WorldWideScience

Sample records for cell anode catalysts

  1. Novel Anode Catalyst for Direct Methanol Fuel Cells

    Directory of Open Access Journals (Sweden)

    S. Basri

    2014-01-01

    Full Text Available PtRu catalyst is a promising anodic catalyst for direct methanol fuel cells (DMFCs but the slow reaction kinetics reduce the performance of DMFCs. Therefore, this study attempts to improve the performance of PtRu catalysts by adding nickel (Ni and iron (Fe. Multiwalled carbon nanotubes (MWCNTs are used to increase the active area of the catalyst and to improve the catalyst performance. Electrochemical analysis techniques, such as energy dispersive X-ray spectrometry (EDX, X-ray diffraction (XRD, field emission scanning electron microscopy (FESEM, and X-ray photoelectron spectroscopy (XPS, are used to characterize the kinetic parameters of the hybrid catalyst. Cyclic voltammetry (CV is used to investigate the effects of adding Fe and Ni to the catalyst on the reaction kinetics. Additionally, chronoamperometry (CA tests were conducted to study the long-term performance of the catalyst for catalyzing the methanol oxidation reaction (MOR. The binding energies of the reactants and products are compared to determine the kinetics and potential surface energy for methanol oxidation. The FESEM analysis results indicate that well-dispersed nanoscale (2–5 nm PtRu particles are formed on the MWCNTs. Finally, PtRuFeNi/MWCNT improves the reaction kinetics of anode catalysts for DMFCs and obtains a mass current of 31 A g−1 catalyst.

  2. ANODE CATALYST MATERIALS FOR USE IN FUEL CELLS

    DEFF Research Database (Denmark)

    2002-01-01

    Catalyst materials having a surface comprising a composition M¿x?/Pt¿3?/Sub; wherein M is selected from the group of elements Fe, Co, Rh and Ir; or wherein M represent two different elements selected from the group comprising Fe, CO, Rh, Ir, Ni, Pd, CU, Ag, Au and Sn; and wherein Sub represents...... a substrate material selected from Ru and Os; the respective components being present within specific ranges, display improved properties for use inanodes for low-temperature fuel cell anodes for PENFC fuel cells and direct methanol fuel cells....

  3. Carbon Supported Polyaniline as Anode Catalyst: Pathway to Platinum-Free Fuel Cells

    CERN Document Server

    Zabrodskii, A G; Malyshkin, V G; Sapurina, I Y

    2006-01-01

    The effectiveness of carbon supported polyaniline as anode catalyst in a fuel cell (FC) with direct formic acid electrooxidation is experimentally demonstrated. A prototype FC with such a platinum-free composite anode exhibited a maximum room-temperature specific power of about 5 mW/cm2

  4. Reactivity descriptors for direct methanol fuel cell anode catalysts

    DEFF Research Database (Denmark)

    Ferrin, Peter; Nilekar, Anand Udaykumar; Greeley, Jeff

    2008-01-01

    We have investigated the anode reaction in direct methanol fuel cells using a database of adsorption free energies for 16 intermediates on 12 close-packed transition metal surfaces calculated with periodic, self-consistent, density functional theory (DFT-GGA). This database, combined with a simple...

  5. Mixed phase Pt-Ru catalyst for direct methanol fuel cell anode by flame aerosol synthesis

    DEFF Research Database (Denmark)

    Chakraborty, Debasish; Bischoff, H.; Chorkendorff, Ib

    2005-01-01

    A spray-flame aerosol catalyzation technique was studied for producing Pt-Ru anode electrodes for the direct methanol fuel cell. Catalysts were produced as aerosol nanoparticles in a spray-flame reactor and deposited directly as a thin layer on the gas diffusion layer. The as-prepared catalyst......Ru1/Vulcan carbon. The kinetics of methanol oxidation on the mixed phase catalyst was also explored by electrochemical impedance spectroscopy. (c) 2005 The Electrochemical Society....

  6. Ni3Mo3C as anode catalyst for high-performance microbial fuel cells.

    Science.gov (United States)

    Zeng, Li-Zhen; Zhao, Shao-Fei; Li, Wei-Shan

    2015-03-01

    Ni3Mo3C was prepared by a modified organic colloid method and explored as anode catalyst for high-performance microbial fuel cell (MFC) based on Klebsiella pneumoniae (K. pneumoniae). The prepared sample was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and Brunauer-Emmett-Teller (BET). The activity of the sample as anode catalyst for MFC based on K. pneumoniae was investigated by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and polarization curve measurement. The results show that the adding of nickel in Mo2C increases the BET surface area of Mo2C and improves the electrocatalytic activity of Mo2C towards the oxidation of microbial fermentation products. The power density of MFC with 3 mg cm(-2) Ni3Mo3C anode is far higher than that of the MFC with carbon felt as anode without any catalyst, which is 19 % higher than that of Mo2C anode and produced 62 % as much as that of Pt anode, indicating that Ni3Mo3C is comparative to noble metal platinum as anode electrocatalyst for MFCs by increasing the loading.

  7. Ceramic anode catalyst for dry methane type molten carbonate fuel cell

    Science.gov (United States)

    Tagawa, T.; Yanase, A.; Goto, S.; Yamaguchi, M.; Kondo, M.

    Oxide catalyst materials for methane oxidation were examined in order to develop the anode electrode for molten carbonate type fuel cell (MCFC). As a primary selection, oxides such as lanthanum (La 2O 3) and samarium (Sm 2O 3) were selected from screening experiments of TPD, TG and tubular reactor. Composite materials of these oxides with titanium fine powder were assembled into a cell unit for MCFC as the anode electrode. Steady-state activities were observed with these anode electrode materials when hydrogen was used as a fuel. When methane was directly charged to anode as a fuel (dry methane operation), a power generation with steady state was observed on both lanthanum and samarium composites after gradual decrease of open circuit electromotive force (OCV) and closed circuit current (CCI). The steady-state activity held as long as 144 h of continuous operation.

  8. Low-Pt-Content Anode Catalyst for Direct Methanol Fuel Cells

    Science.gov (United States)

    Narayanan, Sekharipuram; Whitacre, Jay

    2008-01-01

    Combinatorial experiments have led to the discovery that a nanophase alloy of Pt, Ru, Ni, and Zr is effective as an anode catalyst material for direct methanol fuel cells. This discovery has practical significance in that the electronic current densities achievable by use of this alloy are comparable or larger than those obtained by use of prior Pt/Ru catalyst alloys containing greater amounts of Pt. Heretofore, the high cost of Pt has impeded the commercialization of direct methanol fuel cells. By making it possible to obtain a given level of performance at reduced Pt content (and, hence, lower cost), the discovery may lead to reduction of the economic impediment to commercialization.

  9. Bifunctional anode catalysts for direct methanol fuel cells

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Ferrin, Peter; Tritsaris, Georgios

    2012-01-01

    Using the binding energy of OH* and CO* on close-packed surfaces as reactivity descriptors, we screen bulk and surface alloy catalysts for methanol electro-oxidation activity. Using these two descriptors, we illustrate that a good methanol electro-oxidation catalyst must have three key properties......: (1) the ability to activate methanol, (2) the ability to activate water, and (3) the ability to react off surface intermediates (such as CO* and OH*). Based on this analysis, an alloy catalyst made up of Cu and Pt should have a synergistic effect facilitating the activity towards methanol electro....... Adding Cu to a Pt(111) surface increases the methanol oxidation current by more than a factor of three, supporting our theoretical predictions for improved electrocatalysts....

  10. Preparation and influence of performance of anodic catalysts for direct methanol fuel cell

    Institute of Scientific and Technical Information of China (English)

    WANG Zhenbo; YIN Geping; SHI Pengfei

    2007-01-01

    This research aims at increasing the utilization of platinum-ruthenium alloy (Pt-Ru) catalysts and thus lowering the catalyst loading in anodes for methanol electrooxidation.The direct methanol fuel cell's (DMFC) anodic catalysts,Pt-Ru/C,were prepared by chemical reduction with a reducing agent added in two kinds of solutions under different circumstances.The reducing agent was added in hot solution with the protection of inert gases or just air,and in cold solution with inert gases.The catalysts were treated at different temperatures.Their performance was tested by cyclic voltammetry and potentiostatic polarization by utilizing their inherent powder microelectrode in 0.5 mol/L CH3OH and 0.5 mol/L H2SO4 solution.The structures and micro-surface images ofthe catalysts were determined and observed by X-ray diffraction and transmission electron microscopy,respectively.The catalyst prepared in inert gases showed a better catalytic performance for methanol electrooxidation than that prepared in air.It resulted in a more homogeneous distribution of the Pt-Ru alloy in carbon.Its size is small,only about 4.5 nm.The catalytic performance is affected by the order of the reducing agent added.The performance of the catalyst prepared by adding the reductant at constant temperature of the solution is better than that prepared by adding it in the solution at 0℃ and then heating it up to the reducing temperature.The structure of the catalyst was modified,and there was an increase in the conversion of ruthenium into the alloyed state and an increase in particle size with the ascension of heat treatment temperature.In addition,the stability of the catalyst was improved after heat treatment.

  11. Influence of bi modification of pt anode catalyst in direct formic acid fuel cells.

    Science.gov (United States)

    Kang, Sungjin; Lee, Jaeyoung; Lee, Jae Kwang; Chung, Seung-Young; Tak, Yongsug

    2006-04-13

    The influence of Bi modification of Pt anode catalyst on the performance of direct formic acid fuel cells was investigated. Compared with the unmodified Pt anode, the Bi modified Pt (PtBi(m)) electrode prepared by under-potential deposition (UPD) caused faster electrocatalytic oxidation of formic acid at the same value of the overpotential, and thus, PtBi(m) resulted in an increase in the power performance of direct formic acid fuel cells. Electrochemical impedance spectra helped to explain the difference of performance between the unmodified Pt and Bi modified Pt electrodes. Solution conductivity and dehydration phenomena occurring in highly concentrated formic acid solutions can also explain the higher power performance of PtBi(m).

  12. FeCrO Nanoparticles as Anode Catalyst for Ethane Proton Conducting Fuel Cell Reactors to Coproduce Ethylene and Electricity

    Directory of Open Access Journals (Sweden)

    Jian-Hui Li

    2011-01-01

    Full Text Available Ethylene and electrical power are cogenerated in fuel cell reactors with FeCr2O4 nanoparticles as anode catalyst, La0.7Sr0.3FeO3- (LSF as cathode material, and BaCe0.7Zr0.1Y0.2O3- (BCZY perovskite oxide as proton-conducting ceramic electrolyte. FeCr2O4, BCZY and LSF are synthesized by a sol-gel combustion method. The power density increases from 70 to 240 mW cm−2, and the ethylene yield increases from about 14.1% to 39.7% when the operating temperature of the proton-conducting fuel cell reactor increases from 650∘C to 750∘C. The FeCr2O4 anode catalyst exhibits better catalytic performance than nanosized Cr2O3 anode catalyst.

  13. Electrocatalysis of fuel cells reaction on Pt and Pt-bimetallic anode catalysts: A selective review

    Directory of Open Access Journals (Sweden)

    Stamenković Vojislav

    2002-01-01

    Full Text Available In this review we selectively summarize recent progress, primarily from our laboratory, in the development of interrelationships between the kinetics of the fuel cells reactions and the structure/composition of anode catalysts. The focus is placed on two types of metallic surfaces: platinum single crystals and bimetallic surfaces based on Pt. In the first part it was illustrated that the hydcogen reaction is structure sensitive process, with Pt(110 being an order of magnitude more active than either of the atomically "flatter" (100 and (111 surfaces. The hydrogen reaction on Pt(hkl modified by pseudomorphic Pd (submonolayers shows the "volcano-like" behavior, having the maximum rate on Pt(111 modified by 1 ML of Pd. The Pt(111-Pd system is used to demonstrate how the energetics of intermediates formed in the hydrogen reaction is affected by interfacial bonding and energetic constraints produced between pseudomorphic Pd films and the Pt(111 substrate. In the second part it was shown that the oxidation of Ha in the presence of CO occurs concurrently with CO oxidation on Pt and Pt bimetallic surfaces. The Pt-Ru system is used to demonstrate that both the bifunctional effect and the ligand effect contribute to the influence of Ru on the CO oxidation rate and for Hz oxidation process in the presence of CO. The knowledge is then used to create the real-life catalyst with the catalytic activities which are, to the greatest extend possible similar to the tailor-made surface.

  14. Enhancement in open-circuit voltage of implantable CMOS-compatible glucose fuel cell by improving the anodic catalyst

    Science.gov (United States)

    Niitsu, Kiichi; Ando, Takashi; Kobayashi, Atsuki; Nakazato, Kazuo

    2017-01-01

    This paper presents an implantable CMOS-compatible glucose fuel cell that generates an open-circuit voltage (OCV) of 880 mV. The developed fuel cell is solid-catalyst-based and manufactured from biocompatible materials; thus, it can be implanted to the human body. Additionally, since the cell can be manufactured using a semiconductor (CMOS) fabrication process, it can also be manufactured together with CMOS circuits on a single silicon wafer. In the literature, an implantable CMOS-compatible glucose fuel cell has been reported. However, its OCV is 192 mV, which is insufficient for CMOS circuit operation. In this work, we have enhanced the performance of the fuel cell by improving the electrocatalytic ability of the anode. The prototype with the newly proposed Pt/carbon nanotube (CNT) anode structure successfully achieved an OCV of 880 mV, which is the highest ever reported.

  15. TiO{sub 2} nanotubes promoted PT-NI/C catalyst with low PT content as anode catalyst for direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Shen, L.; Jiang, Q.Z.; Gan, T.G.; Ma, Z.F. [Shanghai Jiao Tong Univ., Shanghai (China). Dept. of Chemical Engineering; Shen, M. [Oklahoma Univ., Norman, OK (United States). School of Chemical, Biological and Materials Engineering, Sarkeys Energy Center; Rodriguez Varela, F.J. [Cinvestav Unidad Saltillo, Coahuila (Mexico). Grupo de Recursos Naturales y Energeticos; Ocampo, A.L. [Univ. Nacional Autonoma, Mexico City (Mexico). Dept. de Quimica Analitica

    2010-07-15

    Although direct ethanol fuel cells (DEFC) have more energy density than direct methanol fuel cells (DMFC), their widespread use has been hampered by the fact that metallic platinum (Pt) catalysts are readily poisoned by strongly absorbed reaction intermediates such as CO{sub ads} at low operating temperatures. The addition of a second transition metal or a metal oxide component has been considered as a means to improve performance of DEFCs by forming a binary anode based on Pt. In this study, titanium oxide (TiO{sub 2}) nanotubes (TiO{sub 2}NTs) were added into a low-platinum content Pt-Ni/C catalyst to improve its catalytic activity for the ethanol oxidation reaction (EOR). The promotion effect of TiO{sub 2}NTs on Pt-Ni/C catalyst was examined. Cyclic voltametry (CV) and chronoamperometry showed that TiO{sub 2}NTs can improve the catalytic activity of the Pt-Ni/C catalyst considerably. Compared to a commercial Pt-Ru/C catalyst, the Pt-Ni-TiO{sub 2}NT/C catalyst has a larger electrochemical active surface (EAS) and has lower onset potential for the EOR. The elemental composition and electronic structure of the catalyst were characterized by X-ray photoelectron spectroscopy, energy dispersive X-ray spectrometry, inductively coupled plasma-optical emission spectrometry and X-ray diffraction. High resolution transmission electron microscopy was used to characterize the morphological properties of these catalysts. The study showed that onset oxidation potential can be lowered by the presence of TiO{sub 2}NTs because they retain more of the Pt metallic species and provide more hydroxides groups. 35 refs., 2 tabs., 10 figs.

  16. Highly redox-resistant solid oxide fuel cell anode materials based on La-doped SrTiO3 by catalyst impregnation strategy

    Science.gov (United States)

    Shen, X.; Sasaki, K.

    2016-07-01

    An anode backbone using 40 wt% (ZrO2)0.89(Sc2O3)0.1(CeO2)0.01 (SSZ)-Sr0.9La0.1TiO3 (SLT) cermet was prepared for SSZ electrolyte-supported SOFC single cells. 15 mgcm-2 Ce0.9Gd0.1O2 (GDC) was impregnated to totally cover the SSZ-SLT anode backbone surface acting as a catalyst, and the cell voltage achieved 0.865 V at 200 mAcm-2 using (La0.75Sr0.25)0.98MnO3 (LSM)-SSZ cathode in 3%-humidified hydrogen fuel at 800 °C. Cell performance was substantially improved from 0.865 V to >0.97 V when 0.03 mgcm-2 Pd or Ni was further incorporated as a secondary catalyst into the anode layer. 50 redox cycles were performed to investigate redox stability of this high performance anode. It was found that even after the 50 redox cycle long-term degradation test, cell voltage at 200 mAcm-2 was retained around 0.94 V, higher than the cell performance using the conventional Ni-SSZ cermet anode. The catalytically-active reaction sites at ceria-Pd or ceria-Ni may account for the excellent performance, and the extremely low metal catalyst concentration prevent serious metal aggregation in achieving excellent redox stability.

  17. High throughput evaluation of perovskite-based anode catalysts for direct methanol fuel cells

    Science.gov (United States)

    Deshpande, Kishori; Mukasyan, Alexander; Varma, Arvind

    Liquid feed direct methanol fuel cells (DMFC) are promising candidates for portable power applications. However, owing to the problems associated with expensive Pt-based catalysts, viz., CO poisoning, a promising approach is to use complex oxides of the type ABO 3 (A = Sr, Ce, La, etc. and B = Co, Fe, Ni, Pt, Ru, etc.). In the current work, a variety of ABO 3 and A 2BO 4 type non-noble and partially substituted noble metal high surface area compounds were synthesized by an effective and rapid aqueous combustion synthesis (CS). Their catalytic activity was evaluated by using "High Throughput Screening Unit"-NuVant System, which compares up to 25 compositions simultaneously under DMFC conditions. It was found that the Sr-based perovskites showed performance comparable with the standard Pt-Ru catalyst. Further, it was observed that the method of doping SrRuO 3 with Pt influenced the activity. Specifically, platinum added during aqueous CS yielded better catalyst than when added externally at the ink preparation stage. Finally, it was also demonstrated that the presence of SrRuO 3 significantly enhanced the catalytic properties of Pt, leading to superior performance even at lower noble metal loadings.

  18. Amide group anchored glucose oxidase based anodic catalysts for high performance enzymatic biofuel cell

    Science.gov (United States)

    Chung, Yongjin; Ahn, Yeonjoo; Kim, Do-Heyoung; Kwon, Yongchai

    2017-01-01

    A new enzyme catalyst is formed by fabricating gold nano particle (GNP)-glucose oxidase (GOx) clusters that are then attached to polyethyleneimine (PEI) and carbon nanotube (CNT) with cross-linkable terephthalaldehyde (TPA) (TPA/[CNT/PEI/GOx-GNP]). Especially, amide bonds belonging to TPA play an anchor role for incorporating rigid bonding among GNP, GOx and CNT/PEI, while middle size GNP is well bonded with thiol group of GOx to form strong GNP-GOx cluster. Those bonds are identified by chemical and electrochemical characterizations like XPS and cyclic voltammogram. The anchording effect of amide bonds induces fast electron transfer and strong chemical bonding, resulting in enhancements in (i) catalytic activity, (ii) amount of immobilized GOx and (ii) performance of enzymatic biofuel cell (EBC) including the catalyst. Regarding the catalytic activity, the TPA/[CNT/PEI/GOx-GNP] produces high electron transfer rate constant (6 s-1), high glucose sensitivity (68 μA mM-1 cm-2), high maximum current density (113 μA cm-2), low charge transfer resistance (17.0 Ω cm2) and long-lasting durability while its chemical structure is characterized by XPS confirming large portion of amide bond. In EBC measurement, it has high maximum power density (0.94 mW cm-2) compatible with catalytic acitivity measurements.

  19. The effects of hydrogen sulfide on the polymer electrolyte membrane fuel cell anode catalyst: H2S-Pt/C interaction products

    Science.gov (United States)

    Lopes, Thiago; Paganin, Valdecir A.; Gonzalez, Ernesto R.

    2011-08-01

    The performance of a polymer electrolyte membrane fuel cell (PEMFC) operating on a simulated hydrocarbon reformate is described. The anode feed stream consisted of 80% H2, ∼20% N2, and 8 ppm hydrogen sulfide (H2S). Cell performance losses are calculated by evaluating cell potential reduction due to H2S contamination through lifetime tests. It is found that potential, or power, loss under this condition is a result of platinum surface contamination with elemental sulfur. Electrochemical mass spectroscopy (EMS) and electrochemical techniques are employed, in order to show that elemental sulfur is adsorbed onto platinum, and that sulfur dioxide is one of the oxidation products. Moreover, it is demonstrated that a possible approach for mitigating H2S poisoning on the PEMFC anode catalyst is to inject low levels of air into the H2S-contaminated anode feeding stream.

  20. Pt-Ni and Pt-M-Ni (M = Ru, Sn Anode Catalysts for Low-Temperature Acidic Direct Alcohol Fuel Cells: A Review

    Directory of Open Access Journals (Sweden)

    Ermete Antolini

    2017-01-01

    Full Text Available In view of a possible use as anode materials in acidic direct alcohol fuel cells, the electro-catalytic activity of Pt-Ni and Pt-M-Ni (M = Ru, Sn catalysts for methanol and ethanol oxidation has been widely investigated. An overview of literature data regarding the effect of the addition of Ni to Pt and Pt-M on the methanol and ethanol oxidation activity in acid environment of the resulting binary and ternary Ni-containing Pt-based catalysts is presented, highlighting the effect of alloyed and non-alloyed nickel on the catalytic activity of these materials.

  1. Ethane dehydrogenation over nano-Cr 2O 3 anode catalyst in proton ceramic fuel cell reactors to co-produce ethylene and electricity

    Science.gov (United States)

    Fu, Xian-Zhu; Luo, Xiao-Xiong; Luo, Jing-Li; Chuang, Karl T.; Sanger, Alan R.; Krzywicki, Andrzej

    Ethane and electrical power are co-generated in proton ceramic fuel cell reactors having Cr 2O 3 nanoparticles as anode catalyst, BaCe 0.8Y 0.15Nd 0.05O 3- δ (BCYN) perovskite oxide as proton conducting ceramic electrolyte, and Pt as cathode catalyst. Cr 2O 3 nanoparticles are synthesized by a combustion method. BaCe 0.8Y 0.15Nd 0.05O 3- δ (BCYN) perovskite oxides are obtained using a solid state reaction. The power density increases from 51 mW cm -2 to 118 mW cm -2 and the ethylene yield increases from about 8% to 31% when the operating temperature of the solid oxide fuel cell reactor increases from 650 °C to 750 °C. The fuel cell reactor and process are stable at 700 °C for at least 48 h. Cr 2O 3 anode catalyst exhibits much better coke resistance than Pt and Ni catalysts in ethane fuel atmosphere at 700 °C.

  2. Investigation of carbon supported PtW catalysts as CO tolerant anodes at high temperature in proton exchange membrane fuel cell

    Science.gov (United States)

    Hassan, Ayaz; Paganin, Valdecir A.; Ticianelli, Edson A.

    2016-09-01

    The CO tolerance mechanism and the stability of carbon supported PtW electrocatalysts are evaluated in the anode of a proton exchange membrane fuel cell (PEMFC) at two different temperatures. The electrocatalysts are characterized by energy dispersive spectroscopy, X-ray diffraction, and transmission electron spectroscopy. Employed electrochemical techniques include cyclic voltammetry, CO stripping, fuel cell polarization, and online mass spectrometry. At a cell temperature of 85 °C, the PtW/C catalyst shows higher CO tolerance compared to Pt/C due an electronic effect of WOx in the Pt 5d band, which reduces the CO adsorption. An increase in hydrogen oxidation activity in the presence of CO is observed for both the catalysts at a higher temperature, due to the decrease of the Pt-CO coverage. A reduction in the current densities occurs for the PtW/C catalyst in both polarization curves and cyclic voltammograms after 5000 cycles of the anode in the range of 0.1-0.7 V vs. RHE at 50 mVs-1. This decrease in performance is assigned to the dissolution of W, with a consequent increase in the membrane resistivity. However, the observed decline of performance is small either in the presence of pure H2 or in the presence of H2/CO.

  3. Enhancing the power generation in microbial fuel cells with effective utilization of goethite recovered from mining mud as anodic catalyst.

    Science.gov (United States)

    Jadhav, Dipak A; Ghadge, Anil N; Ghangrekar, Makarand M

    2015-09-01

    Catalytic effect of goethite recovered from iron-ore mining mud was studied in microbial fuel cells (MFCs). Characterization of material recovered from mining mud confirms the recovery of iron oxide as goethite. Heat treated goethite (550 °C) and untreated raw goethite were coated on stainless-steel anode of MFC-1 and MFC-2, respectively; whereas, unmodified stainless-steel anode was used in MFC-3 (control). Fivefold increment in power was obtained in MFC-1 (17.1 W/m(3) at 20 Ω) than MFC-3 (3.5 W/m(3)). MFC with raw goethite coated anode also showed enhanced power (11 W/m(3)). Higher Coulombic efficiency (34%) was achieved in MFC-1 than control MFC-3 (13%). Decrease in mass-transport losses and higher redox current during electrochemical analyses support improved electron transfer with the use of goethite on anode. Cheaper goethite coating kinetically accelerates the electron transfer between bacteria and anode, proving to be a novel approach for enhancing the electricity generation along with organic matter removal in MFC.

  4. In situ characterization of nanoscale catalysts during anodic redox processes

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Renu [National Institute of Standards and Technology; Crozier, Peter [Arizona State University; Adams, James [Arizona State University

    2013-09-19

    Controlling the structure and composition of the anode is critical to achieving high efficiency and good long-term performance. In addition to being a mixed electronic and ionic conductor, the ideal anode material should act as an efficient catalyst for oxidizing hydrogen, carbon monoxide and dry hydrocarbons without de-activating through either sintering or coking. It is also important to develop novel anode materials that can operate at lower temperatures to reduce costs and minimized materials failure associated with high temperature cycling. We proposed to synthesize and characterize novel anode cermets materials based on ceria doped with Pr and/or Gd together with either a Ni or Cu metallic components. Ceria is a good oxidation catalyst and is an ionic conductor at room temperature. Doping it with trivalent rare earths such as Pr or Gd retards sintering and makes it a mixed ion conductor (ionic and electronic). We have developed a fundamental scientific understanding of the behavior of the cermet material under reaction conditions by following the catalytic oxidation process at the atomic scale using a powerful Environmental Scanning Transmission Electron Microscope (ESTEM). The ESTEM allowed in situ monitoring of structural, chemical and morphological changes occurring at the cermet under conditions approximating that of typical fuel-cell operation. Density functional calculations were employed to determine the underlying mechanisms and reaction pathways during anode oxidation reactions. The dynamic behavior of nanoscale catalytic oxidation of hydrogen and methane were used to determine: ? Fundamental processes during anodic reactions in hydrogen and carbonaceous atmospheres ? Interfacial effects between metal particles and doped ceria ? Kinetics of redox reaction in the anode material

  5. A Pd/C-CeO2 Anode Catalyst for High-Performance Platinum-Free Anion Exchange Membrane Fuel Cells.

    Science.gov (United States)

    Miller, Hamish A; Lavacchi, Alessandro; Vizza, Francesco; Marelli, Marcello; Di Benedetto, Francesco; D'Acapito, Francesco; Paska, Yair; Page, Miles; Dekel, Dario R

    2016-05-10

    One of the biggest obstacles to the dissemination of fuel cells is their cost, a large part of which is due to platinum (Pt) electrocatalysts. Complete removal of Pt is a difficult if not impossible task for proton exchange membrane fuel cells (PEM-FCs). The anion exchange membrane fuel cell (AEM-FC) has long been proposed as a solution as non-Pt metals may be employed. Despite this, few examples of Pt-free AEM-FCs have been demonstrated with modest power output. The main obstacle preventing the realization of a high power density Pt-free AEM-FC is sluggish hydrogen oxidation (HOR) kinetics of the anode catalyst. Here we describe a Pt-free AEM-FC that employs a mixed carbon-CeO2 supported palladium (Pd) anode catalyst that exhibits enhanced kinetics for the HOR. AEM-FC tests run on dry H2 and pure air show peak power densities of more than 500 mW cm(-2) .

  6. Effect of the Pd/MWCNTs anode catalysts preparation methods on their morphology and activity in a direct formic acid fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Lesiak, B., E-mail: blesiak-orlowska@ichf.edu.pl [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa (Poland); Mazurkiewicz, M.; Malolepszy, A. [Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warszawa (Poland); Stobinski, L. [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa (Poland); Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warszawa (Poland); Mierzwa, B.; Mikolajczuk-Zychora, A.; Juchniewicz, K.; Borodzinski, A. [Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa (Poland); Zemek, J.; Jiricek, P. [Institute of Physics, Academy of Sciences of the Czech Republic, 162-53 Prague 6, Cukrovarnicka 10 (Czech Republic)

    2016-11-30

    Highlights: • Catalysts properties studied by XRD, STEM, XPS methods. • Differences in Pd particle size, content of Pd, functional groups, PdC{sub x.}. • Catalytic activity studied in a Direct Formic Acid Fuel Cell. • Highest activity–catalyst prepared using a strong reducing agent (NaBH{sub 4}). - Abstract: Impact of Pd/MWCNTs catalysts preparation method on the catalysts morphology and activity in a formic acid electrooxidation reaction was investigated. Three reduction methods of Pd precursor involving reduction in a high pressure microwave reactor (Pd1), reduction with NaBH{sub 4} (Pd2) and microwave-assisted polyol method (Pd3) were used in this paper. Crystallites size and morphology were studied using the scanning transmission electron microscopy (STEM), X-ray diffraction (XRD), whereas elemental composition, Pd chemical state and functional groups content by the X-ray photoelectron spectroscopy (XPS). The prepared catalysts were tested in a direct formic acid fuel cell (DFAFC) as an anode material. The catalytic activity was correlated with a mean fraction of the total Pd atoms exposed at the surface (FE). The value of FE was calculated from the crystallites size distribution determined by the STEM measurements. Non-linear dependence of a current density versus FE, approaching the maximum at FE≈0.25 suggests that the catalytic process proceeded at Pd nanocrystallites faces, with inactive edges and corners. Pd2 catalyst exhibited highest activity due to its smallest Pd crystallites (3.2 nm), however the absence of Pd crystallites aggregation and low content of carbon in PdC{sub x} phase, i.e. x = 4 at.% may also affect the observed.

  7. Effect of the Pd/MWCNTs anode catalysts preparation methods on their morphology and activity in a direct formic acid fuel cell

    Science.gov (United States)

    Lesiak, B.; Mazurkiewicz, M.; Malolepszy, A.; Stobinski, L.; Mierzwa, B.; Mikolajczuk-Zychora, A.; Juchniewicz, K.; Borodzinski, A.; Zemek, J.; Jiricek, P.

    2016-11-01

    Impact of Pd/MWCNTs catalysts preparation method on the catalysts morphology and activity in a formic acid electrooxidation reaction was investigated. Three reduction methods of Pd precursor involving reduction in a high pressure microwave reactor (Pd1), reduction with NaBH4 (Pd2) and microwave-assisted polyol method (Pd3) were used in this paper. Crystallites size and morphology were studied using the scanning transmission electron microscopy (STEM), X-ray diffraction (XRD), whereas elemental composition, Pd chemical state and functional groups content by the X-ray photoelectron spectroscopy (XPS). The prepared catalysts were tested in a direct formic acid fuel cell (DFAFC) as an anode material. The catalytic activity was correlated with a mean fraction of the total Pd atoms exposed at the surface (FE). The value of FE was calculated from the crystallites size distribution determined by the STEM measurements. Non-linear dependence of a current density versus FE, approaching the maximum at FE≈0.25 suggests that the catalytic process proceeded at Pd nanocrystallites faces, with inactive edges and corners. Pd2 catalyst exhibited highest activity due to its smallest Pd crystallites (3.2 nm), however the absence of Pd crystallites aggregation and low content of carbon in PdCx phase, i.e. x = 4 at.% may also affect the observed.

  8. Influence of Metal Sulfides as Anode Catalysts on Performance of H2S SOFC

    Institute of Scientific and Technical Information of China (English)

    钟理; 刘曼; 韩国林; CHUANGKar

    2003-01-01

    Two anode catalysts with Pt, MoS2 and composite metal sulfides (MoS2+NiS), are investigated for electrochemical oxidation of hydrogen sulfide in solid oxide fuel cell (SOFC) at temperatures 750-850℃. The catalysts comprising MoS2 and MoS2+NiS exhibited good electrical conductivity and catalytic activity. MoS2 and composite catalysts were found to be more active than Pt, a widely used catalyst for high temperature H2S/O2 fuel cell at 750-850℃. However, MoS2 itself sublimes above 450℃. In contrast, composite catalysts containing both Mo and transition metal (Ni) are shown to be stable and effective in promoting the oxidation of H2S in SOFC up to 850℃. However, electric contact is poor between the platinum current collecting layer and the composite metal sulfide layer, so that the cell performance becomes worse. This problem is overcome by adding conductive Ag powder into the anode layer (forming MoS2+NiS+Ag anode material) to increase anode electrical conductance instead of applying a thin laver of platinum on the top of anode.

  9. Highly cost-effective and sulfur/coking resistant VOx-grafted TiO2 nanoparticles as an efficient anode catalyst for direct conversion of dry sour methane in solid oxide fuel cells

    NARCIS (Netherlands)

    Garcia, A.; Yan, N.; Vincent, A.; Singh, A.; Hill, J.M.; Chuang, K. T.; Luo, J.L.

    2015-01-01

    In this work, we show that grafted metal oxide can be a highly cost-effective and active anode for solid oxide fuel cells for sour methane conversion. The developed electro-catalyst was composed of vanadium oxide grafted TiO2 nanoparticles (VOx/TiO2) infiltrated into a porous La0.4Sr0.5Ba0.1TiO3+δ e

  10. 石墨烯用作直接甲醇燃料电池阳极催化剂载体%Modified graphene as anode catalyst for direct methanol fuel cell

    Institute of Scientific and Technical Information of China (English)

    朱艳霞; 韩大量; 黄成德

    2015-01-01

    直接甲醇燃料电池(DMFC)阳极催化剂是决定电池性能、寿命和成本的关键材料之一。近年来人们主要从提高催化剂活性和降低催化剂成本两个方面出发进行了大量的研究,有力地推动了直接甲醇燃料电池的发展。石墨烯作为一种载体材料能够显著提高催化剂的催化活性和稳定性,引起了人们极大的兴趣。介绍了近几年石墨烯在直接甲醇燃料电池阳极催化剂载体的进展,并对其在未来的应用进行了展望。%Anode catalyst is one of the key materials determining the performance, longevity and cost of direct methanol fuel cell(DMFC). In recent years, extensive researches effectively promoting the development of DMFC are carried out, and these researches are mainly about two aspects:the activity improvement of catalyst and lowering the cost of catalyst. Graphene as a new carbon material can significantly improve the activity and stability of the catalyst. The research progress of modified graphene as anode catalyst of DMFC in recent years was reviewed and the application in the future was prospected.

  11. Nano-molybdenum carbide/carbon nanotubes composite as bifunctional anode catalyst for high-performance Escherichia coli-based microbial fuel cell.

    Science.gov (United States)

    Wang, Yaqiong; Li, Bin; Cui, Dan; Xiang, Xingde; Li, Weishan

    2014-01-15

    A novel electrode, carbon felt-supported nano-molybdenum carbide (Mo2C)/carbon nanotubes (CNTs) composite, was developed as platinum-free anode of high performance microbial fuel cell (MFC). The Mo2C/CNTs composite was synthesized by using the microwave-assisted method with Mo(CO)6 as a single source precursor and characterized by using X-ray diffraction and transmission electron microscopy. The activity of the composite as anode electrocatalyst of MFC based on Escherichia coli (E. coli) was investigated with cyclic voltammetry, chronoamperometry, and cell discharge test. It is found that the carbon felt electrode with 16.7 wt% Mo Mo2C/CNTs composite exhibits a comparable electrocatalytic activity to that with 20 wt% platinum as anode electrocatalyst. The superior performance of the developed platinum-free electrode can be ascribed to the bifunctional electrocatalysis of Mo2C/CNTs for the conversion of organic substrates into electricity through bacteria. The composite facilitates the formation of biofilm, which is necessary for the electron transfer via c-type cytochrome and nanowires. On the other hand, the composite exhibits the electrocatalytic activity towards the oxidation of hydrogen, which is the common metabolite of E. coli.

  12. Fuel cell development for transportation: Catalyst development

    Energy Technology Data Exchange (ETDEWEB)

    Doddapaneni, N. [Sandia National Lab., Albuquerque, NM (United States)

    1996-04-01

    Fuel cells are being considered as alternate power sources for transportation and stationary applications. With proton exchange membrane (PEM) fuel cells the fuel crossover to cathodes causes severe thermal management and cell voltage drop due to oxidation of fuel at the platinized cathodes. The main goal of this project was to design, synthesize, and evaluate stable and inexpensive transition metal macrocyclic catalysts for the reduction of oxygen and be electrochemically inert towards anode fuels such as hydrogen and methanol.

  13. Modeling of the anode side of a direct methanol fuel cell with analytical solutions

    CERN Document Server

    Mosquera, Martín A

    2010-01-01

    In this work, analytical solutions were derived (for any methanol oxidation reaction order) for the profiles of methanol concentration and proton current density by assuming diffusion mass transport mechanism, Tafel kinetics, and fast proton transport in the anodic catalyst layer of a direct methanol fuel cell. An expression for the Thiele modulus that allows to express the anodic overpotential as a function of the cell current, and kinetic and mass transfer parameters was obtained. For high cell current densities, it was found that the Thiele modulus ($\\phi^2$) varies quadratically with cell current density; yielding a simple correlation between anodic overpotential and cell current density. Analytical solutions were derived for the profiles of both local methanol concentration in the catalyst layer and local anodic current density in the catalyst layer. Under the assumptions of the model presented here, in general, the local methanol concentration in the catalyst layer cannot be expressed as an explicit fun...

  14. Direct borohydride fuel cell using Ni-based composite anodes

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jia; Sahai, Yogeshwar; Buchheit, Rudolph G. [Department of Materials Science and Engineering, The Ohio State University, 2041 College Rd., Columbus, OH 43210 (United States)

    2010-08-01

    In this study, nickel-based composite anode catalysts consisting of Ni with either Pd on carbon or Pt on carbon (the ratio of Ni:Pd or Ni:Pt being 25:1) were prepared for use in direct borohydride fuel cells (DBFCs). Cathode catalysts used were 1 mg cm{sup -2} Pt/C or Pd electrodeposited on activated carbon cloth. The oxidants were oxygen, oxygen in air, or acidified hydrogen peroxide. Alkaline solution of sodium borohydride was used as fuel in the cell. High power performance has been achieved by DBFC using non-precious metal, Ni-based composite anodes with relatively low anodic loading (e.g., 270 mW cm{sup -2} for NaBH{sub 4}/O{sub 2} fuel cell at 60 C, 665 mW cm{sup -2} for NaBH{sub 4}/H{sub 2}O{sub 2} fuel cell at 60 C). Effects of temperature, oxidant, and anode catalyst loading on the DBFC performance were investigated. The cell was operated for about 100 h and its performance stability was recorded. (author)

  15. Fuel cell catalyst degradation

    DEFF Research Database (Denmark)

    Arenz, Matthias; Zana, Alessandro

    2016-01-01

    Fuel cells are an important piece in our quest for a sustainable energy supply. Although there are several different types of fuel cells, the by far most popular is the proton exchange membrane fuel cell (PEMFC). Among its many favorable properties are a short start up time and a high power density...... increasing focus. Activity of the catalyst is important, but stability is essential. In the presented perspective paper, we review recent efforts to investigate fuel cell catalysts ex-situ in electrochemical half-cell measurements. Due to the amount of different studies, this review has no intention to give...

  16. Electrochemical Characteristics of LaNi4.5Al0.5 Alloy Used as Anodic Catalyst in a Direct Borohydride Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    Lianbang Wang; Guobin Wu; Zhenzhen Yang; Yunfang Gao; Xinbiao Mao; Chun'an Ma

    2011-01-01

    Fuel cells using borohydride as the fuel have received much attention because of high energy density and theoretical working potential. In this work, LaNi4.5Al0.5 hydrogen storage alloy used as the anodic material has been investigated. It was found that the increasing; operation temperature was helpful to the open-circuit potential, the discharge potential and the power density, but showed a negative effect on the utilization of the fuel due to the accelerated hydrogen evolution. The high KOH concentration was favorable for high-rate discharge capability. The adsorption and transformation of hydrogen on LaNi4.5Al0.5 alloy electrode has been observed, but its contribution to the discharge capability during a high-rate discharge was small.

  17. 高活性、高抗毒性的甲酸燃料电池阳极催化剂%Highly Active and Highly Poison Tolerant Anodic Catalysts for Direct Formic Acid Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    卢学毅; 廖世军; 宋慧宇

    2012-01-01

    甲酸燃料电池是一种近年发展起来的新型燃料电池,具有极好的商业化前景,但其发展受到很多因素的制约,其中阳极催化剂是影响其性能的关键因素。本文从催化剂的制备方法、催化剂载体和掺杂其他元素等方面介绍了近年来国内外在提高催化剂的活性和抗毒性方面所做的重要研究工作。具体包括:电沉积法、有机溶胶法等重要制备方法,碳纳米管、石墨烯和复合材料作为催化剂载体的研究以及通过掺杂其他元素制备合金催化剂和复合催化剂来提高催化剂活性和抗毒性的相关研究工作。本文还对甲酸燃料电池的发展做了展望。%Formic acid fuel cell is a kind of fuel cell developed in recent years with promising commercial prospects. However, its development and commercialization are restricted by some factors, in which anodic catalyst is recognized as one of the most important factors. In this paper, some significant researches and attempts of promoting catalytic activity and poison tolerance are introduced, including novel preparation approaches, usage of novel supporting materials, as well as the design of multi-component catalyst by doping hetero elements. Concretely, the researches cover synthetic methods such as electrolytic deposition, organic colloid method, impregnation, study of using carbon nanotubes, graphene and complex materials as supports, and relevant work of adding other elements to prepare alloy catalysts and complex catalysts. Furthermore, the future development of formic acid fuel cell is also prospected.

  18. Anodes for Solid Oxide Fuel Cells Operating at Low Temperatures

    DEFF Research Database (Denmark)

    Abdul Jabbar, Mohammed Hussain

    An important issue that has limited the potential of Solid Oxide Fuel Cells (SOFCs) for portable applications is its high operating temperatures (800-1000 ºC). Lowering the operating temperature of SOFCs to 400-600 ºC enable a wider material selection, reduced degradation and increased lifetime....... On the other hand, low-temperature operation poses serious challenges to the electrode performance. Effective catalysts, redox stable electrodes with improved microstructures are the prime requisite for the development of efficient SOFC anodes. The performance of Nb-doped SrT iO3 (STN) ceramic anodes...... at 400ºC. The potential of using WO3 ceramic as an alternative anode materials has been explored. The relatively high electrode polarization resistance obtained, 11 Ohm cm2 at 600 ºC, proved the inadequate catalytic activity of this system for hydrogen oxidation. At the end of this thesis...

  19. Evaluation of anode (electro)catalytic materials for the direct borohydride fuel cell: Methods and benchmarks

    Science.gov (United States)

    Olu, Pierre-Yves; Job, Nathalie; Chatenet, Marian

    2016-09-01

    In this paper, different methods are discussed for the evaluation of the potential of a given catalyst, in view of an application as a direct borohydride fuel cell DBFC anode material. Characterizations results in DBFC configuration are notably analyzed at the light of important experimental variables which influence the performances of the DBFC. However, in many practical DBFC-oriented studies, these various experimental variables prevent one to isolate the influence of the anode catalyst on the cell performances. Thus, the electrochemical three-electrode cell is a widely-employed and useful tool to isolate the DBFC anode catalyst and to investigate its electrocatalytic activity towards the borohydride oxidation reaction (BOR) in the absence of other limitations. This article reviews selected results for different types of catalysts in electrochemical cell containing a sodium borohydride alkaline electrolyte. In particular, propositions of common experimental conditions and benchmarks are given for practical evaluation of the electrocatalytic activity towards the BOR in three-electrode cell configuration. The major issue of gaseous hydrogen generation and escape upon DBFC operation is also addressed through a comprehensive review of various results depending on the anode composition. At last, preliminary concerns are raised about the stability of potential anode catalysts upon DBFC operation.

  20. Enhancing hybrid direct carbon fuel cell anode performance using Ag2O

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Ippolito, Davide; Kammer Hansen, Kent

    2015-01-01

    A hybrid-direct carbon fuel cell (HDCFC), consisting of a molten slurry of solid carbon black and (Li-K)2CO3 added to the anode chamber of a solid oxide fuel cell, was characterized using current-potential-power density curves, electrochemical impedance spectroscopy, and cyclic voltammetry. Two...... types of experimental setups were employed in this study, an anode-supported full cell configuration (two electrodes, two atmospheres setup) and a 3-electrode electrolyte-supported half-cell setup (single atmosphere). Anode processes with and without catalysts were investigated as a function...

  1. Effects of Anode Wettability and Slots on Anodic Bubble Behavior Using Transparent Aluminium Electrolytic Cells

    Science.gov (United States)

    Zhao, Zhibin; Gao, Bingliang; Feng, Yuqing; Huang, Yipeng; Wang, Zhaowen; Shi, Zhongning; Hu, Xianwei

    2017-02-01

    Transparent aluminum electrolytic cells were used to study the effects of anode wettability and slots on bubble behavior in a similar environment to that used in industrial cells. Observations were conducted using two types of transparent cells, one with side-observation and the other with a bottom-observation cell design. Anodic bubbles rising process in the side channel is strongly affected by the wettability of the anode. After rising a short distance, the bubbles detach from the anode vertical surface at good-wetting anode cases, while the bubbles still attach to the vertical surface at poor-wetting anode cases. Anode slots of width of 4 mm are able to prevent smaller bubbles from coalescing into larger bubbles and thus decrease the bubble size and gas coverage on the anode. Anode slots also make a contribution in slightly reducing bubble thickness. With the presence of slots, the bubble-induced cell voltage oscillation decreases as well.

  2. Highly efficient anode catalyst with a Ni@PdPt core–shell nanostructure for methanol electrooxidation in alkaline media

    Institute of Scientific and Technical Information of China (English)

    Pei-shu Yu; Chun-tao Liu; Bo Feng; Jia-feng Wan; Li Li; Chun-yu Du

    2015-01-01

    To enhance the electrocatalytic activity of anode catalysts used in alkaline-media direct methanol fuel cells (DMFCs), a Ni@PdPt electrocatalyst was successfully prepared using a three-phase-transfer method. The Ni@PdPt electrocatalyst was characterized by X-ray dif-fraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and high-resolution TEM (HRTEM) techniques. The experimental results indicate that the average particle size of the core–shell-structured Ni@PdPt electrocatalyst is approxi-mately 5.6 nm. The Ni@PdPt electrocatalyst exhibits a catalytic activity 3.36 times greater than that of PdPt alloys for methanol oxidation in alkaline media. The developed Ni@PdPt electrocatalyst offers a promising alternative as a highly electrocatalytically active anode catalyst for alkaline DMFCs.

  3. La0.6Sr0.4Co0.2Fe0.8O3 Perovskite: A Stable Anode Catalyst for Direct Methane Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Jelvehnaz Mirzababaei

    2014-05-01

    Full Text Available Direct methane solid oxide fuel cells, operated by supplying methane to a Ni/YSZ anode, suffer from degradation via accumulation of carbon deposits on the Ni surface. Coating a 40 µm thin film of La0.6Sr0.4Co0.2Fe0.8O3 (LSCF perovskite on the Ni/YSZ anode surface decreased the amount of carbon deposits, slowing down the degradation rate. The improvement in anode durability could be related to the oxidation activity of LSCF which facilitates oxidation of CH4 and carbon deposits. Analysis of the crystalline structure of LSCF revealed that LSCF was stable in the reducing anode environment under H2 and CH4 flow at 750 °C and retained its perovskite structure throughout the 475 h long-term stability test.

  4. Anode- electrolyte- cathode sets of unitary SOFC with electro-catalysts deposited on previously sintered porous support

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, L.F.V.; Souza, F.M.B.; Fiuza, R.P.; Alencar, M.G.F.; Silva, M.A.; Boaventura, J.S. [Chemistry Inst., Salvador (Brazil). Dept. of Physical Chemistry

    2009-07-01

    The solid oxide fuel cell (SOFC) can be used in a broad range of applications. YSZ (yttria stabilized zirconia) and GDC (gadolinia doped ceria) are components of the anode/electrolyte set and LSM (manganite of strontium and lanthanum) ink are components of the cathode. In this study, different combinations of sodium bicarbonate, graphite and citric acid were used to form the electrocatalyst on nickel and iron. After sintering, the set was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and surface area by BET. The pellets had good porosity and the anode-cathode-electrolyte interfaces had good inter-layer adherence. The catalyst was evenly dispersed on the support. The final porous structure did not have any surface area loss compared to the original powder. The mixed agents were found to be good pore formatting agents, with characteristics that were favourable for achieving good sets of anode-cathode-electrolytes. The final structure had good pore distribution and formation. The anode had good surface area and good tack from the interface anode/electrolyte.

  5. Assembly of a Cost-Effective Anode Using Palladium Nanoparticles for Alkaline Fuel Cell Applications

    Science.gov (United States)

    Feliciano-Ramos, Ileana; Casan~as-Montes, Barbara; García-Maldonado, María M.; Menendez, Christian L.; Mayol, Ana R.; Díaz-Vazquez, Liz M.; Cabrera, Carlos R.

    2015-01-01

    Nanotechnology allows the synthesis of nanoscale catalysts, which offer an efficient alternative for fuel cell applications. In this laboratory experiment, the student selects a cost-effective anode for fuel cells by comparing three different working electrodes. These are commercially available palladium (Pd) and glassy carbon (GC) electrodes, and…

  6. Methanol-Tolerant Cathode Catalyst Composite For Direct Methanol Fuel Cells

    Science.gov (United States)

    Zhu, Yimin; Zelenay, Piotr

    2006-03-21

    A direct methanol fuel cell (DMFC) having a methanol fuel supply, oxidant supply, and its membrane electrode assembly (MEA) formed of an anode electrode and a cathode electrode with a membrane therebetween, a methanol oxidation catalyst adjacent the anode electrode and the membrane, an oxidant reduction catalyst adjacent the cathode electrode and the membrane, comprises an oxidant reduction catalyst layer of a platinum-chromium alloy so that oxidation at the cathode of methanol that crosses from the anode through the membrane to the cathode is reduced with a concomitant increase of net electrical potential at the cathode electrode.

  7. DIRECT METHANOL FUEL CELLS AT REDUCED CATALYST LOADINGS

    Energy Technology Data Exchange (ETDEWEB)

    P. ZELENAY; F. GUYON; SM. GOTTESFELD

    2001-05-01

    We focus in this paper on the reduction of catalyst loading in direct methanol fuel cells currently under development at Los Alamos National Laboratory. Based on single-cell DMFC testing, we discuss performance vs. catalyst loading trade-offs and demonstrate optimization of the anode performance. We also show test data for a short five-cell DMFC stack with the average total platinum loading of 0.53 mg cm{sup {minus}2} and compare performance of this stack with the performance of a single direct methanol fuel cell using similar total amount of precious metal.

  8. Direct methanol fuel cells at reduced catalyst loadings

    Energy Technology Data Exchange (ETDEWEB)

    Zelenay, P. (Piotr); Guyon, F. (Francois); Gottesfeld, Shimshon

    2001-01-01

    We focus in this paper on the reduction of catalyst loading in direct methanol fuel cells currently under development at Los Alamos National Laboratory. Based on single-cell DMFC testing, we discuss performance vs. catalyst loading trade-offs and demonstrate optimization of the anode performance. We also show test data for a short five-cell DMFC stack with the average total platinum loading of 0.53 mg cm{sup -2} and compare performance of this stack with the performance of a single direct methanol fuel cell using similar total amount of precious metal.

  9. Phenol-degrading anode biofilm with high coulombic efficiency in graphite electrodes microbial fuel cell.

    Science.gov (United States)

    Zhang, Dongdong; Li, Zhiling; Zhang, Chunfang; Zhou, Xue; Xiao, Zhixing; Awata, Takanori; Katayama, Arata

    2017-03-01

    A microbial fuel cell (MFC), with graphite electrodes as both the anode and cathode, was operated with a soil-free anaerobic consortium for phenol degradation. This phenol-degrading MFC showed high efficiency with a current density of 120 mA/m(2) and a coulombic efficiency of 22.7%, despite the lack of a platinum catalyst cathode and inoculation of sediment/soil. Removal of planktonic bacteria by renewing the anaerobic medium did not decrease the performance, suggesting that the phenol-degrading MFC was not maintained by the planktonic bacteria but by the microorganisms in the anode biofilm. Cyclic voltammetry analysis of the anode biofilm showed distinct oxidation and reduction peaks. Analysis of the microbial community structure of the anode biofilm and the planktonic bacteria based on 16S rRNA gene sequences suggested that Geobacter sp. was the phenol degrader in the anode biofilm and was responsible for current generation.

  10. Releasing metal catalysts via phase transition: (NiO)0.05-(SrTi0.8Nb0.2O3)0.95 as a redox stable anode material for solid oxide fuel cells.

    Science.gov (United States)

    Xiao, Guoliang; Wang, Siwei; Lin, Ye; Zhang, Yanxiang; An, Ke; Chen, Fanglin

    2014-11-26

    Donor-doped perovskite-type SrTiO3 experiences stoichiometric changes at high temperatures in different Po2 involving the formation of Sr or Ti-rich impurities. NiO is incorporated into the stoichiometric strontium titanate, SrTi0.8Nb0.2O3-δ (STN), to form an A-site deficient perovskite material, (NiO)0.05-(SrTi0.8Nb0.2O3)0.95 (Ni-STN), for balancing the phase transition. Metallic Ni nanoparticles can be released upon reduction instead of forming undesired secondary phases. This material design introduces a simple catalytic modification method with good compositional control of the ceramic backbones, by which transport property and durability of solid oxide fuel cell anodes are largely determined. Using Ni-STN as anodes for solid oxide fuel cells, enhanced catalytic activity and remarkable stability in redox cycling have been achieved. Electrolyte-supported cells with the cell configuration of Ni-STN-SDC anode, La0.8Sr0.2Ga0.87Mg0.13O3 (LSGM) electrolyte, and La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) cathode produce peak power densities of 612, 794, and 922 mW cm(-2) at 800, 850, and 900 °C, respectively, using H2 as the fuel and air as the oxidant. Minor degradation in fuel cell performance resulted from redox cycling can be recovered upon operating the fuel cells in H2. Such property makes Ni-STN a promising regenerative anode candidate for solid oxide fuel cells.

  11. Nano-gold Catalyst for Direct Alcohol Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    Z.Ogumi; K.Miyazaki; Y.Iriyama; T.Abe

    2007-01-01

    1 Results Direct alcohol fuel cells have been regarded as attractive power sources for portable electric devices. One of the major roadblocks to the implementation of direct alcohol fuel cells is the exploration of the anode catalyst that can electrochemically oxidize alcohols at lower potentials. Carbon-monoxide (CO) produced through alcohol oxidation deteriorates catalytic activity of Pt, and therefore, the high tolerance for CO poisoning is an important issue to attain high voltage from direct alcoho...

  12. Preparation and Evaluation of Multi-Layer Anodes of Solid Oxide Fuel Cell

    Science.gov (United States)

    Santiago, Diana; Farmer, Serene C.; Setlock, John A.

    2012-01-01

    The development of an energy device with abundant energy generation, ultra-high specific power density, high stability and long life is critical for enabling longer missions and for reducing mission costs. Of all different types of fuel cells, the solid oxide fuel cells (SOFC) is a promising high temperature device that can generate electricity as a byproduct of a chemical reaction in a clean way and produce high quality heat that can be used for other purposes. For aerospace applications, a power-to-weight of (is) greater than 1.0 kW/kg is required. NASA has a patented fuel cell technology under development, capable of achieving the 1.0 kW/kg figure of merit. The first step toward achieving these goals is increasing anode durability. The catalyst plays an important role in the fuel cells for power generation, stability, efficiency and long life. Not only the anode composition, but its preparation and reduction are key to achieving better cell performance. In this research, multi-layer anodes were prepared varying the chemistry of each layer to optimize the performance of the cells. Microstructure analyses were done to the new anodes before and after fuel cell operation. The cells' durability and performance were evaluated in 200 hrs life tests in hydrogen at 850 C. The chemistry of the standard nickel anode was modified successfully reducing the anode degradation from 40% to 8.4% in 1000 hrs and retaining its microstructure.

  13. Anode Supported Solid Oxide Fuel Cells - Deconvolution of Degradation into Cathode and Anode Contributions

    DEFF Research Database (Denmark)

    Hagen, Anke; Liu, Yi-Lin; Barfod, Rasmus;

    2007-01-01

    The degradation of anode supported cells was studied over 1500 h as function of cell polarization either in air or oxygen on the cathode. Based on impedance analysis, contributions of anode and cathode to the increase of total resistance were assigned. Accordingly, the degradation rates of the ca...

  14. Calcination/acid-activation treatment of an anodic oxidation TiO2/Ti film catalyst

    Institute of Scientific and Technical Information of China (English)

    YAO Zhongping; JIANG Yanli; JIANG Zhaohua; ZHU Hongkui; BAI Xuefeng

    2009-01-01

    The aim of this work was to investigate the effects of calcination/acid-activation on the composition, structure, and photocatalytic (PC) re-duction property of an anodic oxidation TiO2/Ti film catalyst. The surface morphology and phase composition were examined by scanning electron microscopy and X-ray diffraction. The catalytic property of the film catalysts was evaluated through the removal rate of potassium chromate during the PC reduction process. The results showed that the film catalysts were composed of anatase and mtile TiO2 with a mi-cro-porous surface structure. The calcination treatment increased the content of TiO2 in the film, changed the relative ratio of anatase and rutile TiO2, and decreased the size of the micro pores of the film cat.a/ysts. The removal rate of potassium chromate was related to the tech-nique parameters of calcination/acid-activation treatment. When the anodic oxidation TiO2Ti film catalyst was calcined at 873 K for 30 min and then acid-activated in the concentrated H2SO4 for 60 min, it presented the highest catalytic property, with the removal rate of potassium chromate of 96.3% during the PC reduction process under the experimental conditions.

  15. Biogas Catalytic Reforming Studies on Nickel-Based Solid Oxide Fuel Cell Anodes

    DEFF Research Database (Denmark)

    Johnson, Gregory B.; Hjalmarsson, Per; Norrman, Kion;

    2016-01-01

    Heterogeneous catalysis studies were conducted on two crushed solid oxide fuel cell (SOFC) anodes in fixed-bed reactors. The baseline anode was Ni/ScYSZ (Ni/scandia and yttria stabilized zirconia), the other was Ni/ScYSZ modified with Pd/doped ceria (Ni/ScYSZ/Pd-CGO). Three main types...... of Pd-CGO helped to mitigate sulfur deactivation effect; e.g. lowering the onset temperature (up to 190°C) for CH4 conversion during temperature-programmed reactions. Both Ni/ScYSZ and Ni/ScYSZ/Pd-CGO anode catalysts were more active for dry reforming of biogas than they were for steam reforming....... Deactivation of reforming activity by sulfur was much more severe under steam reforming conditions than dry reforming; a result of greater sulfur retention on the catalyst surface during steam reforming....

  16. Alternative anode materials for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Goodenough, John B.; Huang, Yun-Hui [Texas Materials Institute, ETC 9.102, 1 University Station, C2200, The University of Texas at Austin, Austin, TX 78712 (United States)

    2007-11-08

    The electrolyte of a solid oxide fuel cell (SOFC) is an O{sup 2-}-ion conductor. The anode must oxidize the fuel with O{sup 2-} ions received from the electrolyte and it must deliver electrons of the fuel chemisorption reaction to a current collector. Cells operating on H{sub 2} and CO generally use a porous Ni/electrolyte cermet that supports a thin, dense electrolyte. Ni acts as both the electronic conductor and the catalyst for splitting the H{sub 2} bond; the oxidation of H{sub 2} to H{sub 2}O occurs at the Ni/electrolyte/H{sub 2} triple-phase boundary (TPB). The CO is oxidized at the oxide component of the cermet, which may be the electrolyte, yttria-stabilized zirconia, or a mixed oxide-ion/electron conductor (MIEC). The MIEC is commonly a Gd-doped ceria. The design and fabrication of these anodes are evaluated. Use of natural gas as the fuel requires another strategy, and MIECs are being explored for this application. The several constraints on these MIECs are outlined, and preliminary results of this on-going investigation are reviewed. (author)

  17. Electro-catalysts for hydrogen production from ethanol for use in SOFC anodes

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marcos Aurelio da; Paz Fiuza, Raigenis da; Guedes, Bruna C.; Pontes, Luiz A.; Boaventura, Jaime Soares [UFBA, Salvador, Bahia (Brazil). Energy and Materials Science Group

    2010-07-01

    Nickel and cobalt catalysts, supported on YSZ, were prepared by wet impregnation, with and without citric acid; the metal load was 10 and 35% by weight. The catalyst composition was studied by XRF, XPS and SEM-EDS. At low metal concentration, the results of these techniques presented comparables figures; at high concentration, SEM-EDS suggested a non-uniform distribution. The analysis showed that the solids were mixed oxides and formed an alloy after reduction. The surface passivation was possible under controlled conditions. The catalytic test with the steam reforming of ethanol indicated that the metal load had almost no effect on the catalytic activity, but decreased its selectivity. Afterwards, a unitary SOFC was prepared with deposition of the cathode layer. AFM and EIS were used for the characterization of SOFC components. They showed that the electro-catalyst surface was almost all covered with the metal phase, including the large pore walls of the anode. The YSZ phase dominates the material conductance of the complete SOFC assembly (anode/electrolyte/cathode). The unitary SOFC was tested with hydrogen, gaseous ethanol or natural gas; the SOFC operating with ethanol and hydrogen fuel presented virtually no over-potential. (orig.)

  18. CO-Tolerant Pt–BeO as a Novel Anode Electrocatalyst in Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Kyungjung Kwon

    2016-05-01

    Full Text Available Commercialization of proton exchange membrane fuel cells (PEMFCs requires less expensive catalysts and higher operating voltage. Substantial anodic overvoltage with the usage of reformed hydrogen fuel can be minimized by using CO-tolerant anode catalysts. Carbon-supported Pt–BeO is manufactured so that Pt particles with an average diameter of 4 nm are distributed on a carbon support. XPS analysis shows that a peak value of the binding energy of Be matches that of BeO, and oxygen is bound with Be or carbon. The hydrogen oxidation current of the Pt–BeO catalyst is slightly higher than that of a Pt catalyst. CO stripping voltammetry shows that CO oxidation current peaks at ~0.85 V at Pt, whereas CO is oxidized around 0.75 V at Pt–BeO, which confirms that the desorption of CO is easier in the presence of BeO. Although the state-of-the-art PtRu anode catalyst is dominant as a CO-tolerant hydrogen oxidation catalyst, this study of Be-based CO-tolerant material can widen the choice of PEMFC anode catalyst.

  19. Manganese Detection with a Metal Catalyst Free Carbon Nanotube Electrode: Anodic versus Cathodic Stripping Voltammetry.

    Science.gov (United States)

    Yue, Wei; Bange, Adam; Riehl, Bill L; Riehl, Bonnie D; Johnson, Jay M; Papautsky, Ian; Heineman, William R

    2012-10-01

    Anodic stripping voltammetry (ASV) and cathodic stripping voltammetry (CSV) were used to determine Mn concentration using metal catalyst free carbon nanotube (MCFCNT) electrodes and square wave stripping voltammetry (SWSV). The MCFCNTs are synthesized using a Carbo Thermal Carbide Conversion method which results in a material that does not contain residual transition metals. Detection limits of 120 nM and 93 nM were achieved for ASV and CSV, respectively, with a deposition time of 60 s. CSV was found to be better than ASV in Mn detection in many aspects, such as limit of detection and sensitivity. The CSV method was used in pond water matrix addition measurements.

  20. Manganese Detection with a Metal Catalyst Free Carbon Nanotube Electrode: Anodic versus Cathodic Stripping Voltammetry

    Science.gov (United States)

    Yue, Wei; Bange, Adam; Riehl, Bill L.; Riehl, Bonnie D.; Johnson, Jay M.; Papautsky, Ian; Heineman, William R.

    2013-01-01

    Anodic stripping voltammetry (ASV) and cathodic stripping voltammetry (CSV) were used to determine Mn concentration using metal catalyst free carbon nanotube (MCFCNT) electrodes and square wave stripping voltammetry (SWSV). The MCFCNTs are synthesized using a Carbo Thermal Carbide Conversion method which results in a material that does not contain residual transition metals. Detection limits of 120 nM and 93 nM were achieved for ASV and CSV, respectively, with a deposition time of 60 s. CSV was found to be better than ASV in Mn detection in many aspects, such as limit of detection and sensitivity. The CSV method was used in pond water matrix addition measurements. PMID:24235806

  1. Deactivation and poisoning of fuel cell catalysts

    Science.gov (United States)

    Ross, P. N., Jr.

    1985-06-01

    The deactivation and poisoning phenomena reviewed are: the poisoning of anode (fuel electrode) catalyst by carbon monoxide and hydrogen sulfide; the deactivation of the cathode (air electrode) catalyst by sintering; and the deactivation of the cathode by corrosion of the support. The anode catalyst is Pt supported on a conductive, high area carbon black, usually at a loading of 10 w/o. This catalyst is tolerant to some level of carbon monoxide or hydrogen sulfide or both in combination, the level depending on temperature and pressure. Much less is known about hydrogen sulfide poisoning. Typical tolerance levels are 2% CO, and 10 ppM H2S. The cathode catalyst is typically Pt supported on a raphitic carbon black, usually a furnace black heat-treated to 2700 C. The Pt loading is typically 10 w/o, and the dispersion (or percent exposed) as-prepared is typically 30%. The loss of dispersion in use depends on the operational parameters, most especially the cathode potential history, i.e., higher potentials cause more rapid decrease in dispersion. The mechanism of loss of dispersion is not well known. The graphitic carbon support corrodes at a finite rate that is also potential dependent. Support corrosion causes thickening of the electrolyte film between the gas pores and the catalyst particles, which in turn causes increased diffusional resistance and performance loss.

  2. Redox Stable Anodes for Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Guoliang eXiao

    2014-06-01

    Full Text Available Solid oxide fuel cells (SOFCs can convert chemical energy from the fuel directly to electrical energy with high efficiency and fuel flexibility. Ni-based cermets have been the most widely adopted anode for SOFCs. However, the conventional Ni-based anode has low tolerance to sulfur-contamination, is vulnerable to deactivation by carbon build-up (coking from direct oxidation of hydrocarbon fuels, and suffers volume instability upon redox cycling. Among these limitations, the redox instability of the anode is particularly important and has been intensively studied since the SOFC anode may experience redox cycling during fuel cell operations even with the ideal pure hydrogen as the fuel. This review aims to highlight recent progresses on improving redox stability of the conventional Ni-based anode through microstructure optimization and exploration of alternative ceramic-based anode materials.

  3. Anodizing color coded anodized Ti6Al4V medical devices for increasing bone cell functions

    Directory of Open Access Journals (Sweden)

    Webster TJ

    2013-01-01

    Full Text Available Alexandra P Ross, Thomas J WebsterSchool of Engineering and Department of Orthopedics, Brown University, Providence, RI, USAAbstract: Current titanium-based implants are often anodized in sulfuric acid (H2SO4 for color coding purposes. However, a crucial parameter in selecting the material for an orthopedic implant is the degree to which it will integrate into the surrounding bone. Loosening at the bone–implant interface can cause catastrophic failure when motion occurs between the implant and the surrounding bone. Recently, a different anodization process using hydrofluoric acid has been shown to increase bone growth on commercially pure titanium and titanium alloys through the creation of nanotubes. The objective of this study was to compare, for the first time, the influence of anodizing a titanium alloy medical device in sulfuric acid for color coding purposes, as is done in the orthopedic implant industry, followed by anodizing the device in hydrofluoric acid to implement nanotubes. Specifically, Ti6Al4V model implant samples were anodized first with sulfuric acid to create color-coding features, and then with hydrofluoric acid to implement surface features to enhance osteoblast functions. The material surfaces were characterized by visual inspection, scanning electron microscopy, contact angle measurements, and energy dispersive spectroscopy. Human osteoblasts were seeded onto the samples for a series of time points and were measured for adhesion and proliferation. After 1 and 2 weeks, the levels of alkaline phosphatase activity and calcium deposition were measured to assess the long-term differentiation of osteoblasts into the calcium depositing cells. The results showed that anodizing in hydrofluoric acid after anodizing in sulfuric acid partially retains color coding and creates unique surface features to increase osteoblast adhesion, proliferation, alkaline phosphatase activity, and calcium deposition. In this manner, this study

  4. Non-noble catalysts and catalyst supports for phosphoric acid fuel cells

    Science.gov (United States)

    Mcalister, A. J.

    1981-01-01

    Tungsten carbide, which is active for hydrogen oxidation, is CO tolerant and has a hexagonal structure is discussed. Titanium carbide is inactive and has a cubic structure. Four different samples of the cubic alloys W sub x-1Ti sub XC sub 1-y were found to be active and CO tolerant. When the activities of these cubic alloys are weighted by the reciprocal of the square to those of highly forms of WC. They offer important insight into the nature of the active sites on W-C anode catalysts for use in phosphoric acid fuel cells.

  5. Flow-through 3D biofuel cell anode for NAD{sup +}-dependent enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Rincon, Rosalba A.; Lau, Carolin; Garcia, Kristen E. [Department of Chemical and Nuclear Engineering, Center for Emerging Energy Technologies, University of New Mexico, Albuquerque, NM 87131 (United States); Atanassov, Plamen, E-mail: plamen@unm.ed [Department of Chemical and Nuclear Engineering, Center for Emerging Energy Technologies, University of New Mexico, Albuquerque, NM 87131 (United States)

    2011-02-01

    NAD{sup +}-dependent enzymes require the presence of catalysts for cofactor regeneration in order to be employed in enzymatic biofuel cells. Poly-(methylene green) catalysts have proven to help the oxidation reaction of NADH allowing for the use of such enzymes in electrocatalytic oxidation reactions. In this paper we present the development of 3D anode based on NAD{sup +}-dependent malate dehydrogenase. The 3D material chosen was reticulated vitreous carbon (RVC) which was modified with poly-(MG) for NADH oxidation and it also accommodated the porous immobilization matrix for MDH consisting of MWCNTs embedded in chitosan; allowing for mass transport of the substrate to the electrode. Scanning electron microscopy was used in order to characterize the poly-(MG)-modified RVC, and electrochemical evaluation of the anode was performed.

  6. Anodizing color coded anodized Ti6Al4V medical devices for increasing bone cell functions.

    Science.gov (United States)

    Ross, Alexandra P; Webster, Thomas J

    2013-01-01

    Current titanium-based implants are often anodized in sulfuric acid (H(2)SO(4)) for color coding purposes. However, a crucial parameter in selecting the material for an orthopedic implant is the degree to which it will integrate into the surrounding bone. Loosening at the bone-implant interface can cause catastrophic failure when motion occurs between the implant and the surrounding bone. Recently, a different anodization process using hydrofluoric acid has been shown to increase bone growth on commercially pure titanium and titanium alloys through the creation of nanotubes. The objective of this study was to compare, for the first time, the influence of anodizing a titanium alloy medical device in sulfuric acid for color coding purposes, as is done in the orthopedic implant industry, followed by anodizing the device in hydrofluoric acid to implement nanotubes. Specifically, Ti6Al4V model implant samples were anodized first with sulfuric acid to create color-coding features, and then with hydrofluoric acid to implement surface features to enhance osteoblast functions. The material surfaces were characterized by visual inspection, scanning electron microscopy, contact angle measurements, and energy dispersive spectroscopy. Human osteoblasts were seeded onto the samples for a series of time points and were measured for adhesion and proliferation. After 1 and 2 weeks, the levels of alkaline phosphatase activity and calcium deposition were measured to assess the long-term differentiation of osteoblasts into the calcium depositing cells. The results showed that anodizing in hydrofluoric acid after anodizing in sulfuric acid partially retains color coding and creates unique surface features to increase osteoblast adhesion, proliferation, alkaline phosphatase activity, and calcium deposition. In this manner, this study provides a viable method to anodize an already color coded, anodized titanium alloy to potentially increase bone growth for numerous implant applications.

