WorldWideScience

Sample records for cell activation proliferation

  1. Peroxisome proliferator-activated receptor gamma overexpression suppresses proliferation of human colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsukahara, Tamotsu, E-mail: ttamotsu@shinshu-u.ac.jp [Department of Integrative Physiology and Bio-System Control, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Haniu, Hisao [Department of Orthopaedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer We examined the correlation between PPAR{gamma} expression and cell proliferation. Black-Right-Pointing-Pointer PPAR{gamma} overexpression reduces cell viability. Black-Right-Pointing-Pointer We show the synergistic effect of cell growth inhibition by a PPAR{gamma} agonist. -- Abstract: Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) plays an important role in the differentiation of intestinal cells and tissues. Our previous reports indicate that PPAR{gamma} is expressed at considerable levels in human colon cancer cells. This suggests that PPAR{gamma} expression may be an important factor for cell growth regulation in colon cancer. In this study, we investigated PPAR{gamma} expression in 4 human colon cancer cell lines, HT-29, LOVO, DLD-1, and Caco-2. Real-time polymerase chain reaction (PCR) and Western blot analysis revealed that the relative levels of PPAR{gamma} mRNA and protein in these cells were in the order HT-29 > LOVO > Caco-2 > DLD-1. We also found that PPAR{gamma} overexpression promoted cell growth inhibition in PPAR{gamma} lower-expressing cell lines (Caco-2 and DLD-1), but not in higher-expressing cells (HT-29 and LOVO). We observed a correlation between the level of PPAR{gamma} expression and the cells' sensitivity for proliferation.

  2. Genetic abolishment of hepatocyte proliferation activates hepatic stem cells.

    Directory of Open Access Journals (Sweden)

    Yoko Endo

    Full Text Available Quiescent hepatic stem cells (HSCs can be activated when hepatocyte proliferation is compromised. Chemical injury rodent models have been widely used to study the localization, biomarkers, and signaling pathways in HSCs, but these models usually exhibit severe promiscuous toxicity and fail to distinguish damaged and non-damaged cells. Our goal is to establish new animal models to overcome these limitations, thereby providing new insights into HSC biology and application. We generated mutant mice with constitutive or inducible deletion of Damaged DNA Binding protein 1 (DDB1, an E3 ubiquitin ligase, in hepatocytes. We characterized the molecular mechanism underlying the compensatory activation and the properties of oval cells (OCs by methods of mouse genetics, immuno-staining, cell transplantation and gene expression profiling. We show that deletion of DDB1 abolishes self-renewal capacity of mouse hepatocytes in vivo, leading to compensatory activation and proliferation of DDB1-expressing OCs. Partially restoring proliferation of DDB1-deficient hepatocytes by ablation of p21, a substrate of DDB1 E3 ligase, alleviates OC proliferation. Purified OCs express both hepatocyte and cholangiocyte markers, form colonies in vitro, and differentiate to hepatocytes after transplantation. Importantly, the DDB1 mutant mice exhibit very minor liver damage, compared to a chemical injury model. Microarray analysis reveals several previously unrecognized markers, including Reelin, enriched in oval cells. Here we report a genetic model in which irreversible inhibition of hepatocyte duplication results in HSC-driven liver regeneration. The DDB1 mutant mice can be broadly applied to studies of HSC differentiation, HSC niche and HSCs as origin of liver cancer.

  3. H pylori stimulates proliferation of gastric cancer cells through activating mitogen-activated protein kinase cascade

    Institute of Scientific and Technical Information of China (English)

    Yong-Chang Chen; Ying Wang; Jing-Yan Li; Wen-Rong Xu; You-Li Zhang

    2006-01-01

    AIM: To explore the mechanism by which H pylori causes activation of gastric epithelial cells.METHODS: A VacA (+) and CagA (+) standard Hpyloriline NCTC 11637 and a human gastric adenocarcinoma derived gastric epithelial cell line BGC-823 were applied in the study. MTT assay and 3H-TdR incorporation test were used to detect the proliferation of BGC-823 cells and Western blotting was used to detect the activity and existence of related proteins.RESULTS: Incubation with Hpylori extract increased the proliferation of gastric epithelial cells, reflected by both live cell number and DNA synthesis rate. The activity of extracellular signal-regulated protein kinase (ERK) signal transduction cascade increased within 20 min after incubation with Hpylori extract and appeared to be a sustained event. MAPK/ERK kinase (MEK) inhibitor PD98059abolished the action of H pylori extract on both ERK activity and cell proliferation. Incubation with H pyloriextract increased c-Fos expression and SRE-dependentgene expression. H pylori extract caused phosphorylation of several proteins including a protein with molecular size of 97.4 kDa and tyrosine kinase inhibitor genistein inhibited the activation of ERK and the proliferation of cells caused by H pylori extract.CONCLUSION: Biologically active elements in H pylori extract cause proliferation of gastric epithelial cells through activating tyrosine kinase and ERK signal transduction cascade.

  4. Human Liver Stem Cells Suppress T-Cell Proliferation, NK Activity, and Dendritic Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Stefania Bruno

    2016-01-01

    Full Text Available Human liver stem cells (HLSCs are a mesenchymal stromal cell-like population resident in the adult liver. Preclinical studies indicate that HLSCs could be a good candidate for cell therapy. The aim of the present study was to evaluate the immunogenicity and the immunomodulatory properties of HLSCs on T-lymphocytes, natural killer cells (NKs, and dendritic cells (DCs in allogeneic experimental settings. We found that HLSCs inhibited T-cell proliferation by a mechanism independent of cell contact and dependent on the release of prostaglandin E2 (PGE2 and on indoleamine 2,3-dioxygenase activity. When compared with mesenchymal stromal cells (MSCs, HLSCs were more efficient in inhibiting T-cell proliferation. At variance with MSCs, HLSCs did not elicit NK degranulation. Moreover, HLSCs inhibited NK degranulation against K562, a NK-sensitive target, by a mechanism dependent on HLA-G release. When tested on DC generation from monocytes, HLSCs were found to impair DC differentiation and DCs ability to induce T-cell proliferation through PGE2. This study shows that HLSCs have immunomodulatory properties similar to MSCs, but, at variance with MSCs, they do not elicit a NK response.

  5. Human Liver Stem Cells Suppress T-Cell Proliferation, NK Activity, and Dendritic Cell Differentiation.

    Science.gov (United States)

    Bruno, Stefania; Grange, Cristina; Tapparo, Marta; Pasquino, Chiara; Romagnoli, Renato; Dametto, Ennia; Amoroso, Antonio; Tetta, Ciro; Camussi, Giovanni

    2016-01-01

    Human liver stem cells (HLSCs) are a mesenchymal stromal cell-like population resident in the adult liver. Preclinical studies indicate that HLSCs could be a good candidate for cell therapy. The aim of the present study was to evaluate the immunogenicity and the immunomodulatory properties of HLSCs on T-lymphocytes, natural killer cells (NKs), and dendritic cells (DCs) in allogeneic experimental settings. We found that HLSCs inhibited T-cell proliferation by a mechanism independent of cell contact and dependent on the release of prostaglandin E2 (PGE2) and on indoleamine 2,3-dioxygenase activity. When compared with mesenchymal stromal cells (MSCs), HLSCs were more efficient in inhibiting T-cell proliferation. At variance with MSCs, HLSCs did not elicit NK degranulation. Moreover, HLSCs inhibited NK degranulation against K562, a NK-sensitive target, by a mechanism dependent on HLA-G release. When tested on DC generation from monocytes, HLSCs were found to impair DC differentiation and DCs ability to induce T-cell proliferation through PGE2. This study shows that HLSCs have immunomodulatory properties similar to MSCs, but, at variance with MSCs, they do not elicit a NK response.

  6. CCL5 activation of CCR5 regulates cell metabolism to enhance proliferation of breast cancer cells.

    Science.gov (United States)

    Gao, Darrin; Rahbar, Ramtin; Fish, Eleanor N

    2016-06-01

    In earlier studies, we showed that CCL5 enhances proliferation and survival of MCF-7 breast cancer cells in an mTOR-dependent manner and we provided evidence that, for T cells, CCL5 activation of CCR5 results in increased glycolysis and enhanced ATP production. Increases in metabolic activity of cancer cells, specifically increased glycolytic activity and increased expression of glucose transporters, are associated with tumour progression. In this report, we provide evidence that CCL5 enhances the proliferation of human breast cancer cell lines (MDA-MB-231, MCF-7) and mouse mammary tumour cells (MMTV-PyMT), mediated by CCR5 activation. Concomitant with enhanced proliferation we show that CCL5 increases cell surface expression of the glucose transporter GLUT1, and increases glucose uptake and ATP production by these cells. Blocking CCL5-inducible glucose uptake abrogates the enhanced proliferation induced by CCL5. We provide evidence that increased glucose uptake is associated with enhanced glycolysis, as measured by extracellular acidification. Moreover, CCL5 enhances the invasive capacity of these breast cancer cells. Using metabolomics, we demonstrate that the metabolic signature of CCL5-treated primary mouse mammary tumour cells reflects increased anabolic metabolism. The implications are that CCL5-CCR5 interactions in the tumour microenvironment regulate metabolic events, specifically glycolysis, to promote tumour proliferation and invasion.

  7. Troglitazone inhibits cell proliferation by attenuation of epidermal growth factor receptor signaling independent of peroxisome proliferator-activated receptor γ

    Institute of Scientific and Technical Information of China (English)

    Xiaoqi Li; Xuanming Yang; Youli Xu; Xuejun Jiang; Xin Li; Fajun Nan; Hong Tang

    2009-01-01

    Peroxisome proliferator-activated receptors (PPAR) belong to the nuclear hormone receptor superfamily of ligand-dependent transcription factors. Recent results have shown that agonists of PPARy, such as troglitazone (TGZ), can inhibit cell proliferation and promote cell differentiation independent of PPARγ. In the present study, we provide evidence that TGZ may bind directly to EGFR and trigger its signaling and internalization independent of PPARγ. Detailed studies revealed that prolonged incubation with TGZ effectively attenuated EGFR signaling by target-ing the receptor to the endo-lysosomal degradation machinery. Although the extracellular signal-regulated kinase-signaling pathway was transiently activated by TGZ in EGFR overexpressing cancer cells, inhibition of EGF-induced Akt phosphorylation most likely accounted for the growth arrest of tumor cells caused by TGZ at pharmacologically achievable concentrations. Therefore, we have provided a new line of evidence indicating that TGZ inhibits cell pro-liferation by promoting EGFR degradation and attenuating Akt phosphorylation.

  8. KIPase activity is a novel caspase-like activity associated with cell proliferation.

    Science.gov (United States)

    Medina-Palazon, Cahora; Bernard, Emmanuelle; Frost, Victoria; Morley, Simon; Sinclair, Alison J

    2004-07-01

    A novel caspase-like activity, which is directly regulated with cell proliferation is a candidate to regulate the abundance of the cyclin-dependent kinase inhibitor, p27(KIP1), in human lymphoid cells. This activity, which we term KIPase activity, can also cleave a subset of caspase substrates. Here we demonstrate that KIPase is a novel enzyme distinct from any of the previously characterized human caspases. We show that KIPase is active in a variety of cell lineages, its activity is associated with the proliferation of the human T-cell line, Jurkat, and is not inhibited by the broad spectrum caspase inhibitor z-VAD-fmk. Gel filtration analysis revealed that KIPase has a native molecular mass of approximately 100-200 kDa. Furthermore, the activity of KIPase does not change during apoptosis induced by either ligation of FAS or exposure of cells to etoposide. The uniqueness of KIPase is demonstrated by the fact that none of the human caspases tested (1-10) are able to cleave a specific KIPase substrate (Ac-DPSD-AMC) and that an aldehyde modified derivative of the DPSD tetra peptide is unable to inhibit caspases, but is a good inhibitor of KIPase activity. This supports a hypothesis whereby KIPase is a currently unidentified caspase-like enzyme which regulates the abundance of p27(KIP1) in a proliferation-dependent manner.

  9. Cell proliferation is a key determinant of the outcome of FOXO3a activation

    Energy Technology Data Exchange (ETDEWEB)

    Poulsen, Raewyn C., E-mail: raewyn.poulsen@gmail.com; Carr, Andrew J.; Hulley, Philippa A.

    2015-06-19

    The FOXO family of forkhead transcription factors have a pivotal role in determining cell fate in response to oxidative stress. FOXO activity can either promote cell survival or induce cell death. Increased FOXO-mediated cell death has been implicated in the pathogenesis of degenerative diseases affecting musculoskeletal tissues. The aim of this study was to determine the conditions under which one member of the FOXO family, FOXO3a, promotes cell survival as opposed to cell death. Treatment of primary human tenocytes with 1 pM hydrogen peroxide for 18 h resulted in increased protein levels of FOXO3a. In peroxide-treated cells cultured in low serum media, FOXO3a inhibited cell proliferation and protected against apoptosis. However in peroxide treated cells cultured in high serum media, cell proliferation was unchanged but level of apoptosis significantly increased. Similarly, in tenocytes transduced to over-express FOXO3a, cell proliferation was inhibited and level of apoptosis unchanged in cells cultured in low serum. However there was a robust increase in cell death in FOXO3a-expressing cells cultured in high serum. Inhibition of cell proliferation in either peroxide-treated or FOXO3a-expressing cells cultured in high serum protected against apoptosis induction. Conversely, addition of a Chk2 inhibitor to peroxide-treated or FOXO3a-expressing cells overrode the inhibitory effect of FOXO3a on cell proliferation and led to increased apoptosis in cells cultured in low serum. This study demonstrates that proliferating cells may be particularly susceptible to the apoptosis-inducing actions of FOXO3a. Inhibition of cell proliferation by FOXO3a may be a critical event in allowing the pro-survival rather than the pro-apoptotic activity of FOXO3a to prevail. - Highlights: • FOXO3a activity can result in either promotion of cell survival or apoptosis. • The outcome of FOXO3a activation differs in proliferating compared to non-proliferating cells. • Proliferating

  10. ANKHD1 silencing inhibits Stathmin 1 activity, cell proliferation and migration of leukemia cells.

    Science.gov (United States)

    Machado-Neto, João Agostinho; Lazarini, Mariana; Favaro, Patricia; de Melo Campos, Paula; Scopim-Ribeiro, Renata; Franchi Junior, Gilberto Carlos; Nowill, Alexandre Eduardo; Lima, Paulo Roberto Moura; Costa, Fernando Ferreira; Benichou, Serge; Olalla Saad, Sara Teresinha; Traina, Fabiola

    2015-03-01

    ANKHD1 is highly expressed in human acute leukemia cells and potentially regulates multiple cellular functions through its ankyrin-repeat domains. In order to identify interaction partners of the ANKHD1 protein and its role in leukemia cells, we performed a yeast two-hybrid system screen and identified SIVA, a cellular protein known to be involved in proapoptotic signaling pathways. The interaction between ANKHD1 and SIVA was confirmed by co-imunoprecipitation assays. Using human leukemia cell models and lentivirus-mediated shRNA approaches, we showed that ANKHD1 and SIVA proteins have opposing effects. While it is known that SIVA silencing promotes Stathmin 1 activation, increased cell migration and xenograft tumor growth, we showed that ANKHD1 silencing leads to Stathmin 1 inactivation, reduced cell migration and xenograft tumor growth, likely through the inhibition of SIVA/Stathmin 1 association. In addition, we observed that ANKHD1 knockdown decreases cell proliferation, without modulating apoptosis of leukemia cells, while SIVA has a proapoptotic function in U937 cells, but does not modulate proliferation in vitro. Results indicate that ANKHD1 binds to SIVA and has an important role in inducing leukemia cell proliferation and migration via the Stathmin 1 pathway. ANKHD1 may be an oncogene and participate in the leukemia cell phenotype.

  11. Hepatocellular proliferation in response to agonists of peroxisome proliferator-activated receptor alpha: a role for kupffer cells?

