squamous Cell Cancer

    International Nuclear Information System (INIS)

    Esophageal squamous cell carcinoma (ESCC) is a genetically complex tumor type and a major cause of cancer related mortality. Although distinct genetic alterations have been linked to ESCC development and prognosis, the genetic alterations have not gained clinical applicability. We applied array-based comparative genomic hybridization (aCGH) to obtain a whole genome copy number profile relevant for identifying deranged pathways and clinically applicable markers. A 32 k aCGH platform was used for high resolution mapping of copy number changes in 30 stage I-IV ESCC. Potential interdependent alterations and deranged pathways were identified and copy number changes were correlated to stage, differentiation and survival. Copy number alterations affected median 19% of the genome and included recurrent gains of chromosome regions 5p, 7p, 7q, 8q, 10q, 11q, 12p, 14q, 16p, 17p, 19p, 19q, and 20q and losses of 3p, 5q, 8p, 9p and 11q. High-level amplifications were observed in 30 regions and recurrently involved 7p11 (EGFR), 11q13 (MYEOV, CCND1, FGF4, FGF3, PPFIA, FAD, TMEM16A, CTTS and SHANK2) and 11q22 (PDFG). Gain of 7p22.3 predicted nodal metastases and gains of 1p36.32 and 19p13.3 independently predicted poor survival in multivariate analysis. aCGH profiling verified genetic complexity in ESCC and herein identified imbalances of multiple central tumorigenic pathways. Distinct gains correlate with clinicopathological variables and independently predict survival, suggesting clinical applicability of genomic profiling in ESCC

  11. 34% Efficient InGaP/GaAs/GaSb Cell-Interconnected-Circuits for Line-Focus Concentrator Arrays

    Science.gov (United States)

    Fraas, L. M.; Daniels, W. E.; Huang, H. X.; Minkin, L. E.; Avery, J. E.; Chu, C.; Iles, P.; ONeill, M. J.; McDanal, A. J.; Piszczor, Mike

    2002-01-01

    While monolithic multi-junction cells are preferred for flat plate arrays, mechanically stacked multi-junction cells are superior for solar concentrator applications. Reasons for this are that the mechanical stacked configuration with high efficiency Gallium Antimonide cells allows utilization of a much wider range of the solar energy spectrum, and the ability to use voltage matched interconnects results in full use of low bandgap cell currents. Herein, data are presented for simple two terminal voltage-matched circuits using InGaP/GaAs/GaSb stacked cells showing 34% average circuit efficiency for a lot of 12 circuits given prismatic covers. These circuits have been designed to fit into the ultralight Stretched Lens Array being developed by NASA. With these new cell-interconnected-circuits, we project that the power density at GEO operating temperature can be increased from 296 W/m2 to 350 W/m2 while maintaining the specific power at 190 W/kg at the full wing level.

  12. Transcriptional activity around bacterial cell death reveals molecular biomarkers for cell viability

    Directory of Open Access Journals (Sweden)

    Schuren Frank H

    2008-12-01

    Full Text Available Abstract Background In bacteriology, the ability to grow in selective media and to form colonies on nutrient agar plates is routinely used as a retrospective criterion for the detection of living bacteria. However, the utilization of indicators for bacterial viability-such as the presence of specific transcripts or membrane integrity-would overcome bias introduced by cultivation and reduces the time span of analysis from initiation to read out. Therefore, we investigated the correlation between transcriptional activity, membrane integrity and cultivation-based viability in the Gram-positive model bacterium Bacillus subtilis. Results We present microbiological, cytological and molecular analyses of the physiological response to lethal heat stress under accurately defined conditions through systematic sampling of bacteria from a single culture exposed to gradually increasing temperatures. We identified a coherent transcriptional program including known heat shock responses as well as the rapid expression of a small number of sporulation and competence genes, the latter only known to be active in the stationary growth phase. Conclusion The observed coordinated gene expression continued even after cell death, in other words after all bacteria permanently lost their ability to reproduce. Transcription of a very limited number of genes correlated with cell viability under the applied killing regime. The transcripts of the expressed genes in living bacteria – but silent in dead bacteria-include those of essential genes encoding chaperones of the protein folding machinery and can serve as molecular biomarkers for bacterial cell viability.

  13. Metabolomic profiles reveal key metabolic changes in heat stress-treated mouse Sertoli cells.

    Science.gov (United States)

    Xu, Bo; Chen, Minjian; Ji, Xiaoli; Yao, Mengmeng; Mao, Zhilei; Zhou, Kun; Xia, Yankai; Han, Xiao; Tang, Wei

    2015-10-01

    Heat stress (HS) is a potential harmful factor for male reproduction. However, the effect of HS on Sertoli cells is largely unknown. In this study, the metabolic changes in Sertoli cell line were analyzed after HS treatment. Metabolomic analysis revealed that carnitine, 2-hydroxy palmitic acid, nicotinic acid, niacinamide, adenosine monophosphate, glutamine and creatine were the key changed metabolites. We found the expression levels of BTB factors (Connexin43, ZO-1, Vimentin, Claudin1, Claudin5) were disrupted in TM-4 cells after HS treatment, which were recovered by the addition of carnitine. RT-PCR indicated that the mRNA levels of inflammatory cytokines (IL-1α, IL-1β, IL-6) were increased after HS treatment, and their related miRNAs (miR-132, miR-431, miR-543) levels were decreased. Our metabolomic data provided a novel understanding of metabolic changes in male reproductive cells after HS treatment and revealed that HS-induced changes of BTB factors and inflammatory status might be caused by the decreased carnitine after HS treatment. PMID:26165742

  14. Development of a nano-technology based low-LET multi-microbeam array single cell irradiation system

    International Nuclear Information System (INIS)

    A novel single cell irradiation system using carbon nano-tube (CNT) based field emission technology is proposed. The system can produce electron microbeam at a large range of pulsation frequencies and dose rates with energy between 20 and 60 keV. Different from any existing single beam microbeam device, the CNT-based system can have 10,000 microbeam pixels, each is ∼10 μm in size and individually controlled. Microscope imaging will be used for targeting cell(s) and the coordinate(s) identification. A single cell or large number of individually selected cells can be simultaneously irradiated under real time microscope observation. This poster reports our preliminary results in the initial stage of the CNT multi-pixel microbeam array development - prototype single pixel CNT microbeam device development. (authors)

  15. Atmospheric-pressure plasma-jet from micronozzle array and its biological effects on living cells for cancer therapy

    Science.gov (United States)

    Kim, Kangil; Choi, Jae Duk; Hong, Yong Cheol; Kim, Geunyoung; Noh, Eun Joo; Lee, Jong-Soo; Yang, Sang Sik

    2011-02-01

    We propose a plasma-jet device with a micrometer-sized nozzle array for use in a cancer therapy. Also, we show the biological effects of atmospheric-pressure plasma on living cells. Nitrogen-plasma activated a surrogate DNA damage signal transduction pathway, called the ataxia telangiectasia mutated (ATM)-checkpoint kinase 2 pathway, suggesting that the nitrogen-plasma generates DNA double-strand breaks. Phosphorylation of H2AX and p53 was detected in the plasma-treated cells, leading to apoptotic cell death. Thus, an effect for the nitrogen plasma in the control of apoptotic cell death provides insight into the how biological effects of the nitrogen-plasma can be applied to the control of cell survival, a finding with potential therapeutic implications.

  16. Modeling chronic myeloid leukemia in immunodeficient mice reveals expansion of aberrant mast cells and accumulation of pre-B cells

    International Nuclear Information System (INIS)

    Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm that, if not treated, will progress into blast crisis (BC) of either myeloid or B lymphoid phenotype. The BCR-ABL1 fusion gene, encoding a constitutively active tyrosine kinase, is thought to be sufficient to cause chronic phase (CP) CML, whereas additional genetic lesions are needed for progression into CML BC. To generate a humanized CML model, we retrovirally expressed BCR-ABL1 in the cord blood CD34+ cells and transplanted these into NOD-SCID (non-obese diabetic/severe-combined immunodeficient) interleukin-2-receptor γ-deficient mice. In primary mice, BCR-ABL1 expression induced an inflammatory-like state in the bone marrow and spleen, and mast cells were the only myeloid lineage specifically expanded by BCR-ABL1. Upon secondary transplantation, the pronounced inflammatory phenotype was lost and mainly human mast cells and macrophages were found in the bone marrow. Moreover, a striking block at the pre-B-cell stage was observed in primary mice, resulting in an accumulation of pre-B cells. A similar block in B-cell differentiation could be confirmed in primary cells from CML patients. Hence, this humanized mouse model of CML reveals previously unexplored features of CP CML and should be useful for further studies to understand the disease pathogenesis of CML

  17. Ordered crystalline TiO2 nanohexagon arrays for improving conversion efficiency of dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Anatase TiO2 nanohexagon arrays were grown by using an anodization process of Ti foil in fluoride containing electrolytes. Photoanode based on the as-grown anatase TiO2 nanohexagon arrays for DSSCs showed a power photoconversion efficiency of 4.01% and incident photon-to-current conversion efficiency of 68%, which are significantly higher than those of the device based on anatase TiO2 nanotube arrays. This improvement in power conversion efficiency should be attributed to the fact that the nanotubes with hexagonal structure have higher surface area to allow the uploading of more dye molecules for light harvesting. Also, the spacing introduced inside the hexagon might allow the dye molecules to cover the interior of the walls. In addition, it is believed that the photoconversion efficiency can be further increased by optimizing the hexagonal structure through the electrochemical conditions. - Graphical abstract: Nanotubes with hexagonal structure have higher surface area to allow the uploading of more dye molecules for light harvesting in dye-sensitized solar cells. - Highlights: • A unique TiO2 nanohexagon arrays were grown by an anodization process. • Higher surface area for dye uploading provided by the hexagon structure. • TiO2 nanohexagon based photoanode has PCE of 4.01% and IPCE of 68%

  18. Ordered crystalline TiO{sub 2} nanohexagon arrays for improving conversion efficiency of dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Javed, Hafiz Muhammad Asif [Electronic Materials Research Laboratory, International Center for Dielectric Research, Key Laboratory of the Ministry of Education, State Key Laboratory for Manufacturing Systems Engineering, Xi' an Jiaotong University, Xi' an, 710049 (China); Que, Wenxiu, E-mail: wxque@mail.xjtu.edu.cn [Electronic Materials Research Laboratory, International Center for Dielectric Research, Key Laboratory of the Ministry of Education, State Key Laboratory for Manufacturing Systems Engineering, Xi' an Jiaotong University, Xi' an, 710049 (China); Yin, Xingtian; Xing, Yonglei; Liu, Xiaobin; Asghar, Ali; Shao, Jinyou [Electronic Materials Research Laboratory, International Center for Dielectric Research, Key Laboratory of the Ministry of Education, State Key Laboratory for Manufacturing Systems Engineering, Xi' an Jiaotong University, Xi' an, 710049 (China); Kong, Ling Bing, E-mail: ELBKong@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, Nanyang Avenue, Singapore, 639798 (Singapore)

    2015-10-15

    Anatase TiO{sub 2} nanohexagon arrays were grown by using an anodization process of Ti foil in fluoride containing electrolytes. Photoanode based on the as-grown anatase TiO{sub 2} nanohexagon arrays for DSSCs showed a power photoconversion efficiency of 4.01% and incident photon-to-current conversion efficiency of 68%, which are significantly higher than those of the device based on anatase TiO{sub 2} nanotube arrays. This improvement in power conversion efficiency should be attributed to the fact that the nanotubes with hexagonal structure have higher surface area to allow the uploading of more dye molecules for light harvesting. Also, the spacing introduced inside the hexagon might allow the dye molecules to cover the interior of the walls. In addition, it is believed that the photoconversion efficiency can be further increased by optimizing the hexagonal structure through the electrochemical conditions. - Graphical abstract: Nanotubes with hexagonal structure have higher surface area to allow the uploading of more dye molecules for light harvesting in dye-sensitized solar cells. - Highlights: • A unique TiO{sub 2} nanohexagon arrays were grown by an anodization process. • Higher surface area for dye uploading provided by the hexagon structure. • TiO{sub 2} nanohexagon based photoanode has PCE of 4.01% and IPCE of 68%.

  19. Transcriptomic changes in human renal proximal tubular cells revealed under hypoxic conditions by RNA sequencing.

    Science.gov (United States)

    Yu, Wenmin; Li, Yiping; Wang, Zhi; Liu, Lei; Liu, Jing; Ding, Fengan; Zhang, Xiaoyi; Cheng, Zhengyuan; Chen, Pingsheng; Dou, Jun

    2016-09-01

    Chronic hypoxia often occurs among patients with chronic kidney disease (CKD). Renal proximal tubular cells may be the primary target of a hypoxic insult. However, the underlying transcriptional mechanisms remain undefined. In this study, we revealed the global changes in gene expression in HK‑2 human renal proximal tubular cells under hypoxic and normoxic conditions. We analyzed the transcriptome of HK‑2 cells exposed to hypoxia for 24 h using RNA sequencing. A total of 279 differentially expressed genes was examined, as these genes could potentially explain the differences in HK‑2 cells between hypoxic and normoxic conditions. Moreover, 17 genes were validated by qPCR, and the results were highly concordant with the RNA seqencing results. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to better understand the functions of these differentially expressed genes. The upregulated genes appeared to be significantly enriched in the pathyway of extracellular matrix (ECM)-receptor interaction, and in paticular, the pathway of renal cell carcinoma was upregulated under hypoxic conditions. The downregulated genes were enriched in the signaling pathway related to antigen processing and presentation; however, the pathway of glutathione metabolism was downregulated. Our analysis revealed numerous novel transcripts and alternative splicing events. Simultaneously, we also identified a large number of single nucleotide polymorphisms, which will be a rich resource for future marker development. On the whole, our data indicate that transcriptome analysis provides valuable information for a more in depth understanding of the molecular mechanisms in CKD and renal cell carcinoma. PMID:27432315

  20. Photoelectrochemical cell/dye-sensitized solar cell tandem water splitting systems with transparent and vertically aligned quantum dot sensitized TiO2 nanorod arrays

    Science.gov (United States)

    Shin, Kahee; Yoo, Ji-Beom; Park, Jong Hyeok

    2013-03-01

    The present work reports fabrication of vertically aligned CdS sensitized TiO2 nanorod arrays grown on transparent conducting oxide substrate with high transparency as a photoanode in photoelectrochemical cell for water splitting. To realize an unassisted water splitting system, the photoanode and dye-sensitized solar cell tandem structures are tried and their electrochemical behaviors are also investigated. The hydrothermally grown TiO2 nanorod arrays followed by CdS nanoparticle decoration can improve the light absorption of long wavelength light resulting in increased photocurrent density. Two different techniques (electrodeposition and spray pyrolysis deposition) of CdS nanoparticle sensitization are carried out and their water splitting behaviors in the tandem cell are compared.

  1. A CdSe thin film: a versatile buffer layer for improving the performance of TiO2 nanorod array:PbS quantum dot solar cells

    Science.gov (United States)

    Tan, Furui; Wang, Zhijie; Qu, Shengchun; Cao, Dawei; Liu, Kong; Jiang, Qiwei; Yang, Ying; Pang, Shan; Zhang, Weifeng; Lei, Yong; Wang, Zhanguo

    2016-05-01

    To fully utilize the multiple exciton generation effects in quantum dots and improve the overall efficiency of the corresponding photovoltaic devices, nanostructuralizing the electron conducting layer turns out to be a feasible strategy. Herein, PbS quantum dot solar cells were fabricated on the basis of morphologically optimized TiO2 nanorod arrays. By inserting a thin layer of CdSe quantum dots into the interface of TiO2 and PbS, a dramatic enhancement in the power conversion efficiency from 4.2% to 5.2% was realized and the resulting efficiency is one of the highest values for quantum dot solar cells based on nanostructuralized buffer layers. The constructed double heterojunction with a cascade type-II energy level alignment is beneficial for promoting photogenerated charge separation and reducing charge recombination, thereby responsible for the performance improvement, as revealed by steady-state analyses as well as ultra-fast photoluminescence and photovoltage decays. Thus this paper provides a good buffer layer to the community of quantum dot solar cells.To fully utilize the multiple exciton generation effects in quantum dots and improve the overall efficiency of the corresponding photovoltaic devices, nanostructuralizing the electron conducting layer turns out to be a feasible strategy. Herein, PbS quantum dot solar cells were fabricated on the basis of morphologically optimized TiO2 nanorod arrays. By inserting a thin layer of CdSe quantum dots into the interface of TiO2 and PbS, a dramatic enhancement in the power conversion efficiency from 4.2% to 5.2% was realized and the resulting efficiency is one of the highest values for quantum dot solar cells based on nanostructuralized buffer layers. The constructed double heterojunction with a cascade type-II energy level alignment is beneficial for promoting photogenerated charge separation and reducing charge recombination, thereby responsible for the performance improvement, as revealed by steady

  2. On-line observation of cell growth in a three-dimensional matrix on surface modified microelectrode arrays

    OpenAIRE

    Lin, Shu-Ping; Kyriakides, Themis R.; Chen, Jia-Jin J.

    2009-01-01

    Despite many successful applications of microelectrode arrays (MEAs), typical two-dimensional in-vitro cultures do not project the full scale of the cell growth environment in the three-dimensional (3D) in-vivo setting. This study aims to on-line monitor in-vitro cell growth in a 3D matrix on the surface-modified MEAs with a dynamic perfusion culture system. A 3D matrix consisting of poly(ethylene glycol) hydrogel supplemented with poly-D-lysine was subsequently synthesized in-situ on the sel...

  3. Wafer-Scale Integration of Inverted Nanopyramid Arrays for Advanced Light Trapping in Crystalline Silicon Thin Film Solar Cells.

    Science.gov (United States)

    Zhou, Suqiong; Yang, Zhenhai; Gao, Pingqi; Li, Xiaofeng; Yang, Xi; Wang, Dan; He, Jian; Ying, Zhiqin; Ye, Jichun

    2016-12-01

    Crystalline silicon thin film (c-Si TF) solar cells with an active layer thickness of a few micrometers may provide a viable pathway for further sustainable development of photovoltaic technology, because of its potentials in cost reduction and high efficiency. However, the performance of such cells is largely constrained by the deteriorated light absorption of the ultrathin photoactive material. Here, we report an efficient light-trapping strategy in c-Si TFs (~20 μm in thickness) that utilizes two-dimensional (2D) arrays of inverted nanopyramid (INP) as surface texturing. Three types of INP arrays with typical periodicities of 300, 670, and 1400 nm, either on front, rear, or both surfaces of the c-Si TFs, are fabricated by scalable colloidal lithography and anisotropic wet etch technique. With the extra aid of antireflection coating, the sufficient optical absorption of 20-μm-thick c-Si with a double-sided 1400-nm INP arrays yields a photocurrent density of 39.86 mA/cm(2), which is about 76 % higher than the flat counterpart (22.63 mA/cm(2)) and is only 3 % lower than the value of Lambertian limit (41.10 mA/cm(2)). The novel surface texturing scheme with 2D INP arrays has the advantages of excellent antireflection and light-trapping capabilities, an inherent low parasitic surface area, a negligible surface damage, and a good compatibility for subsequent process steps, making it a good alternative for high-performance c-Si TF solar cells. PMID:27071681

  4. Wafer-Scale Integration of Inverted Nanopyramid Arrays for Advanced Light Trapping in Crystalline Silicon Thin Film Solar Cells

    Science.gov (United States)

    Zhou, Suqiong; Yang, Zhenhai; Gao, Pingqi; Li, Xiaofeng; Yang, Xi; Wang, Dan; He, Jian; Ying, Zhiqin; Ye, Jichun

    2016-04-01

    Crystalline silicon thin film (c-Si TF) solar cells with an active layer thickness of a few micrometers may provide a viable pathway for further sustainable development of photovoltaic technology, because of its potentials in cost reduction and high efficiency. However, the performance of such cells is largely constrained by the deteriorated light absorption of the ultrathin photoactive material. Here, we report an efficient light-trapping strategy in c-Si TFs (~20 μm in thickness) that utilizes two-dimensional (2D) arrays of inverted nanopyramid (INP) as surface texturing. Three types of INP arrays with typical periodicities of 300, 670, and 1400 nm, either on front, rear, or both surfaces of the c-Si TFs, are fabricated by scalable colloidal lithography and anisotropic wet etch technique. With the extra aid of antireflection coating, the sufficient optical absorption of 20-μm-thick c-Si with a double-sided 1400-nm INP arrays yields a photocurrent density of 39.86 mA/cm2, which is about 76 % higher than the flat counterpart (22.63 mA/cm2) and is only 3 % lower than the value of Lambertian limit (41.10 mA/cm2). The novel surface texturing scheme with 2D INP arrays has the advantages of excellent antireflection and light-trapping capabilities, an inherent low parasitic surface area, a negligible surface damage, and a good compatibility for subsequent process steps, making it a good alternative for high-performance c-Si TF solar cells.

  5. Robustness and adaptation reveal plausible cell cycle controlling subnetwork in Saccharomyces cerevisiae.

    Science.gov (United States)

    Huang, Jiun-Yan; Huang, Chi-Wei; Kao, Kuo-Ching; Lai, Pik-Yin

    2013-04-10

    Biological systems are often organized spatially and temporally by multi-scale functional subsystems (modules). A specific subcellular process often corresponds to a subsystem composed of some of these interconnected modules. Accurate identification of system-level modularity organization from the large scale networks can provide valuable information on subsystem models of subcellular processes or physiological phenomena. Computational identification of functional modules from the large scale network is the key approach to solve the complexity of modularity in the past decade, but the overlapping and multi-scale nature of modules often renders unsatisfactory results in these methods. Most current methods for modularity detection are optimization-based and suffered from the drawback of size resolution limit. It is difficult to trace the origin of the unsatisfactory results, which may be due to poor data, inappropriate objective function selection or simply resulted from natural evolution, and hence no system-level accurate modular models for subcellular processes can be offered. Motivated by the idea of evolution with robustness and adaption as guiding principles, we propose a novel approach that can identify significant multi-scale overlapping modules that are sufficiently accurate at the system and subsystem levels, giving biological insights for subcellular processes. The success of our evolution strategy method is demonstrated by applying to the yeast protein-protein interaction network. Functional subsystems of important physiological phenomena can be revealed. In particular, the cell cycle controlling network is selected for detailed discussion. The cell cycle subcellular processes in yeast can be successfully dissected into functional modules of cell cycle control, cell size check point, spindle assembly checkpoint, and DNA damage check point in G2/M and S phases. The interconnections between check points and cell cycle control modules provide clues on the

  6. 16.1% Efficient Hysteresis-Free Mesostructured Perovskite Solar Cells Based on Synergistically Improved ZnO Nanorod Arrays

    KAUST Repository

    Mahmood, Khalid

    2015-06-01

    Significant efficiency improvements are reported in mesoscopic perovskite solar cells based on the development of a low-temperature solution-processed ZnO nanorod (NR) array exhibiting higher NR aspect ratio, enhanced electron density, and substantially reduced work function than conventional ZnO NRs. These features synergistically result in hysteresis-free, scan-independent, and stabilized devices with an efficiency of 16.1%. Electron-rich, nitrogen-doped ZnO (N:ZnO) NR-based electron transporting materials (ETMs) with enhanced electron mobility produced using ammonium acetate show consistently higher efficiencies by one to three power points than undoped ZnO NRs. Additionally, the preferential electrostatic interaction between the -nonpolar facets of N:ZnO and the conjugated polyelectrolyte polyethylenimine (PEI) has been relied on to promote the hydrothermal growth of high aspect ratio NR arrays and substantially improve the infiltration of the perovskite light absorber into the ETM. Using the same interactions, a conformal PEI coating on the electron-rich high aspect ratio N:ZnO NR arrays is -successfully applied, resulting in a favorable work function shift and altogether leading to the significant boost in efficiency from <10% up to >16%. These results largely surpass the state-of-the-art PCE of ZnO-based perovskite solar cells and highlight the benefits of synergistically combining mesoscale control with doping and surface modification. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Preparation and properties of a phthalocyanine-sensitized TiO2 nanotube array for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Dye-sensitized solar cells (DSSCs) based on an ordered titanate nanotube (TNT) array were fabricated using phthalocyanine as a dye sensitizer. The ordered TNT photoanode was prepared via two steps: (1) electrosynthesis of the TiO2 nanotube array in the HF solution by the anodization method; (2) electrodeposition of 2,9,16,23-tetra-amino zinc phthalocyanine (TAZnPc) in the TiO2 nanotubes array. The morphological characteristics and structures of TAZnPc immobilized TiO2 NTs (TAZnPc/TiO2 NTs) were examined. The average pore diameter of the TNT structures was 100 nm and its average length was 500 nm. The diffuse reflection spectra (DRS) curves of TAZnPc/TiO2 NTs had a wide absorption at 550–950 nm, which may come from the TAZnPc. The photocurrent and photovoltage of the cells were measured with an active area of 0.25 cm2 by using CHI660B electrochemical workstation in the condition of illumination (AM 1.5, 100 mW cm−2). The open circuit voltage (Voc), short circuit current (Jsc) and fill factor (FF) of the DSSC are 0.416 V, 0.115 mA cm−2 and 0.68, respectively

  8. A high-performance photovoltaic concentrator array - The mini-dome Fresnel lens concentrator with 30 percent efficient GaAs/GaSb tandem cells

    Science.gov (United States)

    Piszczor, M. F.; Brinker, D. J.; Flood, D. J.; Avery, J. E.; Fraas, L. M.; Fairbanks, E. S.; Yerkes, J. W.; O'Neill, M. J.

    1991-01-01

    A high-efficiency, lightweight space photovoltaic concentrator array is described. Previous work on the minidome Fresnel lens concentrator concept is being integrated with Boeing's 30 percent efficient tandem GaAs/GaSb concentrator cells into a high-performance photovoltaic array. Calculations indicate that, in the near term, such an array can achieve 300 W/sq m at a specific power of 100 W/kg. Emphasis of the program has now shifted to integrating the concentrator lens, tandem cell, and supporting panel structure into a space-qualifiable array. A description is presented of the current status of component and prototype panel testing and the development of a flight panel for the Photovoltaic Array Space Power Plus Diagnostics (PASP PLUS) flight experiment.

  9. Performance assessments of vertically aligned carbon nanotubes multi-electrode arrays using Cath.a-differentiated (CAD) cells

    Science.gov (United States)

    Jeong, Du Won; Jung, Jongjin; Kim, Gook Hwa; Yang, Cheol-Soo; Kim, Ju Jin; Jung, Sang Don; Lee, Jeong-O.

    2015-08-01

    In this work, Cath.a-differentiated (CAD) cells were used in place of primary neuronal cells to assess the performance of vertically aligned carbon nanotubes (VACNTs) multi-electrode arrays (MEA). To fabricate high-performance MEA, VACNTs were directly grown on graphene/Pt electrodes via plasma enhanced chemical deposition technique. Here, graphene served as an intermediate layer lowering contact resistance between VACNTs and Pt electrode. In order to lower the electrode impedance and to enhance the cell adhesion, VACNTs-MEAs were treated with UV-ozone for 20 min. Impedance of VACNTs electrode at 1 kHz frequency exhibits a reasonable value (110 kΩ) for extracellular signal recording, and the signal to noise ratio the is good enough to measure low signal amplitude (15.7). Spontaneous firing events from CAD cells were successfully measured with VACNTs MEAs that were also found to be surprisingly robust toward the biological interactions.

