WorldWideScience

Sample records for cell apoptosis involves

  1. Acetate-induced apoptosis in colorectal carcinoma cells involves lysosomal membrane permeabilization and cathepsin D release.

    Science.gov (United States)

    Marques, C; Oliveira, C S F; Alves, S; Chaves, S R; Coutinho, O P; Côrte-Real, M; Preto, A

    2013-02-21

    Colorectal carcinoma (CRC) is one of the most common causes of cancer-related mortality. Short-chain fatty acids secreted by dietary propionibacteria from the intestine, such as acetate, induce apoptosis in CRC cells and may therefore be relevant in CRC prevention and therapy. We previously reported that acetic acid-induced apoptosis in Saccharomyces cerevisiae cells involves partial vacuole permeabilization and release of Pep4p, the yeast cathepsin D (CatD), which has a protective role in this process. In cancer cells, lysosomes have emerged as key players in apoptosis through selective lysosomal membrane permeabilization (LMP) and release of cathepsins. However, the role of CatD in CRC survival is controversial and has not been assessed in response to acetate. We aimed to ascertain whether LMP and CatD are involved in acetate-induced apoptosis in CRC cells. We showed that acetate per se inhibits proliferation and induces apoptosis. More importantly, we uncovered that acetate triggers LMP and CatD release to the cytosol. Pepstatin A (a CatD inhibitor) but not E64d (a cathepsin B and L inhibitor) increased acetate-induced apoptosis of CRC cells, suggesting that CatD has a protective role in this process. Our data indicate that acetate induces LMP and subsequent release of CatD in CRC cells undergoing apoptosis, and suggest exploiting novel strategies using acetate as a prevention/therapeutic agent in CRC, through simultaneous treatment with CatD inhibitors.

  2. Vimentin is involved in peptidylarginine deiminase 2-induced apoptosis of activated Jurkat cells.

    Science.gov (United States)

    Hsu, Pei-Chen; Liao, Ya-Fan; Lin, Chin-Li; Lin, Wen-Hao; Liu, Guang-Yaw; Hung, Hui-Chih

    2014-05-01

    Peptidylarginine deiminase type 2 (PADI2) deiminates (or citrullinates) arginine residues in protein to citrulline residues in a Ca2+-dependent manner, and is found in lymphocytes and macrophages. Vimentin is an intermediate filament protein and a well-known substrate of PADI2. Citrullinated vimentin is found in ionomycin-induced macrophage apoptosis. Citrullinated vimentin is the target of anti-Sa antibodies, which are specific to rheumatoid arthritis, and play a critical role in the pathogenesis of the disease. To investigate the role of PADI2 in apoptosis, we generated a Jurkat cell line that overexpressed the PADI2 transgene from a tetracycline-inducible promoter, and used a combination of 12-O-tetradecanoylphorbol-13-acetate and ionomycin to activate Jurkat cells. We found that PADI2 overexpression reduced the cell viability of activated Jurkat cells in1a dose- and time-dependent manner. The PADI2-overexpressed and -activated Jurkat cells presented typical manifestations of apoptosis, and exhibited greater levels of citrullinated proteins, including citrullinated vimentin. Vimentin overexpression rescued a portion of the cells from apoptosis. In conclusion, PADI2 overexpression induces apoptosis in activated Jurkat cells. Vimentin is involved in PADI2-induced apoptosis. Moreover, PADI2-overexpressed Jurkat cells secreted greater levels of vimentin after activation, and expressed more vimentin on their cell surfaces when undergoing apoptosis. Through artificially highlighting PADI2 and vimentin, we demonstrated that PADI2 and vimentin participate in the apoptotic mechanisms of activated T lymphocytes. The secretion and surface expression of vimentin are possible ways of autoantigen presentation to the immune system.

  3. [FcγRIis involved in lipopolysaccharide-induced apoptosis of PC12 cells].

    Science.gov (United States)

    Chen, Yanjie; Liang, Yingxia; Zhang, Yan

    2017-06-01

    Objective To investigate the role of IgG Fc receptorI (FcγRI) in lipopolysaccharide (LPS)-induced apoptosis of the rat PC12 cells. Methods PC12 cells were treated with different concentrations of LPS (50, 125, 250, 500, 1000 μg/mL) for 24 hours and cell viability was analyzed by MTT assay. The appropriate concentration of LPS (500 μg/mL) was chosen for the following experiments. PC12 cells in the logarithmic growth phase were divided randomly into three groups: the control group without LPS, the 500 μg/mL LPS treated group and the 500 μg/mL LPS plus 0.2 μg/mL FcγRI neutralizer group. After24-hour different treatments, the mRNA and protein levels of FcγRIwere detected by quantitative real-time PCR and Western blotting, respectively. The apoptosis rate of PC12 cells was determined by flow cytometry combined with annexinV-FITC/PI double staining. The protein expression levels of caspase-3, Bcl-2 and BAX were measured by immunohistochemistry. Results PC12 cell viability decreased in a LPS dose-dependent manner. Compared to the control group, the protein and mRNA expression of FcγRI were upregulated, the expression levels of caspase-3, Bcl-2 and BAX proteins were elevated, and the apoptosis rate of PC12 cells was raised as well in the LPS treated group. Compared to the LPS treated group, the protein and mRNA levels of FcγRI were significantly lower along with significantly reduced expressions of Caspase-3 and BAX and inhibited cell apoptosis in the FcγRIneutralizer treated group, while Bcl-2 protein expression was upregulated. Conclusion FcγRIis involved in the LPS-induced apoptosis in PC12 cells.

  4. Proteomic analysis of pathways involved in estrogen-induced growth and apoptosis of breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Zhang-Zhi Hu

    Full Text Available Estrogen is a known growth promoter for estrogen receptor (ER-positive breast cancer cells. Paradoxically, in breast cancer cells that have been chronically deprived of estrogen stimulation, re-introduction of the hormone can induce apoptosis.Here, we sought to identify signaling networks that are triggered by estradiol (E2 in isogenic MCF-7 breast cancer cells that undergo apoptosis (MCF-7:5C versus cells that proliferate upon exposure to E2 (MCF-7. The nuclear receptor co-activator AIB1 (Amplified in Breast Cancer-1 is known to be rate-limiting for E2-induced cell survival responses in MCF-7 cells and was found here to also be required for the induction of apoptosis by E2 in the MCF-7:5C cells. Proteins that interact with AIB1 as well as complexes that contain tyrosine phosphorylated proteins were isolated by immunoprecipitation and identified by mass spectrometry (MS at baseline and after a brief exposure to E2 for two hours. Bioinformatic network analyses of the identified protein interactions were then used to analyze E2 signaling pathways that trigger apoptosis versus survival. Comparison of MS data with a computationally-predicted AIB1 interaction network showed that 26 proteins identified in this study are within this network, and are involved in signal transduction, transcription, cell cycle regulation and protein degradation.G-protein-coupled receptors, PI3 kinase, Wnt and Notch signaling pathways were most strongly associated with E2-induced proliferation or apoptosis and are integrated here into a global AIB1 signaling network that controls qualitatively distinct responses to estrogen.

  5. Belinostat-induced apoptosis and growth inhibition in pancreatic cancer cells involve activation of TAK1-AMPK signaling axis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bing, E-mail: wangbin69@yahoo.com; Wang, Xin-bao; Chen, Li-yu; Huang, Ling; Dong, Rui-zen

    2013-07-19

    Highlights: •Belinostat activates AMPK in cultured pancreatic cancer cells. •Activation of AMPK is important for belinostat-induced cytotoxic effects. •ROS and TAK1 are involved in belinostat-induced AMPK activation. •AMPK activation mediates mTOR inhibition by belinostat. -- Abstract: Pancreatic cancer accounts for more than 250,000 deaths worldwide each year. Recent studies have shown that belinostat, a novel pan histone deacetylases inhibitor (HDACi) induces apoptosis and growth inhibition in pancreatic cancer cells. However, the underlying mechanisms are not fully understood. In the current study, we found that AMP-activated protein kinase (AMPK) activation was required for belinostat-induced apoptosis and anti-proliferation in PANC-1 pancreatic cancer cells. A significant AMPK activation was induced by belinostat in PANC-1 cells. Inhibition of AMPK by RNAi knockdown or dominant negative (DN) mutation significantly inhibited belinostat-induced apoptosis in PANC-1 cells. Reversely, AMPK activator AICAR and A-769662 exerted strong cytotoxicity in PANC-1 cells. Belinostat promoted reactive oxygen species (ROS) production in PANC-1 cells, increased ROS induced transforming growth factor-β-activating kinase 1 (TAK1)/AMPK association to activate AMPK. Meanwhile, anti-oxidants N-Acetyl-Cysteine (NAC) and MnTBAP as well as TAK1 shRNA knockdown suppressed belinostat-induced AMPK activation and PANC-1 cell apoptosis. In conclusion, we propose that belinostat-induced apoptosis and growth inhibition require the activation of ROS-TAK1-AMPK signaling axis in cultured pancreatic cancer cells.

  6. Apoptosis induced by tungsten carbide-cobalt nanoparticles in JB6 cells involves ROS generation through both extrinsic and intrinsic apoptosis pathways.

    Science.gov (United States)

    Zhao, Jinshun; Bowman, Linda; Magaye, Ruth; Leonard, Stephen S; Castranova, Vincent; Ding, Min

    2013-04-01

    In this study, apoptosis and related signaling induced by WC-Co nanoparticles were investigated in JB6 cells and rat lung macrophages. Electron spin resonance (ESR) and fluorescent staining indicated that both WC-Co nanoparticles and fine particles stimulated reactive oxygen species (ROS) generation. Catalase exhibited an inhibitory effect on WC-Co nanoparticle-induced ROS as well as mitochondrial membrane permeability damage. Further study indicated that WC-Co nanoparticles elicited higher cytotoxicity and apoptotic induction than fine particles. Western blot analysis showed activation of proapoptotic factors including Fas, Fas-associated protein with death domain (FADD), caspase 3, 8 and 9, BID and BAX. In addition, both cytochrome c and apoptosis-inducing factor (AIF) were upregulated and released from mitochondria to the cytoplasm. Our findings demonstrate that, on a mass basis, WC-Co nanoparticles exhibit higher cytotoxicity and apoptotic induction than fine particles. Apoptosis induced by WC-Co nanoparticles and fine particles involves both extrinsic and intrinsic apoptosis pathways.

  7. Ginkgo biloba exocarp extracts induces apoptosis in Lewis lung cancer cells involving MAPK signaling pathways.

    Science.gov (United States)

    Cao, Chenjie; Su, Ya; Han, Dongdong; Gao, Yanqi; Zhang, Menghua; Chen, Huasheng; Xu, Aihua

    2017-02-23

    A fruit of Ginkgo biloba L. is known as Ginkgo nuts. It is an edible traditional Chinese medicine, and could be used for the treatment of cancer thousands of years ago in China. The extracts prepared from the exocarp of Ginkgo biloba (Ginkgo biloba exocarp extracts, GBEE) has the effects of anti-cancer, immune promotion, anti-aging and etc. To study the effects of GBEE inducing apoptosis in Lewis lung cancer (LLC) cells and the role of Mitogen-activated protein kinase(MAPK) signaling pathways in it. The LLC solid tumor model was established in C57BL/6J mice. The tumor-bearing mice were randomly divided into 5 groups. A normal control group without tumor cells was established additionally. There were 10 mice in each group, and they were dosed 24h after inoculation. The GBEE (50, 100, 200mg/kg b.w.) groups were dosed by intragastric gavage (i.g.). The mice in positive control group were intraperitoneal (i.p.) injected with cyclophosphamide (CPA) at a dose of 20mg/kg (b.w.). The model control group and the normal control group were both given normal saline (NS) by i.g.. All the groups were dosed at a volume of 0.1mL/10g (b.w.), once a day for 18d. The day after the last administration, the transplanted tumors was stripped and weighed, and the inhibition rate was calculated. In vitro experiments, MTT method was applied to detect the effects of GBEE on LLC cells and primary cultured mouse lung cells. Annexin V-FITC/PI method was used to detect the apoptosis rate of LLC cells. Rhodamine 123 method was used to detect the Mitochondrial transmembrane potential (MTP). Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to detect the levels of Fas mRNA. Western Blot was used to detect the expression of Bax, Bcl-2, Cyt C, cleaved Caspase-3 and MAPK proteins in the corresponding parts of LLC cells. GBEE (50-200mg/kg) inhibited the growth of LLC transplanted tumors with a dose-effect relationship. GBEE (5-160µg/mL) inhibited the proliferation of LLC

  8. Oxidative stress-induced apoptosis in granulosa cells involves JNK, p53 and Puma.

    Science.gov (United States)

    Yang, Hongyan; Xie, Yan; Yang, Dongyu; Ren, Decheng

    2017-04-11

    Reactive oxygen species (ROS) play important roles in follicular development and survival. Granulosa cell death is associated with increased ROS, but the mechanism of granulosa cell death induced by ROS is not clear. In order to define the molecular link between ROS and granulosa cell death, COV434, human granulosa tumor cells, were treated with H2O2. Compared to control cells, H2O2 induced granulosa cell death in a dose- and time-dependent manner. H2O2 induced an increase in Bax, Bak and Puma, and a decrease in anti-apoptotic molecules such as Bcl-2, Bcl-xL and Mcl-1. Both knockdown of Puma and overexpression of Bcl-xL could inhibit H2O2-induced granulosa cell death. These results suggest that suppression of Puma and overexpression of anti-apoptotic Bcl-2 family members could improve granulosa cell survival. To explore the mechanisms responsible for these findings, ROS in granulosa cells treatment with H2O2 were measured. The results showed that ROS was increased in a H2O2 dose- and time-dependent manner at the earlier time point. In addition, H2O2 induced an increase in Nrf2 and phosphorylation of JNK and p53. SP600125, an inhibitor of JNK, inhibits H2O2-induced phosphorylation of JNK and p53, and granulosa cell death. Antioxidant N-acetylcysteine (NAC) dose-dependently prevents H2O2-induced granulosa cell death. Furthermore, NAC also prevents phosphorylation of JNK and p53 induced by H2O2. Taken together, these data suggest that H2O2 regulates cell death in granulosa cells via the ROS-JNK-p53 pathway. These findings provide an improved understanding of the mechanisms underlying granulosa cell apoptosis, which could potentially be useful for future clinical applications.

  9. Cathepsin L is involved in cathepsin D processing and regulation of apoptosis in A549 human lung epithelial cells.

    Science.gov (United States)

    Wille, Aline; Gerber, Annegret; Heimburg, Anke; Reisenauer, Anita; Peters, Christoph; Saftig, Paul; Reinheckel, Thomas; Welte, Tobias; Bühling, Frank

    2004-07-01

    Cathepsins are implicated in a multitude of physiological and pathophysiological processes. The aim of the present study was to investigate the function of cathepsin L (catL) in the proteolytic network of human lung epithelial cells and its role in the regulation of apoptosis. We found that catL-deficient A549 cells as well as lung tissue extracts of catL(-/-) mice express increased amounts of single-chain cathepsin D (catD). Degradation experiments indicate that catL specifically degrades the single-chain isoform of catD. Furthermore, we found that catL-deficient cells showed increased sensitivity to apoptosis. Finally, we demonstrate that the inhibition of catD activity by pepstatin A decreased the number of apoptotic cells in catL-deficient A549 cells after anti-Fas treatment. In conclusion, catL is involved in catD processing and the accumulation of catD isoforms in catL-deficient cells is associated with increased rates of spontaneous and anti-Fas-induced apoptosis.

  10. Scutellaria barbate extract induces apoptosis of hepatoma H22 cells via the mitochondrial pathway involving caspase-3.

    Science.gov (United States)

    Dai, Zhi-Jun; Wang, Xi-Jing; Li, Zong-Fang; Ji, Zong-Zheng; Ren, Hong-Tao; Tang, Wei; Liu, Xiao-Xu; Kang, Hua-Feng; Guan, Hai-Tao; Song, Ling-Qin

    2008-12-28

    To study the growth inhibitory and apoptotic effects of Scutellaria barbata D.Don (S. barbata) and to determine the underlying mechanism of its antitumor activity in mouse liver cancer cell line H22. Proliferation of H22 cells was examined by MTT assay. Cellular morphology of PC-2 cells was observed under fluorescence microscope and transmission electron microscope (EM). Mitochondrial transmembrane potential was determined under laser scanning confocal microscope (LSCM) with rhodamine 123 staining. Flow cytometry was performed to analyze the cell cycle of H22 cells with propidium iodide staining. Protein level of cytochrome C and caspase-3 was measured by semi-quantitive RT-PCR and Western blot analysis. Activity of caspase-3 enzyme was measured by spectrofluorometry. MTT assay showed that extracts from S. barbata (ESB) could inhibit the proliferation of H22 cells in a time-dependent manner. Among the various phases of cell cycle, the percentage of cells in S phase was significantly decreased, while the percentage of cells in G(1) phase was increased. Flow cytometry assay also showed that ESB had a positive effect on apoptosis. Typical apoptotic morphologies such as condensation and fragmentation of nuclei and blebbing membrane of apoptotic cells could be observed under transmission electron microscope and fluorescence microscope. To further investige the molecular mechanism behind ESB-induced apoptosis, ESB-treated cells rapidly lost their mitochondrial transmembrane potential, released mitochondrial cytochrome C into cytosol, and induced caspase-3 activity in a dose-dependent manner. ESB can effectively inhibit the proliferation and induce apoptosis of H22 cells involving loss of mitochondrial transmembrane potential, release of cytochrome C, and activation of caspase-3.

  11. Endosomes and lysosomes are involved in early steps of Tl(III)-mediated apoptosis in rat pheochromocytoma (PC12) cells.

    Science.gov (United States)

    Hanzel, Cecilia E; Almeira Gubiani, María F; Verstraeten, Sandra V

    2012-11-01

    The mechanisms that mediate thallium (Tl) toxicity are still not completely understood. The exposure of rat pheochromocytoma (PC12) cells to Tl(I) or Tl(III) activates both mitochondrial (Tl(I) and Tl(III)) and extrinsic (Tl(III)) pathways of apoptosis. In this work we evaluated the hypothesis that the effects of Tl(III) may be mediated by the damage to lysosomes, where it might be incorporated following the route of iron uptake. PC12 cells exposed for 3 h to 100 μM Tl(III) presented marked endosomal acidification, effect that was absent when cells were incubated in a serum-free medium and that was fully recovered when the latter was supplemented with transferrin. After 6 h of incubation the colocalization of cathepsins D and B with the lysosomal marker Lamp-1 was decreased together with an increase in the total activity of the enzymes. A permanent damage to lysosomes after 18 h of exposure was evidenced from the impairment of acridine orange uptake. Cathepsin D caused the cleavage of pro-apoptotic protein BID that is involved in the activation of the intrinsic pathway of apoptosis. Supporting that, BID cleavage and the activation of caspase 3 by Tl(III) were fully prevented when cells were preincubated with cathepsin D inhibitor (pepstatin A) and only partially prevented when cathepsin B inhibitor (E64d) was used. None of these inhibitors affected BID cleavage or caspase 3 activation in Tl(I)-treated cells. Together, experimental results support the role of Tl(III) uptake by the acidic cell compartments and their involvement in the early steps of Tl(III)-mediated PC12 cells apoptosis.

  12. The role of Pten/Akt signaling pathway involved in BPA-induced apoptosis of rat Sertoli cells.

    Science.gov (United States)

    Wang, Chengmin; Fu, Wenjuan; Quan, Chao; Yan, Maosheng; Liu, Changjiang; Qi, Suqin; Yang, Kedi

    2015-07-01

    Bisphenol-A (BPA), one of endocrine-disrupting chemicals, is a male reproductive toxicant. Previous studies have revealed the direct cytotoxicity of BPA in many cultured cells, such as mitotic aneuploidy in embryonic cells and somatic cells, and apoptosis in neurons and testicular Sertoli cells. To understand the action of BPA and assess its risk, the Pten/Akt pathway was investigated in cultured Sertoli cells to elucidate the mechanism of the reproductive effects of BPA. The results showed that over 50 μM BPA treatment could decrease the viability of Sertoli cells and cause more apoptosis. In addition, BPA could induce the increase in mRNA levels of Pten and Akt. The protein level of Pten was increased; however, the protein levels of phospho-Akt and procaspase-3 were decreased after BPA exposure. Taken together, observed results suggested that the Pten/Akt pathway might be involved in the apoptotic effects of BPA on Sertoli cells. © 2014 Wiley Periodicals, Inc.

  13. Roe Protein Hydrolysates of Giant Grouper (Epinephelus lanceolatus Inhibit Cell Proliferation of Oral Cancer Cells Involving Apoptosis and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Jing-Iong Yang

    2016-01-01

    Full Text Available Roe protein hydrolysates were reported to have antioxidant property but the anticancer effects were less addressed, especially for oral cancer. In this study, we firstly used the ultrafiltrated roe hydrolysates (URH derived from giant grouper (Epinephelus lanceolatus to evaluate the impact of URH on proliferation against oral cancer cells. We found that URH dose-responsively reduced cell viability of two oral cancer cells (Ca9-22 and CAL 27 in terms of ATP assay. Using flow cytometry, URH-induced apoptosis of Ca9-22 cells was validated by morphological features of apoptosis, sub-G1 accumulation, and annexin V staining in dose-responsive manners. URH also induced oxidative stress in Ca9-22 cells in terms of reactive oxygen species (ROS/superoxide generations and mitochondrial depolarization. Taken together, these data suggest that URH is a potential natural product for antioral cancer therapy.

  14. Involvement of the Extrinsic and Intrinsic Pathways in Ultraviolet B-Induced Apoptosis of Corneal Epithelial Cells

    Science.gov (United States)

    Ubels, John L.; Glupker, Courtney D.; Schotanus, Mark P.; Haarsma, Loren D.

    2015-01-01

    The goal of this study was to elucidate the pathway by which UVB initiates efflux of K+ and subsequently apoptosis in human corneal limbal epithelial (HCLE) cells. The initial focus of the study was on the extrinsic pathway involving Fas. HCLE cells transfected with Fas siRNA were exposed to 80–150 mJ/cm2 UVB and incubated in culture medium with 5.5 mM K+. Knock down of Fas resulted in limited reduction in UVB-induced caspase-8 and -3 activity. Patch-clamp recordings showed no difference in UVB-induced normalized K+ currents between Fas transfected and control cells. Knockdown of caspase-8 had no effect on the activation of caspase-3 following UVB exposure, while a caspase-8 inhibitor completely eliminated UVB activation of caspase-3. This suggests that caspase-8 is a robust enzyme, able to activate caspase-3 via residual caspase-8 present after knockdown, and that caspase-8 is directly involved in the UVB activation of caspase-3. Inhibition of caspase-9 significantly decreased the activation of caspases-8 and -3 in response to UVB. Knockdown of Apaf-1, required for activation of caspase-9, resulted in a significant reduction in UVB-induced activation of caspases-9, -8, and -3. Knockdown of Apaf-1 also inhibited intrinsic and UVB-induced levels of apoptosis, as determined by DNA fragmentation measured by TUNEL assay. In UVB exposed cultures treated with caspase-3 inhibitor, the percentage of apoptotic cells was reduced to control levels, confirming the necessity of caspase-3 activation in DNA fragmentation. The lack of effect of Fas knockdown on K+ channel activation, as well as the limited effect on activation of caspases-8 and -3, strongly suggest that Fas and the extrinsic pathway is not of primary importance in the initiation of apoptosis in response to UVB in HCLE cells. Inhibition of caspase-8 and -3 activation following inhibition of caspase-9, as well as reduction in activation of caspases-9, -8, and -3 and DNA fragmentation in response to Apaf-1

  15. Borax-induced apoptosis in HepG2 cells involves p53, Bcl-2, and Bax.

    Science.gov (United States)

    Wei, Y; Yuan, F J; Zhou, W B; Wu, L; Chen, L; Wang, J J; Zhang, Y S

    2016-06-21

    Borax, a boron compound and a salt of boric acid, is known to inhibit the growth of tumor cells. HepG2 cells have been shown to be clearly susceptible to the anti-proliferative effects of borax. However, the specific mechanisms regulating this effect are poorly understood. This study aimed to investigate the pathways underlying the growth inhibition induced by borax in HepG2 cells. The effects of borax on HepG2 cell viability were characterized using MTT. Apoptosis was also verified by annexin V/propidium iodide staining. JC-1 dye and western blotting techniques were used to measure mitochondrial membrane potential and p53, Bax, and Bcl-2 protein expression, respectively. Relevant mRNA levels were measured by qRT-PCR. Borax inhibited the proliferation of HepG2 cells in a time- and dose-dependent manner in vitro. The apoptotic process triggered by borax involved the upregulation of p53 and Bax and the downregulation of Bcl-2, which was confirmed by a change in the mitochondrial membrane potential. These results elucidate a borax-induced apoptotic pathway in HepG2 cells that involves the upregulation of p53 and Bax and the downregulation of Bcl-2.

  16. H2AX phosphorylation regulated by p38 is involved in Bim expression and apoptosis in chronic myelogenous leukemia cells induced by imatinib.

    Science.gov (United States)

    Dong, Yaqiong; Xiong, Min; Duan, Lianning; Liu, Ze; Niu, Tianhui; Luo, Yuan; Wu, Xinpin; Xu, Chengshan; Lu, Chengrong

    2014-08-01

    Increasing evidence suggests that histone H2AX plays a critical role in regulation of tumor cell apoptosis and acts as a novel human tumor suppressor protein. However, the action of H2AX in chronic myelogenous leukemia (CML) cells is unknown. The detailed mechanism and epigenetic regulation by H2AX remain elusive in cancer cells. Here, we report that H2AX was involved in apoptosis of CML cells. Overexpression of H2AX increased apoptotic sensitivity of CML cells (K562) induced by imatinib. However, overexpression of Ser139-mutated H2AX (blocking phosphorylation) decreased sensitivity of K562 cells to apoptosis. Similarly, knockdown of H2AX made K562 cells resistant to apoptotic induction. These results revealed that the function of H2AX involved in apoptosis is strictly related to its phosphorylation (Ser139). Our data further indicated that imatinib may stimulate mitogen-activated protein kinase (MAPK) family member p38, and H2AX phosphorylation followed a similar time course, suggesting a parallel response. H2AX phosphorylation can be blocked by p38 siRNA or its inhibitor. These data demonstrated that H2AX phosphorylation was regulated by p38 MAPK pathway in K562 cells. However, the p38 MAPK downstream, mitogen- and stress-activated protein kinase-1 and -2, which phosphorylated histone H3, were not required for H2AX phosphorylation during apoptosis. Finally, we provided epigenetic evidence that H2AX phosphorylation regulated apoptosis-related gene Bim expression. Blocking of H2AX phosphorylation inhibited Bim gene expression. Taken together, these data demonstrated that H2AX phosphorylation regulated by p38 is involved in Bim expression and apoptosis in CML cells induced by imatinib.

  17. A mechanism of male germ cell apoptosis induced by bisphenol-A and nonylphenol involving ADAM17 and p38 MAPK activation.

    Directory of Open Access Journals (Sweden)

    Paulina Urriola-Muñoz

    Full Text Available Germ cell apoptosis regulation is pivotal in order to maintain proper daily sperm production. Several reports have shown that endocrine disruptors such as Bisphenol-A (BPA and Nonylphenol (NP induce germ cell apoptosis along with a decrease in sperm production. Given their ubiquitous distribution in plastic products used by humans it is important to clarify their mechanism of action. TACE/ADAM17 is a widely distributed extracellular metalloprotease and participates in the physiological apoptosis of germ cells during spermatogenesis. The aims of this work were: 1 to determine whether BPA and NP induce ADAM17 activation; and 2 to study whether ADAM17 and/or ADAM10 are involved in germ cell apoptosis induced by BPA and NP in the pubertal rat testis. A single dose of BPA or NP (50 mg/kg induces germ cell apoptosis in 21-day-old male rats, which was prevented by a pharmacological inhibitor of ADAM17, but not by an inhibitor of ADAM10. In vitro, we showed that BPA and NP, at similar concentrations to those found in human samples, induce the shedding of exogenous and endogenous (TNF-α ADAM17 substrates in primary rat Sertoli cell cultures and TM4 cell line. In addition, pharmacological inhibitors of metalloproteases and genetic silencing of ADAM17 prevent the shedding induced in vitro by BPA and NP. Finally, we showed that in vivo BPA and NP induced early activation (phosphorylation of p38 MAPK and translocation of ADAM17 to the cell surface. Interestingly, the inhibition of p38 MAPK prevents germ cell apoptosis and translocation of ADAM17 to the cell surface. These results show for the first time that xenoestrogens can induce activation of ADAM17 at concentrations similar to those found in human samples, suggesting a mechanism by which they could imbalance para/juxtacrine cell-to-cell-communication and induce germ cell apoptosis.

  18. In vivo and in vitro assessment of pathways involved in contrast media-induced renal cells apoptosis.

    Science.gov (United States)

    Quintavalle, C; Brenca, M; De Micco, F; Fiore, D; Romano, S; Romano, M F; Apone, F; Bianco, A; Zabatta, M A; Troncone, G; Briguori, C; Condorelli, G

    2011-05-12

    Contrast-induced nephropathy accounts for >10% of all causes of hospital-acquired renal failure, causes a prolonged in-hospital stay and represents a powerful predictor of poor early and late outcome. Mechanisms of contrast-induced nephropathy are not completely understood. In vitro data suggests that contrast media (CM) induces a direct toxic effect on renal tubular cells through the activation of the intrinsic apoptotic pathway. It is unclear whether this effect has a role in the clinical setting. In this work, we evaluated the effects of CM both in vivo and in vitro. By analyzing urine samples obtained from patients who experienced contrast-induced acute kidney injury (CI-AKI), we verified, by western blot and immunohistochemistry, that CM induces tubular renal cells apoptosis. Furthermore, in cultured cells, CM caused a dose-response increase in reactive oxygen species (ROS) production, which triggered Jun N-terminal kinases (JNK1/2) and p38 stress kinases marked activation and thus apoptosis. Inhibition of JNK1/2 and p38 by different approaches (i.e. pharmacological antagonists and transfection of kinase-death mutants of the upstream p38 and JNK kinases) prevented CM-induced apoptosis. Interestingly, N-acetylcysteine inhibited ROS production, and thus stress kinases and apoptosis activation. Therefore, we conclude that CM-induced tubular renal cells apoptosis represents a key mechanism of CI-AKI.

  19. In vivo and in vitro assessment of pathways involved in contrast media-induced renal cells apoptosis

    Science.gov (United States)

    Quintavalle, C; Brenca, M; De Micco, F; Fiore, D; Romano, S; Romano, M F; Apone, F; Bianco, A; Zabatta, M A; Troncone, G; Briguori, C; Condorelli, G

    2011-01-01

    Contrast-induced nephropathy accounts for >10% of all causes of hospital-acquired renal failure, causes a prolonged in-hospital stay and represents a powerful predictor of poor early and late outcome. Mechanisms of contrast-induced nephropathy are not completely understood. In vitro data suggests that contrast media (CM) induces a direct toxic effect on renal tubular cells through the activation of the intrinsic apoptotic pathway. It is unclear whether this effect has a role in the clinical setting. In this work, we evaluated the effects of CM both in vivo and in vitro. By analyzing urine samples obtained from patients who experienced contrast-induced acute kidney injury (CI-AKI), we verified, by western blot and immunohistochemistry, that CM induces tubular renal cells apoptosis. Furthermore, in cultured cells, CM caused a dose–response increase in reactive oxygen species (ROS) production, which triggered Jun N-terminal kinases (JNK1/2) and p38 stress kinases marked activation and thus apoptosis. Inhibition of JNK1/2 and p38 by different approaches (i.e. pharmacological antagonists and transfection of kinase-death mutants of the upstream p38 and JNK kinases) prevented CM-induced apoptosis. Interestingly, N-acetylcysteine inhibited ROS production, and thus stress kinases and apoptosis activation. Therefore, we conclude that CM-induced tubular renal cells apoptosis represents a key mechanism of CI-AKI. PMID:21562587

  20. Serotonin inhibits apoptosis of pulmonary artery smooth muscle cells through 5-HT2A receptors involved in the pulmonary artery remodeling of pulmonary artery hypertension.

    Science.gov (United States)

    Liu, Ya; Tian, Hongyan; Yan, Xiaoli; Fan, Fenling; Wang, Wenping; Han, Junli

    2013-03-01

    Decreased pulmonary artery smooth muscle cell (PASMC) apoptosis play a key role in pulmonary artery remodeling during pulmonary artery hypertension (PAH), but the mechanisms involved are unclear. Serotonin (5-HT) inhibits apoptosis in many pathologic processes by activating the 5-HT2A receptor. Therefore, we hypothesized that 5-HT may be the promoter of decreased apoptosis in PAH through the 5-HT2A receptor. We found that inhibition of the 5-HT2A receptor prevented the increase in pulmonary artery pressure and pulmonary artery remodeling in rats stimulated by monocrotaline. This effect was accompanied by increased apoptosis in the pulmonary artery. Cultured PASMCs stimulated with 5-HT showed a decrease in apoptosis with increased phosphorylation of extracellular signal regulated kinase 1/2 (ERK1/2), pyruvate dehydrogenase kinase (PDK), and mitochondrial transmembrane potential. These effects were markedly prevented by a 5-HT2A receptor inhibitor, an ERK1/2 activation inhibitor peptide I, or a PDK inhibitor. In conclusion, 5-HT inhibited PASMC apoptosis by activating the 5-HT2A receptor through the pERK1/2 and PDK pathways.5-HT decreasing apoptosis through 5-HT2A receptor is involved, at least in part, in pulmonary artery remolding.

  1. Caspase-10 Is the Key Initiator Caspase Involved in Tributyltin-Mediated Apoptosis in Human Immune Cells

    Directory of Open Access Journals (Sweden)

    Harald F. Krug

    2012-01-01

    Full Text Available Tributyltin (TBT is one of the most toxic compounds produced by man and distributed in the environment. A multitude of toxic activities have been described, for example, immunotoxic, neurotoxic, and endocrine disruptive effects. Moreover, it has been shown for many cell types that they undergo apoptosis after treatment with TBT and the cell death of immune cells could be the molecular background of its immunotoxic effect. As low as 200 nM up to 1 μM of TBT induces all signs of apoptosis in Jurkat T cells within 1 to 24 hrs of treatment. When compared to Fas-ligand control stimulation, the same sequence of events occurs: membrane blebbing, phosphatidylserine externalisation, the activation of the “death-inducing signalling complex,” and the following sequence of cleavage processes. In genetically modified caspase-8-deficient Jurkat cells, the apoptotic effects are only slightly reduced, whereas, in FADD-negative Jurkat cells, the TBT effect is significantly diminished. We could show that caspase-10 is recruited by the TRAIL-R2 receptor and apoptosis is totally prevented when caspase-10 is specifically inhibited in all three cell lines.

  2. Oroxylin A induced apoptosis of human hepatocellular carcinoma cell line HepG2 was involved in its antitumor activity

    International Nuclear Information System (INIS)

    Hu Yang; Yang Yong; You Qidong; Liu Wei; Gu Hongyan; Zhao Li; Zhang Kun; Wang Wei; Wang Xiaotang; Guo Qinglong

    2006-01-01

    We previously reported that wogonin, a flavonoid compound, was a potent apoptosis inducer of human hepatoma SMMC-7721 cells and murine sarcoma S180 cells. In the present study, the effect of oroxylin A, one wogonin structurally related flavonoid isolated from Scutellariae radix, on human hepatocellular carcinoma cell line HepG2 was examined and molecular mechanisms were also investigated. Oroxylin A inhibited HepG2 cell proliferation in a concentration- and time-dependent manner measured by MTT-assay. Treatment with an apoptosis-inducing concentration of oroxylin A caused typical morphological changes and apoptotic blebbing in HepG2 cells. DNA fragmentation assay was used to examine later apoptosis induced by oroxylin A. FACScan analysis revealed a dramatic increase in the number of apoptotic and G 2 /M phase arrest cells after oroxylin A treatment. The pro-apoptotic activity of oroxylin A was attributed to its ability to modulate the concerted expression of Bcl-2, Bax, and pro-caspase-3 proteins. The expression of Bcl-2 protein and pro-caspase-3 protein was dramatically decreased after treatment with oroxylin A. These results demonstrated that oroxylin A could effectively induce programmed cell death and suggested that it could be a promising antitumor drug

  3. Camalexin-induced apoptosis in prostate cancer cells involves alterations of expression and activity of lysosomal protease cathepsin D.

    Science.gov (United States)

    Smith, Basil; Randle, Diandra; Mezencev, Roman; Thomas, LeeShawn; Hinton, Cimona; Odero-Marah, Valerie

    2014-04-02

    Camalexin, the phytoalexin produced in the model plant Arabidopsis thaliana, possesses antiproliferative and cancer chemopreventive effects. We have demonstrated that the cytostatic/cytotoxic effects of camalexin on several prostate cancer (PCa) cells are due to oxidative stress. Lysosomes are vulnerable organelles to Reactive Oxygen Species (ROS)-induced injuries, with the potential to initiate and or facilitate apoptosis subsequent to release of proteases such as cathepsin D (CD) into the cytosol. We therefore hypothesized that camalexin reduces cell viability in PCa cells via alterations in expression and activity of CD. Cell viability was evaluated by MTS cell proliferation assay in LNCaP and ARCaP Epithelial (E) cells, and their respective aggressive sublines C4-2 and ARCaP Mesenchymal (M) cells, whereby the more aggressive PCa cells (C4-2 and ARCaPM) displayed greater sensitivity to camalexin treatments than the lesser aggressive cells (LNCaP and ARCaPE). Immunocytochemical analysis revealed CD relocalization from the lysosome to the cytosol subsequent to camalexin treatments, which was associated with increased protein expression of mature CD; p53, a transcriptional activator of CD; BAX, a downstream effector of CD, and cleaved PARP, a hallmark for apoptosis. Therefore, camalexin reduces cell viability via CD and may present as a novel therapeutic agent for treatment of metastatic prostate cancer cells.

  4. Camalexin-Induced Apoptosis in Prostate Cancer Cells Involves Alterations of Expression and Activity of Lysosomal Protease Cathepsin D

    Directory of Open Access Journals (Sweden)

    Basil Smith

    2014-04-01

    Full Text Available Camalexin, the phytoalexin produced in the model plant Arabidopsis thaliana, possesses antiproliferative and cancer chemopreventive effects. We have demonstrated that the cytostatic/cytotoxic effects of camalexin on several prostate cancer (PCa cells are due to oxidative stress. Lysosomes are vulnerable organelles to Reactive Oxygen Species (ROS-induced injuries, with the potential to initiate and or facilitate apoptosis subsequent to release of proteases such as cathepsin D (CD into the cytosol. We therefore hypothesized that camalexin reduces cell viability in PCa cells via alterations in expression and activity of CD. Cell viability was evaluated by MTS cell proliferation assay in LNCaP and ARCaP Epithelial (E cells, and their respective aggressive sublines C4-2 and ARCaP Mesenchymal (M cells, whereby the more aggressive PCa cells (C4-2 and ARCaPM displayed greater sensitivity to camalexin treatments than the lesser aggressive cells (LNCaP and ARCaPE. Immunocytochemical analysis revealed CD relocalization from the lysosome to the cytosol subsequent to camalexin treatments, which was associated with increased protein expression of mature CD; p53, a transcriptional activator of CD; BAX, a downstream effector of CD, and cleaved PARP, a hallmark for apoptosis. Therefore, camalexin reduces cell viability via CD and may present as a novel therapeutic agent for treatment of metastatic prostate cancer cells.

  5. Autophagy and gap junctional intercellular communication inhibition are involved in cadmium-induced apoptosis in rat liver cells

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Hui [College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009 (China); Zhuo, Liling [College of Life Science, Zaozhuang University, Zaozhuang, Shandong, 277160 (China); Han, Tao; Hu, Di; Yang, Xiaokang; Wang, Yi; Yuan, Yan; Gu, Jianhong; Bian, Jianchun; Liu, Xuezhong [College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009 (China); Liu, Zongping, E-mail: liuzongping@yzu.edu.cn [College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009 (China)

    2015-04-17

    Cadmium (Cd) is known to induce hepatotoxicity, yet the underlying mechanism of how this occurs is not fully understood. In this study, Cd-induced apoptosis was demonstrated in rat liver cells (BRL 3A) with apoptotic nuclear morphological changes and a decrease in cell index (CI) in a time- and concentration-dependent manner. The role of gap junctional intercellular communication (GJIC) and autophagy in Cd-induced apoptosis was investigated. Cd significantly induced GJIC inhibition as well as downregulation of connexin 43 (Cx43). The prototypical gap junction blocker carbenoxolone disodium (CBX) exacerbated the Cd-induced decrease in CI. Cd treatment was also found to cause autophagy, with an increase in mRNA expression of autophagy-related genes Atg-5, Atg-7, Beclin-1, and microtubule-associated protein light chain 3 (LC3) conversion from cytosolic LC3-I to membrane-bound LC3-II. The autophagic inducer rapamycin (RAP) prevented the Cd-induced CI decrease, while the autophagic inhibitor chloroquine (CQ) caused a further reduction in CI. In addition, CBX promoted Cd-induced autophagy, as well as changes in expression of Atg-5, Atg-7, Beclin-1 and LC3. CQ was found to block the Cd-induced decrease in Cx43 and GJIC inhibition, whereas RAP had opposite effect. These results demonstrate that autophagy plays a protective role during Cd-induced apoptosis in BRL 3A cells during 6 h of experiment, while autophagy exacerbates Cd-induced GJIC inhibition which has a negative effect on cellular fate. - Highlights: • GJIC and autophagy is crucial for biological processes. • Cd exposure causes GJIC inhibition and autophagy increase in BRL 3A cells. • Autophagy protects Cd induced BRL 3A cells apoptosis at an early stage. • Autophagy exacerbates Cd-induced GJIC inhibition. • GJIC plays an important role in autophagy induced cell death or survival.

  6. Involvement of apoptosis and autophagy in the death of RPMI 8226 multiple myeloma cells by two enantiomeric sigma receptor ligands.

    Science.gov (United States)

    Korpis, Katharina; Weber, Frauke; Brune, Stefanie; Wünsch, Bernhard; Bednarski, Patrick J

    2014-01-01

    Over-expression of σ receptors by many tumor cell lines makes ligands for these receptors attractive as potential chemotherapeutic drugs. Enantiomeric piperazines (S)-4 and (R)-4 were prepared as potential σ-receptor ligands in a chiral pool synthesis starting from (S)- and (R)-aspartate. Both compounds showed high affinities for the σ₁ and σ₂ receptors. In the human multiple myeloma cell line RPMI 8226, a line expressing high levels of σ receptors, both compounds inhibited cell proliferation with IC₅₀ values in the low μM range. No chiral differentiation between either the σ receptor binding affinity or the cytotoxicity of the two enantiomers was observed. Both compounds induced apoptosis, which was evidenced by nuclear condensation, binding of annexin-V to phosphatidylserine in the outer leaf of the cell membrane, cleavage products of poly(ADP-ribose) polymerase-1 (PARP-1) and caspase-8 as well as the expression of bcl₂ family members bax, bad and bid. However, apoptosis appeared to be caspase independent. Increased levels of the phosphorylated form of the microtubule associated protein light chain 3-II (LC3-II), an autophagosome marker, gave evidence that both compounds induced autophagy. However, further data (e.g., treatment with wortmannin) indicate that autophagy is incomplete and not cytoprotective. Lipid peroxidation (LPO) was observed in RPMI 8226 cells treated with the two compounds, and the lipid antioxidant α-tocopherol attenuated LPO. Interestingly, α-tocopherol reduced significantly both apoptosis and autophagy induced by the compounds. These results provide evidence that, by initiating LPO and changes in mitochondrial membrane potential, both compounds induce apoptosis and autophagy in RPMI 8226 cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Plumbagin elicits differential proteomic responses mainly involving cell cycle, apoptosis, autophagy, and epithelial-to-mesenchymal transition pathways in human prostate cancer PC-3 and DU145 cells

    Directory of Open Access Journals (Sweden)

    Qui JX

    2015-01-01

    Full Text Available Jia-Xuan Qiu,1,2 Zhi-Wei Zhou, 3,4 Zhi-Xu He,4 Ruan Jin Zhao,5 Xueji Zhang,6 Lun Yang,7 Shu-Feng Zhou,3,4 Zong-Fu Mao11School of Public Health, Wuhan University, Wuhan, Hubei, People’s Republic of China; 2Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People’s Republic of China; 3Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA; 4Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People’s Republic of China; 5Center for Traditional Chinese Medicine, Sarasota, FL, USA; 6Research Center for Bioengineering and Sensing Technology, University of Science and Technology Beijing, Beijing, People’s Republic of China; 7Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education, Shanghai Jiao Tong University, Shanghai, People’s Republic of ChinaAbstract: Plumbagin (PLB has exhibited a potent anticancer effect in preclinical studies, but the molecular interactome remains elusive. This study aimed to compare the quantitative proteomic responses to PLB treatment in human prostate cancer PC-3 and DU145 cells using the approach of stable-isotope labeling by amino acids in cell culture (SILAC. The data were finally validated using Western blot assay. First, the bioinformatic analysis predicted that PLB could interact with 78 proteins that were involved in cell proliferation and apoptosis, immunity, and signal transduction. Our quantitative proteomic study using SILAC revealed that there were at least 1,225 and 267 proteins interacting with PLB and there were 341 and 107 signaling pathways and cellular functions potentially regulated by PLB in PC-3 and DU145 cells, respectively. These proteins and pathways played a

  8. The ROS/NF-κB/NR4A2 pathway is involved in H2O2 induced apoptosis of resident cardiac stem cells via autophagy.

    Science.gov (United States)

    Shi, Xingxing; Li, Wenjing; Liu, Honghong; Yin, Deling; Zhao, Jing

    2017-09-29

    Cardiac stem cells (CSCs)-based therapy provides a promising avenue for the management of ischemic heart diseases. However, engrafted CSCs are subjected to acute cell apoptosis in the ischemic microenvironment. Here, stem cell antigen 1 positive (Sca-1 + ) CSCs proved to own therapy potential were cultured and treated with H 2 O 2 to mimic the ischemia situation. As autophagy inhibitor, 3-methyladenine (3MA), inhibited H 2 O 2 -induced CSCs apoptosis, thus we demonstrated that H 2 O 2 induced autophagy-dependent apoptosis in CSCs, and continued to find key proteins responsible for the crosstalk between autophagy and apoptosis. Nuclear Receptor Subfamily 4 Group A Member 2 (NR4A2), increased upon cardiomyocyte injury with unknown functions in CSCs, was increased by H 2 O 2 . NR4A2 siRNA attenuated H 2 O 2 induced autophagy and apoptosis in CSCs, which suggested an important role of NR4A2 in CSCs survival in ischemia conditions. Reactive oxygen species (ROS) and NF-κB (P65) subunit were both increased by H 2 O 2 . Either the ROS scavenger, N-acetyl-l-cysteine (NAC) or NF-κB signaling inhibitor, bay11-7082 could attenuate H 2 O 2 -induced autophagy and apoptosis in CSCs, which suggested they were involved in this process. Furthermore, NAC inhibited NF-κB activities, while bay11-7082 inhibited NR4A2 expression, which revealed a ROS/NF-κB/NR4A2 pathway responsible for H 2 O 2 -induced autophagy and apoptosis in CSCs. Our study supports a new clue enhancing the survival rate of CSCs in the infarcted myocardium for cell therapy in ischemic cardiomyopathy.

  9. Morphological adaptation of sheep's rumen epithelium to high-grain diet entails alteration in the expression of genes involved in cell cycle regulation, cell proliferation and apoptosis.

    Science.gov (United States)

    Xu, Lei; Wang, Yue; Liu, Junhua; Zhu, Weiyun; Mao, Shengyong

    2018-01-01

    The objectives of this study were to characterize changes in the relative mRNA expression of candidate genes and proteins involved in cell cycle regulation, cell proliferation and apoptosis in the ruminal epithelium (RE) of sheep during high-grain (HG) diet adaptation. Twenty sheep were assigned to four groups with five animals each. These animals were assigned to different periods of HG diet (containing 40% forage and 60% concentrate mix) feeding. The HG groups received an HG diet for 7 (G7, n  = 5), 14 (G14, n  = 5) and 28 d (G28, n  = 5), respectively. In contrast, the control group (CON, n  = 5) was fed the forage-based diet for 28 d. The results showed that HG feeding linearly decreased ( P  Bad mRNA expression tended to decrease (cubic, P  = 0.053) after HG feeding. These results demonstrated sequential changes in rumen papillae size, cell cycle regulation and the genes involved in proliferation and apoptosis as time elapsed in feeding a high-grain diet to sheep.

  10. Resistance to ursolic acid-induced apoptosis through involvement of melanogenesis and COX-2/PGE2 pathways in human M4Beu melanoma cancer cells

    International Nuclear Information System (INIS)

    Hassan, Lama; Pinon, Aline; Limami, Youness; Seeman, Josiane; Fidanzi-Dugas, Chloe; Martin, Frederique; Badran, Bassam; Simon, Alain; Liagre, Bertrand

    2016-01-01

    Melanoma is one of the most aggressive forms of cancer with a continuously growing incidence worldwide and is usually resistant to chemotherapy agents, which is due in part to a strong resistance to apoptosis. Previously, we had showed that B16-F0 murine melanoma cells undergoing apoptosis are able to delay their own death induced by ursolic acid (UA), a natural pentacyclic triterpenoid compound. We had demonstrated that tyrosinase and TRP-1 up-regulation in apoptotic cells and the subsequent production of melanin were implicated in an apoptosis resistance mechanism. Several resistance mechanisms to apoptosis have been characterized in melanoma such as hyperactivation of DNA repair mechanisms, drug efflux systems, and reinforcement of survival signals (PI3K/Akt, NF-κB and Raf/MAPK pathways). Otherwise, other mechanisms of apoptosis resistance involving different proteins, such as cyclooxygenase-2 (COX-2), have been described in many cancer types. By using a strategy of specific inhibition of each ways, we suggested that there was an interaction between melanogenesis and COX-2/PGE 2 pathway. This was characterized by analyzing the COX-2 expression and activity, the expression of tyrosinase and melanin production. Furthermore, we showed that anti-proliferative and proapoptotic effects of UA were mediated through modulation of multiple signaling pathways including Akt and ERK-1/2 proteins. Our study not only uncovers underlying molecular mechanisms of UA action in human melanoma cancer cells but also suggest its great potential as an adjuvant in treatment and cancer prevention.

  11. Resistance to ursolic acid-induced apoptosis through involvement of melanogenesis and COX-2/PGE{sub 2} pathways in human M4Beu melanoma cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Lama; Pinon, Aline [Laboratory of Chemistry of Natural Substances, Faculty of Pharmacy, University of Limoges, FR 3503 GEIST, EA1069, Limoges (France); Limami, Youness [Laboratoire National de Référence (LNR), Université Mohammed VI des Sciences de la Santé, Casablanca (Morocco); Seeman, Josiane; Fidanzi-Dugas, Chloe; Martin, Frederique [Laboratory of Chemistry of Natural Substances, Faculty of Pharmacy, University of Limoges, FR 3503 GEIST, EA1069, Limoges (France); Badran, Bassam [Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences, Lebanese University, Beirut (Lebanon); Simon, Alain [Laboratory of Chemistry of Natural Substances, Faculty of Pharmacy, University of Limoges, FR 3503 GEIST, EA1069, Limoges (France); Liagre, Bertrand, E-mail: bertrand.liagre@unilim.fr [Laboratory of Chemistry of Natural Substances, Faculty of Pharmacy, University of Limoges, FR 3503 GEIST, EA1069, Limoges (France)

    2016-07-01

    Melanoma is one of the most aggressive forms of cancer with a continuously growing incidence worldwide and is usually resistant to chemotherapy agents, which is due in part to a strong resistance to apoptosis. Previously, we had showed that B16-F0 murine melanoma cells undergoing apoptosis are able to delay their own death induced by ursolic acid (UA), a natural pentacyclic triterpenoid compound. We had demonstrated that tyrosinase and TRP-1 up-regulation in apoptotic cells and the subsequent production of melanin were implicated in an apoptosis resistance mechanism. Several resistance mechanisms to apoptosis have been characterized in melanoma such as hyperactivation of DNA repair mechanisms, drug efflux systems, and reinforcement of survival signals (PI3K/Akt, NF-κB and Raf/MAPK pathways). Otherwise, other mechanisms of apoptosis resistance involving different proteins, such as cyclooxygenase-2 (COX-2), have been described in many cancer types. By using a strategy of specific inhibition of each ways, we suggested that there was an interaction between melanogenesis and COX-2/PGE{sub 2} pathway. This was characterized by analyzing the COX-2 expression and activity, the expression of tyrosinase and melanin production. Furthermore, we showed that anti-proliferative and proapoptotic effects of UA were mediated through modulation of multiple signaling pathways including Akt and ERK-1/2 proteins. Our study not only uncovers underlying molecular mechanisms of UA action in human melanoma cancer cells but also suggest its great potential as an adjuvant in treatment and cancer prevention.

  12. Caspase-independent cell death mediated by apoptosis-inducing factor (AIF) nuclear translocation is involved in ionizing radiation induced HepG2 cell death

    International Nuclear Information System (INIS)

    Sun, Hengwen; Yang, Shana; Li, Jianhua; Zhang, Yajie; Gao, Dongsheng; Zhao, Shenting

    2016-01-01

    Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world. The aim of radiotherapy is to eradicate cancer cells with ionizing radiation. Except for the caspase-dependent mechanism, several lines of evidence demonstrated that caspase-independent mechanism is directly involved in the cell death responding to irradiation. For this reason, defining the contribution of caspase-independent molecular mechanisms represents the main goal in radiotherapy. In this study, we focused on the role of apoptosis-inducing factor (AIF), the caspase-independent molecular, in ionizing radiation induced hepatocellular carcinoma cell line (HepG2) cell death. We found that ionizing radiation has no function on AIF expression in HepG2 cells, but could induce AIF release from the mitochondria and translocate into nuclei. Inhibition of AIF could reduce ionizing radiation induced HepG2 cell death. These studies strongly support a direct relationship between AIF nuclear translocation and radiation induced cell death. What's more, AIF nuclear translocation is caspase-independent manner, but not caspase-dependent manner, in this process. These new findings add a further attractive point of investigation to better define the complex interplay between caspase-independent cell death and radiation therapy. - Highlights: • AIF nuclear translocation is involved in ionizing radiation induced hepatocellular carcinoma cell line HepG2 cell death. • AIF mediated cell death induced by ionizing radiation is caspase-independent. • Caspase-independent pathway is involved in ionzing radiation induced HepG2 cell death.

  13. Caspase-independent cell death mediated by apoptosis-inducing factor (AIF) nuclear translocation is involved in ionizing radiation induced HepG2 cell death

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Hengwen [Department of Radiation, Cancer Center of Guangdong General Hospital (Guangdong Academy of Medical Science), Guangzhou, 510080, Guangdong (China); Yang, Shana; Li, Jianhua [Department of Physiology, Guangzhou Medical University, Guangzhou, 510182, Guangdong (China); Zhang, Yajie [Department of Pathology, Guangzhou Medical University, Guangzhou, 510182, Guangdong (China); Gao, Dongsheng [Department of Oncology, Guangdong Medical College Affiliated Pengpai Memorial Hospital, Hai Feng, 516400, Gungdong (China); Zhao, Shenting, E-mail: zhaoshenting@126.com [Department of Physiology, Guangzhou Medical University, Guangzhou, 510182, Guangdong (China)

    2016-03-25

    Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world. The aim of radiotherapy is to eradicate cancer cells with ionizing radiation. Except for the caspase-dependent mechanism, several lines of evidence demonstrated that caspase-independent mechanism is directly involved in the cell death responding to irradiation. For this reason, defining the contribution of caspase-independent molecular mechanisms represents the main goal in radiotherapy. In this study, we focused on the role of apoptosis-inducing factor (AIF), the caspase-independent molecular, in ionizing radiation induced hepatocellular carcinoma cell line (HepG2) cell death. We found that ionizing radiation has no function on AIF expression in HepG2 cells, but could induce AIF release from the mitochondria and translocate into nuclei. Inhibition of AIF could reduce ionizing radiation induced HepG2 cell death. These studies strongly support a direct relationship between AIF nuclear translocation and radiation induced cell death. What's more, AIF nuclear translocation is caspase-independent manner, but not caspase-dependent manner, in this process. These new findings add a further attractive point of investigation to better define the complex interplay between caspase-independent cell death and radiation therapy. - Highlights: • AIF nuclear translocation is involved in ionizing radiation induced hepatocellular carcinoma cell line HepG2 cell death. • AIF mediated cell death induced by ionizing radiation is caspase-independent. • Caspase-independent pathway is involved in ionzing radiation induced HepG2 cell death.

  14. The Growth Suppressing Effects of Girinimbine on Hepg2 Involve Induction of Apoptosis and Cell Cycle Arrest

    Directory of Open Access Journals (Sweden)

    Tang Sook Wah

    2011-08-01

    Full Text Available Murraya koenigii is an edible herb widely used in folk medicine. Here we report that girinimbine, a carbazole alkaloid isolated from this plant, inhibited the growth and induced apoptosis in human hepatocellular carcinoma, HepG2 cells. The MTT and LDH assay results showed that girinimbine decreased cell viability and increased cytotoxicity in a dose-and time-dependent manner selectively. Girinimbine-treated HepG2 cells showed typical morphological features of apoptosis, as observed from normal inverted microscopy and Hoechst 33342 assay. Furthermore, girinimbine treatment resulted in DNA fragmentation and elevated levels of caspase-3 in HepG2 cells. Girinimbine treatment also displayed a time-dependent accumulation of the Sub-G0/G1 peak (hypodiploid and caused G0/G1-phase arrest. Together, these results demonstrated for the first time that girinimbine could effectively induce programmed cell death in HepG2 cells and suggests the importance of conducting further investigations in preclinical human hepatocellular carcinoma models, especially on in vivo efficacy, to promote girinimbine for use as an anticancer agent against hepatocellular carcinoma.

  15. Mitochondrial and caspase pathways are involved in the induction of apoptosis by nardosinen in MCF-7 breast cancer cell line.

    Science.gov (United States)

    Shahali, Amirhosein; Ghanadian, Mustafa; Jafari, Seyyed Mehdi; Aghaei, Mahmoud

    2018-02-01

    Natural products isolated from plants provide a valuable source for expansion of new anticancer drugs. Nardosinen (4,9-dihydroxy-nardosin-6-en) is a natural sesquiterpene extracted from Juniperus foetidissima . Recently, we have reported the cytotoxic effects of nardosinen in various cancer cells. The aim of the current study was to investigate the anticancer features of nardosinen as well as its possible molecular mechanisms of the nardosinen cytotoxic effect on breast tumor cells. MTT assay showed that nardosinen notably inhibited cell proliferation in a dose-dependent manner in MCF-7 breast cancer cells. The growth inhibitory effect of nardosinen was associated with the induction of cell apoptosis, activation of caspase-6, increase of reactive oxygen species (ROS), and loss of mitochondrial membrane potentials (ΔΨm). Western blot assay following treatment with nardosinen showed that the expression levels of the Bax were significantly up-regulated and the expression levels of the Bcl-2 were significantly down-regulated. Our results finally exhibited that nardosinen induces apoptosis in breast cancer cells via the mitochondrial and caspase pathways.

  16. Inhibition of human prostate cancer cells proliferation by a selective alpha1-adrenoceptor antagonist labedipinedilol-A involves cell cycle arrest and apoptosis

    International Nuclear Information System (INIS)

    Liou, S.-F.; Lin, H.-H.; Liang, J.-C.; Chen, I.-J.; Yeh, J.-L.

    2009-01-01

    In this research, we conducted an in vitro analysis to evaluate the prostate cancer cells response to labedipinedilol-A in order to determine the effect of this selective α 1 -adrenoceptor antagonist to suppress prostate cancer cell growth by affecting cell proliferation and apoptosis. Here, we report that treatment of androgen-sensitive (LNCaP) and androgen-insensitive (PC-3) prostate cancer cells with labedipinedilol-A inhibited cell proliferation in concentration-dependent and time-dependent manners. Moreover, norepinephrine-stimulated proliferation of both cell lines are markedly inhibited by labedipinedilol-A. The probable involvement of α 1 -adrenoceptors in this cellular response is suggested. Labedipinedilol-A-induced growth inhibition was associated with G 0 /G 1 arrest, and G 2 /M arrest depending upon concentrations. Cell cycle blockade was associated with reduced amounts of cyclin D1/2, cyclin E, Cdk2, Cdk4, and Cdk6 and increased levels of the Cdk inhibitory proteins (Cip1/p21 and Kip1/p27). In addition, labedipinedilol-A also induced apoptosis in PC-3 cells, as determined by using Hoechst 33342 staining, DNA fragmentation, and Annexin V staining assay. Furthermore, labedipinedilol-A triggered the mitochondrial apoptotic pathway, as indicated by increasing the expression of Bax, but decreasing the level of Bcl-2, resulting in mitochondrial membrane potential loss, cytochrome c release, and activation of caspase-9 and -3. We further investigated the role of MAPK cascades in the anti-proliferative and apoptosis effects of labedipinedilol-A, and confirmed that labedipinedilol-A could activate JNK1/2 but not p38 in both cell lines. Unlike JNK1/2, however, labedipinedilol-A treatment resulted in down-regulation of phospho-ERK1/2 expression. We concluded that labedipinedilol-A possessed the growth-suppressive and apoptotic effects on LNCaP and PC-3 cells by its α 1 -adrenoceptor blockade, and the apoptotic effects of labedipinedilol-A primarily through

  17. Growth inhibition and apoptosis in cancer cells induced by polyphenolic compounds of Acacia hydaspica: Involvement of multiple signal transduction pathways

    Science.gov (United States)

    Afsar, Tayyaba; Trembley, Janeen H.; Salomon, Christine E.; Razak, Suhail; Khan, Muhammad Rashid; Ahmed, Khalil

    2016-01-01

    Acacia hydaspica R. Parker is known for its medicinal uses in multiple ailments. In this study, we performed bioassay-guided fractionation of cytotoxic compounds from A. hydaspica and investigated their effects on growth and signaling activity in prostate and breast cancer cell lines. Four active polyphenolic compounds were identified as 7-O-galloyl catechin (GC), catechin (C), methyl gallate (MG), and catechin-3-O-gallate (CG). The four compounds inhibited prostate cancer PC-3 cell growth in a dose-dependent manner, whereas CG and MG inhibited breast cancer MDA-MB-231 cell growth. All tested compounds inhibited cell survival and colony growth in both cell lines, and there was evidence of chromatin condensation, cell shrinkage and apoptotic bodies. Further, acridine orange, ethidium bromide, propidium iodide and DAPI staining demonstrated that cell death occurred partly via apoptosis in both PC-3 and MDA-MB-231 cells. In PC-3 cells treatment repressed the expression of anti-apoptotic molecules Bcl-2, Bcl-xL and survivin, coupled with down-regulation of signaling pathways AKT, NFκB, ERK1/2 and JAK/STAT. In MDA-MB-231 cells, treatment induced reduction of CK2α, Bcl-xL, survivin and xIAP protein expression along with suppression of NFκB, JAK/STAT and PI3K pathways. Our findings suggest that certain polyphenolic compounds derived from A. hydaspica may be promising chemopreventive/therapeutic candidates against cancer. PMID:26975752

  18. Andrographolide enhances 5-fluorouracil-induced apoptosis via caspase-8-dependent mitochondrial pathway involving p53 participation in hepatocellular carcinoma (SMMC-7721) cells.

    Science.gov (United States)

    Yang, Lu; Wu, Dingfang; Luo, Kewang; Wu, Shihua; Wu, Ping

    2009-04-18

    Despite recent significant advances in the treatment of human carcinoma (HCC), the results of chemotherapy to date remain unsatisfactory. 5-Fluorouracil (5-FU) still represents the cornerstone of treatment of carcinoma, and resistance to the actions of 5-FU is a major obstacle to successful chemotherapy. More effective treatment strategies may involve combinations of agents with activity against HCC. Andrographolide (ANDRO), a natural bicyclic diterpenoid lactone isolated from Andrographis paniculata, has been shown to suppress the growth of HCC cells and trigger apoptosis in vitro. To assess the suitability of ANDRO as a chemotherapeutic agent in HCC, its cytotoxic effects have been evaluated both as a single agent and in combination with 5-FU. ANDRO potentiates the cytotoxic effect of 5-FU in HCC cell line SMMC-7721 through apoptosis. ANDRO alone induces SMMC-7721 apoptosis with p53 expression, Bax conformation and caspase-3,8,9 activation. Surprisingly, the addition of ANDRO to 5-FU induces synergistic apoptosis, which could be corroborated to the increased caspase-8, p53 activity and the significant changes of Bax conformation in these cells, resulting in increased losses of mitochondrial membrane potential, increased release of cytochrome c, and activation of caspase-9 and caspase-3. Suppression of caspase-8 with the specific inhibitor z-IETD-fmk abrogates largely ANDRO/5-FU biological activity by preventing mitochondrial membrane potential disappearance, caspase-3,9 activation and subsequent apoptosis. The results suggest that ANDRO may be effective in combination with 5-FU for the treatment of HCC cells SMMC-7721.

  19. Fucoidan extract induces apoptosis in MCF-7 cells via a mechanism involving the ROS-dependent JNK activation and mitochondria-mediated pathways.

    Directory of Open Access Journals (Sweden)

    Zhongyuan Zhang

    Full Text Available BACKGROUND: Fucoidan extract (FE, an enzymatically digested compound with a low molecular weight, is extracted from brown seaweed. As a natural compound with various actions, FE is attractive, especially in Asian countries, for improving the therapeutic efficacy and safety of cancer treatment. The present study was carried out to investigate the anti-tumor properties of FE in human carcinoma cells and further examine the underlying mechanisms of its activities. METHODOLOGY/PRINCIPAL FINDING: FE inhibits the growth of MCF-7, MDA-MB-231, HeLa, and HT1080 cells. FE-mediated apoptosis in MCF-7 cancer cells is accompanied by DNA fragmentation, nuclear condensation, and phosphatidylserine exposure. FE induces mitochondrial membrane permeabilization (MMP through loss of mitochondrial membrane potential (ΔΨm and regulation of the expression of Bcl-2 family members. Release of apoptosis-inducing factor (AIF and cytochrome c precedes MMP. AIF release causes DNA fragmentation, the final stage of apoptosis, via a caspase-independent mitochondrial pathway. Additionally, FE was found to induce phosphorylation of c-Jun N-terminal kinase (JNK, p38, and extracellular signal-regulated kinase (ERK 1/2, and apoptosis was found to be attenuated by inhibition of JNK. Furthermore, FE-mediated apoptosis was found to involve the generation of reactive oxygen species (ROS, which are responsible for the decrease of ΔΨm and phosphorylation of JNK, p38, and ERK1/2 kinases. CONCLUSIONS/SIGNIFICANCE: These data suggest that FE activates a caspase-independent apoptotic pathway in MCF-7 cancer cells through activation of ROS-mediated MAP kinases and regulation of the Bcl-2 family protein-mediated mitochondrial pathway. They also provide evidence that FE deserves further investigation as a natural anticancer and cancer preventive agent.

  20. L-Xylulose reductase is involved in 9,10-phenanthrenequinone-induced apoptosis in human T lymphoma cells.

    Science.gov (United States)

    Matsunaga, Toshiyuki; Kamiya, Tetsuro; Sumi, Daigo; Kumagai, Yoshito; Kalyanaraman, B; Hara, Akira

    2008-03-15

    9,10-Phenanthrenequinone (9,10-PQ), a major component in diesel exhaust particles, is suggested to generate reactive oxygen species (ROS) through its redox cycling, leading to cell toxicity. l-Xylulose reductase (XR), a NADPH-dependent enzyme in the uronate pathway, strongly reduces alpha-dicarbonyl compounds and was thought to act as a detoxification enzyme against reactive carbonyl compounds. Here, we have investigated the role of intracellular ROS generation in apoptotic signaling in human acute T-lymphoblastic leukemia MOLT-4 cells treated with 9,10-PQ and the role of XR in the generation of ROS. Treatment with 9,10-PQ elicited not only apoptotic signaling, including mitochondrial membrane dysfunction and activation of caspases and poly(ADP-ribose) polymerase, but also intracellular ROS generation and consequent glutathione depletion. The apoptotic effects of 9,10-PQ were drastically mitigated by pretreatment with intracellular ROS scavengers, such as N-acetyl-l-cysteine, glutathione monoethyl ester, and polyethylene glycol-conjugated catalase, indicating that intracellular ROS generation is responsible for the 9,10-PQ-evoked apoptosis. Surprisingly, the ROS generation and cytotoxicity by 9,10-PQ were augmented in an XR-transformed cell line. XR indeed reduced 9,10-PQ and produced superoxide anion through redox cycling. In addition, the expression levels of XR and its mRNA in the T lymphoma cells were markedly enhanced after the exposure to 9,10-PQ, and the induction was completely abolished by the ROS scavengers. Moreover, the 9,10-PQ-induced apoptosis was partially inhibited by the pretreatment with XR-specific inhibitors. These results suggest that initially produced ROS induce XR, which accelerates the generation of ROS.

  1. Mitochondrial disfunction and apoptosis in leukemia cells

    Directory of Open Access Journals (Sweden)

    Annamaria PALLAG

    2008-05-01

    Full Text Available Apoptosis or programmed cell death is a process which involves the intentional degradation of the cell from the inside, the participation of the mitochondria to propagate the apoptotic signal, the alteration of the phospholipid cell membrane composition, the perturbation and alteration of the cell metabolism.The antineoplastic drugs is inducing the apoptotic process in the sensitive cells.It have been studied acute lymphoblastic leukemia cells. Using Annexin V-PE Apoptosis Detection Kit and flow cytometer, the amount of cells undergoing apoptosis, in various stages of the antineoplasic treatment, was detected. At the same time, were monitored, the serum level of malondialdehyde. The results obtained confirm the alteration of the mitochondrial metabolism. We can observed the mitochondrial dysfunction role in cell apoptosis.

  2. Cloning and identification of two unique genes involved in UV induced apoptosis on human keratinocyte (HaCaT) cell line.

    Science.gov (United States)

    Gupta, Nishma; Raman, Govindarajan; Banerjee, Gautam

    2004-01-01

    Differential gene regulation during UVB induced apoptosis of human keratinocyte cell line (HaCaT) has been investigated. Rapid amplification of polymorphic DNA (RAPD)-PCR was done to identify novel/unique genes in the purified apoptotic and non-apoptotic populations. Two genes were identified and cloned in pGemT vector. One of these genes (apgene-1) was upregulated in UV induced apoptotic cells and in the non apoptotic cells exposed to UV. The other gene (apgene-2) was not detected in apoptotic cells but expressed in non-apoptotic/non necrotic cells that had been exposed to UV. The presence of apgene-1 mRNA was not detected in camptothecin induced apoptotic as well as non apoptotic cells. Apgene-2 was not detected in camptothecin induced apoptotic cells but expressed in non-apoptotic/non necrotic cells. This data indicates differential regulation of these two genes during UV and chemical induced apoptosis in human keratinocytes. Additionally, since apgene-2 was upregulated in the non necrotic/non apoptotic population could be involved in protection.

  3. Involvement of postnatal apoptosis on sex difference in number of cells generated during late fetal period in the sexually dimorphic nucleus of the preoptic area in rats.

    Science.gov (United States)

    Kato, Yukinori; Nakashima, Shizuka; Maekawa, Fumihiko; Tsukahara, Shinji

    2012-05-16

    Postnatal apoptosis is involved in formation of the sex difference in neuron number of the sexually dimorphic nucleus of the preoptic area (SDN-POA) in rats. In this study, we examined the origin of neurons that die with apoptosis on the postnatal period to exhibit the sex difference in neuron number of the SDN-POA. First, we measured the number of cells that were labeled with 5-bromo-2'-deoxyuridine (BrdU) on embryonic day (ED) 17, ED18, and ED19 in the SDN-POA of rats on postnatal day (PD) 4 and PD8. The SDN-POA had many more cells labeled with BrdU on ED17 and ED18 than those on ED19. Significantly fewer cells labeled with BrdU on ED18 in the female SDN-POA from PD4 to PD8 resulted in a significant sex difference in the number at PD8. Next, combination analyses of BrdU-labeling and immunohistochemistry for single-stranded DNA (ssDNA), an apoptotic marker, were succeeded to investigate whether SDN-POA neurons generated during ED17-18 were removed by apoptosis. Many more ssDNA-immunoreactive cells that had been labeled with BrdU during ED17-18 were found in the SDN-POA of PD8 females, but few in the SDN-POA of PD8 males and PD4 females and males. These results suggest that the sex difference in the number of SDN-POA neurons generated during the late fetal period was caused by postnatal apoptosis. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  4. Involvement of Bim in Photofrin-mediated photodynamically induced apoptosis.

    Science.gov (United States)

    Wang, Xianwang; He, Xiaobing; Hu, Shujuan; Sun, Anbang; Lu, Chengbiao

    2015-01-01

    Photodynamic therapy (PDT) is a promising noninvasive technique, which has been successfully applied to the treatment of human cancers. Studies have shown that the Bcl-2 family proteins play important roles in PDT-induced apoptosis. However, whether Bcl-2-interacting mediator of cell death (Bim) is involved in photodynamic treatment remains unknown. In this study, we attempt to determine the effect of Bim on Photofrin photodynamic treatment (PPT)-induced apoptosis in human lung adenocarcinoma ASTC-a-1 cells. The translocation of Bim/Bax of the cells were monitored by laser confocal scanning microscope. The levels of Bim protein and activated caspase-3 in cells were detected by western blot assay. Caspase-3 activities were measured by Caspase-3 Fluorogenic Substrate (Ac-DEVD-AFC) analysis. The induction of apoptosis was detected by Hoechst 33258 and PI staining as well as flow cytometry analysis. The effect of Bim on PPT-induced apoptosis was determined by RNAi. BimL translocated to mitochondria in response to PPT, similar to the downstream pro-apoptotic protein Bax activation. PPT increased the level of Bim and activated caspase-3 in cells and that knockdown of Bim by RNAi significantly protected against caspase-3 activity. PPT-induced apoptosis were suppressed in cells transfected with shRNA-Bim. We demonstrated the involvement of Bim in PPT-induced apoptosis in human ASTC-a-1 lung adenocarcinoma cells and suggested that enhancing Bim activity might be a potential strategy for treating human cancers. © 2015 S. Karger AG, Basel.

  5. III-10, a newly synthesized flavonoid, induces cell apoptosis with the involvement of reactive oxygen species-mitochondria pathway in human hepatocellular carcinoma cells.

    Science.gov (United States)

    Dai, Qinsheng; Yin, Qian; Zhao, Yikai; Guo, Ruichen; Li, Zhiyu; Ma, Shiping; Lu, Na

    2015-10-05

    Study of the mechanisms of apoptosis in tumor cells is an important field of tumor therapy and cancer molecular biology. We recently established that III-10, a new flavonoid with a pyrrolidinyl and a benzyl group substitution, exerted its anti-tumor effect via inducing differentiation of human U937 leukemia cells. In this study, we demonstrated that III-10 induced cell apoptosis in human hepatocellular carcinoma cells. The activation of caspase-3, caspase-9, and the increased expression ratio of Bax/Bcl-2 were detected in III-10-induced apoptosis. Z-VAD-FMK, a pan-caspase inhibitor, partly attenuated the apoptotic induction of III-10 on both HepG2 and BEL-7402 cells. Furthermore, the increase of intracellular reactive oxygen species levels and the reduction of mitochondria ΔΨm were also observed in BEL-7402 and HepG2 cells after the treatment of III-10. Pretreatment with NAC, a reactive oxygen species production inhibitor, partly attenuated the apoptosis induced by III-10 via blocking the reactive oxygen species generation. Our data also showed that III-10 induced the release of cytochrome c and AIF to cytosol followed after the reactive oxygen species accumulation. Moreover, the GSH levels and ATP generation were both inhibited after III-10 treatment. Besides, the MAPK, the downstream effect of reactive oxygen species accumulation including JNK could be activated by III-10, as well as the inactivation of ERK. Collectively, the generation of reactive oxygen species might play an crucial role in III-10-induced mitochondrial apoptosis pathway, provided more stubborn evidence for III-10 as a potent anticancer therapeutic candidate. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Oridonin effectively reverses the drug resistance of cisplatin involving induction of cell apoptosis and inhibition of MMP expression in human acute myeloid leukemia cells

    Directory of Open Access Journals (Sweden)

    Yuan Zhang

    2017-03-01

    Full Text Available Cisplatin is the first generation platinum-based chemotherapy agent. However, the extensive application of cisplatin inevitably causes drug resistance, which is a major obstacle to cancer chemotherapy. Oridonin is a diterpenoid isolated from Rabdosia rubescens with potent anticancer activity. The aim of our study is to investigate the role of oridonin to reverse the cisplatin-resistance in human acute myeloid leukemia (AML cells. The effect of oridonin on human AML cell proliferation was evaluated by MTT assay, cell migration and invasion were evaluated by transwell migration and invasion assays in cisplatin-resistant human AML cells. Furthermore, cell apoptosis was examined by flow cytometry. The inhibitive effect of oridonin in vivo was determined using xenografted nude mice. In addition, the expressions of MMP2 and MMP9 were detected by Western blot. There was a synergistic antitumor effect between cisplatin and oridonin on cisplatin-resistant human AML cells in vitro and in vivo. In addition, the combination of cisplatin and oridonin synergistically induced cell apoptosis. Furthermore, the combination treatment not only inhibited AML cell migration and invasion, but more significantly, decreased the expressions of MMP2 and MMP9 proteins. Our results suggest that the synergistic effect between both agents is likely to be driven by the inhibition of MMP expression and the resulting increased apoptosis.