  7. Impact of anode microstructure on solid oxide fuel cells.

    Science.gov (United States)

    Suzuki, Toshio; Hasan, Zahir; Funahashi, Yoshihiro; Yamaguchi, Toshiaki; Fujishiro, Yoshinobu; Awano, Masanobu

    2009-08-14

    We report a correlation between the microstructure of the anode electrode of a solid oxide fuel cell (SOFC) and its electrochemical performance for a tubular design. It was shown that the electrochemical performance of the cell was extensively improved when the size of constituent particles was reduced so as to yield a highly porous microstructure. The SOFC had a power density of greater than 1 watt per square centimeter at an operating temperature as low as 600 degrees C with a conventional zirconia-based electrolyte, a nickel cermet anode, and a lanthanum ferrite perovskite cathode material. The effect of the hydrogen fuel flow rate (linear velocity) was also examined for the optimization of operating conditions. Higher linear fuel velocity led to better cell performance for the cell with higher anode porosity. A zirconia-based cell could be used for a low-temperature SOFC system under 600 degrees C just by optimizing the microstructure of the anode electrode and operating conditions.

  8. Fabrication of anode supported PEN for solid oxide fuel cell

    Institute of Scientific and Technical Information of China (English)

    谢淑红; 崔崑; 夏风; 肖建中

    2004-01-01

    Fabrication process for anode supported planar PEN of intermediate temperature solid oxide fuel cell (SOFC) was introduced, in which tape casting and screen printing methods were used. Gd2O3 doped CeO2(GDC) powders were prepared by solid reaction method. Anode tape was produced by tape casting. Electrolyte and cathode were produced by screen printing. The GDC powder's component, thermal expand coefficient, the porosity, density and microstructure of anode and electrolyte were investigated . It was shown that an bi-layer with dense thin electrolyte film and porous anode support and with good coherency of the electrolyte film to the anode could be realized after co-sintering the green tape at 1 350℃ by optimizing the power characteristics of the starting materials in the slurry.

  9. Nickel-based anodic electrocatalysts for fuel cells and water splitting

    Science.gov (United States)

    Chen, Dayi

    Our world is facing an energy crisis, so people are trying to harvest and utilize energy more efficiently. One of the promising ways to harvest energy is via solar water splitting to convert solar energy to chemical energy stored in hydrogen. Another of the options to utilize energy more efficiently is to use fuel cells as power sources instead of combustion engines. Catalysts are needed to reduce the energy barriers of the reactions happening at the electrode surfaces of the water-splitting cells and fuel cells. Nickel-based catalysts happen to be important nonprecious electrocatalysts for both of the anodic reactions in alkaline media. In alcohol fuel cells, nickel-based catalysts catalyze alcohol oxidation. In water splitting cells, they catalyze water oxidation, i.e., oxygen evolution. The two reactions occur in a similar potential range when catalyzed by nickel-based catalysts. Higher output current density, lower oxidation potential, and complete substrate oxidation are preferred for the anode in the applications. In this dissertation, the catalytic properties of nickel-based electrocatalysts in alkaline medium for fuel oxidation and oxygen evolution are explored. By changing the nickel precursor solubility, nickel complex nanoparticles with tunable sizes on electrode surfaces were synthesized. Higher methanol oxidation current density is achieved with smaller nickel complex nanoparticles. DNA aggregates were used as a polymer scaffold to load nickel ion centers and thus can oxidize methanol completely at a potential about 0.1 V lower than simple nickel electrodes, and the methanol oxidation pathway is changed. Nickel-based catalysts also have electrocatalytic activity towards a wide range of substrates. Experiments show that methanol, ethanol, glycerol and glucose can be deeply oxidized and carbon-carbon bonds can be broken during the oxidation. However, when comparing methanol oxidation reaction to oxygen evolution reaction catalyzed by current nickel

  10. Ceramic Lithium Ion Conductor to Solve the Anode Coking Problem of Practical Solid Oxide Fuel Cells.

    Science.gov (United States)

    Wang, Wei; Wang, Feng; Chen, Yubo; Qu, Jifa; Tadé, Moses O; Shao, Zongping

    2015-09-07

    For practical solid oxide fuel cells (SOFCs) operated on hydrocarbon fuels, the facile coke formation over Ni-based anodes has become a key factor that limits their widespread application. Modification of the anodes with basic elements may effectively improve their coking resistance in the short term; however, the easy loss of basic elements by thermal evaporation at high temperatures is a new emerging problem. Herein, we propose a new design to develop coking-resistant and stable SOFCs using Li(+) -conducting Li0.33 La0.56 TiO3 (LLTO) as an anode component. In the Ni/LLTO composite, any loss of surface lithium can be efficiently compensated by lithium diffused from the LLTO bulk under operation. Therefore, the SOFC with the Ni/LLTO anode catalyst layer yields excellent power outputs and operational stability. Our results suggest that the simple adoption of a Li(+) conductor as a modifier for Ni-based anodes is a practical and easy way to solve the coking problem of SOFCs that operate on hydrocarbons.

  11. Oxide anode materials for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fergus, Jeffrey W. [Auburn University, Materials Research and Education Center, 275 Wilmore Laboratories, Auburn, AL 36849 (United States)

    2006-07-15

    A major advantage of solid oxide fuel cells (SOFCs) over polymer electrolyte membrane (PEM) fuel cells is their tolerance for the type and purity of fuel. This fuel flexibility is due in large part to the high operating temperature of SOFCs, but also relies on the selection and development of appropriate materials - particularly for the anode where the fuel reaction occurs. This paper reviews the oxide materials being investigated as alternatives to the most commonly used nickel-YSZ cermet anodes for SOFCs. The majority of these oxides form the perovskite structure, which provides good flexibility in doping for control of the transport properties. However, oxides that form other crystal structures, such as the cubic fluorite structure, have also shown promise for use as SOFC anodes. In this paper, oxides are compared primarily in terms of their transport properties, but other properties relative to SOFC anode performance are also discussed. (author)

  12. Oxidation of H2 and CO in a fuel cell with a Platinum-tin Anode

    Directory of Open Access Journals (Sweden)

    Javier González

    2010-06-01

    Full Text Available This report describes the construction and evolution of a fuel cell with a bi-metallic anode of Pt-Sn supported on carbon, as catalysts for oxidation of pure hydrogen, pure CO and a 2% CO in H2 mixture. Both, cathode and anode were made with a structure composed by a diffusive layer and a catalytic layer. The diffusive layer was made with a carbon cloth while the catalytic layer contained the platinum and tin supported on carbon. To test the performance of the catalytic mixture, a proton exchange membrane fuel cell (PEMFC was developed with an original design for the gas distributation plates. The reactants were feed to ambient temperature and 3 psig in the anode side, while 5 psig pure oxygen was used in the cathode. The anode catalytic load was 0.57 mg/cm2 of platinum and 0.08 mg/cm2 of tin. The catalytic load in cathode was 0.85 mg/cm2 of pure platinum. It was found that this caralytic mixture is tolerant to CO presence.

  13. Synthesis of Au/C and Au/Pani for anode electrodes in glucose microfluidic fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Guerra-Balcazar, M.; Morales-Acosta, D.; Castaneda, F.; Arriaga, L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, 76703 Queretaro (Mexico); Ledesma-Garcia, J. [Division de Investigacion y Posgrado, Facultad de Ingenieria, Universidad Autonoma de Queretaro, 76010 Queretaro (Mexico)

    2010-06-15

    Gold nanoparticles have been prepared by two methods: chemical (ex-situ, Au/C) by two phase protocol, and electrochemical (in-situ, Au/Pani) by electroreduction of gold ions on a polyaniline film and compared as anode catalysts in a glucose microfluidic fuel cell. In this paper the structural characteristics and electrocatalytic properties were investigated by X-ray diffraction and electrochemical measurements. The catalytic behavior of both anodes was tested in a microfluidic fuel cell with a reference electrode incorporated, by means of linear sweep voltammetry (LSV), showing a cathodic shift in the glucose oxidation peak for Au/Pani. Results show a higher power density (0.5 mW cm{sup -} {sup 2}) for Au/C anode compared with an already reported value, where a glucose microfluidic fuel cell was used in similar conditions. (author)

  14. Copper anode corrosion affects power generation in microbial fuel cells

    KAUST Repository

    Zhu, Xiuping

    2013-07-16

    Non-corrosive, carbon-based materials are usually used as anodes in microbial fuel cells (MFCs). In some cases, however, metals have been used that can corrode (e.g. copper) or that are corrosion resistant (e.g. stainless steel, SS). Corrosion could increase current through galvanic (abiotic) current production or by increasing exposed surface area, or decrease current due to generation of toxic products from corrosion. In order to directly examine the effects of using corrodible metal anodes, MFCs with Cu were compared with reactors using SS and carbon cloth anodes. MFCs with Cu anodes initially showed high current generation similar to abiotic controls, but subsequently they produced little power (2 mW m-2). Higher power was produced with microbes using SS (12 mW m-2) or carbon cloth (880 mW m-2) anodes, with no power generated by abiotic controls. These results demonstrate that copper is an unsuitable anode material, due to corrosion and likely copper toxicity to microorganisms. © 2013 Society of Chemical Industry.

  15. Bimetallic Nickel/Ruthenium Catalysts Synthesized by Atomic Layer Deposition for Low-Temperature Direct Methanol Solid Oxide Fuel Cells.

    Science.gov (United States)

    Jeong, Heonjae; Kim, Jun Woo; Park, Joonsuk; An, Jihwan; Lee, Tonghun; Prinz, Fritz B; Shim, Joon Hyung

    2016-11-09

    Nickel and ruthenium bimetallic catalysts were heterogeneously synthesized via atomic layer deposition (ALD) for use as the anode of direct methanol solid oxide fuel cells (DMSOFCs) operating in a low-temperature range. The presence of highly dispersed ALD Ru islands over a porous Ni mesh was confirmed, and the Ni/ALD Ru anode microstructure was observed. Fuel cell tests were conducted using Ni-only and Ni/ALD Ru anodes with approximately 350 μm thick gadolinium-doped ceria electrolytes and platinum cathodes. The performance of fuel cells was assessed using pure methanol at operating temperatures of 300-400 °C. Micromorphological changes of the anode after cell operation were investigated, and the content of adsorbed carbon on the anode side of the operated samples was measured. The difference in the maximum power density between samples utilizing Ni/ALD Ru and Pt/ALD Ru, the latter being the best catalyst for direct methanol fuel cells, was observed to be less than 7% at 300 °C and 30% at 350 °C. The improved electrochemical activity of the Ni/ALD Ru anode compared to that of the Ni-only anode, along with the reduction of the number of catalytically active sites due to agglomeration of Ni and carbon formation on the Ni surface as compared to Pt, explains this decent performance.

  16. Structured Ni catalysts on porous anodic alumina membranes for methane dry reforming: NiAl 2 O 4 formation and characterization

    KAUST Repository

    Zhou, Lu

    2015-06-29

    This communication presents the successful design of a structured catalyst based on porous anodic alumina membranes for methane dry reforming. The catalyst with a strong Ni-NiAl2O4 interaction shows both excellent activity and stability. This journal is © The Royal Society of Chemistry.

  17. Fabrication and Characterization of Graded Anodes for Anode-Supported Solid Oxide Fuel Cells by Tape Casting and Lamination

    DEFF Research Database (Denmark)

    Beltran-Lopez, J.F.; Laguna-Bercero, M.A.; Gurauskis, Jonas

    2014-01-01

    Graded anodes for anode-supported solid oxide fuel cells (SOFCs) are fabricated by tape casting and subsequent cold lamination of plates using different compositions. Rheological parameters are adjusted to obtain stable suspensions for tape casting. The conditions for the tape casting and laminat...

  18. A review of liquid metal anode solid oxide fuel cells

    Directory of Open Access Journals (Sweden)

    ALIYA TOLEUOVA

    2013-06-01

    Full Text Available This review discusses recent advances in a solid oxide fuel cell (SOFC variant that uses liquid metal electrodes (anodes with the advantage of greater fuel tolerance and the ability to operate on solid fuel. Key features of the approach are discussed along with the technological and research challenges that need to be overcome for scale-up and commercialisation.

  19. Nano-Engineered Catalysts for Direct Methanol Fuel Cells

    Science.gov (United States)

    Myung, Nosang; Narayanan, Sekharipuram; Wiberg, Dean

    2008-01-01

    Nano-engineered catalysts, and a method of fabricating them, have been developed in a continuing effort to improve the performances of direct methanol fuel cells as candidate power sources to supplant primary and secondary batteries in a variety of portable electronic products. In order to realize the potential for high energy densities (as much as 1.5 W h/g) of direct methanol fuel cells, it will be necessary to optimize the chemical compositions and geometric configurations of catalyst layers and electrode structures. High performance can be achieved when catalyst particles and electrode structures have the necessary small feature sizes (typically of the order of nanometers), large surface areas, optimal metal compositions, high porosity, and hydrophobicity. The present method involves electrodeposition of one or more catalytic metal(s) or a catalytic-metal/polytetrafluoroethylene nanocomposite on an alumina nanotemplate. The alumina nanotemplate is then dissolved, leaving the desired metal or metal/polytetrafluoroethylene-composite catalyst layer. Unlike some prior methods of making fine metal catalysts, this method does not involve processing at elevated temperature; all processing can be done at room temperature. In addition, this method involves fewer steps and is more amenable to scaling up for mass production. Alumina nanotemplates are porous alumina membranes that have been fabricated, variously, by anodizing either pure aluminum or aluminum that has been deposited on silicon by electronbeam evaporation. The diameters of the pores (7 to 300 nm), areal densities of pores (as much as 7 x 10(exp 10)sq cm), and lengths of pores (up to about 100 nm) can be tailored by selection of fabrication conditions. In a given case, the catalytic metal, catalytic metal alloy, or catalytic metal/ polytetrafluoroethylene composite is electrodeposited in the pores of the alumina nanotemplate. The dimensions of the pores, together with the electrodeposition conditions

  20. PEM fuel cell cathode carbon corrosion due to the formation of air/fuel boundary at the anode

    Science.gov (United States)

    Tang, Hao; Qi, Zhigang; Ramani, Manikandan; Elter, John F.

    The impacts of unprotected start up and shut down on fuel cell performance degradation was investigated using both single cell and dual cell configurations. It was found that the air/fuel boundary developed at the anode side after a fuel cell shut down or during its restart caused extremely quick degradation of the cathode. The thickness, the electrochemical active surface area, and the performance of the cathode catalyst layer were significantly reduced. By using a dual cell configuration, cathode potential as high as two times of open circuit voltage was measured, and the corrosion current flowing externally between the two cells was detected and quantified. Carbon catalyst-support corrosion/oxidation at such a high potential was largely responsible for the accelerated fuel cell performance degradation.

  1. Direct methane solid oxide fuel cells based on catalytic partial oxidation enabling complete coking tolerance of Ni-based anodes

    Science.gov (United States)

    Lee, Daehee; Myung, Jaeha; Tan, Jeiwan; Hyun, Sang-Hoon; Irvine, John T. S.; Kim, Joosun; Moon, Jooho

    2017-03-01

    Solid oxide fuel cells (SOFCs) can oxidize diverse fuels by harnessing oxygen ions. Benefited by this feature, direct utilization of hydrocarbon fuels without external reformers allows for cost-effective realization of SOFC systems. Superior hydrocarbon reforming catalysts such as nickel are required for this application. However, carbon coking on nickel-based anodes and the low efficiency associated with hydrocarbon fueling relegate these systems to immature technologies. Herein, we present methane-fueled SOFCs operated under conditions of catalytic partial oxidation (CPOX). Utilizing CPOX eliminates carbon coking on Ni and facilitates the oxidation of methane. Ni-gadolinium-doped ceria (GDC) anode-based cells exhibit exceptional power densities of 1.35 W cm-2 at 650 °C and 0.74 W cm-2 at 550 °C, with stable operation over 500 h, while the similarly prepared Ni-yttria stabilized zirconia anode-based cells exhibit a power density of 0.27 W cm-2 at 650 °C, showing gradual degradation. Chemical analyses suggest that combining GDC with the Ni anode prevents the oxidation of Ni due to the oxygen exchange ability of GDC. In addition, CPOX operation allows the usage of stainless steel current collectors. Our results demonstrate that high-performance SOFCs utilizing methane CPOX can be realized without deterioration of Ni-based anodes using cost-effective current collectors.

  2. Development of anode zone using dual-anode system to reduce organic matter crossover in membraneless microbial fuel cells.

    Science.gov (United States)

    Kim, Jisu; Kim, Bongkyu; An, Junyeong; Lee, Yoo Seok; Chang, In Seop

    2016-08-01

    To prevent the occurrence of the organic crossover in membraneless microbial fuel cells (ML-MFCs), dual-anode MFC (DA-MFC) was designed from multi-anode concept to ensure anode zone. The anode zone addressed increase the utilization of organic matter in ML-MFCs, as the result, the organic crossover was prevented and performance of MFCs were enhanced. The maximum power of the DA-MFC was 0.46mW, which is about 1.56 times higher than the ML-MFC (0.29mW). Furthermore, the DA-MFC had advantage in correlation of organic substance concentration and dissolved oxygen concentration, and even electric over-potential. In addition, in terms of cathode fouling, the DA-MFC showed clearer surface. Hence, the anode zone should be considered in the advanced ML-MFC for practically use in wastewater treatment process, and also for scale-up of MFCs.

  3. Ohmic resistance affects microbial community and electrochemical kinetics in a multi-anode microbial electrochemical cell

    Science.gov (United States)

    Dhar, Bipro Ranjan; Ryu, Hodon; Santo Domingo, Jorge W.; Lee, Hyung-Sool

    2016-11-01

    Multi-anode microbial electrochemical cells (MxCs) are considered as one of the most promising configurations for scale-up of MxCs, but understanding of anode kinetics in multiple anodes is limited in the MxCs. In this study we assessed microbial community and electrochemical kinetic parameters for biofilms on individual anodes in a multi-anode MxC to better comprehend anode fundamentals. Microbial community analysis targeting 16S rRNA Illumina sequencing showed that Geobacter genus was abundant (87%) only on the biofilm anode closest to a reference electrode (low ohmic energy loss) in which current density was the highest among three anodes. In comparison, Geobacter populations were less than 1% for biofilms on other two anodes distant from the reference electrode (high ohmic energy loss), generating small current density. Half-saturation anode potential (EKA) was the lowest at -0.251 to -0.242 V (vs. standard hydrogen electrode) for the closest biofilm anode to the reference electrode, while EKA was as high as -0.134 V for the farthest anode. Our study proves that electric potential of individual anodes changed by ohmic energy loss shifts biofilm communities on individual anodes and consequently influences electron transfer kinetics on each anode in the multi-anode MxC.

  4. On the impact of water activity on reversal tolerant fuel cell anode performance and durability

    Science.gov (United States)

    Hong, Bo Ki; Mandal, Pratiti; Oh, Jong-Gil; Litster, Shawn

    2016-10-01

    Durability of polymer electrolyte fuel cells in automotive applications can be severely affected by hydrogen starvation arising due to transients during the drive-cycle. It causes individual cell voltage reversal, yielding water electrolysis and carbon corrosion reactions at the anode, ultimately leading to catastrophic cell failure. A popular material-based mitigation strategy is to employ a reversal tolerant anode (RTA) that includes oxygen evolution reaction (OER) catalyst (e.g., IrO2) to promote water electrolysis over carbon corrosion. Here we report that RTA performance surprisingly drops under not only water-deficient but also water-excess conditions. This presents a significant technical challenge since the most common triggers for cell reversal involve excess liquid water. Our findings from detailed electrochemical diagnostics and nano-scale X-ray computed tomography provide insight into how automotive fuel cells can overcome critical vulnerabilities using material-based solutions. Our work also highlights the need for improved materials, electrode designs, and operation strategies for robust RTAs.

  5. Nickel-based anode with water storage capability to mitigate carbon deposition for direct ethanol solid oxide fuel cells.

    Science.gov (United States)

    Wang, Wei; Su, Chao; Ran, Ran; Zhao, Bote; Shao, Zongping; Tade, Moses O; Liu, Shaomin

    2014-06-01

    The potential to use ethanol as a fuel places solid oxide fuel cells (SOFCs) as a sustainable technology for clean energy delivery because of the renewable features of ethanol versus hydrogen. In this work, we developed a new class of anode catalyst exemplified by Ni+BaZr0.4Ce0.4Y0.2O3 (Ni+BZCY) with a water storage capability to overcome the persistent problem of carbon deposition. Ni+BZCY performed very well in catalytic efficiency, water storage capability and coking resistance tests. A stable and high power output was well maintained with a peak power density of 750 mW cm(-2) at 750 °C. The SOFC with the new robust anode performed for seven days without any sign of performance decay, whereas SOFCs with conventional anodes failed in less than 2 h because of significant carbon deposition. Our findings indicate the potential applications of these water storage cermets as catalysts in hydrocarbon reforming and as anodes for SOFCs that operate directly on hydrocarbons.

  6. The impact of the inclination of the anode bottom on anode gas covering in the Hall-Heroult cell

    Energy Technology Data Exchange (ETDEWEB)

    Poncsak, S.; Kiss, L.I.; Perron, A. [Quebec Univ., Chicoutimi, PQ (Canada). Dept. des Sciences Appliquees; Perron, S. [Alcan Arvida Research and Development Centre, Jonquiere, PQ (Canada)

    2006-07-01

    The electrical efficiency and the energy consumption of aluminium electrolysis cells is influenced by carbon dioxide bubbles generated at the anode-bath interface. Electrically isolating these carbon-dioxide bubbles increases the ohmic resistance and ultimately, the energy consumption of the aluminium reduction cell. This study examined the impact of the anode inclination and current density on gas coverings and bath velocity for both carbon dioxide-cryolite and air-water systems. A bubble layer simulator based on a Lagrangian description of the bubble layer was constructed to examine these effect. Since the rate of gas production is determined by the applied current density, anode covering can be decreased only by a faster evacuation of the gas from the inter-electrode space. The curvature of the anode bottom promotes the release of the bubbles thereby decreasing the mean value of the covering. New anodes have a square shape with a flat, horizontal bottom. Inhomogeneous current distribution results in non-uniform anode consumption and the corners become progressively rounded during electrolysis. The curvature increases the interelectrode distance around the corner. Results illustrating the effect of the anode curvature on gas covering were obtained through the use of the bubble layer simulator based on the Lagrangian description.14 refs., 2 tabs., 4 figs.

  7. Influence of Metal Sulfides as Anode Catalysts on Performance of H2S SOFC%金属硫化物作为阳极材料对H2S固体氧化物燃料电池性能研究

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Two anode catalysts with Pt, MoS2 and composite metal sulfides (MoS2+NiS), are investigated forelectrochemical oxidation of hydrogen sulfide in solid oxide fuel cell (SOFC) at temperatures 750-850℃. Thecatalysts comprising MoS2 and MoS2+NiS exhibited good electrical conductivity and catalytic activity. MoS2 andcomposite catalysts were found to be more active than Pt, a widely used catalyst for high temperature H2S/O2fuel cell at 750-850℃. However, MoS2 itself sublimes above 450℃. In contrast, composite catalysts containingboth Mo and transition metal (Ni) are shown to be stable and effective in promoting the oxidation of H2S in SOFCup to 850℃. However, electric contact is poor between the platinum current collecting layer and the compositemetal sulfide layer, so that the cell performance becomes worse. This problem is overcome by adding conductiveAg powder into the anode layer (forming MoS2+NiS+Ag anode material) to increase anode electrical conductanceinstead of applying a thin layer of platinum on the top of anode.

  8. Study on proton-conducting solid oxide fuel cells with a conventional nickel cermet anode operating on dimethyl ether

    Science.gov (United States)

    Liu, Yu; Guo, Youmin; Wang, Wei; Su, Chao; Ran, Ran; Wang, Huanting; Shao, Zongping

    This study investigates dimethyl ether (DME) as a potential fuel for proton-conducting SOFCs with a conventional nickel cermet anode and a BaZr 0.4Ce 0.4Y 0.2O 3-δ (BZCY4) electrolyte. A catalytic test demonstrates that the sintered Ni + BZCY4 anode has an acceptable catalytic activity for the decomposition and steam reforming of DME with CO, CH 4 and CO 2 as the only gaseous carbon-containing products. An O 2-TPO analysis demonstrates the presence of a large amount of coke formation over the anode catalyst when operating on pure DME, which is effectively suppressed by introducing steam into the fuel gas. The selectivity towards CH 4 is also obviously reduced. Peak power densities of 252, 280 and 374 mW cm -2 are achieved for the cells operating on pure DME, a DME + H 2O gas mixture (1:3) and hydrogen at 700 °C, respectively. After the test, the cell operating on pure DME is seriously cracked whereas the cell operating on DME + H 2O maintains its original integrity. A lower power output is obtained for the cell operating on DME + H 2O than on H 2 at low temperature, which is mainly due to the increased electrode polarization resistance. The selection of a better proton-conducting phase in the anode is critical to further increase the cell power output.

  9. Galvanic Cells: Anodes, Cathodes, Signs and Charges

    Science.gov (United States)

    Goodwin, Alan

    2011-01-01

    Electrochemistry is a difficult subject for students at school and beyond and even for their teachers. This article explores the difficult "truth" that, when a current flows from a galvanic cell, positive ions within the cell electrolyte move towards the electrode labelled positive. This seems to contravene the basic rule that like charges repel…

  10. Activity of platinum/carbon and palladium/carbon catalysts promoted by Ni2 P in direct ethanol fuel cells.

    Science.gov (United States)

    Li, Guoqiang; Feng, Ligang; Chang, Jinfa; Wickman, Björn; Grönbeck, Henrik; Liu, Changpeng; Xing, Wei

    2014-12-01

    Ethanol is an alternative fuel for direct alcohol fuel cells, in which the electrode materials are commonly based on Pt or Pd. Owing to the excellent promotion effect of Ni2 P that was found in methanol oxidation, we extended the catalyst system of Pt or Pd modified by Ni2 P in direct ethanol fuel cells. The Ni2 P-promoted catalysts were compared to commercial catalysts as well as to reference catalysts promoted with only Ni or only P. Among the studied catalysts, Pt/C and Pd/C modified by Ni2 P (30 wt %) showed both the highest activity and stability. Upon integration into the anode of a homemade direct ethanol fuel cell, the Pt-Ni2 P/C-30 % catalyst showed a maximum power density of 21 mW cm(-2) , which is approximately two times higher than that of a commercial Pt/C catalyst. The Pd-Ni2 P/C-30 % catalyst exhibited a maximum power density of 90 mW cm(-2) . This is approximately 1.5 times higher than that of a commercial Pd/C catalyst. The discharge stability on both two catalysts was also greatly improved over a 12 h discharge operation.

  11. Graphene-Supported Platinum Catalyst-Based Membrane Electrode Assembly for PEM Fuel Cell

    Science.gov (United States)

    Devrim, Yilser; Albostan, Ayhan

    2016-08-01

    The aim of this study is the preparation and characterization of a graphene-supported platinum (Pt) catalyst for proton exchange membrane fuel cell (PEMFC) applications. The graphene-supported Pt catalysts were prepared by chemical reduction of graphene and chloroplatinic acid (H2PtCl6) in ethylene glycol. X-ray powder diffraction, thermogravimetric analysis (TGA) and scanning electron microscopy have been used to analyze structure and surface morphology of the graphene-supported catalyst. The TGA results showed that the Pt loading of the graphene-supported catalyst was 31%. The proof of the Pt particles on the support surfaces was also verified by energy-dispersive x-ray spectroscopy analysis. The commercial carbon-supported catalyst and prepared Pt/graphene catalysts were used as both anode and cathode electrodes for PEMFC at ambient pressure and 70°C. The maximum power density was obtained for the Pt/graphene-based membrane electrode assembly (MEA) with H2/O2 reactant gases as 0.925 W cm2. The maximum current density of the Pt/graphene-based MEA can reach 1.267 and 0.43 A/cm2 at 0.6 V with H2/O2 and H2/air, respectively. The MEA prepared by the Pt/graphene catalyst shows good stability in long-term PEMFC durability tests. The PEMFC cell voltage was maintained at 0.6 V without apparent voltage drop when operated at 0.43 A/cm2 constant current density and 70°C for 400 h. As a result, PEMFC performance was found to be superlative for the graphene-supported Pt catalyst compared with the Pt/C commercial catalyst. The results indicate the graphene-supported Pt catalyst could be utilized as the electrocatalyst for PEMFC applications.

  12. Fuel Cell Stations Automate Processes, Catalyst Testing

    Science.gov (United States)

    2010-01-01

    Glenn Research Center looks for ways to improve fuel cells, which are an important source of power for space missions, as well as the equipment used to test fuel cells. With Small Business Innovation Research (SBIR) awards from Glenn, Lynntech Inc., of College Station, Texas, addressed a major limitation of fuel cell testing equipment. Five years later, the company obtained a patent and provided the equipment to the commercial world. Now offered through TesSol Inc., of Battle Ground, Washington, the technology is used for fuel cell work, catalyst testing, sensor testing, gas blending, and other applications. It can be found at universities, national laboratories, and businesses around the world.

  13. A membraneless alkaline direct liquid fuel cell (DLFC) platform developed with a catalyst-selective strategy

    Science.gov (United States)

    Yu, Xingwen; Pascual, Emilio J.; Wauson, Joshua C.; Manthiram, Arumugam

    2016-11-01

    With a logical management of the catalyst selectivity, we present a scalable, membraneless alkaline direct liquid fuel cell (DLFC) platform. The uniqueness of this innovation is that the inexpensive (non-platinum) cathode catalysts, based on strongly coupled transition-metal-oxide nanocrystals and nano-structured carbon materials (e. g., NiCo2O4 nano-particles on a nitrogen-doped graphene and MnNiCoO4 nano-particles on a nitrogen-doped multi-wall carbon nanotube), exhibit high activity for the oxygen reduction reaction (ORR) but without activity for the anode fuel oxidation reaction (FOR). Therefore, operation of the DLFCs allows the anode fuel to freely enter the cathode. This strategy avoids the reliance on expensive or difficult-to-develop cation- or anion-exchange membranes and circumvents the scalability concerns of the conventional membraneless DLFCs that are operated under a laminar-flow principle. With proper catalyst selectivity, a variety of organic liquids can be used as anode fuels. The high power density delivered by the membraneless DLFCs with inexpensive components and safe fuels can enable the development of not only small-scale portable power sources but also large-scale energy generation systems for transportation and stationary storage.

  14. Catalyst and electrode research for phosphoric acid fuel cells

    Science.gov (United States)

    Antoine, A. C.; King, R. B.

    1987-01-01

    An account is given of the development status of phosphoric acid fuel cells' high performance catalyst and electrode materials. Binary alloys have been identified which outperform the baseline platinum catalyst; it has also become apparent that pressurized operation is required to reach the desired efficiencies, calling in turn for the use of graphitized carbon blacks in the role of catalyst supports. Efforts to improve cell performance and reduce catalyst costs have led to the investigation of a class of organometallic cathode catalysts represented by the tetraazaannulenes, and a mixed catalyst which is a mixture of carbons catalyzed with an organometallic and a noble metal.

  15. Preparation and electrochemistry of Pd-Ni/Si nanowire nanocomposite catalytic anode for direct ethanol fuel cell.

    Science.gov (United States)

    Miao, Fengjuan; Tao, Bairui; Chu, Paul K

    2012-04-28

    A new silicon-based anode suitable for direct ethanol fuel cells (DEFCs) is described. Pd-Ni nanoparticles are coated on Si nanowires (SiNWs) by electroless co-plating to form the catalytic materials. The electrocatalytic properties of the SiNWs and ethanol oxidation on the Pd-Ni catalyst (Pd-Ni/SiNWs) are investigated electrochemically. The effects of temperature and working potential limit in the anodic direction on ethanol oxidation are studied by cyclic voltammetry. The Pd-Ni/SiNWs electrode exhibits higher electrocatalytic activity and better long-term stability in an alkaline solution. It also yields a larger current density and negative onset potential thus boding well for its application to fuel cells.

  16. A membraneless microscale fuel cell using non-noble catalysts in alkaline solution

    Science.gov (United States)

    Sung, Woosuk; Choi, Jin-Woo

    This paper presents the development of a novel liquid-based microscale fuel cell using non-noble catalysts in an alkaline solution. The developed fuel cell is based on a membraneless structure. The operational complications of a proton exchange membrane lead the development of a fuel cell with the membraneless structure. Non-noble metals with relatively mild catalytic activity, nickel hydroxide and silver oxide, were employed as anode and cathode catalysts to minimize the effect of cross-reactions with the membraneless structure. Along with nickel hydroxide and silver oxide, methanol and hydrogen peroxide were used as a fuel at anode and an oxidant at cathode. With a fuel mixture flow rate of 200 μl min -1, a maximum output power density of 28.73 μW cm -2 was achieved. The developed fuel cell features no proton exchange membrane, inexpensive catalysts, and simple planar structure, which enables high design flexibility and easy integration of the microscale fuel cell into actual microfluidic systems and portable applications.

  17. Mechanical behaviour of PEM fuel cell catalyst layers during regular cell operation

    Directory of Open Access Journals (Sweden)

    Maher A.R. Sadiq Al-Baghdadi

    2010-11-01

    Full Text Available Damage mechanisms in a proton exchange membrane fuel cell are accelerated by mechanical stresses arising during fuel cell assembly (bolt assembling, and the stresses arise during fuel cell running, because it consists of the materials with different thermal expansion and swelling coefficients. Therefore, in order to acquire a complete understanding of the mechanical behaviour of the catalyst layers during regular cell operation, mechanical response under steady-state hygro-thermal stresses should be studied under real cell operating conditions and in real cell geometry (three-dimensional. In this work, full three-dimensional, non-isothermal computational fluid dynamics model of a PEM fuel cell has been developed to investigate the behaviour of the cathode and anode catalyst layers during the cell operation. A unique feature of the present model is to incorporate the effect of hygro and thermal stresses into actual three-dimensional fuel cell model. In addition, the temperature and humidity dependent material properties are utilize in the simulation for the membrane. The model is shown to be able to understand the many interacting, complex electrochemical, transport phenomena, and deformation that have limited experimental data.

  18. Non-noble metal fuel cell catalysts

    CERN Document Server

    Chen, Zhongwei; Zhang, Jiujun

    2014-01-01

    Written and edited by a group of top scientists and engineers in the field of fuel cell catalysts from both industry and academia, this book provides a complete overview of this hot topic. It covers the synthesis, characterization, activity validation and modeling of different non-noble metal and metalfree electrocatalysts for the reduction of oxygen, as well as their integration into acid or alkaline polymer exchange membrane (PEM) fuel cells and their performance validation, while also discussing those factors that will drive fuel cell commercialization. With its well-structured app

  19. Performance increase of microfluidic formic acid fuel cell using Pd/MWCNTs as catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Morales-Acosta, D.; Rodriguez G., H.; Godinez, Luis A.; Arriaga, L.G. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S.C. Parque Tecnologico Queretaro Sanfandila, P.O. Box 064, Pedro Escobedo, 76703 Queretaro (Mexico)

    2010-04-02

    This paper shows that the combination of an O{sub 2} saturated acidic fluid setup (O{sub 2}-setup) and a composite of Pd nanoparticles supported on multiwalled-carbon nanotubes (Pd/MWCNTs) as anode catalyst material, results in the improvement of microfluidic fuel cell performance. Microfluidic fuel cells were constructed and evaluated at low HCOOH concentrations (0.1 and 0.5 M) using Pd/V XC-72 and Pd/MWCNTs as anode and Pt/V XC-72 as cathode electrode materials, respectively. The results show a higher power density (2.9 mW cm{sup -2}) for this cell when compared to the value reported in the literature that considers a commercial Pd/V XC-72 and 3.3 mW cm{sup -2} using a Pd/MWCNTs with a 50% less Pd loading than that commercial Pd/V XC-72. (author)

  20. Direct ethanol fuel cell (DEFC): Electrical performances and reaction products distribution under operating conditions with different platinum-based anodes

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, S.; Coutanceau, C.; Lamy, C.; Leger, J.-M. [Laboratoire de Catalyse en Chimie Organique, -Equipe Electrocatalyse- UMR-CNRS 6503, Universite de Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers Cedex (France)

    2006-07-14

    Ethanol electro-oxidation at different Pt-based electrodes was investigated in a single direct ethanol fuel cell (DEFC) in terms of reaction product distribution depending on the anode catalyst. In DEFC experiments, only three reaction products were detected using HPLC: acetaldehyde (AAL), acetic acid (AA) and CO{sub 2}. The addition of tin to platinum increases the activity of the catalyst by several order of magnitude and the electrical performance of the DEFC are greatly enhanced from a few mWcm{sup -2} to 30mWcm{sup -2} at 80{sup o}C, with Pt/C and Pt-Sn/C catalysts, respectively. Moreover, at Pt-Sn/C and Pt-Sn-Ru/C the formation of CO{sub 2} and AAL is lowered whereas the formation of AA is increased in comparison to what happens at a Pt/C catalyst. The addition of Ru to Pt-Sn only leads to enhance the electrical performance of the DEFC, i.e. the activity of the catalyst, but does not modify the product distribution. Very good stability in the open circuit voltage of the DEFC (close to 0.75V) was observed over a period of 2 weeks at 90{sup o}C, the cell undergoing start-run-stop cycles each day. Good stability under operating conditions at a given current density was also observed over 6h. (author)

  1. Solid oxide fuel cell anode degradation by the effect of hydrogen chloride in stack and single cell environments

    Science.gov (United States)

    Madi, Hossein; Lanzini, Andrea; Papurello, Davide; Diethelm, Stefan; Ludwig, Christian; Santarelli, Massimo; Van herle, Jan

    2016-09-01

    The poisoning effect by hydrogen chloride (HCl) on state-of-the-art Ni anode-supported solid oxide fuel cells (SOFCs) at 750 °C is evaluated in either hydrogen or syngas fuel. Experiments are performed on single cells and short stacks and HCl concentration in the fuel gas is increased from 1 ppm(v) up to 1000 ppm(v) at different current densities. Characterization methods such as cell voltage monitoring vs. time and electrochemical impedance response analysis (distribution of relaxation times (DRT), equivalent electrical circuit) are used to identify the prevailing degradation mechanism. Single cell experiments revealed that the poisoning is more severe when feeding with hydrogen than with syngas. Performance loss is attributed to the effects of HCl adsorption onto nickel surfaces, which lowered the catalyst activity. Interestingly, in syngas HCl does not affect stack performance even at concentrations up to 500 ppm(v), even when causing severe corrosion of the anode exhaust pipe. Furthermore, post-test analysis suggests that chlorine is present on the nickel particles in the form of adsorbed chlorine, rather than forming a secondary phase of nickel chlorine.

  2. Anode purge strategy optimization of the polymer electrode membrane fuel cell system under the dead-end anode operation

    Science.gov (United States)

    Hu, Zhe; Yu, Yi; Wang, Guangjin; Chen, Xuesong; Chen, Pei; Chen, Jun; Zhou, Su

    2016-07-01

    Dead-ended anode (DEA) mode is commonly applied in fuel cell vehicles for the hydrogen purge at the anode side, to reduce fuel waste and enhance fuel cell efficiency. Anode purge is necessary and is definitely important with respect to removing liquid water and accumulated nitrogen in the gas diffusion layer and the flow field of the DEA-mode fuel cell. In this paper, the effect of different purge strategies on the stack performance and system efficiency is investigated experimentally using fast data acquisition and advanced tools, such as the fast cell voltage measurement (CVM) system and the mass spectrum. From the fast data acquisition, the voltage stability, liquid water and nitrogen concentration measurement in the anode exhaust are compared and analyzed under different purge strategy designs and using different purge valves. The results show that under the optimal purge strategy, the DEA fuel cell stack can achieve the desired stability and system efficiency based on the analysis of the cell voltage and purge volume. Moreover, the diameter of the purge valve has a great impact on the voltage stability because a diameter change will result in a different pressure drop and purge volume when the purge valve is open.

  3. Scanning transmission X-ray microscopy of nano structured thin film catalysts for proton-exchange-membrane fuel cells

    Science.gov (United States)

    Lee, Vincent; Berejnov, Viatcheslav; West, Marcia; Kundu, Sumit; Susac, Darija; Stumper, Jürgen; Atanasoski, Radoslav T.; Debe, Mark; Hitchcock, Adam P.

    2014-10-01

    Scanning transmission X-ray microscopy (STXM) has been applied to characterize nano structured thin film (NSTF) catalysts implemented as electrode materials in proton-exchange-membrane (PEM) fuel cells. STXM is used to study all chemical constituents at various stages in the fabrication process, from the perylene red (PR149) starting material, through the formation of the uncoated perylene whiskers, their coated form with Pt-based catalyst, and toward the NSTF anode fully integrated into the catalyst coated membrane (CCM). CCM samples were examined prior to operational testing and after several different accelerated testing protocols: start-up/shut-down (SU/SD), and reversal tests. It was found that, while the perylene support material is present in the pre-test samples, it was completely absent in the post-test samples. We attribute this loss of perylene material to the presence of cracks in the catalyst combined with intensive hydrogenation processes happening at the anode during operation. Despite the loss of the perylene support, the platinum shells forming the NSTF anode catalyst layer performed well during the tests.

  4. Effect of electromagnetic force and anode gas on electrolyte flow in aluminum electrolysis cell

    Institute of Scientific and Technical Information of China (English)

    ZHOU Nai-jun; XIA Xiao-xia; BAO Sheng-zhong

    2006-01-01

    Based on the commercial computational fluid dynamics software CFX-4.3, electrolyte flow fields in a 156 kA pre-baked anode aluminum electrolysis cell were investigated in three different cases where the electrolyte melt was driven by different kinds of force, i.e. electromagnetic force only, the anode gas drag force only and both of the former two forces. The results show that when electromagnetic force was introduced only, most of the electrolyte moves horizontally; when anode gas drag force was introduced only, the electrolyte flows mainly around each anode with small circulation; when electromagnetic force and anode gas drag force were both introduced together, the structure of the electrolyte flow fields and the velocity of electrolyte are similar to that of the case where only anode gas drag force is used. The electrolyte flow fields are mainly determined by the anode gas drag force.

  5. The effects of anodization parameters on titania nanotube arrays and dye sensitized solar cells

    Science.gov (United States)

    Xie, Z. B.; Adams, S.; Blackwood, D. J.; Wang, J.

    2008-10-01

    Ordered, closely packed, and vertically oriented titania nanotube arrays with lengths exceeding 10 µm were fabricated by anodization of titanium foils. The effects of anodization voltage and time on the microstructural morphology and the photovoltaic performance of dye sensitized solar cells based on the titania nanotube arrays were investigated. On increasing the anodization voltage or time, the increase in active surface area leads to enhanced photovoltaic currents and thereby an overall higher performance of the dye sensitized solar cells. The efficiency enhancement with rising anodization voltage exceeds the increase in the outer surface area of the nanotubes, indicating that the active surface area is further enlarged by a more accessible inner surface of the nanotube arrays grown with a higher anodization voltage. A promising efficiency of 3.67% for dye sensitized solar cells based on anodized titania nanotube arrays was achieved under AM1.5, 100 mW cm-2 illumination.

  6. The effects of anodization parameters on titania nanotube arrays and dye sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Z B; Adams, S; Blackwood, D J; Wang, J [Department of Materials Science and Engineering, National University of Singapore, Singapore 117574 (Singapore)], E-mail: msexz@nus.edu.sg

    2008-10-08

    Ordered, closely packed, and vertically oriented titania nanotube arrays with lengths exceeding 10 {mu}m were fabricated by anodization of titanium foils. The effects of anodization voltage and time on the microstructural morphology and the photovoltaic performance of dye sensitized solar cells based on the titania nanotube arrays were investigated. On increasing the anodization voltage or time, the increase in active surface area leads to enhanced photovoltaic currents and thereby an overall higher performance of the dye sensitized solar cells. The efficiency enhancement with rising anodization voltage exceeds the increase in the outer surface area of the nanotubes, indicating that the active surface area is further enlarged by a more accessible inner surface of the nanotube arrays grown with a higher anodization voltage. A promising efficiency of 3.67% for dye sensitized solar cells based on anodized titania nanotube arrays was achieved under AM1.5, 100 mW cm{sup -2} illumination.

  7. Effect of anodic polarization on the free-floating parts at Pt/YSZ catalyst electrode

    Energy Technology Data Exchange (ETDEWEB)

    Toghan, Arafat, E-mail: arafat.toghan@yahoo.com [Lehrstuhl für Physikalische Chemie II, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, D-91058 Erlangen (Germany); Chemistry Department, Faculty of Science, South Valley University, 83523 Qena (Egypt); Institut für Physikalische Chemie und Elektrochemie, Leibniz-Universität Hannover, Callinstrasse 3-3a, D-30167 Hannover (Germany); Imbihl, R. [Institut für Physikalische Chemie und Elektrochemie, Leibniz-Universität Hannover, Callinstrasse 3-3a, D-30167 Hannover (Germany)

    2015-09-30

    Photoemission electron microscopy (PEEM) was used as spatially resolving method to explore the effect of electrochemical pumping with a positive voltage to porous platinum electrodes interfaced as working electrode to yttrium stabilized zirconia (YSZ). The experiments were conducted under UHV conditions (p ≈ 10{sup −9} mbar). In PEEM a uniform rapid darkening of the Pt surface was observed during anodic polarization followed by the appearance of bright spots on a dark background. The bright spots observed in PEEM images are due to zirconia reduction around electrically isolated Pt islands.

  8. Functionalized Graphitic Supports for Improved Fuel Cell Catalyst Stability Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. (PSI) together with the University of Connecticut (UCONN) proposes to demonstrate the improved fuel cell catalyst support durability offered...

  9. PEM fuel cell catalyst degradation mechanism and mathematical modeling

    Science.gov (United States)

    Bi, Wu

    The durability of carbon-supported platinum oxygen reduction electrocatalysts is one of the limiting factors for their commercial applications in PEM fuel cell cathodes. In this work, we applied both experimental and numerical tools to study Pt/C catalyst degradation mechanisms. An accelerated catalyst degradation protocol through cycling the cathode potential in a square-wave profile was applied to study cell performances, Pt/C catalyst ORR activity, and active surface area losses. Post-mortem analyses of cathode Pt particle size were conducted by X-ray diffraction. Changes of platinum distributions in CCMs were studied by SEM/EDS analyses with surface coated Au as the reference element. The mechanisms of platinum deposition in membrane were investigated. It was confirmed by the SEM/EDS Pt distribution analyses that the deposited Pt atoms originated from the cathode. It was hypothesized that dissolved Pt ions from the cathode diffused into the membrane and were reduced by the permeated hydrogen from the anode. These deposited Pt atoms catalyzed the combustion of permeated oxygen and hydrogen. Pt band was predicted and experimentally confirmed at the location where the permeated hydrogen and oxygen completely reacted with each other. An active research thrust for PEM fuel cells is the development of membranes for high temperature (above 80°C) and low humidity operations. However a large tradeoff the benefits running fuel cell at relatively high temperatures was observed due to the accelerated cathode degradation processes. And at low humidity conditions, the cathode degradation rate decreased due to the slow transport of soluble platinum ions in possible narrowed/limited water (or ionic) channel networks in polymer electrolytes. From the Pt dissolution experiments in 0.5 M HClO4 solution, large positive effects of holding potentials on dissolution rates and soluble Pt concentrations were observed. Without an external holding potential, Pt dissolution rate was

  10. Pre-coating of LSCM perovskite with metal catalyst for scalable high performance anodes

    KAUST Repository

    Boulfrad, Samir

    2013-07-01

    In this work, a highly scalable technique is proposed as an alternative to the lab-scale impregnation method. LSCM-CGO powders were pre-coated with 5 wt% of Ni from nitrates. After appropriate mixing and adequate heat treatment, coated powders were then dispersed into organic based vehicles to form a screen-printable ink which was deposited and fired to form SOFC anode layers. Electrochemical tests show a considerable enhancement of the pre-coated anode performances under 50 ml/min wet H2 flow with polarization resistance decreased from about 0.60cm2 to 0.38 cm2 at 900 C and from 6.70 cm2 to 1.37 cm2 at 700 C. This is most likely due to the pre-coating process resulting in nano-scaled Ni particles with two typical sizes; from 50 to 200 nm and from 10 to 40 nm. Converging indications suggest that the latter type of particle comes from solid state solution of Ni in LSCM phase under oxidizing conditions and exsolution as nanoparticles under reducing atmospheres. Copyright © 2013, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  11. An anodic alumina supported Ni-Pt bimetallic plate-type catalysts for multi-reforming of methane, kerosene and ethanol

    KAUST Repository

    Zhou, Lu

    2014-05-01

    An anodic alumina supported Ni-Pt bimetallic plate-type catalyst was prepared by a two-step impregnation method. The trace amount 0.08 wt% of Pt doping efficiently suppressed the nickel particle sintering and improved the nickel oxides reducibility. The prepared Ni-Pt catalyst showed excellent performance during steam reforming of methane, kerosene and ethanol under both 3000 h stationary and 500-time daily start-up and shut-down operation modes. Self-activation ability of this catalyst was evidenced, which was considered to be resulted from the hydrogen spillover effect over Ni-Pt alloy. In addition, an integrated combustion-reforming reactor was proposed in this study. However, the sintering of the alumina support is still a critical issue for the industrialization of Ni-Pt catalyst. Copyright © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  12. Hybrid Direct Carbon Fuel Cell Performance with Anode Current Collector Material

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Kammer Hansen, Kent

    2015-01-01

    The influence of the current collector on the performance of a hybrid direct carbon fuel cell (HDCFC), consisting of solid oxide fuel cell (SOFC) with a molten carbonate-carbon slurry in contact with the anode, has been investigated using current-voltage curves. Four different anode current...

  13. Anode protection system for shutdown of solid oxide fuel cell system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bob X; Grieves, Malcolm J; Kelly, Sean M

    2014-12-30

    An Anode Protection Systems for a SOFC system, having a Reductant Supply and safety subsystem, a SOFC anode protection subsystem, and a Post Combustion and slip stream control subsystem. The Reductant Supply and safety subsystem includes means for generating a reducing gas or vapor to prevent re-oxidation of the Ni in the anode layer during the course of shut down of the SOFC stack. The underlying ammonia or hydrogen based material used to generate a reducing gas or vapor to prevent the re-oxidation of the Ni can be in either a solid or liquid stored inside a portable container. The SOFC anode protection subsystem provides an internal pressure of 0.2 to 10 kPa to prevent air from entering into the SOFC system. The Post Combustion and slip stream control subsystem provides a catalyst converter configured to treat any residual reducing gas in the slip stream gas exiting from SOFC stack.

  14. Impact of nanostructured anode on low-temperature performance of thin-film-based anode-supported solid oxide fuel cells

    Science.gov (United States)

    Park, Jung Hoon; Han, Seung Min; Yoon, Kyung Joong; Kim, Hyoungchul; Hong, Jongsup; Kim, Byung-Kook; Lee, Jong-Ho; Son, Ji-Won

    2016-05-01

    The impact of a nanostructured Ni-yttria-stabilized zirconia (Ni-YSZ) anode on low-temperature solid oxide fuel cell (LT-SOFC) performance is investigated. By modifying processing techniques for the anode support, anode-supported SOFCs based on thin-film (∼1 μm) electrolytes (TF-SOFCs) with and without the nanostructured Ni-YSZ (grain size ∼100 nm) anode are fabricated and a direct comparison of the TF-SOFCs to reveal the role of the nanostructured anode at low temperature is made. The cell performance of the nanostructured Ni-YSZ anode significantly increases as compared to that of the cell without it, especially at low temperatures (500 °C). The electrochemical analyses confirm that increasing the triple-phase boundary (TPB) density near the electrolyte and anode interface by the particle-size reduction of the anode increases the number of sites available for charge transfer. Thus, the nanostructured anode not only secures the structural integrity of the thin-film components over it, it is also essential for lowering the operating temperature of the TF-SOFC. Although it is widely considered that the cathode is the main factor that determines the performance of LT-SOFCs, this study directly proves that anode performance also significantly affects the low-temperature performance.

  15. Final Report - Durable Catalysts for Fuel Cell Protection during Transient Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Atanasoski, Radoslav [3M Company, St. Paul, MN (United States); van der Vliet, Dennis [3M Company, St. Paul, MN (United States); Cullen, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Atanasoska, Ljiljana [3M Company, St. Paul, MN (United States)

    2015-01-26

    The objective of this project was to develop catalysts that will enable proton exchange membranes (PEM) fuel cell systems to weather the damaging conditions in the fuel cell at voltages beyond the thermodynamic stability of water during the transient periods of start-up/shut-down and fuel starvation. Such catalysts are required to make it possible for the fuel cell to satisfy the 2015 DOE targets for performance and durability. The project addressed a key issue of importance for successful transition of PEM fuel cell technology from development to pre-commercial phase. This issue is the failure of the catalyst and the other thermodynamically unstable membrane electrode assembly (MEA) components during start-up/shut-down and local fuel starvation at the anode, commonly referred to as transient conditions. During these periods the electrodes can reach potentials higher than the usual 1.23V upper limit during normal operation. The most logical way to minimize the damage from such transient events is to minimize the potential seen by the electrodes. At lower positive potentials, increased stability of the catalysts themselves and reduced degradation of the other MEA components is expected.

  16. OPERATION OF SOLID OXIDE FUEL CELL ANODES WITH PRACTICAL HYDROCARBON FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Scott A. Barnett; Jiang Liu; Yuanbo Lin

    2004-07-30

    This work was carried out to achieve a better understanding of how SOFC anodes work with real fuels. The motivation was to improve the fuel flexibility of SOFC anodes, thereby allowing simplification and cost reduction of SOFC power plants. The work was based on prior results indicating that Ni-YSZ anode-supported SOFCs can be operated directly on methane and natural gas, while SOFCs with novel anode compositions can work with higher hydrocarbons. While these results were promising, more work was clearly needed to establish the feasibility of these direct-hydrocarbon SOFCs. Basic information on hydrocarbon-anode reactions should be broadly useful because reformate fuel gas can contain residual hydrocarbons, especially methane. In the Phase I project, we have studied the reaction mechanisms of various hydrocarbons--including methane, natural gas, and higher hydrocarbons--on two kinds of Ni-containing anodes: conventional Ni-YSZ anodes and a novel ceramic-based anode composition that avoid problems with coking. The effect of sulfur impurities was also studied. The program was aimed both at achieving an understanding of the interactions between real fuels and SOFC anodes, and providing enough information to establish the feasibility of operating SOFC stacks directly on hydrocarbon fuels. A combination of techniques was used to provide insight into the hydrocarbon reactions at these anodes during SOFC operation. Differentially-pumped mass spectrometry was be used for product-gas analysis both with and without cell operation. Impedance spectroscopy was used in order to understand electrochemical rate-limiting steps. Open-circuit voltages measurements under a range of conditions was used to help determine anode electrochemical reactions. Life tests over a wide range of conditions were used to establish the conditions for stable operation of anode-supported SOFC stacks directly on methane. Redox cycling was carried out on ceramic-based anodes. Tests on sulfur tolerance of

  17. Partial oxidation of dimethyl ether using the structured catalyst Rh/Al2O3/Al prepared through the anodic oxidation of aluminum.

    Science.gov (United States)

    Yu, B Y; Lee, K H; Kim, K; Byun, D J; Ha, H P; Byun, J Y

    2011-07-01

    The partial oxidation of dimethyl ether (DME) was investigated using the structured catalyst Rh/Al2O3/Al. The porous Al2O3 layer was synthesized on the aluminum plate through anodic oxidation in an oxalic-acid solution. It was observed that about 20 nm nanopores were well developed in the Al2O3 layer. The thickness of Al2O3 layer can be adjusted by controlling the anodizing time and current density. After pore-widening and hot-water treatment, the Al2O3/Al plate was calcined at 500 degrees C for 3 h. The obtained delta-Al2O3 had a specific surface area of 160 m2/g, making it fit to be used as a catalyst support. A microchannel reactor was designed and fabricated to evaluate the catalytic activity of Rh/Al2O3/Al in the partial oxidation of DME. The structured catalyst showed an 86% maximum hydrogen yield at 450 degrees C. On the other hand, the maximum syngas yield by a pack-bed-type catalyst could be attained by using a more than fivefold Rh amount compared to that used in the structured Rh/Al2O3/Al catalyst.

  18. Cell response of anodized nanotubes on titanium and titanium alloys.

    Science.gov (United States)

    Minagar, Sepideh; Wang, James; Berndt, Christopher C; Ivanova, Elena P; Wen, Cuie

    2013-09-01

    Titanium and titanium alloy implants that have been demonstrated to be more biocompatible than other metallic implant materials, such as Co-Cr alloys and stainless steels, must also be accepted by bone cells, bonding with and growing on them to prevent loosening. Highly ordered nanoporous arrays of titanium dioxide that form on titanium surface by anodic oxidation are receiving increasing research interest due to their effectiveness in promoting osseointegration. The response of bone cells to implant materials depends on the topography, physicochemistry, mechanics, and electronics of the implant surface and this influences cell behavior, such as adhesion, proliferation, shape, migration, survival, and differentiation; for example the existing anions on the surface of a titanium implant make it negative and this affects the interaction with negative fibronectin (FN). Although optimal nanosize of reproducible titania nanotubes has not been reported due to different protocols used in studies, cell response was more sensitive to titania nanotubes with nanometer diameter and interspace. By annealing, amorphous TiO2 nanotubes change to a crystalline form and become more hydrophilic, resulting in an encouraging effect on cell behavior. The crystalline size and thickness of the bone-like apatite that forms on the titania nanotubes after implantation are also affected by the diameter and shape. This review describes how changes in nanotube morphologies, such as the tube diameter, the thickness of the nanotube layer, and the crystalline structure, influence the response of cells.

  19. Palladium-Based Catalysts as Electrodes for Direct Methanol Fuel Cells: A Last Ten Years Review

    Directory of Open Access Journals (Sweden)

    Juan Carlos Calderón Gómez

    2016-08-01

    Full Text Available Platinum-based materials are accepted as the suitable electrocatalysts for anodes and cathodes in direct methanol fuel cells (DMFCs. Nonetheless, the increased demand and scarce world reserves of Pt, as well as some technical problems associated with its use, have motivated a wide research focused to design Pd-based catalysts, considering the similar properties between this metal and Pt. In this review, we present the most recent advancements about Pd-based catalysts, considering Pd, Pd alloys with different transition metals and non-carbon supported nanoparticles, as possible electrodes in DMFCs. In the case of the anode, different reported works have highlighted the capacity of these new materials for overcoming the CO poisoning and promote the oxidation of other intermediates generated during the methanol oxidation. Regarding the cathode, the studies have showed more positive onset potentials, as fundamental parameter for determining the mechanism of the oxygen reduction reaction (ORR and thus, making them able for achieving high efficiencies, with less production of hydrogen peroxide as collateral product. This revision suggests that it is possible to replace the conventional Pt catalysts by Pd-based materials, although several efforts must be made in order to improve their performance in DMFCs.

  20. Anode materials for hydrogen sulfide containing feeds in a solid oxide fuel cell

    Science.gov (United States)

    Roushanafshar, Milad

    SOFCs which can directly operate under high concentration of H2S would be economically beneficial as this reduces the cost of gas purification. H2S is highly reactive gas specie which can poison most of the conventional catalysts. As a result, developing anode materials which can tolerate high concentrations of H2S and also display high activity toward electrochemical oxidation of feed is crucial and challenging for this application. The performance of La0.4Sr0.6TiO3+/-delta -Y0.2Ce0.8O2-delta (LST-YDC) composite anodes in solid oxide fuel cells significantly improved when 0.5% H2 S was present in syngas (40% H2, 60% CO) or hydrogen. Gas chromatography and mass spectrometry analyses revealed that the rate of electrochemical oxidation of all fuel components improved when H2S containing syngas was present in the fuel. Electrochemical stability tests performed under potentiostatic condition showed that there was no power degradation for different feeds, and that there was power enhancement when 0.5% H2S was present in various feeds. The mechanism of performance improvement by H2S was discussed. Active anodes were synthesized via wet chemical impregnation of different amounts of La0.4Ce0.6O1.8 (LDC) and La 0.4Sr0.6TiO3 (L4ST) into porous yttria-stabilized zirconia (YSZ). Co-impregnation of LDC with LS4T significantly improved the performance of the cell from 48 mW.cm-2 (L4ST) to 161 mW.cm -2 (LDC-L4ST) using hydrogen as fuel at 900 °C. The contribution of LDC to this improvement was investigated using electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) as well as transmission electron microscopy (TEM). EIS measurements using symmetrical cells showed that the polarization resistance decreased from 3.1¦O.cm 2 to 0.5 O.cm2 when LDC was co-impregnated with LST, characterized in humidified H2 (3% H2O) at 900 °C. In addition, the microstructure of the cell was modified when LDC was impregnated prior to L4ST into the porous YSZ. TEM and SEM

  1. On the role of reactant transport and (surface) alloy formation for the CO tolerance of carbon supported PtRu polymer electrolyte fuel cell catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, J.; Colmenares, L.; Jusys, Z.; Behm, R.J. [Abt. Oberflaechenchemie und Katalyse, Universitaet Ulm (Germany); Moertel, R.; Boennemann, H. [Max-Planck-Institut fuer Kohlenforschung, Muelheim a.d. Ruhr (Germany); Koehl, G.; Modrow, H.; Hormes, J. [Physikalisches Institut, Universitaet Bonn (Germany)

    2006-07-15

    The role of atomic scale intermixing for the electrocatalytic activity of bimetallic PtRu anode catalysts in reformate operated polymer electrolyte fuel cells (PEFC) was investigated, exploiting the specific properties of colloid based catalyst synthesis for the selective preparation of alloyed and non-alloyed bimetallic catalysts. Three different carbon supported PtRu catalysts with different degrees of Pt and Ru intermixing, consisting of (i) carbon supported PtRu alloy particles (PtRu/C), (ii) Pt and Ru particles co-deposited on the same carbon support (Pt+Ru/C), and (iii) a mixture of carbon supported Pt and carbon supported Ru (Pt/C+Ru/C) as well as the respective monometallic Pt/C and Ru/C catalysts were prepared and characterized by electron microscopy (TEM), X-ray absorption spectroscopy, and CO stripping. Their performance as PEFC anode catalysts was evaluated by oxidation of a H{sub 2}/2%CO gas mixture (simulated reformate) under fuel cell relevant conditions (elevated temperature, continuous reaction and controlled reactant transport) in a rotating disk electrode (RDE) set-up. The CO tolerance and H{sub 2} oxidation activity of the three catalysts is comparable and distinctly different from that of the monometallic catalysts. The results indicate significant transport of the reactants, CO{sub ad} and/or OH{sub ad}, between Pt and Ru surface areas and particles for all three catalysts, with only subtle differences from the alloy catalyst to the physical mixture. The high activity and CO tolerance of the bimetallic catalysts, through the formation of bimetallic surfaces, is explained, e.g., by contact formation in nanoparticle agglomerates or by material transport and subsequent surface decoration/surface alloy formation during catalyst preparation, conditioning, and operation. The instability and mobility of the catalysts under these conditions closely resembles concepts in gas phase catalysis. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  2. Surface nanotopography of an anodized Ti–6Al–7Nb alloy enhances cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Her-Hsiung [Department of Dentistry, National Yang-Ming University, Taipei 112, Taiwan (China); Graduate Institute of Basic Medical Science, China Medical University, Taichung 404, Taiwan (China); Department of Biomedical Informatics, Asia University, Taichung 413, Taiwan (China); Department of Stomatology, Taipei Veterans General Hospital, Taipei 112, Taiwan (China); Wu, Chia-Ping [Institute of Oral Biology, National Yang-Ming University, Taipei 112, Taiwan (China); Sun, Ying-Sui [Department of Dentistry, National Yang-Ming University, Taipei 112, Taiwan (China); Yang, Wei-En [Institute of Oral Biology, National Yang-Ming University, Taipei 112, Taiwan (China); Lee, Tzu-Hsin, E-mail: biomaterials@hotmail.com [School of Dentistry, Chung Shan Medical University, Taichung 402, Taiwan (China); Oral Medicine Center, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China)

    2014-12-05

    Highlights: • An electrochemical anodization was applied to α/β-type Ti–6Al–7Nb alloy surface. • Anodized surface had a nontoxic nanoporous topography. • Anodized surface increased proteins adsorption due to nanotopography. • Anodized surface enhanced cell growth due to nanotopography. • Electrochemical anodization has potential as implant surface treatment. - Abstract: The α/β-type Ti–6Al–7Nb alloy is a potential replacement for α/β-type Ti–6Al–4V alloy, which is widely used in biomedical implant applications. The biological response to implant material is dependent on the surface characteristics of the material. In the present study, a simple and fast process was developed to perform an electrochemical anodization treatment on Ti–6Al–7Nb alloy. The proposed process yielded a thin surface nanotopography, which enhanced cell growth on the Ti–6Al–7Nb alloy. The surface characteristics, including the morphology, wettability, and protein adsorption, were investigated, and the cytotoxicity was evaluated according to International Organization for Standardization 10993-5 specifications. Cell adhesion of human bone marrow mesenchymal stem cells on the test specimens was observed via fluorescence microscopy and scanning electron microscopy. The anodization process produced a surface nanotopography (pore size <100 nm) on anodized Ti–6Al–7Nb alloy, which enhanced the wettability, protein adsorption, cell adhesion, cell migration, and cell mineralization. The results showed that the surface nanotopography produced using the proposed electrochemical anodization process enhanced cell growth on anodized Ti–6Al–7Nb alloy for implant applications.

  3. Carbon Nanofibers Modified Graphite Felt for High Performance Anode in High Substrate Concentration Microbial Fuel Cells

    Directory of Open Access Journals (Sweden)

    Youliang Shen

    2014-01-01

    Full Text Available Carbon nanofibers modified graphite fibers (CNFs/GF composite electrode was prepared for anode in high substrate concentration microbial fuel cells. Electrochemical tests showed that the CNFs/GF anode generated a peak current density of 2.42 mA cm−2 at a low acetate concentration of 20 mM, which was 54% higher than that from bare GF. Increase of the acetate concentration to 80 mM, in which the peak current density of the CNFs/GF anode greatly increased and was up to 3.57 mA cm−2, was seven times as that of GF anode. Morphology characterization revealed that the biofilms in the CNFs/GF anode were much denser than those in the bare GF. This result revealed that the nanostructure in the anode not only enhanced current generation but also could tolerate high substrate concentration.

  4. Laboratory study of property-modified prebaked carbon anode and application in large aluminum electrolysis cells

    Institute of Scientific and Technical Information of China (English)

    XIAO Jin; LI Jie; YE Shao-long; LAI Yan-qing; LIU Ye-xiang

    2005-01-01

    A kind of complex additive mainly containing Al, Mg, F, and O was prepared. The synthetical performances of the property-modified prebaked anodes containing additives were tested in laboratory. On the basis of ideal testing results obtained, a large number of industrial prebaked property-modified anodes are prepared in a large-scale aluminum company. Further more, they are all used in 160 kA prebaked anode aluminum electrolysis cells. The statistic result show that, compared with common anodes, the property-modified ones enhance current by 11.6 kg per ton aluminum averagely.

  5. The potential of model studies for the understanding of catalyst poisoning and temperature effects in polymer electrolyte fuel cell reactions

    Science.gov (United States)

    Behm, R. J.; Jusys, Z.

    In this contribution we demonstrate the potential of model studies for the understanding of electrocatalytic reactions in low-temperature polymer electrolyte fuel cells (PEFCs) operated by H 2-rich anode feed gas, in particular of the role of temperature effects and catalyst poisoning. Reviewing previous work from our laboratory and, for better comparison, focussing on carbon-supported Pt catalysts, the important role of using fuel cell relevant reaction and mass transport conditions will be outlined. The latter conditions include continuous reaction, elevated temperatures, realistic supported catalyst materials and controlled mass transport. The data show the importance of combining electrochemical techniques such as rotating disc electrode (RDE), wall-jet and flow cell measurements, and on-line differential electrochemical mass spectrometry (DEMS) under controlled mass transport conditions.

  6. Effects of anodizing parameters and heat treatment on nanotopographical features, bioactivity, and cell culture response of additively manufactured porous titanium.

    Science.gov (United States)

    Amin Yavari, S; Chai, Y C; Böttger, A J; Wauthle, R; Schrooten, J; Weinans, H; Zadpoor, A A

    2015-06-01

    Anodizing could be used for bio-functionalization of the surfaces of titanium alloys. In this study, we use anodizing for creating nanotubes on the surface of porous titanium alloy bone substitutes manufactured using selective laser melting. Different sets of anodizing parameters (voltage: 10 or 20V anodizing time: 30min to 3h) are used for anodizing porous titanium structures that were later heat treated at 500°C. The nanotopographical features are examined using electron microscopy while the bioactivity of anodized surfaces is measured using immersion tests in the simulated body fluid (SBF). Moreover, the effects of anodizing and heat treatment on the performance of one representative anodized porous titanium structures are evaluated using in vitro cell culture assays using human periosteum-derived cells (hPDCs). It has been shown that while anodizing with different anodizing parameters results in very different nanotopographical features, i.e. nanotubes in the range of 20 to 55nm, anodized surfaces have limited apatite-forming ability regardless of the applied anodizing parameters. The results of in vitro cell culture show that both anodizing, and thus generation of regular nanotopographical feature, and heat treatment improve the cell culture response of porous titanium. In particular, cell proliferation measured using metabolic activity and DNA content was improved for anodized and heat treated as well as for anodized but not heat-treated specimens. Heat treatment additionally improved the cell attachment of porous titanium surfaces and upregulated expression of osteogenic markers. Anodized but not heat-treated specimens showed some limited signs of upregulated expression of osteogenic markers. In conclusion, while varying the anodizing parameters creates different nanotube structure, it does not improve apatite-forming ability of porous titanium. However, both anodizing and heat treatment at 500°C improve the cell culture response of porous titanium.

  7. Modeling and simulation of the anode in direct ethanol fuels cells

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Ruy Jr.; dos Anjos, Daniela Marques [Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, Av. Trabalhador Saocarlense, 400, C. P. 780, 13560-970 Sao Carlos, SP (Brazil); Laboratoire de Catalyse en Chimie Organique, Universite de Poitiers, 40, Av. du Recteur Pineau, 86022 Poitiers (France); Tremiliosi-Filho, Germano; Gonzalez, Ernesto Rafael [Instituto de Quimica de Sao Carlos, Universidade de Sao Paulo, Av. Trabalhador Saocarlense, 400, C. P. 780, 13560-970 Sao Carlos, SP (Brazil); Coutanceau, Christophe; Sibert, Eric; Leger, Jean-Michel; Kokoh, Kouakou Boniface [Laboratoire de Catalyse en Chimie Organique, Universite de Poitiers, 40, Av. du Recteur Pineau, 86022 Poitiers (France)

    2008-05-15

    Mathematical modeling has been extensively applied to the study and development of fuel cells. In this work, the objective is to characterize a mechanistic model for the anode of a direct ethanol fuel cell and perform appropriate simulations. The software Comsol Multiphysics {sup registered} (and the Chemical Engineering Module) was used in this work. The software Comsol Multiphysics {sup registered} is an interactive environment for modeling scientific and engineering applications using partial differential equations (PDEs). Based on the finite element method, it provides speed and accuracy for several applications. The mechanistic model developed here can supply details of the physical system, such as the concentration profiles of the components within the anode and the coverage of the adsorbed species on the electrode surface. Also, the anode overpotential-current relationship can be obtained. To validate the anode model presented in this paper, experimental data obtained with a single fuel cell operating with an ethanol solution at the anode were used. (author)

  8. Ohmic resistance affects microbial community and electrochemical kinetics in a multi-anode microbial electrochemical cell

    Science.gov (United States)

    Multi-anode microbial electrochemical cells (MXCs) are considered as one of the most promising configurations for scale-up of MXCs, but fundamental understanding of anode kinetics governing current density is limited in the MXCs. In this study we first assessed microbial communi...

  9. Full Ceramic Fuel Cells Based on Strontium Titanate Anodes, An Approach Towards More Robust SOFCs

    DEFF Research Database (Denmark)

    Holtappels, Peter; Irvine, J.T.S.; Iwanschitz, B.;

    2013-01-01

    The persistent problems with Ni-YSZ cermet based SOFCs, with respect to redox stability and tolerance towards sulfur has stimulated the development of a full ceramic cell based on strontium titanate(ST)- based anodes and anode support materials, within the EU FCH JU project SCOTAS-SOFC. Three...