  10. The influence of passivation and photovoltaic properties of α-Si:H coverage on silicon nanowire array solar cells.

    Science.gov (United States)

    Li, Kuntang; Wang, Xiuqin; Lu, Pengfei; Ding, Jianning; Yuan, Ningyi

    2013-01-01

    Silicon nanowire (SiNW) arrays for radial p-n junction solar cells offer potential advantages of light trapping effects and quick charge collection. Nevertheless, lower open circuit voltages (Voc) lead to lower energy conversion efficiencies. In such cases, the performance of the solar cells depends critically on the quality of the SiNW interfaces. In this study, SiNW core-shell solar cells have been fabricated by growing crystalline silicon (c-Si) nanowires via the metal-assisted chemical etching method and by depositing hydrogenated amorphous silicon (α-Si:H) via the plasma-enhanced chemical vapor deposition (PECVD) method. The influence of deposition parameters on the coverage and, consequently, the passivation and photovoltaic properties of α-Si:H layers on SiNW solar cells have been analyzed. PMID:24059343

  11. [Acute intestinal obstruction revealing enteropathy associated t-cell lymphoma, about a case].

    Science.gov (United States)

    Garba, Abdoul Aziz; Adamou, Harissou; Magagi, Ibrahim Amadou; Brah, Souleymane; Habou, Oumarou

    2016-01-01

    Enteropathy associated T-cell lymphoma (EATL) is a rare complication of celiac disease (CD). We report a case of EATL associated with CD revealed by acute intestinal obstruction. A North African woman of 38 years old with a history of infertility and chronic abdominal pain was admitted in emergency with acute intestinal obstruction. During the surgery, we found a tumor on the small intestine with mesenteric lymphadenopathy. Histology and immunohistochemistry of the specimen objectified a digestive T lymphoma CD3+ and immunological assessment of celiac disease was positive. The diagnosis of EATL was thus retained. Chemotherapy (CHOEP protocol) was established as well as gluten-free diet with a complete response to treatment. The EATL is a rare complication of CD that can be revealed by intestinal obstruction. The prognosis can be improved by early treatment involving surgery and chemotherapy. Its prevention requires early diagnosis of celiac and gluten-free diets. PMID:27217874

  12. Gene array analysis of neural crest cells identifies transcription factors necessary for direct conversion of embryonic fibroblasts into neural crest cells

    Directory of Open Access Journals (Sweden)

    Tsutomu Motohashi

    2016-03-01

    Full Text Available Neural crest cells (NC cells are multipotent cells that emerge from the edge of the neural folds and migrate throughout the developing embryo. Although the gene regulatory network for generation of NC cells has been elucidated in detail, it has not been revealed which of the factors in the network are pivotal to directing NC identity. In this study we analyzed the gene expression profile of a pure NC subpopulation isolated from Sox10-IRES-Venus mice and investigated whether these genes played a key role in the direct conversion of Sox10-IRES-Venus mouse embryonic fibroblasts (MEFs into NC cells. The comparative molecular profiles of NC cells and neural tube cells in 9.5-day embryos revealed genes including transcription factors selectively expressed in developing trunk NC cells. Among 25 NC cell-specific transcription factor genes tested, SOX10 and SOX9 were capable of converting MEFs into SOX10-positive (SOX10+ cells. The SOX10+ cells were then shown to differentiate into neurons, glial cells, smooth muscle cells, adipocytes and osteoblasts. These SOX10+ cells also showed limited self-renewal ability, suggesting that SOX10 and SOX9 directly converted MEFs into NC cells. Conversely, the remaining transcription factors, including well-known NC cell specifiers, were unable to convert MEFs into SOX10+ NC cells. These results suggest that SOX10 and SOX9 are the key factors necessary for the direct conversion of MEFs into NC cells.

  13. High-efficiency thin and compact concentrator photovoltaics with micro-solar cells directly attached to a lens array.

    Science.gov (United States)

    Hayashi, Nobuhiko; Inoue, Daijiro; Matsumoto, Mitsuhiro; Matsushita, Akio; Higuchi, Hiroshi; Aya, Youichirou; Nakagawa, Tohru

    2015-06-01

    We propose a thin and compact concentrator photovoltaic (CPV) module, about 20 mm thick, one tenth thinner than those of conventional CPVs that are widely deployed for mega-solar systems, to broaden CPV application scenarios. We achieved an energy conversion efficiency of 37.1% at a module temperature of 25 °C under sunlight irradiation optimized for our module. Our CPV module has a lens array consisting of 10 mm-square unit lenses and micro solar cells that are directly attached to the lens array, to reduce the focal length of the concentrator and to reduce optical losses due to reflection. The optical loss of the lens in our module is about 9.0%, which is lower than that of conventional CPV modules with secondary optics. This low optical loss enables our CPV module to achieve a high energy conversion efficiency. PMID:26072884

  14. Effect of TiO2 blocking layer on TiO2 nanorod arrays based dye sensitized solar cells

    Science.gov (United States)

    Sivakumar, R.; Paulraj, M.

    2016-05-01

    Highly ordered rutile titanium dioxide nanorod (TNR) arrays (1.2 to 6.2 μm thickness) were grown on TiO2 blocking layer chemically deposited on fluorine doped tin oxide (FTO) substrate and were used as photo-electrodes to fabricate dye sensitized solar cells (DSSC's). Homogeneous layer of TiO2 on FTO was achieved by using aqueous peroxo- titanium complex (PTC) solutions via chemical bath deposition. Structural and morphological properties of the prepared samples were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) measurements. TNR arrays (6.2 μm) with TiO2 blocking layer showed higher energy conversion efficiency (1.46%) than that without TiO2 blocking layer. The reason can be ascertained to the suppression of electron-hole recombination at the semiconductor/electrolyte interface by the effect of TiO2 blocking layer.

  15. Ultrastructural analysis of aminoglycoside-induced hair cell death in the zebrafish lateral line reveals an early mitochondrial response.

    OpenAIRE

    Owens, Kelly,; Cunningham, Dale,; Macdonald, Glen; Rubel, Edwin,; Raible, David,; Pujol, Remy

    2007-01-01

    Loss of the mechanosensory hair cells in the auditory and vestibular organs leads to hearing and balance deficits. To investigate initial, in vivo events in aminoglycoside-induced hair cell damage, we examined hair cells from the lateral line of the zebrafish, Danio rerio. The mechanosensory lateral line is located externally on the animal and therefore allows direct manipulation and observation of hair cells. Labeling with vital dyes revealed a rapid response of hair cells to the aminoglycos...

  16. An integrative genomic and transcriptomic analysis reveals potential targets associated with cell proliferation in uterine leiomyomas

    DEFF Research Database (Denmark)

    Cirilo, Priscila Daniele Ramos; Marchi, Fábio Albuquerque; Barros Filho, Mateus de Camargo;

    2013-01-01

    integrated analysis identified the top 30 significant genes (P<0.01), which comprised genes associated with cancer, whereas the protein-protein interaction analysis indicated a strong association between FANCA and BRCA1. Functional in silico analysis revealed target molecules for drugs involved in cell...... transcriptomic approach indicated that FGFR1 and IGFBP5 amplification, as well as the consequent up-regulation of the protein products, plays an important role in the aetiology of ULs and thus provides data for potential drug therapies development to target genes associated with cellular proliferation in ULs....

  17. Transport of bunches in a dielectric wakefield accelerator using an array of plasma cells

    International Nuclear Information System (INIS)

    An array of short sections of plasma dielectric wakefield accelerator modules spaced by vacuum zones (without plasma) is proposed to avoid the 'underdense' operating regime. A calculation of the dynamics of the accelerated particles in such an array of accelerating-drift sections is given. The parameters of bunches which are available in SLAC are used for this calculation. A dielectric structure using fused silica provides an operating frequency approx 350 GHz. Lengths of plasma and vacuum sections providing stable transportation of the accelerated bunch are found. The bunch size in the focal plane is determined

  18. Diversity, genetic mapping, and signatures of domestication in the carrot (Daucus carota L.) genome, as revealed by Diversity Arrays Technology (DArT) markers

    Science.gov (United States)

    Carrot is one of the most economically important vegetables worldwide, however, genetic and genomic resources supporting carrot breeding remain limited. We developed a Diversity Arrays Technology (DArT) platform for wild and cultivated carrot and used it to investigate genetic diversity and to devel...

  19. Genetic interaction maps in Escherichia coli reveal functional crosstalk among cell envelope biogenesis pathways.

    Directory of Open Access Journals (Sweden)

    Mohan Babu

    2011-11-01

    Full Text Available As the interface between a microbe and its environment, the bacterial cell envelope has broad biological and clinical significance. While numerous biosynthesis genes and pathways have been identified and studied in isolation, how these intersect functionally to ensure envelope integrity during adaptive responses to environmental challenge remains unclear. To this end, we performed high-density synthetic genetic screens to generate quantitative functional association maps encompassing virtually the entire cell envelope biosynthetic machinery of Escherichia coli under both auxotrophic (rich medium and prototrophic (minimal medium culture conditions. The differential patterns of genetic interactions detected among > 235,000 digenic mutant combinations tested reveal unexpected condition-specific functional crosstalk and genetic backup mechanisms that ensure stress-resistant envelope assembly and maintenance. These networks also provide insights into the global systems connectivity and dynamic functional reorganization of a universal bacterial structure that is both broadly conserved among eubacteria (including pathogens and an important target.

  20. Peripheral blood mononuclear cell gene array profiles in female patients with involuntary bladder contractions

    Directory of Open Access Journals (Sweden)

    Bluth MH

    2011-06-01

    Full Text Available Wellman Cheung1, Mark J Bluth1, Sohail Khan2, Christopher Johns2, Martin H Bluth31State University of New York Downstate Medical Center, Brooklyn, NY, USA; 2Cold Spring Harbor Laboratory – Microarray Shared Resource, Cold Spring Harbor, NY, USA; 3Wayne State University School of Medicine, Detroit, MI, USABackground: Patients with urgency represent a group of incontinence sufferers whose diagnosis remains difficult to establish. Urodynamic testing demonstrating involuntary bladder contraction provides objective confirmation but represents an invasive approach. We have previously demonstrated that peripheral blood mononuclear cells (PBMC can provide a reporter function in solid organ disease toward biomarker discovery. Here we investigated the utility of using PBMC as marker for patients with confirmed involuntary bladder contraction.Methods: Fifteen female patients were evaluated for involuntary bladder contractions and stress urinary incontinence as demonstrated by urodynamics and also assessed for pelvic prolapse, stress incontinence by history, bladder neck dysfunction, and bladder capacity. PBMC were obtained from patients’ whole blood, and RNA was subjected to microarray gene chip analysis.Results: Microarray analysis revealed that eleven genes were differentially regulated (five upregulated and six downregulated. Of these, PGRMC1 (progesterone receptor membrane component 1, EIF2S3 (eukaryotic initiation factor, C3AR1 (complement receptor, and three unknown genes were downregulated. Upregulated genes included MYOM2 (myomesin M-protein, a cytoskeletal protein; KTN1 (kinectin; and AAK 1 (AP2 associated kinase.Conclusions: Microarray analysis revealed many genes that were differentially regulated in PBMC from patients with involuntary detrusor contractions. These genes may be important in regulating structural integrity of bladder and supporting tissues. These data suggest that PBMC can provide a reporter function for patients with

  1. An Integrative Genomic and Transcriptomic Analysis Reveals Potential Targets Associated with Cell Proliferation in Uterine Leiomyomas

    Science.gov (United States)

    Cirilo, Priscila Daniele Ramos; Marchi, Fábio Albuquerque; Barros Filho, Mateus de Camargo; Rocha, Rafael Malagoli; Domingues, Maria Aparecida Custódio; Jurisica, Igor; Pontes, Anagloria; Rogatto, Silvia Regina

    2013-01-01

    Background Uterine Leiomyomas (ULs) are the most common benign tumours affecting women of reproductive age. ULs represent a major problem in public health, as they are the main indication for hysterectomy. Approximately 40–50% of ULs have non-random cytogenetic abnormalities, and half of ULs may have copy number alterations (CNAs). Gene expression microarrays studies have demonstrated that cell proliferation genes act in response to growth factors and steroids. However, only a few genes mapping to CNAs regions were found to be associated with ULs. Methodology We applied an integrative analysis using genomic and transcriptomic data to identify the pathways and molecular markers associated with ULs. Fifty-one fresh frozen specimens were evaluated by array CGH (JISTIC) and gene expression microarrays (SAM). The CONEXIC algorithm was applied to integrate the data. Principal Findings The integrated analysis identified the top 30 significant genes (PTranscriptional and protein analyses showed that FGFR1 (P = 0.006 and P<0.01, respectively) and IGFBP5 (P = 0.0002 and P = 0.006, respectively) were up-regulated in the tumours when compared with the adjacent normal myometrium. Conclusions The integrative genomic and transcriptomic approach indicated that FGFR1 and IGFBP5 amplification, as well as the consequent up-regulation of the protein products, plays an important role in the aetiology of ULs and thus provides data for potential drug therapies development to target genes associated with cellular proliferation in ULs. PMID:23483937

  2. Metagenomics, metatranscriptomics and single cell genomics reveal functional response of active Oceanospirillales to Gulf oil spill

    Energy Technology Data Exchange (ETDEWEB)

    Mason, Olivia U.; Hazen, Terry C.; Borglin, Sharon; Chain, Patrick S. G.; Dubinsky, Eric A.; Fortney, Julian L.; Han, James; Holman, Hoi-Ying N.; Hultman, Jenni; Lamendella, Regina; Mackelprang, Rachel; Malfatti, Stephanie; Tom, Lauren M.; Tringe, Susannah G.; Woyke, Tanja; Zhou, Jizhong; Rubin, Edward M.; Jansson, Janet K.

    2012-06-12

    The Deepwater Horizon oil spill in the Gulf of Mexico resulted in a deep-sea hydrocarbon plume that caused a shift in the indigenous microbial community composition with unknown ecological consequences. Early in the spill history, a bloom of uncultured, thus uncharacterized, members of the Oceanospirillales was previously detected, but their role in oil disposition was unknown. Here our aim was to determine the functional role of the Oceanospirillales and other active members of the indigenous microbial community using deep sequencing of community DNA and RNA, as well as single-cell genomics. Shotgun metagenomic and metatranscriptomic sequencing revealed that genes for motility, chemotaxis and aliphatic hydrocarbon degradation were significantly enriched and expressed in the hydrocarbon plume samples compared with uncontaminated seawater collected from plume depth. In contrast, although genes coding for degradation of more recalcitrant compounds, such as benzene, toluene, ethylbenzene, total xylenes and polycyclic aromatic hydrocarbons, were identified in the metagenomes, they were expressed at low levels, or not at all based on analysis of the metatranscriptomes. Isolation and sequencing of two Oceanospirillales single cells revealed that both cells possessed genes coding for n-alkane and cycloalkane degradation. Specifically, the near-complete pathway for cyclohexane oxidation in the Oceanospirillales single cells was elucidated and supported by both metagenome and metatranscriptome data. The draft genome also included genes for chemotaxis, motility and nutrient acquisition strategies that were also identified in the metagenomes and metatranscriptomes. These data point towards a rapid response of members of the Oceanospirillales to aliphatic hydrocarbons in the deep sea.

  3. Retrieval of the vacuolar H-ATPase from phagosomes revealed by live cell imaging.

    Directory of Open Access Journals (Sweden)

    Margaret Clarke

    Full Text Available BACKGROUND: The vacuolar H+-ATPase, or V-ATPase, is a highly-conserved multi-subunit enzyme that transports protons across membranes at the expense of ATP. The resulting proton gradient serves many essential functions, among them energizing transport of small molecules such as neurotransmitters, and acidifying organelles such as endosomes. The enzyme is not present in the plasma membrane from which a phagosome is formed, but is rapidly delivered by fusion with endosomes that already bear the V-ATPase in their membranes. Similarly, the enzyme is thought to be retrieved from phagosome membranes prior to exocytosis of indigestible material, although that process has not been directly visualized. METHODOLOGY: To monitor trafficking of the V-ATPase in the phagocytic pathway of Dictyostelium discoideum, we fed the cells yeast, large particles that maintain their shape during trafficking. To track pH changes, we conjugated the yeast with fluorescein isothiocyanate. Cells were labeled with VatM-GFP, a fluorescently-tagged transmembrane subunit of the V-ATPase, in parallel with stage-specific endosomal markers or in combination with mRFP-tagged cytoskeletal proteins. PRINCIPAL FINDINGS: We find that the V-ATPase is commonly retrieved from the phagosome membrane by vesiculation shortly before exocytosis. However, if the cells are kept in confined spaces, a bulky phagosome may be exocytosed prematurely. In this event, a large V-ATPase-rich vacuole coated with actin typically separates from the acidic phagosome shortly before exocytosis. This vacuole is propelled by an actin tail and soon acquires the properties of an early endosome, revealing an unexpected mechanism for rapid recycling of the V-ATPase. Any V-ATPase that reaches the plasma membrane is also promptly retrieved. CONCLUSIONS/SIGNIFICANCE: Thus, live cell microscopy has revealed both a usual route and alternative means of recycling the V-ATPase in the endocytic pathway.

  4. Proteome-wide analysis of arginine monomethylation reveals widespread occurrence in human cells.

    Science.gov (United States)

    Larsen, Sara C; Sylvestersen, Kathrine B; Mund, Andreas; Lyon, David; Mullari, Meeli; Madsen, Maria V; Daniel, Jeremy A; Jensen, Lars J; Nielsen, Michael L

    2016-01-01

    The posttranslational modification of proteins by arginine methylation is functionally important, yet the breadth of this modification is not well characterized. Using high-resolution mass spectrometry, we identified 8030 arginine methylation sites within 3300 human proteins in human embryonic kidney 293 cells, indicating that the occurrence of this modification is comparable to phosphorylation and ubiquitylation. A site-level conservation analysis revealed that arginine methylation sites are less evolutionarily conserved compared to arginines that were not identified as modified by methylation. Through quantitative proteomics and RNA interference to examine arginine methylation stoichiometry, we unexpectedly found that the protein arginine methyltransferase (PRMT) family of arginine methyltransferases catalyzed methylation independently of arginine sequence context. In contrast to the frequency of somatic mutations at arginine methylation sites throughout the proteome, we observed that somatic mutations were common at arginine methylation sites in proteins involved in mRNA splicing. Furthermore, in HeLa and U2OS cells, we found that distinct arginine methyltransferases differentially regulated the functions of the pre-mRNA splicing factor SRSF2 (serine/arginine-rich splicing factor 2) and the RNA transport ribonucleoprotein HNRNPUL1 (heterogeneous nuclear ribonucleoprotein U-like 1). Knocking down PRMT5 impaired the RNA binding function of SRSF2, whereas knocking down PRMT4 [also known as coactivator-associated arginine methyltransferase 1 (CARM1)] or PRMT1 increased the RNA binding function of HNRNPUL1. High-content single-cell imaging additionally revealed that knocking down CARM1 promoted the nuclear accumulation of SRSF2, independent of cell cycle phase. Collectively, the presented human arginine methylome provides a missing piece in the global and integrative view of cellular physiology and protein regulation. PMID:27577262

  5. Angiogenesis interactome and time course microarray data reveal the distinct activation patterns in endothelial cells.

    Directory of Open Access Journals (Sweden)

    Liang-Hui Chu

    Full Text Available Angiogenesis involves stimulation of endothelial cells (EC by various cytokines and growth factors, but the signaling mechanisms are not completely understood. Combining dynamic gene expression time-course data for stimulated EC with protein-protein interactions associated with angiogenesis (the "angiome" could reveal how different stimuli result in different patterns of network activation and could implicate signaling intermediates as points for control or intervention. We constructed the protein-protein interaction networks of positive and negative regulation of angiogenesis comprising 367 and 245 proteins, respectively. We used five published gene expression datasets derived from in vitro assays using different types of blood endothelial cells stimulated by VEGFA (vascular endothelial growth factor A. We used the Short Time-series Expression Miner (STEM to identify significant temporal gene expression profiles. The statistically significant patterns between 2D fibronectin and 3D type I collagen substrates for telomerase-immortalized EC (TIME show that different substrates could influence the temporal gene activation patterns in the same cell line. We investigated the different activation patterns among 18 transmembrane tyrosine kinase receptors, and experimentally measured the protein level of the tyrosine-kinase receptors VEGFR1, VEGFR2 and VEGFR3 in human umbilical vein EC (HUVEC and human microvascular EC (MEC. The results show that VEGFR1-VEGFR2 levels are more closely coupled than VEGFR1-VEGFR3 or VEGFR2-VEGFR3 in HUVEC and MEC. This computational methodology can be extended to investigate other molecules or biological processes such as cell cycle.

  6. Suicide Gene-Engineered Stromal Cells Reveal a Dynamic Regulation of Cancer Metastasis

    Science.gov (United States)

    Shen, Keyue; Luk, Samantha; Elman, Jessica; Murray, Ryan; Mukundan, Shilpaa; Parekkadan, Biju

    2016-02-01

    Cancer-associated fibroblasts (CAFs) are a major cancer-promoting component in the tumor microenvironment (TME). The dynamic role of human CAFs in cancer progression has been ill-defined because human CAFs lack a unique marker needed for a cell-specific, promoter-driven knockout model. Here, we developed an engineered human CAF cell line with an inducible suicide gene to enable selective in vivo elimination of human CAFs at different stages of xenograft tumor development, effectively circumventing the challenge of targeting a cell-specific marker. Suicide-engineered CAFs were highly sensitive to apoptosis induction in vitro and in vivo by the addition of a simple small molecule inducer. Selection of timepoints for targeted CAF apoptosis in vivo during the progression of a human breast cancer xenograft model was guided by a bi-phasic host cytokine response that peaked at early timepoints after tumor implantation. Remarkably, we observed that the selective apoptosis of CAFs at these early timepoints did not affect primary tumor growth, but instead increased the presence of tumor-associated macrophages and the metastatic spread of breast cancer cells to the lung and bone. The study revealed a dynamic relationship between CAFs and cancer metastasis that has counter-intuitive ramifications for CAF-targeted therapy.

  7. Single-cell analysis reveals a novel uncultivated magnetotactic bacterium within the candidate division OP3.

    Science.gov (United States)

    Kolinko, Sebastian; Jogler, Christian; Katzmann, Emanuel; Wanner, Gerhard; Peplies, Jörg; Schüler, Dirk

    2012-07-01

    Magnetotactic bacteria (MTB) are a diverse group of prokaryotes that orient along magnetic fields using membrane-coated magnetic nanocrystals of magnetite (Fe(3) O(4) ) or greigite (Fe(3) S(4) ), the magnetosomes. Previous phylogenetic analysis of MTB has been limited to few cultivated species and most abundant members of natural populations, which were assigned to Proteobacteria and the Nitrospirae phyla. Here, we describe a single cell-based approach that allowed the targeted phylogenetic and ultrastructural analysis of the magnetotactic bacterium SKK-01, which was low abundant in sediments of Lake Chiemsee. Morphologically conspicuous single cells of SKK-01 were micromanipulated from magnetically collected multi-species MTB populations, which was followed by whole genome amplification and ultrastructural analysis of sorted cells. Besides intracellular sulphur inclusions, the large ovoid cells of SKK-01 harbour ∼175 bullet-shaped magnetosomes arranged in multiple chains that consist of magnetite as revealed by TEM and EDX analysis. Sequence analysis of 16 and 23S rRNA genes from amplified genomic DNA as well as fluorescence in situ hybridization assigned SKK-01 to the candidate division OP3, which so far lacks any cultivated representatives. SKK-01 represents the first morphotype that can be assigned to the OP3 group as well as the first magnetotactic member of the PVC superphylum. PMID:22003954

  8. Combined in silico and in vivo analyses reveal role of Hes1 in taste cell differentiation.

    Directory of Open Access Journals (Sweden)

    Masato S Ota

    2009-04-01

    Full Text Available The sense of taste is of critical importance to animal survival. Although studies of taste signal transduction mechanisms have provided detailed information regarding taste receptor calcium signaling molecules (TRCSMs, required for sweet/bitter/umami taste signal transduction, the ontogeny of taste cells is still largely unknown. We used a novel approach to investigate the molecular regulation of taste system development in mice by combining in silico and in vivo analyses. After discovering that TRCSMs colocalized within developing circumvallate papillae (CVP, we used computational analysis of the upstream regulatory regions of TRCSMs to investigate the possibility of a common regulatory network for TRCSM transcription. Based on this analysis, we identified Hes1 as a likely common regulatory factor, and examined its function in vivo. Expression profile analyses revealed that decreased expression of nuclear HES1 correlated with expression of type II taste cell markers. After stage E18, the CVP of Hes1(-/ (- mutants displayed over 5-fold more TRCSM-immunoreactive cells than did the CVP of their wild-type littermates. Thus, according to our composite analyses, Hes1 is likely to play a role in orchestrating taste cell differentiation in developing taste buds.

  9. CAFET algorithm reveals Wnt/PCP signature in lung squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Yue Hu

    Full Text Available We analyzed the gene expression patterns of 138 Non-Small Cell Lung Cancer (NSCLC samples and developed a new algorithm called Coverage Analysis with Fisher's Exact Test (CAFET to identify molecular pathways that are differentially activated in squamous cell carcinoma (SCC and adenocarcinoma (AC subtypes. Analysis of the lung cancer samples demonstrated hierarchical clustering according to the histological subtype and revealed a strong enrichment for the Wnt signaling pathway components in the cluster consisting predominantly of SCC samples. The specific gene expression pattern observed correlated with enhanced activation of the Wnt Planar Cell Polarity (PCP pathway and inhibition of the canonical Wnt signaling branch. Further real time RT-PCR follow-up with additional primary tumor samples and lung cancer cell lines confirmed enrichment of Wnt/PCP pathway associated genes in the SCC subtype. Dysregulation of the canonical Wnt pathway, characterized by increased levels of β-catenin and epigenetic silencing of negative regulators, has been reported in adenocarcinoma of the lung. Our results suggest that SCC and AC utilize different branches of the Wnt pathway during oncogenesis.

  10. GaSb thermophotovoltaic cells grown on GaAs by molecular beam epitaxy using interfacial misfit arrays

    Energy Technology Data Exchange (ETDEWEB)

    Juang, Bor-Chau, E-mail: bcjuang@ucla.edu; Laghumavarapu, Ramesh B.; Foggo, Brandon J.; Lin, Andrew [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); Simmonds, Paul J.; Liang, Baolai [California NanoSystems Institute, University of California, Los Angeles, California 90095 (United States); Huffaker, Diana L. [Department of Electrical Engineering, University of California, Los Angeles, California 90095 (United States); California NanoSystems Institute, University of California, Los Angeles, California 90095 (United States)

    2015-03-16

    There exists a long-term need for foreign substrates on which to grow GaSb-based optoelectronic devices. We address this need by using interfacial misfit arrays to grow GaSb-based thermophotovoltaic cells directly on GaAs (001) substrates and demonstrate promising performance. We compare these cells to control devices grown on GaSb substrates to assess device properties and material quality. The room temperature dark current densities show similar characteristics for both cells on GaAs and on GaSb. Under solar simulation the cells on GaAs exhibit an open-circuit voltage of 0.121 V and a short-circuit current density of 15.5 mA/cm{sup 2}. In addition, the cells on GaAs substrates maintain 10% difference in spectral response to those of the control cells over a large range of wavelengths. While the cells on GaSb substrates in general offer better performance than the cells on GaAs substrates, the cost-savings and scalability offered by GaAs substrates could potentially outweigh the reduction in performance. By further optimizing GaSb buffer growth on GaAs substrates, Sb-based compound semiconductors grown on GaAs substrates with similar performance to devices grown directly on GaSb substrates could be realized.