  7. MiR-30b Is Involved in the Homocysteine-Induced Apoptosis in Human Coronary Artery Endothelial Cells by Regulating the Expression of Caspase 3

    Directory of Open Access Journals (Sweden)

    Feng Li

    2015-07-01

    Full Text Available Homocysteine (Hcy is an independent risk factor for a variety of cardiovascular diseases, such as coronary heart disease, hypertension, stroke, etc. There is a close relationship between the vascular endothelial cell apoptosis and these diseases. Recent studies have shown homocysteine can induce apoptosis in endothelial cells, which may be an important mechanism for the development of theses cardiovascular diseases. Although there are several reports about how the Hcy induces apoptosis in endothelial cells, the exact mechanism is not fully understood. MicroRNAs are small, non-coding RNA. Previous studies have shown that there is a close relationship between several microRNAs and cell apoptosis. However, there are no studies about the role of microRNAs in Hcy-induced apoptosis in endothelial cells so far. In this study, we constructed the model of homocysteine-induced apoptosis in human coronary artery endothelial cells (HCAECs and found miR-30b was significantly down-regulated by 1 mmol/L Hcy. In addition, overexpression of miR-30b can improve the Hcy-induced apoptosis in HCAECs by downregulating caspase-3 expression. Therefore, miR-30b may play an important role in Hcy-induced apoptosis in endothelial cells.

  8. Involvement of GDH3-encoded NADP+-dependent glutamate dehydrogenase in yeast cell resistance to stress-induced apoptosis in stationary phase cells.

    Science.gov (United States)

    Lee, Yong Joo; Kim, Kyung Jin; Kang, Hong Yong; Kim, Hye-Rim; Maeng, Pil Jae

    2012-12-28

    Glutamate metabolism is linked to a number of fundamental metabolic pathways such as amino acid metabolism, the TCA cycle, and glutathione (GSH) synthesis. In the yeast Saccharomyces cerevisiae, glutamate is synthesized from α-ketoglutarate by two NADP(+)-dependent glutamate dehydrogenases (NADP-GDH) encoded by GDH1 and GDH3. Here, we report the relationship between the function of the NADP-GDH and stress-induced apoptosis. Gdh3-null cells showed accelerated chronological aging and hypersusceptibility to thermal and oxidative stress during stationary phase. Upon exposure to oxidative stress, Gdh3-null strains displayed a rapid loss in viability associated with typical apoptotic hallmarks, i.e. reactive oxygen species accumulation, nuclear fragmentation, DNA breakage, and phosphatidylserine translocation. In addition, Gdh3-null cells, but not Gdh1-null cells, had a higher tendency toward GSH depletion and subsequent reactive oxygen species accumulation than did WT cells. GSH depletion was rescued by exogenous GSH or glutamate. The hypersusceptibility of stationary phase Gdh3-null cells to stress-induced apoptosis was suppressed by deletion of GDH2. Promoter swapping and site-directed mutagenesis of GDH1 and GDH3 indicated that the necessity of GDH3 for the resistance to stress-induced apoptosis and chronological aging is due to the stationary phase-specific expression of GDH3 and concurrent degradation of Gdh1 in which the Lys-426 residue plays an essential role.

  9. Penta-acetyl geniposide-induced apoptosis involving transcription of NGF/p75 via MAPK-mediated AP-1 activation in C6 glioma cells

    International Nuclear Information System (INIS)

    Peng, C.-H.; Huang, C.-N.; Hsu, S.-P.; Wang, C.-J.

    2007-01-01

    We have demonstrated the herbal derivative penta-acetyl geniposide ((Ac) 5 GP) induces C6 glioma cell apoptosis through the critical sphingomyelinase (SMase)/nerve growth factor (NGF)/p75 and its downstream signals. It has been reported mitogen-activated protein kinase (MAPK) mediates NGF synthesis induced by SMase activation. In this study, ERK, p38 and JNK are shown to mediate (Ac) 5 GP-induced glioma cell apoptosis and elevation of NGF and p75. Treatment of PD98059 (ERK-specific inhibitor), SB203580 (p38 MAPK inhibitor) and SP600125 (JNK inhibitor) decreases the elevation of NGF and p75 mRNA induced by (Ac) 5 GP, indicating possible transcription regulation via MAPKs. The results of nuclear extract blotting and EMSA further confirm (Ac) 5 GP maximally increases AP-1 and NF-κB DNA binding at 6 h. Inhibition of ERK, p38 and JNK block the activation of AP-1 and NF-κB, suggesting these MAPKs are involved in (Ac) 5 GP-induced transcription regulation. We thereby used RT-PCR to analyze cells treated with (Ac) 5 GP, with or without AP-1 or NF-κB inhibitors. AP-1 inhibitor NDGA decreases NGF/p75 and expression of FasL and caspase 3 induced by (Ac) 5 GP, suggesting the importance of AP-1 in mediating NGF/p75 and their downstream apoptotic signals. However, FasL and caspase 3 do not change with the NF-κB inhibitor PDTC; NF-κB might be linked to other cellular events. Overall, we demonstrate that MAPK mediates (Ac) 5 GP-induced activation of AP-1, promoting the transcription of NGF/p75 and downstream apoptotic signals. These results further highlight the potential therapeutic effects of (Ac) 5 GP in chemoprevention or as an anti-tumor agent

  10. Pyrogallol Structure in Polyphenols is Involved in Apoptosis-induction on HEK293T and K562 Cells

    Directory of Open Access Journals (Sweden)

    Akiko Saito

    2008-12-01

    Full Text Available As multiple mechanisms account for polyphenol-induced cytotoxicity, the development of structure-activity relationships (SARs may facilitate research on cancer therapy. We studied SARs of representatives of 10 polyphenol structural types: (+-catechin (1, (--epicatechin (2, (--epigallocatechin (3, (--epigallocatechin gallate (4, gallic acid (5, procyanidin B2 (6, procyanidin B3 (7, procyanidin B4 (8, procyanidin C1 (9, and procyanidin C2 (10. Amongst them, the polyphenols containing a pyrogallol moiety (3-5 showed the most potent cytotoxicic activity. These compounds evoked a typical DNA-laddering phenomenon in HEK293T, which indicated that the induction of apoptosis at least partly mediates their cytotoxic activity. Anti-oxidative capacity of compounds 3-5 were comparable to those of the trimers 9 and 10, which were not cytotoxic. Therefore, we suggest that pyrogallol moiety is important for fitting of polyphenols to their putative target molecule(s in non-oxidative mechanism.

  11. Annona muricata leaves induced apoptosis in A549 cells through mitochondrial-mediated pathway and involvement of NF-κB.

    Science.gov (United States)

    Moghadamtousi, Soheil Zorofchian; Kadir, Habsah Abdul; Paydar, Mohammadjavad; Rouhollahi, Elham; Karimian, Hamed

    2014-08-15

    Annona muricata leaves have been reported to have antiproliferative effects against various cancer cell lines. However, the detailed mechanism has yet to be defined. The current study was designed to evaluate the molecular mechanisms of A. muricata leaves ethyl acetate extract (AMEAE) against lung cancer A549 cells. The effect of AMEAE on cell proliferation of different cell lines was analyzed by MTT assay. High content screening (HCS) was applied to investigate the suppression of NF-κB translocation, cell membrane permeability, mitochondrial membrane potential (MMP) and cytochrome c translocation from mitochondria to cytosol. Reactive oxygen species (ROS) formation, lactate dehydrogenase (LDH) release and activation of caspase-3/7, -8 and -9 were measured while treatment. The western blot analysis also carried out to determine the protein expression of cleaved caspase-3 and -9. Flow cytometry analysis was used to determine the cell cycle distribution and phosphatidylserine externalization. Quantitative PCR analysis was performed to measure the gene expression of Bax and Bcl-2 proteins. Cell viability analysis revealed the selective cytotoxic effect of AMEAE towards lung cancer cells, A549, with an IC50 value of 5.09 ± 0.41 μg/mL after 72 h of treatment. Significant LDH leakage and phosphatidylserine externalization were observed in AMEAE treated cells by fluorescence analysis. Treatment of A549 cells with AMEAE significantly elevated ROS formation, followed by attenuation of MMP via upregulation of Bax and downregulation of Bcl-2, accompanied by cytochrome c release to the cytosol. The incubation of A549 cells with superoxide dismutase and catalase significantly attenuated the cytotoxicity caused by AMEAE, indicating that intracellular ROS plays a pivotal role in cell death. The released cytochrome c triggered the activation of caspase-9 followed by caspase-3. In addition, AMEAE-induced apoptosis was accompanied by cell cycle arrest at G0/G1 phase. Moreover

  12. Identification of MicroRNAs Involved in Growth Arrest and Apoptosis in Hydrogen Peroxide-Treated Human Hepatocellular Carcinoma Cell Line HepG2

    Directory of Open Access Journals (Sweden)

    Yuan Luo

    2016-01-01

    Full Text Available Although both oxidative stress and microRNAs (miRNAs play vital roles in physiological and pathological processes, little is known about the interactions between them. In this study, we first described the regulation of H2O2 in cell viability, proliferation, cycle, and apoptosis of human hepatocellular carcinoma cell line HepG2. Then, miRNAs expression was profiled after H2O2 treatment. The results showed that high concentration of H2O2 (600 μM could decrease cell viability, inhibit cell proliferation, induce cell cycle arrest, and finally promote cell apoptosis. Conversely, no significant effects could be found under treatment with low concentration (30 μM. miRNAs array analysis identified 131 differentially expressed miRNAs (125 were upregulated and 6 were downregulated and predicted 13504 putative target genes of the deregulated miRNAs. Gene ontology (GO analysis revealed that the putative target genes were associated with H2O2-induced cell growth arrest and apoptosis. The subsequent bioinformatics analysis indicated that H2O2-response pathways, including MAPK signaling pathway, apoptosis, and pathways in cancer and cell cycle, were significantly affected. Overall, these results provided comprehensive information on the biological function of H2O2 treatment in HepG2 cells. The identification of miRNAs and their putative targets may offer new diagnostic and therapeutic strategies for liver cancer.

  13. Picornaviruses and Apoptosis: Subversion of Cell Death.

    Science.gov (United States)

    Croft, Sarah N; Walker, Erin J; Ghildyal, Reena

    2017-09-19

    Infected cells can undergo apoptosis as a protective response to viral infection, thereby limiting viral infection. As viruses require a viable cell for replication, the death of the cell limits cellular functions that are required for virus replication and propagation. Picornaviruses are single-stranded RNA viruses that modify the host cell apoptotic response, probably in order to promote viral replication, largely as a function of the viral proteases 2A, 3C, and 3CD. These proteases are essential for viral polyprotein processing and also cleave cellular proteins. Picornavirus proteases cleave proapoptotic adaptor proteins, resulting in downregulation of apoptosis. Picornavirus proteases also cleave nucleoporins, disrupting the orchestrated manner in which signaling pathways use active nucleocytoplasmic trafficking, including those involved in apoptosis. In addition to viral proteases, the transmembrane 2B protein alters intracellular ion signaling, which may also modulate apoptosis. Overall, picornaviruses, via the action of virally encoded proteins, exercise intricate control over and subvert cell death pathways, specifically apoptosis, thereby allowing viral replication to continue. Copyright © 2017 Croft et al.

  14. α-TEA-induced death receptor dependent apoptosis involves activation of acid sphingomyelinase and elevated ceramide-enriched cell surface membranes

    Directory of Open Access Journals (Sweden)

    Xiong Ailian

    2010-10-01

    Full Text Available Abstract Background Alpha-tocopherol ether-linked acetic acid (α-TEA, an analog of vitamin E (RRR-alpha-tocopherol, is a potent and selective apoptosis-inducing agent for human cancer cells in vivo and in vitro. α-TEA induces apoptosis via activation of extrinsic death receptors Fas (CD95 and DR5, JNK/p73/Noxa pathways, and suppression of anti-apoptotic mediators Akt, ERK, c-FLIP and survivin in breast, ovarian and prostate cancer cells. Results In this study, we demonstrate that α-TEA induces the accumulation of cell surface membrane ceramide, leading to co-localization with Fas, DR5, and FADD, followed by activation of caspases-8 and -9 and apoptosis in human MDA-MB-231 breast cancer cells. α-TEA treatment leads to increased acid sphingomyelinase (ASMase activity by 30 min, peaking at 4 hrs, which is correlated with ASMase translocation from cytosol to the cell surface membrane. Functional knockdown of ASMase with either the chemical inhibitor, desipramine, or siRNA markedly reduces α-TEA-induced cell surface membrane accumulation of ceramide and its co-localization with Fas, DR5, and FADD, cleavage of caspases-8 and -9 and apoptosis, suggesting an early and critical role for ASMase in α-TEA-induced apoptosis. Consistent with cell culture data, immunohistochemical analyses of tumor tissues taken from α-TEA treated nude mice bearing MDA-MB-231 xenografts show increased levels of cell surface membrane ceramide in comparison to tumor tissues from control animals. Conclusion Taken together, these studies demonstrate that ASMase activation and membrane ceramide accumulation are early events contributing to α-TEA-induced apoptosis in vitro and perhaps in vivo.

  15. Apoptosis induced by lipid-associated membrane proteins from Mycoplasma hyopneumoniae in a porcine lung epithelial cell line with the involvement of caspase 3 and the MAPK pathway.

    Science.gov (United States)

    Ni, B; Bai, F F; Wei, Y; Liu, M J; Feng, Z X; Xiong, Q Y; Hua, L Z; Shao, G Q

    2015-09-25

    Lipid-associated membrane proteins (LAMPs) are important in the pathogenicity of the Mycoplasma genus of bacteria. We investigated whether Mycoplasma hyopneumoniae LAMPs have pathogenic potential by inducing apoptosis in a St. Jude porcine lung epithelial cell line (SJPL). LAMPs from a pathogenic strain of M. hyopneumoniae (strain 232) were used in the research. Our investigation made use of diamidino-phenylindole (DAPI) and acridine orange/ethidium bromide (AO/EB) staining, terminal dexynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) analysis, and Annexin-V-propidium iodide staining. After LAMP treatment for 24 h, typical changes were induced, chromosomes were concentrated, apoptotic bodies were observed, the 3'-OH groups of cleaved genomes were exposed, and the percentage of apoptotic cells reached 36.5 ± 11.66%. Caspase 3 and caspase 8 were activated and cytochrome c (cyt c) was released from the mitochondria into the cytoplasm; poly ADP ribose polymerase (PARP) was digested into two fragments; p38 mitogen-activated protein kinase (MAPK) was phosphorylated; and the expression of pro-apoptosis protein Bax increased while the anti-apoptosis protein Bcl-2 decreased. LAMPs also stimulated SJPL cells to produce nitric oxide (NO) and superoxide. This study demonstrated that LAMPs from M. hyopneumoniae can induce apoptosis in SJPL cells through the activation of caspase 3, caspase 8, cyt c, Bax, and p38 MAPK, thereby contributing to our understanding of the pathogenesis of M. hyopneumoniae, which should improve the treatment of M. hyopneumoniae infections.

  16. Cellular response after irradiation: Cell cycle control and apoptosis

    International Nuclear Information System (INIS)

    Siles, E.; Valenzuela, M.T.; Nunez, M.I.; Guerrero, R.; Villalobos, M.; Ruiz de Almodovar, J.M.

    1997-01-01

    The importance of apoptotic death was assessed in a set of experiments, involving eight human tumour cell lines (breast cancer, bladder carcinoma, medulloblastoma). Various aspects of the quantitative study of apoptosis and methods based on the detection of DNA fragmentation (in situ tailing and comet assay) are described and discussed. Data obtained support the hypothesis that apoptosis is not crucial for cellular radiosensitivity and that the relationship between p53 functionality or clonogenic survival and apoptosis may bee cell type specific. (author)

  17. Fluorochloridone induces primary cultured Sertoli cells apoptosis: Involvement of ROS and intracellular calcium ions-mediated ERK1/2 activation.

    Science.gov (United States)

    Liu, Luqing; Chang, Xiuli; Zhang, Yubin; Wu, Chunhua; Li, Rui; Tang, Liming; Zhou, Zhijun

    2018-03-01

    Fluorochloridone (FLC) is a widely used pyrrolidone selective herbicide and reported to induce testis injuries in male rats, but the underlying mechanism is largely unknown. In the present study, primary-cultured Sertoli cells were exposed to FLC at the concentration of 0-10.00μM to study the mechanism of FLC-induced apoptosis. The roles of ROS, intracellular calcium, endoplasmic reticulum (ER), and ERK1/2 were looked at with ROS scavenger N-acetyl-cysteine (NAC), intracellular calcium chelator BAPTA-AM, ER calcium depleting agent thapsigargin (TG), and ERK1/2 inhibitor U0126, respectively. FLC induced dose-dependent apoptosis increase as well as the elevation in levels of ROS, intracellular calcium, and ERK1/2 activation. FLC treatment led to constantly increasing apoptotic rates and ERK1/2 activation over time, while inversed-V shaped change tendencies of ROS and intracellular calcium levels were observed. FLC-induced ROS generation disrupted the intracellular calcium homeostasis by attacking the ER, and the elevated intracellular calcium levels resulted in ERK1/2 over-phosphorylation and consequently promoted Sertoli cell apoptosis. Taken together, ROS and intracellular calcium-mediated ERK1/2 activation led to FLC-induced Sertoli cell apoptosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Aqueous Extract of Terminalia chebula Induces Apoptosis in Lung Cancer Cells Via a Mechanism Involving Mitochondria-mediated Pathways

    Directory of Open Access Journals (Sweden)

    Meiling Wang

    2015-04-01

    Full Text Available The current study was designed to evaluate the aqueous extract of Terminalia chebula activity, and the main pathway was detected on lung cancer by extracts of T. chebula. Aqueous extract of T. chebula was separated using a zeolite, and five fractions of T. chebula extract were obtained and analyzed by ultraviolet (UV and infrared (IR spectroscopy. Antiproliferative activity was evaluated by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT methods against human lung cancer (A549 and mouse lung cancer cell line LLC. T. chebula acts by regulating the Bcl-2 family protein-mediated mitochondrial pathway detected by western blot. Fraction 4 of the T. chebula extract showed much function and was thus studied further. Fraction 4 increased the activation of caspase-3, induced PARP cleavage, and promoted cytochrome c release into the cytoplasm. These data suggest that T. chebula acts by regulating the Bcl-2 family protein-mediated mitochondrial pathway and provide evidence that T. chebula deserves further investigation as a natural agent for treating and preventing cancer.

  19. Cyclin-dependent kinases regulate apoptosis of intestinal epithelial cells

    Science.gov (United States)

    Bhattacharya, Sujoy; Ray, Ramesh M.; Johnson, Leonard R.

    2014-01-01

    Homeostasis of the gastrointestinal epithelium is dependent upon a balance between cell proliferation and apoptosis. Cyclin-dependent kinases (Cdks) are well known for their role in cell proliferation. Previous studies from our group have shown that polyamine-depletion of intestinal epithelial cells (IEC-6) decreases cyclin-dependent kinase 2 (Cdk2) activity, increases p53 and p21Cip1 protein levels, induces G1 arrest, and protects cells from camptothecin (CPT)-induced apoptosis. Although emerging evidence suggests that members of the Cdk family are involved in the regulation of apoptosis, their roles directing apoptosis of IEC-6 cells are not known. In this study, we report that inhibition of Cdk1, 2, and 9 (with the broad range Cdk inhibitor, AZD5438) in proliferating IEC-6 cells triggered DNA damage, activated p53 signaling, inhibited proliferation, and induced apoptosis. By contrast, inhibition of Cdk2 (with NU6140) increased p53 protein and activity, inhibited proliferation, but had no effect on apoptosis. Notably, AZD5438 sensitized, whereas, NU6140 rescued proliferating IEC-6 cells from CPT-induced apoptosis. However, in colon carcinoma (Caco2) cells with mutant p53, treatment with either AZD5438 or NU6140 blocked proliferation, albeit more robustly with AZD5438. Both Cdk inhibitors induced apoptosis in Caco2 cells in a p53-independent manner. In serum starved quiescent IEC-6 cells, both AZD5438 and NU6140 decreased TNF- /CPT-induced activation of p53 and, consequently, rescued cells from apoptosis, indicating that sustained Cdk activity is required for apoptosis of quiescent cells. Furthermore, AZD5438 partially reversed the protective effect of polyamine depletion whereas NU6140 had no effect. Together, these results demonstrate that Cdks possess opposing roles in the control of apoptosis in quiescent and proliferating cells. In addition, Cdk inhibitors uncouple proliferation from apoptosis in a p53-dependent manner. PMID:24242917

  20. Dihydroartemisinin potentiates the anticancer effect of cisplatin via mTOR inhibition in cisplatin-resistant ovarian cancer cells: involvement of apoptosis and autophagy

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xue [Department of Gynecology and Obstetrics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Li, Ling [Department of Brain Cognition Computing Lab, University of Kent, Kent CT2 7NZ (United Kingdom); Jiang, Hong; Jiang, Keping; Jin, Ye [Department of Gynecology and Obstetrics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Zheng, Jianhua, E-mail: zhengjianhua1115@126.com [Department of Gynecology and Obstetrics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China)

    2014-02-14

    Highlights: • Phosphorylation of mTOR is abnormal activation in SKOV3/DDP ovarian cancer cells. • Downregulation of mTOR by DHA helps to sensitize the SKOV3/DDP cells to chemotherapy. • DHA has the potential of induce autophagy in cancer cells. - Abstract: Dihydroartemisinin (DHA) exhibits anticancer activity in tumor cells but its mechanism of action is unclear. Cisplatin (DDP) is currently the best known chemotherapeutic available for ovarian cancer. However, tumors return de novo with acquired resistance over time. Mammalian target of rapamycin (mTOR) is an important kinase that regulates cell apoptosis and autophagy, and its dysregulation has been observed in chemoresistant human cancers. Here, we show that compared with control ovarian cancer cells (SKOV3), mTOR phosphorylation was abnormally activated in cisplatin-resistant ovarian cancer cells (SKOV3/DDP) following cisplatin monotherapy. Treatment with cisplatin combined with DHA could enhance cisplatin-induced proliferation inhibition in SKOV3/DDP cells. This mechanism is at least partially due to DHA deactivation of mTOR kinase and promotion of apoptosis. Although autophagy was also induced by DHA, the reduced cell death was not found by suppressing autophagic flux by Bafilomycin A1 (BAF). Taken together, we conclude that inhibition of cisplatin-induced mTOR activation is one of the main mechanisms by which DHA dramatically promotes its anticancer effect in cisplatin-resistant ovarian cancer cells.

  1. Dihydroartemisinin potentiates the anticancer effect of cisplatin via mTOR inhibition in cisplatin-resistant ovarian cancer cells: involvement of apoptosis and autophagy

    International Nuclear Information System (INIS)

    Feng, Xue; Li, Ling; Jiang, Hong; Jiang, Keping; Jin, Ye; Zheng, Jianhua

    2014-01-01

    Highlights: • Phosphorylation of mTOR is abnormal activation in SKOV3/DDP ovarian cancer cells. • Downregulation of mTOR by DHA helps to sensitize the SKOV3/DDP cells to chemotherapy. • DHA has the potential of induce autophagy in cancer cells. - Abstract: Dihydroartemisinin (DHA) exhibits anticancer activity in tumor cells but its mechanism of action is unclear. Cisplatin (DDP) is currently the best known chemotherapeutic available for ovarian cancer. However, tumors return de novo with acquired resistance over time. Mammalian target of rapamycin (mTOR) is an important kinase that regulates cell apoptosis and autophagy, and its dysregulation has been observed in chemoresistant human cancers. Here, we show that compared with control ovarian cancer cells (SKOV3), mTOR phosphorylation was abnormally activated in cisplatin-resistant ovarian cancer cells (SKOV3/DDP) following cisplatin monotherapy. Treatment with cisplatin combined with DHA could enhance cisplatin-induced proliferation inhibition in SKOV3/DDP cells. This mechanism is at least partially due to DHA deactivation of mTOR kinase and promotion of apoptosis. Although autophagy was also induced by DHA, the reduced cell death was not found by suppressing autophagic flux by Bafilomycin A1 (BAF). Taken together, we conclude that inhibition of cisplatin-induced mTOR activation is one of the main mechanisms by which DHA dramatically promotes its anticancer effect in cisplatin-resistant ovarian cancer cells

  2. Ferulago angulata activates intrinsic pathway of apoptosis in MCF-7 cells associated with G1 cell cycle arrest via involvement of p21/p27

    Directory of Open Access Journals (Sweden)

    Karimian H

    2014-09-01

    Full Text Available Hamed Karimian,1 Soheil Zorofchian Moghadamtousi,2 Mehran Fadaeinasab,3 Shahram Golbabapour,2 Mahboubeh Razavi,1 Maryam Hajrezaie,2 Aditya Arya,1 Mahmood Ameen Abdulla,4 Syam Mohan,5 Hapipah Mohd Ali,2 Mohamad Ibrahim Noordin1 1Department of Pharmacy, Faculty of Medicine, 2Institute of Biological Sciences, Faculty of Science, 3Department of Chemistry, 4Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia, 5Medical Research Centre, Jazan University, Jazan, Saudi Arabia Abstract: Ferulago angulata is a medicinal plant that is traditionally known for its ­anti-inflammatory and antiulcer properties. The present study was aimed to evaluate its anticancer activity and the possible mechanism of action using MCF-7 as an in vitro model. F. angulata leaf extracts were prepared using solvents in the order of increasing polarity. As determined by MTT assay, F. angulata leaves hexane extract (FALHE revealed the strongest cytotoxicity against MCF-7 cells with the half maximal inhibitory concentration (IC50 value of 5.3±0.82 µg/mL. The acute toxicity study of FALHE provided evidence of the safety of the plant extract. Microscopic and flow cytometric analysis using annexin-V probe showed an induction of apoptosis in MCF-7 by FALHE. Treatment of MCF-7 cells with FALHE encouraged the intrinsic pathway of apoptosis, with cell death transducing signals that reduced the mitochondrial membrane potential with cytochrome c release from mitochondria to cytosol. The released cytochrome c triggered the activation of caspase-9. Meanwhile, the overexpression of caspase-8 suggested the involvement of an extrinsic pathway in the induced apoptosis at the late stage of treatment. Moreover, flow cytometric analysis showed that FALHE treatment significantly arrested MCF-7 cells in the G1 phase, which was associated with upregulation of p21 and p27 assessed by quantitative polymerase chain reaction. Immunofluorescence

  3. Hyperthermia: an effective strategy to induce apoptosis in cancer cells.

    Science.gov (United States)

    Ahmed, Kanwal; Tabuchi, Yoshiaki; Kondo, Takashi

    2015-11-01

    Heat has been used as a medicinal and healing modality throughout human history. The combination of hyperthermia (HT) with radiation and anticancer agents has been used clinically and has shown positive results to a certain extent. However, the clinical results of HT treatment alone have been only partially satisfactory. Cell death following HT treatment is a function of both temperature and treatment duration. HT induces cancer cell death through apoptosis; the degree of apoptosis and the apoptotic pathway vary in different cancer cell types. HT-induced reactive oxygen species production are responsible for apoptosis in various cell types. However, the underlying mechanism of signal transduction and the genes related to this process still need to be elucidated. In this review, we summarize the molecular mechanism of apoptosis induced by HT, enhancement of heat-induced apoptosis, and the genetic network involved in HT-induced apoptosis.

  4. Aspartame-induced apoptosis in PC12 cells.

    Science.gov (United States)

    Horio, Yukari; Sun, Yongkun; Liu, Chuang; Saito, Takeshi; Kurasaki, Masaaki

    2014-01-01

    Aspartame is an artificial sweetner added to many low-calorie foods. The safety of aspartame remains controversial even though there are many studies on its risks. In this study, to understand the physiological effects of trace amounts of artificial sweetners on cells, the effects of aspartame on apoptosis were investigated using a PC12 cell system. In addition, the mechanism of apoptosis induced by aspartame in PC12 cells and effects on apoptotic factors such as cytochrome c, apoptosis-inducing factor, and caspase family proteins were studied by Western blotting and RT-PCR. Aspartame-induced apoptosis in PC12 cells in a dose-dependent manner. In addition, aspartame exposure increased the expressions of caspases 8 and 9, and cytochrome c. These results indicate that aspartame induces apoptosis mainly via mitochondrial pathway involved in apoptosis due to oxigen toxicity. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Hydrogen peroxide produced during gamma-glutamyl transpeptidase activity is involved in prevention of apoptosis and maintainance of proliferation in U937 cells.

    Science.gov (United States)

    del Bello, B; Paolicchi, A; Comporti, M; Pompella, A; Maellaro, E

    1999-01-01

    It has been reported in several cell lines that exposure to low levels of reactive oxygen species can exert a stimulatory effect on their proliferation. We have previously shown that mild oxidative conditions can also counteract apoptotic stimuli. A constitutive cellular production of low levels of superoxide and hydrogen peroxide originates from various sources; among these, gamma-glutamyl transpeptidase (GGT), the plasma membrane-bound activity in charge of metabolizing extracellular reduced glutathione, has recently been included. Since the inhibition of GGT is a sufficient stimulus for the induction of apoptosis in selected cell lines, we investigated whether this effect might result from the suppression of the mentioned GGT-dependent prooxidant reactions, on the theory that the latter may represent a basal antiapoptotic and proliferative signal for the cell. Experiments showed that: 1) GGT activity in U937 monoblastoid cells is associated with the production of low levels of hydrogen peroxide, and two independent GGT inhibitors cause a dose-dependent decrease of such GGT-dependent production of H2O2; 2) GGT inhibition with acivicin results in cell growth arrest, and induces cell death and DNA fragmentation with the ladder appearance of apoptosis; 3) treatment of cells with catalase--and even more with Trolox C--is able to decrease their proliferative rate; 4) GGT inhibition (with suppression of H2O2 production) results in a down-regulation of poly(ADP-ribose) polimerase (PARP) activity, which precedes the proteolytic cleavage of PARP molecule, such as that typically induced by caspases. The reported data suggest that the low H2O2 levels originating as a by-product during GGT activity are able to act as sort of a 'life signal' in U937 cells, insofar as they can maintain cell proliferation and protect against apoptosis, possibly through an up-regulation of PARP activity.

  6. Long-term blue light exposure induces RGC-5 cell death in vitro: involvement of mitochondria-dependent apoptosis, oxidative stress, and MAPK signaling pathways.

    Science.gov (United States)

    Huang, Chen; Zhang, Pei; Wang, Wei; Xu, Yongsheng; Wang, Minshu; Chen, Xiaoyong; Dong, Xuran

    2014-06-01

    The mechanism of blue light-induced retinal ganglion cell (RGC) injury is poorly understood. In this study, we established a patented light-emitting diode-based system to study the effects of long-term blue light exposure under culture conditions on RGC-5 cells. Long-term blue light exposure significantly reduced cell viability in a time-dependent manner and induced apoptosis and necrosis in RGC-5 cells. Long-term blue light exposure marked an increase in the expression of Bax and active Caspase-3 (p17), which was accompanied by Bcl-2 down-regulation, and displayed features of the mitochondria-dependent apoptosis pathway. Blue light exposure also increased the generation of reactive oxygen species (ROS), and was a strong inducer of ROS-sensitive protein nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expression. Moreover, blue light exposure constitutively activated p38 mitogen-activated protein kinases and c-Jun NH2-terminal kinase (JNK), as well as induced the phosphorylation of extracellular signal-regulated kinase in the early phase, in blue light-exposed RGC-5 cells. The protein expression of c-jun and c-fos was further enhanced after RGC-5 cells were exposed to blue light. Taken together, these findings indicated that blue light induced RGC-5 cell line death in dependence upon exposure duration. The potential mechanisms for this phenomenon might be via activated mitochondria-dependent apoptosis, increased ROS production and protein expressions of Nrf2 and HO-1, and activated JNK/p38 MAPK signaling pathways.

  7. Induction of apoptosis in renal cell carcinoma by reactive oxygen species: involvement of extracellular signal-regulated kinase 1/2, p38delta/gamma, cyclooxygenase-2 down-regulation, and translocation of apoptosis-inducing factor.

    LENUS (Irish Health Repository)

    Ambrose, Monica

    2012-02-03

    Renal cell carcinoma (RCC) is the most common malignancy of the kidney. Unfortunately, RCCs are highly refractory to conventional chemotherapy, radiation therapy, and even immunotherapy. Thus, novel therapeutic targets need to be sought for the successful treatment of RCCs. We now report that 6-anilino-5,8-quinolinequinone (LY83583), an inhibitor of cyclic GMP production, induced growth arrest and apoptosis of the RCC cell line 786-0. It did not prove deleterious to normal renal epithelial cells, an important aspect of chemotherapy. To address the cellular mechanism(s), we used both genetic and pharmacological approaches. LY83583 induced a time- and dose-dependent increase in RCC apoptosis through dephosphorylation of mitogen-activated protein kinase kinase 1\\/2 and its downstream extracellular signal-regulated kinases (ERK) 1 and -2. In addition, we observed a decrease in Elk-1 phosphorylation and cyclooxygenase-2 (COX-2) down-regulation. We were surprised that we failed to observe an increase in either c-Jun NH(2)-terminal kinase or p38alpha and -beta mitogen-activated protein kinase activation. In contradiction, reintroduction of p38delta by stable transfection or overexpression of p38gamma dominant negative abrogated the apoptotic effect. Cell death was associated with a decrease and increase in Bcl-x(L) and Bax expression, respectively, as well as release of cytochrome c and translocation of apoptosis-inducing factor. These events were associated with an increase in reactive oxygen species formation. The antioxidant N-acetyl l-cysteine, however, opposed LY83583-mediated mitochondrial dysfunction, ERK1\\/2 inactivation, COX-2 down-regulation, and apoptosis. In conclusion, our results suggest that LY83583 may represent a novel therapeutic agent for the treatment of RCC, which remains highly refractory to antineoplastic agents. Our data provide a molecular basis for the anticancer activity of LY83583.

  8. Mycophenolic acid potentiates HER2-overexpressing SKBR3 breast cancer cell line to induce apoptosis: involvement of AKT/FOXO1 and JAK2/STAT3 pathways.

    Science.gov (United States)

    Aghazadeh, Safiyeh; Yazdanparast, Razieh

    2016-11-01

    Trastuzumab has been successfully used as a first-line therapy specific for HER2-overexressing breast cancer patients. However, despite the effectiveness of trastuzumab, the occurrence of inherent and acquired resistance remains as the main challenge of the therapy. Thus, this has motivated efforts toward finding new therapeutic strategies including combining trastuzumab with other drugs to enhance its therapeutic efficacy. In that line, we investigated the capability of mycophenolic acid (MPA), an inhibitor of de novo guanine nucleotide synthesis with potential anti-cancer activity, on improving the response to trastuzumab among SKBR3 cells as well as trastuzumab resistant SKBR3-TR cells. Our data indicated that irrespective to trastuzumab sensitivity of cells, MPA effectively inhibited cell growth through inducing adipocyte-like cell differentiation as well as blocking cell cycle progression at G 1 phase along with augmentation of p27 kip expression level. Furthermore, combined treatment with trastuzumab and MPA was more potent in cell growth inhibition, cell cycle arrest and apoptosis induction, as evident by flow cytometric analyses and caspase-3 production, in both trastuzumab sensitive and resistant SKBR3 cells. Besides, western blot analysis showed that elevated apoptosis induction in both cell groups was associated with attenuation in phosphorylation of some key elements of HER2 signaling pathway including AKT, ERK, STAT3 and consequently augmentation in FOXO1 expression level in response to combination of trastuzumab and MPA. These data suggest that manipulation of intracellular GTP level by MPA and consequent molecular perturbation in some of the cell survival and pro-apoptotic relevant signaling pathways might provide an alternative clinical strategy for chemosensitization of resistant breast cancer cells to anti- HER2 therapy.

  9. Involvement of apoptosis in host-parasite interactions in the zebra mussel.

    Directory of Open Access Journals (Sweden)

    Laëtitia Minguez

    Full Text Available The question of whether cell death by apoptosis plays a biological function during infection is key to understanding host-parasite interactions. We investigated the involvement of apoptosis in several host-parasite systems, using zebra mussels Dreissena polymorpha as test organisms and their micro- and macroparasites. As a stress response associated with parasitism, heat shock proteins (Hsp can be induced. In this protein family, Hsp70 are known to be apoptosis inhibitors. Mussels were diagnosed for their respective infections by standard histological methods; apoptosis was detected using the TUNEL methods on paraffin sections and Hsp70 by immunohistochemistry on cryosections. Circulating hemocytes were the main cells observed in apoptosis whereas infected tissues displayed no or few apoptotic cells. Parasitism by intracellular bacteria Rickettsiales-like and the trematode Bucephalus polymorphus were associated with the inhibition of apoptosis whereas ciliates Ophryoglena spp. or the trematode Phyllodistomum folium did not involve significant differences in apoptosis. Even if some parasites were able to modulate apoptosis in zebra mussels, we did not see evidence of any involvement of Hsp70 on this mechanism.

  10. Involvement of Apoptosis in Host-Parasite Interactions in the Zebra Mussel

    Science.gov (United States)

    Minguez, Laëtitia; Brulé, Nelly; Sohm, Bénédicte; Devin, Simon; Giambérini, Laure

    2013-01-01

    The question of whether cell death by apoptosis plays a biological function during infection is key to understanding host-parasite interactions. We investigated the involvement of apoptosis in several host-parasite systems, using zebra mussels Dreissena polymorpha as test organisms and their micro- and macroparasites. As a stress response associated with parasitism, heat shock proteins (Hsp) can be induced. In this protein family, Hsp70 are known to be apoptosis inhibitors. Mussels were diagnosed for their respective infections by standard histological methods; apoptosis was detected using the TUNEL methods on paraffin sections and Hsp70 by immunohistochemistry on cryosections. Circulating hemocytes were the main cells observed in apoptosis whereas infected tissues displayed no or few apoptotic cells. Parasitism by intracellular bacteria Rickettsiales-like and the trematode Bucephalus polymorphus were associated with the inhibition of apoptosis whereas ciliates Ophryoglena spp. or the trematode Phyllodistomum folium did not involve significant differences in apoptosis. Even if some parasites were able to modulate apoptosis in zebra mussels, we did not see evidence of any involvement of Hsp70 on this mechanism. PMID:23785455

  11. Indomethacin-Induced Apoptosis in Esophageal Adenocarcinoma Cells Involves Upregulation of Bax and Translocation of Mitochondrial Cytochrome C Independent of COX-2 Expression

    Directory of Open Access Journals (Sweden)

    Sanjeev Aggarwal

    2000-07-01

    Full Text Available The prolonged use of nonsteroidal anti-inflammatory drugs (NSAIDs has been shown to exert a chemopreventive effect in esophageal and other gastrointestinal tumors. The precise mechanism by which this occurs, however, is unknown. While the inhibition of COX-2 as a potential explanation for this chemopreventive effect has gained a great deal of support, there also exists evidence supporting the presence of cyclooxygenase-independent pathways through which NSAIDs may exert their effects. In this study, immunohistochemical analysis of 29 Barrett's epithelial samples and 60 esophageal adenocarcinomas demonstrated abundant expression of the COX-2 protein in Barrett's epithelium, but marked heterogeneity of expression in esophageal adenocarcinomas. The three esophageal adenocarcinoma cell lines, Flo-1, Bic-1, Seg-1, also demonstrated varying expression patterns for COX-1 and COX-2. Indomethacin induced apoptosis in all three cell lines, however, in both a time- and dose-dependent manner. In Flo-1 cells, which expressed almost undetectable levels of COX-1 and COX-2, in Seg-1, which expressed significant levels of COX-1 and COX-2, indomethacin caused upregulation of the pro-apoptosic protein Bax. The upregulation of Bax was accompanied by the translocation of mitochondrial cytochrome c to the cytoplasm, activation of caspase 9. Pre-treatment of both cell lines with the specific caspase 9 inhibitor, z-LEHD-FMK, as well as the broad-spectrum caspase inhibitor, z-VAD-FMK, blocked the effect of indomethacin-induced apoptosis. These data demonstrate that induction of apoptosis by indomethacin in esophageal adenocarcinoma cells is associated with the upregulation of Bax expression and mitochondrial cytochrome c translocation, does not correlate with the expression of COX-2. This may have important implications for identifying new therapeutic targets in this deadly disease.

  12. Changes of caspase activities involved in apoptosis of a macrophage-like cell line J774.1/JA-4 treated with lipopolysaccharide (LPS) and cycloheximide.

    Science.gov (United States)

    Karahashi, H; Amano, F

    2000-02-01

    The addition of lipopolysaccharide (LPS) together with cycloheximide (CHX) induced apoptosis in a subline of a J774.1 macrophage-like cell line, JA-4, as judged by terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL)-staining and poly(adenosine 5'-diphosphate (ADP)-ribose) polymerase (PARP)-cleavage. Caspase activities were examined in these macrophages in vitro using fluorogenic substrates such as acetyl-DEVD-aminomethyl coumarine (Ac-DEVD-AMC, caspase-3-like), acetyl-YVAD-aminomethyl coumarine (Ac-YVAD-AMC, caspase-1-like), acetyl-VEID-aminomethyl coumarine (Ac-VEID-AMC, caspase-6-like), and carbobenzoxy-IETD-aminofluoro coumarine (Z-IETD-AFC; caspase-8-like). Kinetic studies revealed these caspase activities with different Km and Vmax values in extracts of apoptotic macrophages. In the course of apoptosis, caspase-3-like activity increased first at 75 min, simultaneously with the appearance of TUNEL staining and prior to PARP cleavage, and then caspase-6 and 8-like activities increased at 90 and 105 min, respectively. However, caspase-1-like activity did not change throughout the experiment. Furthermore, removal of LPS and CHX by extensive washing of the cells for 60 min completely abolished the apoptosis and the subsequent release of lactate dehydrogenase (LDH) during additional incubation until 4 h after LPS addition. However, washing of the cells after 75 min or later resulted in the progress of apoptosis and LDH release, which was coordinated with the elevation of caspase-3-like activity at 60 min and that of caspase-6 or 8-like activity at 90 min, but not with that of caspase-1-like activity. These results suggest that caspase-3-like activity represents the most apical caspase among these caspases in terms of the intiation of apoptosis in macrophages treated with LPS and CHX. In the present study, we also provide evidence on the relatively low specificities of a series of caspase inhibitors other

  13. Inhibition of CUG-binding protein 1 and activation of caspases are critically involved in piperazine derivative BK10007S induced apoptosis in hepatocellular carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Ju-Ha Kim

    Full Text Available Though piperazine derivative BK10007S was known to induce apoptosis in pancreatic cancer xenograft model as a T-type CaV3.1 a1G isoform calcium channel blocker, its underlying antitumor mechanism still remains unclear so far. Thus, in the present study, the antitumor mechanism of BK10007S was elucidated in hepatocellular carcinoma cells (HCCs. Herein, BK10007S showed significant cytotoxicity by 3-[4,5-2-yl]-2,5-diphenyltetra-zolium bromide (MTT assay and anti-proliferative effects by colony formation assay in HepG2 and SK-Hep1 cells. Also, apoptotic bodies and terminal deoxynucleotidyl transferase (TdT dUTP Nick End Labeling (TUNEL positive cells were observed in BK10007S treated HepG2 and SK-Hep1 cells by 4',6-diamidino-2-phenylinodole (DAPI staining and TUNEL assay, respectively. Consistently, BK10007S increased sub G1 population in HepG2 and SK-Hep1 cells by cell cycle analysis. Furthermore, Western blotting revealed that BK10007S activated the caspase cascades (caspase 8, 9 and 3, cleaved poly (ADP-ribose polymerase (PARP, and downregulated the expression of cyclin D1, survivin and for CUG-binding protein 1 (CUGBP1 or CELF1 in HepG2 and SK-Hep1 cells. Conversely, overexpression of CUGBP1 reduced cleavages of PARP and caspase 3, cytotoxicity and subG1 population in BK10007S treated HepG2 cells. Overall, these findings provide scientific evidences that BK10007S induces apoptosis via inhibition of CUGBP1 and activation of caspases in hepatocellular carcinomas as a potent anticancer candidate.

  14. Sulforaphane induces apoptosis in T24 human urinary bladder cancer cells through a reactive oxygen species-mediated mitochondrial pathway: the involvement of endoplasmic reticulum stress and the Nrf2 signaling pathway.

    Science.gov (United States)

    Jo, Guk Heui; Kim, Gi-Young; Kim, Wun-Jae; Park, Kun Young; Choi, Yung Hyun

    2014-10-01

    Sulforaphane, a naturally occurring isothiocyanate found in cruciferous vegetables, has received a great deal of attention because of its ability to inhibit cell proliferation and induce apoptosis in cancer cells. In this study, we investigated the anticancer activity of sulforaphane in the T24 human bladder cancer line, and explored its molecular mechanism of action. Our results showed that treatment with sulforaphane inhibited cell viability and induced apoptosis in T24 cells in a concentration-dependent manner. Sulforaphane-induced apoptosis was associated with mitochondria dysfunction, cytochrome c release and Bcl-2/Bax dysregulation. Furthermore, the increased activity of caspase-9 and -3, but not caspase-8, was accompanied by the cleavage of poly ADP-ribose polymerase, indicating the involvement of the mitochondria-mediated intrinsic apoptotic pathway. Concomitant with these changes, sulforaphane triggered reactive oxygen species (ROS) generation, which, along with the blockage of sulforaphane-induced loss of mitochondrial membrane potential and apoptosis, was strongly attenuated by the ROS scavenger N-acetyl-L-cysteine. Furthermore, sulforaphane was observed to activate endoplasmic reticulum (ER) stress and the nuclear factor-E2-related factor-2 (Nrf2) signaling pathway, as demonstrated by the upregulation of ER stress‑related proteins, including glucose-regulated protein 78 and C/EBP-homologous protein, and the accumulation of phosphorylated Nrf2 proteins in the nucleus and induction of heme oxygenase-1 expression, respectively. Taken together, these results demonstrate that sulforaphane has antitumor effects against bladder cancer cells through an ROS-mediated intrinsic apoptotic pathway, and suggest that ER stress and Nrf2 may represent strategic targets for sulforaphane-induced apoptosis.

  15. PRR7 Is a transmembrane adaptor protein expressed in activated T cells involved in regulation of T cell receptor signaling and apoptosis

    Czech Academy of Sciences Publication Activity Database

    Hrdinka, Matouš; Dráber, Peter; Štěpánek, Ondřej; Ormsby, Tereza; Otáhal, Pavel; Angelisová, Pavla; Brdička, Tomáš; Pačes, Jan; Hořejší, Václav; Drbal, Karel

    2011-01-01

    Roč. 286, č. 22 (2011), s. 19617-19629 ISSN 0021-9258 R&D Projects: GA MŠk 1M0506 Grant - others:GAČR(CZ) MEM/09/E011 Institutional research plan: CEZ:AV0Z50520514 Keywords : PRR7 * transmembrane adaptor protein * apoptosis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.773, year: 2011

  16. Hexavalent chromium-induced apoptosis of granulosa cells involves selective sub-cellular translocation of Bcl-2 members, ERK1/2 and p53

    International Nuclear Information System (INIS)

    Banu, Sakhila K.; Stanley, Jone A.; Lee, JeHoon; Stephen, Sam D.; Arosh, Joe A.; Hoyer, Patricia B.; Burghardt, Robert C.

    2011-01-01

    Hexavalent chromium (CrVI) has been widely used in industries throughout the world. Increased usage of CrVI and atmospheric emission of CrVI from catalytic converters of automobiles, and its improper disposal causes various health hazards including female infertility. Recently we have reported that lactational exposure to CrVI induced a delay/arrest in follicular development at the secondary follicular stage. In order to investigate the underlying mechanism, primary cultures of rat granulosa cells were treated with 10 μM potassium dichromate (CrVI) for 12 and 24 h, with or without vitamin C pre-treatment for 24 h. The effects of CrVI on intrinsic apoptotic pathway(s) were investigated. Our data indicated that CrVI: (i) induced DNA fragmentation and increased apoptosis, (ii) increased cytochrome c release from the mitochondria to cytosol, (iii) downregulated anti-apoptotic Bcl-2, Bcl-XL, HSP70 and HSP90; upregulated pro-apoptotic BAX and BAD, (iv) altered translocation of Bcl-2, Bcl-XL, BAX, BAD, HSP70 and HSP90 to the mitochondria, (v) upregulated p-ERK and p-JNK, and selectively translocated p-ERK to the mitochondria and nucleus, (vi) activated caspase-3 and PARP, and (vii) increased phosphorylation of p53 at ser-6, ser-9, ser-15, ser-20, ser-37, ser-46 and ser-392, increased p53 transcriptional activation, and downregulated MDM-2. Vitamin C pre-treatment mitigated CrVI effects on apoptosis and related pathways. Our study, for the first time provides a clear insight into the effect of CrVI on multiple pathways that lead to apoptosis of granulosa cells which could be mitigated by vitamin C.

  17. Apoptosis in inner ear sensory hair cells

    Directory of Open Access Journals (Sweden)

    Seth Morrill

    2017-12-01

    Full Text Available Apoptosis, or controlled cell death, is a normal part of cellular lifespan. Cell death of cochlear hair cells causes deafness; an apoptotic process that is not well understood. Worldwide, 1.3 billion humans suffer some form of hearing loss, while 360 million suffer debilitating hearing loss as a direct result of the absence of these cochlear hair cells (Worldwide Hearing, 2014. Much is known about apoptosis in other systems and in other cell types thanks to studies done since the mid-20th century. Here we review current literature on apoptosis in general, and causes of deafness and cochlear hair cells loss as a result of apoptosis. The family of B-cell lymphoma (Bcl proteins are among the most studied and characterized. We will review current literature on the Bcl2 and Bcl6 protein interactions in relation to apoptosis and their possible roles in vulnerability and survival of cochlear hair cells.

  18. Activation of Stat-3 is involved in the induction of apoptosis after ligation of major histocompatibility complex class I molecules on human Jurkat T cells

    DEFF Research Database (Denmark)

    Skov, S; Nielsen, M; Bregenholt, S

    1998-01-01

    Activation of Janus tyrosine kinases (Jak) and Signal transducers and activators of transcription (Stat) after ligation of major histocompatibility complex class I (MHC-I) was explored in Jurkat T cells. Cross-linking of MHC-I mediated tyrosine phosphorylation of Tyk2, but not Jak1, Jak2, and Jak3......-probe derived from the interferon-gamma activated site (GAS) in the c-fos promoter, a common DNA sequence for Stat protein binding. An association between hSIE and Stat-3 after MHC-I ligation was directly demonstrated by precipitating Stat-3 from nuclear extracts with biotinylated hSIE probe and avidin......-coupled agarose. To investigate the function of the activated Stat-3, Jurkat T cells were transiently transfected with a Stat-3 isoform lacking the transactivating domain. This dominant-negative acting Stat-3 isoform significantly inhibited apoptosis induced by ligation of MHC-I. In conclusion, our data suggest...

  19. Involvement of Transient Receptor Potential Melastatin 7 Channels in Sophorae Radix-induced Apoptosis in Cancer Cells - Sophorae Radix and TRPM7 -

    Directory of Open Access Journals (Sweden)

    Kim Byung Joo

    2012-09-01

    Full Text Available Objective:Sophorae Radix (SR plays a role in a number of physiologic and pharmacologic functions in many organs. Methods:The aim of this study was to clarify the potential role for transient receptor potential melastatin 7 (TRPM7 channels in SR-inhibited growth and survival of AGS and MCF-7 cells, the most common human gastric and breast adenocarcinoma cell lines. Results:The AGS and the MCF-7 cells were treated with varying concentrations of SR. Analyses of the caspase-3 and - 9 activity, the mitochondrial depolarization and the poly (ADPribose polymerase (PARP cleavage were conducted to determine if AGS and MCF-7 cell death occured by apoptosis. TRPM7 channel blockers (Gd3+ or 2-APB and small interfering RNA (siRNA were used in this study to confirm the role of TRPM7 channels. Furthermore, TRPM7 channels were overexpressed in human embryonic kidney (HEK 293 cells to identify the role of TRPM7 channels in AGS and MCF-7 cell growth and survival. Conclusions:The addition of SR to a culture medium inhibited AGS and MCF-7 cell growth and survival. Experimental results showed that the caspase-3 and -9 activity, the mitochondrial depolarization, and the degree of PARP cleavage was increased. TRPM7 channel blockade, either by Gd3+ or 2-APB or by suppressing TRPM7 expression with small interfering RNA, blocked the SR-induced inhibition of cell growth and survival. Furthermore, TRPM7 channel overexpression in HEK 293 cells exacerbated SR-induced cell death. These findings indicate that SR inhibits the growth and survival of gastric and breast cancer cells due to a blockade of the TRPM7 channel activity. Therefore, TRPM7 channels may play an important role in the survival of patients with gastric and breast cancer.

  20. Apoptosis transcriptional mechanism of feline infectious peritonitis virus infected cells.

    Science.gov (United States)

    Shuid, Ahmad Naqib; Safi, Nikoo; Haghani, Amin; Mehrbod, Parvaneh; Haron, Mohd Syamsul Reza; Tan, Sheau Wei; Omar, Abdul Rahman

    2015-11-01

    Apoptosis has been postulated to play an important role during feline infectious peritonitis virus (FIPV) infection; however, its mechanism is not well characterized. This study is focused on apoptosis and transcriptional profiling of FIPV-infected cells following in vitro infection of CRFK cells with FIPV 79-1146 WSU. Flow cytometry was used to determine mode of cell death in first 42 h post infection (hpi). FIPV infected cells underwent early apoptosis at 9 hpi (p apoptosis at 12 hpi (p apoptosis cluster (80 down-regulated and 51 up-regulated) along with increase of apoptosis, p53, p38 MAPK, VEGF and chemokines/cytokines signaling pathways were probably involved in apoptosis process. Six of the de-regulated genes expression (RASSF1, BATF2, MAGEB16, PDCD5, TNFα and TRAF2) and TNFα protein concentration were analyzed by RT-qPCR and ELISA, respectively, at different time-points. Up-regulations of both pro-apoptotic (i.e. PDCD5) and anti-apoptotic (i.e. TRAF2) were detected from first hpi and continuing to deregulate during apoptosis process in the infected cells.

  1. Involvement of an aldo-keto reductase (AKR1C3) in redox cycling of 9,10-phenanthrenequinone leading to apoptosis in human endothelial cells.

    Science.gov (United States)

    Matsunaga, Toshiyuki; Arakaki, Marina; Kamiya, Tetsuro; Endo, Satoshi; El-Kabbani, Ossama; Hara, Akira

    2009-09-14

    9,10-Phenanthrenequinone (9,10-PQ), a major quinone found in diesel exhaust particles, is considered to generate reactive oxygen species (ROS) through its redox cycling. Here, we show that 9,10-PQ evokes apoptosis in human aortic endothelial cells (HAECs) and its apoptotic signaling includes ROS generation and caspase activation. The 9,10-PQ-induced cytotoxicity was inhibited by ROS scavengers, indicating that intracellular ROS generation is responsible for the 9,10-PQ-induced apoptosis. Comparison of mRNA expression levels and kinetic constants in the 9,10-PQ reduction among 10 human reductases suggests that aldo-keto reductase 1C3 (AKR1C3) is a 9,10-PQ reductase in HAECs. In in vitro 9,10-PQ reduction by AKR1C3, the reduced product 9,10-dihydroxyphenanthrene and superoxide anions were formed, suggesting the enzymatic two-electron reduction of 9,10-PQ that thereby causes oxidative stress through its redox cycling. In addition, the participation of AKR1C3 in 9,10-PQ-redox cycling was confirmed by the data that AKR1C3 overexpression in endothelial cells augmented the ROS generation and cytotoxicity by 9,10-PQ, and the ROS scavengers inhibited the toxic effects. Pretreatment of the overexpressing cells with AKR1C3 inhibitors, flufenamic acid and indomethacin, suppressed the 9,10-PQ-induced GSH depletion. These results suggest that AKR1C3 is a key enzyme in the initial step of 9,10-PQ-induced cytotoxicity in HAECs.

  2. Glycolaldehyde induces endoplasmic reticulum stress and apoptosis in Schwann cells

    Directory of Open Access Journals (Sweden)

    Keisuke Sato

    2015-01-01

    Full Text Available Schwann cell injury is caused by diabetic neuropathy. The apoptosis of Schwann cells plays a pivotal role in diabetic nerve dysfunction. Glycolaldehyde is a precursor of advanced glycation end products that contribute to the pathogenesis of diabetic neuropathy. In this study, we examined whether glycolaldehyde induces endoplasmic reticulum (ER stress and apoptosis in rat Schwann cells. Schwann cells treated with 500 μM glycolaldehyde showed morphological changes characteristic of apoptosis. Glycolaldehyde activated apoptotic signals, such as caspase-3 and caspase-8. Furthermore, it induced ER stress response involving RNA-dependent protein kinase-like ER kinase (PERK, inositol-requiring ER-to-nucleus signal kinase 1α (IRE1α, and eukaryotic initiation factor 2α (eIF2α. In addition, glycolaldehyde activated CCAAT/enhancer-binding homologous protein (CHOP, an ER stress response factor crucial to executing apoptosis. Knockdown of nuclear factor E2-related factor 2 (Nrf2, which is involved in the promotion of cell survival following ER stress, enhanced glycolaldehyde-induced cytotoxicity, indicating that Nrf2 plays a protective role in the cytotoxicity caused by glycolaldehyde. Taken together, these findings indicate that glycolaldehyde is capable of inducing apoptosis and ER stress in Schwann cells. The ER stress induced by glycolaldehyde may trigger the glycolaldehyde-induced apoptosis in Schwann cells. This study demonstrated for the first time that glycolaldehyde induced ER stress.

  3. Curcumin-induced apoptosis in ovarian carcinoma cells is p53-independent and involves p38 mitogen-activated protein kinase activation and downregulation of Bcl-2 and survivin expression and Akt signaling.

    Science.gov (United States)

    Watson, Jane L; Greenshields, Anna; Hill, Richard; Hilchie, Ashley; Lee, Patrick W; Giacomantonio, Carman A; Hoskin, David W

    2010-01-01

    New cytotoxic agents are urgently needed for the treatment of advanced ovarian cancer because of the poor long-term response of this disease to conventional chemotherapy. Curcumin, obtained from the rhizome of Curcuma longa, has potent anticancer activity; however, the mechanism of curcumin-induced cytotoxicity in ovarian cancer cells remains a mystery. In this study we show that curcumin exhibited time- and dose-dependent cytotoxicity against monolayer cultures of ovarian carcinoma cell lines with differing p53 status (wild-type p53: HEY, OVCA429; mutant p53: OCC1; null p53: SKOV3). In addition, p53 knockdown or p53 inhibition did not diminish curcumin killing of HEY cells, confirming p53-independent cytotoxicity. Curcumin also killed OVCA429, and SKOV3 cells grown as multicellular spheroids. Nuclear condensation and fragmentation, as well as DNA fragmentation and poly (ADP-ribose) polymerase-1 cleavage in curcumin-treated HEY cells, indicated cell death by apoptosis. Procaspase-3, procaspase-8, and procaspase-9 cleavage, in addition to cytochrome c release and Bid cleavage into truncated Bid, revealed that curcumin activated both the extrinsic and intrinsic pathways of apoptosis. Bax expression was unchanged but Bcl-2, survivin, phosphorylated Akt (on serine 473), and total Akt were downregulated in curcumin-treated HEY cells. Curcumin also activated p38 mitogen-activated protein kinase (MAPK) without altering extracellular signal-regulated kinase 1/2 activity. We conclude that p53-independent curcumin-induced apoptosis in ovarian carcinoma cells involves p38 MAPK activation, ablation of prosurvival Akt signaling, and reduced expression of the antiapoptotic proteins Bcl-2 and survivin. These data provide a mechanistic rationale for the potential use of curcumin in the treatment of ovarian cancer. 2009 Wiley-Liss, Inc.

  4. Involvement of NF-κB and HSP70 signaling pathways in the apoptosis of MDA-MB-231 cells induced by a prenylated xanthone compound, α-mangostin, from Cratoxylum arborescens [Corrigendum] [Retraction

    Directory of Open Access Journals (Sweden)

    Ibrahim MY

    2018-03-01

    Full Text Available Ibrahim MY, Hashim NM, Mohan S, et al. Involvement of NF-κB and HSP70 signaling pathways in the apoptosis of MDA-MB-231 cells induced by a prenylated xanthone compound, α-mangostin, from Cratoxylum arborescens [Corrigendum]. Drug Des Devel Ther. 2015;9:3001–3002 was published subsequent to Ibrahim MY, Hashim NM, Mohan S, et al, Involvement of NF-ΚB and HSP70 signaling pathways in the apoptosis of MDA-MB-231 cells induced by a prenylated xanthone compound, α-mangostin, from Cratoxylum arborescens. Drug Des Devel Ther. 2014;8:2193–2211, and Ibrahim MY, Hashim NM, Mohan S, et al, α-Mangostin from Cratoxylum arborescens demonstrates apoptogenesis in MCF-7 with regulation of NF-κB and Hsp70 protein modulation in vitro, and tumor reduction in vivo. Drug Des Devel Ther. 2014;8:1629–1647.When comparing the papers it becomes apparent that they have an unacceptably high degree of similarity and re-use. Further, there is no clear scientific distinction between the cell lines and the results in both. Accordingly, the Editor-in-Chief and Publisher issued a Notice of Retraction for Ibrahim MY, Hashim NM, Mohan S, et al, Involvement of NF-ΚB and HSP70 signaling pathways in the apoptosis of MDA-MB-231 cells induced by a prenylated xanthone compound, α-mangostin, from Cratoxylum arborescens. Drug Des Devel Ther. 2014;8:2193–2211 and the subsequent Corrigendum. This retraction relates to this Corrigendum 

  5. Involvement of NF-?B and HSP70 signaling pathways in the apoptosis of MDA-MB-231 cells induced by a prenylated xanthone compound, ?-mangostin, from Cratoxylum arborescens [Retraction

    OpenAIRE

    2017-01-01

    Ibrahim MY, Hashim NM, Mohan S, et al. Involvement of NF-κB and HSP70 signaling pathways in the apoptosis of MDA-MB-231 cells induced by a prenylated xanthone compound, α-mangostin, from Cratoxylum arborescens. Drug Design, Development and Therapy. 2014;8:2193–2211 was published subsequent to Ibrahim MY, Hashim NM, Mohan S, et al. α-Mangostin from Cratoxylum arborescens demonstrates apoptogenesis in MCF-7 with regulation of NF-κB and Hsp70 pro...

  6. Cathepsin B is involved in the heat shock induced cardiomyocytes apoptosis as well as the anti-apoptosis effect of HSP-70.

    Science.gov (United States)

    Hsu, Shu-Fen; Hsu, Chuan-Chih; Cheng, Bor-Chih; Lin, Cheng-Hsien

    2014-11-01

    Cathepsin B is one of the major lysosomal cysteine proteases that plays an important role in apoptosis. Herein, we investigated whether Cathepsin B is involved in cardiomyocyte apoptosis caused by hyperthermic injury (HI) and heat shock protein (HSP)-70 protects these cells from HI-induced apoptosis mediated by Cathepsin. HI was produced in H9C2 cells by putting them in a circulating 43 °C water bath for 120 min, whereas preinduction of HSP-70 was produced in H9C2 cells by mild heat preconditioning (or putting them in 42 °C water bath for 30 min) 8 h before the start of HI. It was found that HI caused both cardiomyocyte apoptosis and increased Cathepsin B activity in H9C2 cells. E-64-c, in addition to reducing Cathepsin B activity, significantly attenuated HI-induced cardiomyocyte apoptosis (evidenced by increased apoptotic cell numbers, increased tuncated Bid (t-Bid), increased cytochrome C, increased caspase-9/-3, and decreased Bcl-2/Bax) in H9C2 cells. In addition, preinduction of HSP-70 by mild heat preconditioning or inhibition of HSP-70 by Tripolide significantly attenuated or exacerbated respectively both the cardiomyocyte apoptosis and increased Cathepsin B activity in H9C2 cells. Furthermore, the beneficial effects of pre-induction of HSP-70 by mild heat production in reducing both cardiomyocyte apoptosis and increased Cathepsin B activity caused by HI can be significantly reduced by Triptolide preconditioning. These results indicate that Cathepsin B is involved in HI-induced cardiomyocyte apoptosis in H9C2 cells and HSP-70 protects these cells from HI-induced cardiomyocyte apoptosis through Cathepsin B pathways.

  7. Involvement of Prohibitin Upregulation in Abrin-Triggered Apoptosis

    Directory of Open Access Journals (Sweden)

    Yu-Huei Liu

    2012-01-01

    Full Text Available Abrin (ABR, a protein purified from the seeds of Abrus precatorius, induces apoptosis in various types of cancer cells. However, the detailed mechanism remains largely uncharacterized. By using a cDNA microarray platform, we determined that prohibitin (PHB, a tumor suppressor protein, is significantly upregulated in ABR-triggered apoptosis. ABR-induced upregulation of PHB is mediated by the stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK pathway, as demonstrated by chemical inhibitors. In addition, ABR significantly induced the expression of Bax as well as the activation of caspase-3 and poly(ADP-ribose polymerase (PARP in Jurkat T cells, whereas the reduction of PHB by specific RNA interference delayed ABR-triggered apoptosis through the proapoptotic genes examined. Moreover, our results also indicated that nuclear translocation of the PHB-p53 complex may play a role in the transcription of Bax. Collectively, our data show that PHB plays a role in ABR-induced apoptosis, which may be helpful for the development of diagnostic or therapeutic agents.

  8. Induction of apoptosis by eugenol in human breast cancer cells

    International Nuclear Information System (INIS)

    Vidhya, N.; Niranjali Devaraj, S.

    2011-01-01

    In the present study, potential anticancer effect of eugenol on inhibition of cell proliferation and induction of apoptosis in human MCF-7 breast cancer cells was investigated. Induction of cell death by eugenol was evaluated following MTT assay and monitoring lactate dehydrogenase released into the culture medium for cell viability and cytotoxicity, giemsa staining for morphological alterations, fluorescence microscopy analysis of cells using ethidium bromide and acridine orange and quantitation of DNA fragments for induction of apoptosis. Effect of eugenol on intracellular redox status of the human breast cancer cells was assessed by determining the level of glutathione and lipid peroxidation products (TBARS). Eugenol treatment inhibited the growth and proliferation of human MCF-7 breast cancer cells through induction of cell death, which was dose and time dependent. Microscopic examination of eugenol treated cells showed cell shrinkage, membrane blebbing and apoptotic body formation. Further, eugenol treatment also depleted the level of intracellular glutathione and increased the level of lipid peroxidation. The dose dependent increase in the percentage of apoptotic cells and DNA fragments suggested that apoptosis was involved in eugenol induced cell death and apoptosis might have played a role in the chemopreventive action of eugenol. (author)

  9. IRE1α-TRAF2-ASK1 pathway is involved in CSTMP-induced apoptosis and ER stress in human non-small cell lung cancer A549 cells.

    Science.gov (United States)

    Zhang, Jiexia; Liang, Ying; Lin, Yongbin; Liu, Yuanbin; YouYou; Yin, Weiqiang

    2016-08-01

    CSTMP, a Tetramethylpyrazine (TMP) analogue, is designed and synthesized based on the pharmacophores of TMP and resveratrol. Recent studies showed that CSTMP had strong protective effects in endothelial cells apoptosis by its anti-oxidant activity. However, the pharmacological function of CSTMP in cancer have not been elucidated to date. The objective of this study was to investigate the anti-cancer effect of CSTMP against human non-small cell lung cancer (NSCLC) A549 cells and the underlying mechanisms. The cell proliferation and apoptosis were detected by MTT assay and flow cytometry. Caspases activity was determined spectrophotometricaly at 405nm using a microtiter plate reader. Western blot and real-time PCR was used to assess the protein and mRNA expression. Immunoprecipitation was used to examine the protein-protein interactions. CSTMP inhibited the proliferation and induced cell cycle arrest and apoptosis of A549 cells. Caspase3, 8, 9 and PARP-1 activation, and Bax/Bcl-2 ratio analyses demonstrated that the anti-cancer effect of CSTMP in A549 cells was mediated by promoting caspase- and mitochondria-dependent apoptosis. Furthermore, CSTMP induced ER stress in A549 cells as evidenced by elevated levels of GRP78, GRP94, CHOP, IRE1α, TRAF2, p-ASK1 and p-JNK, activation of caspase12 and 4, and enhanced formation of an IRE1α-TRAF2-ASK1 complex. Knockdown of IRE1α by siRNA suppressed activation of IRE1α, TRAF2, p-ASK1 and p-JNK in CSTMP treated A549 cells. In addition, the effects of CSTMP on the formation of an IRE1α-TRAF2-ASK1 complex, caspase- and mitochondria-dependent apoptosis were also reversed by IRE1α siRNA in A549 cells. Collectively, we showed that CSTMP induced apoptosis of A549 cells were through IRE1α-TRAF2-ASK1 complex-mediated ER stress, JNK activation, and mitochondrial dysfunction. These insights on this novel compound CSTMP may provide a novel anti-cancer candidate for the treatment of NSCLC. Copyright © 2016 Elsevier Masson SAS. All

  10. Involvement of NF-ΚB and HSP70 signaling pathways in the apoptosis of MDA-MB-231 cells induced by a prenylated xanthone compound, α-mangostin, from Cratoxylum arborescens

    Directory of Open Access Journals (Sweden)

    Ibrahim MY

    2014-11-01

    the role of the central apoptosis-related proteins, a protein array followed by immunoblot analysis was conducted. Moreover, the involvement of nuclear factor-kappa B (NF-ΚB was also analyzed. Results: Apoptosis was confirmed by the apoptotic cells stained with annexin V and increase in chromatin condensation in nucleus. Treatment of cells with AM promoted cell death-transducing signals that reduced MMP by downregulation of Bcl-2 and upregulation of Bax, triggering cytochrome c release from the mitochondria to the cytosol. The released cytochrome c triggered the activation of caspase-9 followed by the executioner caspase-3/7 and then cleaved the PARP protein. Increase of caspase-8 showed the involvement of extrinsic pathway. AM treatment significantly arrested the cells at the S phase (P<0.05 concomitant with an increase in reactive oxygen species. The protein array and Western blotting demonstrated the expression of HSP70. Moreover, AM significantly blocked the induced translocation of NF-ΚB from cytoplasm to nucleus. Conclusion: Together, the results demonstrate that the AM isolated from C. arborescens inhibited the proliferation of MDA-MB-231 cells, leading to cell cycle arrest and programmed cell death, which was suggested to occur through both the extrinsic and intrinsic apoptosis pathways with involvement of the NF-ΚB and HSP70 signaling pathways. Keywords: mitochondria, protein array, caspase-3/7

  11. Identification of miR-508-3p and miR-509-3p that are associated with cell invasion and migration and involved in the apoptosis of renal cell carcinoma

    International Nuclear Information System (INIS)

    Zhai, Qingna; Zhou, Liang; Zhao, Chunjuan; Wan, Jun; Yu, Zhendong; Guo, Xin; Qin, Jie; Chen, Jing; Lu, Ruijing

    2012-01-01

    Highlights: ► Previous method was the second-generation sequencing technology. ► miR-508-3p and miR-509-3p were significantly down-regulated in RCC tissues. ► They can inhibit cell proliferation and migration and promote cell apoptosis. ► The expression of miR-508-3p was significantly decreased in RCC patients plasma. ► miR-508-3p may be a novel diagnostic marker of RCC. -- Abstract: MicroRNAs (miRNAs) have emerged as powerful regulators of multiple processes linked to human cancer, including cell apoptosis, proliferation and migration, suggesting that the regulation of miRNA function could play a critical role in cancer progression. Recent studies have found that human serum/plasma contains stably expressed miRNAs. If they prove indicative of disease states, miRNAs measured from peripheral blood samples may be a source for routine clinical detection of cancer. Our studies showed that both miR-508-3p and miR-509-3p were down-regulated in renal cancer tissues. The level of miR-508-3p but not miR-509-3p in renal cell carcinoma (RCC) patient plasma demonstrated significant differences from that in control plasma. In addition, the overexpression of miR-508-3p and miR-509-3p suppressed the proliferation of RCC cells (786-0), induced cell apoptosis and inhibited cell migration in vitro. Our data demonstrated that miR-508-3p and miR-509-3p played an important role as tumor suppressor genes during tumor formation and that they may serve as novel diagnostic markers for RCC.

  12. Kelussia odoratissima Mozaff. activates intrinsic pathway of apoptosis in breast cancer cells associated with S phase cell cycle arrest via involvement of p21/p27 in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Karimian H

    2017-02-01

    Full Text Available Hamed Karimian,1 Aditya Arya,2 Mehran Fadaeinasab,3 Mahboubeh Razavi,1 Maryam Hajrezaei,4 Ataul Karim Khan,1 Hapipah Mohd Ali,3 Mahmood Ameen Abdulla,4 Mohamad Ibrahim Noordin1,5 1Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, 2School of Medicine, Taylor’s University, Subang Jaya, 3Centre for Natural Products Research and Drug Discovery, 4Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, 5Malaysian Institute of Pharmaceuticals and Nutraceuticals (IPharm, Pulau Pinang, Malaysia Background: The aim of this study was to evaluate the anticancer potential of Kelussia odoratissima. Several in vitro and in vivo biological assays were applied to explore the direct effect of an extract and bioactive compound of this plant against breast cancer cells and its possible mechanism of action. Materials and methods: K. odoratissima methanol extract (KME was prepared, and MTT assay was used to evaluate the cytotoxicity. To identify the cytotoxic compound, a bioassay-guided investigation was performed on methanol extract. 8-Hydroxy-ar-turmerone was isolated as a bioactive compound. In vivo study was performed in the breast cancer rat model. LA7 cell line was used to induce the breast tumor. Histopathological and expression changes of PCNA, Bcl-2, Bax, p27 and p21 and caspase-3 were examined. The induction of apoptosis was tested using Annexin V-fluorescein isothiocyanate (FITC assay. To confirm the intrinsic pathway of apoptosis, caspase-7 and caspase-9 assays were utilized. In addition, cell cycle arrest was evaluated. Results: Our results demonstrated that K. odoratissima has an obvious effect on the arrest of proliferation of cancer cells. It induced apoptosis, transduced the cell death signals, decreased the threshold of mitochondrial membrane potential (MMP, upregulated Bax and downregulated Bcl-2. Conclusion: This study demonstrated that K. odoratissima exhibits antitumor activity

  13. Apple polysaccharides induce apoptosis in colorectal cancer cells.

    Science.gov (United States)

    Zhang, Dian; Sun, Yang; Yue, Zhenggang; Li, Qian; Meng, Jin; Liu, Junajuan; Hekong, Xiang; Jiang, Fengliang; Mi, Man; Liu, Li; Mei, Qibing

    2012-07-01

    Certain components of apples have been shown to prevent cancer growth and impede cancer progression. We hypothesized that extracted apple polysaccharides (APs) might, therefore, have anticancer effects, through a mechanism involving the induction of apoptosis in cancer cells, partly via the NF-κB pathway. Two human colorectal cancer (CRC) cell lines, HT-29 and SW620, were exposed to different concentrations of APs (0.01, 0.1 or 1 mg/ml). Cell apoptosis was measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay by flow cytometry and incorporation of 5'-bromodeoxyuridine (BrdU) into DNA to identify the proliferating cell fraction, using fluorescence microscopy in vitro. The protein levels of NF-κB/p65, I-κBα, pI-κBα, Bax, Bcl-xl and Bcl-2 were evaluated by western blotting. The target sites of APs on CRC cells were assessed by flow cytometry. At concentrations of 0.1 and 1 mg/ml, APs showed apoptosis-inducing effects, increased expressions of Bax, nuclear p65 and cytoplasmic pI-κBα, and decreased expressions of Bcl-2, Bcl-xl and cytoplasmic I-κBα. APs induced apoptosis by slightly activating the NF-κB pathway; the AP target site could be the Toll-like receptor 4 on the cell membrane. These results demonstrate the potential of APs as agents for clinical prevention and treatment of CRC.

  14. Cell cycle and apoptosis genes in atherosclerosis

    NARCIS (Netherlands)

    Boesten, Lianne Simone Mirjam

    2006-01-01

    The work described in this thesis was aimed at identifying the role of cell cycle and apoptosis genes in atherosclerosis. Atherosclerosis is the primary cause of cardiovascular disease, a disorder occurring in the large and medium-sized arteries of the body. Although in the beginning 90s promising

  15. Apoptosis may involve in prenatally heroin exposed neurobehavioral teratogenicity?

    Science.gov (United States)

    Ying, Wang; Jang, Farhan Fateh; Teng, Chen; Tai-Zhen, Han

    2009-12-01

    Heroin abuse during pregnancy is a serious problem worldwide. Among all the illicit drugs, heroin is known as the most commonly abused opioid in the United States and China. Most women addicts are of child-bearing age. Heroin abuse during pregnancy, together with related factors like poor nutrition and inadequate maternal care, has been associated with adverse consequences including developmental delay of the offspring and their neurobehavioral teratogenicity. Researchers have done a lot of work to focus mainly on the variation of neurobehavior and its related factors such as the changes of neurotransmitters, receptors and involvement of the limited brain regions, but no one clearly and comprehensively explain the possible mechanism that may participate in the neurobehavioral teratogenicity induced by prenatal heroin exposure. Studies on animals have shown that heroin is a common neuroteratogen which can produce neurobehavioral defects. There must be some underlying mechanisms in the central nervous system which may take part in these defects. We hypothesized that the alterations in developmental apoptosis during embryogenesis could be one of the possible mechanisms which can cause neurobehavioral teratogenicity in prenatally heroin exposed offspring. Heroin is believed to pass through the placenta and blood-brain barrier much more rapidly than morphine due to the presence of acetyl groups and affects the developing brain. So far, it still remains obscure that whether the apoptosis in a particular brain region induced by heroin exposure in uterus is involved in neurobehavioral teratogenicity. Our hypothesis perhaps provides a more logical and possible explanation of the mechanism responsible for neurobehavioral teratogenicity caused by the prenatal heroin exposure during embryonic development. It can help to develop appropriate experimental animal models to understand the detailed mechanisms involved.