  10. Nickel/Yttria-stabilised zirconia cermet anodes for solid oxide fuel cells

    NARCIS (Netherlands)

    Primdahl, Søren

    1999-01-01

    This thesis deals with the porous Ni/yttria-stabilized zirconia (YSZ) cermet anode on a YSZ electrolyte for solid oxide fuel cells (SOFC). Such anodes are predominantly operated in moist hydrogen at 700°C to 1000°C, and the most important technological parameters are the polarization resistance and

  11. Ni modified ceramic anodes for direct-methane solid oxide fuel cells

    Science.gov (United States)

    Xiao, Guoliang; Chen, Fanglin

    2016-01-19

    In accordance with certain embodiments of the present disclosure, a method for fabricating a solid oxide fuel cell is described. The method includes synthesizing a composition having a perovskite present therein. The method further includes applying the composition on an electrolyte support to form an anode and applying Ni to the composition on the anode.

  12. Convergent development of anodic bacterial communities in microbial fuel cells.

    KAUST Repository

    Yates, Matthew D

    2012-05-10

    Microbial fuel cells (MFCs) are often inoculated from a single wastewater source. The extent that the inoculum affects community development or power production is unknown. The stable anodic microbial communities in MFCs were examined using three inocula: a wastewater treatment plant sample known to produce consistent power densities, a second wastewater treatment plant sample, and an anaerobic bog sediment. The bog-inoculated MFCs initially produced higher power densities than the wastewater-inoculated MFCs, but after 20 cycles all MFCs on average converged to similar voltages (470±20 mV) and maximum power densities (590±170 mW m(-2)). The power output from replicate bog-inoculated MFCs was not significantly different, but one wastewater-inoculated MFC (UAJA3 (UAJA, University Area Joint Authority Wastewater Treatment Plant)) produced substantially less power. Denaturing gradient gel electrophoresis profiling showed a stable exoelectrogenic biofilm community in all samples after 11 cycles. After 16 cycles the predominance of Geobacter spp. in anode communities was identified using 16S rRNA gene clone libraries (58±10%), fluorescent in-situ hybridization (FISH) (63±6%) and pyrosequencing (81±4%). While the clone library analysis for the underperforming UAJA3 had a significantly lower percentage of Geobacter spp. sequences (36%), suggesting that a predominance of this microbe was needed for convergent power densities, the lower percentage of this species was not verified by FISH or pyrosequencing analyses. These results show that the predominance of Geobacter spp. in acetate-fed systems was consistent with good MFC performance and independent of the inoculum source.

  13. Nanostructured polypyrrole/carbon composite as Pt catalyst support for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Hongbin; Li, Lei; Yang, Jun; Zhang, Yongming [School of Chemistry and Chemical Technology, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2008-10-01

    A novel catalyst support was synthesized by in situ chemical oxidative polymerization of pyrrole on Vulcan XC-72 carbon in naphthalene sulfonic acid (NSA) solution containing ammonium persulfate as oxidant at room temperature. Pt nanoparticles with 3-4 nm size were deposited on the prepared polypyrrole-carbon composites by chemical reduction method. Scanning electron microscopy and transmission electron microscopy measurements showed that Pt particles were homogeneously dispersed in polypyrrole-carbon composites. The Pt nanoparticles-dispersed catalyst composites were used as anodes of fuel cells for hydrogen and methanol oxidation. Cyclic voltammetry measurements of hydrogen and methanol oxidation showed that Pt nanoparticles deposited on polypyrrole-carbon with NSA as dopant exhibit better catalytic activity than those on plain carbon. This result might be due to the higher electrochemically available surface areas, electronic conductivity and easier charge-transfer at polymer/carbon particle interfaces allowing a high dispersion and utilization of deposited Pt nanoparticles. (author)

  14. Nanostructured polypyrrole/carbon composite as Pt catalyst support for fuel cell applications

    Science.gov (United States)

    Zhao, Hongbin; Li, Lei; Yang, Jun; Zhang, Yongming

    A novel catalyst support was synthesized by in situ chemical oxidative polymerization of pyrrole on Vulcan XC-72 carbon in naphthalene sulfonic acid (NSA) solution containing ammonium persulfate as oxidant at room temperature. Pt nanoparticles with 3-4 nm size were deposited on the prepared polypyrrole-carbon composites by chemical reduction method. Scanning electron microscopy and transmission electron microscopy measurements showed that Pt particles were homogeneously dispersed in polypyrrole-carbon composites. The Pt nanoparticles-dispersed catalyst composites were used as anodes of fuel cells for hydrogen and methanol oxidation. Cyclic voltammetry measurements of hydrogen and methanol oxidation showed that Pt nanoparticles deposited on polypyrrole-carbon with NSA as dopant exhibit better catalytic activity than those on plain carbon. This result might be due to the higher electrochemically available surface areas, electronic conductivity and easier charge-transfer at polymer/carbon particle interfaces allowing a high dispersion and utilization of deposited Pt nanoparticles.

  15. New catalysts for miniaturized methanol fuel cells

    DEFF Research Database (Denmark)

    Pedersen, Christoffer Mølleskov

    The methanol fuel cell is an interesting energy technology, capable of converting the chemical energy of methanol directly into electricity. The technology is specifically attractive for small mobile applications such as laptops, smartphones, tablets etc. since it offers almost instantaneously...... recharging by simply replacing the methanol liquid. The technology is currently being developed for hearing instruments in order to ease the handling of the device for users complaining about difficulties replacing the very small batteries in the hearing instrument. The technology has already been...... and methanol poisoning of the oxygen reduction are studied. Consequently, promising new candidates for replacing the standard catalyst are identified. One of these, Pt5Gd, exhibits improved oxygen reduction reaction activity even in the presence of methanol, thus making Pt5Gd an interesting candidate...

  16. Nickel catalysts for internal reforming in molten carbonate fuel cells

    NARCIS (Netherlands)

    Berger, R.J.; Doesburg, E.B.M.; Ommen, van J.G.; Ross, J.R.H.

    1996-01-01

    Natural gas may be used instead of hydrogen as fuel for the molten carbonate fuel cell (MCFC) by steam reforming the natural gas inside the MCFC, using a nickel catalyst (internal reforming). The severe conditions inside the MCFC, however, require that the catalyst has a very high stability. In orde

  17. Effects of anodizing parameters and heat treatment on nanotopographical features, bioactivity, and cell culture response of additively manufactured porous titanium

    Energy Technology Data Exchange (ETDEWEB)

    Amin Yavari, S., E-mail: s.aminyavari@tudelft.nl [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); Chai, Y.C. [Prometheus, Division of Skeletal Tissue Engineering, Bus 813, O& N1, Herestraat 49, KU Leuven, 3000 Leuven (Belgium); Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, Bus 813, O& N1, Herestraat 49, KU Leuven, 3000 Leuven (Belgium); Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia); Böttger, A.J. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); Wauthle, R. [KU Leuven, Department of Mechanical Engineering, Section Production Engineering, Machine Design and Automation (PMA), Celestijnenlaan 300B, 3001 Leuven (Belgium); 3D Systems — LayerWise NV, Grauwmeer 14, 3001 Leuven (Belgium); Schrooten, J. [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 — PB2450, B-3001 Heverlee (Belgium); Weinans, H. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); Department of Orthopedics and Dept. Rheumatology, UMC Utrecht, Heidelberglaan100, 3584CX Utrecht (Netherlands); Zadpoor, A.A. [Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands)

    2015-06-01

    Anodizing could be used for bio-functionalization of the surfaces of titanium alloys. In this study, we use anodizing for creating nanotubes on the surface of porous titanium alloy bone substitutes manufactured using selective laser melting. Different sets of anodizing parameters (voltage: 10 or 20 V anodizing time: 30 min to 3 h) are used for anodizing porous titanium structures that were later heat treated at 500 °C. The nanotopographical features are examined using electron microscopy while the bioactivity of anodized surfaces is measured using immersion tests in the simulated body fluid (SBF). Moreover, the effects of anodizing and heat treatment on the performance of one representative anodized porous titanium structures are evaluated using in vitro cell culture assays using human periosteum-derived cells (hPDCs). It has been shown that while anodizing with different anodizing parameters results in very different nanotopographical features, i.e. nanotubes in the range of 20 to 55 nm, anodized surfaces have limited apatite-forming ability regardless of the applied anodizing parameters. The results of in vitro cell culture show that both anodizing, and thus generation of regular nanotopographical feature, and heat treatment improve the cell culture response of porous titanium. In particular, cell proliferation measured using metabolic activity and DNA content was improved for anodized and heat treated as well as for anodized but not heat-treated specimens. Heat treatment additionally improved the cell attachment of porous titanium surfaces and upregulated expression of osteogenic markers. Anodized but not heat-treated specimens showed some limited signs of upregulated expression of osteogenic markers. In conclusion, while varying the anodizing parameters creates different nanotube structure, it does not improve apatite-forming ability of porous titanium. However, both anodizing and heat treatment at 500 °C improve the cell culture response of porous titanium

  18. Pt-Ni and Pt-Co Catalyst Synthesis Route for Fuel Cell Applications

    Science.gov (United States)

    Firdosy, Samad A.; Ravi, Vilupanur A.; Valdez, Thomas I.; Kisor, Adam; Narayan, Sri R.

    2013-01-01

    Oxygen reduction reactions (ORRs) at the cathode are the rate-limiting step in fuel cell performance. The ORR is 100 times slower than the corresponding hydrogen oxidation at the anode. Speeding up the reaction at the cathode will improve fuel cell efficiency. The cathode material is generally Pt powder painted onto a substrate (e.g., graphite paper). Recent efforts in the fuel cell area have focused on replacing Pt with Pt-X alloys (where X = Co, Ni, Zr, etc.) in order to (a) reduce cost, and (b) increase ORR rates. One of these strategies is to increase ORR rates by reducing the powder size, which would result in an increase in the surface area, thereby facilitating faster reaction rates. In this work, a process has been developed that creates Pt-Ni or Pt-Co alloys that are finely divided (on the nano scale) and provide equivalent performance at lower Pt loadings. Lower Pt loadings will translate to lower cost. Precursor salts of the metals are dissolved in water and mixed. Next, the salt mixtures are dried on a hot plate. Finally, the dried salt mixture is heattreated in a furnace under flowing reducing gas. The catalyst powder is then used to fabricate a membrane electrode assembly (MEA) for electrochemical performance testing. The Pt- Co catalyst-based MEA showed comparable performance to an MEA fabri cated using a standard Pt black fuel cell catalyst. The main objective of this program has been to increase the overall efficiencies of fuel cell systems to support power for manned lunar bases. This work may also have an impact on terrestrial programs, possibly to support the effort to develop a carbon-free energy source. This catalyst can be used to fabricate high-efficiency fuel cell units that can be used in space as regenerative fuel cell systems, and terrestrially as primary fuel cells. Terrestrially, this technology will become increasingly important when transition to a hydrogen economy occurs.

  19. Performance study of direct borohydride fuel cells employing polyvinyl alcohol hydrogel membrane and nickel-based anode

    Energy Technology Data Exchange (ETDEWEB)

    Ma, J.; Choudhury, N.A.; Sahai, Y.; Buchheit, R.G. [Department of Materials Science and Engineering, Ohio State University, Columbus, OH 43210 (United States)

    2011-10-15

    A direct borohydride fuel cell (DBFC) employing a polyvinyl alcohol (PVA) hydrogel membrane and a nickel-based composite anode is reported. Carbon-supported platinum and sputtered gold have been employed as cathode catalysts. Oxygen, air and acidified hydrogen peroxide have been used as oxidants in the DBFC. Performance of the PVA hydrogel membrane-based DBFC was tested at different temperatures and compared with similar DBFCs employing Nafion registered membrane electrolytes under identical conditions. The borohydride-oxygen fuel cell employing PVA hydrogel membrane yielded a maximum peak power density of 242 mW cm{sup -2} at 60 C. The peak power densities of the PVA hydrogel membrane-based DBFCs were comparable or a little higher than those using Nafion registered 212 membranes at 60 C. The fuel efficiency of borohydride-oxygen fuel cell based on PVA hydrogel membrane and Ni-based composite anode was found to be between 32 and 41%. The cell was operated for more than 100 h and its performance stability was recorded. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Altering Anode Thickness To Improve Power Production in Microbial Fuel Cells with Different Electrode Distances

    KAUST Repository

    Ahn, Yongtae

    2013-01-17

    A better understanding of how anode and separator physical properties affect power production is needed to improve energy and power production by microbial fuel cells (MFCs). Oxygen crossover from the cathode can limit power production by bacteria on the anode when using closely spaced electrodes [separator electrode assembly (SEA)]. Thick graphite fiber brush anodes, as opposed to thin carbon cloth, and separators have previously been examined as methods to reduce the impact of oxygen crossover on power generation. We examined here whether the thickness of the anode could be an important factor in reducing the effect of oxygen crossover on power production, because bacteria deep in the electrode could better maintain anaerobic conditions. Carbon felt anodes with three different thicknesses were examined to see the effects of thicker anodes in two configurations: widely spaced electrodes and SEA. Power increased with anode thickness, with maximum power densities (604 mW/m 2, 0.32 cm; 764 mW/m2, 0.64 cm; and 1048 mW/m2, 1.27 cm), when widely spaced electrodes (4 cm) were used, where oxygen crossover does not affect power generation. Performance improved slightly using thicker anodes in the SEA configuration, but power was lower (maximum of 689 mW/m2) than with widely spaced electrodes, despite a reduction in ohmic resistance to 10 Ω (SEA) from 51-62 Ω (widely spaced electrodes). These results show that thicker anodes can work better than thinner anodes but only when the anodes are not adversely affected by proximity to the cathode. This suggests that reducing oxygen crossover and improving SEA MFC performance will require better separators. © 2012 American Chemical Society.

  1. Nanoporous anodic aluminum oxide with a long-range order and tunable cell sizes by phosphoric acid anodization on pre-patterned substrates.

    Science.gov (United States)

    Surawathanawises, Krissada; Cheng, Xuanhong

    2014-01-20

    Nanoporous anodic aluminum oxide (AAO) has been explored for various applications due to its regular cell arrangement and relatively easy fabrication processes. However, conventional two-step anodization based on self-organization only allows the fabrication of a few discrete cell sizes and formation of small domains of hexagonally packed pores. Recent efforts to pre-pattern aluminum followed with anodization significantly improve the regularity and available pore geometries in AAO, while systematic study of the anodization condition, especially the impact of acid composition on pore formation guided by nanoindentation is still lacking. In this work, we pre-patterned aluminium thin films using ordered monolayers of silica beads and formed porous AAO in a single-step anodization in phosphoric acid. Controllable cell sizes ranging from 280 nm to 760 nm were obtained, matching the diameters of the silica nanobead molds used. This range of cell size is significantly greater than what has been reported for AAO formed in phosphoric acid in the literature. In addition, the relationships between the acid concentration, cell size, pore size, anodization voltage and film growth rate were studied quantitatively. The results are consistent with the theory of oxide formation through an electrochemical reaction. Not only does this study provide useful operational conditions of nanoindentation induced anodization in phosphoric acid, it also generates significant information for fundamental understanding of AAO formation.

  2. Nanoporous anodic aluminum oxide with a long-range order and tunable cell sizes by phosphoric acid anodization on pre-patterned substrates

    Science.gov (United States)

    Surawathanawises, Krissada; Cheng, Xuanhong

    2014-01-01

    Nanoporous anodic aluminum oxide (AAO) has been explored for various applications due to its regular cell arrangement and relatively easy fabrication processes. However, conventional two-step anodization based on self-organization only allows the fabrication of a few discrete cell sizes and formation of small domains of hexagonally packed pores. Recent efforts to pre-pattern aluminum followed with anodization significantly improve the regularity and available pore geometries in AAO, while systematic study of the anodization condition, especially the impact of acid composition on pore formation guided by nanoindentation is still lacking. In this work, we pre-patterned aluminium thin films using ordered monolayers of silica beads and formed porous AAO in a single-step anodization in phosphoric acid. Controllable cell sizes ranging from 280 nm to 760 nm were obtained, matching the diameters of the silica nanobead molds used. This range of cell size is significantly greater than what has been reported for AAO formed in phosphoric acid in the literature. In addition, the relationships between the acid concentration, cell size, pore size, anodization voltage and film growth rate were studied quantitatively. The results are consistent with the theory of oxide formation through an electrochemical reaction. Not only does this study provide useful operational conditions of nanoindentation induced anodization in phosphoric acid, it also generates significant information for fundamental understanding of AAO formation. PMID:24535886

  3. Collaboration between primitive cell membranes and soluble catalysts.

    Science.gov (United States)

    Adamala, Katarzyna P; Engelhart, Aaron E; Szostak, Jack W

    2016-03-21

    One widely held model of early life suggests primitive cells consisted of simple RNA-based catalysts within lipid compartments. One possible selective advantage conferred by an encapsulated catalyst is stabilization of the compartment, resulting from catalyst-promoted synthesis of key membrane components. Here we show model protocell vesicles containing an encapsulated enzyme that promotes the synthesis of simple fatty acid derivatives become stabilized to Mg(2+), which is required for ribozyme activity and RNA synthesis. Thus, protocells capable of such catalytic transformations would have enjoyed a selective advantage over other protocells in high Mg(2+) environments. The synthetic transformation requires both the catalyst and vesicles that solubilize the water-insoluble precursor lipid. We suggest that similar modified lipids could have played a key role in early life, and that primitive lipid membranes and encapsulated catalysts, such as ribozymes, may have acted in conjunction with each other, enabling otherwise-impossible chemical transformations within primordial cells.

  4. Solid oxide fuel cell power plant with an anode recycle loop turbocharger

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Kazuo; Skiba, Tommy; Patel, Kirtikumar H.

    2016-09-27

    An anode exhaust recycle turbocharger (100) has a turbocharger turbine (102) secured in fluid communication with a compressed oxidant stream within an oxidant inlet line (218) downstream from a compressed oxidant supply (104), and the anode exhaust recycle turbocharger (100) also includes a turbocharger compressor (106) mechanically linked to the turbocharger turbine (102) and secured in fluid communication with a flow of anode exhaust passing through an anode exhaust recycle loop (238) of the solid oxide fuel cell power plant (200). All or a portion of compressed oxidant within an oxidant inlet line (218) drives the turbocharger turbine (102) to thereby compress the anode exhaust stream in the recycle loop (238). A high-temperature, automotive-type turbocharger (100) replaces a recycle loop blower-compressor (52).

  5. Development of Nanosized/Nanostructured Silicon as Advanced Anodes for Lithium-Ion Cells

    Science.gov (United States)

    Wu, James J.

    2015-01-01

    NASA is developing high energy and high capacity Li-ion cell and battery designs for future exploration missions under the NASA Advanced Space Power System (ASPS) Program. The specific energy goal is 265 Wh/kg at 10 C. center dot Part of effort for NASA advanced Li-ion cells ? Anode: Silicon (Si) as an advanced anode. ? Electrolyte: advanced electrolyte with flame-retardant additives for enhanced performance and safety (NASA JPL).

  6. Performance of Electrolyte Supported Solid Oxide Fuel Cells with STN Anodes

    DEFF Research Database (Denmark)

    Veltzé, Sune; Reddy Sudireddy, Bhaskar; Jørgensen, Peter Stanley

    2013-01-01

    In order to replace the state of the art Ni-cermet as SOFC anode, electrolyte supported cells comprising CGO/Ni infiltrated Nbdoped SrTiO3 anodes, and LSM/YSZ cathodes have been developed and tested as single 5 x 5 cm2 cells. The initial performance reached 0.4 W/cm2 at 850 C. Further tests under...

  7. A novel Ni/ceria-based anode for metal-supported solid oxide fuel cells

    Science.gov (United States)

    Rojek-Wöckner, Veronika A.; Opitz, Alexander K.; Brandner, Marco; Mathé, Jörg; Bram, Martin

    2016-10-01

    For optimization of ageing behavior, electrochemical performance, and sulfur tolerance of metal-supported solid oxide fuel cells a new anode concept is introduced, which is based on a Ni/GDC cermet replacing the established Ni/YSZ anodes. In the present work optimized processing parameters compatible with MSC substrates are specified by doing sintering studies on pressed bulk specimen and on real porous anode structures. The electrochemical performance of the Ni/GDC anodes was characterized by means of symmetrical electrolyte supported model-type cells. In this study, three main objectives are pursued. Firstly, the effective technical realization of the Ni/GDC concept is demonstrated. Secondly, the electrochemical behavior of Ni/GDC porous anodes is characterized by impedance spectroscopy and compared with the current standard Ni/YSZ anode. Further, a qualitative comparison of the sulfur poisoning behavior of both anode types is presented. Thirdly, preliminary results of a successful implementation of the Ni/GDC cermet into a metal-supported single cell are presented.

  8. Durability Prediction of Solid Oxide Fuel Cell Anode Material under Thermo-Mechanical and Fuel Gas Contaminants Effects

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Gulfam; Guo, Hua; Kang , Bruce S.; Marina, Olga A.

    2011-01-10

    Solid Oxide Fuel Cells (SOFCs) operate under harsh environments, which cause deterioration of anode material properties and service life. In addition to electrochemical performance, structural integrity of the SOFC anode is essential for successful long-term operation. The SOFC anode is subjected to stresses at high temperature, thermal/redox cycles, and fuel gas contaminants effects during long-term operation. These mechanisms can alter the anode microstructure and affect its electrochemical and structural properties. In this research, anode material degradation mechanisms are briefly reviewed and an anode material durability model is developed and implemented in finite element analysis. The model takes into account thermo-mechanical and fuel gas contaminants degradation mechanisms for prediction of long-term structural integrity of the SOFC anode. The proposed model is validated experimentally using a NexTech ProbostatTM SOFC button cell test apparatus integrated with a Sagnac optical setup for simultaneously measuring electrochemical performance and in-situ anode surface deformation.

  9. Reactions of the Carbon Anode in Alternative Battery and Fuel Cell Configurations

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, J F; Krueger, R

    2003-10-01

    A model is formulated by combining carbonate dissociation with pre-existing anode mechanisms involving heterogeneous reaction kinetics. The proposed model accounts for both the observed preponderance of CO{sub 2} evolution and dependence of rate on carbon anode microstructure. Implications of the model for the design of carbon batteries and fuel cells are discussed, and the laboratory cells used in earlier research are described. High coulombic efficiencies for the net reaction C + O{sub 2} = CO{sub 2} require severely limiting the thickness of paste anodes in powder-fed fuel cells while the unreacting surfaces of solid prismatic anodes must be isolated from the CO{sub 2} product atmosphere to prevent Boudouard corrosion, according to C + CO{sub 2} = 2CO.

  10. Electrochemical cell design for the impedance studies of chlorine evolution at DSA anodes

    Science.gov (United States)

    Silva, J. F.; Dias, A. C.; Araújo, P.; Brett, C. M. A.; Mendes, A.

    2016-08-01

    A new electrochemical cell design suitable for the electrochemical impedance spectroscopy (EIS) studies of chlorine evolution on Dimensionally Stable Anodes (DSA®) has been developed. Despite being considered a powerful tool, EIS has rarely been used to study the kinetics of chlorine evolution at DSA anodes. Cell designs in the open literature are unsuitable for the EIS analysis at high DSA anode current densities for chlorine evolution because they allow gas accumulation at the electrode surface. Using the new cell, the impedance spectra of the DSA anode during chlorine evolution at high sodium chloride concentration (5 mol dm-3 NaCl) and high current densities (up to 140 mA cm-2) were recorded. Additionally, polarization curves and voltammograms were obtained showing little or no noise. EIS and polarization curves evidence the role of the adsorption step in the chlorine evolution reaction, compatible with the Volmer-Heyrovsky and Volmer-Tafel mechanisms.

  11. Electrochemical cell design for the impedance studies of chlorine evolution at DSA(®) anodes.

    Science.gov (United States)

    Silva, J F; Dias, A C; Araújo, P; Brett, C M A; Mendes, A

    2016-08-01

    A new electrochemical cell design suitable for the electrochemical impedance spectroscopy (EIS) studies of chlorine evolution on Dimensionally Stable Anodes (DSA(®)) has been developed. Despite being considered a powerful tool, EIS has rarely been used to study the kinetics of chlorine evolution at DSA anodes. Cell designs in the open literature are unsuitable for the EIS analysis at high DSA anode current densities for chlorine evolution because they allow gas accumulation at the electrode surface. Using the new cell, the impedance spectra of the DSA anode during chlorine evolution at high sodium chloride concentration (5 mol dm(-3) NaCl) and high current densities (up to 140 mA cm(-2)) were recorded. Additionally, polarization curves and voltammograms were obtained showing little or no noise. EIS and polarization curves evidence the role of the adsorption step in the chlorine evolution reaction, compatible with the Volmer-Heyrovsky and Volmer-Tafel mechanisms.

  12. Effect of PEG additive on anode microstructure and cell performance of anode-supported MT-SOFCs fabricated by phase inversion method

    Science.gov (United States)

    Ren, Cong; Liu, Tong; Maturavongsadit, Panita; Luckanagul, Jittima Amie; Chen, Fanglin

    2015-04-01

    Anode-supported micro-tubular solid oxide fuel cells (MT-SOFCs) have been fabricated by phase inversion method. For the anode support preparation, N-methyl-2-pyrrolidone (NMP), polyethersulfone (PESf) and poly ethylene glycol (PEG) were applied as solvent, polymer binder and additive, respectively. The effect of molecular weight and amount of PEG additive on the thermodynamics of the casting solutions was characterized by measuring the coagulation value. Viscosity of the casting slurries was also measured and the influence of PEG additive on viscosity was studied and discussed. The presence of PEG in the casting slurry can significantly influence the final anode support microstructure. Based on the microstructure result and the measured gas permeation value, two anode supports were selected for cell fabrication. For cell with the anode support fabricated using slurry with PEG additive, a maximum cell power density of 704 mW cm-2 is obtained at 750 °C with humidified hydrogen as fuel and ambient air as oxidant; cell fabricated without any PEG additive shows the peak cell power density of 331 mW cm-2. The relationship between anode microstructure and cell performance was discussed.

  13. Fracture strength of micro-tubular solid oxide fuel cell anode in redox cycling experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pusz, Jakub; Smirnova, Alevtina; Mohammadi, Alidad; Sammes, Nigel M. [Department of Chemical, Materials, and Biomolecular Engineering, University of Connecticut, 44 Weaver Road, Storrs, CT 06269 (United States)

    2007-01-01

    The maximum fracture strength of Ni/8YSZ anodes exposed to several redox cycles is compared. The anodes were fabricated using fine and coarse particle size powders. Fine-structured powders show a 77% increase in mechanical strength after exposure to three redox cycles. The coarse-structured material did not produce similar results and redox cycling resulted in gradual decrease in the mechanical stability of the supports. The impact of redox cycling on the microstructure was evaluated using SEM. Fine-structured anodes tend to agglomerate leading to decreased porosity. Coarse anodes did not show any significant changes in microstructure while exposed to redox cycling. The electrochemical performance evaluated under load conditions, and after the first redox cycle, indicates a 40% improvement for the cell fabricated using a fine-structured anode powder. The increase in performance is believed to be due to better adhesion between the anode material and the Ni current collector. The cell fabricated using a coarse-structured anode powder did not recover after the redox cycle. (author)

  14. An investigation of anode and cathode materials in photomicrobial fuel cells.

    Science.gov (United States)

    Schneider, Kenneth; Thorne, Rebecca J; Cameron, Petra J

    2016-02-28

    Photomicrobial fuel cells (p-MFCs) are devices that use photosynthetic organisms (such as cyanobacteria or algae) to turn light energy into electrical energy. In a p-MFC, the anode accepts electrons from microorganisms that are either growing directly on the anode surface (biofilm) or are free floating in solution (planktonic). The nature of both the anode and cathode material is critical for device efficiency. An ideal anode is biocompatible and facilitates direct electron transfer from the microorganisms, with no need for an electron mediator. For a p-MFC, there is the additional requirement that the anode should not prevent light from perfusing through the photosynthetic cells. The cathode should facilitate the rapid reaction of protons and oxygen to form water so as not to rate limit the device. In this paper, we first review the range of anode and cathode materials currently used in p-MFCs. We then present our own data comparing cathode materials in a p-MFC and our first results using porous ceramic anodes in a mediator-free p-MFC.

  15. Comparative metagenomics of anode-associated microbiomes developed in rice paddy-field microbial fuel cells.

    Directory of Open Access Journals (Sweden)

    Atsushi Kouzuma

    Full Text Available In sediment-type microbial fuel cells (sMFCs operating in rice paddy fields, rice-root exudates are converted to electricity by anode-associated rhizosphere microbes. Previous studies have shown that members of the family Geobacteraceae are enriched on the anodes of rhizosphere sMFCs. To deepen our understanding of rhizosphere microbes involved in electricity generation in sMFCs, here, we conducted comparative analyses of anode-associated microbiomes in three MFC systems: a rice paddy-field sMFC, and acetate- and glucose-fed MFCs in which pieces of graphite felt that had functioned as anodes in rice paddy-field sMFC were used as rhizosphere microbe-bearing anodes. After electric outputs became stable, microbiomes associated with the anodes of these MFC systems were analyzed by pyrotag sequencing of 16S rRNA gene amplicons and Illumina shotgun metagenomics. Pyrotag sequencing showed that Geobacteraceae bacteria were associated with the anodes of all three systems, but the dominant Geobacter species in each MFC were different. Specifically, species closely related to G. metallireducens comprised 90% of the anode Geobacteraceae in the acetate-fed MFC, but were only relatively minor components of the rhizosphere sMFC and glucose-fed MFC, whereas species closely related to G. psychrophilus were abundantly detected. This trend was confirmed by the phylogenetic assignments of predicted genes in shotgun metagenome sequences of the anode microbiomes. Our findings suggest that G. psychrophilus and its related species preferentially grow on the anodes of rhizosphere sMFCs and generate electricity through syntrophic interactions with organisms that excrete electron donors.

  16. Comparative Metagenomics of Anode-Associated Microbiomes Developed in Rice Paddy-Field Microbial Fuel Cells

    Science.gov (United States)

    Kouzuma, Atsushi; Kasai, Takuya; Nakagawa, Gen; Yamamuro, Ayaka; Abe, Takashi; Watanabe, Kazuya

    2013-01-01

    In sediment-type microbial fuel cells (sMFCs) operating in rice paddy fields, rice-root exudates are converted to electricity by anode-associated rhizosphere microbes. Previous studies have shown that members of the family Geobacteraceae are enriched on the anodes of rhizosphere sMFCs. To deepen our understanding of rhizosphere microbes involved in electricity generation in sMFCs, here, we conducted comparative analyses of anode-associated microbiomes in three MFC systems: a rice paddy-field sMFC, and acetate- and glucose-fed MFCs in which pieces of graphite felt that had functioned as anodes in rice paddy-field sMFC were used as rhizosphere microbe-bearing anodes. After electric outputs became stable, microbiomes associated with the anodes of these MFC systems were analyzed by pyrotag sequencing of 16S rRNA gene amplicons and Illumina shotgun metagenomics. Pyrotag sequencing showed that Geobacteraceae bacteria were associated with the anodes of all three systems, but the dominant Geobacter species in each MFC were different. Specifically, species closely related to G. metallireducens comprised 90% of the anode Geobacteraceae in the acetate-fed MFC, but were only relatively minor components of the rhizosphere sMFC and glucose-fed MFC, whereas species closely related to G. psychrophilus were abundantly detected. This trend was confirmed by the phylogenetic assignments of predicted genes in shotgun metagenome sequences of the anode microbiomes. Our findings suggest that G. psychrophilus and its related species preferentially grow on the anodes of rhizosphere sMFCs and generate electricity through syntrophic interactions with organisms that excrete electron donors. PMID:24223712

  17. Excellent endurance of MWCNT anode in micro-sized Microbial Fuel Cell

    KAUST Repository

    Mink, Justine E.

    2012-08-01

    Microbial Fuel Cells (MFCs) are a sustainable technology for energy production using bioelectrochemical reactions from bacteria. Microfabrication of micro-sized MFCs allows rapid and precise production of devices that can be integrated into Lab-on-a-chip or other ultra low power devices. We show a multi-walled carbon nanotubes (MWCNTs) integrated anode in a biocompatible and high power and current producing device. Long term testing of the MWCNT anode also reveals a high endurance and durable anode material that can be adapted as a long-lasting power source. © 2012 IEEE.

  18. Anode modification with formic acid: A simple and effective method to improve the power generation of microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Weifeng; Cheng, Shaoan, E-mail: shaoancheng@zju.edu.cn; Guo, Jian

    2014-11-30

    Highlights: • Carbon cloth anode is modified with formic acid by a simple and reliable approach. • The modification significantly enhances the power output of microbial fuel cells. • The modified anode surface favors the bacterial attachment and growth on anode. • The electron transfer rate of anode is promoted. - Abstract: The physicochemical properties of anode material directly affect the anodic biofilm formation and electron transfer, thus are critical for the power generation of microbial fuel cells (MFCs). In this work, carbon cloth anode was modified with formic acid to enhance the power production of MFCs. Formic acid modification of anode increased the maximum power density of a single-chamber air-cathode MFC by 38.1% (from 611.5 ± 6 mW/m{sup 2} to 877.9 ± 5 mW/m{sup 2}). The modification generated a cleaner electrode surface and a reduced content of oxygen and nitrogen groups on the anode. The surface changes facilitated bacterial growth on the anode and resulted in an optimized microbial community. Thus, the electron transfer rate on the modified anodes was enhanced remarkably, contributing to a higher power output of MFCs. Anode modification with formic acid could be an effective and simple method for improving the power generation of MFCs. The modification method holds a huge potential for large scale applications and is valuable for the scale-up and commercialization of microbial fuel cells.

  19. Studies on PEM Fuel Cell Noble Metal Catalyst Dissolution

    DEFF Research Database (Denmark)

    Ma, Shuang; Skou, Eivind Morten

    . Membrane Electrode Assembly (MEA) is commonly considered as the heart of cell system [2]. Degradation of the noble metal catalysts in MEAs especially Three-Phase-Boundary (TPB) is a key factor directly influencing fuel cell durability. In this work, electrochemical degradation of Pt and Pt/Ru alloy were......Incredibly vast advance has been achieved in fuel cell technology regarding to catalyst efficiency, improvement of electrolyte conductivity and optimization of cell system. With breathtakingly accelerating progress, Proton Exchange Membrane Fuel Cells (PEMFC) is the most promising and most widely...

  20. Modeling of PEM fuel cell Pt/C catalyst degradation

    Science.gov (United States)

    Bi, Wu; Fuller, Thomas F.

    Pt/C catalyst degradation remains as one of the primary limitations for practical applications of proton exchange membrane (PEM) fuel cells. Pt catalyst degradation mechanisms with the typically observed Pt nanoparticle growth behaviors have not been completely understood and predicted. In this work, a physics-based Pt/C catalyst degradation model is proposed with a simplified bi-modal particle size distribution. The following catalyst degradation processes were considered: (1) dissolution of Pt and subsequent electrochemical deposition on Pt nanoparticles in cathode; (2) diffusion of Pt ions in the membrane electrode assembly (MEA); and (3) Pt ion chemical reduction in membrane by hydrogen permeating through the membrane from the negative electrode. Catalyst coarsening with Pt nanoparticle growth was clearly demonstrated by Pt mass exchange between small and large particles through Pt dissolution and Pt ion deposition. However, the model is not adequate to predict well the catalyst degradation rates including Pt nanoparticle growth, catalyst surface area loss and cathode Pt mass loss. Additional catalyst degradation processes such as new Pt cluster formation on carbon support and neighboring Pt clusters coarsening was proposed for further simulative investigation.

  1. Assessment of the performance of Ni-yttria-stabilized zirconia anodes in anode-supported Solid Oxide Fuel Cells operating on H 2-CO syngas fuels

    Science.gov (United States)

    Ye, Xiao-Feng; Wang, S. R.; Zhou, J.; Zeng, F. R.; Nie, H. W.; Wen, T. L.

    Anode-supported Solid Oxide Fuel Cells (SOFCs) with Ni-yttria-stabilized zirconia (YSZ) anode have been fabricated and studied using H 2-CO syngas fuels. Syngas fuels with different compositions of H 2-CO are supplied and the cell performance is measured at 750 °C. A high CO content has caused carbon deposition and crack formation in the Ni-YSZ anode after long-term operation, even though it is diluted with H 2O and N 2. However, it was found that a Cu-CeO 2 coating on Ni-YSZ can greatly improve the anode stability in syngas by facilitating the water gas shift reaction. The optimized single cell has run in sygas with a composition of 65%H 2-32%CO-3%H 2O for 1050 h without obvious degradation of its performance.

  2. Organometallic catalysts for primary phosphoric acid fuel cells

    Science.gov (United States)

    Walsh, Fraser

    1987-01-01

    A continuing effort by the U.S. Department of Energy to improve the competitiveness of the phosphoric acid fuel cell by improving cell performance and/or reducing cell cost is discussed. Cathode improvement, both in performance and cost, available through the use of a class of organometallic cathode catalysts, the tetraazaannulenes (TAAs), was investigated. A new mixed catalyst was identified which provides improved cathode performance without the need for the use of a noble metal. This mixed catalyst was tested under load for 1000 hr. in full cell at 160 to 200 C in phosphoric acid H3PO4, and was shown to provide stable performance. The mixed catalyst contains an organometallic to catalyze electroreduction of oxygen to hydrogen peroxide and a metal to catalyze further electroreduction of the hydrogen peroxide to water. Cathodes containing an exemplar mixed catalyst (e.g., Co bisphenyl TAA/Mn) operate at approximately 650 mV vs DHE in 160 C, 85% H3PO4 with oxygen as reactant. In developing this mixed catalyst, a broad spectrum of TAAs were prepared, tested in half-cell and in a rotating ring-disk electrode system. TAAs found to facilitate the production of hydrogen peroxide in electroreduction were shown to be preferred TAAs for use in the mixed catalyst. Manganese (Mn) was identified as a preferred metal because it is capable of catalyzing hydrogen peroxide electroreduction, is lower in cost and is of less strategic importance than platinum, the cathode catalyst normally used in the fuel cell.

  3. Single chamber microbial fuel cell with spiral anode for dairy wastewater treatment.

    Science.gov (United States)

    Mardanpour, Mohammad Mahdi; Nasr Esfahany, Mohsen; Behzad, Tayebeh; Sedaqatvand, Ramin

    2012-01-01

    This study reports on the fabrication of a novel annular single chamber microbial fuel cell (ASCMFC) with spiral anode. The stainless steel mesh anode with graphite coating was used as anode. Dairy wastewater, containing complex organic matter, was used as substrate. ASCMFC had been operated for 450 h and results indicated a high open circuit voltage (about 810 mV) compared with previously published results. The maximum power density of 20.2 W/m(3) obtained in this study is significantly greater than the power densities reported in previous studies. Besides, a maximum coulombic efficiency of 26.87% with 91% COD removal was achieved. Good bacterial adhesion on the spiral anode is clearly shown in SEM micrographs. High power density and a successful performance in wastewater treatment in ASCMFC suggest it as a promising alternative to conventional MFCs for power generation and wastewater treatment. ASCMFC performance as a power generator was characterized based on polarization behavior and cell potentials.

  4. Comparative study on ammonia oxidation over Ni-based cermet anodes for solid oxide fuel cells

    Science.gov (United States)

    Molouk, Ahmed Fathi Salem; Yang, Jun; Okanishi, Takeou; Muroyama, Hiroki; Matsui, Toshiaki; Eguchi, Koichi

    2016-02-01

    In the current work, we investigate the performance of solid oxide fuel cells (SOFCs) with Ni‒yttria-stabilized zirconia (Ni-YSZ) and Ni‒gadolinia-dope ceria (Ni-GDC) cermet anodes fueled with H2 or NH3 in terms of the catalytic activity of ammonia decomposition. The cermet of Ni-GDC shows higher catalytic activity for ammonia decomposition than Ni-YSZ. In response to this, the performance of direct NH3-fueled SOFC improved by using Ni-GDC anode. Moreover, we observe further enhancement in the cell performance and the catalytic activity for ammonia decomposition with applying Ni-GDC anode synthesised by the glycine-nitrate combustion process. These results reveal that the high performance of Ni-GDC anode for the direct NH3-fueled SOFC results from its mixed ionic-electronic conductivity as well as high catalytic activity for ammonia decomposition.

  5. CeO2 nanocubes-graphene oxide as durable and highly active catalyst support for proton exchange membrane fuel cell.

    Science.gov (United States)

    Lei, M; Wang, Z B; Li, J S; Tang, H L; Liu, W J; Wang, Y G

    2014-12-10

    Rapid degradation of cell performance still remains a significant challenge for proton exchange membrane fuel cell (PEMFC). In this work, we develop novel CeO2 nanocubes-graphene oxide nanocomposites as durable and highly active catalyst support for proton exchange membrane fuel cell. We show that the use of CeO2 as the radical scavenger in the catalysts remarkably improves the durability of the catalyst. The catalytic activity retention of Pt-graphene oxide-8 wt.% CeO2 nanocomposites reaches as high as 69% after 5000 CV-cycles at a high voltage range of 0.8-1.23 V, in contrast to 19% for that of the Pt-graphene oxide composites. The excellent durability of the Pt-CeO2 nanocubes-graphene oxide catalyst is attributed to the free radical scavenging activity of CeO2, which significantly slows down the chemical degradation of Nafion binder in catalytic layers, and then alleviates the decay of Pt catalysts, resulting in the excellent cycle life of Pt-CeO2-graphene oxide nanocomposite catalysts. Additionally, the performance of single cell assembled with Nafion 211 membrane and Pt-CeO2-graphene oxide catalysts with different CeO2 contents in the cathode as well as the Pt-C catalysts in the anode are also recorded and discussed in this study.

  6. Anion exchange polymer coated graphite granule electrodes for improving the performance of anodes in unbuffered microbial fuel cells

    Science.gov (United States)

    Wang, Xu; Li, Dengfeng; Mao, Xuhui; Yu, Eileen Hao; Scott, Keith; Zhang, Enren; Wang, Dihua

    2016-10-01

    In this paper, graphite granule composite electrodes are prepared for microbial fuel cells (MFCs) by coating commercial graphite granules with the mixture of quaternary DABCO polysulfone or Nafion ion exchange polymer and carbon black. The results of electrochemical impedance spectroscopy (EIS) suggest that the addition of carbon black could significantly improve the electrical conductivity of graphite granule anodes. When phosphate buffer solution (PBS) is replaced by NaCl solution, the current densities of the pristine anode, 0.08 g Nafion coated anode and 0.16 g QDPSU coated anode decrease by 52.6%, 20.6% and 10.3% at -0.2 V (vs. Ag/AgCl), respectively. The solution resistance of ion exchange polymer coated anodes is more stable in comparison with that of pristine anode. After 40 operational days, the performance drop of 0.16 g QDPSU coated anode when switching the solution from PBS to NaCl is still smaller than that of pristine anode. However, 0.08 g Nafion coated anode shows the similar performance in NaCl solution to the pristine anode after long term operation. This study reveals that QDPSU anion exchange polymer is more suitable for the anode modification. The QDPSU coated anode promises a great potential for three-dimensional anode based MFCs to treat domestic wastewater.

  7. The effect of porosity gradient in a Nickel/Yttria Stabilized Zirconia anode for an anode-supported planar solid oxide fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    An, Chung Min; Sammes, Nigel [Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, CO (United States); Song, Jung-Hoon [RIST, Pohang (Korea); Kang, Inyong [Department of Chemical Engineering, Colorado School of Mines, Golden, CO (United States)

    2010-02-01

    In this paper, a graded Ni/YSZ cermet anode, an 8 mol.%YSZ electrolyte, and a lanthanum strontium manganite (LSM) cathode were used to fabricate a solid oxide fuel cell (SOFC) unit. An anode-supported cell was prepared using a tape casting technique followed by hot pressing lamination and a single step co-firing process, allowing for the creation of a thin layer of dense electrolyte on a porous anode support. To reduce activation and concentration overpotential in the unit cell, a porosity gradient was developed in the anode using different percentages of pore former to a number of different tape-slurries, followed by tape casting and lamination of the tapes. The unit cell demonstrated that a concentration distribution of porosity in the anode increases the power in the unit cell from 76 mW cm{sup -2} to 101 mW cm{sup -2} at 600 C in humidified hydrogen. Although the results have not been optimized for good performance, the effect of the porosity gradient is quite apparent and has potential in developing superior anode systems. (author)

  8. SiC nanocrystals as Pt catalyst supports for fuel cell applications

    DEFF Research Database (Denmark)

    Dhiman, Rajnish; Morgen, Per; Skou, E.M.

    2013-01-01

    A robust catalyst support is pivotal to Proton Exchange Membrane Fuel Cells (PEMFCs) to overcome challenges such as catalyst support corrosion, low catalyst utilization and overall capital cost. SiC is a promising candidate material which could be applied as a catalyst support in PEMFCs. Si...... based catalysts (BASF & HISPEC). These promising results signal a new era of SiC based catalysts for fuel cell applications. © The Royal Society of Chemistry 2013....

  9. Effects of the Use of Pore Formers on Performance of an Anode supported Solid Oxide Fuel Cell

    Energy Technology Data Exchange (ETDEWEB)

    Haslam, J J; Pham, A; Chung, B W; DiCarlo, J F; Glass, R S

    2003-12-04

    The effects of amount of pore former used to produce porosity in the anode of an anode supported planar solid oxide fuel cell were examined. The pore forming material utilized was rice starch. The reduction rate of the anode material was measured by Thermogravimetric Analysis (TGA) to qualitatively characterize the gas transport within the porous anode materials. Fuel cells with varying amounts of porosity produced by using rice starch as a pore former were tested. The performance of the fuel cell was the greatest with an optimum amount of pore former used to create porosity in the anode. This optimum is believed to be related to a trade off between increasing gas diffusion to the active three-phase boundary region of the anode and the loss of performance due to the replacement of active three-phase boundary regions of the anode with porosity.

  10. Graphene–sponges as high-performance low-cost anodes for microbial fuel cells

    KAUST Repository

    Xie, Xing

    2012-01-01

    A high-performance microbial fuel cell (MFC) anode was constructed from inexpensive materials. Key components were a graphene-sponge (G-S) composite and a stainless-steel (SS) current collector. Anode fabrication is simple, scalable, and environmentally friendly, with low energy inputs. The SS current collector improved electrode conductivity and decreased voltage drop and power loss. The resulting G-S-SS composite electrode appears promising for large-scale applications. © 2012 The Royal Society of Chemistry.

  11. A disordered carbon as a novel anode material in lithium-ion cells

    Energy Technology Data Exchange (ETDEWEB)

    Bonino, F.; Brutti, S.; Reale, P.; Scrosati, B. [Dipartimento di Chimica, Universita ' ' La Sapienza' ' , I-00185 Rome (Italy); Gherghel, L.; Wu, J.; Muellen, K. [Max Planck Institute for Polymer Research, Ackermannweg 10, D-55124 Mainz (Germany)

    2005-03-22

    The electrochemical behavior of a disordered carbon used as the anode in a lithium battery has been tested. The characteristics of this carbon, especially its specific capacity and cycle life, are such that it is a potentially unique, high-performance anode material for new types of lithium-ion batteries. The Figure shows the specific capacity versus cycle number of the disordered carbon electrode in a lithium-ion cell. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  12. Design criteria for stable Pt/C fuel cell catalysts

    Directory of Open Access Journals (Sweden)

    Josef C. Meier

    2014-01-01

    Full Text Available Platinum and Pt alloy nanoparticles supported on carbon are the state of the art electrocatalysts in proton exchange membrane fuel cells. To develop a better understanding on how material design can influence the degradation processes on the nanoscale, three specific Pt/C catalysts with different structural characteristics were investigated in depth: a conventional Pt/Vulcan catalyst with a particle size of 3–4 nm and two Pt@HGS catalysts with different particle size, 1–2 nm and 3–4 nm. Specifically, Pt@HGS corresponds to platinum nanoparticles incorporated and confined within the pore structure of the nanostructured carbon support, i.e., hollow graphitic spheres (HGS. All three materials are characterized by the same platinum loading, so that the differences in their performance can be correlated to the structural characteristics of each material. The comparison of the activity and stability behavior of the three catalysts, as obtained from thin film rotating disk electrode measurements and identical location electron microscopy, is also extended to commercial materials and used as a basis for a discussion of general fuel cell catalyst design principles. Namely, the effects of particle size, inter-particle distance, certain support characteristics and thermal treatment on the catalyst performance and in particular the catalyst stability are evaluated. Based on our results, a set of design criteria for more stable and active Pt/C and Pt-alloy/C materials is suggested.

  13. Design criteria for stable Pt/C fuel cell catalysts.

    Science.gov (United States)

    Meier, Josef C; Galeano, Carolina; Katsounaros, Ioannis; Witte, Jonathon; Bongard, Hans J; Topalov, Angel A; Baldizzone, Claudio; Mezzavilla, Stefano; Schüth, Ferdi; Mayrhofer, Karl J J

    2014-01-01

    Platinum and Pt alloy nanoparticles supported on carbon are the state of the art electrocatalysts in proton exchange membrane fuel cells. To develop a better understanding on how material design can influence the degradation processes on the nanoscale, three specific Pt/C catalysts with different structural characteristics were investigated in depth: a conventional Pt/Vulcan catalyst with a particle size of 3-4 nm and two Pt@HGS catalysts with different particle size, 1-2 nm and 3-4 nm. Specifically, Pt@HGS corresponds to platinum nanoparticles incorporated and confined within the pore structure of the nanostructured carbon support, i.e., hollow graphitic spheres (HGS). All three materials are characterized by the same platinum loading, so that the differences in their performance can be correlated to the structural characteristics of each material. The comparison of the activity and stability behavior of the three catalysts, as obtained from thin film rotating disk electrode measurements and identical location electron microscopy, is also extended to commercial materials and used as a basis for a discussion of general fuel cell catalyst design principles. Namely, the effects of particle size, inter-particle distance, certain support characteristics and thermal treatment on the catalyst performance and in particular the catalyst stability are evaluated. Based on our results, a set of design criteria for more stable and active Pt/C and Pt-alloy/C materials is suggested.

  14. Anodic Fenton process assisted by a microbial fuel cell for enhanced degradation of organic pollutants.

    Science.gov (United States)

    Liu, Xian-Wei; Sun, Xue-Fei; Li, Dao-Bo; Li, Wen-Wei; Huang, Yu-Xi; Sheng, Guo-Ping; Yu, Han-Qing

    2012-09-15

    The electro-Fenton process is efficient for degradation of organic pollutants, but it suffers from the high operating costs due to the need of power investment. Here, a new anodic Fenton system is developed for energy-saving and efficient treatment of organic pollutants by incorporating microbial fuel cell (MFC) into an anodic Fenton process. This system is composed of an anodic Fenton reactor and a two-chamber air-cathode MFC. The power generated from a two-chamber MFC is used to drive the anodic Fenton process for Acid Orange 7 (AO7) degradation through accelerating in situ generation of Fe(2+) from sacrificial iron. The kinetic results show that the MFC-assisted anodic Fenton process system had a significantly higher pseudo-first-order rate constant than those for the chemical Fenton methods. The electrochemical analysis reveals that AO7 did not hinder the corrosion of iron. The anodic Fenton process was influenced by the MFC performance. It was also found that increasing dissolved oxygen in the cathode improved the MFC power density, which in turn enhanced the AO7 degradation rate. These clearly demonstrate that the anodic Fenton process could be integrated with MFC to develop a self-sustained system for cost-effective and energy-saving electrochemical wastewater treatment.

  15. Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells.

    Science.gov (United States)

    Xie, Xing; Hu, Liangbing; Pasta, Mauro; Wells, George F; Kong, Desheng; Criddle, Craig S; Cui, Yi

    2011-01-12

    Microbial fuel cells (MFCs) harness the metabolism of microorganisms, converting chemical energy into electrical energy. Anode performance is an important factor limiting the power density of MFCs for practical application. Improving the anode design is thus important for enhancing the MFC performance, but only a little development has been reported. Here, we describe a biocompatible, highly conductive, two-scale porous anode fabricated from a carbon nanotube-textile (CNT-textile) composite for high-performance MFCs. The macroscale porous structure of the intertwined CNT-textile fibers creates an open 3D space for efficient substrate transport and internal colonization by a diverse microflora, resulting in a 10-fold-larger anolyte-biofilm-anode interfacial area than the projective surface area of the CNT-textile. The conformally coated microscale porous CNT layer displays strong interaction with the microbial biofilm, facilitating electron transfer from exoelectrogens to the CNT-textile anode. An MFC equipped with a CNT-textile anode has a 10-fold-lower charge-transfer resistance and achieves considerably better performance than one equipped with a traditional carbon cloth anode: the maximum current density is 157% higher, the maximum power density is 68% higher, and the energy recovery is 141% greater.

  16. [Electricity generation by the microbial fuel cells using carbon nanotube as the anode].

    Science.gov (United States)

    Liang, Peng; Fan, Ming-zhi; Cao, Xiao-xin; Huang, Xia; Peng, Yin-ming; Wang, Shuo; Gong, Qian-ming; Liang, Ji

    2008-08-01

    The characteristic of anode plays an important role in the performance of the microbial fuel cell (MFC). Thus, carbon nanotube (CN), flexible graphite (FG) and activated carbon (AC) were used as anode material in this study, and the performances of three MFCs (CN-MFC, FG-MFC and AC-MFC) were studied. The results show that CN is a kind of suitable material to be used as anode in the MFC. The maximal power densities of CN-MFC, FG-MFC and AC-MFC are 402,354 and 274 mW/m2, respectively. The CN-MFC shows a higher power density and coulombic efficiency compared with FG-MFC and AC-MFC. The CN-anode can reduce the internal resistance obviously. The internal resistances of CN-MFC, AC-MFC and FG-MFC are 263, 301 and 381 omega, respectively. The protein contents on the CN-anode, AC-anode and FG-anode are 149, 132 and 92 microg/cm2 after stable operation, and there is a positive relation between the protein content and internal resistance. The conductivity of the three types of MFCs from high to low was FG-MFC, CN-MFC and AC-MFC, which was accordant with the ohmic resistance. The stable times of CN-MFC, FG-MFC and AC-MFC, which were needed to measure the internal resistances, were 1800, 1200 and 300 s respectively.

  17. Three-Dimensional Carbon Nanotube−Textile Anode for High-Performance Microbial Fuel Cells

    KAUST Repository

    Xie, Xing

    2011-01-12

    Microbial fuel cells (MFCs) harness the metabolism of microorganisms, converting chemical energy into electrical energy. Anode performance is an important factor limiting the power density of MFCs for practical application. Improving the anode design is thus important for enhancing the MFC performance, but only a little development has been reported. Here, we describe a biocompatible, highly conductive, two-scale porous anode fabricated from a carbon nanotube-textile (CNT-textile) composite for high-performance MFCs. The macroscale porous structure of the intertwined CNT-textile fibers creates an open 3D space for efficient substrate transport and internal colonization by a diverse microflora, resulting in a 10-fold-larger anolyte-biofilm-anode interfacial area than the projective surface area of the CNT-textile. The conformally coated microscale porous CNT layer displays strong interaction with the microbial biofilm, facilitating electron transfer from exoelectrogens to the CNT-textile anode. An MFC equipped with a CNT-textile anode has a 10-fold-lower charge-transfer resistance and achieves considerably better performance than one equipped with a traditional carbon cloth anode: the maximum current density is 157% higher, the maximum power density is 68% higher, and the energy recovery is 141% greater. © 2011 American Chemical Society.

  18. Studies on PEM fuel cell noble metal catalyst dissolution

    DEFF Research Database (Denmark)

    Andersen, S. M.; Grahl-Madsen, L.; Skou, E. M.

    2011-01-01

    A combination of electrochemical, spectroscopic and gravimetric methods was carried out on Proton Exchange Membrane (PEM) fuel cell electrodes with the focus on platinum and ruthenium catalysts dissolution, and the membrane degradation. In cyclic voltammetry (CV) experiments, the noble metals were...... catalyst. Other factors like medium acidity, chloride content and oxygen partial pressure all turned out to influence the noble metal dissolution. The degradation of the polyfluorinated sulfonic acid membrane electrolyte was also found to be an important source of increased acidity in the Three......-Phase-Boundary (TPB), and consequently the dissolution of the noble metal catalysts. (C) 2010 Elsevier B.V. All rights reserved....

  19. Hierarchically oriented macroporous anode-supported solid oxide fuel cell with thin ceria electrolyte film.

    Science.gov (United States)

    Chen, Yu; Zhang, Yanxiang; Baker, Jeffrey; Majumdar, Prasun; Yang, Zhibin; Han, Minfang; Chen, Fanglin

    2014-04-09

    Application of anode-supported solid oxide fuel cell (SOFC) with ceria based electrolyte has often been limited by high cost of electrolyte film fabrication and high electrode polarization. In this study, dense Gd0.1Ce0.9O2 (GDC) thin film electrolytes have been fabricated on hierarchically oriented macroporous NiO-GDC anodes by a combination of freeze-drying tape-casting of the NiO-GDC anode, drop-coating GDC slurry on NiO-GDC anode, and co-firing the electrolyte/anode bilayers. Using 3D X-ray microscopy and subsequent analysis, it has been determined that the NiO-GDC anode substrates have a porosity of around 42% and channel size from around 10 μm at the electrolyte side to around 20 μm at the other side of the NiO-GDC (away from the electrolyte), indicating a hierarchically oriented macroporous NiO-GDC microstructure. Such NiO-GDC microstructure shows a tortuosity factor of ∼1.3 along the thickness direction, expecting to facilitate gas diffusion in the anode during fuel cell operation. SOFCs with such Ni-GDC anode, GDC film (30 μm) electrolyte, and La0.6Sr0.4Co0.2Fe0.8O3-GDC (LSCF-GDC) cathode show significantly enhanced cell power output of 1.021 W cm(-2) at 600 °C using H2 as fuel and ambient air as oxidant. Electrochemical Impedance Spectroscopy (EIS) analysis indicates a decrease in both activation and concentration polarizations. This study has demonstrated that freeze-drying tape-casting is a very promising approach to fabricate hierarchically oriented porous substrate for SOFC and other applications.

  20. Direct methanol feed fuel cell with reduced catalyst loading

    Science.gov (United States)

    Kindler, Andrew (Inventor)

    1999-01-01

    Improvements to direct feed methanol fuel cells include new protocols for component formation. Catalyst-water repellent material is applied in formation of electrodes and sintered before application of ionomer. A membrane used in formation of an electrode assembly is specially pre-treated to improve bonding between catalyst and membrane. The improved electrode and the pre-treated membrane are assembled into a membrane electrode assembly.

  1. Detailed Observation of Cell Junction in Anodic Porous Alumina with Square Cells

    Science.gov (United States)

    Asoh, Hidetaka; Ono, Sachiko; Hirose, Tomohito; Takatori, Ikuo; Masuda, Hideki

    2004-09-01

    The local structure of a cell junction in anodic porous alumina with square cells was studied by transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM). The initiation of a square lattice pattern, which is different from a normal hexagonal cell arrangement, induced the characteristic growth of a porous structure. The obtained oxide film was formed by a close-packed array of square cells following the initiation. The shape of the pores changed from circular to square corresponding to the transformation of the cell structure at the steady state. The incorporation of unoxidized aluminum into the oxide film and the generation of voids were observed at the fourfold point of the cell junction. The height of the protrusions of the aluminum substrate at the cell junction was considerably larger than that of protrusions formed in naturally occurring anodic porous alumina with hexagonal cells. These specific features were thought to be caused by the inhomogeneous distribution of current at the square pore base.

  2. Manganese dioxide as a new cathode catalyst in microbial fuel cells

    Science.gov (United States)

    Li, Xiang; Hu, Boxun; Suib, Steven; Lei, Yu; Li, Baikun

    This study focused on manganese oxides with a cryptomelane-type octahedral molecular sieve (OMS-2) structure to replace platinum as a cathode catalyst in microbial fuel cells (MFCs). Undoped (ud-OSM-2) and three catalysts doped with cobalt (Co-OMS-2), copper (Cu-OMS-2), and cerium (Ce-OMS-2) to enhance their catalytic performances were investigated. The novel OMS-2 cathodes were examined in granular activated carbon MFC (GACMFC) with sodium acetate as the anode reagent and oxygen in air as the cathode reagent. The results showed that after 400 h of operation, the Co-OMS-2 and Cu-OMS-2 exhibited good catalytic performance in an oxygen reduction reaction (ORR). The voltage of the Co-OMS-2 GACMFC was 217 mV, and the power density was 180 mW m -2. The voltage of the Cu-OMS-2 GACMFC was 214 mV and the power density was 165 mW m -2. The internal resistance (R in) of the OMS-2 GACMFCs (18 ± 1 Ω) was similar to that of the platinum GACMFCs (17 Ω). Furthermore, the degradation rates of organic substrates in the OMS-2 GACMFCs were twice those in the platinum GACMFCs, which enhance their wastewater treatment efficiencies. This study indicated that using OMS-2 manganese oxides to replace platinum as a cathodic catalyst enhances power generation, increases contaminant removal, and substantially reduces the cost of MFCs.

  3. Evaluation of multi-brush anode systems in microbial fuel cells

    KAUST Repository

    Lanas, Vanessa

    2013-11-01

    The packing density of anodes in microbial fuel cells (MFCs) was examined here using four different graphite fiber brush anode configurations. The impact of anodes on performance was studied in terms of carbon fiber length (brush diameter), the number of brushes connected in parallel, and the wire current collector gage. MFCs with different numbers of brushes (one, three or six) set perpendicular to the cathode all produced similar power densities (1200±40mW/m2) and coulombic efficiencies (60%±5%). Reducing the number of brushes by either disconnecting or removing them reduced power, demonstrating the importance of anode projected area covering the cathode, and therefore the need to match electrode projected areas to maintain high performance. Multi-brush reactors had the same COD removal as single-brush systems (90%). The use of smaller Ti wire gages did not affect power generation, which will enable the use of less metal, reducing material costs. © 2013 Elsevier Ltd.

  4. Improving the flexibility of microbial desalination cells through spatially decoupling anode and cathode.

    Science.gov (United States)

    Ping, Qingyun; He, Zhen

    2013-09-01

    To improve the flexibility of microbial desalination cell (MDC) construction and operation, a new configuration with decoupled anode and cathode was developed and examined in this study. A higher salt concentration resulted in higher current generation, as well as a higher salt removal rate. The effect of the distance between the anode and the cathode on the MDC performance was not obvious, likely due to a sufficient conductivity in the salt solution. Because the cathode was identified as a limiting factor, adding one more cathode unit increased the current generation from 72.3 to 116.0 A/m(3), while installing additional anode units did not obviously alter the MDC current production. Changing the position of the anode/cathode units exhibited a weak influence on the MDC performance. Parallel connection of electrical circuits generally produced more current than the individual connections, and a strong competition was observed between multiple units sharing the same opposite unit.

  5. Nitrogen doped carbon nanoparticles enhanced extracellular electron transfer for high-performance microbial fuel cells anode.

    Science.gov (United States)

    Yu, Yang-Yang; Guo, Chun Xian; Yong, Yang-Chun; Li, Chang Ming; Song, Hao

    2015-12-01

    Nitrogen doped carbon nanoparticles (NDCN) were applied to modify the carbon cloth anodes of microbial fuel cells (MFCs) inoculated with Shewanella oneidensis MR-1, one of the most well-studied exoelectrogens. Experimental results demonstrated that the use of NDCN increased anodic absorption of flavins (i.e., the soluble electron mediator secreted by S. oneidensis MR-1), facilitating shuttle-mediated extracellular electron transfer. In addition, we also found that NDCN enabled enhanced contact-based direct electron transfer via outer-membrane c-type cytochromes. Taken together, the performance of MFCs with the NDCN-modified anode was enormously enhanced, delivering a maximum power density 3.5 times' higher than that of the MFCs without the modification of carbon cloth anodes.

  6. A catalyst layer optimisation approach using electrochemical impedance spectroscopy for PEM fuel cells operated with pyrolysed transition metal-N-C catalysts

    Science.gov (United States)

    Malko, Daniel; Lopes, Thiago; Ticianelli, Edson A.; Kucernak, Anthony

    2016-08-01

    The effect of the ionomer to carbon (I/C) ratio on the performance of single cell polymer electrolyte fuel cells is investigated for three different types of non-precious metal cathodic catalysts. Polarisation curves as well as impedance spectra are recorded at different potentials in the presence of argon or oxygen at the cathode and hydrogen at the anode. It is found that a optimised ionomer content is a key factor for improving the performance of the catalyst. Non-optimal ionomer loading can be assessed by two different factors from the impedance spectra. Hence this observation could be used as a diagnostic element to determine the ideal ionomer content and distribution in newly developed catalyst-electrodes. An electrode morphology based on the presence of inhomogeneous resistance distribution within the porous structure is suggested to explain the observed phenomena. The back-pressure and relative humidity effect on this feature is also investigated and supports the above hypothesis. We give a simple flowchart to aid optimisation of electrodes with the minimum number of trials.

  7. Adsorption behavior of low concentration carbon monoxide on polymer electrolyte fuel cell anodes for automotive applications

    Science.gov (United States)

    Matsuda, Yoshiyuki; Shimizu, Takahiro; Mitsushima, Shigenori

    2016-06-01

    The adsorption behavior of CO on the anode around the concentration of 0.2 ppm allowed by ISO 14687-2 is investigated in polymer electrolyte fuel cells (PEFCs). CO and CO2 concentrations in the anode exhaust are measured during the operation of a JARI standard single cell at 60 °C cell temperature and 1000 mA cm-2 current density. CO coverage is estimated from the gas analysis and CO stripping voltammetry. The cell voltage decrease as a result of 0.2 ppm CO is 29 mV and the CO coverage is 0.6 at the steady state with 0.11 mg cm-2 of anode platinum loading. The CO coverage as a function of CO concentration approximately follows a Temkin-type isotherm. Oxygen permeated to the anode through a membrane is also measured during fuel cell operation. The exhaust velocity of oxygen from the anode was shown to be much higher than the CO supply velocity. Permeated oxygen should play an important role in CO oxidation under low CO concentration conditions.

  8. Application of multiple graphene layers as catalyst support material in fuel cells

    OpenAIRE

    Saner, Burcu; YÜRÜM, YUDA; Yurum, Yuda

    2010-01-01

    The fuel cell electrode layer is a significant part of a fuel cell. The electrode layer is composed of the catalyst and porous electrode or gas diffusion layer. Catalyst has critical importance due to the influence on the cost and durability of fuel cells. The production of novel catalyst support materials could open up new ways in order to ensure the catalytic activity by lowering the amount of catalyst loaded [1]. At this point, utilization of multiple graphene layers as catalyst support...

  9. High-performance anode-supported solid oxide fuel cell with impregnated electrodes

    Science.gov (United States)

    Osinkin, D. A.; Bogdanovich, N. M.; Beresnev, S. M.; Zhuravlev, V. D.

    2015-08-01

    The 61%NiO + 39%Zr0.84Y0.16O1.92 (NiO-YSZ) and 56%NiO + 44%Zr0.83Sc0.16Ce0.01O1.92 (NiO-CeSSZ) composite powders have been prepared using two-steps and one-step combustion synthesis, respectively. The Ni-YSZ anode substrate with a low level of electrical resistance (less than 1 mOhm cm) and porosity of about 53% in the reduced state was fabricated. The functional layer of the anode with the high level of electrochemical activity was made of NiO-CeSSZ. The single anode-supported solid oxide fuel cell with the bi-layer Ni-cermet anode, Zr0.84Sc0.16O1.92 film electrolyte and the Pt + 3% Zr0.84Y0.16O1.92 cathode was fabricated. The power density and the U-I curves of the fuel cell at initial state and after impregnation of the cathode and anode by praseodymium and cerium oxides, respectively, have been measured at different temperatures. The maximum of power density of the initial fuel cell was 0.35 W cm-2 at conditions of wet hydrogen (air) supply to the anode (cathode) at 900 °C. After the electrodes were impregnated, the value of power density increased by seven times and was approximately 2.4 W cm-2 at 0.6 V. It was suggested that after the electrodes impregnation the polarization resistance of the fuel cell was determined by the gas diffusion in the supported anode.

  10. Effect of interlayer on structure and performance of anode-supported SOFC single cells.

    Science.gov (United States)

    Eom, Tae Wook; Yang, Hae Kwang; Kim, Kyung Hwan; Yoon, Hyon Hee; Kim, Jong Sung; Park, Sang Joon

    2008-09-01

    To lower the operating temperatures in solid oxide fuel cell (SOFC) operations, anode-supported SOFC single cells with a single dip-coated interlayer were fabricated and the effect of the interlayer on the electrolyte structure and the electrical performance was investigated. For the preparation of SOFC single cells, yttria-stabilized zirconia (YSZ) electrolyte, NiO-YSZ anode, and 50% YSZ-50% strontium-doped lanthanum manganite (LSM) cathode were used. In order to characterize the cells, scanning electron microscopy (SEM) and atomic force microscopy (AFM) were utilized and the gas (air) permeability measurements were conducted for gas tightness estimation. When the interlayer was inserted onto NiO-YSZ anode, the surface roughness of anode was diminished by about 40% and dense crack-free electrolytes were obtained. The electrical performance was enhanced remarkably and the maximum power density was 0.57 W/cm(2) at 800 degrees C and 0.44 W/cm(2) at 700 degrees C. On the other hand, the effect of interlayer on the gas tightness was negligible. The characterization study revealed that the enhancement in the electrical performance was mainly attributed to the increase of ion transmission area of anode/electrolyte interface and the increase of ionic conductivity of dense crack-free electrolyte layer.

  11. Graphene-supported platinum catalysts for fuel cells

    DEFF Research Database (Denmark)

    Seselj, Nedjeljko; Engelbrekt, Christian; Zhang, Jingdong

    2015-01-01

    Increasing concerns with non-renewable energy sources drive research and development of sustainable energy technology. Fuel cells have become a central part in solving challenges associated with energy conversion. This review summarizes recent development of catalysts used for fuel cells over the...

  12. Parameters for Efficient Fuel Cell Catalyst Structures

    Science.gov (United States)

    2011-04-03

    was under detailed investigation due to its importance as key reaction in hydrogen production via electrolysis . Major aspects of highly efficient...detailed investigation due to its importance as key reaction in hydrogen production via electrolysis . Major aspects for high efficient catalysts are...Also the hydrogen evolution reaction (HER) was under detailed investigation due to its importance as key reaction in hydrogen production via

  13. A mediatorless microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Yongjin; Xiang, Cuili; Yang, Lini [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Sun, Li-Xian [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); School of Chemistry and Environmental Engineering, Changsha University of Science and Technology, Changsha 410076 (China); Xu, Fen [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Cao, Zhong [School of Chemistry and Environmental Engineering, Changsha University of Science and Technology, Changsha 410076 (China)

    2008-09-15

    A microbial fuel cell (MFC) was constructed using polypyrrole (PPy) coated carbon nanotubes (CNTs) composite as an anode material and Escherichia coli as the biocatalyst. The composite PPy-CNTs were synthesized by the in situ chemical polymerization of pyrrole on the CNTs using ammonium persulfate as an oxidant. The electrocatalytic behaviors of the composite modified anode were investigated by means of cyclic voltammetry, electrochemical impedance spectroscopy and discharge experiments. The PPy-CNTs modified anode showed better electrochemical performance than that of plain carbon paper. The amount of the loading of the composite on the anode was also investigated. The power output of the MFC increased along with the increase of the composite loading. In the absence of exogenous electron mediators, the MFC with the composite modified anode contained 5 mg cm{sup -2} PPy-CNTs exhibited a maximum power density 228 mW m{sup -2}, which is much higher than those reported in the literature so far for E. coli using efficient electron mediators. These results show that the PPy-CNTs composite anode is promising for MFC application. (author)

  14. Effect of Graphene-Graphene Oxide Modified Anode on the Performance of Microbial Fuel Cell

    Directory of Open Access Journals (Sweden)

    Na Yang

    2016-09-01

    Full Text Available The inferior hydrophilicity of graphene is an adverse factor to the performance of the graphene modified anodes (G anodes in microbial fuel cells (MFCs. In this paper, different amounts of hydrophilic graphene oxide (GO were doped into the modification layers to elevate the hydrophilicity of the G anodes so as to further improve their performance. Increasing the GO doped ratio from 0.15 mg·mg−1 to 0.2 mg·mg−1 and 0.25 mg·mg−1, the static water contact angle (θc of the G-GO anodes decreased from 74.2 ± 0.52° to 64.6 ± 2.75° and 41.7 ± 3.69°, respectively. The G-GO0.2 anode with GO doped ratio of 0.2 mg·mg−1 exhibited the optimal performance and the maximum power density (Pmax of the corresponding MFC was 1100.18 mW·m−2, 1.51 times higher than that of the MFC with the G anode.