    Directory of Open Access Journals (Sweden)

    Alsarra Ibrahim A

    2006-11-01

    Full Text Available Abstract Background It has been proposed that PPARα agonists stimulate Kupffer cells in rodents which in turn, release mitogenic factors leading to hepatic hyperplasia, and eventually cancer. However, Kupffer cells do not express PPARα receptors, and PPARα agonists stimulate hepatocellular proliferation in both TNFα- and TNFα receptor-null mice, casting doubt on the involvement of Kupffer cells in the mitogenic response to PPARα agonists. This study was therefore designed to investigate whether the PPARα agonist PFOA and the Kupffer cell inhibitor methylpalmitate produce opposing effects on hepatocellular proliferation and Kupffer cell activity in vivo, in a manner that would implicate these cells in the mitogenic effects of PPARα agonists. Methods Male Sprague-Dawley rats were treated intravenously via the tail vein with methylpalmitate 24 hrs prior to perfluorooctanoic acid (PFOA, and were sacrificed 24 hrs later, one hr after an intraperitoneal injection of bromodeoxyuridine (BrdU. Sera were analyzed for TNFα and IL-1β. Liver sections were stained immunohistochemically and quantified for BrdU incorporated into DNA. Results Data show that PFOA remarkably stimulated hepatocellular proliferation in the absence of significant changes in the serum levels of either TNFα or IL-1β. In addition, methylpalmitate did not alter the levels of these mitogens in PFOA-treated animals, despite the fact that it significantly blocked the hepatocellular proliferative effect of PFOA. Correlation between hepatocellular proliferation and serum levels of TNFα or IL-1β was extremely poor. Conclusion It is unlikely that mechanisms involving Kupffer cells play an eminent role in the hepatic hyperplasia, and consequently hepatocarcinogenicity attributed to PPARα agonists. This conclusion is based on the above mentioned published data and the current findings showing animals treated with PFOA alone or in combination with methylpalmitate to have similar

  12. Increased peroxisome proliferator-activated receptor-gamma activity reduces imatinib uptake and efficacy in chronic myeloid leukemia mononuclear cells.

    Science.gov (United States)

    Wang, Jueqiong; Lu, Liu; Kok, Chung H; Saunders, Verity A; Goyne, Jarrad M; Dang, Phuong; Leclercq, Tamara M; Hughes, Timothy P; White, Deborah L

    2017-02-02

    Imatinib is actively transported by OCT-1 influx transporter, and low OCT-1 activity in diagnostic chronic myeloid leukemia blood mononuclear cells is significantly associated with poor molecular response to imatinib. Here we report that, in diagnostic chronic myeloid leukemia mononuclear cells and BCR-ABL1+ cell lines, peroxisome proliferator-activated receptor gamma agonists (GW1929, rosiglitazone, pioglitazone) significantly decrease OCT-1 activity; conversely, peroxisome proliferator-activated receptor gamma antagonists (GW9662, T0070907) increase OCT-1 activity. Importantly, these effects can lead to corresponding changes in sensitivity to Bcr-Abl kinase inhibition. Results were confirmed in peroxisome proliferator-activated receptor gamma-transduced K562 cells. Furthermore, we identified a strong negative correlation between OCT-1 activity and peroxisome proliferator-activated receptor gamma transcriptional activity in diagnostic chronic myeloid leukemia patients (n=84; preceptor gamma activation has a negative impact on the intracellular uptake of imatinib and consequent Bcr-Abl kinase inhibition. The inter-patient variability of peroxisome proliferator-activated receptor gamma activation likely accounts for the heterogeneity observed in patient OCT-1 activity at diagnosis. Recently, the peroxisome proliferator-activated receptor gamma agonist pioglitazone was reported to act synergistically with imatinib targeting the residual chronic myeloid leukemia stem cell pool. Our findings suggest that peroxisome proliferator-activated receptor gamma ligands have differential effects on circulating mononuclear cells compared to stem cells. Since the effect of peroxisome proliferator-activated receptor gamma activation on imatinib uptake in mononuclear cells may counteract the clinical benefit of this activation in stem cells, caution should be applied when combining these therapies, especially in patients with high peroxisome proliferator-activated receptor gamma

  13. Cell culture density affects the proliferation activity of human adipose tissue stem cells.

    Science.gov (United States)

    Kim, Dae Seong; Lee, Myoung Woo; Ko, Young Jong; Chun, Yong Hoon; Kim, Hyung Joon; Sung, Ki Woong; Koo, Hong Hoe; Yoo, Keon Hee

    2016-01-01

    In this study, we investigated the effect of cell density on the proliferation activity of human mesenchymal stem cells (MSCs) derived from adipose tissue (AT-MSCs) over time in culture. Passage #4 (P4) and #12 (P12) AT-MSCs from two donors were plated at a density of 200 (culture condition 1, CC1) or 5000 (culture condition 2, CC2) cells cm(-2) . After 7 days of incubation, P4 and P12 AT-MSCs cultured in CC1 were thin and spindle-shaped, whereas those cultured in CC2 had extensive cell-to-cell contacts and an expanded cell volume. In addition, P4 and P12 AT-MSCs in CC1 divided more than three times, while those in CC2 divided less than once on average. Flow cytometric analysis using 5(6)-carboxyfluorescein diacetate N-succinimidyl ester dye showed that the fluorescence intensity of AT-MSCs was lower in CC1 than in CC2. Furthermore, expression of proliferation-associated genes, such as CDC45L, CDC20A and KIF20A, in P4 AT-MSCs was higher in CC1 than in CC2, and this difference was also observed in P12 AT-MSCs. These data demonstrated that cell culture density affects the proliferation activity of MSCs, suggesting that it is feasible to design a strategy to prepare suitable MSCs using specific culture conditions.

  14. SIRT2 activates G6PD to enhance NADPH production and promote leukaemia cell proliferation

    Science.gov (United States)

    Xu, Shuang-Nian; Wang, Tian-Shi; Li, Xi; Wang, Yi-Ping

    2016-01-01

    Like most other types of cancer cells, leukaemia cells undergo metabolic reprogramming to support rapid proliferation through enhancing biosynthetic processes. Pentose phosphate pathway (PPP) plays a pivotal role in meeting the anabolic demands for cancer cells. However, the molecular mechanism by which PPP contributes to leukaemia remains elusive. Here, we report that leukaemia cell proliferation is dependent on the oxidative branch of PPP, in particular the first and rate-limiting enzyme glucose-6-phosphate dehydrogenase (G6PD). Knockdown of G6PD reduces NADPH level in acute myeloid leukaemia (AML) cell lines. Exogenous lipid supplements partially restore the proliferation of G6PD-depleted cells. Deacetylase SIRT2 promotes NADPH production through deacetylating G6PD at lysine 403 (K403). Activation of G6PD by SIRT2 supports the proliferation and clonogenic activity of leukaemia cells. Chemical inhibitors against SIRT2 suppress G6PD activity, leading to reduced cell proliferation of leukaemia cells, but not normal hematopoietic stem and progenitor cells. Importantly, SIRT2 is overexpressed in clinical AML samples, while K403 acetylation is downregulated and G6PD catalytic activity is increased comparing to that of normal control. Together, our study reveals that acetylation regulation of G6PD is involved in the metabolic reprogramming of AML, and SIRT2 serves as a promising target for further therapeutic investigations. PMID:27586085

  15. Activated Rac1 requires gp130 for Stat3 activation, cell proliferation and migration

    Energy Technology Data Exchange (ETDEWEB)

    Arulanandam, Rozanne; Geletu, Mulu [Departments of Microbiology and Immunology and Pathology and Molecular Medicine, and Queen' s University Cancer Institute, Queen' s University, Botterell Hall, Rm. 713, Kingston, Ontario, Canada K7L 3N6 (Canada); Feracci, Helene [Universite Bordeaux 1, Centre de Recherche Paul Pascal, CNRS UPR 8641, 33600 Pessac (France); Raptis, Leda, E-mail: raptisl@queensu.ca [Departments of Microbiology and Immunology and Pathology and Molecular Medicine, and Queen' s University Cancer Institute, Queen' s University, Botterell Hall, Rm. 713, Kingston, Ontario, Canada K7L 3N6 (Canada)

    2010-03-10

    Rac1 (Rac) is a member of the Rho family of small GTPases which controls cell migration by regulating the organization of actin filaments. Previous results suggested that mutationally activated forms of the Rho GTPases can activate the Signal Transducer and Activator of Transcription-3 (Stat3), but the exact mechanism is a matter of controversy. We recently demonstrated that Stat3 activity of cultured cells increases dramatically following E-cadherin engagement. To better understand this pathway, we now compared Stat3 activity levels in mouse HC11 cells before and after expression of the mutationally activated Rac1 (Rac{sup V12}), at different cell densities. The results revealed for the first time a dramatic increase in protein levels and activity of both the endogenous Rac and Rac{sup V12} with cell density, which was due to inhibition of proteasomal degradation. In addition, Rac{sup V12}-expressing cells had higher Stat3, tyrosine-705 phosphorylation and activity levels at all densities, indicating that Rac{sup V12} is able to activate Stat3. Further examination of the mechanism of Stat3 activation showed that Rac{sup V12} expression caused a surge in mRNA of Interleukin-6 (IL6) family cytokines, known potent Stat3 activators. Knockdown of gp130, the common subunit of this family reduced Stat3 activity, indicating that these cytokines may be responsible for the Stat3 activation by Rac{sup V12}. The upregulation of IL6 family cytokines was required for cell migration and proliferation induced by Rac{sup V12}, as shown by gp130 knockdown experiments, thus demonstrating that the gp130/Stat3 axis represents an essential effector of activated Rac for the regulation of key cellular functions.

  16. Malignant T cells exhibit CD45 resistant Stat3 activation and proliferation in cutaneous

    DEFF Research Database (Denmark)

    Krejsgaard, Thorbjørn Frej; Helvad, Rikke; Ralfkiaer, Elisabeth;

    2010-01-01

    CD45 is a protein tyrosine phosphatase, which is well-known for regulating antigen receptor signalling in T and B cells via its effect on Src kinases. It has recently been shown that CD45 can also dephosphorylate Janus kinases (Jaks) and thereby regulate Signal transducer and activator of transcr......-mediated inhibition of proliferation. In conclusion, our data suggest that CD45 dysregulation might play a role in the aberrant proliferation and Jak3/Stat3 activation in CTCL....

  17. Mast Cell-activated Bone Marrow Mesenchymal Stromal Cells Regulate Proliferation and Lineage Commitment of CD34+ Progenitor cells

    Directory of Open Access Journals (Sweden)

    Zoulfia eAllakhverdi

    2013-12-01

    Full Text Available Background: Shortly after allergen exposure, the number of bone marrow and circulating CD34+ progenitors increases. We aim to analyze the possible mechanism whereby the allergic reaction stimulates bone marrow to release these effector cells in increased numbers. We hypothesize that mast cells may play a predominant role in this process. Objective: To examine the effect of IgE-activated mast cells on bone marrow mesenchymal stromal cells which regulate proliferation and differentiation of CD34+ progenitors. Methods: Primary mast cells were derived from CD34+ precursors and activated with IgE/anti-IgE. Bone marrow mesenchymal stromal cells were co-cultured with CD34+ progenitor cells and stimulated with IL1/TNF or IgE/anti-IgE activated mast cells in Transwell system. Results: Bone marrow mesenchymal stromal cells produce low level of TSLP under steady state conditions, which is markedly increased by stimulation with proinflammatory cytokines IL-1 and TNF or IgE-activated mast cells. The latter also triggers BM-MSCs production of G-CSF, and GM-CSF while inhibiting SDF-1. Mast cell-activated mesenchymal stromal cells stimulate CD34+ cells to proliferate and to regulate their expression of early allergy-associated genes. Conclusion and Clinical Relevance: This in vitro study indicates that IgE-activated mast cells trigger bone marrow mesenchymal stromal cells to release TSLP and hematopoietic growth factors and to regulate the proliferation and lineage commitment of CD34+ precursor cells. The data predict that the effective inhibition of mast cells should impair mobilization and accumulation of allergic effector cells and thereby reduce the severity of allergic diseases.

  18. Catechins Variously Affect Activities of Conjugation Enzymes in Proliferating and Differentiated Caco-2 Cells

    Directory of Open Access Journals (Sweden)

    Kateřina Lněničková

    2016-09-01

    Full Text Available The knowledge of processes in intestinal cells is essential, as most xenobiotics come into contact with the small intestine first. Caco-2 cells are human colorectal adenocarcinoma that once differentiated, exhibit enterocyte-like characteristics. Our study compares activities and expressions of important conjugation enzymes and their modulation by green tea extract (GTE and epigallocatechin gallate (EGCG using both proliferating (P and differentiated (D caco-2 cells. The mRNA levels of the main conjugation enzymes were significantly elevated after the differentiation of Caco-2 cells. However, no increase in conjugation enzymes’ activities in differentiated cells was detected in comparison to proliferating ones. GTE/EGCG treatment did not affect the mRNA levels of any of the conjugation enzymes tested in either type of cells. Concerning conjugation enzymes activities, GTE/EGCG treatment elevated glutathione S-transferase (GST activity by approx. 30% and inhibited catechol-O-methyltransferase (COMT activity by approx. 20% in differentiated cells. On the other hand, GTE as well as EGCG treatment did not significantly affect the activities of conjugation enzymes in proliferating cells. Administration of GTE/EGCG mediated only mild changes of GST and COMT activities in enterocyte-like cells, indicating a low risk of GTE/EGCG interactions with concomitantly administered drugs. However, a considerable chemo-protective effect of GTE via the pronounced induction of detoxifying enzymes cannot be expected as well.

  19. Pericyte NF-κB activation enhances endothelial cell proliferation and proangiogenic cytokine secretion in vitro

    Science.gov (United States)

    LaBarbera, Katherine E; Hyldahl, Robert D; O'Fallon, Kevin S; Clarkson, Priscilla M; Witkowski, Sarah

    2015-01-01

    Pericytes are skeletal muscle resident, multipotent stem cells that are localized to the microvasculature. In vivo, studies have shown that they respond to damage through activation of nuclear-factor kappa-B (NF-κB), but the downstream effects of NF-κB activation on endothelial cell proliferation and cell–cell signaling during repair remain unknown. The purpose of this study was to examine pericyte NF-κB activation in a model of skeletal muscle damage; and use genetic manipulation to study the effects of changes in pericyte NF-κB activation on endothelial cell proliferation and cytokine secretion. We utilized scratch injury to C2C12 cells in coculture with human primary pericytes to assess NF-κB activation and monocyte chemoattractant protein-1 (MCP-1) secretion from pericytes and C2C12 cells. We also cocultured endothelial cells with pericytes that expressed genetically altered NF-κB activation levels, and then quantified endothelial cell proliferation and screened the conditioned media for secreted cytokines. Pericytes trended toward greater NF-κB activation in injured compared to control cocultures (P = 0.085) and in comparison to C2C12 cells (P = 0.079). Second, increased NF-κB activation in pericytes enhanced the proliferation of cocultured endothelial cells (1.3-fold, P = 0.002). Finally, we identified inflammatory signaling molecules, including MCP-1 and interleukin 8 (IL-8) that may mediate the crosstalk between pericytes and endothelial cells. The results of this study show that pericyte NF-κB activation may be an important mechanism in skeletal muscle repair with implications for the development of therapies for musculoskeletal and vascular diseases, including peripheral artery disease. PMID:25911453

  20. Differential Effects of Tacrolimus versus Sirolimus on the Proliferation, Activation and Differentiation of Human B Cells.

    Directory of Open Access Journals (Sweden)

    Opas Traitanon

    Full Text Available The direct effect of immunosuppressive drugs calcineurin inhibitor (Tacrolimus, TAC and mTOR inhibitor (Sirolimus, SRL on B cell activation, differentiation and proliferation is not well documented. Purified human B cells from healthy volunteers were stimulated through the B Cell Receptor with Anti-IgM + anti-CD40 + IL21 in the absence / presence of TAC or SRL. A variety of parameters of B cell activity including activation, differentiation, cytokine productions and proliferation were monitored by flow cytometry. SRL at clinically relevant concentrations (6 ng/ml profoundly inhibited CD19(+ B cell proliferation compared to controls whereas TAC at similar concentrations had a minimal effect. CD27(+ memory B cells were affected more by SRL than naïve CD27- B cells. SRL effectively blocked B cell differentiation into plasma cells (CD19(+CD138(+ and Blimp1(+/Pax5(low cells even at low dose (2 ng/ml, and totally eliminated them at 6 ng/ml. SRL decreased absolute B cell counts, but the residual responding cells acquired an activated phenotype (CD25(+/CD69(+ and increased the expression of HLA-DR. SRL-treated stimulated B cells on a per cell basis were able to enhance the proliferation of allogeneic CD4(+CD25(- T cells and induce a shift toward the Th1 phenotype. Thus, SRL and TAC have different effects on B lymphocytes. These data may provide insights into the clinical use of these two agents in recipients of solid organ transplants.