  16. Xylodiol from Xylopia langsdorfiana induces apoptosis in HL60 cells

    Directory of Open Access Journals (Sweden)

    Marianna Vieira S. Castello-Branco

    2011-08-01

    Full Text Available An atisane diterpene was isolated from Xylopia langsdorfiana St. Hilaire & Tulasne, Annonaceae, leaves, ent-atisane-7α,16α-diol (xylodiol. Preliminary study showed that xylodiol was cytotoxic and induced differentiation on human leukemia cell lines. However, the molecular mechanisms of xylodiol-mediated cytotoxicity have not been fully defined. Thus, we investigated the anti-tumor effect of xylodiol in human leukemia HL60 cell line. Xylodiol induced apoptosis and necrosis. HL60 cells treated with xylodiol showed biochemical changes characteristic of apoptosis, including caspases-8, -9 and -3 activation and loss of mitochondrial transmembrane potential (∆ Ψm. However, there was a condensation rather than swelling of mitochondria. Moreover, the formation of condensed mitochondria and the loss of ∆ Ψm occurred downstream of caspase activation. Cyclosporine A did not protect HL60 cells from the cytotoxic effects of xylodiol, suggesting that the loss of ∆ Ψm is a late event in xylodiol-induced apoptosis. Oxidative stress was involved in xylodiol-induced apoptosis. Thus, we conclude that activated caspases cleave cellular proteins resulting in mitochondrial damage leading to mitochondrial condensation, loss of ∆ Ψm and ROS release from the mitochondria. ROS can further induce and maintain a collapse of ∆ Ψm leading to cellular damage through oxidation of lipids and proteins resulting in apoptotic cell death.

  17. Apoptosis in ovarian cells in postmenopausal women.

    Directory of Open Access Journals (Sweden)

    Maria Laszczyńska

    2007-06-01

    Full Text Available Apoptosis is a natural process which accompanies human ovary from the moment of birth until old age. While it is a well-known process at the reproductive age, it still needs to be thoroughly examined when referring to the postmenopausal age. The study involved 30 postmenopausal women who had their ovaries removed by laparotomy due to nonneoplastic diseases of the uterus. The women were divided into 3 groups depending on the time that had passed since the last menstruation. Group A consisted of women who had their last menstruation no more than 5 years earlier. In group B menopause occurred 5 to 10 years earlier. Group C was composed of patients who had the last menstruation over 10 years earlier. In all the patients concentrations of follitropin (FSH and estradiol (E2 in blood plasma were measured. Ovarian tissue was obtained during surgery. For morphological studies, ovaries were fixed in Bouin's solution and 4% formalin and embedded in paraffin. Morphological analysis was carried out after hematoxylin-eosin (H-E staining. For histochemical detection of apoptotic cells (in situ localization of fragment DNA, the TUNEL method was used. The expression of caspase-3 positive cells was determined immunohistochemically in paraffin-embedded specimens. Comparing to groups A and B, the ovaries in group C contained small number of corpora albicantia located in the medullary part as well as thinned blood vessels and few lymphatic vessels and nerves. In contrast to group A where the number of TUNEL-positive cells was high and caspase-3 expression was observed, no TUNEL-positive nuclei and caspase-3 expression were found in the examined ovaries of group C women.

  18. Involvement of Bax and Bcl-2 in Induction of Apoptosis by Essential Oils of Three Lebanese Salvia Species in Human Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Alessandra Russo

    2018-01-01

    Full Text Available Prostate cancer is one of the most common forms of cancer in men, and research to find more effective and less toxic drugs has become necessary. In the frame of our ongoing program on traditionally used Salvia species from the Mediterranean Area, here we report the biological activities of Salvia aurea, S. judaica and S. viscosa essential oils against human prostate cancer cells (DU-145. The cell viability was measured by 3(4,5-dimethyl-thiazol-2-yl2,5-diphenyl-tetrazolium bromide (MTT test and lactate dehydrogenase (LDH release was used to quantify necrosis cell death. Genomic DNA, caspase-3 activity, expression of cleaved caspase-9, B-cell lymphoma 2 (Bcl-2 and Bcl-2 associated X (Bax proteins were analyzed in order to study the apoptotic process. The role of reactive oxygen species in cell death was also investigated. We found that the three essential oils, containing caryophyllene oxide as a main constituent, are capable of reducing the growth of human prostate cancer cells, activating an apoptotic process and increasing reactive oxygen species generation. These results suggest it could be profitable to further investigate the effects of these essential oils for their possible use as anticancer agents in prostate cancer, alone or in combination with chemotherapy agents.

  19. FOXO3a (Forkhead Transcription Factor O Subfamily Member 3a) Links Vascular Smooth Muscle Cell Apoptosis, Matrix Breakdown, Atherosclerosis, and Vascular Remodeling Through a Novel Pathway Involving MMP13 (Matrix Metalloproteinase 13).

    Science.gov (United States)

    Yu, Haixiang; Fellows, Adam; Foote, Kirsty; Yang, Zhaoqing; Figg, Nichola; Littlewood, Trevor; Bennett, Martin

    2018-03-01

    Vascular smooth muscle cell (VSMC) apoptosis accelerates atherosclerosis and promotes breakdown of the extracellular matrix, but the mechanistic links between these 2 processes are unknown. The forkhead protein FOXO3a (forkhead transcription factor O subfamily member 3a) is activated in human atherosclerosis and induces a range of proapoptotic and other transcriptional targets. We, therefore, determined the mechanisms and consequences of FOXO3a activation in atherosclerosis and arterial remodeling after injury. Expression of a conditional FOXO3a allele (FOXO3aA3ER) potently induced VSMC apoptosis, expression and activation of MMP13 (matrix metalloproteinase 13), and downregulation of endogenous TIMPs (tissue inhibitors of MMPs). mmp13 and mmp2 were direct FOXO3a transcriptional targets in VSMCs. Activation of endogenous FOXO3a also induced MMP13, extracellular matrix degradation, and apoptosis, and MMP13-specific inhibitors and fibronectin reduced FOXO3a-mediated apoptosis. FOXO3a activation in mice with VSMC-restricted FOXO3aA3ER induced MMP13 expression and activity and medial VSMC apoptosis. FOXO3a activation in FOXO3aA3ER/ApoE -/- (apolipoprotein E deficient) mice increased atherosclerosis, increased necrotic core and reduced fibrous cap areas, and induced features of medial degeneration. After carotid artery ligation, FOXO3a activation increased VSMC apoptosis, VSMC proliferation, and neointima formation, all of which were reduced by MMP13 inhibition. FOXO3a activation induces VSMC apoptosis and extracellular matrix breakdown, in part, because of transcriptional activation of MMP13. FOXO3a activation promotes atherosclerosis and medial degeneration and increases neointima after injury that is partly dependent on MMP13. FOXO3a-induced MMP activation represents a direct mechanistic link between VSMC apoptosis and matrix breakdown in vascular disease. © 2018 The Authors.

  20. Aloin induces apoptosis in Jurkat cells.

    Science.gov (United States)

    Buenz, Eric J

    2008-03-01

    Aloe is widely used as a dietary supplement. However, there are continuing concerns over the toxicity and the purity of aloe-based products. The primary class of compounds responsible for aloe-induced toxicity are anthraquinones. One of these, aloe-emodin, has been extensively investigated for apoptosis inducing effects. Conversely, the precursor to aloe-emodin, aloin, has been subjected to only minimal investigation of any cytotoxic effects. Jurkat T cells, an established model for the study of compound toxicity, were used to evaluate the effect of aloin on cell viability. Cells were analyzed using flow cytometry and microscopy for cell size and granularity, cell membrane integrity, mitochondrial membrane potential, and cell cycle profile. Treatment with aloin resulted in a reduction in cell size, compromised membrane integrity, and loss of mitochondrial membrane potential in a dose-dependent manner. Additionally, treatment with aloin resulted in alteration of the cell cycle, specifically a block at G2/M phase. Importantly, the loss of cell membrane integrity was preceded by a loss of mitochondrial membrane potential, suggesting a mitochondrial-dependent pathway for aloin-induced apoptosis. These observations provide insight into the potential mechanisms of aloin-induced toxicity and thus, perhaps, aloe preparation-induced toxicity. Furthermore, because of the concern over the safety of aloe-based supplements, this work suggests that aloe supplements not containing aloin may be safer than aloe supplements containing aloin, and that aloin should be considered in addition to concentrations of aloe-emodin.

  1. miR-296-3p, miR-298-5p and their downstream networks are causally involved in the higher resistance of mammalian pancreatic α cells to cytokine-induced apoptosis as compared to β cells

    Directory of Open Access Journals (Sweden)

    Barbagallo Davide

    2013-01-01

    Full Text Available Abstract Background The molecular bases of mammalian pancreatic α cells higher resistance than β to proinflammatory cytokines are very poorly defined. MicroRNAs are master regulators of cell networks, but only scanty data are available on their transcriptome in these cells and its alterations in diabetes mellitus. Results Through high-throughput real-time PCR, we analyzed the steady state microRNA transcriptome of murine pancreatic α (αTC1-6 and β (βTC1 cells: their comparison demonstrated significant differences. We also characterized the alterations of αTC1-6 cells microRNA transcriptome after treatment with proinflammatory cytokines. We focused our study on two microRNAs, miR-296-3p and miR-298-5p, which were: (1 specifically expressed at steady state in αTC1-6, but not in βTC1 or INS-1 cells; (2 significantly downregulated in αTC1-6 cells after treatment with cytokines in comparison to untreated controls. These microRNAs share more targets than expected by chance and were co-expressed in αTC1-6 during a 6–48 h time course treatment with cytokines. The genes encoding them are physically clustered in the murine and human genome. By exploiting specific microRNA mimics, we demonstrated that experimental upregulation of miR-296-3p and miR-298-5p raised the propensity to apoptosis of transfected and cytokine-treated αTC1-6 cells with respect to αTC1-6 cells, treated with cytokines after transfection with scramble molecules. Both microRNAs control the expression of IGF1Rβ, its downstream targets phospho-IRS-1 and phospho-ERK, and TNFα. Our computational analysis suggests that MAFB (a transcription factor exclusively expressed in pancreatic α cells within adult rodent islets of Langerhans controls the expression of miR-296-3p and miR-298-5p. Conclusions Altogether, high-throughput microRNA profiling, functional analysis with synthetic mimics and molecular characterization of modulated pathways strongly suggest that specific

  2. Involvement of cathepsin B in mitochondrial apoptosis by p-phenylenediamine under ambient UV radiation

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, Shruti; Amar, Saroj Kumar [Photobiology Division, CSIR – Indian Institute of Toxicology Research, Post Box No. 80, M.G. Marg, Lucknow 226001, Uttar Pradesh (India); Academy of Scientific and Innovative Research, CSIR-IITR Campus, Lucknow (India); Dubey, Divya; Pal, Manish Kumar [Photobiology Division, CSIR – Indian Institute of Toxicology Research, Post Box No. 80, M.G. Marg, Lucknow 226001, Uttar Pradesh (India); Singh, Jyoti [Photobiology Division, CSIR – Indian Institute of Toxicology Research, Post Box No. 80, M.G. Marg, Lucknow 226001, Uttar Pradesh (India); Academy of Scientific and Innovative Research, CSIR-IITR Campus, Lucknow (India); Verma, Ankit; Kushwaha, Hari Narayan [Photobiology Division, CSIR – Indian Institute of Toxicology Research, Post Box No. 80, M.G. Marg, Lucknow 226001, Uttar Pradesh (India); Ray, Ratan Singh, E-mail: ratanray.2011@rediffmail.com [Photobiology Division, CSIR – Indian Institute of Toxicology Research, Post Box No. 80, M.G. Marg, Lucknow 226001, Uttar Pradesh (India)

    2015-12-30

    Highlights: • Photodegradation and formation of photoproduct. • Involvement of ROS in PPD phototoxicity. • Role of ROS in DNA damage, CPD and micronuclei formation. • PPD induced lysosomal destabilization and release of cathepsin B. • Cleavage of Bid and activation of mitochondrial apoptosis. - Abstract: Paraphenylenediamine (PPD), a derivative of paranitroaniline has been most commonly used as an ingredient of oxidative hair dye and permanent tattoos. We have studied the phototoxic potential of PPD under ambient ultraviolet radiation. PPD is photodegraded and form a novel photoproduct under UV A exposure. PPD shows a concentration dependent decrease in cell viability of human Keratinocyte cells (HaCaT) through MTT and NRU test. Significant intracellular ROS generation was measured by DCFDA assay. It caused an oxidative DNA damage via single stranded DNA breaks, micronuclei and CPD formation. Both lysosome and mitochondria is main target for PPD induced apoptosis which was proved through lysosomal destabilization and release of cathepsin B by immunofluorescence, real time PCR and western blot analysis. Cathepsin B process BID to active tBID which induces the release of cytochrome C from mitochondria. Mitochondrial depolarization was reported through transmission electron microscopy. The cathepsin inhibitor reduced the release of cytochrome C in PPD treated cells. Thus study suggests that PPD leads to apoptosis via the involvement of lysosome and mitochondria both under ambient UV radiation. Therefore, photosensitizing nature of hair dye ingredients should be tested before coming to market as a cosmetic product for the safety of human beings.

  3. Involvement of cathepsin B in mitochondrial apoptosis by p-phenylenediamine under ambient UV radiation

    International Nuclear Information System (INIS)

    Goyal, Shruti; Amar, Saroj Kumar; Dubey, Divya; Pal, Manish Kumar; Singh, Jyoti; Verma, Ankit; Kushwaha, Hari Narayan; Ray, Ratan Singh

    2015-01-01

    Highlights: • Photodegradation and formation of photoproduct. • Involvement of ROS in PPD phototoxicity. • Role of ROS in DNA damage, CPD and micronuclei formation. • PPD induced lysosomal destabilization and release of cathepsin B. • Cleavage of Bid and activation of mitochondrial apoptosis. - Abstract: Paraphenylenediamine (PPD), a derivative of paranitroaniline has been most commonly used as an ingredient of oxidative hair dye and permanent tattoos. We have studied the phototoxic potential of PPD under ambient ultraviolet radiation. PPD is photodegraded and form a novel photoproduct under UV A exposure. PPD shows a concentration dependent decrease in cell viability of human Keratinocyte cells (HaCaT) through MTT and NRU test. Significant intracellular ROS generation was measured by DCFDA assay. It caused an oxidative DNA damage via single stranded DNA breaks, micronuclei and CPD formation. Both lysosome and mitochondria is main target for PPD induced apoptosis which was proved through lysosomal destabilization and release of cathepsin B by immunofluorescence, real time PCR and western blot analysis. Cathepsin B process BID to active tBID which induces the release of cytochrome C from mitochondria. Mitochondrial depolarization was reported through transmission electron microscopy. The cathepsin inhibitor reduced the release of cytochrome C in PPD treated cells. Thus study suggests that PPD leads to apoptosis via the involvement of lysosome and mitochondria both under ambient UV radiation. Therefore, photosensitizing nature of hair dye ingredients should be tested before coming to market as a cosmetic product for the safety of human beings.

  4. Involvement of NF-κB and HSP70 signaling pathways in the apoptosis of MDA-MB-231 cells induced by a prenylated xanthone compound, α-mangostin, from Cratoxylum arborescens [Retraction

    Directory of Open Access Journals (Sweden)

    Ibrahim MY

    2017-05-01

    Full Text Available Ibrahim MY, Hashim NM, Mohan S, et al. Involvement of NF-κB and HSP70 signaling pathways in the apoptosis of MDA-MB-231 cells induced by a prenylated xanthone compound, α-mangostin, from Cratoxylum arborescens. Drug Design, Development and Therapy. 2014;8:2193–2211 was published subsequent to Ibrahim MY, Hashim NM, Mohan S, et al. α-Mangostin from Cratoxylum arborescens demonstrates apoptogenesis in MCF-7 with regulation of NF-κB and Hsp70 protein modulation in vitro, and tumor reduction in vivo. Drug Design, Development and Therapy. 2014;8:1629–1647.When comparing the papers it becomes apparent that they have an unacceptably high degree of similarity and re-use. Further, there is no clear scientific distinction between the cell lines and the results in both. Accordingly, the Editor-in-Chief and Publisher have issued this Notice of Retraction.This retraction relates to this paperThis retraction relates to this Corrigendum

  5. Influence of vitamin D on cell cycle, apoptosis, and some apoptosis related molecules in systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Nafise Tabasi

    2015-11-01

    Full Text Available Objective(s:Genetic and environmental factors are involved in the pathogenesis of systemic lupus erythematosus (SLE. Autoreactive lymphocytes are cleared through apoptosis and any disturbance in the apoptosis or clearance of apoptotic cells may disturb tolerance and lead to autoimmunity. Vitamin D has anti-proliferative effects and controls cell cycle progression. In this study we investigated the effects of vitamin D on cell cycle and apoptosis induction in lupus patients. Materials and Methods:Isolated peripheral blood mononuclear cells (PBMCs from 25 SLE patients were cultured in the presence of 50 nM of 1,25(OH2D3; then one part of the cells were stained with FITC labeled Annexin V and PI and were analyzed for apoptosis determination. For gene expression assessment of FasL, Bcl-2 and Bax, RNA was extracted from one another part of the cells, cDNA was synthesized and gene expression analysis was performed using Real time PCR. An additional part of the cells were treated with PI and the cell cycle was analyzed using flowcytometer. Results: The mean number of early apoptotic cells in vitamin D treated cells decreased significantly (18.48±7.9% compared to untreated cells (22.02±9.4% (P=0.008. Cell cycle analysis showed a significant increase in G1 phase in vitamin D treated cells (67.33±5.2% compared to non treated ones (60.77±5.7% (P =0.02. Vitamin D up-regulated the expression levels of Bcl-2 by (18.87 fold increase, and down-regulated expression of Bax (23% and FasL (25%. Conclusion:Vitamin D has regulatory effects on cell cycle progression, apoptosis and apoptosis related molecules in lupus patients.

  6. Endoplasmic reticulum involvement in yeast cell death

    International Nuclear Information System (INIS)

    Nicanor Austriaco, O.

    2012-01-01

    Yeast cells undergo programed cell death (PCD) with characteristic markers associated with apoptosis in mammalian cells including chromatin breakage, nuclear fragmentation, reactive oxygen species generation, and metacaspase activation. Though significant research has focused on mitochondrial involvement in this phenomenon, more recent work with both Saccharomyces cerevisiae and Schizosaccharomyces pombe has also implicated the endoplasmic reticulum (ER) in yeast PCD. This minireview provides an overview of ER stress-associated cell death (ER-SAD) in yeast. It begins with a description of ER structure and function in yeast before moving to a discussion of ER-SAD in both mammalian and yeast cells. Three examples of yeast cell death associated with the ER will be highlighted here including inositol starvation, lipid toxicity, and the inhibition of N-glycosylation. It closes by suggesting ways to further examine the involvement of the ER in yeast cell death.

  7. NDV-induced apoptosis in absence of Bax; evidence of involvement of apoptotic proteins upstream of mitochondria

    Directory of Open Access Journals (Sweden)

    Molouki Aidin

    2012-08-01

    Full Text Available Abstract Background Recently it was shown that following infection of HeLa cells with Newcastle disease virus (NDV, the matrix (M protein binds to Bax and subsequently the intrinsic pathway of apoptosis is activated. Moreover, there was very little alteration on mRNA and protein levels of Bax and Bcl-2 after infection with NDV. Finding In order to further investigate the role of members of the Bcl-2 family, Bax-knockout and wild-type HCT116 cells were infected with NDV strain AF2240. Although both cells underwent apoptosis through the activation of the intrinsic pathway and the release of cytochrome c from mitochondria, the percentage of dead Bax-knockout cells was significantly lower than wt cells (more than 10% at 48 h post-infection. In a parallel experiment, the effect of NDV on HT29 cells, that are originally Bcl-2-free, was studied. Apoptosis in HT29 cells was associated with Bax redistribution from cytoplasm to mitochondria, similar to that of HeLa and wt HCT116 cells. Conclusion Although the presence of Bax during NDV-induced apoptosis contributes to a faster cell death, it was concluded that other apoptotic protein(s upstream of mitochondria are also involved since cancer cells die whether in the presence or absence of Bax. Therefore, the classic Bax/Bcl-2 ratio may not be a major determinant in NDV-induced apoptosis.

  8. MicroRNA-1 promotes apoptosis of hepatocarcinoma cells by targeting apoptosis inhibitor-5 (API-5).

    Science.gov (United States)

    Li, Dong; Liu, Yu; Li, Hua; Peng, Jing-Jing; Tan, Yan; Zou, Qiang; Song, Xiao-Feng; Du, Min; Yang, Zheng-Hui; Tan, Yong; Zhou, Jin-Jun; Xu, Tao; Fu, Zeng-Qiang; Feng, Jian-Qiong; Cheng, Peng; chen, Tao; Wei, Dong; Su, Xiao-Mei; Liu, Huan-Yi; Qi, Zhong-Chun; Tang, Li-Jun; Wang, Tao; Guo, Xin; Hu, Yong-He; Zhang, Tao

    2015-01-02

    Although microRNA-1 (miR-1) is a known liver cancer suppressor, the role of miR-1 in apoptosis of hepatoma cells has remained largely unknown. Our study shows that ectopic miR-1 overexpression induced apoptosis of liver hepatocellular carcinoma (HepG2) cells. Apoptosis inhibitor 5 (API-5) was found to be a potential regulator of miR-1 induced apoptosis, using a bioinformatics approach. Furthermore, an inverse relationship between miR-1 and API-5 expression was observed in human liver cancer tissues and adjacent normal liver tissues. Negative regulation of API-5 expression by miR-1 was demonstrated to promote apoptosis of HepG2 cells. Our study provides a novel regulatory mechanism of miR-1 in the apoptosis of hepatoma cells. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  9. Genes involved in immunity and apoptosis are associated with human presbycusis based on microarray analysis.

    Science.gov (United States)

    Dong, Yang; Li, Ming; Liu, Puzhao; Song, Haiyan; Zhao, Yuping; Shi, Jianrong

    2014-06-01

    Genes involved in immunity and apoptosis were associated with human presbycusis. CCR3 and GILZ played an important role in the pathogenesis of presbycusis, probably through regulating chemokine receptor, T-cell apoptosis, or T-cell activation pathways. To identify genes associated with human presbycusis and explore the molecular mechanism of presbycusis. Hearing function was tested by pure-tone audiometry. Microarray analysis was performed to identify presbycusis-correlated genes by Illumina Human-6 BeadChip using the peripheral blood samples of subjects. To identify biological process categories and pathways associated with presbycusis-correlated genes, bioinformatics analysis was carried out by Gene Ontology Tree Machine (GOTM) and database for annotation, visualization, and integrated discovery (DAVID). Quantitative RT-PCR (qRT-PCR) was used to validate the microarray data. Microarray analysis identified 469 up-regulated genes and 323 down-regulated genes. Both the dominant biological processes by Gene Ontology (GO) analysis and the enriched pathways by Kyoto encyclopedia of genes and genomes (KEGG) and BIOCARTA showed that genes involved in immunity and apoptosis were associated with presbycusis. In addition, CCR3, GILZ, CXCL10, and CX3CR1 genes showed consistent difference between groups for both the gene chip and qRT-PCR data. The differences of CCR3 and GILZ between presbycusis patients and controls were statistically significant (p < 0.05).

  10. Contrast agents and renal cell apoptosis.

    Science.gov (United States)

    Romano, Giulia; Briguori, Carlo; Quintavalle, Cristina; Zanca, Ciro; Rivera, Natalia V; Colombo, Antonio; Condorelli, Gerolama

    2008-10-01

    Contrast media (CM) induce a direct toxic effect on renal tubular cells. This toxic effect may have a role in the pathophysiology of contrast nephropathy. We evaluated (i) the cytotoxicity of CM [both low-osmolality (LOCM) and iso-osmolality (IOCM)], of iodine alone, and of an hyperosmolar solution (mannitol 8%) on human embryonic kidney (HEK 293), porcine proximal renal tubular (LLC-PK1), and canine Madin-Darby distal tubular renal (MDCK) cells; and (ii) the effectiveness of various antioxidant compounds [n-acetylcysteine (NAC), ascorbic acid and sodium bicarbonate] in preventing CM cytotoxicity. The cytotoxicity of CM was assessed at different time points, with different methods: cell viability, DNA laddering, flow cytometry, and caspase activation. Both LOCM and IOCM produced a concentration- and time-dependent increase in cell death as assessed by the different methods. On the contrary, iodine alone and hyperosmolar solution did not induce any significant cytotoxic effect. There was not any significant difference in the cytotoxic effect between LOCM and IOCM. Furthermore, both LOCM and IOCM caused a marked increase in caspase-3 and -9 activities and poly(ADP-ribose) fragmentation, while no effect on caspase-8/-10 was observed, thus indicating that the CM activated apoptosis mainly through the intrinsic pathway. Both CM induced an increase in protein expression levels of pro-apoptotic members of the Bcl2 family (Bim and Bad). NAC and ascorbic acid but not sodium bicarbonate had a dose-dependent protective effect on renal cells after 3 h incubation with high dose (200 mg iodine/mL) of both LOCM and IOCM. Both LOCM and IOCM induce a dose-dependent renal cell apoptosis. NAC and ascorbic acid but not sodium bicarbonate prevent this contrast-induced apoptosis.

  11. Centchroman induces redox-dependent apoptosis and cell-cycle arrest in human endometrial cancer cells.

    Science.gov (United States)

    Shyam, Hari; Singh, Neetu; Kaushik, Shweta; Sharma, Ramesh; Balapure, Anil K

    2017-04-01

    Centchroman (CC) or Ormeloxifene has been shown to induce apoptosis and cell cycle arrest in various types of cancer cells. This has, however, not been addressed for endometrial cancer cells where its (CC) mechanism of action remains unclear. This study focuses on the basis of antineoplasticity of CC by blocking the targets involved in the cell cycle, survival and apoptosis in endometrial cancer cells. Ishikawa Human Endometrial Cancer Cells were cultured under estrogen deprived medium, exposed to CC and analyzed for proliferation and apoptosis. Additionally, we also analyzed oxidative stress induced by CC. Cell viability studies confirmed the IC 50 of CC in Ishikawa cells to be 20 µM after 48 h treatment. CC arrests the cells in G0/G1 phase through cyclin D1 and cyclin E mediated pathways. Phosphatidylserine externalization, nuclear morphology changes, DNA fragmentation, PARP cleavage, and alteration of Bcl-2 family protein expression clearly suggest ongoing apoptosis in the CC treated cells. Activation of caspase 3 & 9, up-regulation of AIF and inhibition of apoptosis by z-VAD-fmk clearly explains the participation of the intrinsic pathway of programmed cell death. Further, the increase of ROS, loss of MMP, inhibition of antioxidant (MnSOD, Cu/Zn-SOD and GST) and inhibition of apoptosis with L-NAC suggests CC induced oxidative stress leading to apoptosis via mitochondria mediated pathway. Therefore, CC could be a potential therapeutic agent for the treatment of Endometrial Cancer adjunct to its utility as a contraceptive and an anti-breast cancer agent.

  12. Different mechanisms between premitotic apoptosis and postmitotic apoptosis in X-irradiated U937 cells

    International Nuclear Information System (INIS)

    Shinomiya, Nariyoshi; Kuno, Yukie; Yamamoto, Fuyumi; Fukasawa, Masashi; Okumura, Atsushi; Uefuji, Megumi; Rokutanda, Makoto

    2000-01-01

    Purpose: Apoptosis is currently being evaluated for its importance as a pathway of radiation-induced cell death. However, the difference in the mechanisms between premitotic and postmitotic apoptosis following X-irradiation remains not well understood. We show here that the human monoblastoid cell line U937 can be induced to undergo these two different types of apoptosis. Methods and Materials: U937 cells were irradiated at a dose of 5 or 20 Gy, and the DNA fragmentation rate was measured by both flow cytometric analysis and gel electrophoresis. Activation of caspase-3 was detected by Western blot analysis and fluorogenic assay using acetyl-Asp-Glu-Val-Asp-7-amino-4-methyl-coumarin (Ac-DEVD-AMC). Detection of mitochondrial transmembrane potential (no. DELTAno. no. PSIno. ) was performed by using Rho123. Chasing of S-phase fraction following X-irradiation was performed after labeling with 5-bromo-2'-deoxyuridine (BrdU). Thymidine was used for synchronization of the cells. Inhibition of caspase-3 activity was achieved by Acetyl-Asp-Glu-Val-Asp-aldehyde (Ac-DEVD-CHO). Results: Time courses of the apoptotic rates, caspase activation, and no. DELTAno. no. PSIno. indicated that two different types of cell death were induced by the different X-ray doses. High-dose X-ray (20 Gy) induced a rapid and strong apoptosis, whereas low-dose X-ray (5 Gy) induced a slow and mild apoptosis. Cell-cycle analyses revealed that there was cell death before cell division in the former apoptosis but the cells must be dying after cell division in the latter apoptosis. By means of cell-cycle synchronization, the S-phase cells proved to be the most sensitive fraction to premitotic apoptosis, but an obvious difference in the susceptibility to cell death among the cell-cycle phases was not observed in postmitotic apoptosis. Ac-DEVD-CHO treatment effectively blocked caspase activity and premitotic apoptosis, but it failed to block postmitotic apoptosis. Conclusions: Irradiation of U937 cells at

  13. Ceramide-Induced Apoptosis in Renal Tubular Cells: A Role of Mitochondria and Sphingosine-1-Phoshate

    Science.gov (United States)

    Ueda, Norishi

    2015-01-01

    Ceramide is synthesized upon stimuli, and induces apoptosis in renal tubular cells (RTCs). Sphingosine-1 phosphate (S1P) functions as a survival factor. Thus, the balance of ceramide/S1P determines ceramide-induced apoptosis. Mitochondria play a key role for ceramide-induced apoptosis by altered mitochondrial outer membrane permeability (MOMP). Ceramide enhances oligomerization of pro-apoptotic Bcl-2 family proteins, ceramide channel, and reduces anti-apoptotic Bcl-2 proteins in the MOM. This process alters MOMP, resulting in generation of reactive oxygen species (ROS), cytochrome C release into the cytosol, caspase activation, and apoptosis. Ceramide regulates apoptosis through mitogen-activated protein kinases (MAPKs)-dependent and -independent pathways. Conversely, MAPKs alter ceramide generation by regulating the enzymes involving ceramide metabolism, affecting ceramide-induced apoptosis. Crosstalk between Bcl-2 family proteins, ROS, and many signaling pathways regulates ceramide-induced apoptosis. Growth factors rescue ceramide-induced apoptosis by regulating the enzymes involving ceramide metabolism, S1P, and signaling pathways including MAPKs. This article reviews evidence supporting a role of ceramide for apoptosis and discusses a role of mitochondria, including MOMP, Bcl-2 family proteins, ROS, and signaling pathways, and crosstalk between these factors in the regulation of ceramide-induced apoptosis of RTCs. A balancing role between ceramide and S1P and the strategy for preventing ceramide-induced apoptosis by growth factors are also discussed. PMID:25751724

  14. [Inducing effects of ursolic acid on Jurkat cell apoptosis and its mechanisms].

    Science.gov (United States)

    Jia, Wen-Wen; Miao, Miao; Li, Jia; Wu, Bin; Liu, Zhuo-Gang

    2014-04-01

    The study was aimed to investigate the inducing effect of ursolic acid (UA) on the apoptosis of human T-cell leukemia/lymphoma (Jurkat), and whether the regulation of PTEN involved in the effect of UA on Jurkat cells. The Jurkat cells were treated with different concentrations of UA for different time. The cell proliferation was analyzed with cytotoxicity test (CCK8 method). Cell apoptosis was detected by fluorescence microscopy and flow cytometry. The expression of PTEN mRNA was detected by real-time quantitative PCR. The results indicated that UA could significantly inhibited the viability of Jurkat cells treated with 10-80 µmol/L and in dose- and time-dependent manner. UA could induce Jurkat cell apoptosis in a dose-dependent manner, which was statistical different from the control at the same time (P Jurkat cell apoptosis by up-regulating the PTEN mRNA expression.

  15. Chalcones Enhance TRAIL-Induced Apoptosis in Prostate Cancer Cells

    OpenAIRE

    Szliszka, Ewelina; Czuba, Zenon P.; Mazur, Bogdan; Sedek, Lukasz; Paradysz, Andrzej; Krol, Wojciech

    2009-01-01

    Chalcones exhibit chemopreventive and antitumor effects. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a naturally occurring anticancer agent that induces apoptosis in cancer cells and is not toxic to normal cells. We examined the cytotoxic and apoptotic effect of five chalcones in combination with TRAIL on prostate cancer cells. The cytotoxicity was evaluated by the MTT and LDH assays. The apoptosis was determined using flow cytometry with annexin V-FITC. Our study showe...

  16. Aspartame-induced apoptosis in PC12 cells

    OpenAIRE

    Horio, Yukari; Sun, Yongkun; Liu, Chuang; Saito, Takeshi; Kurasaki, Masaaki

    2014-01-01

    Aspartame is an artificial sweetner added to many low-calorie foods. The safety of aspartame remains controversial even though there are many studies on its risks. In this study, to understand the physiological effects of trace amounts of artificial sweetners on cells, the effects of aspartame on apoptosis were investigated using a PC12 cell system. In addition, the mechanism of apoptosis induced by aspartame in PC12 cells and effects on apoptotic factors such as cytochrome c, apoptosis-induc...

  17. TNF/TNFR1 pathway and endoplasmic reticulum stress are involved in ofloxacin-induced apoptosis of juvenile canine chondrocytes

    International Nuclear Information System (INIS)

    Zhang, Fu-Tao; Ding, Yi; Shah, Zahir; Xing, Dan; Gao, Yuan; Liu, Dong Ming; Ding, Ming-Xing

    2014-01-01

    Background and purpose: Quinolones cause obvious cartilaginous lesions in juvenile animals by chondrocyte apoptosis, which results in the restriction of their use in pediatric and adolescent patients. Studies showed that chondrocytes can be induced to produce TNFα, and the cisternae of the endoplasmic reticulum in quinolone-treated chondrocytes become dilated. We investigated whether TNF/TNFR 1 pathway and endoplasmic reticulum stress (ERs) are involved in ofloxacin (a typical quinolone)-induced apoptosis of juvenile canine chondrocytes. Experimental approach: Canine juvenile chondrocytes were treated with ofloxacin. Cell survival and apoptosis rates were determined with MTT method and flow cytometry, respectively. The gene expression levels of the related signaling molecules (TNFα, TNFR 1 , TRADD, FADD and caspase-8) in death receptor pathways and main apoptosis-related molecules (calpain, caspase-12, GADD153 and GRP78) in ERs were measured by qRT-PCR. The gene expression of TNFR 1 was suppressed with its siRNA. The protein levels of TNFα, TNFR 1 and caspase-12 were assayed using Western blotting. Key results: The survival rates decreased while apoptosis rates increased after the chondrocytes were treated with ofloxacin. The mRNA levels of the measured apoptosis-related molecules in death receptor pathways and ERs, and the protein levels of TNFα, TNFR 1 and caspase-12 increased after the chondrocytes were exposed to ofloxacin. The downregulated mRNA expressions of TNFR 1 , Caspase-8 and TRADD, and the decreased apoptosis rates of the ofloxacin-treated chondrocytes occurred after TNFR 1 –siRNA interference. Conclusions and implications: Ofloxacin-induced chondrocyte apoptosis in a time- and concentration-dependent fashion. TNF/TNFR 1 pathway and ERs are involved in ofloxacin-induced apoptosis of juvenile canine chondrocytes in the early stage. - Highlights: • Chondrocyte apoptosis is induced by ofloxacin in a time- and concentration-dependent manners.

  18. Imiquimod induces apoptosis of squamous cell carcinoma (SCC cells via regulation of A20.

    Directory of Open Access Journals (Sweden)

    Kyung-Cheol Sohn

    Full Text Available Imiquimod, a nucleoside analogue of the imidazoquinoline family, is being used to treat various cutaneous cancers including squamous cell carcinoma (SCC. Imiquimod activates anti-tumor immunity via Toll-like receptor 7 (TLR7 in macrophage and other immune cells. Imiquimod can also affect tumor cells directly, regardless of its impact on immune system. In this study, we demonstrated that imiquimod induced apoptosis of SCC cells (SCC12 and A20 was involved in this process. When A20 was overexpressed, imiquimod-induced apoptosis was markedly inhibited. Conversely, knockdown of A20 potentiated imiquimod-induced apoptosis. Interestingly, A20 counteracted activation of c-Jun N-terminal kinase (JNK, suggesting that A20-regulated JNK activity was possible mechanism underlying imiquimod-induced apoptosis of SCC12 cells. Finally, imiquimod-induced apoptosis of SCC12 cells was taken place in a TLR7-independent manner. Our data provide new insight into the mechanism underlying imiquimod effect in cutaneous cancer treatment.

  19. Apoptosis of pancreatic β-cells in Type 1 diabetes

    Directory of Open Access Journals (Sweden)

    Tatsuo Tomita

    2017-08-01

    Full Text Available Type 1 diabetes mellitus (T1DM results from autoimmune destruction of pancreatic β-cells after an asymptomatic period over years. Insulitis activates antigen presenting cells, which trigger activating CD4+ helper-T cells, releasing chemokines/cytokines. Cytokines activate CD8+ cytotoxic–T cells, which lead to β-cell destruction. Apoptosis pathway consists of extrinsic (receptor-mediated and intrinsic (mitochondria-driven pathway. Extrinsic pathway includes Fas pathway to CD4+-CD8+ interaction, whereas intrinsic pathway includes mitochondria-driven pathway at a balance between anti-apoptotic B-cell lymphoma (Bcl-2 and Bcl-xL and pro-apoptotic Bad, Bid, and Bik proteins. Activated cleaved caspse-3 is the converging point between extrinsic and intrinsic pathway. Apoptosis takes place only when pro-apoptotic proteins exceed anti-apoptotic proteins. Since the concordance rate of T1DM in identical twins is about 50%, environmental factors are involved in the development of T1DM, opening a door to find means to detect and prevent further development of autoimmune β-cell destruction for a therapeutic application.

  20. Dissection of pathways leading to antigen receptor-induced and Fas/CD95-induced apoptosis in human B cells

    NARCIS (Netherlands)

    Lens, S. M.; den Drijver, B. F.; Pötgens, A. J.; Tesselaar, K.; van Oers, M. H.; van Lier, R. A.

    1998-01-01

    To dissect intracellular pathways involved in B cell Ag receptor (BCR)-mediated and Fas-induced human B cell death, we isolated clones of the Burkitt lymphoma cell line Ramos with different apoptosis sensitivities. Selection for sensitivity to Fas-induced apoptosis also selected for clones with

  1. Fluid shear stress suppresses TNF-α-induced apoptosis in MC3T3-E1 cells: Involvement of ERK5-AKT-FoxO3a-Bim/FasL signaling pathways

    International Nuclear Information System (INIS)

    Bin, Geng; Bo, Zhang; Jing, Wang; Jin, Jiang; Xiaoyi, Tan; Cong, Chen; Liping, An; Jinglin, Ma; Cuifang, Wang; Yonggang, Chen; Yayi, Xia

    2016-01-01

    TNF-α is known to induce osteoblasts apoptosis, whereas mechanical stimulation has been shown to enhance osteoblast survival. In the present study, we found that mechanical stimulation in the form of fluid shear stress (FSS) suppresses TNF-α induced apoptosis in MC3T3-E1 cells. Extracellular signal-regulated kinase 5 (ERK5) is a member of the mitogen-activated protein kinase (MAPK) family that has been implicated in cell survival. We also demonstrated that FSS imposed by flow chamber in vitro leads to a markedly activation of ERK5, which was shown to be protective against TNF-α-induced apoptosis, whereas the transfection of siRNA against ERK5 (ERK5-siRNA) reversed the FSS-medicated anti-apoptotic effects. An initial FSS-mediated activation of ERK5 that phosphorylates AKT to increase its activity, and a following forkhead box O 3a (FoxO3a) was phosphorylated by activated AKT. Phosphorylated FoxO3a is sequestered in the cytoplasm, and prevents it from translocating to nucleus where it can increase the expression of FasL and Bim. The inhibition of AKT-FoxO3a signalings by a PI3K (PI3-kinase)/AKT inhibitor (LY294002) or the transfection of ERK5-siRNA led to the nuclear translocation of non-phosphorylated FoxO3a, and increased the protein expression of FasL and Bim. In addition, the activation of caspase-3 by TNF-α was significantly inhibited by aforementioned FSS-medicated mechanisms. In brief, the activation of ERK5-AKT-FoxO3a signaling pathways by FSS resulted in a decreased expression of FasL and Bim and an inhibition of caspase-3 activation, which exerts a protective effect that prevents osteoblasts from apoptosis. - Highlights: • Fluid shear stress inhibits osteoblast apoptosis induced by TNF-α. • Inhibition of ERK5 activity by transfection of ERK5 siRNA blocks FSS-mediated anti-apoptotic effect in osteoblast. • Activated ERK5-AKT-FoxO3a-Bim/FasL signaling pathways by FSS is required to protect osteoblast from apoptosis.

  2. Fluid shear stress suppresses TNF-α-induced apoptosis in MC3T3-E1 cells: Involvement of ERK5-AKT-FoxO3a-Bim/FasL signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Bin, Geng; Bo, Zhang; Jing, Wang; Jin, Jiang; Xiaoyi, Tan; Cong, Chen; Liping, An; Jinglin, Ma; Cuifang, Wang; Yonggang, Chen [The Second Hospital of Lanzhou University, #82 Cuiyingmen, Lanzhou, 730000 Gansu (China); Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000 Gansu (China); Yayi, Xia, E-mail: xiayayildey@163.com [The Second Hospital of Lanzhou University, #82 Cuiyingmen, Lanzhou, 730000 Gansu (China); Orthopaedics Key Laboratory of Gansu Province, Lanzhou, 730000 Gansu (China)

    2016-05-01

    TNF-α is known to induce osteoblasts apoptosis, whereas mechanical stimulation has been shown to enhance osteoblast survival. In the present study, we found that mechanical stimulation in the form of fluid shear stress (FSS) suppresses TNF-α induced apoptosis in MC3T3-E1 cells. Extracellular signal-regulated kinase 5 (ERK5) is a member of the mitogen-activated protein kinase (MAPK) family that has been implicated in cell survival. We also demonstrated that FSS imposed by flow chamber in vitro leads to a markedly activation of ERK5, which was shown to be protective against TNF-α-induced apoptosis, whereas the transfection of siRNA against ERK5 (ERK5-siRNA) reversed the FSS-medicated anti-apoptotic effects. An initial FSS-mediated activation of ERK5 that phosphorylates AKT to increase its activity, and a following forkhead box O 3a (FoxO3a) was phosphorylated by activated AKT. Phosphorylated FoxO3a is sequestered in the cytoplasm, and prevents it from translocating to nucleus where it can increase the expression of FasL and Bim. The inhibition of AKT-FoxO3a signalings by a PI3K (PI3-kinase)/AKT inhibitor (LY294002) or the transfection of ERK5-siRNA led to the nuclear translocation of non-phosphorylated FoxO3a, and increased the protein expression of FasL and Bim. In addition, the activation of caspase-3 by TNF-α was significantly inhibited by aforementioned FSS-medicated mechanisms. In brief, the activation of ERK5-AKT-FoxO3a signaling pathways by FSS resulted in a decreased expression of FasL and Bim and an inhibition of caspase-3 activation, which exerts a protective effect that prevents osteoblasts from apoptosis. - Highlights: • Fluid shear stress inhibits osteoblast apoptosis induced by TNF-α. • Inhibition of ERK5 activity by transfection of ERK5 siRNA blocks FSS-mediated anti-apoptotic effect in osteoblast. • Activated ERK5-AKT-FoxO3a-Bim/FasL signaling pathways by FSS is required to protect osteoblast from apoptosis.

  3. Cell apoptosis, autophagy and necroptosis in osteosarcoma treatment

    Science.gov (United States)

    Li, Dongqi; Li, Huiling; Ren, Mingyan; Liao, Yedan; Yu, Shunling; Chen, Yanjin; Yang, Yihao; Zhang, Ya

    2016-01-01

    Osteosarcoma is the most common primary bone tumor in children and adolescents. Although combined therapy including surgery and multi-agent chemotherapy have resulted in great improvements in the overall survival of patients, chemoresistance remains an obstacle for the treatment of osteosarcoma. Molecular targets or effective agents that are actively involved in cell death including apoptosis, autophagy and necroptosis have been studied. We summarized how these agents (novel compounds, miRNAs, or proteins) regulate apoptotic, autophagic and necroptotic pathways; and discussed the current knowledge on the role of these new agents in chemotherapy resistance in osteosarcoma. PMID:27007056

  4. Lobaplatin inhibits growth of gastric cancer cells by inducing apoptosis

    Science.gov (United States)

    Yin, Chu-Yang; Lin, Xiao-Lin; Tian, Lei; Ye, Ming; Yang, Xin-Ying; Xiao, Xiu-Ying

    2014-01-01

    AIM: To assess the anti-cancer effect of lobaplatin on human gastric cancer cells, and to explore the underlying molecular mechanisms. METHODS: The human gastric cancer cell lines MKN-28, AGS and MKN-45 were used. The cytotoxicity of lobaplatin was detected using an MTS cell proliferation assay. Flow cytometry was used to detect cell apoptosis using Annexin V-FITC Apoptosis Detection Kit. The expression of apoptosis-regulated genes was examined at the protein level using Western blot. RESULTS: Lobaplatin inhibited the proliferation of human gastric cancer cells and induced apoptosis, which may be associated with the up-regulation of Bax expression, poly(ADP-ribose) polymerase (PARP) cleavage, p53 expression and the reduction of Bcl-2 expression. CONCLUSION: The cytotoxicity of lobaplatin may be due to its ability of inducing apoptosis of gastric cancer cells, which would support the potential use of lobaplatin for the therapy of gastric cancer. PMID:25516654

  5. Ulinastatin Reduces T Cell Apoptosis in Rats with Severe Acute ...

    African Journals Online (AJOL)

    T cell apoptosis was determined by Annexin-V/PI double-staining. Oxidative stress was evaluated by examining changes in the levels of reactive oxygen species (ROS). Total superoxide ... Key words: Ulinastatin, T cell, Apoptosis, Severe acute pancreatitis, Mitochondrion. Tropical ..... finally affect its structure and function.

  6. Apoptosis-Dependent and Apoptosis-Independent Functions of Bim in Prostate Cancer Cells

    National Research Council Canada - National Science Library

    Tang, Dean; Liu, Junwei

    2005-01-01

    ... (death, survival, proliferation/division, etc.). Our hypothesis is that, under normal, unstimulated conditions, with its apoptotic function blocked, the upregulated Bim in PCa cells plays an apoptosis-independent function...

  7. Apoptosis-Dependent and Apoptosis-Independent Functions Bim in Prostate Cancer Cells

    National Research Council Canada - National Science Library

    Liu, Junwei

    2004-01-01

    ... (death, survival, proliferation/division, etc). Our hypothesis is that, under normal, unstimulated conditions, with its apoptotic function blocked, the upregulated Bim in PCa cells play an apoptosis-independent function...

  8. BCL-2 protects human and mouse Th17 cells from glucocorticoid-induced apoptosis

    Science.gov (United States)

    Banuelos, J.; Shin, S.; Cao, Y.; Bochner, B. S.; Morales-Nebreda, L.; Budinger, G. R. S.; Zhou, L.; Li, S.; Xin, J.; Lingen, M. W.; Dong, C.; Schleimer, R. P.; Lu, N. Z.

    2016-01-01

    Background Glucocorticoid resistance has been associated with Th17-driven inflammation, the mechanisms of which are not clear. We determined whether human and mouse Th17 cells are resistant to glucocorticoid-induced apoptosis. Methods Freshly isolated human blood Th17 cells and in vitro differentiated Th17 cells from IL-17F red fluorescent protein reporter mice were treated with dexamethasone, a potent glucocorticoid. Apoptosis was measured using annexin V and DAPI staining. Screening of apoptosis genes was performed using the apoptosis PCR array. Levels of molecules involved in apoptosis were measured using quantitative RT-PCR, flow cytometry, and Western blotting. Knockdown of BCL-2 in murine Th17 cells was performed via retroviral transduction. Cytokines were measured using ELISA. A murine Th17-driven severe asthma model was examined for Th17 glucocorticoid sensitivity in vivo. Results Human and mouse Th17 cells and mouse Th2 cells were resistant to glucocorticoid-induced apoptosis. Th17 cells had glucocorticoid receptors levels comparable to those in other T effectors cells. Th17 cells had high levels of BCL-2, knockdown of which sensitized Th17 cells to dexamethasone-induced apoptosis. Production of IL-22, but not IL-17A and IL-17F, was suppressed by glucocorticoids. STAT3 phosphorylation in Th17 cells was insensitive to glucocorticoid inhibition. Lung Th17 cells in the murine severe asthma model were enhanced, rather than suppressed, by glucocorticoids. Conclusion Th17 cells are resistant to glucocorticoid-induced apoptosis and cytokine suppression, at least in part due to high levels of BCL-2. These findings support a role of Th17 cells in glucocorticoid-resistant inflammatory conditions such as certain endotypes of asthma. PMID:26752231

  9. Modulations of DNMT1 and HDAC1 are involved in the OTA-induced cytotoxicity and apoptosis in vitro.

    Science.gov (United States)

    Zhou, Yajiao; Gan, Fang; Hou, Lili; Zhou, Xuan; Adam Ibrahim, Yassin Abdulrahim; Huang, Kehe

    2017-12-25

    Ochratoxin A (OTA) as a fungal metabolite is reported to induce cytotoxicity and apoptosis through the mechanism of oxidative stress. Oxidative stress could induce the epigenetic enzymes modifications. However, whether epigenetic enzymes modifications are involved in OTA-induced cytotoxicity and apoptosis has not been reported until now. Therefore, the objectives of this study were to verify OTA-induced cytotoxicity and apoptosis and to investigate the potential role of epigenetic enzymes in OTA-induced cytotoxicity and apoptosis in PK15 cells. The results demonstrated that OTA at 4 μg/ml treatment for 12 h and 24 h induced cytotoxicity and apoptosis as demonstrated by decreasing cell viability, increasing LDH release, Annexin V/PI staining, Bcl-2/Bax mRNA ratio and apoptotic nuclei in PK15 cells. OTA treatment up-regulated ROS production and down-regulated GSH levels. In addition, OTA treatment activated the epigenetics related enzymes DNA methyltransferase 1 (DNMT1) and Histone deacetylase 1 (HDAC1). Adding DNMT1 inhibitor (5-Aza-2dc) or HDAC1 inhibitor (LBH589) depressed the up-regulation of DNMT1 or HDAC1 expression, the decreases of GSH levels and increases of ROS production induced by OTA, respectively. Furthermore, inhibition of DNMT1 or HDAC1 by their inhibitor reversed the decreases of cell viability and increases of LDH activity and apoptosis induced by OTA, respectively. In conclusion, the observed effects indicate that the critical modulation of DNMT1 and HDAC1 is related to OTA-induced cytotoxicity and apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Distinct protease pathways control cell shape and apoptosis in v-src-transformed quail neuroretina cells

    International Nuclear Information System (INIS)

    Neel, Benjamin D.; Aouacheria, Abdel; Nouvion, Anne-Laure; Ronot, Xavier; Gillet, Germain

    2005-01-01

    Intracellular proteases play key roles in cell differentiation, proliferation and apoptosis. In nerve cells, little is known about their relative contribution to the pathways which control cell physiology, including cell death. Neoplastic transformation of avian neuroretina cells by p60 v-src tyrosine kinase results in dramatic morphological changes and deregulation of apoptosis. To identify the proteases involved in the cellular response to p60 v-src , we evaluated the effect of specific inhibitors of caspases, calpains and the proteasome on cell shape changes and apoptosis induced by p60 v-src inactivation in quail neuroretina cells transformed by tsNY68, a thermosensitive strain of Rous sarcoma virus. We found that the ubiquitin-proteasome pathway is recruited early after p60 v-src inactivation and is critical for morphological changes, whereas caspases are essential for cell death. This study provides evidence that distinct intracellular proteases are involved in the control of the morphology and fate of v-src-transformed cells

  11. Apoptosis and cancer stem cells : Implications for apoptosis targeted therapy

    NARCIS (Netherlands)

    Kruyt, Frank A. E.; Schuringa, Jan Jacob

    2010-01-01

    Evidence is accumulating showing that cancer stem cells or tumor-initiating cells are key drivers of tumor formation and progression. Successful therapy must therefore eliminate these cells, which is hampered by their high resistance to commonly used treatment modalities. Thus far, only a limited

  12. GRP78 is required for cell proliferation and protection from apoptosis in chicken embryo fibroblast cells.

    Science.gov (United States)

    Jeon, M; Choi, H; Lee, S I; Kim, J S; Park, M; Kim, K; Lee, S; Byun, S J

    2016-05-01

    Chicken serum has been suggested as a supplement to promote chicken cell proliferation and development. However, the molecular mechanisms by which chicken serum stimulates chicken cell proliferation remain unknown. Here, we evaluated the effects of chicken serum supplementation on chicken embryo fibroblast (CEF) and DF-1 cell proliferation. We also sought to elucidate the molecular pathways involved in mediating the effects of chicken serum on fibroblasts and DF-1 cells by overexpression of chicken 78 kDa glucose-regulated protein (chGRP78), which is important for cell growth and the prevention of apoptosis. Our data demonstrated that the addition of 5% chicken serum significantly enhanced fibroblast proliferation. Moreover, knockdown of chGRP78 using siRNA decreased fibroblast proliferation and increased apoptosis. Based on these results, we suggest that the chGRP78-mediated signaling pathway plays a critical role in chicken serum-stimulated fibroblast survival and anti-apoptosis. Therefore, our findings have important implications for the maintenance of chicken fibroblast cells through the inhibition of apoptosis and may lead to the development of new treatments for avian disease. © 2016 Poultry Science Association Inc.

  13. Caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress.

    Science.gov (United States)

    Zhang, Qiang; Liu, Jianing; Chen, Shulan; Liu, Jing; Liu, Lijuan; Liu, Guirong; Wang, Fang; Jiang, Wenxin; Zhang, Caixia; Wang, Shuangyu; Yuan, Xiao

    2016-04-01

    It is well recognized that mandibular growth, which is caused by a variety of functional appliances, is considered to be the result of both neuromuscular and skeletal adaptations. Accumulating evidence has demonstrated that apoptosis plays an important role in the adaptation of skeletal muscle function. However, the underlying mechanism of apoptosis that is induced by stretch continues to be incompletely understood. Endoplasmic reticulum stress (ERS), a newly defined signaling pathway, initiates apoptosis. This study seeks to determine if caspase-12 is involved in stretch-induced apoptosis mediated endoplasmic reticulum stress in myoblast and its underlying mechanism. Apoptosis was assessed by Hochest staining, DAPI staining and annexin V binding and PI staining. ER chaperones, such as GRP78, CHOP and caspase-12, were determined by reverse transcription polymerase chain reaction (RT-PCR) and Western blot. Furthermore, caspase-12 inhibitor was used to value the mechanism of the caspase-12 pathway. Apoptosis of myoblast, which is subjected to cyclic stretch, was observed in a time-dependent manner. We found that GRP78 mRNA and protein were significantly increased and CHOP and caspase-12 were activated in myoblast that was exposed to cyclic stretch. Caspase-12 inhibition reduced stretch-induced apoptosis, and caspase-12 activated caspase-3 to induce apoptosis. We concluded that caspase-12 played an important role in stretch-induced apoptosis that is associated by endoplasmic reticulum stress by activating caspase-3.

  14. Nonylphenol diethoxylate inhibits apoptosis induced in PC12 cells.

    Science.gov (United States)

    Liu, Chuang; Sun, Yongkun; Song, Yutong; Saito, Takeshi; Kurasaki, Masaaki

    2016-11-01

    Nonylphenol and short-chain nonylphenol ethoxylates such as NP 2 EO are present in aquatic environment as wastewater contaminants, and their toxic effects on aquatic species have been reported. Apoptosis has been shown to be induced by serum deprivation or copper treatment. To understand the toxicity of nonylphenol diethoxylate, we investigated the effects of NP 2 EO on apoptosis induced by serum deprivation and copper by using PC12 cell system. Nonylphenol diethoxylate itself showed no toxicity and recovered cell viability from apoptosis. In addition, nonylphenol diethoxylate decreased DNA fragmentation caused by apoptosis in PC12 cells. This phenomenon was confirmed after treating apoptotic PC12 cells with nonylphenol diethoxylate, whereas the cytochrome c release into the cytosol decreased as compared to that in apoptotic cells not treated with nonylphenol diethoxylates. Furthermore, Bax contents in apoptotic cells were reduced after exposure to nonylphenol diethoxylate. Thus, nonylphenol diethoxylate has the opposite effect on apoptosis in PC12 cells compared to nonylphenol, which enhances apoptosis induced by serum deprivation. The difference in structure of the two compounds is hypothesized to be responsible for this phenomenon. These results indicated that nonylphenol diethoxylate has capability to affect cell differentiation and development and has potentially harmful effect on organisms because of its unexpected impact on apoptosis. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1389-1398, 2016. © 2015 Wiley Periodicals, Inc.

  15. Human Adipose Derived Stem Cells Induced Cell Apoptosis and S Phase Arrest in Bladder Tumor

    Directory of Open Access Journals (Sweden)

    Xi Yu

    2015-01-01

    Full Text Available The aim of this study was to determine the effect of human adipose derived stem cells (ADSCs on the viability and apoptosis of human bladder cancer cells. EJ and T24 cells were cocultured with ADSCs or cultured with conditioned medium of ADSCs (ADSC-CM, respectively. The cell counting and colony formation assay showed ADSCs inhibited the proliferation of EJ and T24 cells. Cell viability assessment revealed that the secretions of ADSCs, in the form of conditioned medium, were able to decrease cancer cell viability. Wound-healing assay suggested ADSC-CM suppressed migration of T24 and EJ cells. Moreover, the results of the flow cytometry indicated that ADSC-CM was capable of inducing apoptosis of T24 cells and inducing S phase cell cycle arrest. Western blot revealed ADSC-CM increased the expression of cleaved caspase-3 and cleaved PARP, indicating that ADSC-CM induced apoptosis in a caspase-dependent way. PTEN/PI3K/Akt pathway and Bcl-2 family proteins were involved in the mechanism of this reaction. Our study indicated that ADSCs may provide a promising and practicable manner for bladder tumor therapy.

  16. MicroRNA-1185 Induces Endothelial Cell Apoptosis by Targeting UVRAG and KRIT1

    Directory of Open Access Journals (Sweden)

    Haoyuan Deng

    2017-04-01

    Full Text Available Background/Aims: Atherosclerosis is a multifactorial chronic disease and is the main cause of death and impairment in the world. Endothelial injury and apoptosis play a crucial role in the onset and development of atherosclerosis. MicroRNAs (miRNAs have been proven to be involved in the pathogenesis of atherosclerosis. However, studies of the functional role of apoptosis-related miRNAs in the endothelium during atherogenesis are limited. Methods: Cell injury and apoptosis were measured in five types of cells transfected with miR-1185 or co-transfected with miR-1185 and its inhibitor. Bioinformatics analysis and a luciferase reporter assay were used to confirm the targets of miR-1185. The effects of the targets of miR-1185 on endothelial apoptosis were determined using small-interfering RNA. Results: In this study, we first report that miR-1185 significantly promoted apoptosis in endothelial cells but not in vascular smooth muscle cells and macrophages. A mechanistic analysis showed that ultraviolet irradiation resistance-associated gene (UVRAG and krev1 interaction trapped gene 1 (KRIT1, targets of miR-1185, mediated miR-1185-induced endothelial cell apoptosis. Conclusion: The results revealed the impact of miR-1185 on endothelial apoptosis, suggesting that miR-1185 may be a potential target for the prevention and treatment of atherosclerosis.

  17. Stereospecific induction of apoptosis in tumor cells via endogenous C16-ceramide and distinct transcripts.

    Science.gov (United States)

    Blaess, M; Le, H P; Claus, R A; Kohl, M; Deigner, H-P

    2015-01-01

    Concentration and distribution of individual endogenous ceramide species is crucial for apoptosis induction in response to various stimuli. Exogenous ceramide analogs induce apoptosis and can in turn modify the composition/concentrations of endogenous ceramide species and associated signaling. In this study, we show here that the elevation of endogenous C16-ceramide levels is a common feature of several known apoptosis-inducing triggers like mmLDL, TNF-alpha, H2O2 and exogenous C6-ceramide. Vice versa apoptosis requires elevation of endogenous C16-ceramide levels in cells. Enantiomers of a synthetic ceramide analog HPL-1RS36N have been developed as probes and vary in their capacity to inducing apoptosis in macrophages and HT-29 cells. Apoptosis induction by the two synthetic ceramide analogs HPL-39N and HPL-1R36N correlates with generation of cellular C16-ceramide concentration. In contrast to the S-enantiomer HPL-1S36N, the R-enantiomer HPL-1R36N shows significant effects on the expression of distinct genes known to be involved in cell cycle, cell growth and cell death (CXCL10, CCL5 and TNF-alpha), similarly on apoptosis induction. Enantioselective effects on transcription induced by metabolically stable synthetic probes provide clues on molecular mechanisms of ceramide-induced signaling, as well as leads for future anti-cancer agents.

  18. Bupivacaine-induced apoptosis independently of WDR35 expression in mouse neuroblastoma Neuro2a cells

    Science.gov (United States)

    2012-01-01

    Background Bupivacaine-induced neurotoxicity has been shown to occur through apoptosis. Recently, bupivacaine was shown to elicit reactive oxygen species (ROS) production and induce apoptosis accompanied by activation of p38 mitogen-activated protein kinase (MAPK) in a human neuroblastoma cell line. We have reported that WDR35, a WD40-repeat protein, may mediate apoptosis through caspase-3 activation. The present study was undertaken to test whether bupivacaine induces apoptosis in mouse neuroblastoma Neuro2a cells and to determine whether ROS, p38 MAPK, and WDR35 are involved. Results Our results showed that bupivacaine induced ROS generation and p38 MAPK activation in Neuro2a cells, resulting in apoptosis. Bupivacaine also increased WDR35 expression in a dose- and time-dependent manner. Hydrogen peroxide (H2O2) also increased WDR35 expression in Neuro2a cells. Antioxidant (EUK-8) and p38 MAPK inhibitor (SB202190) treatment attenuated the increase in caspase-3 activity, cell death and WDR35 expression induced by bupivacaine or H2O2. Although transfection of Neuro2a cells with WDR35 siRNA attenuated the bupivacaine- or H2O2-induced increase in expression of WDR35 mRNA and protein, in contrast to our previous studies, it did not inhibit the increase in caspase-3 activity in bupivacaine- or H2O2-treated cells. Conclusions In summary, our results indicated that bupivacaine induced apoptosis in Neuro2a cells. Bupivacaine induced ROS generation and p38 MAPK activation, resulting in an increase in WDR35 expression, in these cells. However, the increase in WDR35 expression may not be essential for the bupivacaine-induced apoptosis in Neuro2a cells. These results may suggest the existence of another mechanism of bupivacaine-induced apoptosis independent from WDR35 expression in Neuro2a cells. PMID:23227925

  19. Beta-irradiation used for systemic radioimmunotherapy induces apoptosis and activates apoptosis pathways in leukaemia cells

    International Nuclear Information System (INIS)

    Friesen, Claudia; Lubatschofski, Annelie; Debatin, Klaus-Michael; Kotzerke, Joerg; Buchmann, Inga; Reske, Sven N.

    2003-01-01

    Beta-irradiation used for systemic radioimmunotherapy (RIT) is a promising treatment approach for high-risk leukaemia and lymphoma. In bone marrow-selective radioimmunotherapy, beta-irradiation is applied using iodine-131, yttrium-90 or rhenium-188 labelled radioimmunoconjugates. However, the mechanisms by which beta-irradiation induces cell death are not understood at the molecular level. Here, we report that beta-irradiation induced apoptosis and activated apoptosis pathways in leukaemia cells depending on doses, time points and dose rates. After beta-irradiation, upregulation of CD95 ligand and CD95 receptor was detected and activation of caspases resulting in apoptosis was found. These effects were completely blocked by the broad-range caspase inhibitor zVAD-fmk. In addition, irradiation-mediated mitochondrial damage resulted in perturbation of mitochondrial membrane potential, caspase-9 activation and cytochrome c release. Bax, a death-promoting protein, was upregulated and Bcl-x L , a death-inhibiting protein, was downregulated. We also found higher apoptosis rates and earlier activation of apoptosis pathways after gamma-irradiation in comparison to beta-irradiation at the same dose rate. Furthermore, irradiation-resistant cells were cross-resistant to CD95 and CD95-resistant cells were cross-resistant to irradiation, indicating that CD95 and irradiation used, at least in part, identical effector pathways. These findings demonstrate that beta-irradiation induces apoptosis and activates apoptosis pathways in leukaemia cells using both mitochondrial and death receptor pathways. Understanding the timing, sequence and molecular pathways of beta-irradiation-mediated apoptosis may allow rational adjustment of chemo- and radiotherapeutic strategies. (orig.)

  20. [RNA interference of HERC4 inhibits proliferation, apoptosis and migration of cervical cancer Hela cells].

    Science.gov (United States)

    Wei, Min; Zhang, Yan-Ling; Chen, Lan; Cai, Cui-Xia; Wang, Han-Duo

    2016-02-20

    To explore the effects of silencing HERC4 on the proliferation, apoptosis, and migration of cervical cancer cell line Hela and the possible molecular mechanisms. Three HERC4-specific small interfering RNAs (siRNAs) were transfected into Hela cells, and HERC4 expression in the cells was examined with Western blotting. CCK-8 assay, annexin V-FITC/PI assay, and wound healing assay were used to assess the effect of HERC4 silencing on the proliferation, apoptosis and migration ability of Hela cells. The expression levels of cyclin D1 and Bcl-2 in the cells were detected using Western blotting. Transfection of siRNA-3 resulted in significantly decreased HERC4 protein expression (PHela cells, increased the apoptosis rate (PHela cells in vitro, and the underlying mechanisms may involve the down-regulation of cyclin D1 and Bcl-2.

  1. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M

    1998-01-01

    human retinal pigment epithelial (RPE) cells can induce apoptosis in activated T cells. METHODS: Fas ligand (FasL) expression was detected by flow cytometry and immunohistochemistry. Cultured RPE cells were cocultured with T-cell lines and peripheral blood lymphocytes for 6 hours to 2 days. Induction...... of apoptosis was detected by 7-amino-actinomycin D and annexin V staining. RESULTS: Retinal pigment epithelial cells expressed FasL and induced apoptosis in activated Fas+ T cells. Blocking of Fas-FasL interaction with antibody strongly inhibited RPE-mediated T-cell apoptosis. Retinal pigment epithelial cells...... induced apoptosis in several activated T-cell populations and T-cell lines, including T-cell antigen receptor (TCR)-CD3-negative T-cell lines. In contrast, RPE cells induced little or no apoptosis in resting peripheral T cells. Major histocompatibility complex (MHC) class II monoclonal antibodies, which...

  2. Apoptosis signal-regulating kinase 1 mediates denbinobin-induced apoptosis in human lung adenocarcinoma cells

    Directory of Open Access Journals (Sweden)

    Pan Shiow-Lin

    2009-05-01

    Full Text Available Abstract In the present study, we explore the role of apoptosis signal-regulating kinase 1 (ASK1 in denbinobin-induced apoptosis in human lung adenocarcinoma (A549 cells. Denbinobin-induced cell apoptosis was attenuated by an ASK1 dominant-negative mutant (ASK1DN, two antioxidants (N-acetyl-L-cysteine (NAC and glutathione (GSH, a c-Jun N-terminal kinase (JNK inhibitor (SP600125, and an activator protein-1 (AP-1 inhibitor (curcumin. Treatment of A549 cells with denbinobin caused increases in ASK1 activity and reactive oxygen species (ROS production, and these effects were inhibited by NAC and GSH. Stimulation of A549 cells with denbinobin caused JNK activation; this effect was markedly inhibited by NAC, GSH, and ASK1DN. Denbinobin induced c-Jun phosphorylation, the formation of an AP-1-specific DNA-protein complex, and Bim expression. Bim knockdown using a bim short interfering RNA strategy also reduced denbinobin-induced A549 cell apoptosis. The denbinobin-mediated increases in c-Jun phosphorylation and Bim expression were inhibited by NAC, GSH, SP600125, ASK1DN, JNK1DN, and JNK2DN. These results suggest that denbinobin might activate ASK1 through ROS production to cause JNK/AP-1 activation, which in turn induces Bim expression, and ultimately results in A549 cell apoptosis.

  3. TGEV nucleocapsid protein induces cell cycle arrest and apoptosis through activation of p53 signaling.

    Science.gov (United States)

    Ding, Li; Huang, Yong; Du, Qian; Dong, Feng; Zhao, Xiaomin; Zhang, Wenlong; Xu, Xingang; Tong, Dewen

    2014-03-07

    Our previous studies showed that TGEV infection could induce cell cycle arrest and apoptosis via activation of p53 signaling in cultured host cells. However, it is unclear which viral gene causes these effects. In this study, we investigated the effects of TGEV nucleocapsid (N) protein on PK-15 cells. We found that TGEV N protein suppressed cell proliferation by causing cell cycle arrest at the S and G2/M phases and apoptosis. Characterization of various cellular proteins that are involved in regulating cell cycle progression demonstrated that the expression of N gene resulted in an accumulation of p53 and p21, which suppressed cyclin B1, cdc2 and cdk2 expression. Moreover, the expression of TGEV N gene promoted translocation of Bax to mitochondria, which in turn caused the release of cytochrome c, followed by activation of caspase-3, resulting in cell apoptosis in the transfected PK-15 cells following cell cycle arrest. Further studies showed that p53 inhibitor attenuated TGEV N protein induced cell cycle arrest at S and G2/M phases and apoptosis through reversing the expression changes of cdc2, cdk2 and cyclin B1 and the translocation changes of Bax and cytochrome c induced by TGEV N protein. Taken together, these results demonstrated that TGEV N protein might play an important role in TGEV infection-induced p53 activation and cell cycle arrest at the S and G2/M phases and apoptosis occurrence. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Radiation-induced apoptosis in human ovarian carcinoma cells growing as a monolayer and as multicell spheroids.

    Science.gov (United States)

    Filippovich, I V; Sorokina, N I; Robillard, N; Chatal, J F

    1997-09-04

    Response to external gamma irradiation was studied in a human ovarian carcinoma cell line (OVCAR 3) growing as a monolayer and as multicell spheroids. Necrosis and apoptosis were documented using Trypan-blue uptake and acridine-orange staining, respectively, and apoptosis was quantified using a terminal deoxynucleotidyl transferase assay. Exposure of OVCAR 3 cells growing as a monolayer to 137Cs gamma radiation at a dose of 10 Gy produced 30-40% apoptosis 72 hr after irradiation. Cell-cycle analysis of irradiated cells showed an accumulation of cells in G2/M phase 24 hr after irradiation and then a decline at 48 hr in conjunction with apoptosis onset. The loss of G0/G1 cells in irradiated cultures suggested a preferential entry into apoptosis. No increase in apoptotic cell number was observed in OVCAR 3 spheroids after irradiation, and the cells probably died as a result of necrosis. When spheroids were disrupted immediately after irradiation to obtain a cell suspension, minor apoptosis was observed in association with a marked increase in TB-positive cell number after 96 hr of incubation following irradiation. Thus, a relationship was found between radiation-induced apoptosis and the cell cycle. Results with spheroids suggested the possible involvement of cell-to-cell interactions in apoptosis regulation.

  5. Role of CSL-dependent and independent Notch signaling pathways in cell apoptosis.

    Science.gov (United States)

    Zeng, Chong; Xing, Rui; Liu, Jing; Xing, Feiyue

    2016-01-01

    Apoptosis is a normally biological phenomenon in various organisms, involving complexly molecular mechanisms with a series of signaling processes. Notch signaling is found evolutionarily conserved in many species, playing a critical role in embryonic development, normal tissue homeostasis, angiogenesis and immunoregulation. The focus of this review is on currently novel advances about roles of CSL-dependent and independent Notch signaling pathways in cell apoptosis. The CSL can bind Notch intracellular domain (NIC) to act as a switch in mediating transcriptional activation or inactivation of the Notch signaling pathway downstream genes in the nucleus. It shows that CSL-dependent signaling regulates the cell apoptosis through Hes-1-PTEN-AKT-mTOR signaling, but rather the CSL-independent signaling mediates the cell apoptosis possibly via NIC-mTORC2-AKT-mTOR signaling, providing a new insight into apoptotic mechanisms.

  6. Apoptosis in HEp-2 cells infected with Ureaplasma diversum

    Directory of Open Access Journals (Sweden)

    Aline Teixeira Amorim

    2014-01-01

    Full Text Available BACKGROUND: Bacterial pathogens have many strategies for infecting and persisting in host cells. Adhesion, invasion and intracellular life are important features in the biology of mollicutes. The intracellular location ofUreaplasma diversum may trigger disturbances in the host cell. This includes activation or inhibition of pro and anti-apoptotic factors, which facilitate the development of host damage. The aim of the present study was to associate U. diversum infection in HEp-2 cells and apoptosis induction. Cells were infected for 72hs with four U. diversum clinical isolates and an ATCC strain. The U. diversuminvasion was analyzed by Confocal Laser Scanning Microscopy and gentamicin invasion assay. The apoptosis was evaluated using pro-apoptotic and anti-apoptotic gene expression, and FITC Annexin V/Dead Cell Apoptosis Kit. RESULTS: The number of internalized ureaplasma in HEp-2 cells increased significantly throughout the infection. The flow cytometry analysis with fluorochromes to detect membrane depolarization and gene expression for caspase 2, 3 and 9 increased in infected cells after 24 hours. However, after 72 hours a considerable decrease of apoptotic cells was observed. CONCLUSIONS: The data suggests that apoptosis may be initially induced by some isolates in association with HEp-2 cells, but over time, there was no evidence of apoptosis in the presence of ureaplasma and HEp-2 cells. The initial increase and then decrease in apoptosis could be related to bacterial pathogen-associated molecular pattern (PAMPS. Moreover, the isolates of U. diversum presented differences in the studied parameters for apoptosis. It was also observed that the amount of microorganisms was not proportional to the induction of apoptosis in HEp-2 cells.

  7. Apoptosis in HEp-2 cells infected with Ureaplasma diversum.

    Science.gov (United States)

    Amorim, Aline Teixeira; Marques, Lucas Miranda; Santos, Angelita Maria Oliveira Gusmão; Martins, Hellen Braga; Barbosa, Maysa Santos; Rezende, Izadora Souza; Andrade, Ewerton Ferraz; Campos, Guilherme Barreto; Lobão, Tássia Neves; Cortez, Beatriz Araujo; Monezi, Telma Alvez; Machado-Santelli, Glaucia Maria; Timenetsky, Jorge

    2014-09-04

    Bacterial pathogens have many strategies for infecting and persisting in host cells. Adhesion, invasion and intracellular life are important features in the biology of mollicutes. The intracellular location of Ureaplasma diversum may trigger disturbances in the host cell. This includes activation or inhibition of pro and anti-apoptotic factors, which facilitate the development of host damage. The aim of the present study was to associate U. diversum infection in HEp-2 cells and apoptosis induction. Cells were infected for 72hs with four U. diversum clinical isolates and an ATCC strain. The U. diversum invasion was analyzed by Confocal Laser Scanning Microscopy and gentamicin invasion assay. The apoptosis was evaluated using pro-apoptotic and anti-apoptotic gene expression, and FITC Annexin V/Dead Cell Apoptosis Kit. The number of internalized ureaplasma in HEp-2 cells increased significantly throughout the infection. The flow cytometry analysis with fluorochromes to detect membrane depolarization and gene expression for caspase 2, 3 and 9 increased in infected cells after 24 hours. However, after 72 hours a considerable decrease of apoptotic cells was observed. The data suggests that apoptosis may be initially induced by some isolates in association with HEp-2 cells, but over time, there was no evidence of apoptosis in the presence of ureaplasma and HEp-2 cells. The initial increase and then decrease in apoptosis could be related to bacterial pathogen-associated molecular pattern (PAMPS). Moreover, the isolates of U. diversum presented differences in the studied parameters for apoptosis. It was also observed that the amount of microorganisms was not proportional to the induction of apoptosis in HEp-2 cells.

  8. Isoalantolactone inhibits UM-SCC-10A cell growth via cell cycle arrest and apoptosis induction.

    Directory of Open Access Journals (Sweden)

    Minjun Wu

    Full Text Available Isoalantolactone is a sesquiterpene lactone compound isolated from the roots of Inula helenium L. Previous studies have demonstrated that isoalantolactone possesses antifungal, anti-bacterial, anti-helminthic and anti-proliferative properties in a variety of cells, but there are no studies concerning its effects on head and neck squamous cell carcinoma (HNSCC. In the present study, an MTT assay demonstrated that isoalantolactone has anti-proliferative activity against the HNSCC cell line (UM-SCC-10A. Immunostaining identified that this compound induced UM-SCC-10A cell apoptosis but not necrosis. To explain the molecular mechanisms underlying its effects, flow cytometry and western blot analysis showed that the apoptosis was associated with cell cycle arrest during the G1 phase, up-regulation of p53 and p21, and down-regulation of cyclin D. Furthermore, our results revealed that induction of apoptosis through a mitochondrial pathway led to up-regulation of pro-apoptotic protein expression (Bax, down-regulation of anti-apoptotic protein expression (Bcl-2, mitochondrial release of cytochrome c (Cyto c, reduction of mitochondrial membrane potential (MMP and activation of caspase-3 (Casp-3. Involvement of the caspase apoptosis pathway was confirmed using caspase inhibitor Z-VAD-FMK pretreatment. Together, our findings suggest that isoalantolactone induced caspase-dependent apoptosis via a mitochondrial pathway and was associated with cell cycle arrest in the G1 phase in UM-SCC-10A cells. Therefore, isoalantolactone may become a potential drug for treating HNSCC.