  15. Fuel cell: new electrocatalysts for SOFC (Solid Oxide Fuel Cells) anodes and regulation between cell performance and catalytic activity; Celula a combustivel: novos eletrocatalisadores para anodos de SOFC (Celulas a Combustivel de Oxido Solido) e correlacao entre desempenho da celula e atividade catalitica

    Energy Technology Data Exchange (ETDEWEB)

    Boaventura, Jaime S.; Aguiar, Aurinete B.; Brandao, Soraia T. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil); Frank, Maria Helena Troise; Campos, Michel F. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    Electro-catalysts were prepared using new routes. Chemical Ultrasound Deposition (CUD) method: aqueous solution of nickel nitrate and citric acid was ultrasound vaporized and deposited on heated Ytria-stabilized Zirconia (YSZ). Resin impregnation (IPR) method: nickel oxide and YSZ were mixed, added to phenolic resins, precipitated in acidic water and milled. Wet impregnation method (IMP) was used for comparison: YSZ and an aqueous solution of nickel nitrate and citric acid were mixed, followed by evaporation, drying and calcination. The catalysts were evaluated for methane steam reforming in a quartz reactor. The reactions were conducted for one hour with no significant catalytic activity loss. In reactions with 100 mg of catalyst and a mixture consisting of methane and steam (3:1), IPR catalyst showed activity higher and better stability than those by IMP. On other tests, the reform was conducted with 100 mg of catalyst and methane to steam of 10. The IPR catalyst activity was so high that the reaction approached equilibrium conditions. Anode/electrolyte/cathode units (A/E/C) were prepared with the above catalysts as follows: the anode was a catalyst porous layer; the electrolyte an YSZ dense layer; and the cathode an LSM porous layer; graphite powder formed the material porosity. The two first layers, in powder form, were put in a stainless steel cast, pressed to 4000 bars and sinterized. The cathode layer was subsequently added using tape-casting techniques followed by sintering. A/E/C units showed 40% linear contraction and porosity higher than 20%. For fuel cell tests, A/E/C was mounted in alumina plates with platinum current collectors. Unitary SOF cells were loaded with hydrogen diluted in nitrogen showing opened circuit voltage from circa 700 mV, for the CUD anode, to 350 mV, for the IPR anode. The unitary SOFC was loaded with methane for 15 minutes or longer, with no noticeable voltage loss. At 1300 K the SOFC made with IPR or IMP catalysts showed opened

  16. Influence of terminal electron acceptor availability to the anodic oxidation on the electrogenic activity of microbial fuel cell (MFC).

    Science.gov (United States)

    Srikanth, S; Venkata Mohan, S

    2012-11-01

    The electrogenic activity of microbial fuel cell (MFC) with the function of anode placement from the terminal electron acceptor (TEA) was evaluated. Shorter anode distances from TEA showed higher electrogenesis due to the feasibility of higher electron acceptance as well as their discharge towards TEA. Substrate degradation was also higher at shorter anode placements from TEA due to the optimum substrate availability to the anodic biofilm. Bio-electro kinetics showed significant variation in the catalytic currents and exchange current densities with the function of anode placement indicating its role in electron acceptance and their transfer to the cathode. Anode placement of 3cm showed higher electrogenesis (406.38mW/m(2)) and substrate degradation (63.12%) along with significantly reduced polarization (6.72Ω) and charge transfer resistances compared to other anodic placements. The spacing between electrodes is crucial in accepting electrons as well as their discharge towards TEA which ultimately governs the power generation efficacy.

  17. Flow maldistribution in the anode of a polymer electrolyte membrane electrolysis cell employing interdigitated channels

    DEFF Research Database (Denmark)

    Olesen, Anders Christian; Kær, Søren Knudsen

    2014-01-01

    In this work a macroscopic, steady-state, three-dimensional, computational fluid dynamics model of the anode of a high-pressure polymer electrolyte membrane electrolysis cell (PEMEC) is presented. The developed model is used for studying the effect of employing an interdigitated, planar-circular ......In this work a macroscopic, steady-state, three-dimensional, computational fluid dynamics model of the anode of a high-pressure polymer electrolyte membrane electrolysis cell (PEMEC) is presented. The developed model is used for studying the effect of employing an interdigitated, planar......-circular cell design on the distribution of water in the anode. In the electrolysis of water using PEMEC the anode is fed by demineralized water. Throughout the anode, oxygen is produced and a two-phase flow develops. Interdigitated channels assist in avoiding that gaseous oxygen obstructs the transport...... of liquid water towards the catalytic layer of the electrode. As opposed to the more common serpentine and parallel channels, interdigitated channels force liquid water through the porous gas diffusion layer (GDL) of the electrode. This improves the supply of water, however it increases pressure losses...

  18. Layer-by-layer graphene/TCNQ stacked films as conducting anodes for organic solar cells.

    Science.gov (United States)

    Hsu, Chang-Lung; Lin, Cheng-Te; Huang, Jen-Hsien; Chu, Chih-Wei; Wei, Kung-Hwa; Li, Lain-Jong

    2012-06-26

    Large-area graphene grown by chemical vapor deposition (CVD) is a promising candidate for transparent conducting electrode applications in flexible optoelectronic devices such as light-emitting diodes or organic solar cells. However, the power conversion efficiency (PCE) of the polymer photovoltaic devices using a pristine CVD graphene anode is still not appealing due to its much lower conductivity than that of conventional indium tin oxide. We report a layer-by-layer molecular doping process on graphene for forming sandwiched graphene/tetracyanoquinodimethane (TCNQ)/graphene stacked films for polymer solar cell anodes, where the TCNQ molecules (as p-dopants) were securely embedded between two graphene layers. Poly(3-hexylthiophene)/phenyl-C61-butyric acid methyl ester (P3HT/PCBM) bulk heterojunction polymer solar cells based on these multilayered graphene/TCNQ anodes are fabricated and characterized. The P3HT/PCBM device with an anode structure composed of two TCNQ layers sandwiched by three CVD graphene layers shows optimum PCE (∼2.58%), which makes the proposed anode film quite attractive for next-generation flexible devices demanding high conductivity and transparency.

  19. The influence of hydrogen sulfide on proton exchange membrane fuel cell anodes

    Science.gov (United States)

    Shi, Weiyu; Yi, Baolian; Hou, Ming; Jing, Fenning; Yu, Hongmei; Ming, Pingwen

    The effect of hydrogen sulfide on proton exchange membrane fuel cell (PEMFC) anodes was studied by cyclic voltammetry (CV), potential steps and electrochemical impedance spectroscopy (EIS). The severity of the effect of H 2S varies depending on the H 2S concentration, current density and the cell temperature. The anode humidification does not impact the poisoning rate much when the anode is exposed to H 2S. The adsorption of H 2S on the anode is dissociative and this dissociation can produce adsorbed sulfur. The dissociation potential of H 2S was studied by potential steps, and the values of the dissociation potential are about 0.4 V at 90 °C, 0.5 V at 60 °C and 0.6 V at 30 °C, respectively. The adsorbed sulfur can be oxidized at a higher potential. During CV scans, two oxidation peaks for the adsorbed sulfur at 1.07 and 1.2 V were observed at 90 °C, however a single oxidation peak could be observed at 1.2 V at 60 °C and at 1.27 V at 30 °C. Application of EIS to a H 2S|H 2 half-cell shows that the charge transfer resistance increases when the anode is exposed to H 2S because of H 2S adsorption.

  20. Anodic Bubble Behavior and Voltage Drop in a Laboratory Transparent Aluminum Electrolytic Cell

    Science.gov (United States)

    Zhao, Zhibin; Wang, Zhaowen; Gao, Bingliang; Feng, Yuqing; Shi, Zhongning; Hu, Xianwei

    2016-06-01

    The anodic bubbles generated in aluminum electrolytic cells play a complex role to bath flow, alumina mixing, cell voltage, heat transfer, etc., and eventually affect cell performance. In this paper, the bubble dynamics beneath the anode were observed for the first time from bottom view directly in a similar industrial electrolytic environment, using a laboratory-scale transparent aluminum electrolytic cell. The corresponding cell voltage was measured simultaneously for quantitatively investigating its relevance to bubble dynamics. It was found that the bubbles generated in many spots that increased in number with the increase of current density; the bubbles grew through gas diffusion and various types of coalescences; when bubbles grew to a certain size with their surface reaching to the anode edge, they escaped from the anode bottom suddenly; with the increase of current density, the release frequency increases, and the size of these bubbles decreases. The cell voltage was very consistent with bubble coverage, with a high bubble coverage corresponding to a higher cell voltage. At low current density, the curves of voltage and coverage fluctuated in a regularly periodical pattern, while the curves became more irregular at high current density. The magnitude of voltage fluctuation increased with current density first and reached a maximum value at current density of 0.9 A/cm2, and decreased when the current density was further increased. The extra resistance induced by bubbles was found to increase with the bubble coverage, showing a similar trend with published equations.

  1. Performance of Lithium Ion Cell Anode Graphites Under Various Cycling Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ridgway, Paul; Zheng, Honghe; Liu, Gao; Song, Xiangun; Guerfi, Abdelbast; Charest, Patrick; Zaghib, Karim; Battaglia, Vincent

    2009-06-15

    Graphites MCMB-2810 and OMAC-15 (made by Osaka Gas Inc.), and SNG12 (Hydro Quebec, Inc.) were evaluated (in coin cells with lithium counter electrodes) as anode materials for lithium-ion cells intended for use in hybrid electric vehicles. Though the reversible capacity obtained for SNG was slightly higher than that of OMAC or MCMB, its 1st cycle efficiency was lower. Voltage vs capacity plots of cycling data show that the discharge and charge limits shift to higher capacity values due to continuation of anode side reactions. Varying the cycle charge and discharge limits was found to have no significant effect on fractional capacity shift per cycle.

  2. Phase III Advanced Anodes and Cathodes Utilized in Energy Efficient Aluminum Production Cells

    Energy Technology Data Exchange (ETDEWEB)

    R.A. Christini; R.K. Dawless; S.P. Ray; D.A. Weirauch, Jr.

    2001-11-05

    During Phase I of the present program, Alcoa developed a commercial cell concept that has been estimated to save 30% of the energy required for aluminum smelting. Phase ii involved the construction of a pilot facility and operation of two pilots. Phase iii of the Advanced Anodes and Cathodes Program was aimed at bench experiments to permit the resolution of certain questions to be followed by three pilot cells. All of the milestones related to materials, in particular metal purity, were attained with distinct improvements over work in previous phases of the program. NiO additions to the ceramic phase and Ag additions to the Cu metal phase of the cermet improved corrosion resistance sufficiently that the bench scale pencil anodes met the purity milestones. Some excellent metal purity results have been obtained with anodes of the following composition: Further improvements in anode material composition appear to be dependent on a better understanding of oxide solubilities in molten cryolite. For that reason, work was commissioned with an outside consultant to model the MeO - cryolite systems. That work has led to a better understanding of which oxides can be used to substitute into the NiO-Fe2O3 ceramic phase to stabilize the ferrites and reduce their solubility in molten cryolite. An extensive number of vertical plate bench electrolysis cells were run to try to find conditions where high current efficiencies could be attained. TiB2-G plates were very inconsistent and led to poor wetting and drainage. Pure TiB2 did produce good current efficiencies at small overlaps (shadowing) between the anodes and cathodes. This bench work with vertical plate anodes and cathodes reinforced the importance of good cathode wetting to attain high current efficiencies. Because of those conclusions, new wetting work was commissioned and became a major component of the research during the third year of Phase III. While significant progress was made in several areas, much work needs to be

  3. Corrosion Protection of Al/Au/ZnO Anode for Hybrid Cell Application

    OpenAIRE

    2015-01-01

    Effective protection of power sources from corrosion is critical in the development of abiotic fuel cells, biofuel cells, hybrid cells and biobateries for implantable bioelectronics. Corrosion of these bioelectronic devices result in device inability to generate bioelectricity. In this paper Al/Au/ZnO was considered as a possible anodic substrate for the development of a hybrid cell. The protective abilities of corrosive resistant aluminum hydroxide and zinc phosphite composite films formed o...

  4. Highly durable anode supported solid oxide fuel cell with an infiltrated cathode

    Science.gov (United States)

    Samson, Alfred Junio; Hjalmarsson, Per; Søgaard, Martin; Hjelm, Johan; Bonanos, Nikolaos

    2012-10-01

    An anode supported solid oxide fuel cell with an La0.6Sr0.4Co1.05O3-δ (LSC) infiltrated-Ce0.9Gd0.1O1.95 (CGO) cathode that shows a stable performance has been developed. The cathode was prepared by screen printing a porous CGO backbone on top of a laminated and co-fired anode supported half cell, consisting of a Ni-yttria stabilized zirconia (YSZ) anode support, a Ni-scandia-doped yttria-stabilized zirconia (ScYSZ) anode, a ScYSZ electrolyte, and a CGO barrier layer. LSC was introduced into the CGO backbone by multiple infiltrations of an aqueous nitrate solution followed by firing. The cell was tested at 700 °C under a current density of 0.5 A cm-2 for 1500 h using air as oxidant and humidified hydrogen as fuel. The electrochemical performance of the cell was analyzed by impedance spectroscopy and current-voltage relationships. No measurable degradation in the cell voltage or increase in the resistance from the recorded impedance was observed during long term testing. The power density reached 0.79 W cm-2 at a cell voltage of 0.6 V at 750 °C. Post test analysis of the LSC infiltrated-CGO cathode by scanning electron microscopy revealed no significant micro-structural difference to that of a nominally identical untested counterpart.

  5. Anodic and cathodic microbial communities in single chamber microbial fuel cells.

    Science.gov (United States)

    Daghio, Matteo; Gandolfi, Isabella; Bestetti, Giuseppina; Franzetti, Andrea; Guerrini, Edoardo; Cristiani, Pierangela

    2015-01-25

    Microbial fuel cells (MFCs) are a rapidly growing technology for energy production from wastewater and biomasses. In a MFC, a microbial biofilm oxidizes organic matter and transfers electrons from reduced compounds to an anode as the electron acceptor by extracellular electron transfer (EET). The aim of this work was to characterize the microbial communities operating in a Single Chamber Microbial Fuel Cell (SCMFC) fed with acetate and inoculated with a biogas digestate in order to gain more insight into anodic and cathodic EET. Taxonomic characterization of the communities was carried out by Illumina sequencing of a fragment of the 16S rRNA gene. Microorganisms belonging to Geovibrio genus and purple non-sulfur (PNS) bacteria were found to be dominant in the anodic biofilm. The alkaliphilic genus Nitrincola and anaerobic microorganisms belonging to Porphyromonadaceae family were the most abundant bacteria in the cathodic biofilm.

  6. A Review of RedOx Cycling of Solid Oxide Fuel Cells Anode

    Directory of Open Access Journals (Sweden)

    Jan Van herle

    2012-08-01

    Full Text Available Solid oxide fuel cells are able to convert fuels, including hydrocarbons, to electricity with an unbeatable efficiency even for small systems. One of the main limitations for long-term utilization is the reduction-oxidation cycling (RedOx cycles of the nickel-based anodes. This paper will review the effects and parameters influencing RedOx cycles of the Ni-ceramic anode. Second, solutions for RedOx instability are reviewed in the patent and open scientific literature. The solutions are described from the point of view of the system, stack design, cell design, new materials and microstructure optimization. Finally, a brief synthesis on RedOx cycling of Ni-based anode supports for standard and optimized microstructures is depicted.

  7. Anodized titania: Processing and characterization to improve cell-materials interactions for load bearing implants

    Science.gov (United States)

    Das, Kakoli

    The objective of this study is to investigate in vitro cell-materials interactions using human osteoblast cells on anodized titanium. Titanium is a bioinert material and, therefore, gets encapsulated after implantation into the living body by a fibrous tissue that isolates them from the surrounding tissues. In this work, bioactive nonporous and nanoporous TiO2 layers were grown on commercially pure titanium substrate by anodization process using different electrolyte solutions namely (1) H3PO 4, (2) HF and (3) H2SO4, (4) aqueous solution of citric acid, sodium fluoride and sulfuric acid. The first three electrolytes produced bioactive TiO2 films with a nonporous structure showing three distinctive surface morphologies. Nanoporous morphology was obtained on Ti-surfaces from the fourth electrolyte at 20V for 4h. Cross-sectional view of the nanoporous surface reveals titania nanotubes of length 600 nm. It was found that increasing anodization time initially increased the height of the nanotubes while maintaining the tubular array structure, but beyond 4h, growth of nanotubes decreased with a collapsed array structure. Human osteoblast (HOB) cell attachment and growth behavior were studied using an osteoprecursor cell line (OPC 1) for 3, 7 and 11 days. Colonization of the cells was noticed with distinctive cell-to-cell attachment on HF anodized surfaces. TiO2 layer grown in H2SO4 electrolyte did not show significant cell growth on the surface, and some cell death was also noticed. Good cellular adherence with extracellular matrix extensions in between the cells was noticed for samples anodized with H3PO 4 electrolyte and nanotube surface. Cell proliferation was excellent on anodized nanotube surfaces. An abundant amount of extracellular matrix (ECM) between the neighboring cells was also noticed on nanotube surfaces with filopodia extensions coming out from cells to grasp the nanoporous surface for anchorage. To better understand and compare cell-materials interactions

  8. p-Type semiconducting nickel oxide as an efficiency-enhancing anodal interfacial layer in bulk heterojunction solar cells

    Science.gov (United States)

    Irwin, Michael D; Buchholz, Donald B; Marks, Tobin J; Chang, Robert P. H.

    2014-11-25

    The present invention, in one aspect, relates to a solar cell. In one embodiment, the solar cell includes an anode, a p-type semiconductor layer formed on the anode, and an active organic layer formed on the p-type semiconductor layer, where the active organic layer has an electron-donating organic material and an electron-accepting organic material.

  9. Pt/C Fuel Cell Catalyst Degradation

    DEFF Research Database (Denmark)

    Zana, Alessandro

    This thesis investigates the degradation behavior of Pt/C catalysts under simulated automotive conditions. By using the “tool box” synthesis method the Pt loading has been changed from low to high Pt loadings, therefore permitting to study the role of Pt on the degradation of high surface area (HSA......) Pt/C catalyst. Diverse degradation mechanisms have been found to be responsible for the electrochemical surface area loss (ECSA). The different degradation mechanisms have been found to be dependent from the diverse potential windows applied during the stress test. Furthermore the synthesis approach...... nanoparticles (NPs). TiO2@C was synthesized by heat treatment in C2H2 and subsequently loaded with Pt NPs. Pt/TiO2@C was tested and compared with Pt/C and Pt/TiO2 prepared using the same colloidal stock solution. Similar ECSA values were reached on Pt/TiO2@C and Pt/C while Pt/TiO2 fails to reach high ECSA...

  10. Comparison of microbial electrolysis cells operated with added voltage or by setting the anode potential

    KAUST Repository

    Nam, Joo-Youn

    2011-08-01

    Hydrogen production in a microbial electrolysis cell (MEC) can be achieved by either setting the anode potential with a potentiostat, or by adding voltage to the circuit with a power source. In batch tests the largest total gas production (46 ± 3 mL), lowest energy input (2.3 ± 0.3 kWh/m 3 of H2 generated), and best overall energy recovery (E+S = 58 ± 6%) was achieved at a set anode potential of EAn = -0.2 V (vs Ag/AgCl), compared to set potentials of -0.4 V, 0 V and 0.2 V, or an added voltage of Eap = 0.6 V. Gas production was 1.4 times higher with EAn = -0.2 V than with Eap = 0.6 V. Methane production was also reduced at set anode potentials of -0.2 V and higher than the other operating conditions. Continuous flow operation of the MECs at the optimum condition of EAn = -0.2 V initially maintained stable hydrogen gas production, with 68% H2 and 21% CH4, but after 39 days the gas composition shifted to 55% H2 and 34% CH 4. Methane production was not primarily anode-associated, as methane was reduced to low levels by placing the anode into a new MEC housing. These results suggest that MEC performance can be optimized in terms of hydrogen production rates and gas composition by setting an anode potential of -0.2 V, but that methanogen proliferation must be better controlled on non-anodic surfaces. © 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  11. Stimulated-healing of proton exchange membrane fuel cell catalyst

    NARCIS (Netherlands)

    Latsuzbaia, R.; Negro, E.; Koper, G.J.M.

    2013-01-01

    Platinum nanoparticles, which are used as catalysts in Proton Exchange Membrane Fuel Cells (PEMFC), tend to degrade after long-term operation. We discriminate the following mechanisms of the degradation: poisoning, migration and coalescence, dissolution, and electrochemical Ostwald ripening. There a

  12. Novel light-weight, high-performance anode-supported microtubular solid oxide fuel cells with an active anode functional layer

    Science.gov (United States)

    Liu, Tong; Wang, Yao; Ren, Cong; Fang, Shumin; Mao, Yating; Chen, Fanglin

    2015-10-01

    Influence of the air-gap, the distance from the tube-in-orifice spinneret to the upper surface of the external coagulant bath during the extrusion/phase-inversion process, on the microstructure of nickel - yttria-stabilized zirconia (Ni-YSZ) hollow fibers has been systematically studied. When the air-gap is 0 cm, the obtained Ni-YSZ hollow fiber has a sandwich microstructure. However, when the air-gap is increased to 15 cm, a bi-layer Ni-YSZ hollow fiber consisting of a thin layer with small pores and a thick support with highly porous fingerlike macrovoids has been achieved. The output power density of microtubular solid oxide fuel cells (MT-SOFCs) with a cell configuration of Ni-YSZ/YSZ/YSZ-LSM increases from 594 mW cm-2 for the cells with the Ni-YSZ anode of sandwich microstructure to 832 mW cm-2 for the cells with the Ni-YSZ anode of bi-layer microstructure at 750 °C, implying that to achieve the same output power density, the weight of the cells with the bi-layer anode support can be reduced to 41.5% compared with that of the cells with the sandwich anode support. Thermal-cycling test shows no obvious degradation on the open-circuit-voltage (OCV), indicating that the MT-SOFCs have robust resistance to thermal cycling.

  13. Three-dimensional carbon- and binder-free nickel nanowire arrays as a high-performance and low-cost anode for direct hydrogen peroxide fuel cell

    Science.gov (United States)

    Ye, Ke; Guo, Fen; Gao, Yinyi; Zhang, Dongming; Cheng, Kui; Zhang, Wenping; Wang, Guiling; Cao, Dianxue

    2015-12-01

    A novel three-dimensional carbon- and binder-free nickel nanowire arrays (Ni NAs) electrode is successfully fabricated by a facile galvanostatic electrodeposition method using polycarbonate membrane as the template. The Ni NAs electrode achieves a oxidation current density (divided by the electroactive surface areas of Ni) of 25.1 mA cm-2 in 4 mol L-1 KOH and 0.9 mol L-1 H2O2 at 0.2 V (vs. Ag/AgCl) accompanied with a desirable stability, which is significantly higher than the catalytic activity of H2O2 electro-oxidation achieved previously with precious metals as catalysts. The impressive electrocatalytic performance is largely attributed to the superior 3D open structure and high electronic conductivity, which ensures the high utilization of Ni surfaces and makes the electrode have higher electrochemical activity. The apparent activation energy of H2O2 electro-oxidation on the Ni NAs catalyst is 13.59 kJ mol-1. A direct peroxide-peroxide fuel cell using the Ni NAs as anode exhibits a peak power density of 48.7 mW cm-2 at 20 °C. The electrode displays a great promise as the anode of direct peroxide-peroxide fuel cell due to its low cost, high activity and stability.

  14. Fracture properties of nickel-based anodes for solid oxide fuel cells

    DEFF Research Database (Denmark)

    Goutianos, Stergios; Frandsen, Henrik Lund; Sørensen, Bent F.

    2010-01-01

    such as the anode material (NiO–YSZ) in a fuel cell. The approach involves a new specimen geometry which consists of a thin ceramic glued onto thick steel beams to form a double cantilever beam (DCB) specimen. The fracture toughness values, measured from truly sharp cracks, are obtained over a range of applied...

  15. Cell Adhesion and in Vivo Osseointegration of Sandblasted/Acid Etched/Anodized Dental Implants

    Directory of Open Access Journals (Sweden)

    Mu-Hyon Kim

    2015-05-01

    Full Text Available The authors describe a new type of titanium (Ti implant as a Modi-anodized (ANO Ti implant, the surface of which was treated by sandblasting, acid etching (SLA, and anodized techniques. The aim of the present study was to evaluate the adhesion of MG-63 cells to Modi-ANO surface treated Ti in vitro and to investigate its osseointegration characteristics in vivo. Four different types of Ti implants were examined, that is, machined Ti (control, SLA, anodized, and Modi-ANO Ti. In the cell adhesion study, Modi-ANO Ti showed higher initial MG-63 cell adhesion and induced greater filopodia growth than other groups. In vivo study in a beagle model revealed the bone-to-implant contact (BIC of Modi-ANO Ti (74.20% ± 10.89% was much greater than those of machined (33.58% ± 8.63%, SLA (58.47% ± 12.89, or ANO Ti (59.62% ± 18.30%. In conclusion, this study demonstrates that Modi-ANO Ti implants produced by sandblasting, acid etching, and anodizing improve cell adhesion and bone ongrowth as compared with machined, SLA, or ANO Ti implants. These findings suggest that the application of Modi-ANO surface treatment could improve the osseointegration of dental implant.

  16. Microbial Communities and Electrochemical Performance of Titanium-Based Anodic Electrodes in a Microbial Fuel Cell

    NARCIS (Netherlands)

    Michaelidou, U.; Heijne, ter A.; Euverink, G.J.W.; Hamelers, H.V.M.; Stams, A.J.M.; Geelhoed, J.S.

    2011-01-01

    Four types of titanium (Ti)-based electrodes were tested in the same microbial fuel cell (MFC) anodic compartment. Their electrochemical performances and the dominant microbial communities of the electrode biofilms were compared. The electrodes were identical in shape, macroscopic surface area, and

  17. Exoelectrogenic bacterium phylogenetically related to Citrobacter freundii, isolated from anodic biofilm of a microbial fuel cell.

    Science.gov (United States)

    Huang, Jianjian; Zhu, Nengwu; Cao, Yanlan; Peng, Yue; Wu, Pingxiao; Dong, Wenhao

    2015-02-01

    An electrogenic bacterium, named Citrobacter freundii Z7, was isolated from the anodic biofilm of microbial fuel cell (MFC) inoculated with aerobic sewage sludge. Cyclic voltammetry (CV) analysis exhibited that the strain Z7 had relatively high electrochemical activity. When the strain Z7 was inoculated into MFC, the maximum power density can reach 204.5 mW/m(2) using citrate as electron donor. Series of substrates including glucose, glycerol, lactose, sucrose, and rhammose could be utilized to generate power. CV tests and the addition of anode solution as well as AQDS experiments indicated that the strain Z7 might transfer electrons indirectly via secreted mediators.

  18. Investigations into the interactions between sulfur and anodes for solid oxide fuel cells

    Science.gov (United States)

    Cheng, Zhe

    Solid oxide fuel cells (SOFCs) are electrochemical devices based on solid oxide electrolytes that convert chemical energy in fuels directly into electricity via electrode reactions. SOFCs have the advantages of high energy efficiency and low emissions and hold the potential to be the power of the future especially for small power generation systems (1-10 kW). Another unique advantage of SOFCs is the potential to directly utilize hydrocarbon fuels such as natural gas through internal reforming. However, all hydrocarbon fuels contain some sulfur compounds, which transform to hydrogen sulfide (H2S) in the reforming process and dramatically degrade the performance of the existing SOFCs. In this study, the interactions between sulfur contaminant (in the form of H2S) and the anodes for SOFCs were systematically investigated in order to gain a fundamental understanding of the mechanism of sulfur poisoning and ultimately to achieve rational design of sulfur-tolerant anodes. The sulfur poisoning behavior of the state-of-the-art Ni-YSZ cermet anodes was characterized using electrochemical measurements performed on button cells (of different structures) under various operating conditions, including H2S concentration, temperature, cell current density/terminal voltage, and cell structure. Also, the mechanisms of interactions between sulfur and the Ni-YSZ cermet anode were investigated using both ex situ and in situ characterization techniques such as Raman spectroscopy. Results suggest that the sulfur poisoning of Ni-YSZ cermet anodes at high temperatures in fuels with ppm-level H2S is due not to the formation of multi-layer conventional nickel sulfides but to the adsorption of sulfur on the nickel surface. In addition, new sulfur-tolerant anode materials were explored in this study. Thermodynamic principles were applied to predict the stability of candidate sulfur-tolerant anode materials and explain complex phenomena concerning the reactivity of candidate materials with

  19. Design of Transparent Anodes for Resonant Cavity Enhanced Light Harvesting in Organic Solar Cells

    KAUST Repository

    Sergeant, Nicholas P.

    2012-01-03

    The use of an ITO-free MoO 3/Ag/MoO 3 anode to control the photon harvesting in PCDTBT:PC 70BM solar cells is proposed. At first sight, the fact that these anodes possess reduced far-field transmission compared to ITO may seem to be a disadvantage. But, despite this, we show that by carefully tuning the resonant optical cavity we can enhance the external quantum efficiency close to the band edge of PCDTBT, resulting in high photocurrent and power conversion efficiency on par with ITO. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. High performance, high durability non-precious metal fuel cell catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Thomas E.; Atanasoski, Radoslav; Schmoeckel, Alison K.

    2016-03-15

    This invention relates to non-precious metal fuel cell cathode catalysts, fuel cells that contain these catalysts, and methods of making the same. The fuel cell cathode catalysts are highly nitrogenated carbon materials that can contain a transition metal. The highly nitrogenated carbon materials can be supported on a nanoparticle substrate.

  1. Anodic concentration loss and impedance characteristics in rotating disk electrode microbial fuel cells.

    Science.gov (United States)

    Shen, Liye; Ma, Jingxing; Song, Pengfei; Lu, Zhihao; Yin, Yao; Liu, Yongdi; Cai, Lankun; Zhang, Lehua

    2016-10-01

    A rotating disk electrode (RDE) was used to investigate the concentration loss and impedance characteristics of anodic biofilms in microbial fuel cells (MFCs). Amperometric time-current analysis revealed that at the rotation rate of 480 rpm, a maximum current density of 168 µA cm(-2) can be achieved, which was 22.2 % higher than when there was no rotation. Linear sweep voltammetry and electrochemical impedance spectroscopy tests showed that when the anodic potential was set to -300 mV vs. Ag/AgCl reference, the power densities could increase by 59.0  %, reaching 1385 mW m(-2), the anodic resistance could reduce by 19  %, and the anodic capacitance could increase by 36 %. These results concur with a more than 85 % decrease of the diffusion layer thickness. Data indicated that concentration loss, diffusion layer thickness, and the mixing velocity play important roles in anodic resistance reduction and power output of MFCs. These findings could be helpful to the design of future industrial-scale MFCs with mixed bacteria biofilms.

  2. In situ formation of graphene layers on graphite surfaces for efficient anodes of microbial fuel cells.

    Science.gov (United States)

    Tang, Jiahuan; Chen, Shanshan; Yuan, Yong; Cai, Xixi; Zhou, Shungui

    2015-09-15

    Graphene can be used to improve the performance of the anode in a microbial fuel cell (MFC) due to its good biocompatibility, high electrical conductivity and large surface area. However, the chemical production and modification of the graphene on the anode are environmentally hazardous because of the use of various harmful chemicals. This study reports a novel method based on the electrochemical exfoliation of a graphite plate (GP) for the in situ formation of graphene layers on the surface of a graphite electrode. When the resultant graphene-layer-based graphite plate electrode (GL/GP) was used as an anode in an MFC, a maximum power density of 0.67 ± 0.034 W/m(2) was achieved. This value corresponds to 1.72-, 1.56- and 1.26-times the maximum power densities of the original GP, exfoliated-graphene-modified GP (EG/GP) and chemically-reduced-graphene-modified GP (rGO/GP) anodes, respectively. Electrochemical measurements revealed that the high performance of the GL/GP anode was attributable to its macroporous structure, improved electron transfer and high electrochemical capacitance. The results demonstrated that the proposed method is a facile and environmentally friendly synthesis technique for the fabrication of high-performance graphene-based electrodes for use in microbial energy harvesting.

  3. Effect of nitrogen addition on the performance of microbial fuel cell anodes

    KAUST Repository

    Saito, Tomonori

    2011-01-01

    Carbon cloth anodes were modified with 4(N,N-dimethylamino)benzene diazonium tetrafluoroborate to increase nitrogen-containing functional groups at the anode surface in order to test whether the performance of microbial fuel cells (MFCs) could be improved by controllably modifying the anode surface chemistry. Anodes with the lowest extent of functionalization, based on a nitrogen/carbon ratio of 0.7 as measured by XPS, achieved the highest power density of 938mW/m2. This power density was 24% greater than an untreated anode, and similar to that obtained with an ammonia gas treatment previously shown to increase power. Increasing the nitrogen/carbon ratio to 3.8, however, decreased the power density to 707mW/m2. These results demonstrate that a small amount of nitrogen functionalization on the carbon cloth material is sufficient to enhance MFC performance, likely as a result of promoting bacterial adhesion to the surface without adversely affecting microbial viability or electron transfer to the surface. © 2010 Elsevier Ltd.

  4. Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell.

    Science.gov (United States)

    Zhang, Changyong; Liang, Peng; Yang, Xufei; Jiang, Yong; Bian, Yanhong; Chen, Chengmeng; Zhang, Xiaoyuan; Huang, Xia

    2016-07-15

    A novel anode was developed by coating reduced graphene oxide (rGO) and manganese oxide (MnO2) composite on the carbon felt (CF) surface. With a large surface area and excellent electrical conductivity, this binder-free anode was found to effectively enhance the enrichment and growth of electrochemically active bacteria and facilitate the extracellular electron transfer from the bacteria to the anode. A microbial fuel cell (MFC) equipped with the rGO/MnO2/CF anode delivered a maximum power density of 2065mWm(-2), 154% higher than that with a bare CF anode. The internal resistance of the MFC with this novel anode was 79Ω, 66% lower than the regular one's (234Ω). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) analyses affirmed that the rGO/MnO2 composite significantly increased the anodic reaction rates and facilitated the electron transfer from the bacteria to the anode. The findings from this study suggest that the rGO/MnO2/CF anode, fabricated via a simple dip-coating and electro-deposition process, could be a promising anode material for high-performance MFC applications.

  5. Control oriented modeling of ejector in anode gas recirculation solid oxygen fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Yinhai, E-mail: yinhai.zhu@gmail.co [School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Li Yanzhong, E-mail: yzli-epe@mail.xjtu.edu.c [School of Energy and Power Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Cai Wenjian [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2011-04-15

    A one-equation model is proposed for fuel ejector in anode gas recirculation solid oxide fuel cell (SOFC) system. Firstly, the fundamental governing equations are established by employing the thermodynamic, fluid dynamic principles and chemical constraints inside the ejector; secondly, the one-equation model is derived by using the parameter analysis and lumped-parameter method. Finally, the computational fluid dynamics (CFD) technique is employed to obtain the source data for determining the model parameters. The effectiveness of the model is studied under a wide range of operation conditions. The effect of ejector performance on the anode gas recirculation SOFC system is also discussed. The presented model, which only contains four constant parameters, is useful in real-time control and optimization of fuel ejector in the anode gas recirculation SOFC system.

  6. Optimization of dry reforming of methane over Ni/YSZ anodes for solid oxide fuel cells

    Science.gov (United States)

    Guerra, Cosimo; Lanzini, Andrea; Leone, Pierluigi; Santarelli, Massimo; Brandon, Nigel P.

    2014-01-01

    This work investigates the catalytic properties of Ni/YSZ anodes as electrodes of Solid Oxide Fuel Cells (SOFCs) to be operated under direct dry reforming of methane. The experimental test rig consists of a micro-reactor, where anode samples are characterized. The gas composition at the reactor outlet is monitored using a mass spectrometer. The kinetics of the reactions occurring over the anode is investigated by means of Isotherm reactions and Temperature-programmed reactions. The effect of the variation of temperature, gas residence time and inlet carbon dioxide-methane volumetric ratio is analyzed. At 800 °C, the best catalytic performance (in the carbon safe region) is obtained for 1.5 dry reforming and cracking reactions, respectively. In other ranges, dry reforming and reverse water gas shift are the dominant reactions and the inlet feed reaches almost the equilibrium condition provided that a sufficient gas residence time is obtained.

  7. Durable Catalysts for High Temperature Proton Exchange Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Durability of proton exchange membrane fuel cells (PEMFCs) is recognized as one of the most important issues to be addressed before the commercialization. The failure mechanisms are not well understood, however, degradation of carbon supported noble metal catalysts is identified as a major failure...... corrosion, in turn, triggers the agglomeration of platinum particles resulting in reduction of the active surface area and catalytic activity. This is a major mechanism of the catalyst degradation and a key challenge to the PEMFC long-term durability. High temperature PEMFC, on the other hand, has attached...... significant attention in recent years because of its potential advantages such as high CO tolerance, easy cooling, better heat utilization and possible integration with fuel processing units. However, the high temperature obviously aggravates the carbon corrosion and catalyst degradation. Based on thermally...

  8. A solid-polymer-electrolyte direct methanol fuel cell (DMFC) with Pt-Ru nanoparticles supported onto poly(3,4-ethylenedioxythiophene) and polystyrene sulphonic acid polymer composite as anode

    Indian Academy of Sciences (India)

    K K Tintula; S Pitchumani; P Sridhar; A K Shukla

    2010-05-01

    Nano-sized Pt-Ru supported onto a mixed-conducting polymer composite comprising poly(3,4-ethylenedioxythiophene)-polystyrene sulphonic acid (PEDOT-PSSA) is employed as anode in a solid-polymer-electrolyte direct methanol fuel cell (SPE-DMFC) and its performance compared with the SPE-DMFC employing conventional Vulcan XC-72R carbon supported Pt-Ru anode. Physical characterization of the catalyst is conducted by Fourier-transform infra-red (FTIR) spectroscopy, X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Energy dispersive X-ray analysis (EDAX) in conjunction with cyclic voltammetry and chronoamperometry. The study suggests that PEDOT-PSSA to be a promising alternative catalyst-support-material for SPE-DMFCs.

  9. TiN@nitrogen-doped carbon supported Pt nanoparticles as high-performance anode catalyst for methanol electrooxidation

    Science.gov (United States)

    Zhang, Jun; Ma, Li; Gan, Mengyu; Fu, Shenna; Zhao, Yi

    2016-08-01

    In this paper, TiN@nitrogen-doped carbons (NDC) composed of a core-shell structure are successfully prepared through self-assembly and pyrolysis treatment using γ-aminopropyltriethoxysilane as coupling agent, polyaniline as carbon and nitrogen source, respectively. Subsequently, TiN@NDC supporting Pt nanoparticles (Pt/TiN@NDC) are obtained by a microwave-assisted polyol process. The nitrogen-containing functional groups and TiN nanoparticles play a critical role in decreasing the average particle size of Pt and improving the electrocatalytic activity of Pt/TiN@NDC. Transmission electron microscope results reveal that Pt nanoparticles are uniformly dispersed in the TiN@NDC surface with a narrow particle size ranging from 1 to 3 nm in diameter. Moreover, the Pt/TiN@NDC catalyst shows significantly improved catalytic activity and high durability for methanol electrooxidation in comparison with Pt/NDC and commercial Pt/C catalysts, revealed by cyclic voltammetry and chronoamperometry. Strikingly, this novel Pt/TiN@NDC catalyst reveals a better CO tolerance related to Pt/NDC and commercial Pt/C catalysts, which due to the bifunctional mechanism and strong metal-support interaction between Pt and TiN@NDC. In addition, the probable reaction steps for the electrooxidation of CO adspecies on Pt NPs on the basis of the bifunctional mechanism are also proposed. These results indicate that the TiN@NDC is a promising catalyst support for methanol electrooxidation.

  10. Hydrogen production with nickel powder cathode catalysts in microbial electrolysis cells

    KAUST Repository

    Selembo, Priscilla A.

    2010-01-01

    Although platinum is commonly used as catalyst on the cathode in microbial electrolysis cells (MEC), non-precious metal alternatives are needed to reduce costs. Cathodes were constructed using a nickel powder (0.5-1 μm) and their performance was compared to conventional electrodes containing Pt (0.002 μm) in MECs and electrochemical tests. The MEC performance in terms of coulombic efficiency, cathodic, hydrogen and energy recoveries were similar using Ni or Pt cathodes, although the maximum hydrogen production rate (Q) was slightly lower for Ni (Q = 1.2-1.3 m3 H2/m3/d; 0.6 V applied) than Pt (1.6 m3 H2/m3/d). Nickel dissolution was minimized by replacing medium in the reactor under anoxic conditions. The stability of the Ni particles was confirmed by examining the cathodes after 12 MEC cycles using scanning electron microscopy and linear sweep voltammetry. Analysis of the anodic communities in these reactors revealed dominant populations of Geobacter sulfurreduces and Pelobacter propionicus. These results demonstrate that nickel powder can be used as a viable alternative to Pt in MECs, allowing large scale production of cathodes with similar performance to systems that use precious metal catalysts. © 2009 Professor T. Nejat Veziroglu.

  11. Catalysts of plant cell wall loosening

    OpenAIRE

    Cosgrove, Daniel J.

    2016-01-01

    The growing cell wall in plants has conflicting requirements to be strong enough to withstand the high tensile forces generated by cell turgor pressure while selectively yielding to those forces to induce wall stress relaxation, leading to water uptake and polymer movements underlying cell wall expansion. In this article, I review emerging concepts of plant primary cell wall structure, the nature of wall extensibility and the action of expansins, family-9 and -12 endoglucanases, family-16 xyl...

  12. Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices

    Science.gov (United States)

    Marina, Olga A [Richland, WA; Stevenson, Jeffry W [Richland, WA

    2010-03-02

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.

  13. Effect of impregnation phases on the performance of Ni-based anodes for low temperature solid oxide fuel cells

    Science.gov (United States)

    Liu, Zhangbo; Ding, Dong; Liu, Beibei; Guo, Weiwei; Wang, Wendong; Xia, Changrong

    2011-10-01

    Impregnated nanoparticles are very effective in improving the electrochemical performance of solid oxide fuel cell (SOFC) anodes possibly due to the extension of reaction sites and/or the enhancement of catalytic activity. In this work, samaria-doped ceria (SDC), pure ceria, samaria, and alumina oxides impregnated Ni-based anodes are fabricated to compare the site extending and the catalytic effects. Except for alumina, the impregnation of the other three nano-sized oxides could substantially enhance the performance of the anodes for the hydrogen oxidation reactions. Moreover, single cells with CeO2 and Sm2O3 impregnated anodes could exhibit as great performance as those with SDC impregnated anodes. When the impregnation loading reached the optimal value, 1.7 mmol cm-3, these cells exhibit very high performance, with peak power densities around 750 mW cm-2. The high performance of CeO2 and Sm2O3 impregnated anodes demonstrates that the improved performance are mainly attributed to the significantly improved electrochemical activities of the anodes, but not to the extension of triple-phase-boundary, and wet impregnation is indeed an alternative and effective technique to introduce these nano-sized catalytic active oxides into the anode configuration of SOFCs to enhance cell performance, stability and reliability.

  14. Reconstruction of microstructure in catalyst layer of PEM fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Rong, F.; Huang, C.; Liu, Z.S.; Song, D.T.; Wang, Q.P. [National Research Council of Canada, Vancouver, BC (Canada). Inst. for Fuel Cell Innovation

    2007-07-01

    Different microstructures of catalyst layer (CL) have been experimentally studied to improve the performance of the proton membrane exchange (PEM) fuel cell. These experiments have revealed the microstructure in catalyst layers can be considered as one kind of random media and its changes will have significant influence on the performance of PEM fuel cell. This paper presented the results of a study that applied the filtering method and stochastic optimization to reconstruct the microstructure based on the statistical information of catalyst layers. The filtering method changes the Gauss distributed signals to three-phase microstructure reconstruction while the stochastic optimization method, refines the microstructure reconstruction to fit the statistical features of experimental images. Based on the physical properties as well as the mass ratio, the statistical feature extraction based on image process of catalyst layer and the reconstruction procedure was proposed. The paper discussed evaluation of phase statistical information, initial reconstruction based on filtering method, stochastic optimization for reconstruction, as well as a summary of the study. It was concluded that the results of the filtering method as the initial pattern of stochastic optimization could make the error (between the final result and the experimental target) less than that of the random initial value and saved the computational time simultaneously. 13 refs., 6 figs.

  15. Marine microbial fuel cell: Use of stainless steel electrodes as anode and cathode materials

    Energy Technology Data Exchange (ETDEWEB)

    Dumas, C.; Basseguy, R.; Etcheverry, L.; Bergel, A. [Laboratoire de Genie Chimique, CNRS-INPT, Toulouse Cedex (France); Mollica, A. [CNR-ISMAR, Genoa (Italy); Feron, D. [SCCME, CEA Saclay, Gif-sur-Yvette (France)

    2007-12-01

    Numerous biocorrosion studies have stated that biofilms formed in aerobic seawater induce an efficient catalysis of the oxygen reduction on stainless steels. This property was implemented here for the first time in a marine microbial fuel cell (MFC). A prototype was designed with a stainless steel anode embedded in marine sediments coupled to a stainless steel cathode in the overlying seawater. Recording current/potential curves during the progress of the experiment confirmed that the cathode progressively acquired effective catalytic properties. The maximal power density produced of 4 mW m{sup -2} was lower than those reported previously with marine MFC using graphite electrodes. Decoupling anode and cathode showed that the cathode suffered practical problems related to implementation in the sea, which may found easy technical solutions. A laboratory fuel cell based on the same principle demonstrated that the biofilm-covered stainless steel cathode was able to supply current density up to 140 mA m{sup -2} at +0.05 V versus Ag/AgCl. The power density of 23 mW m{sup -2} was in this case limited by the anode. These first tests presented the biofilm-covered stainless steel cathodes as very promising candidates to be implemented in marine MFC. The suitability of stainless steel as anode has to be further investigated. (author)

  16. H2 and CO oxidation process at the three-phase boundary of Cu-ceria cermet anode for solid oxide fuel cell

    Science.gov (United States)

    Zheng, Minghao; Wang, Shuang; Li, Mei; Xia, Changrong

    2017-03-01

    Cu-ceria cermets have been widely investigated as the anode materials for solid oxide fuel cells (SOFCs) that operated with hydrocarbon fuels. However, the anode reaction processes are not clear yet, especially those at the ceria-Cu-gas three phase boundary (3 PB). This work investigates samaria-doped ceria (SDC)-Cu-gas 3 PB reaction kinetics for the oxidation of H2 and CO, the products from hydrocarbons via external and internal reforming. Electrochemical conductivity relaxation measurement demonstrates that Cu is a synergistic catalyst that can significantly increase the reaction rate. The reaction at 3 PB contributes 81.3/66.8% of H2/CO oxidation when 5.4% SDC surface is covered with Cu particles. Combining with AC impedance analysis, elementary steps are proposed for the reaction at 3 PB. Water vapor combining to oxygen vacancy and carbon monoxide transforming to carbonate are the rate-determining steps for the oxidation of H2 and CO, respectively. Cu-SDC has shown much higher catalytic activity, i.e. about fivefold reaction rate, for the oxidation of CO than H2. In addition, Cu-SDC electrodes exhibit lower interfacial polarization resistance and lower activation energy for the electrochemical oxidation of CO than H2. Consequently, CO is easier to be oxidized than H2 when the Cu-ceria anode is fueled with syngas, the reforming product from hydrocarbons.

  17. Graphite coated with manganese oxide/multiwall carbon nanotubes composites as anodes in marine benthic microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yubin, E-mail: ffyybb@ouc.edu.cn; Yu, Jian; Zhang, Yelong; Meng, Yao

    2014-10-30

    Highlights: • MnO{sub 2}/MWCNTs composites anode exhibits faster reaction kinetics. • The surfaces of MnO{sub 2}/MWCNTs composites anode exhibits better wettability. • A BMFC using the modified anode have excellent power output. - Abstract: Improving anode performance is of great significance to scale up benthic microbial fuel cells (BMFCs) for its marine application to drive oceanography instruments. In this study, manganese oxide (MnO{sub 2})/multiwall carbon nanotubes (MWCNTs) composites are prepared to be as novel anodes in the BMFCs via a direct redox reaction between permanganate ions (MnO{sub 4}{sup −}) and MWCNTs. The results indicate that the MnO{sub 2}/MWCNTs anode has a better wettability, greater kinetic activity and higher power density than that of the plain graphite (PG) anode. It is noted that the MnO{sub 2} (50% weight percent)/MWCNTs anode shows the highest electrochemical performance among them and will be a promising material for improving bioelectricity production of the BMFCs. Finally, a synergistic mechanism of electron transfer shuttle of Mn ions and their redox reactions in the interface between modified anode and bacteria biofilm are proposed to explain its excellent electrochemical performance.

  18. Performance of two different types of anodes in membrane electrode assembly microbial fuel cells for power generation from domestic wastewater

    KAUST Repository

    Hays, Sarah

    2011-10-01

    Graphite fiber brush electrodes provide high surface areas for exoelectrogenic bacteria in microbial fuel cells (MFCs), but the cylindrical brush format limits more compact reactor designs. To enable MFC designs with closer electrode spacing, brush anodes were pressed up against a separator (placed between the electrodes) to reduce the volume occupied by the brush. Higher maximum voltages were produced using domestic wastewater (COD = 390 ± 89 mg L-1) with brush anodes (360 ± 63 mV, 1000 Ω) than woven carbon mesh anodes (200 ± 81 mV) with one or two separators. Maximum power densities were similar for brush anode reactors with one or two separators after 30 days (220 ± 1.2 and 240 ± 22 mW m-2), but with one separator the brush anode MFC power decreased to 130 ± 55 mW m-2 after 114 days. Power densities in MFCs with mesh anodes were very low (<45 mW m-2). Brush anodes MFCs had higher COD removals (80 ± 3%) than carbon mesh MFCs (58 ± 7%), but similar Coulombic efficiencies (8.6 ± 2.9% brush; 7.8 ± 7.1% mesh). These results show that compact (hemispherical) brush anodes can produce higher power and more effective domestic wastewater treatment than flat mesh anodes in MFCs. © 2011 Elsevier B.V. All rights reserved.

  19. High-performance hydrogen fuel cell using nitrate reduction reaction on a non-precious catalyst.

    Science.gov (United States)

    Han, Sang-Beom; Song, You-Jung; Lee, Young-Woo; Ko, A-Ra; Oh, Jae-Kyung; Park, Kyung-Won

    2011-03-28

    The H(2)-NO(3)(-) electrochemical cell using nitrate reduction on a non-precious cathode catalyst shows much improved efficiency despite ∼75% reduction of Pt metal loading as compared to typical PEMFCs using typical ORR on precious catalysts.

  20. Methane Steam Reforming over an Ni-YSZ Solid Oxide Fuel Cell Anode in Stack Configuration

    Directory of Open Access Journals (Sweden)

    D. Mogensen

    2014-01-01

    Full Text Available The kinetics of catalytic steam reforming of methane over an Ni-YSZ anode of a solid oxide fuel cell (SOFC have been investigated with the cell placed in a stack configuration. In order to decrease the degree of conversion, a single cell stack with reduced area was used. Measurements were performed in the temperature range 600–800°C and the partial pressures of all reactants and products were varied. The obtained rates could be well fitted with a power law expression (r ∝PCH40.7. A simple model is presented which is capable of predicting the methane conversion in a stack configuration from intrinsic kinetics of the anode support material. The predictions are compared with the stack measurements presented here, and good agreement is observed.

  1. Highly durable anode supported solid oxide fuel cell with an infiltrated cathode

    DEFF Research Database (Denmark)

    Samson, Alfred Junio; Hjalmarsson, Per; Søgaard, Martin

    2012-01-01

    An anode supported solid oxide fuel cell with an La0.6Sr0.4Co1.05O3_δ (LSC) infiltrated-Ce0.9Gd0.1O1.95 (CGO) cathode that shows a stable performance has been developed. The cathode was prepared by screen printing a porous CGO backbone on top of a laminated and co-fired anode supported half cell...... in the resistance from the recorded impedance was observed during long term testing. The power density reached 0.79Wcm-2 at a cell voltage of 0.6 V at 750 deg. C. Post test analysis of the LSC infiltrated-CGO cathode by scanning electron microscopy revealed no significant micro-structural difference...

  2. 石墨烯制备及其在低温燃料电池阳极催化中的应用进展%The preparation of Graphenes and their application progress in anode catalyst of low temperature fuel cell

    Institute of Scientific and Technical Information of China (English)

    田春贵; 付宏刚

    2011-01-01

    Graphene, an new star in the material science, has attracted intensive attention in electronics, energy, environment and catalysis. For application in electro-catalysis, the special structure of graphene are favorable to dispersion and stability of noble metal catalyst, thus to enhance largely catalytic activity of metal catalyst. In this paper, the preparation methods of graphene are introduced, and the design of noble metal/graphene electro - catalysts is also be reviewed.%石墨烯是材料科学领域的新星,在电子、能源、环境、生物医学及催化领域的应用备受关注.在电催化领域,石墨烯特殊的结构有利于贵金属催化剂的分散和稳定,可大幅度提高贵金属的催化活性,是理想的载体材料.本文对石墨烯的制备方法及贵金属/石墨烯电催化剂的设计合成的研究进展进行评述.

  3. Oxidation catalyst

    Science.gov (United States)

    Ceyer, Sylvia T.; Lahr, David L.

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  4. Investigation of Co3O4 nanorods supported Pd anode catalyst for methanol oxidation in alkaline solution

    Institute of Scientific and Technical Information of China (English)

    Yanbiao Ren; Shichao Zhang∗; Hua Fang; Xin Wei; Puheng Yang

    2014-01-01

    A Co3 O4 nanorod supported Pd electro-catalyst for the methanol electro-oxidation (MEO) has been fabricated by the combination of hydrother-mal synthesis and microwave-assisted polyol reduction processes. The crystallographic property and microstructure have been characterized using XRD, SEM and TEM. The results demonstrate that Pd nanoparticles (PdNPs) with a narrow particle size distribution (3−5 nm) are uni-formly deposited onto the surface of Co3O4 nanorods. Electrochemical measurements show that this catalyst having a larger electrochemically active surface area and a more negative onset-potential exhibits enhanced catalytic activity of 504 mA/mg Pd for MEO comparing with the Pd/C catalyst (448 mA/mg Pd). The dependency of logI against logv reveals that MEO on Pd-Co3O4 electrode is under a diffusion control. Electrochemical impedance spectroscopy (EIS) measurement agrees well with the CV results. The minimum charge transfer resistance of MEO on Pd-Co3 O4 is observed at−0.05 V, which coincides with the potential of MEO peak.

  5. Microstructural degradation of Ni-YSZ anodes for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Thyden, K.

    2008-03-15

    Ni-YSZ cermets have been used as anode materials in SOFCs for more than 20 years. Despite this fact, the major cause of degradation within the Ni-YSZ anode, namely Ni sintering / coarsening, is still not fully understood. Even if microstructural studies of anodes in tested cells are of technological relevance, it is difficult to identify the effect from isolated parameters such as temperature, fuel gas composition and polarization. Model studies of high temperature aged Ni-YSZ cermets are generally performed in atmospheres containing relatively low concentrations of H2O. In this work, the microstructural degradation in both electrochemically longterm tested cells and high-temperature aged model materials are studied. Since Ni particle sintering / coarsening is attributed to be the major cause of anode degradation, this subject attains the primary focus. A large part of the work is focused on improving microstructural techniques and shows that the application of low acceleration voltages (<= 1 kV) in a FE-SEM makes it possible to obtain two useful types of contrast between the phases in Ni-YSZ composites. By changing between the ordinary lateral SE detector and the inlens detector, using similar microscope settings, two very different sample characteristics are probed: 1) The difference in secondary emission coefficient, delta, between the percolating and non-percolating Ni is maximized in the low-voltage range due to a high delta for the former and the suppression of delta by a positive charge for the latter. This difference yields a contrast between the two phases which is picked up by an inlens secondary electron detector. 2) The difference in backscatter coefficient, eta, between Ni and YSZ is shown to increase with decreasing voltage. The contrast is illustrated in images collected by the normal secondary detector since parts of the secondary signals are generated by backscattered electrons. High temperature aging experiments of model Ni-YSZ anode cermets show

  6. Controlling the occurrence of power overshoot by adapting microbial fuel cells to high anode potentials.

    Science.gov (United States)

    Zhu, Xiuping; Tokash, Justin C; Hong, Yiying; Logan, Bruce E

    2013-04-01

    Power density curves for microbial fuel cells (MFCs) often show power overshoot, resulting in inaccurate estimation of MFC performance at high current densities. The reasons for power overshoot are not well understood, but biofilm acclimation and development are known factors. In order to better explore the reasons for power overshoot, exoelectrogenic biofilms were developed at four different anode potentials (-0.46 V, -0.24 V, 0 V, and 0.50 V vs. Ag/AgCl), and then the properties of the biofilms were examined using polarization tests and cyclic voltammetry (CV). The maximum power density of the MFCs was 1200±100 mW/m(2). Power overshoot was observed in MFCs incubated at -0.46 V, but not those acclimated at more positive potentials, indicating that bacterial activity was significantly influenced by the anode acclimation potential. CV results further indicated that power overshoot of MFCs incubated at the lowest anode potential was associated with a decreasing electroactivity of the anodic biofilm in the high potential region, which resulted from a lack of sufficient electron transfer components to shuttle electrons at rates needed for these more positive potentials.

  7. Influence of anode potentials on selection of Geobacter strains in microbial electrolysis cells.

    Science.gov (United States)

    Commault, Audrey S; Lear, Gavin; Packer, Michael A; Weld, Richard J

    2013-07-01

    Through their ability to directly transfer electrons to electrodes, Geobacter sp. are key organisms for microbial fuel cell technology. This study presents a simple method to reproducibly select Geobacter-dominated anode biofilms from a mixed inoculum of bacteria using graphite electrodes initially poised at -0.25, -0.36 and -0.42 V vs. Ag/AgCl. The biofilms all produced maximum power density of approximately 270 m Wm(-2) (projected anode surface area). Analysis of 16S rRNA genes and intergenic spacer (ITS) sequences found that the biofilm communities were all dominated by bacteria closely related to Geobacter psychrophilus. Anodes initially poised at -0.25 V reproducibly selected biofilms that were dominated by a strain of G. psychrophilus that was genetically distinct from the strain that dominated the -0.36 and -0.42 V biofilms. This work demonstrates for the first time that closely related strains of Geobacter can have very different competitive advantages at different anode potentials.

  8. Three-dimensional porous carbon nanotube sponges for high-performance anodes of microbial fuel cells

    Science.gov (United States)

    Erbay, Celal; Yang, Gang; de Figueiredo, Paul; Sadr, Reza; Yu, Choongho; Han, Arum

    2015-12-01

    Highly-porous, light-weight, and inexpensive three-dimensional (3D) sponges consisting of interconnected carbon nanotubes (CNTs) without base materials are synthesized with a facile and scalable one-step chemical vapor deposition process as anode of microbial fuel cells (MFCs). The MFCs generates higher power densities of 2150 W m-3 (per anode volume) or 170 W m-3 (per anode chamber volume), comparable to those of commercial 3D carbon felt electrodes under the same conditions. The high performances are due to excellent charge transfer between CNTs and microbes owing to 13 times lower charge transfer resistance compared to that of carbon felt. The material cost of producing these CNT sponge estimates to be ∼0.1/gCNT, significantly lower than that of other methods. In addition, the high production rate of about 3.6 g h-1 compared to typical production rate of 0.02 g h-1 of other CNT-based materials makes this process economically viable. The one-step synthesis method allowing self-assembly of 3D CNT sponges as they grow is low cost and scalable, making this a promising method for manufacturing high-performance anodes of MFCs, with broad applicability to microbial electrochemical systems in general.

  9. Studies of Modified Hydrogen Storage Intermetallic Compounds Used as Fuel Cell Anodes

    Directory of Open Access Journals (Sweden)

    Rui F. M. Lobo

    2011-12-01

    Full Text Available The possibility of substituting Pt/C with the hydrogen storage alloy MlNi3.6Co0.85Al0.3Mn0.3 as the anode active material of a proton exchange membrane fuel cell system has been analyzed. The electrochemical properties indicate that a much more electrochemically active anode is obtained by impregnating the active material loaded anode in a Nafion proton conducting polymer. Such performance improvement might result from the increase of three-phase boundary sites or length in the gas diffusion electrode where the electrochemical reaction occurs. The experimental data revealed that the membrane electrode assembly (MEA shows better results when the anode active material, MlNi3.6Co0.85Al0.3Mn0.3, is treated with a hot alkaline KBH4 solution, and then chemically coated with 3 wt.% Pd. The MEA with the aforesaid modification presents an enhanced surface capability for hydrogen adsorption, and has been studied by molecular beam-thermal desorption spectrometry.

  10. Electrochemical Characteristics of Tin Oxide-Graphite as Anode Material for Lithium-ion Cells

    Science.gov (United States)

    Hasanaly, Siti Munirah

    2010-03-01

    Tin oxide anode materials used in lithium-ion cells experience large volume changes during charging and discharging which cause substantial losses in capacity. In this work, the tin oxide-graphite composite is proposed as an alternative anode material to overcome this problem. The composite was synthesised from a solution of tin chloride dihydrate and graphite powders with citric acid as the chelating agent. In this sol-gel method, a solid phase is formed through a chemical reaction in a liquid phase at moderate temperature. The technique offers several advantages compared to the solid state synthesis technique such as the ability to maintain the homogeneous mixture of precursors during synthesis and to produce small particles. The electrochemical behaviour of the anode material was investigated by means of galvanostatic charge discharge technique. An initial reversible capacity of 748 mAh/g is obtained and nearly 600 mAh/g was retained upon the reaching the fifth cycle. This study shows that the presence of graphite is able to minimise the agglomeration of tin particles that causes large volume changes during cycling, thereby improving cyclability of the anode material.

  11. Analysis of carbon fiber brush loading in anodes on startup and performance of microbial fuel cells

    KAUST Repository

    Hutchinson, Adam J.

    2011-11-01

    Flat carbon anodes placed near a cathode in a microbial fuel cell (MFC) are adversely affected by oxygen crossover, but graphite fiber brush anodes placed near the cathode produce high power densities. The impact of the brush size and electrode spacing was examined by varying the distance of the brush end from the cathode and solution conductivity in multiple MFCs. The startup time was increased from 8 ± 1 days with full brushes (all buffer concentrations) to 13 days (50 mM), 14 days (25 mM) and 21 days (8 mM) when 75% of the brush anode was removed. When MFCs were all first acclimated with a full brush, up to 65% of the brush material could be removed without appreciably altering maximum power. Electrochemical impedance spectroscopy (EIS) showed that the main source of internal resistance (IR) was diffusion resistance, which together with solution resistance reached 100 Ω. The IR using EIS compared well with that obtained using the polarization data slope method, indicating no major components of IR were missed. These results show that using full brush anodes avoids adverse effects of oxygen crossover during startup, although brushes are much larger than needed to sustain high power. © 2011 Elsevier B.V.

  12. Controlling the occurrence of power overshoot by adapting microbial fuel cells to high anode potentials

    KAUST Repository

    Zhu, Xiuping

    2013-04-01

    Power density curves for microbial fuel cells (MFCs) often show power overshoot, resulting in inaccurate estimation of MFC performance at high current densities. The reasons for power overshoot are not well understood, but biofilm acclimation and development are known factors. In order to better explore the reasons for power overshoot, exoelectrogenic biofilms were developed at four different anode potentials (-0.46 V, -0.24 V, 0 V, and 0.50 V vs. Ag/AgCl), and then the properties of the biofilms were examined using polarization tests and cyclic voltammetry (CV). The maximum power density of the MFCs was 1200±100 mW/m2. Power overshoot was observed in MFCs incubated at -0.46 V, but not those acclimated atmore positive potentials, indicating that bacterial activitywas significantly influenced by the anode acclimation potential. CV results further indicated that power overshoot of MFCs incubated at the lowest anode potential was associatedwith a decreasing electroactivity of the anodic biofilm in the high potential region,which resulted from a lack of sufficient electron transfer components to shuttle electrons at rates needed for these more positive potentials. © 2012 Elsevier B.V.

  13. Anode Material Testing for Marine Sediment Microbial Fuel Cells

    Science.gov (United States)

    2013-09-26

    the plumping centered over billet, and the electrical feed through fitting with connecting wire. The solid graphite plate will be tested by...state conditions, using a liquid bath of glucose as the substrate (17). Chaudhuri and Lovley 2005, showed that the graphite foam increased production...Microbial fuel cells: performances and perspectives. Biofuels for fuel cells: biomass fermentation towards usage in fuel cells. IWA Publishing, London

  14. High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode

    Science.gov (United States)

    Wang, Hanyu; Wang, Gongming; Ling, Yichuan; Qian, Fang; Song, Yang; Lu, Xihong; Chen, Shaowei; Tong, Yexiang; Li, Yat

    2013-10-01

    The structure and electrical conductivity of anode play a significant role in the power generation of microbial fuel cells (MFCs). In this study, we developed a three-dimensional (3D) reduced graphene oxide-nickel (denoted as rGO-Ni) foam as an anode for MFC through controlled deposition of rGO sheets onto the nickel foam substrate. The loading amount of rGO sheets and electrode surface area can be controlled by the number of rGO loading cycles. 3D rGO-Ni foam anode provides not only a large accessible surface area for microbial colonization and electron mediators, but also a uniform macro-porous scaffold for effective mass diffusion of the culture medium. Significantly, at a steady state of the power generation, the MFC device with flexible rGO-Ni electrodes produced an optimal volumetric power density of 661 W m-3 calculated based on the volume of anode material, or 27 W m-3 based on the volume of the anode chamber. These values are substantially higher than that of plain nickel foam, and other conventional carbon based electrodes (e.g., carbon cloth, carbon felt, and carbon paper) measured in the same conditions. To our knowledge, this is the highest volumetric power density reported for mL-scale MFC device with a pure strain of Shewanella oneidensis MR-1. We also demonstrated that the MFC device can be operated effectively in a batch-mode at least for a week. These new 3D rGO-Ni electrodes show great promise for improving the power generation of MFC devices.The structure and electrical conductivity of anode play a significant role in the power generation of microbial fuel cells (MFCs). In this study, we developed a three-dimensional (3D) reduced graphene oxide-nickel (denoted as rGO-Ni) foam as an anode for MFC through controlled deposition of rGO sheets onto the nickel foam substrate. The loading amount of rGO sheets and electrode surface area can be controlled by the number of rGO loading cycles. 3D rGO-Ni foam anode provides not only a large accessible

  15. Physical Properties of Mixed Conductor Solid Oxide Fuel Cell Anodes of Doped CeO2

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Lindegaard, Thomas; Hansen, Uffe Rud

    1994-01-01

    Samples of CeO2 doped with oxides such as CaO and Gd2O3 were prepared. Their conductivities and expansions onreduction were measured at 1000°C, and the thermal expansion coefficients in the range 50 to 1000°C were determined. Theionic and electronic conductivity were derived from curves of total...... for solid oxide fuel cell anodes. Not all requirements are fulfilled. Measures to compensate for this arediscussed....

  16. Importance of temperature and anodic medium composition on microbial fuel cell (MFC) performance

    DEFF Research Database (Denmark)

    Min, Booki; Romàn, Ó.B.; Angelidaki, Irini

    2008-01-01

    The performance of a microbial fuel cell (MFC) was investigated at different temperatures and anodic media. A lag phase of 30 h occurred at 30°C which was half that at room temperature (22°C). The maximum power density at 30°C was 70 mW/m2 and at 22°C was 43 mW/m2. At 15°C, no successful operation...

  17. The impact of anode design on fuel crossover of direct ethanol fuel cell

    Indian Academy of Sciences (India)

    Sethu Sundar Pethaiah; Jayakumar Arunkumar; Maximiano Ramos; Ahmed Al-Jumaily; Natarajan Manivannan

    2016-02-01

    Direct-ethanol fuel cells (DEFCs) hold a promising future owing to its simple balance of plant operation and potential high-energy density. The significant challenges associated with it is the fuel crossover, which limits its performance and durability. In the present work, Pt–Pd nanocomposites were fused so as to find its impact on the anode design of DEFC. The current paper aimed to address these issues optimally and it also investigated the ethanol crossover by various electrochemical characterization techniques.

  18. Community Composition of Bacterial Biofilms Formed on Simple Soil Based Bioelectrochemical Cell Anodes and Cathodes

    Science.gov (United States)

    2012-04-01

    3 Table 2. Relative molar percentages and absolute abundances of prokaryotic and eukaryotic fatty acid (FA...density for the three soils varied from 5 to 8 × 108 cells per gram of soil. 3.1 Anode biofilms Although eukaryotic biomarkers were detected on the...percentages and absolute abundances of prokaryotic and eukaryotic fatty acid (FA) biomarkers detected in the soils, top middle and bottom fractions, on the

  19. LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES

    Energy Technology Data Exchange (ETDEWEB)

    Professor Anil V. Virkar

    2003-05-23

    This report summarizes the work done during the entire project period, between October 1, 1999 and March 31, 2003, which includes a six-month no-cost extension. During the project, eight research papers have, either been, published, accepted for publication, or submitted for publication. In addition, several presentations have been made in technical meetings and workshops. The project also has provided support for four graduate students working towards advanced degrees. The principal technical objective of the project was to analyze the role of electrode microstructure on solid oxide fuel cell performance. Prior theoretical work conducted in our laboratory demonstrated that the particle size of composite electrodes has a profound effect on cell performance; the finer the particle size, the lower the activation polarization, the better the performance. The composite cathodes examined consisted of electronically conducting perovskites such as Sr-doped LaMnO{sub 3} (LSM) or Sr-doped LaCoO{sub 3} (LSC), which is also a mixed conductor, as the electrocatalyst, and yttria-stabilized zirconia (YSZ) or rare earth oxide doped CeO{sub 2} as the ionic conductor. The composite anodes examined were mixtures of Ni and YSZ. A procedure was developed for the synthesis of nanosize YSZ by molecular decomposition, in which unwanted species were removed by leaching, leaving behind nanosize YSZ. Anode-supported cells were made using the as-synthesized powders, or using commercially acquired powders. The electrolyte was usually a thin ({approx}10 microns), dense layer of YSZ, supported on a thick ({approx}1 mm), porous Ni + YSZ anode. The cathode was a porous mixture of electrocatalyst and an ionic conductor. Most of the cell testing was done at 800 C with hydrogen as fuel and air as the oxidant. Maximum power densities as high as 1.8 W/cm{sup 2} were demonstrated. Polarization behavior of the cells was theoretically analyzed. A limited amount of cell testing was done using liquid

  20. Application of Co-naphthalocyanine (CoNPc) as alternative cathode catalyst and support structure for microbial fuel cells.

    Science.gov (United States)

    Kim, Jung Rae; Kim, Jy-Yeon; Han, Sang-Beom; Park, Kyung-Won; Saratale, G D; Oh, Sang-Eun

    2011-01-01

    Co-naphthalocyanine (CoNPc) was prepared by heat treatment for cathode catalysts to be used in microbial fuel cells (MFCs). Four different catalysts (Carbon black, NPc/C, CoNPc/C, Pt/C) were compared and characterized using XPS, EDAX and TEM. The electrochemical characteristics of oxygen reduction reaction (ORR) were compared by cyclic voltammetry (CV) and linear sweep voltammetry (LSV). The Co-macrocyclic complex improves the catalyst dispersion and oxygen reduction reaction of CoNPc/C. The maximum power of CoNPc/C was 64.7 mW/m(2) at 0.25 mA as compared with 81.3 mW/m(2) of Pt/C, 29.7 mW/m(2) of NPc/C and 9.3 mW/m(2) of carbon black when the cathodes were implemented in H-type MFCs. The steady state cell, cathode and anode potential of MFC with using CoNPc/C were comparable to those of Pt/C.

  1. Highly conductive PEDOT:PSS on flexible substrate as ITO-free anode for polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Del Mauro, A. De Girolamo; Ricciardi, R.; Montanino, M.; Morvillo, P.; Minarini, C. [Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Portici Research Centre, p.le E. Fermi 1, 80055 Portici (Italy)

    2014-05-15

    In this work, highly conductive anode based on PEDOT:PSS is proposed as substitute of Indio-Tin Oxide (ITO) in flexible solar cells. The anodic conductive polymer was spin coated on a 125 μm thick polyethylene naphthalate (PEN) substrate. The obtained film was characterized in terms of structure and physical- chemical proprieties. The obtained results are very promising and the conductive film will be investigated in future as electrode in a complete polymeric solar cell.