  1. The X protein of hepatitis B virus activates hepatoma cell proliferation through repressing melanoma inhibitory activity 2 gene

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yilin; Yang, Yang; Cai, Yanyan; Liu, Fang; Liu, Yingle; Zhu, Ying [State Key Laboratory of Virology, College of Life Sciences, and Chinese-French Liver Disease Research Institute at Zhongnan Hospital, Wuhan University, Wuhan 430072 (China); Wu, Jianguo, E-mail: jwu@whu.edu.cn [State Key Laboratory of Virology, College of Life Sciences, and Chinese-French Liver Disease Research Institute at Zhongnan Hospital, Wuhan University, Wuhan 430072 (China)

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer We demonstrated that HBV represses MIA2 gene expression both invitro and in vivo. Black-Right-Pointing-Pointer The X protein of HBV plays a major role in such regulation. Black-Right-Pointing-Pointer Knock-down of MIA2 in HepG2 cells activates cell growth and proliferation. Black-Right-Pointing-Pointer HBx activates cell proliferation, over-expression of MIA2 impaired such regulation. Black-Right-Pointing-Pointer HBx activates hepatoma cell proliferation through repressing MIA2 expression. -- Abstract: Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer deaths globally. Chronic hepatitis B virus (HBV) infection accounts for over 75% of all HCC cases; however, the molecular pathogenesis of HCC is not well understood. In this study, we found that the expression of the newly identified gene melanoma inhibitory activity 2 (MIA2) was reduced by HBV infection invitro and invivo, and that HBV X protein (HBx) plays a major role in this regulation. Recent studies have revealed that MIA2 is a potential tumor suppressor, and that, in most HCCs, MIA2 expression is down-regulated or lost. We found that the knock-down of MIA2 in HepG2 cells activated cell growth and proliferation, suggesting that MIA2 inhibits HCC cell growth and proliferation. In addition, the over-expression of HBx alone induced cell proliferation, whereas MIA2 over-expression impaired the HBx-mediated induction of proliferation. Taken together, our results suggest that HBx activates hepatoma cell growth and proliferation through repression of the potential tumor suppressor MIA2.

  2. Keyhole limpet hemocyanin augmented the killing activity, cytokine production and proliferation of NK cells, and inhibited the proliferation of Meth A sarcoma cells in vitro

    Directory of Open Access Journals (Sweden)

    Md. Moklesur Rahman Sarker

    2014-01-01

    Full Text Available Objective: Keyhole limpet hemocyanin (KLH is a popular tumor vaccine carrier protein and an immunostimulant. The present study aimed to investigate the immunoregulatory activity of KLH on cytotoxicity, cytokines production, and proliferation of natural killer (NK cells. Moreover, antiproliferative activity of KLH on Meth A sarcoma cells was studied. Materials and Methods: Cytotoxicity was determined with killing ability of NK cells against yeast artificial chromosome (YAC-1 cells. Interferon-gamma (IFN-γ and tumor necrosis factor-alpha (TNF-α productions by NK cells were measured by enzyme-linked immunosorbent assay (ELISA. Proliferations of NK and Meth A cells were determined by [ 3 H]thymidine incorporated proliferation and 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT methods, respectively. Results: KLH at 6.25, 12.5, and 25 μg/well augmented cytotoxicity of NK cells against YAC-1 cells by 2.5, three, and five-times, respectively. KLH at 25 μg/well enhanced IFN-γ and TNF-α productions by 17- and 23-folds, respectively. The proliferation of NK cells was three times stimulated by KLH. The proliferation of Meth A cells was markedly inhibited by all the doses; the highest (4-folds higher inhibition was observed at a dose of KLH (25 μg/well. Conclusion: The study demonstrated the anticancer activity of KLH acting through the induction of NK cells and inhibition of cancer cells. KLH, therefore, may be a good candidate for an anticancer agent alone or in combination with other chemotherapeutic agents.

  3. Sleep restriction by forced activity reduces hippocampal cell proliferation

    NARCIS (Netherlands)

    Roman, Viktor; Van der Borght, K; Leemburg, SA; Van der Zee, EA; Meerlo, P

    2005-01-01

    Mounting evidence suggests that sleep loss negatively affects learning and memory processes through disruption of hippocampal function. In the present study, we examined whether sleep loss alters the generation, differentiation, and survival of new cells in the dentate gyrus. Rats were sleep restric

  4. Altered differentiation and paracrine stimulation of mammary epithelial cell proliferation by conditionally activated Smoothened.

    Science.gov (United States)

    Visbal, Adriana P; LaMarca, Heather L; Villanueva, Hugo; Toneff, Michael J; Li, Yi; Rosen, Jeffrey M; Lewis, Michael T

    2011-04-01

    The Hedgehog (Hh) signaling network is critical for patterning and organogenesis in mammals, and has been implicated in a variety of cancers. Smoothened (Smo), the gene encoding the principal signal transducer, is overexpressed frequently in breast cancer, and constitutive activation in MMTV-SmoM2 transgenic mice caused alterations in mammary gland morphology, increased proliferation, and changes in stem/progenitor cell number. Both in transgenic mice and in clinical specimens, proliferative cells did not usually express detectable Smo, suggesting the hypothesis that Smo functioned in a non-cell autonomous manner to stimulate proliferation. Here, we employed a genetically tagged mouse model carrying a Cre-recombinase-dependent conditional allele of constitutively active Smo (SmoM2) to test this hypothesis. MMTV-Cre- or adenoviral-Cre-mediated SmoM2 expression in the luminal epithelium, but not in the myoepithelium, was required for the hyper-proliferative phenotypes. High levels of proliferation were observed in cells adjacent or in close-proximity to Smo expressing cells demonstrating that SmoM2 expressing cells were stimulating proliferation via a paracrine or juxtacrine mechanism. In contrast, Smo expression altered luminal cell differentiation in a cell-autonomous manner. SmoM2 expressing cells, purified by fluorescence activated cell sorting (FACS) via the genetic fluorescent tag, expressed high levels of Ptch2, Gli1, Gli2, Jag2 and Dll-1, and lower levels of Notch4 and Hes6, in comparison to wildtype cells. These studies provide insight into the mechanism of Smo activation in the mammary gland and its possible roles in breast tumorigenesis. In addition, these results also have potential implications for the interpretation of proliferative phenotypes commonly observed in other organs as a consequence of hedgehog signaling activation.

  5. Influence of acid and bile acid on ERK activity, PPARY expression and cell proliferation in normal human esophageal epithelial cells

    Institute of Scientific and Technical Information of China (English)

    Zhi-Ru Jiang; Jun Gong; Zhen-Ni Zhang; Zhe Qiao

    2006-01-01

    AIM: To observe the effects of acid and bile acid exposure on cell proliferation and the expression of extracellular signal-regulated protein kinase (ERK) and peroxisome proliferator-activated receptor Y (PPARy) in normal human esophageal epithelial cells in vitro.METHODS: In vitro cultured normal human esophageal epithelial cells were exposed to acidic media (pH 4.0-6.5), media containing different bile acid (250 μmol/L), media containing acid and bile acid, respectively.Cell proliferation was assessed using MTT and flow cytometry. The expressions of phosphorylated ERK1/2 and PPARy protein were determined by the immunoblotting technique.RESULTS: Acid-exposed (3 min) esophageal cells exhibited a significant increase in proliferation ratio,S phase of the cell cycle (P<0.05) and the level of phosphorylated ERK1/2 protein. When the acid-exposure period exceeded 6 min, we observed a decrease in proliferation ratio and S phase of the cell cycle, with an increased apoptosis ratio (P<0.05). Bile acid exposure (3-12 min) also produced an increase in proliferation ratio, S phase of the cell cycle (P<0.05)and phosphorylated ERK1/2 expression. On the contrary,deoxycholic acid (DCA) exposure (>20 min) decreased proliferation ratio. Compared with bile acid exposure (pH 7.4), bile acid exposure (pH 6.5, 4) significantly decreased proliferation ratio (P<0.05). There was no expression of PPARY in normal human esophageal epithelial cells.CONCLUSION: The rapid stimuli of acid or bile acid increase proliferation in normal human esophageal epithelial cells by activating the ERK pathway.

  6. Mitochondria play an important role in the cell proliferation suppressing activity of berberine

    Science.gov (United States)

    Yan, Xiao-Jin; Yu, Xuan; Wang, Xin-Pei; Jiang, Jing-Fei; Yuan, Zhi-Yi; Lu, Xi; Lei, Fan; Xing, Dong-Ming

    2017-01-01

    After being studied for approximately a century, berberine (BBR) has been found to act on various targets and pathways. A great challenge in the pharmacological analysis of BBR at present is to identify which target(s) plays a decisive role. In the study described herein, a rescue experiment was designed to show the important role of mitochondria in BBR activity. A toxic dose of BBR was applied to inhibit cell proliferation and mitochondrial activity, then α-ketobutyrate (AKB), an analogue of pyruvate that serves only as an electron receptor of NADH, was proven to partially restore cell proliferation. However, mitochondrial morphology damage and TCA cycle suppression were not recovered by AKB. As the AKB just help to regenerate NAD+, which is make up for part function of mitochondrial, the recovered cell proliferation stands for the contribution of mitochondria to the activity of BBR. Our results also indicate that BBR suppresses tumour growth and reduces energy charge and mitochondrial DNA (mtDNA) copy number in a HepG2 xenograft model. In summary, our study suggests that mitochondria play an important role in BBR activity regarding tumour cell proliferation and metabolism. PMID:28181523

  7. Romidepsin reduces histone deacetylase activity, induces acetylation of histones, inhibits proliferation, and activates apoptosis in immortalized epithelial endometriotic cells.

    Science.gov (United States)

    Imesch, Patrick; Fink, Daniel; Fedier, André

    2010-12-01

    Romidepsin inhibited HDAC activity, produced acetylation of the histone proteins, up-regulated p21, and down-regulated cyclins B1 and D1, resulting in proliferation inhibition and apoptosis activation in 11z immortalized epithelial endometriotic cells. Our findings provide evidence that endometriotic cells are sensitive to the epigenetic effects of romidepsin and suggest that endometriosis may be therapeutically targeted by romidepsin.

  8. p55PIK Transcriptionally Activated by MZF1 Promotes Colorectal Cancer Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Yu Deng

    2013-01-01

    Full Text Available p55PIK, regulatory subunit of class IA phosphatidylinositol 3-kinase (PI3K, plays a crucial role in cell cycle progression by interaction with tumor repressor retinoblastoma (Rb protein. A recent study showed that Rb protein can localize to the mitochondria in proliferative cells. Aberrant p55PIK expression may contribute to mitochondrial dysfunction in cancer progression. To reveal the mechanisms of p55PIK transcriptional regulation, the p55PIK promoter characteristics were analyzed. The data show that myeloid zinc finger 1, MZF1, is necessary for p55PIK gene transcription activation. ChIP (Chromatin immuno-precipitation assay shows that MZF1 binds to the cis-element “TGGGGA” in p55PIK promoter. In MZF1 overexpressed cells, the promoter activity, expression of p55PIK, and cell proliferation rate were observed to be significantly enhanced. Whereas in MZF1-silenced cells, the promoter activity and expression of p55PIK and cell proliferation level was statistically decreased. In CRC tissues, MZF1 and p55PIK mRNA expression were increased (P=0.046, P=0.047, resp.. A strong positive correlation (Rs=0.94 between MZF1 and p55PIK mRNA expression was observed. Taken together, we concluded that p55PIK is transcriptionally activated by MZF1, resulting in increased proliferation of colorectal cancer cells.

  9. A role for Peroxisome Proliferator-Activated Receptor Beta in T cell development

    Science.gov (United States)

    Mothe-Satney, Isabelle; Murdaca, Joseph; Sibille, Brigitte; Rousseau, Anne-Sophie; Squillace, Raphaëlle; Le Menn, Gwenaëlle; Rekima, Akila; Larbret, Frederic; Pelé, Juline; Verhasselt, Valérie; Grimaldi, Paul A.; Neels, Jaap G.

    2016-01-01

    Metabolism plays an important role in T cell biology and changes in metabolism drive T cell differentiation and fate. Most research on the role of metabolism in T lymphocytes focuses on mature T cells while only few studies have investigated the role of metabolism in T cell development. In this study, we report that activation or overexpression of the transcription factor Peroxisome Proliferator-Activated Receptor β (PPARβ) increases fatty acid oxidation in T cells. Furthermore, using both in vivo and in vitro models, we demonstrate that PPARβ activation/overexpression inhibits thymic T cell development by decreasing proliferation of CD4−CD8− double-negative stage 4 (DN4) thymocytes. These results support a model where PPARβ activation/overexpression favours fatty acid- instead of glucose-oxidation in developing T cells, thereby hampering the proliferative burst normally occurring at the DN4 stage of T cell development. As a consequence, the αβ T cells that are derived from DN4 thymocytes are dramatically decreased in peripheral lymphoid tissues, while the γδ T cell population remains untouched. This is the first report of a direct role for a member of the PPAR family of nuclear receptors in the development of T cells. PMID:27680392

  10. Flow cytometric detection of some activation and proliferation markers in human hematopoietic cell lines.

    Science.gov (United States)

    Glasová, M; Koníková, E; Kusenda, J; Babusíková, O

    1996-01-01

    Simultaneous surface marker/DNA, cytoplasmic/DNA or nuclear/DNA staining was used to study proliferation of hematopoietic cell lines (MOLT4, BJAB, P3HR1). Different fixation/permeabilization methods (paraformaldehyde with metanol or Tween 20 or saponin, buffered formaldehyde-acetone) were used providing optimal results of the double stainings. There was a significant increase of S phase and proliferation index (PI) of CD71+ and Ki67+ MOLT4 cells in comparison with their negative counterparts. This indicates their close connection with proliferation. Unlike that, the correlation between the expression of CD38 and S phase or PI was not significant either in MOLT4 or in P3HRI cells. For cytoplasmic markers CD3 (in MOLT4 cells) and CD22 (in BJAB cells) statistically significant (cCD3) and not significant (cCD22) correlation was demonstrated between their expression and S phase or PI. Molecular equivalents of soluble fluorescein values for CD71 were always higher than for CD38. The density of these cell surface markers in addition to the percentage of their expression is of considerable significance for their evaluation as activation or proliferation markers.

  11. Rosiglitazone enhances fluorouracil-induced apoptosis of HT-29 cells by activating peroxisome proliferator-activated receptor γ

    Institute of Scientific and Technical Information of China (English)

    Yan-Qin Zhang; Xiao-Qing Tang; Li Sun; Lin Dong; Yong Qin; Hua-Qing Liu; Hong Xia; Jian-Guo Cao

    2007-01-01

    AIM: To examine whether and how rosiglitazone enhances apoptosis induced by fluorouracil in human colon cancer (HT-29) cells.METHODS: Human colon cancer HT-29 cells were cultured in vitro and treated with fluorouracil and/or rosiglitazone. Proliferation and growth of HT-29 cells were evaluated by MTT assay and trypan blue exclusion methods, respectively. The apoptosis of HT-29 cells was determined by acridine orange/ethidium bromide staining and flow cytometry using PI fluorescence staining. The expressions of peroxisome proliferator-activated receptor y (PPARy), Bcl-2 and Bax in HT-29 cells were analyzed by Western blot.RESULTS: Although rosiglitazone at the concentration below 30 umol/L for 72 h exerted almost no inhibitory effect on proliferation and growth of HT-29 cells, it could significantly enhance fluorouracil-induced HT-29 cell proliferation and growth inhibition. Furthermore, 10 umol/L rosilitazone did not induce apoptosis of HT-29 cells but dramatically enhanced fluorouracil-induced apoptosis of HT-29 cells. However, rosiglitazone did not improve apoptosis induced by fluorouracil in HT-29 cells pretreated with GW9662, a PPARy antagonist. Meanwhile, the expression of Bax and PPARy was up-regulated, while the expression of Bcl-2 was down regulated in HT-29 cells treated with rosiglitazone in a time-dependent manner. However, the effect of rosiglitazone on Bcl-2 and Bax was blocked or diminished in the presence of GW9662.CONCLUSION: Rosiglitazone enhances fluorouracil-induced apoptosis of HT-29 cells by activating PPARγ.