  11. Screening Metastasis-associated Genes from Anoikis Resistant A549 Lung Cancer Cells by Human Genome Array

    Directory of Open Access Journals (Sweden)

    Xiaoping WANG

    2010-01-01

    Full Text Available Background and objective As a barrier to metastases, cells normally undergo apoptosis after they lose contact with their extra cellular matrix (ECM. This process has been termed “anoikis”. Tumour cells that acquire malignant potential have developed mechanisms to resist anoikis and thereby survive after detachment from their primary site while traveling through the lymphatic and circulatory systems. This “anoikis resistance” is considered the first step to tumor metastases. The aim of this study was to screen metastasis-associated genes from anoikis resistant and adherent growth A549 lung cancer cell by Human Genome Array. Methods Establish anoikis resistant A549 lung cancer cell lines by using poly-hydroxyethyl methacrylate resin processed petri dishes, which causes cell free from adherent. The different expressed gene between anoikis resistant A549 cell and adherent growth A549 cell was tested using human V2.0 whole-genome oligonucleotide microarray, a product of Capitalbio Corporation, Beijing. Screen metastasis-associated genes. Results 745 different expressed genes were screened, including 63 highly metastasis-associated genes. Conclusion The successfully established anoikis resistant A549 cell lines and screened different expressed genes provide us basis for further research on metastasis of lung cancer.

  12. Gene expression relationship between prostate cancer cells of Gleason 3, 4 and normal epithelial cells as revealed by cell type-specific transcriptomes

    Directory of Open Access Journals (Sweden)

    Page Laura S

    2009-12-01

    Full Text Available Abstract Background Prostate cancer cells in primary tumors have been typed CD10-/CD13-/CD24hi/CD26+/CD38lo/CD44-/CD104-. This CD phenotype suggests a lineage relationship between cancer cells and luminal cells. The Gleason grade of tumors is a descriptive of tumor glandular differentiation. Higher Gleason scores are associated with treatment failure. Methods CD26+ cancer cells were isolated from Gleason 3+3 (G3 and Gleason 4+4 (G4 tumors by cell sorting, and their gene expression or transcriptome was determined by Affymetrix DNA array analysis. Dataset analysis was used to determine gene expression similarities and differences between G3 and G4 as well as to prostate cancer cell lines and histologically normal prostate luminal cells. Results The G3 and G4 transcriptomes were compared to those of prostatic cell types of non-cancer, which included luminal, basal, stromal fibromuscular, and endothelial. A principal components analysis of the various transcriptome datasets indicated a closer relationship between luminal and G3 than luminal and G4. Dataset comparison also showed that the cancer transcriptomes differed substantially from those of prostate cancer cell lines. Conclusions Genes differentially expressed in cancer are potential biomarkers for cancer detection, and those differentially expressed between G3 and G4 are potential biomarkers for disease stratification given that G4 cancer is associated with poor outcomes. Differentially expressed genes likely contribute to the prostate cancer phenotype and constitute the signatures of these particular cancer cell types.

  13. Efficiency improvement of single-junction InGaP solar cells fabricated by a novel micro-hole array surface texture process

    International Nuclear Information System (INIS)

    In this study, single-junction InGaP solar cells fabricated by a novel micro-hole array surface texture process are presented. The characteristics of the single-junction InGaP solar cells with and without the micro-hole array surface texture are studied. An increase of 10.4% in short-circuit current is found when a single-junction InGaP solar cell is fabricated by the micro-hole array surface texture process. The conversion efficiency measured under one-sun air mass 1.5 global illumination at room temperature can also be improved from 13.8% to 15.9% when the size of the micro-holes is 5.3 µm and the period of micro-hole array is designed to 5 µm

  14. A CdSe thin film: a versatile buffer layer for improving the performance of TiO2 nanorod array:PbS quantum dot solar cells.

    Science.gov (United States)

    Tan, Furui; Wang, Zhijie; Qu, Shengchun; Cao, Dawei; Liu, Kong; Jiang, Qiwei; Yang, Ying; Pang, Shan; Zhang, Weifeng; Lei, Yong; Wang, Zhanguo

    2016-05-21

    To fully utilize the multiple exciton generation effects in quantum dots and improve the overall efficiency of the corresponding photovoltaic devices, nanostructuralizing the electron conducting layer turns out to be a feasible strategy. Herein, PbS quantum dot solar cells were fabricated on the basis of morphologically optimized TiO2 nanorod arrays. By inserting a thin layer of CdSe quantum dots into the interface of TiO2 and PbS, a dramatic enhancement in the power conversion efficiency from 4.2% to 5.2% was realized and the resulting efficiency is one of the highest values for quantum dot solar cells based on nanostructuralized buffer layers. The constructed double heterojunction with a cascade type-II energy level alignment is beneficial for promoting photogenerated charge separation and reducing charge recombination, thereby responsible for the performance improvement, as revealed by steady-state analyses as well as ultra-fast photoluminescence and photovoltage decays. Thus this paper provides a good buffer layer to the community of quantum dot solar cells. PMID:27124650

  15. Protein-carbohydrate complex reveals circulating metastatic cells in a microfluidic assay

    KAUST Repository

    Simone, Giuseppina

    2013-02-11

    Advances in carbohydrate sequencing technologies reveal the tremendous complexity of the glycome and the role that glycomics might have to bring insight into the biological functions. Carbohydrate-protein interactions, in particular, are known to be crucial to most mammalian physiological processes as mediators of cell adhesion and metastasis, signal transducers, and organizers of protein interactions. An assay is developed here to mimic the multivalency of biological complexes that selectively and sensitively detect carbohydrate-protein interactions. The binding of β-galactosides and galectin-3 - a protein that is correlated to the progress of tumor and metastasis - is examined. The efficiency of the assay is related to the expression of the receptor while anchoring to the interaction\\'s strength. Comparative binding experiments reveal molecular binding preferences. This study establishes that the assay is robust to isolate metastatic cells from colon affected patients and paves the way to personalized medicine. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. DNA-based digital tension probes reveal integrin forces during early cell adhesion

    Science.gov (United States)

    Zhang, Yun; Ge, Chenghao; Zhu, Cheng; Salaita, Khalid

    2014-10-01

    Mechanical stimuli profoundly alter cell fate, yet the mechanisms underlying mechanotransduction remain obscure because of a lack of methods for molecular force imaging. Here to address this need, we develop a new class of molecular tension probes that function as a switch to generate a 20- to 30-fold increase in fluorescence upon experiencing a threshold piconewton force. The probes employ immobilized DNA hairpins with tunable force response thresholds, ligands and fluorescence reporters. Quantitative imaging reveals that integrin tension is highly dynamic and increases with an increasing integrin density during adhesion formation. Mixtures of fluorophore-encoded probes show integrin mechanical preference for cyclized RGD over linear RGD peptides. Multiplexed probes with variable guanine-cytosine content within their hairpins reveal integrin preference for the more stable probes at the leading tip of growing adhesions near the cell edge. DNA-based tension probes are among the most sensitive optical force reporters to date, overcoming the force and spatial resolution limitations of traction force microscopy.

  17. A common promoter hypomethylation signature in invasive breast, liver and prostate cancer cell lines reveals novel targets involved in cancer invasiveness

    Science.gov (United States)

    Yi, Cao; Li, Chen Chen; Yu, Patricia; Arakelian, Ani; Tanvir, Imrana; Khan, Haseeb Ahmed; Rabbani, Shafaat

    2015-01-01

    Cancer invasion and metastasis is the most morbid aspect of cancer and is governed by different cellular mechanisms than those driving the deregulated growth of tumors. We addressed here the question of whether a common DNA methylation signature of invasion exists in cancer cells from different origins that differentiates invasive from non-invasive cells. We identified a common DNA methylation signature consisting of hyper- and hypomethylation and determined the overlap of differences in DNA methylation with differences in mRNA expression using expression array analyses. A pathway analysis reveals that the hypomethylation signature includes some of the major pathways that were previously implicated in cancer migration and invasion such as TGF beta and ERBB2 triggered pathways. The relevance of these hypomethylation events in human tumors was validated by identification of the signature in several publicly available databases of human tumor transcriptomes. We shortlisted novel invasion promoting candidates and tested the role of four genes in cellular invasiveness from the list C11orf68, G0S2, SHISA2 and TMEM156 in invasiveness using siRNA depletion. Importantly these genes are upregulated in human cancer specimens as determined by immunostaining of human normal and cancer breast, liver and prostate tissue arrays. Since these genes are activated in cancer they constitute a group of targets for specific pharmacological inhibitors of cancer invasiveness. SUMMARY Our study provides evidence that common DNA hypomethylation signature exists between cancer cells derived from different tissues, pointing to a common mechanism of cancer invasiveness in cancer cells from different origins that could serve as drug targets. PMID:26427334

  18. Single-Cell-Arrayed Agarose Chip for in Situ Analysis of Cytotoxicity and Genotoxicity of DNA Cross-Linking Agents.

    Science.gov (United States)

    Li, Lili; Wang, Weixing; Ding, Mingyu; Luo, Guoan; Liang, Qionglin

    2016-07-01

    Development of approach or device to allow continuous multiple measurements, such as integrating cytotoxic and genotoxic analysis, is quite appealing for study of the drug's activity and mechanism of action or resistance. In this study, a single-cell-arrayed agarose chip system was developed to combine cell cultivation with subsequent in situ analysis of cytotoxicity and genotoxicity of the chemotherapeutic agent. The modified alkaline comet assay coupled with the Live/Dead assay was used to monitor the interstrand cross-links (ICLs) formation and the cytotoxic effects in different glioma cell lines. In addition, the ICL-induced double strand breaks (DSBs) was measured on the chip to reflect the level of ICLs indirectly. Compared with the traditional methods, the microarray agarose device offers higher throughput, reproducibility, and robustness, exhibiting good potential for high-content drug screening. PMID:27269449

  19. Monolithic in-based III-V compound semiconductor focal plane array cell with single stage CCD output

    Science.gov (United States)

    Fossum, Eric R. (Inventor); Cunningham, Thomas J. (Inventor); Krabach, Timothy N. (Inventor); Staller, Craig O. (Inventor)

    1995-01-01

    A monolithic semiconductor imager includes an indium-based III-V compound semiconductor monolithic active layer of a first conductivity type, an array of plural focal plane cells on the active layer, each of the focal plane cells including a photogate over a top surface of the active layer, a readout circuit dedicated to the focal plane cell including plural transistors formed monolithically with the monolithic active layer and a single-stage charge coupled device formed monolithically with the active layer between the photogate and the readout circuit for transferring photo-generated charge accumulated beneath the photogate during an integration period to the readout circuit. The photogate includes thin epitaxial semiconductor layer of a second conductivity type overlying the active layer and an aperture electrode overlying a peripheral portion of the thin epitaxial semiconductor layer, the aperture electrode being connectable to a photogate bias voltage.

  20. Hydrothermal synthesis of rutile–anatase TiO2 nanobranched arrays for efficient dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Highlights: • The unique rutile–anatase TiO2 nanobranched arrays have been synthesized for DSSC application. • TiO2 nano-structure consists of anatase nanobranches covering of rutile nanorod surfaces. • The successful attachment of anatase TiO2 nanobranches to the nanorods is achieved by TiCl4 treatment. - Abstract: Rutile–anatase TiO2 nanobranched arrays were prepared in two sequential hydrothermal-synthesis steps. The morphologies and crystalline nanostructures of the samples were investigated by controlling growth time and the concentration of the titanium precursor. All samples were characterized by field-emission scanning electron microscopy and X-ray diffraction analysis. It was found that treating the surfaces of rutile TiO2 nanorods with aqueous TiCl4 solutions allows the anatase TiO2 nanobranches to grow perpendicular to the main rutile TiO2 nanorods attached to the FTO glass. Irregularly shaped, dense TiO2 structures formed in the absence of TiCl4 treatment. A light-to-electricity conversion efficiency of 3.45% was achieved using 2.3 μm tall TiO2 nanobranched arrays in a dye-sensitized solar cell. This value is significantly higher than that observed for pure rutile TiO2 nanorods

  1. Gamma-ray irradiation hardness of arrayed silicon microhole-based radial p–n junction solar cells

    International Nuclear Information System (INIS)

    The γ-ray irradiation hardness of arrayed silicon microhole-based radial p–n junction (ASMRJ) solar cells (SCs) has been experimentally studied. It was found that the sidewall morphology of the microhole arrays had an important effect on the radiation hardness, so the 4 µm-pitch ASMRJ SCs with hole arrays' sidewalls both unpassivated and passivated were made and referred to as 4 µm-U-ASMRJ and -P-ASMRJ SCs, respectively. On increasing the radiation doses, in contrast with the monotonous and rapid degradation of short circuit current density and open circuit voltage for the planar SCs, these parameters for the 4 µm-U-ASMRJ SCs show a small increase in the initial stage of γ-ray irradiation and then a slow decline. Average conversion efficiency shows an initial slight ascent by 4.5%. Additionally, the average conversion efficiency for the 2 µm-U-ASMRJ SCs shows an initial slight ascent by 5.7%. When the radiation doses grow to 8 × 106 rad, the average conversion efficiency degradation rates for the 2 µm- and 4 µm-U-ASMRJ SCs are 14% and 15%, respectively, whereas it is 39% for the planar SCs. The radiation-gettering mechanism is suggested to explain the radiation-hardened properties of the U-ASMRJ SCs. (paper)

  2. Fabrication of morphology controllable rutile TiO2 nanowire arrays by solvothermal route for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Highly ordered, vertically oriented TiO2 nanowire arrays (TNAs) are synthesized directly on transparent conducting substrate by solvothermal procedure without any template. The X-ray diffraction (XRD) pattern shows that TiO2 array is in rutile phase growing along the (0 0 2) direction. The field-emission scanning electron microscopy (FE-SEM) images of the samples indicate that the TiO2 array surface morphology and orientation are highly dependent on the synthesis conditions. In a typical condition of solvothermal at 180 deg. C for 2 h, the TNAs are composed of nanowires 10 ± 2 nm in width, and several nanowires bunch together to form a larger secondary structure of 60 ± 10 nm wide. Dye-sensitized solar cell (DSSC) assembled with the TNAs grown on the FTO glass as photoanode under illumination of simulated AM 1.5G solar light (100 mW cm-2) achieves an overall photoelectric conversion efficiency of 1.64%.

  3. Photovoltaic Properties of Nano-particulate and Nanorod Array ZnO Electrodes for Dye-Sensitized Solar Cell

    International Nuclear Information System (INIS)

    The nanorod array ZnO electrode showed stable photovoltaic properties compared with nano-particulate electrode despite the small adsorption of dye-molecules. The well-crystallized surface of nanorod should reduce significantly the formation of Zn2+-dye aggregates. The nanorod array electrode is also favorable for electrolyte diffusion since the diffusion channel is highly spacious and hardly blocked by Zn2+-dye aggregates within the electrode, while the complicated nano-pore channels in nano-particulate electrode can be easily blocked. Graetzel-type dye-sensitized solar cell (DSSC) has been considered as a new candidate for the next solar cell device in the near future. Its distinct colorful and transparent features as well as the possibility of low-price production allow much extended applications of DSSC compared to conventional silicon solar cells. Nanocrystalline semiconducting electrode in DSSC, usually made of anatase TiO2, is the one of essential component of this device, which serves as a supporting transparent film for dye-molecules and then receives the photoelectrons injected from dye-molecules and furnishes them adequate diffusion path to the back-contact. Among various kinds of semiconducting materials with photovoltaic properties, anatase TiO2 has been known as the best due to good matching of conduction band (CB) edge with LUMO level of ruthenium dye-molecule

  4. A new method of linear control for optimum transfer of power from a solar cell array to the distribution network

    Science.gov (United States)

    Ray, G. C.; Jha, R.

    1984-08-01

    The paper describes a new method of linear control for transfer of optimum power from a Solar Cell Array (SCA) to the distribution network. It is shown that the current corresponding to the optimum power varies almost linearly with the level of illumination. By connecting a storage battery in parallel to the SCA, the charging current to the battery is continuously adjusted by sensing the ilumination level and current simultaneously. Variation of the charging current keeps the operating point on the optimum power locus. In the ac distribution network the power is to be fed through a current-source inverter and a step up/down transformer.

  5. Functional malignant cell heterogeneity in pancreatic neuroendocrine tumors revealed by targeting of PDGF-DD

    Science.gov (United States)

    Cortez, Eliane; Gladh, Hanna; Braun, Sebastian; Bocci, Matteo; Cordero, Eugenia; Björkström, Niklas K.; Miyazaki, Hideki; Michael, Iacovos P.; Eriksson, Ulf; Folestad, Erika; Pietras, Kristian

    2016-01-01

    Intratumoral heterogeneity is an inherent feature of most human cancers and has profound implications for cancer therapy. As a result, there is an emergent need to explore previously unmapped mechanisms regulating distinct subpopulations of tumor cells and to understand their contribution to tumor progression and treatment response. Aberrant platelet-derived growth factor receptor beta (PDGFRβ) signaling in cancer has motivated the development of several antagonists currently in clinical use, including imatinib, sunitinib, and sorafenib. The discovery of a novel ligand for PDGFRβ, platelet-derived growth factor (PDGF)-DD, opened the possibility of a previously unidentified signaling pathway involved in tumor development. However, the precise function of PDGF-DD in tumor growth and invasion remains elusive. Here, making use of a newly generated Pdgfd knockout mouse, we reveal a functionally important malignant cell heterogeneity modulated by PDGF-DD signaling in pancreatic neuroendocrine tumors (PanNET). Our analyses demonstrate that tumor growth was delayed in the absence of signaling by PDGF-DD. Surprisingly, ablation of PDGF-DD did not affect the vasculature or stroma of PanNET; instead, we found that PDGF-DD stimulated bulk tumor cell proliferation by induction of paracrine mitogenic signaling between heterogeneous malignant cell clones, some of which expressed PDGFRβ. The presence of a subclonal population of tumor cells characterized by PDGFRβ expression was further validated in a cohort of human PanNET. In conclusion, we demonstrate a previously unrecognized heterogeneity in PanNET characterized by signaling through the PDGF-DD/PDGFRβ axis. PMID:26831065

  6. Solvatochromic Nile Red probes with FRET quencher reveal lipid order heterogeneity in living and apoptotic cells.

    Science.gov (United States)

    Kreder, Rémy; Pyrshev, Kyrylo A; Darwich, Zeinab; Kucherak, Oleksandr A; Mély, Yves; Klymchenko, Andrey S

    2015-06-19

    Detecting and imaging lipid microdomains (rafts) in cell membranes remain a challenge despite intensive research in the field. Two types of fluorescent probes are used for this purpose: one specifically labels a given phase (liquid ordered, Lo, or liquid disordered, Ld), while the other, being environment-sensitive (solvatochromic), stains the two phases in different emission colors. Here, we combined the two approaches by designing a phase-sensitive probe of the Ld phase and a quencher of the Ld phase. The former is an analogue of the recently developed Nile Red-based probe NR12S, bearing a bulky hydrophobic chain (bNR10S), while the latter is based on Black Hole Quencher-2 designed as bNR10S (bQ10S). Fluorescence spectroscopy of large unilamellar vesicles and microscopy of giant vesicles showed that the bNR10S probe can partition specifically into the Ld phase, while bQ10S can specifically quench the NR12S probe in the Ld phase so that only its fraction in the Lo phase remains fluorescent. Thus, the toolkit of two probes with quencher can specifically target Ld and Lo phases and identify their lipid order from the emission color. Application of this toolkit in living cells (HeLa, CHO, and 293T cell lines) revealed heterogeneity in the cell plasma membranes, observed as distinct probe environments close to the Lo and Ld phases of model membranes. In HeLa cells undergoing apoptosis, our toolkit showed the formation of separate domains of the Ld-like phase in the form of blebs. The developed tools open new possibilities in lipid raft research. PMID:25710589

  7. Human mast cell tryptase: Multiple cDNAs and genes reveal a multigene serine protease family

    International Nuclear Information System (INIS)

    Three different cDNAs and a gene encoding human skin mast cell tryptase have been cloned and sequenced in their entirety. The deduced amino acid sequences reveal a 30-amino acid prepropeptide followed by a 245-amino acid catalytic domain. The C-terminal undecapeptide of the human preprosequence is identical in dog tryptase and appears to be part of a prosequence unique among serine proteases. The differences among the three human tryptase catalytic domains include the loss of a consensus N-glycosylation site in one cDNA, which may explain some of the heterogeneity in size and susceptibility to deglycosylation seen in tryptase preparations. All three tryptase cDNAs are distinct from a recently reported cDNA obtained from a human lung mast cell library. A skin tryptase cDNA was used to isolate a human tryptase gene, the exons of which match one of the skin-derived cDNAs. The organization of the ∼1.8-kilobase-pair tryptase gene is unique and is not closely related to that of any other mast cell or leukocyte serine protease. The 5' regulatory regions of the gene share features with those of other serine proteases, including mast cell chymase, but are unusual in being separated from the protein-coding sequence by an intron. High-stringency hybridization of a human genomic DNA blot with a fragment of the tryptase gene confirms the presence of multiple tryptase genes. These findings provide genetic evidence that human mast cell tryptases are the products of a multigene family

  8. Genetic–geographic correlation revealed across a broad European ecotypic sample of perennial ryegrass (Lolium perenne) using array-based SNP genotyping

    OpenAIRE

    Blackmore, T.; Thomas, I.; McMahon, R.; Powell, W.; Hegarty, M

    2015-01-01

    Key message Publically available SNP array increases the marker density for genotyping of forage crop, Lolium perenne . Applied to 90 European ecotypes composed of 716 individuals identifies a significant genetic–geographic correlation. Abstract Grassland ecosystems are ubiquitous across temperate and tropical regions, totalling 37 % of the terrestrial land cover of the planet, and thus represent a global resource for understanding local adaptations to environment. However, genomic resources ...

  9. Diversity, genetic mapping, and signatures of domestication in the carrot (Daucus carota L.) genome, as revealed by Diversity Arrays Technology (DArT) markers

    OpenAIRE

    Grzebelus, Dariusz; Iorizzo, Massimo; Senalik, Douglas; Ellison, Shelby; Cavagnaro, Pablo; Macko-Podgorni, Alicja; Heller-Uszynska, Kasia; Kilian, Andrzej; Nothnagel, Thomas; Allender, Charlotte; Simon, Philipp W; Baranski, Rafal

    2013-01-01

    Carrot is one of the most economically important vegetables worldwide, but genetic and genomic resources supporting carrot breeding remain limited. We developed a Diversity Arrays Technology (DArT) platform for wild and cultivated carrot and used it to investigate genetic diversity and to develop a saturated genetic linkage map of carrot. We analyzed a set of 900 DArT markers in a collection of plant materials comprising 94 cultivated and 65 wild carrot accessions. The accessions were attribu...

  10. Electrophoretic deposition of reduced graphene oxide nanosheets on TiO2 nanotube arrays for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    In the present work, electrophoretic deposition (EPD) is used to deposit reduced graphene oxide (RGO) nanosheets onto a TiO2 nanotube array for application as photoelectrode in dye-sensitized solar cells (DSSCs). The as-deposited RGO nanosheets are very uniform and can be obtained with controllable thickness. Due to the enhanced electronic conductivity caused by RGO, the short-circuit current of DSSCs based on RGO-modified TiO2 nanotube arrays is much higher than that of DSSCs based on unmodified TiO2 nanotube arrays. In addition, the short-circuit current (Jsc) increases with longer EPD time for RGO deposition but decreases with increased EPD time later; a peak value of 8.87 mA cm−2 is reached for Jsc at an EPD time of 30 s. Therefore, DSSC based on TiO2 nanotubes (6.8 μm long) modified using EPD time 30 s delivers the highest energy conversion efficiency of 4.10%, while DSSC consisting of bare nanotubes exhibits efficiency of 2.97% and short-circuit current of 6.24 mA cm−2, which represents a 38.0% enhancement of energy conversion efficiency in DSSC consisting of TiO2 nanotubes modified with RGO compared to that of DSSC based on bare nanotubes. Moreover, RGO-deposition on longer bamboo-type TiO2 nanotube arrays (16.8 μm long) can further increase the energy conversion efficiencies to 6.01% by utilizing higher surface area of bamboo-type nanotubes for dye loading

  11. Live-cell microscopy reveals small molecule inhibitor effects on MAPK pathway dynamics.

    Directory of Open Access Journals (Sweden)

    Daniel J Anderson

    Full Text Available Oncogenic mutations in the mitogen activated protein kinase (MAPK pathway are prevalent in human tumors, making this pathway a target of drug development efforts. Recently, ATP-competitive Raf inhibitors were shown to cause MAPK pathway activation via Raf kinase priming in wild-type BRaf cells and tumors, highlighting the need for a thorough understanding of signaling in the context of small molecule kinase inhibitors. Here, we present critical improvements in cell-line engineering and image analysis coupled with automated image acquisition that allow for the simultaneous identification of cellular localization of multiple MAPK pathway components (KRas, CRaf, Mek1 and Erk2. We use these assays in a systematic study of the effect of small molecule inhibitors across the MAPK cascade either as single agents or in combination. Both Raf inhibitor priming as well as the release from negative feedback induced by Mek and Erk inhibitors cause translocation of CRaf to the plasma membrane via mechanisms that are additive in pathway activation. Analysis of Erk activation and sub-cellular localization upon inhibitor treatments reveals differential inhibition and activation with the Raf inhibitors AZD628 and GDC0879 respectively. Since both single agent and combination studies of Raf and Mek inhibitors are currently in the clinic, our assays provide valuable insight into their effects on MAPK signaling in live cells.

  12. Quantitative phosphoproteomics reveals new roles for the protein phosphatase PP6 in mitotic cells.

    Science.gov (United States)

    Rusin, Scott F; Schlosser, Kate A; Adamo, Mark E; Kettenbach, Arminja N

    2015-10-13

    Protein phosphorylation is an important regulatory mechanism controlling mitotic progression. Protein phosphatase 6 (PP6) is an essential enzyme with conserved roles in chromosome segregation and spindle assembly from yeast to humans. We applied a baculovirus-mediated gene silencing approach to deplete HeLa cells of the catalytic subunit of PP6 (PP6c) and analyzed changes in the phosphoproteome and proteome in mitotic cells by quantitative mass spectrometry-based proteomics. We identified 408 phosphopeptides on 272 proteins that increased and 298 phosphopeptides on 220 proteins that decreased in phosphorylation upon PP6c depletion in mitotic cells. Motif analysis of the phosphorylated sites combined with bioinformatics pathway analysis revealed previously unknown PP6c-dependent regulatory pathways. Biochemical assays demonstrated that PP6c opposed casein kinase 2-dependent phosphorylation of the condensin I subunit NCAP-G, and cellular analysis showed that depletion of PP6c resulted in defects in chromosome condensation and segregation in anaphase, consistent with dysregulation of condensin I function in the absence of PP6 activity. PMID:26462736

  13. Quantitative phosphoproteomics reveals SLP-76 dependent regulation of PAG and Src family kinases in T cells.

    Directory of Open Access Journals (Sweden)

    Lulu Cao

    Full Text Available The SH2-domain-containing leukocyte protein of 76 kDa (SLP-76 plays a critical scaffolding role in T cell receptor (TCR signaling. As an adaptor protein that contains multiple protein-binding domains, SLP-76 interacts with many signaling molecules and links proximal receptor stimulation to downstream effectors. The function of SLP-76 in TCR signaling has been widely studied using the Jurkat human leukaemic T cell line through protein disruption or site-directed mutagenesis. However, a wide-scale characterization of SLP-76-dependant phosphorylation events is still lacking. Quantitative profiling of over a hundred tyrosine phosphorylation sites revealed new modes of regulation of phosphorylation of PAG, PI3K, and WASP while reconfirming previously established regulation of Itk, PLCγ, and Erk phosphorylation by SLP-76. The absence of SLP-76 also perturbed the phosphorylation of Src family kinases (SFKs Lck and Fyn, and subsequently a large number of SFK-regulated signaling molecules. Altogether our data suggests unique modes of regulation of positive and negative feedback pathways in T cells by SLP-76, reconfirming its central role in the pathway.