  9. Cigarette smoke causes caspase-independent apoptosis of bronchial epithelial cells from asthmatic donors.

    Directory of Open Access Journals (Sweden)

    Fabio Bucchieri

    Full Text Available Epidemiologic studies have demonstrated important links between air pollution and asthma. Amongst these pollutants, environmental cigarette smoke is a risk factor both for asthma pathogenesis and exacerbation. As the barrier to the inhaled environment, the bronchial epithelium is a key structure that is exposed to cigarette smoke.Since primary bronchial epithelial cells (PBECs from asthmatic donors are more susceptible to oxidant-induced apoptosis, we hypothesized that they would be susceptible to cigarette smoke-induced cell death.PBECs from normal and asthmatic donors were exposed to cigarette smoke extract (CSE; cell survival and apoptosis were assessed by fluorescence-activated cell sorting, and protective effects of antioxidants evaluated. The mechanism of cell death was evaluated using caspase inhibitors and immunofluorescent staining for apoptosis-inducing factor (AIF.Exposure of PBEC cultures to CSE resulted in a dose-dependent increase in cell death. At 20% CSE, PBECs from asthmatic donors exhibited significantly more apoptosis than cells from non-asthmatic controls. Reduced glutathione (GSH, but not ascorbic acid (AA, protected against CSE-induced apoptosis. To investigate mechanisms of CSE-induced apoptosis, caspase-3 or -9 inhibitors were tested, but these failed to prevent apoptosis; in contrast, CSE promoted nuclear translocation of AIF from the mitochondria. GSH reduced the number of nuclear-AIF positive cells whereas AA was ineffective.Our results show that PBECs from asthmatic donors are more susceptible to CSE-induced apoptosis. This response involves AIF, which has been implicated in DNA damage and ROS-mediated cell-death. Epithelial susceptibility to CSE may contribute to the impact of environmental tobacco smoke in asthma.

  10. Microsporidia infection impacts the host cell's cycle and reduces host cell apoptosis

    Science.gov (United States)

    Higes, Mariano; Sagastume, Soledad; Juarranz, Ángeles; Dias-Almeida, Joyce; Budge, Giles E.; Meana, Aránzazu; Boonham, Neil

    2017-01-01

    Intracellular parasites can alter the cellular machinery of host cells to create a safe haven for their survival. In this regard, microsporidia are obligate intracellular fungal parasites with extremely reduced genomes and hence, they are strongly dependent on their host for energy and resources. To date, there are few studies into host cell manipulation by microsporidia, most of which have focused on morphological aspects. The microsporidia Nosema apis and Nosema ceranae are worldwide parasites of honey bees, infecting their ventricular epithelial cells. In this work, quantitative gene expression and histology were studied to investigate how these two parasites manipulate their host’s cells at the molecular level. Both these microsporidia provoke infection-induced regulation of genes involved in apoptosis and the cell cycle. The up-regulation of buffy (which encodes a pro-survival protein) and BIRC5 (belonging to the Inhibitor Apoptosis protein family) was observed after infection, shedding light on the pathways that these pathogens use to inhibit host cell apoptosis. Curiously, different routes related to cell cycle were modified after infection by each microsporidia. In the case of N. apis, cyclin B1, dacapo and E2F2 were up-regulated, whereas only cyclin E was up-regulated by N. ceranae, in both cases promoting the G1/S phase transition. This is the first report describing molecular pathways related to parasite-host interactions that are probably intended to ensure the parasite’s survival within the cell. PMID:28152065

  11. The dual role of autophagy under hypoxia-involvement of interaction between autophagy and apoptosis.

    Science.gov (United States)

    Li, Mengmeng; Tan, Jin; Miao, Yuyang; Lei, Ping; Zhang, Qiang

    2015-06-01

    Hypoxia is one of severe cellular stress and it is well known to be associated with a worse outcome since a lack of oxygen accelerates the induction of apoptosis. Autophagy, an important and evolutionarily conserved mechanism for maintaining cellular homeostasis, is closely related to the apoptosis caused by hypoxia. Generally autophagy blocks the induction of apoptosis and inhibits the activation of apoptosis-associated caspase which could reduce cellular injury. However, in special cases, autophagy or autophagy-relevant proteins may help to induce apoptosis, which could aggravate cell damage under hypoxia condition. In addition, the activation of apoptosis-related proteins-caspase can also degrade autophagy-related proteins, such as Atg3, Atg4, Beclin1 protein, inhibiting autophagy. Although the relationship between autophagy and apoptosis has been known for rather complex for more than a decade, the underlying regulatory mechanisms have not been clearly understood. This short review discusses and summarizes the dual role of autophagy and the interaction and molecular regulatory mechanisms between autophagy and apoptosis under hypoxia.

  12. High expression of markers of apoptosis in Langerhans cell histiocytosis

    DEFF Research Database (Denmark)

    Petersen, Bodil Laub; Lundegaard, Pia Rengtved; Bank, M I

    2003-01-01

    53 and the number of cells in apoptosis detected with TUNEL. Langerhans cell histiocytosis cells showed strong expression of p53 and in some cases co-expression of Fas and Fas-L. The expression of Fas-L was significantly higher in infiltrates from patients with single-system disease. The actual...... number of pathological Langerhans cells in apoptosis as estimated by TUNEL was low. CONCLUSIONS: The low number of TUNEL-reactive cells can be explained by the rapid turnover of apoptotic cells in the tissue, not leaving the apoptotic cells long enough in the tissue to be detected. The co......-expression of Fas and Fas-L in some Langerhans cells can lead to an autocrine apoptotic shortcut, mediating the death of the double-positive cells. Our findings suggest that apoptosis mediated through the Fas/Fas-L pathway may contribute to the spontaneous regression of lesions in single-system disease. A delicate...

  13. Oxidative stress in NSC-741909-induced apoptosis of cancer cells

    Directory of Open Access Journals (Sweden)

    Huang Peng

    2010-04-01

    Full Text Available Abstract Background NSC-741909 is a novel anticancer agent that can effectively suppress the growth of several cell lines derived from lung, colon, breast, ovarian, and kidney cancers. We recently showed that NSC-741909-induced antitumor activity is associated with sustained Jun N-terminal kinase (JNK activation, resulting from suppression of JNK dephosphorylation associated with decreased protein levels of MAPK phosphatase-1. However, the mechanisms of NSC-741909-induced antitumor activity remain unclear. Because JNK is frequently activated by oxidative stress in cells, we hypothesized that reactive oxygen species (ROS may be involved in the suppression of JNK dephosphorylation and the cytotoxicity of NSC-741909. Methods The generation of ROS was measured by using the cell-permeable nonfluorescent compound H2DCF-DA and flow cytometry analysis. Cell viability was determined by sulforhodamine B assay. Western blot analysis, immunofluorescent staining and flow cytometry assays were used to determine apoptosis and molecular changes induced by NSC-741909. Results Treatment with NSC-741909 induced robust ROS generation and marked MAPK phosphatase-1 and -7 clustering in NSC-741909-sensitive, but not resistant cell lines, in a dose- and time-dependent manner. The generation of ROS was detectable as early as 30 min and ROS levels were as high as 6- to 8-fold above basal levels after treatment. Moreover, the NSC-741909-induced ROS generation could be blocked by pretreatment with antioxidants, such as nordihydroguaiaretic acid, aesculetin, baicalein, and caffeic acid, which in turn, inhibited the NSC-741909-induced JNK activation and apoptosis. Conclusion Our results demonstrate that the increased ROS production was associated with NSC-741909-induced antitumor activity and that ROS generation and subsequent JNK activation is one of the primary mechanisms of NSC-741909-mediated antitumor cell activity.

  14. Chalcones Enhance TRAIL-Induced Apoptosis in Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ewelina Szliszka

    2009-12-01

    Full Text Available Chalcones exhibit chemopreventive and antitumor effects. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL is a naturally occurring anticancer agent that induces apoptosis in cancer cells and is not toxic to normal cells. We examined the cytotoxic and apoptotic effect of five chalcones in combination with TRAIL on prostate cancer cells. The cytotoxicity was evaluated by the MTT and LDH assays. The apoptosis was determined using flow cytometry with annexin V-FITC. Our study showed that all five tested chalcones: chalcone, licochalcone-A, isobavachalcone, xanthohumol, butein markedly augmented TRAIL-mediated apoptosis and cytotoxicity in prostate cancer cells and confirmed the significant role of chalcones in chemoprevention of prostate cancer.

  15. Chalcones Enhance TRAIL-Induced Apoptosis in Prostate Cancer Cells

    Science.gov (United States)

    Szliszka, Ewelina; Czuba, Zenon P; Mazur, Bogdan; Sedek, Lukasz; Paradysz, Andrzej; Krol, Wojciech

    2009-01-01

    Chalcones exhibit chemopreventive and antitumor effects. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a naturally occurring anticancer agent that induces apoptosis in cancer cells and is not toxic to normal cells. We examined the cytotoxic and apoptotic effect of five chalcones in combination with TRAIL on prostate cancer cells. The cytotoxicity was evaluated by the MTT and LDH assays. The apoptosis was determined using flow cytometry with annexin V-FITC. Our study showed that all five tested chalcones: chalcone, licochalcone-A, isobavachalcone, xanthohumol, butein markedly augmented TRAIL-mediated apoptosis and cytotoxicity in prostate cancer cells and confirmed the significant role of chalcones in chemoprevention of prostate cancer. PMID:20161998

  16. Renal cell apoptosis in human lupus nephritis: a histological study

    DEFF Research Database (Denmark)

    Faurschou, M; Penkowa, Milena; Andersen, C B

    2009-01-01

    Nuclear autoantigens from apoptotic cells are believed to drive the immunological response in systemic lupus erythematosus (SLE). Conflicting data exist as to the possible renal origin of apoptotic cells in SLE patients with nephritis. We assessed the level of renal cell apoptosis in kidney...... for tubulointerstitial mononuclear cell infiltration than patients without apoptotic tubular cells in their biopsies (P = 0.01). Furthermore, the level of tubular cell apoptosis displayed a statistically significant, positive correlation with the activity index score for mononuclear cell infiltration (r(s) = 0.472, P...... = 0.004) but not with scores for other activity or chronicity index components. These observations indicate that the degree of tubular cell apoptosis correlates with the severity of tubulointerstitial inflammation in SLE-associated nephritis. However, our findings do not suggest that apoptotic renal...

  17. Kurarinol induces hepatocellular carcinoma cell apoptosis through suppressing cellular signal transducer and activator of transcription 3 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Guangwen; Yang, Jing; Zhao, Wenhao; Xu, Chan; Hong, Zongguo; Mei, Zhinan; Yang, Xinzhou, E-mail: xinzhou_yang@hotmail.com

    2014-12-01

    Kurarinol is a flavonoid isolated from roots of the medical plant Sophora flavescens. However, its cytotoxic activity against hepatocellular carcinoma (HCC) cells and toxic effects on mammalians remain largely unexplored. Here, the pro-apoptotic activities of kurarinol on HCC cells and its toxic impacts on tumor-bearing mice were evaluated. The molecular mechanisms underlying kurarinol-induced HCC cell apoptosis were also investigated. We found that kurarinol dose-dependently provoked HepG2, Huh-7 and H22 HCC cell apoptosis. In addition, kurarinol gave rise to a considerable decrease in the transcriptional activity of signal transducer and activator of transcription 3 (STAT3) in HCC cells. Suppression of STAT3 signaling is involved in kurarinol-induced HCC cell apoptosis. In vivo studies showed that kurarinol injection substantially induced transplanted H22 cell apoptosis with low toxic impacts on tumor-bearing mice. Similarly, the transcriptional activity of STAT3 in transplanted tumor tissues was significantly suppressed after kurarinol treatment. Collectively, our current research demonstrated that kurarinol has the capacity of inducing HCC cell apoptosis both in vitro and in vivo with undetectable toxic impacts on the host. Suppressing STAT3 signaling is implicated in kurarinol-mediated HCC cell apoptosis. - Highlights: • Kurarinol induces hepatocellular carcinoma (HCC) cell apoptosis. • Kurarinol induces HCC cell apoptosis via inhibiting STAT3. • Kurarinol exhibits low toxic effects on tumor-bearing animals.

  18. Kurarinol induces hepatocellular carcinoma cell apoptosis through suppressing cellular signal transducer and activator of transcription 3 signaling

    International Nuclear Information System (INIS)

    Shu, Guangwen; Yang, Jing; Zhao, Wenhao; Xu, Chan; Hong, Zongguo; Mei, Zhinan; Yang, Xinzhou

    2014-01-01

    Kurarinol is a flavonoid isolated from roots of the medical plant Sophora flavescens. However, its cytotoxic activity against hepatocellular carcinoma (HCC) cells and toxic effects on mammalians remain largely unexplored. Here, the pro-apoptotic activities of kurarinol on HCC cells and its toxic impacts on tumor-bearing mice were evaluated. The molecular mechanisms underlying kurarinol-induced HCC cell apoptosis were also investigated. We found that kurarinol dose-dependently provoked HepG2, Huh-7 and H22 HCC cell apoptosis. In addition, kurarinol gave rise to a considerable decrease in the transcriptional activity of signal transducer and activator of transcription 3 (STAT3) in HCC cells. Suppression of STAT3 signaling is involved in kurarinol-induced HCC cell apoptosis. In vivo studies showed that kurarinol injection substantially induced transplanted H22 cell apoptosis with low toxic impacts on tumor-bearing mice. Similarly, the transcriptional activity of STAT3 in transplanted tumor tissues was significantly suppressed after kurarinol treatment. Collectively, our current research demonstrated that kurarinol has the capacity of inducing HCC cell apoptosis both in vitro and in vivo with undetectable toxic impacts on the host. Suppressing STAT3 signaling is implicated in kurarinol-mediated HCC cell apoptosis. - Highlights: • Kurarinol induces hepatocellular carcinoma (HCC) cell apoptosis. • Kurarinol induces HCC cell apoptosis via inhibiting STAT3. • Kurarinol exhibits low toxic effects on tumor-bearing animals

  19. Diazene JK-279 induces apoptosis-like cell death in human cervical carcinoma cells.

    Science.gov (United States)

    Jakopec, S; Dubravcic, K; Polanc, S; Kosmrlj, J; Osmak, M

    2006-03-01

    Diazene N-phenyl-2-(2-pyridinyl)diazenecarboxamide (JK-279) is a newly synthesized compound, cytotoxic for several tumor cell lines and their drug-resistant sublines. In human cervical carcinoma cells (HeLa), this compound reduced intracellular glutathione content and increased sensitivity to cisplatin. The aim of the present study was to elucidate the molecular mechanisms involved in the cytotoxic effect of diazene JK-279 on HeLa cells. Cytotoxicity was determined by the MTT method. Flow cytometry analysis showed that diazene JK-279 induces G(2)/M phase arrest, mediated by the increase in p21 expression, and accompanied by an alteration in the expression of survivin. The highest concentration of JK-279 altered nuclear morphology in intact cells, showing "apoptosis-like" features. No cleavage of procaspase-3, procaspase-9 and PARP, or altered expression of apoptotic proteins Bcl-2 and Bax were detected. At the same time, PS externalization and internucleosomal DNA cleavage were observed. Partial necrosis was detected as well. Our results demonstrate that cytotoxicity of diazene JK-279 is mostly the consequence of caspase-independent cell death, which is in some aspects "apoptosis-like". Taking into account the multiplicity of mechanisms used by cancer cells to prevent apoptosis, the drugs (like diazene JK-279) that would activate alternative cell death pathways could provide a useful tool for new types of cancer therapy.

  20. Loss of runt-related transcription factor 3 expression leads hepatocellular carcinoma cells to escape apoptosis

    Directory of Open Access Journals (Sweden)

    Nakamura Shinichiro

    2011-01-01

    Full Text Available Abstract Background Runt-related transcription factor 3 (RUNX3 is known as a tumor suppressor gene for gastric cancer and other cancers, this gene may be involved in the development of hepatocellular carcinoma (HCC. Methods RUNX3 expression was analyzed by immunoblot and immunohistochemistry in HCC cells and tissues, respectively. Hep3B cells, lacking endogenous RUNX3, were introduced with RUNX3 constructs. Cell proliferation was measured using the MTT assay and apoptosis was evaluated using DAPI staining. Apoptosis signaling was assessed by immunoblot analysis. Results RUNX3 protein expression was frequently inactivated in the HCC cell lines (91% and tissues (90%. RUNX3 expression inhibited 90 ± 8% of cell growth at 72 h in serum starved Hep3B cells. Forty-eight hour serum starvation-induced apoptosis and the percentage of apoptotic cells reached 31 ± 4% and 4 ± 1% in RUNX3-expressing Hep3B and control cells, respectively. Apoptotic activity was increased by Bim expression and caspase-3 and caspase-9 activation. Conclusion RUNX3 expression enhanced serum starvation-induced apoptosis in HCC cell lines. RUNX3 is deleted or weakly expressed in HCC, which leads to tumorigenesis by escaping apoptosis.

  1. Drosophila muscleblind is involved in troponin T alternative splicing and apoptosis.

    Directory of Open Access Journals (Sweden)

    Marta Vicente-Crespo

    2008-02-01

    Full Text Available Muscleblind-like proteins (MBNL have been involved in a developmental switch in the use of defined cassette exons. Such transition fails in the CTG repeat expansion disease myotonic dystrophy due, in part, to sequestration of MBNL proteins by CUG repeat RNA. Four protein isoforms (MblA-D are coded by the unique Drosophila muscleblind gene.We used evolutionary, genetic and cell culture approaches to study muscleblind (mbl function in flies. The evolutionary study showed that the MblC protein isoform was readily conserved from nematods to Drosophila, which suggests that it performs the most ancestral muscleblind functions. Overexpression of MblC in the fly eye precursors led to an externally rough eye morphology. This phenotype was used in a genetic screen to identify five dominant suppressors and 13 dominant enhancers including Drosophila CUG-BP1 homolog aret, exon junction complex components tsunagi and Aly, and pro-apoptotic genes Traf1 and reaper. We further investigated Muscleblind implication in apoptosis and splicing regulation. We found missplicing of troponin T in muscleblind mutant pupae and confirmed Muscleblind ability to regulate mouse fast skeletal muscle Troponin T (TnnT3 minigene splicing in human HEK cells. MblC overexpression in the wing imaginal disc activated apoptosis in a spatially restricted manner. Bioinformatics analysis identified a conserved FKRP motif, weakly resembling a sumoylation target site, in the MblC-specific sequence. Site-directed mutagenesis of the motif revealed no change in activity of mutant MblC on TnnT3 minigene splicing or aberrant binding to CUG repeat RNA, but altered the ability of the protein to form perinuclear aggregates and enhanced cell death-inducing activity of MblC overexpression.Taken together our genetic approach identify cellular processes influenced by Muscleblind function, whereas in vivo and cell culture experiments define Drosophila troponin T as a new Muscleblind target, reveal a

  2. Beryllium-stimulated apoptosis in macrophage cell lines.

    Science.gov (United States)

    Sawyer, R T; Fadok, V A; Kittle, L A; Maier, L A; Newman, L S

    2000-08-21

    In vitro stimulation of bronchoalveolar lavage cells from patients with chronic beryllium disease (CBD) induces the production of TNF-alpha. We tested the hypothesis that beryllium (Be)-stimulated TNF-alpha might induce apoptosis in mouse and human macrophage cell lines. These cell lines were selected because they produce a range of Be-stimulated TNF-alpha. The mouse macrophage cell line H36.12j produces high levels of Be-stimulated TNF-alpha. The mouse macrophage cell line P388D.1 produces low, constitutive, levels of TNF-alpha and does not up-regulate Be-stimulated TNF-alpha production. The DEOHS-1 human CBD macrophage cell line does not produce constitutive or Be-stimulated TNF-alpha. Apoptosis was determined by microscopic observation of propidium iodide stained fragmented nuclei in unstimulated and BeSO(4)-stimulated macrophage cell lines. BeSO(4) induced apoptosis in all macrophage cell lines tested. Beryllium-stimulated apoptosis was dose-responsive and maximal after 24 h of exposure to 100 microM BeSO(4). In contrast, unstimulated and Al(2)(SO(4))(3)-stimulated macrophage cell lines did not undergo apoptosis. The general caspase inhibitor BD-fmk inhibited Be-stimulated macrophage cell line apoptosis at concentrations above 50 microM. Our data show that Be-stimulated macrophage cell line apoptosis was caspase-dependent and not solely dependent on Be-stimulated TNF-alpha levels. We speculate that the release of Be-antigen from apoptotic macrophages may serve to re-introduce Be material back into the lung microenvironment, make it available for uptake by new macrophages, and thereby amplify Be-stimulated cytokine production, promoting ongoing inflammation and granuloma maintenance in CBD.

  3. Identification of genes regulated by Wnt/β-catenin pathway and involved in apoptosis via microarray analysis

    Directory of Open Access Journals (Sweden)

    Chen Quan

    2006-09-01

    Full Text Available Abstract Background Wnt/β-catenin pathway has critical roles in development and oncogenesis. Although significant progress has been made in understanding the downstream signaling cascade of this pathway, little is known regarding Wnt/β-catenin pathway modification of the cellular apoptosis. Methods To identify potential genes regulated by Wnt/β-catenin pathway and involved in apoptosis, we used a stably integrated, inducible RNA interference (RNAi vector to specific inhibit the expression and the transcriptional activity of β-catenin in HeLa cells. Meanwhile, we designed an oligonucleotide microarray covering 1384 apoptosis-related genes. Using oligonucleotide microarrays, a series of differential expression of genes was identified and further confirmed by RT-PCR. Results Stably integrated inducible RNAi vector could effectively suppress β-catenin expression and the transcriptional activity of β-catenin/TCF. Meanwhile, depletion of β-catenin in this manner made the cells more sensitive to apoptosis. 130 genes involved in some important cell-apoptotic pathways, such as PTEN-PI3K-AKT pathway, NF-κB pathway and p53 pathway, showed significant alteration in their expression level after the knockdown of β-catenin. Conclusion Coupling RNAi knockdown with microarray and RT-PCR analyses proves to be a versatile strategy for identifying genes regulated by Wnt/β-catenin pathway and for a better understanding the role of this pathway in apoptosis. Some of the identified β-catenin/TCF directed or indirected target genes may represent excellent targets to limit tumor growth.

  4. Modulation of MAA-induced apoptosis in male germ cells: role of Sertoli cell P/Q-type calcium channels

    Directory of Open Access Journals (Sweden)

    Aguanno Salvatore

    2005-04-01

    Full Text Available Abstract Spontaneous germ cell death by apoptosis occurs during normal spermatogenesis in mammals and is thought to play a role in the physiological mechanism limiting the clonal expansion of such cell population in the male gonad. In the prepubertal rat testis, the most conspicuous dying cells are pachytene spermatocytes, which are also the primary target of the apoptosis experimentally induced by the methoxyacetic acid (MAA. Since we have recently reported that Sertoli cells, the somatic component of the seminiferous epithelium, regulate not only germ cell viability and differentiation but also their death, we have further investigated the mechanism involved in such a control. In this paper we have used the protein clusterin, produced by Sertoli cells and associated with tissue damage or injury, as indicator of germ cell apoptosis in rat seminiferous tubules treated with MAA in the presence or in the absence of omega-agatoxin, a specific inhibitor of P/Q type voltage-operated calcium channels (VOCC's. We performed both a qualitative analysis of clusterin content and germ cell apoptosis by immunofluorescence experiments and a quantitative analysis by in situ end labelling of apoptotic germ cells followed by flow cytometry. The results obtained demonstrate that Sertoli cells modulate germ cell apoptosis induced by methoxyacetic acid also throughout the P/Q-type VOCC's.

  5. THE NEUROTOXICANT TRIMETHYLTIN INDUCES APOPTOSIS VIA CASPASE ACTIVATION, P38 PROTEIN KINASE, AND OXIDATIVE STRESS IN PC12 CELLS.

    Science.gov (United States)

    This manuscript describes in vitro cell signaling mechanisms involved in trimethyltin-induced neurotoxicity. The signaling pathways and effects presage effects on developmental process including neural differentiation and apoptosis. These mechanisms may be pertinent to other orga...

  6. Induction of factors of apoptosis in human tumor cells by low doses of radon

    International Nuclear Information System (INIS)

    Soto, J.; Martin, A.; Cos, S.; Gonzalez-Lamuno, D.

    1997-01-01

    The possibility of modification of genes related with apoptosis in tumor cells calls for a multidisciplinary experiment which describes the conditions and characteristics of such modification. In this work low radiation doses from radon were used in the irradiation of tumor cells of human mammary glands. After irradiation, the cells incubate for three days, after which they are counted and a total extraction of ARN is effected. Through bimolecular techniques, inverse transcription and polymerase chain reaction, the expression of genes involved in apoptosis is studied. The results found indicate that, in the cell line denominated MCF-7, the genes bcl-2, bcl-xL and bax are expressed. In the irradiated cells, the levels of expression of bcl x increase with respect to the control and induce the expression of the form bcl-xS, the protein of which induces apoptosis

  7. Herpes Simplex Virus Type 1 Renders Infected Cells Resistant to Cytotoxic T-Lymphocyte-Induced Apoptosis

    OpenAIRE

    Jerome, Keith R.; Tait, Jonathan F.; Koelle, David M.; Corey, Lawrence

    1998-01-01

    Many viruses interfere with apoptosis of infected cells, presumably preventing cellular apoptosis as a direct response to viral infection. Since cytotoxic T lymphocytes (CTL) induce apoptosis of infected cells as part of the “lethal hit,” inhibition of apoptosis could represent an effective immune evasion strategy. We report here herpes simplex virus type 1 (HSV-1) interference with CTL-induced apoptosis of infected cells and show that HSV-1 inhibits the nuclear manifestations of apoptosis bu...

  8. Radiation-induced apoptosis and cell cycle checkpoints in human colorectal tumour cell lines

    International Nuclear Information System (INIS)

    Playle, L.C.

    2001-03-01

    The p53 tumour suppressor gene is mutated in 75% of colorectal carcinomas and is critical for DNA damage-induced G1 cell cycle arrest. Data presented in this thesis demonstrate that after treatment with Ionizing Radiation (IR), colorectal tumour cell lines with mutant p53 are unable to arrest at G1 and undergo cell cycle arrest at G2. The staurosporine derivative, UCN-01, was shown to abrogate the IR-induced G2 checkpoint in colorectal tumour cell lines. Furthermore, in some cell lines, abrogation of the G2 checkpoint was associated with radiosensitisation. Data presented in this study demonstrate that 2 out of 5 cell lines with mutant p53 were sensitised to IR by UCN-01. In order to determine whether radiosensitisation correlated with lack of functional p53, transfected derivatives of an adenoma-derived cell line were studied, in which endogenous wild type p53 was disrupted by expression of a dominant negative p53 mutant protein (and with a vector control). In both these cell lines UCN-01 abrogated the G2 arrest however this was not associated with radiosensitisation, indicating that radiosensitisation is a cell type-specific phenomenon. Although 2 colorectal carcinoma cell lines, with mutant p53, were sensitised to IR by UCN-01, the mechanisms of p53-independent IR-induced apoptosis in the colon are essentially unknown. The mitogen-activated protein kinase (MAPK) pathways (that is the JNK, p38 and ERK pathways) have been implicated in apoptosis in a range of cell systems and in IR-induced apoptosis in some cell types. Data presented in this study show that, although the MAPKs can be activated by the known activator anisomycin, there is no evidence of a role for MAPKs in IR-induced apoptosis in colorectal tumour cell lines, regardless of p53 status. In summary, some colorectal tumour cell lines with mutant p53 can be sensitised to IR-induced cell death by G2 checkpoint abrogation and this may be an important treatment strategy, however mechanisms of IR-induced p53

  9. [Taurine induces apoptosis in pulmonary artery smooth muscle cells].

    Science.gov (United States)

    Zhang, Xiaodan; Sheng, Jiejing; Zhang, Caixiaz; Zhao, Fenghua

    2012-03-01

    To study the effect of taurine on apoptosis in PASMCs, and whether the death-receptor pathway act in the mechanism. Culture the PASMCs, and divided the cells into control, SD. Acridine orange(AO) assay and western-blot analysis on the expression of Bax, Bcl-2, Procaspase-3 and Fas were used to study the mechanism. A major finding of this study is that the Tau effects many apoptosis index, such as increasing the expression of Bax and Fas, decreasing the expression of Procaspase-3, and Bcl-2, accrescencing the mitochondrial depolarization, causing the nuclear shrinkage, all these datas demonstrated that Tau induced the apoptosis in pulmonary artery smooth muscle cells through mitochondrial-dependent pathway. Tau induces the apoptosis in pulmonary artery smooth muscle cells through death-receptor.

  10. Cell shrinkage as a signal to apoptosis in NIH 3T3 fibroblasts

    DEFF Research Database (Denmark)

    Friis, Martin B; Friborg, Christel R; Schneider, Linda

    2005-01-01

    Cell shrinkage is a hallmark of the apoptotic mode of programmed cell death, but it is as yet unclear whether a reduction in cell volume is a primary activation signal of apoptosis. Here we studied the effect of an acute elevation of osmolarity (NaCl or sucrose additions, final osmolarity 687...... mosmol l(-1)) on NIH 3T3 fibroblasts to identify components involved in the signal transduction from shrinkage to apoptosis. After 1.5 h the activity of caspase-3 started to increase followed after 3 h by the appearance of many apoptotic-like bodies. The caspase-3 activity increase was greatly enhanced...

  11. Autophagy Regulates Colistin-Induced Apoptosis in PC-12 Cells

    Science.gov (United States)

    Zhang, Ling; Zhao, Yonghao; Ding, Wenjian; Jiang, Guozheng; Lu, Ziyin; Li, Li; Wang, Jinli

    2015-01-01

    Colistin is a cyclic cationic polypeptide antibiotic with activity against multidrug-resistant Gram-negative bacteria. Our recent study demonstrated that colistin induces apoptosis in primary chick cortex neurons and PC-12 cells. Although apoptosis and autophagy have different impacts on cell fate, there is a complex interaction between them. Autophagy plays an important role as a homeostasis regulator by removing excessive or unnecessary proteins and damaged organelles. The aim of the present study was to investigate the modulation of autophagy and apoptosis regulation in PC-12 cells in response to colistin treatment. PC-12 cells were exposed to colistin (125 to 250 μg/ml), and autophagy was detected by visualization of monodansylcadaverine (MDC)-labeled vacuoles, LC3 (microtubule-associated protein 1 light chain 3) immunofluorescence microscopic examination, and Western blotting. Apoptosis was measured by flow cytometry, Hoechst 33258 staining, and Western blotting. Autophagosomes were observed after treatment with colistin for 12 h, and the levels of LC3-II gene expression were determined; observation and protein levels both indicated that colistin induced a high level of autophagy. Colistin treatment also led to apoptosis in PC-12 cells, and the level of caspase-3 expression increased over the 24-h period. Pretreatment of cells with 3-methyladenine (3-MA) increased colistin toxicity in PC-12 cells remarkably. However, rapamycin treatment significantly increased the expression levels of LC3-II and beclin 1 and decreased the rate of apoptosis of PC-12 cells. Our results demonstrate that colistin induced autophagy and apoptosis in PC-12 cells and that the latter was affected by the regulation of autophagy. It is very likely that autophagy plays a protective role in the reduction of colistin-induced cytotoxicity in neurons. PMID:25645826

  12. Disruption of apoptosis pathways involved in zebrafish gonad differentiation by 17α-ethinylestradiol and fadrozole exposures

    International Nuclear Information System (INIS)

    Luzio, Ana; Matos, Manuela; Santos, Dércia; Fontaínhas-Fernandes, António A.; Monteiro, Sandra M.

    2016-01-01

    Highlights: • Apoptosis in females is avoided by anti-apoptotic pathways and in males is essential to the “juvenile ovary” failure. • BIRC5 is central to the regulation of zebrafish spermatogenesis. • EE2 did not change sex ratios, but Fadrozole induced masculinization with a significant increase in male proportion. • The few females identified after exposure to Fadrozole may have avoided sex reversal by increasing anti-apoptotic proteins. • EE2 increased the pro-apoptotic genes/proteins in males, promoting gonad differentiation. - Abstract: Zebrafish (Danio rerio) sex determination seems to involve genetic factors (GSD) but also environmental factors (ESD), such as endocrine disrupting chemicals (EDCs) that are known to mimic endogenous hormones and disrupt gonad differentiation. Apoptosis has also been proposed to play a crucial role in zebrafish gonad differentiation. Nevertheless, the interactions between EDCs and apoptosis have received little attention. Thus, this study aimed to assess if and which apoptotic pathways are involved in zebrafish gonad differentiation and how EDCs may interfere with this process. With these purposes, zebrafish were exposed to 17α-ethinylestradiol (EE 2 , 4 ng/L) and fadrozole (Fad, 50 μg/L) from 2 h to 35 days post-fertilization (dpf). Afterwards, a gene expression analysis by qRT-PCR and a stereological analysis, based on systematic sampling and protein immunohistochemistry, were performed. The death receptors (FAS; TRADD), anti-apoptotic (BCL-2; MDM2), pro-apoptotic (CASP-2 and −6) and cell proliferation (BIRC5/survivin; JUN) genes and proteins were evaluated. In general, apoptosis was inhibited in females through the involvement of anti-apoptotic pathways, while in males apoptosis seemed to be crucial to the failure of the “juvenile ovary” development and the induction of testes transformation. The JUN protein was shown to be necessary in juvenile ovaries, while the BIRC5 protein seemed to be involved in

  13. Disruption of apoptosis pathways involved in zebrafish gonad differentiation by 17α-ethinylestradiol and fadrozole exposures

    Energy Technology Data Exchange (ETDEWEB)

    Luzio, Ana, E-mail: aluzio@utad.pt [Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, Vila Real, 5000-801 (Portugal); Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, Vila Real, 5000-801 (Portugal); Matos, Manuela [University of Lisbon, Faculty of Sciences, BioISI– Biosystems & Integrative Sciences Institute, Campo Grande, 1749-016 Lisbon (Portugal); Department of Genetics and Biotechnology, Life Sciences and Environment School (ECVA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, Vila Real, 5000-801 (Portugal); Santos, Dércia [Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, Vila Real, 5000-801 (Portugal); Fontaínhas-Fernandes, António A.; Monteiro, Sandra M. [Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, Vila Real, 5000-801 (Portugal); Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, Vila Real, 5000-801 (Portugal); and others

    2016-08-15

    Highlights: • Apoptosis in females is avoided by anti-apoptotic pathways and in males is essential to the “juvenile ovary” failure. • BIRC5 is central to the regulation of zebrafish spermatogenesis. • EE2 did not change sex ratios, but Fadrozole induced masculinization with a significant increase in male proportion. • The few females identified after exposure to Fadrozole may have avoided sex reversal by increasing anti-apoptotic proteins. • EE2 increased the pro-apoptotic genes/proteins in males, promoting gonad differentiation. - Abstract: Zebrafish (Danio rerio) sex determination seems to involve genetic factors (GSD) but also environmental factors (ESD), such as endocrine disrupting chemicals (EDCs) that are known to mimic endogenous hormones and disrupt gonad differentiation. Apoptosis has also been proposed to play a crucial role in zebrafish gonad differentiation. Nevertheless, the interactions between EDCs and apoptosis have received little attention. Thus, this study aimed to assess if and which apoptotic pathways are involved in zebrafish gonad differentiation and how EDCs may interfere with this process. With these purposes, zebrafish were exposed to 17α-ethinylestradiol (EE{sub 2}, 4 ng/L) and fadrozole (Fad, 50 μg/L) from 2 h to 35 days post-fertilization (dpf). Afterwards, a gene expression analysis by qRT-PCR and a stereological analysis, based on systematic sampling and protein immunohistochemistry, were performed. The death receptors (FAS; TRADD), anti-apoptotic (BCL-2; MDM2), pro-apoptotic (CASP-2 and −6) and cell proliferation (BIRC5/survivin; JUN) genes and proteins were evaluated. In general, apoptosis was inhibited in females through the involvement of anti-apoptotic pathways, while in males apoptosis seemed to be crucial to the failure of the “juvenile ovary” development and the induction of testes transformation. The JUN protein was shown to be necessary in juvenile ovaries, while the BIRC5 protein seemed to be involved

  14. Ionizing radiation induces apoptosis in hematopoietic stem and progenitor cells

    International Nuclear Information System (INIS)

    Meng, A.; Zhou, D.; Geiger, H.; Zant, G.V.

    2003-01-01

    The aims of this study was to determine if ionizing radiation (IR) induces apoptosis in hematopoietic stem (HSC) and progenitor cells. Lin-cells were isolated from mouse bone marrow (BM) and pretreated with vehicle or 100 μM z-VAD 1 h prior to exposure to 4 Gy IR. The apoptotic and/or necrotic responses of these cells to IR were analyzed by measuring the annexin V and/or 7-AAD staining in HSC and progenitor populations using flow cytometry, and hematopoietic function of these cells was determined by CAFC assay. Exposure of Lin-cells to IR selectively decreased the numbers of HSC and progenitors in association with an increase in apoptosis in a time-dependent manner. Pretreatment of Lin- cells with z-VAD significantly inhibited IR-induced apoptosis and the decrease in the numbers of HSC and progenitors. However, IR alone or in combination with z-VAD did not lead to a significant increase in necrotic cell death in either HSC or progenitors. In addition, pretreatment of BM cells with z-VAD significantly attenuated IR-induced reduction in the frequencies of day-7, -28 and -35 CAFC. Exposure of HSC and progenitors to IR induces apoptosis. The induction of HSC and progenitor apoptosis contributes to IR-induced suppression of their hematopoietic function

  15. Prodigiosin from the supernatant of Serratia marcescens induces apoptosis in haematopoietic cancer cell lines.

    Science.gov (United States)

    Montaner, B; Navarro, S; Piqué, M; Vilaseca, M; Martinell, M; Giralt, E; Gil, J; Pérez-Tomás, R

    2000-10-01

    The effects of supernatant from the bacterial strain Serratia marcescens 2170 (CS-2170) on the viability of different haematopoietic cancer cell lines (Jurkat, NSO, HL-60 and Ramos) and nonmalignant cells (NIH-3T3 and MDCK) was studied. We examined whether this cytotoxic effect was due to apoptosis, and we purified the molecule responsible for this effect and determined its chemical structure. Using an MTT assay we showed a rapid (4 h) decrease in the number of viable cells. This cytotoxic effect was due to apoptosis, according to the fragmentation pattern of DNA, Hoechst 33342 staining and FACS analysis of the phosphatidylserine externalization. This apoptosis was blocked by using the caspase inhibitor Z-VAD.fmk, indicating the involvement of caspases. Prodigiosin is a red pigment produced by various bacteria including S. marcescens. Using mutants of S. marcescens (OF, WF and 933) that do not synthesize prodigiosin, we further showed that prodigiosin is involved in this apoptosis. This evidence was corroborated by spectroscopic analysis of prodigiosin isolated from S. marcescens. These results indicate that prodigiosin, an immunosuppressor, induces apoptosis in haematopoietic cancer cells with no marked toxicity in nonmalignant cells, raising the possibility of its therapeutic use as an antineoplastic drug.

  16. Enhanced 15-HPETE production during oxidant stress induces apoptosis of endothelial cells.

    Science.gov (United States)

    Sordillo, Lorraine M; Weaver, James A; Cao, Yu-Zhang; Corl, Chris; Sylte, Matt J; Mullarky, Isis K

    2005-05-01

    Oxidant stress plays an important role in the etiology of vascular diseases by increasing rates of endothelial cell apoptosis, but few data exist on the mechanisms involved. Using a unique model of oxidative stress based on selenium deficiency (-Se), the effects of altered eicosanoid production on bovine aortic endothelial cells (BAEC) apoptosis was evaluated. Oxidant stress significantly increased the immediate oxygenation product of arachidonic acid metabolized by the 15-lipoxygenase pathway, 15-hydroxyperoxyeicosatetraenoic acid (15-HPETE). Treatment of -Se BAEC with TNFalpha/cyclohexamide (CHX) exhibited elevated levels of apoptosis, which was significantly reduced by the addition of a specific 15-lipoxygenase inhibitor PD146176. Furthermore, the addition of 15-HPETE to PD146176-treated BAEC, partially restored TNF/CHX-induced apoptosis. Increased exposure to 15-HPETE induced apoptosis, as determined by internucleosomal DNA fragmentation, chromatin condensation, caspase-3 activation, and caspase-9 activation, which suggests mitochondrial dysfunction. The expression of Bcl-2 protein also was decreased in -Se BAEC. Addition of a caspase-9 inhibitor (LEHD-fmk) completely blocked 15-HPETE-induced chromatin condensation in -Se BAEC, suggesting that 15-HPETE-induced apoptosis is caspase-9 dependent. Increased apoptosis of BAEC as a result of oxidant stress and subsequent production of 15-HPETE may play a critical role in a variety of inflammatory based diseases.

  17. LR-90 prevents methylglyoxal-induced oxidative stress and apoptosis in human endothelial cells

    Science.gov (United States)

    Figarola, James L.; Singhal, Jyotsana; Rahbar, Samuel; Awasthi, Sanjay

    2014-01-01

    Methylglyoxal (MGO) is a highly reactive dicarbonyl compound known to induce cellular injury and cytoxicity, including apoptosis in vascular cells. Vascular endothelial cell apoptosis has been implicated in the pathophysiology and progression of atherosclerosis. We investigated whether the advanced glycation end-product inhibitor LR-90 could prevent MGO-induced apoptosis in human umbilical vascular endothelial cells (HUVECs). HUVECs were pre-treated with LR-90 and then stimulated with MGO. Cell morphology, cytotoxicity and apoptosis were evaluated by light microscopy, MTT assay, and Annexin V-FITC and propidium iodide double staining, respectively. Levels of Bax, Bcl-2, cytochrome c, mitogen-activated protein kinases (MAPKs) and caspase activities were assessed by Western blotting. Reactive oxygen species (ROS) generation and mitochondrial membrane potential (MMP) were measured with fluorescent probes. LR-90 dose-dependently prevented MGO-associated HUVEC cytotoxicity and apoptotic biochemical changes such as loss of MMP, increased Bax/Bcl-2 protein ratio, mitochondrial cytochrome c release and activation of caspase-3 and 9. Additionally, LR-90 blocked intracellular ROS formation and MAPK (p44/p42, p38, JNK) activation, though the latter seem to be not directly involved in MGO-induced HUVEC apoptosis. LR-90 prevents MGO-induced HUVEC apoptosis by inhibiting ROS and associated mitochondrial-dependent apoptotic signaling cascades, suggesting that LR-90 possess cytoprotective ability which could be beneficial in prevention of diabetic related-atherosclerosis. PMID:24615331

  18. The single-cell gel electrophoresis assay to determine apoptosis ...

    African Journals Online (AJOL)

    The aim of the present study was to determine if the pattern of DNA fragmentation determined by the single cell gel electrophoresis assay can be used to determine apoptosis induced by siRNA in Colo 320 cells. When the frequency of appearance of apoptotic cells following was observed over a period of time, there was a ...

  19. Radiation-Induced Apoptosis in Breast Cancer Cells.

    Science.gov (United States)

    1995-09-21

    This project is designed to investigate the possible role of apoptosis as a mode of cell death in irradiated and tamoxifen-treated breast cancer cells and to study the potential for using therapeutic manipulations to enhance this cell killing as a means of improving radiation therapy for treatment of breast cancer.

  20. Andrographolide sensitizes prostate cancer cells to TRAIL-induced apoptosis

    Directory of Open Access Journals (Sweden)

    Ruo-Jing Wei

    2018-01-01

    Full Text Available Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL is a promising agent for anticancer therapy. The identification of small molecules that can establish the sensitivity of prostate cancer (PCa cells to TRAIL-induced apoptosis is crucial for the targeted treatment of PCa. PC3, DU145, JAC-1, TsuPr1, and LNCaP cells were treated with Andrographolide (Andro and TRAIL, and the apoptosis was measured using the Annexin V/PI double staining method. Real time-polymerase chain reaction (PCR and Western blot analysis were performed to measure the expression levels of target molecules. RNA interference technique was used to down-regulate the expression of the target protein. We established a nude mouse xenograft model of PCa, which was used to measure the caspase-3 activity in the tumor cells using flow cytometry. In this research study, our results demonstrated that Andro preferentially increased the sensitivity of PCa cells to TRAIL-induced apoptosis at subtoxic concentrations, and the regulation mechanism was related to the up-regulation of DR4. In addition, it also increased the p53 expression and led to the generation of reactive oxygen species (ROS in the cells. Further research revealed that the DR4 inhibition, p53 expression, and ROS generation can significantly reduce the apoptosis induced by the combination of TRAIL and Andro in PCa cells. In conclusion, Andro increases the sensitivity of PCa cells to TRAIL-induced apoptosis through the generation of ROS and up-regulation of p53 and then promotes PCa cell apoptosis associated with the activation of DR4.

  1. Andrographolide sensitizes prostate cancer cells to TRAIL-induced apoptosis.

    Science.gov (United States)

    Wei, Ruo-Jing; Zhang, Xin-Shi; He, Da-Lin

    2018-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising agent for anticancer therapy. The identification of small molecules that can establish the sensitivity of prostate cancer (PCa) cells to TRAIL-induced apoptosis is crucial for the targeted treatment of PCa. PC3, DU145, JAC-1, TsuPr1, and LNCaP cells were treated with Andrographolide (Andro) and TRAIL, and the apoptosis was measured using the Annexin V/PI double staining method. Real time-polymerase chain reaction (PCR) and Western blot analysis were performed to measure the expression levels of target molecules. RNA interference technique was used to down-regulate the expression of the target protein. We established a nude mouse xenograft model of PCa, which was used to measure the caspase-3 activity in the tumor cells using flow cytometry. In this research study, our results demonstrated that Andro preferentially increased the sensitivity of PCa cells to TRAIL-induced apoptosis at subtoxic concentrations, and the regulation mechanism was related to the up-regulation of DR4. In addition, it also increased the p53 expression and led to the generation of reactive oxygen species (ROS) in the cells. Further research revealed that the DR4 inhibition, p53 expression, and ROS generation can significantly reduce the apoptosis induced by the combination of TRAIL and Andro in PCa cells. In conclusion, Andro increases the sensitivity of PCa cells to TRAIL-induced apoptosis through the generation of ROS and up-regulation of p53 and then promotes PCa cell apoptosis associated with the activation of DR4.

  2. Toosendanin induces apoptosis through suppression of JNK signaling pathway in HL-60 cells.

    Science.gov (United States)

    Ju, Jianming; Qi, Zhichao; Cai, Xueting; Cao, Peng; Liu, Nan; Wang, Shuzhen; Chen, Yijun

    2013-02-01

    Toosendanin (TSN), a triterpenoid isolated from Melia toosendan Sieb. et Zucc., has been found to suppress proliferation and induce apoptosis in a variety of human cancer cells. However, the mechanism how TSN induces apoptosis remains poorly understood. In this study, we examined the effects of TSN on the growth, cell cycle arrest, induction of apoptosis and the involved signaling pathway in human promyelocytic leukemia HL-60 cells. Proliferation of HL-60 cells was inhibited in a dose-dependent manner with the IC(50 (48 h)) of 28 ng/mL. The growth inhibition was due primarily to the S phase arrest and cell apoptosis. Cell apoptosis induced by TSN was confirmed by Annexin V-FITC/propidium iodide staining. The increase of the pro-apoptotic protein Bax, cleaved PARP and caspase-3, and the decrease of anti-apoptotic protein Bcl-2 were observed. Western blot analysis indicated that TSN inhibits the CDC42/MEKK1/JNK pathway. Taken together, our study suggested, for the first time, that the pro-apoptotic effects of TSN on HL-60 cells were mediated through JNK signaling pathway. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. DNA fragmentation and apoptosis induced by safranal in human prostate cancer cell line

    Directory of Open Access Journals (Sweden)

    Saeed Samarghandian

    2013-01-01

    Full Text Available Objectives: Apoptosis, an important mechanism that contributes to cell growth reduction, is reported to be induced by Crocus sativus (Saffron in different cancer types. However, limited effort has been made to correlate these effects to the active ingredients of saffron. The present study was designed to elucidate cytotoxic and apoptosis induction by safranal, the major coloring compound in saffron, in a human prostate cancer cell line (PC-3. Materials and Methods: PC-3 and human fetal lung fibroblast (MRC-5 cells were cultured and exposed to safranal (5, 10, 15, and 20 μg/ml. The 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay was performed to assess cytotoxicity. DNA fragmentation was assessed by gel electrophoresis. Cells were incubated with different concentrations of safranal, and cell morphologic changes and apoptosis were determined by the normal inverted microscope, Annexin V, and propidium iodide, followed by flow cytometric analysis, respectively. Results: MTT assay revealed a remarkable and concentration-dependent cytotoxic effect of safranal on PC-3 cells in comparison with non-malignant cell line. The morphologic alterations of the cells confirmed the MTT results. The IC 50 values against PC-3 cells were found to be 13.0 ΁ 0.07 and 6.4 ΁ 0.09 μg/ml at 48 and 72 h, respectively. Safranal induced an early and late apoptosis in the flow cytometry histogram of treated cells, indicating apoptosis is involved in this toxicity. DNA analysis revealed typical ladders as early as 48 and 72 h after treatment, indicative of apoptosis. Conclusions: Our preclinical study demonstrated a prostate cancer cell line to be highly sensitive to safranal-mediated growth inhibition and apoptotic cell death. Although the molecular mechanisms of safranal action are not clearly understood, it appears to have potential as a therapeutic agent.

  4. The effects of humanin and its analogues on male germ cell apoptosis induced by chemotherapeutic drugs.

    Science.gov (United States)

    Jia, Yue; Ohanyan, Aikoui; Lue, Yan-He; Swerdloff, Ronald S; Liu, Peter Y; Cohen, Pinchas; Wang, Christina

    2015-04-01

    Human (HN) prevents stress-induced apoptosis in many cells/tissues. In this study we showed that HN ameliorated chemotherapy [cyclophosphamide (CP) and Doxorubicin (DOX)]-induced male germ cell apoptosis both ex vivo in seminiferous tubule cultures and in vivo in the testis. HN acts by several putative mechanisms via binding to: an IL-12 like trimeric membrane receptor; BAX; or insulin-like growth factor binding protein-3 (IGFBP-3, a proapoptotic factor). To understand the mechanisms of HN on male germ cell apoptosis, we studied five HN analogues including: HNG (HN-S14G, a potent agonist), HNG-F6A (no binding to IGFBP-3), HN-S7A (no self-dimerization), HN-C8P (no binding to BAX), and HN-L12A (a HN antagonist) on CP-induced male germ cell apoptosis in mice. CP-induced germ cell apoptosis was inhibited by HN, HNG, HNG-F6A, HN-S7A, and HN-C8P (less effective); but not by HN-L12A. HN-L12A, but not HN-S7A or HN-C8P, blocked the protective effect of HN against CP-induced male germ cell apoptosis. HN, HN-S7A, and HN-C8P restored CP-suppressed STAT3 phosphorylation. These results suggest that HN: (1) decreases DOX (ex vivo) and CP (in vivo) induced male germ cell apoptosis; (2) action is mediated by the membrane receptor/STAT3 with minor contribution by BAX-binding pathway; (3) self-dimerization or binding to IGFBP-3 may not be involved in HN's effect in testis. HN is an important molecule in the regulation of germ cell homeostasis after injury and agonistic analogues may be developed for treating male infertility or protection against chemotherapy side effects.

  5. JNK activation is required for TNFα-induced apoptosis in human hepatocarcinoma cells.

    Science.gov (United States)

    Minero, Valerio Giacomo; Khadjavi, Amina; Costelli, Paola; Baccino, Francesco Maria; Bonelli, Gabriella

    2013-09-01

    A frequent distinctive feature of tumors, hepatocellular carcinomas included, is resistance to apoptosis induced by a variety of agents, among which the pleiotropic cytokine tumor necrosis factor-α (TNF). Compared to other cell types, hepatocytes and hepatoma-derived cell lines are poorly susceptible to TNF-induced apoptosis, which is largely ascribed to activation of the prosurvival transcription factor NF-κB and can be overcome by associating TNF to low doses of protein synthesis inhibitors or other drugs. This study analyses the molecular mechanisms by which TNF, in combination with cycloheximide (CHX), induces apoptosis in human hepatoma-derived Huh7 cells, focusing on the role played by JNK. Huh7 cell cultures were treated with TNF + CHX in the presence or in the absence of the pancaspase inhibitor zVADfmk or of the JNK inhibitor SP600125 as well as after suppression of JNK expression by RNAi. Apoptosis was assessed both by light microscopy and by flow cytometry, JNK and caspase activation by western blotting and/or enzymatic assay. TNF + CHX-induced death of Huh7 cells involved JNK activation since it was partially prevented by suppressing JNK activity or expression. Moreover, apoptosis was significantly reduced also by zVADfmk, while SP600125 and zVADfmk combined totally abrogated cell death in an additive fashion. These results demonstrate a causal role for JNK and caspases in TNF+CHX-induced apoptosis of Huh7 human hepatoma cells. Therefore, strategies aimed at enhancing both pathways should provide a profitable basis to overcome the resistance of hepatocarcinoma cells to TNF-dependent apoptosis. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Angiotensin II induces apoptosis in intestinal epithelial cells through the AT2 receptor, GATA-6 and the Bax pathway

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Lihua; Wang, Wensheng; Xiao, Weidong; Liang, Hongyin; Yang, Yang [Department of General Surgery, Xingqiao Hospital, Third Military Medical University, Chongqing 400037 (China); Yang, Hua, E-mail: hwbyang@126.com [Department of General Surgery, Xingqiao Hospital, Third Military Medical University, Chongqing 400037 (China)

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer Ang II-induced apoptosis in intestinal epithelial cell through AT2 receptor. Black-Right-Pointing-Pointer The apoptosis process involves in the Bax/Bcl-2 intrinsic pathway. Black-Right-Pointing-Pointer GATA-6 short hairpin RNA reduced Bax expression, but not Bcl-2. Black-Right-Pointing-Pointer GATA-6 may play a critical role in apoptosis in response to the Ang II challenge. -- Abstract: Angiotensin II (Ang II) has been shown to play an important role in cell apoptosis. However, the mechanisms of Ang-II-induced apoptosis in intestinal epithelial cells are not fully understood. GATA-6 is a zinc finger transcription factor expressed in the colorectal epithelium, which directs cell proliferation, differentiation and apoptosis. In the present study we investigated the underlying mechanism of which GATA-6 affects Ang-II induced apoptosis in intestinal epithelial cells. The in vitro intestinal epithelial cell apoptosis model was established by co-culturing Caco-2 cells with Ang II. Pretreatment with Angiotensin type 2 (AT2) receptor antagonist, PD123319, significantly reduced the expression of Bax and prevented the Caco-2 cells apoptosis induced by Ang II. In addition, Ang II up-regulated the expression of GATA-6. Interestingly, GATA-6 short hairpin RNA prevented Ang II-induced intestinal epithelial cells apoptosis and reduced the expression of Bax, but not Bcl-2. Taken together, the present study suggests that Angiotensin II promotes apoptosis in intestinal epithelial cells through GATA-6 and the Bax pathway in an AT2 receptor-dependent manner.

  7. Angiotensin II induces apoptosis in intestinal epithelial cells through the AT2 receptor, GATA-6 and the Bax pathway

    International Nuclear Information System (INIS)

    Sun, Lihua; Wang, Wensheng; Xiao, Weidong; Liang, Hongyin; Yang, Yang; Yang, Hua

    2012-01-01

    Highlights: ► Ang II-induced apoptosis in intestinal epithelial cell through AT2 receptor. ► The apoptosis process involves in the Bax/Bcl-2 intrinsic pathway. ► GATA-6 short hairpin RNA reduced Bax expression, but not Bcl-2. ► GATA-6 may play a critical role in apoptosis in response to the Ang II challenge. -- Abstract: Angiotensin II (Ang II) has been shown to play an important role in cell apoptosis. However, the mechanisms of Ang-II-induced apoptosis in intestinal epithelial cells are not fully understood. GATA-6 is a zinc finger transcription factor expressed in the colorectal epithelium, which directs cell proliferation, differentiation and apoptosis. In the present study we investigated the underlying mechanism of which GATA-6 affects Ang-II induced apoptosis in intestinal epithelial cells. The in vitro intestinal epithelial cell apoptosis model was established by co-culturing Caco-2 cells with Ang II. Pretreatment with Angiotensin type 2 (AT2) receptor antagonist, PD123319, significantly reduced the expression of Bax and prevented the Caco-2 cells apoptosis induced by Ang II. In addition, Ang II up-regulated the expression of GATA-6. Interestingly, GATA-6 short hairpin RNA prevented Ang II-induced intestinal epithelial cells apoptosis and reduced the expression of Bax, but not Bcl-2. Taken together, the present study suggests that Angiotensin II promotes apoptosis in intestinal epithelial cells through GATA-6 and the Bax pathway in an AT2 receptor-dependent manner.

  8. Human retinal pigment epithelial cell-induced apoptosis in activated T cells

    DEFF Research Database (Denmark)

    Jørgensen, A; Wiencke, A K; la Cour, M

    1998-01-01

    block alloactivation, had no inhibitory effect on RPE-mediated T-cell apoptotic responses in MHC class II-specific CD4+ T-cell lines. CONCLUSIONS: Retinal pigment epithelial cells express FasL and induce TCR-independent apoptosis in activated human T cells through Fas-FasL interaction. Retinal pigment...... human retinal pigment epithelial (RPE) cells can induce apoptosis in activated T cells. METHODS: Fas ligand (FasL) expression was detected by flow cytometry and immunohistochemistry. Cultured RPE cells were cocultured with T-cell lines and peripheral blood lymphocytes for 6 hours to 2 days. Induction...... of apoptosis was detected by 7-amino-actinomycin D and annexin V staining. RESULTS: Retinal pigment epithelial cells expressed FasL and induced apoptosis in activated Fas+ T cells. Blocking of Fas-FasL interaction with antibody strongly inhibited RPE-mediated T-cell apoptosis. Retinal pigment epithelial cells...

  9. Cell renewal and apoptosis in macrostomum sp. [Lignano].

    Science.gov (United States)

    Nimeth, K; Ladurner, P; Gschwentner, R; Salvenmoser, W; Rieger, R

    2002-01-01

    In platyhelminths, all cell renewal is accomplished by totipotent stem cells (neoblasts). Tissue maintenance is achieved in a balance between cell proliferation and apoptosis. It is known that in Macrostomum sp. the epidermis undergoes extensive cell renewal. Here we show that parenchymal cells also exhibit a high rate of cell turnover. We demonstrate cell renewal using continuous 5'bromo-2-deoxyuridine (BrdU) exposure. About one-third of all cells are replaced after 14 days. The high level of replacement requires an equivalent removal of cells by apoptosis. Cell death is characterized using a combination of three methods: (1). terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL), (2). specific binding of phosphatidyl-serine to fluorescent-labelled annexin V and (3). identification of apoptotic stages by ultrastructure. The number of cells observed in apoptosis is insufficient to explain the homeostasis of tissues in Macrostomum. Apoptosis-independent mechanisms may play an additional role in tissue dynamics.

  10. Selenium Compounds, Apoptosis and Other Types of Cell Death: An Overview for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Juan Antonio Palop

    2012-08-01

    Full Text Available Selenium (Se is an essential trace element involved in different physiological functions of the human body and plays a role in cancer prevention and treatment. Induction of apoptosis is considered an important cellular event that can account for the cancer preventive effects of Se. The mechanisms of Se-induced apoptosis are associated with the chemical forms of Se and their metabolism as well as the type of cancer studied. So, some selenocompounds, such as SeO2 involve the activation of caspase-3 while sodium selenite induces apoptosis in the absence of the activation of caspases. Modulation of mitochondrial functions has been reported to play a key role in the regulation of apoptosis and also to be one of the targets of Se compounds. Other mechanisms for apoptosis induction are the modulation of glutathione and reactive oxygen species levels, which may function as intracellular messengers to regulate signaling pathways, or the regulation of kinase, among others. Emerging evidence indicates the overlaps between the apoptosis and other types of cell death such as autophagy. In this review we report different processes of cell death induced by Se compounds in cancer treatment and prevention.

  11. VEGF masks BNIP3-mediated apoptosis of hypoxic endothelial cells.

    Science.gov (United States)

    Jurasz, Paul; Yurkova, Natasha; Kirshenbaum, Lorrie; Stewart, Duncan J

    2011-05-01

    Hypoxia results in the apoptotic death of myocytes, neurons, and epithelial cells, through the actions of Bcl-2 and Nineteen kilodalton Interacting Protein-3 (BNIP3). On the contrary, endothelial cells are especially adept at surviving conditions of oxygen deprivation via up-regulation of vascular endothelial growth factor (VEGF) the most potent endothelial survival factor. Both VEGF and BNIP3 expression are transcriptionally regulated by hypoxia inducible factor and may antagonize each other's affects in endothelial cells (ECs). Since factors that promote and inhibit apoptosis may be expressed at the same time in endothelial cells under hypoxic conditions, we decided to investigate whether VEGF and BNIP3 have opposing actions in endothelial cells. Human microvascular endothelial cells were exposed to hypoxic conditions in a Billups-Rothenburg chamber. Under hypoxic conditions BNIP3 expression by endothelial cells increased as measured by real-time PCR and immunoblot. After 48 h of hypoxia, EC apoptosis was assessed by flow cytometry and was lower than in corresponding normoxia serum starved controls. The increase in EC survival under hypoxic conditions corresponded with an increase in the expression of VEGF. Under normoxic conditions adenoviral BNIP3 over-expression promoted apoptosis of ECs; however, recombinant VEGF (100 pg/ml) antagonized the BNIP3 apoptosis promoting affects. SiRNA knockdown of VEGF expression by hypoxic ECs resulted in increased apoptosis with a concomitant increase in BNIP3 expression. SiRNA knockdown of BNIP3 expression by hypoxic ECs reduced the increase in EC apoptosis as a result of VEGF knockdown. We conclude that under hypoxic conditions VEGF counteracts and masks the apoptosis promoting affects of BNIP3.

  12. Oxidative Stress-Responsive Apoptosis Inducing Protein (ORAIP) Plays a Critical Role in High Glucose-Induced Apoptosis in Rat Cardiac Myocytes and Murine Pancreatic β-Cells.

    Science.gov (United States)

    Yao, Takako; Fujimura, Tsutomu; Murayama, Kimie; Okumura, Ko; Seko, Yoshinori

    2017-10-18

    We previously identified a novel apoptosis-inducing humoral factor in the conditioned medium of hypoxic/reoxygenated-cardiac myocytes. We named this novel post-translationally-modified secreted-form of eukaryotic translation initiation factor 5A Oxidative stress-Responsive Apoptosis-Inducing Protein (ORAIP). We confirmed that myocardial ischemia/reperfusion markedly increased plasma ORAIP levels and rat myocardial ischemia/reperfusion injury was clearly suppressed by neutralizing anti-ORAIP monoclonal antibodies (mAbs) in vivo. In this study, to investigate the mechanism of cell injury of cardiac myocytes and pancreatic β-cells involved in diabetes mellitus (DM), we analyzed plasma ORAIP levels in DM model rats and the role of ORAIP in high glucose-induced apoptosis of cardiac myocytes in vitro. We also examined whether recombinant-ORAIP induces apoptosis in pancreatic β-cells. Plasma ORAIP levels in DM rats during diabetic phase were about 18 times elevated as compared with non-diabetic phase. High glucose induced massive apoptosis in cardiac myocytes (66.2 ± 2.2%), which was 78% suppressed by neutralizing anti-ORAIP mAb in vitro. Furthermore, recombinant-ORAIP clearly induced apoptosis in pancreatic β-cells in vitro. These findings strongly suggested that ORAIP plays a pivotal role in hyperglycemia-induced myocardial injury and pancreatic β-cell injury in DM. ORAIP will be a biomarker and a critical therapeutic target for cardiac injury and progression of DM itself.

  13. Betulinic Acid Induces Apoptosis in Differentiated PC12 Cells Via ROS-Mediated Mitochondrial Pathway.

    Science.gov (United States)

    Wang, Xi; Lu, Xiaocheng; Zhu, Ronglan; Zhang, Kaixin; Li, Shuai; Chen, Zhongjun; Li, Lixin

    2017-04-01

    Betulinic acid (BA), a pentacyclic triterpene of natural origin, has been demonstrated to have varied biologic activities including anti-viral, anti-inflammatory, and anti-malarial effects; it has also been found to induce apoptosis in many types of cancer. However, little is known about the effect of BA on normal cells. In this study, the effects of BA on normal neuronal cell apoptosis and the mechanisms involved were studied using differentiated PC12 cells as a model. Treatment with 50 μM BA for 24 h apparently induced PC12 cell apoptosis. In the early stage of apoptosis, the level of intracellular reactive oxygen species (ROS) increased. Afterwards, the loss of the mitochondrial membrane potential, the release of cytochrome c and the activation of caspase-3 occurred. Treatment with antioxidants could significantly reduce BA-induced PC12 cell apoptosis. In conclusion, we report for the first time that BA induced the mitochondrial apoptotic pathway in differentiated PC12 cells through ROS.

  14. Spironolactone induces apoptosis in human mononuclear cells. Association between apoptosis and cytokine suppression

    DEFF Research Database (Denmark)

    Mikkelsen, Martin; Sønder, S U; Nersting, J

    2006-01-01

    Spironolactone (SPIR) has been described to suppress accumulation of pro-inflammatory cytokines. Here, the suppression of TNF-alpha in lipopolysaccharide (LPS)-stimulated mononuclear cell cultures was confirmed. However, SPIR was also found to induce apoptosis, prompting the investigations...... of a possible association between the two effects: The apoptosis-inducing and the cytokine-suppressive effects of SPIR correlated with regard to the effective concentration range. Also, pre-incubation experiments demonstrated a temporal separation of the two effects of ... preceding apoptosis. An association between the two effects was also seen when testing several SPIR analogues. Contrary to TNF-alpha, the levels of IL-1beta increased in SPIR-treated cultures. However, the amount of IL-1beta in the supernatants depended upon the order of SPIR and LPS addition, as IL-1beta...

  15. Targeting proliferating cell nuclear antigen and its protein interactions induces apoptosis in multiple myeloma cells.

    Directory of Open Access Journals (Sweden)

    Rebekka Müller

    Full Text Available Multiple myeloma is a hematological cancer that is considered incurable despite advances in treatment strategy during the last decade. Therapies targeting single pathways are unlikely to succeed due to the heterogeneous nature of the malignancy. Proliferating cell nuclear antigen (PCNA is a multifunctional protein essential for DNA replication and repair that is often overexpressed in cancer cells. Many proteins involved in the cellular stress response interact with PCNA through the five amino acid sequence AlkB homologue 2 PCNA-interacting motif (APIM. Thus inhibiting PCNA's protein interactions may be a good strategy to target multiple pathways simultaneously. We initially found that overexpression of peptides containing the APIM sequence increases the sensitivity of cancer cells to contemporary therapeutics. Here we have designed a cell-penetrating APIM-containing peptide, ATX-101, that targets PCNA and show that it has anti-myeloma activity. We found that ATX-101 induced apoptosis in multiple myeloma cell lines and primary cancer cells, while bone marrow stromal cells and primary healthy lymphocytes were much less sensitive. ATX-101-induced apoptosis was caspase-dependent and cell cycle phase-independent. ATX-101 also increased multiple myeloma cells' sensitivity against melphalan, a DNA damaging agent commonly used for treatment of multiple myeloma. In a xenograft mouse model, ATX-101 was well tolerated and increased the anti-tumor activity of melphalan. Therefore, targeting PCNA by ATX-101 may be a novel strategy in multiple myeloma treatment.

  16. Detection of T cell apoptosis after major operations.

    Science.gov (United States)

    Sasajima, K; Inokuchi, K; Onda, M; Miyashita, M; Okawa, K I; Matsutani, T; Takubo, K

    1999-11-01

    To detect T cell apoptosis in reduced peripheral lymphocyte counts in patients having major operations. Prospective study. University hospital, Japan. 11 patients having oesophagectomy and 5 having laparoscopic cholecystectomy. To investigate T cell apoptosis we detected DNA fragmentation using electrophoresis, and T-cell receptor-gamma (TCR-gamma) gene amplification using polymerase chain reaction (PCR) in serum. Peripheral lymphocyte count and DNA extracted from the serum preoperatively and on postoperative days 1, 3, 5, and 7. The lymphocyte count decreased significantly until day 5 and then increased in the patients who had had oesophagectomy. DNA fragmentation and PCR products for the TCRgamma variable region gene were found in the serum DNA of 10 patients until day 5. No DNA fragmentation or PCR products were found in the serum of patients who had had laparoscopic cholecystectomy. These results suggest that transient T cell apoptosis occurs after major operations.

  17. Rapid Detection of Apoptosis in Cultured Mammalian Cells.

    Science.gov (United States)

    Kudryavtsev, Igor; Serebryakova, Maria; Solovjeva, Liudmila; Svetlova, Maria; Firsanov, Denis

    2017-01-01

    Flow cytometry is a powerful tool for the analysis of apoptosis, the process that directly determines cell fate after the action of different stresses. Here, we describe a flow cytometry method for the assessment of early and late stages of apoptosis in non-fixed cultured cells using SYTO16, DRAQ7, and PO-PRO1 dyes simultaneously. This multicolor flow cytometry procedure requires 45 min for completion and provides a quantitative assessment of cell viability. It can be useful in evaluating the cytotoxic properties of new drugs, and antitumor interventions.

  18. Lysophosphatidic acid rescues bone mesenchymal stem cells from hydrogen peroxide-induced apoptosis.

    Science.gov (United States)

    Wang, Xian-Yun; Fan, Xue-Song; Cai, Lin; Liu, Si; Cong, Xiang-Feng; Chen, Xi

    2015-03-01

    The increase of reactive oxygen species in infracted heart significantly reduces the survival of donor mesenchymal stem cells, thereby attenuating the therapeutic efficacy for myocardial infarction. In our previous study, we demonstrated that lysophosphatidic acid (LPA) protects bone marrow-derived mesenchymal stem cells (BMSCs) against hypoxia and serum deprivation-induced apoptosis. However, whether LPA protects BMSCs from H2O2-induced apoptosis was not examined. In this study, we report that H2O2 induces rat BMSC apoptosis whereas LPA pre-treatment effectively protects BMSCs from H2O2-induced apoptosis. LPA protection of BMSC from the induced apoptosis is mediated mostly through LPA3 receptor. Furthermore, we found that membrane G protein Gi2 and Gi3 are involved in LPA-elicited anti-apoptotic effects through activation of ERK1/2- and PI3 K-pathways. Additionally, H2O2 increases levels of type II of light chain 3B (LC3B II), an autophagy marker, and H2O2-induced autophagy thus protected BMSCs from apoptosis. LPA further increases the expression of LC3B II in the presence of H2O2. In contrast, autophagy flux inhibitor bafilomycin A1 has no effect on LPA's protection of BMSC from H2O2-induced apoptosis. Taken together, our data suggest that LPA rescues H2O2-induced apoptosis mainly by interacting with Gi-coupled LPA3, resulting activation of the ERK1/2- and PI3 K/AKT-pathways and inhibition caspase-3 cleavage, and LPA protection of BMSCs against the apoptosis is independent of it induced autophagy.

  19. BIGH3 protein and macrophages in retinal endothelial cell apoptosis.

    Science.gov (United States)

    Mondragon, Albert A; Betts-Obregon, Brandi S; Moritz, Robert J; Parvathaneni, Kalpana; Navarro, Mary M; Kim, Hong Seok; Lee, Chi Fung; LeBaron, Richard G; Asmis, Reto; Tsin, Andrew T

    2015-01-01

    Diabetes is a pandemic disease with a higher occurrence in minority populations. The molecular mechanism to initiate diabetes-associated retinal angiogenesis remains largely unknown. We propose an inflammatory pathway of diabetic retinopathy in which macrophages in the diabetic eye provide TGFβ to retinal endothelial cells (REC) in the retinal microvasculature. In response to TGFβ, REC synthesize and secrete a pro-apoptotic BIGH3 (TGFβ-Induced Gene Human Clone 3) protein, which acts in an autocrine loop to induce REC apoptosis. Rhesus monkey retinal endothelial cells (RhREC) were treated with dMCM (cell media of macrophages treated with high glucose and LDL) and assayed for apoptosis (TUNEL), BIGH3 mRNA (qPCR), and protein (Western blots) expressions. Cells were also treated with ΤGFβ1 and 2 for BIGH3 mRNA and protein expression. Inhibition assays were carried out using antibodies for TGFβ1 and for BIGH3 to block apoptosis and mRNA expression. BIGH3 in cultured RhREC cells were identified by immunohistochemistry (IHC). Distribution of BIGH3 and macrophages in the diabetic mouse retina was examined with IHC. RhRECs treated with dMCM or TGFβ showed a significant increase in apoptosis and BIGH3 protein expression. Recombinant BIGH3 added to RhREC culture medium led to a dose-dependent increase in apoptosis. Antibodies (Ab) directed against BIGH3 and TGFβ, as well as TGFβ receptor blocker resulted in a significant reduction in apoptosis induced by either dMCM, TGFβ or BIGH3. IHC showed that cultured RhREC constitutively expressed BIGH3. Macrophage and BIGH3 protein were co-localized to the inner retina of the diabetic mouse eye. Our results support a novel inflammatory pathway for diabetic retinopathy. This pathway is initiated by TGFβ released from macrophages, which promotes synthesis and release of BIGH3 protein by REC and REC apoptosis.

  20. Hesperidin inhibits HeLa cell proliferation through apoptosis mediated by endoplasmic reticulum stress pathways and cell cycle arrest

    International Nuclear Information System (INIS)

    Wang, Yaoxian; Yu, Hui; Zhang, Jin; Gao, Jing; Ge, Xin; Lou, Ge

    2015-01-01

    Hesperidin (30, 5, 9-dihydroxy-40-methoxy-7-orutinosyl flavanone) is a flavanone that is found mainly in citrus fruits and has been shown to have some anti-neoplastic effects. The aim of the present study was to investigate the effect of hesperidin on apoptosis in human cervical cancer HeLa cells and to identify the mechanism involved. Cells were treated with hesperidin (0, 20, 40, 60, 80, and 100 μM) for 24, 48, or 72 h and relative cell viability was assessed using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. Hesperidin inhibited the proliferation of HeLa cells in a concentration- and time-dependent manner. Hesperidin-induced apoptosis in HeLa cells was characterized by increased nuclear condensation and DNA fragmentation. Furthermore, increased levels of GADD153/CHOP and GRP78 indicated hesperidin-induced apoptosis in HeLa cells involved a caspase-dependent pathway, presumably downstream of the endoplasmic reticulum stress pathway. Both of these proteins are hallmarks of endoplasmic reticulum stress. Hesperidin also promoted the formation of reactive oxygen species, mobilization of intracellular Ca 2+ , loss of mitochondrial membrane potential (ΔΨm), increased release of cytochrome c and apoptosis-inducing factor from mitochondria, and promoted capase-3 activation. It also arrested HeLa cells in the G0/G1 phase in the cell cycle by downregulating the expression of cyclinD1, cyclinE1, and cyclin-dependent kinase 2 at the protein level. The effect of hesperidin was also verified on the human colon cancer cell HT-29 cells. We concluded that hesperidin inhibited HeLa cell proliferation through apoptosis involving endoplasmic reticulum stress pathways and cell cycle arrest

  1. Sulforaphane-induced apoptosis in Xuanwei lung adenocarcinoma cell line XWLC-05.

    Science.gov (United States)

    Zhou, Lan; Yao, Qian; Li, Yan; Huang, Yun-Chao; Jiang, Hua; Wang, Chuan-Qiong; Fan, Lei

    2017-01-01

    Xuanwei district in Yunnan Province has the highest incidence of lung cancer in China, especially among non-smoking women. Cruciferous vegetables can reduce lung cancer risk by prompting a protective mechanism against respiratory tract inflammation caused by air pollution, and are rich in sulforaphane, which can induce changes in gene expression. We investigated the effect of sulforaphane-induced apoptosis in Xuanwei lung adenocarcinoma cell line (XWCL-05) to explore the value of sulforaphane in lung cancer prevention and treatment. Cell growth inhibition was determined by methyl thiazolyl tetrazolium assay; cell morphology and apoptosis were observed under transmission electron microscope; cell cycle and apoptosis rates were detected using flow cytometry; B-cell lymphoma 2 (Bcl-2) and Bcl-2-like protein 4 (Bax) messenger RNA expression were determined by quantitative PCR; and p53, p73, p53 upregulated modulator of apoptosis (PUMA), Bax, Bcl-2, and caspase-9 protein expression were detected by Western blotting. Sulforaphane inhibited XWLC-05 cell growth with inhibitory concentration (IC) 50 of 4.04, 3.38, and 3.02 μg/mL at 24, 48, and 72 hours, respectively. Sulforaphane affected the XWLC-05 cell cycle as cells accumulated in the G2/M phase. The proportion of apoptotic cells observed was 27.6%. Compared with the control, the sulforaphane group showed decreased Bcl-2 and p53 expression, and significantly increased p73, PUMA, Bax, and caspase-9 protein expression (P cell apoptosis. Its possible mechanism may involve the upregulation of p73 expression and its effector target genes PUMA and Bax in lung cancer cells, downregulation of the anti-apoptotic gene B cl -2, and activation of caspase-9. It may also involve downregulation of the mutant p53 protein. © 2016 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  2. Sulforaphane‐induced apoptosis in Xuanwei lung adenocarcinoma cell line XWLC‐05

    Science.gov (United States)

    Zhou, Lan; Yao, Qian; Huang, Yun‐chao; Jiang, Hua; Wang, Chuan‐qiong; Fan, Lei

    2016-01-01

    Background Xuanwei district in Yunnan Province has the highest incidence of lung cancer in China, especially among non‐smoking women. Cruciferous vegetables can reduce lung cancer risk by prompting a protective mechanism against respiratory tract inflammation caused by air pollution, and are rich in sulforaphane, which can induce changes in gene expression. We investigated the effect of sulforaphane‐induced apoptosis in Xuanwei lung adenocarcinoma cell line (XWCL‐05) to explore the value of sulforaphane in lung cancer prevention and treatment. Methods Cell growth inhibition was determined by methyl thiazolyl tetrazolium assay; cell morphology and apoptosis were observed under transmission electron microscope; cell cycle and apoptosis rates were detected using flow cytometry; B‐cell lymphoma 2 (Bcl‐2) and Bcl‐2‐like protein 4 (Bax) messenger RNA expression were determined by quantitative PCR; and p53, p73, p53 upregulated modulator of apoptosis (PUMA), Bax, Bcl‐2, and caspase‐9 protein expression were detected by Western blotting. Results Sulforaphane inhibited XWLC‐05 cell growth with inhibitory concentration (IC)50 of 4.04, 3.38, and 3.02 μg/mL at 24, 48, and 72 hours, respectively. Sulforaphane affected the XWLC‐05 cell cycle as cells accumulated in the G2/M phase. The proportion of apoptotic cells observed was 27.6%. Compared with the control, the sulforaphane group showed decreased Bcl‐2 and p53 expression, and significantly increased p73, PUMA, Bax, and caspase‐9 protein expression (P Sulforaphane induces Xuanwei lung adenocarcinoma cell apoptosis. Its possible mechanism may involve the upregulation of p73 expression and its effector target genes PUMA and Bax in lung cancer cells, downregulation of the anti‐apoptotic gene B cl ‐2, and activation of caspase‐9. It may also involve downregulation of the mutant p53 protein. PMID:27878984

  3. Increased cell surface metallopeptidase activity in cells undergoing UV-induced apoptosis

    International Nuclear Information System (INIS)

    Piva, T.J.; Davern, C.M.; Ellem, K.A.O.