  12. Coordinating Etk/Bmx activation and VEGF upregulation to promote cell survival and proliferation.

    Science.gov (United States)

    Chau, Cindy H; Chen, Kai-Yun; Deng, Hong-Tao; Kim, Kwang-Jin; Hosoya, Ken-ichi; Terasaki, Tetsuya; Shih, Hsiu-Ming; Ann, David K

    2002-12-12

    Etk/Bmx, a member of the Tec family of non-receptor tyrosine kinase, is characterized by an N-terminal PH domain and has recently been shown to be involved in the regulation of various cellular processes, including proliferation, differentiation, motility and apoptosis. Since VEGF and the activation of its signaling pathway have been implicated in modulating a variety of biological responses, we characterized the role of Etk-dependent signaling pathways involved in the upregulation of VEGF expression, and explored the functional implications of this enhancement in sustaining cell proliferation and survival. Using Northern and Western analyses, transient transfections, and pharmacological agents, we demonstrate that Etk activation alone is sufficient to transcriptionally induce VEGF expression, independent of the previously identified hypoxia response element (HRE), in both Pa-4 epithelial and TR-BBB endothelial cells under normoxia. In addition, Etk utilizes both MEK/ERK and PI3-K/Pak1 signaling pathways in concert to activate VEGF transcription. Functionally, Etk activation elicits a profound stimulatory effect on TR-BBB cell proliferation and formation of capillary-like networks in Matrigel containing reduced levels of growth factors. Finally, antisense oligonucleotides against either endogenous VEGF or Etk abrogate the proliferation of Etk-activated TR-BBB cells, and exogenous VEGF treatment stimulates endogenous Etk tyrosine phosphorylation in HUVECs. Taken together, these results indicate that VEGF is both an Etk downstream target gene and an Etk upstream activator, constituting a reciprocal Etk-VEGF autoregulatory loop. These findings, to our knowledge, are the first delineation of a network of positive feedforward signaling pathways that converge on the Etk-VEGF axis, causally associating Etk-mediation of VEGF induction with enhanced cellular processes in both epithelial and endothelial cells.

  13. Mast cell tryptase stimulates myoblast proliferation; a mechanism relying on protease-activated receptor-2 and cyclooxygenase-2

    OpenAIRE

    Côté Claude H; Tremblay Marie-Hélène; Duchesne Elise

    2011-01-01

    Abstract Background Mast cells contribute to tissue repair in fibrous tissues by stimulating proliferation of fibroblasts through the release of tryptase which activates protease-activated receptor-2 (PAR-2). The possibility that a tryptase/PAR-2 signaling pathway exists in skeletal muscle cell has never been investigated. The aim of this study was to evaluate whether tryptase can stimulate myoblast proliferation and determine the downstream cascade. Methods Proliferation of L6 rat skeletal m...

  14. Discovery of Novel Small Molecules that Activate Satellite Cell Proliferation and Enhance Repair of Damaged Muscle.

    Science.gov (United States)

    Billin, Andrew N; Bantscheff, Marcus; Drewes, Gerard; Ghidelli-Disse, Sonja; Holt, Jason A; Kramer, Henning F; McDougal, Alan J; Smalley, Terry L; Wells, Carrow I; Zuercher, William J; Henke, Brad R

    2016-02-19

    Skeletal muscle progenitor stem cells (referred to as satellite cells) represent the primary pool of stem cells in adult skeletal muscle responsible for the generation of new skeletal muscle in response to injury. Satellite cells derived from aged muscle display a significant reduction in regenerative capacity to form functional muscle. This decrease in functional recovery has been attributed to a decrease in proliferative capacity of satellite cells. Hence, agents that enhance the proliferative abilities of satellite cells may hold promise as therapies for a variety of pathological settings, including repair of injured muscle and age- or disease-associated muscle wasting. Through phenotypic screening of isolated murine satellite cells, we identified a series of 2,4-diaminopyrimidines (e.g., 2) that increased satellite cell proliferation. Importantly, compound 2 was effective in accelerating repair of damaged skeletal muscle in an in vivo mouse model of skeletal muscle injury. While these compounds were originally prepared as c-Jun N-terminal kinase 1 (JNK-1) inhibitors, structure-activity analyses indicated JNK-1 inhibition does not correlate with satellite cell activity. Screening against a broad panel of kinases did not result in identification of an obvious molecular target, so we conducted cell-based proteomics experiments in an attempt to identify the molecular target(s) responsible for the potentiation of the satellite cell proliferation. These data provide the foundation for future efforts to design improved small molecules as potential therapeutics for muscle repair and regeneration.

  15. Effects of protein kinase C activators and staurosporine on protein kinase activity, cell survival, and proliferation in Tetrahymena thermophila

    DEFF Research Database (Denmark)

    Straarup, EM; Schousboe, P; Hansen, HQ;

    1997-01-01

    with either PMA or OAG, or at 2,500 cells ml-1. At 500 cells ml-1 PMA induced the in vivo phosphorylation of at least six proteins. The myelin basic protein fragment 4-14 was phosphorylated in vitro in crude extracts of a culture of 250,000 cells ml-1. Both the in vivo and the in vitro phosphorylation were......Autocrine factors prevent cell death in the ciliate Tetrahymena thermophila, a unicellular eukaryote, in a chemically defined medium. At certain growth conditions these factors are released at a sufficient concentration by > 500 cells ml-1 to support cell survival and proliferation. The protein...... kinase C activators phorbol 12-myristate 13-acetate (PMA) or 1-oleyl 2-acetate glycerol (OAG) when added to 250 cells ml-1 supported cell survival and proliferation. In the presence of the serine and threonine kinase inhibitor staurosporine the cells died both at 250 cells ml-1 in cultures supplemented...

  16. Increased activity of chondroitin sulfate-synthesizing enzymes during proliferation of arterial smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Hollmann, J.; Thiel, J.; Schmidt, A.; Buddecke, E.

    1986-12-01

    Cultured arterial smooth muscle cells incorporate (/sup 35/S)sulfate into the extracellular chondroitin sulfate/dermatan sulfate containing proteoglycans at a higher rate in the phase of logarithmic growth than do non-dividing cells. The cell growth-dependent decrease in /sup 35/S incorporation with increasing cell density is accompanied by a decrease in the activity of chondroitin sulfate-synthesizing enzymes. The specific activity of xylosyl transferase, N-acetylgalactosaminyl transferase I and chondroitin sulfotransferase declines as the cells proceed from low to high densities. The corresponding correlation coefficients are 0.86, 0.91 and 0.89. The ratio of C-60H/C-40H sulfation of chondroitin shows a cell proliferation-dependent decrease indicating an inverse correlation of chondroitin 6-sulfotransferase and chondroitin 4-sulfotransferase activity. The observed changes in the expression of enzyme activities are thought to have some implications in the pathogenesis of arteriosclerosis, the initial stages of which are characterized by proliferation of arterial smooth muscle cells.

  17. Bio-active molecules modified surfaces enhanced mesenchymal stem cell adhesion and proliferation.

    Science.gov (United States)

    Mobasseri, Rezvan; Tian, Lingling; Soleimani, Masoud; Ramakrishna, Seeram; Naderi-Manesh, Hossein

    2017-01-29

    Surface modification of the substrate as a component of in vitro cell culture and tissue engineering, using bio-active molecules including extracellular matrix (ECM) proteins or peptides derived ECM proteins can modulate the surface properties and thereby induce the desired signaling pathways in cells. The aim of this study was to evaluate the behavior of human bone marrow mesenchymal stem cells (hBM-MSCs) on glass substrates modified with fibronectin (Fn), collagen (Coll), RGD peptides (RGD) and designed peptide (R-pept) as bio-active molecules. The glass coverslips were coated with fibronectin, collagen, RGD peptide and R-peptide. Bone marrow mesenchymal stem cells were cultured on different substrates and the adhesion behavior in early incubation times was investigated using scanning electron microscopy (SEM) and confocal microscopy. The MTT assay was performed to evaluate the effect of different bio-active molecules on MSCs proliferation rate during 24 and 72 h. Formation of filopodia and focal adhesion (FA) complexes, two steps of cell adhesion process, were observed in MSCs cultured on bio-active molecules modified coverslips, specifically in Fn coated and R-pept coated groups. SEM image showed well adhesion pattern for MSCs cultured on Fn and R-pept after 2 h incubation, while the shape of cells cultured on Coll and RGD substrates indicated that they might experience stress condition in early hours of culture. Investigation of adhesion behavior, as well as proliferation pattern, suggests R-peptide as a promising bio-active molecule to be used for surface modification of substrate in supporting and inducing cell adhesion and proliferation.

  18. Inhibition of water activated by far infrared functional ceramics on proliferation of hepatoma cells.

    Science.gov (United States)

    Zhang, Dongmei; Liang, Jinsheng; Ding, Yan; Meng, Junping; Zhang, Guangchuan

    2014-05-01

    Rare earth (RE)/tourmaline composite materials prepared by the precipitation method are added to the ceramic raw materials at a certain percentage and sintered into RE functional ceramics with high far infrared emission features. Then the far infrared functional ceramics are used to interact with water. The influence of the ceramics on the physical parameters of water is investigated, and the effect of the activated water on the growth of Bel-7402 hepatoma cells cultured in vitro is further studied. The results indicate that, compared with the raw water, the water activated by the ceramics can inhibit the proliferation of hepatoma cells, with statistical probability P ceramics has a higher concentration of H+, which decreases the potential difference across the cell membrane to release the apoptosis inducing factor (AIF). After entering the cells, the activated water stimulates the mitochondria to produce immune substances that lead tumor cells to apoptosis.

  19. Intrinsic effects of gold nanoparticles on proliferation and invasion activity in SGC-7901 cells.

    Science.gov (United States)

    Wu, Yucheng; Zhang, Qingqing; Ruan, Zhongbao; Yin, Yigang

    2016-03-01

    Although biomedical applications of functionalized nanoparticles have taken significant strides, biological characterization of unmodified nanoparticles remains unclear. In the present study, we investigated the cell viability and invasion activity of gastric cancer cells after treatment with gold nanoparticles. The growth of SGC-7901 cells was inhibited significantly after treatment with 5-nm gold nanoparticles, and the cell invasion decreased markedly. These effects were not seen by different size gold nanoparticles (10, 20 and 40 nm). The attenuated invasion activity may be associated with the decreased expression of matrix metalloproteinase 9 and intercellular adhesion molecule-1. These data indicated that the response of SGC-7901 cells to gold nanoparticles was strongly associated with their unique size-dependent physiochemical properties. Therefore, we provided new evidence for the effect of gold nanoparticles on gastric cancer cell proliferation and invasion in vitro, making a contribution to the application of gold nanoparticles to novel therapies in gastric cancer.

  20. Myxoma virus suppresses proliferation of activated T lymphocytes yet permits oncolytic virus transfer to cancer cells.

    Science.gov (United States)

    Villa, Nancy Y; Wasserfall, Clive H; Meacham, Amy M; Wise, Elizabeth; Chan, Winnie; Wingard, John R; McFadden, Grant; Cogle, Christopher R

    2015-06-11

    Allogeneic hematopoietic cell transplant (allo-HCT) can be curative for certain hematologic malignancies, but the risk of graft-versus-host disease (GVHD) is a major limitation for wider application. Ideally, strategies to improve allo-HCT would involve suppression of T lymphocytes that drive GVHD while sparing those that mediate graft-versus-malignancy (GVM). Recently, using a xenograft model, we serendipitously discovered that myxoma virus (MYXV) prevented GVHD while permitting GVM. In this study, we show that MYXV binds to resting, primary human T lymphocytes but will only proceed into active virus infection after the T cells receive activation signals. MYXV-infected T lymphocytes exhibited impaired proliferation after activation with reduced expression of interferon-γ, interleukin-2 (IL-2), and soluble IL-2Rα, but did not affect expression of IL-4 and IL-10. MYXV suppressed T-cell proliferation in 2 patterns (full vs partial) depending on the donor. In terms of GVM, we show that MYXV-infected activated human T lymphocytes effectively deliver live oncolytic virus to human multiple myeloma cells, thus augmenting GVM by transfer of active oncolytic virus to residual cancer cells. Given this dual capacity of reducing GVHD plus increasing the antineoplastic effectiveness of GVM, ex vivo virotherapy with MYXV may be a promising clinical adjunct to allo-HCT regimens.

  1. Impaired telomerase activity hinders proliferation and in vitro transformation of Penaeus monodon lymphoid cells.

    Science.gov (United States)

    Jayesh, P; Vrinda, S; Priyaja, P; Philip, Rosamma; Singh, I S Bright

    2016-08-01

    Retaining terminal transferase activity of telomerase, the ribonucleoprotein enzyme which add telomeric repeats on chromosome end is thought to be required to prevent cellular ageing. Additionally, telomerase considered as a marker for cell proliferation and immortalization in eukaryotes. We examined telomerase activity in tissues and lymphoid cell culture of Penaeus monodon. Along with telomerase activity, telomere repeats and an attempt on identification of telomerase reverse transcriptase (PmTERT) were made. Telomeric repeat amplification protocol revealed that telomerase-dependent telomeric lengthening has been taking place in P. monodon and the adult tissues were retaining this capacity throughout their lifespan with the highest activity in ovary, testis and lymphoid organ. However, telomerase activity could not be detected in lymphoid cells in culture. The canonical telomeric repeats added by telomerase of lymphoid tissue extract were identified as TTAGG, but pentameric repeats GGTTA and AGGTT were also added by the telomerase. PmTERT protein sequence (partial) shared 100 % identity with the TERT sequence of Daphnia pulex, 27 % sequence identity with Purple sea urchin and 24-25 % with Zebra fish. Undetectable telomerase activity in lymphoid cell culture supports the hypothesis that the inadequate telomerase activity or gene expression may be a reason that prevents neoplastic transformation and spontaneous immortalization of the cells in vitro. Thus, it is envisaged that telomerase activation in lymphoid cells may surmount cellular ageing for in vitro transformation and cell line establishment.

  2. Influence of autologous dendritic cells on cytokine-induced killer cell proliferation, cell phenotype and antitumor activity in vitro.

    Science.gov (United States)

    Cao, Jingsong; Chen, Cong; Wang, Yuhuan; Chen, Xuecheng; Chen, Zeying; Luo, Xiaoling

    2016-09-01

    Dendritic cell (DCs) are essential antigen processing and presentation cells that play a key role in the immune response. In this study, DCs were co-cultured with cytokine-induced killer cells (DC-CIKs) in vitro to detect changes in cell proliferation, cell phenotype and cell cytotoxicity. The results revealed that the DCs were suitable for co-culture with CIKs at day 7, and that cell quantity of DC-CIKs was lower than that of CIKs until day 11, but it was significantly improved to 1.17-fold that of CIKs at day 13. Flow cytometry was used to detect the cell phenotype of CIKs and DC-CIKs. Compared with CIKs at day 13, the percentage of CD3(+), CD3(+)CD4(+), CD3(+)CD8(+) and CD3(+)CD56(+) T cells in DC-CIKs was significantly improved 1.02, 1.79, 1.26 and 2.44-fold, respectively. In addition, trypan blue staining analysis demonstrated that the cell viability of CIKs and DC-CIKs was 96% and 98%, respectively. Furthermore, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) analysis verified that CIK and DC-CIK cytotoxicity in Hela cells was 58% and 80%, respectively, with a significant difference. Taken together, our results indicate that the cell proliferation, cell phenotype and antitumor activity of CIKs were all enhanced following co-culture with DCs in vitro. These results are likely to be useful for DC-CIK application in antitumor therapies.

  3. Persistent STAT3 Activation in Colon Cancer Is Associated with Enhanced Cell Proliferation and Tumor Growth

    Directory of Open Access Journals (Sweden)

    Florian M. Corvinus

    2005-06-01

    Full Text Available Colorectal carcinoma (CRC is a major cause of morbidity and mortality in Western countries. It has so far been molecularly defined mainly by alterations of the Wnt pathway. We show here for the first time that aberrant activities of the signal transducer and activator of transcription STAT3 actively contribute to this malignancy and, thus, are a potential therapeutic target for CRC. Constitutive STAT3 activity was found to be abundant in dedifferentiated cancer cells and infiltrating lymphocytes of CRC samples, but not in non-neoplastic colon epithelium. Cell lines derived from malignant colorectal tumors lost persistent STAT3 activity in culture. However, implantation of colon carcinoma cells into nude mice resulted in restoration of STAT3 activity, suggesting a role of an extracellular stimulus within the tumor microenvironment as a trigger for STAT activation. STAT3 activity in CRC cells triggered through interleukin-6 or through a constitutively active STAT3 mutant promoted cancer cell multiplication, whereas STAT3 inhibition through a dominant-negative variant impaired IL-6-driven proliferation. Blockade of STAT3 activation in CRCderived xenograft tumors slowed down their development, arguing for a contribution of STAT3 to colorectal tumor growth.