  2. Intermittent contact of fluidized anode particles containing exoelectrogenic biofilms for continuous power generation in microbial fuel cells

    KAUST Repository

    Liu, Jia

    2014-09-01

    Current generation in a microbial fuel cell can be limited by the amount of anode surface area available for biofilm formation, and slow substrate degradation kinetics. Increasing the anode surface area can increase the amount of biofilm, but performance will improve only if the anode material is located near the cathode to minimize solution internal resistance. Here we demonstrate that biofilms do not have to be in constant contact with the anode to produce current in an MFC. Granular activated carbon particles enriched with exoelectrogenic biofilm are fluidized (by stirring) in the anode chamber of the MFC, resulting in only intermittent contact between the particles and the anode current collector. The maximum power density generated is 951 ± 10 mW m-2, compared to 813 ± 2 mW m-2 for the control without stirring (packed bed), and 525 ± 1 mW m-2 in the absence of GAC particles and without stirring. GAC-biofilm particles demonstrate capacitor-like behavior, but achieve nearly constant discharge conditions due to the large number of particles that contact the current collector. These results provide proof of concept for the development of flowable electrode reactors, where anode biofilms can be electrically charged in a separate storage tank and then rapidly discharged in compact anode chambers. © 2014 Elsevier B.V. All rights reserved.

  3. The impact of NiO on microstructure and electrical property of solid oxide fuel cell anode

    Institute of Scientific and Technical Information of China (English)

    LI Yan; LUO Zhong-yang; YU Chun-jiang; LUO Dan; XU Zhu-an; CEN Ke-fa

    2005-01-01

    Ni-Ce0.8Sm0.2O1.9 (Ni-SDC) cermet was selected as anode material for reduced temperature (800 ℃) solid oxide fuel cells in this study. The influence of NiO powder fabrication methods for Ni-SDC cermets on the electrode performance was investigated so that the result obtained can be applied to make high-quality anode. Three kinds of NiO powder were synthesized with a fourth kind being available in the market. Four types of anode precursors were fabricated with these NiO powders and Ce0.sSm0.2O1.9 (SDC), and then were reduced to anode wafers for sequencing measurement. The electrical conductivity of the anodes was measured and the effect ofmicrostructure was investigated. It was found that the anode electrical conductivity depends strongly on the NiO powder morphologies, microstructure of the cermet anode and particle sizes, which are decided by NiO powder preparation technique. The highest electrical conductivity is obtained for anode cermets with NiO powder synthesized by NiCO3·2Ni(OH)2.4H2O or Ni(NO3)2.6H2O decomposition technique.

  4. Ultraviolet-ozone-treated PEDOT:PSS as anode buffer layer for organic solar cells.

    Science.gov (United States)

    Su, Zisheng; Wang, Lidan; Li, Yantao; Zhao, Haifeng; Chu, Bei; Li, Wenlian

    2012-08-17

    Ultraviolet-ozone-treated poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)was used as the anode buffer layer in copper phthalocyanine (CuPc)/fullerene-based solar cells. The power conversion efficiency of the cells with appropriated UV-ozone treatment was found to increase about 20% compared to the reference cell. The improved performance is attributed to the increased work function of the PEDOT:PSS layer, which improves the contact condition between PEDOT:PSS and CuPc, hence increasing the extraction efficiency of the photogenerated holes and decreasing the recombination probability of holes and electrons in the active organic layers.

  5. Methane Steam Reforming over an Ni-YSZ Solid Oxide Fuel Cell Anode in Stack Configuration

    DEFF Research Database (Denmark)

    Mogensen, David; Grunwaldt, Jan-Dierk; Hendriksen, Peter Vang;

    2014-01-01

    The kinetics of catalytic steam reforming of methane over an Ni-YSZ anode of a solid oxide fuel cell (SOFC) have been investigated with the cell placed in a stack configuration. In order to decrease the degree of conversion, a single cell stack with reduced area was used. Measurements were...... performed in the temperature range 600-800 degrees C and the partial pressures of all reactants and products were varied. The obtained rates could be well fitted with a power law expression (r proportional to P-CH4(0.7)). A simple model is presented which is capable of predicting the methane conversion...

  6. Liquid Tin Anode Direct Coal Fuel Cell Final Program Report

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Thomas

    2012-01-26

    This SBIR program will result in improved LTA cell technology which is the fundamental building block of the Direct Coal ECL concept. As described below, ECL can make enormous efficiency and cost contributions to utility scale coal power. This program will improve LTA cells for small scale power generation. As described in the Commercialization section, there are important intermediate military and commercial markets for LTA generators that will provide an important bridge to the coal power application. The specific technical information from this program relating to YSZ electrolyte durability will be broadly applicable SOFC developers working on coal based SOFC generally. This is an area about which very little is currently known and will be critical for successfully applying fuel cells to coal power generation.

  7. Advanced anodes for high-temperature fuel cells

    DEFF Research Database (Denmark)

    Atkinson, A.; Barnett, S.; Gorte, R.J.;

    2004-01-01

    Fuel cells will undoubtedly find widespread use in this new millennium in the conversion of chemical to electrical energy, as they offer very high efficiencies and have unique scalability in electricity-generation applications. The solid-oxide fuel cell (SOFC) is one of the most exciting...... of these energy technologies; it is an all-ceramic device that operates at temperatures in the range 500-1,000degreesC. The SOFC offers certain advantages over lower temperature fuel cells, notably its ability to use carbon monoxide as a fuel rather than being poisoned by it, and the availability of high......-grade exhaust heat for combined heat and power, or combined cycle gas-turbine applications. Although cost is clearly the most important barrier to widespread SOFC implementation, perhaps the most important technical barriers currently being addressed relate to the electrodes, particularly the fuel electrode...

  8. Electrode Reaction Pathway in Oxide Anode for Solid Oxide Fuel Cells

    Science.gov (United States)

    Li, Wenyuan

    Oxide anodes for solid oxide fuel cells (SOFC) with the advantage of fuel flexibility, resistance to coarsening, small chemical expansion and etc. have been attracting increasing interest. Good performance has been reported with a few of perovskite structure anodes, such as (LaSr)(CrMn)O3. However, more improvements need to be made before meeting the application requirement. Understanding the oxidation mechanism is crucial for a directed optimization, but it is still on the early stage of investigation. In this study, reaction mechanism of oxide anodes is investigated on doped YCrO 3 with H2 fuel, in terms of the origin of electrochemical activity, rate-determining steps (RDS), extension of reactive zone, and the impact from overpotential under service condition to those properties. H2 oxidation on the YCs anodes is found to be limited by charge transfer and H surface diffusion. A model is presented to describe the elementary steps in H2 oxidation. From the reaction order results, it is suggested that any models without taking H into the charge transfer step are invalid. The nature of B site element determines the H2 oxidation kinetics primarily. Ni displays better adsorption ability than Co. However, H adsorption ability of such oxide anode is inferior to that of Ni metal anode. In addition, the charge transfer step is directly associated with the activity of electrons in the anode; therefore it can be significantly promoted by enhancement of the electron activity. It is found that A site Ca doping improves the polarization resistance about 10 times, by increasing the activity of electrons to promote the charge transfer process. For the active area in the oxide anode, besides the traditional three-phase boundary (3PB), the internal anode surface as two-phase boundary (2PB) is proven to be capable of catalytically oxidizing the H2 fuel also when the bulk lattice is activated depending on the B site elements. The contribution from each part is estimated by switching

  9. PRELIMINARY IN-SITU X-RAY ABSORPTION FINE STRUCTURE EXAMINATION OF PT/C AND PTCO/C CATHODE CATALYSTS IN AN OPERATIONAL POLYMER ELECTROLYTE FUEL CELL

    Energy Technology Data Exchange (ETDEWEB)

    Phelan, B.T.; Myers, D.J.; Smith, M.C.

    2009-01-01

    State-of-the-art polymer electrolyte fuel cells require a conditioning period to reach optimized cell performance. There is insuffi cient understanding about the behavior of catalysts during this period, especially with regard to the changing environment of the cathode electrocatalyst, which is typically Pt nanoparticles supported on high surface area Vulcan XC-72 carbon (Pt/C). The purpose of this research was to record preliminary observations of the changing environment during the conditioning phase using X-Ray Absorption Fine Structure (XAFS) spectroscopy. XAFS was recorded for a Pt/C cathode at the Pt L3-edge and a PtCo/C cathode at both the Pt L3-edge and Co K-edge. Using precision machined graphite cell-blocks, both transmission and fl uorescence data were recorded at Sector 12-BM-B of Argonne National Laboratory’s Advanced Photon Source. The fl uorescence and transmission edge steps allow for a working description of the changing electrocatalyst environment, especially water concentration, at the anode and cathode as functions of operating parameters. These features are discussed in the context of how future analysis may correlate with potential, current and changing apparent thickness of the membrane electrode assembly through loss of catalyst materials (anode, cathode, carbon support). Such direct knowledge of the effect of the conditioning protocol on the electrocatalyst may lead to better catalyst design. In turn, this may lead to minimizing, or even eliminating, the conditioning period.

  10. LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES

    Energy Technology Data Exchange (ETDEWEB)

    Anil V. Virkar

    2001-09-26

    Anode-supported solid oxide fuel cells with Ni + yttria-stabilized zirconia (YSZ) anode, YSZ-samaria-doped ceria (SDC) bi-layer electrolyte and Sr-doped LaCoO{sub 3} (LSC) + SDC cathode were fabricated. Fuel used consisted of H{sub 2} diluted with He, N{sub 2}, H{sub 2}O or CO{sub 2}, mixtures of H{sub 2} and CO, and mixtures of CO and CO{sub 2}. Cell performance was measured at 800 C with above-mentioned fuel gas mixtures and air as oxidant. For a given concentration of the diluent, the cell performance was higher with He as the diluent than with N{sub 2} as the diluent. Mass transport through porous Ni-YSZ anode for H{sub 2}-H{sub 2}O, CO-CO{sub 2} binary systems and H{sub 2}-H{sub 2}O-diluent gas ternary systems was analyzed using multicomponent gas diffusion theory. At high concentrations of the diluent, the maximum achievable current density was limited by the anodic concentration polarization. From this measured limiting current density, the corresponding effective gas diffusivity was estimated. Highest effective diffusivity was estimated for fuel gas mixtures containing H{sub 2}-H{sub 2}O-He mixtures ({approx}0.34 cm{sup 2}/s), and the lowest for CO-CO{sub 2} mixtures ({approx}0.07 cm{sup 2}/s). The lowest performance was observed with CO-CO{sub 2} mixture as a fuel, which in part was attributed to the lowest effective diffusivity of the fuels tested.

  11. Biophotofuel cell anode containing self-organized titanium dioxide nanotube array

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Yong X., E-mail: yong.gan@utoledo.edu [Mechanical, Industrial and Manufacturing Engineering, College of Engineering, University of Toledo, 2801 W Bancroft Street, Toledo, OH 43606 (United States); Gan, Bo J. [Ottawa Hills High School, 2532 Evergreen Road, Toledo, OH 43606 (United States); Su Lusheng [Mechanical, Industrial and Manufacturing Engineering, College of Engineering, University of Toledo, 2801 W Bancroft Street, Toledo, OH 43606 (United States)

    2011-09-15

    Graphical abstract: Highlights: {center_dot} A photoactive anode containing highly ordered TiO{sub 2} nanotube array was made and the formation mechanism of self-organized TiO{sub 2} nanotube array on Ti was revealed. {center_dot} Effect of electrolyte concentration and voltage on the size distribution of the nanotubes was investigated. {center_dot} Self-organized TiO{sub 2} nanotube array anode possesses good photo-catalytic behavior of biomass decomposition under ultraviolet (UV) radiation. {center_dot} The fuel cell generates electricity and hydrogen via photoelectrochemical decomposition of ethanol, apple vinegar, sugar and tissue paper. - Abstract: We made a biophotofuel cell consisting of a titanium dioxide nanotube array photosensitive anode for biomass decomposition, and a low-hydrogen overpotential metal, Pt, as the cathode for hydrogen production. The titanium dioxide nanotubes (TiO{sub 2} NTs) were prepared via electrochemical oxidation of pure Ti in NaF solutions. Scanning electron microscopy was used to analyze the morphology of the nanotubes. The average diameter, wall thickness and length of the as-prepared TiO{sub 2} NTs were 88 {+-} 16 nm, 10 {+-} 2 nm and 491 {+-} 56 nm, respectively. Such dimensions are affected by the NaF concentration and the applied voltage during processing. Higher NaF concentrations result in the formation of longer and thicker nanotubes. The higher the voltage is, the thicker the nanotubes. The photosensitive anode made from the highly ordered TiO{sub 2} NTs has good photo-catalytic property, as can be seen from the test results of ethanol, apple vinegar, sugar and tissue paper decomposition under ultraviolet (UV) radiation. It is concluded that the biophotofuel cell with the TiO{sub 2} nanotube photoanode and a Pt cathode can generate electricity, hydrogen and clean water depending on the pH value and the oxygen presence in the solutions.

  12. Inverted polymer solar cells with employing of electrochemical-anodizing synthesized TiO2 nanotubes

    Science.gov (United States)

    Mehdi, Ahmadi; Sajjad Rashidi, Dafeh; Hamed, Fatehy

    2016-04-01

    An inverted structure of polymer solar cells based on Poly(3-hexylthiophene)(P3HT):[6-6] Phenyl-(6) butyric acid methyl ester (PCBM) with using thin films of TiO2 nanotubes and nanoparticles as an efficient cathode buffer layer is developed. A total of three cells employing TiO2 thin films with different thickness values are fabricated. Two cells use layers of TiO2 nanotubes prepared via self-organized electrochemical-anodizing leading to thickness values of 203 and 423.7 nm, while the other cell uses only a simple sol-gel synthesized TiO2 thin film of nanoparticles with a thickness of 100 nm as electron transport layer. Experimental results demonstrate that TiO2 nanotubes with these thickness values are inefficient as the power conversion efficiency of the cell using 100-nm TiO2 thin film is 1.55%, which is more than the best power conversion efficiency of other cells. This can be a result of the weakness of the electrochemical anodizing method to grow nanotubes with lower thickness values. In fact as the TiO2 nanotubes grow in length the series resistance (R s) between the active polymer layer and electron transport layer increases, meanwhile the fill factor of cells falls dramatically which finally downgrades the power conversion efficiency of the cells as the fill factor falls.

  13. A new method for quantitative marking of deposited lithium by chemical treatment on graphite anodes in lithium-ion cells.

    Science.gov (United States)

    Krämer, Yvonne; Birkenmaier, Claudia; Feinauer, Julian; Hintennach, Andreas; Bender, Conrad L; Meiler, Markus; Schmidt, Volker; Dinnebier, Robert E; Schleid, Thomas

    2015-04-13

    A novel approach for the marking of deposited lithium on graphite anodes from large automotive lithium-ion cells (≥6 Ah) is presented. Graphite anode samples were extracted from two different formats (cylindrical and pouch cells) of pristine and differently aged lithium-ion cells. The samples present a variety of anodes with various states of lithium deposition (also known as plating). A chemical modification was performed to metallic lithium deposited on the anode surface due to previous plating with isopropanol (IPA). After this procedure an oxygenated species was detected by scanning electron microscopy (SEM), which later was confirmed as Li2 CO3 by Fourier transform infrared spectroscopy (FTIR) and X-ray powder diffraction (XRPD). A valuation of the covered area by Li2 CO3 was carried out with an image analysis using energy-dispersive X-ray spectroscopy (EDX) and quantitative Rietveld refinement.

  14. Production of planar copper-based anode supported intermediate temperature solid oxide fuel cells cosintered at 950 °C

    Science.gov (United States)

    De Marco, Vincenzo; Grazioli, Alberto; Sglavo, Vincenzo M.

    2016-10-01

    Copper-based anode supported planar Intermediate Temperature Solid Oxide Fuel Cells are produced and characterized in the present work. The most important advancement is related to the use of copper within the anodic layer, this giving promising results for feeding Intermediate Temperature Solid Oxide Fuel Cells with carbon and sulphur containing fuels. Both anode and Li2O containing-Gadolinia Doped Ceria based electrolyte are produced by water based tape casting process. The supporting anode is coupled to the electrolyte by thermopressing, the cathode being obtained by screen printing. A 3 h isotherm at 950 °C allows to obtain the cosintering of the three layers. The electrochemical test performed on such cells reveals a 0.8 V open circuit voltage and a power density higher than 26 mW cm-2 at 650 °C.

  15. Mathematical model for microbial fuel cells with anodic biofilms and anaerobic digestion.

    Science.gov (United States)

    Picioreanu, C; van Loosdrecht, M C M; Katuri, K P; Scott, K; Head, I M

    2008-01-01

    This study describes the integration of IWA's anaerobic digestion model (ADM1) within a computational model of microbial fuel cells (MFCs). Several populations of methanogenic and electroactive microorganisms coexist suspended in the anolyte and in the biofilm attached to the anode. A number of biological, chemical and electrochemical reactions occur in the bulk liquid, in the biofilm and at the electrode surface, involving glucose, organic acids, H2 and redox mediators. Model output includes the evolution in time of important measurable MFC parameters (current production, consumption of substrates, suspended and attached biomass growth). Two- and three-dimensional model simulations reveal the importance of current and biomass heterogeneous distribution over the planar anode surface. Voltage- and power-current characteristics can be calculated at different moments in time to evaluate the limiting regime in which the MFC operates. Finally, model simulations are compared with experimental results showing that, in a batch MFC, smaller electrical resistance of the circuit leads to selection of electroactive bacteria. Higher coulombic yields are so obtained because electrons from substrate are transferred to anode rather than following the methanogenesis pathway. In addition to higher currents, faster COD consumption rates are so achieved. The potential of this general modelling framework is in the understanding and design of more complex cases of wastewater-fed microbial fuel cells.

  16. Fracture toughness of solid oxide fuel cell anode substrates determined by a double-torsion technique

    Science.gov (United States)

    Pećanac, G.; Wei, J.; Malzbender, J.

    2016-09-01

    Planar solid oxide fuel cell anode substrates are exposed to high mechanical loads during assembly, start-up, steady-state operation and thermal cycling. Hence, characterization of mechanical stability of anode substrates under different oxidation states and at relevant temperatures is essential to warrant a reliable operation of solid oxide fuel cells. As a basis for mechanical assessment of brittle supports, two most common anode substrate material variants, NiO-3YSZ and NiO-8YSZ, were analyzed in this study with respect to their fracture toughness at room temperature and at a typical stack operation temperature of 800 °C. The study considered both, oxidized and reduced materials' states, where also an outlook is given on the behavior of the re-oxidized state that might be induced by malfunctions of sealants or other functional components. Aiming at the improvement of material's production, different types of warm pressed and tape cast NiO-8YSZ substrates were characterized in oxidized and reduced states. Overall, the results confirmed superior fracture toughness of 3YSZ compared to 8YSZ based composites in the oxidized state, whereas in the reduced state 3YSZ based composites showed similar fracture toughness at room temperature, but a higher value at 800 °C compared to 8YSZ based composites. Complementary microstructural analysis aided the interpretation of mechanical characterization.

  17. The Catalysis of NAD+ on Methanol Anode Oxidation Electrode for Direct Methanol Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ping; PAN Mu; YUAN Run-zhang

    2004-01-01

    A tentative idea of developing a liquid-catalytic system on methanol anode oxidation was proposed by analyzing the characteristics of methanol anode oxidation in direct methanol fuel cell. The kinetics of methanol oxidation at a glassy carbon electrode in the presence of nicotinamide adenine dinucleotide (NAD+) was investigated. It is found that the current density of methanol oxidation increases greatly and the electrochemical reaction impedance reduces obviously in the presence of NAD+ compared with those in the absence of NAD+. The catalytic activity of NAD+ is sensitive to temperature. When the temperature preponderates over 45℃, NAD+ is out of function of catalysis for methanol oxidation, which is probably due to the denaturation of NAD+ at a relatively high temperature.

  18. Sulfur Poisoning of the Water Gas Shift Reaction on Anode Supported Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Hagen, Anke

    2013-01-01

    Investigation of fuels containing sulfur impurities is important regarding durability of solid oxide fuel cells (SOFC) because they are present in various potential fuels for SOFC applications. The effect of H2S in the ppm range on the performance of state-of-the-art anode supported SOFC at 850...... and 750°C is evaluated in either hydrogen/steam or hydrogen/steam/CO fuel. It was found that the poisoning effect is more severe in H2/H2O/CO vs. H2/H2O fuel. Only ∼8 ppm H2S can be allowed in the CO containing fuel without risking damage to the anode, whereas 90 ppm (or even more) is possible in H2/H2O...

  19. Silver/iron oxide/graphitic carbon composites as bacteriostatic catalysts for enhancing oxygen reduction in microbial fuel cells

    Science.gov (United States)

    Ma, Ming; You, Shijie; Gong, Xiaobo; Dai, Ying; Zou, Jinlong; Fu, Honggang

    2015-06-01

    Biofilms from anode heterotrophic bacteria are inevitably formed over cathodic catalytic sites, limiting the performances of single-chamber microbial fuel cells (MFCs). Graphitic carbon (GC) - based nano silver/iron oxide (AgNPs/Fe3O4/GC) composites are prepared from waste pomelo skin and used as antibacterial oxygen reduction catalysts for MFCs. AgNPs and Fe3O4 are introduced in situ into the composites by one-step carbothermal reduction, enhancing their conductivity and catalytic activity. To investigate the effects of Fe species on the antibacterial and catalytic properties, AgNPs/Fe3O4/GC is washed with sulfuric acid (1 mol L-1) for 0.5 h, 1 h, and 5 h and marked as AgNPs/Fe3O4/GC-x (x = 0.5 h, 1 h and 5 h, respectively). A maximum power density of 1712 ± 35 mW m-2 is obtained by AgNPs/Fe3O4/GC-1 h, which declines by 4.12% after 17 cycles. Under catalysis of all AgNP-containing catalysts, oxygen reduction reaction (ORR) proceeds via the 4e- pathway, and no toxic effects to anode microorganisms result from inhibiting the cathodic biofilm overgrowth. With the exception of AgNPs/Fe3O4/GC-5 h, the AgNPs-containing composites exhibit remarkable power output and coulombic efficiency through lowering proton transfer resistance and air-cathode biofouling. This study provides a perspective for the practical application of MFCs using these efficient antibacterial ORR catalysts.

  20. Anode regeneration following carbon depositions in an industrial-sized anode supported solid oxide fuel cell operating on synthetic diesel reformate

    Science.gov (United States)

    Subotić, Vanja; Schluckner, Christoph; Mathe, Jörg; Rechberger, Jürgen; Schroettner, Hartmuth; Hochenauer, Christoph

    2015-11-01

    Carbon deposition is a primary concern during operation of solid oxide fuel cells (SOFCs) fueled with carbon-containing fuels. It leads to cell degradation and thus reduces SOFC sustained operation and durability. This paper reports on an experimental investigation of carbon formation on the nickel/yttria-stabilized zirconia (Ni/YSZ) anode of an anode-supported SOFC and its regeneration. The cell was fueled with a synthetically produced diesel reformate to investigate and simulate the cell behavior under real operating conditions. For this purpose the cell was operated under load to determine the critical operating time. Rapid carbon generation, such as at open circuit voltage (OCV), can be prevented when the cell is under load. Carbon depositions were detected using scanning electron microscopy (SEM) and further analyzed by Raman spectroscopy. Industrial-size cells suitable for commercial applications were studied. This study proves the reversibility of carbon formation and the reproducibility of the regeneration process. It shows that carbon formations can be recognized and effectively, fully and cell-protecting regenerated. It indicates the excellent possibility of using SOFCs in the automotive industry as an auxiliary power unit (APU) or combined power-heat unit, operated with diesel reformate, without danger from cell degradation caused by carbon-containing fuels.

  1. Segregation of the anodic microbial communities in a microbial fuel cell cascade

    Directory of Open Access Journals (Sweden)

    Douglas eHodgson

    2016-05-01

    Full Text Available Metabolic interactions within microbial communities are essential for the efficient degradation of complex organic compounds, and underpin natural phenomena driven by microorganisms, such as the recycling of carbon-, nitrogen-, and sulphur-containing molecules. These metabolic interactions ultimately determine the function, activity and stability of the community, and therefore their understanding would be essential to steer processes where microbial communities are involved. This is exploited in the design of microbial fuel cells (MFCs, bioelectrochemical devices that convert the chemical energy present in substrates into electrical energy through the metabolic activity of microorganisms, either single species or communities. In this work, we analysed the evolution of the microbial community structure in a cascade of microbial fuel cells (MFCs inoculated with an anaerobic microbial community and continuously fed with a complex medium. The analysis of the composition of the anodic communities revealed the establishment of different communities in the anodes of the hydraulically connected MFCs, with a decrease in the abundance of fermentative taxa and a concurrent increase in respiratory taxa along the cascade. The analysis of the metabolites in the anodic suspension showed a metabolic shift between the first and last MFC, confirming the segregation of the anodic communities. Those results suggest a metabolic interaction mechanism between the predominant fermentative bacteria at the first stages of the cascade and the anaerobic respiratory electrogenic population in the latter stages, which is reflected in the observed increase in power output. We show that our experimental system represents an ideal platform for optimization of processes where the degradation of complex substrates is involved, as well as a potential tool for the study of metabolic interactions in complex microbial communities.

  2. Cathode catalysts for primary phosphoric acid fuel cells

    Science.gov (United States)

    1981-01-01

    Alkylation or carbon Vulcan XC-72, the support carbon, was shown to provide the most stable bond type for linking cobalt dehydrodibenzo tetraazannulene (CoTAA) to the surface of the carbon; this result is based on data obtained by cyclic voltammetry, pulse voltammetry and by release of 14C from bonded CoTAA. Half-cell tests at 100 C in 85% phosphoric acid showed that CoTAA bonded to the surface of carbon (Vulcan XC-72) via an alkylation procedure is a more active catalyst than is platinum based on a factor of two improvement in Tafel slope; dimeric CoTAA had catalytic activity equal to platinum. Half-cell tests also showed that bonded CoTAA catalysts do not suffer a loss in potential when air is used as a fuel rather than oxygen. Commercially available polytetrafluroethylene (PTFE) was shown to be unstable in the fuel cell environment with degradation occurring in 2000 hours or less. The PTFE was stressed at 200 C in concentrated phosphoric acid as well as electrochemically stressed in 150 C concentrated phosphoric acid; the surface chemistry of PTFE was observed to change significantly. Radiolabeled PTFE was prepared and used to verify that such chemical changes also occur in the primary fuel cell environment.

  3. Microbial Community Analysis of Anodes from Sediment Microbial Fuel Cells Powered by Rhizodeposits of Living Rice Plants ▿ †

    Science.gov (United States)

    De Schamphelaire, Liesje; Cabezas, Angela; Marzorati, Massimo; Friedrich, Michael W.; Boon, Nico; Verstraete, Willy

    2010-01-01

    By placing the anode of a sediment microbial fuel cell (SMFC) in the rhizosphere of a rice plant, root-excreted rhizodeposits can be microbially oxidized with concomitant current generation. Here, various molecular techniques were used to characterize the composition of bacterial and archaeal communities on such anodes, as influenced by electrical circuitry, sediment matrix, and the presence of plants. Closed-circuit anodes in potting soil were enriched with Desulfobulbus-like species, members of the family Geobacteraceae, and as yet uncultured representatives of the domain Archaea. PMID:20097806

  4. Manganese titanium perovskites as anodes for solid oxide fuel cells

    OpenAIRE

    2008-01-01

    A new family of perovskite titanates with formulae La4+nSr8-nTi12-nMnnO38 and La4Sr8Ti12-nMnnO38-δ have been investigated as potential fuel electrode materials for SOFCs. The series La4+nSr8-nTi12-nMnnO38 present layered domains within their structure. As such layers appear to have a large negative effect over the electrochemical properties only a few compounds have been characterised. The series La4Sr8Ti12-nMnnO38-δ present a rhombohedral (R-3c) unit cell at room temperature which bec...

  5. LIQUID HYDROCARBON FUEL CELL DEVELOPMENT.

    Science.gov (United States)

    A compound anode consists of a reforming catalyst bed in direct contact with a palladium-silver fuel cell anode. The objective of this study was to...prove the feasibility of operating a compound anode fuel cell on a liquid hydrocarbon and to define the important parameters that influence cell...performance. Both reformer and fuel cell tests were conducted with various liquid hydrocarbon fuels. Included in this report is a description of the

  6. Transition from anodic titania nanotubes to nanowires: arising from nanotube growth to application in dye-sensitized solar cells.

    Science.gov (United States)

    Sun, Lidong; Zhang, Sam; Wang, Xiu; Sun, Xiao Wei; Ong, Duen Yang; Wang, Xiaoyan; Zhao, Dongliang

    2011-12-23

    Anodic formation of titania nanowires has been interpreted using a bamboo-splitting model; however, a number of phenomena are difficult to explain with this model. Herein, transition from nanotubes to nanowires is investigated by varying the anodizing conditions. The results indicate that the transition requires a large number of hydrogen ions to reduce the passivated area of tube walls, and therefore can be observed only in an intermediate chemical dissolution environment. Accordingly, a model in terms of stretching and splitting is proposed to interpret the transition process. The model provides a basis to suppress the nanowires with surface treatments before anodization and to clear the nanowires with an ultrasonication process after anodization. The nanotube-nanowire transition also arises when the tubes are directly used in dye-sensitized solar cells. Treatment with titanium tetrachloride solution for about 10 h is found to be effective in suppressing the nanowires, and thus improving the photovoltaic properties of the solar cells.

  7. A Stability Study of Ni/Yttria-Stabilized Zirconia Anode for Direct Ammonia Solid Oxide Fuel Cells.

    Science.gov (United States)

    Yang, Jun; Molouk, Ahmed Fathi Salem; Okanishi, Takeou; Muroyama, Hiroki; Matsui, Toshiaki; Eguchi, Koichi

    2015-12-30

    In recent years, solid oxide fuel cells fueled with ammonia have been attracting intensive attention. In this work, ammonia fuel was supplied to the Ni/yttria-stabilized zirconia (YSZ) cermet anode at 600 and 700 °C, and the change of electrochemical performance and microstructure under the open-circuit state was studied in detail. The influence of ammonia exposure on the microstructure of Ni was also investigated by using Ni/YSZ powder and Ni film deposited on a YSZ disk. The obtained results demonstrated that Ni in the cermet anode was partially nitrided under an ammonia atmosphere, which considerably roughened the Ni surface. Moreover, the destruction of the anode support layer was confirmed for the anode-supported cell upon the temperature cycling test between 600 and 700 °C because of the nitriding phenomenon of Ni, resulting in severe performance degradation.

  8. Aluminum oxide as a dual-functional modifier of Ni-based anodes of solid oxide fuel cells for operation on simulated biogas

    Science.gov (United States)

    Wang, Feng; Wang, Wei; Ran, Ran; Tade, Moses O.; Shao, Zongping

    2014-12-01

    Al2O3 and SnO2 additives are introduced into the Ni-YSZ cermet anode of solid oxide fuel cells (SOFCs) for operation on simulated biogas. The effects of incorporating Al2O3/SnO2 on the electrical conductivity, morphology, coking resistance and catalytic activity for biogas reforming of the cermet anode are systematically studied. The electrochemical performance of the internal reforming SOFC is enhanced by introducing an appropriate amount of Al2O3 into the anode, but it becomes worse with excess alumina addition. For SnO2, a negative effect on the electrochemical performance is demonstrated, although the coking resistance of the anode is improved. For fuel cells operating on biogas, stable operation under a polarization current for 130 h at 750 °C is achieved for a cell with an Al2O3-modified anode, while cells with unmodified or SnO2-modified Ni-YSZ anodes show much poorer stability under the same conditions. The improved performance of the cell with the Al2O3-modified anode mainly results from the suppressed coking and sintering of the anode and from the formation of NiAl2O4 in the unreduced anode. In sum, modifying the anode with Al2O3 may be a useful and facile way to improve the coking resistance and electrochemical performance of the nickel-based cermet anodes for SOFCs.

  9. Stability and reliability of anodic biofilms under different feedstock conditions: Towards microbial fuel cell sensors

    Directory of Open Access Journals (Sweden)

    Jiseon You

    2015-12-01

    Full Text Available Stability and reliability of microbial fuel cell anodic biofilms, consisting of mixed cultures, were investigated in a continuously fed system. Two groups of anodic biofilm matured with different substrates, acetate and casein for 20–25 days, reached steady states and produced 80–87 μW and 20–29 μW consistently for 3 weeks, respectively. When the substrates were swapped, the casein-enriched group showed faster response to acetate and higher power output, compared to the acetate-enriched group. Also when the substrates were switched back to their original groups, the power output of both groups returned to the previous levels more quickly than when the substrates were swapped the first time. During the substrate change, both MFC groups showed stable power output once they reached their steady states and the output of each group with different substrates was reproducible within the same group. Community level physiological profiling also revealed the possibility of manipulating anodic biofilm metabolisms through exposure to different feedstock conditions.

  10. Enhancement of hydrogen production in a single chamber microbial electrolysis cell through anode arrangement optimization.

    Science.gov (United States)

    Liang, Da-Wei; Peng, Si-Kan; Lu, Shan-Fu; Liu, Yan-Yan; Lan, Fei; Xiang, Yan

    2011-12-01

    Reducing the inner resistances is crucial for the enhancement of hydrogen generation in microbial electrolysis cells (MECs). This study demonstrates that the optimization of the anode arrangement is an effective strategy to reduce the system resistances. By changing the normal MEC configuration into a stacking mode, namely separately placing the contacted anodes from one side to both sides of cathode in parallel, the solution, biofilm and polarization resistances of MECs were greatly reduced, which was also confirmed with electrochemical impedance spectroscopy analysis. After the anode arrangement optimization, the current and hydrogen production rate (HPR) of MEC could be enhanced by 72% and 118%, reaching 621.3±20.6 A/m3 and 5.56 m3/m3 d respectively, under 0.8 V applied voltage. A maximum current density of 1355 A/m3 with a HPR of 10.88 m3/m3 d can be achieved with 1.5 V applied voltage.

  11. Direct laser patterning of transparent ITO-Ag-ITO multilayer anodes for organic solar cells

    Science.gov (United States)

    Kim, Hyo-Joong; Seo, Ki-Won; Kim, Yong Hyeon; Choi, Jiyeon; Kim, Han-Ki

    2015-02-01

    Direct laser patterning of transparent ITO-Ag-ITO (IAI) multilayer anodes is investigated using a femtosecond fiber laser for application in organic solar cells (OSC) fabrication. By adjusting laser fluence and scan speed, we successfully patterned the IAI multilayer anode without changing the electrical or optical properties. At an optimized laser fluence of 0.6 J/cm2 and a scan speed of 200 mm/s, the patterned IAI multilayer was electrically isolated with a clean edge. The metallic Ag interlayer of the IAI multilayer plays an important role in direct laser patterning because it absorbed the laser and increases the maximum temperature in the IAI multilayer. In addition, the Ag layer could effectively decrease the temperature of the IAI multilayer after irradiation of laser. The OSC fabricated on the laser patterned IAI multilayer showed power conversion efficiencies of 3.12% (Ag 8 nm) and 2.85% (Ag 12 nm). Successful operation of the OSC indicates that direct laser patterning of IAI multilayer anodes is a promising, simple patterning technology for fabrication of IAI-based OSCs.

  12. Carbon nanotubes coated with platinum nanoparticles as anode of biofuel cell

    Institute of Scientific and Technical Information of China (English)

    Jianmei Zhang; Yihua Zhu; Cheng Chen; Xiaoling Yang; Chunzhong Li

    2012-01-01

    A hybrid system of carbon nanotubes (CNTs) coated with poly (amidoamine) (PAMAM) dendrimerencapsulated platinum nanoparticles (Pt-DENs) and glucose oxidase (GOx) was prepared through the layer-by-layer (LbL) self-assembly approach and then used as anode in enzyme-based biofuel cells (BFCs).The assembly process was monitored by ζ-potential measurement,and the as-resulted Pt-DENs/CNTs nanocomposites were characterized by transmission electron microscopy (TEM).The performance of electrodes modified by Pt-DENs/CNTs was also investigated by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV).We found that the Pt-DENs/CNTs could enhance the electron transfer between the redox centers in enzyme and the electrode surfaces.Furthermore,by employing the Pt-DENs/CNTs modified electrodes as anode,the enzyme-based BFCs operated in a solution containing glucose generated an open-circuit voltage of approximately 640.0 mV and a maximum current density of about 90.0 μA/cm2,suggesting that Pt-DENs/CNTs may serve as an alternative anode to previously used noble metals in BFC applications.

  13. Dye-sensitized solar cell and photocatalytic performance of nanocomposite photocatalyst prepared by electrochemical anodization

    Indian Academy of Sciences (India)

    MOHAMAD MOHSEN MOMENI

    2016-10-01

    This study compares different Fe-doped TiO$_2$ nanostructures in terms of their photocatalytic performance. Iron-doped TiO$_2$ nanostructures (FeTNs) were prepared by in situ anodizing of titanium in a single-stepprocess in the presence of 3, 9, 15 and 21 mM K$_3$Fe(CN)$_6$. Potassium ferricyanide was used as the iron source. Prepared films are amorphous, so these layers were thermally annealed. The effect of iron doping on the photoelectrochemical properties (including dye-sensitized solar cells) and photocatalysis properties (decomposition of methomyl) was investigated. In all investigated cases, the sample C, which was formed by anodizing in a ethylene glycol electrolyte containing 9 mM K$_3$Fe(CN)$_6$, exhibited better performance than the bare TiO$_2$ and FeNTs fabricated using other iron concentrations. This study demonstrated a feasible and simple anodizing method to fabricate an effective, reproducible and inexpensive photocatalyst for various applications.

  14. Horizontal arrangement of anodes of microbial fuel cells enhances remediation of petroleum hydrocarbon-contaminated soil.

    Science.gov (United States)

    Zhang, Yueyong; Wang, Xin; Li, Xiaojing; Cheng, Lijuan; Wan, Lili; Zhou, Qixing

    2015-02-01

    With the aim of in situ bioremediation of soil contaminated by hydrocarbons, anodes arranged with two different ways (horizontal or vertical) were compared in microbial fuel cells (MFCs). Charge outputs as high as 833 and 762C were achieved in reactors with anodes horizontally arranged (HA) and vertically arranged (VA). Up to 12.5 % of the total petroleum hydrocarbon (TPH) was removed in HA after 135 days, which was 50.6 % higher than that in VA (8.3 %) and 95.3 % higher than that in the disconnected control (6.4 %). Hydrocarbon fingerprint analysis showed that the degradation rates of both alkanes and polycyclic aromatic hydrocarbons (PAHs) in HA were higher than those in VA. Lower mass transport resistance in the HA than that of the VA seems to result in more power and more TPH degradation. Soil pH was increased from 8.26 to 9.12 in HA and from 8.26 to 8.64 in VA, whereas the conductivity was decreased from 1.99 to 1.54 mS/cm in HA and from 1.99 to 1.46 mS/cm in VA accompanied with the removal of TPH. Considering both enhanced biodegradation of hydrocarbon and generation of charge in HA, the MFC with anodes horizontally arranged is a promising configuration for future applications.

  15. Fabrication of solid oxide fuel cell anode electrode by spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lin; Kim, Gap-Yong; Chandra, Abhijit [Iowa State University, Department of Mechanical Engineering, 2034 Black Engineering Building, Ames, IA 50011 (United States)

    2010-10-15

    Large triple phase boundaries (TPBs) and high gas diffusion capability are critical in enhancing the performance of a solid oxide fuel cell (SOFC). In this study, ultrasonic spray pyrolysis has been investigated to assess its capability in controlling the anode microstructure. Deposition of porous anode film of nickel and Ce{sub 0.9}Gd{sub 0.1}O{sub 1.95} on a dense 8 mol.% yttria stabilized zirconia (YSZ) substrate was carried out. First, an ultrasonic atomization model was utilized to predict the deposited particle size. The model accurately estimated the deposited particle size based on the feed solution condition. Second, effects of various process parameters, which included the precursor solution feed rate, precursor solution concentration and deposition temperature, on the TPB formation and porosity were investigated. The deposition temperature and precursor solution concentration were the most critical parameters that influenced the morphology, porosity and particle size of the anode electrode. Ultrasonic spray pyrolysis achieved homogeneous distribution of constitutive elements within the deposited particles and demonstrated capability to control the particle size and porosity in the range of 2-17 {mu}m and 21-52%, respectively. (author)

  16. Fabrication of solid oxide fuel cell anode electrode by spray pyrolysis

    Science.gov (United States)

    Liu, Lin; Kim, Gap-Yong; Chandra, Abhijit

    Large triple phase boundaries (TPBs) and high gas diffusion capability are critical in enhancing the performance of a solid oxide fuel cell (SOFC). In this study, ultrasonic spray pyrolysis has been investigated to assess its capability in controlling the anode microstructure. Deposition of porous anode film of nickel and Ce 0.9Gd 0.1O 1.95 on a dense 8 mol.% yttria stabilized zirconia (YSZ) substrate was carried out. First, an ultrasonic atomization model was utilized to predict the deposited particle size. The model accurately estimated the deposited particle size based on the feed solution condition. Second, effects of various process parameters, which included the precursor solution feed rate, precursor solution concentration and deposition temperature, on the TPB formation and porosity were investigated. The deposition temperature and precursor solution concentration were the most critical parameters that influenced the morphology, porosity and particle size of the anode electrode. Ultrasonic spray pyrolysis achieved homogeneous distribution of constitutive elements within the deposited particles and demonstrated capability to control the particle size and porosity in the range of 2-17 μm and 21-52%, respectively.

  17. Accelerated creep in solid oxide fuel cell anode supports during reduction

    Science.gov (United States)

    Frandsen, H. L.; Makowska, M.; Greco, F.; Chatzichristodoulou, C.; Ni, D. W.; Curran, D. J.; Strobl, M.; Kuhn, L. T.; Hendriksen, P. V.

    2016-08-01

    To evaluate the reliability of solid oxide fuel cell (SOFC) stacks during operation, the stress field in the stack must be known. During operation the stress field will depend on time as creep processes relax stresses. The creep of reduced Ni-YSZ anode support at operating conditions has been studied previously. In this work a newly discovered creep phenomenon taking place during the reduction is reported. This relaxes stresses at a much higher rate (∼×104) than creep during operation. The phenomenon was studied both in three-point bending and uniaxial tension. Differences between the two measurements could be explained by newly observed stress promoted reduction. Finally, samples exposed to a small tensile stress (∼0.004 MPa) were observed to expand during reduction, which is in contradiction to previous literature. These observations suggest that release of internal residual stresses between the NiO and the YSZ phases occurs during reduction. The accelerated creep should practically eliminate any residual stress in the anode support in an SOFC stack, as has previously been indirectly observed. This phenomenon has to be taken into account both in the production of stacks and in the simulation of the stress field in a stack based on anode supported SOFCs.

  18. Stabilisation of composite LSFCO-CGO based anodes for methane oxidation in solid oxide fuel cells

    Science.gov (United States)

    Sin, A.; Kopnin, E.; Dubitsky, Y.; Zaopo, A.; Aricò, A. S.; Gullo, L. R.; Rosa, D. La; Antonucci, V.

    A La 0.6Sr 0.4Fe 0.8Co 0.2O 3-Ce 0.8Gd 0.2O 1.9 (LSFCO-CGO) composite anode material was investigated for the direct electrochemical oxidation of methane in intermediate temperature solid oxide fuel cells (IT-SOFCs). A maximum power density of 0.17 W cm -2 at 800 °C was obtained with a methane-fed ceria electrolyte-supported SOFC. A progressive increase of performance was recorded during 140 h operation with dry methane. The anode did not show any structure degradation after the electrochemical testing. Furthermore, no formation of carbon deposits was detected by electron microscopy and elemental analysis. Alternatively, this perovskite material showed significant chemical and structural modifications after high temperature treatment in a dry methane stream in a packed-bed reactor. It is derived that the continuous supply of mobile oxygen anions from the electrolyte to the LSFCO anode, promoted by the mixed conductivity of CGO electrolyte at 800 °C, stabilises the perovskite structure near the surface under SOFC operation and open circuit conditions.

  19. Sustainable Hypersaline Microbial Fuel Cells: Inexpensive Recyclable Polymer Supports for Carbon Nanotube Conductive Paint Anodes.

    Science.gov (United States)

    Grattieri, Matteo; Shivel, Nelson; Sifat, Iram; Bestetti, Massimiliano; Minteer, Shelley

    2017-02-28

    Microbial fuel cells are an emerging technology for wastewater treatment, but in order to be commercially viable and sustainable, the electrode materials must be inexpensive, recyclable and reliable. In this paper, recyclable polymeric supports were explored for the development of anode electrodes to be applied in-field in single chamber microbial fuel cells operated in hypersaline conditions. The support was covered with a carbon-nanotube (CNT)-based conductive paint and biofilms were able to colonize the electrodes. The single chamber microbial fuel cells with Pt-free cathodes delivered a reproducible power output after 15 days of operation, achieving 12 ± 1 mW m-2 at a current density of 69 ± 7 mA m-2. The decrease of performance in long-term experiments was mostly related to inorganic precipitates on the cathode electrode and did not affect the performance of the anode, as shown by experiments replacing the cathode that regenerated the fuel cell performance. The results of these studies show the feasibility of carbon nanotube-based paint coated polymeric supports for microbial fuel cell applications.

  20. Spatial distribution of bacterial communities on volumetric and planar anodes in single-chamber air-cathode microbial fuel cells

    KAUST Repository

    Vargas, Ignacio T.

    2013-05-29

    Pyrosequencing was used to characterize bacterial communities in air-cathode microbial fuel cells across a volumetric (graphite fiber brush) and a planar (carbon cloth) anode, where different physical and chemical gradients would be expected associated with the distance between anode location and the air cathode. As expected, the stable operational voltage and the coulombic efficiency (CE) were higher for the volumetric anode than the planar anode (0.57V and CE=22% vs. 0.51V and CE=12%). The genus Geobacter was the only known exoelectrogen among the observed dominant groups, comprising 57±4% of recovered sequences for the brush and 27±5% for the carbon-cloth anode. While the bacterial communities differed between the two anode materials, results showed that Geobacter spp. and other dominant bacterial groups were homogenously distributed across both planar and volumetric anodes. This lends support to previous community analysis interpretations based on a single biofilm sampling location in these systems. © 2013 Wiley Periodicals, Inc.

  1. Electrochemically exfoliated graphene anodes with enhanced biocurrent production in single-chamber air-breathing microbial fuel cells.

    Science.gov (United States)

    Najafabadi, Amin Taheri; Ng, Norvin; Gyenge, Előd

    2016-07-15

    Microbial fuel cells (MFCs) present promising options for environmentally sustainable power generation especially in conjunction with waste water treatment. However, major challenges remain including low power density, difficult scale-up, and durability of the cell components. This study reports enhanced biocurrent production in a membrane-free MFC, using graphene microsheets (GNs) as anode and MnOx catalyzed air cathode. The GNs are produced by ionic liquid assisted simultaneous anodic and cathodic electrochemical exfoliation of iso-molded graphite electrodes. The GNs produced by anodic exfoliation increase the MFC peak power density by over 300% compared to plain carbon cloth (i.e., 2.85Wm(-2) vs 0.66Wm(-2), respectively), and by 90% compared to conventional carbon black (i.e., Vulcan XC-72) anode. These results exceed previously reported power densities for graphene-containing MFC anodes. The fuel cell polarization results are corroborated by electrochemical impedance spectroscopy indicating three times lower charge transfer resistance for the GN anode. Material characterizations suggest that the best performing GN samples were of relatively smaller size (~500nm), with higher levels of ionic liquid induced surface functionalization during the electrochemical exfoliation process.

  2. Pd and Pt-Ru anode electrocatalysts supported on multi-walled carbon nanotubes and their use in passive and active direct alcohol fuel cells with an anion-exchange membrane (alcohol = methanol, ethanol, glycerol)

    Science.gov (United States)

    Bambagioni, Valentina; Bianchini, Claudio; Marchionni, Andrea; Filippi, Jonathan; Vizza, Francesco; Teddy, Jacques; Serp, Philippe; Zhiani, Mohammad

    Palladium and platinum-ruthenium nanoparticles supported on multi-walled carbon nanotubes (MWCNT) are prepared by the impregnation-reduction procedure. The materials obtained, Pd/ MWCNT and Pt-Ru/ MWCNT, are characterized by TEM, ICP-AES and XRPD. Electrodes coated with Pd/ MWCNT are scrutinized for the oxidation of methanol, ethanol or glycerol in 2 M KOH solution in half cells. The catalyst is very active for the oxidation of all alcohols, with glycerol providing the best performance in terms of specific current density and ethanol showing the lowest onset potential. Membrane-electrode assemblies have been fabricated using Pd/ MWCNT anodes, commercial cathodes and anion-exchange membrane and evaluated in both single passive and active direct alcohol fuel cells fed with aqueous solutions of 10 wt.% methanol, 10 wt.% ethanol or 5 wt.% glycerol. Pd/ MWCNT exhibits unrivalled activity as anode electrocatalyst for alcohol oxidation. The analysis of the anode exhausts shows that ethanol is selectively oxidized to acetic acid, detected as acetate ion in the alkaline media of the reaction, while methanol yields carbonate and formate. A much wider product distribution, including glycolate, glycerate, tartronate, oxalate, formate and carbonate, is obtained from the oxidation of glycerol. The results obtained with Pt-Ru/ MWCNT anodes in acid media are largely inferior to those provided by Pd/ MWCNT electrodes in alkaline media.

  3. Synthesis of Ordered Mesoporous CuO/CeO2 Composite Frameworks as Anode Catalysts for Water Oxidation

    Directory of Open Access Journals (Sweden)

    Vassiliki Markoulaki Ι

    2015-11-01

    Full Text Available Cerium-rich metal oxide materials have recently emerged as promising candidates for the photocatalytic oxygen evolution reaction (OER. In this article, we report the synthesis of ordered mesoporous CuO/CeO2 composite frameworks with different contents of copper(II oxide and demonstrate their activity for photocatalytic O2 production via UV-Vis light-driven oxidation of water. Mesoporous CuO/CeO2 materials have been successfully prepared by a nanocasting route, using mesoporous silica as a rigid template. X-ray diffraction, electron transmission microscopy and N2 porosimetry characterization of the as-prepared products reveal a mesoporous structure composed of parallel arranged nanorods, with a large surface area and a narrow pore size distribution. The molecular structure and optical properties of the composite materials were investigated with Raman and UV-Vis/NIR diffuse reflectance spectroscopy. Catalytic results indicated that incorporation of CuO clusters in the CeO2 lattice improved the photochemical properties. As a result, the CuO/CeO2 composite catalyst containing ~38 wt % CuO reaches a high O2 evolution rate of ~19.6 µmol·h−1 (or 392 µmol·h−1·g−1 with an apparent quantum efficiency of 17.6% at λ = 365 ± 10 nm. This OER activity compares favorably with that obtained from the non-porous CuO/CeO2 counterpart (~1.3 µmol·h−1 and pure mesoporous CeO2 (~1 µmol·h−1.

  4. Printed biofuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Joseph; Windmiller, Joshua Ray; Jia, Wenzhao

    2016-11-22

    Methods, systems, and devices are disclosed for implementing a biofuel cell device for extracting energy from a biofuel. In one aspect, a biofuel cell device includes a substrate, an anode including a catalyst to facilitate the conversion of a fuel in a biological fluid in an oxidative process that releases electrons captured at the anode, thereby extracting energy from the fuel substance, a cathode configured on the substrate adjacent to the anode and separated from the anode by a spacing region, and a load electrically coupled to the anode and cathode via electrical interconnects to obtain the extracted energy as electrical energy.

  5. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output.

    Science.gov (United States)

    Picot, Matthieu; Lapinsonnière, Laure; Rothballer, Michael; Barrière, Frédéric

    2011-10-15

    Graphite electrodes were modified with reduction of aryl diazonium salts and implemented as anodes in microbial fuel cells. First, reduction of 4-aminophenyl diazonium is considered using increased coulombic charge density from 16.5 to 200 mC/cm(2). This procedure introduced aryl amine functionalities at the surface which are neutral at neutral pH. These electrodes were implemented as anodes in "H" type microbial fuel cells inoculated with waste water, acetate as the substrate and using ferricyanide reduction at the cathode and a 1000 Ω external resistance. When the microbial anode had developed, the performances of the microbial fuel cells were measured under acetate saturation conditions and compared with those of control microbial fuel cells having an unmodified graphite anode. We found that the maximum power density of microbial fuel cell first increased as a function of the extent of modification, reaching an optimum after which it decreased for higher degree of surface modification, becoming even less performing than the control microbial fuel cell. Then, the effect of the introduction of charged groups at the surface was investigated at a low degree of surface modification. It was found that negatively charged groups at the surface (carboxylate) decreased microbial fuel cell power output while the introduction of positively charged groups doubled the power output. Scanning electron microscopy revealed that the microbial anode modified with positively charged groups was covered by a dense and homogeneous biofilm. Fluorescence in situ hybridization analyses showed that this biofilm consisted to a large extent of bacteria from the known electroactive Geobacter genus. In summary, the extent of modification of the anode was found to be critical for the microbial fuel cell performance. The nature of the chemical group introduced at the electrode surface was also found to significantly affect the performance of the microbial fuel cells. The method used for

  6. Electricity generation by two types of microbial fuel cells using nitrobenzene as the anodic or cathodic reactants.

    Science.gov (United States)

    Li, Jie; Liu, Guangli; Zhang, Renduo; Luo, Yong; Zhang, Cuiping; Li, Mingchen

    2010-06-01

    The effect of nitrobenzene (NB) on electricity generation and simultaneous biodegradation of NB were studied with two types of microbial fuel cells (MFCs): a ferricyanide-cathode MFC with NB as the anodic reactant and a NB-cathode MFC. Compared to controls without NB, the presence of NB in the anode of the first MFC decreased maximum voltage outputs, maximum power densities and Coulombic efficiencies. No electricity was generated from the first MFC using NB as the sole fuel; however, the second MFC using NB as the electron acceptor generated electricity successfully with a maximum voltage of 400mV. NB was degraded completely within 24h in both anode and cathode chambers. Denaturing gradient gel electrophoresis (DGGE) profiles demonstrated that the presence of NB caused changes in relative abundance of the dominant bacterial species and emergence of new bacteria on the anodes.

  7. In situ redox cycle of a nickel-YSZ fuel cell anode in an environmental transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Jeangros, Q. [Interdisciplinary Center for Electron Microscopy, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Faes, A. [Interdisciplinary Center for Electron Microscopy, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland)] [Laboratory of Industrial Energy Systems, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Wagner, J.B.; Hansen, T.W. [Center for Electron Nanoscopy, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark); Aschauer, U. [Chemistry Department, Princeton University, Princeton, NJ 08544 (United States); Van herle, J. [Laboratory of Industrial Energy Systems, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Hessler-Wyser, A., E-mail: aicha.hessler@epfl.ch [Interdisciplinary Center for Electron Microscopy, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Dunin-Borkowski, R.E. [Center for Electron Nanoscopy, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark)

    2010-08-15

    Environmental transmission electron microscopy is used in combination with density functional theory calculations to study the redox stability of a nickel/yttria-stabilized zirconia solid oxide fuel cell anode. The results reveal that the transfer of oxygen from NiO to yttria-stabilized zirconia triggers the reduction reaction. During Ni reoxidation, the creation of a porous structure, due to mass transport, accounts for the redox instability of the Ni-based anode. Both the expansion of NiO during a redox cycle and the presence of stress in the yttria-stabilized zirconia grains are observed directly. Besides providing an understanding of the Ni-YSZ anode redox degradation, the observations are used to propose an alternative anode design for improved redox tolerance.

  8. Ni coarsening in the three-phase solid oxide fuel cell anode - a phase-field simulation study

    CERN Document Server

    Chen, Hsun-Yi; Cronin, J Scott; Wilson, James R; Barnett, Scott A; Thornton, Katsuyo

    2012-01-01

    Ni coarsening in Ni-yttria stabilized zirconia (YSZ) solid oxide fuel cell anodes is considered a major reason for anode degradation. We present a predictive, quantative modeling framework based on the phase-field approach to systematically examine coarsening kinetics in such anodes. The initial structures for simulations are experimentally acquired functional layers of anodes. Sample size effects and error analysis of contact angles are examined. Three phase boundary (TPB) lengths and Ni surface areas are quantatively identified on the basis of the active, dead-end, and isolated phase clusters throughout coarsening. Tortuosity evolution of the pores is also investigated. We find that phase clusters with larger characteristic length evolve slower than those with smaller length scales. As a result, coarsening has small positive effects on transport, and impacts less on the active Ni surface area than the total counter part. TPBs, however, are found to be sensitive to local morphological features and are only i...

  9. Methane steam reforming kinetics over Ni-YSZ anode materials for Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Mogensen, David

    energy. The overall efficiency of a fuel cell system operating on natural gas can be significantly improved by having part of the steam reforming take place inside the SOFC stack. In order to avoid large temperature gradients as a result of the highly endothermal steam reforming reaction, the amount...... of internal reforming has to be carefully controlled. The objective of this thesis is to make such a careful control possible by examining the rate of internal steam reforming in SOFCs. The catalytic steam reforming activity of Ni-YSZ anode material was tested both in a packed bed reactor to determine...

  10. Experimental study on the optimal purge duration of a proton exchange membrane fuel cell with a dead-ended anode

    Science.gov (United States)

    Lin, Yu-Fen; Chen, Yong-Song

    2017-02-01

    When a proton exchange membrane fuel cell (PEMFC) is operated with a dead-ended anode, impurities gradually accumulate within the anode, resulting in a performance drop. An anode purge is thereby ultimately required to remove impurities within the anode. A purge strategy comprises purge interval (valve closed) and purge duration (valve is open). A short purge interval causes frequent and unnecessary activation of the valve, whereas a long purge interval leads to excessive impurity accumulation. A short purge duration causes an incomplete performance recovery, whereas a long purge duration results in low hydrogen utilization. In this study, a series of experimental trials was conducted to simultaneously measure the hydrogen supply rate and power generation of a PEMFC at a frequency of 50 Hz for various operating current density levels and purge durations. The effect of purge duration on the cell's energy efficiency was subsequently analyzed and discussed. The results showed that the optimal purge duration for the PEMFC was approximately 0.2 s. Based on the results of this study, a methodical process for determining optimal purge durations was ultimately proposed for widespread application. Purging approximately one-fourth of anode gas can obtain optimal energy efficiency for a PEMFC with a dead-ended anode.

  11. Micromechanical Modeling of Solid Oxide Fuel Cell Anode Supports based on Three-dimensional Reconstructions

    DEFF Research Database (Denmark)

    Kwok, Kawai; Jørgensen, Peter Stanley; Frandsen, Henrik Lund

    2014-01-01

    The efficiency and lifetime of solid oxide fuel cells (SOFCs) is compromised by mechanical failure of cells in the system. Improving the mechanical reliability is a major step in ensuring feasibility of the technology. To quantify the stress in a cell, mechanical properties of the different layers...... need to be accurately known. Since the mechanical properties are heavily dependent on the microstructures of the materials, it is highly advantageous to understand the impact of microstructures and to be able to determine accurate effective mechanical properties for cell or stack scale analyses...... are computed by the finite element method. The macroscopic creep response of the porous anode support is determined based on homogenization theory. It is shown that micromechanical modeling provides an effective tool to study the effect of microstructures on the macroscopic properties....

  12. Vertically aligned carbon nanotubes as anode and air-cathode in single chamber microbial fuel cells

    Science.gov (United States)

    Amade, R.; Moreno, H. A.; Hussain, S.; Vila-Costa, M.; Bertran, E.

    2016-10-01

    Electrode optimization in microbial fuel cells is a key issue to improve the power output and cell performance. Vertically aligned carbon nanotubes (VACNTs) grown on low cost stainless-steel mesh present an attractive approach to increase the cell performance while avoiding the use of expensive Pt-based materials. In comparison with non-aligned carbon nanotubes (NACNTs), VACNTs increase the oxygen reduction reaction taking place at the cathode by a factor of two. In addition, vertical alignment also increases the power density up to 2.5 times with respect to NACNTs. VACNTs grown at the anode can further improve the cell performance by increasing the electrode surface area and thus the electron transfer between bacteria and the electrode. The maximum power density obtained using VACNTs was 14 mW/m2 and 160 mV output voltage.

  13. Initial development and structure of biofilms on microbial fuel cell anodes

    Directory of Open Access Journals (Sweden)

    Keller Jürg

    2010-04-01

    Full Text Available Abstract Background Microbial fuel cells (MFCs rely on electrochemically active bacteria to capture the chemical energy contained in organics and convert it to electrical energy. Bacteria develop biofilms on the MFC electrodes, allowing considerable conversion capacity and opportunities for extracellular electron transfer (EET. The present knowledge on EET is centred around two Gram-negative models, i.e. Shewanella and Geobacter species, as it is believed that Gram-positives cannot perform EET by themselves as the Gram-negatives can. To understand how bacteria form biofilms within MFCs and how their development, structure and viability affects electron transfer, we performed pure and co-culture experiments. Results Biofilm viability was maintained highest nearer the anode during closed circuit operation (current flowing, in contrast to when the anode was in open circuit (soluble electron acceptor where viability was highest on top of the biofilm, furthest from the anode. Closed circuit anode Pseudomonas aeruginosa biofilms were considerably thinner compared to the open circuit anode (30 ± 3 μm and 42 ± 3 μm respectively, which is likely due to the higher energetic gain of soluble electron acceptors used. The two Gram-positive bacteria used only provided a fraction of current produced by the Gram-negative organisms. Power output of co-cultures Gram-positive Enterococcus faecium and either Gram-negative organisms, increased by 30-70% relative to the single cultures. Over time the co-culture biofilms segregated, in particular, Pseudomonas aeruginosa creating towers piercing through a thin, uniform layer of Enterococcus faecium. P. aeruginosa and E. faecium together generated a current of 1.8 ± 0.4 mA while alone they produced 0.9 ± 0.01 and 0.2 ± 0.05 mA respectively. Conclusion We postulate that this segregation may be an essential difference in strategy for electron transfer and substrate capture between the Gram-negative and the Gram

  14. Empirical analysis of contributing factors to heating in lithium-ion cells: Anode entropy versus internal resistance

    Science.gov (United States)

    Srinivasan, Rengaswamy; Carkhuff, Bliss G.

    2013-11-01

    Charging a battery beyond its maximum capacity can lead both to cell overheating and to the venting of gasses. A fundamental understanding of cell heating could lead to the development of real-time sensors that anticipate and avert catastrophic battery failure. Joule heating (also called ohmic or resistive heating) from cell internal resistance (Rint) dominates the overall thermal energy (ΔQ) generated during charging. Contrary to prior hypotheses, though, Joule heating does not appear to contribute to venting observed during overcharging. In this manuscript, we examine an alternate hypothesis, that heat released by the entropy change in the anode (ΔSanode) and the concomitant increase in the anode temperature (Tanode) triggers the venting. Using our recently developed non-invasive battery internal temperature (BIT) sensor to monitor Tanode, we separated the contributions of ΔSanode, Rint and the anode resistance (Ranode) to ΔQ. These quantities were tracked during constant current charging of a 18650 Lithium-ion cell, from zero state of charge (SoC) to overcharge. The resulting analysis suggests that anode entropy change is more important than resistive heating resulting from Ranode to the overall thermal energy. Anode entropy measurements, enabled by the BIT sensor, might serve as an alternative or adjunct method for anticipating and avoiding cell venting events.

  15. Miniature fuel cell with monolithically fabricated Si electrodes - Alloy catalyst formation -

    Science.gov (United States)

    Ogura, Daiki; Suzuki, Takahiro; Katayama, Noboru; Dowaki, Kiyoshi; Hayase, Masanori

    2013-12-01

    A novel Pd-Pt catalyst formation process was proposed for reduction of Pt usage. In our miniature fuel cells, porous Pt was used as the catalyst, and the Pt usage was quite high. To reduce the Pt usage, we have attempted to deposit Pt on porous Pd by galvanic replacement, and relatively large output was demonstrated. In this study, in order to reduce more Pt usage and explore the alloy catalyst formation process, atomic layer deposition by UPD-SLRR (Under Potential Deposition - Surface Limited Redox Replacement) was applied to the Pd-Pt catalyst formation. The new process was verified at each process steps by EDS elemental analysis, and the expected spectra were obtained. Prototype cells were constructed by the new process, and cell output was raised to 420mW/cm2 by the Pd-Pt catalyst from 125mW/cm2 with Pd catalyst.

  16. Nanoporous palladium anode for direct ethanol solid oxide fuel cells with nanoscale proton-conducting ceramic electrolyte

    Science.gov (United States)

    Li, Yong; Wong, Lai Mun; Xie, Hanlin; Wang, Shijie; Su, Pei-Chen

    2017-02-01

    In this work, we demonstrate the operation of micro-solid oxide fuel cells (μ-SOFCs) with nanoscale proton-conducting Y-BaZrO3 (BZY) electrolyte to avoid the fuel crossover problem for direct ethanol fuel cells (DEFCs). The μ-SOFCs are operated with the direct utilisation of ethanol vapour as a fuel and Pd as anode at the temperature range of 300-400 °C. The nanoporous Pd anode is achieved by DC sputtering at high Ar pressure of 80 mTorr. The Pd-anode/BYZ-electrolyte/Pt-cathode cell show peak power densities of 72.4 mW/cm2 using hydrogen and 15.3 mW/cm2 using ethanol at 400 °C. No obvious carbon deposition is seen from XPS analysis after fuel cell test with ethanol fuel.

  17. Improvement of output performance of solid oxide fuel cell by optimizing Ni/samaria-doped ceria anode functional layer

    Energy Technology Data Exchange (ETDEWEB)

    Ai, Na; Lue, Zhe; Chen, Kongfa; Huang, Xiqiang [Center for Condensed Matter Science and Technology, Harbin Institute of Technology, Harbin 150001 (China); Tang, Jinke [Department of Physics, University of New Orleans, New Orleans, LA 70148 (United States); Su, Wenhui [Center for Condensed Matter Science and Technology, Harbin Institute of Technology, Harbin 150001 (China); International Center for Material Physics, Academia, Shenyang 110015 (China)

    2008-10-15

    Anode functional layers (AFLs) were fabricated using slurry spin coating method on anode substrates to improve the performance of cells based on samaria-doped ceria (SDC) films. The effects of the chemical compositions of AFL and AFL thickness on the performance of solid oxide fuel cell anodes were investigated by studying their effect on the ohmic loss, electrode overpotential, and output performance of cells in different atmospheres. With humidified hydrogen used as fuel and oxygen as oxidant, the cell with an 8-{mu}m-thick AFL (NiO:SDC = 6:4) exhibited excellent maximum power densities of 3.41, 2.89, 1.46 and 0.80 W cm{sup -2} at 650, 600, 550 and 500 C, respectively. (author)

  18. High pressure organic colloid method for the preparation of high performance carbon nanotube-supported Pt and PtRu catalysts for fuel cell applications

    Institute of Scientific and Technical Information of China (English)

    WANG; KateNing; Viola; BIRSS

    2010-01-01

    Highly dispersed,high performance Pt and PtRu catalysts,supported on multiwalled carbon nanotubes(CNTs),were prepared by a high pressure organic colloid method.The particle sizes of the active components were as small as 1.2 nm for Pt and 1.1 nm for PtRu,and the active Pt surface areas were 295 and 395 m2/g,respectively.The catalysts showed very high activities toward the anodic oxidation of methanol,evaluated by cyclic voltammetry,being up to 4 times higher than that of commercial Johnson Matthey Hispec 2000 Pt/XC-72R and 5 times better than Hispec 5000 PtRu/XC-72R catalysts.In a full air/hydrogen fuel cell,a membrane-electrode assembly prepared using our Pt/CNT and PtRu/CNT catalysts showed 50% and 100% higher performances than those prepared with commercial Johnson Matthey Pt/XC-72R and PtRu/XC-72R catalysts for the same Pt loading and operating conditions.

  19. Conformal growth of anodic nanotubes for dye-sensitized solar cells: part II. Nonplanar electrode.

    Science.gov (United States)

    Sun, Lidong; Zhang, Sam; Wang, Qing

    2014-02-01

    Anodic titania nanotube array features highly ordered alignment as well as porous nature, and exhibits intriguing properties when employed in a variety of applications. All these profit from the continuous efforts on controlling the nanotube configurations. Recently, nonplanar electrodes have also been used to grow the nanotubes besides the conventional planar counterparts. As such, it is of great interest and significance to complete a picture to link the nanotubes grown on planar and various nonplanar electrodes for a comprehensive understanding of nanotube growing manners, in an attempt to boost their future applications. In the first part of this review, planar electrodes are focused with regard to nanotube growth and application in dye-sensitized solar cells. In this part, the nanotubes grown on patterned or curved surfaces are discussed first with reference to a similar structure of alumina nanopores, which are subsequently used to mirror the growth of nanotubes on cylindrical electrodes (i.e., titanium wires or meshes). The last section focuses on titanium tubular electrodes which are attractive for thermal fluids in view of the drastically reduced thermal conductivity in the presence of anodic nanotubes. As a recent hot topic, wire-shaped dye-sensitized solar cells are deliberated in terms of cell structure, efficiency calculation, merits, challenges and outlook.

  20. Anode reaction mechanism and crossover in direct dimethyl ether fuel cell

    Science.gov (United States)

    Mizutani, Itsuko; Liu, Yan; Mitsushima, Shigenori; Ota, Ken-ichiro; Kamiya, Nobuyuki

    The anode reaction mechanism and the crossover of a direct dimethyl ether fuel cell (DDMEFC) have been investigated. This was done by considering the anode products of the half-cell and DDMEFC experiments. It was found that the CO 2 current efficiency of the DDMEFC was almost 1 at 30-80 °C and that this value was higher than that of a DMFC. The main by-products of the DDMEFC were methyl formate and methanol whose amounts are negligibly small compared to CO 2. With respect to crossover, the influence of DME on the oxygen reduction reaction (ORR) was examined with a half-cell, and the amount of crossover of DME was measured while operating an actually constructed DDMEFC. From these experiments, it was found that DME does not influence the ORR as much as methanol under similar conditions. Furthermore, the amount of crossover of DME decreased with an increase in temperature and current density and it was one-half that of methanol on open circuit and at 80 °C. The CO 2 current efficiency of the DDMEFC is higher than that of a DMFC, and the influence of crossover in the DDMEFC is less than that in the DMFC. Since the temperature dependence of the reactivity of DME is larger than that of methanol, the higher output is expected for the DDMEFC at the elevated temperature. Therefore, the DDMEFC has a promising potential as a portable power source in the future.

  1. Analysis of equilibrium and kinetic models of internal reforming on solid oxide fuel cell anodes: Effect on voltage, current and temperature distribution

    Science.gov (United States)

    Ahmed, Khaliq; Fӧger, Karl

    2017-03-01

    The SOFC is well-established as a high-efficiency energy conversion technology with demonstrations of micro-CHP systems delivering 60% net electrical efficiency [1]. However, there are key challenges in the path to commercialization. Foremost among them is stack durability. Operating at high temperatures, the SOFC invariably suffers from thermally induced material degradation. This is compounded by thermal stresses within the SOFC stack which are generated from a number of interacting factors. Modelling is used as a tool for predicting undesirable temperature and current density gradients. For an internal reforming SOFC, fidelity of the model is strongly linked to the representation of the fuel reforming reactions, which dictate species concentrations and net heat release. It is critical for simulation of these profiles that the set of reaction rate expressions applicable for the particular anode catalyst are chosen in the model. A relatively wide spectrum of kinetic correlations has been reported in the literature. This work presents a comparative analysis of the internal distribution of temperature, current, voltage and compositions on a SOFC anode, using various combinations of reaction kinetics and equilibrium expressions for the reactions. The results highlight the significance of the fuel reforming chemistry and kinetics in the prediction of cell performance.

  2. Highly active carbon supported Pd cathode catalysts for direct formic acid fuel cells

    Science.gov (United States)

    Mikolajczuk-Zychora, A.; Borodzinski, A.; Kedzierzawski, P.; Mierzwa, B.; Mazurkiewicz-Pawlicka, M.; Stobinski, L.; Ciecierska, E.; Zimoch, A.; Opałło, M.