    1999-01-01

    Full text: We have previously shown that UVC irradiation activated a range of cell surface peptidases (CSP) in HeLa cell monolayer cultures 20 h post-irradiation (1). In cells undergoing apoptosis there is an increase in CSP activity compared to control viable cells in cultures which have been treated by a wide range of agents including UV-irradiation (2). In order to further understand the mechanism involved in this process, we induced apoptosis in HeLa cells using 500 Jm -2 UVB. The separation of viable, apoptotic and necrotic cells of irradiated HeLa cell cultures was made by FACS analysis and sorting. The three populations were distinguished by their staining with PI and Hoechst 33342 dyes. CSP activity was measured using the P9 assay developed in this laboratory (1-3). The viable fraction of the irradiated cells had a higher level of CSP activity compared to unirradiated controls. The level of CSP activity in the apoptotic fraction was higher than that of the viable fraction, however that of the necrotic fraction was significantly lower. This finding agreed with that seen in UVC-irradiated (50 Jm -2 ) cultures (2). In order to elucidate the mechanism by which CSP activity was increased in UVB-irradiated cells undergoing apoptosis, the cultures were treated with the following agents: bestatin, aminopeptidase inhibitor, DEVD, caspase 3 inhibitor, and 3-aminobenzamide (3AB), PARP activation inhibitor. Bestatin and DEVD did not affect the level of CSP activity in the different cell subpopulations following UVB-irradiation. Treatment with 3AB abolished the increased CSP activity seen in the viable and apoptotic fraction following UVB-irradiation. All treated cells had the same morphology as observed under EM. The degree of phosphatidylserine eversion on the cell membrane was similar as were the cleavage profiles of PARP and actin. Only DEVD-treated cells had reduced caspase 3 activity which confirmed that the activation of CSP activity in apoptotic cells is

  4. Fumonisins and Alternaria alternata lycopersici toxins: sphinganine analog mycotoxins induce apoptosis in monkey kidney cells.

    Science.gov (United States)

    Wang, W; Jones, C; Ciacci-Zanella, J; Holt, T; Gilchrist, D G; Dickman, M B

    1996-04-16

    Fusarium moniliforme toxins (fumonisins) and Alternaria alternata lycopersici (AAL) toxins are members of a new class of sphinganine analog mycotoxins that occur widely in the food chain. These mycotoxins represent a serious threat to human and animal health, inducing both cell death and neoplastic events in mammals. The mechanisms by which this family of chemical congeners induce changes in cell homeostasis were investigated in African green monkey kidney cells (CV-1) by assessing the appearance of apoptosis, cell cycle regulation, and putative components of signal transduction pathways involved in apoptosis. Structurally, these mycotoxins resemble the sphingoid bases, sphingosine and sphinganine, that are reported to play critical roles in cell communication and signal transduction. The addition of fumonisin B1 or AAL toxin, TA, to CV-1 cells induced the stereotypical hallmarks of apoptosis, including the formation of DNA ladders, compaction of nuclear DNA, and the subsequent appearance of apoptotic bodies. Neither mycotoxin induced cell death, DNA ladders, or apoptotic bodies in CV-1 cells expressing simian virus 40 large T antigen (COS-7) at toxin concentrations that readily killed CV-1 cells. Fumonisin B1 induced cell cycle arrest in the G1 phase in CV-1 cells but not in COS-7 cells. AAL toxin TA did not arrest cell cycle progression in either cell line. The induction of apoptosis combined with the widespread presence of these compounds in food crops and animal feed identifies a previously unrecognized health risk to humans and livestock. These molecules also represent a new class of natural toxicants that can be used as model compounds to further characterize the molecular and biochemical pathways leading to apoptosis.

  5. Arecoline decreases interleukin-6 production and induces apoptosis and cell cycle arrest in human basal cell carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li-Wen [Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Hsieh, Bau-Shan; Cheng, Hsiao-Ling [Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Hu, Yu-Chen [Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Chang, Wen-Tsan [Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Division of Hepatobiliarypancreatic Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan (China); Chang, Kee-Lung, E-mail: Chang.KeeLung@msa.hinet.net [Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China); Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan (China)

    2012-01-15

    Arecoline, the most abundant areca alkaloid, has been reported to decrease interleukin-6 (IL-6) levels in epithelial cancer cells. Since IL-6 overexpression contributes to the tumorigenic potency of basal cell carcinoma (BCC), this study was designed to investigate whether arecoline altered IL-6 expression and its downstream regulation of apoptosis and the cell cycle in cultured BCC-1/KMC cells. BCC-1/KMC cells and a human keratinocyte cell line, HaCaT, were treated with arecoline at concentrations ranging from 10 to 100 μg/ml, then IL-6 production and expression of apoptosis- and cell cycle progress-related factors were examined. After 24 h exposure, arecoline inhibited BCC-1/KMC cell growth and decreased IL-6 production in terms of mRNA expression and protein secretion, but had no effect on HaCaT cells. Analysis of DNA fragmentation and chromatin condensation showed that arecoline induced apoptosis of BCC-1/KMC cells in a dose-dependent manner, activated caspase-3, and decreased expression of the anti-apoptotic protein Bcl-2. In addition, arecoline induced progressive and sustained accumulation of BCC-1/KMC cells in G2/M phase as a result of reducing checkpoint Cdc2 activity by decreasing Cdc25C phosphatase levels and increasing p53 levels. Furthermore, subcutaneous injection of arecoline led to decreased BCC-1/KMC tumor growth in BALB/c mice by inducing apoptosis. This study demonstrates that arecoline has potential for preventing BCC tumorigenesis by reducing levels of the tumor cell survival factor IL-6, increasing levels of the tumor suppressor factor p53, and eliciting cell cycle arrest, followed by apoptosis. Highlights: ► Arecoline has potential to prevent against basal cell carcinoma tumorigenesis. ► It has more effectiveness on BCC as compared with a human keratinocyte cell line. ► Mechanisms involved including reducing tumor cells’ survival factor IL-6, ► Decreasing Cdc25C phosphatase, enhancing tumor suppressor factor p53, ► Eliciting G2/M

  6. Apoptosis and autophagy induced by pyropheophorbide-α methyl ester-mediated photodynamic therapy in human osteosarcoma MG-63 cells.

    Science.gov (United States)

    Huang, Qiu; Ou, Yun-Sheng; Tao, Yong; Yin, Hang; Tu, Ping-Hua

    2016-06-01

    Pyropheophorbide-α methyl ester (MPPa) was a second-generation photosensitizer with many potential applications. Here, we explored the impact of MPPa-mediated photodynamic therapy (MPPa-PDT) on the apoptosis and autophagy of human osteosarcoma (MG-63) cells as well as the relationships between apoptosis and autophagy of the cells, and investigated the related molecular mechanisms. We found that MPPa-PDT demonstrated the ability to inhibit MG-63 cell viability in an MPPa concentration- and light dose-dependent manner, and to induce apoptosis via the mitochondrial apoptosis pathway. Additionally, MPPa-PDT could also induce autophagy of MG-63 cell. Meanwhile, the ROS scavenger N-acetyl-L-cysteine (NAC) and the Jnk inhibitor SP600125 were found to inhibit the MPPa-PDT-induced autophagy, and NAC could also inhibit Jnk phosphorylation. Furthermore, pretreatment with the autophagy inhibitor 3-methyladenine or chloroquine showed the potential in reducing the apoptosis rate induced by MPPa-PDT in MG-63 cells. Our results indicated that the mitochondrial pathway was involved in MPPa-PDT-induced apoptosis of MG-63 cells. Meanwhile the ROS-Jnk signaling pathway was involved in MPPa-PDT-induced autophagy, which further promoted the apoptosis in MG-63 cells.

  7. Apoptosis of CTLL-2 cells induced by an immunosuppressant, ISP-I, is caspase-3-like protease-independent.

    Science.gov (United States)

    Yamaji, T; Nakamura, S; Takematsu, H; Kawasaki, T; Kozutsumi, Y

    2001-04-01

    In our previous study, the sphingosine-like immunosuppressant ISP-1 was shown to induce apoptosis in the mouse cytotoxic T cell line CTLL-2. In this study, we characterized the ISP-1-induced apoptotic pathway. Although caspase-3-like protease activity increases concomitantly with ISP-1-induced apoptosis in CTLL-2 cells, the apoptosis is not inhibited by caspase-3-like protease inhibitors, i.e. DEVD-cho and z-DEVD-fmk. In contrast, sphingosine-induced apoptosis in CTLL-2 cells is caspase-3-like protease-dependent. A caspase inhibitor with broad specificity, z-VAD-fmk, protects cells from apoptosis induced by ISP-1, indicating that ISP-1-induced apoptosis is dependent on caspase(s) other than caspase-3. Overexpression of Bcl-2 or Bcl-xL suppresses the apoptosis induced by ISP-1, although sphingosine-induced apoptosis is not efficiently inhibited by Bcl-2. Finally, ISP-1-induced mitochondrial depolarization, which is thought to be a checkpoint dividing the apoptotic pathway into upstream and downstream stages, is not inhibited by DEVD-cho, but is inhibited by z-VAD-fmk. These data suggest that a pathway dependent on caspase(s) other than caspase-3 is involved upstream of mitochondrial depolarization in ISP-1-induced apoptosis.

  8. Effect of Rosmarinic acid on sertoli cells apoptosis and serum ...

    African Journals Online (AJOL)

    inflammatory and antimicrobial activities and help to prevent cell damage caused by free radicals. The objective was to study the effect of Rosmarinic acid on sertolli cells apoptosis and serum antioxidant levels in rats after they were exposed to ...

  9. Vaccination with apoptosis colorectal cancer cell pulsed autologous ...

    African Journals Online (AJOL)

    To investigate vaccination with apoptosis colorectal cancer (CRC) cell pulsed autologous dendritic cells (DCs) in advanced CRC, 14 patients with advanced colorectal cancer (CRC) were enrolled and treated with DCs vaccine to assess toxicity, tolerability, immune and clinical responses to the vaccine. No severe toxicity ...

  10. Chloroquinone Inhibits Cell Proliferation and Induces Apoptosis in ...

    African Journals Online (AJOL)

    Purpose: To demonstrate the role of chloroquinone (CQ) in inducing apoptosis in HONE-1 and HNE-1, nasopharyngeal carcinoma (NPC) cell lines. Methods: Water-soluble tetrazolium salt (WST)-1 assay was used for the determination of cell proliferation while an inverted microscope was employed for the analysis of ...

  11. Biisofraxidin on Apoptosis of Human Gastric Cancer BGC-823 Cells

    African Journals Online (AJOL)

    Conclusion: 3,3′-Biisofraxidin significantly induces the apoptosis of BGC-823 cells in vitro and in vivo ... Plant material. Sarcandrae Herba (SH) was obtained from. Chengdu international trade city in 2013 and identified by Jian-Tao Wu. A voucher specimen ..... induced by p65 prevents doxorubicin-induced cell death.

  12. Involvement of TR3/Nur77 translocation to the endoplasmic reticulum in ER stress-induced apoptosis

    International Nuclear Information System (INIS)

    Liang Bin; Song Xuhong; Liu Gefei; Li Rui; Xie Jianping; Xiao Lifeng; Du Mudan; Zhang Qiaoxia; Xu Xiaoyuan; Gan Xueqiong; Huang Dongyang

    2007-01-01

    Nuclear orphan receptor TR3/Nur77/NGFI-B is a novel apoptotic effector protein that initiates apoptosis largely by translocating from the nucleus to the mitochondria, causing the release of cytochrome c. However, it is possible that TR3 translocates to other organelles. The present study was designed to determine the intracellular localization of TR3 following CD437-induced nucleocytoplasmic translocation and the mechanisms involved in TR3-induced apoptosis. In human neuroblastoma SK-N-SH cells and human esophageal squamous carcinoma EC109 and EC9706 cells, 5 μM CD437 induced translocation of TR3 to the endoplasmic reticulum (ER). This distribution was confirmed by immunofluorescence analysis, subcellular fractionation analysis and coimmunoprecipitation analysis. The translocated TR3 interacted with ER-targeting Bcl-2; initiated an early release of Ca 2+ from ER; resulted in ER stress and induced apoptosis through ER-specific caspase-4 activation, together with induction of mitochondrial stress and subsequent activation of caspase-9. Our results identified a novel distribution of TR3 in the ER and defined two parallel mitochondrial- and ER-based pathways that ultimately result in apoptotic cell death

  13. Mechanisms involved in apoptosis of carp leukocytes upon in vitro and in vivo immunostimulation

    NARCIS (Netherlands)

    Kepka, M.; Verburg-van Kemenade, B.M.L.; Homa, J.; Chadzinska, M.K.

    2014-01-01

    During inflammation leukocyte activity must be carefully regulated, as high concentrations and/or prolonged action of pro-inflammatory mediators e.g. reactive oxygen species (ROS) can be detrimental not only for pathogens but also for host tissues. Programmed cell death – apoptosis is a most

  14. Effects of Glucocorticoids on Apoptosis and Clearance of Apoptotic Cells

    Directory of Open Access Journals (Sweden)

    Aisleen McColl

    2007-01-01

    Full Text Available The glucocorticoid (GC drugs are one of the most commonly prescribed and effective anti-inflammatory agents used for the treatment of many inflammatory disorders through their ability to attenuate phlogistic responses. The glucocorticoid receptor (GCR primarily mediates GC actions via activation or repression of gene expression. GCs directly induce the expression of proteins displaying anti-inflammatory activities. However, the likely predominant effect of GCs is the repression of multiple inflammatory genes that invariably are overexpressed during nonresolving chronic inflammation. Although most GC actions are mediated through regulation of transcription, rapid nongenomic actions have also been reported. In addition, GCs modulate inflammatory cell survival, inducing apoptosis in immature thymocytes and eosinophils, while delaying constitutive neutrophil apoptosis. Importantly, GCs promote noninflammatory phagocytosis of apoptotic cell targets, a process important for the successful resolution of inflammation. Here, the effects and mechanisms of action of GC on inflammatory cell apoptosis and phagocytosis will be discussed.

  15. Selective inhibition of PED protein expression sensitizes B-cell chronic lymphocytic leukaemia cells to TRAIL-induced apoptosis.

    Science.gov (United States)

    Garofalo, Michela; Romano, Giulia; Quintavalle, Cristina; Romano, Maria Fiammetta; Chiurazzi, Federico; Zanca, Ciro; Condorelli, Gerolama

    2007-03-15

    B-cell chronic lymphocytic leukaemia (B-CLL) cells fail to undergo apoptosis. The mechanism underlying this resistance to cell death is still largely unknown. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) effectively kills tumour cells but not normal cells, and thus represents an attractive tool for the treatment of cancer. Unfortunately, lymphocytes from B-CLL patients are resistant to TRAIL-mediated apoptosis. Thus, we aimed to study the involvement of PED, a DED-family member with a broad antiapoptotic action, in this resistance. We demonstrate that B lymphocytes obtained from patients with B-CLL express high levels of PED. Treatment of B-CLL cells with specific PED antisense oligonucleotides, a protein synthesis inhibitor or HDAC inhibitors, induced a significant downregulation of PED and sensitized these cells to TRAIL-induced cell death. These findings suggest a direct involvement of PED in resistance to TRAIL-induced apoptosis in B-CLL. It also identifies this DED-family member as a potential therapeutic target for this form of leukaemia. (c) 2006 Wiley-Liss, Inc.

  16. Autonomous inhibition of apoptosis correlates with responsiveness of colon carcinoma cell lines to ciglitazone.

    Directory of Open Access Journals (Sweden)

    David M Baron

    Full Text Available Colorectal cancer is a leading cause of mortality worldwide. Resistance to therapy is common and often results in patients succumbing to the disease. The mechanisms of resistance are poorly understood. Cells basically have two possibilities to survive a treatment with potentially apoptosis-inducing substances. They can make use of their existing proteins to counteract the induced reactions or quickly upregulate protective factors to evade the apoptotic signal. To identify protein patterns involved in resistance to apoptosis, we studied two colorectal adenocarcinoma cell lines with different growth responses to low-molar concentrations of the thiazolidinedione Ciglitazone: HT29 cells underwent apoptosis, whereas SW480 cells increased cell number. Fluorescence detection and autoradiography scans of 2D-PAGE gels were performed in both cell lines to assess protein synthesis and turnover, respectively. To verify the data we performed shotgun analysis using the same treatment procedure as in 2D-experiments. Biological functions of the identified proteins were mainly associated with apoptosis regulation, chaperoning, intrinsic inflammation, and DNA repair. The present study suggests that different growth response of two colorectal carcinoma cell lines after treatment with Ciglitazone results from cell-specific protein synthesis and differences in protein regulation.

  17. Nano-Micelle of Moringa Oleifera Seed Oil Triggers Mitochondrial Cancer Cell Apoptosis

    Science.gov (United States)

    Abd-Rabou, Ahmed A; Zoheir, Khairy M A; Kishta, Mohamed S; Shalby, Aziza B; Ezzo, Mohamed I

    2016-01-01

    Cancer, a worldwide epidemic disease with diverse origins, involves abnormal cell growth with the potential to invade other parts of the body. Globally, it is the main cause of mortality and morbidity. To overcome the drawbacks of the commercially available chemotherapies, natural products-loaded nano-composites are recommended to improve cancer targetability and decrease the harmful impact on normal cells. This study aimed at exploring the anti-cancer impacts of Moringa oleifera seed oil in its free- (MO) and nano-formulations (MOn) through studying whether it mechanistically promotes mitochondrial apoptosis-mediating cell death. Mitochondrial-based cytotoxicity and flow cytometric-based apoptosis analyses were performed on cancer HepG2, MCF7, HCT 116, and Caco-2 cell lines against normal kidney BHK-21 cell line. The present study resulted that MOn triggered colorectal cancer Caco-2 and HCT 116 cytotoxicity via mitochondrial dysfunction more powerful than its free counterpart (MO). On the other side, MOn and MO remarkably induces HCT 116 mitochondrial apoptosis, while sparing normal BHK-21 cells with minimal cytotoxic effect. The present results concluded that nano-micelle of Moringa oleifera seed oil (MOn) can provide a novel therapeutic approach for colorectal and breast cancers via mitochondrial-mediated apoptosis, while sparing normal and even liver cancer cells a bit healthy or with minimal harmful effect. Intriguingly, MOn induced breast cancer not hepatocellular carcinoma cell death. PMID:28032498

  18. Hsp27 inhibits 6-hydroxydopamine-induced cytochrome c release and apoptosis in PC12 cells

    International Nuclear Information System (INIS)

    Gorman, Adrienne M.; Szegezdi, Eva; Quigney, Declan J.; Samali, Afshin

    2005-01-01

    Cellular stress may stimulate cell survival pathways or cell death depending on its severity. 6-Hydroxydopamine (6-OHDA) is a neurotoxin that targets dopaminergic neurons that is often used to induce neuronal cell death in models of Parkinson's disease. Here we present evidence that 6-OHDA induces apoptosis in rat PC12 cells that involves release of cytochrome c and Smac/Diablo from mitochondria, caspase-3 activation, cleavage of PARP, and nuclear condensation. 6-OHDA also induced the heat shock response, leading to increased levels of Hsp25 and Hsp70. Increased Hsp25 expression was associated with cell survival. Prior heat shock or overexpression of Hsp27 (human homologue of Hsp25) delayed cytochrome c release, caspase activation, and reduced the level of apoptosis caused by 6-OHDA. We conclude that 6-OHDA induces a variety of responses in cultured PC12 cells ranging from cell survival to apoptosis, and that induction of stress proteins such as Hsp25 may protect cells from undergoing 6-OHDA-induced apoptosis

  19. High LET radiation enhances apoptosis in mutated p53 cancer cells through Caspase-9 activation

    International Nuclear Information System (INIS)

    Yamakawa, Nobuhiro; Takahashi, Akihisa; Mori, Eiichiro; Imai, Yuichiro; Ohnishi, Ken; Kirita, Tadaaki; Ohnishi, Takeo; Furusawa, Yoshiya

    2008-01-01

    Although mutations in the p53 gene can lead to resistance to radiotherapy, chemotherapy and thermotherapy, high linear energy transfer (LET) radiation induces apoptosis regardless of p53 gene status in cancer cells. The aim of this study was to clarify the mechanisms involved in high LET radiation-induced apoptosis. Human gingival cancer cells (Ca9-22 cells) containing a mutated p53 (mp53) gene were irradiated with X-rays, C-ion (13-100 KeV/μm), or Fe-ion beams (200 KeV/μm). Cellular sensitivities were determined using colony forming assays. Apoptosis was detected and quantified with Hoechst 33342 staining. The activity of Caspase-3 was analyzed with Western blotting and flow cytometry. Cells irradiated with high LET radiation showed a high sensitivity with a high frequency of apoptosis induction. The relative biological effectiveness (RBE) values for the surviving fraction and apoptosis induction increased in a LET-dependent manner. Both RBE curves reached a peak at 100 KeV/μm, and then decreased at values over 100 KeV/μm. When cells were irradiated with high LET radiation, Caspase-3 was cleaved and activated, leading to poly (ADP-ribose) polymerase (PARP) cleavage. In addition, Caspase-9 inhibitor suppressed Caspase-3 activation and apoptosis induction resulting from high LET radiation to a greater extent than Caspase-8 inhibitor. These results suggest that high LET radiation enhances apoptosis by activation of Caspase-3 through Caspase-9, even in the presence of mp53. (author)

  20. The contribution of apoptosis and necrosis in freezing injury of sea urchin embryonic cells.

    Science.gov (United States)

    Boroda, Andrey V; Kipryushina, Yulia O; Yakovlev, Konstantin V; Odintsova, Nelly A

    2016-08-01

    Sea urchins have recently been reported to be a promising tool for investigations of oxidative stress, UV light perturbations and senescence. However, few available data describe the pathway of cell death that occurs in sea urchin embryonic cells after cryopreservation. Our study is focused on the morphological and functional alterations that occur in cells of these animals during the induction of different cell death pathways in response to cold injury. To estimate the effect of cryopreservation on sea urchin cell cultures and identify the involved cell death pathways, we analyzed cell viability (via trypan blue exclusion test, MTT assay and DAPI staining), caspase activity (via flow cytometry and spectrophotometry), the level of apoptosis (via annexin V-FITC staining), and cell ultrastructure alterations (via transmission electron microscopy). Using general caspase detection, we found that the level of caspase activity was low in unfrozen control cells, whereas the number of apoptotic cells with activated caspases rose after freezing-thawing depending on cryoprotectants used, also as the number of dead cells and cells in a late apoptosis. The data using annexin V-binding assay revealed a very high apoptosis level in all tested samples, even in unfrozen cells (about 66%). Thus, annexin V assay appears to be unsuitable for sea urchin embryonic cells. Typical necrotic cells with damaged mitochondria were not detected after freezing in sea urchin cell cultures. Our results assume that physical cell disruption but not freezing-induced apoptosis or necrosis is the predominant reason of cell death in sea urchin cultures after freezing-thawing with any cryoprotectant combination. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Withaferin A-induced apoptosis in human breast cancer cells is mediated by reactive oxygen species.

    Directory of Open Access Journals (Sweden)

    Eun-Ryeong Hahm

    Full Text Available Withaferin A (WA, a promising anticancer constituent of Ayurvedic medicinal plant Withania somnifera, inhibits growth of MDA-MB-231 and MCF-7 human breast cancer cells in culture and MDA-MB-231 xenografts in vivo in association with apoptosis induction, but the mechanism of cell death is not fully understood. We now demonstrate, for the first time, that WA-induced apoptosis is mediated by reactive oxygen species (ROS production due to inhibition of mitochondrial respiration. WA treatment caused ROS production in MDA-MB-231 and MCF-7 cells, but not in a normal human mammary epithelial cell line (HMEC. The HMEC was also resistant to WA-induced apoptosis. WA-mediated ROS production as well as apoptotic histone-associated DNA fragment release into the cytosol was significantly attenuated by ectopic expression of Cu,Zn-superoxide dismutase in both MDA-MB-231 and MCF-7 cells. ROS production resulting from WA exposure was accompanied by inhibition of oxidative phosphorylation and inhibition of complex III activity. Mitochondrial DNA-deficient Rho-0 variants of MDA-MB-231 and MCF-7 cells were resistant to WA-induced ROS production, collapse of mitochondrial membrane potential, and apoptosis compared with respective wild-type cells. WA treatment resulted in activation of Bax and Bak in MDA-MB-231 and MCF-7 cells, and SV40 immortalized embryonic fibroblasts derived from Bax and Bak double knockout mouse were significantly more resistant to WA-induced apoptosis compared with fibroblasts derived from wild-type mouse. In conclusion, the present study provides novel insight into the molecular circuitry of WA-induced apoptosis involving ROS production and activation of Bax/Bak.

  2. Trichodermin induces cell apoptosis through mitochondrial dysfunction and endoplasmic reticulum stress in human chondrosarcoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Su, Chen-Ming [Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan (China); Wang, Shih-Wei [Department of Medicine, Mackay Medical College, New Taipei City, Taiwan (China); Lee, Tzong-Huei [Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan (China); Tzeng, Wen-Pei [Graduate Institute of Sports and Health, National Changhua University of Education, Changhua, Taiwan (China); Hsiao, Che-Jen [School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Liu, Shih-Chia [Department of Orthopaedics, Mackay Memorial Hospital, Taipei, Taiwan (China); Tang, Chih-Hsin, E-mail: chtang@mail.cmu.edu.tw [Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan (China); Department of Pharmacology, School of Medicine, China Medical University, Taichung, Taiwan (China); Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan (China)

    2013-10-15

    Chondrosarcoma is the second most common primary bone tumor, and it responds poorly to both chemotherapy and radiation treatment. Nalanthamala psidii was described originally as Myxosporium in 1926. This is the first study to investigate the anti-tumor activity of trichodermin (trichothec-9-en-4-ol, 12,13-epoxy-, acetate), an endophytic fungal metabolite from N. psidii against human chondrosarcoma cells. We demonstrated that trichodermin induced cell apoptosis in human chondrosarcoma cell lines (JJ012 and SW1353 cells) instead of primary chondrocytes. In addition, trichodermin triggered endoplasmic reticulum (ER) stress protein levels of IRE1, p-PERK, GRP78, and GRP94, which were characterized by changes in cytosolic calcium levels. Furthermore, trichodermin induced the upregulation of Bax and Bid, the downregulation of Bcl-2, and the dysfunction of mitochondria, which released cytochrome c and activated caspase-3 in human chondrosarcoma. In addition, animal experiments illustrated reduced tumor volume, which led to an increased number of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive cells and an increased level of cleaved PARP protein following trichodermin treatment. Together, this study demonstrates that trichodermin is a novel anti-tumor agent against human chondrosarcoma cells both in vitro and in vivo via mitochondrial dysfunction and ER stress. - Highlights: • Trichodermin induces chondrosarcoma apoptosis. • ER stress is involved in trichodermin-induced cell death. • Trichodermin induces chondrosarcoma death in vivo.

  3. NF-kappaB is involved in SHetA2 circumvention of TNF-alpha resistance, but not induction of intrinsic apoptosis.

    Science.gov (United States)

    Chengedza, Shylet; Benbrook, Doris Mangiaracina

    2010-03-01

    Treatment of cancer with tumor necrosis factor-alpha (TNF-alpha) is hindered by resistance and toxicity. The flexible heteroarotinoid, SHetA2, sensitizes resistant ovarian cancer cells to TNF-alpha-induced extrinsic apoptosis, and also induces intrinsic apoptosis as a single agent. This study tested the hypothesis that nuclear factor-kappaB (NF-kappaB) is involved in SHetA2-regulated intrinsic and extrinsic apoptosis. SHetA2 inhibited basal and TNF-alpha-induced or hydrogen peroxide-induced NF-kappaB activity through counter-regulation of upstream kinase (IkappaB kinase) activity, inhibitor protein (IkappaB-alpha) phosphorylation, and p-65 NF-kappaB subunit nuclear translocation, but independently of reactive oxygen species generation. Ectopic over-expression of p-65, or treatment with TNF-alpha receptor 1 (TNFR1) small interfering RNA or a caspase-8 inhibitor, each attenuated synergistic apoptosis by SHetA2 and TNF-alpha, but did not affect intrinsic apoptosis caused by SHetA2. In conclusion, NF-kappaB repression is involved in SHetA2 circumvention of resistance to TNF-alpha-induced extrinsic apoptosis, but not in SHetA2 induction of intrinsic apoptosis.

  4. Knockdown of XBP1 by RNAi in Mouse Granulosa Cells Promotes Apoptosis, Inhibits Cell Cycle, and Decreases Estradiol Synthesis

    Directory of Open Access Journals (Sweden)

    Nan Wang

    2017-05-01

    Full Text Available Granulosa cells are crucial for follicular growth, development, and follicular atresia. X-box binding protein 1 (XBP1, a basic region-leucine zipper protein, is widely involved in cell differentiation, proliferation, apoptosis, cellular stress response, and other signaling pathways. In this study, RNA interference, flow cytometry, western blot, real-time PCR, Cell Counting Kit (CCK8, and ELISA were used to investigate the effect of XBP1 on steroidogenesis, apoptosis, cell cycle, and proliferation of mouse granulosa cells. ELISA analysis showed that XBP1 depletion significantly decreased the concentrations of estradiol (E2. Additionally, the expression of estrogen synthesis enzyme Cyp19a1 was sharply downregulated. Moreover, flow cytometry showed that knockdown of XBP1 increased the apoptosis rate and arrests the cell cycle in S-phase in granulosa cells (GCs. Further study confirmed these results. The expression of CCAAT-enhancer-binding protein homologous protein (CHOP, cysteinyl aspartate specific proteases-3 (caspase-3, cleaved caspase-3, and Cyclin E was upregulated, while that of Bcl-2, Cyclin A1, and Cyclin B1 was downregulated. Simultaneously, CCK8 analysis indicated that XBP1 disruption inhibited cell proliferation. In addition, XBP1 knockdown also alters the expression of Has2 and Ptgs2, two essential genes for folliculogenesis. Collectively, these data reveal a novel critical role of XBP1 in folliculogenesis by regulating the cell cycle, apoptosis, and steroid synthesis of mouse granulosa cells.

  5. Senescence and apoptosis: dueling or complementary cell fates?

    Science.gov (United States)

    Childs, Bennett G; Baker, Darren J; Kirkland, James L; Campisi, Judith; van Deursen, Jan M

    2014-01-01

    In response to a variety of stresses, mammalian cells undergo a persistent proliferative arrest known as cellular senescence. Many senescence-inducing stressors are potentially oncogenic, strengthening the notion that senescence evolved alongside apoptosis to suppress tumorigenesis. In contrast to apoptosis, senescent cells are stably viable and have the potential to influence neighboring cells through secreted soluble factors, which are collectively known as the senescence-associated secretory phenotype (SASP). However, the SASP has been associated with structural and functional tissue and organ deterioration and may even have tumor-promoting effects, raising the interesting evolutionary question of why apoptosis failed to outcompete senescence as a superior cell fate option. Here, we discuss the advantages that the senescence program may have over apoptosis as a tumor protective mechanism, as well as non-neoplastic functions that may have contributed to its evolution. We also review emerging evidence for the idea that senescent cells are present transiently early in life and are largely beneficial for development, regeneration and homeostasis, and only in advanced age do senescent cells accumulate to an organism’s detriment. PMID:25312810

  6. Polymyxin B Induces Apoptosis in Kidney Proximal Tubular Cells.

    Science.gov (United States)

    Azad, Mohammad A K; Finnin, Ben A; Poudyal, Anima; Davis, Kathryn; Li, Jinhua; Hill, Prue A; Nation, Roger L; Velkov, Tony; Li, Jian

    2013-09-01

    The nephrotoxicity of polymyxins is a major dose-limiting factor for treatment of infections caused by multidrug-resistant Gram-negative pathogens. The mechanism(s) of polymyxin-induced nephrotoxicity is not clear. This study aimed to investigate polymyxin B-induced apoptosis in kidney proximal tubular cells. Polymyxin B-induced apoptosis in NRK-52E cells was examined by caspase activation, DNA breakage, and translocation of membrane phosphatidylserine using Red-VAD-FMK [Val-Ala-Asp(O-Me) fluoromethyl ketone] staining, a terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) assay, and double staining with annexin V-propidium iodide (PI). The concentration dependence (50% effective concentration [EC 50 ]) and time course for polymyxin B-induced apoptosis were measured in NRK-52E and HK-2 cells by fluorescence-activated cell sorting (FACS) with annexin V and PI. Polymyxin B-induced apoptosis in NRK-52E cells was confirmed by positive labeling from Red-VAD-FMK staining, TUNEL assay, and annexin V-PI double staining. The EC 50 (95% confidence interval [CI]) of polymyxin B for the NRK-52E cells was 1.05 (0.91 to 1.22) mM and was 0.35 (0.29 to 0.42) mM for HK-2 cells. At lower concentrations of polymyxin B, minimal apoptosis was observed, followed by a sharp rise in the apoptotic index at higher concentrations in both cell lines. After treatment of NRK-52E cells with 2.0 mM polymyxin B, the percentage of apoptotic cells (mean ± standard deviation [SD]) was 10.9% ± 4.69% at 6 h and reached plateau (>80%) at 24 h, whereas treatment with 0.5 mM polymyxin B for 24 h led to 93.6% ± 5.57% of HK-2 cells in apoptosis. Understanding the mechanism of polymyxin B-induced apoptosis will provide important information for discovering less nephrotoxic polymyxin-like lipopeptides. Copyright © 2013, American Society for Microbiology. All Rights Reserved.

  7. Bovine Induced Pluripotent Stem Cells Are More Resistant to Apoptosis than Testicular Cells in Response to Mono-(2-ethylhexyl Phthalate

    Directory of Open Access Journals (Sweden)

    Ying-Chu Lin

    2014-03-01

    Full Text Available Although the androgen receptor (AR has been implicated in the promotion of apoptosis in testicular cells (TSCs, the molecular pathway underlying AR-mediated apoptosis and its sensitivity to environmental hormones in TSCs and induced pluripotent stem cells (iPSCs remain unclear. We generated the iPSCs from bovine TSCs via the electroporation of OCT4. The established iPSCs were supplemented with leukemia inhibitory factor and bone morphogenetic protein 4 to maintain and stabilize the expression of stemness genes and their pluripotency. Apoptosis signaling was assessed after exposure to mono-(2-ethylhexyl phthalate (MEHP, the active metabolite of di-(2-ethylhexyl phthalate. Here, we report that iPSCs were more resistant to MEHP-induced apoptosis than were original TSCs. MEHP also repressed the expression of AR and inactivated WNT signaling, and then led to the commitment of cells to apoptosis via the cyclin dependent kinase inhibitor p21CIP1. The loss of the frizzed receptor 7 and the gain of p21CIP were responsible for the stimulatory effect of MEHP on AR-mediated apoptosis. Our results suggest that testicular iPSCs can be used to study the signaling pathways involved in the response to environmental disruptors, and to assess the toxicity of environmental endocrine disruptors in terms of the maintenance of stemness and pluripotency.

  8. Does atorvastatin induce aortic smooth muscle cell apoptosis in vivo?

    Science.gov (United States)

    Doyon, Marielle; Hale, Taben Mary; Huot-Marchand, Julie-Emilie; Wu, Rong; de Champlain, Jacques; DeBlois, Denis

    2011-01-01

    It has been reported that HMG-CoA reductase inhibitors such as atorvastatin induce vascular smooth muscle cell (SMC) apoptosis in vitro. However, this effect remains to be demonstrated in vivo. The present studies were designed to test the ability of atorvastatin to induce SMC apoptosis in vivo, using the spontaneously hypertensive rat (SHR) as a well-known reference model of SMC apoptosis induction in vivo by cardiovascular drugs including the calcium channel blocker amlodipine. Atorvastatin was administered to SHR for 3 or 6 weeks either alone or together with amlodipine, a drug combination clinically available to patients. Primary endpoints included aortic medial hypertrophy and aortic SMC hyperplasia, internucleosomal DNA fragmentation and expression of the apoptosis regulatory proteins Bax and Bcl-2. The SHR aorta showed no evidence of SMC apoptosis induction by atorvastatin, even at the high dose of 50 mg kg(-1) day(-1), although the statin significantly reduced oxidative stress after 3 weeks and blood pressure after 6 weeks of administration. Amlodipine-induced regression of aortic hypertophy and aortic SMC hyperplasia were dose- and time-dependent, but there was no interaction between atorvastatin and amlodipine in modulating the primary endpoints. These results do not support the notion that atorvastatin induces SMC apoptosis in the aortic media in vivo. Copyright © 2010. Published by Elsevier Inc.

  9. Nuclear thioredoxin-1 is required to suppress cisplatin-mediated apoptosis of MCF-7 cells

    International Nuclear Information System (INIS)

    Chen, Xiao-Ping; Liu, Shou; Tang, Wen-Xin; Chen, Zheng-Wang

    2007-01-01

    Different cell line with increased thioredoxin-1 (Trx-1) showed a decreased or increased sensitivity to cell killing by cisplatin. Recently, several studies found that the subcellular localization of Trx-1 is closely associated with its functions. In this study, we explored the association of the nuclear Trx-1 with the cisplatin-mediated apoptosis of breast cancer cells MCF-7. Firstly, we found that higher total Trx-1 accompanied by no change of nuclear Trx-1 can not influence apoptosis induced by cisplatin in MCF-7 cells transferred with Trx-1 cDNA. Secondly, higher nuclear Trx-1 accompanied by no change of total Trx-1 can protect cells from apoptosis induced by cisplatin. Thirdly, high nuclear Trx-1 involves in the cisplatin-resistance in cisplatin-resistive cells. Meanwhile, we found that the mRNA level of p53 is closely correlated with the level of nuclear Trx-1. In summary, we concluded that the nuclear Trx-1 is required to resist apoptosis of MCF-7 cells induced by cisplatin, probably through up-regulating the anti-apoptotic gene, p53

  10. Vitamin D enhances omega-3 polyunsaturated fatty acids-induced apoptosis in breast cancer cells.

    Science.gov (United States)

    Yang, Jing; Zhu, Shenglong; Lin, Guangxiao; Song, Ci; He, Zhao

    2017-08-01

    Breast cancer is a leading type of cancer in women and generally classified into three subtypes of ER + /PR + , HER2 + and triple negative. Both omega-3 polyunsaturated fatty acids and vitamin D 3 play positive role in the reduction of breast cancer incidence. However, whether combination of omega-3 polyunsaturated fatty acids and vitamin D 3 has stronger protective effect on breast carcinogenesis still remains unknown. In this study, we show that the combination of ω-3 free fatty acids (ω-3 FFAs) and 1α, 25-dihydroxy-vitamin D 3 (VD 3 ) dramatically enhances cell apoptosis among three subtypes of breast cancer cell lines. Bcl-2 and total PARP protein levels are decreased in combined treatment MCF-7 and SK-BR-3 cells. Caspase signals play a vital role in cell apoptosis induced by combination. Moreover, Raf-MAPK signaling pathway is involved in the apoptosis induction by combination of ω-3 FFAs+VD 3 . These results demonstrate that the induction of cell apoptosis by combined treatment is dependent on different signaling pathways in three subtypes of breast cancer cell lines. © 2017 International Federation for Cell Biology.

  11. Anthraquinone G503 Induces Apoptosis in Gastric Cancer Cells through the Mitochondrial Pathway

    Science.gov (United States)

    Li, Shuai; Duan, Junting; Ye, Fang; Li, Hanxiang; She, Zhigang; Gao, Guoquan; Yang, Xia

    2014-01-01

    G503 is an anthraquinone compound isolated from the secondary metabolites of a mangrove endophytic fungus from the South China Sea. The present study elucidates the anti-tumor activity and the underlying mechanism of G503. Cell viability assay performed in nine cancer cell lines and two normal cell lines demonstrated that the gastric cancer cell line SGC7901 is the most G503-sensitive cancer cells. G503 induced SGC7901 cell death via apoptosis. G503 exposure activated caspases-3, -8 and -9. Pretreatment with the pan-caspase inhibitor Z-VAD-FMK and caspase-9 inhibitor Z-LEHD-FMK, but not caspase-8 inbibitor Z-IETD-FMK, attenuated the effect of G503. These results suggested that the intrinsic mitochondrial apoptosis pathway, rather than the extrinsic pathway, was involved in G503-induced apoptosis. Furthermore, G503 increased the ratio of Bax to Bcl-2 in the mitochondria and decreased the ratio in the cytosol. G503 treatment resulted in mitochondrial depolarization, cytochrome c release and the subsequent cleavage of caspase -9 and -3. Moreover, it is reported that the endoplasmic reticulum apoptosis pathway may also be activated by G503 by inducing capase-4 cleavage. In consideration of the lower 50% inhibitory concentration for gastric cancer cells, G503 may serve as a promising candidate for gastric cancer chemotherapy. PMID:25268882

  12. Distribution of apoptotic cells and apoptosis-related molecules in the developing murine palatine rugae.

    Science.gov (United States)

    Amasaki, Hajime; Ogawa, Miyuki; Nagasao, Jun; Mutoh, Ken-ichiro; Ichihara, Nobutsune; Asari, Masao

    2002-12-01

    Distribution of apoptotic cells and expression of the apoptosis-related factors p53, bcl-2 and bad during morphogenesis of the murine palatine rugae (PR) were examined histochemically using the terminal deoxynucleotidyl transferase-mediated UTP nick end-labeling (TUNEL) technique and specific antibodies against apoptosis and cell cycle-related molecules. Formation of the PR rudiment was controlled by cell proliferation and apoptosis in the palatal epithelium. TUNEL-positive cells were detected only at the epithelial placode area at 12.5-13.5 days post coitus (dpc), but only a few cells were positive at the protruding PR area at 14.5-16.5 dpc. Bcl-2 protein was expressed mainly in the areas outside of those containing TUNEL-positive cells at 15.5 -6.5 dpc. P53 protein was not detected throughout gestation. Bad was detected in the epithelial layer at 13.5 and 15.5 dpc and overlapping the apoptotic area at 13.5-15.5 dpc. Apoptosis of palatal epithelial cells might therefore involve spatiotemporally regulated expression of bad during murine PR development.

  13. PDGF-BB inhibits intervertebral disc cell apoptosis in vitro.

    Science.gov (United States)

    Presciutti, Steven M; Paglia, David N; Karukonda, Teja; Soung, Do Yu; Guzzo, Rosa; Drissi, Hicham; Moss, Isaac L

    2014-09-01

    Degeneration of the intervertebral disc (IVD) results in deterioration of the spinal motion segment and can lead to debilitating back pain. Given the established mitotic and anti-apoptotic effects of recombinant human platelet-derived growth factor-BB (rhPDGF-BB) in a variety of cell types we postulated that rhPDGF-BB might delay disc cell degeneration through inhibition of apoptosis. To address this hypothesis, we treated human IVD cells isolated from five independent patients with rhPDGF-BB in monolayer and 3D pellet cultures. The anti-apoptotic potential, cell proliferative capacity, morphology/pellet differentiation, and gene expression of PDGF-treated IVD cells were evaluated via flow cytometry/immunohistochemistry, MTT assays, histology, and quantitative RT-PCR, respectively. We found that rhPDGF-BB treatment significantly inhibited cell apoptosis, increased cell proliferation and matrix production, and maintained mRNA expression of critical extracellular matrix genes. This study suggests two possible mechanisms for the anti-degenerative effects of rhPDGF-BB on human IVD cells. First, PDGF treatment strongly inhibited IVD cell apoptosis in 3D cultures. Second, rhPDGF-BB acts as an anabolic agent, promoting maintenance of IVD cell phenotype in 3D culture, based on the molecular and protein expression analysis. We speculate that rhPDGF-BB may be used as a biologic treatment to target early degenerative IVD disease in the future. © 2014 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  14. Molecular Cell Biology of Apoptosis and Necroptosis in Cancer.

    Science.gov (United States)

    Dillon, Christopher P; Green, Douglas R

    Cell death is a major mechanism to eliminate cells in which DNA is damaged, organelles are stressed, or oncogenes are overexpressed, all events that would otherwise predispose cells to oncogenic transformation. The pathways that initiate and execute cell death are complex, genetically encoded, and subject to significant regulation. Consequently, while these pathways are often mutated in malignancy, there is considerable interest in inducing cell death in tumor cells as therapy. This chapter addresses our current understanding of molecular mechanisms contributing to two cell death pathways, apoptotic cell death and necroptosis, a regulated form of necrotic cell death. Apoptosis can be induced by a wide variety of signals, leading to protease activation that dismantles the cell. We discuss the physiological importance of each apoptosis pathway and summarize their known roles in cancer suppression and the current efforts at targeting each pathway therapeutically. The intricate mechanistic link between death receptor-mediated apoptosis and necroptosis is described, as well as the potential opportunities for utilizing necroptosis in the treatment of malignancy.

  15. Propofol inhibits LPS-induced apoptosis in lung epithelial cell line, BEAS-2B.

    Science.gov (United States)

    Lv, Xiang; Zhou, Xuhui; Yan, Jia; Jiang, Jue; Jiang, Hong

    2017-03-01

    Lipopolysaccharide (LPS) plays an important role in lung endothelial apoptosis which is crucial for lung fibrogenesis in ARDS progression. Reactive oxygen species (ROS) has been reported to be involved in LPS-induced lung epithelial cell apoptosis. Propofol is a commonly used intravenous anesthetic agent in clinic and it could attenuate LPS-induced epithelial cells oxidation and apoptosis. However, the mechanisms are still obscure. In this study, we examined whether and how propofol attenuates LPS-induced oxidation and apoptosis in BEAS-2B cells. Compared with control group, LPS up-regulated Pin-1, phosphatase A2 (PP2A) expression, induced p66 Shc -Ser 36 phosphorylation, and facilitated p66 Shc mitochondrial translocation, thus leading to superoxide anion (O 2 - ) generation, mitochondrial cytochrome c release, active caspase 3 over-expression and cell viability inhibition. Importantly, propofol was shown to down-regulate LPS-induced PP2A expression, limit p66 Shc mitochondrial translocation, decrease O 2 - generation, inhibit mitochondrial cytochrome c release, reduce active caspase 3 expression, and recover cells viability, while propofol had no effects on LPS-induced Pin-1 expression and p66 Shc -Ser 36 phosphorylation. Moreover, the protective effects of propofol on LPS-induced BEAS-2B cells apoptosis were similar to that of calyculin A, which is an inhibitor of PP2A. We also found that FTY720, which is an activator of PP2A, can effectively reverse the protective function of propofol. Our data illustrated that propofol could alleviate LPS-induced BEAS-2B cells oxidation and apoptosis through down-regulating PP2A expression, limiting p66 Shc -Ser 36 dephosphorylation and p66 Shc mitochondrial translocation, decreasing O 2 - generation, mitochondrial cytochrome c release, activating caspase 3 expression. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. Altered Expression of Signaling Genes in Jurkat Cells upon FTY720 Induced Apoptosis

    Directory of Open Access Journals (Sweden)

    Shaoheng He

    2010-09-01

    Full Text Available FTY720, a novel immunosuppressant, has a marked activity in decreasing peripheral blood T lymphocytes upon oral administration. Recent investigations suggest that the action of FTY720 on lymphocytes may result from its ability to induce cell apoptosis. However, the cell signaling mechanism involved in the FTY720-induced cell apoptosis remains unclear. Here we examined the apoptotic signal pathways mediated by FTY720 in Jurkat cells using microarray analysis. The results showed that FTY720 can induce Jurkat cell apoptosis in a dose and time dependent manner as assessed by cell viability, Hoechst 33258 staining, Annexin V binding and DNA fragmentation tests. cDNA microarray analysis showed that 10 µM of FTY720 up-regulated 54 and down-regulated 10 genes in Jurkat cells among the 458 apoptotic genes examined following the 6 h incubation period. At least five-fold increased expression of modulator of apoptosis-1 (MOAP-1, vascular endothelial growth factor (VEGF, tumor necrosis factor receptor-associated factors (TRAF 6, Caspase 2 (CASP 2, E2F transcription factor 1 (E2F 1 and Casapse 5 (CASP 5 genes was observed in microarray analyses; these results were confirmed with reverse transcription polymerase chain reaction (RT-PCR examination. Our findings suggest that the mitochondria related signaling pathways are the key pathways involved in the FTY720-induced apoptosis in Jurkat cells. And our results provide a new insight into the mechanism of FTY720, which allows us to draw the first simple diagram showing the potential pathways mediated by FTY720.

  17. Altered expression of signaling genes in Jurkat cells upon FTY720 induced apoptosis.

    Science.gov (United States)

    Wang, Fang; Tan, Wenfeng; Guo, Dunming; Zhu, Xiaomin; Qian, Keqing; He, Shaoheng

    2010-09-02

    FTY720, a novel immunosuppressant, has a marked activity in decreasing peripheral blood T lymphocytes upon oral administration. Recent investigations suggest that the action of FTY720 on lymphocytes may result from its ability to induce cell apoptosis. However, the cell signaling mechanism involved in the FTY720-induced cell apoptosis remains unclear. Here we examined the apoptotic signal pathways mediated by FTY720 in Jurkat cells using microarray analysis. The results showed that FTY720 can induce Jurkat cell apoptosis in a dose and time dependent manner as assessed by cell viability, Hoechst 33258 staining, Annexin V binding and DNA fragmentation tests. cDNA microarray analysis showed that 10 μM of FTY720 up-regulated 54 and down-regulated 10 genes in Jurkat cells among the 458 apoptotic genes examined following the 6 h incubation period. At least five-fold increased expression of modulator of apoptosis-1 (MOAP-1), vascular endothelial growth factor (VEGF), tumor necrosis factor receptor-associated factors (TRAF 6), Caspase 2 (CASP 2), E2F transcription factor 1 (E2F 1) and Casapse 5 (CASP 5) genes was observed in microarray analyses; these results were confirmed with reverse transcription polymerase chain reaction (RT-PCR) examination. Our findings suggest that the mitochondria related signaling pathways are the key pathways involved in the FTY720-induced apoptosis in Jurkat cells. And our results provide a new insight into the mechanism of FTY720, which allows us to draw the first simple diagram showing the potential pathways mediated by FTY720.

  18. Apoptosis and signalling in acid sphingomyelinase deficient cells

    Directory of Open Access Journals (Sweden)

    Sillence Dan J

    2001-11-01

    Full Text Available Abstract Background Recent evidence suggests that the activation of a non-specific lipid scramblase during apoptosis induces the flipping of sphingomyelin from the cell surface to the cytoplasmic leaftet of the plasma membrane. Inner leaflet sphingomyelin is then cleaved to ceramide by a neutral sphingomyelinase. The production of this non-membrane forming lipid induces blebbing of the plasma membrane to aid rapid engulfment by professional phagocytes. However contrary evidence suggests that cells which are deficient in acid sphingomyelinase are defective in apoptosis signalling. This data has been interpreted as support for the activation of acid sphingomyelinase as an early signal in apoptosis. Hypothesis An alternative explanation is put forward whereby the accumulation of intracellular sphingomyelin in sphingomyelinase deficient cells leads to the formation of intracellular rafts which lead to the sequestration of important signalling molecules that are normally present on the cell surface where they perform their function. Testing the hypothesis It is expected that the subcellular distribution of important signalling molecules is altered in acid sphingomyelinase deficient cells, leading to their sequestration in late endosomes / lysosomes. Other sphingolipid storage diseases such as Niemann-Pick type C which have normal acid sphingomyelinase activity would also be expected to show the same phenotype. Implications of the hypothesis If true the hypothesis would provide a mechanism for the pathology of the sphingolipid storage diseases at the cellular level and also have implications for the role of ceramide in apoptosis.

  19. Reactive oxygen species regulated mitochondria-mediated apoptosis in PC12 cells exposed to chlorpyrifos

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Eun [Department of Pharmacology, College of Medicine, Hanyang University, Seoul (Korea, Republic of); Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Park, Jae Hyeon [Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul (Korea, Republic of); Shin, In Chul [Department of Pharmacology, College of Medicine, Hanyang University, Seoul (Korea, Republic of); Koh, Hyun Chul, E-mail: hckoh@hanyang.ac.kr [Department of Pharmacology, College of Medicine, Hanyang University, Seoul (Korea, Republic of); Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul (Korea, Republic of)

    2012-09-01

    Reactive oxidative species (ROS) generated by environmental toxicants including pesticides could be one of the factors underlying the neuronal cell damage in neurodegenerative diseases. In this study we found that chlorpyrifos (CPF) induced apoptosis in dopaminergic neuronal components of PC12 cells as demonstrated by the activation of caspases and nuclear condensation. Furthermore, CPF also reduced the tyrosine hydroxylase-positive immunoreactivity in substantia nigra of the rat. In addition, CPF induced inhibition of mitochondrial complex I activity. Importantly, N-acetyl cysteine (NAC) treatment effectively blocked apoptosis via the caspase-9 and caspase-3 pathways while NAC attenuated the inhibition of mitochondrial complex I activity as well as the oxidative metabolism of dopamine (DA). These results demonstrated that CPF-induced apoptosis was involved in mitochondrial dysfunction through the production of ROS. In the response of cellular antioxidant systems to CPF, we found that CPF treatment increased HO-1 expression while the expression of CuZnSOD and MnSOD was reduced. In addition, we found that CPF treatment activated MAPK pathways, including ERK 1/2, the JNK, and the p38 MAP kinase in a time-dependent manner. NAC treatment abolished MAPK phosphorylation caused by CPF, indicating that ROS are upstream signals of MAPK. Interestingly, MAPK inhibitors abolished cytotoxicity and reduced ROS generation by CPF treatment. Our results demonstrate that CPF induced neuronal cell death in part through MAPK activation via ROS generation, suggesting its potential to generate oxidative stress via mitochondrial damage and its involvement in oxidative stress-related neurodegenerative disease. -- Highlights: ► Chlorpyrifos induces apoptosis. ► Chlorpyrifos inhibits mitochondrial complex I activity. ► ROS is involved in chlorpyrifos-induced apoptosis. ► Chlorpyrifos affects cellular antioxidant systems. ► Chlorpyrifos-induced apoptosis mediates activation of MAPK.

  20. Reactive oxygen species regulated mitochondria-mediated apoptosis in PC12 cells exposed to chlorpyrifos

    International Nuclear Information System (INIS)

    Lee, Jeong Eun; Park, Jae Hyeon; Shin, In Chul; Koh, Hyun Chul

    2012-01-01

    Reactive oxidative species (ROS) generated by environmental toxicants including pesticides could be one of the factors underlying the neuronal cell damage in neurodegenerative diseases. In this study we found that chlorpyrifos (CPF) induced apoptosis in dopaminergic neuronal components of PC12 cells as demonstrated by the activation of caspases and nuclear condensation. Furthermore, CPF also reduced the tyrosine hydroxylase-positive immunoreactivity in substantia nigra of the rat. In addition, CPF induced inhibition of mitochondrial complex I activity. Importantly, N-acetyl cysteine (NAC) treatment effectively blocked apoptosis via the caspase-9 and caspase-3 pathways while NAC attenuated the inhibition of mitochondrial complex I activity as well as the oxidative metabolism of dopamine (DA). These results demonstrated that CPF-induced apoptosis was involved in mitochondrial dysfunction through the production of ROS. In the response of cellular antioxidant systems to CPF, we found that CPF treatment increased HO-1 expression while the expression of CuZnSOD and MnSOD was reduced. In addition, we found that CPF treatment activated MAPK pathways, including ERK 1/2, the JNK, and the p38 MAP kinase in a time-dependent manner. NAC treatment abolished MAPK phosphorylation caused by CPF, indicating that ROS are upstream signals of MAPK. Interestingly, MAPK inhibitors abolished cytotoxicity and reduced ROS generation by CPF treatment. Our results demonstrate that CPF induced neuronal cell death in part through MAPK activation via ROS generation, suggesting its potential to generate oxidative stress via mitochondrial damage and its involvement in oxidative stress-related neurodegenerative disease. -- Highlights: ► Chlorpyrifos induces apoptosis. ► Chlorpyrifos inhibits mitochondrial complex I activity. ► ROS is involved in chlorpyrifos-induced apoptosis. ► Chlorpyrifos affects cellular antioxidant systems. ► Chlorpyrifos-induced apoptosis mediates activation of MAPK.

  1. Mechanisms involved in enhancement of apoptosis by radiation or hyperthermia in combination with sodium butyrate

    International Nuclear Information System (INIS)

    Wei, Z.L.; Zhao, Q.L.; Hassan, M.A.; Kondo, Takashi

    2010-01-01

    Sodium butyrate is a four-carbon fatty acid and natural component of the colonic milieu. Butyrate has been shown to induce apoptosis in numerous types of cancer cells, and received much attention as a potential chemopreventive agent for colorectal cancer. However, during initial clinical trials, its efficacy was limited. X-irradiation or hyperthermia as an adjuvant significantly enhanced the cell growth arrest, alteration of the cell cycle, and cell death caused by butyrate. The balance between anti-apoptotic and pro-apoptotic Bcl-2 family proteins was lost and a mitochondrial pathway was activated. In this review, the interactions of butyrate with X-irradiation and hyperthermia are discussed. (author)

  2. Smoothened antagonist GDC-0449 (Vismodegib) inhibits proliferation and triggers apoptosis in colon cancer cell lines.

    Science.gov (United States)

    Wu, Chuanqing; Hu, Shaobo; Cheng, Ji; Wang, Guobin; Tao, Kaixiong

    2017-05-01

    The sonic hedgehog (Shh) pathway has been proven to be involved in embryonic development and cancer growth. GDC-0449, an antagonist of the hedgehog signaling receptor Smoothened (Smo), was recently approved by the US Food and Drug Administration as a prescription for skin basal cell carcinoma. However, the efficacy of GDC-0449 in the treatment of colon cancer and other malignancies, such as basal cell carcinoma and pancreatic cancer, has remained to be proven. The present study assessed the effect of GDC-0449 on the colon cancer cell lines Caco-2 and Ht-29. A Cell Counting Kit-8 assay was applied to assess the cell proliferation rate and apoptosis was tested by flow cytometry. Reverse-transcription quantitative PCR and western blot analysis were used for analyzing expression levels of target genes. Cell proliferation was inhibited, while apoptosis was increased by GDC-0449, whereas the expression of B-cell lymphoma 2 (Bcl-2), a downstream target of Shh signaling, was decreased. Consistent with the inhibition of Gli1 expression, the cancer stem cell markers CD44 and ALDH were decreased in the presence of GDC-0449. In conclusion, GDC-0449 was shown to inhibit the replication of colon cancer cells and trigger apoptosis through downregulating Bcl-2. This may also influence the stemness of cancer stem cells as indicated by the decreased stem cell surface markers.

  3. E2F-1 induces melanoma cell apoptosis via PUMA up-regulation and Bax translocation

    International Nuclear Information System (INIS)

    Hao, Hongying; Dong, Yanbin; Bowling, Maria T; Gomez-Gutierrez, Jorge G; Zhou, H Sam; McMasters, Kelly M

    2007-01-01

    PUMA is a pro-apoptotic Bcl-2 family member that has been shown to be involved in apoptosis in many cell types. We sought to ascertain whether induction of PUMA plays a crucial role in E2F-1-induced apoptosis in melanoma cells. PUMA gene and protein expression levels were detected by real-time PCR and Western blot in SK-MEL-2 and HCT116 cell lines after Ad-E2F-1 infection. Activation of the PUMA promoter by E2F-1 overexpression was detected by dual luciferase reporter assay. E2F-1-induced Bax translocation was shown by immunocytochemistry. The induction of caspase-9 activity was measured by caspase-9 colorimetric assay kit. Up-regulation of the PUMA gene and protein by E2F-1 overexpression was detected by real-time PCR and Western blot analysis in the SK-MEL-2 melanoma cell line. In support of this finding, we found six putative E2F-1 binding sites within the PUMA promoter. Subsequent dual luciferase reporter assay showed that E2F-1 expression could increase the PUMA gene promoter activity 9.3 fold in SK-MEL-2 cells. The role of PUMA in E2F-1-induced apoptosis was further investigated in a PUMA knockout cell line. Cell viability assay showed that the HCT116 PUMA-/- cell line was more resistant to Ad-E2F-1-mediated cell death than the HCT116 PUMA+/+ cell line. Moreover, a 2.2-fold induction of the PUMA promoter was also noted in the HCT116 PUMA+/+ colon cancer cell line after Ad-E2F-1 infection. Overexpression of a truncated E2F-1 protein that lacks the transactivation domain failed to up-regulate PUMA promoter, suggesting that PUMA may be a transcriptional target of E2F-1. E2F-1-induced cancer cell apoptosis was accompanied by Bax translocation from the cytosol to mitochondria and the induction of caspase-9 activity, suggesting that E2F-1-induced apoptosis is mediated by PUMA through the cytochrome C/Apaf-1-dependent pathway. Our studies strongly demonstrated that E2F-1 induces melanoma cell apoptosis via PUMA up-regulation and Bax translocation. The signaling

  4. Regulation of apoptosis in osteoclasts and osteoblastic cells

    International Nuclear Information System (INIS)

    Xing Lianping; Boyce, Brendan F.

    2005-01-01

    In postnatal life, the skeleton undergoes continuous remodeling in which osteoclasts resorb aged or damaged bone, leaving space for osteoblasts to make new bone. The balance of proliferation, differentiation, and apoptosis of bone cells determines the size of osteoclast or osteoblast populations at any given time. Bone cells constantly receive signals from adjacent cells, hormones, and bone matrix that regulate their proliferation, activity, and survival. Thus, the amount of bone and its microarchitecture before and after the menopause or following therapeutic intervention with drugs, such as sex hormones, glucocorticoids, parathyroid hormone, and bisphosphonates, is determined in part by effects of these on survival of osteoclasts, osteoblasts, and osteocytes. Understanding the mechanisms and regulation of bone cell apoptosis will enhance our knowledge of bone cell function and help us to develop better therapeutics for the management of osteoporosis and other bone diseases

  5. TNF/TNFR{sub 1} pathway and endoplasmic reticulum stress are involved in ofloxacin-induced apoptosis of juvenile canine chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fu-Tao; Ding, Yi; Shah, Zahir; Xing, Dan; Gao, Yuan; Liu, Dong Ming; Ding, Ming-Xing, E-mail: dmx@mail.hzau.edu.cn

    2014-04-15

    Background and purpose: Quinolones cause obvious cartilaginous lesions in juvenile animals by chondrocyte apoptosis, which results in the restriction of their use in pediatric and adolescent patients. Studies showed that chondrocytes can be induced to produce TNFα, and the cisternae of the endoplasmic reticulum in quinolone-treated chondrocytes become dilated. We investigated whether TNF/TNFR{sub 1} pathway and endoplasmic reticulum stress (ERs) are involved in ofloxacin (a typical quinolone)-induced apoptosis of juvenile canine chondrocytes. Experimental approach: Canine juvenile chondrocytes were treated with ofloxacin. Cell survival and apoptosis rates were determined with MTT method and flow cytometry, respectively. The gene expression levels of the related signaling molecules (TNFα, TNFR{sub 1}, TRADD, FADD and caspase-8) in death receptor pathways and main apoptosis-related molecules (calpain, caspase-12, GADD153 and GRP78) in ERs were measured by qRT-PCR. The gene expression of TNFR{sub 1} was suppressed with its siRNA. The protein levels of TNFα, TNFR{sub 1} and caspase-12 were assayed using Western blotting. Key results: The survival rates decreased while apoptosis rates increased after the chondrocytes were treated with ofloxacin. The mRNA levels of the measured apoptosis-related molecules in death receptor pathways and ERs, and the protein levels of TNFα, TNFR{sub 1} and caspase-12 increased after the chondrocytes were exposed to ofloxacin. The downregulated mRNA expressions of TNFR{sub 1}, Caspase-8 and TRADD, and the decreased apoptosis rates of the ofloxacin-treated chondrocytes occurred after TNFR{sub 1}–siRNA interference. Conclusions and implications: Ofloxacin-induced chondrocyte apoptosis in a time- and concentration-dependent fashion. TNF/TNFR{sub 1} pathway and ERs are involved in ofloxacin-induced apoptosis of juvenile canine chondrocytes in the early stage. - Highlights: • Chondrocyte apoptosis is induced by ofloxacin in a time- and

  6. EVA1A inhibits GBM cell proliferation by inducing autophagy and apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Xue; Kan, Shifeng; Liu, Zhen [Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191 (China); Lu, Guang [Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191 (China); Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597 (Singapore); Zhang, Xiaoyan [Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191 (China); Chen, Yingyu [Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191 (China); Peking University Center for Human Disease Genomics, Beijing 100191 (China); Bai, Yun, E-mail: baiyun@bjmu.edu.cn [Department of Cell Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191 (China)

    2017-03-01

    Eva-1 homolog A (EVA1A) is a novel lysosome and endoplasmic reticulum-associated protein involved in autophagy and apoptosis. In this study, we constructed a recombinant adenovirus 5-EVA1A vector (Ad5-EVA1A) to overexpress EVA1A in glioblastoma (GBM) cell lines and evaluated its anti-tumor activities in vitro and in vivo. We found that overexpression of EVA1A in three GBM cell lines (U251, U87 and SHG44) resulted in a suppression of tumor cell growth via activation of autophagy and induction of cell apoptosis in a dose- and time-dependent manner. EVA1A-mediated autophagy was associated with inactivation of the mTOR/RPS6KB1 signaling pathway. Furthermore in vivo, overexpression of EVA1A successfully inhibited tumor growth in NOD/SCID mice. Our data suggest that EVA1A-induced autophagy and apoptosis play a role in suppressing the development of GBM and their up-regulation may be an effective method for treating this form of cancer. - Highlights: • Overexpression of EVA1A suppresses GBM cell growth. • EVA1A induces autophagy through the mTOR/RPS6KB1 pathway. • EVA1A induces GBM cell apoptosis. • EVA1A inhibits the development of GBM in vivo.

  7. Beta1 integrin inhibits apoptosis induced by cyclic stretch in annulus fibrosus cells via ERK1/2 MAPK pathway.

    Science.gov (United States)

    Zhang, Kai; Ding, Wei; Sun, Wei; Sun, Xiao-jiang; Xie, You-zhuan; Zhao, Chang-qing; Zhao, Jie

    2016-01-01

    Low back pain is associated with intervertebral disc degeneration (IVDD) due to cellular loss through apoptosis. Mechanical factors play an important role in maintaining the survival of the annulus fibrosus (AF) cells and the deposition of extracellular matrix. However, the mechanisms that excessive mechanical forces lead to AF cell apoptosis are not clear. The present study was to look for how AF cells sense mechanical changes. In vivo experiments, the involvement of mechanoreceptors in apoptosis was examined by RT-PCR and/or immunoblotting in the lumbar spine of rats subjected to unbalanced dynamic and static forces. In vitro experiments, we investigated apoptotic signaling pathways in untransfected and transfected AF cells with the lentivirus vector for rat β1 integrin overexpression after cyclic stretch. Apoptosis in AF cells was assessed using flow cytometry, Hoechst 33258 nuclear staining. Western blotting was used to analyze expression of β1 integrin and caspase-3 and ERK1/2 MAPK signaling molecules. In the rat IVDD model, unbalanced dynamic and static forces induced apoptosis of disc cells, which corresponded to decreased expression of β1 integrin. Cyclic stretch-induced apoptosis in rat AF cells correlated with the activation of caspase-3 and with decreased levels of β1 integrin and the phosphorylation levels of ERK1/2 activation level. However, the overexpression of β1 integrin in AF cells ameliorated cyclic stretch-induced apoptosis and decreased caspase-3 activation. Furthermore, ERK1/2-specific inhibitor promotes apoptosis in vector β1-infected AF cells. These results suggest that the disruption of β1 integrin signaling may underlie disc cell apoptosis induced by mechanical stress. Further work is necessary to fully elucidate the pathophysiological mechanisms that underlie IVDD caused by unbalanced dynamic and static forces.

  8. Caspase-6 Induces 7A6 Antigen Localization to Mitochondria During FAS-induced Apoptosis of Jurkat Cells.

    Science.gov (United States)

    Suita, Hiroaki; Shinomiya, Takahisa; Nagahara, Yukitoshi

    2017-04-01

    Mitochondria are central to apoptosis. However, apoptosis progression involving mitochondria is not fully understood. A factor involved in mitochondria-mediated apoptosis is 7A6 antigen. 7A6 localizes to mitochondria from the cytosol during apoptosis, which seems to involve 'effector' caspases. In this study, we investigated the precise role of effector caspases in 7A6 localization to mitochondria during apoptosis. Human T-cell lymphoma Jurkat cells were treated with an antibody against FAS. 7A6 localization was analyzed by confocal laser scanning microscopy and flow cytometry. Caspases activation was determined by western blot analysis. 7A6 localization to mitochondria during anti-FAS-induced apoptosis was significantly reduced by the caspase-6 inhibitor, N-acetyl-Val-Glu-Ile-Asp-aldehyde, but not by the caspase-3 inhibitor, N-acetyl-Asp-Asn-Leu-Asp-aldehyde, nor caspase-7/3 inhibitor, N-acetyl-Asp-Gln-Thr-Asp-aldehyde. Moreover, caspase-6 down-regulation suppressed 7A6 localization to mitochondria. Caspase-6 regulates 7A6 localization to mitochondria during anti-FAS-induced apoptosis of Jurkat cells. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  9. Moringa oleifera : An apoptosis inducer in cancer cells | Adebayo ...

    African Journals Online (AJOL)

    The ability of M. oleifera to trigger apoptosis in cancer cells largely depends on its phytochemicals, most especially antioxidant phenols such as gallic acid, chlorogenic acid, rutin, apigenin, astragalin, quercetin, and kampferol. These compounds act by activating pro-apoptotic protein such as caspases, TRAIL, bax, bad, and ...

  10. Ulinastatin Reduces T Cell Apoptosis in Rats with Severe Acute ...

    African Journals Online (AJOL)

    T cell apoptosis was determined by Annexin-V/PI double-staining. Oxidative stress was evaluated by examining changes in the levels of reactive oxygen species (ROS). Total superoxide dismutase (SOD) in serum was tested by hydroxylamine colorimetric assay, and malondialdehyde levels were examined by thiobarbituric ...

  11. Succinobucol induces apoptosis in vascular smooth muscle cells

    Czech Academy of Sciences Publication Activity Database

    Midwinter, R.G.; Maghzal, G.; Dennis, J.M.; Wu, B.J.; Cai, H.; Kapralov, A.A.; Belikova, N.A.; Tyurina, Y.Y.; Dong, L. F.; Khachigian, L.; Neužil, Jiří; Kagan, V.E.; Stocker, R.

    2012-01-01

    Roč. 52, č. 5 (2012), s. 871-879 ISSN 0891-5849 R&D Projects: GA ČR(CZ) GAP301/10/1937 Institutional research plan: CEZ:AV0Z50520701 Keywords : reactive oxygen species * free radicals * apoptosis Subject RIV: EA - Cell Biology Impact factor: 5.271, year: 2012

  12. Apoptosis induction of epifriedelinol on human cervical cancer cell line

    African Journals Online (AJOL)

    Background: Present investigation evaluates the antitumor activity of epifriedelinol for the management of cervical cancer by inducing process of apoptosis. Methods: Human Cervical Cancer Cell Line, C33A and HeLa were selected for study and treated with epifriedelinol at a concentration of (50-1000 μg/ml). Cytotoxicity of ...

  13. What history tells us XXI. Apoptosis and programmed cell death

    Indian Academy of Sciences (India)

    2010-04-30

    Apr 30, 2010 ... Home; Journals; Journal of Biosciences; Volume 35; Issue 2. What history tells us XXI. Apoptosis and programmed cell death: when biological categories are blurred. Michel Morange. Series Volume 35 Issue 2 June 2010 pp 177-181 ...

  14. What history tells us XXI. Apoptosis and programmed cell death ...

    Indian Academy of Sciences (India)

    2010-04-30

    Apr 30, 2010 ... Home; Journals; Journal of Biosciences; Volume 35; Issue 2. What history tells us XXI. Apoptosis and programmed cell death: when biological categories are blurred. Michel Morange. Series Volume 35 Issue 2 June 2010 pp 177-181 ...

  15. E. adenophorum Induces Cell Cycle and Apoptosis of Renal Cells through Mitochondrial Pathway and Caspase Activation in Saanen Goat.

    Directory of Open Access Journals (Sweden)

    Yajun He

    Full Text Available The cytotoxicity effects of E. adenophorum on cell cycle and apoptosis of renal cells in Saanen goat was evaluated by TUNEL, DAPI, AO/EB staining, DNA fragmentation assay, Caspase activity, Western-blot, qRT-PCR and flow cytometry analysis. 16 saanen goats randomly divided into four groups were fed on 0%, 40%, 60% and 80% E. adenophorum diets. The Results showed that E. adenophorum induced typical apoptotic features of renal cells. E. adenophorum significantly suppressed renal cells viability, caused cell cycle activity arrest and induced typical apoptotic features in a dose-dependent manner. However, the protein levels of Fas/FasL, Bid and caspase-8 did not appear significant changes in the process of E. adenophorum-induced apoptosis. Moreover, E. adenophorum administration slightly decreased Bcl-2 expression, promoted Bax translocation to mitochondria, triggered the release of Cyt c from mitochondria into cytosol and activated caspase-9, -3, and cleaved PARP. The mitochondrial p53 translocation was significantly activated, accompanied by a significant increase in the loss of ΔΨm, Cyt c release and caspase-9 activation. Above all, these data suggest that E. adenophorum induces renal cells apoptosis via the activation of mitochondria-mediated apoptosis pathway in renal cells. These findings may provide new insights to understand the mechanisms involved in E. adenophorum-caused cytotoxicity of renal cells.

  16. Periostin inhibits mechanical stretch-induced apoptosis in osteoblast-like MG-63 cells.

    Science.gov (United States)

    Yu, Kai-Wen; Yao, Chung-Chen; Jeng, Jiiang-Huei; Shieh, Hao-Ying; Chen, Yi-Jane

    2018-04-01

    Appropriate mechanical stress plays an important role in regulating the proliferation and differentiation of osteoblasts, whereas high-level mechanical stress may be harmful and compromise cell survival. Periostin, a matricellular protein, is essential in maintaining functional integrity of bone and collagen-rich connective tissue in response to mechanical stress. This study investigated whether or not high-level mechanical stretch induces cell apoptosis and the regulatory role of periostin in mechanical stretch-induced apoptosis in osteoblastic cells. Osteoblast-like MG-63 cells were seeded onto Bio-Flex I culture plates and subjected to cyclic mechanical stretching (15% elongation, 0.1 Hz) in a Flexercell tension plus system-5000. The same process was applied to cells pre-treated with exogenous human recombinant periostin before mechanical stretching. We used a chromatin condensation and membrane permeability dead cell apoptosis kit to evaluate the stretch-induced cell responses. Expression of caspase-3 and cPARP was examined by immunofluorescent stain and flow cytometry. The expression of periostin in MG-63 cells is involved in the TGF-β signaling pathway. High-level cyclic mechanical stretch induced apoptotic responses in MG-63 osteoblastic cells. The percentages of apoptotic cells and cells expressing cPARP protein increased in the groups of cells subjected to mechanical stretch, but these responses were absent in the presence of exogenous periostin. Our study revealed that high-level mechanical stretch induces apoptotic cell death, and that periostin plays a protective role against mechanical stretch-induced apoptosis in osteoblastic cells. Copyright © 2017. Published by Elsevier B.V.

  17. Ouabain enhances ADPKD cell apoptosis via the intrinsic pathway

    Directory of Open Access Journals (Sweden)

    Gustavo eBlanco

    2016-03-01

    Full Text Available Progression of autosomal dominant polycystic kidney disease (ADPKD is highly influenced by factors circulating in blood. We have shown that the hormone ouabain enhances several characteristics of the ADPKD cystic phenotype, including the rate of cell proliferation, fluid secretion and the capacity of the cells to form cysts. In this work, we found that physiological levels of ouabain (3nM also promote programmed cell death of renal epithelial cells obtained from kidney cysts of patients with ADPKD (ADPKD cells. This was determined by Alexa Fluor 488 labeled-Annexin-V staining and TUNEL assay, both biochemical markers of apoptosis. Ouabain-induced apoptosis also takes place when ADPKD cell growth is blocked; suggesting that the effect is not secondary to the stimulatory actions of ouabain on cell proliferation. Ouabain alters the expression of BCL family of proteins, reducing BCL-2 and increasing BAX expression levels, anti- and pro-apoptotic mediators respectively. In addition, ouabain caused the release of cytochrome c from mitochondria. Moreover, ouabain activates caspase-3, a key executioner caspase in the cell apoptotic pathway, but did not affect caspase-8. This suggests that ouabain triggers ADPKD cell apoptosis by stimulating the intrinsic, but not the extrinsic pathway of programmed cell death. The apoptotic effects of ouabain are specific for ADPKD cells and do not occur in normal human kidney cells (NHK cells. Taken together with our previous observations, these results show that ouabain causes an imbalance in cell growth/death, to favor growth of the cystic cells. This event, characteristic of ADPKD, further suggests the importance of ouabain as a circulating factor that promotes ADPKD progression.

  18. CLP induces apoptosis in human leukemia K562 cells through Ca(2+) regulating extracellular-related protein kinase ERK activation.