  4. ACTIVATION ASSAY FOR PEROXISOME PROLIFERATOR-ACTIVATED RECEPTOR- ALPHA (PPARÁ) BY PERFLUOROALKYL ACIDS (PFAAS) IN COS-1 CELLS

    Science.gov (United States)

    PFAAs have been found to elicit various physiological effects including peroxisome proliferation, indicating the mechanism of action for these chemicals could involve PPAR. This study investigates the ability of PFAAs to bind and activate mouse and human PPARα in COS-1 cell...

  5. Different mechanisms must be considered to explain the increase in hippocampal neural precursor cell proliferation by physical activity

    Directory of Open Access Journals (Sweden)

    Rupert W Overall

    2016-08-01

    Full Text Available The number of proliferating neural precursor cells in the adult hippocampus is strongly increased by physical activity. The mechanisms through which this behavioral stimulus induces cell proliferation, however, are not yet understood. In fact, even the mode of proliferation of the stem and progenitor cells is not exactly known. Evidence exists for several mechanisms including cell cycle shortening, reduced cell death and stem cell recruitment, but as yet no model can account for all observations. An appreciation of how the cells proliferate, however, is crucial to our ability to model the neurogenic process and predict its behavior in response to pro-neurogenic stimuli. In a recent study, we addressed modulation of the cell cycle length as one possible mode of regulation of precursor cell proliferation in running mice. Our results indicated that the observed increase in number of proliferating cells could not be explained through a shortening of the cell cycle. We must therefore consider other mechanisms by which physical activity leads to enhanced precursor cell proliferation. Here we review the evidence for and against several different hypotheses and discuss the implications for future research in the field.

  6. Activation of peroxisome proliferator-activated receptor α in human endothelial cells increases plasminogen activator inhibitor type-1 expression

    Institute of Scientific and Technical Information of China (English)

    叶平; 胡晓晖; 刘永学; 赵亚力

    2003-01-01

    Objective To investigate the effect of peroxisome proliferator-activated receptors (PPARs) activators on plasminogen activator inhibitor 1 (PAI-1) expression in human umbilical vein endothelial cells and elucidate a possible mechanism.Methods Human umbilical vein endothelial cells (HUVECs) were obtained from normal fetus, and cultured conventionally. Then the HUVEC were exposed to fatty acids and prostaglandin J2 in varying concentrations with fresh media. RT-PCR and ELISA were used to determine the expression of PPAR and PAI-1 in HUVECs. Transient co-transfection of PAI-1 promoter and PPARα gene or PPARγ gene to ECV304 was performed.Results PPARα, PPARδ and PPARγ mRNA in HUVECs were detected by RT-PCR. Treatment of HUVECs with PPARα and PPARγ activators-linolenic acid, linoleic acid, oleic acid and prostaglandin J2, but not with stearic acid could augment PAI-I mRNA expression and protein secretion in a concentration-dependent manner. Proportional induction of PAI-1 promoter activity was observed through increasing amounts of PPARα DNA in HUVECs through a transient gene transfection assay, although the mRNA expression of the 3 subtypes of PPAR with their activators were not changed compared with controls.Conclusions HUVECs express PPARs. PPARs activators may increase PAI-1 expression in endothelial cells (EC). Although PPARs expression was not enhanced after being stimulated by their activators in EC, the functionally active PPARα is probably involved in regulating PAI-1 expression in EC.

  7. Inhibition of T cell proliferation by selective block of Ca(2+)-activated K(+) channels

    DEFF Research Database (Denmark)

    Jensen, B S; Odum, Niels; Jorgensen, N K;

    1999-01-01

    T lymphocytes express a plethora of distinct ion channels that participate in the control of calcium homeostasis and signal transduction. Potassium channels play a critical role in the modulation of T cell calcium signaling, and the significance of the voltage-dependent K channel, Kv1.3, is well...... established. The recent cloning of the Ca(2+)-activated, intermediate-conductance K(+) channel (IK channel) has enabled a detailed investigation of the role of this highly Ca(2+)-sensitive K(+) channel in the calcium signaling and subsequent regulation of T cell proliferation. The role IK channels play in T...

  8. Hedgehog signal activation coordinates proliferation and differentiation of fetal liver progenitor cells

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, Yoshikazu [Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Itoh, Tohru, E-mail: itohru@iam.u-tokyo.ac.jp [Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Miyajima, Atsushi [Laboratory of Cell Growth and Differentiation, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan)

    2009-09-10

    Hedgehog (Hh) signaling plays crucial roles in development and homeostasis of various organs. In the adult liver, it regulates proliferation and/or viability of several types of cells, particularly under injured conditions, and is also implicated in stem/progenitor cell maintenance. However, the role of this signaling pathway during the normal developmental process of the liver remains elusive. Although Sonic hedgehog (Shh) is expressed in the ventral foregut endoderm from which the liver derives, the expression disappears at the onset of the liver bud formation, and its possible recurrence at the later stages has not been investigated. Here we analyzed the activation and functional relevance of Hh signaling during the mouse fetal liver development. At E11.5, Shh and an activation marker gene for Hh signaling, Gli1, were expressed in Dlk{sup +} hepatoblasts, the fetal liver progenitor cells, and the expression was rapidly decreased thereafter as the development proceeded. In the culture of Dlk{sup +} hepatoblasts isolated from the E11.5 liver, activation of Hh signaling stimulated their proliferation and this effect was cancelled by a chemical Hh signaling inhibitor, cyclopamine. In contrast, hepatocyte differentiation of Dlk{sup +} hepatoblasts in vitro as manifested by the marker gene expression and acquisition of ammonia clearance activity was significantly inhibited by forced activation of Hh signaling. Taken together, these results demonstrate the temporally restricted manner of Hh signal activation and its role in promoting the hepatoblast proliferation, and further suggest that the pathway needs to be shut off for the subsequent hepatic differentiation of hepatoblasts to proceed normally.

  9. Statins meditate anti-atherosclerotic action in smooth muscle cells by peroxisome proliferator-activated receptor-γ activation

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Kazuki [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan); Matsumura, Takeshi, E-mail: takeshim@gpo.kumamoto-u.ac.jp [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan); Senokuchi, Takafumi; Ishii, Norio; Kinoshita, Hiroyuki; Yamada, Sarie; Murakami, Saiko [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan); Nakao, Saya [Department of Environmental & Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto (Japan); Motoshima, Hiroyuki; Kondo, Tatsuya; Kukidome, Daisuke; Kawasaki, Shuji [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan); Kawada, Teruo [Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto (Japan); Nishikawa, Takeshi; Araki, Eiichi [Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan)

    2015-01-30

    Highlights: • Statins induce PPARγ activation in vascular smooth muscle cells. • Statin-induced PPARγ activation is mediated by COX-2 expression. • Statins suppress cell migration and proliferation in vascular smooth muscle cells. • Statins inhibit LPS-induced inflammatory responses by PPARγ activation. • Fluvastatin suppress the progression of atherosclerosis and induces PPARγ activation in the aorta of apoE-deficient mice. - Abstract: The peroxisome proliferator-activated receptor-γ (PPARγ) is an important regulator of lipid and glucose metabolism, and its activation is reported to suppress the progression of atherosclerosis. We have reported that 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) activate PPARγ in macrophages. However, it is not yet known whether statins activate PPARγ in other vascular cells. In the present study, we investigated whether statins activate PPARγ in smooth muscle cells (SMCs) and endothelial cells (ECs) and thus mediate anti-atherosclerotic effects. Human aortic SMCs (HASMCs) and human umbilical vein ECs (HUVECs) were used in this study. Fluvastatin and pitavastatin activated PPARγ in HASMCs, but not in HUVECs. Statins induced cyclooxygenase-2 (COX-2) expression in HASMCs, but not in HUVECs. Moreover, treatment with COX-2-siRNA abrogated statin-mediated PPARγ activation in HASMCs. Statins suppressed migration and proliferation of HASMCs, and inhibited lipopolysaccharide-induced expression of monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α) in HASMCs. These effects of statins were abrogated by treatment with PPARγ-siRNA. Treatment with statins suppressed atherosclerotic lesion formation in Apoe{sup −/−} mice. In addition, transcriptional activity of PPARγ and CD36 expression were increased, and the expression of MCP-1 and TNF-α was decreased, in the aorta of statin-treated Apoe{sup −/−} mice. In conclusion, statins mediate anti-atherogenic effects

  10. Malignant T cells exhibit CD45 resistant Stat 3 activation and proliferation in cutaneous T cell lymphoma

    DEFF Research Database (Denmark)

    Krejsgaard, T; Helvad, Rikke; Ralfkiær, Elisabeth

    2010-01-01

    CD45 is a protein tyrosine phosphatase, which is well-known for regulating antigen receptor signalling in T and B cells via its effect on Src kinases. It has recently been shown that CD45 can also dephosphorylate Janus kinases (Jaks) and thereby regulate Signal transducer and activator of transcr......CD45 is a protein tyrosine phosphatase, which is well-known for regulating antigen receptor signalling in T and B cells via its effect on Src kinases. It has recently been shown that CD45 can also dephosphorylate Janus kinases (Jaks) and thereby regulate Signal transducer and activator...... of transcription (Stat) activation and cytokine-induced proliferation in lymphocytes. Consequently, CD45 dysregulation could be implicated in aberrant Jak/Stat activation and proliferation in lymphoproliferative diseases. Despite high expression of the CD45 ligand, Galectin-1, in skin lesions from cutaneous T......-cell lymphoma (CTCL), the malignant T cells exhibit constitutive activation of the Jak3/Stat3 signalling pathway and uncontrolled proliferation. We show that CD45 expression is down-regulated on malignant T cells when compared to non-malignant T cells established from CTCL skin lesions. Moreover, CD45 cross...

  11. Low Dose Cadmium Inhibits Proliferation of Human Renal Mesangial Cells via Activation of the JNK Pathway

    Science.gov (United States)

    Chen, Xiaocui; Li, Jing; Cheng, Zuowang; Xu, Yinghua; Wang, Xia; Li, Xiaorui; Xu, Dongmei; Kapron, Carolyn M.; Liu, Ju

    2016-01-01

    Cadmium (Cd) is a heavy metal and environmental pollutant. The kidney is the principal target organ of Cd exposure. Previously, we found that low concentration of Cd damages the integrity of the glomerular filtration barrier. However, little is known about the effects of Cd on renal mesangial cells, which provide structural support for the glomerular capillary loops and regulate intraglomerular blood flow. In this study, human renal mesangial cells (HRMCs) were cultured in the presence of serum and treated with 4 μM Cd. We found that Cd activates the c-Jun N-terminal kinase (JNK) pathway, and increases the protein levels of c-Jun and c-Fos. Cd treatment also induces a decrease in proliferation and an increase in apoptosis of HRMCs, but only the decrease in HRMC proliferation was reversed by pretreatment with SP600125, an inhibitor of the JNK pathway. In addition, Cd does not change the expression of α-smooth muscle actin and platelet-derived growth factor receptor-β, the markers of mesangial cells, or the alignment of the filamentous actin (F-actin) cytoskeleton of HRMCs. Our data indicate that the JNK pathway mediates the inhibitory effects of Cd on HRMC proliferation. PMID:27739415

  12. Peroxisome proliferator-activated receptor γ ligands induce cell cycle arrest and apoptosis in human renal carcinoma cell lines

    Institute of Scientific and Technical Information of China (English)

    Feng-guang YANG; Zhi-wen ZHANG; Dian-qi XIN; Chang-jin SHI; Jie-ping WU; Ying-lu GUO; You-fei GUAN

    2005-01-01

    Aim: To study the effect of peroxisome proliferator-actived receptor γ (PPARγ)ligands on cell proliferation and apoptosis in human renal carcinoma cell lines.Methods: The expression of PPARγ was investigated by reverse transcriptase polymerase chain reaction (RT-PCR), Western blot and immunohistochemistry.The effect of thiazolidinedione (TZD) PPARγ ligands on growth of renal cell carcinoma (RCC) cells was measured by MTT assay and flow cytometric analysis. Cell death ELISA, Hoechst 33342 fluorescent staining and DNA ladder assay were used to observe the effects of PPARγ ligands on apoptosis. Regulatory proteins of cell cycle and apoptosis were detected by Western blot analysis. Results:PPARγ was expressed at much higher levels in renal tumors than in the normal kidney (2.16±0.85 vs 0.90±0.73; P<0.01 ). TZD PPARγ ligands inhibited RCC cell growth in a dose-dependent manner with IC50 values of 7.08 μmol/L and 11.32 μmol/L for pioglitazone, and 5.71 μmol/L and 8.38 μmol/L for troglitazone in 786-O and A498 cells, respectively. Cell cycle analysis showed a G0/G1 arrest in human RCC cells following 24-h exposure to TZD. Analysis of cell cycle regulatory proteins revealed that TZD decreased the protein levels of proliferating cell nuclear antigen, pRb, cyclin D1, and Cdk4 but increased the levels of p21 and p27 in a timedependent manner. Furthermore, high doses of TZD induced massive apoptosis in renal cancer cells, with increased Bax expression and decreased Bcl-2 expression.Conclusion: TZD PPARγ ligands showed potent inhibitory effect on proliferation,and could induce apoptosis in RCC cells. These results suggest that ligands for PPARγ have potential antitumor effects on renal carcinoma cells.

  13. Mast cell tryptase stimulates myoblast proliferation; a mechanism relying on protease-activated receptor-2 and cyclooxygenase-2

    Directory of Open Access Journals (Sweden)

    Côté Claude H

    2011-10-01

    Full Text Available Abstract Background Mast cells contribute to tissue repair in fibrous tissues by stimulating proliferation of fibroblasts through the release of tryptase which activates protease-activated receptor-2 (PAR-2. The possibility that a tryptase/PAR-2 signaling pathway exists in skeletal muscle cell has never been investigated. The aim of this study was to evaluate whether tryptase can stimulate myoblast proliferation and determine the downstream cascade. Methods Proliferation of L6 rat skeletal myoblasts stimulated with PAR-2 agonists (tryptase, trypsin and SLIGKV was assessed. The specificity of the tryptase effect was evaluated with a specific inhibitor, APC-366. Western blot analyses were used to evaluate the expression and functionality of PAR-2 receptor and to assess the expression of COX-2. COX-2 activity was evaluated with a commercial activity assay kit and by measurement of PGF2α production. Proliferation assays were also performed in presence of different prostaglandins (PGs. Results Tryptase increased L6 myoblast proliferation by 35% above control group and this effect was completely inhibited by APC-366. We confirmed the expression of PAR-2 receptor in vivo in skeletal muscle cells and in satellite cells and in vitro in L6 cells, where PAR-2 was found to be functional. Trypsin and SLIGKV increased L6 cells proliferation by 76% and 26% above control, respectively. COX-2 activity was increased following stimulation with PAR-2 agonist but its expression remained unchanged. Inhibition of COX-2 activity by NS-398 abolished the stimulation of cell proliferation induced by tryptase and trypsin. Finally, 15-deoxy-Δ-12,14-prostaglandin J2 (15Δ-PGJ2, a product of COX-2-derived prostaglandin D2, stimulated myoblast proliferation, but not PGE2 and PGF2α. Conclusions Taken together, our data show that tryptase can stimulate myoblast proliferation and this effect is part of a signaling cascade dependent on PAR-2 activation and on the downstream

  14. Eviprostat Activates cAMP Signaling Pathway and Suppresses Bladder Smooth Muscle Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Masayuki Takeda

    2013-06-01

    Full Text Available Eviprostat is a popular phytotherapeutic agent for the treatment of lower urinary tract symptoms (LUTS. At present, the signaling mechanisms underlying its therapeutic effects are still poorly understood. Given that cAMP has been reported to suppress cell hyperplasia and hypertrophy in various pathological situations, we asked whether the effect of Eviprostat could be ascribed to the activation of the cAMP signaling pathway. In the study, exposure of cAMP response element (CRE-secreted alkaline phosphatase (SEAP (CRE-SEAP-reporter cells to Eviprostat elevated SEAP secretion, which was associated with an increased phosphorylation of vasodilator-stimulated phosphoprotein (VASP and cAMP-response element-binding protein (CREB, as well as enhanced expression of CRE-regulated protein connexin43, indicating an activation of the cAMP signaling pathway. Consistent with these observations, Eviprostat-induced expression of Cx43 was abolished in the presence of adenylyl cyclase inhibitor SQ22536 or PKA inhibitor H89, whereas it was mimicked by adenylyl cyclase activator, forskolin. Further analysis demonstrated that Eviprostat significantly potentiated the effect of phosphodiesterase 3 (PDE3 inhibitor, but not that of PDE4 inhibitor, on CRE activation. Moreover, Eviprostat suppressed PDGF-induced activation of ERK and Akt and inhibited cell proliferation and hillock formation in both mesangial cells and bladder smooth muscle cells. Collectively, activation of the cAMP signaling pathway could be an important mechanism by which Eviprostat exerts its therapeutic effects for LUTS.