    2016-12-01

    One of the drawbacks of low-temperature fuel cells is high price of platinum-based catalysts used for the electroreduction of oxygen at the cathode of the fuel cell. The aim of this work is to develop the palladium catalyst that will replace commonly used platinum cathode catalysts. A series of palladium catalysts for oxygen reduction reaction (ORR) were prepared and tested on the cathode of Direct Formic Acid Fuel Cell (DFAFC). Palladium nanoparticles were deposited on the carbon black (Vulcan) and on multiwall carbon nanotubes (MWCNTs) surface by reduction of palladium(II) acetate dissolved in ethanol. Hydrazine was used as a reducing agent. The effect of functionalization of the carbon supports on the catalysts physicochemical properties and the ORR catalytic activity on the cathode of DFAFC was studied. The supports were functionalized by treatment in nitric acid for 4 h at 80 °C. The structure of the prepared catalysts has been characterized by thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscope (TEM) and cyclic voltammetry (CV). Hydrophilicity of the catalytic layers was determined by measuring contact angles of water droplets. The performance of the prepared catalysts has been compared with that of the commercial 20 wt.% Pt/C (Premetek) catalyst. The maximum power density obtained for the best palladium catalyst, deposited on the surface of functionalized carbon black, is the same as that for the commercial Pt/C (Premetek). Palladium is cheaper than platinum, therefore the developed cathode catalyst is promising for future applications.

  3. Porphyrin Dye-Sensitized Zinc Oxide Aggregated Anodes for Use in Solar Cells

    Directory of Open Access Journals (Sweden)

    Yu-Kai Syu

    2016-08-01

    Full Text Available Porphyrin YD2-o-C8-based dyes were employed to sensitize room-temperature (RT chemical-assembled ZnO aggregated anodes for use in dye-sensitized solar cells (DSSCs. To reduce the acidity of the YD2-o-C8 dye solution, the proton in the carboxyl group of a porphyrin dye was replaced with tetrabuthyl ammonium (TBA+ in this work. The short-circuit current density (Jsc of the YD2-o-C8-TBA-sensitized ZnO DSSCs is higher than that of the YD2-o-C8-sensitized cells, resulting in the improvement of the efficiency of the YD2-o-C8-based ZnO DSSCs. With an appropriate incorporation of chenodeoxycholic acid (CDCA as coadsorbate, the Jsc and efficiency of the YD2-o-C8-TBA-sensitized ZnO DSSC are enhanced due to the improvement of the incident-photon-to-current efficiency (IPCE values in the wavelength range of 400–450 nm. Moreover, a considerable increase in Jsc is achieved by the addition of a light scattering layer in the YD2-o-C8-TBA-sensitized ZnO photoanodes. Significant IPCE enhancement in the range 475–600 nm is not attainable by tuning the YD2-o-C8-TBA sensitization processes for the anodes without light scattering layers. Using the RT chemical-assembled ZnO aggregated anode with a light scattering layer, an efficiency of 3.43% was achieved in the YD2-o-C8-TBA-sensitized ZnO DSSC.

  4. Glucose oxidase anode for biofuel cell based on direct electron transfer

    Energy Technology Data Exchange (ETDEWEB)

    Ivnitski, Dmitri; Branch, Brittany; Atanassov, Plamen [Department of Chemical and Nuclear Engineering, University of New Mexico, 209 Farris Engineering Center, Room 150, Albuquerque, NM 87131-0001 (United States); Apblett, Christopher [Sandia National Laboratories, Albuquerque, NM 87185 (United States)

    2006-08-15

    This paper presents a new design concept of a glucose oxidase (GO{sub x}) electrode as an anode for the biofuel cell based on direct electron transfer (DET) between the active site of an enzyme and the multi-walled carbon nanotube (MWNT)-modified electrode surface. Toray{sup (R)} carbon paper (TP) with a porous three-dimensional network (78% porosity) was used as a matrix for selectively growing multi-walled carbon nanotubes. The incorporation of MWCNTs into TP was provided by the chemical vapor deposition technique after an electrochemical transition of cobalt metal seeds. This approach has the ability to efficiently promote DET reactions. The morphologies and electrochemical characteristics of the GO{sub x} modified electrodes were investigated by scanning electron microscopy, cyclic voltammetry, and potentiometric methods. The combination of poly-cation polyethylenimine (PEI) with negatively charged glucose oxidase provides formation of circa 100nm thick films on the TP/MWCNT surface. The tetrabutylammonium bromide salt-treated Nafion{sup (R)} was used as GO{sub x} binder and proton-conducting medium. The TP/MWCNT/PEI/GO{sub x}/Nafion{sup (R)} modified electrode operates at 25{sup o}C in 0.02M phosphate buffer solution (pH 6.9) containing 0.1M KCl in the presence of 20mM glucose. The open circuit potential of GO{sub x} anode was between -0.38V and -0.4V vs. Ag/AgCl, which is closer to the redox potential of the FAD/FADH{sub 2} cofactor in the enzyme itself. The GO{sub x} electrode has a potential to work in vivo by using endogenous substances, such as glucose and oxygen. Such a glucose anode allows for the development of a new generation of miniaturized membrane-less biofuel cells. (author)

  5. Methanol Steam Reforming Catalysts for Fuel Cell Driven Electric Vehicles

    Institute of Scientific and Technical Information of China (English)

    Yongfeng Li; Xinfa Dong; Weiming Lin

    2003-01-01

    Cu/ZnAlO catalysts derived from hydroxycarbonate precursors containing hydrotalcite-likelayered double hydroxides (LDHs) were studied. The influence on the performance of the catalysts wasalso studied when the Al in the Cu/ZnAlO catalyst was partly or completely replaced by Zr or Ce.

  6. Nickel/Yttria-stabilised zirconia cermet anodes for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Primdahl, S.

    1999-08-01

    This thesis deals with the porous Ni/yttria-stabilized zirconia (YSZ) cermet anode on a YSZ electrolyte for solid oxide fuel cells (SOFC). Such anodes are predominantly operated in moist hydrogen at 700 deg. C to 1000 deg. C, and the most important technological parameters are the polarization resistance and the long-term stability. The polarization resistance can be measured by a number of techniques, in the present work impedance spectroscopy has been used extensively. By impedance spectroscopy limiting processes in the anode polarization resistance may often be separated and characterized individually, provided they have a reasonable separation in time constants. Three limiting processes are recognized in impedance spectra obtained on technological Ni/YSZ cermet anodes characterized against a stable reference electrode atmosphere. By parameter studies and illustrative experiments, the two contributions at low and medium frequency have been identified as gas conversion and diffusion limitations, respectively. Both of these effects are concentration limitations relating to the inefficient exchange of fuel gas in the test setup outside the porous cermet. A test setup geometry where these concentration effects are avoided for high-performance electrodes is recommended. The high frequency limitation is demonstrated to relate to the cermet structure. The dependence on gas composition, temperature, adsorbed species (sulfur), isotopes (H/D), sintering temperature and cermet thickness is investigated. Despite these studies and several similar studies by others, the exact chemical or physical nature of the limiting step has not been incontestably identified. However, these is a general consensus in literature about the hydrogen oxidation process taking place on or near to the triple phase boundary (TPB) line, where open gas-filled pores, the continuous electrolyte phase (oxide ion cunductor) and the continuous Ni phase (electronic conductor) meet. The physical thickness

  7. A solar-powered microbial electrolysis cell with a platinum catalyst-free cathode to produce hydrogen.

    Science.gov (United States)

    Chae, Kyu-Jung; Choi, Mi-Jin; Kim, Kyoung-Yeol; Ajayi, Folusho F; Chang, In-Seop; Kim, In S

    2009-12-15

    This paper reports successful hydrogen evolution using a dye-sensitized solar cell (DSSC)-powered microbial electrolysis cell (MEC) without a Pt catalyst on the cathode, indicating a solution for the inherent drawbacks of conventional MECs, such as the need for an external bias and catalyst. DSSCs fabricated by assembling a ruthenium dye-loaded TiO(2) film and platinized FTO glass with an I(-)/I(3)(-) redox couple were demonstrated as an alternative bias (V(oc) = 0.65 V). Pt-loaded (0.3 mg Pt/cm(2)) electrodes with a Pt/C nanopowder showed relatively faster hydrogen production than the Pt-free electrodes, particularly at lower voltages. However, once the applied photovoltage exceeded a certain level (0.7 V), platinum did not have any additional effect on hydrogen evolution in the solar-powered MECs: hydrogen conversion efficiency was almost comparable for either the plain (71.3-77.0%) or Pt-loaded carbon felt (79.3-82.0%) at >0.7 V. In particular, the carbon nanopowder-coated electrode without Pt showed significantly enhanced performance compared to the plain electrode, which indicates efficient electrohydrogenesis, even without Pt by enhancing the surface area. As the applied photovoltage was increased, anodic methanogenesis decreased gradually, resulting in increasing hydrogen yield.

  8. Microstructural degradation of Ni-YSZ anodes for solid oxide fuel cells

    DEFF Research Database (Denmark)

    Thydén, Karl Tor Sune

    2008-01-01

    are of technological relevance, it is difficult to identify the effect from isolated parameters such as temperature, fuel gas composition and polarization. Model studies of high temperature aged Ni-YSZ cermets are generally performed in atmospheres containing relatively low concentrations of H2O. In this work......, the microstructural degradation in both electrochemically longterm tested cells and high-temperature aged model materials are studied. Since Ni particle sintering / coarsening is attributed to be the major cause of anode degradation, this subject attains the primary focus. A large part of the work is focused......-reforming catalysis. In the context of electrochemically tested and technologically relevant cells, the majority of the microstructural work is performed on a cell tested at 850°C under relatively severe conditions for 17,500 hours. It is demonstrated that the major Ni rearrangements take place at the interface...

  9. Increased Power in Sediment Microbial Fuel Cell: Facilitated Mass Transfer via a Water-Layer Anode Embedded in Sediment.

    Directory of Open Access Journals (Sweden)

    Yoo Seok Lee

    Full Text Available We report a methodology for enhancing the mass transfer at the anode electrode of sediment microbial fuel cells (SMFCs, by employing a fabric baffle to create a separate water-layer for installing the anode electrode in sediment. The maximum power in an SMFC with the anode installed in the separate water-layer (SMFC-wFB was improved by factor of 6.6 compared to an SMFC having the anode embedded in the sediment (SMFC-woFB. The maximum current density in the SMFC-wFB was also 3.9 times higher (220.46 mA/m2 than for the SMFC-woFB. We found that the increased performance in the SMFC-wFB was due to the improved mass transfer rate of organic matter obtained by employing the water-layer during anode installation in the sediment layer. Acetate injection tests revealed that the SMFC-wFB could be applied to natural water bodies in which there is frequent organic contamination, based on the acetate flux from the cathode to the anode.

  10. Improving the performance of microbial fuel cells by reducing the inherent resistivity of carbon fiber brush anodes

    Science.gov (United States)

    Xie, Yang'en; Ma, Zhaokun; Song, Huaihe; Wang, Huiyao; Xu, Pei

    2017-04-01

    This study investigated the effect of carbon fibers as brush anode materials on the performance of microbial fuel cells (MFCs). Two types of carbon fibers with different electrical resistivity and functionality - polyacrylonitrile (PAN) (ρ: 28.0 μΩ m) and pitch (ρ: 2.05 μΩ m) were investigated. X-ray photoelectron spectroscopy analysis showed that the PAN- and pitch-based carbon fibers presented almost the same surface elements and functional groups, and there was no significant difference in microbial growth on the brush anodes. Current interrupt and steady discharging methods demonstrated the pitch-based carbon brush anodes had lower ohmic resistance and generated higher power density. After nitric acid treatment, the power density generated by the PAN- and pitch-based anodes increased by 29.3% and 26.7%, achieving 816 and 895 mW m-2, respectively. Using pitch-based carbon fiber brush as anode attained better performance than the widely used PAN-based carbon brush. The acid treated pitch-based carbon fibers provide a promising alternative to highly efficient anode materials for the extensive application of MFCs.

  11. Electric current generation by sulfur-reducing bacteria in microbial-anode fuel cell

    Science.gov (United States)

    Vasyliv, Oresta M.; Bilyy, Oleksandr I.; Ferensovych, Yaroslav P.; Hnatush, Svitlana O.

    2012-10-01

    Sulfur - reducing bacteria are a part of normal microflora of natural environment. Their main function is supporting of reductive stage of sulfur cycle by hydrogen sulfide production in the process of dissimilative sulfur-reduction. At the same time these bacteria completely oxidize organic compounds with CO2 and H2O formation. It was shown that they are able to generate electric current in the two chamber microbial-anode fuel cell (MAFC) by interaction between these two processes. Microbial-anode fuel cell on the basis of sulfur- and ferric iron-reducing Desulfuromonas acetoxidans bacteria has been constructed. It has been shown that the amount of electricity generation by investigated bacteria is influenced by the concentrations of carbon source (lactate) and ferric iron chloride. The maximal obtained electric current and potential difference between electrodes equaled respectively 0.28-0.29 mA and 0.19-0.2 V per 0.3 l of bacterial suspension with 0.4 g/l of initial biomass that was grown under the influence of 0.45 mM of FeCl3 and 3 g/l of sodium lactate as primal carbon source. It has also been shown that these bacteria are resistant to different concentrations of silver ions.

  12. Improving startup performance with carbon mesh anodes in separator electrode assembly microbial fuel cells

    KAUST Repository

    Zhang, Fang

    2013-04-01

    In a separator electrode assembly microbial fuel cell, oxygen crossover from the cathode inhibits current generation by exoelectrogenic bacteria, resulting in poor reactor startup and performance. To determine the best approach for improving startup performance, the effect of acclimation to a low set potential (-0.2V, versus standard hydrogen electrode) was compared to startup at a higher potential (+0.2V) or no set potential, and inoculation with wastewater or pre-acclimated cultures. Anodes acclimated to -0.2V produced the highest power of 1330±60mWm-2 for these different anode conditions, but unacclimated wastewater inocula produced inconsistent results despite the use of this set potential. By inoculating reactors with transferred cell suspensions, however, startup time was reduced and high power was consistently produced. These results show that pre-acclimation at -0.2V consistently improves power production compared to use of a more positive potential or the lack of a set potential. © 2013 Elsevier Ltd.

  13. Experimental Studies of the Effects of Anode Composition and Process Parameters on Anode Slime Adhesion and Cathode Copper Purity by Performing Copper Electrorefining in a Pilot-Scale Cell

    Science.gov (United States)

    Zeng, Weizhi; Wang, Shijie; Free, Michael L.

    2016-10-01

    Copper electrorefining tests were conducted in a pilot-scale cell under commercial tankhouse environment to study the effects of anode compositions, current density, cathode blank width, and flow rate on anode slime behavior and cathode copper purity. Three different types of anodes (high, mid, and low impurity levels) were used in the tests and were analyzed under SEM/EDS. The harvested copper cathodes were weighed and analyzed for impurities concentrations using DC Arc. The adhered slimes and released slimes were collected, weighed, and analyzed for compositions using ICP. It was shown that the lead-to-arsenic ratio in the anodes affects the sintering and coalescence of slime particles. High current density condition can improve anode slime adhesion and cathode purity by intensifying slime particles' coalescence and dissolving part of the particles. Wide cathode blanks can raise the anodic current densities significantly and result in massive release of large slime particle aggregates, which are not likely to contaminate the cathode copper. Low flow rate can cause anode passivation and increase local temperatures in front of the anode, which leads to very intense sintering and coalescence of slime particles. The results and analyses of the tests present potential solutions for industrial copper electrorefining process.

  14. Direct Logistic Fuel JP-8 Conversion in a Liquid Tin Anode Solid Oxide Fuel Cell (LTA-SOFC)

    Science.gov (United States)

    2008-04-09

    demonstrated the ability of the Liquid Tin Anode Solid Oxide Fuel Cell (LTA SOFC) to direct convert logistic fuel, JP-8. The demonstration of direct JP-8...conversion without fuel processing or reforming was unprecedented in fuel cell technology. The DOD has a broad interest in power generation using

  15. Diversity and function of the microbial community on anodes of sediment microbial fuel cells fueled by root exudates

    Energy Technology Data Exchange (ETDEWEB)

    Cabezas da Rosa, Angela

    2010-11-26

    Anode microbial communities are essential for current production in microbial fuel cells. Anode reducing bacteria are capable of using the anode as final electron acceptor in their respiratory chain. The electrons delivered to the anode travel through a circuit to the cathode where they reduce oxygen to water generating an electric current. A novel type of sediment microbial fuel cell (SMFC) harvest energy from photosynthetically derived compounds released through the roots. Nothing is known about anode microbial communities of this type of microbial fuel cell. This work consists of three parts. The first part focuses on the study of bacterial and archaeal community compositions on anodes of SMFCs fueled by rice root exudates. By using terminal restriction fragment length polymorphism (T-RFLP), a profiling technique, and cloning / sequencing of 16S rRNA, we determined that the support type used for the plant (vermiculite, potting soil or rice field soil) is an important factor determining the composition of the microbial community. Finally, by comparing microbial communities of current producing anodes and non-current producing controls we determined that Desulfobulbus- and Geobacter-related populations were probably most important for current production in potting soil and rice field soil SMFCs, respectively. However, {delta}-proteobacterial Anaeromyxobacter spp., unclassified {delta}-proteobacteria and Anaerolineae were also part of the anode biofilm in rice field soil SMFCs and these populations might also play a role in current production. Moreover, distinct clusters of Geobacter and Anaeromyxobacter populations were stimulated by rice root exudates. Regarding Archaea, uncultured Euryarchaea were abundant on anodes of potting soil SMFCs indicating a potential role in current production. In both, rice field soil and potting soil SMFCs, a decrease of Methanosaeta, an acetotrophic methanogen, was detected on current producing anodes. In the second part we focused

  16. High surface area graphite as alternative support for proton exchange membrane fuel cell catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira-Aparicio, P.; Folgado, M.A. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avda. Complutense 22, E-28040 Madrid (Spain); Daza, L. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avda. Complutense 22, E-28040 Madrid (Spain); Instituto de Catalisis y Petroleoquimica (CSIC), C/Marie Curie, 2 Campus de Cantoblanco, E-28049 Madrid (Spain)

    2009-07-01

    The suitability of a high surface area graphite (HSAG) as proton exchange membrane fuel cell (PEMFC) catalyst support has been evaluated and compared with that of the most popular carbon black: the Vulcan XC72. It has been observed that Pt is arranged on the graphite surface resulting in different structures which depend on the catalysts synthesis conditions. The influence that the metal particle size and the metal-support interaction exert on the catalysts degradation rate is analyzed. Temperature programmed oxidation (TPO) under oxygen containing streams has been shown to be a useful method to assess the resistance of PEMFC catalysts to carbon corrosion. The synthesized Pt/HSAG catalysts have been evaluated in single cell tests in the cathode catalytic layer. The obtained results show that HSAG can be a promising alternative to the traditionally used Vulcan XC72 carbon black when suitable catalysts synthesis conditions are used. (author)

  17. Performance improvement of direct internal reforming solid oxide fuel cell fuelled by H2S-contaminated biogas with paper-structured catalyst technology

    Science.gov (United States)

    Shiratori, Y.; Sakamoto, M.

    2016-11-01

    Direct internal reforming (DIR) operation of a solid oxide fuel cell (SOFC) is a very attractive concept for downsizing and cost reduction of SOFC systems. This study aimed to develop stable operation of a DIR-SOFC fuelled by biogas. The current-voltage (I-V) curves of 2 × 2 cm2 planar SOFCs (anode- and electrolyte-supported cells, ASC and ESC, respectively.) were measured at 800 °C in the direct feed of a simulated biogas mixture (CH4/CO2 = 1), and the flexible structured catalyst material (paper-structured catalyst (PSC)) was applied on the anode material for performance enhancement. By applying a hydrotalcite (HT)-dispersed PSC (HT-PSC), the sulfur tolerance of the SOFC in the DIR operation was remarkably improved. By the effect of the HT-PSC, for both ASC and ESC, a stable cell voltage higher than 800 mV was obtained over 200 h at 0.2 A cm-2 in the direct feed of simulated biogas under 5 ppm H2S poisoning.

  18. Particle-in-cell modeling for MJ scale dense plasma focus with varied anode shape

    Energy Technology Data Exchange (ETDEWEB)

    Link, A., E-mail: link6@llnl.gov; Halvorson, C., E-mail: link6@llnl.gov; Schmidt, A. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Hagen, E. C. [National Security Technologies, Las Vegas, NV 89030 (United States); Rose, D. V.; Welch, D. R. [Voss Scientific LLC, Albuquerque NM 87108 (United States)

    2014-12-15

    Megajoule scale dense plasma focus (DPF) Z-pinches with deuterium gas fill are compact devices capable of producing 10{sup 12} neutrons per shot but past predictive models of large-scale DPF have not included kinetic effects such as ion beam formation or anomalous resistivity. We report on progress of developing a predictive DPF model by extending our 2D axisymmetric collisional kinetic particle-in-cell (PIC) simulations from the 4 kJ, 200 kA LLNL DPF to 1 MJ, 2 MA Gemini DPF using the PIC code LSP. These new simulations incorporate electrodes, an external pulsed-power driver circuit, and model the plasma from insulator lift-off through the pinch phase. To accommodate the vast range of relevant spatial and temporal scales involved in the Gemini DPF within the available computational resources, the simulations were performed using a new hybrid fluid-to-kinetic model. This new approach allows single simulations to begin in an electron/ion fluid mode from insulator lift-off through the 5-6 μs run-down of the 50+ cm anode, then transition to a fully kinetic PIC description during the run-in phase, when the current sheath is 2-3 mm from the central axis of the anode. Simulations are advanced through the final pinch phase using an adaptive variable time-step to capture the fs and sub-mm scales of the kinetic instabilities involved in the ion beam formation and neutron production. Validation assessments are being performed using a variety of different anode shapes, comparing against experimental measurements of neutron yield, neutron anisotropy and ion beam production.

  19. The effect of H2S on the performance of Ni-YSZ anodes in solid oxide fuel cells

    DEFF Research Database (Denmark)

    Rasmussen, Jens Foldager Bregnballe; Hagen, Anke

    2009-01-01

    Biomass-derived fuel, e.g. biogas, is a potential fuel for solid oxide fuel cells (SOFCs). At operating temperature (850 °C) reforming of the carbon-containing biogas takes place over the Ni-containing anode. However, impurities in the biogas, e.g. H2S, can poison both the reforming...... and the electrochemical activity of the anode. Tests of single anode-supported planar SOFCs were carried out in the presence of H2S under current load at 850 °C. The cell voltage dropped as we periodically added 2–100 ppm H2S to an H2-containing fuel in 24 h intervals, but it regenerated to the initial value after we...... turned off the H2S. Evaluation of the changes of the cell voltage suggests that saturation coverage was reached at approximately 40 ppm H2S. A front-like movement of S-poisoning over the anode was seen by monitoring the in-plane voltage in the anode. Furthermore, impedance spectra showed that mainly...

  20. Characterization of pore network structure in catalyst layers of polymer electrolyte fuel cells

    OpenAIRE

    El Hannach, Mohamed; Soboleva, Tatyana; Malek, Kourosh; Franco, Alejandro A.; Prat, Marc; Pauchet, Joël; Holdcroft, Steven

    2014-01-01

    International audience; We model and validate the effect of ionomer content and Pt nanoparticles on nanoporous structure of catalyst layers in polymer electrolyte fuel cells. By employing Pore network modeling technique and analytical solutions, we analyze and reproduce experimental N2-adsorption isotherms of carbon, Pt/ carbon and catalyst layers with various ionomer contents. The porous catalyst layer structures comprise of Ketjen Black carbon, Pt and Nafion ionomer. The experimental pore s...

  1. Hybrid direct carbon fuel cell anode processes investigated using a 3-electrode half-cell setup

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Arenillas, A.; Menendez, J.A.;

    2015-01-01

    -alkali carbonate slurry. Electrochemical testing, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), with and without the Ni-YSZ layer highlighted the promotional effect of the Ni-YSZ anode layer, and revealed the contributions of Ni/NiO, and potentially K/K2O, redox couple(s). Treated...

  2. Direct ethanol fuel cell, CO and ethanol oxidation on core-shell C/Ni-Au-[Pt and (Pt- Ir)] catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, C.A.D.; Tremiliosi-Filho, G. [Universidade de Sao Paulo (IQSC/USP), Sao Carlos, SP (Brazil). Inst. de Quimica], Email: cesaraug@sc.usp.br; Kokoh, K.B.; Coutanceau, C.; Baranton, S. [Universite de Poitiers (France). Lab. de Catalyse en Chimie Organique (LACCO). Equipe Electrocatalyse

    2010-07-01

    In this paper presents to study of the Pt and Pt-Ir monolayer that were deposited on core-shell Ni-Au nanoparticles supported on carbon. Catalysts with the following molar ratios were prepared: Pt and Pt{sub 65}Ir{sub 35}, Pt{sub 75}Ir{sub 2}5, Pt{sub 80}Ir{sub 20} and Pt{sub 85}Ir{sub 15}. The means particle sizes were in the range of 2 - 6 nm for all catalysts. The electrochemical properties examined in the ethanol and CO oxidation by cyclic voltammetry, and In situ IR spectroscopy measurements (SPAIRS) enabled to determine intermediates and reaction products as a function of the metallic compositions of catalysts. All of the catalysts were tested as anodes of a single direct ethanol fuel cell (DEFC) tests in 1.0 M ethanol solution. As a result, higher power densities were obtained with the core-shell particles in comparison to those issued from the commercial catalyst (Pt-ETEK). Thus, the maximum power densities at 90 deg C for the different systems are: (i) commercial C/Pt catalyst (E-TEK): ca. 0.010 W cm{sup -2}, C/Ni-Au-(Pt{sub 85}Ir{sub 15}): ca. 0.013 W cm{sup -2} and C/Ni-Au-Pt: ca. 0.018 W cm{sup -2} (all core-shell systems were normalization by Pt load). As a result, the performance of the core-shell nanoparticles is much better than that produced for the commercial catalyst and the C/Ni-Au-Pt system showed the best performance. (author)

  3. Municipal sludge-derived carbon anode with nitrogen- and oxygen-containing functional groups for high-performance microbial fuel cells

    Science.gov (United States)

    Ma, Xiaoxiao; Feng, Chunhua; Zhou, Weijia; Yu, Hui

    2016-03-01

    The demand for efficient and cost-effective anode materials in microbial fuel cells (MFCs) provides the impetus to use carbon derived from solid waste to support bacterial growth and proliferation. Here we show that the municipal sludge-derived carbon (SC) with a porous structure and abundant surface functional groups is effective in improving performance of MFCs. The SC is coated on the 3-D graphite felt (GF) surface by pyrrole electropolymerization in order to increase the surface cites that are interacted with bacteria, resulting in the formation of PPy/SC-modified GF anode. The scanning electron microscopy analysis indicates that the PPy/SC-modified GF can substantially increase anode surface area. The X-ray photoelectron spectroscopy (XPS) results suggest that the PPy/SC-modified GF anode possesses higher surface N/C ratio and higher relative contents of Odbnd C-NH2 and Odbnd C-O functional groups than other counterpart anodes. These characteristics are essential for increasing bacterial attachment to the anode surface, electron-transfer rate and thus anode performance and power performance. The maximum power density resulting from the PPy/SC-modified GF anode was 568.5 mW m-2 (13.6 W m-3) increased by 1.9, 2.7 and 3.5 times as compared to the PPy/AC-modified GF anode, the PPy alone-modified GF anode and the unmodified GF anode, respectively.

  4. Ceria-Based Anodes for Next Generation Solid Oxide Fuel Cells

    Science.gov (United States)

    Mirfakhraei, Behzad

    Mixed ionic and electronic conducting materials (MIECs) have been suggested to represent the next generation of solid oxide fuel cell (SOFC) anodes, primarily due to their significantly enhanced active surface area and their tolerance to fuel components. In this thesis, the main focus has been on determining and tuning the physicochemical and electrochemical properties of ceria-based MIECs in the versatile perovskite or fluorite crystal structures. In one direction, BaZr0.1Ce0.7Y0.1 M0.1O3-delta (M = Fe, Ni, Co and Yb) (BZCY-M) perovskites were synthesized using solid-state or wet citric acid combustion methods and the effect of various transition metal dopants on the sintering behavior, crystal structure, chemical stability under CO2 and H 2S, and electrical conductivity, was investigated. BZCY-Ni, synthesized using the wet combustion method, was the best performing anode, giving a polarization resistance (RP) of 0.4 O.cm2 at 800 °C. Scanning electron microscopy and X-ray diffraction analysis showed that this was due to the exsolution of catalytic Ni nanoparticles onto the oxide surface. Evolving from this promising result, the effect of Mo-doped CeO 2 (nCMO) or Ni nanoparticle infiltration into a porous Gd-doped CeO 2 (GDC) anode (in the fluorite structure) was studied. While 3 wt. % Ni infiltration lowered RP by up to 90 %, giving 0.09 O.cm2 at 800 °C and exhibiting a ca. 5 times higher tolerance towards 10 ppm H2, nCMO infiltration enhanced the H2 stability by ca. 3 times, but had no influence on RP. In parallel work, a first-time study of the Ce3+ and Ce 4+ redox process (pseudocapacitance) within GDC anode materials was carried out using cyclic voltammetry (CV) in wet H2 at high temperatures. It was concluded that, at 500-600 °C, the Ce3+/Ce 4+ reaction is diffusion controlled, probably due to O2- transport limitations in the outer 5-10 layers of the GDC particles, giving a very high capacitance of ca. 70 F/g. Increasing the temperature ultimately

  5. Graphene/carbon cloth anode for high-performance mediatorless microbial fuel cells.

    Science.gov (United States)

    Liu, Jing; Qiao, Yan; Guo, Chun Xian; Lim, Sierin; Song, Hao; Li, Chang Ming

    2012-06-01

    Graphene was electrochemically deposited on carbon cloth to fabricate an anode for a Pseudomonas aeruginosa mediatorless microbial fuel cell (MFC). The graphene modification improved power density and energy conversion efficiency by 2.7 and 3 times, respectively. The improvement is attributed to the high biocompatibility of graphene which promotes bacteria growth on the electrode surface that results in the creation of more direct electron transfer activation centers and stimulates excretion of mediating molecules for higher electron transfer rate. A parallel bioelectrocatalytic mechanism consisting of simultaneous direct electron transfer and cell-excreted mediator-enabled electron transfer was established in the P. aeruginosa-catalyzed MFC. This study does not only offer fundamental insights into MFC reactions, but also suggests a low cost manufacturing process to fabricate high power MFCs for practical applications.

  6. Anodic microbial community diversity as a predictor of the power output of microbial fuel cells.

    Science.gov (United States)

    Stratford, James P; Beecroft, Nelli J; Slade, Robert C T; Grüning, André; Avignone-Rossa, Claudio

    2014-03-01

    The relationship between the diversity of mixed-species microbial consortia and their electrogenic potential in the anodes of microbial fuel cells was examined using different diversity measures as predictors. Identical microbial fuel cells were sampled at multiple time-points. Biofilm and suspension communities were analysed by denaturing gradient gel electrophoresis to calculate the number and relative abundance of species. Shannon and Simpson indices and richness were examined for association with power using bivariate and multiple linear regression, with biofilm DNA as an additional variable. In simple bivariate regressions, the correlation of Shannon diversity of the biofilm and power is stronger (r=0.65, p=0.001) than between power and richness (r=0.39, p=0.076), or between power and the Simpson index (r=0.5, p=0.018). Using Shannon diversity and biofilm DNA as predictors of power, a regression model can be constructed (r=0.73, pmicrobial communities.

  7. Solid oxide fuel cell anode image segmentation based on a novel quantum-inspired fuzzy clustering

    Science.gov (United States)

    Fu, Xiaowei; Xiang, Yuhan; Chen, Li; Xu, Xin; Li, Xi

    2015-12-01

    High quality microstructure modeling can optimize the design of fuel cells. For three-phase accurate identification of Solid Oxide Fuel Cell (SOFC) microstructure, this paper proposes a novel image segmentation method on YSZ/Ni anode Optical Microscopic (OM) images. According to Quantum Signal Processing (QSP), the proposed approach exploits a quantum-inspired adaptive fuzziness factor to adaptively estimate the energy function in the fuzzy system based on Markov Random Filed (MRF). Before defuzzification, a quantum-inspired probability distribution based on distance and gray correction is proposed, which can adaptively adjust the inaccurate probability estimation of uncertain points caused by noises and edge points. In this study, the proposed method improves accuracy and effectiveness of three-phase identification on the micro-investigation. It provides firm foundation to investigate the microstructural evolution and its related properties.

  8. Enhancement of direct urea-hydrogen peroxide fuel cell performance by three-dimensional porous nickel-cobalt anode

    Science.gov (United States)

    Guo, Fen; Cao, Dianxue; Du, Mengmeng; Ye, Ke; Wang, Guiling; Zhang, Wenping; Gao, Yinyi; Cheng, Kui

    2016-03-01

    A novel three-dimensional (3D) porous nickel-cobalt (Ni-Co) film on nickel foam is successfully prepared and further used as an efficient anode for direct urea-hydrogen peroxide fuel cell (DUHPFC). By varying the cobalt/nickel mole ratios into 0%, 20%, 50%, 80% and 100%, the optimized Ni-Co/Ni foam anode with a ratio of 80% is obtained in terms of the best cell performance among five anodes. Effects of the KOH and urea concentrations, the flow rate and operation temperature on the fuel cell performance are investigated. Results show DUHPFC with the 3D Ni-Co/Ni foam anode exhibits a higher performance than those reported direct urea fuel cells. The cell gives an open circuit voltage of 0.83 V and a peak power density as high as 17.4 and 31.5 mW cm-2 at 20 °C and 70 °C, respectively, when operating on 7.0 mol L-1 KOH and 0.5 mol L-1 urea as the fuel at a flow rate of 15 mL min-1. Besides, when the human urine is directly fed as the fuel, direct urine-hydrogen peroxide fuel cell reaches a maximum power density of 7.5 mW cm-2 with an open circuit voltage of 0.80 V at 20 °C, showing a good application prospect in wastewater treatment.

  9. Anode supported single chamber solid oxide fuel cells operating in exhaust gases of thermal engine

    Science.gov (United States)

    Briault, Pauline; Rieu, Mathilde; Laucournet, Richard; Morel, Bertrand; Viricelle, Jean-Paul

    2014-12-01

    This project deals with the development and the electrochemical characterization of anode supported single chamber SOFC in a simulated environment of thermal engine exhaust gas. In the present work, a gas mixture representative of exhaust conditions is selected. It is composed of hydrocarbons (HC: propane and propene), oxygen, carbon monoxide, carbon dioxide, hydrogen and water. Only oxygen content is varied leading to different gas mixtures characterized by three ratios R = HC/O2. Concerning the cell components, a cermet made of nickel and an electrolyte material, Ce0.9Gd0.1O1.95 (CGO) is used as anode and two cathode materials, La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) and Pr2NiO4+δ (PNO), are evaluated. The prepared cells are investigated in the various gas mixtures for temperatures ranging from 450 °C to 600 °C. Ni-CGO/CGO/LSCF-CGO cell has delivered a maximum power density of 15 mW cm-2 at 500 °C with R = HC/O2 = 0.21, while lower power densities are obtained for the other ratios, R = 0.44 and R = 0.67. Afterwards, LSCF and PNO cathode materials are compared and LSCF is found to deliver the highest power densities. Finally, by improving the electrolyte microstructure, some cells presenting a maximum power density of 25 mW cm-2 at 550 °C are produced. Moreover, up to 17% of initial HC are eliminated in the gas mixture.

  10. Degradation behavior of anode-supported solid oxide fuel cell using LNF cathode as function of current load

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, Takeshi; Yoshida, Yoshiteru; Watanabe, Kimitaka; Chiba, Reiichi; Taguchi, Hiroaki; Orui, Himeko; Arai, Hajime [NTT Energy and Environment Systems Laboratories, Atsugi-shi, Kanagawa 243-0198 (Japan)

    2010-09-01

    We investigated the effect of current loading on the degradation behavior of an anode-supported solid oxide fuel cell (SOFC). The cell consisted of LaNi{sub 0.6}Fe{sub 0.4}O{sub 3} (LNF), alumina-doped scandia stabilized zirconia (SASZ), and a Ni-SASZ cermet as the cathode, electrolyte, and anode, respectively. The test was carried out at 1073 K with constant loads of 0.3, 1.0, 1.5, and 2.3 A cm{sup -2}. The degradation rate, defined by the voltage loss during a fixed period (about 1000 h), was faster at higher current densities. From an impedance analysis, the degradation depended mainly on increases in the cathodic resistance, while the anodic and ohmic resistances contributed very little. The cathode microstructures were observed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). (author)

  11. Development of a two-dimensional imaging GEM detector using the resistive anode readout method with $6\\times6$ cells

    CERN Document Server

    Ju, Xu-Dong; Zhou, Chuan-Xing; Dong, Jing; Zhao, Yu-Bin; Zhang, Hong-Yu; Qi, Hui-Rong; Ou-Yang, Qun

    2016-01-01

    We report the application of the resistive anode readout method on a two dimensional imaging GEM detector. The resistive anode consists $6\\times6$ cells with the cell size $6~\\mathrm{mm}\\times6~\\mathrm{mm}$. New electronics and DAQ system are used to process the signals from 49 readout channels. The detector has been tested by using the X-ray tube (8~keV). The spatial resolution of the detector is about $103.46~\\mathrm{{\\mu}m}$ with the signal part $66.41~\\mathrm{{\\mu}m}$. The nonlinearity of the detector is less than $0.5\\%$. A good two dimensional imaging capability is achieved as well. The performances of the detector show the prospect of the resistive anode readout method for the large readout area imaging detectors.

  12. Inocula selection in microbial fuel cells based on anodic biofilm abundance of Geobacter sulfurreducens

    Institute of Scientific and Technical Information of China (English)

    Guotao Sun; Diogo de Sacadura Rodrigues; Anders Thygesen; Geoffrey Daniel; Dinesh Fernando; Anne S Meyer

    2016-01-01

    Microbial fuel cells (MFCs) rely on microbial conversion of organic substrates to electricity. The optimal perfor-mance depends on the establishment of a microbial community rich in electrogenic bacteria. Usual y this micro-bial community is established from inoculation of the MFC anode chamber with naturally occurring mixed inocula. In this study, the electrochemical performance of MFCs and microbial community evolution were eval-uated for three inocula including domestic wastewater (DW), lake sediment (LS) and biogas sludge (BS) with varying substrate loading (Lsub) and external resistance (Rext) on the MFC. The electrogenic bacterium Geobacter sulfurreducens was identified in al inocula and its abundance during MFC operation was positively linked to the MFC performance. The LS inoculated MFCs showed highest abundance (18%± 1%) of G. sulfurreducens, maximum current density [Imax=(690 ± 30) mA·m−2] and coulombic efficiency (CE=29%± 1%) with acetate as the substrate. Imax and CE increased to (1780 ± 30) mA·m−2 and 58%± 1%, respectively, after decreasing the Rext from 1000Ωto 200Ω, which also correlated to a higher abundance of G. sulfurreducens (21%± 0.7%) on the MFC anodic biofilm. The data obtained contribute to understanding the microbial community response to Lsub and Rext for optimizing electricity generation in MFCs.

  13. A novel biosensor for p-nitrophenol based on an aerobic anode microbial fuel cell.

    Science.gov (United States)

    Chen, Zhengjun; Niu, Yongyan; Zhao, Shuai; Khan, Aman; Ling, Zhenmin; Chen, Yong; Liu, Pu; Li, Xiangkai

    2016-11-15

    P-nitrophenol is one of the most common contaminants in chemical industrial wastewater, and in situ real-time monitoring of PNP cannot be achieved by conventional analytical techniques. Here, a two-chamber microbial fuel cell with an aerobic anode chamber was tested as a biosensor for in situ real-time monitoring of PNP. Pseudomonas monteilii LZU-3, which was used as the biological recognition element, can form a biofilm on the anode electrode using PNP as a sole substrate. The optimal operation parameters of the biosensor were as follows: external resistance 1000Ω, pH 7.8, temperature 30°C, and maximum PNP concentration 50mgL(-1). Under these conditions, the maximum voltages showed a linear relationship with PNP concentrations ranging from 15±5 to 44±4.5mgL(-1). Furthermore, we developed a novel portable device for in situ real-time monitoring of PNP. When the device was applied to measure PNP in wastewater containing various additional aromatic compounds and metal ions, the performance of the biosensor was not affected and the correlation between the maximum voltages and the PNP concentrations ranging from 9±4mgL(-1) to 36 ± 5mgL(-1) was conserved. The results demonstrated that the MFC biosensor provides a rapid and cost-efficient analytical method for real-time monitoring of toxic and recalcitrant pollutants in environmental samples.

  14. Realization of tin oxide like anode for the manufacture of the organic solar cells

    Directory of Open Access Journals (Sweden)

    Khelil A.

    2012-06-01

    Full Text Available The transparent oxides such as SnO2, In2O3 and ZnO continue to arouse a private interest for their various applications. The objective of the various studies being to carry out the layers which are simultaneously most transparent and most conducting possible. Thus in the field of the solar spectrum, the transmission of the layers must be higher than 80% and their conductivity exceeding 103 (Ohm.cm-1. Their transparency which is related to the value of their forbidden band must be higher than 3.7 e V. Their electric properties as for them depend on the composition of the layers and a possible doping. In this work, one characterized layers of SnO2 deposited by chemical pulverization, one carried out measurements by, electronic scan microscopy, diffraction of x-rays and also of the optical measurements and electronic. It results from it that the layers are conducting and transparent in the visible one but they are relatively rough, following its characterizations, one carried out organic photovoltaic cells using these layers of SnO2 and also of the commercial ITO like anode in these components. More particularly one was interested in the influence of the presence of a fine layer of gold between the anode and organic material.

  15. Optimization of fuel cell membrane electrode assemblies for transition metal ion-chelating ordered mesoporous carbon cathode catalysts

    OpenAIRE

    Johanna K. Dombrovskis; Cathrin Prestel; Anders E. C. Palmqvist

    2014-01-01

    Transition metal ion-chelating ordered mesoporous carbon (TM-OMC) materials were recently shown to be efficient polymer electrolyte membrane fuel cell (PEMFC) catalysts. The structure and properties of these catalysts are largely different from conventional catalyst materials, thus rendering membrane electrode assembly (MEA) preparation parameters developed for conventional catalysts not useful for applications of TM-OMC catalysts. This necessitates development of a methodology to incorporate...

  16. Pyrite oxidation in the presence of hematite and alumina: II. Effects on the cathodic and anodic half-cell reactions.

    Science.gov (United States)

    Tabelin, Carlito Baltazar; Veerawattananun, Suchol; Ito, Mayumi; Hiroyoshi, Naoki; Igarashi, Toshifumi

    2017-03-01

    The oxidative dissolution of pyrite is an important process in the redox recycling of iron (Fe) and is well-known for its role in the formation of acid mine drainage (AMD), which is considered as the most serious and widespread problem after the closure of mines and mineral processing operations. Because this process requires the movement of electrons, common metal oxides in nature that have either semiconducting (e.g., hematite) or insulating (e.g., alumina) properties may have strong effects on it. In this study, changes in the electrochemical behavior of pyrite in the presence of hematite and alumina were investigated. Results showed that the formation of surface-bound species directly influenced the anodic and cathodic half-cell reactions as well as the transfer of electrons between these sites. Pyrite pretreated in the air became anodically more reactive than that pretreated in oxygenated water, but the type of oxidizing media had little effect on the cathodic half-cell reaction. The presence of hematite and alumina during pretreatment also had strong effects on the electrochemical properties of pyrite. Chronoamperometry measurements suggest that hematite and alumina enhanced the anodic half-cell reaction but suppressed the cathodic half-cell reaction of pyrite oxidation. Increased anodic half-cell reaction in the presence of hematite could be attributed to electron "bridging" and catalytic effects of this mineral. In contrast, the effects of alumina on the anodic half-cell reaction were indirect and could be explained by the formation of Fe(3+)-oxyhydroxide surface species during pretreatment. Suppression of the cathodic half-cell reaction by both minerals was attributed to their "protective" effect on cathodic sites. Our results also point to the cathodic half-cell reaction as the rate determining-step of the overall oxidative dissolution process.

  17. Tailoring the Microstructure of a Solid Oxide Fuel Cell Anode Support by Calcination and Milling of YSZ

    Science.gov (United States)

    Hanifi, Amir Reza; Laguna-Bercero, Miguel A.; Sandhu, Navjot Kaur; Etsell, Thomas H.; Sarkar, Partha

    2016-06-01

    In this study, the effects of calcination and milling of 8YSZ (8 mol% yttria stabilized zirconia) used in the nickel-YSZ anode on the performance of anode supported tubular fuel cells were investigated. For this purpose, two different types of cells were prepared based on a Ni-YSZ/YSZ/Nd2NiO4+δ-YSZ configuration. For the anode preparation, a suspension was prepared by mixing NiO and YSZ in a ratio of 65:35 wt% (Ni:YSZ 50:50 vol.%) with 30 vol.% graphite as the pore former. As received Tosoh YSZ or its calcined form (heated at 1500 °C for 3 hours) was used in the anode support as the YSZ source. Electrochemical results showed that optimization of the fuel electrode microstructure is essential for the optimal distribution of gas within the support of the cell, especially under electrolysis operation where the performance for an optimized cell (calcined YSZ) was enhanced by a factor of two. In comparison with a standard cell (containing as received YSZ), at 1.5 V and 800 °C the measured current density was -1380 mA cm-2 and -690 mA cm-2 for the cells containing calcined and as received YSZ, respectively. The present study suggests that the anode porosity for improved cell performance under SOEC is more critical than SOFC mode due to more complex gas diffusion under electrolysis mode where large amount of steam needs to be transfered into the cell.

  18. Doped Yttrium Chromite-Ceria Composite as a Redox-Stable and Sulfur-Tolerant Anode for Solid Oxide Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Kyung J.; Coyle, Christopher A.; Marina, Olga A.

    2011-12-11

    A Ca- and Co-doped yttrium chromite (YCCC) - samaria-doped ceria (SDC) composite was studied in relation to a potential use as a solid oxide fuel cell (SOFC) anode material. Tests performed using the yttria-stabilized zirconia (YSZ) electrolyte-supported cells revealed that the electrocatalytic activity of the YCCC-SDC anode towards hydrogen oxidation at 800 C was comparable to that of the Ni-YSZ anode. In addition, the YCCC-SDC anode exhibited superior sulfur tolerant characteristics showing less than 10% increase in a polarization resistance, fully reversible, upon exposure to 20 ppm H2S at 800 C. No performance degradation was observed during multiple reduction-oxidation (redox) cycles when the anode was intentionally exposed to the air environment followed by the reduction in hydrogen. The redox tolerance of the YCCC-SDC anode was attributed to the dimensional and chemical stability of the YCCC exhibiting minimal isothermal chemical expansion upon redox cycling.

  19. Need for optimizing catalyst loading for achieving affordable microbial fuel cells.

    Science.gov (United States)

    Singh, Inderjeet; Chandra, Amreesh

    2013-08-01

    Microbial fuel cell (MFC) technology is a promising technology for electricity production together with simultaneous water treatment. Catalysts play an important role in deciding the MFC performance. In most reports, effect of catalyst - both type and quantity is not optimized. In this paper, synthesis of nanorods of MnO2-catalyst particles for application in Pt-free MFCs is reported. The effect of catalyst loading i.e., weight ratio, with respect to conducting element and binder has been optimized by employing large number of combinations. Using simple theoretical model, it is shown that too high (or low) concentration of catalysts result in loss of MFC performance. The operation of MFC has been investigated using domestic wastewater as source of bio-waste for obtaining real world situation. Maximum power density of ∼61 mW/m(2) was obtained when weight ratio of catalyst and conducting species was 1:1. Suitable reasons are given to explain the outcomes.

  20. X-ray absorption spectroscopy for characterisation of catalysts for PEM fuel cells; Roentgenabsorptionsspektroskopie zur Charakterisierung von Katalysatoren fuer die PEM-Brennstoffzelle

    Energy Technology Data Exchange (ETDEWEB)

    Koehl, G.

    2001-10-01

    The investigation of bimetallic nanoparticles is of great interest for the development of powerful anode catalysts in PEM fuel cells. The determination of their electronic and geometric structure is crucial for the optimization of the activity and selectivity in the fuel cell. Especially carbon supported PtRu particles have shown superior activity as anode catalysts due to their high CO tolerance. To state the reason on an atomic level, X-ray absorption spectroscopy (XAS) with synchrotron radiation has been used to examine several Pt and PtRu nanoparticle systems. They were either prepared on the basis of preformed PtRu alloy colloids stabilized by different surfactants or by chemical reduction of precursors, Na{sub 6}Pt(SO{sub 3}){sub 4} and Na{sub 6}Ru(SO{sub 3}){sub 4}. Although a PtRu interaction was observed in all systems, a nonstatistical distribution of Pt and Ru atoms in the nanoparticles could be verified. In additional investigations the reaction mechanism during the synthesis of an organometallic stabilized Pt colloid was examined. In-situ measurements revealed the formation of an hitherto unknown Pt complex as intermediate state prior to the nucleation of the particles. (orig)

  1. Performance of metal alloys as hydrogen evolution reaction catalysts in a microbial electrolysis cell

    NARCIS (Netherlands)

    Jeremiasse, A.W.; Bergsma, J.; Kleijn, J.M.; Saakes, M.; Buisman, C.J.N.; Cohen Stuart, M.A.; Hamelers, H.V.M.

    2011-01-01

    H2 can be produced from organic matter with a microbial electrolysis cell (MEC). To decrease the energy input and increase the H2 production rate of an MEC, a catalyst is used at the cathode. Platinum is an effective catalyst, but its high costs stimulate searching for alternatives, such as non-nobl

  2. Nano Ru Impregnated Ni-YSZ Anode as Carbon Resistance Layer for Direct Ethanol Solid Oxide Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    SUN; Liangliang; ZHENG; Tao; HU; Zhimin; LUO; Linghong; WU; Yefan; XU; Xu; CHENG; Liang; SHI; Jijun

    2015-01-01

    Carbon formation on conventional Ni and Y2O3 stabilized zirconia(Ni/YSZ) anodes is a major problem for direct ethanol solid oxide fuel cells(DE-SOFC). A nanostructure Ru layer was grown in Ni/YSZ anodes through wet impregnation method with RuC l3 solvent at pH =4. Anode-supported Ni-YSZ/YSZ/(La0.8Sr0.2)0.98 MnO 3±δ(LSM) and Ru-Ni-YSZ/YSZ/LSM fuel cells were compared in terms of the performance and carbon formation with ethanol fuel. X-ray diffraction, scanning electron microscopy, energy disperse spectroscopy and electrochemical workstation were used to study the morphology and fuel cell performance. The results indicate that a nano structured and pearl like Ru layer was well dispersed on the surface of Ni-YSZ materials. The single cell with Ru-impregnated Ni/YSZ showed a maximum power density of 369 m W/cm at 750°C, which was higher than Ni-YSZ/YSZ/LSM. Specifically, no carbon was formed in the anode after 1000 min operation. Fuel cell performance and carbon resistance were enhanced with the addition of the Ru layer.

  3. Nano Ru Impregnated Ni-YSZ Anode as Carbon Resistance Layer for Direct Ethanol Solid Oxide Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    SUN Liangliang; ZHENG Tao; HU Zhimin; LUO Linghong; WU Yefan; XU Xu; CHENG Liang; SHI Jijun

    2015-01-01

    Carbon formation on conventional Ni and Y2O3stabilized zirconia (Ni/YSZ) anodes is a major problem for direct ethanol solid oxide fuel cells (DE-SOFC). A nanostructure Ru layer was grown in Ni/YSZ anodes through wet impregnation method with RuCl3solvent at pH=4. Anode-supported Ni-YSZ/YSZ/(La0.8Sr0.2)0.98MnO3±δ(LSM) and Ru-Ni-YSZ/YSZ/LSM fuel cells were compared in terms of the performance and carbon formation with ethanol fuel. X-ray diffraction, scanning electron microscopy,energy disperse spectroscopy and electrochemical workstation were used to study the morphology and fuel cell performance. The results indicate that a nano structured and pearl like Ru layer was well dispersed on the surface of Ni-YSZ materials. The single cell with Ru-impregnated Ni/YSZ showed a maximum power density of 369 mW/cmat 750°C, which was higher than Ni-YSZ/YSZ/LSM. Specifically, no carbon was formed in the anode after 1000 min operation. Fuel cell performance and carbon resistance were enhanced with the addition of the Ru layer.

  4. Immobilization of anode-attached microbes in a microbial fuel cell.

    KAUST Repository

    Wagner, Rachel C

    2012-01-03

    Current-generating (exoelectrogenic) bacteria in bioelectrochemical systems (BESs) may not be culturable using standard in vitro agar-plating techniques, making isolation of new microbes a challenge. More in vivo like conditions are needed where bacteria can be grown and directly isolated on an electrode. While colonies can be developed from single cells on an electrode, the cells must be immobilized after being placed on the surface. Here we present a proof-of-concept immobilization approach that allows exoelectrogenic activity of cells on an electrode based on applying a layer of latex to hold bacteria on surfaces. The effectiveness of this procedure to immobilize particles was first demonstrated using fluorescent microspheres as bacterial analogs. The latex coating was then shown to not substantially affect the exoelectrogenic activity of well-developed anode biofilms in two different systems. A single layer of airbrushed coating did not reduce the voltage produced by a biofilm in a microbial fuel cell (MFC), and more easily applied dip-and-blot coating reduced voltage by only 11% in a microbial electrolysis cell (MEC). This latex immobilization procedure will enable future testing of single cells for exoelectrogenic activity on electrodes in BESs.

  5. Enhancing dye-sensitized solar cell efficiency by anode surface treatments

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chao-Hsuan [Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Lin, Hsin-Han [Institute of Nanotechnology and Microsystems Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Chen, Chin-Cheng [Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Hong, Franklin C.-N., E-mail: hong@mail.ncku.edu.tw [Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Institute of Nanotechnology and Microsystems Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2014-11-03

    In this study, titanium substrates treated with HF solution and KOH solution sequentially forming micro- and nano-structures were used for the fabrication of flexible dye-sensitized solar cells (DSSCs). After wet etching treatments, the titanium substrates were then exposed to the O{sub 2} plasma treatment and further immersed in titanium tetrachloride (TiCl{sub 4}) solution. The process conditions for producing a very thin TiO{sub 2} blocking layer were studied, in order to avoid solar cell current leakage for increasing the solar cell efficiency. Subsequently, TiO{sub 2} nanoparticles were spin-coated on Ti substrates with varied thickness. The dye-sensitized solar cells on the titanium substrates were subjected to simulate AM 1.5 G irradiation of 100 mW/cm{sup 2} using backside illumination mode. Surface treatments of Ti substrate and TiO{sub 2} anode were found to play a significant role in improving the efficiency of DSSC. The efficiencies of the backside illumination solar cells were raised from 4.6% to 7.8% by integrating these surface treatments. - Highlights: • The flexible dye-sensitized solar cell (DSSC) device can be fabricated. • Many effective surface treatment methods to improve DSSC efficiency are elucidated. • The efficiency is dramatically enhanced by integrating surface treatment methods. • The back-illuminated DSSC efficiency was raised from 4.6% to 7.8%.

  6. Nanotemplated platinum fuel cell catalysts and copper-tin lithium battery anode materials for microenergy devices

    OpenAIRE

    Rohan, James F.; Hasan, Maksudul; Holubowitch, Nicolas E.

    2011-01-01

    Nanotemplated materials have significant potential for applications in energy conversion and storage devices due to their unique physical properties. Nanostructured materials provide additional electrode surface area beneficial for energy conversion or storage applications with short path lengths for electronic and ionic transport and thus the possibility of higher reaction rates. We report on the use of controlled growth of metal and alloy electrodeposited templated nanostructures for energy...

  7. Low Pt content direct methanol fuel cell anode catalyst: nanophase PtRuNiZr

    Science.gov (United States)

    Narayanan, Sekharipuram R. (Inventor); Whitacre, Jay F. (Inventor)

    2010-01-01

    A method for the preparation of a metallic material having catalytic activity that includes synthesizing a material composition comprising a metal content with a lower Pt content than a binary alloy containing Pt but that displays at least a comparable catalytic activity on a per mole Pt basis as the binary alloy containing Pt; and evaluating a representative sample of the material composition to ensure that the material composition displays a property of at least a comparable catalytic activity on a per mole Pt basis as a representative binary alloy containing Pt. Furthermore, metallic compositions are disclosed that possess substantial resistance to corrosive acids.

  8. In situ redox cycle of a nickel–YSZ fuel cell anode in an environmental transmission electron microscope

    DEFF Research Database (Denmark)

    Jeangros, Quentin; Faes, Antonin; Wagner, Jakob Birkedal

    2010-01-01

    Environmental transmission electron microscopy is used in combination with density functional theory calculations to study the redox stability of a nickel/yttria-stabilized zirconia solid oxide fuel cell anode. The results reveal that the transfer of oxygen from NiO to yttria-stabilized zirconia...

  9. Electrooxidation of ethylene glycol and glycerol on Pd-(Ni-Zn)/C anodes in direct alcohol fuel cells.

    Science.gov (United States)

    Marchionni, Andrea; Bevilacqua, Manuela; Bianchini, Claudio; Chen, Yan-Xin; Filippi, Jonathan; Fornasiero, Paolo; Lavacchi, Alessandro; Miller, Hamish; Wang, Lianqin; Vizza, Francesco

    2013-03-01

    The electrooxidation of ethylene glycol (EG) and glycerol (G) has been studied: in alkaline media, in passive as well as active direct ethylene glycol fuel cells (DEGFCs), and in direct glycerol fuel cells (DGFCs) containing Pd-(Ni-Zn)/C as an anode electrocatalyst, that is, Pd nanoparticles supported on a Ni-Zn phase. For comparison, an anode electrocatalyst containing Pd nanoparticles (Pd/C) has been also investigated. The oxidation of EG and G has primarily been investigated in half cells. The results obtained have highlighted the excellent electrocatalytic activity of Pd-(Ni-Zn)/C in terms of peak current density, which is as high as 3300 A g(Pd)(-1) for EG and 2150 A g(Pd)(-1) for G. Membrane-electrode assemblies (MEA) have been fabricated using Pd-(Ni-Zn)/C anodes, proprietary Fe-Co/C cathodes, and Tokuyama A-201 anion-exchange membranes. The MEA performance has been evaluated in either passive or active cells fed with aqueous solutions of 5 wt % EG and 5 wt % G. In view of the peak-power densities obtained in the temperature range from 20 to 80 °C, at Pd loadings as low as 1 mg cm(-2) at the anode, these results show that Pd-(Ni-Zn)/C can be classified amongst the best performing electrocatalysts ever reported for EG and G oxidation.

  10. Accelerated creep in solid oxide fuel cell anode supports during reduction

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Makowska, Malgorzata Grazyna; Greco, Fabio

    2016-01-01

    To evaluate the reliability of solid oxide fuel cell (SOFC) stacks during operation, the stress field in the stack must be known. During operation the stress field will depend on time as creep processes relax stresses. The creep of reduced Ni-YSZ anode support at operating conditions has been...... studied previously. In this work a newly discovered creep phenomenon taking place during the reduction is reported. This relaxes stresses at a much higher rate (∼ x104) than creep during operation. The phenomenon was studied both in three-point bending and uniaxial tension. Differences between the two...... measurements could be explained by newly observed stress promoted reduction. Finally, samples exposed to a small tensile stress (∼ 0.004 MPa) were observed to expand during reduction, which is in contradiction to previous literature. These observations suggest that release of internal residual stresses between...

  11. Electrodeposited gold nanoparticles on carbon nanotube-textile: Anode material for glucose alkaline fuel cells

    KAUST Repository

    Pasta, Mauro

    2012-06-01

    In the present paper we propose a new anode material for glucose-gluconate direct oxidation fuel cells prepared by electrodepositing gold nanoparticles onto a conductive textile made by conformally coating single walled carbon nanotubes (SWNT) on a polyester textile substrate. The electrodeposition conditions were optimized in order to achieve a uniform distribution of gold nanoparticles in the 3D porous structure of the textile. On the basis of previously reported studies, the reaction conditions (pH, electrolyte composition and glucose concentration) were tuned in order to achieve the highest oxidation rate, selectively oxidizing glucose to gluconate. The electrochemical characterization was carried out by means of cyclic voltammetry. © 2012 Elsevier B.V. All rights reserved.

  12. Stochastic microstructure modeling and electrochemical simulation of lithium-ion cell anodes in 3D

    Science.gov (United States)

    Hein, Simon; Feinauer, Julian; Westhoff, Daniel; Manke, Ingo; Schmidt, Volker; Latz, Arnulf

    2016-12-01

    Thermodynamically consistent transport theory is used to compare 3D images of real anode microstructures from lithium-ion batteries to virtual ones created by a parametric stochastic 3D microstructure model. Half-cell simulations in 3D with spatially resolved microstructures at different applied currents show that for low currents the deviations between various electrochemical quantities like current density or overpotential are negligibly small. For larger currents small differences become more pronounced. Qualitative and quantitative differences of these features are discussed with respect to the microstructure and it is shown that the real and virtual structures behave similar during electrochemical simulations. Extensions of the stochastic microstructure model, which overcome small differences in electrochemical behavior, are proposed.

  13. Inocula selection in microbial fuel cells based on anodic biofilm abundance of Geobacter sulfurreducens

    DEFF Research Database (Denmark)

    Sun, Guotao; Rodrigues, Diogo De Sacadura; Thygesen, Anders

    2016-01-01

    Microbial fuel cells (MFCs) rely on microbial conversion of organic substrates to electricity. The optimal performance depends on the establishment of a microbial community rich in electrogenic bacteria. Usually this microbial community is established from inoculation of the MFC anode chamber...... with naturally occurring mixed inocula. In this study, the electrochemical performance of MFCs and microbial community evolution were evaluated for three inocula including domestic wastewater (DW), lake sediment (LS) and biogas sludge (BS) with varying substrate loading (Lsub) and external resistance (Rext......) on the MFC. The electrogenic bacterium Geobacter sulfurreducens was identified in all inocula and its abundance during MFC operation was positively linked to the MFC performance. The LS inoculated MFCs showed highest abundance (18% ± 1%) of G. sulfurreducens, maximum current density [Imax = (690 ± 30) m...

  14. Fabrication and characterization of anode-supported micro-tubular solide oxide fuel cell by phase inversion method

    Science.gov (United States)

    Ren, Cong

    Nowadays, the micro-tubular solid oxide fuel cells (MT-SOFCs), especially the anode supported MT-SOFCs have been extensively developed to be applied for SOFC stacks designation, which can be potentially used for portable power sources and vehicle power supply. To prepare MT-SOFCs with high electrochemical performance, one of the main strategies is to optimize the microstructure of the anode support. Recently, a novel phase inversion method has been applied to prepare the anode support with a unique asymmetrical microstructure, which can improve the electrochemical performance of the MT-SOFCs. Since several process parameters of the phase inversion method can influence the pore formation mechanism and final microstructure, it is essential and necessary to systematically investigate the relationship between phase inversion process parameters and final microstructure of the anode supports. The objective of this study is aiming at correlating the process parameters and microstructure and further preparing MT-SOFCs with enhanced electrochemical performance. Non-solvent, which is used to trigger the phase separation process, can significantly influence the microstructure of the anode support fabricated by phase inversion method. To investigate the mechanism of non-solvent affecting the microstructure, water and ethanol/water mixture were selected for the NiO-YSZ anode supports fabrication. The presence of ethanol in non-solvent can inhibit the growth of the finger-like pores in the tubes. With the increasing of the ethanol concentration in the non-solvent, a relatively dense layer can be observed both in the outside and inside of the tubes. The mechanism of pores growth and morphology obtained by using non-solvent with high concentration ethanol was explained based on the inter-diffusivity between solvent and non-solvent. Solvent and non-solvent pair with larger Dm value is benefit for the growth of finger-like pores. Three cells with different anode geometries was

  15. Optimization of fuel cell membrane electrode assemblies for transition metal ion-chelating ordered mesoporous carbon cathode catalysts

    Directory of Open Access Journals (Sweden)

    Johanna K. Dombrovskis

    2014-12-01

    Full Text Available Transition metal ion-chelating ordered mesoporous carbon (TM-OMC materials were recently shown to be efficient polymer electrolyte membrane fuel cell (PEMFC catalysts. The structure and properties of these catalysts are largely different from conventional catalyst materials, thus rendering membrane electrode assembly (MEA preparation parameters developed for conventional catalysts not useful for applications of TM-OMC catalysts. This necessitates development of a methodology to incorporate TM-OMC catalysts in the MEA. Here, an efficient method for MEA preparation using TM-OMC catalyst materials for PEMFC is developed including effects of catalyst/ionomer loading and catalyst/ionomer-mixing and application procedures. An optimized protocol for MEA preparation using TM-OMC catalysts is described.

  16. Numerical Investigation on the Impact of Anode Change on Heat Transfer and Fluid Flow in Aluminum Smelting Cells

    Science.gov (United States)

    Wang, Qiang; Gosselin, Louis; Fafard, Mario; Peng, Jianping; Li, Baokuan

    2016-04-01

    In order to understand the impact of anode change on heat transfer and magnetohydrodynamic flow in aluminum smelting cells, a transient three-dimensional (3D) coupled mathematical model has been developed. The solutions of the mass, momentum, and energy conservation equations were simultaneously implemented by the finite volume method with full coupling of the Joule heating and Lorentz force through solving the electrical potential equation. The volume of fluid approach was employed to describe the two-phase flow. The phase change of molten electrolyte (bath) as well as molten aluminum (metal) was modeled by an enthalpy-based technique, where the mushy zone is treated as a porous medium with a porosity equal to the liquid fraction. The effect of the new anode temperature on recovery time was also analyzed. A reasonable agreement between the test data and simulated results is obtained. The results indicate that the temperature of the bath under cold anodes first decreases reaching the minimal value and rises under the effect of increasing Joule heating, and finally returns to steady state. The colder bath decays the velocity, and the around ledge becomes thicker. The lowest temperature of the bath below new anodes increases from 1118 K to 1143 K (845 °C to 870 °C) with the new anode temperature ranging from 298 K to 498 K (25°C to 225°C), and the recovery time reduces from 22.5 to 20 hours.

  17. Set anode potentials affect the electron fluxes and microbial community structure in propionate-fed microbial electrolysis cells

    Science.gov (United States)

    Hari, Ananda Rao; Katuri, Krishna P.; Logan, Bruce E.; Saikaly, Pascal E.

    2016-01-01

    Anode potential has been shown to be a critical factor in the rate of acetate removal in microbial electrolysis cells (MECs), but studies with fermentable substrates and set potentials are lacking. Here, we examined the impact of three different set anode potentials (SAPs; −0.25, 0, and 0.25 V vs. standard hydrogen electrode) on the electrochemical performance, electron flux to various sinks, and anodic microbial community structure in two-chambered MECs fed with propionate. Electrical current (49–71%) and CH4 (22.9–41%) were the largest electron sinks regardless of the potentials tested. Among the three SAPs tested, 0 V showed the highest electron flux to electrical current (71 ± 5%) and the lowest flux to CH4 (22.9 ± 1.2%). In contrast, the SAP of −0.25 V had the lowest electron flux to current (49 ± 6%) and the highest flux to CH4 (41.1 ± 2%). The most dominant genera detected on the anode of all three SAPs based on 16S rRNA gene sequencing were Geobacter, Smithella and Syntrophobacter, but their relative abundance varied among the tested SAPs. Microbial community analysis implies that complete degradation of propionate in all the tested SAPs was facilitated by syntrophic interactions between fermenters and Geobacter at the anode and ferementers and hydrogenotrophic methanogens in suspension. PMID:27934925

  18. Polydopamine as a new modification material to accelerate startup and promote anode performance in microbial fuel cells

    Science.gov (United States)

    Du, Qing; An, Jingkun; Li, Junhui; Zhou, Lean; Li, Nan; Wang, Xin

    2017-03-01

    The bacterial anode material is important to the performance of microbial fuel cells (MFCs) because its characteristics affect the biofilm formation and extracellular electron transfer. Here we find that a superhydrophilic semiconductor, polydopamine (PDA), is an effective modification material for the anode to accelerate startup and improve power density. When the activated carbon anode is added with 50% (wt.) PDA, the startup time is 14% shorter than the control (from 88 h to 76 h), with a 31% increase in maximum power density from 613 ± 9 to 803 ± 6 mW m-2, and the Columbic efficiency increases from 19% to 48%. These can be primarily attributed to the abundant functional groups (such as amino group, and catechol functions) introduced by PDA that improve hydrophilicity and extracellular electron transfer. PDA also increases proportions of Proteobacteria and Firmicutes families, indicating that PDA has a selective effect on anode microbial community. Our findings provide a new approach to accelerate anode biofilm formation and enhance MFC power output by modification of biocompatible PDA.

  19. Set anode potentials affect the electron fluxes and microbial community structure in propionate-fed microbial electrolysis cells

    KAUST Repository

    Rao, Hari Ananda

    2016-12-09

    Anode potential has been shown to be a critical factor in the rate of acetate removal in microbial electrolysis cells (MECs), but studies with fermentable substrates and set potentials are lacking. Here, we examined the impact of three different set anode potentials (SAPs; −0.25, 0, and 0.25 V vs. standard hydrogen electrode) on the electrochemical performance, electron flux to various sinks, and anodic microbial community structure in two-chambered MECs fed with propionate. Electrical current (49–71%) and CH4 (22.9–41%) were the largest electron sinks regardless of the potentials tested. Among the three SAPs tested, 0 V showed the highest electron flux to electrical current (71 ± 5%) and the lowest flux to CH4 (22.9 ± 1.2%). In contrast, the SAP of −0.25 V had the lowest electron flux to current (49 ± 6%) and the highest flux to CH4 (41.1 ± 2%). The most dominant genera detected on the anode of all three SAPs based on 16S rRNA gene sequencing were Geobacter, Smithella and Syntrophobacter, but their relative abundance varied among the tested SAPs. Microbial community analysis implies that complete degradation of propionate in all the tested SAPs was facilitated by syntrophic interactions between fermenters and Geobacter at the anode and ferementers and hydrogenotrophic methanogens in suspension.

  20. Effects of carbon brush anode size and loading on microbial fuel cell performance in batch and continuous mode

    KAUST Repository

    Lanas, Vanessa

    2014-02-01

    Larger scale microbial fuel cells (MFCs) require compact architectures to efficiently treat wastewater. We examined how anode-brush diameter, number of anodes, and electrode spacing affected the performance of the MFCs operated in fed-batch and continuous flow mode. All anodes were initially tested with the brush core set at the same distance from the cathode. In fed-batch mode, the configuration with three larger brushes (25 mm diameter) produced 80% more power (1240 mW m-2) than reactors with eight smaller brushes (8 mm) (690 mW m-2). The higher power production by the larger brushes was due to more negative and stable anode potentials than the smaller brushes. The same general result was obtained in continuous flow operation, although power densities were reduced. However, by moving the center of the smaller brushes closer to the cathode (from 16.5 to 8 mm), power substantially increased from 690 to 1030 mW m-2 in fed batch mode. In continuous flow mode, power increased from 280 to 1020 mW m-2, resulting in more power production from the smaller brushes than the larger brushes (540 mW m-2). These results show that multi-electrode MFCs can be optimized by selecting smaller anodes, placed as close as possible to the cathode. © 2013 Elsevier B.V. All rights reserved.

  1. Improved Reliability of Small Molecule Organic Solar Cells by Double Anode Buffer Layers

    Directory of Open Access Journals (Sweden)

    Pao-Hsun Huang

    2014-01-01

    Full Text Available An optimized hybrid planar heterojunction (PHJ of small molecule organic solar cells (SM-OSCs based on copper phthalocyanine (CuPc as donor and fullerene (C60 as acceptor was fabricated, which obviously enhanced the performance of device by sequentially using both MoO3 and pentacene as double anode buffer layers (ABL, also known as hole extraction layer (HEL. A series of the vacuum-deposited ABL, acting as an electron and exciton blocking layer, were examined for their characteristics in SM-OSCs. The performance and reliability were compared between conventional ITO/ABL/CuPc/C60/BCP/Ag cells and the new ITO/double ABL/CuPc/C60/BCP/Ag cells. The effect on the electrical properties of these materials was also investigated to obtain the optimal thickness of ABL. The comparison shows that the modified cell has an enhanced reliability compared to traditional cells. The improvement of lifetime was attributed to the idea of double layers to prevent humidity and oxygen from diffusing into the active layer. We demonstrated that the interfacial extraction layers are necessary to avoid degradation of device. That is to say, in normal temperature and pressure, a new avenue for the device within double buffer layers has exhibited the highest values of open circuit voltage (Voc, fill factor (FF, and lifetime in this work compared to monolayer of ABL.