  14. Structure and dye-sensitized solar cell application of TiO2 nanotube arrays fabricated by the anodic oxidation method

    International Nuclear Information System (INIS)

    Well-ordered TiO2 nanotube arrays were fabricated by the potentiostatic anodic oxidation method using pure Ti foil as a working electrode and ethylene glycol solution as an electrolyte with the small addition of NH4F and H2O. The influence of anodization temperature and time on the morphology and formation of TiO2 nanotube arrays was examined. The TiO2 nanotube arrays were applied as a photoelectrode to dye-sensitized solar cells. Regardless of anodizing temperature and time, the average diameter and wall thickness of TiO2 nanotube arrays show a similar value, whereas the length increases with decreasing reaction temperature. The conversion efficiency is very low, which is due to a morphology breaking of the TiO2 nanotube arrays in the manufacturing process of a photoelectrode.

  15. Geometric dependence of antireflective nanocone arrays towards ultrathin crystalline silicon solar cells

    International Nuclear Information System (INIS)

    The antireflective characteristics of Si nanocone (NC) arrays were estimated using a theory devised for an inhomogeneous antireflection layer, and further verified by the Fourier modal method (FMM). Considering a better impedance matching from air to Si, a minimum depth of 400 nm is essentially required. Although Si NC arrays have usually been suggested to be at a base diameter of ∼300 nm for infinitely thick Si wafers, as wafers become thinner than 50 μm, the optimal base diameter of the NCs is suggested to be ∼500 nm so as to excite more resonant modes. Our simulation work indicates that geometrical parameters such as the top diameter and filling ratio of the NCs are much more sensitive in terms of optimizing the optical performance on ultrathin (∼5 μm) wafers, suggesting the need for strict control of the surface morphology in the nanostructure fabrication process. (paper)

  16. Broadband-antireflective hybrid nanopillar array for photovoltaic application

    International Nuclear Information System (INIS)

    Subwavelength structures such as nanopillars, nanoholes, and nanodomes have recently attracted considerable attention as antireflective structures for solar cells. Recent studies on the optical property of nanopillar array revealed that the reflection minimum is related to the diameter, the pitch, and the height of nanopillars. Here, we investigate the “hybrid” nanopillar array, which is composed of different diameters of nanopillars. Finite differential time domain simulations revealed that the photogeneration in a hybrid nanopillar array is spatially heterogeneous: carriers are generated mainly in the narrower pillars for short-wavelength incident light and in the thicker pillars for long-wavelength light, respectively. Hybrid silicon nanopillar arrays fabricated by using electron beam lithography and dry etching show excellent broadband antireflection property. Hybrid nanopillar array is thus highly promising for next-generation antireflection for photovoltaic applications

  17. Dissecting the fission yeast regulatory network reveals phase-specific control elements of its cell cycle

    Directory of Open Access Journals (Sweden)

    Liu Liwen

    2009-09-01

    Full Text Available Abstract Background Fission yeast Schizosaccharomyces pombe and budding yeast Saccharomyces cerevisiae are among the original model organisms in the study of the cell-division cycle. Unlike budding yeast, no large-scale regulatory network has been constructed for fission yeast. It has only been partially characterized. As a result, important regulatory cascades in budding yeast have no known or complete counterpart in fission yeast. Results By integrating genome-wide data from multiple time course cell cycle microarray experiments we reconstructed a gene regulatory network. Based on the network, we discovered in addition to previously known regulatory hubs in M phase, a new putative regulatory hub in the form of the HMG box transcription factor SPBC19G7.04. Further, we inferred periodic activities of several less known transcription factors over the course of the cell cycle, identified over 500 putative regulatory targets and detected many new phase-specific and conserved cis-regulatory motifs. In particular, we show that SPBC19G7.04 has highly significant periodic activity that peaks in early M phase, which is coordinated with the late G2 activity of the forkhead transcription factor fkh2. Finally, using an enhanced Bayesian algorithm to co-cluster the expression data, we obtained 31 clusters of co-regulated genes 1 which constitute regulatory modules from different phases of the cell cycle, 2 whose phase order is coherent across the 10 time course experiments, and 3 which lead to identification of phase-specific control elements at both the transcriptional and post-transcriptional levels in S. pombe. In particular, the ribosome biogenesis clusters expressed in G2 phase reveal new, highly conserved RNA motifs. Conclusion Using a systems-level analysis of the phase-specific nature of the S. pombe cell cycle gene regulation, we have provided new testable evidence for post-transcriptional regulation in the G2 phase of the fission yeast cell cycle

  18. Core-Shell CdS-Cu₂S Nanorod Array Solar Cells.

    Science.gov (United States)

    Wong, Andrew Barnabas; Brittman, Sarah; Yu, Yi; Dasgupta, Neil P; Yang, Peidong

    2015-06-10

    As an earth-abundant p-type semiconductor, copper sulfide (Cu2S) is an attractive material for application in photovoltaic devices. However, it suffers from a minority carrier diffusion length that is less than the length required for complete light absorption. Core-shell nanowires and nanorods have the potential to alleviate this difficulty because they decouple the length scales of light absorption and charge collection. To achieve this geometry using Cu2S, cation exchange was applied to an array of CdS nanorods to produce well-defined CdS-Cu2S core-shell nanorods. Previous work has demonstrated single-nanowire photovoltaic devices from this material system, but in this work, the cation exchange chemistry has been applied to nanorod arrays to produce ensemble-level devices with microscale sizes. The core-shell nanorod array devices show power conversion efficiencies of up to 3.8%. In addition, these devices are stable when measured in air after nearly one month of storage in a desiccator. These results are a first step in the development of large-area nanostructured Cu2S-based photovoltaics that can be processed from solution. PMID:25993088

  19. Human iPSC-Derived Endothelial Cell Sprouting Assay in Synthetic Hydrogel Arrays

    Science.gov (United States)

    Activation of vascular endothelial cells (ECs) by growth factors initiates a cascade of events in vivo consisting of EC tip cell selection, sprout formation, EC stalk cell proliferation, and ultimately vascular stabilization by support cells. Although EC functional assays can rec...

  20. An Increase in Conversion Efficiency of Dye-Sensitized Solar Cells using Bamboo-Type TiO2 Nanotube Arrays

    International Nuclear Information System (INIS)

    Highlights: •Oriented bamboo-type TiO2 NT arrays were prepared by AV anodization of Ti for DSSCs. •Increased dye loading in inner and outer walls due to bamboo structure were estimated. •Electron transfer time of TiO2 NT arrays was unaffected by the bamboo structure. •Cell efficiency of 7.36% was achieved due to higher dye loading. -- Abstract: Highly ordered, bamboo type TiO2 nanotube (NT) arrays were prepared by anodization of Ti foils in an electrolyte of 0.5 wt% NH4F in ethylene glycol using square-wave voltage. The morphology of obtained arrays consisting of closely packed TiO2 NTs with inner diameter of 90 nm, wall thickness of 20 nm and length of 26 μm was characterized by scanning electron microscopy (SEM). Poly-crystalline anatase structure with crystallites of 28 nm in average size was determined by X-ray diffraction (XRD). Intensity-modulated photocurrent spectroscopy (IMPS) was employed to study the electron transport properties of TiO2 NT arrays used in dye-sensitized solar cells (DSSCs). Dye molecules were found to cover both the inner and outer surface of the bamboo type TiO2 NT arrays. Electrochemical impedance spectroscopy (EIS) showed reduced interfacial resistance and increased interfacial capacitance for the bamboo type TiO2 NT arrays compared with the smooth type arrays, indicating an increase in surface area of the bamboo type TiO2 NT arrays, which resulted in the higher dye loading. An increased conversion efficiency of 7.36% was achieved for the DSSCs based on the bamboo type TiO2 NT arrays attributing to the significant increase of dye loading resulted from the bamboo structure

  1. Immunofluorescence microscopy of organized microtubule arrays in structurally stabilized meristematic plant cells

    OpenAIRE

    1981-01-01

    Cells were prepared for indirect immunofluorescence microscopy after paraformaldehyde fixation of multicellular root apices and brief incubation in cell wall-digesting enzymes. This allowed subsequent separation of the tissue into individual cells or short files of cells which were put onto coverslips coated with polylysine. Unlike spherical protoplasts made from living tissues, these preparations retain the same polyhedral shape as the cells from which they are derived. Cellular contents, in...

  2. Development of Microelectrode Arrays Using Electroless Plating for CMOS-Based Direct Counting of Bacterial and HeLa Cells.

    Science.gov (United States)

    Niitsu, Kiichi; Ota, Shoko; Gamo, Kohei; Kondo, Hiroki; Hori, Masaru; Nakazato, Kazuo

    2015-10-01

    The development of two new types of high-density, electroless plated microelectrode arrays for CMOS-based high-sensitivity direct bacteria and HeLa cell counting are presented. For emerging high-sensitivity direct pathogen counting, two technical challenges must be addressed. One is the formation of a bacteria-sized microelectrode, and the other is the development of a high-sensitivity and high-speed amperometry circuit. The requirement for microelectrode formation is that the gold microelectrodes are required to be as small as the target cell. By improving a self-aligned electroless plating technique, the dimensions of the microelectrodes on a CMOS sensor chip in this work were successfully reduced to 1.2 μm × 2.05 μm. This is 1/20th of the smallest size reported in the literature. Since a bacteria-sized microelectrode has a severe limitation on the current flow, the amperometry circuit has to have a high sensitivity and high speed with low noise. In this work, a current buffer was inserted to mitigate the potential fluctuation. Three test chips were fabricated using a 0.6- μm CMOS process: two with 1.2 μm × 2.05 μm (1024 × 1024 and 4 × 4) sensor arrays and one with 6- μm square (16 × 16) sensor arrays; and the microelectrodes were formed on them using electroless plating. The uniformity among the 1024 × 1024 electrodes arranged with a pitch of 3.6 μm × 4.45 μm was optically verified. For improving sensitivity, the trenches on each microelectrode were developed and verified optically and electrochemically for the first time. Higher sensitivity can be achieved by introducing a trench structure than by using a conventional microelectrode formed by contact photolithography. Cyclic voltammetry (CV) measurements obtained using the 1.2 μm × 2.05 μm 4 × 4 and 6- μm square 16 × 16 sensor array with electroless-plated microelectrodes successfully demonstrated direct counting of the bacteria-sized microbeads and HeLa cells. PMID:26561481

  3. Heterogeneous flammulina velutipes-like CdTe/TiO2 nanorod array: A promising composite nanostructure for solar cell application

    International Nuclear Information System (INIS)

    Highlights: ► Core–shell CdTe/TiO2 nanorod arrays have been prepared via hydrothermal growth and magnetron sputtering method. ► CdTe nanograins covered on the surface of the TiO2 nanorod arrays constructing a flammulina velutipe like type-II heterostructure. ► The spectrum absorption region and the open circuit photocurrent are greatly increased. - Abstract: Core–shell heterogeneous CdTe/TiO2 nanorod arrays have been prepared by a two-step synthesis route through combined hydrothermal growth and magnetron sputtering. The composition and microstructure of the arrays were investigated by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM), which show that CdTe nanograins coated on the surface of the single-crystalline TiO2 nanorod arrays to form a type-II heterostructure. Compared with TiO2 nanorod arrays, the spectrum absorption region of CdTe/TiO2 core–shell nanostructure is broadened from ultraviolet light to visible light. The photoelectrodes of CdTe/TiO2 nanorod arrays show better photoelectric properties than those of bare TiO2 nanorod arrays. The output power of CdTe/TiO2 nanorod arrays is 25 times higher than that of a bare TiO2 nanorod array. These results indicate that the photoelectrode of CdTe/TiO2 nanorod array has a promising application in solar cell.

  4. Quantitative trait loci mapping reveals candidate pathways regulating cell cycle duration in Plasmodium falciparum

    Directory of Open Access Journals (Sweden)

    Siwo Geoffrey

    2010-10-01

    Full Text Available Abstract Background Elevated parasite biomass in the human red blood cells can lead to increased malaria morbidity. The genes and mechanisms regulating growth and development of Plasmodium falciparum through its erythrocytic cycle are not well understood. We previously showed that strains HB3 and Dd2 diverge in their proliferation rates, and here use quantitative trait loci mapping in 34 progeny from a cross between these parent clones along with integrative bioinformatics to identify genetic loci and candidate genes that control divergences in cell cycle duration. Results Genetic mapping of cell cycle duration revealed a four-locus genetic model, including a major genetic effect on chromosome 12, which accounts for 75% of the inherited phenotype variation. These QTL span 165 genes, the majority of which have no predicted function based on homology. We present a method to systematically prioritize candidate genes using the extensive sequence and transcriptional information available for the parent lines. Putative functions were assigned to the prioritized genes based on protein interaction networks and expression eQTL from our earlier study. DNA metabolism or antigenic variation functional categories were enriched among our prioritized candidate genes. Genes were then analyzed to determine if they interact with cyclins or other proteins known to be involved in the regulation of cell cycle. Conclusions We show that the divergent proliferation rate between a drug resistant and drug sensitive parent clone is under genetic regulation and is segregating as a complex trait in 34 progeny. We map a major locus along with additional secondary effects, and use the wealth of genome data to identify key candidate genes. Of particular interest are a nucleosome assembly protein (PFL0185c, a Zinc finger transcription factor (PFL0465c both on chromosome 12 and a ribosomal protein L7Ae-related on chromosome 4 (PFD0960c.

  5. Proteomics reveals multiple routes to the osteogenic phenotype in mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Yener Bülent

    2007-10-01

    Full Text Available Abstract Background Recently, we demonstrated that human mesenchymal stem cells (hMSC stimulated with dexamethazone undergo gene focusing during osteogenic differentiation (Stem Cells Dev 14(6: 1608–20, 2005. Here, we examine the protein expression profiles of three additional populations of hMSC stimulated to undergo osteogenic differentiation via either contact with pro-osteogenic extracellular matrix (ECM proteins (collagen I, vitronectin, or laminin-5 or osteogenic media supplements (OS media. Specifically, we annotate these four protein expression profiles, as well as profiles from naïve hMSC and differentiated human osteoblasts (hOST, with known gene ontologies and analyze them as a tensor with modes for the expressed proteins, gene ontologies, and stimulants. Results Direct component analysis in the gene ontology space identifies three components that account for 90% of the variance between hMSC, osteoblasts, and the four stimulated hMSC populations. The directed component maps the differentiation stages of the stimulated stem cell populations along the differentiation axis created by the difference in the expression profiles of hMSC and hOST. Surprisingly, hMSC treated with ECM proteins lie closer to osteoblasts than do hMSC treated with OS media. Additionally, the second component demonstrates that proteomic profiles of collagen I- and vitronectin-stimulated hMSC are distinct from those of OS-stimulated cells. A three-mode tensor analysis reveals additional focus proteins critical for characterizing the phenotypic variations between naïve hMSC, partially differentiated hMSC, and hOST. Conclusion The differences between the proteomic profiles of OS-stimulated hMSC and ECM-hMSC characterize different transitional phenotypes en route to becoming osteoblasts. This conclusion is arrived at via a three-mode tensor analysis validated using hMSC plated on laminin-5.

  6. Broadband photocurrent enhancement and light-trapping in thin film Si solar cells with periodic Al nanoparticle arrays on the front.

    Science.gov (United States)

    Uhrenfeldt, C; Villesen, T F; Têtu, A; Johansen, B; Larsen, A Nylandsted

    2015-06-01

    Plasmonic resonances in metal nanoparticles are considered candidates for improved thin film Si photovoltaics. In periodic arrays the influence of collective modes can enhance the resonant properties of such arrays. We have investigated the use of periodic arrays of Al nanoparticles placed on the front of a thin film Si test solar cell. It is demonstrated that the resonances from the Al nanoparticle array causes a broadband photocurrent enhancement ranging from the ultraviolet to the infrared with respect to a reference cell. From the experimental results as well as from numerical simulations it is shown that this broadband enhancement is due to single particle resonances that give rise to light-trapping in the infrared spectral range and to collective resonances that ensure an efficient in-coupling of light in the ultraviolet-blue spectral range. PMID:26072877

  7. Controlled synthesis of ZnO branched nanorod arrays by hierarchical solution growth and application in dye-sensitized solar cells

    International Nuclear Information System (INIS)

    We demonstrate the controlled synthesis of ZnO branched nanorod arrays on fluorine-doped SnO2-coated glass substrates by the hierarchical solution growth method. In the secondary growth, the concentration of Zn(NO3)2/hexamethylenetetramine plays an important role in controlling the morphology of the branched nanorod arrays, besides that of diaminopropane used as a structure-directing agent to induce the growth of branches. The population density and morphology of the branched nanorod arrays depend on those of the nanorod arrays obtained from the primary growth, which can be modulated though the concentration of Zn(NO3)2/hexamethylenetetramine in the primary growth solution. The dye-sensitized ZnO branched nanorod arrays exhibit much stronger optical absorption as compared with its corresponding primary nanorod arrays, suggesting that the addition of the branches improves light harvesting. The dye-sensitized solar cell based on the optimized ZnO branched nanorod array reaches a conversion efficiency of 1.66% under the light radiation of 1000 W/m2. The branched nanorod arrays can also be applied in other application fields of ZnO.

  8. BAC array CGH in patients with Velocardiofacial syndrome-like features reveals genomic aberrations on chromosome region 1q21.1

    Directory of Open Access Journals (Sweden)

    Estivill Xavier

    2009-12-01

    Full Text Available Abstract Background Microdeletion of the chromosome 22q11.2 region is the most common genetic aberration among patients with velocardiofacial syndrome (VCFS but a subset of subjects do not show alterations of this chromosome region. Methods We analyzed 18 patients with VCFS-like features by comparative genomic hybridisation (aCGH array and performed a face-to-face slide hybridization with two different arrays: a whole genome and a chromosome 22-specific BAC array. Putative rearrangements were confirmed by FISH and MLPA assays. Results One patient carried a combination of rearrangements on 1q21.1, consisting in a microduplication of 212 kb and a close microdeletion of 1.15 Mb, previously reported in patients with variable phenotypes, including mental retardation, congenital heart defects (CHD and schizophrenia. While 326 control samples were negative for both 1q21.1 rearrangements, one of 73 patients carried the same 212-kb microduplication, reciprocal to TAR microdeletion syndrome. Also, we detected four copy number variants (CNVs inherited from one parent (a 744-kb duplication on 10q11.22; a 160 kb duplication and deletion on 22q11.21 in two cases; and a gain of 140 kb on 22q13.2, not present in control subjects, raising the potential role of these CNVs in the VCFS-like phenotype. Conclusions Our results confirmed aCGH as a successful strategy in order to characterize additional submicroscopic aberrations in patients with VCF-like features that fail to show alterations in 22q11.2 region. We report a 212-kb microduplication on 1q21.1, detected in two patients, which may contribute to CHD.

  9. Electricity from photovoltaic solar cells. Flat-Plate Solar Array Project of the US Department of Energy's National Photovoltaics Program: 10 years of progress

    Science.gov (United States)

    Christensen, Elmer

    1985-01-01

    The objectives were to develop the flat-plate photovoltaic (PV) array technologies required for large-scale terrestrial use late in the 1980s and in the 1990s; advance crystalline silicon PV technologies; develop the technologies required to convert thin-film PV research results into viable module and array technology; and to stimulate transfer of knowledge of advanced PV materials, solar cells, modules, and arrays to the PV community. Progress reached on attaining these goals, along with future recommendations are discussed.

  10. Revealing nonergodic dynamics in living cells from a single particle trajectory

    Science.gov (United States)

    Lanoiselée, Yann; Grebenkov, Denis S.

    2016-05-01

    We propose the improved ergodicity and mixing estimators to identify nonergodic dynamics from a single particle trajectory. The estimators are based on the time-averaged characteristic function of the increments and can thus capture additional information on the process as compared to the conventional time-averaged mean-square displacement. The estimators are first investigated and validated for several models of anomalous diffusion, such as ergodic fractional Brownian motion and diffusion on percolating clusters, and nonergodic continuous-time random walks and scaled Brownian motion. The estimators are then applied to two sets of earlier published trajectories of mRNA molecules inside live Escherichia coli cells and of Kv2.1 potassium channels in the plasma membrane. These statistical tests did not reveal nonergodic features in the former set, while some trajectories of the latter set could be classified as nonergodic. Time averages along such trajectories are thus not representative and may be strongly misleading. Since the estimators do not rely on ensemble averages, the nonergodic features can be revealed separately for each trajectory, providing a more flexible and reliable analysis of single-particle tracking experiments in microbiology.

  11. Electrodeposition of CdSe coatings on ZnO nanowire arrays for extremely thin absorber solar cells

    International Nuclear Information System (INIS)

    We report on electrodeposition of CdSe coatings onto ZnO nanowire arrays and determine the effect of processing conditions on material properties such as morphology and microstructure. CdSe-coated ZnO nanowire arrays have potential use in extremely thin absorber (ETA) solar cells, where CdSe absorbs visible light and injects photoexcited electrons into the ZnO nanowires. We show that room-temperature electrodeposition enables growth of CdSe coatings that are highly crystalline, uniform, and conformal with precise control over thickness and microstructure. X-ray diffraction and transmission electron microscopy show nanocrystalline CdSe in both hexagonal and cubic phases with grain size ∼5 nm. Coating morphology depends on electrodeposition current density. Uniform and conformal coatings were achieved using moderate current densities of ∼2 mA cm-2 for nanowires with roughness factor of ∼10, while lower current densities resulted in sparse nucleation and growth of larger, isolated islands. Electrodeposition charge density controls the thickness of the CdSe coating, which was exploited to investigate the evolution of the morphology at early stages of nucleation and growth. UV-vis transmission spectroscopy and photoelectrochemical solar cell measurements demonstrate that CdSe effectively sensitizes ZnO nanowires to visible light.

  12. Dye sensitized solar cells using freestanding TiO2 nanotube arrays on FTO substrate as photoanode

    International Nuclear Information System (INIS)

    Research highlights: → This paper report that the front-side illuminated dye-sensitized solar cells with TiO2 nanotube arrays/FTO based photoanode were fabricated by a simple detachment and transfer method. Under simulated AM 1.5 light illumination, the TiO2-nanotube/FTO glass based DSSCs exhibited a Jsc of 3.68 mA cm-2, a Voc (open-circuit voltage) of 0.795 V and a FF (fill factor) of 61%, with a photoconversion efficiency of 1.78%. It shows a two-times higher value compared to that of a TiO2-nanotube/Ti-substrate based DSSCs. - Abstract: The front-side illuminated dye-sensitized solar cells with TiO2 nanotube arrays/FTO based photoanode were fabricated by a simple detachment and transfer method. The morphology and crystalline phase of the TiO2 nanotubes were studied by scanning electron microscopy and X-ray diffraction. A photoconversion efficiency of 1.78% was obtained using TiO2-nanotube/FTO glass as a photoanode. It was found that the average tubes diameter increased with anodizing voltage, and higher photoconversion efficiency was obtained for nanotubes synthesized at the higher voltage.

  13. Influence of TiO2 Nanorod Arrays on the Bilayered Photoanode for Dye-Sensitized Solar Cells

    Science.gov (United States)

    Cao, Ya; Li, Zhen; Wang, Yang; Zhang, Tao; Li, Yinchang; Liu, Xueqin; Li, Fei

    2016-06-01

    A TiO2 bilayered structure consisting of TiO2 nanoparticles (TiO2NP) as an overlayer and single-crystal rutile TiO2 nanorods (TiO2 NRs) as an underlayer on a transparent conductive fluorine-doped tin oxide substrate was designed as the photoanode of dye-sensitized solar cells (DSSCs) through a facile hydrothermal treatment followed by a doctor-blade method. DSSCs based on the hierarchical TiO2 nano-architecture photoelectrode shows a power conversion efficiency of 7.39% because the relatively large specific surface area of TiO2NP increased the dye absorption, and oriented one-dimensional TiO2 NRs enhanced the light harvesting capability, accelerating interfacial electron transport. In particular, we observed the growth morphology of the TiO2 nanorod arrays in the bilayered photoanode and the influence of the whole solar cell. The result indicated that the TiO2 NRs layer clearly impacted the photoelectron chemical properties, while the vertical and intensive nanorod arrays significantly increased their performance.

  14. Synthesis of TiO2 nanotube arrays and its application in mini-3D dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Here we report a mini-three-dimensional dye-sensitized solar cell (3D DSSC) based on TiO2 nanotube arrays (TNAs). TNAs were directly grown on spiral-shaped titanium wire via a facile potentiostatic anodization. Furthermore, the TNAs film was characterized by scanning electron microscopy, x-ray diffraction and transmission electron microscopy, indicating that the annealed TNAs were composed of single-crystalline anatase particles. Unlike conventional flat DSSC, this mini-3D DSSC could easily hold liquid electrolyte due to the capillary force which facilitated sealing the cell. This mini-3D DSSC showed an energy conversion efficiency of 4.1% under the AM 1.5 condition, which was much higher compared with that (3.2%) of the backside illuminated TNAs based DSSC of the same projected area.

  15. The 100 kW space station. [regenerative fuel cells and nickel hydrogen and nickel cadmium batteries for solar arrays

    Science.gov (United States)

    Mckhann, G.

    1977-01-01

    Solar array power systems for the space construction base are discussed. Nickel cadmium and nickel hydrogen batteries are equally attractive relative to regenerative fuel cell systems at 5 years life. Further evaluation of energy storage system life (low orbit conditions) is required. Shuttle and solid polymer electrolyte fuel cell technology appears adequate; large units (approximately four times shuttle) are most appropriate and should be studied for a 100 KWe SCB system. A conservative NiH2 battery DOD (18.6%) was elected due to lack of test data and offers considerable improvement potential. Multiorbit load averaging and reserve capacity requirements limit nominal DOD to 30% to 50% maximum, independent of life considerations.

  16. Integration of niobium oxide-based resistive switching cells with different select properties into nanostructured cross-bar arrays

    International Nuclear Information System (INIS)

    Memristive devices with different underlying physical mechanisms are investigated and compared with respect to their utilization in passive cross-bar arrays for computing and memory applications. Niobium oxide-based metal–insulator–metal structures in various configurations exhibit abrupt filamentary resistive switching, filamentary resistive switching together with a threshold switching effect and analog switching characteristics. It is found that the initial electroforming step, which is mandatory for filamentary cells, causes problems if no individual selector device ensuring internal current compliance is applied. In contrast, cells based on analog switching are forming free and could be operated without difficulty. Thus they might be of value for utilization as passive circuit elements. (paper)

  17. Structures of inactive retinoblastoma protein reveal multiple mechanisms for cell cycle control

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Jason R.; Hura, Greg L.; Rubin, Seth M. (UCSC); (LBNL)

    2012-07-18

    Cyclin-dependent kinase (Cdk) phosphorylation of the Retinoblastoma protein (Rb) drives cell proliferation through inhibition of Rb complexes with E2F transcription factors and other regulatory proteins. We present the first structures of phosphorylated Rb that reveal the mechanism of its inactivation. S608 phosphorylation orders a flexible 'pocket' domain loop such that it mimics and directly blocks E2F transactivation domain (E2F{sup TD}) binding. T373 phosphorylation induces a global conformational change that associates the pocket and N-terminal domains (RbN). This first multidomain Rb structure demonstrates a novel role for RbN in allosterically inhibiting the E2F{sup TD}-pocket association and protein binding to the pocket 'LxCxE' site. Together, these structures detail the regulatory mechanism for a canonical growth-repressive complex and provide a novel example of how multisite Cdk phosphorylation induces diverse structural changes to influence cell cycle signaling.