    Science.gov (United States)

    Wang, C L; Ng, T B; Cao, X H; Jiang, Y; Liu, Z K; Wen, T Y; Liu, F

    2009-04-18

    The cyclic lipopeptide (CLP) has been known to inhibit proliferation and induce apoptosis in cancer cells. However, the molecular mechanisms involved in CLP-induced apoptosis are still uncharacterized in human leukemic K562 cells. The current study investigated the molecular mechanism of action of CLP, purified from Bacillus natto T-2. CLP-induced a sustained increase in concentration of intracellular Ca(2+). This increase in [Ca(2+)]i was associated with CLP-induced cell apoptosis and ERK phosphorylation. CLP-induced cell apoptosis was reversed by PD98059 (an inhibitor of ERK), but not by SB203580 (an inhibitor of p38) and SP200125 (an inhibitor of JNK), suggesting that the action of CLP on K562 cells was via ERK, but not via p38 and JNK. On the other hand, pretreatment with Bapta-AM, a well-known calcium chelator, partially blocked CLP-induced apoptosis, indicating that the elevation of [Ca(2+)]i may play an important role in the apoptosis. Collectively, in K562 cells, CLP-induced an increase in [Ca(2+)]i which evoked ERK phosphorylation. This ERK phosphorylation subsequently activated Bax, cytochrome c and caspase-3 leading to apoptosis.

  19. Arctigenin induces apoptosis in colon cancer cells through ROS/p38MAPK pathway.

    Science.gov (United States)

    Li, Qing-chun; Liang, Yun; Tian, Yuan; Hu, Guang-rui

    2016-01-01

    In the current study the antiproliferative effect of arctigenin, plant lignin, was evaluated on human colon cancer cell line HT-29. Furthermore, attempts were made to explore the signaling mechanism which may be responsible for its effect. Cell growth inhibition was assessed by MTT and LDH assays. Flow cytometric analysis was performed to determine cell arrest in the cell cycle phase and apoptosis. Furthermore, to confirm the apoptotic activity of arctigenin, caspase-9 and -3 activities analysis was performed. The levels of reactive oxygen species (ROS) and p38 mitogen activated protein kinase (MAPK) were investigated to determine their role in inducing apoptosis in arctigenin-treated HT-29 colon cancer cell line. MTT and LDH results demonstrated significant cell growth inhibitory effect of arctigenin on HT-29 cells in a dose-dependent manner. Furthermore, increase in cell number arrested at G2/M phase was observed in flow cytometric analysis upon arctigenin treatment. In addition, arctigenin increased the apoptotic ratio in a dose-dependent manner. The involvement of intrinsic apoptotic pathway was indicated by the activation of caspase-9 and -3. Moreover, increased ROS production, activation of p38 MAPK and changes in mitochondrial membrane potential (ΔΨm) also revealed the role of intrinsic apoptotic signaling pathway in cell growth inhibition after arctigenin exposure. Arctigenin induces apoptosis in HT-29 colon cancer cells by regulating ROS and p38 MAPK pathways.

  20. Induction of apoptosis by opium in some tumor cell lines.

    Science.gov (United States)

    Khaleghi, M; Farsinejad, A; Dabiri, S; Asadikaram, G

    2016-09-30

    The current study is aimed at investigation of the opium effects on the apoptosis of different cell lines in culture medium and compares such effects with one another. The study is carried out on over 8 cell lines (AA8, AGS, Hela, HepG2, MCF7, N2a, PC12, WEHI). A 2.86 x 10-4 g/ml opium concentration was prepared and added to the culture medium of the cell lines for 48 hours. Cytotoxicity was tested by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. The apoptotic effect of opium on the cell lines was analyzed by Annexin-PI test. Opium with concentration of 2.86 x 10-4 g/ml in 48 hours significantly induces apoptosis in certain cell lines (i.e. AA8, N2a, WEHI), apoptosis and necrosis in some others (i.e. Hela, HepG2, MCF7, and PC12), and also solely necrosis in the AGS cell line. One could infer that the usage of opium with different levels in different tissues leads to certain disorders in some tissues and may have therapeutic effects under distinctive conditions (i.e. unchecked growth of cells) as confirmed by the results.

  1. Renal cell apoptosis in human lupus nephritis: a histological study

    DEFF Research Database (Denmark)

    Faurschou, M; Penkowa, Milena; Andersen, C B

    2009-01-01

    Nuclear autoantigens from apoptotic cells are believed to drive the immunological response in systemic lupus erythematosus (SLE). Conflicting data exist as to the possible renal origin of apoptotic cells in SLE patients with nephritis. We assessed the level of renal cell apoptosis in kidney...... biopsies from 35 patients with lupus nephritis by means of terminal deoxynucleotidyl-transferase (TdT)-mediated deoxyuridine triphosphate (dUTP)-digoxigenin nick end labeling (TUNEL). Five samples of normal kidney tissue served as control specimens. We did not observe apoptotic glomerular cells in any...... cells constitute a quantitatively important source of auto-antibody-inducing nuclear auto-antigens in human lupus nephritis....

  2. Autophagy regulates chlorpyrifos-induced apoptosis in SH-SY5Y cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Hyeon [Department of Pharmacology, College of Medicine, Hanyang University (Korea, Republic of); Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul (Korea, Republic of); Lee, Jeong Eun [Department of Pharmacology, College of Medicine, Hanyang University (Korea, Republic of); Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Shin, In Chul [Department of Pharmacology, College of Medicine, Hanyang University (Korea, Republic of); Koh, Hyun Chul, E-mail: hckoh@hanyang.ac.kr [Department of Pharmacology, College of Medicine, Hanyang University (Korea, Republic of); Hanyang Biomedical Research Institute, Seoul (Korea, Republic of); Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul (Korea, Republic of)

    2013-04-01

    Recent studies have shown that up-regulation of autophagy may be a tractable therapeutic intervention for clearing disease-causing proteins, including α-synuclein, ubiquitin, and other misfolded or aggregated proteins in pesticide-induced neurodegeneration. In a previous study, we reported that chlorpyrifos (CPF)-induced mitochondria-dependent apoptosis is mediated through reactive oxygen species in SH-SY5Y cells. In this study, we explored a novel pharmacotherapeutic approach to prevent CPF neurotoxicity involving the regulation of autophagy. We investigated the modulation of CPF-induced apoptosis according to autophagy regulation. We found that CPF induced apoptosis in SH-SY5Y cells, as demonstrated by the activation of caspase-3 and nuclear condensation. In addition, we observed that cells treated with CPF underwent autophagic cell death by monitoring the expression of LC3-II and p62. Pretreatment with the autophagy inducer rapamycin significantly enhanced the cell viability of CPF-exposed cells, and the enhancement of cell viability was partially due to alleviation of CPF-induced apoptosis via a decrease in levels of cleaved caspase-3. Specifically, rapamycin pretreatment decreased Bax and increased Bcl-2 expression in mitochondria. In addition, rapamycin significantly decreased cytochrome c release in from mitochondria into the cytosol. However, pretreatment of cells with the autophagy inhibitor, 3-methyladenine (3MA), remarkably increased CPF toxicity in these cells; this with correlated with increased expression of Bax and decreased expression of Bcl-2 in mitochondria. Our results suggest that CPF-induced cytotoxicity is modified by autophagy regulation and that rapamycin protects against CPF-induced apoptosis by enhancing autophagy. Pharmacologic induction of autophagy by rapamycin may be a useful treatment strategy in neurodegenerative disorders. - Highlights: ► Chlorpyrifos (CPF) is cytotoxic to SH-SY5Y cells ► CPF-induced cytotoxicity is mediated by

  3. Cell division cycle 20 promotes cell proliferation and invasion and inhibits apoptosis in osteosarcoma cells.

    Science.gov (United States)

    Shang, Guanning; Ma, Xu; Lv, Gang

    2018-01-01

    Cdc20 (cell division cycle 20 homologue) has been reported to exhibit an oncogenic role in human tumorigenesis. However, the function of Cdc20 in osteosarcoma (OS) has not been investigated. In the current study, we aim to explore the role of Cdc20 in human OS cells. Multiple approaches were used to measure cell growth, apoptosis, cell cycle, migration and invasion in OS cells after depletion of Cdc20 or overexpression of Cdc20. We found that down-regulation of Cdc20 inhibited cell growth, induced apoptosis and triggered cell cycle arrest in OS cells. Moreover, Cdc20 down-regulation let to inhibition of cell migration and invasion in OS cells. Consistently, overexpression of Cdc20 in OS cells promoted cell growth, inhibited apoptosis, enhanced cell migration and invasion. Mechanistically, our Western blotting results showed that overexpression of Cdc20 reduced the expression of Bim and p21, whereas depletion of Cdc20 upregulated Bim and p21 levels in OS cells. Altogether, our findings demonstrated that Cdc20 exerts its oncogenic role partly due to regulation of Bim and p21 in OS cells, suggesting that targeting Cdc20 could be useful for the treatment of OS.

  4. The Roles of ROS and Caspases in TRAIL-Induced Apoptosis and Necroptosis in Human Pancreatic Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Min Zhang

    Full Text Available Death signaling provided by tumor necrosis factor (TNF-related apoptosis-inducing ligand (TRAIL can induce death in cancer cells with little cytotoxicity to normal cells; this cell death has been thought to involve caspase-dependent apoptosis. Reactive oxygen species (ROS are also mediators that induce cell death, but their roles in TRAIL-induced apoptosis have not been elucidated fully. In the current study, we investigated ROS and caspases in human pancreatic cancer cells undergoing two different types of TRAIL-induced cell death, apoptosis and necroptosis. TRAIL treatment increased ROS in two TRAIL-sensitive pancreatic cancer cell lines, MiaPaCa-2 and BxPC-3, but ROS were involved in TRAIL-induced apoptosis only in MiaPaCa-2 cells. Unexpectedly, inhibition of ROS by either N-acetyl-L-cysteine (NAC, a peroxide inhibitor, or Tempol, a superoxide inhibitor, increased the annexin V-/propidium iodide (PI+ early necrotic population in TRAIL-treated cells. Additionally, both necrostatin-1, an inhibitor of receptor-interacting protein kinase 1 (RIP1, and siRNA-mediated knockdown of RIP3 decreased the annexin V-/PI+ early necrotic population after TRAIL treatment. Furthermore, an increase in early apoptosis was induced in TRAIL-treated cancer cells under inhibition of either caspase-2 or -9. Caspase-2 worked upstream of caspase-9, and no crosstalk was observed between ROS and caspase-2/-9 in TRAIL-treated cells. Together, these results indicate that ROS contribute to TRAIL-induced apoptosis in MiaPaCa-2 cells, and that ROS play an inhibitory role in TRAIL-induced necroptosis of MiaPaCa-2 and BxPC-3 cells, with caspase-2 and -9 playing regulatory roles in this process.

  5. Protective effect of aminophylline against cigarette smoke extract-induced apoptosis in human lung fibroblasts (MRC-5 cells).

    Science.gov (United States)

    Kim, Yu J; Kim, Ju-Young; Yoon, Jin Y; Kyung, Sun Y; Lee, Sang P; Jeong, Sung H; Moon, Chanil; Park, Jeong-Woong

    2011-07-01

    Cigarette smoking is the principal cause of chronic obstructive pulmonary disease (COPD), especially emphysema, which is characterized by alveolar wall destruction and airspace enlargement. Apoptosis of lung structural cells is involved in the pathogenesis of COPD. Xanthine derivatives (aminophylline or theophylline) have been used for the treatment of COPD as a bronchodilator. But the effects of xanthine derivatives on apoptosis of the lung structural cells remain poorly understood, even though it is known that theophylline protects against ultraviolet irradiation-induced cell death in corneal epithelial cells. This study was designed to determine whether aminophylline would protect against cigarette smoke extract (CSE)-induced apoptosis in lung fibroblasts. We demonstrated that aminophylline protected against apoptosis of MRC-5 cells at a relatively lower therapeutic range (10 μg/ml), resulting in a significant increase in cell viability occurring at 20% concentration after 8-hr exposure. Annexin staining decreased from 68 ± 4% of the control to 12 ± 2% of aminophylline (10 μg/ml) pre-treatment after 20% CSE exposure for 12 hr (p MRC-5 cells after exposure to 20% CSE for 12 hr compared with control and high levels of aminophylline (>50 μg/ml) pre-treatment. These findings suggest that aminophylline protected apoptosis of MRC-5 cells through the inactivation of caspases 3 and 8 and could be an effective agent to reduce cigarette smoking-induced lung structural cell apoptosis. © 2011 The Authors. Basic & Clinical Pharmacology & Toxicology © 2011 Nordic Pharmacological Society.

  6. Changes of Constituents and Activity to Apoptosis and Cell Cycle During Fermentation of Tea

    Science.gov (United States)

    Zhao, Hang; Zhang, Min; Zhao, Lu; Ge, Ya-kun; Sheng, Jun; Shi, Wei

    2011-01-01

    Tea is believed to be beneficial for health, and the effects of the fermentation process on its contributions to apoptosis and cell cycle arrest of gastric cancer cells have not been completely investigated. In this study, the chemical components in green tea, black tea and pu-erh tea aqueous extracts were analyzed and compared. The polysaccharide and caffeine levels were substantially higher in the fermented black tea and pu-erh tea, while the polyphenol level was higher in the unfermented green tea. Hence, a treatment of tea aqueous extract and the components, which are emerging as promising anticancer agents, were pursued to determine whether this treatment could lead to enhance apoptosis and cell cycle arrest. In the human gastric cancer cell line SGC-7901, the cell viability and flow cytometry analysis for apoptotic cells indicated effects in a dose-dependent inhibition manner for the three tea treatment groups. The apoptosis rates were found to be elevated after 48 h of treatment with 31.2, 125, and 500 μg/mL of green tea extract, the higher catechins content may be involved in the mechanism. Cell cycle was arrested in S phase in the fermented black tea and pu-erh tea, and the populations were significantly decreased in G2/M phases, possibly due to the oxidation of tea polyphenols, which causes an increase of theabrownins. CCC-HEL-1 normal cells were not sensitive to tea extract. These findings suggest that the fermentation process causes changes of the compounds which might be involved in the changes of cell proliferation inhibition, apoptosis induction and cell cycle arrest. PMID:21673927

  7. PI3K inhibition enhances doxorubicin-induced apoptosis in sarcoma cells.

    Directory of Open Access Journals (Sweden)

    Diana Marklein

    Full Text Available We searched for a drug capable of sensitization of sarcoma cells to doxorubicin (DOX. We report that the dual PI3K/mTOR inhibitor PI103 enhances the efficacy of DOX in several sarcoma cell lines and interacts with DOX in the induction of apoptosis. PI103 decreased the expression of MDR1 and MRP1, which resulted in DOX accumulation. However, the enhancement of DOX-induced apoptosis was unrelated to DOX accumulation. Neither did it involve inhibition of mTOR. Instead, the combination treatment of DOX plus PI103 activated Bax, the mitochondrial apoptosis pathway, and caspase 3. Caspase 3 activation was also observed in xenografts of sarcoma cells in nude mice upon combination of DOX with the specific PI3K inhibitor GDC-0941. Although the increase in apoptosis did not further impact on tumor growth when compared to the efficient growth inhibition by GDC-0941 alone, these findings suggest that inhibition of PI3K may improve DOX-induced proapoptotic effects in sarcoma. Taken together with similar recent studies of neuroblastoma- and glioblastoma-derived cells, PI3K inhibition seems to be a more general option to sensitize tumor cells to anthracyclines.

  8. Homocysteine induces PUMA-mediated mitochondrial apoptosis in SH-SY5Y cells.

    Science.gov (United States)

    Jang, Yumi; Kim, Juhae; Ko, Je Won; Kwon, Young Hye

    2016-11-01

    Previous studies have reported that homocysteine induced endoplasmic reticulum (ER) stress in neuronal cells, proposing the underlying mechanism by which it could induce neurotoxicity. Induction of pro-apoptotic transcription factor C/EBP homologous protein (CHOP) and activation of caspase-4 by calpain have been suggested to be an important route in inducing apoptosis in response to ER stress. In this study, we investigated the molecular pathway of homocysteine-induced apoptosis in caspase-4 deficient SH-SY5Y human neuroblastoma cells. Homocysteine significantly increased mRNA levels of CHOP and p53, resulting in the upregulation of their downstream target gene, p53 up-regulated modulator of apoptosis (PUMA). In cells treated with homocysteine, Bcl-2-associated X protein (BAX) protein levels, cytochrome c release from the mitochondria, and caspase-9 activation were significantly increased. Consistently, a caspase-9 inhibitor significantly alleviated homocysteine-induced cytotoxicity. Significantly lower BAX mRNA levels and caspase-9 activation were observed in cells transfected with siRNA for PUMA. Taken together, our findings suggest that PUMA would be involved in the possible crosstalk between the ER and the mitochondria in the homocysteine-induced apoptosis of caspase-4 deficient SH-SY5Y cells.

  9. Activation of Wnt/β-catenin signaling increases apoptosis in melanoma cells treated with trail.

    Directory of Open Access Journals (Sweden)

    Zachary F Zimmerman

    Full Text Available While the TRAIL pathway represents a promising therapeutic target in melanoma, resistance to TRAIL-mediated apoptosis remains a barrier to its successful adoption. Since the Wnt/β-catenin pathway has been implicated in facilitating melanoma cell apoptosis, we investigated the effect of Wnt/β-catenin signaling on regulating the responses of melanoma cells to TRAIL. Co-treatment of melanoma cell lines with WNT3A-conditioned media and recombinant TRAIL significantly enhanced apoptosis compared to treatment with TRAIL alone. This apoptosis correlates with increased abundance of the pro-apoptotic proteins BCL2L11 and BBC3, and with decreased abundance of the anti-apoptotic regulator Mcl1. We then confirmed the involvement of the Wnt/β-catenin signaling pathway by demonstrating that siRNA-mediated knockdown of an intracellular β-catenin antagonist, AXIN1, or treating cells with an inhibitor of GSK-3 also enhanced melanoma cell sensitivity to TRAIL. These studies describe a novel regulation of TRAIL sensitivity in melanoma by Wnt/β-catenin signaling, and suggest that strategies to enhance Wnt/β-catenin signaling in combination with TRAIL agonists warrant further investigation.

  10. Curcumin confers protection to irradiated THP-1 cells while its nanoformulation sensitizes these cells via apoptosis induction.

    Science.gov (United States)

    Soltani, Behrooz; Ghaemi, Nasser; Sadeghizadeh, Majid; Najafi, Farhood

    2016-12-01

    Protection against ionizing radiation (IR) and sensitization of cancer cells to IR are apparently contrasting phenomena. However, curcumin takes on these contrasting roles leading to either protection or enhanced apoptosis in different irradiated cells. Here we studied whether pretreatment with free curcumin or a novel dendrosomal nanoformulation of curcumin (DNC) could exert protective/sensitizing effects on irradiated THP-1 leukemia cells. We employed assays including MTT viability, clonogenic survival, DNA fragmentation, PI/Annexin V flow cytometry, antioxidant system (ROS, TBARS for lipid peroxidation, 8-OHdG and γH2AX for DNA damage, glutathione, CAT and GPx activity, enzymes gene expression), ELISA (NF-κB and Nrf2 binding, TNF-α release), caspase assay, siRNA silencing of caspase-3, and western blotting to illustrate the observed protective role of curcumin in comparison with the opposite sensitizing role of its nanoformulation at a similar 10 μM concentration. The in vivo relevance of this concentration was determined via intraperitoneal administration in mice. Curcumin significantly enhanced the antioxidant defense, while DNC induced apoptosis and reduced viability as well as survival of irradiated THP-1 cells. Nrf2 binding showed an early rise and fall in DNC-treated cells, despite a gradual increase in curcumin-treated cells. We also demonstrated that DNC induced apoptosis in THP-1 cells via caspase-3 activation; whereas in combination with radiation, DNC alternatively employed a caspase-independent apoptosis pathway involving cytochrome c release from mitochondria.

  11. Coxsackievirus A16 infection induces neural cell and non-neural cell apoptosis in vitro.

    Directory of Open Access Journals (Sweden)

    Zhaolong Li

    Full Text Available Coxsackievirus A16 (CA16 is one of the main causative pathogens of hand, foot and mouth disease (HFMD. Viral replication typically results in host cell apoptosis. Although CA16 infection has been reported to induce apoptosis in the human rhabdomyosarcoma (RD cell line, it remains unclear whether CA16 induces apoptosis in diverse cell types, especially neural cells which have important clinical significance. In the current study, CA16 infection was found to induce similar apoptotic responses in both neural cells and non-neural cells in vitro, including nuclear fragmentation, DNA fragmentation and phosphatidylserine translocation. CA16 generally is not known to lead to serious neurological symptoms in vivo. In order to further clarify the correlation between clinical symptoms and cell apoptosis, two CA16 strains from patients with different clinical features were investigated. The results showed that both CA16 strains with or without neurological symptoms in infected patients led to neural and muscle cell apoptosis. Furthermore, mechanistic studies showed that CA16 infection induced apoptosis through the same mechanism in both neural and non-neural cells, namely via activation of both the mitochondrial (intrinsic pathway-related caspase 9 protein and the Fas death receptor (extrinsic pathway-related caspase 8 protein. Understanding the mechanisms by which CA16 infection induces apoptosis in both neural and non-neural cells will facilitate a better understanding of CA16 pathogenesis.

  12. Artonin E Induces Apoptosis via Mitochondrial Dysregulation in SKOV-3 Ovarian Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Mashitoh Abd Rahman

    Full Text Available Artonin E is a prenylated flavonoid isolated from the stem bark of Artocarpus elasticus Reinw.(Moraceae. This study aimed to investigate the apoptotic mechanisms induced by artonin E in a metastatic human ovarian cancer cell line SKOV-3 in vitro. MTT assay, clonogenic assay, acridine orange and propidium iodide double staining, cell cycle and annexin V analyses were performed to explore the mode of artonin E-induced cell death at different time points. DNA laddering, activation of caspases-3, -8, and -9, multi-parametric cytotoxicity-3 analysis by high-content screening, measurement of reactive oxygen species generation, and Western blot were employed to study the pathways involved in the apoptosis. MTT results showed that artonin E inhibited the growth of SKOV-3 cells, with IC50 values of 6.5±0.5 μg/mL after 72 h treatment, and showed less toxicity toward a normal human ovarian cell line T1074, with IC50 value of 32.5±0.5 μg/mL. Results showed that artonin E induced apoptosis and cell cycle arrest at the S phase. This compound also promoted the activation of caspases-3, -8, and -9. Further investigation into the depletion of mitochondrial membrane potential and release of cytochrome c revealed that artonin E treatment induced apoptosis via regulation of the expression of pro-survival and pro-apoptotic Bcl-2 family members. The expression levels of survivin and HSP70 proteins were also down regulated in SKOV-3 cells treated with artonin E. We propose that artonin E induced an antiproliferative effect that led to S phase cell cycle arrest and apoptosis through dysregulation of mitochondrial pathways, particularly the pro- and anti-apoptosis signaling pathways.

  13. Dendrosomal curcumin nanoformulation modulate apoptosis-related genes and protein expression in hepatocarcinoma cell lines.

    Science.gov (United States)

    Montazeri, Maryam; Sadeghizadeh, Majid; Pilehvar-Soltanahmadi, Yones; Zarghami, Faraz; Khodi, Samaneh; Mohaghegh, Mina; Sadeghzadeh, Hadi; Zarghami, Nosratollah

    2016-07-25

    The side-effects observed in conventional therapies have made them unpromising in curing Hepatocellular carcinoma; therefore, developing novel treatments can be an overwhelming significance. One of such novel agents is curcumin which can induce apoptosis in various cancerous cells, however, its poor solubility is restricted its application. To overcome this issue, this paper employed dendrosomal curcumin (DNC) was employed to in prevent hepatocarcinoma in both RNA and protein levels. Hepatocarcinoma cells, p53 wild-type HepG2 and p53 mutant Huh7, were treated with DNC and investigated for toxicity study using MTT assay. Cell cycle distribution and apoptosis were analyzed using Flow-cytometry and Annexin-V-FLUOS/PI staining. Real-time PCR and Western blot were employed to analyze p53, BAX, Bcl-2, p21 and Noxa in DNC-treated cells. DNC inhibited the growth in the form of time-dependent manner, while the carrier alone was not toxic to the cell. Flow-cytometry data showed the constant concentration of 20μM DNC during the time significantly increases cell population in SubG1 phase. Annexin-V-PI test showed curcumin-induced apoptosis was enhanced in Huh7 as well as HepG2, compared to untreated cells. Followed by treatment, mRNA expression of p21, BAX, and Noxa increased, while the expression of Bcl-2 decreased, and unlike HepG2, Huh7 showed down-regulation of p53. In summary, DNC-treated hepatocellular carcinoma cells undergo apoptosis by changing the expression of genes involved in the apoptosis and proliferation processes. These findings suggest that DNC, as a plant-originated therapeutic agent, could be applied in cancer treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Extremely Low Frequency Magnetic Fields Induce Spermatogenic Germ Cell Apoptosis: Possible Mechanism

    Directory of Open Access Journals (Sweden)

    Sang-Kon Lee

    2014-01-01

    Full Text Available The energy generated by an extremely low frequency electromagnetic field (ELF-EMF is too weak to directly induce genotoxicity. However, it is reported that an extremely low frequency magnetic field (ELF-MF is related to DNA strand breakage and apoptosis. The testes that conduct spermatogenesis through a dynamic cellular process involving meiosis and mitosis seem vulnerable to external stress such as heat, MF exposure, and chemical or physical agents. Nevertheless the results regarding adverse effects of ELF-EMF on human or animal reproductive functions are inconclusive. According to the guideline of the International Commission on Non-Ionizing Radiation Protection (ICNIRP; 2010 for limiting exposure to time-varying MF (1 Hz to 100 kHz, overall conclusion of epidemiologic studies has not consistently shown an association between human adverse reproductive outcomes and maternal or paternal exposure to low frequency fields. In animal studies there is no compelling evidence of causal relationship between prenatal development and ELF-MF exposure. However there is increasing evidence that EL-EMF exposure is involved with germ cell apoptosis in testes. Biophysical mechanism by which ELF-MF induces germ cell apoptosis has not been established. This review proposes the possible mechanism of germ cell apoptosis in testes induced by ELF-MF.

  15. Alisertib Induces Cell Cycle Arrest, Apoptosis, Autophagy and Suppresses EMT in HT29 and Caco-2 Cells

    Science.gov (United States)

    Ren, Bao-Jun; Zhou, Zhi-Wei; Zhu, Da-Jian; Ju, Yong-Le; Wu, Jin-Hao; Ouyang, Man-Zhao; Chen, Xiao-Wu; Zhou, Shu-Feng

    2015-01-01

    Colorectal cancer (CRC) is one of the most common malignancies worldwide with substantial mortality and morbidity. Alisertib (ALS) is a selective Aurora kinase A (AURKA) inhibitor with unclear effect and molecular interactome on CRC. This study aimed to evaluate the molecular interactome and anticancer effect of ALS and explore the underlying mechanisms in HT29 and Caco-2 cells. ALS markedly arrested cells in G2/M phase in both cell lines, accompanied by remarkable alterations in the expression level of key cell cycle regulators. ALS induced apoptosis in HT29 and Caco-2 cells through mitochondrial and death receptor pathways. ALS also induced autophagy in HT29 and Caco-2 cells, with the suppression of phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), but activation of 5′ AMP-activated protein kinase (AMPK) signaling pathways. There was a differential modulating effect of ALS on p38 MAPK signaling pathway in both cell lines. Moreover, induction or inhibition of autophagy modulated basal and ALS-induced apoptosis in both cell lines. ALS potently suppressed epithelial to mesenchymal transition (EMT) in HT29 and Caco-2 cells. Collectively, it suggests that induction of cell cycle arrest, promotion of apoptosis and autophagy, and suppression of EMT involving mitochondrial, death receptor, PI3K/Akt/mTOR, p38 MAPK, and AMPK signaling pathways contribute to the cancer cell killing effect of ALS on CRC cells. PMID:26729093

  16. Alisertib Induces Cell Cycle Arrest, Apoptosis, Autophagy and Suppresses EMT in HT29 and Caco-2 Cells

    Directory of Open Access Journals (Sweden)

    Bao-Jun Ren

    2015-12-01

    Full Text Available Colorectal cancer (CRC is one of the most common malignancies worldwide with substantial mortality and morbidity. Alisertib (ALS is a selective Aurora kinase A (AURKA inhibitor with unclear effect and molecular interactome on CRC. This study aimed to evaluate the molecular interactome and anticancer effect of ALS and explore the underlying mechanisms in HT29 and Caco-2 cells. ALS markedly arrested cells in G2/M phase in both cell lines, accompanied by remarkable alterations in the expression level of key cell cycle regulators. ALS induced apoptosis in HT29 and Caco-2 cells through mitochondrial and death receptor pathways. ALS also induced autophagy in HT29 and Caco-2 cells, with the suppression of phosphoinositide 3-kinase (PI3K/protein kinase B (Akt/mammalian target of rapamycin (mTOR, but activation of 5′ AMP-activated protein kinase (AMPK signaling pathways. There was a differential modulating effect of ALS on p38 MAPK signaling pathway in both cell lines. Moreover, induction or inhibition of autophagy modulated basal and ALS-induced apoptosis in both cell lines. ALS potently suppressed epithelial to mesenchymal transition (EMT in HT29 and Caco-2 cells. Collectively, it suggests that induction of cell cycle arrest, promotion of apoptosis and autophagy, and suppression of EMT involving mitochondrial, death receptor, PI3K/Akt/mTOR, p38 MAPK, and AMPK signaling pathways contribute to the cancer cell killing effect of ALS on CRC cells.

  17. Mitochondrial Apoptosis Induced by Chamaemelum Nobile Extract in Breast Cancer Cells

    Science.gov (United States)

    Mostafapour Kandelous, Hirsa; Salimi, Misha; Khori, Vahid; Rastkari, Noushin; Amanzadeh, Amir; Salimi, Mona

    2016-01-01

    Chamaemelum nobile (Asteraceae) commonly known as 'Roman chamomile' is a medicinal plant used for numerous diseases in traditional medicine, although its anticancer activity is unknown. The present study was carried out to investigate the anticancer as well as apoptotic activity of ethyl acetate fraction of C. nobile on different cancerous cell lines. The cells were treated with varying concentrations (0.001- 0.25 mg/mL) of this fraction for 24, 48 and 72 h. Apoptosis induced in MCF-7 cells following treatment with ethyl acetate fraction was measured using Annexin V/PI, flowcytometry and western blotting analysis. The results showed that C. nobile ethyl acetate fraction revealed relatively high antiproliferative activity on MCF-7 cells; however, it caused minimal growth inhibitory response in normal cells. The involvement of apoptosis as a major cause of the fraction-induced cell death was confirmed by annexin-V/PI assay. In addition, ethyl acetate fraction triggered the mitochondrial apoptotic pathway by decreasing the Bcl-2 as well as increasing of Bax protein expressions and subsequently increasing Bax/Bcl-2 ratio. Furthermore, decreased proliferation of MCF-7 cells in the presence of the fraction was associated with G2/M phase cell cycle arrest. These findings confirm that ethyl acetate fraction of C.nobile may contain a diversity of phytochemicals which suppress the proliferation of MCF-7 cells by inducing apoptosis. PMID:28228817

  18. Mitochondrial Apoptosis Induced by Chamaemelum Nobile Extract in Breast Cancer Cells.

    Science.gov (United States)

    Mostafapour Kandelous, Hirsa; Salimi, Misha; Khori, Vahid; Rastkari, Noushin; Amanzadeh, Amir; Salimi, Mona

    2016-01-01

    Chamaemelum nobile ( Asteraceae ) commonly known as 'Roman chamomile' is a medicinal plant used for numerous diseases in traditional medicine, although its anticancer activity is unknown. The present study was carried out to investigate the anticancer as well as apoptotic activity of ethyl acetate fraction of C. nobile on different cancerous cell lines. The cells were treated with varying concentrations (0.001- 0.25 mg/mL) of this fraction for 24, 48 and 72 h. Apoptosis induced in MCF-7 cells following treatment with ethyl acetate fraction was measured using Annexin V/PI, flowcytometry and western blotting analysis. The results showed that C. nobile ethyl acetate fraction revealed relatively high antiproliferative activity on MCF-7 cells; however, it caused minimal growth inhibitory response in normal cells. The involvement of apoptosis as a major cause of the fraction-induced cell death was confirmed by annexin-V/PI assay. In addition, ethyl acetate fraction triggered the mitochondrial apoptotic pathway by decreasing the Bcl-2 as well as increasing of Bax protein expressions and subsequently increasing Bax/Bcl-2 ratio. Furthermore, decreased proliferation of MCF-7 cells in the presence of the fraction was associated with G2/M phase cell cycle arrest. These findings confirm that ethyl acetate fraction of C.nobile may contain a diversity of phytochemicals which suppress the proliferation of MCF-7 cells by inducing apoptosis.

  19. Idelalisib induces PUMA-dependent apoptosis in colon cancer cells.

    Science.gov (United States)

    Yang, Shida; Zhu, Zhiyong; Zhang, Xiaobing; Zhang, Ning; Yao, Zhicheng

    2017-01-24

    Idelalisib, a PI3K inhibitor, specifically targeting p110δ, has been approved for the treatment of chronic lymphocytic leukemia/small lymphocytic lymphoma and follicular lymphoma. However, the mechanisms of action of idelalisib in colon cancer cells are not well understood. We investigated how idelalisib suppresses colon cancer cells growth and potentiates effects of other chemotherapeutic drugs. In this study, we found that idelalisib treatment induces PUMA in colon cancer cells irrespective of p53 status through the p65 pathway following AKT inhibition and glycogen synthase kinase 3β (GSK3β) activation. PUMA is necessary for idelalisib-induced apoptosis in colon cancer cells. Idelalisib also synergized with 5-FU or regorafenib to induce marked apoptosis via PUMA in colon cancer cells. Furthermore, PUMA deficiency suppressed apoptosis and antitumor effect of idelalisib in xenograft model. These results demonstrate a critical role of PUMA in mediating the anticancer effects of idelalisib in colon cancer cells and suggest that PUMA induction can be used as an indicator of idelalisib sensitivity, and also have important implications for it clinical applications.

  20. Reduction of cell growth and induction of apoptosis in osteosarcoma cells by silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Toktam Rajabnia

    2017-09-01

    Conclusion: Since silver nanoparticles can reduce the proliferation of Saos-2 cells and to eradicate them by induction of apoptosis, these nanoparticles can be taken as a candidate for treating osteosarcoma cells.

  1. Rhein induces apoptosis of human gastric cancer SGC-7901 cells via an intrinsic mitochondrial pathway

    Directory of Open Access Journals (Sweden)

    Yiwen Li

    2012-11-01

    Full Text Available Rhein is a primary anthraquinone found in the roots of a traditional Chinese herb, rhubarb, and has been shown to have some anticancer effects. The aim of the present study was to investigate the effect of rhein on the apoptosis of the human gastric cancer line SGC-7901 and to identify the mechanism involved. SGC-7901 cells were cultured and treated with rhein (0, 50, 100, 150, and 200 µM for 24, 48, or 72 h. Relative cell viability assessed by the MTT assay after treatment was 100, 99, 85, 79, 63% for 24 h; 100, 98, 80, 51, 37% for 48 h, and 100, 97, 60, 36, 15% for 72 h, respectively. Cell apoptosis was detected with TUNEL staining and quantified with flow cytometry using annexin FITC-PI staining at 48 h after 100, 200 and 300 µm rhein. The percentage of apoptotic cells was 7.3, 21.9, 43.5%, respectively. We also measured the mRNA levels of caspase-3 and -9 using real-time PCR. Treatment with 100 µM rhein for 48 h significantly increased mRNA expression of caspase-3 and -9. The levels of apoptosis-related proteins including Bcl-2, Bax, Bcl-xL, and pro-caspase-3 were evaluated in rhein-treated cells. Rhein increased the Bax:Bcl-2 ratio but decreased the protein levels of Bcl-xL and pro-caspase-3. Moreover, rhein significantly increased the expression of cytochrome c and apoptotic protease activating factor 1, two critical components involved in mitochondrial pathway-mediated apoptosis. We conclude that rhein inhibits SGC-7901 proliferation by inducing apoptosis and this antitumor effect of rhein is mediated in part by an intrinsic mitochondrial pathway.

  2. Rhein induces apoptosis of human gastric cancer SGC-7901 cells via an intrinsic mitochondrial pathway

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yiwen; Xu, Yuqing [Department of Oncology,Second Affiliated Hospital, Harbin Medical University, Nangang District, Harbin, Heilongjiang (China); Lei, Bo [Department of Breast Surgery, Third Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang (China); Wang, Wenxiu [Department of Oncology,Second Affiliated Hospital, Harbin Medical University, Nangang District, Harbin, Heilongjiang (China); Ge, Xin; Li, Jingrui [Department of General Surgery, Heilongjiang Province Hospital, Harbin, Heilongjiang (China)

    2012-08-03

    Rhein is a primary anthraquinone found in the roots of a traditional Chinese herb, rhubarb, and has been shown to have some anticancer effects. The aim of the present study was to investigate the effect of rhein on the apoptosis of the human gastric cancer line SGC-7901 and to identify the mechanism involved. SGC-7901 cells were cultured and treated with rhein (0, 50, 100, 150, and 200 µM) for 24, 48, or 72 h. Relative cell viability assessed by the MTT assay after treatment was 100, 99, 85, 79, 63% for 24 h; 100, 98, 80, 51, 37% for 48 h, and 100, 97, 60, 36, 15% for 72 h, respectively. Cell apoptosis was detected with TUNEL staining and quantified with flow cytometry using annexin FITC-PI staining at 48 h after 100, 200 and 300 µm rhein. The percentage of apoptotic cells was 7.3, 21.9, 43.5%, respectively. We also measured the mRNA levels of caspase-3 and -9 using real-time PCR. Treatment with 100 µM rhein for 48 h significantly increased mRNA expression of caspase-3 and -9. The levels of apoptosis-related proteins including Bcl-2, Bax, Bcl-xL, and pro-caspase-3 were evaluated in rhein-treated cells. Rhein increased the Bax:Bcl-2 ratio but decreased the protein levels of Bcl-xL and pro-caspase-3. Moreover, rhein significantly increased the expression of cytochrome c and apoptotic protease activating factor 1, two critical components involved in mitochondrial pathway-mediated apoptosis. We conclude that rhein inhibits SGC-7901 proliferation by inducing apoptosis and this antitumor effect of rhein is mediated in part by an intrinsic mitochondrial pathway.

  3. Andrographolide induces apoptotic and non-apoptotic death and enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in gastric cancer cells.

    Science.gov (United States)

    Lim, Sung-Chul; Jeon, Ho Jong; Kee, Keun Hong; Lee, Mi Ja; Hong, Ran; Han, Song Iy

    2017-05-01

    Andrographolide, a natural compound isolated from Andrographis paniculata , has been reported to possess antitumor activity. In the present study, the effect of andrographolide in human gastric cancer (GC) cells was investigated. Andrographolide induced cell death with apoptotic and non-apoptotic features. At a low concentration, andrographolide potentiated apoptosis and reduction of clonogenicity triggered by recombinant human tumor necrosis factor-related apoptosis-inducing ligand (rhTRAIL). Exposure of GC cells to andrographolide altered the expression level of several growth-inhibiting and apoptosis-regulating proteins, including death receptors. It was demonstrated that activity of the TRAIL-R2 (DR5) pathway was critical in the development of andrographolide-mediated rhTRAIL sensitization, since its inhibition significantly reduced the extent of apoptosis induced by the combination of rhTRAIL and andrographolide. In addition, andrographolide increased reactive oxygen species (ROS) generation in a dose-dependent manner. N-acetyl cysteine prevented andrographolide-mediated DR5 induction and the apoptotic effect induced by the combination of rhTRAIL and andrographolide. Collectively, the present study demonstrated that andrographolide enhances TRAIL-induced apoptosis through induction of DR5 expression. This effect appears to involve ROS generation in GCs.

  4. Protection of betulin against cadmium-induced apoptosis in hepatoma cells

    International Nuclear Information System (INIS)

    Oh, Seon-Hee; Choi, Jeong-Eun; Lim, Sung-Chul

    2006-01-01

    The protective effects of betulin (BT) against cadmium (Cd)-induced cytotoxicity have been previously reported. However, the mechanisms responsible for these protective effects are unclear. Therefore, this study investigated the mechanisms responsible for the protection of BT against Cd-induced cytotoxicity in human hepatoma cell lines. The protection of BT against Cd cytotoxicity was more effective in the HepG2 than in the Hep3B cells. The protection of BT on Cd-induced cytotoxicity in the HepG2 cells appeared to be related to the inhibition of apoptosis, as determined by PI staining and DNA fragmentation analysis. The anti-apoptosis exerted by BT involved the blocking of Cd-induced reactive oxygen species (ROS) generation, the abrogation of the Cd-induced Fas upregulation, the blocking of caspase-8-dependent Bid activation, and subsequent inhibition of mitochondrial pathway. The BT pretreatment did not affect the p21 and p53 expression levels, when compared with those of the treated cells with Cd alone. BT induced the transient S phase arrest at an early stage and the G /G 1 arrest at a relatively late stage, but it did not observe the sub-G1 apoptotic peak. In the Hep3B cells, Cd did not induce ROS generation. The BT pretreatment partially inhibited the Cd-induced apoptosis, which was related with the incomplete blockage in caspase-9 or -3 activation, as well as in Bax activation. Taken together, it was found that Cd can induce apoptosis via the Fas-dependent and -independent apoptosis pathways. However, the observed protective effects of BT were clearly more sensitive to Fas-expressing HepG2 cells than to Fas-deficient Hep3B cells

  5. RNAi screen reveals a role of SPHK2 in dengue virus-mediated apoptosis in hepatic cell lines.

    Directory of Open Access Journals (Sweden)

    Atthapan Morchang

    Full Text Available Hepatic dysfunction is a feature of dengue virus (DENV infection. Hepatic biopsy specimens obtained from fatal cases of DENV infection show apoptosis, which relates to the pathogenesis of DENV infection. However, how DENV induced liver injury is not fully understood. In this study, we aim to identify the factors that influence cell death by employing an apoptosis-related siRNA library screening. Our results show the effect of 558 gene silencing on caspase 3-mediated apoptosis in DENV-infected Huh7 cells. The majority of genes that contributed to apoptosis were the apoptosis-related kinase enzymes. Tumor necrosis factor superfamily member 12 (TNFSF12, and sphingosine kinase 2 (SPHK2, were selected as the candidate genes to further validate their influences on DENV-induced apoptosis. Transfection of siRNA targeting SPHK2 but not TNFSF12 genes reduced apoptosis determined by Annexin V/PI staining. Knockdown of SPHK2 did not reduce caspase 8 activity; however, did significantly reduce caspase 9 activity, suggesting its involvement of SPHK2 in the intrinsic pathway of apoptosis. Treatment of ABC294649, an inhibitor of SPHK2, reduced the caspase 3 activity, suggesting the involvement of its kinase activity in apoptosis. Knockdown of SPHK2 significantly reduced caspase 3 activity not only in DENV-infected Huh7 cells but also in DENV-infected HepG2 cells. Our results were consistent across all of the four serotypes of DENV infection, which supports the pro-apoptotic role of SPHK2 in DENV-infected liver cells.

  6. Ascorbate induces apoptosis in melanoma cells by suppressing Clusterin expression.

    Science.gov (United States)

    Mustafi, Sushmita; Sant, David W; Liu, Zhao-Jun; Wang, Gaofeng

    2017-06-16

    Pharmacological levels of ascorbate have long been suggested as a potential treatment of cancer. However, we observed that EC50 of ascorbate was at a similar level for cultured healthy melanocytes and melanoma cells, suggesting a limit of pharmacological ascorbate in treating cancer. Loss of 5-hydroxymethylcytosine (5 hmC) is an epigenetic hallmark of cancer and ascorbate promotes 5 hmC generation by serving as a cofactor for TET methylcytosine dioxygenases. Our previous work demonstrated that ascorbate treatment at physiological level (100 μM) increased 5 hmC content in melanoma cells toward the level of healthy melanocytes. Here we show that 100 µM of ascorbate induced apoptosis in A2058 melanoma cells. RNA-seq analysis revealed that expression of the Clusterin (CLU) gene, which is related to apoptosis, was downregulated by ascorbate. The suppression of CLU was verified at transcript level in different melanoma cell lines, and at protein level in A2058 cells. The anti-apoptotic cytoplasmic CLU was decreased, while the pro-apoptotic nuclear CLU was largely maintained, after ascorbate treatment. These changes in CLU subcellular localization were also associated with Bax and caspases activation, Bcl-xL sequestration, and cytochrome c release. Taken together, this study establishes an impending therapeutic role of physiological ascorbate to potentiate apoptosis in melanoma.

  7. Methotrexate induces poly(ADP-ribose) polymerase-dependent, caspase 3-independent apoptosis in subsets of proliferating CD4+ T cells

    DEFF Research Database (Denmark)

    Nielsen, C H; Albertsen, L; Bendtzen, K

    2007-01-01

    ) cells play a significant role in most AID. We therefore examined directly, by flow cytometry, the uptake of MTX by the T helper (Th) cells stimulated for 6 days with Candida albicans (CA) or tetanus toxoid (TT), and its consequences with respect to induction of apoptosis. While none of the resting Th...... apoptosis in both undivided and divided Th cells. PHA-induced apoptosis involved activation of caspase-3 and the anti-apoptotic protein Bcl-2 in addition to PARP cleavage, suggesting that PHA induces apoptosis via different pathways than CA and TT. We suggest that the latter are more representative...

  8. Helicobacter pylori enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in human gastric epithelial cells

    Science.gov (United States)

    Wu, Yi-Ying; Tsai, Hwei-Fang; Lin, We-Cheng; Chou, Ai-Hsiang; Chen, Hui-Ting; Yang, Jyh-Chin; Hsu, Ping-I; Hsu, Ping-Ning

    2004-01-01

    AIM: To investigate the relations between tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and Helicobacter pylori (H pylori) infection in apoptosis of gastric epithelial cells and to assess the expression of TRAIL on the surface of infiltrating T-cells in H pylori-infected gastric mucosa. METHODS: Human gastric epithelial cell lines and primary gastric epithelial cells were co-cultured with H pylori in vitro, then recombinant TRAIL proteins were added to the culture. Apoptosis of gastric epithelial cells was determined by a specific ELISA for cell death. Infiltrating lymphocytes were isolated from H pylori-infected gastric mucosa, and expression of TRAIL in T cells was analyzed by flow cytometry. RESULTS: The apoptosis of gastric epithelial cell lines and primary human gastric epithelial cells was mildly increased by interaction with either TRAIL or H pylori alone. Interestingly, the apoptotic indices were markedly elevated when gastric epithelial cells were incubated with both TRAIL and H pylori (Control vs TRAIL and H pylori: 0.51 ± 0.06 vs 2.29 ± 0.27, P = 0.018). A soluble TRAIL receptor (DR4-Fc) could specifically block the TRAIL-mediated apoptosis. Further studies demonstrated that infiltrating T-cells in gastric mucosa expressed TRAIL on their surfaces, and the induction of TRAIL sensitivity by H pylori was dependent upon direct cell contact of viable bacteria, but not CagA and VacA of H pylori. CONCLUSION: H pylori can sensitize human gastric epithelial cells and enhance susceptibility to TRAIL-mediated apoptosis. Modulation of host cell sensitivity to apoptosis by bacterial interaction adds a new dimension to the immunopathogenesis of H pylori infection. PMID:15285015

  9. Polo-like kinase (Plk)1 depletion induces apoptosis in cancer cells.

    Science.gov (United States)

    Liu, Xiaoqi; Erikson, Raymond L

    2003-05-13

    Elevated expression of mammalian polo-like kinase (Plk)1 occurs in many different types of cancers, and Plk1 has been proposed as a novel diagnostic marker for several tumors. We used the recently developed vector-based small interfering RNA technique to specifically deplete Plk1 in cancer cells. We found that Plk1 depletion dramatically inhibited cell proliferation, decreased viability, and resulted in cell-cycle arrest with 4 N DNA content. The formation of dumbbell-like chromatin structure suggests the inability of these cells to completely separate the sister chromatids at the onset of anaphase. Plk1 depletion induced apoptosis, as indicated by the appearance of subgenomic DNA in fluorescence-activated cell-sorter (FACS) profiles, the activation of caspase 3, and the formation of fragmented nuclei. Plk1-depletion-induced apoptosis was partially reversed by cotransfection of nondegradable mouse Plk1 constructs. In addition, the p53 pathway was shown to be involved in Plk1-depletion-induced apoptosis. DNA damage occurred in Plk1-depleted cells and inhibition of ATM strongly potentiated the lethality of Plk1 depletion. Although p53 is stabilized in Plk1-depleted cells, DNA damage also occurs in p53(-/-) cells. These data support the notion that disruption of Plk1 function could be an important application in cancer therapy.

  10. Bystander apoptosis in human cells mediated by irradiated blood plasma

    Energy Technology Data Exchange (ETDEWEB)

    Vinnikov, Volodymyr, E-mail: vlad.vinnikov@mail.ru [Grigoriev Institute for Medical Radiology of the National Academy of Medical Science of Ukraine (Ukraine); Lloyd, David; Finnon, Paul [Centre for Radiation, Chemical and Environmental Hazards of the Health Protection Agency of the United Kingdom (United Kingdom)

    2012-03-01

    Following exposure to high doses of ionizing radiation, due to an accident or during radiotherapy, bystander signalling poses a potential hazard to unirradiated cells and tissues. This process can be mediated by factors circulating in blood plasma. Thus, we assessed the ability of plasma taken from in vitro irradiated human blood to produce a direct cytotoxic effect, by inducing apoptosis in primary human peripheral blood mononuclear cells (PBM), which mainly comprised G{sub 0}-stage lymphocytes. Plasma was collected from healthy donors' blood irradiated in vitro to 0-40 Gy acute {gamma}-rays. Reporter PBM were separated from unirradiated blood with Histopaque and held in medium with the test plasma for 24 h at 37 Degree-Sign C. Additionally, plasma from in vitro irradiated and unirradiated blood was tested against PBM collected from blood given 4 Gy. Apoptosis in reporter PBM was measured by the Annexin V test using flow cytometry. Plasma collected from unirradiated and irradiated blood did not produce any apoptotic response above the control level in unirradiated reporter PBM. Surprisingly, plasma from irradiated blood caused a dose-dependent reduction of apoptosis in irradiated reporter PBM. The yields of radiation-induced cell death in irradiated reporter PBM (after subtracting the respective values in unirradiated reporter PBM) were 22.2 {+-} 1.8% in plasma-free cultures, 21.6 {+-} 1.1% in cultures treated with plasma from unirradiated blood, 20.2 {+-} 1.4% in cultures with plasma from blood given 2-4 Gy and 16.7 {+-} 3.2% in cultures with plasma from blood given 6-10 Gy. These results suggested that irradiated blood plasma did not cause a radiation-induced bystander cell-killing effect. Instead, a reduction of apoptosis in irradiated reporter cells cultured with irradiated blood plasma has implications concerning oncogenic risk from mutated cells surviving after high dose in vivo irradiation (e.g. radiotherapy) and requires further study.

  11. Bystander apoptosis in human cells mediated by irradiated blood plasma

    International Nuclear Information System (INIS)

    Vinnikov, Volodymyr; Lloyd, David; Finnon, Paul

    2012-01-01

    Following exposure to high doses of ionizing radiation, due to an accident or during radiotherapy, bystander signalling poses a potential hazard to unirradiated cells and tissues. This process can be mediated by factors circulating in blood plasma. Thus, we assessed the ability of plasma taken from in vitro irradiated human blood to produce a direct cytotoxic effect, by inducing apoptosis in primary human peripheral blood mononuclear cells (PBM), which mainly comprised G 0 -stage lymphocytes. Plasma was collected from healthy donors’ blood irradiated in vitro to 0–40 Gy acute γ-rays. Reporter PBM were separated from unirradiated blood with Histopaque and held in medium with the test plasma for 24 h at 37 °C. Additionally, plasma from in vitro irradiated and unirradiated blood was tested against PBM collected from blood given 4 Gy. Apoptosis in reporter PBM was measured by the Annexin V test using flow cytometry. Plasma collected from unirradiated and irradiated blood did not produce any apoptotic response above the control level in unirradiated reporter PBM. Surprisingly, plasma from irradiated blood caused a dose-dependent reduction of apoptosis in irradiated reporter PBM. The yields of radiation-induced cell death in irradiated reporter PBM (after subtracting the respective values in unirradiated reporter PBM) were 22.2 ± 1.8% in plasma-free cultures, 21.6 ± 1.1% in cultures treated with plasma from unirradiated blood, 20.2 ± 1.4% in cultures with plasma from blood given 2–4 Gy and 16.7 ± 3.2% in cultures with plasma from blood given 6–10 Gy. These results suggested that irradiated blood plasma did not cause a radiation-induced bystander cell-killing effect. Instead, a reduction of apoptosis in irradiated reporter cells cultured with irradiated blood plasma has implications concerning oncogenic risk from mutated cells surviving after high dose in vivo irradiation (e.g. radiotherapy) and requires further study.

  12. Proteomics informed by transcriptomics reveals Hendra virus sensitizes bat cells to TRAIL-mediated apoptosis.

    Science.gov (United States)

    Wynne, James W; Shiell, Brian J; Marsh, Glenn A; Boyd, Victoria; Harper, Jennifer A; Heesom, Kate; Monaghan, Paul; Zhou, Peng; Payne, Jean; Klein, Reuben; Todd, Shawn; Mok, Lawrence; Green, Diane; Bingham, John; Tachedjian, Mary; Baker, Michelle L; Matthews, David; Wang, Lin-Fa

    2014-01-01

    Bats are a major reservoir of emerging infectious viruses. Many of these viruses are highly pathogenic to humans however bats remain asymptomatic. The mechanism by which bats control viral replication is unknown. Here we utilize an integrated approach of proteomics informed by transcriptomics to compare the response of immortalized bat and human cells following infection with the highly pathogenic bat-borne Hendra virus (HeV). The host response between the cell lines was significantly different at both the mRNA and protein levels. Human cells demonstrated minimal response eight hours post infection, followed by a global suppression of mRNA and protein abundance. Bat cells demonstrated a robust immune response eight hours post infection, which led to the up-regulation of apoptosis pathways, mediated through the tumor necrosis factor-related apoptosis inducing ligand (TRAIL). HeV sensitized bat cells to TRAIL-mediated apoptosis, by up-regulating death receptor transcripts. At 48 and 72 hours post infection, bat cells demonstrated a significant increase in apoptotic cell death. This is the first study to comprehensively compare the response of bat and human cells to a highly pathogenic zoonotic virus. An early induction of innate immune processes followed by apoptosis of virally infected bat cells highlights the possible involvement of programmed cell death in the host response. Our study shows for the first time a side-by-side high-throughput analysis of a dangerous zoonotic virus in cell lines derived from humans and the natural bat host. This enables a way to search for divergent mechanisms at a molecular level that may influence host pathogenesis.

  13. Caspase 2 activation and ER stress drive rapid Jurkat cell apoptosis by clofibrate.

    Directory of Open Access Journals (Sweden)

    Fabio Penna

    Full Text Available Differently from the antiapoptotic action most commonly assigned to peroxisome proliferators (PPs, we demonstrated that some of them, clofibrate (CF in particular, display clearcut apoptogenic properties on rat hepatoma cell lines. We and others could confirm that CF as well as various other PPs can induce apoptosis in a variety of cells, including human liver, breast and lung cancer cell lines. The present study was aimed at investigating the cytotoxic action of CF on a neoplastic line of different origin, the human T leukemia Jurkat cells. We observed that CF rapidly triggers an extensive and morphologically typical apoptotic process on Jurkat cells, though not in primary T cells, which is completely prevented by the polycaspase inhibitor zVADfmk. Gene silencing studies demonstrated that CF-induced apoptosis in Jurkat cells is partially dependent on activation of caspase 2. Looking for a possible trigger of caspase 2 activation, we observed increased levels of phosphorylated eIF2α and JNK in CF-treated cells. Moreover, intracellular Ca(2+ homeostasis was perturbed. Together, these findings are suggestive for the occurrence of ER stress, an event that is known to have the potential to activate caspase 2. The present observations demonstrate that CF induces in Jurkat cells a very fast and extensive apoptosis, that involves induction of ER stress and activation of caspases 2 and 3. Since apoptosis in Jurkat cells occurs at pharmacologically relevant concentrations of CF, the present findings encourage further in depth analysis in order to work out the potential implications of CF cytotoxcity on leukemic cells.

  14. Knockdown of HIF-1α and IL-8 induced apoptosis of hepatocellular carcinoma triggers apoptosis of vascular endothelial cells.

    Science.gov (United States)

    Choi, Sung Hoon; Park, Jun Yong; Kang, Wonseok; Kim, Seung Up; Kim, Do Young; Ahn, Sang Hoon; Ro, Simon Wonsang; Han, Kwang-Hyub

    2016-01-01

    A local hypoxic microenvironment is one of the most important characteristics of solid tumors. Hypoxia inducible factor-1α (HIF-1α) and Interleukin-8 (IL-8) activate tumor survival from hypoxic-induced apoptosis in each pathway. This study aimed to evaluate whether knockdown of HIF-1α and IL-8 induced apoptosis of the hepatocellular carcinoma (HCC) and endothelial cell lines. HCC cell lines were infected with adenovirus-expressing shRNA for HIF-1α and IL-8 and maintained under hypoxic conditions (1% O2, 24 h). The expression levels of HIF-1α and both apoptotic and growth factors were examined by real-time quantitative PCR and western blot. We also investigated apoptosis by TUNEL assay (FACS and Immunofluorescence) and measured the concentration of cytochrome C. Inhibition of HIF-1α and IL-8 up-regulated the expression of apoptotic factors while downregulating anti-apoptotic factors simultaneously. Knockdown of HIF-1α and IL-8 increased the concentration of cytochrome C and enhanced DNA fragmentation in HCC cell lines. Moreover, culture supernatant collected from the knockdown of HIF-1α and IL-8 in HCC cell lines induced apoptosis in human umbilical vein endothelial cells under hypoxia, and the expression of variable apoptotic ligand increased from HCC cell lines, time-dependently. These data suggest that adenovirus-mediated knockdown of HIF-1α and IL-8 induced apoptosis in HCC cells and triggered apoptosis of vascular endothelial cells.

  15. Cisplatin induced apoptosis of ovarian cancer A2780s cells by activation of ERK/p53/PUMA signals.

    Science.gov (United States)

    Song, Hao; Wei, Mei; Liu, Wenfen; Shen, Shulin; Li, Jiaqun; Wang, Liming

    2018-01-01

    Cisplatin (CDDP) is one of the most effective anticancer agents widely used in the treatment of solid tumors, including ovarian cancer. It is generally considered as a cytotoxic drug which kills cancer cells by causing DNA damage, and subsequently inducing apoptosis in cancer cells. However, the underlying mechanisms leading to cell apoptosis remain obscure. In this study, the signaling pathways involved in CDDP-induced apoptosis were examined using CDDP-sensitive ovarian cancer A2780s cells. A2780s cells were treated with CDDP (1.5-3 μg/ml) for 6h, 12h and 24h. Using siRNA targeting P53 and PUMA, and a selective MEK inhibitor, PD98059 to examine the relation between ERK1/2 activation, p53 and PUMA expression after exposure to CDDP, and the effect on CDDP-induced apoptosis. The results shown that treatment of A2780s cells with CDDP (3 μg/ml) for 6-24h induced apoptosis, resulting in the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) and accumulation of p53 and PUMA (p53 upregulated modulator of apoptosis) protein. Knockdown of P53 or PUMA by siRNA transfection blocked CDDP-induced apoptosis. Inhibition of ERK1/2 using PD98059, a selective MEK inhibitor, blocked the apoptotic cell death but prevented CDDP-induced accumulation of p53 and PUMA. Knockdown of P53 by siRNA transfection also blocked CDDP-induced accumulation of PUMA. We therefore concluded that CDDP activated ERK1/2 and induced-p53-dependent PUMA upregulation, resulting in triggering apoptosis in A2780s cells. Our study clearly demonstrates that the ERK1/2/p53/PUMA axis is related to CDDP-induced cell death in A2780s cells.

  16. GADD45α is involved in the apoptosis of lymphocytes induced by riboflavin and ultraviolet light.

    Science.gov (United States)

    Yang, Peng; Wen, Huiqin; Zhong, Tao; Hu, Hailiang; Zhu, Bangqiang; Xia, Kang; Xu, Mo; Bian, Maohong

    2017-03-01

    Riboflavin plus ultraviolet (UV) pathogen reduction technology (RF-PRT) is an effective method for inactivating the residual white blood cells (WBCs) in blood components. The RF-PRT system for platelets is known to activate many signaling pathways, including p38 and NF-κB. Nevertheless, proteomic studies in WBCs after riboflavin plus UV treatment requires further analysis. ABO/D-matched lymphocytes were pooled, split, and treated with RF-PRT or UV light or left untreated. After treatment, cell apoptosis was measured. In addition, cell proliferation and the cycle distribution were evaluated upon stimulation with phytohemagglutinin. The changes in the protein expression levels of growth arrest and DNA damage-inducible (GADD)45α, p38, and c-Jun N-terminal kinase (JNK) were determined by Western blotting. The effect of GADD45α, p38, and JNK on apoptosis was assessed. RF-PRT significantly inhibited proliferation and induced G1 arrest in lymphocytes. Furthermore, the percentage of apoptotic cells was increased in RF-PRT-treated lymphocytes compared to UV-treated cells or untreated cells, associated with the up regulation of GADD45α expression. Consistent with these observations, the inhibition of GADD45α expression partially counteracted the effects of riboflavin plus UV treatment. The p38 and JNK signaling pathways were activated by GADD45α in RF-PRT-treated lymphocytes. These data revealed that RF-PRT effectively inhibited proliferation and induced apoptosis of lymphocytes by promoting GADD45α expression, which subsequently activates p38 and JNK signaling pathways. © 2016 AABB.

  17. Cytokines and Pancreatic β-Cell Apoptosis

    DEFF Research Database (Denmark)

    Berchtold, L A; Prause, M; Størling, J

    2016-01-01

    in the low to the high picomolar-femtomolar range and vary exposure time for up to 14-16h to reproduce the acute regulatory effects of systemic inflammation on β-cell secretory responses, with a shift to inhibition at high picomolar concentrations or more than 16h of exposure to illustrate adverse effects...... of anticytokine therapies has yet to be shown by testing the incremental effects of appropriate dosing, timing, and combinations of treatments. Due to the considerable translational importance of enhancing the precision, specificity, and safety of antiinflammatory treatments of diabetes, we review here......The discovery 30 years ago that inflammatory cytokines cause a concentration, activity, and time-dependent bimodal response in pancreatic β-cell function and viability has been a game-changer in the fields of research directed at understanding inflammatory regulation of β-cell function and survival...

  18. The Vibrio alginolyticus T3SS effectors, Val1686 and Val1680, induce cell rounding, apoptosis and lysis of fish epithelial cells.

    Science.gov (United States)

    Zhao, Zhe; Liu, Jinxin; Deng, Yiqin; Huang, Wen; Ren, Chunhua; Call, Douglas R; Hu, Chaoqun

    2018-01-01

    Vibrio alginolyticus is a Gram-negative bacterium that is an opportunistic pathogen of both marine animals and people. Its pathogenesis likely involves type III secretion system (T3SS) mediated induction of rapid apoptosis, cell rounding and osmotic lysis of infected eukaryotic cells. Herein, we report that effector proteins, Val1686 and Val1680 from V. alginolyticus, were responsible for T3SS-mediated death of fish cells. Val1686 is a Fic-domain containing protein that not only contributed to cell rounding by inhibiting Rho guanosine triphosphatases (GTPases), but was requisite for the induction of apoptosis because the deletion mutant (Δval1686) was severely weakened in its ability to induce cell rounding and apoptosis in fish cells. In addition, Val1686 alone was sufficient to induce cell rounding and apoptosis as evidenced by the transfection of Val1686 into fish cells. Importantly, the Fic-domain essential for cell rounding activity was equally important to activation of apoptosis of fish cells, indicating that apoptosis is a downstream event of Val1686-dependent GTPase inhibition. V. alginolyticus infection likely activates JNK and ERK pathways with sequential activation of caspases (caspase-8/-10, -9 and -3) and subsequent apoptosis. Val1680 contributed to T3SS-dependent lysis of fish cells in V. alginolyticus, but did not induce autophagy as has been reported for its homologue (VopQ) in V. parahaemolyticus. Together, Val1686 and Val1680 work together to induce apoptosis, cell rounding and cell lysis of V. alginolyticus-infected fish cells. These findings provide new insights into the mechanism of cell death caused by T3SS of V. alginolyticus.

  19. Bee venom induces apoptosis through intracellular Ca2+ -modulated intrinsic death pathway in human bladder cancer cells.

    Science.gov (United States)

    Ip, Siu-Wan; Chu, Yung-Lin; Yu, Chun-Shu; Chen, Po-Yuan; Ho, Heng-Chien; Yang, Jai-Sing; Huang, Hui-Ying; Chueh, Fu-Shin; Lai, Tung-Yuan; Chung, Jing-Gung

    2012-01-01

    To focus on bee venom-induced apoptosis in human bladder cancer TSGH-8301 cells and to investigate its signaling pathway to ascertain whether intracellular calcium iron (Ca(2+)) is involved in this effect. Bee venom-induced cytotoxic effects, productions of reactive oxygen species and Ca(2+) and the level of mitochondrial membrane potential (ΔΨm) were analyzed by flow cytometry. Apoptosis-associated proteins were examined by Western blot analysis and confocal laser microscopy. Bee venom-induced cell morphological changes and decreased cell viability through the induction of apoptosis in TSGH-8301 cell were found. Bee venom promoted the protein levels of Bax, caspase-9, caspase-3 and endonuclease G. The enhancements of endoplasmic reticulum stress-related protein levels were shown in bee venom-provoked apoptosis of TSGH-8301 cells. Bee venom promoted the activities of caspase-3, caspase-8, and caspase-9, increased Ca(2+) release and decreased the level of ΔΨm. Co-localization of immunofluorescence analysis showed the releases of endonuclease G and apoptosis-inducing factor trafficking to nuclei for bee venom-mediated apoptosis. The images revealed evidence of nuclear condensation and formation of apoptotic bodies by 4',6-diamidino-2-phenylindole staining and DNA gel electrophoresis showed the DNA fragmentation in TSGH-8301 cells. Bee venom treatment induces both caspase-dependent and caspase-independent apoptotic death through intracellular Ca(2+) -modulated intrinsic death pathway in TSGH-8301 cells. © 2011 The Japanese Urological Association.

  20. A new tellurium-containing amphiphilic molecule induces apoptosis in HCT116 colon cancer cells.

    Science.gov (United States)

    Du, Peng; Saidu, Nathaniel Edward Bennett; Intemann, Johanna; Jacob, Claus; Montenarh, Mathias

    2014-06-01

    Chalcogen-based redox modulators over the years have attracted considerable attention as anti-cancer agents. New selenium- and tellurium-containing compounds with a polar head group and aryl-groups of various lengths have recently been reported as biologically active in several organisms. In the present study, we used the most active of the tellurium compound DP41, and its selenium counterpart DP31 to investigate their effects on the human cancer cell line HCT116. Cells were treated with DP41 or DP31 and the formation of superoxide radicals was determined using dihydroethidium. Cell cycle analysis and apoptosis was determined by cytofluorimetry. Proteins involved in ER signaling and apoptosis were determined by Western blot analysis and fluorescence microscopy. With 50μM of DP41, we observed an increase in O2(-) formation. There was, however, no such increase in O2(-) after treatment with the corresponding selenium compound under the same conditions. In the case of DP41, the production of O2(-) radicals was followed by an up-regulation of Nrf2, HO-1, phospho-eIF2α and ATF4. CHOP was also induced and cells entered apoptosis. Unlike the cancer cells, normal retinal epithelial ARPE-19 cells did not produce elevated levels of O2(-) radicals nor did they induce the ER signaling pathway or apoptosis. The tellurium-containing compound DP41, in contrast to the corresponding selenium compound, induces O2(-) radical formation and oxidative and ER stress responses, including CHOP activation and finally apoptosis. These results indicate that DP41 is a redox modulating agent with promising anti-cancer potentials. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Induction of apoptosis by pinostrobin in human cervical cancer cells: Possible mechanism of action.

    Directory of Open Access Journals (Sweden)

    Alka Jaudan

    Full Text Available Pinostrobin (PN is a naturally occurring dietary bioflavonoid, found in various medicinal herbs/plants. Though anti-cancer potential of many such similar constituents has been demonstrated, critical biochemical targets and exact mechanism for their apoptosis-inducing actions have not been fully elucidated. The present study was aimed to investigate if PN induced apoptosis in cervical cancer cells (HeLa of human origin. It is demonstrated that PN at increasing dose effectivity reduced the cell viability as well as GSH and NO2- levels. Condensed nuclei with fragmented chromatin and changes in mitochondrial matrix morphology clearly indicated the role of mitochondria in PN induced apoptosis. A marked reduction in mitochondrial membrane potential and increased ROS production after PN treatment showed involvement of free radicals, which in turn further augment ROS levels. PN treatment resulted in DNA damage, which could have been triggered by an increase in ROS levels. Decrease in apoptotic cells in the presence of caspase 3 inhibitor in PN-treated cells suggested that PN induced apoptosis via caspase dependent pathways. Additionally, a significant increase in the expression of proteins of extrinsic (TRAIL R1/DR4, TRAIL R2/DR5, TNF RI/TNFRSF1A, FADD, Fas/TNFRSF6 and intrinsic pathway (Bad, Bax, HTRA2/Omi, SMAC/Diablo, cytochrome C, Pro-Caspase-3, Cleaved Caspase-3 was observed in the cells exposed to PN. Taken together, these observations suggest that PN efficiently induces apoptosis through ROS mediated extrinsic and intrinsic dependent signaling pathways, as well as ROS mediated mitochondrial damage in HeLa cells.

  2. Induction of apoptosis by pinostrobin in human cervical cancer cells: Possible mechanism of action.

    Science.gov (United States)

    Jaudan, Alka; Sharma, Sapna; Malek, Sri Nurestri Abd; Dixit, Aparna

    2018-01-01

    Pinostrobin (PN) is a naturally occurring dietary bioflavonoid, found in various medicinal herbs/plants. Though anti-cancer potential of many such similar constituents has been demonstrated, critical biochemical targets and exact mechanism for their apoptosis-inducing actions have not been fully elucidated. The present study was aimed to investigate if PN induced apoptosis in cervical cancer cells (HeLa) of human origin. It is demonstrated that PN at increasing dose effectivity reduced the cell viability as well as GSH and NO2- levels. Condensed nuclei with fragmented chromatin and changes in mitochondrial matrix morphology clearly indicated the role of mitochondria in PN induced apoptosis. A marked reduction in mitochondrial membrane potential and increased ROS production after PN treatment showed involvement of free radicals, which in turn further augment ROS levels. PN treatment resulted in DNA damage, which could have been triggered by an increase in ROS levels. Decrease in apoptotic cells in the presence of caspase 3 inhibitor in PN-treated cells suggested that PN induced apoptosis via caspase dependent pathways. Additionally, a significant increase in the expression of proteins of extrinsic (TRAIL R1/DR4, TRAIL R2/DR5, TNF RI/TNFRSF1A, FADD, Fas/TNFRSF6) and intrinsic pathway (Bad, Bax, HTRA2/Omi, SMAC/Diablo, cytochrome C, Pro-Caspase-3, Cleaved Caspase-3) was observed in the cells exposed to PN. Taken together, these observations suggest that PN efficiently induces apoptosis through ROS mediated extrinsic and intrinsic dependent signaling pathways, as well as ROS mediated mitochondrial damage in HeLa cells.

  3. ROS accumulation by PEITC selectively kills ovarian cancer cells via UPR-mediated apoptosis

    Directory of Open Access Journals (Sweden)

    Yoon-hee eHong

    2015-07-01

    Full Text Available Unfolded protein response (UPR is crucial for both survival and death of mammalian cells, which is regulated by reactive oxygen species (ROS and nutrient depletion. In this study, we demonstrated the effect of ROS-accumulation, induced by β-phenethyl isothiocyanate (PEITC, on UPR mediated apoptosis in ovarian cancer cells. We used ovarian cancer cell lines, PA-1 and SKOV-3, with different p53 status (wild- and null- type, respectively. PEITC caused increased ROS-accumulation and inhibited proliferation selectively in ovarian cancer cells, and glutathione (GSH depletion in SKOV-3. However, PEITC did not cause any effect in normal ovarian epithelial cells and peripheral blood mononuclear cells. After 48 h of PEITC treatment (5 µM, apoptotic cell death was shown to increase significantly in the ovarian cancer cells and not in the normal cells. The key regulator of UPR-mediated apoptosis, CHOP/GADD153 and ER resident chaperone BiP/GRP78 were parallely up-regulated with activation of two major sensors of the UPR (PERK and ATF-6 in PA-1; PERK, and IRE1α in SKOV-3 in response to ROS accumulation induced by PEITC (5 µM. ROS scavenger, N-acetyl-cysteine (NAC, attenuated the effect of PEITC on UPR signatures (P-PERK, IRE1α, CHOP/GADD153, and BiP/GRP78, suggesting the involvement of ROS in UPR-mediated apoptosis. Altogether, PEITC induces UPR-mediated apoptosis in ovarian cancer cells via accumulation of ROS in a cancer-specific manner.

  4. Overexpression of FADD and Caspase-8 inhibits proliferation and promotes apoptosis of human glioblastoma cells.

    Science.gov (United States)

    Wang, Hong-Bin; Li, Tao; Ma, Dong-Zhou; Ji, Yan-Xin; Zhi, Hua

    2017-09-01

    The study aimed at exploring the effects involved in Fas-Associated protein with Death Domain (FADD) expression and cysteine-aspartic acid specific protease-8 (Caspase-8) in relation to the proliferation and apoptosis of human glioblastoma (GBM) cells. 93 GBM tissues and 64 normal brain tissues were the central mediums used for the investigation of the study. Cultured human GBM SC189 cells were divided into separate groups including the blank negative control (NC), FADD and Caspase-8 groups. The mRNA and protein expressions of FADD and Caspase-8 in tissues and human glioblastoma (GBM) cells were detected using qRT-PCR and Western blotting techniques. Cell proliferation was tested by CCK-8. Flow cytometry was used for the measure of cell cycle and apoptosis rates. The mRNA and protein expressions of FADD and Caspase-8 in GBM tissues were less than the levels of expression displayed in normal brain tissues. Correlations between the expressions of FADD and Caspase-8 in GBM tissues were analyzed as being linked with the clinical grades of GBM patients. Patients in stage III+IV displayed lower expressions of FADD and Caspase-8 than patients in stage I+II. In comparison with the blank group, the FADD and Caspase-8 groups showed decreased proliferation rates of SHG44 cells and lower ratios of cells in the S phase and Bcl-2 expression. Greater ratios of cells in the G0/G1 stage as well as increased cell apoptosis and expressions of Caspase-8 and Bax were exhibited. The expression of FADD in the FADD group was higher than the blank group, however no significant differences in FADD expression was observed between the blank and Caspase-8 groups. The data obtained during the study demonstrated that overexpression of FADD and Caspase-8 suppresses proliferation whilst promoting the apoptosis of human GBM cells. Copyright © 2017. Published by Elsevier Masson SAS.

  5. Effects of cadmium on cell proliferation, apoptosis, and proto-oncogene expression in zebrafish liver cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying Ying; Zhu, Jin Yong; Chan, King Ming, E-mail: kingchan@cuhk.edu.hk

    2014-12-15

    Highlights: • Cd stimulated ZFL cell proliferation with decreasing apoptotic cell numbers. • Cd down regulated p53 and RAD51. • Cd up regulated immediate early cancer genes of GADD45 and growth factors. • Cd promoted tumorigenic effects in ZFL cells. - Abstract: Cadmium (Cd) is one of the major transitional metal that has toxic effects in aquatic organisms and their associated ecosystem; however, its hepatic toxicity and carcinogenicity are not very well characterized. We used a zebrafish liver (ZFL) cell line as a model to investigate the mechanism of Cd-induced toxicity on hepatocytes. Our results showed that Cd can be effectively accumulated in ZFL cells in our exposure experiments. Cell cytotoxicity assays and flow cytometer measurements revealed that Cd{sup 2+} stimulated ZFL cell proliferation with decreasing apoptotic cell numbers indicating potentially tumorigenic effects of Cd in ZFL cells. Gene expression profiles also indicated that Cd downregulated oncogenes p53 and rad51 and upregulated immediate response oncogenes, growth arrest and DNA damage-inducible (gadd45) genes, and growth factors. We also found dramatic changes in the gene expression of c-jun and igf1rb at different exposure time points, supporting the notion that potentially tumorigenic of Cd-is involved in the activation of immediate early genes or genes related to apoptosis in cancer promotion.

  6. [Apoptosis of human lung carcinoma cell line GLC-82 induced by high power electromagnetic pulse].

    Science.gov (United States)

    Cao, Xiao-zhe; Zhao, Mei-lan; Wang, De-wen; Dong, Bo

    2002-09-01

    Electromagnetic pulse (EMP) could be used for sterilization of food and the efficiency is higher than 2450 MHz continuous microwave done. This study was designed to evaluate the effect of electromagnetic pulse (EMP) on apoptosis of human lung carcinoma cell line GLC-82, so that to explore and develop therapeutic means for cancer. The injury changes in GLC-82 cells after irradiated with EMP (electric field intensity was 60 kV/m, 5 pulses/2 min) were analyzed by cytometry, MTT chronometry, and flow cytometry. The immunohistochemical SP staining was used to determine the expressions of bcl-2 protein and p53 protein. The stained positive cells were analyzed by CMIAS-II image analysis system at a magnification 400. All data were analyzed by SPSS8.0 software. EMP could obviously inhibited proliferation and activity of lung carcinoma cell line GLC-82. The absorbance value (A570) of MTT decreased immediately, at 0 h, 1 h, and 6 h after the GLC-82 cells irradiated by EMP as compared with control group. The highest apoptosis rate was found to reach 13.38% by flow cytometry at 6 h after EMP irradiation. Down-regulation of bcl-2 expression and up-regulation of p53 expression were induced by EMP. EMP promotes apoptosis of GLC-82 cells. At same time, EMP can down-regulate bcl-2 expression and up-regulate p53 expression in GLC-82 cells. The bcl-2 and the p53 protein may involve the apoptotic process.