  2. Influence of nano zirconia on NiAl anodes for molten carbonate fuel cell: Characterization, cell tests and post-analysis

    Science.gov (United States)

    Accardo, Grazia; Frattini, Domenico; Moreno, Angelo; Yoon, Sung Pil; Han, Jong Hee; Nam, Suk Woo

    2017-01-01

    Anode materials in Molten Carbonate Fuel Cells should have high creep resistance and good mechanical behavior to endure in high temperature-corrosive environments. In this work, zirconia nanoparticles (1-10% wt.) are added to NiAl anodes in order to investigate their effects on mechanical properties and single cell performances. Results show that nanoparticles strongly adhere to metal particles and bending strength increases from 6.08 to 11.33 kgf cm-2 while creep strain is reduced from 7.55% to 3.25%. In the case of the anode with ZrO2 3% wt., the stable and high output voltage of 0.81 V at 150 mA cm-2 is a promising result, compared to the literature. In addition, the solid contact angles between melted electrolyte and anode, for the NiAl reference sample and the ZrO2 3% wt. are 37.6° and 17°, respectively, showing the improved wettability of the modified anode. However, it seems to be a limit to the effective zirconia content as the contact angle of the anode with ZrO2 10% wt. is 58.1°, which indicates a low wetting ability. When zirconia content is too high, single cells have low performances due to high internal resistance and porosity reduction. The formation of a zirconate phase also occurs during operations.

  3. Anode gas recirculation for improving the performance and cost of a 5-kW solid oxide fuel cell system

    Science.gov (United States)

    Torii, Ryohei; Tachikawa, Yuya; Sasaki, Kazunari; Ito, Kohei

    2016-09-01

    Solid oxide fuel cells (SOFCs) have the potential to efficiently convert chemical energy into electricity and heat and are expected to be implemented in stationary combined heat and power (CHP) systems. This paper presents the heat balance analysis for a 5-kW medium-sized integrated SOFC system and the evaluation of the effect of anode gas recirculation on the system performance. The risk of carbon deposition on an SOFC anode due to anode gas recirculation is also assessed using the C-H-O diagram obtained from thermodynamic equilibrium calculations. These results suggest that a higher recirculation ratio increases net fuel utilization and improves the electrical efficiency of the SOFC system. Furthermore, cost simulation of the SOFC system and comparison with the cost of electricity supply by a power grid indicates that the capital cost is sufficiently low to popularize the SOFC system in terms of the total cost over one decade.

  4. Electrospun fibers for high performance anodes in microbial fuel cells. Optimizing materials and architecture

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shuiliang

    2010-04-15

    A novel porous conducting nanofiber mat (PCNM) with nanostructured polyaniline (nanoPANi) on the fiber surface was successfully prepared by simple oxidative polymerization. The composite PCNM displayed a core/shell structure with highly rough surface. The thickness and the morphology of PANi layer on the electrospun polyamide (PA) fiber surface could be controlled by varying aniline concentration and temperature. The combination of the advantages of electrospinning technique and nanostructured PANi, let the PA/PANi composite PCNM possess more than five good properties, i.e. high conductivity of 6.759 S.m{sup -1}, high specific surface area of 160 m2.g{sup -1}, good strength of 82.88 MPa for mat and 161.75 MPa for highly aligned belts, good thermal properties with 5% weight loss temperature up to 415 C and excellent biocompatibility. In the PA/PANi composite PCNM, PANi is the only conducting component, its conductivity of 6.759 S.m{sup -1} which is measured in dry-state, is not enough for electrode. Moreover, the conductivity decreases in neutral pH environment due to the de-doping of proton. However, the method of spontaneous growth of nanostructured PANi on electrospun fiber mats provides an effective method to produce porous electrically conducting electrospun fiber mats. The combination advantages of nanostructured PANi with the electrospun fiber mats, extends the applications of PANi and electrospun nanofibers, such as chemical- and bio-sensors, actuators, catalysis, electromagnetic shielding, corrosion protection, separation membranes, electro-optic devices, electrochromic devices, tissue engineering and many others. The electrical conductivity of electrospun PCNM with PANi as the only conducting component is too low for application of as anode in microbial fuel cells (MFCs). So, we turn to electrospun carbon fiber due to its high electrical conductivity and environmental stability. The current density is greatly dependent on the microorganism density of anode

  5. Submersible microbial fuel cell sensor for monitoring microbial activity and BOD in groundwater: Focusing on impact of anodic biofilm on sensor applicability

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2011-01-01

    A sensor, based on a submersible microbial fuel cell (SUMFC), was developed for in situ monitoring of microbial activity and biochemical oxygen demand (BOD) in groundwater. Presence or absence of a biofilm on the anode was a decisive factor for the applicability of the sensor. Fresh anode...... was required for application of the sensor for microbial activity measurement, while biofilm‐colonized anode was needed for utilizing the sensor for BOD content measurement. The current density of SUMFC sensor equipped with a biofilm‐colonized anode showed linear relationship with BOD content, to up to 250 mg...

  6. Combined Theoretical and Experimental Investigation and Design of H2S Tolerant Anode for Solid Oxide Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Gerardine G. Botte; Damilola Daramola; Madhivanan Muthuvel

    2009-01-07

    A solid oxide fuel cell (SOFC) is a high temperature fuel cell and it normally operates in the range of 850 to 1000 C. Coal syngas has been considered for use in SOFC systems to produce electric power, due to its high temperature and high hydrogen and carbon monoxide content. However, coal syngas also has contaminants like carbon dioxide (CO{sub 2}) and hydrogen sulfide (H{sub 2}S). Among these contaminants, H{sub 2}S is detrimental to electrode material in SOFC. Commonly used anode material in SOFC system is nickel-yttria stabilized zirconia (Ni-YSZ). The presence of H{sub 2}S in the hydrogen stream will damage the Ni anode and hinder the performance of SOFC. In the present study, an attempt was made to understand the mechanism of anode (Ni-YSZ) deterioration by H{sub 2}S. The study used computation methods such as quantum chemistry calculations and molecular dynamics to predict the model for anode destruction by H{sub 2}S. This was done using binding energies to predict the thermodynamics and Raman spectroscopy to predict molecular vibrations and surface interactions. On the experimental side, a test stand has been built with the ability to analyze button cells at high temperature under syngas conditions.

  7. Long-Life MEAs and Catalysts for PEM Electrolyzers/Fuel Cells Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Nanostructured Thin Films (NSTF), used as substrates for catalysts, have proven to be highly active for oxygen reduction in fuel cells. This improvement in activity...

  8. Tunable synthetic approaches for the optimization of nanostructured fuel cell catalysts: An overview

    Directory of Open Access Journals (Sweden)

    Bönnemann H.

    2004-01-01

    Full Text Available Highly active nanostructured pluri-metal catalysts for fuel cell applications can be obtained by designing synthetic protocol where the particle size, metal composition and morphology can be readily tailored. Tunable synthesis relates to combining the various synthetic methodologies available for generating nanostructured metal catalysts with desired catalytic properties. Herein, we discuss some of these synthetic methodologies which were developed to combine the advantages of each pathway in generating efficient fuel cell catalysts and to learn how the composition and morphology of the metals be fine tuned.

  9. Local potential evolutions during proton exchange membrane fuel cell operation with dead-ended anode - Part II: Aging mitigation strategies based on water management and nitrogen crossover

    Science.gov (United States)

    Abbou, S.; Dillet, J.; Maranzana, G.; Didierjean, S.; Lottin, O.

    2017-02-01

    Proton exchange membrane (PEM) fuel cells operate with dead-ended anode in order to reduce system cost and complexity when compared with hydrogen re-circulation systems. In the first part of this work, we showed that localized fuel starvation events may occur, because of water and nitrogen accumulation in the anode side, which could be particularly damaging to the cell performance. To prevent these degradations, the anode compartment must be purged which may lead to an overall system efficiency decrease because of significant hydrogen waste. In the second part, we present several purge strategies in order to minimize both hydrogen waste and membrane-electrode assembly degradations during dead-ended anode operation. A linear segmented cell with reference electrodes was used to monitor simultaneously the current density distribution along the gas channel and the time evolution of local anode and cathode potentials. To asses MEA damages, Platinum ElectroChemical Surface Area (ECSA) and cell performance were periodically measured. The results showed that dead-end mode operation with an anode plate maintained at a temperature 5 °C hotter than the cathode plate limits water accumulation in the anode side, reducing significantly purge frequency (and thus hydrogen losses) as well as MEA damages. As nitrogen contribution to hydrogen starvation is predominant in this thermal configuration, we also tested a microleakage solution to discharge continuously most the nitrogen accumulating in the anode side while ensuring low hydrogen losses and minimum ECSA losses provided the right microleakage flow rate is chosen.

  10. Comparison of the Degradation of the Polarisation Resistance of Symmetrical LSM-YSZ cells, with Anode Supported Ni-YSZ/YSZ/LSM-YSZ SOFCs

    DEFF Research Database (Denmark)

    Torres da Silva, Iris Maura; Nielsen, Jimmi; Hjelm, Johan;

    2009-01-01

    Impedance spectra of a symmetrical cell with SOFC cathodes (LSM-YSZ/YSZ/LSM-YSZ) and an anode supported planar SOFC (Ni-YSZ/YSZ/LSM-YSZ) were collected at OCV at 650{degree sign}C in air (cathode) and humidified (4%) hydrogen (anode), over 155 hours. The impedance was affected by degradation over...

  11. Studies on sulfur poisoning and development of advanced anodic materials for waste-to-energy fuel cells applications

    Science.gov (United States)

    Zaza, Fabio; Paoletti, Claudia; LoPresti, Roberto; Simonetti, Elisabetta; Pasquali, Mauro

    Biomass is the renewable energy source with the most potential penetration in energy market for its positive environmental and socio-economic consequences: biomass live cycles for energy production is carbon neutral; energy crops promote alternative and productive utilizations of rural sites creating new economic opportunities; bioenergy productions promote local energy independence and global energy security defined as availability of energy resource supply. Different technologies are currently available for energy production from biomass, but a key role is played by fuel cells which have both low environmental impacts and high efficiencies. High temperature fuel cells, such as molten carbonate fuel cells (MCFC), are particularly suitable for bioenergy production because it can be directly fed with biogas: in fact, among its principal constituents, methane can be transformed to hydrogen by internal reforming; carbon dioxide is a safe diluent; carbon monoxide is not a poison, but both a fuel, because it can be discharged at the anode, and a hydrogen supplier, because it can produce hydrogen via the water-gas shift reaction. However, the utilization of biomass derived fuels in MCFC presents different problems not yet solved, such as the poisoning of the anode due to byproducts of biofuel chemical processing. The chemical compound with the major negative effects on cell performances is hydrogen sulfide. It reacts with nickel, the main anodic constituent, forming sulfides and blocking catalytic sites for electrode reactions. The aim of this work is to study the hydrogen sulfide effects on MCFC performances for defining the poisoning mechanisms of conventional nickel-based anode, recommending selection criteria of sulfur-tolerant materials, and selecting advanced anodes for MCFC fed with biogas.

  12. Enhanced current and power density of micro-scale microbial fuel cells with ultramicroelectrode anodes

    Science.gov (United States)

    Ren, Hao; Rangaswami, Sriram; Lee, Hyung-Sool; Chae, Junseok

    2016-09-01

    We present a micro-scale microbial fuel cell (MFC) with an ultramicroelectrode (UME) anode, with the aim of creating a miniaturized high-current/power-density converter using carbon-neutral and renewable energy sources. Micro-scale MFCs have been studied for more than a decade, yet their current and power densities are still an order of magnitude lower than those of their macro-scale counterparts. In order to enhance the current/power densities, we engineer a concentric ring-shaped UME, with a width of 20 μm, to facilitate the diffusion of ions in the vicinity of the micro-organisms that form biofilm on the UME. The biofilm extends approximately 15 μm from the edge of the UME, suggesting the effective biofilm area increases. Measured current/power densities per the effective area and the original anode area are 7.08  ±  0.01 A m-2 & 3.09  ±  0.04 W m-2 and 17.7  ±  0.03 A m-2 & 7.72  ±  0.09 W m-2, respectively. This is substantially higher than any prior work in micro-scale MFCs, and very close, or even higher, to that of macro-scale MFCs. A Coulombic efficiency, a measure of how efficiently an MFC harvests electrons from donor substrate, of 70%, and an energy conversion efficiency of 17% are marked, highlighting the micro-scale MFC as an attractive alternative within the existing energy conversion portfolio.

  13. Effective proton conductivity of catalyst layers in proton exchange membrane fuel cells%质子交换膜燃料电池催化层的有效质子电导率

    Institute of Scientific and Technical Information of China (English)

    杜春雨; 史鹏飞; 程新群; 尹鸽平

    2005-01-01

    A numerical model was presented to predict the specific proton conductivity of the catalyst layer in Proton Exchange Membrane Fuel Cells (PEMFC). This model was derived from the random packed spheres with simple cubic, body-centered cubic and face-centered cubic structures. The effects of sphe reradius rs, bulk proton conductivity kb, contact parameter γ and contact angle a on proton transfer within a homogeneous agglomerate sphere consisting of carbon-supported catalyst and electrolyte were analyzed. A correlation equation of specific proton conductivity was obtained by data fitting. The real effective proton conductivity in the catalyst layer was measured by addition to a standard Membrane Electrolyte Assembly of an inactive composite layer in the electrolyte path between the anode and cathode. The model was validated by good agreement between calculations and measured data.

  14. Effect of adding urea on performance of Cu/CeO{sub 2}/yttria-stabilized zirconia anodes for solid oxide fuel cells prepared by impregnation method

    Energy Technology Data Exchange (ETDEWEB)

    Li Wenyuan [Center for Condensed Matter Science and Technology, Department of Physics, Harbin Institute of Technology, Harbin 150080 (China); Lue Zhe, E-mail: lvzhe@hit.edu.c [Center for Condensed Matter Science and Technology, Department of Physics, Harbin Institute of Technology, Harbin 150080 (China); Zhu Xingbao; Guan Bo; Wei Bo; Guan Chengzhi; Su Wenhui [Center for Condensed Matter Science and Technology, Department of Physics, Harbin Institute of Technology, Harbin 150080 (China)

    2011-02-01

    Anode microstructure has a great influence on the cell performance. The addition of urea into impregnated solution has been proposed to tailor the distribution and/or morphology of Cu when fabricating the Cu-based anodes by impregnation method. While the previous reports demonstrated the single cell performance has not been improved in this route, in this paper, fuel cells with Cu/yttria-stabilized zirconia (YSZ) and Cu-CeO{sub 2}/YSZ anodes were fabricated and evaluated with improved outputs. The microstructure of Cu in anodes appeared significantly different after the addition of urea. The electronic conductivity obtained from the anodes impregnated with adding urea was twice as high as the ones without. Performance of fuel cells increases by 12% while operating on H{sub 2} at 700 {sup o}C upon adding urea. Furthermore, the performance improvement was more prominent when such method was adopted in the fabrication of Cu-CeO{sub 2}/YSZ composite anodes. Cells with Cu-CeO{sub 2}/YSZ composite anodes operating in H{sub 2} at 700 {sup o}C exhibited an increase of cell performance by 37%, from 337 to 462 mW cm{sup -2}, by simply adding urea to the impregnated solution. And the performance enhancement for such fuel cells is also as high as 28% when using CH{sub 4} as fuel.

  15. Neutral hydrophilic cathode catalyst binders for microbial fuel cells

    KAUST Repository

    Saito, Tomonori

    2011-01-01

    Improving oxygen reduction in microbial fuel cell (MFC) cathodes requires a better understanding of the effects of the catalyst binder chemistry and properties on performance. A series of polystyrene-b-poly(ethylene oxide) (PS-b-PEO) polymers with systematically varying hydrophilicity were designed to determine the effect of the hydrophilic character of the binder on cathode performance. Increasing the hydrophilicity of the PS-b-PEO binders enhanced the electrochemical response of the cathode and MFC power density by ∼15%, compared to the hydrophobic PS-OH binder. Increased cathode performance was likely a result of greater water uptake by the hydrophilic binder, which would increase the accessible surface area for oxygen reduction. Based on these results and due to the high cost of PS-b-PEO, the performance of an inexpensive hydrophilic neutral polymer, poly(bisphenol A-co-epichlorohydrin) (BAEH), was examined in MFCs and compared to a hydrophilic sulfonated binder (Nafion). MFCs with BAEH-based cathodes with two different Pt loadings initially (after 2 cycles) had lower MFC performance (1360 and 630 mW m-2 for 0.5 and 0.05 mg Pt cm-2) than Nafion cathodes (1980 and 1080 mW m -2 for 0.5 and 0.05 mg Pt cm-2). However, after long-term operation (22 cycles, 40 days), power production of each cell was similar (∼1200 and 700-800 mW m-2 for 0.5 and 0.05 mg Pt cm-2) likely due to cathode biofouling that could not be completely reversed through physical cleaning. While binder chemistry could improve initial electrochemical cathode performance, binder materials had less impact on overall long-term MFC performance. This observation suggests that long-term operation of MFCs will require better methods to avoid cathode biofouling. © 2011 The Royal Society of Chemistry.

  16. Effect of composites based nickel foam anode in microbial fuel cell using Acetobacter aceti and Gluconobacter roseus as a biocatalysts.

    Science.gov (United States)

    Karthikeyan, Rengasamy; Krishnaraj, Navanietha; Selvam, Ammaiyappan; Wong, Jonathan Woon-Chung; Lee, Patrick K H; Leung, Michael K H; Berchmans, Sheela

    2016-10-01

    This study explores the use of materials such as chitosan (chit), polyaniline (PANI) and titanium carbide (TC) as anode materials for microbial fuel cells. Nickel foam (NF) was used as the base anode substrate. Four different types of anodes (NF, NF/PANI, NF/PANI/TC, NF/PANI/TC/Chit) are thus prepared and used in batch type microbial fuel cells operated with a mixed consortium of Acetobacter aceti and Gluconobacter roseus as the biocatalysts and bad wine as a feedstock. A maximum power density of 18.8Wm(-3) (≈2.3 times higher than NF) was obtained in the case of the anode modified with a composite of PANI/TC/Chit. The MFCs running under a constant external resistance of (50Ω) yielded 14.7% coulombic efficiency with a maximum chemical oxygen demand (COD) removal of 87-93%. The overall results suggest that the catalytic materials embedded in the chitosan matrix show the best performance and have potentials for further development.

  17. The Performance of Electron-Mediator Modified Activated Carbon as Anode for Direct Glucose Alkaline Fuel Cell

    Directory of Open Access Journals (Sweden)

    Zi Li

    2016-06-01

    Full Text Available Six different electron mediators were immobilized on the activated carbon (AC anode and their effects on performance of a direct glucose alkaline fuel cell were explored. 2-hydroxy-1, 4-naphthoquinone (NQ, methyl viologen (MV, neutral red (NR, methylene blue (MB, 1, 5-dichloroanthraquinone (DA and anthraquinone (AQ were doped in activated carbon (AC, respectively, and pressed on nickel foam to fabricate the anodes. NQ shows comparable performance with MV, but with much lower cost and environmental impact. With NQ-AC anode, the fuel cell attained a peak power density of 16.10 Wm−2, peak current density of 48.09 Am−2, and open circuit voltage of 0.76 V under the condition of 1 M glucose, 3 M KOH, and ambient temperature. Polarization curve, EIS and Tafel measurements were also conducted to explore the mechanism of performance enhancement. The high performance is likely due to the enhanced charge transfer and more reactive sites provided on the anode.

  18. Preparation and study of IrO2/SiC–Si supported anode catalyst for high temperature PEM steam electrolysers

    DEFF Research Database (Denmark)

    Nikiforov, Aleksey; Tomás García, Antonio Luis; Petrushina, Irina;

    2011-01-01

    of the IrO2 particles, affecting the IrO2 particle size. The prepared catalysts were electrochemically characterised by cyclic voltammetry experiments at 25,80,120 and 150 °C. In accordance with the observed variation in particle size, a support loading of up to 20% improved the activity of the catalyst...

  19. Membrane-electrode structures for molecular catalysts for use in fuel cells and other electrochemical devices

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, John B.; Zhu, Xiaobing; Hwang, Gi Suk; Martin, Zulima; He, Qinggang; Driscoll, Peter; Weber, Adam; Clark, Kyle

    2016-09-27

    Water soluble catalysts, (M)meso-tetra(N-Methyl-4-Pyridyl)Porphinepentachloride (M=Fe, Co, Mn & Cu), have been incorporated into the polymer binder of oxygen reduction cathodes in membrane electrode assemblies used in PEM fuel cells and found to support encouragingly high current densities. The voltages achieved are low compared to commercial platinum catalysts but entirely consistent with the behavior observed in electroanalytical measurements of the homogeneous catalysts. A model of the dynamics of the electrode action has been developed and validated and this allows the MEA electrodes to be optimized for any chemistry that has been demonstrated in solution. It has been shown that improvements to the performance will come from modifications to the structure of the catalyst combined with optimization of the electrode structure and a well-founded pathway to practical non-platinum group metal catalysts exists.

  20. Investigation of sulfur interactions on a conventional nickel-based solid oxide fuel cell anode during methane steam and dry reforming

    Science.gov (United States)

    Jablonski, Whitney S.

    Solid oxide fuel cells (SOFC) are an attractive energy source because they do not have undesirable emissions, are scalable, and are feedstock flexible, which means they can operate using a variety of fuel mixtures containing H2 and hydrocarbons. In terms of fuel flexibility, most potential fuel sources contain sulfur species, which severely poison the nickel-based anode. The main objective of this thesis is to systematically evaluate sulfur interactions on a conventional Ni/YSZ anode and compare sulfur poisoning during methane steam and dry reforming (SMR and DMR) to a conventional catalyst (Sud Chemie, Ni/K2O-CaAl2O4). Reforming experiments (SMR and DMR) were carried out in a packed bed reactor (PBR), and it was demonstrated that Ni/YSZ is much more sensitive to sulfur poisoning than Ni/K2O-CaAl2O4 as evidenced by the decline in activity to zero in under an hour for both SMR and DMR. Adsorption and desorption of H2S and SO2 on both catalysts was evaluated, and despite the low amount of accessible nickel on Ni/YSZ (14 times lower than Ni/K2O-CaAl2O4), it adsorbs 20 times more H2S and 50 times more SO2 than Ni/K 2O-CaAl2O4. A one-dimensional, steady state PBR model (DetchemPBED) was used to evaluate SMR and DMR under poisoning conditions using the Deutschmann mechanism and a recently published sulfur sub-mechanism. To fit the observed deactivation in the presence of 1 ppm H2S, the adsorption/desorption equilibrium constant was increased by a factor 16,000 for Ni/YSZ and 96 for Ni/K2O-CaAl2O4. A tubular SAE reactor was designed and fabricated for evaluating DMR in a reactor that mimics an SOFC. Evidence of hydrogen diffusion through a supposedly impermeable layer indicated that the tubular SAE reactor has a major flaw in which gases diffuse to unintended parts of the tube. It was also found to be extremely susceptible to coking which leads to cell failure even in operating regions that mimic real biogas. These problems made it impossible to validate the tubular SAE

  1. CO2 emission free co-generation of energy and ethylene in hydrocarbon SOFC reactors with a dehydrogenation anode.

    Science.gov (United States)

    Fu, Xian-Zhu; Lin, Jie-Yuan; Xu, Shihong; Luo, Jing-Li; Chuang, Karl T; Sanger, Alan R; Krzywicki, Andrzej

    2011-11-21

    A dehydrogenation anode is reported for hydrocarbon proton conducting solid oxide fuel cells (SOFCs). A Cu-Cr(2)O(3) nanocomposite is obtained from CuCrO(2) nanoparticles as an inexpensive, efficient, carbon deposition and sintering tolerant anode catalyst. A SOFC reactor is fabricated using a Cu-Cr(2)O(3) composite as a dehydrogenation anode and a doped barium cerate as a proton conducting electrolyte. The protonic membrane SOFC reactor can selectively convert ethane to valuable ethylene, and electricity is simultaneously generated in the electrochemical oxidative dehydrogenation process. While there are no CO(2) emissions, traces of CO are present in the anode exhaust when the SOFC reactor is operated at over 700 °C. A mechanism is proposed for ethane electro-catalytic dehydrogenation over the Cu-Cr(2)O(3) catalyst. The SOFC reactor also has good stability for co-generation of electricity and ethylene at 700 °C.

  2. 直接甲醇燃料电池钯基催化剂研究进展%Research Progress in Pd Based Catalysts for Direct Methanol Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    王丽; 杨云裳; 裴春娟

    2014-01-01

    直接甲醇燃料电池(DMFC)阳极催化剂是直接甲醇燃料电池的关键材料之一。由于钯的价格便宜、储量丰富、在碱性条件下活性较高,成为取代铂作为DMFC的潜在的阳极催化剂。着重介绍了近年来钯基阳极催化剂在碱性条件下对甲醇的电氧化的研究进展,展望了其发展前景。%The anode catalyst is one of the key materials for direct methanol fuel cell (DMFC). Pd is more suitable than Pt as a kind of anode catalyst due to its relatively low cost and abundance on the earth. In this paper, Pd-based catalysts for electro-oxidation of methanol in alkaline media were reviewed, and the development of the catalysts for methanol electro-oxidation was prospected.

  3. In vitro investigation of anodization and CaP deposited titanium surface using MG63 osteoblast-like cells

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.M. [Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University, 28 Yeongeon-dong, Jongno-gu, Seoul 110-749 (Korea, Republic of); Lee, J.I. [Department of Oral Pathology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul (Korea, Republic of); Lim, Y.J., E-mail: limdds@snu.ac.kr [Department of Prosthodontics and Dental Research Institute, School of Dentistry, Seoul National University, 28 Yeongeon-dong, Jongno-gu, Seoul 110-749 (Korea, Republic of)

    2010-03-01

    The aim of the present study was to investigate surface characteristics in four different titanium surfaces (AN: anodized at 270 V; AN-CaP: anodic oxidation and CaP deposited; SLA: sandblasted and acid etched; MA: machined) and to evaluate biological behaviors such as cell adhesion, cell proliferation, cytoskeletal organization, and osteogenic protein expression of MG63 osteoblast-like cells at the early stage. Surface analysis was performed using scanning electron microscopy, thin-film X-ray diffractometry, and a confocal laser scanning microscope. In order to evaluate cellular responses, MG63 osteoblast-like cells were used. The cell viability was evaluated by MTT assay. Immunofluorescent analyses of actin, type I collagen, osteonectin and osteocalcin were performed. The anodized and CaP deposited specimen showed homogeneously distributed CaP particles around micropores and exhibited anatase type oxides, titanium, and HA crystalline structures. This experiment suggests that CaP particles on the anodic oxidation surface affect cellular attachment and spreading. When designing an in vitro biological study for CaP coated titanium, it must be taken into account that preincubation in medium prior to cell seeding and the cell culture medium may affect the CaP coatings. All these observations illustrate the importance of the experimental conditions and the physicochemical parameters of the CaP coating. It is considered that further evaluations such as long-term in vitro cellular assays and in vivo experiments should be necessary to figure out the effect of CaP deposition to biological responses.

  4. CFD simulation of effect of anode configuration on gas-liquid flow and alumina transport process in an aluminum reduction cell

    Institute of Scientific and Technical Information of China (English)

    詹水清; 李茂; 周孑民; 杨建红; 周益文

    2015-01-01

    Numerical simulations of gas–liquid two-phase flow and alumina transport process in an aluminum reduction cell were conducted to investigate the effects of anode configurations on the bath flow, gas volume fraction and alumina content distributions. An Euler–Euler two-fluid model was employed coupled with a species transport equation for alumina content. Three different anode configurations such as anode without a slot, anode with a longitudinal slot and anode with a transversal slot were studied in the simulation. The simulation results clearly show that the slots can reduce the bath velocity and promote the releasing of the anode gas, but can not contribute to the uniformity of the alumina content. Comparisons of the effects between the longitudinal and transversal slots indicate that the longitudinal slot is better in terms of gas–liquid flow but is disadvantageous for alumina mixing and transport process due to a decrease of anode gas under the anode bottom surface. It is demonstrated from the simulations that the mixing and transfer characteristics of alumina are controlled to great extent by the anode gas forces while the electromagnetic forces (EMFs) play the second role.

  5. Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters

    KAUST Repository

    Kiely, Patrick D.

    2011-01-01

    Conditions in microbial fuel cells (MFCs) differ from those in microbial electrolysis cells (MECs) due to the intrusion of oxygen through the cathode and the release of H2 gas into solution. Based on 16S rRNA gene clone libraries, anode communities in reactors fed acetic acid decreased in species richness and diversity, and increased in numbers of Geobacter sulfurreducens, when reactors were shifted from MFCs to MECs. With a complex source of organic matter (potato wastewater), the proportion of Geobacteraceae remained constant when MFCs were converted into MECs, but the percentage of clones belonging to G. sulfurreducens decreased and the percentage of G. metallireducens clones increased. A dairy manure wastewater-fed MFC produced little power, and had more diverse microbial communities, but did not generate current in an MEC. These results show changes in Geobacter species in response to the MEC environment and that higher species diversity is not correlated with current. © 2010 Elsevier Ltd.

  6. Transient Response and Steady-State Analysis of the Anode of Direct Methanol Fuel Cells Based on Dual-Site Kinetics

    Directory of Open Access Journals (Sweden)

    Lei Xing

    2011-01-01

    Full Text Available An intrinsic time-dependent one-dimensional (1D model and a macro two-dimensional (2D model for the anode of the direct methanol fuel cell (DMFC are presented. The two models are based on the dual-site mechanism, which includes the coverage of intermediate species of methanol, OH, and CO (θM, θOH,Ru, and θCO,Pt on the surface of Pt and Ru. The intrinsic 1D model focused on the analysis of the effects of operating temperature, methanol concentration, and overpotential on the transient response. The macro 2D model emphasises the dimensionless distributions of methanol concentration, overpotential and current density in the catalyst layer which were affected by physical parameters such as thickness, specific area, and operating conditions such as temperature, bulk methanol concentration, and overpotential. The models were developed and solved in the PDEs module of COMSOL Multiphysics, giving good agreement with experimental data. The dimensionless distributions of methanol concentration, overpotential, and current density and the efficiency factor were calculated quantitatively. The models can be used to give accurate simulations for the polarisations of methanol fuel cell.

  7. N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells

    Science.gov (United States)

    Shui, Jianglan; Wang, Min; Du, Feng; Dai, Liming

    2015-01-01

    The availability of low-cost, efficient, and durable catalysts for oxygen reduction reaction (ORR) is a prerequisite for commercialization of the fuel cell technology. Along with intensive research efforts of more than half a century in developing nonprecious metal catalysts (NPMCs) to replace the expensive and scarce platinum-based catalysts, a new class of carbon-based, low-cost, metal-free ORR catalysts was demonstrated to show superior ORR performance to commercial platinum catalysts, particularly in alkaline electrolytes. However, their large-scale practical application in more popular acidic polymer electrolyte membrane (PEM) fuel cells remained elusive because they are often found to be less effective in acidic electrolytes, and no attempt has been made for a single PEM cell test. We demonstrated that rationally designed, metal-free, nitrogen-doped carbon nanotubes and their graphene composites exhibited significantly better long-term operational stabilities and comparable gravimetric power densities with respect to the best NPMC in acidic PEM cells. This work represents a major breakthrough in removing the bottlenecks to translate low-cost, metal-free, carbon-based ORR catalysts to commercial reality, and opens avenues for clean energy generation from affordable and durable fuel cells. PMID:26601132

  8. N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells.

    Science.gov (United States)

    Shui, Jianglan; Wang, Min; Du, Feng; Dai, Liming

    2015-02-01

    The availability of low-cost, efficient, and durable catalysts for oxygen reduction reaction (ORR) is a prerequisite for commercialization of the fuel cell technology. Along with intensive research efforts of more than half a century in developing nonprecious metal catalysts (NPMCs) to replace the expensive and scarce platinum-based catalysts, a new class of carbon-based, low-cost, metal-free ORR catalysts was demonstrated to show superior ORR performance to commercial platinum catalysts, particularly in alkaline electrolytes. However, their large-scale practical application in more popular acidic polymer electrolyte membrane (PEM) fuel cells remained elusive because they are often found to be less effective in acidic electrolytes, and no attempt has been made for a single PEM cell test. We demonstrated that rationally designed, metal-free, nitrogen-doped carbon nanotubes and their graphene composites exhibited significantly better long-term operational stabilities and comparable gravimetric power densities with respect to the best NPMC in acidic PEM cells. This work represents a major breakthrough in removing the bottlenecks to translate low-cost, metal-free, carbon-based ORR catalysts to commercial reality, and opens avenues for clean energy generation from affordable and durable fuel cells.

  9. Investigation of Cathode Catalysts for Intermediate-temperature H2S-Air Fuel Cells%中温H2S-空气燃料电池阴极催化剂的研究

    Institute of Scientific and Technical Information of China (English)

    钟理; 罗京莉; K.Chuang

    2007-01-01

    Cathode catalysts comprising composite NiO, NiO-Pt, or LiNiO2 have been developed for electrochemical oxidation of hydrogen sulfide in intermediate-temperature solid oxide fuel cells (ITSOFCs).All catalysts exhibited good electrical conductivity and catalytic activity at operating temperature.Composite NiO catalysts were found to be more active and have lower over potential and higher current density than pure Pt although the electrical conductivity of NiO itself is lower than that of Pt.This problem has been overcome by either admixing as high as 10% (by mass) Ag powder into NiO cathode layer or using composite NiO catalysts such as NiO-Pt and LiNiO2 catalysts.Composite catalysts like NiO with Ag, electrolyte and starch admixed, NiO-Pt, which was prepared from a mixture of NiO and Pt powders, by admixing electrolyte and starch, and LiNiO2, which is derived from the reaction of LiOH-H2O and NiO with electrolyte and starch admixed have been shown to be feasible and effective in an intermediate-temperature H2S-air fuel cell.A fuel cell using Li2SO4-based proton-conducting membrane as electrolyte, metal sulfides as anode catalysts, and composite NiO as cathode catalysts produced a maximum current density about 300mA·cm-2 and maximum power density over 80mW·cm-2 at 680℃ .

  10. Two-phase flow in anode flow field of a small direct methanol fuel cell in different gravities

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    An in-situ visualization of two-phase flow inside anode flow bed of a small liquid fed direct methanol fuel cells in normal and reduced gravity has been conducted in a drop tower.The anode flow bed con-sists of 11 parallel straight channels.The length,width and depth of single channel,which had rec-tangular cross section,are 48.0,2.5 and 2.0mm,respectively.The rib width was 2.0mm.The experi-mental results indicated that when the fuel cell orientation is vertical,two-phase flow pattern in anode channels can evolve from bubbly flow in normal gravity into slug flow in microgravity.The size of bub-bles in the reduced gravity is also bigger.In microgravity,the bubbles rising speed in vertical channels is obviously slower than that in normal gravity.When the fuel cell orientation is horizontal,the slug flow in the reduced gravity has almost the same characteristic with that in normal gravity.It implies that the effect of gravity on two-phase flow is small and the bubbles removal is governed by viscous drag.When the gas slugs or gas columns occupy channels,the performance of liquid fed direct methanol fuel cells is failing rapidly.It infers that in long-term microgravity,flow bed and operating condition should be optimized to avoid concentration polarization of fuel cells.

  11. Two-phase flow in anode flow field of a small direct methanol fuel cell in different gravities

    Institute of Scientific and Technical Information of China (English)

    GUO Hang; WU Feng; YE Fang; ZHAO JianFu; WAN ShiXin; L(U) CuiPing; MA ChongFang

    2009-01-01

    An in-situ visualization of two-phase flow inside anode flow bed of a small liquid fed direct methanol fuel cells in normal and reduced gravity has been conducted in a drop tower. The anode flow bed con-sists of 11 parallel straight channels. The length, width and depth of single channel, which had rec-tangular cross section, are 48.0, 2.5 and 2.0 mm, respectively. The rib width was 2.0 ram. The experi-mental results indicated that when the fuel cell orientation is vertical, two-phase flow pattern in anode channels can evolve from bubbly flow in normal gravity into slug flow in microgravity. The size of bub-bles in the reduced gravity is also bigger. In microgravity, the bubbles rising speed in vertical channels is obviously slower than that in normal gravity. When the fuel cell orientation is horizontal, the slug flow in the reduced gravity has almost the same characteristic with that in normal gravity. It implies that the effect of gravity on two-phase flow is small and the bubbles removal is governed by viscous drag. When the gas slugs or gas columns occupy channels, the performance of liquid fed direct methanol fuel cells is failing rapidly. It infers that in long-term microgravity, flow bed and operating condition should be optimized to avoid concentration polarization of fuel cells.

  12. Effect of Substrate Concentration to Anode Chamber Performance in Microbial Electrolysis Cell

    Directory of Open Access Journals (Sweden)

    Libertus Darus

    2015-11-01

    Full Text Available Microbial electrolysis is a promising process for bio-hydrogen production which might be implemented in waste water treatment in a near future. Unfortunately substrate could be converted into methane by acetoclastic methanogens and will reduce the coulombic efficiency (CE. The research objective was to study the competition between electrogens and methanogens for substrate in a continuous Microbial Electrolysis Cell (MEC.The competition was studied in relation to controlling acetate influent concentration (Cin from 35 to 1 mM with a fixed anode potential -350 mV, by assessing activity of electrogens as current density (CD, activity of acetoclastic methanogens as methanogenic consumed acetate (Cmeth, and CE and by measuring anolyte protein content to confirm a steady state condition. Controlling Cin from 35 to 1 mM resulted in tendency of both CD and Cmeth to decrease and CE to increase. At decreasing Cin from 35 to 5 mM which left excess acetate concentration in anolyte, the CEs were between 36.4% and 75.3%. At further decreasing Cin to 1 mM the acetate concentration was limited (Cef 0 mM, but the CE only reached 95.8%. Methanogenesis always occur and electrogens were not able to outcompete the acetoclastic methanogens even though the substrate concentration was limited.Keywords : microbial electrolysis cell, bio-hydrogen, metanogenesis, substrate concentration

  13. Raoultella electrica sp. nov., isolated from anodic biofilms of a glucose-fed microbial fuel cell.

    Science.gov (United States)

    Kimura, Zen-ichiro; Chung, Kyung Mi; Itoh, Hiroaki; Hiraishi, Akira; Okabe, Satoshi

    2014-04-01

    A Gram-stain-negative, non-spore-forming, rod-shaped bacterium, designated strain 1GB(T), was isolated from anodic biofilms of a glucose-fed microbial fuel cell. Strain 1GB(T) was facultatively anaerobic and chemo-organotrophic, having both a respiratory and a fermentative type of metabolism, and utilized a wide variety of sugars as carbon and energy sources. Cells grown aerobically contained Q-8 as the major quinone, but excreted Q-9 and a small amount of Q-10 when cultured with an electrode serving as the sole electron acceptor. The G+C content of the genomic DNA of 1GB(T) was 54.5 mol%. Multilocus sequence typing (MLST) analysis showed that strain 1GB(T) represented a distinct lineage within the genus Raoultella (98.5-99.4 % 16S rRNA gene sequence similarity and 94.0-96.5 % sequence similarity based on the three concatenated housekeeping genes gyrA, rpoB and parC. Strain 1GB(T) exhibited DNA-DNA hybridization relatedness of 7-43 % with type strains of all established species of the genus Raoultella. On the basis of these phenotypic, phylogenetic and genotypic data, the name Raoultella electrica sp. nov. is proposed for strain 1GB(T). The type strain is 1GB(T) ( = NBRC 109676(T) = KCTC 32430(T)).

  14. The impact of steam and current density on carbon formation from biomass gasification tar on Ni/YSZ, and Ni/CGO solid oxide fuel cell anodes

    Science.gov (United States)

    Mermelstein, Joshua; Millan, Marcos; Brandon, Nigel

    The combination of solid oxide fuel cells (SOFCs) and biomass gasification has the potential to become an attractive technology for the production of clean renewable energy. However the impact of tars, formed during biomass gasification, on the performance and durability of SOFC anodes has not been well established experimentally. This paper reports an experimental study on the mitigation of carbon formation arising from the exposure of the commonly used Ni/YSZ (yttria stabilized zirconia) and Ni/CGO (gadolinium-doped ceria) SOFC anodes to biomass gasification tars. Carbon formation and cell degradation was reduced through means of steam reforming of the tar over the nickel anode, and partial oxidation of benzene model tar via the transport of oxygen ions to the anode while operating the fuel cell under load. Thermodynamic calculations suggest that a threshold current density of 365 mA cm -2 was required to suppress carbon formation in dry conditions, which was consistent with the results of experiments conducted in this study. The importance of both anode microstructure and composition towards carbon deposition was seen in the comparison of Ni/YSZ and Ni/CGO anodes exposed to the biomass gasification tar. Under steam concentrations greater than the thermodynamic threshold for carbon deposition, Ni/YSZ anodes still exhibited cell degradation, as shown by increased polarization resistances, and carbon formation was seen using SEM imaging. Ni/CGO anodes were found to be more resilient to carbon formation than Ni/YSZ anodes, and displayed increased performance after each subsequent exposure to tar, likely due to continued reforming of condensed tar on the anode.

  15. Use of Carbon Mesh Anodes and the Effect of Different Pretreatment Methods on Power Production in Microbial Fuel Cells

    KAUST Repository

    Wang, Xin

    2009-09-01

    Flat electrodes are useful in microbial fuel cells (MFCs) as close electrode spacing improves power generation. Carbon cloth and carbon paper materials typically used in hydrogen fuel cells, however, are prohibitively expensive for use in MFCs. An inexpensive carbon mesh material was examined here as a substantially less expensive alternative to these materials for the anode in an MFC. Pretreatment of the carbon mesh was needed to ensure adequate MFC performance. Heating the carbon mesh in a muffle furnace (450°C for 30 min) resulted in a maximum power density of 922 mW/m2 (46 W/m3) with this heat-treated anode, which was 3% more power than that produced using a mesh anode cleaned with acetone (893 mW/m2; 45 W/m3). This power density with heating was only 7% less than that achieved with carbon cloth treated by a high temperature ammonia gas process (988 mW/m2; 49 W/m3). When the carbon mesh was treated by the ammonia gas process, powerincreased to 1015 mW/m2 (51 W/m3). Analysis of the cleaned or heated surfaces showed these processes decreased atomic O/C ratio, indicating removal of contaminants that interfered with charge transfer. Ammonia gas treatment also increased the atomic N/C ratio, suggesting that this process produced nitrogen related functional groups that facilitated electron transfer. These results show that low cost heat-treated carbon mesh materials can be used as the anode in an MFC, providing good performance and even exceeding performance of carbon cloth anodes. © 2009 American Chemical Society.

  16. Nanocrystalline ceria coatings on solid oxide fuel cell anodes: the role of organic surfactant pretreatments on coating microstructures and sulfur tolerance.

    Science.gov (United States)

    Wu, Chieh-Chun; Tang, Ling; De Guire, Mark R

    2014-01-01

    Treatments with organic surfactants, followed by the deposition of nanocrystalline ceria coatings from aqueous solution, were applied to anodes of solid oxide fuel cells. The cells were then operated in hydrogen/nitrogen fuel streams with H2S contents ranging from 0 to 500 ppm. Two surfactant treatments were studied: immersion in dodecanethiol, and a multi-step conversion of a siloxy-anchored alkyl bromide to a sulfonate functionality. The ceria coatings deposited after the thiol pretreatment, and on anodes with no pretreatment, were continuous and uniform, with thicknesses of 60-170 nm and 100-140 nm, respectively, and those cells exhibited better lifetime performance and sulfur tolerance compared to cells with untreated anodes and anodes with ceria coatings deposited after the sulfonate pretreatment. Possible explanations for the effects of the treatments on the structure of the coatings, and for the effects of the coatings on the performance of the cells, are discussed.

  17. Nanocrystalline ceria coatings on solid oxide fuel cell anodes: the role of organic surfactant pretreatments on coating microstructures and sulfur tolerance

    Science.gov (United States)

    Wu, Chieh-Chun; Tang, Ling

    2014-01-01

    Summary Treatments with organic surfactants, followed by the deposition of nanocrystalline ceria coatings from aqueous solution, were applied to anodes of solid oxide fuel cells. The cells were then operated in hydrogen/nitrogen fuel streams with H2S contents ranging from 0 to 500 ppm. Two surfactant treatments were studied: immersion in dodecanethiol, and a multi-step conversion of a siloxy-anchored alkyl bromide to a sulfonate functionality. The ceria coatings deposited after the thiol pretreatment, and on anodes with no pretreatment, were continuous and uniform, with thicknesses of 60–170 nm and 100–140 nm, respectively, and those cells exhibited better lifetime performance and sulfur tolerance compared to cells with untreated anodes and anodes with ceria coatings deposited after the sulfonate pretreatment. Possible explanations for the effects of the treatments on the structure of the coatings, and for the effects of the coatings on the performance of the cells, are discussed. PMID:25383282

  18. Taxonomic and functional metagenomic analysis of anodic communities in two pilot-scale microbial fuel cells treating different industrial wastewaters.

    Science.gov (United States)

    Kiseleva, Larisa; Garushyants, Sofya K; Ma, Hongwu; Simpson, David J W; Fedorovich, Viatcheslav; Cohen, Michael F; Goryanin, Igor

    2015-10-06

    The combined processes of microbial biodegradation accompanied by extracellular electron transfer make microbial fuel cells (MFCs) a promising new technology for cost-effective and sustainable wastewater treatment. Although a number of microbial species that build biofilms on the anode surfaces of operating MFCs have been identified, studies on the metagenomics of entire electrogenic communities are limited. Here we present the results of whole-genome metagenomic analysis of electrochemically active robust anodic microbial communities, and their anaerobic digester (AD) sludge inocula, from two pilot-scale MFC bioreactors fed with different distillery wastewaters operated under ambient conditions in distinct climatic zones. Taxonomic analysis showed that Proteobacteria, Bacteroidetes and Firmicutes were abundant in AD sludge from distinct climatic zones, and constituted the dominant core of the MFC microbiomes. Functional analysis revealed species involved in degradation of organic compounds commonly present in food industry wastewaters. Also, accumulation of methanogenic Archaea was observed in the electrogenic biofilms, suggesting a possibility for simultaneous electricity and biogas recovery from one integrated wastewater treatment system. Finally, we found a range of species within the anode communities possessing the capacity for extracellular electron transfer, both via direct contact and electron shuttles, and show differential distribution of bacterial groups on the carbon cloth and activated carbon granules of the anode surface. Overall, this study provides insights into structural shifts that occur in the transition from an AD sludge to an MFC microbial community and the metabolic potential of electrochemically active microbial populations with wastewater-treating MFCs.

  19. Efficiency analysis of a hydrogen-fueled solid oxide fuel cell system with anode off-gas recirculation

    Science.gov (United States)

    Peters, Roland; Deja, Robert; Engelbracht, Maximilian; Frank, Matthias; Nguyen, Van Nhu; Blum, Ludger; Stolten, Detlef

    2016-10-01

    This study analyzes different hydrogen-fueled solid oxide fuel cell (SOFC) system layouts. It begins with a simple system layout without any anode off-gas recirculation, continues with a configuration equipped with off-gas recirculation, including steam condensation and then considers a layout with a dead-end anode off-gas loop. Operational parameters such as stack fuel utilization, as well as the recirculation rate, are modified, with the aim of achieving the highest efficiency values. Drawing on experiments and the accumulated experience of the SOFC group at the Forschungszentrum Jülich, a set of operational parameters were defined and applied to the simulations. It was found that anode off-gas recirculation, including steam condensation, improves electrical efficiency by up to 11.9 percentage-points compared to a layout without recirculation of the same stack fuel utilization. A system layout with a dead-end anode off-gas loop was also found to be capable of reaching electrical efficiencies of more than 61%.

  20. Preparation and evaluation of advanced catalysts for phosphoric acid fuel cells

    Science.gov (United States)

    Stonehart, P.; Baris, J.; Hockmuth, J.; Pagliaro, P.

    1984-01-01

    The platinum electrocatalysts were characterized for their crystallite sizes and the degree of dispersion on the carbon supports. One application of these electrocatalysts was for anodic oxidation of hydrogen in hot phosphoric acid fuel cells, coupled with the influence of low concentrations of carbon monoxide in the fuel gas stream. In a similar way, these platinum on carbon electrocatalysts were evaluated for oxygen reduction in hot phosphoric acid. Binary noble metal alloys were prepared for anodic oxidation of hydrogen and noble metal-refractory metal mixtures were prepared for oxygen reduction. An exemplar alloy of platinum and palladium (50/50 atom %) was discovered for anodic oxidation of hydrogen in the presence of carbon monoxide, and patent disclosures were submitted. For the cathode, platinum-vanadium alloys were prepared showing improved performance over pure platinum. Preliminary experiments on electrocatalyst utilization in electrode structures showed low utilization of the noble metal when the electrocatalyst loading exceeded one weight percent on the carbon.

  1. Characteristics of dye-sensitized solar cell with TiO2 anode under UV irradiation

    Science.gov (United States)

    Lee, Ming-Kwei; Hsiao, Chih-Chen; Weng, Hao-Wei

    2016-03-01

    The anatase phase crystalline quality of commercial TiO2 (P25) nanoparticle sintered in air and N2 is improved. Compared DSSC with air-sintered TiO2 anode, DSSC with N2-sintered TiO2 anode has better performance mainly from high optical absorption efficiency. Under UV irradiation, organic contaminants adsorbed on TiO2 are dissociated by the photocatalysis, and the dye adsorption is enhanced. The DSSC performance with UV-treated/N2-sintered TiO2 anode is further improved.

  2. Yeast cell surface display for lipase whole cell catalyst and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yun; Zhang, Rui; Lian, Zhongshuai; Wang, Shihui; Wright, Aaron T.

    2014-08-01

    The cell surface display technique allows for the expression of target proteins or peptides on the microbial cell surface by fusing an appropriate protein as an anchoring motif. Yeast display systems, such as Pichia pastoris, Yarowia lipolytica and Saccharomyces cerevisiae, are ideal, alternative and extensive display systems with the advantage of simple genetic manipulation and post-translational modification of expressed heterologous proteins. Engineered yeasts show high performance characteristics and variant utilizations. Herein, we comprehensively summarize the variant factors affecting lipase whole cell catalyst activity and display efficiency, including the structure and size of target proteins, screening anchor proteins, type and chain length of linkers, and the appropriate matching rules among the above-mentioned display units. Furthermore, we also address novel approaches to enhance stability and activity of recombinant lipases, such as VHb gene co-expression, multi-enzyme co-display technique, and the micro-environmental interference and self-assembly techniques. Finally, we represent the variety of applications of whole cell surface displayed lipases on yeast cells in non-aqueous phases, including synthesis of esters, PUFA enrichment, resolution of chiral drugs, organic synthesis and biofuels. We demonstrate that the lipase surface display technique is a powerful tool for functionalizing yeasts to serve as whole cell catalysts, and increasing interest is providing an impetus for broad application of this technique.

  3. Self-ordering anodized nanotubes: Enhancing the performance by surface plasmon for dye-sensitized solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Agarwala, S., E-mail: agarwala.shweta@gmail.com [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive, Singapore 117576 (Singapore); Ho, G.W. [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive, Singapore 117576 (Singapore)

    2012-05-15

    In the present work, electrochemical anodization has been used to prepare uniform TiO{sub 2} nanotube array photoelectrode. The average internal diameter, tube length and wall thickness of the optimized morphology is {approx}180 nm, 14 {mu}m and 10 nm, respectively. It was found that the tube diameter increases with the anodization voltage. Diffraction data reveals that the nanotubes consist solely of anatase phase. Back illuminated geometry of dye-sensitized solar cell (DSSC), with nanotubes grown at 60 V for 2 h, gave a cell performance of 4.5%. TiO{sub 2} nanotubes are loaded with silver (Ag) nanoparticles synthesized by a hydrothermal route. The Ag particle size is controlled resulting in solar conversion efficiency to increase by 22%. The DSSC based on TiO{sub 2} nanotube with Ag nanoparticles shows power conversion efficiency of 5.5%. Detailed characterization are performed, presented and discussed. - Graphical abstract: Enhanced solar conversion efficiency of dye-sensitized solar cells by decorating TiO{sub 2} nanotube array with Ag nanoparticles. Highlights: Black-Right-Pointing-Pointer Uniform array of TiO{sub 2} nanotubes synthesized via electrochemical anodization. Black-Right-Pointing-Pointer Back illuminated DSSC gave a cell performance of 4.5%. Black-Right-Pointing-Pointer TiO{sub 2} nanotubes are loaded with Ag nanoparticles, which increased the power conversion efficiency to 5.5%.

  4. Performance evaluation of a liquid tin anode solid oxide fuel cell operating under hydrogen, argon and coal

    Science.gov (United States)

    Khurana, Sanchit; LaBarbera, Mark; Fedkin, Mark V.; Lvov, Serguei N.; Abernathy, Harry; Gerdes, Kirk

    2015-01-01

    A liquid tin anode solid oxide fuel cell is constructed and investigated under different operating conditions. Electrochemical Impedance Spectroscopy (EIS) is used to reflect the effect of fuel feed as the EIS spectra changes significantly on switching the fuel from argon to hydrogen. A cathode symmetric cell is used to separate the impedance from the two electrodes, and the results indicate that a major contribution to the charge-transfer and mass-transfer impedance arises from the anode. The OCP of 0.841 V for the cell operating under argon as a metal-air battery indicates the formation of a SnO2 layer at the electrolyte/anode interface. The increase in the OCP to 1.1 V for the hydrogen fueled cell shows that H2 reduces the SnO2 film effectively. The effective diffusion coefficients are calculated using the Warburg element in the equivalent circuit model for the experimental EIS data, and the values of 1.9 10-3 cm2 s-1 at 700 °C, 2.3 10-3 cm2 s-1 at 800 °C and 3.5 10-3 cm2 s-1 at 900 °C indicate the system was influenced by diffusion of hydrogen in the system. Further, the performance degradation over time is attributed to the irreversible conversion of Sn to SnO2 resulting from galvanic polarization.

  5. Conductive polymer layers to limit transfer of fuel reactants to catalysts of fuel cells to reduce reactant crossover

    Energy Technology Data Exchange (ETDEWEB)

    Stanis, Ronald J.; Lambert, Timothy N.

    2016-12-06

    An apparatus of an aspect includes a fuel cell catalyst layer. The fuel cell catalyst layer is operable to catalyze a reaction involving a fuel reactant. A fuel cell gas diffusion layer is coupled with the fuel cell catalyst layer. The fuel cell gas diffusion layer includes a porous electrically conductive material. The porous electrically conductive material is operable to allow the fuel reactant to transfer through the fuel cell gas diffusion layer to reach the fuel cell catalyst layer. The porous electrically conductive material is also operable to conduct electrons associated with the reaction through the fuel cell gas diffusion layer. An electrically conductive polymer material is coupled with the fuel cell gas diffusion layer. The electrically conductive polymer material is operable to limit transfer of the fuel reactant to the fuel cell catalyst layer.

  6. Mesostructured perovskite solar cells based on highly ordered TiO2 network scaffold via anodization of Ti thin film.

    Science.gov (United States)

    Huang, Aibin; Zhu, Jingting; Zheng, Jianyun; Yu, Yu; Liu, Yan; Yang, Songwang; Bao, Shanhu; Lei, Lei; Jin, Ping

    2017-02-03

    An anodized TiO2 interconnected network was fabricated and utilized as a mesoporous scaffold and electron transporter in perovskite solar cells. By modifying the synthesis parameters, the morphological features of the interconnected TiO2 nanostructures can be widely tuned and precisely controlled. The functional properties of the anodized TiO2 network are found to be severely influenced by morphology as well as the extent of oxidation. The device with the optimized TiO2 network exhibits superior electron extraction and transferability, resulting in conspicuous enhancement of the photocurrent and power conversion efficiency (PCE). This work proposes a promising and facile method for improving the performance of perovskite solar cells.

  7. Mesostructured perovskite solar cells based on highly ordered TiO2 network scaffold via anodization of Ti thin film

    Science.gov (United States)

    Huang, Aibin; Zhu, Jingting; Zheng, Jianyun; Yu, Yu; Liu, Yan; Yang, Songwang; Bao, Shanhu; Lei, Lei; Jin, Ping

    2017-02-01

    An anodized TiO2 interconnected network was fabricated and utilized as a mesoporous scaffold and electron transporter in perovskite solar cells. By modifying the synthesis parameters, the morphological features of the interconnected TiO2 nanostructures can be widely tuned and precisely controlled. The functional properties of the anodized TiO2 network are found to be severely influenced by morphology as well as the extent of oxidation. The device with the optimized TiO2 network exhibits superior electron extraction and transferability, resulting in conspicuous enhancement of the photocurrent and power conversion efficiency (PCE). This work proposes a promising and facile method for improving the performance of perovskite solar cells.

  8. Effects of Anodic Buffer Layer in Top-Illuminated Organic Solar Cell with Silver Electrodes

    Directory of Open Access Journals (Sweden)

    Tien-Lung Chiu

    2013-01-01

    Full Text Available An efficient ITO-free top-illuminated organic photovoltaic (TOPV based on small molecular planar heterojunction was achieved by spinning a buffer layer of poly(3,4-ethylenedioxythiophene:poly(styrenesulfonate (PEDOT:PSS, on the Ag-AgOx anode. The PEDOT:PSS thin film separates the active layer far from the Ag anode to prevent metal quenching and redistributes the strong internal optical field toward dissociated interface. The thickness and morphology of this anodic buffer layer are the key factors in determining device performances. The uniform buffer layer contributes a large short-circuit current and open-circuit voltage, benefiting the final power conversion efficiency (PCE. The TOPV device with an optimal PEDOT:PSS thickness of about 30 nm on Ag-AgOx anode exhibits the maximum PCE of 1.49%. It appreciates a 1.37-fold enhancement in PCE over that of TOPV device without buffer layer.

  9. Synthesis of ozone from air via a polymer-electrolyte-membrane cell with a doped tin oxide anode

    OpenAIRE

    Wang, YH; Cheng, S; Chan, KY

    2006-01-01

    The generation of ozone from air using an electrochemical cell consisting of an air cathode, a polymer-electrolyte-membrane (PEM), and a doped tin oxide anode is reported. This synthesis is environmentally friendly compared to the conventional high-voltage corona discharge process since NOx formation is eliminated; a higher ozone concentration is generated; and lower energy may be required. © The Royal Society of Chemistry 2006.

  10. Catalytic activity of Ni-YSZ anodes in a single-chamber solid oxide fuel cell reactor

    Science.gov (United States)

    Savoie, Sylvio; Napporn, Teko W.; Morel, Bertrand; Meunier, Michel; Roberge, Réal

    The importance of heterogeneous catalysis in single-chamber solid oxide fuel cells (SC-SOFC) is universally recognized, but little studied. This work presents a thorough investigation of the catalytic activity of three Ni-YSZ half-cells in a well-described single-chamber reactor. One in-house electrolyte-supported and two commercially available anode-supported half-cells composed of anodes with thicknesses ranging from 50 μm to 1.52 mm are investigated. They are exposed to methane and oxygen gas mixtures within CH 4:O 2 flow rate ratios (R in) of 0.8-2.0 and furnace temperatures of 600-800 °C. The conversion of methane always results in the formation of syngas species (H 2 and CO). However, their yields vary considerably based on the individual anode, the operating temperature, and R in. The SC-reactor design and the presence of hot-spots at the reactor entrance bring the methane and oxygen conversion rates well above the limit expected from experiments carried out with anode half-cells only. Major variations in the H 2/CO ratio are observed. In lowering the temperature from 800 °C to 600 °C, it spreads from well below to well above the stoichiometric value of 2.0 expected for the partial oxidation reaction. To optimize the SC-SOFC any further, the findings stress the need to undertake even more catalytic studies of its electrode materials under actual structure and morphology as well as final reactor configuration.

  11. A high power density miniaturized microbial fuel cell having carbon nanotube anodes

    Science.gov (United States)

    Ren, Hao; Pyo, Soonjae; Lee, Jae-Ik; Park, Tae-Jin; Gittleson, Forrest S.; Leung, Frederick C. C.; Kim, Jongbaeg; Taylor, André D.; Lee, Hyung-Sool; Chae, Junseok

    2015-01-01

    Microbial fuel cells (MFCs) are a promising technology capable of directly converting the abundant biomass on the planet into electricity. Prior studies have adopted a variety of nanostructured materials with high surface area to volume ratio (SAV), yet the current and power density of these nanostructured materials do not deliver a significant leap over conventional MFCs. This study presents a novel approach to implement a miniaturized MFC with a high SAV of 4000 m-1 using three different CNT-based electrode materials: Vertically Aligned CNT (VACNT), Randomly Aligned CNT (RACNT), and Spin-Spray Layer-by-Layer (SSLbL) CNT. These CNT-based electrodes show unique biofilm morphology and thickness. The study of performance parameters of miniaturized MFCs with these CNT-electrodes are conducted with respect to a control bare gold electrode. The results show that CNT-based materials attract more exoelectrogens, Geobacter sp., than bare gold, yielding thicker biofilm formation. Among CNT-based electrodes, low sheet resistance electrodes result in thick biofilm generation and high current/power density. The miniaturized MFC having an SSLbL CNT anode exhibits a high volumetric power density of 3320 W m-3. This research may help lay the foundation for future research involving the optimization of MFCS with 2D and 3D nanostructured electrodes.

  12. Kinetics of substrate degradation and electricity generation in anodic denitrification microbial fuel cell (AD-MFC).

    Science.gov (United States)

    Zhang, Jiqiang; Zheng, Ping; Zhang, Meng; Chen, Hui; Chen, Tingting; Xie, Zuofu; Cai, Jing; Abbas, Ghulam

    2013-12-01

    Effect of substrate concentration on substrate degradation and electricity generation in anodic denitrification microbial fuel cell (AD-MFC) was investigated over a broad range of substrate concentrations. Substrate degradation rates and power generation could be promoted with increasing substrate concentration in a certain range, but both of them would be inhibited at high substrate concentrations. Maximum denitrification rate of 1.26 ± 0.01 kg NO(-)-N/m(3)d and maximum output voltage of 1016.75 ± 4.74 mV could be achieved when initial NO3(-)-N concentration was 1999.95 ± 2.86 mg/L. Based on Han-Levenspiel model, kinetics of substrate degradation and power generation in the AD-MFC were established. According to the kinetic model, the half-saturation coefficient and the critical inhibitory concentration for nitrate were more than 200 and 4300 mg/L, respectively. The results demonstrated that AD-MFC was capable of treating nitrate-containing wastewater and generating electricity simultaneously, and tolerant to high strength nitrate-containing wastewater.

  13. Electrospun fibers for high performance anodes in microbial fuel cells. Optimizing materials and architecture

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shuiliang

    2010-04-15

    A novel porous conducting nanofiber mat (PCNM) with nanostructured polyaniline (nanoPANi) on the fiber surface was successfully prepared by simple oxidative polymerization. The composite PCNM displayed a core/shell structure with highly rough surface. The thickness and the morphology of PANi layer on the electrospun polyamide (PA) fiber surface could be controlled by varying aniline concentration and temperature. The combination of the advantages of electrospinning technique and nanostructured PANi, let the PA/PANi composite PCNM possess more than five good properties, i.e. high conductivity of 6.759 S.m{sup -1}, high specific surface area of 160 m2.g{sup -1}, good strength of 82.88 MPa for mat and 161.75 MPa for highly aligned belts, good thermal properties with 5% weight loss temperature up to 415 C and excellent biocompatibility. In the PA/PANi composite PCNM, PANi is the only conducting component, its conductivity of 6.759 S.m{sup -1} which is measured in dry-state, is not enough for electrode. Moreover, the conductivity decreases in neutral pH environment due to the de-doping of proton. However, the method of spontaneous growth of nanostructured PANi on electrospun fiber mats provides an effective method to produce porous electrically conducting electrospun fiber mats. The combination advantages of nanostructured PANi with the electrospun fiber mats, extends the applications of PANi and electrospun nanofibers, such as chemical- and bio-sensors, actuators, catalysis, electromagnetic shielding, corrosion protection, separation membranes, electro-optic devices, electrochromic devices, tissue engineering and many others. The electrical conductivity of electrospun PCNM with PANi as the only conducting component is too low for application of as anode in microbial fuel cells (MFCs). So, we turn to electrospun carbon fiber due to its high electrical conductivity and environmental stability. The current density is greatly dependent on the microorganism density of anode

  14. A hexangular ring-core NiCo2O4 porous nanosheet/NiO nanoparticle composite as an advanced anode material for LIBs and catalyst for CO oxidation applications.

    Science.gov (United States)

    He, Yanyan; Xu, Liqiang; Zhai, Yanjun; Li, Aihua; Chen, Xiaoxia

    2015-10-11

    A porous hexangular ring-core NiCo2O4 nanosheet/NiO nanoparticle composite has been synthesized using a hydrothermal method followed by an annealing process in air. The as-obtained composite as an anode material exhibits a high initial discharge capacity of 1920.6 mA h g(-1) at a current density of 100 mA g(-1) and the capacity is retained at 1567.3 mA h g(-1) after 50 cycles. When it is utilized as a catalyst for CO oxidation, complete CO conversion is achieved at 115 °C and a catalytic life test demonstrates the good stability of the composite.

  15. Binder-free carbon black/stainless steel mesh composite electrode for high-performance anode in microbial fuel cells

    Science.gov (United States)

    Zheng, Suqi; Yang, Fangfang; Chen, Shuiliang; Liu, Lang; Xiong, Qi; Yu, Ting; Zhao, Feng; Schröder, Uwe; Hou, Haoqing

    2015-06-01

    Carbon black/stainless steel mesh (CB/SSM) composite electrodes were developed as high-performance anodes of microbial fuel cell (MFC) by using a binder-free dipping/drying method. The acid-treatment and thin layer of CB coating greatly improved the microbial adhesion of the electrode surface and facilitated the electron transfer between the bacteria and the electrode surface. As a result, a single-layer CB/SSM anode with thickness of 0.3 mm could generate a projected current density of about 1.53 ± 0.15 mA cm-2 and volumetic current density of 51.0 ± 5.0 mA cm-3, which was much higher than that of the bare SSM anode and conventional carbon felt anode with thickness of 2 mm. Moreover, three-dimensional (3D) CB/SSM electrode could be prepared by simple folding the singe-layer SSM, and produced a projected current density to 10.07 ± 0.88 mA cm-2 and a volumetric current density of 18.66 ± 1.63 mA cm-3. The MFC equipped with the 3D-CB/SSM anode produced a high maximum power density of 3215 ± 80 mW m-2. The CB/SSM electrodes showed good mechanical and electrical properties, excellent microbial adhesion; it represented a high-performance, low-cost electrode material that is easy to fabricate and scale-up.

  16. Interfacial Characteristics of Efficient Bulk Heterojunction Solar Cells Fabricated on MoOx Anode Interlayers

    Energy Technology Data Exchange (ETDEWEB)

    Jasieniak, Jacek J.; Treat, Neil D.; McNeill, Christopher R.; Tremolet de Villers, Bertrand J.; Gaspera, Enrico Della; Chabinyc, Michael L.

    2016-05-25

    The role of the interface between an MoOx anode interlayer and a polymer:fullerene bulk heterojunction is investigated. Processing differences in the MoOx induce large variations in the vertical stratification of the bulk heterojunction films. These variations are found to be inconsistent in predicting device performance, with a much better gauge being the quantity of polymer chemisorbed to the anode interlayer.

  17. Electrolyte Concentration Effect of a Photoelectrochemical Cell Consisting of Nanotube Anode

    OpenAIRE

    Kai Ren; Gan, Yong X.; Efstratios Nikolaidis; Sharaf Al Sofyani; Lihua Zhang

    2013-01-01

    The photoelectrochemical responses of a TiO2 nanotube anode in ethylene glycol (EG), glycerol, ammonia, ethanol, urea, and Na2S electrolytes with different concentrations were investigated. The TiO2 nanotube anode was highly efficient in photoelectrocatalysis in these solutions under UV light illumination. The photocurrent density is obviously affected by the concentration change. Na2S generated the highest photocurrent density at 0, 1, and 2 V bias voltages, but its concentration does not si...

  18. Preparation of Pt-Re/Vulcan carbon nanocomposites using a single-source molecular precursor and relative performance as a direct methanol fuel cell electrooxidation catalyst.

    Science.gov (United States)

    Anderson, Angela D; Deluga, Gregg A; Moore, Joshua T; Vergne, Matthew J; Hercules, David M; Kenik, Edward A; Lukehart, C M

    2004-09-01

    Pt-Re/Vulcan carbon powder nanocomposites have been prepared with total metal loadings of 18 wt.% and 40 wt.% using a new non-cluster (1:1)-PtRe bimetallic precursor as the source of metal. Pt-Re nanoparticles having an average diameter of ca. 6 nm and atomic stoichiometry near 1:1 are formed. TEM, on-particle HR-EDS, and powder XRD data are consistent with the formation of Pt-Re alloy nanoparticles having a hexagonal unit cell with cell constants of a = 2.77 A and c = 4.47 A. A nanocomposite prepared at higher total metal loading under more rigorous thermal treatment also contains Pt-Re alloy nanoparticles having a fcc unit cell structure (a = 3.95 A). The precise dependence of Pt-Re nanocrystal structure on the thermal history of the nanocomposite specimen has not been investigated in detail. While these Pt-Re/carbon nanocomposites are active as anode catalysts in operating direct methanol fuel cells, the measured performance is less than that of commercial Pt-Ru/carbon catalysts and has marginal practical importance.

  19. Nanoporous PdCo Catalyst for Microfuel Cells: Electrodeposition and Dealloying

    Directory of Open Access Journals (Sweden)

    Satoshi Tominaka

    2011-01-01

    Full Text Available PdCo alloy is a promising catalyst for oxygen reduction reaction of direct methanol fuel cells because of its high activity and the tolerance to methanol. We have applied this catalyst in order to realize on-chip fuel cell which is a membraneless design. The novel design made the fuel cells to be flexible and integratable with other microdevices. Here, we summarize our recent research on the synthesis of nanostructured PdCo catalyst by electrochemical methods, which enable us to deposit the alloy onto microelectrodes of the on-chip fuel cells. First, the electrodeposition of PdCo is discussed in detail, and then, dealloying for introducing nanopores into the electrodeposits is described. Finally, electrochemical response and activities are fully discussed.

  20. Electrochemical impedance study and performance of PdNi nanoparticles as cathode catalyst in a polymer electrolyte membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Ramos-Sanchez, G.; Santana-Salinas, A.; Vazquez-Huerta, G.; Solorza-Feria, O. [Inst. Politenico Nacional, Centro de Investigacion y de Estudios Avanzados, Mexico City (Mexico). Dept. de Quimica

    2010-07-15

    Polymer electrolyte membrane fuel cells (PEMFC) convert the energy stored in hydrogen and oxygen molecules directly into electricity. However, technical and economic challenges must be overcome to address cost, performance and stability issues associated with membrane electrode assemblies (MEA). The oxygen reduction reaction (ORR) which takes place in the cathode is the limiting reaction due to the slow kinetics of ORR on metals, including platinum (Pt). For that reason, much research has gone into finding catalyst materials with a similar or greater performance than Pt. Bimetallic palladium (Pd) based catalysts have been considered as alternative materials for ORR. In this study, a carbon-dispersed bimetallic PdNi was prepared by borohydride reduction using PdCl{sub 2} and NiCl{sub 2} as precursors in a tetrahydrofuran (THF) solution. The PdNi loading and weight percentage were optimized using the Simplex method. The MEA performance was evaluated at optimum conditions using the PdNi electrocatalyst as the cathode and a Pt-Etek carbon cloth as the anode. The maximum power density of 122 mW per cm{sup 2} was reached with 45 percent of PdNi wt percent at 30 psi and 80 degrees C. The catalytic activity and the mechanism of the ORR on PdNi, in 0.5M H{sub 2}SO{sub 4} was investigated using electrochemical impedance spectroscopy. The Tafel slope and the charge transfer coefficient were obtained from the impedance spectra at optimum condition of PdNi loading and PdNi wt percent. 24 refs., 2 tabs., 5 figs.