  18. Coupled electrophysiological recording and single cell transcriptome analyses revealed molecular mechanisms underlying neuronal maturation.

    Science.gov (United States)

    Chen, Xiaoying; Zhang, Kunshan; Zhou, Liqiang; Gao, Xinpei; Wang, Junbang; Yao, Yinan; He, Fei; Luo, Yuping; Yu, Yongchun; Li, Siguang; Cheng, Liming; Sun, Yi E

    2016-03-01

    The mammalian brain is heterogeneous, containing billions of neurons and trillions of synapses forming various neural circuitries, through which sense, movement, thought, and emotion arise. The cellular heterogeneity of the brain has made it difficult to study the molecular logic of neural circuitry wiring, pruning, activation, and plasticity, until recently, transcriptome analyses with single cell resolution makes decoding of gene regulatory networks underlying aforementioned circuitry properties possible. Here we report success in performing both electrophysiological and whole-genome transcriptome analyses on single human neurons in culture. Using Weighted Gene Coexpression Network Analyses (WGCNA), we identified gene clusters highly correlated with neuronal maturation judged by electrophysiological characteristics. A tight link between neuronal maturation and genes involved in ubiquitination and mitochondrial function was revealed. Moreover, we identified a list of candidate genes, which could potentially serve as biomarkers for neuronal maturation. Coupled electrophysiological recording and single cell transcriptome analysis will serve as powerful tools in the future to unveil molecular logics for neural circuitry functions. PMID:26883038

  19. Development of a Microforce Sensor and Its Array Platform for Robotic Cell Microinjection Force Measurement

    OpenAIRE

    Yu Xie; Yunlei Zhou; Yuzi Lin; Lingyun Wang,; Wenming Xi

    2016-01-01

    Robot-assisted cell microinjection, which is precise and can enable a high throughput, is attracting interest from researchers. Conventional probe-type cell microforce sensors have some real-time injection force measurement limitations, which prevent their integration in a cell microinjection robot. In this paper, a novel supported-beam based cell micro-force sensor with a piezoelectric polyvinylidine fluoride film used as the sensing element is described, which was designed to solve the real...

  20. Preparation, characterization, and application of titanium nano-tube array in dye-sensitized solar cells

    OpenAIRE

    Ho, Shih-Yu; Su, Chaochin; Cheng, Chieh-Chung; Kathirvel, Sasipriya; Li, Chung-Yen; Li, Wen-Ren

    2012-01-01

    The vertically orientated TiO2 nanotube array (TNA) decorated with TiO2 nano-particles was successfully fabricated by electrochemically anodizing titanium (Ti) foils followed by Ti-precursor post-treatment and annealing process. The TNA morphology characterized by SEM and TEM was found to be filled with TiO2 nano-particles interior and exterior of the TiO2 nano-tubes after titanium (IV) n-butoxide (TnB) treatment, whereas TiO2 nano-particles were only found inside of TiO2 nano-tubes upon tita...

  1. Arrays of ZnO nanocolumns for 3-dimensional very thin amorphous and microcrystalline silicon solar cells

    International Nuclear Information System (INIS)

    We report on the hydrothermal growth of high quality arrays of single crystalline zinc oxide (ZnO) nanocolumns, oriented perpendicularly to the transparent conductive oxide substrate. In order to obtain precisely defined spacing and arrangement of ZnO nanocolumns over an area up to 0.5 cm2, we used electron beam lithography. Vertically aligned ZnO (multicrystalline or single crystals) nanocolumns were grown in an aqueous solution of zinc nitrate hexahydrate and hexamethylenetetramine at 95 °C, with a growth rate 0.5 ÷ 1 μm/h. The morphology of the nanostructures was visualized by scanning electron microscopy. Such nanostructured ZnO films were used as a substrate for the recently developed 3-dimensional thin film silicon (amorphous, microcrystalline) solar cell, with a high efficiency potential. The photoelectrical and optical properties of the ZnO nanocolumns and the silicon absorber layers of these type nanostructured solar cells were investigated in details. - Highlights: • Vertically-oriented ZnO nanocolumns were grown by hydrothermal method. • The ZnO nanocolumns were grown over an area of 0.5 cm2. • For precise arrangement of the ZnO nanocolumns electron beam lithography was used. • We report on 3-D design of nanostructured solar cell. • Optical thickness of nanostructured cell was three times higher compared to flat cell

  2. Co-expression network analysis reveals transcription factors associated to cell wall biosynthesis in sugarcane.

    Science.gov (United States)

    Ferreira, Savio Siqueira; Hotta, Carlos Takeshi; Poelking, Viviane Guzzo de Carli; Leite, Debora Chaves Coelho; Buckeridge, Marcos Silveira; Loureiro, Marcelo Ehlers; Barbosa, Marcio Henrique Pereira; Carneiro, Monalisa Sampaio; Souza, Glaucia Mendes

    2016-05-01

    Sugarcane is a hybrid of Saccharum officinarum and Saccharum spontaneum, with minor contributions from other species in Saccharum and other genera. Understanding the molecular basis of cell wall metabolism in sugarcane may allow for rational changes in fiber quality and content when designing new energy crops. This work describes a comparative expression profiling of sugarcane ancestral genotypes: S. officinarum, S. spontaneum and S. robustum and a commercial hybrid: RB867515, linking gene expression to phenotypes to identify genes for sugarcane improvement. Oligoarray experiments of leaves, immature and intermediate internodes, detected 12,621 sense and 995 antisense transcripts. Amino acid metabolism was particularly evident among pathways showing natural antisense transcripts expression. For all tissues sampled, expression analysis revealed 831, 674 and 648 differentially expressed genes in S. officinarum, S. robustum and S. spontaneum, respectively, using RB867515 as reference. Expression of sugar transporters might explain sucrose differences among genotypes, but an unexpected differential expression of histones were also identified between high and low Brix° genotypes. Lignin biosynthetic genes and bioenergetics-related genes were up-regulated in the high lignin genotype, suggesting that these genes are important for S. spontaneum to allocate carbon to lignin, while S. officinarum allocates it to sucrose storage. Co-expression network analysis identified 18 transcription factors possibly related to cell wall biosynthesis while in silico analysis detected cis-elements involved in cell wall biosynthesis in their promoters. Our results provide information to elucidate regulatory networks underlying traits of interest that will allow the improvement of sugarcane for biofuel and chemicals production. PMID:26820137

  3. Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor

    Energy Technology Data Exchange (ETDEWEB)

    Copp& #233; , Jean-Philippe; Patil, Christopher; Rodier, Francis; Sun, Yu; Munoz, Denise; Goldstein, Joshua; Nelson, Peter; Desprez, Pierre-Yves; Campisi, Judith

    2008-10-24

    Cellular senescence suppresses cancer by arresting cell proliferation, essentially permanently, in response to oncogenic stimuli, including genotoxic stress. We modified the use of antibody arrays to provide a quantitative assessment of factors secreted by senescent cells. We show that human cells induced to senesce by genotoxic stress secrete myriad factors associated with inflammation and malignancy. This senescence-associated secretory phenotype (SASP) developed slowly over several days and only after DNA damage of sufficient magnitude to induce senescence. Remarkably similar SASPs developed in normal fibroblasts, normal epithelial cells, and epithelial tumor cells after genotoxic stress in culture, and in epithelial tumor cells in vivo after treatment of prostate cancer patients with DNA-damaging chemotherapy. In cultured premalignant epithelial cells, SASPs induced an epithelial-mesenchyme transition and invasiveness, hallmarks of malignancy, by a paracrine mechanism that depended largely on the SASP factors interleukin (IL)-6 and IL-8. Strikingly, two manipulations markedly amplified, and accelerated development of, the SASPs: oncogenic RAS expression, which causes genotoxic stress and senescence in normal cells, and functional loss of the p53 tumor suppressor protein. Both loss of p53 and gain of oncogenic RAS also exacerbated the promalignant paracrine activities of the SASPs. Our findings define a central feature of genotoxic stress-induced senescence. Moreover, they suggest a cell-nonautonomous mechanism by which p53 can restrain, and oncogenic RAS can promote, the development of age-related cancer by altering the tissue microenvironment.

  4. Cell-Controlled and Spatially Arrayed Gene Delivery from Fibrin Hydrogels

    OpenAIRE

    Lei, Pedro; Padmashali, Roshan; Andreadis, Stelios T.

    2009-01-01

    We investigated fibrin-mediated gene transfer by embedding pDNA within the hydrogel during polymerization and using two modes of gene transfection with cells placed either on the surface (2D transfection) or within the hydrogel (3D transfection). Using this model, we found that cell transfection depended strongly on the local cell-pDNA microenvironment as defined by the 2D vs. 3D context, target cell type and density, as well as fibrinogen and pDNA concentrations. When cells were embedded wit...

  5. Optical and structural properties of electrochemically deposited ZnO nanorod arrays suitable for improvement of the light harvesting in thin film solar cells

    International Nuclear Information System (INIS)

    The results of study of the optical and structural properties of ZnO nanorods (NR) arrays electrochemically deposited on two type substrates – the ITO surface on the front side of Si heterojunction (SHJ) solar cells and on stainless steel plate used for formation of a-Si:H thin film solar cells, are reported. The surface morphology of the NS arrays is examined by Scanning Electron Microscopy and AFM. The spectra of specular diffused and total reflection, and haze ratio in reflectance are compared before and after deposition of the ZnO NR arrays. In the case of deposition on ITO surface of SHJ solar cells the values of the direct and diffused reflection of the ZnO NR array decrease demonstrating good antireflection properties. Deposition of ZnO NS arrays on stainless steel plates leads to increasing the values of the diffused reflection and the total reflectance. Possible application of ZnO NS structures for the processing of advanced Si based solar cells for increasing light harvesting is discussed

  6. Revealing the Differences Between Free and Complexed Enzyme Mechanisms and Factors Contributing to Cell Wall Recalcitrance

    Energy Technology Data Exchange (ETDEWEB)

    Resch, M.

    2014-09-08

    Enzymatic depolymerization of polysaccharides is a key step in the production of fuels and chemicals from lignocellulosic biomass, and discovery of synergistic biomass-degrading enzyme paradigms will enable improved conversion processes. Historically, revealing insights into enzymatic saccharification mechanisms on plant cell walls has been hindered by uncharacterized substrates and low resolution imaging techniques. Also, translating findings between model substrates to intact biomass is critical for evaluating enzyme performance. Here we employ a fungal free enzyme cocktail, a complexed cellulosomal system, and a combination of the two to investigate saccharification mechanisms on cellulose I, II and III along with corn stover from Clean Fractionation (CF), which is an Organosolv pretreatment. The insoluble Cellulose Enriched Fraction (CEF) from CF contains mainly cellulose with minor amounts of residual hemicellulose and lignin, the amount of which depends on the CF pretreatment severity. Enzymatic digestions at both low and high-solids loadings demonstrate that CF reduces the amount of enzyme required to depolymerize polysaccharides relative to deacetylated, dilute acid pretreated corn stover. Transmission and scanning electron microscopy of the biomass provides evidence for the different mechanisms of enzymatic deconstruction between free and complexed enzyme systems, and reveals the basis for the synergistic relationship between the two enzyme paradigms on a process-relevant substrate for the first time. These results also demonstrate that the presence of lignin, rather than cellulose morphology, is more detrimental to cellulosome action than to free cellulases. As enzyme costs are a major economic driver for biorefineries, this study provides key inputs for the evaluation of CF as a pretreatment method for biomass conversion.

  7. Whole-Genome Sequencing Reveals Diverse Models of Structural Variations in Esophageal Squamous Cell Carcinoma.

    Science.gov (United States)

    Cheng, Caixia; Zhou, Yong; Li, Hongyi; Xiong, Teng; Li, Shuaicheng; Bi, Yanghui; Kong, Pengzhou; Wang, Fang; Cui, Heyang; Li, Yaoping; Fang, Xiaodong; Yan, Ting; Li, Yike; Wang, Juan; Yang, Bin; Zhang, Ling; Jia, Zhiwu; Song, Bin; Hu, Xiaoling; Yang, Jie; Qiu, Haile; Zhang, Gehong; Liu, Jing; Xu, Enwei; Shi, Ruyi; Zhang, Yanyan; Liu, Haiyan; He, Chanting; Zhao, Zhenxiang; Qian, Yu; Rong, Ruizhou; Han, Zhiwei; Zhang, Yanlin; Luo, Wen; Wang, Jiaqian; Peng, Shaoliang; Yang, Xukui; Li, Xiangchun; Li, Lin; Fang, Hu; Liu, Xingmin; Ma, Li; Chen, Yunqing; Guo, Shiping; Chen, Xing; Xi, Yanfeng; Li, Guodong; Liang, Jianfang; Yang, Xiaofeng; Guo, Jiansheng; Jia, JunMei; Li, Qingshan; Cheng, Xiaolong; Zhan, Qimin; Cui, Yongping

    2016-02-01

    Comprehensive identification of somatic structural variations (SVs) and understanding their mutational mechanisms in cancer might contribute to understanding biological differences and help to identify new therapeutic targets. Unfortunately, characterization of complex SVs across the whole genome and the mutational mechanisms underlying esophageal squamous cell carcinoma (ESCC) is largely unclear. To define a comprehensive catalog of somatic SVs, affected target genes, and their underlying mechanisms in ESCC, we re-analyzed whole-genome sequencing (WGS) data from 31 ESCCs using Meerkat algorithm to predict somatic SVs and Patchwork to determine copy-number changes. We found deletions and translocations with NHEJ and alt-EJ signature as the dominant SV types, and 16% of deletions were complex deletions. SVs frequently led to disruption of cancer-associated genes (e.g., CDKN2A and NOTCH1) with different mutational mechanisms. Moreover, chromothripsis, kataegis, and breakage-fusion-bridge (BFB) were identified as contributing to locally mis-arranged chromosomes that occurred in 55% of ESCCs. These genomic catastrophes led to amplification of oncogene through chromothripsis-derived double-minute chromosome formation (e.g., FGFR1 and LETM2) or BFB-affected chromosomes (e.g., CCND1, EGFR, ERBB2, MMPs, and MYC), with approximately 30% of ESCCs harboring BFB-derived CCND1 amplification. Furthermore, analyses of copy-number alterations reveal high frequency of whole-genome duplication (WGD) and recurrent focal amplification of CDCA7 that might act as a potential oncogene in ESCC. Our findings reveal molecular defects such as chromothripsis and BFB in malignant transformation of ESCCs and demonstrate diverse models of SVs-derived target genes in ESCCs. These genome-wide SV profiles and their underlying mechanisms provide preventive, diagnostic, and therapeutic implications for ESCCs. PMID:26833333

  8. Design and construction of wall-less nano-electrophoretic and nano in micro array high throughput devices for single cell ‘omics' single molecule detection analyses

    Science.gov (United States)

    Misevic, Gradimir N.; BenAssayag, Gerard; Rasser, Bernard; Sales, Philippe; Simic-Krstic, Jovana; Misevic, Nikola J.; Popescu, Octavian

    2014-09-01

    Single cell ‘omics' requires a technological platform with reliable and high throughput single cell analyses with single molecular detection and quantification. Presently available options are to either to detect many different macromolecules and metabolites extracted from many cells, thus obtaining partial ‘omics' of an average cell or to study only few single cells and be limited to semi-quantitative analyses and detection of a few abundant molecules. Here we present a new design and prototype proof of concept construction of high throughput nano-electrophoretic separation (NEA) device and nano in micro array (NiMA) affinity probe device for a complete single cell ‘omics' single bio-molecule polymers detection and quantification analyses. Prototype devices were constructed using gallium ion Focus Ion Beam (FIB), Gas Injection System (GIS) and Scanning Electron Microscope (SEM) crossbeam instruments. The NEA device accommodates 100 different cell samplings per 1 cm2 chip with arrays of open nano-electrophoretic guides. The NiMA bio-sensor device on 1 cm2 can accommodate 2500 cells in a micro-well array which consists of 250,000 probe markers in nano-well array located in each micro-well. Using Secondary Ion Mass Spectrometry (SIMS) we have demonstrated the direct detection of a single protein molecule and proved the feasibility of single bio-molecular detection and quantification concept for NEA and NIMA. Our concept validates high throughput and complete and quantitative single cell ‘omics' with single molecular detection analyses without labeling. Thus, it is superior to commonly used microfluidics, capillary electrophoresis and micro-arrays using mass spectrometry and fluorescent labeling for molecular detection.

  9. Enhanced photoelectrochemical performance of CdSe/Mn-CdS/TiO2 nanorod arrays solar cell

    International Nuclear Information System (INIS)

    Vertically oriented single-crystalline one-dimensional TiO2 nanorod arrays was synthesized directly on transparent fluorine-doped tin oxide (FTO) conducting glass substrate by a facile hydrothermal method and was applied as photoanode in CdSe/Mn-doped CdS quantum dots sensitized solar cells (QDSSCs). The effect of coating cycles of QDs on the photovoltaic performance was investigated to find the optimal combination is 10 cycles of Mn-doped CdS and 9 cycles of CdSe, the CdSe(9)/Mn-CdS(10)/TiO2 solar cell exhibited the best performance due to the complementary effect in the light absorption of Mn-doped CdS and CdSe QDs. The power conversion efficiency of CdSe(9)/Mn-CdS(10)/TiO2 solar cell reached to 2.40% under one sun illumination (AM 1.5 G, 100 mW/cm2), which was 46.34% higher than that of CdSe(9)/CdS(10)/TiO2 solar cell without doping of Mn (1.64%).

  10. Enhanced photoelectrochemical performance of CdSe/Mn-CdS/TiO{sub 2} nanorod arrays solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Libo; Li, Zhen; Liu, Yingbo; Cheng, Fa; Sun, Shuqing, E-mail: sunshuqing@tju.edu.cn

    2014-08-01

    Vertically oriented single-crystalline one-dimensional TiO{sub 2} nanorod arrays was synthesized directly on transparent fluorine-doped tin oxide (FTO) conducting glass substrate by a facile hydrothermal method and was applied as photoanode in CdSe/Mn-doped CdS quantum dots sensitized solar cells (QDSSCs). The effect of coating cycles of QDs on the photovoltaic performance was investigated to find the optimal combination is 10 cycles of Mn-doped CdS and 9 cycles of CdSe, the CdSe(9)/Mn-CdS(10)/TiO{sub 2} solar cell exhibited the best performance due to the complementary effect in the light absorption of Mn-doped CdS and CdSe QDs. The power conversion efficiency of CdSe(9)/Mn-CdS(10)/TiO{sub 2} solar cell reached to 2.40% under one sun illumination (AM 1.5 G, 100 mW/cm{sup 2}), which was 46.34% higher than that of CdSe(9)/CdS(10)/TiO{sub 2} solar cell without doping of Mn (1.64%).

  11. Nanocrystalline diamond microelectrode arrays fabricated on sapphire technology for high-time resolution of quantal catecholamine secretion from chromaffin cells.

    Science.gov (United States)

    Carabelli, V; Gosso, S; Marcantoni, A; Xu, Y; Colombo, E; Gao, Z; Vittone, E; Kohn, E; Pasquarelli, A; Carbone, E

    2010-09-15

    The quantal release of oxidizable molecules can be successfully monitored by means of polarized carbon fiber microelectrodes (CFEs) positioned in close proximity to the cell membrane. To partially overcome certain CFE limitations, mainly related to their low spatial resolution and lack of optical transparency, we developed a planar boron-doped nanocrystalline diamond (NCD) prototype, grown on a transparent sapphire wafer. Responsiveness to applied catecholamines as well as the electrochemical and optical properties of the NCD-based device were first characterized by cyclic voltammetry and optical transmittance measurements. By stimulating chromaffin cells positioned on the device with external KCl, well-resolved quantal exocytotic events could be detected either from one NCD microelectrode, or simultaneously from an array of four microelectrodes, indicating that the chip is able to monitor secretory events (amperometric spikes) from a number of isolated chromaffin cells. Spikes detected by the planar NCD device had comparable amplitudes, kinetics and vesicle diameter distributions as those measured by conventional CFEs from the same chromaffin cell. PMID:20570501

  12. Improved morphology and photovoltaic performance in TiO2 nanorod arrays based dye sensitized solar cells by using a seed layer

    International Nuclear Information System (INIS)

    Highlights: ► TiO2 nanorod arrays were grown on the seeded-FTO substrate by hydrothermal method. ► TiO2 seed layer significantly increased the density and orientation of the nanorods. ► DSSC based on TiO2 nanorod arrays with seed layer exhibited an efficiency of 2.55%. - Abstract: Rutile TiO2 nanorod arrays were grown on TiO2 seed layer coated fluorine doped tin oxide (FTO) substrate by a hydrothermal method. The effects of the thin TiO2 seed layer on the morphology of nanorod arrays, as well as the photovoltaic performance in dye-sensitized solar cells (DSSCs) were analyzed. The introduction of the TiO2 seed layer was found to significantly increase the density and vertical orientation of the nanorod arrays, which lead to the improvement of dye absorption and electron transport. By optimized the TiCl4 solution concentration, a power conversion efficiency of 2.55% can be achieved in a DSSC fabricated by TiO2 nanorod arrays grown on seeded-FTO substrate using 0.15 M TiCl4 solution, which is 126% higher than the DSSC fabricated by nanorod arrays grown on bare FTO substrate (1.13%).

  13. Template based precursor route for the synthesis of CuInSe2 nanorod arrays for potential solar cell applications

    Directory of Open Access Journals (Sweden)

    Mikhail Pashchanka

    2013-12-01

    Full Text Available Polycrystalline CuInSe2 (CISe nanorods are promising for the fabrication of highly efficient active layers in solar cells. In this work we report on a nanocasting approach, which uses track-etched polycarbonate films as hard templates for obtaining three-dimensionally (3D arranged CISe nanorod arrays. Copper and indium ketoacidoximato complexes and selenourea were employed as molecular precursors. Arrays of parallel isolated cylindrical pores of 100 nm nominal diameter and 5 μm length were used for the infiltration of the precursor solution under inert atmosphere, followed by drying, thermal conversion into a preceramic ‘green body’, a subsequent dissolution of the template, and a final thermal treatment at 450 °C. The nanorods that where synthesised in this way have dimensions equal to the pore sizes of the template. Investigation of the CuInSe2 nanorod samples by spectroscopic and diffraction methods confirmed a high purity and crystallinity, and a stoichiometric composition of the CISe ternary semiconductor compound.

  14. Facile preparation of titanium dioxide nano-capsule arrays used as photo-anode for dye sensitized solar cells

    Science.gov (United States)

    Su, Penglei; Li, Hongyi; Wang, Jinshu; Wu, Junshu; Zhao, Bingxin; Wang, Fei

    2015-08-01

    To improve titanium dioxide (TiO2) nanotube arrays' performance on dye sensitized solar cells (DSSCs), TiO2 nano-capsule arrays (TNCP) have been designed and prepared by planting TiO2 nanoparticles into TiO2 nanotube (TNT) using a facile liquid phase deposition (LPD) route which does not require any special equipment and both improve the specific surface area and surface energy of TNT at low temperature. It has been found that TiO2 nanoparticles are homogeneously distributed along the wall of TNT and their crystal size is calculated to be 5-10 nm. The obtained TNCP's specific surface area and surface energy have been increased from 27.1 (for pure TNT) to 33.4 m2/g and from 67.7 (for pure TNT) to 76.4 mJ/m2, respectively. When used as photo-anodes of DSSCs, TNCP shows higher energy conversion efficiency, which is 1.7 times that of pure TNT. Therefore, the present work provides one effective strategy to better TNT's performance on DSSCs, which can be assembled on metal substrate in large scale.

  15. Comparison of Pyranometers vs. PV Reference Cells for Evaluation of PV Array Performance

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, L.; Gostein, M.; Emery, K.

    2012-09-01

    As the photovoltaics (PV) industry has grown, the need for accurately monitoring the solar resource of PV power plants has increased. Historically, the PV industry has relied on thermopile pyranometers for irradiance measurements, and a large body of historical irradiance data taken with pyranometers exists. However, interest in PV reference devices is increasing. In this paper, we discuss why PV reference devices are better suited for PV applications, and estimate the typical uncertainties in irradiance measurements made with both pyranometers and PV reference devices. We assert that the quantity of interest in monitoring a PV power plant is the equivalent irradiance under the IEC 60904-3 reference solar spectrum that would produce the same electrical response in the PV array as the incident solar radiation. For PV-plant monitoring applications, we find the uncertainties in irradiance measurements of this type to be on the order of +/-5% for thermopile pyranometers and +/-2.4% for PV reference devices.

  16. Improved flow cytometric assessment reveals distinct microvesicle (cell-derived microparticle signatures in joint diseases.

    Directory of Open Access Journals (Sweden)

    Bence György

    Full Text Available INTRODUCTION: Microvesicles (MVs, earlier referred to as microparticles, represent a major type of extracellular vesicles currently considered as novel biomarkers in various clinical settings such as autoimmune disorders. However, the analysis of MVs in body fluids has not been fully standardized yet, and there are numerous pitfalls that hinder the correct assessment of these structures. METHODS: In this study, we analyzed synovial fluid (SF samples of patients with osteoarthritis (OA, rheumatoid arthritis (RA and juvenile idiopathic arthritis (JIA. To assess factors that may confound MV detection in joint diseases, we used electron microscopy (EM, Nanoparticle Tracking Analysis (NTA and mass spectrometry (MS. For flow cytometry, a method commonly used for phenotyping and enumeration of MVs, we combined recent advances in the field, and used a novel approach of differential detergent lysis for the exclusion of MV-mimicking non-vesicular signals. RESULTS: EM and NTA showed that substantial amounts of particles other than MVs were present in SF samples. Beyond known MV-associated proteins, MS analysis also revealed abundant plasma- and immune complex-related proteins in MV preparations. Applying improved flow cytometric analysis, we demonstrate for the first time that CD3(+ and CD8(+ T-cell derived SF MVs are highly elevated in patients with RA compared to OA patients (p=0.027 and p=0.009, respectively, after Bonferroni corrections. In JIA, we identified reduced numbers of B cell-derived MVs (p=0.009, after Bonferroni correction. CONCLUSIONS: Our results suggest that improved flow cytometric assessment of MVs facilitates the detection of previously unrecognized disease-associated vesicular signatures.

  17. 3D-printed concentrator arrays for external light trapping on thin film solar cells

    NARCIS (Netherlands)

    van Dijk, Lourens; Marcus, E. A. Pepijn; Oostra, A. Jolt; Schropp, Ruud E. I.; Di Vece, Marcel

    2015-01-01

    After our recent demonstration of a 3D-printed external light trap on a small solar cell, we now consider its potential for large solar panels. An external light trap consists of a parabolic concentrator and a spacer that redirects the photons that are reflected by the solar cell back towards the so

  18. Assessment of genome integrity in cattle transgenic cell lines using array CGH

    Science.gov (United States)

    Transgenic cattle carrying multiple genomic modifications have been produced by serial rounds of somatic cell chromatin transfer (cloning) of sequentially genetically targeted somatic cells. However, cloning efficiency tends to decline with the increase of rounds of cloning. It is possible that mult...