  7. Cigarette smoke-induced blockade of the mitochondrial respiratory chain switches lung epithelial cell apoptosis into necrosis

    NARCIS (Netherlands)

    van der Toorn, Marco; Slebos, Dirk-Jan; de Bruin, Harold G.; Leuvenink, Henri G.; Bakker, Stephan J. L.; Gans, Rijk O. B.; Koeter, Gerard H.; van Oosterhout, Antoon J. M.; Kauffman, Henk F.

    Increased lung cell apoptosis and necrosis occur in patients with chronic obstructive pulmonary disease ( COPD). Mitochondria are crucially involved in the regulation of these cell death processes. Cigarette smoke is the main risk factor for development of COPD. We hypothesized that cigarette smoke

  8. Ordering of ceramide formation and caspase-9 activation in CD95L-induced Jurkat leukemia T cell apoptosis.

    Science.gov (United States)

    Lafont, Elodie; Dupont, Romain; Andrieu-Abadie, Nathalie; Okazaki, Toshiro; Schulze-Osthoff, Klaus; Levade, Thierry; Benoist, Hervé; Ségui, Bruno

    2012-04-01

    Ceramide, a biologically active sphingolipid in cell death signaling, accumulates upon CD95L treatment, concomitantly to apoptosis induction in Jurkat leukemia T cells. Herein, we show that ceramide did not increase in caspase-8 and -10-doubly deficient Jurkat cells in response to CD95L, indicating that apical caspases are essential for CD95L-triggered ceramide formation. Jurkat cells are typically defined as type 2 cells, which require the activation of the mitochondrial pathway for efficient apoptosis induction in response to CD95L. Caspase-9-deficient Jurkat cells significantly resisted CD95L-induced apoptosis, despite ceramide accumulation. Knock-down of sphingomyelin synthase 1, which metabolizes ceramide to sphingomyelin, enhanced (i) CD95L-triggered ceramide production, (ii) cytochrome c release from the mitochondria and (iii) caspase-9 activation. Exogenous ceramide-induced caspase-3 activation and apoptosis were impaired in caspase-9-deficient Jurkat cells. Conversely, caspase-9 re-expression in caspase-9-deficient Jurkat cells restored caspase-3 activation and apoptosis upon exogenous ceramide treatment. Collectively, our data provide genetic evidence that CD95L-triggered endogenous ceramide increase in Jurkat leukemia T cells (i) is not a mere consequence of cell death and occurs mainly in a caspase-9-independent manner, (ii) is likely involved in the pro-apoptotic mitochondrial pathway leading to caspase-9 activation. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Apoptosis of bone marrow mesenchymal stem cells caused by homocysteine via activating JNK signal.

    Directory of Open Access Journals (Sweden)

    Benzhi Cai

    Full Text Available Bone marrow mesenchymal stem cells (BMSCs are capable of homing to and repair damaged myocardial tissues. Apoptosis of BMSCs in response to various pathological stimuli leads to the attenuation of healing ability of BMSCs. Plenty of evidence has shown that elevated homocysteine level is a novel independent risk factor of cardiovascular diseases. The present study was aimed to investigate whether homocysteine may induce apoptosis of BMSCs and its underlying mechanisms. Here we uncovered that homocysteine significantly inhibited the cellular viability of BMSCs. Furthermore, TUNEL, AO/EB, Hoechst 333342 and Live/Death staining demonstrated the apoptotic morphological appearance of BMSCs after homocysteine treatment. A distinct increase of ROS level was also observed in homocysteine-treated BMSCs. The blockage of ROS by DMTU and NAC prevented the apoptosis of BMSCs induced by homocysteine, indicating ROS was involved in the apoptosis of BMSCs. Moreover, homocysteine also caused the depolarization of mitochondrial membrane potential of BMSCs. Furthermore, apoptotic appearance and mitochondrial membrane potential depolarization in homocysteine-treated BMSCs was significantly reversed by JNK inhibitor but not p38 MAPK and ERK inhibitors. Western blot also confirmed that p-JNK was significantly activated after exposing BMSCs to homocysteine. Homocysteine treatment caused a significant reduction of BMSCs-secreted VEGF and IGF-1 in the culture medium. Collectively, elevated homocysteine induced the apoptosis of BMSCs via ROS-induced the activation of JNK signal, which provides more insight into the molecular mechanisms of hyperhomocysteinemia-related cardiovascular diseases.

  10. Apoptosis of Bone Marrow Mesenchymal Stem Cells Caused by Homocysteine via Activating JNK Signal

    Science.gov (United States)

    Liu, Yanju; Yang, Fan; Chen, Hongyang; Yin, Kun; Tan, Xueying; Zhu, Jiuxin; Pan, Zhenwei; Wang, Baoqiu; Lu, Yanjie

    2013-01-01

    Bone marrow mesenchymal stem cells (BMSCs) are capable of homing to and repair damaged myocardial tissues. Apoptosis of BMSCs in response to various pathological stimuli leads to the attenuation of healing ability of BMSCs. Plenty of evidence has shown that elevated homocysteine level is a novel independent risk factor of cardiovascular diseases. The present study was aimed to investigate whether homocysteine may induce apoptosis of BMSCs and its underlying mechanisms. Here we uncovered that homocysteine significantly inhibited the cellular viability of BMSCs. Furthermore, TUNEL, AO/EB, Hoechst 333342 and Live/Death staining demonstrated the apoptotic morphological appearance of BMSCs after homocysteine treatment. A distinct increase of ROS level was also observed in homocysteine-treated BMSCs. The blockage of ROS by DMTU and NAC prevented the apoptosis of BMSCs induced by homocysteine, indicating ROS was involved in the apoptosis of BMSCs. Moreover, homocysteine also caused the depolarization of mitochondrial membrane potential of BMSCs. Furthermore, apoptotic appearance and mitochondrial membrane potential depolarization in homocysteine-treated BMSCs was significantly reversed by JNK inhibitor but not p38 MAPK and ERK inhibitors. Western blot also confirmed that p-JNK was significantly activated after exposing BMSCs to homocysteine. Homocysteine treatment caused a significant reduction of BMSCs-secreted VEGF and IGF-1 in the culture medium. Collectively, elevated homocysteine induced the apoptosis of BMSCs via ROS-induced the activation of JNK signal, which provides more insight into the molecular mechanisms of hyperhomocysteinemia-related cardiovascular diseases. PMID:23667638

  11. Apoptosis and Vocal Fold Disease: Clinically Relevant Implications of Epithelial Cell Death

    Science.gov (United States)

    Novaleski, Carolyn K.; Carter, Bruce D.; Sivasankar, M. Preeti; Ridner, Sheila H.; Dietrich, Mary S.; Rousseau, Bernard

    2017-01-01

    Purpose: Vocal fold diseases affecting the epithelium have a detrimental impact on vocal function. This review article provides an overview of apoptosis, the most commonly studied type of programmed cell death. Because apoptosis can damage epithelial cells, this article examines the implications of apoptosis on diseases affecting the vocal fold…

  12. The role of cytochrome c on apoptosis induced by Anagrapha falcifera multiple nuclear polyhedrosis virus in insect Spodoptera litura cells.

    Directory of Open Access Journals (Sweden)

    Kaiyu Liu

    Full Text Available There are conflicting reports on the role of cytochrome c during insect apoptosis. Our previous studies have showed that cytochrome c released from the mitochondria was an early event by western blot analysis and caspase-3 activation was closely related to cytochrome c release during apoptosis induced by baculovirus in Spodoptera litura cells (Sl-1 cell line. In the present study, alteration in mitochondrial morphology was observed by transmission electron microscopy, and cytochrome c release from mitochondria in apoptotic Sl-1 cells induced with Anagrapha falcifera multiple nuclear polyhedrosis virus (AfMNPV has further been confirmed by immunofluoresence staining protocol, suggesting that structural disruption of mitochondria and the release of cytochrome c are important events during Lepidoptera insect cell apoptosis. We also used Sl-1 cell-free extract system and the technique of RNA interference to further investigate the role of cytochrome c in apoptotic Sl-1 cells induced by AfMNPV. Caspase-3 activity in cell-free extracts supplemented with exogenous cytochrome c was determined and showed an increase with the extension of incubation time. DsRNA-mediated silencing of cytochrome c resulted in the inhibition of apoptosis and protected the cells from AfMNPV-induced cell death. Silencing of expression of cytochrome c had a remarkable effect on pro-caspase-3 and pro-caspase-9 activation and resulted in the reduction of caspase-3 and caspase-9 activity in Sl-1 cells undergoing apoptosis. Caspase-9 inhibitor could inhibit activation of pro-caspase-3, and the inhibition of the function of Apaf-1 with FSBA blocked apoptosis, hinting that Apaf-1 could be involved in Sl-1 cell apoptosis induced by AfMNPV. Taken together, these results strongly demonstrate that cytochrome c plays an important role in apoptotic signaling pathways in Lepidopteran insect cells.

  13. PDT-induced apoptosis in bladder carcinoma cells

    Science.gov (United States)

    Bachor, Ruediger; Reich, Ella D.; Kleinschmidt, Klaus; Repassy, Denes; Hautmann, Richard E.

    1999-02-01

    Photodynamic therapy (PDT) is a highly efficient inducer of apoptosis in EY-28 bladder carcinoma cells, resulting in extensive DNA fragmentation. Bladder carcinoma cells EY-28 (Tumorbank Heidelberg, Germany) were incubated for 1 h with 1 (mu) g AamTPPn/ml or 2 (mu) g AamTPPn/ml. After incubation cells were refed with complete medium and irradiated with 0.75 J/cm2. To identify apoptotic cells, a in situ cell death detection kit POD (Boehringer Mannheim, Germany) was used. The chromatin condensation characteristic to apoptotic cells was detected by transmission electron microscopy. Using 1 (mu) g AamTPPn/ml and 2 (mu) g AamTPPn/ml (9-Acetamido-2,7,12,17- tetra-n-Porpylporphycene), respectively, and irradiation at 0.75 J/cm2, a percentage of 36.9% and 54.7%, respectively, of apoptotic cells was detected.

  14. Resveratrol inhibits vascular smooth muscle cell proliferation and induces apoptosis.

    Science.gov (United States)

    Poussier, Bertrand; Cordova, Alfredo C; Becquemin, Jean-Pierre; Sumpio, Bauer E

    2005-12-01

    In France, despite a high intake of dietary cholesterol and saturated fat, the cardiovascular death rate is one of the lowest among developed countries. This "French paradox" has been postulated to be related to the high red wine intake in France. The aim of this study was to determine the effects of resveratrol, a major polyphenol component of red wine, on vascular smooth muscle cell (SMC) proliferation in vitro. SMCs were exposed to 10(-6) to 10(-4) M resveratrol and cell proliferation was assessed by cell counting. Cell cycle analysis was done by treating cells with propidium iodide followed by flow-activated cell sorting. Apoptosis was determined by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling staining. We demonstrate that resveratrol inhibited bovine aortic SMC proliferation in a dose-dependent manner. The lowest concentration of resveratrol resulting in a significant decrease in SMC proliferation compared with control was 10(-5) M. By flow cytometry, we observed a block in the G1-S phase of the SMC cycle. Resveratrol treatment also resulted in a dose-dependent apoptosis of SMCs but had no effects on SMC morphology. The results indicated that vascular SMC proliferation could be inhibited by resveratrol through a block on G1-S phase and by an increase in apoptosis. It supports the conjecture that red wine consumption may have a beneficial effect on cardiovascular mortality. Our results suggest that resveratrol inhibits, in a dose-dependent manner, smooth muscle cell proliferation, which may help to partially explain a beneficial effect of wine drinking. This inhibition is related to an early block in the cell cycle and also to a dose-dependent apoptotic effect. The present study demonstrates that resveratrol not only is an indirect marker of a healthy life style and alimentation but may also be directly responsible for the French paradox.

  15. A role for mixed lineage kinases in granule cell apoptosis induced by cytoskeletal disruption

    DEFF Research Database (Denmark)

    Müller, Georg Johannes; Geist, Marie Aavang; Veng, Lone Merete

    2006-01-01

    Microtubule disruption by colchicine induces apoptosis in selected neuronal populations. However, little is known about the upstream death signalling events mediating the neurotoxicity. We investigated first whether colchicine-induced granule cell apoptosis activates the c-Jun N-terminal kinase...... (JNK) pathway. Cultured murine cerebellar granule cells were exposed to 1 microm colchicine for 24 h. Activation of the JNK pathway was detected by western blotting as well as immunocytochemistry using antibodies against phospho-c-Jun (p-c-Jun). Next, adult male rats were injected...... intracerebroventricularly with colchicine (10 microg), and JNK pathway activation in dentate granule cells (DGCs) was detected by antibodies against p-c-Jun. The second part of the study tested the involvement of mixed lineage kinases (MLK) as upstream activators of the JNK pathway in colchicine toxicity, using CEP-1347...

  16. Uric acid promotes apoptosis in human proximal tubule cells by oxidative stress and the activation of NADPH oxidase NOX 4.

    Directory of Open Access Journals (Sweden)

    Daniela Verzola

    Full Text Available Mild hyperuricemia has been linked to the development and progression of tubulointerstitial renal damage. However the mechanisms by which uric acid may cause these effects are poorly explored. We investigated the effect of uric acid on apoptosis and the underlying mechanisms in a human proximal tubule cell line (HK-2. Increased uric acid concentration decreased tubule cell viability and increased apoptotic cells in a dose dependent manner (up to a 7-fold increase, p<0.0001. Uric acid up-regulated Bax (+60% with respect to Ctrl; p<0.05 and down regulated X-linked inhibitor of apoptosis protein. Apoptosis was blunted by Caspase-9 but not Caspase-8 inhibition. Uric acid induced changes in the mitochondrial membrane, elevations in reactive oxygen species and a pronounced up-regulation of NOX 4 mRNA and protein (p<0.05. In addition, both reactive oxygen species production and apoptosis was prevented by the NADPH oxidase inhibitor DPI as well as by Nox 4 knockdown. URAT 1 transport inhibition by probenecid and losartan and its knock down by specific siRNA, blunted apoptosis, suggesting a URAT 1 dependent cell death. In summary, our data show that uric acid increases the permissiveness of proximal tubule kidney cells to apoptosis by triggering a pathway involving NADPH oxidase signalling and URAT 1 transport. These results might explain the chronic tubulointerstitial damage observed in hyperuricaemic states and suggest that uric acid transport in tubular cells is necessary for urate-induced effects.

  17. The novel Indole-3-formaldehyde (2-AITFEI-3-F) is involved in processes of apoptosis induction?

    Science.gov (United States)

    Karimabad, Mojgan Noroozi; Mahmoodi, Mehdi; Jafarzadeh, Abdollah; Darehkordi, Ali; Hajizadeh, Mohammad Reza; Khorramdelazad, Hossein; Falahati-Pour, Soudeh Khanamani; Hassanshahi, Gholamhossein

    2017-07-15

    Balancing between Bax and Bcl-2 plays critical roles in both proliferation and self-renewal activation of cancer cells. Indole-3-formaldehyde derivatives limit the growth and facilitate cell death in different cell systems. In this study, we introduced a novel indole derivative (2-AITFEI-3-F) with tendency to facilitate apoptosis in NB4 line in comparison to basal Indole-3-formaldehyde (I3F). The NB4 cells were cultured in RPMI1640 medium contained 2-AITFEI-3-F and I3F (15.12-1000μg/mL) for 24, 48 and 72h. Inhibition of cell proliferation was assessed by trypan blue staining technique and MTT assay. The fold changes of Bax/Bcl-2 expression against β-actin were determined by real-time-PCR technique. Western blotting analysis was also applied for evaluating the expression of Bax and Bcl2 at protein level. Data were analyzed by student t and repeated measure tests. Differences were considered significant if (P<0.01). There was a significant difference in cell viability, when various concentrations of 2-AITFEI-3-F (but similar to I3F) were used for 24, 48 and 72h in comparison to I3F regarding the cellular viability (P<0.05). Real time PCR and Western blotting analysis indicated that the gene and protein expression level of Bcl-2 down-regulated while Bax was up-regulated in compare to untreated control cells and cells treated with I3F (P<0.01). According to these findings, the novel indole derivative 2-AITFEI-3-F probably triggered apoptosis of NB4 cells by modulating Bax/Bcl-2 ratio. Furthermore, the 2-AITFEI-3-F had markedly displayed anti-cancer activity than I3F. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Cell proliferation and apoptosis in rat mammary glands following combinational exposure to bisphenol A and genistein

    International Nuclear Information System (INIS)

    Wang, Jun; Jenkins, Sarah; Lamartiniere, Coral A

    2014-01-01

    genistein exposure alone. BPA + Gen increased cell proliferation at PND21, suggesting mammary gland maturation, and decreased cell proliferation while increasing apoptosis in PND50 rats, suggesting mammary chemoprevention. Differential expression of proteins involved in regulating cell proliferation and apoptosis lend support to these chemicals, both alone and in combination, altering mammary gland cancer susceptibility

  19. Cloning and Characterization of Genes that Inhibit TRAIL-Induced Apoptosis of Breast Cancer Cells

    National Research Council Canada - National Science Library

    Shu, Hong-Bing

    2003-01-01

    ...). However, some cancer cells are resistant to TRAIL-induced apoptosis (3, 4, 6-13). The purpose of this proposed study is to clone and characterize such inhibitory genes of TRAIL-induced apoptosis...

  20. Hemizygosity for Atm and Brca1 influence the balance between cell transformation and apoptosis

    Directory of Open Access Journals (Sweden)

    Zhu Jiayun

    2010-02-01

    Full Text Available Abstract Background In recent years data from both mouse models and human tumors suggest that loss of one allele of genes involved in DNA repair pathways may play a central role in genomic instability and carcinogenesis. Additionally several examples in mouse models confirmed that loss of one allele of two functionally related genes may have an additive effect on tumor development. To understand some of the mechanisms involved, we examined the role of monoallelic loss or Atm and Brca1 on cell transformation and apoptosis induced by radiation. Methods Cell transformation and apoptosis were measured in mouse embryo fibroblasts (MEF and thymocytes respectively. Combinations of wild type and hemizygous genotypes for ATM and BRCA1 were tested in various comparisons. Results Haploinsufficiency of either ATM or BRCA1 resulted in an increase in the incidence of radiation-induced transformation of MEF and a corresponding decrease in the proportion of thymocytes dying an apoptotic death, compared with cells from wild-type animals. Combined haploinsufficiency for both genes resulted in an even larger effect on apoptosis. Conclusions Under stress, the efficiency and capacity for DNA repair mediated by the ATM/BRCA1 cell signalling network depends on the expression levels of both proteins.

  1. Hypoxia promotes apoptosis of neuronal cells through hypoxia-inducible factor-1α-microRNA-204-B-cell lymphoma-2 pathway.

    Science.gov (United States)

    Wang, Xiuwen; Li, Ji; Wu, Dongjin; Bu, Xiangpeng; Qiao, Yong

    2016-01-01

    Neuronal cells are highly sensitive to hypoxia and may be subjected to apoptosis when exposed to hypoxia. Several apoptosis-related genes and miRNAs involve in hypoxia-induced apoptosis. This study aimed to examine the role of HIF1α-miR-204-BCL-2 pathway in hypoxia-induced apoptosis in neuronal cells. Annexin V/propidium iodide assay was performed to analyze cell apoptosis in AGE1.HN and PC12 cells under hypoxic or normoxic conditions. The expression of BCL-2 and miR-204 were determined by Western blot and qRT-PCR. The effects of miR-204 overexpression or knockdown on the expression of BCL-2 were evaluated by luciferase assay and Western blot under hypoxic or normoxic conditions. HIF-1α inhibitor YC-1 and siHIF-1α were employed to determine the effect of HIF-1α on the up-regulation of miR-204 and down-regulation of BCL-2 induced by hypoxia. Apoptosis assay showed the presence of apoptosis induced by hypoxia in neuronal cells. Moreover, we found that hypoxia significantly down-regulated the expression of BCL-2, and increased the mRNA level of miR-204 in neuronal cells than that in control. Bioinformatic analysis and luciferase reporter assay demonstrated that miR-204 directly targeted and regulated the expression of BCL-2. Specifically, the expression of BCL-2 was inhibited by miR-204 mimic and enhanced by miR-204 inhibitor. Furthermore, we detected that hypoxia induced cell apoptosis via HIF-1α/miR-204/BCL-2 in neuronal cells. This study demonstrated that HIF-1α-miR-204-BCL-2 pathway contributed to apoptosis of neuronal cells induced by hypoxia, which could potentially be exploited to prevent spinal cord ischemia-reperfusion injury. © 2015 by the Society for Experimental Biology and Medicine.

  2. Apoptosis induced by radionuclide 153Sm and expression of relevant genes in three different cancer cells

    International Nuclear Information System (INIS)

    Zou Baomin; Duan Xiaoyi; Chen Wei; Hu Guoying

    2003-01-01

    To study apoptosis of PC-3, ER-75-30 and A549 cells induced by radionuclide 153 Sm and the expression of bcl-2, bax in apoptosis cells, MTT assay was used to detect the anti-tumor effect, light microscope, transmission electron microscope, flow cytometer were used to detect apoptosis, while image analysis was used to detect the expression of bcl-2 and bax. 153 Sm showed anti-tumor effect and could induce tumor cell apoptosis. Both bcl-2 and bax played an important role in apoptosis. Different kind of cells had different sensitivity to 153 Sm

  3. Regulation of apoptosis and cell cycle in irradiated mouse brain

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Yong; Song, Mi Hee; Hung, Eun Ji; Seong, Jin Sil; Suh, Chang Ok [College of Medicine, Yonsei Univ., Seoul (Korea, Republic of)

    2001-06-01

    To investigate the regulation of apoptosis and cell cycle in mouse brain irradiation. 8-week old male mice, C57B 1/6J were given whole body {gamma} -radiation with a single dose of 25 Gy using Cobalt 60 irradiator. At different times 1, 2, 4, 8 and 24hr after irradiation, mice were killed and brain tissues were collected. Apoptotic cells were scored by TUNEL assay. Expression of p53, Bcl-2, and Bax and cell cycle regulating molecules; cyclins BI, D1, E and cdk2, cdk4, p34{sup cdc2} were analysed by Western blotting. Cell cycle was analysed by flow cytometry. The peak of radiation induced apoptosis is shown at 8 hour after radiation. With a single 25 Gy irradiation, the peak of apoptotic index in C57B1/6J is 24.0{+-}0.25 (p<0.05) at 8 hour after radiation. Radiation upregulated the expression of p53/tubulin, Bax/tubulin, and Bcl-2/tubulin with 1.3, 1.1 and 1.45 fold increase, respectively were shown at the peak level at 8 hour after radiation. The levels of cell cycle regulating molecules after radiation are not changed significantly except cyclin D1 with 1.3 fold increase. Fractions of Go-G 1, G2-M and S phase in the cell cycle does not specific changes by time. In mouse brain tissue, radiation induced apoptosis is particularly shown in a specific area, subependyma. These results and lack of radiation induced changes in cell cycle offer better understanding of radiation response of normal brain tissue.

  4. Bee venom induces apoptosis and suppresses matrix metaloprotease-2 expression in human glioblastoma cells

    Directory of Open Access Journals (Sweden)

    Mohsen Sisakht

    Full Text Available Abstract Glioblastoma is the most common malignant brain tumor representing with poor prognosis, therapy resistance and high metastasis rate. Increased expression and activity of matrix metalloproteinase-2, a member of matrix metalloproteinase family proteins, has been reported in many cancers including glioblastoma. Inhibition of matrix metalloproteinase-2 expression has resulted in reduced aggression of glioblastoma tumors in several reports. In the present study, we evaluated effect of bee venom on expression and activity of matrix metalloproteinase-2 as well as potential toxicity and apoptogenic properties of bee venom on glioblastoma cells. Human A172 glioblastoma cells were treated with increasing concentrations of bee venom. Then, cell viability, apoptosis, matrix metalloproteinase-2 expression, and matrix metalloproteinase-2 activity were measured using MMT assay, propidium iodide staining, real time-PCR, and zymography, respectively. The IC50 value of bee venom was 28.5 µg/ml in which it leads to decrease of cell viability and induction of apoptosis. Incubation with bee venom also decreased the expression of matrix metalloproteinase-2 in this cell line (p < 0.05. In zymography, there was a reverse correlation between bee venom concentration and total matrix metalloproteinase-2 activity. Induction of apoptosis as well as inhibition of matrix metalloproteinase-2 activity and expression can be suggested as molecular mechanisms involved in cytotoxic and antimetastatic effects of bee venom against glioblastoma cells.

  5. FOXO3-mediated up-regulation of Bim contributes to rhein-induced cancer cell apoptosis.

    Science.gov (United States)

    Wang, Jiao; Liu, Shu; Yin, Yancun; Li, Mingjin; Wang, Bo; Yang, Li; Jiang, Yangfu

    2015-03-01

    The anthraquinone compound rhein is a natural agent in the traditional Chinese medicine rhubarb. Preclinical studies demonstrate that rhein has anticancer activity. Treatment of a variety of cancer cells with rhein may induce apoptosis. Here, we report that rhein induces atypical unfolded protein response in breast cancer MCF-7 cells and hepatoma HepG2 cells. Rhein induces CHOP expression, eIF2α phosphorylation and caspase cleavage, while it does not induce glucose-regulated protein 78 (GRP78) expression in both MCF-7 and HepG2 cells. Meanwhile, rhein inhibits thapsigargin-induced GRP78 expression and X box-binding protein 1 splicing. In addition, rhein inhibits Akt phosphorylation and stimulates FOXO transactivation activity. Rhein induces Bim expression in MCF-7 and HepG2 cells, which can be abrogated by FOXO3a knockdown. Knockdown of FOXO3a or Bim abrogates rhein-induced caspase cleavage and apoptosis. The chemical chaperone 4-phenylbutyrate acid antagonizes the induction of FOXO activation, Bim expression and caspase cleavage by rhein, indicating that protein misfolding may be involved in triggering these deleterious effects. We conclude that FOXO3a-mediated up-regulation of Bim is a key mechanism underlying rhein-induced cancer cells apoptosis.

  6. MST1 activation by curcumin mediates JNK activation, Foxo3a nuclear translocation and apoptosis in melanoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Teng, E-mail: tengyu33@yahoo.com [Department of Dermatology, Shandong Ji-ning No. 1 People’s Hospital, Shandong Province 272011 (China); Ji, Jiang [Department of Dermatology, The Second Hospital Affiliated of Soochow University, SuZhou, Jiangsu Province 215000 (China); Guo, Yong-li [Department of Oncology, Shandong Ji-ning No. 1 People’s Hospital, Shandong Province 272011 (China)

    2013-11-08

    Highlights: •Curcumin activates MST1 in melanoma cells. •MST1 mediates curcumin-induced apoptosis of melanoma cells. •ROS production is involved in curcumin-induced MST1 activation. •MST1 mediates curcumin-induced JNK activation in melanoma cells. •MST1 mediates curcumin-induced Foxo3a nuclear translocation and Bim expression. -- Abstract: Different groups including ours have shown that curcumin induces melanoma cell apoptosis, here we focused the role of mammalian Sterile 20-like kinase 1 (MST1) in it. We observed that curcumin activated MST1-dependent apoptosis in cultured melanoma cells. MST1 silencing by RNA interference (RNAi) suppressed curcumin-induced cell apoptosis, while MST1 over-expressing increased curcumin sensitivity. Meanwhile, curcumin induced reactive oxygen species (ROS) production in melanoma cells, and the ROS scavenger, N-acetyl-cysteine (NAC), almost blocked MST1 activation to suggest that ROS might be required for MST1 activation by curcumin. c-Jun N-terminal protein kinase (JNK) activation by curcumin was dependent on MST1, since MST1 inhibition by RNAi or NAC largely inhibited curcumin-induced JNK activation. Further, curcumin induced Foxo3 nuclear translocation and Bim-1 (Foxo3 target gene) expression in melanoma cells, such an effect by curcumin was inhibited by MST1 RNAi. In conclusion, we suggested that MST1 activation by curcumin mediates JNK activation, Foxo3a nuclear translocation and apoptosis in melanoma cells.

  7. MST1 activation by curcumin mediates JNK activation, Foxo3a nuclear translocation and apoptosis in melanoma cells

    International Nuclear Information System (INIS)

    Yu, Teng; Ji, Jiang; Guo, Yong-li

    2013-01-01

    Highlights: •Curcumin activates MST1 in melanoma cells. •MST1 mediates curcumin-induced apoptosis of melanoma cells. •ROS production is involved in curcumin-induced MST1 activation. •MST1 mediates curcumin-induced JNK activation in melanoma cells. •MST1 mediates curcumin-induced Foxo3a nuclear translocation and Bim expression. -- Abstract: Different groups including ours have shown that curcumin induces melanoma cell apoptosis, here we focused the role of mammalian Sterile 20-like kinase 1 (MST1) in it. We observed that curcumin activated MST1-dependent apoptosis in cultured melanoma cells. MST1 silencing by RNA interference (RNAi) suppressed curcumin-induced cell apoptosis, while MST1 over-expressing increased curcumin sensitivity. Meanwhile, curcumin induced reactive oxygen species (ROS) production in melanoma cells, and the ROS scavenger, N-acetyl-cysteine (NAC), almost blocked MST1 activation to suggest that ROS might be required for MST1 activation by curcumin. c-Jun N-terminal protein kinase (JNK) activation by curcumin was dependent on MST1, since MST1 inhibition by RNAi or NAC largely inhibited curcumin-induced JNK activation. Further, curcumin induced Foxo3 nuclear translocation and Bim-1 (Foxo3 target gene) expression in melanoma cells, such an effect by curcumin was inhibited by MST1 RNAi. In conclusion, we suggested that MST1 activation by curcumin mediates JNK activation, Foxo3a nuclear translocation and apoptosis in melanoma cells

  8. 3-Bromopyruvate and sodium citrate induce apoptosis in human gastric cancer cell line MGC-803 by inhibiting glycolysis and promoting mitochondria-regulated apoptosis pathway.

    Science.gov (United States)

    Guo, Xingyu; Zhang, Xiaodong; Wang, Tingan; Xian, Shulin; Lu, Yunfei

    2016-06-17

    Cancer cells are mainly dependent on glycolysis to generate adenosine triphosphate (ATP) and intermediates required for cell growth and proliferation. Thus, inhibition of glycolysis might be of therapeutic value in antitumor treatment. Our previously studies had found that both 3-bromopyruvate (BP) and sodium citrate (SCT) can inhibit tumor growth and proliferation in vitro and in vivo. However, the mechanism involved in the BP and SCT mediated antitumor activity is not entirely clear. In this work, it is demonstrated that BP inhibits the enzyme hexokinase (HK) activity and SCT suppresses the phosphofructokinase (PFK) activity respectively, both the two agents decrease viability, ATP generation and lactate content in the human gastric cancer cell line MGC-803. These effects are directly correlated with blockage of glycolysis. Furthermore, BP and SCT can induce the characteristic manifestations of mitochondria-regulated apoptosis, such as down-regulation of anti-apoptosis proteins Bcl-2 and Survivin, up-regulation of pro-apoptosis protein Bax, activation of caspase-3, as well as leakage of cytochrome c (Cyt-c). In summary, our results provided evidences that BP and SCT inhibit the MGC-803 cells growth and proliferation might be correlated with inhibiting glycolysis and promoting mitochondria-regulated apoptosis. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Combination of verteporfin-PDT and PI3K inhibitors enhances cell growth inhibition and apoptosis in endothelial cells

    Science.gov (United States)

    Kraus, Daniel; Chen, Bin

    2016-03-01

    Vascular targeted photodynamic therapy is a promising cancer treatment modality by ablating tumor vasculature. The effectiveness of this treatment is often compromised by regrowth of endothelial cells, which causes tumor recurrence. In this preliminary report, we showed that activated PI3K signaling was involved in endothelial cell regrowth after PDT with verteporfin and combination between verteporfin-PDT and PI3K pathway inhibitor BEZ235 induced more cell apoptosis and greater inhibition in cell proliferation. These results suggest that rational combination of verteporfin-PDT and PI3K inhibitors result in enhanced treatment outcomes.

  10. Rhein Induces Apoptosis in Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ching-Yao Chang

    2012-01-01

    Full Text Available Human breast cancers cells overexpressing HER2/neu are more aggressive tumors with poor prognosis, and resistance to chemotherapy. This study investigates antiproliferation effects of anthraquinone derivatives of rhubarb root on human breast cancer cells. Of 7 anthraquinone derivatives, only rhein showed antiproliferative and apoptotic effects on both HER2-overexpressing MCF-7 (MCF-7/HER2 and control vector MCF-7 (MCF-7/VEC cells. Rhein induced dose- and time-dependent manners increase in caspase-9-mediated apoptosis correlating with activation of ROS-mediated activation of NF-κB- and p53-signaling pathways in both cell types. Therefore, this study highlighted rhein as processing anti-proliferative activity against HER2 overexpression or HER2-basal expression in breast cancer cells and playing important roles in apoptotic induction of human breast cancer cells.

  11. A study on relationship among apoptosis rates, number of peripheral T cell subtypes and disease activity in rheumatoid arthritis.

    Science.gov (United States)

    Ji, Lanlan; Geng, Yan; Zhou, Wei; Zhang, Zhuoli

    2016-02-01

    Rheumatoid arthritis is characterized by type 17 helper T cell (Th17)/regulatory T cell (Treg) imbalance. The objective of this article is to study whether insufficient apoptosis contributes to the imbalance of Th17/Treg in rheumatoid arthritis. Twenty-one rheumatoid arthritis patients and eight healthy volunteers were involved in this study. The percentage of CD4(+) interleukin (IL)-17(+) T cells and CD4(+) transcription factor-forkhead box protein 3 (Foxp3)(+) T cells were measured by flow cytometry, and active caspase-3 labeling was used to detect early apoptosis. The number of T cell subtypes in peripheral blood between the two groups was compared, as well as the apoptotic ratio. Neither the number of Th17 nor Treg cells was significantly different between rheumatoid arthritis patients and healthy controls. However, the number of regulatory T cells positively correlated with erythrocyte sedimentation rate, Disease Activity Score of 28 joints and rheumatoid factor. For the apoptosis of T cell subtypes, the percentage of apoptotic Th17 cells was higher in peripheral blood of rheumatoid arthritis patients compared to controls. Furthermore, peripheral Th17 cells were more sensitive to apoptosis than Treg cells, but there was no difference between rheumatoid arthritis patients and controls. It seemed that there was no relationship between the number and apoptosis ratio of peripheral Th17/Treg cells. But the number of Treg cells positively correlated with disease activity. Furthermore, Th17 cells are more sensitive to apoptosis after freezing, especially in RA patients. This serendipitous finding may provide new areas for the further study of these two cell populations. © 2013 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  12. Curcumin suppresses growth of mesothelioma cells in vitro and in vivo, in part, by stimulating apoptosis.

    Science.gov (United States)

    Wang, Ying; Rishi, Arun K; Wu, Wenjuan; Polin, Lisa; Sharma, Sunita; Levi, Edi; Albelda, Steven; Pass, Harvey I; Wali, Anil

    2011-11-01

    Malignant pleural mesothelioma (MPM) is an aggressive, asbestos-related malignancy of the thoracic pleura. Although, platinum-based agents are the first line of therapy, there is an urgent need for second-line therapies to treat the drug-resistant MPM. Cell cycle as well as apoptosis pathways are frequently altered in MPM and thus remain attractive targets for intervention strategies. Curcumin, the major component in the spice turmeric, alone or in combination with other chemotherapeutics has been under investigation for a number of cancers. In this study, we investigated the biological and molecular responses of MPM cells to curcumin treatments and the mechanisms involved. Flow-cytometric analyses coupled with western immunoblotting and gene-array analyses were conducted to determine mechanisms of curcumin-dependent growth suppression of human (H2373, H2452, H2461, and H226) and murine (AB12) MPM cells. Curcumin inhibited MPM cell growth in a dose- and time-dependent manner while pretreatment of MPM cells with curcumin enhanced cisplatin efficacy. Curcumin activated the stress-activated p38 kinase, caspases 9 and 3, caused elevated levels of proapoptotic proteins Bax, stimulated PARP cleavage, and apoptosis. In addition, curcumin treatments stimulated expression of novel transducers of cell growth suppression such as CARP-1, XAF1, and SULF1 proteins. Oral administration of curcumin inhibited growth of murine MPM cell-derived tumors in vivo in part by stimulating apoptosis. Thus, curcumin targets cell cycle and promotes apoptosis to suppress MPM growth in vitro and in vivo. Our studies provide a proof-of-principle rationale for further in-depth analysis of MPM growth suppression mechanisms and their future exploitation in effective management of resistant MPM.

  13. Nickel (II)-induced cytotoxicity and apoptosis in human proximal tubule cells through a ROS- and mitochondria-mediated pathway

    International Nuclear Information System (INIS)

    Wang, Yi-Fen; Shyu, Huey-Wen; Chang, Yi-Chuang; Tseng, Wei-Chang; Huang, Yeou-Lih; Lin, Kuan-Hua; Chou, Miao-Chen; Liu, Heng-Ling; Chen, Chang-Yu

    2012-01-01

    Nickel compounds are known to be toxic and carcinogenic in kidney and lung. In this present study, we investigated the roles of reactive oxygen species (ROS) and mitochondria in nickel (II) acetate-induced cytotoxicity and apoptosis in the HK-2 human renal cell line. The results showed that the cytotoxic effects of nickel (II) involved significant cell death and DNA damage. Nickel (II) increased the generation of ROS and induced a noticeable reduction of mitochondrial membrane potential (MMP). Analysis of the sub-G1 phase showed a significant increase in apoptosis in HK-2 cells after nickel (II) treatment. Pretreatment with N-acetylcysteine (NAC) not only inhibited nickel (II)-induced cell death and DNA damage, but also significantly prevented nickel (II)-induced loss of MMP and apoptosis. Cell apoptosis triggered by nickel (II) was characterized by the reduced protein expression of Bcl-2 and Bcl-xL and the induced the protein expression of Bad, Bcl-Xs, Bax, cytochrome c and caspases 9, 3 and 6. The regulation of the expression of Bcl-2-family proteins, the release of cytochrome c and the activation of caspases 9, 3 and 6 were inhibited in the presence of NAC. These results suggest that nickel (II) induces cytotoxicity and apoptosis in HK-2 cells via ROS generation and that the mitochondria-mediated apoptotic signaling pathway may be involved in the positive regulation of nickel (II)-induced renal cytotoxicity.

  14. Nickel (II)-induced cytotoxicity and apoptosis in human proximal tubule cells through a ROS- and mitochondria-mediated pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi-Fen; Shyu, Huey-Wen [Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan (China); Chang, Yi-Chuang [Department of Nursing, Fooyin University, Kaohsiung, Taiwan (China); Tseng, Wei-Chang [Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan (China); Huang, Yeou-Lih [Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Lin, Kuan-Hua; Chou, Miao-Chen; Liu, Heng-Ling [Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan (China); Chen, Chang-Yu, E-mail: mt037@mail.fy.edu.tw [Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan (China)

    2012-03-01

    Nickel compounds are known to be toxic and carcinogenic in kidney and lung. In this present study, we investigated the roles of reactive oxygen species (ROS) and mitochondria in nickel (II) acetate-induced cytotoxicity and apoptosis in the HK-2 human renal cell line. The results showed that the cytotoxic effects of nickel (II) involved significant cell death and DNA damage. Nickel (II) increased the generation of ROS and induced a noticeable reduction of mitochondrial membrane potential (MMP). Analysis of the sub-G1 phase showed a significant increase in apoptosis in HK-2 cells after nickel (II) treatment. Pretreatment with N-acetylcysteine (NAC) not only inhibited nickel (II)-induced cell death and DNA damage, but also significantly prevented nickel (II)-induced loss of MMP and apoptosis. Cell apoptosis triggered by nickel (II) was characterized by the reduced protein expression of Bcl-2 and Bcl-xL and the induced the protein expression of Bad, Bcl-Xs, Bax, cytochrome c and caspases 9, 3 and 6. The regulation of the expression of Bcl-2-family proteins, the release of cytochrome c and the activation of caspases 9, 3 and 6 were inhibited in the presence of NAC. These results suggest that nickel (II) induces cytotoxicity and apoptosis in HK-2 cells via ROS generation and that the mitochondria-mediated apoptotic signaling pathway may be involved in the positive regulation of nickel (II)-induced renal cytotoxicity.

  15. Notch signaling is significantly suppressed in basal cell carcinomas and activation induces basal cell carcinoma cell apoptosis.

    Science.gov (United States)

    Shi, Feng-Tao; Yu, Mei; Zloty, David; Bell, Robert H; Wang, Eddy; Akhoundsadegh, Noushin; Leung, Gigi; Haegert, Anne; Carr, Nicholas; Shapiro, Jerry; McElwee, Kevin J

    2017-04-01

    A subset of basal cell carcinomas (BCCs) are directly derived from hair follicles (HFs). In some respects, HFs can be defined as 'ordered' skin appendage growths, while BCCs can be regarded as 'disordered' skin appendage growths. The aim of the present study was to examine HFs and BCCs to define the expression of common and unique signaling pathways in each skin appendage. Human nodular BCCs, along with HFs and non‑follicular skin epithelium from normal individuals, were examined using microarrays, qPCR, and immunohistochemistry. Subsequently, BCC cells and root sheath keratinocyte cells from HFs were cultured and treated with Notch signaling peptide Jagged1 (JAG1). Gene expression, protein levels, and cell apoptosis susceptibility were assessed using qPCR, immunoblotting, and flow cytometry, respectively. Specific molecular mechanisms were found to be involved in the process of cell self‑renewal in the HFs and BCCs, including Notch and Hedgehog signaling pathways. However, several key Notch signaling factors showed significant differential expression in BCCs compared with HFs. Stimulating Notch signaling with JAG1 induced apoptosis of BCC cells by increasing Fas ligand expression and downstream caspase-8 activation. The present study showed that Notch signaling pathway activity is suppressed in BCCs, and is highly expressed in HFs. Elements of the Notch pathway could, therefore, represent targets for the treatment of BCCs and potentially in hair follicle engineering.

  16. Copper oxide nanoparticles induced mitochondria mediated apoptosis in human hepatocarcinoma cells.

    Science.gov (United States)

    Siddiqui, Maqsood A; Alhadlaq, Hisham A; Ahmad, Javed; Al-Khedhairy, Abdulaziz A; Musarrat, Javed; Ahamed, Maqusood

    2013-01-01

    Copper oxide nanoparticles (CuO NPs) are heavily utilized in semiconductor devices, gas sensor, batteries, solar energy converter, microelectronics and heat transfer fluids. It has been reported that liver is one of the target organs for nanoparticles after they gain entry into the body through any of the possible routes. Recent studies have shown cytotoxic response of CuO NPs in liver cells. However, the underlying mechanism of apoptosis in liver cells due to CuO NPs exposure is largely lacking. We explored the possible mechanisms of apoptosis induced by CuO NPs in human hepatocellular carcinoma HepG2 cells. Prepared CuO NPs were spherical in shape with a smooth surface and had an average diameter of 22 nm. CuO NPs (concentration range 2-50 µg/ml) were found to induce cytotoxicity in HepG2 cells in dose-dependent manner, which was likely to be mediated through reactive oxygen species generation and oxidative stress. Tumor suppressor gene p53 and apoptotic gene caspase-3 were up-regulated due to CuO NPs exposure. Decrease in mitochondrial membrane potential with a concomitant increase in the gene expression of bax/bcl2 ratio suggested that mitochondria mediated pathway involved in CuO NPs induced apoptosis. This study has provided valuable insights into the possible mechanism of apoptosis caused by CuO NPs at in vitro level. Underlying mechanism(s) of apoptosis due to CuO NPs exposure should be further invested at in vivo level.

  17. Copper oxide nanoparticles induced mitochondria mediated apoptosis in human hepatocarcinoma cells.

    Directory of Open Access Journals (Sweden)

    Maqsood A Siddiqui

    Full Text Available Copper oxide nanoparticles (CuO NPs are heavily utilized in semiconductor devices, gas sensor, batteries, solar energy converter, microelectronics and heat transfer fluids. It has been reported that liver is one of the target organs for nanoparticles after they gain entry into the body through any of the possible routes. Recent studies have shown cytotoxic response of CuO NPs in liver cells. However, the underlying mechanism of apoptosis in liver cells due to CuO NPs exposure is largely lacking. We explored the possible mechanisms of apoptosis induced by CuO NPs in human hepatocellular carcinoma HepG2 cells. Prepared CuO NPs were spherical in shape with a smooth surface and had an average diameter of 22 nm. CuO NPs (concentration range 2-50 µg/ml were found to induce cytotoxicity in HepG2 cells in dose-dependent manner, which was likely to be mediated through reactive oxygen species generation and oxidative stress. Tumor suppressor gene p53 and apoptotic gene caspase-3 were up-regulated due to CuO NPs exposure. Decrease in mitochondrial membrane potential with a concomitant increase in the gene expression of bax/bcl2 ratio suggested that mitochondria mediated pathway involved in CuO NPs induced apoptosis. This study has provided valuable insights into the possible mechanism of apoptosis caused by CuO NPs at in vitro level. Underlying mechanism(s of apoptosis due to CuO NPs exposure should be further invested at in vivo level.

  18. Cord blood stem cell-mediated induction of apoptosis in glioma downregulates X-linked inhibitor of apoptosis protein (XIAP.

    Directory of Open Access Journals (Sweden)

    Venkata Ramesh Dasari

    2010-07-01

    Full Text Available XIAP (X-linked inhibitor of apoptosis protein is one of the most important members of the apoptosis inhibitor family. XIAP is upregulated in various malignancies, including human glioblastoma. It promotes invasion, metastasis, growth and survival of malignant cells. We hypothesized that downregulation of XIAP by human umbilical cord blood mesenchymal stem cells (hUCBSC in glioma cells would cause them to undergo apoptotic death.We observed the effect of hUCBSC on two malignant glioma cell lines (SNB19 and U251 and two glioma xenograft cell lines (4910 and 5310. In co-cultures of glioma cells with hUCBSC, proliferation of glioma cells was significantly inhibited. This is associated with increased cytotoxicity of glioma cells, which led to glioma cell death. Stem cells induced apoptosis in glioma cells, which was evaluated by TUNEL assay, FACS analyses and immunoblotting. The induction of apoptosis is associated with inhibition of XIAP in co-cultures of hUCBSC. Similar results were obtained by the treatment of glioma cells with shRNA to downregulate XIAP (siXIAP. Downregulation of XIAP resulted in activation of caspase-3 and caspase-9 to trigger apoptosis in glioma cells. Apoptosis is characterized by the loss of mitochondrial membrane potential and upregulation of mitochondrial apoptotic proteins Bax and Bad. Cell death of glioma cells was marked by downregulation of Akt and phospho-Akt molecules. We observed similar results under in vivo conditions in U251- and 5310-injected nude mice brains, which were treated with hUCBSC. Under in vivo conditions, Smac/DIABLO was found to be colocalized in the nucleus, showing that hUCBSC induced apoptosis is mediated by inhibition of XIAP and activation of Smac/DIABLO.Our results indicate that downregulation of XIAP by hUCBSC treatment induces apoptosis, which led to the death of the glioma cells and xenograft cells. This study demonstrates the therapeutic potential of XIAP and hUCBSC to treat malignant

  19. Potential targets for protecting against hippocampal cell apoptosis after transient cerebral ischemia-reperfusion injury in aged rats.

    Science.gov (United States)

    Ji, Xiangyu; Zhang, Li'na; Liu, Ran; Liu, Yingzhi; Song, Jianfang; Dong, He; Jia, Yanfang; Zhou, Zangong

    2014-06-01

    Mitochondria play an important role in neuronal apoptosis caused by cerebral ischemia, and the role is mediated by the expression of mitochondrial proteins. This study investigated the involvement of mitochondrial proteins in hippocampal cell apoptosis after transient cerebral ischemia-reperfusion injury in aged rats using a comparative proteomics strategy. Our experimental results show that the aged rat brain is sensitive to ischemia-reperfusion injury and that transient ischemia led to cell apoptosis in the hippocampus and changes in memory and cognition of aged rats. Differential proteomics analysis suggested that this phenomenon may be mediated by mitochondrial proteins associated with energy metabolism and apoptosis in aged rats. This study provides potential drug targets for the treatment of transient cerebral ischemia-reperfusion injury.

  20. Mycobacterium avium MAV2052 protein induces apoptosis in murine macrophage cells through Toll-like receptor 4.

    Science.gov (United States)

    Lee, Kang-In; Choi, Han-Gyu; Son, Yeo-Jin; Whang, Jake; Kim, Kwangwook; Jeon, Heat Sal; Park, Hye-Soo; Back, Yong Woo; Choi, Seunga; Kim, Seong-Woo; Choi, Chul Hee; Kim, Hwa-Jung

    2016-04-01

    Mycobacterium avium and its sonic extracts induce apoptosis in macrophages. However, little is known about the M. avium components regulating macrophage apoptosis. In this study, using multidimensional fractionation, we identified MAV2052 protein, which induced macrophage apoptosis in M. avium culture filtrates. The recombinant MAV2052 induced macrophage apoptosis in a caspase-dependent manner. The loss of mitochondrial transmembrane potential (ΔΨm), mitochondrial translocation of Bax, and release of cytochrome c from mitochondria were observed in macrophages treated with MAV2052. Further, reactive oxygen species (ROS) production was required for the apoptosis induced by MAV2052. In addition, ROS and mitogen-activated protein kinases were involved in MAV2052-mediated TNF-α and IL-6 production. ROS-mediated activation of apoptosis signal-regulating kinase 1 (ASK1)-JNK pathway was a major signaling pathway for MAV2052-induced apoptosis. Moreover, MAV2052 bound to Toll-like receptor (TLR) 4 molecule and MAV2052-induced ROS production, ΔΨm loss, and apoptosis were all significantly reduced in TLR4(-/-) macrophages. Altogether, our results suggest that MAV2052 induces apoptotic cell death through TLR4 dependent ROS production and JNK pathway in murine macrophages.

  1. Tumor necrosis factor-α attenuates starvation-induced apoptosis through upregulation of ferritin heavy chain in hepatocellular carcinoma cells

    International Nuclear Information System (INIS)

    Kou, Xingrui; Zhao, Qiudong; Zhao, Xue; Li, Rong; Wei, Lixin; Wu, Mengchao; Jing, Yingying; Deng, Weijie; Sun, Kai; Han, Zhipeng; Ye, Fei; Yu, Guofeng; Fan, Qingmin; Gao, Lu

    2013-01-01

    Tumor microenviroment is characteristic of inflammation, ischemia and starvation of nutrient. TNF-α, which is an extraordinarily pleiotropic cytokine, could be an endogenous tumor promoter in some tumor types. The basic objective of this study was to investigate the effects of TNF-α on the cell viability and apoptosis of hepatocellular carcinoma cells under serum starvation, and to identify the molecular mechanisms involved. For this purpose, five different concentrations of TNF-α and two different serum settings (serum-cultured and serum-deprived) were used to investigate the effects of TNF-α on the cell viability and apoptosis of Hep3B and SMMC-7721 cells. TNF-α (10 ng/ml) attenuated serum starvation-induced apoptosis of hepatocellular carcinoma cells, and autophagy conferred this process. BAY11-7082, a specific inhibitor of NF-κB, reversed the suppression of serum starvation-induced apoptosis by TNF-α. Moreover, TNF-α-induced NF-κB transactivation was suppressed by autophagy inhibitor 3-MA. In addition, TNF-α up-regulated Ferritin heavy chain (FHC) transiently by NF-κB activation and FHC levels were correlated with the TNF-α-induced protection against serum starvation-mediated apoptosis of hepatocellular carcinoma cells. Furthermore, FHC-mediated inhibition of apoptosis depended on suppressing ROS accumulation. Our findings suggested that autophagy conferred the TNF-α protection against serum starvation-mediated apoptosis of hepatocellular carcinoma cells, the mechanism involved with the activation of the TNF-α/ NF-κB /FHC signaling pathway

  2. Atmospheric-pressure plasma jet induces apoptosis involving mitochondria via generation of free radicals.

    Directory of Open Access Journals (Sweden)

    Hak Jun Ahn

    Full Text Available The plasma jet has been proposed as a novel therapeutic method for anticancer treatment. However, its biological effects and mechanism of action remain elusive. Here, we investigated its cell death effects and underlying molecular mechanisms, using air and N₂ plasma jets from a micro nozzle array. Treatment with air or N₂ plasma jets caused apoptotic death in human cervical cancer HeLa cells, simultaneously with depolarization of mitochondrial membrane potential. In addition, the plasma jets were able to generate reactive oxygen species (ROS, which function as surrogate apoptotic signals by targeting the mitochondrial membrane potential. Antioxidants or caspase inhibitors ameliorated the apoptotic cell death induced by the air and N₂ plasma jets, suggesting that the plasma jet may generate ROS as a proapoptotic cue, thus initiating mitochondria-mediated apoptosis. Taken together, our data suggest the potential employment of plasma jets as a novel therapy for cancer.

  3. Elucidation and modulation of glucocorticoid-induced apoptosis in acute lymphoblastic leukemia cells

    International Nuclear Information System (INIS)

    Eberhart, K.

    2011-01-01

    This thesis deals with the elucidation of the synergistic effect of the glucocorticoid dexamethasone and the metabolic modulator 2-deoxyglucose on apoptosis induction in two in vitro model systems of childhood acute lymphoblastic leukemia. 2-deoxyglucose accelerated the kinetics of, and increased the sensitivity to, glucocorticoid-induced apoptosis in two leukemia cell lines. In primary lymphocytes from healthy donors, in contrast, 2-deoxyglucose and dexamethasone did not act synergistically on apoptosis induction. To elucidate the molecular basis of the synergistic effect, glycolysis by means of glucose uptake, lactate production, ATP levels, glucose transporter and hexokinase expression and mitochondrial oxygen consumption was analyzed in treated vs. untreated cells. The study revealed a downregulation of gene expression of the glucose transporter GLUT1 and hexokinase 2 (HK2), release of HK2 from the outer mitochondrial membrane, as well as reduced glycolysis and mitochondrial respiration. Moreover, the analysis of the mitochondrial proteome by 2 dimensional differential gel electrophoresis after treatment with 2-deoxyglucose and dexamethasone revealed the regulation of several interesting candidate proteins involved in treatment related apoptosis. (author)

  4. Histidine deficiency attenuates cell viability in rat intestinal epithelial cells by apoptosis via mitochondrial dysfunction

    Directory of Open Access Journals (Sweden)

    Tatsunobu Matsui, M.S.

    2017-06-01

    Conclusions: This is the first report showing that histidine deficiency reduced cell viability and induced apoptosis in IEC-6 cells, and that a small amount of histidine supplementation prevented and improved the IEC-6 cell injury. This is a potential new clinical treatment against intestinal and/or gastric cell injury that would improve the patient's quality of life.

  5. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng, E-mail: oxyccc@163.com

    2015-12-04

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes. - Highlights: • TLX overexpression in MIN6 cell causes significant expression changes of 225 genes. • TLX overexpression promotes MIN6 cell proliferation and decreases cell apoptosis. • TLX overexpression does not cause impairment of insulin secretion.

  6. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells

    International Nuclear Information System (INIS)

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng

    2015-01-01

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes. - Highlights: • TLX overexpression in MIN6 cell causes significant expression changes of 225 genes. • TLX overexpression promotes MIN6 cell proliferation and decreases cell apoptosis. • TLX overexpression does not cause impairment of insulin secretion.

  7. Effects of a novel β-lapachone derivative on Trypanosoma cruzi: Parasite death involving apoptosis, autophagy and necrosis.

    Science.gov (United States)

    Dos Anjos, Danielle Oliveira; Sobral Alves, Eliomara Sousa; Gonçalves, Vinicius Tomaz; Fontes, Sheila Suarez; Nogueira, Mateus Lima; Suarez-Fontes, Ana Márcia; Neves da Costa, João Batista; Rios-Santos, Fabricio; Vannier-Santos, Marcos André

    2016-12-01

    Natural products comprise valuable sources for new antiparasitic drugs. Here we tested the effects of a novel β-lapachone derivative on Trypanosoma cruzi parasite survival and proliferation and used microscopy and cytometry techniques to approach the mechanism(s) underlying parasite death. The selectivity index determination indicate that the compound trypanocidal activity was over ten-fold more cytotoxic to epimastigotes than to macrophages or splenocytes. Scanning electron microscopy analysis revealed that the R72 β-lapachone derivative affected the T. cruzi morphology and surface topography. General plasma membrane waving and blebbing particularly on the cytostome region were observed in the R72-treated parasites. Transmission electron microscopy observations confirmed the surface damage at the cytostome opening vicinity. We also observed ultrastructural evidence of the autophagic mechanism termed macroautophagy. Some of the autophagosomes involved large portions of the parasite cytoplasm and their fusion/confluence may lead to necrotic parasite death. The remarkably enhanced frequency of autophagy triggering was confirmed by quantitating monodansylcadaverine labeling. Some cells displayed evidence of chromatin pycnosis and nuclear fragmentation were detected. This latter phenomenon was also indicated by DAPI staining of R72-treated cells. The apoptotis induction was suggested to take place in circa one-third of the parasites assessed by annexin V labeling measured by flow cytometry. TUNEL staining corroborated the apoptosis induction. Propidium iodide labeling indicate that at least 10% of the R72-treated parasites suffered necrosis within 24 h. The present data indicate that the β-lapachone derivative R72 selectively triggers T. cruzi cell death, involving both apoptosis and autophagy-induced necrosis. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Effects of a novel β–lapachone derivative on Trypanosoma cruzi: Parasite death involving apoptosis, autophagy and necrosis

    Directory of Open Access Journals (Sweden)

    Danielle Oliveira dos Anjos

    2016-12-01

    Full Text Available Natural products comprise valuable sources for new antiparasitic drugs. Here we tested the effects of a novel β–lapachone derivative on Trypanosoma cruzi parasite survival and proliferation and used microscopy and cytometry techniques to approach the mechanism(s underlying parasite death. The selectivity index determination indicate that the compound trypanocidal activity was over ten-fold more cytotoxic to epimastigotes than to macrophages or splenocytes. Scanning electron microscopy analysis revealed that the R72 β–lapachone derivative affected the T. cruzi morphology and surface topography. General plasma membrane waving and blebbing particularly on the cytostome region were observed in the R72-treated parasites. Transmission electron microscopy observations confirmed the surface damage at the cytostome opening vicinity. We also observed ultrastructural evidence of the autophagic mechanism termed macroautophagy. Some of the autophagosomes involved large portions of the parasite cytoplasm and their fusion/confluence may lead to necrotic parasite death. The remarkably enhanced frequency of autophagy triggering was confirmed by quantitating monodansylcadaverine labeling. Some cells displayed evidence of chromatin pycnosis and nuclear fragmentation were detected. This latter phenomenon was also indicated by DAPI staining of R72-treated cells. The apoptotis induction was suggested to take place in circa one-third of the parasites assessed by annexin V labeling measured by flow cytometry. TUNEL staining corroborated the apoptosis induction. Propidium iodide labeling indicate that at least 10% of the R72-treated parasites suffered necrosis within 24 h. The present data indicate that the β–lapachone derivative R72 selectively triggers T. cruzi cell death, involving both apoptosis and autophagy-induced necrosis.

  9. Repression of SRF target genes is critical for Myc-dependent apoptosis of epithelial cells

    Science.gov (United States)

    Wiese, Katrin E; Haikala, Heidi M; von Eyss, Björn; Wolf, Elmar; Esnault, Cyril; Rosenwald, Andreas; Treisman, Richard; Klefström, Juha; Eilers, Martin

    2015-01-01

    Oncogenic levels of Myc expression sensitize cells to multiple apoptotic stimuli, and this protects long-lived organisms from cancer development. How cells discriminate physiological from supraphysiological levels of Myc is largely unknown. Here, we show that induction of apoptosis by Myc in breast epithelial cells requires association of Myc with Miz1. Gene expression and ChIP-Sequencing experiments show that high levels of Myc invade target sites that lack consensus E-boxes in a complex with Miz1 and repress transcription. Myc/Miz1-repressed genes encode proteins involved in cell adhesion and migration and include several integrins. Promoters of repressed genes are enriched for binding sites of the serum-response factor (SRF). Restoring SRF activity antagonizes Myc repression of SRF target genes, attenuates Myc-induced apoptosis, and reverts a Myc-dependent decrease in Akt phosphorylation and activity, a well-characterized suppressor of Myc-induced apoptosis. We propose that high levels of Myc engage Miz1 in repressive DNA binding complexes and suppress an SRF-dependent transcriptional program that supports survival of epithelial cells. PMID:25896507

  10. Psidium guajava L. anti-neoplastic effects: induction of apoptosis and cell differentiation.

    Science.gov (United States)

    Bontempo, P; Doto, A; Miceli, M; Mita, L; Benedetti, R; Nebbioso, A; Veglione, M; Rigano, D; Cioffi, M; Sica, V; Molinari, A M; Altucci, L

    2012-02-01

    Curative properties of medicinal plants such as Psidium guajava L. (Myrtaceae) have often been indicated by epidemiological studies on populations in which these fruits are consumed daily. However, complete characterization of the active principles responsible for this ability has never been performed. Here, we have characterized P. guajava's anti-cancer potential and identified the parts of the fruit involved in its anti-neoplastic action. We studied morphology of our cells, cell cycle characteristics and apoptosis and performed immunostaining, differentiation and western blot analyses. We report that the P. guajava extract exerted anti-cancer control on both haematological and solid neoplasias. P. guajava extract's anti-tumour properties were found to be tightly bound to induction of apoptosis and differentiation. Use of ex vivo myeloid leukaemia blasts corroborated that P. guajava was able to induce cell death but did not exhibit anti-cancer effects on all malignant cells investigated, indicating selective activity against certain types of tumour. Analyses of P. guajava pulp, peel and seeds identified the pulp as being the most relevant component for causing cell cycle arrest and apoptosis, whereas peel was responsible for causing cell differentiation. P. guajava itself and its pulp-derived extract were found to induce apoptosis accompanied by caspase activation and p16, p21, Fas ligand (FASL TNF super-family, member 6), Bcl-2-associated agonist of cell death (BAD) and tumour necrosis factor receptor super-family, member 10b (DR5), overexpression. Our findings showed that P. guajava L. extract was able to exert anti-cancer activity on cultures in vitro and ex vivo, supporting the hypothesis of its anti malignant pro-apoptotic modulation. © 2011 Blackwell Publishing Ltd.

  11. Studies on hematopoietic cell apoptosis and the relative gene expression in irradiated mouse bone marrow

    International Nuclear Information System (INIS)

    Peng Ruiyun; Wang Dewen; Xiong Chengqi; Gao Yabing; Yang Hong; Cui Yufang; Wang Baozhen

    2001-01-01

    Objective: To study apoptosis and expressions bcl-2 and p53 in irradiated mouse bone marrow. Methods: LACA mice were irradiated with 60 Co γ-rays. By means of in situ terminal labelling, in situ hybridization and image analysis, the authors studied radiation-induced apoptosis of hematopoietic cells and the expressions of bcl-2 and p53. Results: The characteristics of apoptosis appeared in hematopoietic cells at 6 hrs after irradiation. The expression of bcl-2 was obviously decreased when apoptosis of hematopoietic cells occurred, whereas it increased in the early recovery phase; p53 protein increased during both apoptosis of hematopoietic cells and the recovery phase, and mutant type p53 DNA was positive only in the recovery phase. Conclusion: Radiation may induced apoptosis of hematopoietic cells in a dose-dependent manner; Both bcl-2 and p53 genes play an important role in apoptosis and recovery phase

  12. Involvement of BAFF and APRIL in Resistance to Apoptosis of Acute Myeloid Leukemia.

    Science.gov (United States)

    Bolkun, Lukasz; Grubczak, Kamil; Schneider, Gabriela; Zembko, Paula; Radzikowska, Urszula; Singh, Paulina; Kloczko, Janusz; Ratajczak, Mariusz Z; Moniuszko, Marcin; Eljaszewicz, Andrzej

    2016-01-01

    B-cell activation factor of the TNF family (BAFF), and a proliferation-inducing ligand (APRIL), two members of the tumour necrosis factor (TNF) superfamily, beyond playing a significant role in normal B-cell development, promote survival and proliferation of malignant B cells. Both ligands interact with 3 receptors: BAFF-R, specific to BAFF, and TACI and BCMA which are shared by both BAFF and APRIL. Here we wished to investigate the potential role of these proteins in resistance of acute myeloid leukaemia (AML) blasts to apoptosis. We found that the levels of both mRNA and proteins of APRIL, BAFF and their receptors were expressed in leukaemic cells of 24 newly diagnosed, untreated AML patients. We also demonstrated that patients who did not further respond to induction therapy (NR) presented with significantly higher baseline APRIL and BAFF expression on AML blasts as compared to these subjects who, after induction, achieved complete remission (CR) following induction therapy. Moreover, we observed striking differences in baseline levels of BCMA between CR and NR patients as we did not find detectable expression of this receptor in the latter group of patients. Interestingly, we found that AML blasts collected at baseline from NR patients cultured in presence of exogenous BAFF and APRIL were significantly more resistant to spontaneous or drug-induced apoptosis as compared with cells derived from CR patients. Altogether, our data confirm that BAFF and APRIL signaling play important role in AML pathogenesis and susceptibility to cytotoxic therapy while measuring of BCMA expression on AML cells can become a novel prognostic factor for chemotherapy response.

  13. Inhibition of apoptosis in T cells expressing human T cell leukemia virus type I Tax.

    Science.gov (United States)

    Copeland, K F; Haaksma, A G; Goudsmit, J; Krammer, P H; Heeney, J L

    1994-10-01

    This study set out to determine whether T cell dysfunction associated with HTLV-I led to increased sensitivity of infected cells to apoptosis or, owing to their potential to develop ATL, if infected cells would become resistant to this process. To test this hypothesis we utilized the monoclonal antibody anti-APO-1, which has been demonstrated to induce apoptosis in human T cells. Human T cell lines expressing HTLV-I showed reduced susceptibility to anti-APO-1-induced apoptosis despite expression of high levels of cell surface APO-1. Cell-free supernatant of the Tax-expressing cell line C8166 and heat-inactivated supernatant of the HTLV-I-producing cell line MT2 transferred increased resistance to anti-APO-1 to susceptible Jurkat T cells. Susceptible T cells transfected with an HTLV-I Tax-expressing vector or treated with soluble Tax protein became less susceptible to anti-APO-1-induced cell death. Furthermore, primary human lymphocytes treated with soluble Tax were less susceptible to apoptosis induced by anti-APO-1. The protective effect of Tax in T cell lines and primary human lymphocytes was reversed by the addition of anti-Tax antibodies. Anti-APO-1-induced apoptosis was also found to be inhibited in Jurkat cells by the induction of protein kinase C (PKC) with 12-O-tetradecanoylphorbol-13-acetate (TPA). Resistance to apoptosis conferred by HTLV-I Tax and an active PKC pathway may be factors contributing to the survival of dysregulated HTLV-I-infected T cells prone to the development of adult T cell leukemia.

  14. Apoptosis induction is involved in UVA-induced autolysis in sea cucumber Stichopus japonicus.

    Science.gov (United States)

    Qi, Hang; Fu, Hui; Dong, Xiufang; Feng, Dingding; Li, Nan; Wen, Chengrong; Nakamura, Yoshimasa; Zhu, Beiwei

    2016-05-01

    Autolysis easily happens to sea cucumber (Stichopus japonicus, S. japonicus) for external stimulus like UV exposure causing heavy economic losses. Therefore, it is meaningful to reveal the mechanism of S. japonicas autolysis. In the present study, to examine the involvement of apoptosis induction in UVA-induced autolysis of S. japonicas, we investigated the biochemical events including the DNA fragmentation, caspase-3 activation, mitogen-activated protein kinases (MAPKs) phosphorylation and free radical formation. Substantial morphological changes such as intestine vomiting and dermatolysis were observed in S. japonicus during the incubation after 1-h UVA irradiation (10W/m(2)). The degradation of the structural proteins and enhancement of cathepsin L activity were also detected, suggesting the profound impact of proteolysis caused by the UVA irradiation even for 1h. Furthermore, the DNA fragmentation and specific activity of caspase-3 was increased up to 12h after UVA irradiation. The levels of phosphorylated p38 mitogen activated protein kinase (MAPK) and phosphorylated c-Jun.-N-terminal kinase (JNK) were significantly increased by the UVA irradiation for 1h. An electron spin resonance (ESR) analysis revealed that UVA enhanced the free radical formation in S. japonicas, even through we could not identify the attributed species. These results suggest that UVA-induced autolysis in S. japonicas at least partially involves the oxidative stress-sensitive apoptosis induction pathway. These data present a novel insight into the mechanisms of sea cucumber autolysis induced by external stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Radiation-induced apoptosis in undifferentiated cells of the developing brain as a biological defense mechanism

    International Nuclear Information System (INIS)

    Inouye, Minioru; Tamaru, Masao.

    1994-01-01

    Undifferentiated neural (UN) cells of the developing mammalian brain are highly sensitive to the lethal effects of ionizing radiation. Nuclear and cytoplasmic condensation, transglutaminase activation, and internucleosomal DNA cleavage reveal radiation-induced cell death in the ventricular zone of the cerebral mantle and external granular layer of the cerebellum to be due to apoptosis. A statistically significant increase of cell mortality can be induced by 0.03 Gy X-irradiation, and the mortality increases linearly with increasing doses. It is not changed by split doses, probably because of the very slow repair of cellular damage and a lack of adaptive response. Although extensive apoptosis in the UN cell population results in microcephaly and mental retardation, it possesses the ability to recover from a considerable cell loss and to form the normal structure of the central nervous system. The number of cell deaths needed to induce tissue adnormalities in the adult murine brain rises in the range of 15-25% of the germinal cell population; with the threshold doses at about 0.3 Gy for cerebral anomalies and 1 Gy for cerebellar abnormalities. Threshold level is similarly suggested in prenatally exposed A-bomb survivors. High radiosensitivity of UN cells is assumed to be a manifestation of the ability of the cell to commit suicide when injured. Repeated replication of DNA and extensive gene expression are required in future proliferation and differentiation. Once an abnormality in DNA was induced and fixed in the UN cell, it would be greatly amplified and prove a danger in producing malformations and tumors. These cells would thus commit suicide for the benefit of the individual to eliminate their acquired genetic abnormalities rather than make DNA repair. UN cells in the developing brain are highly radiosensitive and readily involved in apoptosis. Paradoxically, however, this may be to protect individuals against teratogenesis and tumorigenesis. (J.P.N.)

  16. Effects of Thymus serpyllum extract on cell proliferation, apoptosis and epigenetic events in human breast cancer cells.

    Science.gov (United States)

    Bozkurt, Emir; Atmaca, Harika; Kisim, Asli; Uzunoglu, Selim; Uslu, Ruchan; Karaca, Burcak

    2012-01-01

    Thymus (T.) serpyllum (wild thyme) is an aromatic medicinal plant due to its several biological properties, including anticancer activity. Breast cancer is one of the most common malignancies and increasing evidence supports that it is not only a genetic but also an epigenetic disease. Epigenetics investigates changes in gene expression caused by mechanisms that do not involve alterations in DNA sequence. DNA methylation and histone acetylation are the most widely studied epigenetic changes in cancer cells. This study evaluated the effects of T. serpyllum on apoptosis and epigenetic events in breast cancer cells. XTT cell viability assay was used to determine cytotoxicity. DNA fragmentation and caspase 3/7 activity assays were used in the assesment of apoptosis. DNA methyltransferase (DNMT) and histone deacetylase (HDAC) activities were evaluated by ELISA and verified by qRT-PCR. T. serpyllum extract induced significant cytotoxicity in breast cancer cells (MCF-7 and MDA-MB-231) but not in normal cells. It also induced apoptosis and inhibited the DNMT and HDAC activities in MDA-MB-231 cells. In the present study, the first preliminary data on the effects of the methanolic extract of T. serpyllum in normal and breast cancer cells were obtained and suggest that T. serpyllum may be a promising candidate in the development of novel therapeutic drugs for breast cancer treatment.

  17. Suppression of ICE and Apoptosis in Mammary Epithelial Cells by Extracellular Matrix

    Energy Technology Data Exchange (ETDEWEB)

    Boudreau, Nancy; Sympson, C. J.; Werb, Zena; Bissell, Mina J.

    1994-12-01

    Apoptosis (programmed cell death) plays a major role in development and tissue regeneration. Basement membrane extracellular matrix (ECM), but not fibronectin or collagen, was shown to suppress apoptosis of mammary epithelial cells in tissue culture and in vivo. Apoptosis was induced by antibodies to beta 1 integrins or by overexpression of stromelysin-1, which degrades ECM. Expression of interleukin-1 beta converting enzyme (ICE) correlated with the loss of ECM, and inhibitors of ICE activity prevented apoptosis. These results suggest that ECM regulates apoptosis in mammary epithelial cells through an integrin-dependent negative regulation of ICE expression.

  18. Involvement of NF-κB and HSP70 signaling pathways in the apoptosis of MDA-MB-231 cells induced by a prenylated xanthone compound, α-mangostin, from Cratoxylum arborescens [Corrigendum

    Directory of Open Access Journals (Sweden)

    Ibrahim MY

    2015-06-01

    Full Text Available Ibrahim MY, Hashim NM, Mohan S, et al. Drug Des Devel Ther. 2014;8:2193–2211. On page 2193, author affiliations, “Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia” should be “Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia”. Introduction, first paragraph, the text should read: “Breast cancer has become a major cause of morbidity and mortality in women globally. The American Cancer Society (ACS reported that breast cancer incidence has an estimation of 26% of all new cancer cases, which is the highest in ratio among all the cancers in American women.1 The National Cancer Registry (NCR in Malaysia has reported that one in twenty Malaysian women are at a risk of acquiring breast in their lifetime.2 The incidence rate in Malaysia is still considered low if compared to Europe and United States.3 Up to 70% of breast cancer development causes occur in women is reported to be of environmental factors and lifestyle.4,5”  Introduction, second paragraph, first sentence, the text should read: “Radiation therapy has become a valuable tool among cancer treatment strategies for the control of local and regional diseases after 1960 with the invention of the linear accelerator, but, like surgery, radiation therapy alone cannot enucleate metastatic cancer.”  Discussion, first paragraph, first sentence, the text should read: “Apoptosis has a vital role in many functions, ranging from fetal development to adult tissue homeostasis.32”   Read the original article

  19. Curcumin induces apoptosis-independent death in oesophageal cancer cells.

    LENUS (Irish Health Repository)

    O'Sullivan-Coyne, G

    2012-01-31

    BACKGROUND: Oesophageal cancer incidence is increasing and survival rates remain extremely poor. Natural agents with potential for chemoprevention include the phytochemical curcumin (diferuloylmethane). We have examined the effects of curcumin on a panel of oesophageal cancer cell lines. METHODS: MTT (3-(4,5-dimethyldiazol-2-yl)-2,5 diphenyl tetrazolium bromide) assays and propidium iodide staining were used to assess viability and DNA content, respectively. Mitotic catastrophe (MC), apoptosis and autophagy were defined by both morphological criteria and markers such as MPM-2, caspase 3 cleavage and monodansylcadaverine (MDC) staining. Cyclin B and poly-ubiquitinated proteins were assessed by western blotting. RESULTS: Curcumin treatment reduces viability of all cell lines within 24 h of treatment in a 5-50 muM range. Cytotoxicity is associated with accumulation in G2\\/M cell-cycle phases and distinct chromatin morphology, consistent with MC. Caspase-3 activation was detected in two out of four cell lines, but was a minor event. The addition of a caspase inhibitor zVAD had a marginal or no effect on cell viability, indicating predominance of a non-apoptotic form of cell death. In two cell lines, features of both MC and autophagy were apparent. Curcumin-responsive cells were found to accumulate poly-ubiquitinated proteins and cyclin B, consistent with a disturbance of the ubiquitin-proteasome system. This effect on a key cell-cycle checkpoint regulator may be responsible for the mitotic disturbances and consequent cytotoxicity of this drug. CONCLUSION: Curcumin can induce cell death by a mechanism that is not reliant on apoptosis induction, and thus represents a promising anticancer agent for prevention and treatment of oesophageal cancer.

  20. Curcumin induces apoptosis-independent death in oesophageal cancer cells.

    LENUS (Irish Health Repository)

    O'Sullivan-Coyne, G

    2009-10-06

    Background:Oesophageal cancer incidence is increasing and survival rates remain extremely poor. Natural agents with potential for chemoprevention include the phytochemical curcumin (diferuloylmethane). We have examined the effects of curcumin on a panel of oesophageal cancer cell lines.Methods:MTT (3-(4,5-dimethyldiazol-2-yl)-2,5 diphenyl tetrazolium bromide) assays and propidium iodide staining were used to assess viability and DNA content, respectively. Mitotic catastrophe (MC), apoptosis and autophagy were defined by both morphological criteria and markers such as MPM-2, caspase 3 cleavage and monodansylcadaverine (MDC) staining. Cyclin B and poly-ubiquitinated proteins were assessed by western blotting.Results:Curcumin treatment reduces viability of all cell lines within 24 h of treatment in a 5-50 muM range. Cytotoxicity is associated with accumulation in G2\\/M cell-cycle phases and distinct chromatin morphology, consistent with MC. Caspase-3 activation was detected in two out of four cell lines, but was a minor event. The addition of a caspase inhibitor zVAD had a marginal or no effect on cell viability, indicating predominance of a non-apoptotic form of cell death. In two cell lines, features of both MC and autophagy were apparent. Curcumin-responsive cells were found to accumulate poly-ubiquitinated proteins and cyclin B, consistent with a disturbance of the ubiquitin-proteasome system. This effect on a key cell-cycle checkpoint regulator may be responsible for the mitotic disturbances and consequent cytotoxicity of this drug.Conclusion:Curcumin can induce cell death by a mechanism that is not reliant on apoptosis induction, and thus represents a promising anticancer agent for prevention and treatment of oesophageal cancer.British Journal of Cancer advance online publication, 6 October 2009; doi:10.1038\\/sj.bjc.6605308 www.bjcancer.com.