  1. Electrode Design for Low Temperature Direct-Hydrocarbon Solid Oxide Fuel Cells

    Science.gov (United States)

    Chen, Fanglin (Inventor); Zhao, Fei (Inventor); Liu, Qiang (Inventor)

    2015-01-01

    In certain embodiments of the present disclosure, a solid oxide fuel cell is described. The solid oxide fuel cell includes a hierarchically porous cathode support having an impregnated cobaltite cathode deposited thereon, an electrolyte, and an anode support. The anode support includes hydrocarbon oxidation catalyst deposited thereon, wherein the cathode support, electrolyte, and anode support are joined together and wherein the solid oxide fuel cell operates a temperature of 600.degree. C. or less.

  2. Degradation of some ceria electrolytes under hydrogen contact nearby anode in solid oxide fuel cells (SOFCs

    Directory of Open Access Journals (Sweden)

    Malta Luiz Fernando Brum

    2004-01-01

    Full Text Available This work is concerned with thermodynamic analysis of the stability of some ceria electrolytes under contact with hydrogen gas nearby anode in fuel cells. It was considered the following types of ceria-electrolytes: pure ceria, strontium-doped ceria, calcium-doped ceria and calcium-bismuth-doped ceria. The equilibrium Log (pH2O/pH2 vs. T diagrams were constructed for x = 0.1 and 0.01, where x is the fraction of initial ceria converted to Ce2O3 (proportional to the ratio between activities of Ce3+ and Ce4+ in the ceria electrolyte, which is proportional to the fraction of electronic conduction in the electrolyte at a given temperature. The predictions of the diagrams are as follows: (a Ce1.9Ca0.1Bi0.8O5.1 and Ce0.9Sr0.1O1.9 are less stable than pure ceria for the whole temperature range (from 0 to 1000 °C; (b Ce0.9Ca0.1O1.9 is more stable than pure ceria below about 650 °C for x = 0.1 and below about 400 °C for x = 0.01; (c at each temperature in the considered range the pressure ratio pH2O(g/pH2(g has to be higher than thermodynamically predicted in order to keep CeO2 stable in the electrolyte contacting hydrogen gas. Thermodynamic predictions are entirely capable of explaining experimental data published on the subject (irreversible cell degradation in the case of SrO-doped ceria; weight loss from doped-ceria electrolyte above 700 °C; oxygen gas release during sintering of ceria.

  3. Pt-Ru Catalysts Prepared by a Modified Polyol Process for Direct Methanol Fuel Cells

    Institute of Scientific and Technical Information of China (English)

    ZHANG Junmin; ZHU Fangfang; ZHANG Kunhua; LIU Weiping; GUAN Weiming

    2012-01-01

    Supported PtRu/C catalysts used in direct methanol fuel cells (DMFCs) were prepared by a new modified polyol method.Transmission electron microscopy (TEM),X-ray diffraction (XRD) and cyclic voltammograms (CVs) were carried out to characterize the morphology,composition and the electrochemical properties of the PtRu/C catalyst.The results revealed that the PtRu nanoparticles with small average particle size (≈2.5 nm),and highly dispersed on the carbon support.The PtRu/C catalyst exhibited high catalytic activity and anti-poisoned performance than that of the JM PtRu/C.It is imply that the modified polyol method is efficient for PtRu/C catalyst preparation.

  4. Catalysts, Protection Layers, and Semiconductors

    DEFF Research Database (Denmark)

    Chorkendorff, Ib

    2015-01-01

    Hydrogen is the simplest solar fuel to produce and in this presentation we shall give a short overview of the pros and cons of various tandem devices [1]. The large band gap semiconductor needs to be in front, but apart from that we can chose to have either the anode in front or back using either...... acid or alkaline conditions. Since most relevant semiconductors are very prone to corrosion the advantage of using buried junctions and using protection layers offering shall be discussed [2-4]. Next we shall discuss the availability of various catalysts for being coupled to these protections layers...... and how their stability may be evaluated [5, 6]. Examples of half-cell reaction using protection layers for both cathode and anode will be discussed though some of recent examples under both alkaline and acidic conditions. Si is a very good low band gap semiconductor and by using TiO2 as a protection...

  5. Platinum and palladium nano-structured catalysts for polymer electrolyte fuel cells and direct methanol fuel cells.

    Science.gov (United States)

    Long, Nguyen Viet; Thi, Cao Minh; Yong, Yang; Nogami, Masayuki; Ohtaki, Michitaka

    2013-07-01

    In this review, we present the synthesis and characterization of Pt, Pd, Pt based bimetallic and multi-metallic nanoparticles with mixture, alloy and core-shell structure for nano-catalysis, energy conversion, and fuel cells. Here, Pt and Pd nanoparticles with modified nanostructures can be controllably synthesized via chemistry and physics for their uses as electro-catalysts. The cheap base metal catalysts can be studied in the relationship of crystal structure, size, morphology, shape, and composition for new catalysts with low cost. Thus, Pt based alloy and core-shell catalysts can be prepared with the thin Pt and Pt-Pd shell, which are proposed in low and high temperature proton exchange membrane fuel cells (PEMFCs), and direct methanol fuel cells (DMFCs). We also present the survey of the preparation of Pt and Pd based catalysts for the better catalytic activity, high durability, and stability. The structural transformations, quantum-size effects, and characterization of Pt and Pd based catalysts in the size ranges of 30 nm (1-30 nm) are presented in electro-catalysis. In the size range of 10 nm (1-10 nm), the pure Pt catalyst shows very large surface area for electro-catalysis. To achieve homogeneous size distribution, the shaped synthesis of the polyhedral Pt nanoparticles is presented. The new concept of shaping specific shapes and morphologies in the entire nano-scale from nano to micro, such as polyhedral, cube, octahedra, tetrahedra, bar, rod, and others of the nanoparticles is proposed, especially for noble and cheap metals. The uniform Pt based nanosystems of surface structure, internal structure, shape, and morphology in the nanosized ranges are very crucial to next fuel cells. Finally, the modifications of Pt and Pd based catalysts of alloy, core-shell, and mixture structures lead to find high catalytic activity, durability, and stability for nano-catalysis, energy conversion, fuel cells, especially the next large-scale commercialization of next

  6. Simultaneous selection of soil electroactive bacterial communities associated to anode and cathode in a two-chamber Microbial Fuel Cell

    Science.gov (United States)

    Chiellini, Carolina; Bacci, Giovanni; Fani, Renato; Mocali, Stefano

    2016-04-01

    Different bacteria have evolved strategies to transfer electrons over their cell surface to (or from) their extracellular environment. This electron transfer enables the use of these bacteria in bioelectrochemical systems (BES) such as Microbial Fuel Cells (MFCs). In MFC research the biological reactions at the cathode have long been a secondary point of interest. However, bacterial biocathodes in MFCs represent a potential advantage compared to traditional cathodes, for both their low costs and their low impact on the environment. The main challenge in biocathode set-up is represented by the selection of a bacterial community able to efficiently accept electrons from the electrode, starting from an environmental matrix. In this work, a constant voltage was supplied on a two-chamber MFC filled up with soil over three weeks in order to simultaneously select an electron donor bacterial biomass on the anode and an electron acceptor biomass on the cathode, starting from the same soil. Next Generation Sequencing (NGS) analysis was performed to characterize the bacterial community of the initial soil, in the anode, in the cathode and in the control chamber not supplied with any voltage. Results highlighted that both the MFC conditions and the voltage supply affected the soil bacterial communities, providing a selection of different bacterial groups preferentially associated to the anode (Betaproteobacteria, Bacilli and Clostridia) and to the cathode (Actinobacteria and Alphaproteobacteria). These results confirmed that several electroactive bacteria are naturally present within a top soil and, moreover, different soil bacterial genera could provide different electrical properties.

  7. Tailoring hierarchically porous graphene architecture by carbon nanotube to accelerate extracellular electron transfer of anodic biofilm in microbial fuel cells

    Science.gov (United States)

    Zou, Long; Qiao, Yan; Wu, Xiao-Shuai; Li, Chang Ming

    2016-10-01

    To overcoming their respective shortcomings of graphene and carbon nanotube, a hierarchically porous multi-walled carbon nanotube@reduced graphene oxide (MWCNT@rGO) hybrid is fabricated through a versatile and scalable solvent method, in which the architecture is tailored by inserting MWCNTs as scaffolds into the rGO skeleton. An appropriate amount of inserted 1-D MWCNTs not only effectively prevent the aggregation of rGO sheets but also act as bridges to increase multidirectional connections between 2-D rGO sheets, resulting in a 3-D hierarchically porous structure with large surface area and excellent biocompatibility for rich bacterial biofilm and high electron transfer rate. The MWCNT@rGO1:2/biofilm anode delivers a maximum power density of 789 mW m-2 in Shewanella putrefaciens CN32 microbial fuel cells, which is much higher than that of individual MWCNT and rGO, in particular, 6-folder higher than that of conventional carbon cloth. The great enhancement is ascribed to a synergistic effect of the integrated biofilm and hierarchically porous structure of MWCNT@rGO1:2/biofilm anode, in which the biofilm provides a large amount of bacterial cells to raise the concentration of local electron shuttles for accelerating the direct electrochemistry on the 3-D hierarchically porous structured anodes.

  8. Novel Mg-Doped SrMoO3 Perovskites Designed as Anode Materials for Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Vanessa Cascos

    2016-07-01

    Full Text Available SrMo1−xMxO3−δ (M = Fe and Cr, x = 0.1 and 0.2 oxides have been recently described as excellent anode materials for solid oxide fuel cells at intermediate temperatures (IT-SOFC with LSGM as the electrolyte. In this work, we have improved their properties by doping with aliovalent Mg ions at the B-site of the parent SrMoO3 perovskite. SrMo1−xMgxO3−δ (x = 0.1, 0.2 oxides have been prepared, characterized and tested as anode materials in single solid-oxide fuel cells, yielding output powers near 900 mW/cm−2 at 850 °C using pure H2 as fuel. We have studied its crystal structure with an “in situ” neutron power diffraction (NPD experiment at temperatures as high as 800 °C, emulating the working conditions of an SOFC. Adequately high oxygen deficiencies, observed by NPD, together with elevated disk-shaped anisotropic displacement factors suggest a high ionic conductivity at the working temperatures. Furthermore, thermal expansion measurements, chemical compatibility with the LSGM electrolyte, electronic conductivity and reversibility upon cycling in oxidizing-reducing atmospheres have been carried out to find out the correlation between the excellent performance as an anode and the structural features.

  9. Ultra-High Density Single Nanometer-Scale Anodic Alumina Nanofibers Fabricated by Pyrophosphoric Acid Anodizing

    Science.gov (United States)

    Kikuchi, Tatsuya; Nishinaga, Osamu; Nakajima, Daiki; Kawashima, Jun; Natsui, Shungo; Sakaguchi, Norihito; Suzuki, Ryosuke O.

    2014-12-01

    Anodic oxide fabricated by anodizing has been widely used for nanostructural engineering, but the nanomorphology is limited to only two oxides: anodic barrier and porous oxides. Therefore, the discovery of an additional anodic oxide with a unique nanofeature would expand the applicability of anodizing. Here we demonstrate the fabrication of a third-generation anodic oxide, specifically, anodic alumina nanofibers, by anodizing in a new electrolyte, pyrophosphoric acid. Ultra-high density single nanometer-scale anodic alumina nanofibers (1010 nanofibers/cm2) consisting of an amorphous, pure aluminum oxide were successfully fabricated via pyrophosphoric acid anodizing. The nanomorphologies of the anodic nanofibers can be controlled by the electrochemical conditions. Anodic tungsten oxide nanofibers can also be fabricated by pyrophosphoric acid anodizing. The aluminum surface covered by the anodic alumina nanofibers exhibited ultra-fast superhydrophilic behavior, with a contact angle of less than 1°, within 1 second. Such ultra-narrow nanofibers can be used for various nanoapplications including catalysts, wettability control, and electronic devices.

  10. Dual-Doped Molybdenum Trioxide Nanowires: A Bifunctional Anode for Fiber-Shaped Asymmetric Supercapacitors and Microbial Fuel Cells.

    Science.gov (United States)

    Yu, Minghao; Cheng, Xinyu; Zeng, Yinxiang; Wang, Zilong; Tong, Yexiang; Lu, Xihong; Yang, Shihe

    2016-06-01

    A novel in situ N and low-valence-state Mo dual doping strategy was employed to significantly improve the conductivity, active-site accessibility, and electrochemical stability of MoO3 , drastically boosting its electrochemical properties. Consequently, our optimized N-MoO3-x nanowires exhibited exceptional performances as a bifunctional anode material for both fiber-shaped asymmetric supercapacitors (ASCs) and microbial fuel cells (MFCs). The flexible fiber-shaped ASC and MFC device based on the N-MoO3-x anode could deliver an unprecedentedly high energy density of 2.29 mWh cm(-3) and a remarkable power density of 0.76 μW cm(-1) , respectively. Such a bifunctional fiber-shaped N-MoO3-x electrode opens the way to integrate the electricity generation and storage for self-powered sources.

  11. Scalable air cathode microbial fuel cells using glass fiber separators, plastic mesh supporters, and graphite fiber brush anodes

    KAUST Repository

    Zhang, Xiaoyuan

    2011-01-01

    The combined use of brush anodes and glass fiber (GF1) separators, and plastic mesh supporters were used here for the first time to create a scalable microbial fuel cell architecture. Separators prevented short circuiting of closely-spaced electrodes, and cathode supporters were used to avoid water gaps between the separator and cathode that can reduce power production. The maximum power density with a separator and supporter and a single cathode was 75±1W/m3. Removing the separator decreased power by 8%. Adding a second cathode increased power to 154±1W/m3. Current was increased by connecting two MFCs connected in parallel. These results show that brush anodes, combined with a glass fiber separator and a plastic mesh supporter, produce a useful MFC architecture that is inherently scalable due to good insulation between the electrodes and a compact architecture. © 2010 Elsevier Ltd.

  12. High-activity PtRuPd/C catalyst for direct dimethyl ether fuel cells.

    Science.gov (United States)

    Li, Qing; Wen, Xiaodong; Wu, Gang; Chung, Hoon T; Gao, Rui; Zelenay, Piotr

    2015-06-22

    Dimethyl ether (DME) has been considered as a promising alternative fuel for direct-feed fuel cells but lack of an efficient DME oxidation electrocatalyst has remained the challenge for the commercialization of the direct DME fuel cell. The commonly studied binary PtRu catalyst shows much lower activity in DME than methanol oxidation. In this work, guided by density functional theory (DFT) calculation, a ternary carbon-supported PtRuPd catalyst was designed and synthesized for DME electrooxidation. DFT calculations indicated that Pd in the ternary PtRuPd catalyst is capable of significantly decreasing the activation energy of the CO and CH bond scission during the oxidation process. As evidenced by both electrochemical measurements in an aqueous electrolyte and polymer-electrolyte fuel cell testing, the ternary catalyst shows much higher activity (two-fold enhancement at 0.5 V in fuel cells) than the state-of-the-art binary Pt50 Ru50 /C catalyst (HiSPEC 12100).

  13. Inhibition of microbial growth on air cathodes of single chamber microbial fuel cells by incorporating enrofloxacin into the catalyst layer.

    Science.gov (United States)

    Liu, Weifeng; Cheng, Shaoan; Sun, Dan; Huang, Haobin; Chen, Jie; Cen, Kefa

    2015-10-15

    The inevitable growth of aerobic bacteria on the surface of air cathodes is an important factor reducing the performance stability of air cathode single-chamber membrane-free microbial fuel cells (MFCs). Thus searching for effective methods to inhibit the cathodic microbial growth is critical for the practical application of MFCs. In this study, enrofloxacin (ENR), a broad spectrum fluoroquinolone antibiotic, was incorporated into the catalyst layer of activated carbon air cathodes (ACACs) to inhibit the cathodic microbial growth. The biomass content on ACACs was substantially reduced by 60.2% with ENR treatment after 91 days of MFCs operation. As a result of the inhibited microbial growth, the oxygen reduction catalytic performance of the ENR treated ACACs was much stable compared to the fast performance decline of the untreated control. Consequently, a quite stable electricity production was obtained for the MFCs with the ENR treated ACACs, in contrast with a 22.5% decrease in maximum power density of the MFCs with the untreated cathode. ENR treatment of ACACs showed minimal effects on the anode performance. These results indicate that incorporating antibiotics into ACACs should be a simple and effective strategy to inhibit the microbial growth and improve the long-term stability of the performance of air cathode and the electricity production of MFCs.

  14. Local potential evolutions during proton exchange membrane fuel cell operation with dead-ended anode - Part I: Impact of water diffusion and nitrogen crossover

    Science.gov (United States)

    Abbou, S.; Dillet, J.; Maranzana, G.; Didierjean, S.; Lottin, O.

    2017-02-01

    Operating a PEMFC with a dead-ended anode may lead to local fuel-starvation because of water and possibly nitrogen accumulation in the anode compartment. In previous works, we used a segmented linear cell with reference electrodes to monitor simultaneously the local potentials and current densities during dead-ended anode operation. The results indicated that water transport as well as nitrogen crossover through the membrane were most probably the two key factors governing fuel starvation. In this first from a set of two papers, we evaluated with more details the contributions of nitrogen crossover and water transport to hydrogen starvation. To assess nitrogen contribution, the fuel cell cathode compartment was first supplied with pure oxygen instead of air. The results showed that in the absence of nitrogen (in the cathode side) the fuel starvation was much slower than with air, suggesting that nitrogen contribution cannot be neglected. On the other hand, the contribution of water flooding to hydrogen starvation was investigated by using different cooling temperature on the cathode and anode sides in order to drive water toward the colder plate. The results showed that with a colder anode side, fuel starvation was faster. In the opposite case of a hotter anode plate, water accumulation in the anode compartment was limited, nitrogen crossover through the membrane was the main reason for hydrogen starvation in this case. To fully assess the impact of the thermal configurations on membrane-electrode assembly (MEA) degradation, aging protocols with a dead-ended anode and a fixed closing time were also performed. The results showed that operation with a hotter anode could help to limit significantly cathode ElectroChemical Surface Area (ECSA) losses along the cell area and performance degradation induced by hydrogen starvation.

  15. Atomic Layer Deposited Catalysts for Fuel Cell Applications

    DEFF Research Database (Denmark)

    Johansson, Anne-Charlotte Elisabeth Birgitta

    layer deposition (ALD), on the other hand, is a highly suitable and still relatively unexplored approach for the synthesis of noble metal catalysts. It is a vapor phase growth method, primarily used to deposit thin lms. ALD is based on self-limiting chemical reactions of alternately injected precursors...... for the realization of such tiny devices. It is a mature technology, suitable for mass production, where versatile structuring is available at the micro and nano regime. Carbon black supported catalysts synthesized by wet chemistry methods are not readily applicable for standard microfabrication techniques. Atomic...... on the sample surface. Its unique growth characteristic enables conformal and uniform lms of controlled thickness and composition. In certain conditions ALD commences by island growth, resulting in discrete nanoparticle formation, which is generally preferred for catalytic applications. Pt-Ru is the best...

  16. High-performance core-shell PdPt@Pt/C catalysts via decorating PdPt alloy cores with Pt

    Science.gov (United States)

    Wu, Yan-Ni; Liao, Shi-Jun; Liang, Zhen-Xing; Yang, Li-Jun; Wang, Rong-Fang

    A core-shell structured low-Pt catalyst, PdPt@Pt/C, with high performance towards both methanol anodic oxidation and oxygen cathodic reduction, as well as in a single hydrogen/air fuel cell, is prepared by a novel two-step colloidal approach. For the anodic oxidation of methanol, the catalyst shows three times higher activity than commercial Tanaka 50 wt% Pt/C catalyst; furthermore, the ratio of forward current I f to backward current I b is high up to 1.04, whereas for general platinum catalysts the ratio is only ca. 0.70, indicating that this PdPt@Pt/C catalyst has high activity towards methanol anodic oxidation and good tolerance to the intermediates of methanol oxidation. The catalyst is characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The core-shell structure of the catalyst is revealed by XRD and TEM, and is also supported by underpotential deposition of hydrogen (UPDH). The high performance of the PdPt@Pt/C catalyst may make it a promising and competitive low-Pt catalyst for hydrogen fueled polymer electrolyte membrane fuel cell (PEMFC) or direct methanol fuel cell (DMFC) applications.

  17. Sustainable design of high-performance microsized microbial fuel cell with carbon nanotube anode and air cathode

    KAUST Repository

    Mink, Justine E.

    2013-08-27

    Microbial fuel cells (MFCs) are a promising alternative energy source that both generates electricity and cleans water. Fueled by liquid wastes such as wastewater or industrial wastes, the microbial fuel cell converts waste into energy. Microsized MFCs are essentially miniature energy harvesters that can be used to power on-chip electronics, lab-on-a-chip devices, and/or sensors. As MFCs are a relatively new technology, microsized MFCs are also an important rapid testing platform for the comparison and introduction of new conditions or materials into macroscale MFCs, especially nanoscale materials that have high potential for enhanced power production. Here we report a 75 μL microsized MFC on silicon using CMOS-compatible processes and employ a novel nanomaterial with exceptional electrochemical properties, multiwalled carbon nanotubes (MWCNTs), as the on-chip anode. We used this device to compare the usage of the more commonly used but highly expensive anode material gold, as well as a more inexpensive substitute, nickel. This is the first anode material study done using the most sustainably designed microsized MFC to date, which utilizes ambient oxygen as the electron acceptor with an air cathode instead of the chemical ferricyanide and without a membrane. Ferricyanide is unsustainable, as the chemical must be continuously refilled, while using oxygen, naturally found in air, makes the device mobile and is a key step in commercializing this for portable technology such as lab-on-a-chip for point-of-care diagnostics. At 880 mA/m2 and 19 mW/m2 the MWCNT anode outperformed the others in both current and power densities with between 6 and 20 times better performance. All devices were run for over 15 days, indicating a stable and high-endurance energy harvester already capable of producing enough power for ultra-low-power electronics and able to consistently power them over time. © 2013 American Chemical Society.

  18. Sustainable design of high-performance microsized microbial fuel cell with carbon nanotube anode and air cathode.

    Science.gov (United States)

    Mink, Justine E; Hussain, Muhammad Mustafa

    2013-08-27

    Microbial fuel cells (MFCs) are a promising alternative energy source that both generates electricity and cleans water. Fueled by liquid wastes such as wastewater or industrial wastes, the microbial fuel cell converts waste into energy. Microsized MFCs are essentially miniature energy harvesters that can be used to power on-chip electronics, lab-on-a-chip devices, and/or sensors. As MFCs are a relatively new technology, microsized MFCs are also an important rapid testing platform for the comparison and introduction of new conditions or materials into macroscale MFCs, especially nanoscale materials that have high potential for enhanced power production. Here we report a 75 μL microsized MFC on silicon using CMOS-compatible processes and employ a novel nanomaterial with exceptional electrochemical properties, multiwalled carbon nanotubes (MWCNTs), as the on-chip anode. We used this device to compare the usage of the more commonly used but highly expensive anode material gold, as well as a more inexpensive substitute, nickel. This is the first anode material study done using the most sustainably designed microsized MFC to date, which utilizes ambient oxygen as the electron acceptor with an air cathode instead of the chemical ferricyanide and without a membrane. Ferricyanide is unsustainable, as the chemical must be continuously refilled, while using oxygen, naturally found in air, makes the device mobile and is a key step in commercializing this for portable technology such as lab-on-a-chip for point-of-care diagnostics. At 880 mA/m(2) and 19 mW/m(2) the MWCNT anode outperformed the others in both current and power densities with between 6 and 20 times better performance. All devices were run for over 15 days, indicating a stable and high-endurance energy harvester already capable of producing enough power for ultra-low-power electronics and able to consistently power them over time.

  19. Quantum Mechanics Studies of Fuel Cell Catalysts and Proton Conducting Ceramics with Validation by Experiment

    Science.gov (United States)

    Tsai, Ho-Cheng

    We carried out quantum mechanics (QM) studies aimed at improving the performance of hydrogen fuel cells. In part I, The challenge was to find a replacement for the Pt cathode that would lead to improved performance for the Oxygen Reduction Reaction (ORR) while remaining stable under operational conditions and decreasing cost. Our design strategy was to find an alloy with composition Pt3M that would lead to surface segregation such that the top layer would be pure Pt, with the second and subsequent layers richer in M. Under operating conditions we expect the surface to have significant O and/or OH chemisorbed on the surface; we searched for M that would remain segregated under these conditions. Using QM we examined surface segregation for 28 Pt3M alloys, where M is a transition metal. We found that only Pt3Os and Pt3Ir showed significant surface segregation when O and OH are chemisorbed on the catalyst surfaces. This result indicates that Pt3Os and Pt 3Ir favor formation of a Pt-skin surface layer structure that would resist the acidic electrolyte corrosion during fuel cell operation environments. We chose to focus on Os because the phase diagram for Pt-Ir indicated that Pt-Ir could not form a homogeneous alloy at lower temperature. To determine the performance for ORR, we used QM to examine intermediates, reaction pathways, and reaction barriers involved in the processes for which protons from the anode reactions react with O2 to form H2O. These QM calculations used our Poisson-Boltzmann implicit solvation model include the effects of the solvent (water with dielectric constant 78 with pH 7 at 298K). We also carried out similar QM studies followed by experimental validation for the Os/Pt core-shell catalyst fabricated by the underpotential deposition (UPD) method. The QM results indicated that the RDS for ORR is a compromise between the OOH formation step (0.37 eV for Pt, 0.23 eV for Pt2ML/Os core-shell) and H2O formation steps (0.32 eV for Pt, 0.22 eV for Pt2ML

  20. Elementary kinetic modelling applied to solid oxide fuel cell pattern anodes and a direct flame fuel cell system

    Energy Technology Data Exchange (ETDEWEB)

    Vogler, Marcel

    2009-05-27

    In the course of this thesis a model for the prediction of polarisation characteristics of solid oxide fuel cells (SOFC) was developed. The model is based on an elementary kinetic description of electrochemical reactions and the fundamental conservation principles of mass and energy. The model allows to predict the current-voltage relation of an SOFC and offers ideal possibilities for model validation. The aim of this thesis is the identification of rate-limiting processes and the determination of the elementary pathway during charge transfer. The numerical simulation of experiments with model anodes allowed to identify a hydrogen transfer to be the most probable charge-transfer reaction and revealed the influence of diffusive transport. Applying the hydrogen oxidation kinetics to the direct flame fuel cell system (DFFC) showed that electrochemical oxidation of CO is possible based on the same mechanism. Based on the quantification of loss processes in the DFFC system, improvements on cell design, predicting 80% increase of efficiency, were proposed. (orig.)

  1. Ferrite-based perovskites as cathode materials for anode-supported solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Mai, Andreas; Haanappel, Vincent A.C.; Uhlenbruck, Sven; Tietz, Frank; Stoever, Detlev [Institute for Materials and Processes in Energy Systems, Forschungszentrum Juelich, IWV-1, D-52425 Juelich (Germany)

    2005-05-12

    The properties and the applicability of iron- and cobalt-containing perovskites were evaluated as cathodes for solid oxide fuel cells (SOFCs) in comparison to state-of-the-art manganite-based perovskites. The materials examined were La{sub 1-x-y}Sr{sub x}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (x=0.2 and 0.4; y=0-0.05), La{sub 0.8}Sr{sub 0.2}FeO{sub 3-{delta}}, La{sub 0.7}Ba{sub 0.3}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} and Ce{sub 0.05}Sr{sub 0.95}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}}. The main emphasis was placed on the electrochemical properties of the materials, which were investigated on planar anode-supported SOFCs with 8 mol% yttria-stabilised zirconia (8YSZ) electrolytes. An interlayer of the composition Ce{sub 0.8}Gd{sub 0.2}O{sub 2-{delta}} was placed between the electrolyte and the cathode to prevent undesired chemical reactions between the materials. The sintering temperatures of the cathodes were adapted for each of the materials to obtain similar microstructures. In comparison to the SOFCs with state-of-the-art manganite-based cathodes, SOFCs with La{sub 1-x-y}Sr{sub x}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} cathodes achieved much higher current densities. Small A-site deficiency and high strontium content had a particularly positive effect on cell performance. The measured current densities of cells with these cathodes were as high as 1.76 A/cm{sup 2} at 800 {sup o}C and 0.7 V, which is about twice the current density of cells with LSM/YSZ cathodes. SOFCs with La{sub 0.58}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} cathodes have been operated for more than 5000 h in endurance tests with a degradation of 1.0-1.5% per 1000 h.

  2. Thin Solid Oxide Cell

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to a thin and in principle unsupported solid oxide cell, comprising at least a porous anode layer, an electrolyte layer and a porous cathode layer, wherein the anode layer and the cathode layer comprise an electrolyte material, at least one metal and a catalyst...... material, and wherein the overall thickness of the thin reversible cell is about 150 [mu]m or less, and to a method for producing same. The present invention also relates to a thin and in principle unsupported solid oxide cell, comprising at least a porous anode layer, an electrolyte layer and a porous...... cathode layer, wherein the anode layer and the cathode layer comprise an electrolyte material and a catalyst material, wherein the electrolyte material is doper zirconia, and wherein the overall thickness of the thin reversible cell is about 150 [mu]m or less, and to a method for producing same...

  3. Lithium rich cathode/graphite anode combination for lithium ion cells with high tolerance to near zero volt storage

    Science.gov (United States)

    Crompton, K. R.; Staub, J. W.; Hladky, M. P.; Landi, B. J.

    2017-03-01

    Management of reversible lithium is an advantageous approach to design lithium ion cells that are tolerant to near zero volt (NZV) storage under fixed resistive load towards highly controllable, enhanced user-inactive safety. Presently, the first cycle loss from a high energy density Li-rich HE5050 cathode is used to provide excess reversible lithium when paired with an appropriately capacity matched mesocarbon microbead (MCMB) anode. Cells utilizing 1.2 M LiPF6 3:7 v/v ethylene carbonate:ethyl methyl carbonate electrolyte and a lithium reference were used for 3-electrode testing. After conditioning, a fixed resistive load was applied to 3-electrode cells for 72 or 168-h during which the anode potential and electrode asymptotic potential (EAP) remained less than the copper dissolution potential. After multiple storage cycles (room temperature or 40 °C), the NZV coulombic efficiency (cell reversibility) exceeded 97% and the discharge capacity retention was >98%. Conventional 2-electrode HE5050/MCMB pouch cells stored at NZV or open circuit for 3 days had nearly identical rate capability (up to 5C) and discharge performance stability (for 500 cycles under a 30% depth of discharge low-earth-orbit regime). Thus, lithium ion cells with appropriately capacity matched HE5050/MCMB electrodes have excellent tolerance to prolonged NZV storage, which can lead to enhanced user-inactive safety.

  4. Noble metals on anodic TiO2 nanotubes mouths: Thermal dewetting of minimal Pt co-catalyst loading leads to significantly enhanced photocatalytic H2 generation

    CERN Document Server

    Nguyen, Nhat Truong; Yoo, JeongEun; Taccardi, Nicola; Schmuki, Patrik

    2016-01-01

    The least is the best. We introduce a technique to strongly reduce Pt use for photocatalytic hydrogen generation from TiO2 nanotubes. By site-selectively depositing thin layers of Pt only at the mouth of the nanotubes and by a subsequent thermal dewetting step, we achieve an outstanding photocatalytic improvement with minimal amounts of co-catalyst.

  5. Highly stable precious metal-free cathode catalyst for fuel cell application

    Science.gov (United States)

    Serov, Alexey; Workman, Michael J.; Artyushkova, Kateryna; Atanassov, Plamen; McCool, Geoffrey; McKinney, Sam; Romero, Henry; Halevi, Barr; Stephenson, Thomas

    2016-09-01

    A platinum group metal-free (PGM-free) oxygen reduction reaction (ORR) catalyst engineered for stability has been synthesized using the sacrificial support method (SSM). This catalyst was comprehensively characterized by physiochemical analyses and tested for performance and durability in fuel cell membrane electrode assemblies (MEAs). This catalyst, belonging to the family of Fe-N-C materials, is easily scalable and can be manufactured in batches up to 200 g. The fuel cell durability tests were performed in a single cell configuration at realistic operating conditions of 0.65 V, 1.25 atmgauge air, and 90% RH for 100 h. In-depth characterization of surface chemistry and morphology of the catalyst layer before and after durability tests were performed. The failure modes of the PGM-free electrodes were derived from structure-to-property correlations. It is suggested that under constant voltage operation, the performance loss results from degradation of the electrode pore structure, while under carbon corrosion accelerated test protocols the failure mode is catalyst corrosion.

  6. Triple-phase boundary and power density enhancement in thin solid oxide fuel cells by controlled etching of the nickel anode.

    Science.gov (United States)

    Ebrahim, Rabi; Yeleuov, Mukhtar; Issova, Ainur; Tokmoldin, Serekbol; Ignatiev, Alex

    2014-01-01

    Fabrication of microporous structures for the anode of a thin film solid oxide fuel cell (SOFC(s)) using controlled etching process has led us to increased power density and increased cell robustness. Micropores were etched in the nickel anode by both wet and electrochemical etching processes. The samples etched electrochemically showed incomplete etching of the nickel leaving linked nickel islands inside the pores. Samples which were wet- etched showed clean pores with no nickel island residues. Moreover, the sample with linked nickel islands in the anode pores showed higher output power density as compared to the sample with clean pores. This enhancement is related to the enlargement of the surface of contact between the fuel-anode-electrolyte (the triple-phase boundary).

  7. Highly Durable Direct Methanol Fuel Cell with Double-Layered Catalyst Cathode

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2015-01-01

    Full Text Available Polymer electrolyte membrane (PEM is one of the key components in direct methanol fuel cells. However, the PEM usually gets attacked by reactive oxygen species during the operation period, resulting in the loss of membrane integrity and formation of defects. Herein, a double-layered catalyst cathode electrode consisting of Pt/CeO2-C as inner catalyst and Pt/C as outer catalyst is fabricated to extend the lifetime and minimize the performance loss of DMFC. Although the maximum power density of membrane electrode assembly (MEA with catalyst cathode is slightly lower than that of the traditional one, its durability is significantly improved. No obvious degradation is evident in the MEA with double-layered catalyst cathode within durability testing. These results indicated that Pt/CeO2-C as inner cathode catalyst layer greatly improved the stability of MEA. The significant reason for the improved stability of MEA is the ability of CeO2 to act as free-radical scavengers.

  8. Membrane fuel cell cathode catalysts based on titanium oxide supported platinum nanoparticles.

    Science.gov (United States)

    Gebauer, Christian; Jusys, Zenonas; Wassner, Maximilian; Hüsing, Nicola; Behm, R Jürgen

    2014-07-21

    The potential of platinum catalysts supported on pure, nitrogen-, or carbon-doped titania for application in the oxygen reduction reaction (ORR), as a cathode catalyst in polymer electrolyte membrane fuel cells, is investigated. The oxide supports are synthesized by using a sol-gel route. Modification with nitrogen and carbon doping is achieved by thermal decomposition of urea and the structure-directing agent P123. Platinum nanoparticles are prepared by reduction of a Pt(IV) salt in ethylene glycol and subsequently immobilized on different support materials. Structural and electronic properties of the support materials and the resulting catalysts are characterized by various methods, including X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. These results and electrochemical characterization of the support materials and platinum nanoparticle catalysts indicate distinct support effects in the catalysts. The electrocatalytic performance of these catalysts in the ORR, as determined in rotating ring disc electrode measurements, is promising. Also here, distinct support effects can be identified. Correlations with the structural/electronic and the electrochemical properties are discussed, as well as the role of metal-support interactions.

  9. Laser-Doping through Anodic Aluminium Oxide Layers for Silicon Solar Cells

    OpenAIRE

    2015-01-01

    This paper demonstrates that silicon can be locally doped with aluminium to form localised p+ surface regions by laser-doping through anodic aluminium oxide (AAO) layers formed on the silicon surface. The resulting p+ regions can extend more than 10 μm into the silicon and the electrically active p-type dopant concentration exceeds 1020 cm−3 for the first 6-7 μm of the formed p+ region. Anodic aluminium oxide layers can be doped with other impurities, such as boron and phosphorus, by anodisin...

  10. Application of 8YSZ Nanopowder Synthesized by the Modified Solvothermal Process for Anode Supported Solid Oxide Fuel Cells.

    Science.gov (United States)

    Meepho, Malinee; Wattanasiriwech, Suthee; Angkavatana, Pavadee; Wattanasiriwech, Darunee

    2015-03-01

    Thin electrolyte yttria-stabilized zirconia (8YSZ) films were coated on the porous solid oxide fuel cell (SOFC) anode substrates for the use at an intermediate temperature range. Nano-8YSZ powder with a particle size of about 5 nm was synthesized using the modified solvothermal process. The electrolyte suspension was prepared by dispersion the synthesized 8YSZ nanopowder in ethanol, with PVB and 1,3-propanediol as a binder and a charging agent respectively. The 8YSZ suspension was subsequently deposited on the pre-sintered NiO-YSZ porous substrates by the electrophoretic deposition (EPD) technique. In order to obtain high quality electrolyte films, preparation process was optimized through two strategic approaches; (i) adjustment of suspension's rheological property and (ii) compatibility of anode-electrolyte sintering shrinkage. Rheological property of the suspension was improved with an addition of 1,3-propanediol. The zeta potential of this suspension was increased and reached the value of +24 mV so the well-dispersed slurry was finally obtained. The second approach was achieved by using a proper composite anode powders. Dense and uniform 8YSZ electrolyte films with a thickness of about 1 thickness successfully be formed on the NiO-YSZ porous substrates after co-sintering at 1400 °C for 2 h.

  11. Fuel supply of direct carbon fuel cells via thermal decomposition of hydrocarbons inside a porous Ni anode

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Hak Gyu; Li, Cheng Guo; Jalalabadi, Tahereh; Lee, Dong Geun [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)

    2015-06-15

    This study offers a novel method for improving the physical contact between the anode and fuel in a direct carbon fuel cell (DCFC): a direct generation of carbon in a porous Ni anode through the thermal decomposition of gaseous hydrocarbons. Three kinds of alkane hydrocarbons with different carbon numbers (CH4, C2H6, and C3H8) are tested. From electron microscope observations of the carbon particles generated from each hydrocarbon, we confirm that more carbon spheres (CS), carbon nanotubes (CNT), and carbon nanofibers (CNF) were identified with increasing carbon number. Raman scattering results revealed that the carbon samples became less crystalline and more flexible with increasing carbon number. DCFC performance was measured at 700 degree Celsius with the anode fueled by the same mass of each carbon sample. One-dimensional carbon fuels of CNT and CNF more actively produced and had power densities 148 and 210 times higher than that of the CS, respectively. This difference is partly attributed to the findings that the less-crystalline CNT and CNF have much lower charge transfer resistances than the CS.

  12. Geobacter, Anaeromyxobacter and Anaerolineae populations are enriched on anodes of root exudate-driven microbial fuel cells in rice field soil.

    Science.gov (United States)

    Cabezas, Angela; Pommerenke, Bianca; Boon, Nico; Friedrich, Michael W

    2015-06-01

    Plant-based sediment microbial fuel cells (PMFCs) couple the oxidation of root exudates in living rice plants to current production. We analysed the composition of the microbial community on anodes from PMFC with natural rice field soil as substratum for rice by analysing 16S rRNA as an indicator of microbial activity and diversity. Terminal restriction fragment length polymorphism (TRFLP) analysis indicated that the active bacterial community on anodes from PMFCs differed strongly compared with controls. Moreover, clones related to Deltaproteobacteria and Chloroflexi were highly abundant (49% and 21%, respectively) on PMFCs anodes. Geobacter (19%), Anaeromyxobacter (15%) and Anaerolineae (17%) populations were predominant on anodes with natural rice field soil and differed strongly from those previously detected with potting soil. In open circuit (OC) control PMFCs, not allowing electron transfer, Deltaproteobacteria (33%), Betaproteobacteria (20%), Chloroflexi (12%), Alphaproteobacteria (10%) and Firmicutes (10%) were detected. The presence of an electron accepting anode also had a strong influence on methanogenic archaea. Hydrogenotrophic methanogens were more active on PMFC (21%) than on OC controls (10%), whereas acetoclastic Methanosaetaceae were more active on OC controls (31%) compared with PMFCs (9%). In conclusion, electron accepting anodes and rice root exudates selected for distinct potential anode-reducing microbial populations in rice soil inoculated PMFC.

  13. Catalyst Degradation in High Temperature Proton Exchange Membrane Fuel Cells Based on Acid Doped Polybenzimidazole Membranes

    DEFF Research Database (Denmark)

    Cleemann, Lars Nilausen; Buazar, F.; Li, Qingfeng;

    2013-01-01

    Degradation of carbon supported platinum catalysts is a major failure mode for the long term durability of high temperature proton exchange membrane fuel cells based on phosphoric acid doped polybenzimidazole membranes. With Vulcan carbon black as a reference, thermally treated carbon black...... and multi‐walled carbon nanotubes were used as supports for electrode catalysts and evaluated in accelerated durability tests under potential cycling at 150 °C. Measurements of open circuit voltage, area specific resistance and hydrogen permeation through the membrane were carried out, indicating little...... contribution of the membrane degradation to the performance losses during the potential cycling tests. As the major mechanism of the fuel cell performance degradation, the electrochemical active area of the cathodic catalysts showed a steady decrease in the cyclic voltammetric measurements, which was also...

  14. Amine-terminated ionic liquid functionalized carbon nanotubes for enhanced interfacial electron transfer of Shewanella putrefaciens anode in microbial fuel cells

    Science.gov (United States)

    Wei, Huan; Wu, Xiao-Shuai; Zou, Long; Wen, Guo-Yun; Liu, Ding-Yu; Qiao, Yan

    2016-05-01

    An amine-terminated ionic liquid (IL-NH2) is applied to functionalize carbon nanotubes (CNTs) for improving the interfacial electron transfer of Shewanella putrefaciens (S. putrefaciens) anode in Microbial fuel cells (MFCs). The introduction of thin layer of ILs does not change the morphology of CNTs a lot but increases surface positive charges as well as nitrogen functional groups of the CNTs based anode. The CNT-IL composite not only improves the adhesion of S. putrefaciens cells but also promotes both of the flavin-mediated and the direct electron transfer between the S. putrefaciens cells and the anode. It is interesting that the CNT-IL is more favorable for the mediated electron transfer than for the direct electron transfer. The CNT-IL/carbon cloth anode delivers 3-fold higher power density than that of CNT anode and shows great long-term stability in the batch-mode S. putrefaciens MFCs. This CNT-IL could be a promising anode material for high performance MFCs.

  15. Impact of gas products around the anode on the performance of a direct carbon fuel cell using a carbon/carbonate slurry

    Science.gov (United States)

    Watanabe, Hirotatsu; Umehara, Daisuke; Hanamura, Katsunori

    2016-10-01

    This paper investigates the impact of gas products around the anode on cell performance via an in situ observation. In a direct carbon fuel cell used this study, the anode is inserted into the carbon/carbonate slurry. The current-voltage (I-V) curves are measured before and after a long discharge in the constant current discharge mode. An in situ observation shows that the anode is almost completely covered by gas bubbles when the voltage becomes nearly 0 V in the constant current discharge at 40 mA/cm2; this indicates that gas products such as CO2 prevent the carbon particles and ions from reaching the anode. Meanwhile, the long discharge at 20 mA/cm2 is achieved for 30 min, even though the anode is covered by the CO2 bubbles at 15 min. The I-V curves at 1 min after the termination of the long discharge at 20 mA/cm2 are lower than those prior to the long discharge. The overpotential significantly increases at higher current densities, where mass transport becomes the limiting process. The cell performance is significantly influenced by the gas products around the anode.

  16. Anodic oxidation

    CERN Document Server

    Ross, Sidney D; Rudd, Eric J; Blomquist, Alfred T; Wasserman, Harry H

    2013-01-01

    Anodic Oxidation covers the application of the concept, principles, and methods of electrochemistry to organic reactions. This book is composed of two parts encompassing 12 chapters that consider the mechanism of anodic oxidation. Part I surveys the theory and methods of electrochemistry as applied to organic reactions. These parts also present the mathematical equations to describe the kinetics of electrode reactions using both polarographic and steady-state conditions. Part II examines the anodic oxidation of organic substrates by the functional group initially attacked. This part particular

  17. Characterisation of the Ni/ScYSZ interface in a model solid oxide fuel cell anode

    DEFF Research Database (Denmark)

    Schmidt, Michael Stenbæk; Hansen, Karin Vels; Norrman, Kion;

    2008-01-01

    A nickel point electrode setup was used as a model of an SOFC anode on three slightly different electrolytes of zirconia stabilised by co-doping with scandia and yttria. The effect of electrolyte impurities on the electrode polarisation resistance was investigated by correlating electrochemical i...

  18. The performance of 3-D graphite doped anodes in microbial electrolysis cells

    Science.gov (United States)

    Yasri, Nael G.; Nakhla, George

    2017-02-01

    This study investigated the use of granular activated carbon (GAC) as high surface area 3-dimensional (3-D) anode in MECs systems. The interfacial anodes' charge transfer resistance of the doped GAC did not impact the overall performance of MECs. Based on our finding, the 3-D anode packed with GAC-doped with nonconductive calcium sulfide (CaS) outperformed the more conductive iron (II) sulfide (FeS), magnetite (Fe3O4), or GAC without doping. The results showed higher current densities for 3-D CaS (40.1 A/m3), as compared with 3-D FeS (34.4 A/m3), 3-D Fe3O4 (29.8 A/m3), and 3-D GAC (23.1 A/m3). The higher current density in the 3-D CaS translated to higher coulombic efficiency (96.7%), hydrogen yield (3.6 mol H2/mol acetate), and attached biomass per anode mass (54.01 mg COD biomass/g GAC). Although the 3-D MEC achieved similar hydrogen yield, hydrogen recovery efficiency, and COD removal rate to a conventional sandwich type MEC, the current density, coulombic efficiency, and overall energy efficiency were higher.

  19. Development of Fe-Ni/YSZ-GDC electro-catalysts for application as SOFC anodes. XRD and TPR characterization, and evaluation in ethanol steam reforming reaction

    Energy Technology Data Exchange (ETDEWEB)

    Paz Fiuza, Raigenis da; Silva, Marcos Aurelio da; Boaventura, Jaime Soares [UFBA, Salvador, Bahia (Brazil). Energy and Materials Science Group

    2010-07-01

    Electro-catalysts based on Fe-Ni alloys were prepared using physical mixture and modified Pechini methods; they were supported on a composite of Yttria Stabilized Zirconia (YSZ) and Gadolinia Doped Ceria (GDC). The composites had compositions of 35% metal load and 65% support (70% wt. YSZ and 30% wt. GDC mixture) (cermets). The samples were characterized by Temperature-Programmed Reduction (TPR) and X-Ray Diffraction (XRD) and evaluated in ethanol steam reforming at 650 C for six hours and in the temperature range 300 - 900 C. The XRD results showed that the bimetallic sample calcined at 800 C formed a mixed oxide (NiFe{sub 2}O{sub 4}) in spinel structure; after reducing the sample in hydrogen, Ni-Fe alloys were formed. The presence of Ni decreased the final reduction temperature of the NiFe{sub 2}O{sub 4} species. The addition of Fe to Ni anchored to YSZ-GDC increased the hydrogen production and inhibits the carbon deposition. The bimetallic 30Fe5Ni samples reached an ethanol conversion of about 95%, and a hydrogen yield up to 48% at 750 C. In general, the ethanol conversion and hydrogen production were independent of the metal content in the electro-catalyst. However, the substitution of Ni for Fe significantly reduced the carbon deposition on the electro-catalyst: 74, 31 and 9 wt. % in the 35Ni, 20Fe15Ni, and 30Fe5Ni samples, respectively. (orig.)

  20. Anodes for alkaline electrolysis

    Science.gov (United States)

    Soloveichik, Grigorii Lev

    2011-02-01

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  1. Improvement of low-humidity performance of PEMFC by addition of hydrophilic SiO 2 particles to catalyst layer

    Science.gov (United States)

    Jung, Un Ho; Park, Ki Tae; Park, Eun Hee; Kim, Sung Hyun

    Hydrophilic SiO 2 particles are added to the catalyst layer of a fuel cell membrane-electrode assembly (MEA) to improve wettability and performance at low-humidity conditions. The SiO 2 added MEAs are prepared by spraying technique and the contact angle is measured by the sessile drop method. The effects of SiO 2 additions of 0, 20, 40 and 60 wt.% (based on Pt/C) are investigated for various relative humidity levels in the anode and the cathode. The increased wettability of the cathode catalyst layer exerts an adverse effect on cell performance by causing flooding; this result demonstrates the hydrophilicity of SiO 2. With 40 wt.% addition of SiO 2 to the anode catalyst layer, the current density at 0.6 V and 0% relative humidity of the anode is 93% of that at 100% relative humidity. By comparison, the performance of a cell using a MEA with no added SiO 2 is only 85% of that at 0% relative humidity. A MEA with SiO 2 addition in the anode gives a higher performance at 60% relative humidity of the cathode than one with an undoped MEA. Increased wettability of the anode catalyst layer caused by SiO 2 addition renders it easy to absorb water from back diffusion.

  2. High-performance liquid-catalyst fuel cell for direct biomass-into-electricity conversion.

    Science.gov (United States)

    Liu, Wei; Mu, Wei; Deng, Yulin

    2014-12-01

    Herein, we report high-performance fuel cells that are catalyzed solely by polyoxometalate (POM) solution without any solid metal or metal oxide. The novel design of the liquid-catalyst fuel cells (LCFC) changes the traditional gas-solid-surface heterogeneous reactions to liquid-catalysis reactions. With this design, raw biomasses, such as cellulose, starch, and even grass or wood powders can be directly converted into electricity. The power densities of the fuel cell with switchgrass (dry powder) and bush allamanda (freshly collected) are 44 mW cm(-2) and 51 mW cm(-2) respectively. For the cellulose-based biomass fuel cell, the power density is almost 3000 times higher than that of cellulose-based microbial fuel cells. Unlike noble-metal catalysts, POMs are tolerant to most organic and inorganic contaminants. Therefore, almost any raw biomass can be used directly to produce electricity without prior purification.

  3. Development of Ultra-Low Platinum Alloy Cathode Catalysts for PEM Fuel Cells

    Energy Technology Data Exchange (ETDEWEB)

    Popov, Branko N. [Univ. of South Carolina, Columbia, SC (United States). Dept. of Chemical Engineering; Weidner, John [Univ. of South Carolina, Columbia, SC (United States)

    2016-01-07

    The goal of this project is to synthesize a low cost PEM fuel cell cathode catalyst and support with optimized average mass activity, stability of mass activity, initial high current density performance under H2/air (power density), and catalyst and support stability able to meet 2017 DOE targets for electrocatalysts for transportation applications. Pt*/ACCS-2 catalyst was synthesized according to a novel methodology developed at USC through: (i) surface modification, (ii) metal catalyzed pyrolysis and (iii) chemical leaching to remove excess meal used to dope the support. Pt* stands for suppressed platinum catalyst synthesized with Co doped platinum. The procedure results in increasing carbon graphitization, inclusion of cobalt in the bulk and formation of non-metallic active sites on the carbon surface. Catalytic activity of the support shows an onset potential of 0.86 V for the oxygen reduction reaction (ORR) with well-defined kinetic and mass transfer regions and 2.5% H2O2 production. Pt*/ACCS-2 catalyst durability under 0.6-1.0 V potential cycling and support stability under 1.0-1.5 V potential cycling was evaluated. The results indicated excellent catalyst and support performance under simulated start-up/shut down operating conditions (1.0 – 1.5 V, 5000 cycles) which satisfy DOE 2017 catalyst and support durability and activity. The 30% Pt*/ACCS-2 catalyst showed high initial mass activity of 0.34 A/mgPGM at 0.9 ViR-free and loss of mass activity of 45% after 30,000 cycles (0.6-1.0 V). The catalyst performance under H2-air fuel cell operating conditions showed only 24 mV (iR-free) loss at 0.8 A/cm2 with an ECSA loss of 42% after 30,000 cycles (0.6-1.0 V). The support stability under 1.0-1.5 V potential cycling showed mass activity loss of 50% and potential loss of 8 mV (iR-free) at 1.5 A/cm2. The ECSA loss was 22% after 5,000 cycles. Furthermore, the Pt*/ACCS-2 catalyst showed an

  4. Intermediate-Temperature Solid-Oxide Fuel Cells with a Gadolinium-Doped Ceria Anodic Functional Layer Deposited via Radio-Frequency Sputtering.

    Science.gov (United States)

    Tanveer, Waqas Hassan; Ji, Sanghoon; Yu, Wonjong; Cho, Gu Young; Lee, Yoon Ho; Cha, Suk Won

    2015-11-01

    We investigated the effects of the insertion of a gadolinium-doped ceria (GDC) anodic functional layer (AFL) on the electrochemical performance of intermediate-temperature solid-oxide fuel cells (SOFCs). Fully stabilized yttria-stabilized zirconia (YSZ) was used as an oxygen-ion-conducting and support material. Nickel-Samaria-doped ceriathin film was used as an anode material, while screen-printed lanthanum strontium magnetite served as a cathode material. In order to enhance the interfacial reaction on the anode side, a GDC-AFL with a thickness of about 140 nm, deposited via radio-frequency sputtering, was inserted into the anode-electrolyte interface. SOFCs with and without a GDC-AFL were electrochemically characterized. In an intermediate temperature range of about 700 - 800 degrees C, the application of the GDC-AFL led to an increase in the peak power density of approximately 16%.

  5. Vertically grown multiwalled carbon nanotube anode and nickel silicide integrated high performance microsized (1.25 μl) microbial fuel cell

    KAUST Repository

    Mink, Justine E.

    2012-02-08

    Microbial fuel cells (MFCs) are an environmentally friendly method for water purification and self-sustained electricity generation using microorganisms. Microsized MFCs can also be a useful power source for lab-on-a-chip and similar integrated devices. We fabricated a 1.25 μL microsized MFC containing an anode of vertically aligned, forest type multiwalled carbon nanotubes (MWCNTs) with a nickel silicide (NiSi) contact area that produced 197 mA/m 2 of current density and 392 mW/m 3 of power density. The MWCNTs increased the anode surface-to-volume ratio, which improved the ability of the microorganisms to couple and transfer electrons to the anode. The use of nickel silicide also helped to boost the output current by providing a low resistance contact area to more efficiently shuttle electrons from the anode out of the device. © 2012 American Chemical Society.

  6. Detailed impedance characterization of a well performing and durable Ni:CGO infiltrated cermet anode for metal-supported solid oxide fuel cells

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Klemensø, Trine; Blennow Tullmar, Peter

    2012-01-01

    Further knowledge of the novel, well performing and durable Ni:CGO infiltrated cermet anode for metal supported fuel cells has been acquired by means of a detailed impedance spectroscopy study. The anode impedance was shown to consist of three arcs. Porous electrode theory (PET) represented...... as a transmission line response could account for the intermediate frequency arc. The PET model enabled a detailed insight into the effect of adding minor amounts of Ni into the infiltrated CGO and allowed an estimation of important characteristics such as the electrochemical utilization thickness of the anode...... of the infiltrated submicron sized particles was surprisingly robust. TEM analysis revealed the nano sized Ni particles to be trapped within the CGO matrix, which along the self limiting grain growth of the CGO seem to be able to stabilize the submicron structured anode....

  7. Formic acid oxidation at platinum-bismuth catalysts

    Directory of Open Access Journals (Sweden)

    Popović Ksenija Đ.

    2015-01-01

    Full Text Available The field of heterogeneous catalysis, specifically catalysis on bimetallic surfaces, has seen many advances over the past few decades. Bimetallic catalysts, which often show electronic and chemical properties that are distinct from those of their parent metals, offer the opportunity to obtain new catalysts with enhanced selectivity, activity, and stability. The oxidation of formic acid is of permanent interest as a model reaction for the mechanistic understanding of the electrooxidation of small organic molecules and because of its technical relevance for fuel cell applications. Platinum is one of the most commonly used catalysts for this reaction, despite the fact that it shows a few significant disadvantages: high cost and extreme susceptibility to poisoning by CO. To solve this problem, several approaches have been used, but generally, they all consist in the modification of platinum with a second element. Especially, bismuth has received significant attention as Pt modifier. According to the results presented in this survey dealing with the effects influencing the formic acid oxidation it was found that two types of Pt-Bi bimetallic catalysts (bulk and low loading deposits on GC showed superior catalytic activity in terms of the lower onset potential and oxidation current density, as well as exceptional stability compared to Pt. The findings in this report are important for the understanding of mechanism of formic acid electrooxidation on a bulk alloy and decorated surface, for the development of advanced anode catalysts for direct formic acid fuel cells, as well as for the synthesis of novel low-loading bimetallic catalysts. The use of bimetallic compounds as the anode catalysts is an effective solution to overcoming the problems of the formic acid oxidation current stability for long term applications. In the future, the tolerance of both CO poisoning and electrochemical leaching should be considered as the key factors in the development

  8. Methanol Tolerant PWA-Pt/C Catalyst with Excellent Electrocatalytic Activity for Oxygen Reduction in Direct Methanol Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    It was reported for the first time that phosphorictungstenic acid (PWA) could promote the oxygen reduction reaction (ORR) and inhibit the methanol oxidation reaction at the cathodic Pt/C catalyst in the direct methanol fuel cell (DMFC). When the weight ratio of PWA to Pt/C is 1,the composite catalyst increases the reduction current of oxygen by about 38% and decreases the oxidation current of methanol by about 76% compared with that of the Pt/C catalyst.

  9. High catalytic activity and pollutants resistivity using Fe-AAPyr cathode catalyst for microbial fuel cell application

    OpenAIRE

    Carlo Santoro; Alexey Serov; Claudia W. Narvaez Villarrubia; Sarah Stariha; Sofia Babanova; Kateryna Artyushkova; Schuler, Andrew J.; Plamen Atanassov

    2015-01-01

    For the first time, a new generation of innovative non-platinum group metal catalysts based on iron and aminoantipyrine as precursor (Fe-AAPyr) has been utilized in a membraneless single-chamber microbial fuel cell (SCMFC) running on wastewater. Fe-AAPyr was used as an oxygen reduction catalyst in a passive gas-diffusion cathode and implemented in SCMFC design. This catalyst demonstrated better performance than platinum (Pt) during screening in “clean” conditions (PBS), and no degradation in ...

  10. Synthesis, characterization and performance of robust poison-resistant ultrathin film yttria stabilized zirconia - nickel anodes for application in solid electrolyte fuel cells

    Science.gov (United States)

    Garcia-Garcia, F. J.; Yubero, F.; Espinós, J. P.; González-Elipe, A. R.; Lambert, R. M.

    2016-08-01

    We report on the synthesis of undoped ∼5 μm YSZ-Ni porous thin films prepared by reactive pulsed DC magnetron sputtering at an oblique angle of incidence. Pre-calcination of the amorphous unmodified precursor layers followed by reduction produces a film consisting of uniformly distributed tilted columnar aggregates having extensive three-phase boundaries and favorable gas diffusion characteristics. Similarly prepared films doped with 1.2 at.% Au are also porous and contain highly dispersed gold present as Ni-Au alloy particles whose surfaces are strongly enriched with Au. With hydrogen as fuel, the performance of the undoped thin film anodes is comparable to that of 10-20 times thicker typical commercial anodes. With a 1:1 steam/carbon feed, the un-doped anode cell current rapidly falls to zero after 60 h. In striking contrast, the initial performance of the Au-doped anode is much higher and remains unaffected after 170 h. Under deliberately harsh conditions the performance of the Au-doped anodes decreases progressively, almost certainly due to carbon deposition. Even so, the cell maintains some activity after 3 days operation in dramatic contrast with the un-doped anode, which stops working after only three hours of use. The implications and possible practical application of these findings are discussed.

  11. Enhancing Sulfur Tolerance of Ni-Based Cermet Anodes of Solid Oxide Fuel Cells by Ytterbium-Doped Barium Cerate Infiltration.

    Science.gov (United States)

    Li, Meng; Hua, Bin; Luo, Jing-Li; Jiang, San Ping; Pu, Jian; Chi, Bo; Li, Jian

    2016-04-27

    Conventional anode materials for solid oxide fuel cells (SOFCs) are Ni-based cermets, which are highly susceptible to deactivation by contaminants in hydrocarbon fuels. Hydrogen sulfide is one of the commonly existed contaminants in readily available natural gas and gasification product gases of pyrolysis of biomasses. Development of sulfur tolerant anode materials is thus one of the critical challenges for commercial viability and practical application of SOFC technologies. Here we report a viable approach to enhance substantially the sulfur poisoning resistance of a Ni-gadolinia-doped ceria (Ni-GDC) anode through impregnation of proton conducting perovskite BaCe0.9Yb0.1O3-δ (BCYb). The impregnation of BCYb nanoparticles improves the electrochemical performance of the Ni-GDC anode in both H2 and H2S containing fuels. Moreover, more importantly, the enhanced stability is observed in 500 ppm of H2S/H2. The SEM and XPS analysis indicate that the infiltrated BCYb fine particles inhibit the adsorption of sulfur and facilitate sulfur removal from active sites, thus preventing the detrimental interaction between sulfur and Ni-GDC and the formation of cerium sulfide. The preliminary results of the cell with the BCYb+Ni-GDC anode in methane fuel containing 5000 ppm of H2S show the promising potential of the BCYb infiltration approach in the development of highly active and stable Ni-GDC-based anodes fed with hydrocarbon fuels containing a high concentration of sulfur compounds.

  12. Effect of tar fractions from coal gasification on nickel-yttria stabilized zirconia and nickel-gadolinium doped ceria solid oxide fuel cell anode materials

    Science.gov (United States)

    Lorente, E.; Berrueco, C.; Millan, M.; Brandon, N. P.

    2013-11-01

    The allowable tar content in gasification syngas is one of the key questions for the exploitation of the full potential of fuel cell concepts with integrated gasification systems. A better understanding of the interaction between tars and the SOFC anodes which leads to carbon formation and deposition is needed in order to design systems where the extent of gas cleaning operations is minimized. Model tar compounds (toluene, benzene, naphthalene) have been used in experimental studies to represent those arising from biomass/coal gasification. However, the use of toluene as a model tar overestimates the negative impact of a real gasification tar on SOFC anode degradation associated with carbon formation. In the present work, the effect of a gasification tar and its distillation fractions on two commercially available fuel cell anodes, Ni/YSZ (yttria stabilized zirconia) and Ni/CGO (gadolinium doped ceria), is reported. A higher impact of the lighter tar fractions was observed, in terms of more carbon formation on the anodes, in comparison with the whole tar sample. The characterization of the recovered tars after contact with the anode materials revealed a shift towards a heavier molecular weight distribution, reinforcing the view that these fractions have reacted on the anode.

  13. Enhanced Fuel Cell Catalyst Durability with Nitrogen Modified Carbon Supports

    Science.gov (United States)

    2013-02-12

    1000 mg of commercially available carbon powder (Cabot Vulcan XCR72R) was placed into the barrel and the chamber was evacuated to approximately 1 × 10−6...unmodified and N-modified Vulcan were obtained on a Philips CM200 TEM. X-ray Photoelectron Spectroscopy (XPS) analysis of the synthesized catalysts was done...durability cycles Pt-Ru/ Vulcan 73 3.3 × 10−5 24 51 10 Pt-Ru/N- Vulcan 55 2.9 × 10−5 17 60 40 Pt-Ru/C JM 5000 69 3.0 × 10−5 20 48 17 tials higher than 0.7 V

  14. Effect of H{sub 2}S on the thermodynamic stability and electrochemical performance of Ni cermet-type of anodes for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Venkateswara Rao, M.

    2006-11-15

    For SOFCs to be main means of power generation, they should be able to exploit wide variety of fuels. Among Ni-cermets, Ni-YSZ is the state-of-the-art materials for SOFC-anode which is the fuel electrode. But sulphur impurity present in different gaseous fuels (e.g Biogas), depending on its concentration, is highly poisonous to the stability and electrochemical performance of the Ni catalyst in the cermet anodes. Thus in this study the microstructural stability of Ni-YSZ, Ni-CGO and Ni-LSGM cermets in H{sub 2}S-containing hydrogen gas is studied in the intermediate temperature range of SOFC operation. Thermodynamic modelling of Ni-S-O-H quaternary system was performed for the calculation of thermodynamic stability and sulphur-tolerance limit of Ni in the gaseous atmosphere made up of H, O and S. The effect of presence H{sub 2}S in fuel gas, in the concentrations well below the thermodynamic tolerance limit, on the electrochemical performance of the anodes is studied by using model Ni-patterned electrodes on YSZ and LSGM. Thermodynamic modelling of the Ni-S-O-H quaternary was performed by employing CALPHAD methodology. The modelling of Ni-S binary phase diagram was performed by using sublattice models for the non-stoichiometric phases. The optimised binaries of Ni-O, and Ni-H were taken from the literature. The Ni-O-S and Ni-O-H ternaries were extrapolated from the lower order binaries. In Ni-O-S ternary, NiSO{sub 4} is the only ternary compound present. The ternary compounds, Ni(OH){sub 2} and NiOOH in the Ni-O-H ternary were considered as stoichiometric line compounds. The model parameters of the ternary compounds were optimised using the experimental data. The Ni-S-O-H quaternary was calculated by extrapolation method as employed in the CALPHAD methodology. Inorder to understand the H{sub 2}-oxidation mechanism and the role played by the electrolyte in the reaction mechanism, symmetrical cells of Ni-patterned YSZ single crystals with different crystallographic

  15. 微生物燃料电池阳极材料的最新研究进展%Latest research progress of anode materials in microbial fuel cells

    Institute of Scientific and Technical Information of China (English)

    陈妹琼; 程发良; 郭文显; 张敏; 柳鹏

    2015-01-01

    Microbial fuel cells (MFCs) with microbe as catalysts is promising novel technology with the potential to degrade organic sewage and produce electricity. The novel research progress of anode materials in MFCs was reviewed, especial y the influence of treatment of carbon basic materials and their functional modifications on the performance of electricity prodution. The existing problems of large scale application of anode electrode materials in current MFCs were analyzed. The application future of MFCs was prospected.%微生物燃料电池以微生物为催化剂,既可以处理废水又可以产生电能,是一种具有很好应用前景的新兴技术。综述了近年来用于微生物燃料电池阳极材料的最新研究进展,着重综述了炭材料的处理、炭材料的修饰对微生物燃料电池产电性能影响的研究进展。分析了微生物燃料电池阳极材料大规模应用主要存在的问题,并对微生物燃料电池的应用前景做出展望。

  16. Recent development of anode electrocatalysts for direct sodium borohydride fuel cell%硼氢化钠燃料电池负极催化剂的研究进展

    Institute of Scientific and Technical Information of China (English)

    岳增芳; 余丹梅; 陈昌国

    2011-01-01

    Whether the oxidation of NaBH4 occurs with 8 e- is the key to direct sodium borohydride fuel cell(DBFC),from which the highest capacity can be obtained. However, the electrons number generated by BH4-oxidized is different due to the different anode electrocatalysts, and the composition and structure of the electrccatalysts are very important upon this reaction, Based on the principle of DBFC, the recent progress of anode electrccatalysts both domestically and abroad were reviewed in detail, The development and application of DBFC catalysts in the future was presented.%直接硼氢化钠燃料电池(DBFC)的核心在于NaBH4的氧化是否能发生8e一的氧化反应.从而达到最高的电子利用率.但负极电催化荆不同.BH4-电氧化释放出的电子数也不同,因此负极催化剂的组成和结构对该氧化反应有十分重要的影响.在介绍DBFC工作原理的基础上,着重概述了近几年来国内外在D日FC负极催化剂方面所取得的研究进展,展望了DBFC催化剂的发展趋势.

  17. Simple solution-processed CuO{sub X} as anode buffer layer for efficient organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Wenfei [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China); Institute of Hybrid Materials, The Growing Base for State Key Laboratory, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Yang, Chunpeng [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China); Bao, Xichang, E-mail: baoxc@qibebt.ac.cn [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China); Sun, Liang; Wang, Ning [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China); Tang, Jianguo [Institute of Hybrid Materials, The Growing Base for State Key Laboratory, Qingdao University, 308 Ningxia Road, Qingdao 266071 (China); Chen, Weichao [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China); Yang, Renqiang, E-mail: yangrq@qibebt.ac.cn [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101 (China)

    2015-10-15

    Graphical abstract: - Highlights: • Simple solution-processed CuO{sub X} hole transport layer for efficient organic solar cell. • Good photovoltaic performances as hole transport layer in OSCs with P3HT and PBDTTT-C as donor materials. • The device with CuO{sub X} as hole transport layer shows great improved stability compared with that of device with PEDOT:PSS as hole transport layer. - Abstract: A simple, solution-processed ultrathin CuO{sub X} anode buffer layer was fabricated for high performance organic solar cells (OSCs). XPS measurement demonstrated that the CuO{sub X} was the composite of CuO and Cu{sub 2}O. The CuO{sub X} modified ITO glass exhibit a better surface contact with the active layer. The photovoltaic performance of the devices with CuO{sub X} layer was optimized by varying the thickness of CuO{sub X} films through changing solution concentration. With P3HT:PC{sub 61}BM as the active layer, we demonstrated an enhanced PCE of 4.14% with CuO{sub X} anode buffer layer, compared with that of PEDOT:PSS layer. The CuO{sub X} layer also exhibits efficient photovoltaic performance in devices with PBDTTT-C:PC{sub 71}BM as the active layer. The long-term stability of CuO{sub X} device is better than that of PEDOT:PSS device. The results indicate that the easy solution-processed CuO{sub X} film can act as an efficient anode buffer layer for high-efficiency OSCs.

  18. Laser-Doping through Anodic Aluminium Oxide Layers for Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Pei Hsuan Doris Lu

    2015-01-01

    Full Text Available This paper demonstrates that silicon can be locally doped with aluminium to form localised p+ surface regions by laser-doping through anodic aluminium oxide (AAO layers formed on the silicon surface. The resulting p+ regions can extend more than 10 μm into the silicon and the electrically active p-type dopant concentration exceeds 1020 cm−3 for the first 6-7 μm of the formed p+ region. Anodic aluminium oxide layers can be doped with other impurities, such as boron and phosphorus, by anodising in electrolytes containing the extrinsic impurities in ionic form. The ions become trapped in the formed anodic oxide during anodisation, therefore enabling the impurity to be introduced into the silicon, with aluminium, during laser-doping. This codoping process can be used to create very heavily doped surface layers which can reduce contact resistance on metallisation, whilst the deeper doping achieved by the intrinsic aluminium may act to shield the surface from minority carriers. laser-doping through AAO layers can be performed without introducing any voids in the silicon or fumes which may be harmful to human health.

  19. Identification of a Methane Oxidation Intermediate on Solid Oxide Fuel Cell Anode Surfaces with Fourier Transform Infrared Emission.

    Science.gov (United States)

    Pomfret, Michael B; Steinhurst, Daniel A; Owrutsky, Jeffrey C

    2013-04-18

    Fuel interactions on solid oxide fuel cell (SOFC) anodes are studied with in situ Fourier transform infrared emission spectroscopy (FTIRES). SOFCs are operated at 800 °C with CH4 as a representative hydrocarbon fuel. IR signatures of gas-phase oxidation products, CO2(g) and CO(g), are observed while cells are under load. A broad feature at 2295 cm(-1) is assigned to CO2 adsorbed on Ni as a CH4 oxidation intermediate during cell operation and while carbon deposits are electrochemically oxidized after CH4 operation. Electrochemical control provides confirmation of the assignment of adsorbed CO2. FTIRES has been demonstrated as a viable technique for the identification of fuel oxidation intermediates and products in working SOFCs, allowing for the elucidation of the mechanisms of fuel chemistry.

  20. Research of special carbon nanobeads supported Pt catalyst for fuel cell through high temperature pyrolysis and deposition from novel phthalocyanine

    Institute of Scientific and Technical Information of China (English)

    GUO Yanchuan; YUE Jun; PAN Zhongxiao; XU Haitao; ZHANG Bing; HAN Fengmei; CHEN Lijuan; PENG Bixian; XIE Wenwei; QIAN Haisheng; YAN Tiantang

    2004-01-01

    The carbon nanobeads were prepared through high temperature pyrolysis and deposition from phthaiocyanine. After surface's functionalization treatment of the carbon beads, the carbon nanobeads supported Pt catalyst was produced. The Pt/C catalyst was characterized by SEM,TEM, Raman spectrum, EDS and XRD methods. Combining the carbonaceous paper spreaded up with the catalyst with Nafion membrane, we made MEA electrode. The discharge curves indicated that this carbon nanobeads supported Pt is a good fuel cell catalyst with excellent performance, high activity and sign of a long-time life.