  19. The metabolic enzyme ManA reveals a link between cell wall integrity and chromosome morphology.

    OpenAIRE

    Maya Elbaz; Sigal Ben-Yehuda

    2010-01-01

    Author Summary The bacterial cell is resistant to extremes of osmotic pressure and protected against mechanical damages by the existence of a rigid outer shell defined as the cell wall. The strength of the cell wall is achieved by the presence of long glycan strands cross-linked by peptide side bridges. The cell wall is a dynamic structure continuously being synthesized and modified to allow for cell growth and division. Damaging the cell wall leads to abnormal cellular morphologies and cell ...

  20. Fabrication of TiO2 nanoparticles/nanorod composite arrays via a two-step method for efficient dye-sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Jingyang Wang

    2014-12-01

    Full Text Available TiO2 nanoparticles/nanorod composite arrays were prepared on the F-doped tin oxide (FTO substrate through a two-step method of hydrothermal and d.c. magnetron sputtering. The microstructure and optical properties of the samples were characterized respectively by means of X-ray diffraction (XRD, field-emission scanning electron microscopy (FESEM and UV–vis spectrometer. The results showed that the TiO2 composite nanorod arrays possess the nature of high surface area for more dye molecule absorption and the strong light scattering effects. The dye sensitized solar cells (DSSCs based on TiO2 composite nanorod arrays exhibited a 80% improvement in the overall energy conversion efficiency compared with the pure TiO2 nanorod arrays photoanode.

  1. Study on sickle cell disease haplotypes reveals the African origin of Amapá's population

    Directory of Open Access Journals (Sweden)

    Natália de Morais Castelo

    2014-04-01

    Full Text Available Introduction:Sickle cell disease (SCD is a hereditary, hematologic, multifactorial disease, with high prevalence worldwide; its cause is a mutation in the sixth codon of the beta globin gene (βs.Objective:To identify the haplotypes present in people with SCD in Amapá, and relate them to African descent.Methods:We analyzed, by molecular techniques, 46 blood samples from people with SCD in Macapá, the capital of Amapá, with the purpose of obtaining information about haplotype frequency distribution, which helps understand the ethnic background of Amapá's population.Results:Our study revealed that the most frequent haplotype is Bantu (61.2%, followed by Benin (26.6% and Senegal (12.2%. Results showed statistical differences from studies conducted in other regions. A high frequency of the Senegal haplotype stands out, in comparison with some Brazilian studies.Conclusion:Amapá's results exhibit unique characteristics when compared to haplotypes in other regions, with high frequency of Senegal and Benin haplotypes, absence of atypical, Cameroon and Saudi, confirming that Brazil shows ethnic background diversity, as well as different haplotype frequencies.

  2. Transcriptional profiling at whole population and single cell levels reveals somatosensory neuron molecular diversity.

    Science.gov (United States)

    Chiu, Isaac M; Barrett, Lee B; Williams, Erika K; Strochlic, David E; Lee, Seungkyu; Weyer, Andy D; Lou, Shan; Bryman, Gregory S; Roberson, David P; Ghasemlou, Nader; Piccoli, Cara; Ahat, Ezgi; Wang, Victor; Cobos, Enrique J; Stucky, Cheryl L; Ma, Qiufu; Liberles, Stephen D; Woolf, Clifford J

    2014-01-01

    The somatosensory nervous system is critical for the organism's ability to respond to mechanical, thermal, and nociceptive stimuli. Somatosensory neurons are functionally and anatomically diverse but their molecular profiles are not well-defined. Here, we used transcriptional profiling to analyze the detailed molecular signatures of dorsal root ganglion (DRG) sensory neurons. We used two mouse reporter lines and surface IB4 labeling to purify three major non-overlapping classes of neurons: 1) IB4(+)SNS-Cre/TdTomato(+), 2) IB4(-)SNS-Cre/TdTomato(+), and 3) Parv-Cre/TdTomato(+) cells, encompassing the majority of nociceptive, pruriceptive, and proprioceptive neurons. These neurons displayed distinct expression patterns of ion channels, transcription factors, and GPCRs. Highly parallel qRT-PCR analysis of 334 single neurons selected by membership of the three populations demonstrated further diversity, with unbiased clustering analysis identifying six distinct subgroups. These data significantly increase our knowledge of the molecular identities of known DRG populations and uncover potentially novel subsets, revealing the complexity and diversity of those neurons underlying somatosensation. PMID:25525749

  3. Single-cell genomics reveal metabolic strategies for microbial growth and survival in an oligotrophic aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Wilkins, Michael J.; Kennedy, David W.; Castelle, Cindy; Field, Erin; Stepanauskas, Ramunas; Fredrickson, Jim K.; Konopka, Allan

    2014-02-09

    Bacteria from the genus Pedobacter are a major component of microbial assemblages at Hanford Site and have been shown to significantly change in abundance in response to the subsurface intrusion of Columbia River water. Here we employed single cell genomics techniques to shed light on the physiological niche of these microorganisms. Analysis of four Pedobacter single amplified genomes (SAGs) from Hanford Site sediments revealed a chemoheterotrophic lifestyle, with the potential to exist under both aerobic and microaerophilic conditions via expression of both aa3­-type and cbb3-type cytochrome c oxidases. These SAGs encoded a wide-range of both intra-and extra­-cellular carbohydrate-active enzymes, potentially enabling the degradation of recalcitrant substrates such as xylan and chitin, and the utilization of more labile sugars such as mannose and fucose. Coupled to these enzymes, a diversity of transporters and sugar-binding molecules were involved in the uptake of carbon from the extracellular local environment. The SAGs were enriched in TonB-dependent receptors (TBDRs), which play a key role in uptake of substrates resulting from degradation of recalcitrant carbon. CRISPR-Cas mechanisms for resisting viral infections were identified in all SAGs. These data demonstrate the potential mechanisms utilized for persistence by heterotrophic microorganisms in a carbon-limited aquifer, and hint at potential linkages between observed Pedobacter abundance shifts within the 300 Area subsurface and biogeochemical shifts associated with Columbia River water intrusion.

  4. Pushing structural limits to reveal fundamental mechanisms of organic solar cell operation

    Science.gov (United States)

    Rand, Barry

    2015-03-01

    Organic-based solar cells are beginning to emerge with the potential to compete with other thin film photovoltaic technologies, with efficiencies of 12% recently demonstrated. Unique to the function of organic photovoltaics are the creation of tightly bound excitons that can only be efficiently separated at a donor/acceptor (D/A) interface capable of providing the necessary energetic driving force for dissociation. The consequences of this are the need for long exciton diffusion lengths and the presence of charge transfer (CT) states, ground state complexes that exist at the D/A interface. We have found that charge transfer states are more easily separated into free charge if they are delocalized; an aspect that becomes most feasible for highly ordered systems. I will discuss our recent efforts to template and control film morphology and molecular orientation. These studies allow us to understand the importance of molecular orientation, crystallite size, and crystal phase. We will show templated devices utilizing neat films as well as bulk heterojunctions, with crystallite dimensions spanning from the more standard nano-sized grains to those with highly ordered micron-sized crystalline domains revealing unprecedented thin film exciton diffusion lengths of 100s of nm. In these highly ordered films, owing to significant delocalization, we are able to directly measure photocurrent from multiple CT states, an aspect which has important consequences for the design of more efficient photocurrent generation. We acknowledge support from DOE BES Grant #11493344.

  5. Bifacial dye-sensitized solar cells based on vertically oriented TiO{sub 2} nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Liu Zhaoyue; Misra, Mano, E-mail: liuzy@buaa.edu.cn, E-mail: misra@unr.edu [Department of Chemical and Metallurgical Engineering, University of Nevada, MS 388, Reno, NV 89557 (United States)

    2010-03-26

    In this work we describe a novel bifacial design concept for dye-sensitized solar cells (DSCs). Bifacial DSCs are fabricated with ruthenium complex chemisorbed double-sided TiO{sub 2} nanotube arrays on a Ti metal substrate, in combination with two electron-collecting counter electrodes. Our investigation shows that the present bifacial DSCs have similar conversion efficiencies when illuminated from either their front or rear side, and a summated output power when illuminated on both sides. Furthermore, this type of bifacial DSC is also able to summate the output power of each side when working at an 'unsymmetrical' mode, in which much different output powers are generated by the front and rear sides. Therefore, this bifacial design concept exhibits a promising potential to reduce the cost of solar electricity when DSCs are operated at a location where a high albedo radiation is available.

  6. 3D reconstruction of VZV infected cell nuclei and PML nuclear cages by serial section array scanning electron microscopy and electron tomography.

    Directory of Open Access Journals (Sweden)

    Mike Reichelt

    Full Text Available Varicella-zoster virus (VZV is a human alphaherpesvirus that causes varicella (chickenpox and herpes zoster (shingles. Like all herpesviruses, the VZV DNA genome is replicated in the nucleus and packaged into nucleocapsids that must egress across the nuclear membrane for incorporation into virus particles in the cytoplasm. Our recent work showed that VZV nucleocapsids are sequestered in nuclear cages formed from promyelocytic leukemia protein (PML in vitro and in human dorsal root ganglia and skin xenografts in vivo. We sought a method to determine the three-dimensional (3D distribution of nucleocapsids in the nuclei of herpesvirus-infected cells as well as the 3D shape, volume and ultrastructure of these unique PML subnuclear domains. Here we report the development of a novel 3D imaging and reconstruction strategy that we term Serial Section Array-Scanning Electron Microscopy (SSA-SEM and its application to the analysis of VZV-infected cells and these nuclear PML cages. We show that SSA-SEM permits large volume imaging and 3D reconstruction at a resolution sufficient to localize, count and distinguish different types of VZV nucleocapsids and to visualize complete PML cages. This method allowed a quantitative determination of how many nucleocapsids can be sequestered within individual PML cages (sequestration capacity, what proportion of nucleocapsids are entrapped in single nuclei (sequestration efficiency and revealed the ultrastructural detail of the PML cages. More than 98% of all nucleocapsids in reconstructed nuclear volumes were contained in PML cages and single PML cages sequestered up to 2,780 nucleocapsids, which were shown by electron tomography to be embedded and cross-linked by an filamentous electron-dense meshwork within these unique subnuclear domains. This SSA-SEM analysis extends our recent characterization of PML cages and provides a proof of concept for this new strategy to investigate events during virion assembly at the

  7. Facile preparation of titanium dioxide nano-capsule arrays used as photo-anode for dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Su, Penglei; Li, Hongyi, E-mail: lhy06@bjut.edu.cn; Wang, Jinshu, E-mail: wangjsh@bjut.edu.cn; Wu, Junshu; Zhao, Bingxin; Wang, Fei

    2015-08-30

    Graphical abstract: - Highlights: • TiO{sub 2} nanoparticles have been introduced into TiO{sub 2} nanotube using a facile liquid phase deposition method at low temperature in atmosphere. • Dye solar cells have been assembled on flexible titanium substrate. • The incident photo-electron conversion efficiency has been improved 76% compared with pure TiO{sub 2} nanotube arrays. - Abstract: To improve titanium dioxide (TiO{sub 2}) nanotube arrays’ performance on dye sensitized solar cells (DSSCs), TiO{sub 2} nano-capsule arrays (TNCP) have been designed and prepared by planting TiO{sub 2} nanoparticles into TiO{sub 2} nanotube (TNT) using a facile liquid phase deposition (LPD) route which does not require any special equipment and both improve the specific surface area and surface energy of TNT at low temperature. It has been found that TiO{sub 2} nanoparticles are homogeneously distributed along the wall of TNT and their crystal size is calculated to be 5–10 nm. The obtained TNCP's specific surface area and surface energy have been increased from 27.1 (for pure TNT) to 33.4 m{sup 2}/g and from 67.7 (for pure TNT) to 76.4 mJ/m{sup 2}, respectively. When used as photo-anodes of DSSCs, TNCP shows higher energy conversion efficiency, which is 1.7 times that of pure TNT. Therefore, the present work provides one effective strategy to better TNT's performance on DSSCs, which can be assembled on metal substrate in large scale.

  8. Facile preparation of titanium dioxide nano-capsule arrays used as photo-anode for dye sensitized solar cells

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • TiO2 nanoparticles have been introduced into TiO2 nanotube using a facile liquid phase deposition method at low temperature in atmosphere. • Dye solar cells have been assembled on flexible titanium substrate. • The incident photo-electron conversion efficiency has been improved 76% compared with pure TiO2 nanotube arrays. - Abstract: To improve titanium dioxide (TiO2) nanotube arrays’ performance on dye sensitized solar cells (DSSCs), TiO2 nano-capsule arrays (TNCP) have been designed and prepared by planting TiO2 nanoparticles into TiO2 nanotube (TNT) using a facile liquid phase deposition (LPD) route which does not require any special equipment and both improve the specific surface area and surface energy of TNT at low temperature. It has been found that TiO2 nanoparticles are homogeneously distributed along the wall of TNT and their crystal size is calculated to be 5–10 nm. The obtained TNCP's specific surface area and surface energy have been increased from 27.1 (for pure TNT) to 33.4 m2/g and from 67.7 (for pure TNT) to 76.4 mJ/m2, respectively. When used as photo-anodes of DSSCs, TNCP shows higher energy conversion efficiency, which is 1.7 times that of pure TNT. Therefore, the present work provides one effective strategy to better TNT's performance on DSSCs, which can be assembled on metal substrate in large scale

  9. Controllable preparation of TiO2 nanowire arrays on titanium mesh for flexible dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Graphical abstract: TiO2 nanowire arrays with controlled morphology and density have been synthesized on Ti mesh substrates by hydrothermal approach for flexible dye-sensitized solar cells which showed well photovoltaic efficiency of 3.42%. - Highlights: • Flexible titanium mesh was first used for hydrothermal preparation of TiO2 NWAs. • The formation mechanism of the TiO2 nanostructures was discussed. • The density, average diameter, and morphology of TiO2 NWAs can be controlled. • The effects of the sensitization temperature and time on the properties were studied. - Abstract: TiO2 nanowire arrays (NWAs) with an average diameter of 80 nm have been successfully synthesized on titanium (Ti) mesh substrates via hydrothermal method. The effects of preparing conditions such as concentration of NaOH solution, reaction time, and hydrothermal temperature on the growth of TiO2 nanoarrays and its related photovoltaic properties were systematically investigated by scanning electron microscopy, X-ray diffraction, and photovoltaic properties test. The growth mechanism of the Ti mesh-supported TiO2 nanostructures was discussed in detail. Moreover, a parametric study was performed to determine the optimized temperature and time of the dye sensitized process for the flexible dye-sensitized solar cell (DSSC). It is demonstrated that hydrothermal parameters had obvious influence on the morphology and growth density of the as-prepared TiO2 nanoarrays. In addition, the performance of the flexible DSSC depended strongly on the sensitization temperature and time. By utilizing Ti mesh-supported TiO2 NWAs (with a length of about 14 μm) as a photoanode, the flexible DSSC with a short circuit current density of 10.49 mA cm−2, an open-circuit voltage of 0.69 V, and an overall power conversion efficiency of 3.42% was achieved

  10. Social interaction and cocaine conditioning in mice increase spontaneous spike frequency in the nucleus accumbens or septal nuclei as revealed by multielectrode array recordings.

    Science.gov (United States)

    Kummer, Kai K; El Rawas, Rana; Kress, Michaela; Saria, Alois; Zernig, Gerald

    2015-01-01

    Both cocaine and social interaction place preference conditioning lead to increased neuronal expression of the immediate early gene EGR1 in the nucleus accumbens, a central region of the reward pathway, suggesting that both drug and natural rewards may be processed in similar brain regions. In order to gain novel insights into the intrinsic in vitro electrical activity of the nucleus accumbens and adjacent brain regions and to explore the effects of reward conditioning on network activity, we performed multielectrode array recordings of spontaneous firing in acute brain slices of mice conditioned to either cocaine or social interaction place preference. Cocaine conditioning increased the spike frequency of neurons in the septal nuclei, whereas social interaction conditioning increased the spike frequency in the nucleus accumbens compared to saline control animals. In addition, social interaction conditioning decreased the amount of active neuron clusters in the nucleus accumbens. Our findings suggest that place preference conditioning for both drug and natural rewards may induce persistent changes in neuronal network activity in the nucleus accumbens and the septum that are still preserved in acute slice preparations. PMID:25592253

  11. Low dose irradiation of thyroid cells reveals a unique transcriptomic and epigenetic signature in RET/PTC-positive cells

    Energy Technology Data Exchange (ETDEWEB)

    Abou-El-Ardat, Khalil, E-mail: kabouela@sckcen.be [Radiobiology Unit, Molecular and Cellular Biology, GKD Building, Studiecentrum voor Kernenergie - Centre d' Etude de l' Energie Nucleaire (SCK-CEN), Boeretang 200, 2400 Mol (Belgium); Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Universiteit Gent, 9000 Ghent (Belgium); Monsieurs, Pieter [Radiobiology Unit, Molecular and Cellular Biology, GKD Building, Studiecentrum voor Kernenergie - Centre d' Etude de l' Energie Nucleaire (SCK-CEN), Boeretang 200, 2400 Mol (Belgium); Anastasov, Natasa; Atkinson, Mike [Department of Radiation Sciences, Helmholtz Zentrum Muenchen, Munich (Germany); Derradji, Hanane [Radiobiology Unit, Molecular and Cellular Biology, GKD Building, Studiecentrum voor Kernenergie - Centre d' Etude de l' Energie Nucleaire (SCK-CEN), Boeretang 200, 2400 Mol (Belgium); De Meyer, Tim [Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Universiteit Gent, 9000 Ghent (Belgium); Department of Applied Mathematics, Biometrics and Process Control, Faculty of Bioscience Engineering, Universiteit Gent, 9000 Ghent (Belgium); Bekaert, Sofie [Clinical Research Center, Faculty for Medicine and Health Sciences, Universiteit Gent, 185 De Pintelaan, 9000 Ghent (Belgium); Van Criekinge, Wim [Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Universiteit Gent, 9000 Ghent (Belgium); and others

    2012-03-01

    The high doses of radiation received in the wake of the Chernobyl incident and the atomic bombing of Hiroshima and Nagasaki have been linked to the increased appearance of thyroid cancer in the children living in the vicinity of the site. However, the data gathered on the effect of low doses of radiation on the thyroid remain limited. We have examined the genome wide transcriptional response of a culture of TPC-1 human cell line of papillary thyroid carcinoma origin with a RET/PTC1 translocation to various doses (0.0625, 0.5, and 4 Gy) of X-rays and compared it to response of thyroids with a RET/PTC3 translocation and against wild-type mouse thyroids irradiated with the same doses using Affymetrix microarrays. We have found considerable overlap at a high dose of 4 Gy in both RET/PTC-positive systems but no common genes at 62.5 mGy. In addition, the response of RET/PTC-positive system at all doses was distinct from the response of wild-type thyroids with both systems signaling down different pathways. Analysis of the response of microRNAs in TPC-1 cells revealed a radiation-responsive signature of microRNAs in addition to dose-responsive microRNAs. Our results point to the fact that a low dose of X-rays seems to have a significant proliferative effect on normal thyroids. This observation should be studied further as opposed to its effect on RET/PTC-positive thyroids which was subtle, anti-proliferative and system-dependent.

  12. Low dose irradiation of thyroid cells reveals a unique transcriptomic and epigenetic signature in RET/PTC-positive cells.

    Science.gov (United States)

    Abou-El-Ardat, Khalil; Monsieurs, Pieter; Anastasov, Nataša; Atkinson, Mike; Derradji, Hanane; De Meyer, Tim; Bekaert, Sofie; Van Criekinge, Wim; Baatout, Sarah

    2012-03-01

    The high doses of radiation received in the wake of the Chernobyl incident and the atomic bombing of Hiroshima and Nagasaki have been linked to the increased appearance of thyroid cancer in the children living in the vicinity of the site. However, the data gathered on the effect of low doses of radiation on the thyroid remain limited. We have examined the genome wide transcriptional response of a culture of TPC-1 human cell line of papillary thyroid carcinoma origin with a RET/PTC1 translocation to various doses (0.0625, 0.5, and 4Gy) of X-rays and compared it to response of thyroids with a RET/PTC3 translocation and against wild-type mouse thyroids irradiated with the same doses using Affymetrix microarrays. We have found considerable overlap at a high dose of 4Gy in both RET/PTC-positive systems but no common genes at 62.5mGy. In addition, the response of RET/PTC-positive system at all doses was distinct from the response of wild-type thyroids with both systems signaling down different pathways. Analysis of the response of microRNAs in TPC-1 cells revealed a radiation-responsive signature of microRNAs in addition to dose-responsive microRNAs. Our results point to the fact that a low dose of X-rays seems to have a significant proliferative effect on normal thyroids. This observation should be studied further as opposed to its effect on RET/PTC-positive thyroids which was subtle, anti-proliferative and system-dependent. PMID:22027090

  13. Side Population Cells from Human Melanoma Tumors Reveal Diverse Mechanisms for Chemoresistance

    OpenAIRE

    Luo, Yuchun; Ellis, Lixia Z; Dallaglio, Katiuscia; Takeda, Moe; Robinson, William A.; Robinson, Steven; Liu, Weimin; Lewis, Karl D.; McCarter, Martin D; Gonzalez, Rene; David A Norris; Roop, Dennis R.; Spritz, Richard A.; Ahn, Natalie G.; Fujita, Mayumi

    2012-01-01

    Side population (SP) is identified as cells capable of excluding the fluorescent Hoechst dye and anticancer drugs, and represents hematopoietic stem cells and chemoresistant cells from several solid tumors. In this study, we confirmed the presence of SP cells in tumors from melanoma patients. Melanoma SP cells overexpressed ATP-binding-cassette (ABC) transporters, ABCB1 and ABCB5. We generated a direct in vivo xenograft model, and demonstrated that SP cells were resistant to paclitaxel, a sub...

  14. Current Approach in Surface Plasmons for Thin Film and Wire Array Solar Cell Applications

    OpenAIRE

    Keya Zhou; Zhongyi Guo; Shutian Liu; Jung-Ho Lee

    2015-01-01

    Surface plasmons, which exist along the interface of a metal and a dielectric, have been proposed as an efficient alternative method for light trapping in solar cells during the past ten years. With unique properties such as superior light scattering, optical trapping, guide mode coupling, near field concentration, and hot-electron generation, metallic nanoparticles or nanostructures can be tailored to a certain geometric design to enhance solar cell conversion efficiency and to reduce the ma...

  15. Fractal-like ray trajectories traced in three-dimensional array of photoelectrochemical cells

    International Nuclear Information System (INIS)

    Underwater spherical photoelectrochemical cells aligned in three-dimensional electrolyte space convert injected sunlight into driving force for water splitting, which is analysed by a model calculation and verified in experiments. Sunlight is well absorbed via a number of bounces on Si, and trajectories of its rays are in a fractal-like scale-free system. Similar systems are applicable to general photoelectrochemical cells. (fast track communication)

  16. Characterization of genetic rearrangements in esophageal squamous carcinoma cell lines by a combination of M-FISH and array-CGH: further confirmation of some split genomic regions in primary tumors

    International Nuclear Information System (INIS)

    Chromosomal and genomic aberrations are common features of human cancers. However, chromosomal numerical and structural aberrations, breakpoints and disrupted genes have yet to be identified in esophageal squamous cell carcinoma (ESCC). Using multiplex-fluorescence in situ hybridization (M-FISH) and oligo array-based comparative hybridization (array-CGH), we identified aberrations and breakpoints in six ESCC cell lines. Furthermore, we detected recurrent breakpoints in primary tumors by dual-color FISH. M-FISH and array-CGH results revealed complex numerical and structural aberrations. Frequent gains occurred at 3q26.33-qter, 5p14.1-p11, 7pter-p12.3, 8q24.13-q24.21, 9q31.1-qter, 11p13-p11, 11q11-q13.4, 17q23.3-qter, 18pter-p11, 19 and 20q13.32-qter. Losses were frequent at 18q21.1-qter. Breakpoints that clustered within 1 or 2 Mb were identified, including 9p21.3, 11q13.3-q13.4, 15q25.3 and 3q28. By dual-color FISH, we observed that several recurrent breakpoint regions in cell lines were also present in ESCC tumors. In particular, breakpoints clustered at 11q13.3-q13.4 were identified in 43.3% (58/134) of ESCC tumors. Both 11q13.3-q13.4 splitting and amplification were significantly correlated with lymph node metastasis (LNM) (P = 0.004 and 0.022) and advanced stages (P = 0.004 and 0.039). Multivariate logistic regression analysis revealed that only 11q13.3-q13.4 splitting was an independent predictor for LNM (P = 0.026). The combination of M-FISH and array-CGH helps produce more accurate karyotypes. Our data provide significant, detailed information for appropriate uses of these ESCC cell lines for cytogenetic and molecular biological studies. The aberrations and breakpoints detected in both the cell lines and primary tumors will contribute to identify affected genes involved in the development and progression of ESCC

  17. Evaluation of reverse phase protein array (RPPA)-based pathway-activation profiling in 84 non-small cell lung cancer (NSCLC) cell lines as platform for cancer proteomics and biomarker discovery.

    Science.gov (United States)

    Ummanni, Ramesh; Mannsperger, Heiko A; Sonntag, Johanna; Oswald, Marcus; Sharma, Ashwini K; König, Rainer; Korf, Ulrike

    2014-05-01

    The reverse phase protein array (RPPA) approach was employed for a quantitative analysis of 71 cancer-relevant proteins and phosphoproteins in 84 non-small cell lung cancer (NSCLC) cell lines and by monitoring the activation state of selected receptor tyrosine kinases, PI3K/AKT and MEK/ERK1/2 signaling, cell cycle control, apoptosis, and DNA damage. Additional information on NSCLC cell lines such as that of transcriptomic data, genomic aberrations, and drug sensitivity was analyzed in the context of proteomic data using supervised and non-supervised approaches for data analysis. First, the unsupervised analysis of proteomic data indicated that proteins clustering closely together reflect well-known signaling modules, e.g. PI3K/AKT- and RAS/RAF/ERK-signaling, cell cycle regulation, and apoptosis. However, mutations of EGFR, ERBB2, RAF, RAS, TP53, and PI3K were found dispersed across different signaling pathway clusters. Merely cell lines with an amplification of EGFR and/or ERBB2 clustered closely together on the proteomic, but not on the transcriptomic level. Secondly, supervised data analysis revealed that sensitivity towards anti-EGFR drugs generally correlated better with high level EGFR phosphorylation than with EGFR abundance itself. High level phosphorylation of RB and high abundance of AURKA were identified as candidates that can potentially predict sensitivity towards the aurora kinase inhibitor VX680. Examples shown demonstrate that the RPPA approach presents a useful platform for targeted proteomics with high potential for biomarker discovery. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge. PMID:24361481

  18. Biomarker screening of oral cancer cell lines revealed sub-populations of CD133-, CD44-, CD24- and ALDH1- positive cancer stem cells

    Directory of Open Access Journals (Sweden)

    Kendall K

    2013-05-01

    Full Text Available Head and neck squamous cell carcinoma (HNSCC ranks sixth worldwide for cancer-related mortality. For the past several decades the mainstay of treatment for HNSCC has been surgery and external beam radiation, although more recent trials combining chemotherapy and radiation have demonstrated improvements. However, cancer recurrence and treatment failures continue to occur in a significant percentage of patients. Recent advances in tumor biology have led to the discovery that many cancers, including HNSCC, may contain subpopulations of cells with stem cell-like properties that may explain relapse and recurrence. The objective of this study was to screen existing oral cancer cell lines for biomarkers specific for cells with stem cell-like properties. RNA was isolated for RT-PCR screening using primers for specific mRNA of the biomarkers: CD44, CD24, CD133, NANOG, Nestin, ALDH1, and ABCG2 in CAL27, SCC25 and SCC15 cells. This analysis revealed that some oral cancer cell lines (CAL27 and SCC25 may contain small subpopulations of adhesion- and contact-independent cells (AiDC that also express tumor stem cell markers, including CD44, CD133, and CD24. In addition, CAL27 cells also expressed the intracellular tumor stem cell markers, ALDH1 and ABCG2. Isolation and culture of the adhesion- and contact-independent cells from CAL27 and SCC25 populations revealed differential proliferation rates and more robust inhibition by the MEK inhibitor PD98059, as well as the chemotherapeutic agents Cisplatin and Paclitaxel, within the AiDC CAL27 cells. At least one oral cancer cell line (CAL27 contained subpopulations of cells that express specific biomarkers associated with tumor stem cells which were morphologically and phenotypically distinct from other cells within this cell line.