  15. Hepatocyte growth factor-induced proliferation of hepatic stem-like cells depends on activation of NF-κB

    Institute of Scientific and Technical Information of China (English)

    PengYao; YiqunZhan; WangxiangXu; ChangyanLi; PeibinYue; ChengwangXu; DarongHU; ChengkuiQu; XiaomingYang

    2005-01-01

    Background/Aims: Hepatocyte growth factor (HGF) regulates proliferation of hepatic stem cells. Transcription factor nuclear factor kappa B (NF-κB) has been demonstrated as a key mediator for cell growth regulation. We investigated the role of NF-κB in HGF-mediated cellular proliferation responses in a rat liver.derived hepatic stem-like cell line WB.F344. Methods: Cell proliferation was determined by incorporation of [3H]thymidine. Phosphorylation of ERK1/2, p38 MAPK, Akt and IκBα by HGF stimulation was detected by Western blotting. NF-κB activation was determined by electrophoretic mobility shift assay and NF-κB.mediated SEAP reporter assay. NF-κB activation was inhibited by treatment with an IκBα dominant-negative vector or inhibitor BAY-11-7082. Results: We found that stimulation of WB-F344 cells with HGF promoted cell proliferation and effectively protected WB-F344 cells from apoptosis induced by TNF-α. We also observed activation of ERK1/2, p38 MAPK, Akt and NF-κB signaling pathways by HGF in WB-F344 cells. HGF-induced cell proliferation was partly blocked by pre-treatment of the cells with inhibitors against MEK1 or p38 MAPK, and completely blocked using an inhibitor for NF-κB activity.Furthermore, it was demonstrated that IκB mutant that suppressed NF-κB activity completely blocked HGF-induced cell proliferation. Conclusions: NF-κB activity is required for HGF-induced proliferation in hepatic stem-like cell line WB-F344, and this activity requires ERK1/2 and p38 MAPK pathways.

  16. Peroxisome Proliferator-Activated Receptor and Vitamin D Receptor Signaling Pathways in Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Satoru, E-mail: smatsuda@cc.nara-wu.ac.jp; Kitagishi, Yasuko [Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506 (Japan)

    2013-10-21

    Peroxisome proliferator-activated receptors (PPARs) are members of the superfamily of nuclear hormone receptors, which respond to specific ligands such as polyunsaturated fatty acids by altering gene expression. Three subtypes of this receptor have been discovered, each evolving to achieve different biological functions. Like other nuclear receptors, the transcriptional activity of PPARs is affected not only by ligand-stimulation, but also by cross-talk with other molecules. For example, both PPARs and the RXRs are ligand-activated transcription factors that coordinately regulate gene expression. In addition, PPARs and vitamin D receptor (VDR) signaling pathways regulate a multitude of genes that are of importance for cellular functions including cell proliferation and cell differentiation. Interaction of the PPARs and VDR signaling pathways has been shown at the level of molecular cross-regulation of their transcription factor. A variety of ligands influencing the PPARs and VDR signaling pathways have been shown to reveal chemopreventive potential by mediating tumor suppressive activities in human cancers. Use of these compounds may represent a potential novel strategy to prevent cancers. This review summarizes the roles of the PPARs and the VDR in pathogenesis and progression of cancer.

  17. Sonic hedgehog stimulates glycolysis and proliferation of breast cancer cells: Modulation of PFKFB3 activation

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Xin; Lyu, Pengwei; Gu, Yuanting; Li, Lin; Li, Jingruo; Wang, Yan; Zhang, Linfeng [Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan (China); Fu, Chao [Department of Ultrasonography, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan (China); Cao, Zhang, E-mail: zzzhangcao@126.com [Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan (China)

    2015-08-28

    Sonic hesgehog (Shh) signaling has been reported to play an essential role in cancer progression. The mechanism of Shh involved in breast cancer carcinogenesis remains unclear. The present study sought to explore whether Shh signaling could regulate the glycolytic metabolism in breast cancers. Overexpression of the smoothed (Smo) and Gli-1 was found in human primary breast cancers. The expressions of Shh and Gli-1 correlated significantly with tumor size and tumor stage. In vitro, human recombinant Shh (rShh) triggered Smo and Gli-1 expression, promoted glucose utilization and lactate production, and accelerated cell proliferation in MCF-7 and MDA-MB-231 cells. Notably, rShh did not alter 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) expression but augmented PFKFB3 phosphorylation on ser{sup 461}, along with elevated fructose-2,6-bisphosphate (F2,6BP) generation by MCF-7 and MDA-MB-231 cells. This effect could be dampened by Smo siRNA but not by Gli-1 siRNA. In addition, our data showed the upregulated expressions of MAPK by rShh and elevatory PFKFB3 phosphorylation by p38/MAPK activated kinase (MK2). In conclusion, our study characterized a novel role of Shh in promoting glycolysis and proliferation of breast cancer cells via PFKFB3 phosphorylation, which was mediated by Smo and p38/MK2. - Highlights: • Overexpression of Smo and Gli-1 was found in human primary breast cancers. • Shh promoted glucose utilization, lactate production, and cell proliferation. • Shh did not alter PFKFB3 expression but augmented PFKFB3 phosphorylation on ser461. • Shh acts on PFKFB3 phosphorylation via Smo and p38 MAPK/MK2.

  18. Human secondary lymphoid organs typically contain polyclonally-activated proliferating regulatory T cells.

    Science.gov (United States)

    Peters, Jorieke H; Koenen, Hans J P M; Fasse, Esther; Tijssen, Henk J; Ijzermans, Jan N M; Groenen, Patricia J T A; Schaap, Nicolaas P M; Kwekkeboom, Jaap; Joosten, Irma

    2013-09-26

    Immunomodulating regulatory T-cell (Treg) therapy is a promising strategy in autoimmunity and transplantation. However, to achieve full clinical efficacy, better understanding of in vivo human Treg biology is warranted. Here, we demonstrate that in contrast to blood and bone marrow Tregs, which showed a resting phenotype, the majority of CD4(pos)CD25(pos)CD127(neg)FoxP3(pos) Tregs in secondary lymphoid organs were proliferating activated CD69(pos)CD45RA(neg) cells with a hyperdemethylated FOXP3 gene and a broad T-cell receptor-Vβ repertoire, implying polyclonal activation. Activated CD69(pos) Tregs were distributed over both T-cell and B-cell areas, distant from Aire(pos) and CD11c(pos) cells. In contrast to the anergic peripheral blood Tregs, lymphoid organ Tregs had significant ex vivo proliferative capacity and produced cytokines like interleukin-2, while revealing similar suppressive potential. Also, next to Treg-expressing chemokine receptors important for a prolonged stay in lymphoid organs, a significant part of the cells expressed peripheral tissue-associated, functional homing markers. In conclusion, our data suggest that human secondary lymphoid organs aid in the maintenance and regulation of Treg function and homeostasis. This knowledge may be exploited for further optimization of Treg immunotherapy, for example, by ex vivo selection of Tregs with capacity to migrate to lymphoid organs providing an in vivo platform for further Treg expansion.

  19. MicroRNA-130b promotes cell proliferation and invasion by inhibiting peroxisome proliferator-activated receptor-γ in human glioma cells.

    Science.gov (United States)

    Gu, Jian-Jun; Zhang, Jian-He; Chen, Hong-Jie; Wang, Shou-Sen

    2016-06-01

    MicroRNA-130b (miR-130b) is a novel tumor-related miRNA that has been found to be involved in several biological processes. However, there is limited evidence regarding the role of miR-130b in the tumorigenesis of human gliomas. In the present study, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) assays were used to quantify miR-130b expression levels in human glioma tissues and glioma cell lines (U251, U87, SNB19 and LN229). The expression level of miR-130b was found to be markedly higher in human glioma tissues than in non‑neoplastic brain specimens. Specifically, higher expression levels of miR‑130b were observed in the glioma cell lines, compared with those in normal human astrocytes (NHA). We also confirmed that miR‑130b interacted with the 3'-untranslated region of peroxisome proliferator‑activated receptor-γ (PPAR‑γ), which negatively affected the protein levels of E-cadherin. Furthermore, its effects on cell proliferation and invasion were examined using CCK8, colony formation, cell cycle and Transwell assays. We found that the upregulation of miR-130b induced cell proliferation, decreased the percentage of cells in the G0/G1 phase and enhanced the invasiveness of U251 glioma cells whereas the downregulation of miR-130b exerted opposing effects. Moreover, it was demonstrated that the downregulation of miR‑130b in U251 glioma cells restored the expression of PPAR-γ and E-cadherin, and inhibited the expression of β-catenin. Notably, PPAR-γ knockdown abolished the inhibitory effect of miR-130b inhibitor on the proliferation and invasivness of U251 cells. Taken together, these findings suggest that miR‑130b promotes the proliferation and invasion of U251 glioma cells by inhibiting PPAR-γ.

  20. Linkage of E2F1 transcriptional network and cell proliferation with respiratory chain activity in breast cancer cells.

    Science.gov (United States)

    Mori, Kazunori; Uchida, Tetsu; Fukumura, Motonori; Tamiya, Shigetoshi; Higurashi, Masato; Sakai, Hirosato; Ishikawa, Fumihiro; Shibanuma, Motoko

    2016-07-01

    Mitochondria are multifunctional organelles; they have been implicated in various aspects of tumorigenesis. In this study, we investigated a novel role of the basal electron transport chain (ETC) activity in cell proliferation by inhibiting mitochondrial replication and transcription (mtR/T) using pharmacological and genetic interventions, which depleted mitochondrial DNA/RNA, thereby inducing ETC deficiency. Interestingly, mtR/T inhibition did not decrease ATP levels despite deficiency in ETC activity in different cell types, including MDA-MB-231 breast cancer cells, but it severely impeded cell cycle progression, specifically progression during G2 and/or M phases in the cancer cells. Under these conditions, the expression of a group of cell cycle regulators was downregulated without affecting the growth signaling pathway. Further analysis suggested that the transcriptional network organized by E2F1 was significantly affected because of the downregulation of E2F1 in response to ETC deficiency, which eventually resulted in the suppression of cell proliferation. Thus, in this study, the E2F1-mediated ETC-dependent mechanism has emerged as the regulatory mechanism of cell cycle progression. In addition to E2F1, FOXM1 and BMYB were also downregulated, which contributed specifically to the defects in G2 and/or M phase progression. Thus, ETC-deficient cancer cells lost their growing ability, including their tumorigenic potential in vivo. ETC deficiency abolished the production of reactive oxygen species (ROS) from the mitochondria and a mitochondria-targeted antioxidant mimicked the deficiency, thereby suggesting that ETC activity signaled through ROS production. In conclusion, this novel coupling between ETC activity and cell cycle progression may be an important mechanism for coordinating cell proliferation and metabolism.

  1. Melatonin inhibits both ER alpha activation and breast cancer cell proliferation induced by a metalloestrogen, cadmium.

    Science.gov (United States)

    Martínez-Campa, C; Alonso-González, C; Mediavilla, M D; Cos, S; González, A; Ramos, S; Sánchez-Barceló, E J

    2006-05-01

    Cadmium (Cd) is a heavy metal affecting human health both through environmental and occupational exposure. There is evidence that Cd accumulates in several organs and is carcinogenic to humans. In vivo, Cd mimics the effect of estrogens in the uterus and mammary gland. In estrogen-responsive breast cancer cell lines, Cd stimulates proliferation and can also activate the estrogen receptor independent of estradiol. The ability of this metalloestrogen to increase gene expression in MCF7 cells is blocked by anti-estrogens suggesting that the activity of these compounds is mediated by ER alpha. The aims of this work were to test whether melatonin inhibits Cd-induced proliferation in MCF7 cells, and also to study whether melatonin specifically inhibits Cd-induced ER alpha transactivation. We show that melatonin prevents the Cd-induced growth of synchronized MCF7 breast cancer cells. In transient transfection experiments, we prove that both ER alpha- and ER beta-mediated transcription are stimulated by Cd. Melatonin is a specific inhibitor of Cd-induced ER alpha-mediated transcription in both estrogen response elements (ERE)- and AP1-containing promoters, whereas ER beta-mediated transcription is not inhibited by the pineal indole. Moreover, the mutant ER alpha-(K302G, K303G), unable to bind calmodulin, is activated by Cd but becomes insensitive to melatonin treatment. These results proved that melatonin inhibits MCF7 cell growth induced by Cd and abolishes the stimulatory effect of the heavy metal in cells expressing ER alpha at both ERE-luc and AP1-luc sites. We can infer from these experiments that melatonin regulates Cd-induced transcription in both ERE- and AP1 pathways. These results also reinforce the hypothesis of the anti-estrogenic properties of melatonin as a valuable tool in breast cancer therapies.

  2. FBI-1 enhances ETS-1 signaling activity and promotes proliferation of human colorectal carcinoma cells.

    Science.gov (United States)

    Zhu, Min; Li, Mingyang; Zhang, Fan; Feng, Fan; Chen, Weihao; Yang, Yutao; Cui, Jiajun; Zhang, Dong; Linghu, Enqiang

    2014-01-01

    In this study, we investigated a potential regulatory role of FBI-1 in transcription factor activity of ETS-1. The protein interaction was identified between ETS-1 and FBI-1 in lovo cells. The accumulating data showed that FBI-1 promoted the recruitment of ETS-1 to endogenous promoter of its target genes and increase ETS-1 accumulation in the nuclear. Our work also indicated that the FBI-1 enhances ETS-1 transcription factor activity via down-regulating p53-mediated inhibition on ETS-1. Further, FBI-1 plays a role in regulation of colorectal carcinoma cells proliferation. These findings supported that FBI-1 might be a potential molecule target for treating colorectal carcinoma.

  3. FBI-1 enhances ETS-1 signaling activity and promotes proliferation of human colorectal carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Min Zhu

    Full Text Available In this study, we investigated a potential regulatory role of FBI-1 in transcription factor activity of ETS-1. The protein interaction was identified between ETS-1 and FBI-1 in lovo cells. The accumulating data showed that FBI-1 promoted the recruitment of ETS-1 to endogenous promoter of its target genes and increase ETS-1 accumulation in the nuclear. Our work also indicated that the FBI-1 enhances ETS-1 transcription factor activity via down-regulating p53-mediated inhibition on ETS-1. Further, FBI-1 plays a role in regulation of colorectal carcinoma cells proliferation. These findings supported that FBI-1 might be a potential molecule target for treating colorectal carcinoma.

  4. Activation of P2X7 receptors decreases the proliferation of murine luteal cells.

    Science.gov (United States)

    Wang, Jing; Liu, Shuangmei; Nie, Yijun; Wu, Bing; Wu, Qin; Song, Miaomiao; Tang, Min; Xiao, Li; Xu, Ping; Tan, Ximin; Zhang, Luyin; Li, Gang; Liang, Shangdong; Zhang, Chunping

    2015-11-01

    Extracellular ATP regulates cellular function in an autocrine or paracrine manner through activating purinergic signalling. Studies have shown that purinergic receptors were expressed in mammalian ovaries and they have been proposed as an intra-ovarian regulatory mechanism. P2X7 was expressed in porcine ovarian theca cells and murine and human ovarian surface epithelium and is involved in ATP-induced apoptotic cell death. However, the role of P2X7 in corpus luteum is still unclear. The aim of this study was to investigate the role of ATP signalling in murine luteal cells and the possible mechanism(s) involved. We found that P2X7 was highly expressed in murine small luteal cells. The agonists of P2X7, ATP and BzATP, inhibited the proliferation of luteal cells. P2X7 antagonist BBG reversed the inhibition induced by ATP and BzATP. Further studies showed that ATP and BzATP inhibited the expression of cell cycle regulators cyclinD2 and cyclinE2. ATP and BzATP also inhibited the p38-mitogen-activated protein kinase (MAPK) signalling pathway. These results reveal that P2X7 receptor activation is involved in corpus luteum formation and function.

  5. Colchicum autumnale agglutinin activates all murine T-lymphocytes but does not induce the proliferation of all activated cells.