  1. Withaferin A Induces Oxidative Stress-Mediated Apoptosis and DNA Damage in Oral Cancer Cells

    Science.gov (United States)

    Chang, Hsueh-Wei; Li, Ruei-Nian; Wang, Hui-Ru; Liu, Jing-Ru; Tang, Jen-Yang; Huang, Hurng-Wern; Chan, Yu-Hsuan; Yen, Ching-Yu

    2017-01-01

    Withaferin A (WFA) is one of the most active steroidal lactones with reactive oxygen species (ROS) modulating effects against several types of cancer. ROS regulation involves selective killing. However, the anticancer and selective killing effects of WFA against oral cancer cells remain unclear. We evaluated whether the killing ability of WFA is selective, and we explored its mechanism against oral cancer cells. An MTS tetrazolium cell proliferation assay confirmed that WFA selectively killed two oral cancer cells (Ca9-22 and CAL 27) rather than normal oral cells (HGF-1). WFA also induced apoptosis of Ca9-22 cells, which was measured by flow cytometry for subG1 percentage, annexin V expression, and pan-caspase activity, as well as western blotting for caspases 1, 8, and 9 activations. Flow cytometry analysis shows that WFA-treated Ca9-22 oral cancer cells induced G2/M cell cycle arrest, ROS production, mitochondrial membrane depolarization, and phosphorylated histone H2A.X (γH2AX)-based DNA damage. Moreover, pretreating Ca9-22 cells with N-acetylcysteine (NAC) rescued WFA-induced selective killing, apoptosis, G2/M arrest, oxidative stress, and DNA damage. We conclude that WFA induced oxidative stress-mediated selective killing of oral cancer cells. PMID:28936177

  2. Insufficient Apaf-1 expression in early stages of neural differentiation of human embryonic stem cells might protect them from apoptosis.

    Science.gov (United States)

    Karimzadeh, Somayeh; Hosseinkhani, Saman; Fathi, Ali; Ataei, Farangis; Baharvand, Hossein

    2018-03-01

    Recent evidence suggests that mitochondrial apoptosis regulators and executioners may regulate differentiation, without being involved in cell death. However, the involved factors and their roles in differentiation and apoptosis are still not fully determined. In the present study, we compared mitochondrial pathway of cell death during early neural differentiation from human embryonic stem cells (hESCs). Our results demonstrated that ROS generation, cytosolic cytochrome c release, caspases activation and rise in p53 protein level occurred upon either neural or apoptosis induction in hESCs. However, unlike apoptosis, no remarkable increase in apoptotic protease activating factor-1 (Apaf-1) level at early stages of differentiation was observed. Also the caspase-like activity of caspase-9 and caspase-3/7 were seen less than apoptosis. The results suggest that low levels of Apaf-1 as an adaptor protein might be considered as a possible regulatory barrier by which differentiating cells control cell death upon rise in ROS production and cytochrome c release from mitochondria. Better understanding of mechanisms via which mitochondria-mediated apoptotic pathway promote neural differentiation can result in development of novel therapeutic approaches. Copyright © 2018 Elsevier GmbH. All rights reserved.

  3. Induction of Apoptosis by 11-Dehydrosinulariolide via Mitochondrial Dysregulation and ER Stress Pathways in Human Melanoma Cells

    Directory of Open Access Journals (Sweden)

    Jeff Yi-Fu Chen

    2012-08-01

    Full Text Available In this study the isolated compound 11-dehydrosinulariolide from soft coral Sinularia leptoclados possessed anti-proliferative, anti-migratory and apoptosis-inducing activities against A2058 melanoma cells. Anti-tumor effects of 11-dehydrosinulariolide were determined by MTT assay, cell migration assay and flow cytometry. Growth and migration of melanoma cells were dose-dependently inhibited by 2–8 μg/mL 11-dehydrosinulariolide. Flow cytometric data indicated that 11-dehydrosinulariolide induces both early and late apoptosis in melanoma cells. It was found that the apoptosis induced by 11-dehydrosinulariolide is relevant to mitochondrial-mediated apoptosis via caspase-dependent pathways, elucidated by loss of mitochondrial membrane potential (∆Ym, release of cytochrome C, activation of caspase-3/-9 and Bax as well as suppression of Bcl-2/Bcl-xL. The cleavage of PARP-1 suggested partial involvement of caspase-independent pathways. Immunoblotting data displayed up-regulations of PERK/eIF2α/ATF4/CHOP and ATF6/CHOP coupling with elevation of ER stress chaperones GRP78, GRP94, calnexin, calreticulin and PDI, implicating the involvement of these factors in ER stress-mediated apoptosis induced by 11-dehydrosinulariolide. The abolishment of apoptotic events after pre-treatment with salubrinal indicated that ER stress-mediated apoptosis is also induced by 11-dehydrosinulariolide against melanoma cells. The data in this study suggest that 11-dehydrosinulariolide potentially induces apoptosis against melanoma cells via mitochondrial dysregulation and ER stress pathways.

  4. Induction of Apoptosis by 11-Dehydrosinulariolide via Mitochondrial Dysregulation and ER Stress Pathways in Human Melanoma Cells

    Science.gov (United States)

    Su, Tzu-Rong; Tsai, Feng-Jen; Lin, Jen-Jie; Huang, Han Hsiang; Chiu, Chien-Chih; Su, Jui-Hsin; Yang, Ya-Ting; Chen, Jeff Yi-Fu; Wong, Bing-Sang; Wu, Yu-Jen

    2012-01-01

    In this study the isolated compound 11-dehydrosinulariolide from soft coral Sinularia leptoclados possessed anti-proliferative, anti-migratory and apoptosis-inducing activities against A2058 melanoma cells. Anti-tumor effects of 11-dehydrosinulariolide were determined by MTT assay, cell migration assay and flow cytometry. Growth and migration of melanoma cells were dose-dependently inhibited by 2–8 μg/mL 11-dehydrosinulariolide. Flow cytometric data indicated that 11-dehydrosinulariolide induces both early and late apoptosis in melanoma cells. It was found that the apoptosis induced by 11-dehydrosinulariolide is relevant to mitochondrial-mediated apoptosis via caspase-dependent pathways, elucidated by loss of mitochondrial membrane potential (∆Ψm), release of cytochrome C, activation of caspase-3/-9 and Bax as well as suppression of Bcl-2/Bcl-xL. The cleavage of PARP-1 suggested partial involvement of caspase-independent pathways. Immunoblotting data displayed up-regulations of PERK/eIF2α/ATF4/CHOP and ATF6/CHOP coupling with elevation of ER stress chaperones GRP78, GRP94, calnexin, calreticulin and PDI, implicating the involvement of these factors in ER stress-mediated apoptosis induced by 11-dehydrosinulariolide. The abolishment of apoptotic events after pre-treatment with salubrinal indicated that ER stress-mediated apoptosis is also induced by 11-dehydrosinulariolide against melanoma cells. The data in this study suggest that 11-dehydrosinulariolide potentially induces apoptosis against melanoma cells via mitochondrial dysregulation and ER stress pathways. PMID:23015779

  5. Terpinen-4-ol Induces Apoptosis in Human Nonsmall Cell Lung Cancer In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Chieh-Shan Wu

    2012-01-01

    Full Text Available Terpinen-4-ol, a monoterpene component of the essential oils of several aromatic plants, exhibits antitumor effects. In this study, the antitumor effects of terpinen-4-ol and the cellular and molecular mechanisms responsible for it were evaluated and studied, respectively on human nonsmall cell lung cancer (NSCLC cells. Our results indicated that terpinen-4-ol elicited a dose-dependent cytotoxic effect, as determined by MTT assay. Increased sub-G1 population and annexin-V binding, activation of caspases 9 and 3, cleavage of poly(ADPribose polymerase (PARP, and a decrease of mitochondrial membrane potential (MMP indicated involvement of the mitochondrial apoptotic pathway in terpinen-4-ol-treated A549 and CL1-0 cells. Elevation of the Bax/Bcl-2 ratio and a decrease in IAP family proteins XIAP and survivin were also observed following terpinen-4-ol treatment. Notably, terpinen-4-ol was able to increase p53 levels in A549 and CL1-0 cells. Diminution of p53 by RNA interference induced necrosis instead of apoptosis in A549 cells following terpinen-4-ol treatment, indicating that terpinen-4-ol-elicited apoptosis is p53-dependent. Moreover, intratumoral administration of terpinen-4-ol significantly suppressed the growth of s.c. A549 xenografts by inducing apoptosis, as confirmed by TUNEL assay. Collectively, these data provide insight into the molecular mechanisms underlying terpinen-4-ol-induced apoptosis in NSCLC cells, rendering this compound a potential anticancer drug for NSCLC.

  6. Restraining reactive oxygen species in Listeria monocytogenes promotes the apoptosis of glial cells.

    Science.gov (United States)

    Li, Sen; Li, Yixuan; Chen, Guowei; Zhang, Jingchen; Xu, Fei; Wu, Man

    2017-07-01

    Listeria monocytogenes is a facultative anaerobic foodborne pathogen that can traverse the blood-brain barrier and cause brain infection. L. monocytogenes infection induces host cell apoptosis in several cell types. In this study, we investigated the apoptosis of human glioma cell line U251 invaded by L. monocytogenes and evaluated the function of bacterial reactive oxygen species (ROS) during infection. Bacterial ROS level was reduced by carrying out treatment with N-acetyl cysteine (NAC) and diphenyleneiodonium chloride (DPI). After infection, the apoptosis of U251 cells was examined by flow cytometry assay and propidium iodide staining. DPI and NAC efficiently decreased ROS level in L. monocytogenes without affecting bacterial growth. Moreover, the apoptosis of glial cells was enhanced upon invasion of DPI- and NAC-pretreated L. monocytogenes. Results indicate that the apoptosis of glial cells can be induced by L. monocytogenes, and that the inhibition of bacterial ROS increases the apoptosis of host cells.

  7. PPARα and the regulation of cell division and apoptosis

    International Nuclear Information System (INIS)

    Roberts, R.A.; Chevalier, S.; Hasmall, S.C.; James, N.H.; Cosulich, S.C.; Macdonald, N.

    2002-01-01

    Peroxisome proliferators (PPs) such as the hypolipidaemic drug, nafenopin and the phthalate plasticiser 2-diethylhexylphthalate induce rodent hepatocyte cell proliferation and suppress apoptosis leading to tumours. PPs act via the nuclear hormone receptor peroxisome proliferator activated receptor α (PPARα) which directly regulates genes implicated in the response to PPs such as the peroxisomal gene acyl CoA oxidase. As expected for xenobiotics that perturb proliferation, PPs alter expression of cell cycle regulatory proteins. However, the ability to alter expression of cyclins and cyclin-dependent kinases is shared by physiological hepatic mitogens such as epidermal growth factor and is thus unlikely to be specific to the PP-induced aberrant growth associated with hepatocarcinogenesis. Recent evidence suggests that the response of hepatocytes to PPs is not only dependent upon PPARα but also on the trophic environment provided by nonparenchymal cells and by cytokines such as tumour necrosis factor α. Additionally, the ability of PPs to suppress apoptosis and induce proliferation depends upon survival signalling mediated by p38 mitogen activated protein kinase. The cross talk between PPARα-mediated transcription, survival signalling and cell cycle will be discussed with particular emphasis on relevance to toxicology

  8. Olive Oil-Supplemented Lipid Emulsion Induces CELF1 Expression and Promotes Apoptosis in Caco-2 Cells

    Directory of Open Access Journals (Sweden)

    Jun-Kai Yan

    2017-02-01

    Full Text Available Background and Aims: Parenterally-administered lipid emulsion (LE is a key cause of enterocyte apoptosis under total parenteral nutrition, yet the pathogenesis has not been fully understood. CUGBP, Elav-like family member 1 (CELF1 has been recently identified as a crucial modulator of apoptosis, and thus this study sought to investigate its role in the LE-induced apoptosis in vitro. Methods: Caco-2 cells were used as an in vitro model. The cells were treated with varying LEs derived from soybean oil, olive oil or fish oil, and changes in the apoptosis and CELF1 expression were assessed. Rescue study was performed using transient knockdown of CELF1 with specific siRNA prior to LE treatment. Regulation of CELF1 by LE treatment was studied using quantitative real-time PCR and Western blotting. Results: All the LEs up-regulated CELF1expression and induced apoptosis, but only olive oil-supplemented lipid emulsion (OOLE-induced apoptosis was attenuated by depletion of CELF1. Up-regulation of apoptosis-inducing factor (AIF was involved in OOLE-induced CELF1 dependent apoptosis. The protein expression of CELF1 was up-regulated by OOLE in a dose- and time-dependent manner, but the mRNA expression of CELF1 was unchanged. Analysis by polysomal profiling and nascent protein synthesis revealed that the regulation of CELF1 by OOLE treatment was mediated by directly accelerating its protein translation. Conclusion: OOLE-induces apoptosis in Caco-2 cells partially through up-regulation of CELF1.

  9. Acetylbritannilactone induces G1 arrest and apoptosis in vascular smooth muscle cells.

    Science.gov (United States)

    Liu, Bin; Han, Mei; Sun, Rong-Hua; Wang, Jun-Jie; Liu, Yue-Ping; Wen, Jin-Kun

    2011-05-19

    The present study was designed to determine the effects of Acetylbritannilactone (ABL), a naturally occurring Inula britannica L., on vascular smooth muscle cell (VSMC) proliferation and apoptosis. In vitro experiments were performed to evaluate the effects of ABL on the VSMC cycle and apoptosis stimulated by chemoattractant. In addition, to examine the effects of ABL in vivo, balloon injury to rat carotid arteries was performed. ABL treatment inhibited platelet-derived growth factor (PDGF) induced DNA synthesis and proliferation in cultured VSMC. Such growth-inhibitory effects of ABL were associated with G1 phase arrest, which were correlated with reduction of cyclins D1, A, and E expression and cyclin-dependent kinase (CDK) 2, CDK4, and CDK6 proteins, increased the CDK inhibitory protein p21cip1 expression, and enhanced the binding of p21cip1 to CDKs. In addition, ABL also induced apoptosis in proliferative VSMCs, as evidenced by the induction of a higher ratio of Bax/Bcl-2, activation of caspase-9, caspase-3, and the cleavage of endogenous substrate Poly (ADP-ribose) polymerase. However, pretreatment with pan-caspases inhibitor (z-VAD-fmk) only partially reversed ABL-induced apoptosis, suggesting the involvement of both caspase-dependent and caspase-independent pathways in these processes. Furthermore, the effects of ABL on VSMCs were associated with the downregulation of extracellular signal-regulated kinase (ERK) 1/2 signaling pathways. In vivo, ABL (26 mg/kg/day) significantly suppressed injury-induced ERK1/2 phosphorylation, and increased VSMC apoptosis 14 days after balloon injury. Our findings demonstrated that ABL was capable of suppressing the abnormal VSMC proliferation, accompanied by the induction of apoptosis in vivo and in vitro. It suggested that ABL could be considered a pharmacological candidate for the prevention of restenosis after balloon angioplasty. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.

  10. Apoptosis and systemic autoimmunity: the dendritic cell connection

    Directory of Open Access Journals (Sweden)

    AA Manfredi

    2009-12-01

    Full Text Available Much effort has been devoted in recent years to the events linking recognition and disposal of apoptotic cells to sustained immunity towards the antigens they contain. Programmed death via apoptosis indeed provides most of the raw material the immune system exploits to establish self tolerance, i.e. to learn how to distinguish between self constituents and foreign antigens, belonging to invading pathogens. In parallel, events occurring during cell death may enable a restricted array of molecules endowed with diverse structure, function and intracellular distribution to satisfy the requirement to evoke and maintain autoimmune responses. Dendritic cells (DCs, the most potent antigen presenting cells, appear to play a crucial role. Here we will discuss some of the constrains regulating the access of dying cells’ antigens to DCs, as well as censorship mechanisms that prevent their maturation and the full explication of their antigen presenting function.

  11. Magneto-actuated cell apoptosis by biaxial pulsed magnetic field.

    Science.gov (United States)

    Wong, De Wei; Gan, Wei Liang; Liu, Ning; Lew, Wen Siang

    2017-09-07

    We report on a highly efficient magneto-actuated cancer cell apoptosis method using a biaxial pulsed magnetic field configuration, which maximizes the induced magnetic torque. The light transmissivity dynamics show that the biaxial magnetic field configuration can actuate the magnetic nanoparticles with higher responsiveness over a wide range of frequencies as compared to uniaxial field configurations. Its efficacy was demonstrated in in vitro cell destruction experiments with a greater reduction in cell viability. Magnetic nanoparticles with high aspect ratios were also found to form a triple vortex magnetization at remanence which increases its low field susceptibility. This translates to a larger magneto-mechanical actuated force at low fields and 12% higher efficacy in cell death as compared to low aspect ratio nanoparticles.

  12. Cadmium induces Ca2+ mediated, calpain-1/caspase-3-dependent apoptosis in primary cultured rat proximal tubular cells.

    Science.gov (United States)

    Wang, Hong; Zhai, Nianhui; Chen, Ying; Xu, Haibin; Huang, Kehe

    2017-07-01

    Calcium, as a ubiquitous second messenger, governs a large array of cellular processes and is necessary for cell survival. More recently, it was observed that the cytosolic Ca 2+ concentration ([Ca 2+ ] c ) elevation could induce apoptosis in primary cultured rat proximal tubular (rPT) cells exposed to cadmium (Cd), but the concrete mechanism is still unclear. This study was designed to investigate the signal pathway involved in [Ca 2+ ] c elevation-mediated apoptosis. The results confirmed the elevation of [Ca 2+ ] c by confocal microscopy and enhancement of the apoptosis by Hoechst 33258 staining and flow cytometer when rPT cells were exposed to Cd for 12h. Then we demonstrated that Cd enhanced the protein levels of active calpain-1 and caspase-3 in rPT cells. Pretreatment with a cytosolic Ca 2+ chelator, 1,2-Bis (2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA-AM), markedly blocked the up-regulation of active calpain-1 and caspase-3 and inhibited the apoptosis induced by Cd. Further, rPT cells were pretreated with a cell-permeable selective calpain-1 inhibitor, 3-(4-iodophenyl)-2-mercapto-(Z)-2-propenoic acid (PD150606) and caspase-3 inhibitor, N-Acetyl-Asp-Glu-Val-Asp-CHO (Ac-DEVD-CHO), respectively. PD150606 significantly attenuated the up-regulation of active caspase-3 and the apoptosis induced by Cd. As expected, inhibition of active caspase-3 by Ac-DEVD-CHO decreased the apoptosis induced by Cd. Taken together, it could be concluded that [Ca 2+ ] c elevation did act as a pro-apoptotic signal in Cd-induced cytotoxicity of rPT cells, triggered calpain-1 and caspase-3 activation in turn, and induced apoptosis of rPT cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. TanshinoneIIA and cryptotanshinone protect against hypoxia-induced mitochondrial apoptosis in H9c2 cells.

    Directory of Open Access Journals (Sweden)

    Hyou-Ju Jin

    Full Text Available Mitochondrial apoptosis pathway is an important target of cardioprotective signalling. Tanshinones, a group of major bioactive compounds isolated from Salvia miltiorrhiza, have been reported with actions against inflammation, oxidative stress, and myocardial ischemia reperfusion injury. However, the actions of these compounds on the chronic hypoxia-related mitochondrial apoptosis pathway have not been investigated. In this study, we examined the effects and molecular mechanisms of two major tanshonones, tanshinone IIA (TIIA and cryptotanshinone (CT on hypoxia induced apoptosis in H9c2 cells. Cultured H9c2 cells were treated with TIIA and CT (0.3 and 3 μΜ 2 hr before and during an 8 hr hypoxic period. Chronic hypoxia caused a significant increase in hypoxia inducible factor 1α expression and the cell late apoptosis rate, which was accompanied with an increase in caspase 3 activity, cytochrome c release, mitochondria membrane potential and expression of pro-apoptosis proteins (Bax and Bak. TIIA and CT (0.3 and 3 μΜ, in concentrations without affecting the cell viability, significantly inhibited the late apoptosis and the changes of caspase 3 activity, cytochrome c release, and mitochondria membrane potential induced by chronic hypoxia. These compounds also suppressed the overexpression of Bax and reduced the ratio of Bax/Bcl-2. The results indicate that TIIA and CT protect against chronic hypoxia induced cell apoptosis by regulating the mitochondrial apoptosis signaling pathway, involving inhibitions of mitochondria hyperpolarization, cytochrome c release and caspase 3 activity, and balancing anti- and pro-apoptotic proteins in Bcl-2 family proteins.

  14. Triptolide potentiates lung cancer cells to cisplatin-induced apoptosis by selectively inhibiting the NER activity.

    Science.gov (United States)

    Wang, Gan; Wang, Xing; Xu, Xiaoxin

    2015-01-01

    Cisplatin and many other platinum-based compounds are important anticancer drugs that are used in treating many cancer types. The development of cisplatin-resistant cancer cells, however, quickly diminishes the effectiveness of these drugs and causes treatment failure. New strategies that reverse cancer cell drug resistance phenotype or sensitize cancer cells to these drugs, therefore, need to be explored in order to improve platinum drug-based cancer treatment. Triptolide is a bioactive ingredient isolated from Tripterygium wilfordii, a Chinese herbal medicine. Triptolide binds to the TFIIH basal transcription factor and is required for both transcription and nucleotide excision repair (NER), a DNA repair pathway involved in repairing DNA damage generated by the platinum-based anticancer drugs. Caspase-3 activation and cell growth inhibition assays were used to determine the effect of triptolide on cisplatin-induced apoptosis and cell growth in lung cancer cells. Real time PCR, immunoblotting, and expression of reef coral red protein were used to determine a mechanism through which the presence of triptolide increased cisplatin-induced apoptosis of the lung cancer cells. Our caspase-3 activation studies demonstrated that the presence of low-levels of triptolide greatly increased the cisplatin-induced apoptosis of HTB182, A549, CRL5810, and CRL5922 lung cancer cells. The results of our cell growth inhibition studies revealed that the presence of low-levels triptolide itself had little effect on cell growth but greatly enhanced cisplatin-induced cell growth inhibition in both A549 and HTB182 cells. The results of our reef coral-red protein reporter expression studies indicated that the presence of low-levels triptolide did not affect expression of the reef coral-red protein from pDsRed2-C1 plasmid but greatly inhibited expression of the reef coral-red protein from cisplatin-damaged pDsRed2-C1 plasmid DNA in A549 cells. In addition, the results of our protein

  15. Salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells

    International Nuclear Information System (INIS)

    Hu, Xiaolan; Zhang, Xianqi; Qiu, Shuifeng; Yu, Daihua; Lin, Shuxin

    2010-01-01

    Research highlights: → Salidroside inhibits the growth of human breast cancer cells. → Salidroside induces cell-cycle arrest of human breast cancer cells. → Salidroside induces apoptosis of human breast cancer cell lines. -- Abstract: Recently, salidroside (p-hydroxyphenethyl-β-D-glucoside) has been identified as one of the most potent compounds isolated from plants of the Rhodiola genus used widely in traditional Chinese medicine, but pharmacokinetic data on the compound are unavailable. We were the first to report the cytotoxic effects of salidroside on cancer cell lines derived from different tissues, and we found that human breast cancer MDA-MB-231 cells (estrogen receptor negative) were sensitive to the inhibitory action of low-concentration salidroside. To further investigate the cytotoxic effects of salidroside on breast cancer cells and reveal possible ER-related differences in response to salidroside, we used MDA-MB-231 cells and MCF-7 cells (estrogen receptor-positive) as models to study possible molecular mechanisms; we evaluated the effects of salidroside on cell growth characteristics, such as proliferation, cell cycle duration, and apoptosis, and on the expression of apoptosis-related molecules. Our results demonstrated for the first time that salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells and may be a promising candidate for breast cancer treatment.

  16. Salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiaolan, E-mail: huxiaolan1998@yahoo.com.cn [Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou (China); Zhang, Xianqi [The 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou (China); Qiu, Shuifeng [Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou (China); Yu, Daihua; Lin, Shuxin [Fourth Military Medical University, Xi' an (China)

    2010-07-16

    Research highlights: {yields} Salidroside inhibits the growth of human breast cancer cells. {yields} Salidroside induces cell-cycle arrest of human breast cancer cells. {yields} Salidroside induces apoptosis of human breast cancer cell lines. -- Abstract: Recently, salidroside (p-hydroxyphenethyl-{beta}-D-glucoside) has been identified as one of the most potent compounds isolated from plants of the Rhodiola genus used widely in traditional Chinese medicine, but pharmacokinetic data on the compound are unavailable. We were the first to report the cytotoxic effects of salidroside on cancer cell lines derived from different tissues, and we found that human breast cancer MDA-MB-231 cells (estrogen receptor negative) were sensitive to the inhibitory action of low-concentration salidroside. To further investigate the cytotoxic effects of salidroside on breast cancer cells and reveal possible ER-related differences in response to salidroside, we used MDA-MB-231 cells and MCF-7 cells (estrogen receptor-positive) as models to study possible molecular mechanisms; we evaluated the effects of salidroside on cell growth characteristics, such as proliferation, cell cycle duration, and apoptosis, and on the expression of apoptosis-related molecules. Our results demonstrated for the first time that salidroside induces cell-cycle arrest and apoptosis in human breast cancer cells and may be a promising candidate for breast cancer treatment.

  17. The Cytotoxic Role of Intermittent High Glucose on Apoptosis and Cell Viability in Pancreatic Beta Cells

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2014-01-01

    Full Text Available Objectives. Glucose fluctuations are both strong predictor of diabetic complications and crucial factor for beta cell damages. Here we investigated the effect of intermittent high glucose (IHG on both cell apoptosis and proliferation activity in INS-1 cells and the potential mechanisms. Methods. Cells were treated with normal glucose (5.5 mmol/L, constant high glucose (CHG (25 mmol/L, and IHG (rotation per 24 h in 11.1 or 25 mmol/L for 7 days. Reactive oxygen species (ROS, xanthine oxidase (XOD level, apoptosis, cell viability, cell cycle, and expression of cyclinD1, p21, p27, and Skp2 were determined. Results. We found that IHG induced more significant apoptosis than CHG and normal glucose; intracellular ROS and XOD levels were more markedly increased in cells exposed to IHG. Cells treated with IHG showed significant decreased cell viability and increased cell proportion in G0/G1 phase. Cell cycle related proteins such as cyclinD1 and Skp2 were decreased significantly, but expressions of p27 and p21 were increased markedly. Conclusions. This study suggested that IHG plays a more toxic effect including both apoptosis-inducing and antiproliferative effects on INS-1 cells. Excessive activation of cellular stress and regulation of cyclins might be potential mechanism of impairment in INS-1 cells induced by IHG.

  18. Opposed arsenite-mediated regulation of p53-survivin is involved in neoplastic transformation, DNA damage, or apoptosis in human keratinocytes

    International Nuclear Information System (INIS)

    Li, Yuan; Jiang, Rongrong; Zhao, Yue; Xu, Yuan; Ling, Min; Pang, Ying; Shen, Lu; Zhou, Yun; Zhang, Jianping; Zhou, Jianwei; Wang, Xinru; Liu, Qizhan

    2012-01-01

    Highlights: ► Different concentrations of arsenite cause biphasic effects in HaCaT cells. ► p53-survivin signal pathway plays a role in arsenite-induced biphasic effects. ► ERKs inactivate p53, but improve survivin expression by NF-κB/mot-2. ► JNKs block survivin expression by preventing p53 from mdm2-mediated degradation. ► ERKs and JNKs play roles in arsenite-induced biphasic effects. -- Abstract: Biphasic dose–response relationship induced by environmental agents is often characterized with the effect of low-dose stimulation and high dose inhibition. Some studies showed that arsenite may induce cell proliferation and apoptosis via biphasic dose–response relationship in human cells; however, mechanisms underlying this phenomenon are not well understood. Our present study shows that, for human keratinocytes (HaCaT) cells, a low concentration of arsenite activates extracellular signal-regulated kinases (ERKs), which leads to up-regulation of nuclear factor κB (NF-κB) binding to DNA and to elevated, NF-κB-dependent expression of mot-2 (a p53 inhibitor) and survivin (an inhibitor of apoptosis). Activation of p53 is blocked, and neoplastic transformation is enhanced. Inhibition of ERKs reduces cell proliferation and neoplastic transformation. In contrast, a high concentration of arsenite activates c-Jun N-terminal kinases (JNKs), positive regulators of p53, by binding to p53 and preventing its murine double minute 2 (mdm2)-mediated degradation. The elevated levels of p53 lead to repair of DNA damage and apoptosis. Inhibition of JNKs increases DNA damage but decreases apoptosis. By identifying a mechanism whereby ERKs and JNKs-mediated regulation of the p53-survivin signal pathway is involved in the biphasic effects of arsenite on human keratinocytes, our data expand understanding of arsenite-induced cell proliferation, neoplastic transformation, DNA damage, and apoptosis.

  19. Severe acute respiratory syndrome coronavirus envelope protein regulates cell stress response and apoptosis.

    Directory of Open Access Journals (Sweden)

    Marta L DeDiego

    2011-10-01

    Full Text Available Severe acute respiratory syndrome virus (SARS-CoV that lacks the envelope (E gene (rSARS-CoV-ΔE is attenuated in vivo. To identify factors that contribute to rSARS-CoV-ΔE attenuation, gene expression in cells infected by SARS-CoV with or without E gene was compared. Twenty-five stress response genes were preferentially upregulated during infection in the absence of the E gene. In addition, genes involved in signal transduction, transcription, cell metabolism, immunoregulation, inflammation, apoptosis and cell cycle and differentiation were differentially regulated in cells infected with rSARS-CoV with or without the E gene. Administration of E protein in trans reduced the stress response in cells infected with rSARS-CoV-ΔE or with respiratory syncytial virus, or treated with drugs, such as tunicamycin and thapsigargin that elicit cell stress by different mechanisms. In addition, SARS-CoV E protein down-regulated the signaling pathway inositol-requiring enzyme 1 (IRE-1 of the unfolded protein response, but not the PKR-like ER kinase (PERK or activating transcription factor 6 (ATF-6 pathways, and reduced cell apoptosis. Overall, the activation of the IRE-1 pathway was not able to restore cell homeostasis, and apoptosis was induced probably as a measure to protect the host by limiting virus production and dissemination. The expression of proinflammatory cytokines was reduced in rSARS-CoV-ΔE-infected cells compared to rSARS-CoV-infected cells, suggesting that the increase in stress responses and the reduction of inflammation in the absence of the E gene contributed to the attenuation of rSARS-CoV-ΔE.

  20. N-acetylphytosphingosine enhances the radiosensitivity of tumor cells by increasing apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Han, Y.; Kim, Y.; Yun, Y.; Jeon, S.; Kim, K.; Song, J. [Lab. of Immunology, Korea Inst. of Radiological and Medical Sciences, KAERI, Seoul (Korea); Hong, S.H. [Lab. of Experimental therapeutics, Korea Inst. of Radiological and Medical Sciences, KAERI, Seoul (Korea); Park, C. [Doosan Biotech BU, Yongin-City, Kyonggi-Do (Korea)

    2005-07-01

    Ceramides are well-known second messengers which mediate apoptosis, proliferation, differentiation in mammalian cells, but the physiological roles of phytosphingosines are poorly understood. We hypothesized that one of the phytosphingosine derivatives, N-acetylphytosphingosine (NAPS) can induce apoptosis in human leukemia Jurkat cell line and increase apoptosis in irradiated MDA-MB-231 cells. We first examined the effect of NAPS on apoptosis of Jurkat cells. NAPS had a more rapid and stronger apoptotic effect than C{sub 2}-ceramide in Jurkat cells and significant increase of apoptosis was observed at 3 h after treatment. In contrast, the apoptosis induced by C2-ceramide was observed only after 16 h of treatment. NAPS induced apoptosis was mediated by caspase 3 and 8 activation and inhibited by z-VAD-fmk. Ceramide plays a pivotal role in radiation induced apoptosis. We postulated that exogenous treatment of NAPS sensitizes tumor cells to ionizing radiation, since NAPS might be used as a more effective alternative to C2-ceramide. As expected, NAPS decreased clonogenic survival of irradiated MDA-MB-231 cells dose dependently, and apoptosis of irradiated cells in the presence of NAPS was increased through the caspase activation. Taken together, NAPS is an effective apoptosis-inducing agent, which can be readily synthesized from yeast sources, and is a potent alternative to ceramide for the further study of ceramide associated signaling and the development of radiosensitizing agent. (orig.)

  1. Eriocalyxin B induces apoptosis and cell cycle arrest in pancreatic adenocarcinoma cells through caspase- and p53-dependent pathways

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lin [School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong (China); Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong (China); Yue, Grace G.L. [Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong (China); Lau, Clara B.S. [Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); Sun, Handong [State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, CAS, Yunnan (China); Fung, Kwok Pui [School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong (China); Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong (China); Leung, Ping Chung [Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong (China); Han, Quanbin, E-mail: simonhan@hkbu.edu.hk [Institute of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong (China); State Key Laboratory of Phytochemistry and Plant Resources in West China, The Chinese University of Hong Kong, Hong Kong (China); School of Chinese Medicine, The Hong Kong Baptist University, Hong Kong (China); Leung, Po Sing, E-mail: psleung@cuhk.edu.hk [School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong (China)

    2012-07-01

    Pancreatic cancer is difficult to detect early and responds poorly to chemotherapy. A breakthrough in the development of new therapeutic agents is urgently needed. Eriocalyxin B (EriB), isolated from the Isodon eriocalyx plant, is an ent-kaurane diterpenoid with promise as a broad-spectrum anti-cancer agent. The anti-leukemic activity of EriB, including the underlying mechanisms involved, has been particularly well documented. In this study, we demonstrated for the first time EriB's potent cytotoxicity against four pancreatic adenocarcinoma cell lines, namely PANC-1, SW1990, CAPAN-1, and CAPAN-2. The effects were comparable to that of the chemotherapeutic camptothecin (CAM), but with much lower toxicity against normal human liver WRL68 cells. EriB's cytoxicity against CAPAN-2 cells was found to involve caspase-dependent apoptosis and cell cycle arrest at the G2/M phase. Moreover, the p53 pathway was found to be activated by EriB in these cells. Furthermore, in vivo studies showed that EriB inhibited the growth of human pancreatic tumor xenografts in BALB/c nude mice without significant secondary adverse effects. These results suggest that EriB should be considered a candidate for pancreatic cancer treatment. -- Highlights: ► We study Eriocalyxin B (EriB)'s cytotoxic effects on pancreatic cancer cell lines. ► EriB inhibits cell proliferation via mediation of apoptosis and cell cycle arrest. ► The effects are involved in caspase-dependent apoptosis and p53 pathway. ► In vivo study also shows EriB inhibits the growth of human pancreatic tumor. ► EriB can be a good candidate for chemotherapy in pancreatic cancer.

  2. Cadmium induces apoptosis in anterior pituitary cells that can be reversed by treatment with antioxidants

    International Nuclear Information System (INIS)

    Poliandri, Ariel H.B.; Cabilla, Jimena P.; Velardez, Miguel O.; Bodo, Cristian C.A.; Duvilanski, Beatriz H.

    2003-01-01

    Cadmium (Cd 2+ ) is an ubiquitous toxic metal that is involved in a variety of pathological conditions. Several reports indicate that Cd 2+ alters normal pituitary hormone secretion; however, little is known about the mechanisms that induce this misregulation. This paper reports the effect of Cd 2+ on anterior pituitary cell viability and its relation to prolactin secretion. Cd 2+ concentrations above 10 μM were found to be cytotoxic for pituitary cells. Morphological studies as well as DNA ladder fragmentation and caspase activation showed that Cd 2+ -treated cells undergo apoptosis. Even though several hours were needed to detect Cd 2+ -induced cytotoxicity, the effect of the metal became irreversible very quickly, requiring only 3 h of treatment. Prolactin release (measured at 48 h) was inhibited when the cells were exposed to Cd 2+ for 1 h, before any change in cell viability was observed. The antioxidants N-acetyl-cysteine and Trolox (a hydrosoluble derivative of vitamin E), but not ascorbic acid, reversed both Cd 2+ -mediated cytotoxicity and the inhibition of prolactin release, supporting the involvement of oxidative stress in the mechanism of Cd 2+ action. In summary, the present work demonstrates that Cd 2+ is cytotoxic for anterior pituitary cells, that this effect is due to an induction of apoptosis, and that it can be reversed by antioxidants

  3. Linalool Induces Cell Cycle Arrest and Apoptosis in Leukemia Cells and Cervical Cancer Cells through CDKIs

    Directory of Open Access Journals (Sweden)

    Mei-Yin Chang

    2015-11-01

    Full Text Available Plantaginaceae, a popular traditional Chinese medicine, has long been used for treating various diseases from common cold to cancer. Linalool is one of the biologically active compounds that can be isolated from Plantaginaceae. Most of the commonly used cytotoxic anticancer drugs have been shown to induce apoptosis in susceptible tumor cells. However, the signaling pathway for apoptosis remains undefined. In this study, the cytotoxic effect of linalool on human cancer cell lines was investigated. Water-soluble tetrazolium salts (WST-1 based colorimetric cellular cytotoxicity assay, was used to test the cytotoxic ability of linalool against U937 and HeLa cells, and flow cytometry (FCM and genechip analysis were used to investigate the possible mechanism of apoptosis. These results demonstrated that linalool exhibited a good cytotoxic effect on U937 and HeLa cells, with the IC50 value of 2.59 and 11.02 μM, respectively, compared with 5-FU with values of 4.86 and 12.31 μM, respectively. After treating U937 cells with linalool for 6 h, we found an increased sub-G1 peak and a dose-dependent phenomenon, whereby these cells were arrested at the G0/G1 phase. Furthermore, by using genechip analysis, we observed that linalool can promote p53, p21, p27, p16, and p18 gene expression. Therefore, this study verified that linalool can arrest the cell cycle of U937 cells at the G0/G1 phase and can arrest the cell cycle of HeLa cells at the G2/M phase. Its mechanism facilitates the expression of the cyclin-dependent kinases inhibitors (CDKIs p53, p21, p27, p16, and p18, as well as the non-expression of cyclin-dependent kinases (CDKs activity.

  4. Linalool Induces Cell Cycle Arrest and Apoptosis in Leukemia Cells and Cervical Cancer Cells through CDKIs.

    Science.gov (United States)

    Chang, Mei-Yin; Shieh, Den-En; Chen, Chung-Chi; Yeh, Ching-Sheng; Dong, Huei-Ping

    2015-11-26

    Plantaginaceae, a popular traditional Chinese medicine, has long been used for treating various diseases from common cold to cancer. Linalool is one of the biologically active compounds that can be isolated from Plantaginaceae. Most of the commonly used cytotoxic anticancer drugs have been shown to induce apoptosis in susceptible tumor cells. However, the signaling pathway for apoptosis remains undefined. In this study, the cytotoxic effect of linalool on human cancer cell lines was investigated. Water-soluble tetrazolium salts (WST-1) based colorimetric cellular cytotoxicity assay, was used to test the cytotoxic ability of linalool against U937 and HeLa cells, and flow cytometry (FCM) and genechip analysis were used to investigate the possible mechanism of apoptosis. These results demonstrated that linalool exhibited a good cytotoxic effect on U937 and HeLa cells, with the IC50 value of 2.59 and 11.02 μM, respectively, compared with 5-FU with values of 4.86 and 12.31 μM, respectively. After treating U937 cells with linalool for 6 h, we found an increased sub-G1 peak and a dose-dependent phenomenon, whereby these cells were arrested at the G0/G1 phase. Furthermore, by using genechip analysis, we observed that linalool can promote p53, p21, p27, p16, and p18 gene expression. Therefore, this study verified that linalool can arrest the cell cycle of U937 cells at the G0/G1 phase and can arrest the cell cycle of HeLa cells at the G2/M phase. Its mechanism facilitates the expression of the cyclin-dependent kinases inhibitors (CDKIs) p53, p21, p27, p16, and p18, as well as the non-expression of cyclin-dependent kinases (CDKs) activity.

  5. Proteomic investigation into betulinic acid-induced apoptosis of human cervical cancer HeLa cells.

    Science.gov (United States)

    Xu, Tao; Pang, Qiuying; Zhou, Dong; Zhang, Aiqin; Luo, Shaman; Wang, Yang; Yan, Xiufeng

    2014-01-01

    Betulinic acid is a pentacyclic triterpenoid that exhibits anticancer functions in human cancer cells. This study provides evidence that betulinic acid is highly effective against the human cervical cancer cell line HeLa by inducing dose- and time-dependent apoptosis. The apoptotic process was further investigated using a proteomics approach to reveal protein expression changes in HeLa cells following betulinic acid treatment. Proteomic analysis revealed that there were six up- and thirty down-regulated proteins in betulinic acid-induced HeLa cells, and these proteins were then subjected to functional pathway analysis using multiple analysis software. UDP-glucose 6-dehydrogenase, 6-phosphogluconate dehydrogenase decarboxylating, chain A Horf6-a novel human peroxidase enzyme that involved in redox process, was found to be down-regulated during the apoptosis process of the oxidative stress response pathway. Consistent with our results at the protein level, an increase in intracellular reactive oxygen species was observed in betulinic acid-treated cells. The proteins glucose-regulated protein and cargo-selection protein TIP47, which are involved in the endoplasmic reticulum pathway, were up-regulated by betulinic acid treatment. Meanwhile, 14-3-3 family proteins, including 14-3-3β and 14-3-3ε, were down-regulated in response to betulinic acid treatment, which is consistent with the decrease in expression of the target genes 14-3-3β and 14-3-3ε. Furthermore, it was found that the antiapoptotic bcl-2 gene was down-regulated while the proapoptotic bax gene was up-regulated after betulinic acid treatment in HeLa cells. These results suggest that betulinic acid induces apoptosis of HeLa cells by triggering both the endoplasmic reticulum pathway and the ROS-mediated mitochondrial pathway.

  6. Type 1 Diabetes Candidate Genes Linked to Pancreatic Islet Cell Inflammation and Beta-Cell Apoptosis

    DEFF Research Database (Denmark)

    Størling, Joachim; Pociot, Flemming

    2017-01-01

    Type 1 diabetes (T1D) is a chronic immune-mediated disease resulting from the selective destruction of the insulin-producing pancreatic islet β-cells. Susceptibility to the disease is the result of complex interactions between environmental and genetic risk factors. Genome-wide association studie...... with focus on pancreatic islet cell inflammation and β-cell apoptosis....

  7. Inhibition of apoptosis in T cells expressing human T cell leukemia virus type I Tax

    NARCIS (Netherlands)

    Copeland, K. F.; Haaksma, A. G.; Goudsmit, J.; Krammer, P. H.; Heeney, J. L.

    1994-01-01

    This study set out to determine whether T cell dysfunction associated with HTLV-I led to increased sensitivity of infected cells to apoptosis or, owing to their potential to develop ATL, if infected cells would become resistant to this process. To test this hypothesis we utilized the monoclonal

  8. HERG K+ channel-dependent apoptosis and cell cycle arrest in human glioblastoma cells.

    Directory of Open Access Journals (Sweden)

    Ingo Staudacher

    Full Text Available Glioblastoma (GB is associated with poor patient survival owing to uncontrolled tumor proliferation and resistance to apoptosis. Human ether-a-go-go-related gene K(+ channels (hERG; Kv11.1, KCNH2 are expressed in multiple cancer cells including GB and control cell proliferation and death. We hypothesized that pharmacological targeting of hERG protein would inhibit tumor growth by inducing apoptosis of GB cells. The small molecule hERG ligand doxazosin induced concentration-dependent apoptosis of human LNT-229 (EC50 = 35 µM and U87MG (EC50 = 29 µM GB cells, accompanied by cell cycle arrest in the G0/G1 phase. Apoptosis was associated with 64% reduction of hERG protein. HERG suppression via siRNA-mediated knock down mimicked pro-apoptotic effects of doxazosin. Antagonism of doxazosin binding by the non-apoptotic hERG ligand terazosin resulted in rescue of protein expression and in increased survival of GB cells. At the molecular level doxazosin-dependent apoptosis was characterized by activation of pro-apoptotic factors (phospho-erythropoietin-producing human hepatocellular carcinoma receptor tyrosine kinase A2, phospho-p38 mitogen-activated protein kinase, growth arrest and DNA damage inducible gene 153, cleaved caspases 9, 7, and 3, and by inactivation of anti-apoptotic poly-ADP-ribose-polymerase, respectively. In summary, this work identifies doxazosin as small molecule compound that promotes apoptosis and exerts anti-proliferative effects in human GB cells. Suppression of hERG protein is a crucial molecular event in GB cell apoptosis. Doxazosin and future derivatives are proposed as novel options for more effective GB treatment.

  9. Monitoring apoptosis of TK-GFP-expressing ACC-M cells induced by ACV using FRET technique

    Science.gov (United States)

    Xiong, Tao; Zhang, Zhihong; Lin, Juqiang; Yang, Jie; Zeng, Shaoqun; Luo, Qingming

    2006-09-01

    Apoptosis is an evolutionary conserved cellular process that plays an important role during development, but it is also involved in tissue homeostasis and in many diseases. To study the characteristics of suicide gene system of the herpes simplex virus thymidine kinase (HSV-tk) gene in tumor cells and explore the apoptosis phenomena in this system and its effect on the human adenoid cystic carcinoma line ACC-M cell, we detected apoptosis of CD3- (ECFP-CRS-DsRed) and TK-GFP-expressing ACC-M (ACC-M-TK-GFP-CD3) cells induced by acyclovir (ACV) using fluorescence resonance energy transfer (FRET) technique. CD3 is a FRET-based indicator for activity of caspase-3, which is composed of an enhanced cyan fluorescent protein, a caspase-3 sensitive linker, and a red fluorescent protein from Discosoma with efficient maturation property. FRET from ECFP to DsRed could be detected in normal ACC-M-TK-GFP-CD3 cells, and the FRET efficient was remarkably decreased and then disappeared during the cells apoptosis induced by ACV. It was due to the activated caspase-3 cleaved the CD3 fusion protein. In this study, the results suggested that the AVC-induced apoptosis of ACC-M-TK-GFP-CD3 cells was through caspase-3 pathway.

  10. The induction of autophagy against mitochondria-mediated apoptosis in lung cancer cells by a ruthenium (II) imidazole complex

    Science.gov (United States)

    Peng, Fa; Jie, Xinming; Dongye, Guangzhi; Cai, Kangrong; Feng, Ruibing; Li, Baojun; Zeng, Qingwang; Lun, Kaiyi; Chen, Jincan; Xu, Bilian

    2016-01-01

    In the present study, it was found that the ruthenium (II) imidazole complex [Ru(Im)4(dppz)]2+ (Ru1) could induce significant growth inhibition and apoptosis in A549 and NCI-H460 cells. Apart from the induction of apoptosis, it was reported for the first time that Ru1 induced an autophagic response in A549 and NCI-H460 cells as evidenced by the formation of autophagosomes, acidic vesicular organelles (AVOs), and the up-regulation of LC3-II. Furthermore, scavenging of reactive oxygen species (ROS) by antioxidant NAC or Tiron inhibited the release of cytochrome c, caspase-3 activity, and eventually rescued cancer cells from Ru1-mediated apoptosis, suggesting that Ru1 inducing apoptosis was partially caspase 3-dependent by triggering ROS-mediated mitochondrial dysfunction in A549 and NCI-H460 cells. Further study indicated that the extracellular signal-regulated kinase (ERK) signaling pathway was involved in Ru1-induced autophagy in A549 and NCI-H460 cells. Moreover, blocking autophagy using pharmacological inhibitors 3-methyladenine (3-MA) and chloroquine (CQ) enhanced Ru1-induced apoptosis, indicating the cytoprotective role of autophagy in Ru1-treated A549 and NCI-H460 cells. Finally, the in vivo mice bearing A549 xenografts, Ru1 dosed at 10 or 20 mg/kg significantly inhibited tumor growth. PMID:27811372

  11. Apoptosis and pro-inflammatory cytokine response of mast cells induced by influenza A viruses.

    Directory of Open Access Journals (Sweden)

    Bo Liu

    Full Text Available The pathogenesis of the influenza A virus has been investigated heavily, and both the inflammatory response and apoptosis have been found to have a definitive role in this process. The results of studies performed by the present and other groups have indicated that mast cells may play a role in the severity of the disease. To further investigate cellular responses to influenza A virus infection, apoptosis and inflammatory response were studied in mouse mastocytoma cell line P815. This is the first study to demonstrate that H1N1 (A/WSN/33, H5N1 (A/Chicken/Henan/1/04, and H7N2 (A/Chicken/Hebei/2/02 influenza viruses can induce mast cell apoptosis. They were found to do this mainly through the mitochondria/cytochrome c-mediated intrinsic pathway, and the activation of caspase 8-mediated extrinsic pathway was here found to be weak. Two pro-apoptotic Bcl-2 homology domain 3 (BH3 -only molecules Bim and Puma appeared to be involved in the apoptotic pathways. When virus-induced apoptosis was inhibited in P815 cells using pan-caspase (Z-VAD-fmk and caspase-9 (Z-LEHD-fmk inhibitors, the replication of these three subtypes of viruses was suppressed and the secretions of pro-inflammatory cytokines and chemokines, including IL-6, IL-18, TNF-α, and MCP-1, decreased. The results of this study may further understanding of the role of mast cells in host defense and pathogenesis of influenza virus. They may also facilitate the development of novel therapeutic aids against influenza virus infection.

  12. Analysis of Residual DSBs in Ataxia-Telangiectasia Lymphoblast Cells Initiating Apoptosis

    Directory of Open Access Journals (Sweden)

    Teresa Anglada

    2016-01-01

    Full Text Available In order to examine the relationship between accumulation of residual DNA double-strand breaks (DSBs and cell death, we have used a control and an ATM (Ataxia-Telangiectasia Mutated defective cell line, as Ataxia-Telangiectasia (AT cells tend to accumulate residual DSBs at long times after damage infliction. After irradiation, AT cells showed checkpoint impairment and a fraction of cells displayed an abnormal centrosome number and tetraploid DNA content, and this fraction increased along with apoptosis rates. At all times analyzed, AT cells displayed a significantly higher rate of radiation-induced apoptosis than normal cells. Besides apoptosis, 70–85% of the AT viable cells (TUNEL-negative carried ≥10 γH2AX foci/cell, while only 12–27% of normal cells did. The fraction of AT and normal cells undergoing early and late apoptosis were isolated by flow cytometry and residual DSBs were concretely scored in these populations. Half of the γH2AX-positive AT cells undergoing early apoptosis carried ≥10 γH2AX foci/cell and this fraction increased to 75% in late apoptosis. The results suggest that retention of DNA damage-induced γH2AX foci is an indicative of lethal DNA damage, as cells undergoing apoptosis are those accumulating more DSBs. Scoring of residual γH2AX foci might function as a predictive tool to assess radiation-induced apoptosis.

  13. Re: Engineered Nanoparticles Induce Cell Apoptosis: Potential for Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Fehmi Narter

    2016-09-01

    Full Text Available Engineered nanoparticles (ENPs have been widely applied in industry, biology and medicine recently (i.e. clothes, sunscreens, cosmetics, foods, diagnostic medicine, imaging and drug delivery. There are many kinds of manufactured nanomaterial products including TiO2, ZnO, CeO2, Fe2O3, and CuO (as metal oxide nanoparticles as well as gold, silver, platinum and palladium (as metal nanoparticles, and other carbon-based ENP’s such as carbon nanotububes and quantum dots. ENPs with their sizes no larger than 100 nm are able to enter the human body and accumulate in organs and cause toxic effects. In many researches, ENP effects on the cancer cells of different organs with related cell apoptosis were noted (AgNP, nano-Cr2O3, Au-Fe2O3 NPs, nano-TiO2, nano-HAP, nano-Se, MoO3 nanoplate, Realgar nanoparticles. ENPs, with their unique properties, such as surface charge, particle size, composition and surface modification with tissue recognition ligands or antibodies, has been increasingly explored as a tool to carry small molecular weight drugs as well as macromolecules for cancer therapy, thus generating the new concept “nanocarrier”. Direct induction of cell apoptosis by ENPs provides an opportunity for cancer treatment. In the century of nanomedicine that depends on development of the nanotechnology, ENPs have a great potential for application in cancer treatment with minimal side effects.

  14. Taraxerol Induces Cell Apoptosis through A Mitochondria-Mediated Pathway in HeLa Cells.

    Science.gov (United States)

    Yaoi, Xiangyang; Lu, Binyu; Lü, Chaotian; Bai, Qin; Yan, Dazhong; Xu, Hui

    2017-10-01

    Taraxerol acetate has potent anti-cancer effects via the induction of apoptosis, autophagy, cell cycle arrest, and inhibition of cell migration. However, whether taraxerol induced apoptosis and its underlying mechanisms of action is not clear. In the present study, we assess the effects of taraxerol on the mitochondrial apoptotic pathway and determine the release of cytochrome c to the cytosol and activation of caspases. In this experimental study, we mainly investigated the effect of taraxerol on HeLa cells. We tested cell viability by the MTT assay and morphologic changes, analyzed apoptosis by DAPI staining and flow cytometry. We also determined reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) using a Microplate Reader. In addition, the apoptotic proteins were tested by Western blot. Taraxerol enhanced ROS levels and attenuated the MMP (Δψm) in HeLa cells. Taraxerol induced apoptosis mainly via the mitochondrial pathway including the release of cytochrome c to the cytosol and activation of caspases 9 and 3, and anti-poly (ADPribose) polymerase (PARP). Taraxerol could induce the down-regulation of the anti-apoptotic protein Bcl-2 and up-regulation of pro-apoptotic protein Bax. It suppressed the PI3K/ Akt signaling pathway. These results demonstrated that taraxerol induced cell apoptosis through a mitochondria-mediated pathway in HeLa cells. Thus, taraxerol might be a potential anticervical cancer candidate.

  15. Lysine demethylase inhibition protects pancreatic β cells from apoptosis and improves β-cell function

    DEFF Research Database (Denmark)

    Backe, Marie Balslev; Andersson, Jan Legaard; Bacos, Karl

    2018-01-01

    ) protects β cells from cytokine-induced apoptosis and reduces type 1 diabetes incidence in animals. We hypothesized that also lysine demethylases (KDMs) regulate β-cell fate in response to inflammatory stress. Expression of the demethylase Kdm6B was upregulated by proinflammatory cytokines suggesting...... a possible role in inflammation-induced β-cell destruction. Inhibition of KDM6 demethylases using the selective inhibitor GSK-J4 protected insulin-producing cells and human and mouse islets from cytokine-induced apoptosis by blunting nuclear factor (NF)-κB signaling and endoplasmic reticulum (ER) stress...

  16. Over-expression of PUMA correlates with the apoptosis of spinal cord cells in rat neuropathic intermittent claudication model.

    Directory of Open Access Journals (Sweden)

    Bin Ma

    Full Text Available BACKGROUND: Neuropathic intermittent claudication (NIC is a typical clinical symptom of lumbar spinal stenosis and the apoptosis of neurons caused by cauda equina compression (CEC has been proposed as an important reason. Whereas, the factors and the mechanism involved in the process of apoptosis induced by CEC remain unclear. METHODOLOGY AND RESULTS: In our modified rat model of NIC, a trapezoid-shaped silicon rubber was inserted into the epidural space under the L5 and L6 vertebral plate. Obvious apoptosis was observed in spinal cord cells after compression by TUNEL assay. Simultaneously, qRT-PCR and immunohistochemistry showed that the expression levels of PUMA (p53 up-regulated modulator of apoptosis and p53 were upregulated significantly in spinal cord under compression, while the expression of p53 inhibitor MDM2 and SirT2 decreased in the same region. Furthermore, CEC also resulted in the upregulation of Bcl-2 pro-apoptotic genes expression and caspase-3 activation. With the protection of Methylprednisolone, the upregulation of PUMA and p53 expression as well as the decrease of MDM2 and SirT2 in spinal cord were partially rescued in western bolt analysis. CONCLUSIONS: These results suggest that over-expression of PUMA correlates with CEC caused apoptosis of spinal cord cells, which is characterized by the increase of p53, Bax and Bad expression. PUMA upregulation might be crucial to induce apoptosis of spinal cord cells through p53-dependent pathway in CEC.

  17. Tumor Necrosis Factor-α Induced Apoptosis in U937 Cells Promotes Cathepsin D-Independent Stefin B Degradation.

    Science.gov (United States)

    Bidovec, Katja; Božič, Janja; Dolenc, Iztok; Turk, Boris; Turk, Vito; Stoka, Veronika

    2017-12-01

    Lysosomal cathepsins were previously found to be involved in tumor necrosis factor-α (TNFα)-induced apoptosis. However, there are opposing views regarding their role as either initiators or amplifiers of the signaling cascade as well as the order of molecular events during this process. In this study, we investigated the role of cathepsin D (catD) in TNFα/cycloheximide-induced apoptosis in U937 human monocytic cells. TNFα-induced apoptosis proceeds through caspase-8 activation, processing of the pro-apoptotic molecule Bid, mitochondrial membrane permeabilization, and caspase-3 activation. The translocation of lysosomal catD into the cytosol was a late event, suggesting that lysosomal membrane permeabilization and the release of cathepsins are not required for the induction of apoptosis, but rather amplifies the process through the generation of reactive oxygen species. For the first time, we show that apoptosis is accompanied by degradation of the cysteine cathepsin inhibitor stefin B (StfB). CatD did not exhibit a crucial role in this step. However, this degradation was partially prevented through pre-incubation with the antioxidant N-acetyl cysteine, although it did not prevent apoptosis and its progression. These results suggest that the degradation of StfB, as a response to TNFα, could induce a cell death amplification effect as a result of progressive damage to lysosomes during TNFα treatment. J. Cell. Biochem. 118: 4813-4820, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. VMP1 related autophagy and apoptosis in colorectal cancer cells: VMP1 regulates cell death

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Qinyi [Department of Ultrasonograph, Changshu No. 2 People’s Hospital, Changshu (China); Zhou, Hao; Chen, Yan [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou (China); Shen, Chenglong [Department of General Surgery, Changshu No. 2 People’s Hospital, Changshu (China); He, Songbing; Zhao, Hua; Wang, Liang [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou (China); Wan, Daiwei, E-mail: 372710369@qq.com [Department of Hepatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou (China); Gu, Wen, E-mail: 505339704@qq.com [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou (China)

    2014-01-17

    Highlights: •This research confirmed VMP1 as a regulator of autophagy in colorectal cancer cell lines. •We proved the pro-survival role of VMP1-mediated autophagy in colorectal cancer cell lines. •We found the interaction between VMP1 and BECLIN1 also existing in colorectal cancer cell lines. -- Abstract: Vacuole membrane protein 1 (VMP1) is an autophagy-related protein and identified as a key regulator of autophagy in recent years. In pancreatic cell lines, VMP1-dependent autophagy has been linked to positive regulation of apoptosis. However, there are no published reports on the role of VMP1 in autophagy and apoptosis in colorectal cancers. Therefore, to address this gap of knowledge, we decided to interrogate regulation of autophagy and apoptosis by VMP1. We have studied the induction of autophagy by starvation and rapamycin treatment in colorectal cell lines using electron microscopy, immunofluorescence, and immunoblotting. We found that starvation-induced autophagy correlated with an increase in VMP1 expression, that VMP1 interacted with BECLIN1, and that siRNA mediated down-regulation of VMP1-reduced autophagy. Next, we examined the relationship between VMP1-dependent autophagy and apoptosis and found that VMP1 down-regulation sensitizes cells to apoptosis and that agents that induce apoptosis down-regulate VMP1. In conclusion, similar to its reported role in other cell types, VMP1 is an important regulator of autophagy in colorectal cell lines. However, in contrast to its role in pancreatic cell lines, in colorectal cancer cells, VMP1-dependent autophagy appears to be pro-survival rather than pro-cell death.

  19. Delayed K562 cell apoptosis promoted by cleaved LyGDI after 60Co γ-rays irradiation

    International Nuclear Information System (INIS)

    Sun Huali; Duan Weiming; Shao Yanyan; Xiao Hainan; Zhou Xinwen

    2010-01-01

    Objective: To elucidate the function and regulatory mechanism of LyGDI involved delayed cell death in the human K562 cells and HL-60 cells induced by 60 Co γ-rays. Methods: Erythrosine B cells staining was used to count the apoptosis rate. PI staining and flow cytometry were applied to check the cell cycle. The expression of LYGDI and Rac1 was resolved by Western blot by using monoclonal antibody of LyGDI and Rac1. The distribution of Rac1 protein in cells was observed with immunofluorescence by using the confocal microscope. Results: The K562 cells showed G 2 /M phase arrest and the percent age was 71.3%. The apoptosis rate was very low at early post-irradiation stage in the K562 cells. The apoptosis rate was 14% in the K562 cells at 24 h post-irradiation with 8 Gy of γ-rays, and delayed cell apoptosis was present. LyGDI was cleaved in the K562 cells irradiated by 4 Gy 60 Co γ-rays after 24 hours post-irradiation. The expression of Rac1 protein was not altered at all, but the distribution was changed in the irradiated cells while the Rac1 protein moved to cell membrane and a little in cell nucleus. The Rac1 was activated with the losing the binding affinity with the LyGDI. Conclusion: LyGDI could promote the delayed cell apoptosis, which is through the activation of the Rac1. (authors)

  20. Docosahexaenoic acid induces apoptosis in primary chronic lymphocytic leukemia cells

    Directory of Open Access Journals (Sweden)

    Romain Guièze

    2015-12-01

    Full Text Available Chronic lymphocytic leukemia is an indolent disorder with an increased infectious risk remaining one of the main causes of death. Development of therapies with higher safety profile is thus a challenging issue. Docosahexaenoic acid (DHA, 22:6 is an omega-3 fatty acid, a natural compound of normal cells, and has been shown to display antitumor potency in cancer. We evaluated the potential in vitro effect of DHA in primary CLL cells. DHA induces high level of in vitro apoptosis compared to oleic acid in a dose-dependent and time-dependent manner. Estimation of IC50 was only of 4.813 μM, which appears lower than those reported in solid cancers. DHA is highly active on CLL cells in vitro. This observation provides a rationale for further studies aiming to understand its mechanisms of action and its potent in vivo activity.

  1. New cancer cells apoptosis agents: Fluorinated aza-heterocycles

    Science.gov (United States)

    Prima, D. O.; Baev, D. S.; Vorontsova, E. V.; Frolova, T. S.; Bagryanskaya, I. Yu.; Slizhov, Yu. G.; Tolstikova, T. G.; Makarov, A. Yu.; Zibarev, A. V.

    2017-09-01

    Fluorinated benzo-fused 1,3-diazoles, 1,2,3-triazoles, 1,2,5-thia/selenadiazoles and 1,4-diazines were synthesized and tried for cytotoxicity towards the Hep2 (laryngeal epidermoid carcinoma) cells. The diazoles, triazoles and selenadiazoles were cytotoxic with IC50 = 2.2-26.4 µM and induced the cells apoptosis at concentrations C = 1-25 µM. At the same time, they were nontoxic towards normal cells. Due to this, these scaffolds were used in the computer-aided molecular design of new antitumor agents. Particularly, novel 1,2,3-triazole and 1,3-diazole derivatives for the binding site of the PAS domain of the transcription factor HIF were designed and some of them synthesized for further study. Overall, new anticancer agents featuring apoptotic activity are suggested.

  2. Effects of LG268 on Cell Proliferation and Apoptosis of NB4 Cells.

    Science.gov (United States)

    Xu, Ting; Zhong, Liang; Gan, Liu-Gen; Xiao, Chun-Lan; Shan, Zhi-Ling; Yang, Rong; Song, Hao; Li, Liu; Liu, Bei-Zhong

    2016-01-01

    To investigate the effect of LG100268 (LG268) on cell proliferation and apoptosis in NB4 cells. NB4 cells were treated with LG268 for 24 h or 48 h. The effect of LG268 on cell proliferation was assessed by the CCK-8 assay and colony-forming assay. Apoptosis and cell cycle were evaluated by flow cytometry. The protein expression levels of Survivin, PARP, c-Myc, cyclin D1, ERK, p-ERK, p38 MAPK, and p- p38 MAPK were detected by western blot. We found that LG268 inhibited the proliferation of NB4 cells in a dose-dependent manner. Flow cytometry analysis showed that LG268 accelerated apoptosis in NB4 cells in a time- dependent manner and that LG268 treatment led to cell cycle arrest at G0/G1 phase. Moreover, LG268 significantly decreased the protein levels of Survivin, c-Myc, and cyclinD1. Cleaved PARP was observed in the LG268 treatment group but not in the control group. In addition, LG268 increased the phosphorylation level of p38 MAPK and decreased the phosphorylation level of ERK. LG268 inhibited cell proliferation and promoted cell apoptosis in NB4 cells.

  3. Demethoxycurcumin Retards Cell Growth and Induces Apoptosis in Human Brain Malignant Glioma GBM 8401 Cells

    Directory of Open Access Journals (Sweden)

    Tzuu-Yuan Huang

    2012-01-01

    Full Text Available Demethoxycurcumin (DMC; a curcumin-related demethoxy compound has been recently shown to display antioxidant and antitumor activities. It has also produced a potent chemopreventive action against cancer. In the present study, the antiproliferation (using the MTT assay, DMC was found to have cytotoxic activities against GBM 8401 cell with IC50 values at 22.71 μM and induced apoptosis effects of DMC have been investigated in human brain malignant glioma GBM 8401 cells. We have studied the mitochondrial membrane potential (MMP, DNA fragmentation, caspase activation, and NF-κB transcriptional factor activity. By these approaches, our results indicated that DMC has produced an inhibition of cell proliferation as well as the activation of apoptosis in GBM 8401 cells. Both effects were observed to increase in proportion with the dosage of DMC treatment, and the apoptosis was induced by DMC in human brain malignant glioma GBM 8401 cells via mitochondria- and caspase-dependent pathways.

  4. Programmed cell death-10 enhances proliferation and protects malignant T cells from apoptosis

    DEFF Research Database (Denmark)

    Lauenborg, Britt; Kopp, Katharina; Krejsgaard, Thorbjørn

    2010-01-01

    The programmed cell death-10 (PDCD10; also known as cerebral cavernous malformation-3 or CCM3) gene encodes an evolutionarily conserved protein associated with cell apoptosis. Mutations in PDCD10 result in cerebral cavernous malformations, an important cause of cerebral hemorrhage. PDCD10...... of cutaneous T-cell lymphoma (Sezary syndrome) patients. PDCD10 is associated with protein phosphatase-2A, a regulator of mitogenesis and apoptosis in malignant T cells. Inhibition of oncogenic signal pathways [Jak3, Notch1, and nuclear factor-¿B (NF-¿B)] partly inhibits the constitutive PDCD10 expression......, whereas an activator of Jak3 and NF-¿B, interleukin-2 (IL-2), enhances PDCD10 expression. Functional data show that PDCD10 depletion by small interfering RNA induces apoptosis and decreases proliferation of the sensitive cells. To our knowledge, these data provide the first functional link between PDCD10...

  5. Effects of P-Glycoprotein and Its Inhibitors on Apoptosis in K562 Cells

    Directory of Open Access Journals (Sweden)

    Yaqiong Zu

    2014-08-01

    Full Text Available P-glycoprotein (P-gp is a major factor in multidrug resistance (MDR which is a serious obstacle in chemotherapy. P-gp has also been implicated in causing apoptosis of tumor cells, which was shown to be another important mechanism of MDR recently. To study the influence of P-gp in tumor cell apoptosis, K562/A cells (P-gp+ and K562/S cells (P-gp− were subjected to doxorubicin (Dox, serum withdrawal, or independent co-incubation with multiple P-gp inhibitors, including valspodar (PSC833, verapamil (Ver and H108 to induce apoptosis. Apoptosis was simultaneously detected by apoptotic rate, cell cycle by flow cytometry and cysteine aspartic acid-specific protease 3 (caspase 3 activity by immunoassay. Cytotoxicity and apoptosis induced by PSC833 were evaluated through an MTT method and apoptosis rate, and cell cycle combined with caspase 3 activity, respectively. The results show that K562/A cells are more resistant to apoptosis and cell cycle arrest than K562/S cells after treatment with Dox or serum deprivation. The apoptosis of K562/A cells increased after co-incubation with each of the inhibitors of P-gp. P-gp inhibitors also enhanced cell cycle arrest in K562/A cell. PSC833 most strikingly decreased viability and led to apoptosis and S phase arrest of cell cycle in K562/A cells. Our study demonstrates that P-gp inhibits the apoptosis of tumor cells in addition to participating in the efflux of intracellular chemotherapy drugs. The results of the caspase 3 activity assay also suggest that the role of P-gp in apoptosis avoidance is caspase-related.

  6. [Ca2+]i in exterior of cells effected on apoptosis of HL-60 cells induced by irradiation

    International Nuclear Information System (INIS)

    He Ziyi; Meng Qingyong

    2005-01-01

    Objective: To investigate of the different [Ca 2+ ]i in exterior of cells promotion function on apoptosis of HL-60 cells induced by irradiation. Methods: To put ration dose 32 P and different [Ca 2+ ]i into culture of HL-60 and measure the apoptosis rate with FCM after 24 and 48 hours. Result: Apoptosis rate increased with the increase of [Ca 2+ ]i which shows an obvious function to promote apoptosis, r 24 =0.9001 (P=0.0145); r48=0.9343 (P=0.0063). Conclusion: [Ca 2+ ]i in exterior of cells has a obvious function in promoteing apoptosis induced by irradiation. (authors)

  7. [Effects of three Wenyang Jianpi Tang on cell proliferation and apoptosis of nonalcoholic fatty liver cells].

    Science.gov (United States)

    Yang, Jia-Yao; Tao, Dong-Qing; Liu, Song; Zhang, Shu; Ma, Wei; Shi, Zhao-Hong

    2017-04-01

    To investigate the effects of Sijunzi Tang, Lizhong Tang and Fuzi Lizhong Tang on the cell proliferation and apoptosis of nonalcoholic fatty liver cells through the nonalcoholic fatty liver cell model established by inducing L02 cells with oleic acid. Different concentrations of oleic acid were added into L02 cells to induce the nonalcoholic fatty liver cell model. Oil red O staining was used to observe fatty droplets of fatty liver cells. Automatic biochemical analyzer was used to detect the levels of aspartic transaminase(AST), alanine aminotransferase(ALT), total cholesterol(TC), and triglyceride(TG) in the cell supernatants. There were five groups, namely normal group, model group, model and Sijunzi Tang group, model and Lizhong Tang group, and model and Fuzi Lizhong Tang group. The cell proliferation and apoptosis of the five groups were detected by MTT colorimetry test and flow cytometer. The expressions of PCNA, cleaved caspase-3, cleaved caspase-8, cleaved caspase-9, Bax and Bcl-2 proteins of the five groups were detected by Western blot. The oil red O staining results showed that the optimum concentration of oleic acid that was used to induce nonalcoholic fatty liver cell models was 80 mg•L-1. The levels of AST, ALT, TC and TG in the nonalcoholic fatty liver cell supernatants were higher than that in normal liver cell supernatants(Pcell proliferation, and inhibit the cellular apoptosis of nonalcoholic fatty liver cells(Pcells. And Fuzi Lizhong Tang showed the best effect. In conclusion, all of Sijunzi Tang, Lizhong Tang and Fuzi Lizhong Tang could effectively promote the cell proliferation, and inhibit the cellular apoptosis of nonalcoholic fatty liver cells. And Fuzi Lizhong Tang showed the best effect. The pharmacodynamic mechanism may be related to the expressions of key factors in pathways related with proliferation and apoptosis mediated by the three decoctions. Copyright© by the Chinese Pharmaceutical Association.

  8. Heat shock protein 70-mediated sensitization of cells to apoptosis by Carboxyl-Terminal Modulator Protein

    Directory of Open Access Journals (Sweden)

    Sack Ragna

    2009-07-01

    Full Text Available Abstract Background The serine/threonine protein kinase B (PKB/Akt is involved in insulin signaling, cellular survival, and transformation. Carboxyl-terminal modulator protein (CTMP has been identified as a novel PKB binding partner in a yeast two-hybrid screen, and appears to be a negative PKB regulator with tumor suppressor-like properties. In the present study we investigate novel mechanisms by which CTMP plays a role in apoptosis process. Results CTMP is localized to mitochondria. Furthermore, CTMP becomes phosphorylated following the treatment of cells with pervanadate, an insulin-mimetic. Two serine residues (Ser37 and Ser38 were identified as novel in vivo phosphorylation sites of CTMP. Association of CTMP and heat shock protein 70 (Hsp70 inhibits the formation of complexes containing apoptotic protease activating factor 1 and Hsp70. Overexpression of CTMP increased the sensitivity of cells to apoptosis, most likely due to the inhibition of Hsp70 function. Conclusion Our data suggest that phosphorylation on Ser37/Ser38 of CTMP is important for the prevention of mitochondrial localization of CTMP, eventually leading to cell death by binding to Hsp70. In addition to its role in PKB inhibition, CTMP may therefore play a key role in mitochondria-mediated apoptosis by localizing to mitochondria.

  9. Endothelial cell energy metabolism, proliferation, and apoptosis in pulmonary hypertension.

    Science.gov (United States)

    Xu, Weiling; Erzurum, Serpil C

    2011-01-01

    Pulmonary arterial hypertension (PAH) is a fatal disease characterized by impaired regulation of pulmonary hemodynamics and excessive growth and dysfunction of the endothelial cells that line the arteries in PAH lungs. Establishment of methods for culture of pulmonary artery endothelial cells from PAH lungs has provided the groundwork for mechanistic translational studies that confirm and extend findings from model systems and spontaneous pulmonary hypertension in animals. Endothelial cell hyperproliferation, survival, and alterations of biochemical-metabolic pathways are the unifying endothelial pathobiology of the disease. The hyperproliferative and apoptosis-resistant phenotype of PAH endothelial cells is dependent upon the activation of signal transducer and activator of transcription (STAT) 3, a fundamental regulator of cell survival and angiogenesis. Animal models of PAH, patients with PAH, and human PAH endothelial cells produce low nitric oxide (NO). In association with the low level of NO, endothelial cells have reduced mitochondrial numbers and cellular respiration, which is associated with more than a threefold increase in glycolysis for energy production. The shift to glycolysis is related to low levels of NO and likely to the pathologic expression of the prosurvival and proangiogenic signal transducer, hypoxia-inducible factor (HIF)-1, and the reduced mitochondrial antioxidant manganese superoxide dismutase (MnSOD). In this article, we review the phenotypic changes of the endothelium in PAH and the biochemical mechanisms accounting for the proliferative, glycolytic, and strongly proangiogenic phenotype of these dysfunctional cells, which consequently foster the panvascular progressive pulmonary remodeling in PAH. © 2011 American Physiological Society.

  10. Stattic Enhances Radiosensitivity and Reduces Radio-Induced Migration and Invasion in HCC Cell Lines through an Apoptosis Pathway

    Directory of Open Access Journals (Sweden)

    Gang Xu

    2017-01-01

    Full Text Available Purpose. Signal transducer and activator of transcription factor 3 (STAT3 is involved in tumorigenesis, development, and radioresistance of many solid tumors. The aim of this study is to investigate the effects of stattic (an inhibitor of STAT3 on the radiosensitivity and radio-induced migration and invasion ability in hepatocellular carcinoma (HCC cell lines. Methods. HCC cells were treated with stattic, and cell survival rate was analyzed through CCK-8 assay. Radiosensitivity was evaluated using cloning formation analysis; STAT3, p-STAT3, and apoptosis related proteins were detected by western blot. Radio-induced migration and invasion ability in HCC cells were analyzed by wound-healing assay and transwell test. Results. Stattic inhibits the expression of p-STAT3 and reduces cell survival in a dose-dependent manner in HCC cell lines, and the IC50 values for Hep G2, Bel-7402, and SMMC-7721 are 2.94 μM, 2.5 μM, and 5.1 μM, respectively. Cloning formation analysis shows that stattic enhances the radiosensitivity of HCC cells. Wound-healing assay and transwell test show that stattic inhibits radio-induced migration and invasion. Further study indicates that stattic promotes radio-induce apoptosis through regulating the expression of apoptosis related proteins in HCC cells. Conclusion. Stattic enhances radiosensitivity and reduces radio-induced migration and invasion ability in HCC cells probably through apoptosis pathway.

  11. Oxymatrine inhibited cell proliferation by inducing apoptosis in human lung cancer A549 cells.

    Science.gov (United States)

    Wang, Baiyan; Han, Qianqian; Zhu, Yanqin

    2015-01-01

    To investigate the inhibition effect of oxymatrine induces human lung cancer A549 cells apoptosis. The A549 cells were cultured for 24 h, than the various concentration of oxymatrine (2 mmol/L, 4 mmol/L, 8 mmol/L, 15 mmol/L) were added into different experimental group cells, and 5-fluorouracil were added into the positive control group cells for 12 h, 24 h, 36 h, 48 h respectively. The A549 cells inhibition rate, apoptosis, and the expression of Bcl-2 and Bax were examined by MTT method, Annexin V/PI double staining method, real-time quantitative PCR and western blot, respectively. At same time, the morphological changes of A549 cells were observed with an inverted microscope. In the range of 2 mmol/L~15 mmol/L, oxymatrine had obvious inhibition effects on the proliferation of A549 cells. Compared with the negative control group, it has significantly different (PA549 cells were treated with 8 mmol/L oxymatrine for 24 h, the morphological change of cell apoptosis was observed and the extent of apoptosis was quantified by flow cytometry. Furthermore, the expression of Bcl-2 was reduced and the expression of Bax was increased remarkably (PA549 cells by regulating the expression of Bcl-2 and Bax.

  12. Neuroprotective activities of catalpol against CaMKII-dependent apoptosis induced by LPS in PC12 cells

    Science.gov (United States)

    Chen, Wenna; Li, Ximing; Jia, Lian-Qun; Wang, Jun; Zhang, Lin; Hou, Diandong; Wang, Junyan; Ren, Lu

    2013-01-01

    Background and Purpose Neurodegenerative diseases