  19. Dislocation dynamics. II. Applications to the formation of persistent slip bands, planar arrays, and dislocation cells

    International Nuclear Information System (INIS)

    The dynamic organization of dislocations into spatially heterogeneous substructures is demonstrated by applying the principles of dislocation dynamics that were outlined in the preceding paper. Here it is shown that the formation of persistent slip bands is a consequence of the competition between dipole formation and annihilation of dislocations of opposite Burgers vectors in the absence of temperature-enhanced climb recovery under cyclic stress conditions. Planar arrays, which are also uniaxial structures, are shown to arise from enhanced dislocation multiplication and the formation of stable dipole configurations along a slip plane at lower temperatures where climb is unimportant. Biaxial dislocation systems experience additional degrees of freedom compared with uniaxial systems because of available motion along additional slip systems. It is demonstrated that for a system of orthogonal slip directions at high temperatures in which climb and glide motion are competitive, dislocation cellular structures form as a result of immobile dipole and junction formation and by the internal elastic strain energy minimization caused by long-range self-shielding. It is shown that the internal elastic strain energy is reduced by the self-organization process. However, the short-range nonlinear processes (i.e., dipole and junction formation) are shown not to allow absolute elastic energy minimization

  20. Microelectrode arrays of diamond-insulated graphitic channels for real time detection of exocytotic events from cultured chromaffin cells and slices of adrenal glands

    CERN Document Server

    Picollo, F; Bernardi, E; Marcantoni, A; Pasquarelli, A; Carbone, E; Olivero, P; Carabelli, V

    2016-01-01

    A microstructured graphitic 4x4 multielectrode array was embedded in a single crystal diamond substrate (4x4 {uG-SCD MEA) for real-time monitoring of exocytotic events from cultured chromaffin cells and adrenal slices. The current approach relies on the development of a parallel ion beam lithographic technique, which assures the time effective fabrication of extended arrays with reproducible electrode dimensions. The reported device is suitable for performing amperometric and voltammetric recordings with high sensitivity and temporal resolution, by simultaneously acquiring data from 16 rectangularly shaped microelectrodes (20x3.5 um^2) separated by 200 um gaps. Taking advantage of the array geometry we addressed the following specific issues: i) detect both the spontaneous and KCl-evoked secretion simultaneously from several chromaffin cells directly cultured on the device surface, ii) resolve the waveform of different subsets of exocytotic events, iii) monitoring quantal secretory events from thin slices of ...

  1. Low temperature grown ZnO@TiO{sub 2} core shell nanorod arrays for dye sensitized solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Gregory Kia Liang [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology, and Research), 3 Research Link, 117602 Singapore (Singapore); Le, Hong Quang, E-mail: lehq@imre.a-star.edu.sg [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology, and Research), 3 Research Link, 117602 Singapore (Singapore); Huang, Tang Jiao; Hui, Benjamin Tan Tiong [Department of Materials Science and Engineering (DMSE), Faculty of Engineering National University of Singapore (NUS) BLK E3A, #04-10, 7 Engineering Drive 1, Singapore 117574 (Singapore)

    2014-06-01

    High aspect ratio ZnO nanorod arrays were synthesized on fluorine-doped tin oxide glasses via a low temperature solution method. By adjusting the growth condition and adding polyethylenimine, ZnO nanorod arrays with tunable length were successfully achieved. The ZnO@TiO{sub 2} core shells structures were realized by a fast growth method of immersion into a (NH{sub 4}){sub 2}·TiF{sub 6} solution. Transmission electron microscopy, X-ray Diffraction and energy dispersive X-ray measurements all confirmed the existence of a titania shell uniformly covering the ZnO nanorod's surface. Results of solar cell testing showed that addition of a TiO{sub 2} shell to the ZnO nanorod significantly increased short circuit current (from 4.2 to 5.2 mA/cm{sup 2}), open circuit voltage (from 0.6 V to 0.8 V) and fill factor (from 42.8% to 73.02%). The overall cell efficiency jumped from 1.1% for bare ZnO nanorod to 3.03% for a ZnO@TiO{sub 2} core shell structured solar cell with a 18–22 nm shell thickness, a nearly threefold increase. - Graphical abstract: The synthesis process of coating TiO{sub 2} shell onto ZnO nanorod core is shown schematically. A thin, uniform, and conformal shell had been grown on the surface of the ZnO core after immersing in the (NH{sub 4}){sub 2}·TiF{sub 6} solution for 5–15 min. - Highlights: • ZnO@TiO{sub 2} core shell nanorod has been grown on FTO substrate using low temperature solution method. • TEM, XRD, EDX results confirmed the existing of titana shell, uniformly covered rod's surface. • TiO{sub 2} shell suppressed recombination, demonstrated significant enhancement in cell's efficiency. • Core shell DSSC's efficiency achieved as high as 3.03%, 3 times higher than that of ZnO nanorods.

  2. Low temperature grown ZnO@TiO2 core shell nanorod arrays for dye sensitized solar cell application

    International Nuclear Information System (INIS)

    High aspect ratio ZnO nanorod arrays were synthesized on fluorine-doped tin oxide glasses via a low temperature solution method. By adjusting the growth condition and adding polyethylenimine, ZnO nanorod arrays with tunable length were successfully achieved. The ZnO@TiO2 core shells structures were realized by a fast growth method of immersion into a (NH4)2·TiF6 solution. Transmission electron microscopy, X-ray Diffraction and energy dispersive X-ray measurements all confirmed the existence of a titania shell uniformly covering the ZnO nanorod's surface. Results of solar cell testing showed that addition of a TiO2 shell to the ZnO nanorod significantly increased short circuit current (from 4.2 to 5.2 mA/cm2), open circuit voltage (from 0.6 V to 0.8 V) and fill factor (from 42.8% to 73.02%). The overall cell efficiency jumped from 1.1% for bare ZnO nanorod to 3.03% for a ZnO@TiO2 core shell structured solar cell with a 18–22 nm shell thickness, a nearly threefold increase. - Graphical abstract: The synthesis process of coating TiO2 shell onto ZnO nanorod core is shown schematically. A thin, uniform, and conformal shell had been grown on the surface of the ZnO core after immersing in the (NH4)2·TiF6 solution for 5–15 min. - Highlights: • ZnO@TiO2 core shell nanorod has been grown on FTO substrate using low temperature solution method. • TEM, XRD, EDX results confirmed the existing of titana shell, uniformly covered rod's surface. • TiO2 shell suppressed recombination, demonstrated significant enhancement in cell's efficiency. • Core shell DSSC's efficiency achieved as high as 3.03%, 3 times higher than that of ZnO nanorods

  3. Microalterations of Inherently Unstable Genomic Regions in Rat Mammary Carcinomas as Revealed by Long Oligonucleotide Array-Based Comparative Genomic Hybridization

    NARCIS (Netherlands)

    Adamovic, Tatjana; McAllister, Donna; Guryev, Victor; Wang, Xujing; Andrae, Jaime Wendt; Cuppen, Edwin; Jacob, Howard J.; Sugg, Sonia L.

    2009-01-01

    The presence of copy number variants in normal genomes poses a challenge to identify small genuine somatic copy number changes in high-resolution cancer genome profiling studies due to the use of unpaired reference DNA. Another problem is the well-known rearrangements of immunoglobulin and T-cell re

  4. A Systematic Analysis of Cell Cycle Regulators in Yeast Reveals That Most Factors Act Independently of Cell Size to Control Initiation of Division

    OpenAIRE

    Scott A Hoose; Jeremy A Rawlings; Kelly, Michelle M.; M Camille Leitch; Ababneh, Qotaiba O; Robles, Juan P.; David Taylor; Hoover, Evelyn M.; Bethel Hailu; McEnery, Kayla A.; S Sabina Downing; Deepika Kaushal; Yi Chen; Alex Rife; Kirtan A Brahmbhatt

    2012-01-01

    Upstream events that trigger initiation of cell division, at a point called START in yeast, determine the overall rates of cell proliferation. The identity and complete sequence of those events remain unknown. Previous studies relied mainly on cell size changes to identify systematically genes required for the timely completion of START. Here, we evaluated panels of non-essential single gene deletion strains for altered DNA content by flow cytometry. This analysis revealed that most gene dele...

  5. Optimization of interdigitated electrode (IDE) arrays for impedance based evaluation of Hs 578T cancer cells

    Science.gov (United States)

    Alexander, Frank, Jr.; Price, Dorielle T.; Bhansali, Shekhar

    2010-04-01

    This paper examines the effect of electrode width and spacing of interdigitated electrodes (IDEs) for impedance-based cancer detection and characterization. IDEs are desired for bioimpedance measurements because their fabrication process is simple and inexpensive, and the geometry presents a potential for improved sensitivity over other microelectrode designs. Optimizing the geometry will eliminate this problem and increase the sensitivity of these devices for bioimpedance measurement applications. This paper evaluates the effect of IDE geometry on the sensitivity of breast cancer cell impedance measurements. Equivalent circuit data analysis was conducted to quantify and characterize the cells.

  6. Novel insights of the gastric gland organization revealed by chief cell specific expression of moesin

    OpenAIRE

    Zhu, Lixin; Hatakeyama, Jason; Zhang, Bing; Makdisi, Joy; Ender, Cody; Forte, John G.

    2008-01-01

    ERM (ezrin, radixin, and moesin) proteins play critical roles in epithelial and endothelial cell polarity, among other functions. In gastric glands, ezrin is mainly expressed in acid-secreting parietal cells, but not in mucous neck cells or zymogenic chief cells. In looking for other ERM proteins, moesin was found lining the lumen of much of the gastric gland, but it was not expressed in parietal cells. No significant radixin expression was detected in the gastric glands. Moesin showed an inc...

  7. Intestinal crypt homeostasis revealed at single stem cell level by in vivo live-imaging

    Science.gov (United States)

    Zomer, Anoek; Snippert, Hugo J.; de Sauvage, Frederic J.; Simons, Benjamin D.; Clevers, Hans; van Rheenen, Jacco

    2014-01-01

    Summary The rapid turnover of the mammalian intestinal epithelium is supported by stem cells located around the base of the crypt1. Alongside Lgr5, intestinal stem cells have been associated with various markers, which are expressed heterogeneously within the crypt base region1-6. Previous quantitative clonal fate analyses have proposed that homeostasis occurs as the consequence of neutral competition between dividing stem cells7-9. However, the short-term behaviour of individual Lgr5+ cells positioned at different locations within the crypt base compartment has not been resolved. Here, we established the short-term dynamics of intestinal stem cells using a novel approach of continuous intravital imaging of Lgr5-Confetti mice. We find that Lgr5+ cells in the upper part of the niche (termed ‘border cells’) can be passively displaced into the transit-amplifying (TA) domain, following division of proximate cells, implying that determination of stem cell fate can be uncoupled from division. Through the quantitative analysis of individual clonal lineages, we show that stem cells at the crypt base, termed ‘central cells’, experience a survival advantage over border stem cells. However, through the transfer of stem cells between the border and central regions, all Lgr5+ cells are endowed with long-term self-renewal potential. These findings establish a novel paradigm for stem cell maintenance in which a dynamically heterogeneous cell population is able to function long-term as a single stem cell pool. PMID:24531760

  8. Reuse of E-plate cell sensor arrays in the xCELLigence Real-Time Cell Analyzer.

    Science.gov (United States)

    Stefanowicz-Hajduk, Justyna; Adamska, Anna; Bartoszewski, Rafal; Ochocka, J Renata

    2016-01-01

    The xCELLigence Real-Time Cell Analyzer (RTCA) is a non-invasive, impedence-based biosensor system that can measure cell viability, migration, growth, spreading, and proliferation. Changes in cell morphology and behavior are continuously monitored in real time using microelectronics located in the wells of RTCA E-plates. According to the manufacturer's recommendation, E-plates are single-use and disposable. Here, we show that E-plates can be regenerated and reused several times without significantly effecting experimental results. PMID:27625205

  9. Prognostic impact of array-based genomic profiles in esophageal squamous cell cancer

    DEFF Research Database (Denmark)

    Carneiro, Ana; Isinger, Anna; Karlsson, Anna; Johansson, Jan; Jönsson, Göran; Bendahl, Pär-Ola; Falkenback, Dan; Halvarsson, Britta; Nilbert, Mef

    2008-01-01

    BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a genetically complex tumor type and a major cause of cancer related mortality. Although distinct genetic alterations have been linked to ESCC development and prognosis, the genetic alterations have not gained clinical applicability. We app...

  10. Proteome array identification of bioactive soluble proteins/peptides in matrigel; relevance to stem cell responses

    Science.gov (United States)

    Matrigel and similar commercial products are extracts of the Engelbreth-Holm-Swarm sarcoma that provide a basement-membrane-like attachment factor or gel that is used to grow cells on or in. To ascertain further what proteins may be present in Matrigel, besides its major basement-membrane constitue...

  11. High-Throughput siRNA Screening to Reveal GATA-2 Upstream Transcriptional Mechanisms in Hematopoietic Cells.

    Directory of Open Access Journals (Sweden)

    Yo Saito

    Full Text Available Hematopoietic stem cells can self-renew and differentiate into all blood cell types. The transcription factor GATA-2 is expressed in both hematopoietic stem and progenitor cells and is essential for cell proliferation, survival, and differentiation. Recently, evidence from studies of aplastic anemia, MonoMAC syndrome, and lung cancer has demonstrated a mechanistic link between GATA-2 and human pathophysiology. GATA-2-dependent disease processes have been extensively analyzed; however, the transcriptional mechanisms upstream of GATA-2 remain less understood. Here, we conducted high-throughput small-interfering-RNA (siRNA library screening and showed that YN-1, a human erythroleukemia cell line, expressed high levels of GATA-2 following the activation of the hematopoietic-specific 1S promoter. As transient luciferase reporter assay in YN-1 cells revealed the highest promoter activity in the 1S promoter fused with GATA-2 intronic enhancer (+9.9 kb/1S; therefore, we established a cell line capable of stably expressing +9.9 kb/1S-Luciferase. Subsequently, we screened 995 transcription factor genes and revealed that CITED2 acts as a GATA-2 activator in human hematopoietic cells. These results provide novel insights into and further identify the regulatory mechanism of GATA-2.

  12. Supported noble metals on hydrogen-treated TiO2 nanotube arrays as highly ordered electrodes for fuel cells.

    Science.gov (United States)

    Zhang, Changkun; Yu, Hongmei; Li, Yongkun; Gao, Yuan; Zhao, Yun; Song, Wei; Shao, Zhigang; Yi, Baolian

    2013-04-01

    Hydrogen-treated TiO2 nanotube (H-TNT) arrays serve as highly ordered nanostructured electrode supports, which are able to significantly improve the electrochemical performance and durability of fuel cells. The electrical conductivity of H-TNTs increases by approximately one order of magnitude in comparison to air-treated TNTs. The increase in the number of oxygen vacancies and hydroxyl groups on the H-TNTs help to anchor a greater number of Pt atoms during Pt electrodeposition. The H-TNTs are pretreated by using a successive ion adsorption and reaction (SIAR) method that enhances the loading and dispersion of Pt catalysts when electrodeposited. In the SIAR method a Pd activator can be used to provide uniform nucleation sites for Pt and leads to increased Pt loading on the H-TNTs. Furthermore, fabricated Pt nanoparticles with a diameter of 3.4 nm are located uniformly around the pretreated H-TNT support. The as-prepared and highly ordered electrodes exhibit excellent stability during accelerated durability tests, particularly for the H-TNT-loaded Pt catalysts that have been annealed in ultrahigh purity H2 for a second time. There is minimal decrease in the electrochemical surface area of the as-prepared electrode after 1000 cycles compared to a 68 % decrease for the commercial JM 20 % Pt/C electrode after 800 cycles. X-ray photoelectron spectroscopy shows that after the H-TNT-loaded Pt catalysts are annealed in H2 for the second time, the strong metal-support interaction between the H-TNTs and the Pt catalysts enhances the electrochemical stability of the electrodes. Fuel-cell testing shows that the power density reaches a maximum of 500 mWcm(-2) when this highly ordered electrode is used as the anode. When used as the cathode in a fuel cell with extra-low Pt loading, the new electrode generates a specific power density of 2.68 kWg(Pt) (-1) . It is indicated that H-TNT arrays, which have highly ordered nanostructures, could be used as ordered electrode supports

  13. ZnO/CdS/CdSe core/double shell nanorod arrays derived by a successive ionic layer adsorption and reaction process for quantum dot-sensitized solar cells

    International Nuclear Information System (INIS)

    Well-aligned one-dimensional ZnO nanorod arrays were grown on transparent conducting glass, and CdS and CdSe quantum dot thin films were then deposited on the nanorod arrays in turn by an effective successive ionic layer adsorption and reaction process to form a ZnO/CdS/CdSe core/double-shell structure electrode. As revealed by the images of filed-emission scanning electron microscopy and transmission electron microscopy, the CdS and CdSe quantum dot thin films were uniformly deposited on the ZnO nanorods and the thickness of the CdS and CdSe shell can be controlled by varying the number of the adsorption and reaction cycles. For a typical sample that was prepared by a 10 times adsorption and reaction cycle, the thickness of the CdS and CdSe shell was about 4.0 and 5.5 nm, respectively. A short circuit density of 12.1 mA cm−2 and a power conversion efficiency of 1.72% were obtained for the solar cell based on the optimal ZnO/CdS/CdSe core–shell nanorod array electrode under the illumination of one sun (AM1.5, 100 mW cm−2)

  14. Optimizing laser beam profiles using micro-lens arrays for efficient material processing: applications to solar cells

    Science.gov (United States)

    Hauschild, Dirk; Homburg, Oliver; Mitra, Thomas; Ivanenko, Mikhail; Jarczynski, Manfred; Meinschien, Jens; Bayer, Andreas; Lissotschenko, Vitalij

    2009-02-01

    High power laser sources are used in various production tools for microelectronic products and solar cells, including the applications annealing, lithography, edge isolation as well as dicing and patterning. Besides the right choice of the laser source suitable high performance optics for generating the appropriate beam profile and intensity distribution are of high importance for the right processing speed, quality and yield. For industrial applications equally important is an adequate understanding of the physics of the light-matter interaction behind the process. In advance simulations of the tool performance can minimize technical and financial risk as well as lead times for prototyping and introduction into series production. LIMO has developed its own software founded on the Maxwell equations taking into account all important physical aspects of the laser based process: the light source, the beam shaping optical system and the light-matter interaction. Based on this knowledge together with a unique free-form micro-lens array production technology and patented micro-optics beam shaping designs a number of novel solar cell production tool sub-systems have been built. The basic functionalities, design principles and performance results are presented with a special emphasis on resilience, cost reduction and process reliability.

  15. Commercialisation of CMOS Integrated Circuit Technology in Multi-Electrode Arrays for Neuroscience and Cell-Based Biosensors

    Directory of Open Access Journals (Sweden)

    Chris R. Bowen

    2011-05-01

    Full Text Available The adaptation of standard integrated circuit (IC technology as a transducer in cell-based biosensors in drug discovery pharmacology, neural interface systems and electrophysiology requires electrodes that are electrochemically stable, biocompatible and affordable. Unfortunately, the ubiquitous Complementary Metal Oxide Semiconductor (CMOS IC technology does not meet the first of these requirements. For devices intended only for research, modification of CMOS by post-processing using cleanroom facilities has been achieved. However, to enable adoption of CMOS as a basis for commercial biosensors, the economies of scale of CMOS fabrication must be maintained by using only low-cost post-processing techniques. This review highlights the methodologies employed in cell-based biosensor design where CMOS-based integrated circuits (ICs form an integral part of the transducer system. Particular emphasis will be placed on the application of multi-electrode arrays for in vitro neuroscience applications. Identifying suitable IC packaging methods presents further significant challenges when considering specific applications. The various challenges and difficulties are reviewed and some potential solutions are presented.

  16. A mammary repopulating cell population characterized in mammary anlagen reveals essential mammary stroma for morphogenesis.

    Science.gov (United States)

    Song, Jiazhe; Xue, Kai; She, Ji; Ding, Fangrong; Li, Song; Shangguan, Rulan; Dai, Yunping; Du, Liying; Li, Ning

    2014-09-10

    The cells with mammary repopulating capability can achieve mammary gland morphogenesis in a suitable cellular microenvironment. Using cell surface markers of CD24, CD29 and CD49f, mouse mammary repopulating unit (MRU) has been identified in adult mammary epithelium and late embryonic mammary bud epithelium. However, embryonic MRU remains to be fully characterized at earlier mammary anlagen stage. Here we isolated discrete populations of E14.5 mouse mammary anlagen cells. Only Lin(-)CD24(med)CD29(+) cell population was predicted as E14.5 MRU by examining their capacities of forming mammosphere and repopulating cleared mammary fat pad in vivo. However, when we characterized gene expressions of this E14.5 cell population by comparing with adult mouse MRU (Lin(-)CD24(+)CD29(hi)), the gene profiling of these two cell populations exhibited great differences. Real-time PCR and immunostaining assays uncovered that E14.5 Lin(-)CD24(med)CD29(+) cell population was a heterogeneous stroma-enriched cell population. Then, limiting dilutions and single-cell assays also confirmed that E14.5 Lin(-)CD24(med)CD29(+) cell population possessed low proportion of stem cells. In summary, heterogeneous Lin(-)CD24(med)CD29(+) cell population exhibited mammary repopulating ability in E14.5 mammary anlagen, implying that only suitable mammary stroma could enable mammary gland morphogenesis, which relied on the interaction between rare stem cells and microenvironment. PMID:24954407

  17. The effective conductivity of arrays of squares: large random unit cells and extreme contrast ratios

    CERN Document Server

    Helsing, Johan

    2011-01-01

    An integral equation based scheme is presented for the fast and accurate computation of effective conductivities of two-component checkerboard-like composites with complicated unit cells at very high contrast ratios. The scheme extends recent work on multi-component checkerboards at medium contrast ratios. General improvement include the simplification of a long-range preconditioner, the use of a banded solver, and a more efficient placement of quadrature points. This, together with a reduction in the number of unknowns, allows for a substantial increase in achievable accuracy as well as in tractable system size. Results, accurate to at least nine digits, are obtained for random checkerboards with over a million squares in the unit cell at contrast ratio 10^6. Furthermore, the scheme is flexible enough to handle complex valued conductivities and, using a homotopy method, purely negative contrast ratios. Examples of the accurate computation of resonant spectra are given.

  18. Life on magnets: stem cell networking on micro-magnet arrays

    Czech Academy of Sciences Publication Activity Database

    Zablotskyy, Vitaliy A.; Dejneka, Alexandr; Kubinová, Šárka; Le-Roy, D.; Dumas-Bouchiat, F.; Givord, D.; Dempsey, N.; Syková, Eva

    2013-01-01

    Roč. 8, č. 8 (2013), e70416. E-ISSN 1932-6203 R&D Projects: GA ČR GAP304/11/0653; GA ČR(CZ) GAP304/12/1370 Grant ostatní: AV ČR(CZ) M100101219 Institutional support: RVO:68378271 ; RVO:68378041 Keywords : micro-magnet * stem cells Subject RIV: BM - Solid Matter Physics ; Magnetism; FH - Neurology (UEM-P) Impact factor: 3.534, year: 2013

  19. Array Analysis of Simian Varicella Virus Gene Transcription in Productively Infected Cells in Tissue Culture

    OpenAIRE

    Deitch, Steven B.; Gilden, Donald H.; Wellish, Mary; Smith, John; Cohrs, Randall J.; Mahalingam, Ravi

    2005-01-01

    Simian varicella virus (SVV) is a neurotropic alphaherpesvirus of monkeys that is a model for varicella pathogenesis and latency. Like human varicella-zoster virus (VZV), SVV causes chicken pox (varicella), becomes latent in ganglia along the entire neuraxis, and reactivates to produce shingles (zoster). We developed macroarrays to determine the extent of viral transcription from all 70 predicted SVV open reading frames (ORFs) in infected cells in tissue culture. Cloned fragments (200 to 400 ...

  20. Conditional IFNAR1 ablation reveals distinct requirements of Type I IFN signaling for NK cell maturation and tumor surveillance

    Science.gov (United States)

    Mizutani, Tatsuaki; Neugebauer, Nina; Putz, Eva M.; Moritz, Nadine; Simma, Olivia; Zebedin-Brandl, Eva; Gotthardt, Dagmar; Warsch, Wolfgang; Eckelhart, Eva; Kantner, Hans-Peter; Kalinke, Ulrich; Lienenklaus, Stefan; Weiss, Siegfried; Strobl, Birgit; Müller, Mathias; Sexl, Veronika; Stoiber, Dagmar

    2012-01-01

    Mice with an impaired Type I interferon (IFN) signaling (IFNAR1- and IFNβ-deficient mice) display an increased susceptibility toward v-ABL-induced B-cell leukemia/lymphoma. The enhanced leukemogenesis in the absence of an intact Type I IFN signaling is caused by alterations within the tumor environment. Deletion of Ifnar1 in tumor cells (as obtained in Ifnar1f/f CD19-Cre mice) failed to impact on disease latency or type. In line with this observation, the initial transformation and proliferative capacity of tumor cells were unaltered irrespective of whether the cells expressed IFNAR1 or not. v-ABL-induced leukemogenesis is mainly subjected to natural killer (NK) cell-mediated tumor surveillance. Thus, we concentrated on NK cell functions in IFNAR1 deficient animals. Ifnar1-/- NK cells displayed maturation defects as well as an impaired cytolytic activity. When we deleted Ifnar1 selectively in mature NK cells (by crossing Ncr1-iCre mice to Ifnar1f/f animals), maturation was not altered. However, NK cells derived from Ifnar1f/f Ncr1-iCre mice showed a significant cytolytic defect in vitro against the hematopoietic cell lines YAC-1 and RMA-S, but not against the melanoma cell line B16F10. Interestingly, this defect was not related to an in vivo phenotype as v-ABL-induced leukemogenesis was unaltered in Ifnar1f/f Ncr1-iCre compared with Ifnar1f/f control mice. Moreover, the ability of Ifnar1f/f Ncr1-iCre NK cells to kill B16F10 melanoma cells was unaltered, both in vitro and in vivo. Our data reveal that despite the necessity for Type I IFN in NK cell maturation the expression of IFNAR1 on mature murine NK cells is not required for efficient tumor surveillance. PMID:23170251

  1. Smooth bumps in H/V curves over a broad area from single-station ambient noise recordings are meaningful and reveal the importance of Q in array processing: The Boumerdes (Algeria) case

    Science.gov (United States)

    Guillier, B.; Chatelain, J.-L.; Hellel, M.; Machane, D.; Mezouer, N.; Ben Salem, R.; Oubaiche, E. H.