    Science.gov (United States)

    Bemer, V; Van Damme, E J; Peumans, W J; Perret, R; Truffa-Bachi, P

    1996-08-25

    Plant lectins with mitogenic properties for T-lymphocytes have been particularly useful for the study of T-cell activation and effector functions. In the search for mitogenic lectins possessing activation features different from the ones associated with the already known mitogens, we found that an agglutinin isolated from Colchicum autumnale tubers, Colchicum autumnale agglutinin (CAA), possesses interesting properties. First, contrasting with the classical mitogens, CAA induces the proliferation of a fraction of the CD4+ and CD8+ mouse T-lymphocytes. Second, the CAA-induced proliferation requires MHC class II and CD4 molecules. Third, although only a fraction of T-cells enters into the cell cycle, all T-lymphocytes are activated and express high levels of the activation markers CD69 and CD44. Finally, CAA-stimulation is characterized by a particular pattern of the cytokine gene expression, reflected by the transcription of the IL2, IL5, and IFN-gamma genes, while the IL4 and IL10 genes remained silent. Taken together these data demonstrate that CAA activation does not conform to the pathway of T-cell triggering observed with classical mitogenes and represents a new tool for the analysis of T-cell activation.

  6. Interleukin-1{beta} regulates cell proliferation and activity of extracellular matrix remodelling enzymes in cultured primary pig heart cells

    Energy Technology Data Exchange (ETDEWEB)

    Zitta, Karina; Brandt, Berenice [Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel (Germany); Wuensch, Annegret [Institute of Molecular Animal Breeding and Biotechnology, Ludwig Maximilians University, Munich (Germany); Meybohm, Patrick; Bein, Berthold; Steinfath, Markus; Scholz, Jens [Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel (Germany); Albrecht, Martin, E-mail: Albrecht@anaesthesie.uni-kiel.de [Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel (Germany)

    2010-09-03

    Research highlights: {yields} Levels of IL-1{beta} are increased in the pig myocardium after infarction. {yields} Cultured pig heart cells possess IL-1 receptors. {yields} IL-1{beta} increases cell proliferation of pig heart cells in-vitro. {yields} IL-1{beta} increases MMP-2 and MMP-9 activity in pig heart cells in-vitro. {yields} IL-1{beta} may be important for tissue remodelling events after myocardial infarction. -- Abstract: After myocardial infarction, elevated levels of interleukins (ILs) are found within the myocardial tissue and IL-1{beta} is considered to play a major role in tissue remodelling events throughout the body. In the study presented, we have established a cell culture model of primary pig heart cells to evaluate the effects of different concentrations of IL-1{beta} on cell proliferation as well as expression and activity of enzymes typically involved in tissue remodelling. Primary pig heart cell cultures were derived from three different animals and stimulated with recombinant pig IL-1{beta}. RNA expression was detected by RT-PCR, protein levels were evaluated by Western blotting, activity of matrix metalloproteinases (MMPs) was quantified by gelatine zymography and cell proliferation was measured using colorimetric MTS assays. Pig heart cells express receptors for IL-1 and application of IL-1{beta} resulted in a dose-dependent increase of cell proliferation (P < 0.05 vs. control; 100 ng/ml; 24 h). Gene expression of caspase-3 was increased by IL-1{beta} (P < 0.05 vs. control; 100 ng/ml; 3 h), and pro-caspase-3 but not active caspase was detected in lysates of pig heart cells by Western blotting. MMP-2 gene expression as well as enzymatic activities of MMP-2 and MMP-9 were increased by IL-1{beta} (P < 0.05 vs. control; 100 ng/ml; 3 h for gene expression, 48 and 72 h for enzymatic activities of MMP-2 and MMP-9, respectively). Our in vitro data suggest that IL-1{beta} plays a major role in the events of tissue remodelling in the heart. Combined

  7. Statins meditate anti-atherosclerotic action in smooth muscle cells by peroxisome proliferator-activated receptor-γ activation.

    Science.gov (United States)

    Fukuda, Kazuki; Matsumura, Takeshi; Senokuchi, Takafumi; Ishii, Norio; Kinoshita, Hiroyuki; Yamada, Sarie; Murakami, Saiko; Nakao, Saya; Motoshima, Hiroyuki; Kondo, Tatsuya; Kukidome, Daisuke; Kawasaki, Shuji; Kawada, Teruo; Nishikawa, Takeshi; Araki, Eiichi

    2015-01-30

    The peroxisome proliferator-activated receptor-γ (PPARγ) is an important regulator of lipid and glucose metabolism, and its activation is reported to suppress the progression of atherosclerosis. We have reported that 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) activate PPARγ in macrophages. However, it is not yet known whether statins activate PPARγ in other vascular cells. In the present study, we investigated whether statins activate PPARγ in smooth muscle cells (SMCs) and endothelial cells (ECs) and thus mediate anti-atherosclerotic effects. Human aortic SMCs (HASMCs) and human umbilical vein ECs (HUVECs) were used in this study. Fluvastatin and pitavastatin activated PPARγ in HASMCs, but not in HUVECs. Statins induced cyclooxygenase-2 (COX-2) expression in HASMCs, but not in HUVECs. Moreover, treatment with COX-2-siRNA abrogated statin-mediated PPARγ activation in HASMCs. Statins suppressed migration and proliferation of HASMCs, and inhibited lipopolysaccharide-induced expression of monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α) in HASMCs. These effects of statins were abrogated by treatment with PPARγ-siRNA. Treatment with statins suppressed atherosclerotic lesion formation in Apoe(-/-) mice. In addition, transcriptional activity of PPARγ and CD36 expression were increased, and the expression of MCP-1 and TNF-α was decreased, in the aorta of statin-treated Apoe(-/-) mice. In conclusion, statins mediate anti-atherogenic effects through PPARγ activation in SMCs. These effects of statins on SMCs may be beneficial for the prevention of atherosclerosis.

  8. Peroxisome proliferator-activated receptor subtype- and cell-type-specific activation of genomic target genes upon adenoviral transgene delivery

    DEFF Research Database (Denmark)

    Nielsen, Ronni; Grøntved, Lars; Stunnenberg, Hendrik G

    2006-01-01

    Investigations of the molecular events involved in activation of genomic target genes by peroxisome proliferator-activated receptors (PPARs) have been hampered by the inability to establish a clean on/off state of the receptor in living cells. Here we show that the combination of adenoviral...... delivery and chromatin immunoprecipitation (ChIP) is ideal for dissecting these mechanisms. Adenoviral delivery of PPARs leads to a rapid and synchronous expression of the PPAR subtypes, establishment of transcriptional active complexes at genomic loci, and immediate activation of even silent target genes...

  9. RAF kinase activity regulates neuroepithelial cell proliferation and neuronal progenitor cell differentiation during early inner ear development.

    Directory of Open Access Journals (Sweden)

    Marta Magariños

    Full Text Available BACKGROUND: Early inner ear development requires the strict regulation of cell proliferation, survival, migration and differentiation, coordinated by the concerted action of extrinsic and intrinsic factors. Deregulation of these processes is associated with embryonic malformations and deafness. We have shown that insulin-like growth factor I (IGF-I plays a key role in embryonic and postnatal otic development by triggering the activation of intracellular lipid and protein kinases. RAF kinases are serine/threonine kinases that regulate the highly conserved RAS-RAF-MEK-ERK signaling cascade involved in transducing the signals from extracellular growth factors to the nucleus. However, the regulation of RAF kinase activity by growth factors during development is complex and still not fully understood. METHODOLOGY/PRINCIPAL FINDINGS: By using a combination of qRT-PCR, Western blotting, immunohistochemistry and in situ hybridization, we show that C-RAF and B-RAF are expressed during the early development of the chicken inner ear in specific spatiotemporal patterns. Moreover, later in development B-RAF expression is associated to hair cells in the sensory patches. Experiments in ex vivo cultures of otic vesicle explants demonstrate that the influence of IGF-I on proliferation but not survival depends on RAF kinase activating the MEK-ERK phosphorylation cascade. With the specific RAF inhibitor Sorafenib, we show that blocking RAF activity in organotypic cultures increases apoptosis and diminishes the rate of cell proliferation in the otic epithelia, as well as severely impairing neurogenesis of the acoustic-vestibular ganglion (AVG and neuron maturation. CONCLUSIONS/SIGNIFICANCE: We conclude that RAF kinase activity is essential to establish the balance between cell proliferation and death in neuroepithelial otic precursors, and for otic neuron differentiation and axonal growth at the AVG.

  10. Transforming growth factor alpha (TGFα regulates granulosa cell tumor (GCT cell proliferation and migration through activation of multiple pathways.

    Directory of Open Access Journals (Sweden)

    Cheng Wang

    Full Text Available Granulosa cell tumors (GCTs are the most common ovarian estrogen producing tumors, leading to symptoms of excessive estrogen such as endometrial hyperplasia and endometrial adenocarcinoma. These tumors have malignant potential and often recur. The etiology of GCT is unknown. TGFα is a potent mitogen for many different cells. However, its function in GCT initiation, progression and metastasis has not been determined. The present study aims to determine whether TGFα plays a role in the growth of GCT cells. KGN cells, which are derived from an invasive GCT and have many features of normal granulosa cells, were used as the cellular model. Immunohistochemistry, Western blot and RT-PCR results showed that the ErbB family of receptors is expressed in human GCT tissues and GCT cell lines. RT-PCR results also indicated that TGFα and EGF are expressed in the human granulosa cells and the GCT cell lines, suggesting that TGFα might regulate GCT cell function in an autocrine/paracrine manner. TGFα stimulated KGN cell DNA synthesis, cell proliferation, cell viability, cell cycle progression, and cell migration. TGFα rapidly activated EGFR/PI3K/Akt and mTOR pathways, as indicated by rapid phosphorylation of Akt, TSC2, Rictor, mTOR, P70S6K and S6 proteins following TGFα treatment. TGFα also rapidly activated the EGFR/MEK/ERK pathway, and P38 MAPK pathways, as indicated by the rapid phosphorylation of EGFR, MEK, ERK1/2, P38, and CREB after TGFα treatment. Whereas TGFα triggered a transient activation of Akt, it induced a sustained activation of ERK1/2 in KGN cells. Long-term treatment of KGN cells with TGFα resulted in a significant increase in cyclin D2 and a decrease in p27/Kip1, two critical regulators of granulosa cell proliferation and granulosa cell tumorigenesis. In conclusion, TGFα, via multiple signaling pathways, regulates KGN cell proliferation and migration and may play an important role in the growth and metastasis of GCTs.

  11. The Inhibitory Role of Lactacystin and β-Lactacystin on T-cell Activation and Proliferation

    Institute of Scientific and Technical Information of China (English)

    Peng-Hong SONG; Hai-Yang XIE; Shu-Sen ZHENG; Jian WU

    2004-01-01

    To evaluate the effects of proteasome inhibitors lactacystin (LAC) and β-lactacystin (β-LAC)on the proliferation and activation of T lymphocytes, flow cytometry was used to analyze the proliferationand the expression of CD69, CD25 and CD3 of T lymphocytes activated by PHA. Furthermore, theexpressions of PA28 and IL-2 mRNA were assayed by competitive RT-PCR. The results indicated that:(1) LAC and β-LAC significantly decreased the incorporation of BrdU and inhibited T lymphocytesproliferation in T lymphocytes activated by PHA; (2) although LAC and β-LAC did not affect the expressionof CD69 at any time, they significantly inhibited the expression of CD25 (48h, 72h, P<0.05);(3) in comparison with control, LAC and β-LAC significantly down-regulated the expression of PA28and IL-2 mRNA (48h, 72h, P<0.05). LAC and β-LAC significantly inhibited the proliferation and activationof T cells. Mechanisms involved are inhibition of CD25 and down-regulation of PA28 and IL-2 mRNAexpressions.

  12. The Inhibitory Role of Lactacystin and β-Lactacystinon T-cell Activation and Proliferation

    Institute of Scientific and Technical Information of China (English)

    Peng-HongSONG; Hai-YangXIE; Shu-SenZHENG; JianWU

    2004-01-01

    To evaluate the effects of proteasome inhibitors lactacystin (LAC) and β-1actacystin (β-LAC)on the proliferation and activation of T lymphocytes, flow cytometry was used to analyze the proliferationand the expression of CD69, CD25 and CD3 of T lymphocytes activated by PHA. Furthermore, theexpressions of PA28 and IL-2 mRNA were assayed by competitive RT-PCR. The results indicated that:(1) LAC and 13-LAC significantly decreased the incomoration of BrdU and inhibited T lymohocytesoroliferation in T lymphocytes activated by PHA; (2) although LAC and β-LAC did not affect the expressionof CD69 at any time, they significantly inhibited the expression of CD25 (48 h, 72 h, P<0.05);(3) in comoarison with control, LAC and β-LAC significantly down-regulated the expression of PA28and 1L-2 mRNA (48 h, 72 h, P<0.05). LAC and β-LAC significantly inhibited the proliferation and activationof T cells. Mechanisms involved are inhibition of CD25 and down-regulation of PA28 and IL-2 mRNAexpressions.

  13. Inhibitory Activity of Synthesized Acetylated Procyanidin B1 Analogs against HeLa S3 Cells Proliferation

    Directory of Open Access Journals (Sweden)

    Syuhei Okamoto

    2014-02-01

    Full Text Available Proanthocyanidins, also known as condensed tannins and/or oligomeric flavonoids, occur in many edible plants and have various interesting biological activities. Previously, we reported a synthetic method for the preparation of various procyanidins in pure form and described their biological activities. Here, we describe the synthesis of procyanidin B1 acetylated analogs and discuss their inhibition activities against HeLa S3 cell proliferation. Surprisingly, the lower-unit acetylated procyanidin B1 strongly inhibited the proliferation of HeLa S3 cells. This molecule showed much stronger inhibitory activity than did epigallocatechin-3-O-gallate (EGCG, green tea polyphenol, and dimeric compounds that included EGCG as a unit. This result suggests that the phenolic hydroxyl groups of the upper-units in flavan-3-ols are important for their inhibitory activity against cancer cell proliferation and that a hydrophobic lower unit dimer enhances this activity.

  14. Activation of double-stranded RNA-dependent protein kinase inhibits proliferation of pancreatic β-cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shan-Shan [Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing (China); Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing (China); Jiang, Teng [Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing (China); Wang, Yi; Gu, Li-Ze [Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing (China); Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing (China); Wu, Hui-Wen [Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing (China); Tan, Lan [Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing (China); Guo, Jun, E-mail: Guoj@njmu.edu.cn [Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing (China); Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing (China)

    2014-01-17

    Highlights: •PKR can be activated by glucolipitoxicity and pro-inflammatory cytokines in β-cells. •Activated PKR inhibited β-cell proliferation by arresting cell cycle at G1 phase. •Activated PKR fully abrogated the pro-proliferative effects of IGF-I on β-cells. -- Abstract: Double-stranded RNA-dependent protein kinase (PKR) is revealed to participate in the development of insulin resistance in peripheral tissues in type 2 diabetes (T2DM). Meanwhile, PKR is also characterized as a critical regulator of cell proliferation. To date, no study has focused on the impact of PKR on the proliferation of pancreatic β-cells. Here, we adopted insulinoma cell lines and mice islet β-cells to investigate: (1) the effects of glucolipotoxicity and pro-inflammatory cytokines on PKR activation; (2) the effects of PKR on proliferation of pancreatic β-cells and its underlying mechanisms; (3) the actions of PKR on pro-proliferative effects of IGF-I and its underlying pathway. Our results provided the first evidence that PKR can be activated by glucolipitoxicity and pro-inflammatory cytokines in pancreatic β-cells, and activated PKR significantly inhibited cell proliferation by arresting cell cycle at G1 phase. Reductions in cyclin D1 and D2 as well as increases in p27 and p53 were associated with the anti-proliferative effects of PKR, and proteasome-dependent degradation took part in the reduction of cyclin D1 and D2. Besides, PKR activation abrogated the pro-proliferative effects of IGF-I by activating JNK and disrupting IRS1/PI3K/Akt signaling pathway. These findings indicate that the anti-proliferative actions of PKR on pancreatic β-cells may contribute to the pathogenesis of T2DM.