    2005-12-01

    Single-station H/V curves from ambient noise recordings in Boumerdes (Algeria) show smooth bumps around 1 and 3 Hz. A complementary microtremor study, based on two 34 and 134-meter aperture arrays, evidences that these bumps are indeed real peaks produced by two strong VS contrasts at 37 and 118 meters depth, strongly smoothed by very high S-wave attenuation in the two sedimentary layers. These two H/V bumps, observed over a broad area, are meaningful and reveal the importance of Q in S-wave velocity modeling from microtremor array data processing. It also appears that Tertiary rocks should be, at least in some cases, taken into account, together with the Quaternary sediments, to explain single-station H/V frequency peaks, and therefore that considering only the first 30 m of soil for VS amplification evaluation, as usually recommended, sometimes leads to flaky results by artificially eliminating non-explained low-frequency peaks from the analysis.

  2. agged tumor cells reveal regulatory steps during earliest stages of tumor progression and micrometastasis

    OpenAIRE

    Culp, L A; Lin, W.C.

    1999-01-01

    Histochemical marker genes were used to "tag" mouse fibrosarcoma or human neuroblastoma cells, providing a better understanding of their subsequent progression and metastasis mechanisms in nude mice. Micrometastases in the lung were initiated from clusters of 2-6 cells rather than single cells in most cases; tumor cells were also visualized binding to the endothelium of small blood vessels to initiate these micrometastases. Shortterm, these mechanisms relied ...

  3. Genetic and environmental determinants of human NK cell diversity revealed by mass cytometry

    OpenAIRE

    Horowitz, Amir; Strauss-Albee, Dara M.; Leipold, Michael; Kubo, Jessica; Nemat-Gorgani, Neda; DOGAN, Ozge C.; Dekker, Cornelia L; Mackey, Sally; Maecker, Holden; Swan, Gary E.; Davis, Mark M.; Norman, Paul J.; Guethlein, Lisbeth A.; Desai, Manisha; Parham, Peter

    2013-01-01

    Natural Killer (NK) cells play critical roles in immune defense and reproduction, yet remain the most poorly understood major lymphocyte population. Because their activation is controlled by a variety of combinatorially expressed activating and inhibitory receptors, NK cell diversity and function are closely linked. To provide an unprecedented understanding of NK cell repertoire diversity, we used mass cytometry to simultaneously analyze 35 parameters, including 28 NK cell receptors, on perip...

  4. Human Monoclonal Islet Cell Antibodies From a Patient with Insulin- Dependent Diabetes Mellitus Reveal Glutamate Decarboxylase as the Target Antigen

    Science.gov (United States)

    Richter, Wiltrud; Endl, Josef; Eiermann, Thomas H.; Brandt, Michael; Kientsch-Engel, Rosemarie; Thivolet, Charles; Jungfer, Herbert; Scherbaum, Werner A.

    1992-09-01

    The autoimmune phenomena associated with destruction of the β cell in pancreatic islets and development of type 1 (insulin-dependent) diabetes mellitus (IDDM) include circulating islet cell antibodies. We have immortalized peripheral blood lymphocytes from prediabetic individuals and patients with newly diagnosed IDDM by Epstein-Barr virus transformation. IgG-positive cells were selected by anti-human IgG-coupled magnetic beads and expanded in cell culture. Supernatants were screened for cytoplasmic islet cell antibodies using the conventional indirect immunofluorescence test on cryostat sections of human pancreas. Six islet cell-specific B-cell lines, originating from a patient with newly diagnosed IDDM, could be stabilized on a monoclonal level. All six monoclonal islet cell antibodies (MICA 1-6) were of the IgG class. None of the MICA reacted with human thyroid, adrenal gland, anterior pituitary, liver, lung, stomach, and intestine tissues but all six reacted with pancreatic islets of different mammalian species and, in addition, with neurons of rat cerebellar cortex. MICA 1-6 were shown to recognize four distinct antigenic epitopes in islets. Islet cell antibody-positive diabetic sera but not normal human sera blocked the binding of the monoclonal antibodies to their target epitopes. Immunoprecipitation of 35S-labeled human islet cell extracts revealed that a protein of identical size to the enzyme glutamate decarboxylase (EC 4.1.1.15) was a target of all MICA. Furthermore, antigen immunotrapped by the MICA from brain homogenates showed glutamate decarboxylase enzyme activity. MICA 1-6 therefore reveal glutamate decarboxylase as the predominant target antigen of cytoplasmic islet cell autoantibodies in a patient with newly diagnosed IDDM.

  5. Computational models reveal a passive mechanism for cell migration in the crypt.

    Directory of Open Access Journals (Sweden)

    Sara-Jane Dunn

    Full Text Available Cell migration in the intestinal crypt is essential for the regular renewal of the epithelium, and the continued upward movement of cells is a key characteristic of healthy crypt dynamics. However, the driving force behind this migration is unknown. Possibilities include mitotic pressure, active movement driven by motility cues, or negative pressure arising from cell loss at the crypt collar. It is possible that a combination of factors together coordinate migration. Here, three different computational models are used to provide insight into the mechanisms that underpin cell movement in the crypt, by examining the consequence of eliminating cell division on cell movement. Computational simulations agree with existing experimental results, confirming that migration can continue in the absence of mitosis. Importantly, however, simulations allow us to infer mechanisms that are sufficient to generate cell movement, which is not possible through experimental observation alone. The results produced by the three models agree and suggest that cell loss due to apoptosis and extrusion at the crypt collar relieves cell compression below, allowing cells to expand and move upwards. This finding suggests that future experiments should focus on the role of apoptosis and cell extrusion in controlling cell migration in the crypt.

  6. The volumes and transcript counts of single cells reveal concentration homeostasis and capture biological noise

    NARCIS (Netherlands)

    H. Kempe; A. Schwabe; F. Crémazy; P.J. Verschure; F.J. Bruggeman

    2015-01-01

    Transcriptional stochasticity can be measured by counting the number of mRNA molecules per cell. Cell-to-cell variability is best captured in terms of concentration rather than molecule counts, because reaction rates depend on concentrations. We combined single-molecule mRNA counting with single-cel

  7. A novel molecule integrating therapeutic and diagnostic activities reveals multiple aspects of stem cell-based therapy.

    Science.gov (United States)

    Hingtgen, Shawn D; Kasmieh, Randa; van de Water, Jeroen; Weissleder, Ralph; Shah, Khalid

    2010-04-01

    Stem cells are promising therapeutic delivery vehicles; however pre-clinical and clinical applications of stem cell-based therapy would benefit significantly from the ability to simultaneously determine therapeutic efficacy and pharmacokinetics of therapies delivered by engineered stem cells. In this study, we engineered and screened numerous fusion variants that contained therapeutic (TRAIL) and diagnostic (luciferase) domains designed to allow simultaneous investigation of multiple events in stem cell-based therapy in vivo. When various stem cell lines were engineered with the optimized molecule, SRL(O)L(2)TR, diagnostic imaging showed marked differences in the levels and duration of secretion between stem cell lines, while the therapeutic activity of the molecule showed the different secretion levels translated to significant variability in tumor cell killing. In vivo, simultaneous diagnostic and therapeutic monitoring revealed that stem cell-based delivery significantly improved pharmacokinetics and anti-tumor effectiveness of the therapy compared to intravenous or intratumoral delivery. As treatment for highly malignant brain tumor xenografts, tracking SRL(O)L(2)TR showed stable stem cell-mediated delivery significantly regressed peripheral and intracranial tumors. Together, the integrated diagnostic and therapeutic properties of SRL(O)L(2)TR answer critical questions necessary for successful utilization of stem cells as novel therapeutic vehicles. PMID:20127797

  8. Lineage relationship of CD8+ T cell subsets is revealed by progressive changes in the epigenetic landscape

    Science.gov (United States)

    Crompton, Joseph G.; Narayanan, Manikandan; Cuddapah, Suresh; Roychoudhuri, Rahul; Ji, Yun; Yang, Wenjing; Patel, Shashank J.; Sukumar, Madhusudhanan; Palmer, Douglas C.; Peng, Weiqun; Wang, Ena; Marincola, Francesco M.; Klebanoff, Christopher A.; Zhao, Keji; Tsang, John S.; Gattinoni, Luca; Restifo, Nicholas P.

    2016-01-01

    To better elucidate epigenetic mechanisms that correlate with the dynamic gene expression program observed upon T-cell differentiation, we investigated the genomic landscape of histone modifications in naive and memory CD8+ T cells. Using a ChIP-Seq approach coupled with global gene expression profiling, we generated genome-wide histone H3 lysine 4 (H3K4me3) and H3 lysine 27 (H3K27me3) trimethylation maps in naive, T memory stem cells, central memory cells, and effector memory cells in order to gain insight into how histone architecture is remodeled during T cell differentiation. We show that H3K4me3 histone modifications are associated with activation of genes, while H3K27me3 is negatively correlated with gene expression at canonical loci and enhancers associated with T-cell metabolism, effector function, and memory. Our results also reveal histone modifications and gene expression signatures that distinguish the recently identified T memory stem cells from other CD8+ T-cell subsets. Taken together, our results suggest that CD8+ lymphocytes undergo chromatin remodeling in a progressive fashion. These findings have major implications for our understanding of peripheral T-cell ontogeny and the formation of immunological memory. PMID:25914936

  9. Transcriptome analysis of exosome-compromised human cells using high-density tiling arrays

    DEFF Research Database (Denmark)

    Jensen, Torben Heick

    The extent of RNA degradation in the nucleus has traditionally been underestimated. However, all major RNA species are synthesized, processed and can be degraded in this compartment and consequently an enormous amount of nucleosides are turned over and recycled. The RNA exosome, a multisubunit...... complex of 3’-5’ exoribonucleases, is a key player in these processive/degradative pathways. The exosome is highly conserved between yeast and man, and exists in a cytoplasmic and a nuclear form; the 3’-5’ exoribonuclease Rrp6 (human homologue PM/Scl100) is a specific component of the nuclear exosome.......Studies in yeast using exosome-mutant strains has revealed specific functions of the nuclear exosome: (i) processing or degradation of small nuclear/nucleolar RNAs (snRNAs, snoRNAs), (ii) surveillance and degradation of malformed mRNAs and (iii) processing or degradation of ribosomal precursor RNA to mature r...

  10. Fluorescent labelling of intestinal epithelial cells reveals independent long-lived intestinal stem cells in a crypt

    International Nuclear Information System (INIS)

    Highlights: • Lentivirus mixed with Matrigel enables direct infection of intestinal organoids. • Our original approach allows the marking of a single stem cell in a crypt. • Time-lapse imaging shows the dynamics of a single stem cell. • Our lentivirus transgene system demonstrates plural long-lived stem cells in a crypt. - Abstract: Background and aims: The dynamics of intestinal stem cells are crucial for regulation of intestinal function and maintenance. Although crypt stem cells have been identified in the intestine by genetic marking methods, identification of plural crypt stem cells has not yet been achieved as they are visualised in the same colour. Methods: Intestinal organoids were transferred into Matrigel® mixed with lentivirus encoding mCherry. The dynamics of mCherry-positive cells was analysed using time-lapse imaging, and the localisation of mCherry-positive cells was analysed using 3D immunofluorescence. Results: We established an original method for the introduction of a transgene into an organoid generated from mouse small intestine that resulted in continuous fluorescence of the mCherry protein in a portion of organoid cells. Three-dimensional analysis using confocal microscopy showed a single mCherry-positive cell in an organoid crypt that had been cultured for >1 year, which suggested the presence of long-lived mCherry-positive and -negative stem cells in the same crypt. Moreover, a single mCherry-positive stem cell in a crypt gave rise to both crypt base columnar cells and transit amplifying cells. Each mCherry-positive and -negative cell contributed to the generation of organoids. Conclusions: The use of our original lentiviral transgene system to mark individual organoid crypt stem cells showed that long-lived plural crypt stem cells might independently serve as intestinal epithelial cells, resulting in the formation of a completely functional villus

  11. Fluorescent labelling of intestinal epithelial cells reveals independent long-lived intestinal stem cells in a crypt

    Energy Technology Data Exchange (ETDEWEB)

    Horita, Nobukatsu [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (Japan); Tsuchiya, Kiichiro, E-mail: kii.gast@tmd.ac.jp [Department of Advanced Therapeutics for Gastrointestinal Diseases, Graduate School, Tokyo Medical and Dental University (Japan); Hayashi, Ryohei [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (Japan); Department of Gastroenterology and Metabolism, Hiroshima University (Japan); Fukushima, Keita; Hibiya, Shuji; Fukuda, Masayoshi; Kano, Yoshihito; Mizutani, Tomohiro; Nemoto, Yasuhiro; Yui, Shiro [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (Japan); Okamoto, Ryuichi; Nakamura, Tetsuya [Department of Advanced Therapeutics for Gastrointestinal Diseases, Graduate School, Tokyo Medical and Dental University (Japan); Watanabe, Mamoru [Department of Gastroenterology and Hepatology, Graduate School, Tokyo Medical and Dental University (Japan)

    2014-11-28

    Highlights: • Lentivirus mixed with Matrigel enables direct infection of intestinal organoids. • Our original approach allows the marking of a single stem cell in a crypt. • Time-lapse imaging shows the dynamics of a single stem cell. • Our lentivirus transgene system demonstrates plural long-lived stem cells in a crypt. - Abstract: Background and aims: The dynamics of intestinal stem cells are crucial for regulation of intestinal function and maintenance. Although crypt stem cells have been identified in the intestine by genetic marking methods, identification of plural crypt stem cells has not yet been achieved as they are visualised in the same colour. Methods: Intestinal organoids were transferred into Matrigel® mixed with lentivirus encoding mCherry. The dynamics of mCherry-positive cells was analysed using time-lapse imaging, and the localisation of mCherry-positive cells was analysed using 3D immunofluorescence. Results: We established an original method for the introduction of a transgene into an organoid generated from mouse small intestine that resulted in continuous fluorescence of the mCherry protein in a portion of organoid cells. Three-dimensional analysis using confocal microscopy showed a single mCherry-positive cell in an organoid crypt that had been cultured for >1 year, which suggested the presence of long-lived mCherry-positive and -negative stem cells in the same crypt. Moreover, a single mCherry-positive stem cell in a crypt gave rise to both crypt base columnar cells and transit amplifying cells. Each mCherry-positive and -negative cell contributed to the generation of organoids. Conclusions: The use of our original lentiviral transgene system to mark individual organoid crypt stem cells showed that long-lived plural crypt stem cells might independently serve as intestinal epithelial cells, resulting in the formation of a completely functional villus.

  12. Expression weighted cell type enrichments reveal genetic and cellular nature of major brain disorders

    Directory of Open Access Journals (Sweden)

    Nathan Gerald Skene

    2016-01-01

    Full Text Available The cell types that trigger the primary pathology in many brain diseases remain largely unknown. One route to understanding the primary pathological cell type for a particular disease is to identify the cells expressing susceptibility genes. Although this is straightforward for monogenic conditions where the causative mutation may alter expression of a cell type specific marker, methods are required for the common polygenic disorders. We developed the Expression Weighted Cell Type Enrichment (EWCE method that uses single cell transcriptomes to generate the probability distribution associated with a gene list having an average level of expression within a cell type. Following validation, we applied EWCE to human genetic data from cases of epilepsy, Schizophrenia, Autism, Intellectual Disability, Alzheimer’s disease, Multiple Sclerosis and anxiety disorders. Genetic susceptibility primarily affected microglia in Alzheimer’s and Multiple Sclerosis; was shared between interneurons and pyramidal neurons in Autism and Schizophrenia; while intellectual disabilities and epilepsy were attributable to a range of cell-types, with the strongest enrichment in interneurons. We hypothesised that the primary cell type pathology could trigger secondary changes in other cell types and these could be detected by applying EWCE to transcriptome data from diseased tissue. In Autism, Schizophrenia and Alzheimer’s disease we find evidence of pathological changes in all of the major brain cell types. These findings give novel insight into the cellular origins and progression in common brain disorders. The methods can be applied to any tissue and disorder and have applications in validating mouse models.

  13. Proteomics analysis reveals a Th17-prone cell population in presymptomatic graft-versus-host disease

    Science.gov (United States)

    Li, Wei; Liu, Liangyi; Gomez, Aurelie; Zhang, Jilu; Ramadan, Abdulraouf; Zhang, Qing; Choi, Sung W.; Zhang, Peng; Greenson, Joel K.; Liu, Chen; Jiang, Di; Virts, Elizabeth; Kelich, Stephanie L.; Chu, Hong Wei; Flynn, Ryan; Blazar, Bruce R.; Hanenberg, Helmut; Hanash, Samir; Paczesny, Sophie

    2016-01-01

    Gastrointestinal graft-versus-host-disease (GI-GVHD) is a life-threatening complication occurring after allogeneic hematopoietic cell transplantation (HCT), and a blood biomarker that permits stratification of HCT patients according to their risk of developing GI-GVHD would greatly aid treatment planning. Through in-depth, large-scale proteomic profiling of presymptomatic samples, we identified a T cell population expressing both CD146, a cell adhesion molecule, and CCR5, a chemokine receptor that is upregulated as early as 14 days after transplantation in patients who develop GI-GVHD. The CD4+CD146+CCR5+ T cell population is Th17 prone and increased by ICOS stimulation. shRNA knockdown of CD146 in T cells reduced their transmigration through endothelial cells, and maraviroc, a CCR5 inhibitor, reduced chemotaxis of the CD4+CD146+CCR5+ T cell population toward CCL14. Mice that received CD146 shRNA–transduced human T cells did not lose weight, showed better survival, and had fewer CD4+CD146+CCR5+ T cells and less pathogenic Th17 infiltration in the intestine, even compared with mice receiving maraviroc with control shRNA– transduced human T cells. Furthermore, the frequency of CD4+CD146+CCR5+ Tregs was increased in GI-GVHD patients, and these cells showed increased plasticity toward Th17 upon ICOS stimulation. Our findings can be applied to early risk stratification, as well as specific preventative therapeutic strategies following HCT. PMID:27195312

  14. Tandem Spinach Array for mRNA Imaging in Living Bacterial Cells

    OpenAIRE

    Jichuan Zhang; Jingyi Fei; Leslie, Benjamin J.; Kyu Young Han; Kuhlman, Thomas E; Taekjip Ha

    2015-01-01

    Live cell RNA imaging using genetically encoded fluorescent labels is an important tool for monitoring RNA activities. A recently reported RNA aptamer-fluorogen system, the Spinach, in which an RNA aptamer binds and induces the fluorescence of a GFP-like 3,5-difluoro-4-hydroxybenzylidene imidazolinone (DFHBI) ligand, can be readily tagged to the RNA of interest. Although the aptamer–fluorogen system is sufficient for imaging highly abundant non-coding RNAs (tRNAs, rRNAs, etc.), it performs po...

  15. A High-Dimensional Atlas of Human T Cell Diversity Reveals Tissue-Specific Trafficking and Cytokine Signatures.

    Science.gov (United States)

    Wong, Michael Thomas; Ong, David Eng Hui; Lim, Frances Sheau Huei; Teng, Karen Wei Weng; McGovern, Naomi; Narayanan, Sriram; Ho, Wen Qi; Cerny, Daniela; Tan, Henry Kun Kiaang; Anicete, Rosslyn; Tan, Bien Keem; Lim, Tony Kiat Hon; Chan, Chung Yip; Cheow, Peng Chung; Lee, Ser Yee; Takano, Angela; Tan, Eng-Huat; Tam, John Kit Chung; Tan, Ern Yu; Chan, Jerry Kok Yen; Fink, Katja; Bertoletti, Antonio; Ginhoux, Florent; Curotto de Lafaille, Maria Alicia; Newell, Evan William

    2016-08-16

    Depending on the tissue microenvironment, T cells can differentiate into highly diverse subsets expressing unique trafficking receptors and cytokines. Studies of human lymphocytes have primarily focused on a limited number of parameters in blood, representing an incomplete view of the human immune system. Here, we have utilized mass cytometry to simultaneously analyze T cell trafficking and functional markers across eight different human tissues, including blood, lymphoid, and non-lymphoid tissues. These data have revealed that combinatorial expression of trafficking receptors and cytokines better defines tissue specificity. Notably, we identified numerous T helper cell subsets with overlapping cytokine expression, but only specific cytokine combinations are secreted regardless of tissue type. This indicates that T cell lineages defined in mouse models cannot be clearly distinguished in humans. Overall, our data uncover a plethora of tissue immune signatures and provide a systemic map of how T cell phenotypes are altered throughout the human body. PMID:27521270

  16. Cationic Antimicrobial Peptides Derived from Crocodylus siamensis Leukocyte Extract, Revealing Anticancer Activity and Apoptotic Induction on Human Cervical Cancer Cells.

    Science.gov (United States)

    Theansungnoen, Tinnakorn; Maijaroen, Surachai; Jangpromma, Nisachon; Yaraksa, Nualyai; Daduang, Sakda; Temsiripong, Theeranan; Daduang, Jureerut; Klaynongsruang, Sompong

    2016-06-01

    Known antimicrobial peptides KT2 and RT2 as well as the novel RP9 derived from the leukocyte extract of the freshwater crocodile (Crocodylus siamensis) were used to evaluate the ability in killing human cervical cancer cells. RP9 in the extract was purified by a combination of anion exchange column and reversed-phase HPLC, and its sequence was analyzed by mass spectrometry. The novel peptide could inhibit Gram-negative Vibrio cholerae (clinical isolation) and Gram-positive Bacillus pumilus TISTR 905, and its MIC values were 61.2 µM. From scanning electron microscopy, the peptide was seen to affect bacterial surfaces directly. KT2 and RT2, which are designed antimicrobial peptides using the C. siamensis Leucrocin I template, as well as RP9 were chemically synthesized for investigation of anticancer activity. By Sulforhodamine B colorimetric assay, these antimicrobial peptides could inhibit both HeLa and CaSki cancer cell lines. The IC50 values of KT2 and RT2 for HeLa and CaSki cells showed 28.7-53.4 and 17.3-30.8 µM, while those of RP9 were 126.2 and 168.3 µM, respectively. Additionally, the best candidate peptides KT2 and RT2 were used to determine the apoptotic induction on cancer cells by human apoptosis array assay. As a result, KT2 and RT2 were observed to induce apoptotic cell death in HeLa cells. Therefore, these results indicate that KT2 and RT2 with antimicrobial activity have a highly potent ability to kill human cervical cancer cells. PMID:27129462

  17. Microfabricated ion trap array

    Science.gov (United States)

    Blain, Matthew G.; Fleming, James G.

    2006-12-26

    A microfabricated ion trap array, comprising a plurality of ion traps having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale ion traps to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The reduced electrode voltage enables integration of the microfabricated ion trap array with on-chip circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of the microfabricated ion trap array can be realized in truly field portable, handheld microanalysis systems.

  18. A graphene-based physiometer array for the analysis of single biological cells.

    Science.gov (United States)

    Paulus, Geraldine L C; Nelson, Justin T; Lee, Katherine Y; Wang, Qing Hua; Reuel, Nigel F; Grassbaugh, Brittany R; Kruss, Sebastian; Landry, Markita P; Kang, Jeon Woong; Vander Ende, Emma; Zhang, Jingqing; Mu, Bin; Dasari, Ramachandra R; Opel, Cary F; Wittrup, K Dane; Strano, Michael S

    2014-01-01

    A significant advantage of a graphene biosensor is that it inherently represents a continuum of independent and aligned sensor-units. We demonstrate a nanoscale version of a micro-physiometer - a device that measures cellular metabolic activity from the local acidification rate. Graphene functions as a matrix of independent pH sensors enabling subcellular detection of proton excretion. Raman spectroscopy shows that aqueous protons p-dope graphene - in agreement with established doping trajectories, and that graphene displays two distinct pKa values (2.9 and 14.2), corresponding to dopants physi- and chemisorbing to graphene respectively. The graphene physiometer allows micron spatial resolution and can differentiate immunoglobulin (IgG)-producing human embryonic kidney (HEK) cells from non-IgG-producing control cells. Population-based analyses allow mapping of phenotypic diversity, variances in metabolic activity, and cellular adhesion. Finally we show this platform can be extended to the detection of other analytes, e.g. dopamine. This work motivates the application of graphene as a unique biosensor for (sub)cellular interrogation. PMID:25359450

  19. Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL) Reveals the Sequential Differentiation of Sieve Element-Like Cells.

    Science.gov (United States)

    Kondo, Yuki; Nurani, Alif Meem; Saito, Chieko; Ichihashi, Yasunori; Saito, Masato; Yamazaki, Kyoko; Mitsuda, Nobutaka; Ohme-Takagi, Masaru; Fukuda, Hiroo

    2016-06-01

    Cell differentiation is a complex process involving multiple steps, from initial cell fate specification to final differentiation. Procambial/cambial cells, which act as vascular stem cells, differentiate into both xylem and phloem cells during vascular development. Recent studies have identified regulatory cascades for xylem differentiation. However, the molecular mechanism underlying phloem differentiation is largely unexplored due to technical challenges. Here, we established an ectopic induction system for phloem differentiation named Vascular Cell Induction Culture System Using Arabidopsis Leaves (VISUAL). Our results verified similarities between VISUAL-induced Arabidopsis thaliana phloem cells and in vivo sieve elements. We performed network analysis using transcriptome data with VISUAL to dissect the processes underlying phloem differentiation, eventually identifying a factor involved in the regulation of the master transcription factor gene APL Thus, our culture system opens up new avenues not only for genetic studies of phloem differentiation, but also for future investigations of multidirectional differentiation from vascular stem cells. PMID:27194709

  20. Genome sequence reveals that Pseudomonas fluorescens F113 possesses a large and diverse array of systems for rhizosphere function and host interaction

    Directory of Open Access Journals (Sweden)

    Redondo-Nieto Miguel

    2013-01-01

    Full Text Available Abstract Background Pseudomonas fluorescens F113 is a plant growth-promoting rhizobacterium (PGPR isolated from the sugar-beet rhizosphere. This bacterium has been extensively studied as a model strain for genetic regulation of secondary metabolite production in P. fluorescens, as a candidate biocontrol agent against phytopathogens, and as a heterologous host for expression of genes with biotechnological application. The F113 genome sequence and annotation has been recently reported. Results Comparative analysis of 50 genome sequences of strains belonging to the P. fluorescens group has revealed the existence of five distinct subgroups. F113 belongs to subgroup I, which is mostly composed of strains classified as P. brassicacearum. The core genome of these five strains is highly conserved and represents approximately 76% of the protein-coding genes in any given genome. Despite this strong conservation, F113 also contains a large number of unique protein-coding genes that encode traits potentially involved in the rhizocompetence of this strain. These features include protein coding genes required for denitrification, diterpenoids catabolism, motility and chemotaxis, protein secretion and production of antimicrobial compounds and insect toxins. Conclusions The genome of P. fluorescens F113 is composed of numerous protein-coding genes, not usually found together in previously sequenced genomes, which are potentially decisive during the colonisation of the rhizosphere and/or interaction with other soil organisms. This includes genes encoding proteins involved in the production of a second flagellar apparatus, the use of abietic acid as a growth substrate, the complete denitrification pathway, the possible production of a macrolide antibiotic and the assembly of multiple protein secretion systems.