  15. Germ cell nuclear factor directly represses the transcription of peroxisome proliferator-activated receptor delta gene

    Institute of Scientific and Technical Information of China (English)

    Chengqiang He; Naizheng Ding; Jie Kang

    2008-01-01

    Germ cell nuclear factor (GCNF) is a transcription factor that can repress gene transcription and plays an important role during spermatogenesis. Peroxisome proliferator-activated receptor delta (PPARδ) is a nuclear hormone receptor belonging to the steroid receptor superfamily.It can activate the expression of many genes,including those involved in lipid metabolism.In this report,we showed that GCNF specifically interacts with PPARδ promoter.Overexpression of GCNF in African green monkey SV40 transformed kidney fibroblast COS7 cells and mouse embryo fibroblast NIH 3T3 cells represses the activity of PPARδ promoter.The mutation of GCNF response element in PPARδ promoter relieves the repression in NIH 3T3 cells and mouse testis.Moreover,we showed that GCNF in nuclear extracts of mouse testis is able to bind to PPARδ promoter directly.We also found that GCNF and PPARδ mRNA were expressed with different patterns in mouse testis by in situ hybridization.These results suggested that GCNF might be a negative regulator of PPARδ gene expression through its direct interaction with PPARδ promoter in mouse testis.

  16. MicroRNA 181b promotes vascular smooth muscle cells proliferation through activation of PI3K and MAPK pathways.

    Science.gov (United States)

    Li, Tie-Jun; Chen, Yan-Li; Gua, Chao-Jun; Xue, Sheng-Jiang; Ma, Shu-Mei; Li, Xiao-Dong

    2015-01-01

    Vascular smooth muscle cells (VSMCs) hyperplasia is a common feature of pathologic cardiovascular event such as restenosis and atherosclerosis. The role and mechanisms of microRNAs (miRs) in VSMCs proliferation are poorly understood. Here, we report that miR-181b promotes VSMCs proliferation and migration. In an animal model, miR-181b was significantly increased in the rat carotid artery after balloon catheter injury. Delivery of miR-181b inhibitor to injured artery exhibited a marked inhibition of neointimal hyperplasia. Transfection of miR-181b with "mimics" to A10 cells accelerated cell proliferation, which was accompanied by an increase of cell migration. The induction of A10 cells proliferation by miR-181b appeared to be involved in activation of S and G2/M checkpoint, concomitant with decreases in cell-cycle inhibitors p21 and p27, and increases in cell-cycle activators CDK4 and cyclinD1. In contract, miR-181b inhibition attenuated A10 cells proliferation, inhibited cell migration and arrested cell cycle transition. Moreover, forced miR-181b expression elevated the phosphorylation levels of Akt and Erk1/2, whereas inhibition of miR-181b produced the opposite effects. Additionally, inhibition of PI3K and MAPK signaling pathways with specific inhibitors, but not inhibition of JNK pathway, significantly abolished the effects of miR-181b in promoting cell proliferation. These findings demonstrate that miR-181b enhances the proliferation and migration of VSMCs through activation of PI3K and MAPK pathways.

  17. The oncoprotein HBXIP upregulates PDGFB via activating transcription factor Sp1 to promote the proliferation of breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingyi; Zhao, Yu; Li, Leilei; Shen, Yu; Cai, Xiaoli [Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071 (China); Zhang, Xiaodong, E-mail: zhangxd@nankai.edu.cn [Department of Cancer Research, Institute for Molecular Biology, College of Life Sciences, Nankai University, Tianjin 300071 (China); Ye, Lihong, E-mail: yelihong@nankai.edu.cn [Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin 300071 (China)

    2013-05-03

    Highlights: •HBXIP is able to upregulate the expression of PDGFB in breast cancer cells. •HBXIP serves as a coactivator of activating transcription factor Sp1. •HBXIP stimulates the PDGFB promoter via activating transcription factor Sp1. •HBXIP promotes the proliferation of breast cancer cell via upregulating PDGFB. -- Abstract: We have reported that the oncoprotein hepatitis B virus X-interacting protein (HBXIP) acts as a novel transcriptional coactivator to promote proliferation and migration of breast cancer cells. Previously, we showed that HBXIP was able to activate nuclear factor-κB (NF-κB) in breast cancer cells. As an oncogene, the platelet-derived growth factor beta polypeptide (PDGFB) plays crucial roles in carcinogenesis. In the present study, we found that both HBXIP and PDGFB were highly expressed in breast cancer cell lines. Interestingly, HBXIP was able to increase transcriptional activity of NF-κB through PDGFB, suggesting that HBXIP is associated with PDGFB in the cells. Moreover, HBXIP was able to upregulate PDGFB at the levels of mRNA, protein and promoter in the cells. Then, we identified that HBXIP stimulated the promoter of PDGFB through activating transcription factor Sp1. In function, HBXIP enhanced the proliferation of breast cancer cells through PDGFB in vitro. Thus, we conclude that HBXIP upregulates PDGFB via activating transcription factor Sp1 to promote proliferation of breast cancer cells.

  18. Zinc promotes proliferation and activation of myogenic cells via the PI3K/Akt and ERK signaling cascade

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Kazuya, E-mail: asuno10k@yahoo.co.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Nagata, Yosuke, E-mail: cynagata@mail.ecc.u-tokyo.ac.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Wada, Eiji, E-mail: gacchu1@yahoo.co.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Zammit, Peter S., E-mail: peter.zammit@kcl.ac.uk [Randall Division of Cell and Molecular Biophysics, King' s College London, London SE1 1UL (United Kingdom); Shiozuka, Masataka, E-mail: cmuscle@mail.ecc.u-tokyo.ac.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan); Matsuda, Ryoichi, E-mail: cmatsuda@mail.ecc.u-tokyo.ac.jp [Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo (Japan)

    2015-05-01

    Skeletal muscle stem cells named muscle satellite cells are normally quiescent but are activated in response to various stimuli, such as injury and overload. Activated satellite cells enter the cell cycle and proliferate to produce a large number of myogenic progenitor cells, and these cells then differentiate and fuse to form myofibers. Zinc is one of the essential elements in the human body, and has multiple roles, including cell growth and DNA synthesis. However, the role of zinc in myogenic cells is not well understood, and is the focus of this study. We first examined the effects of zinc on differentiation of murine C2C12 myoblasts and found that zinc promoted proliferation, with an increased number of cells incorporating EdU, but inhibited differentiation with reduced myogenin expression and myotube formation. Furthermore, we used the C2C12 reserve cell model of myogenic quiescence to investigate the role of zinc on activation of myogenic cells. The number of reserve cells incorporating BrdU was increased by zinc in a dose dependent manner, with the number dramatically further increased using a combination of zinc and insulin. Akt and extracellular signal-regulated kinase (ERK) are downstream of insulin signaling, and both were phosphorylated after zinc treatment. The zinc/insulin combination-induced activation involved the phosphoinositide 3-kinase (PI3K)/Akt and ERK cascade. We conclude that zinc promotes activation and proliferation of myogenic cells, and this activation requires phosphorylation of PI3K/Akt and ERK as part of the signaling cascade. - Highlights: • Zinc has roles for promoting proliferation and inhibition differentiation of C2C12. • Zinc promotes activation of reserve cells. • Insulin and zinc synergize activation of reserve cells. • PI3K/Akt and ERK cascade affect zinc/insulin-mediated activation of reserve cells.

  19. EPO-independent functional EPO receptor in breast cancer enhances estrogen receptor activity and promotes cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Reinbothe, Susann; Larsson, Anna-Maria; Vaapil, Marica; Wigerup, Caroline [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); CREATE Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv (Israel); Sun, Jianmin [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); Jögi, Annika [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); CREATE Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv (Israel); Neumann, Drorit [Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv (Israel); Rönnstrand, Lars [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); Påhlman, Sven, E-mail: sven.pahlman@med.lu.se [Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 81 Lund (Sweden); CREATE Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv (Israel)

    2014-02-28

    Highlights: • New anti-human EPOR antibody confirms full-length EPOR expression in breast cancer cells. • Proliferation of breast cancer cells is not affected by rhEPO treatment in vitro. • EPOR knockdown impairs proliferation of ERa positive breast cancer cells. • EPOR knockdown reduces AKT phosphorylation and ERa activity. - Abstract: The main function of Erythropoietin (EPO) and its receptor (EPOR) is the stimulation of erythropoiesis. Recombinant human EPO (rhEPO) is therefore used to treat anemia in cancer patients. However, clinical trials have indicated that rhEPO treatment might promote tumor progression and has a negative effect on patient survival. In addition, EPOR expression has been detected in several cancer forms. Using a newly produced anti-EPOR antibody that reliably detects the full-length isoform of the EPOR we show that breast cancer tissue and cells express the EPOR protein. rhEPO stimulation of cultured EPOR expressing breast cancer cells did not result in increased proliferation, overt activation of EPOR (receptor phosphorylation) or a consistent activation of canonical EPOR signaling pathway mediators such as JAK2, STAT3, STAT5, or AKT. However, EPOR knockdown experiments suggested functional EPO receptors in estrogen receptor positive (ERα{sup +}) breast cancer cells, as reduced EPOR expression resulted in decreased proliferation. This effect on proliferation was not seen in ERα negative cells. EPOR knockdown decreased ERα activity further supports a mechanism by which EPOR affects proliferation via ERα-mediated mechanisms. We show that EPOR protein is expressed in breast cancer cells, where it appears to promote proliferation by an EPO-independent mechanism in ERα expressing breast cancer cells.

  20. Dysfunction of nucleus accumbens-1 activates cellular senescence and inhibits tumor cell proliferation and oncogenesis.

    Science.gov (United States)

    Zhang, Yi; Cheng, Yan; Ren, Xingcong; Hori, Tsukasa; Huber-Keener, Kathryn J; Zhang, Li; Yap, Kai Lee; Liu, David; Shantz, Lisa; Qin, Zheng-Hong; Zhang, Suping; Wang, Jianrong; Wang, Hong-Gang; Shih, Ie-Ming; Yang, Jin-Ming

    2012-08-15

    Nucleus accumbens-1 (NAC1), a nuclear factor belonging to the BTB/POZ gene family, has emerging roles in cancer. We report here that NAC1 acts as a negative regulator of cellular senescence in transformed and nontransformed cells, and dysfunction of NAC1 induces senescence and inhibits its oncogenic potential. We show that NAC1 deficiency markedly activates senescence and inhibits proliferation in tumor cells treated with sublethal doses of γ-irradiation. In mouse embryonic fibroblasts from NAC1 knockout mice, following infection with a Ras virus, NAC1-/- cells undergo significantly more senescence and are either nontransformed or less transformed in vitro and less tumorigenic in vivo when compared with NAC1+/+ cells. Furthermore, we show that the NAC1-caused senescence blunting is mediated by ΔNp63, which exerts its effect on senescence through p21, and that NAC1 activates transcription of ΔNp63 under stressful conditions. Our results not only reveal a previously unrecognized function of NAC1, the molecular pathway involved and its impact on pathogenesis of tumor initiation and development, but also identify a novel senescence regulator that may be exploited as a potential target for cancer prevention and treatment.

  1. Drosophila pico and its mammalian ortholog lamellipodin activate serum response factor and promote cell proliferation.

    Science.gov (United States)

    Lyulcheva, Ekaterina; Taylor, Eleanor; Michael, Magdalene; Vehlow, Anne; Tan, Shengjiang; Fletcher, Adam; Krause, Matthias; Bennett, Daimark

    2008-11-01

    MIG-10/RIAM/lamellipodin (MRL) proteins link activated Ras-GTPases with actin regulatory Ena/VASP proteins to induce local changes in cytoskeletal dynamics and cell motility. MRL proteins alter monomeric (G):filamentous (F) actin ratios, but the impact of these changes had not been fully appreciated. We report here that the Drosophila MRL ortholog, pico, is required for tissue and organismal growth. Reduction in pico levels resulted in reduced cell division rates, growth retardation, increased G:F actin ratios and lethality. Conversely, pico overexpression reduced G:F actin ratios and promoted tissue overgrowth in an epidermal growth factor (EGF) receptor (EGFR)-dependent manner. Consistently, in HeLa cells, lamellipodin was required for EGF-induced proliferation. We show that pico and lamellipodin share the ability to activate serum response factor (SRF), a transcription factor that responds to reduced G:F-actin ratios via its co-factor Mal. Genetics data indicate that mal/SRF levels are important for pico-mediated tissue growth. We propose that MRL proteins link EGFR activation to mitogenic SRF signaling via changes in actin dynamics.

  2. Drosophila Pico and Its Mammalian Ortholog Lamellipodin Activate Serum Response Factor and Promote Cell Proliferation

    Science.gov (United States)

    Lyulcheva, Ekaterina; Taylor, Eleanor; Michael, Magdalene; Vehlow, Anne; Tan, Shengjiang; Fletcher, Adam; Krause, Matthias; Bennett, Daimark

    2008-01-01

    Summary MIG-10/RIAM/lamellipodin (MRL) proteins link activated Ras-GTPases with actin regulatory Ena/VASP proteins to induce local changes in cytoskeletal dynamics and cell motility. MRL proteins alter monomeric (G):filamentous (F) actin ratios, but the impact of these changes had not been fully appreciated. We report here that the Drosophila MRL ortholog, pico, is required for tissue and organismal growth. Reduction in pico levels resulted in reduced cell division rates, growth retardation, increased G:F actin ratios and lethality. Conversely, pico overexpression reduced G:F actin ratios and promoted tissue overgrowth in an epidermal growth factor (EGF) receptor (EGFR)-dependent manner. Consistently, in HeLa cells, lamellipodin was required for EGF-induced proliferation. We show that pico and lamellipodin share the ability to activate serum response factor (SRF), a transcription factor that responds to reduced G:F-actin ratios via its co-factor Mal. Genetics data indicate that mal/SRF levels are important for pico-mediated tissue growth. We propose that MRL proteins link EGFR activation to mitogenic SRF signaling via changes in actin dynamics. PMID:19000833

  3. Swelling-activated ion channels: functional regulation in cell-swelling, proliferation and apoptosis

    DEFF Research Database (Denmark)

    Stutzin, A; Hoffmann, E K

    2006-01-01

    Cell volume regulation is one of the most fundamental homeostatic mechanisms and essential for normal cellular function. At the same time, however, many physiological mechanisms are associated with regulatory changes in cell size meaning that the set point for cell volume regulation is under phys...... as key players in the maintenance of normal steady-state cell volume, with particular emphasis on the intracellular signalling pathways responsible for their regulation during hypotonic stress, cell proliferation and apoptosis....

  4. The cholesterol metabolite 27-hydroxycholesterol regulates p53 activity and increases cell proliferation via MDM2 in breast cancer cells.

    Science.gov (United States)

    Raza, Shaneabbas; Ohm, Joyce E; Dhasarathy, Archana; Schommer, Jared; Roche, Conor; Hammer, Kimberly D P; Ghribi, Othman

    2015-12-01

    Estrogen is synthesized from cholesterol and high cholesterol levels are suggested to be associated with increased risk of estrogen receptor(ER)-positive breast cancer. The cholesterol metabolite 27-hydroxycholesterol (27-OHC) was recently identified as a selective estrogen receptor modulator (SERM) and may therefore impact breast cancer progression. However, the mechanisms by which 27-OHC may contribute to breast cancer are not all known. We determined the extent to which 27-OHC regulates cell proliferation in MCF7 ER-positive breast cancer cell line involving the tumor suppressor protein p53. We found that treatment of MCF7 cells with 27-OHC resulted reduced p53 transcriptional activity. Conversely, treatment of the ER-negative MDA-MB 231 cells with 27-OHC induced no significant change in p53 activity. Exposure of MCF7 cells to 27-OHC was also associated with increased protein levels of the E3 ubiquitin protein ligase MDM2 and decreased levels of p53. Moreover, 27-OHC also enhanced physical interaction between p53 and MDM2. Furthermore, 27-OHC-induced proliferation was attenuated using either the p53 activator Tenovin-1 or the MDM2 inhibitor Nutlin-3 and Mdm2 siRNA. Taken together, our results indicate that 27-OHC may contribute to ER-positive breast cancer progression by disrupting constitutive p53 signaling in an MDM2-dependent manner.

  5. Chemerin Stimulates Vascular Smooth Muscle Cell Proliferation and Carotid Neointimal Hyperplasia by Activating Mitogen-Activated Protein Kinase Signaling

    Science.gov (United States)

    Xiong, Wei; Luo, Yu; Wu, Lin; Liu, Feng; Liu, Huadong; Li, Jianghua; Liao, Bihong; Dong, Shaohong

    2016-01-01

    Vascular neointimal hyperplasia and remodeling arising from local inflammation are characteristic pathogeneses of proliferative cardiovascular diseases, such as atherosclerosis and post angioplasty restenosis. The molecular mechanisms behind these pathological processes have not been fully determined. The adipokine chemerin is associated with obesity, metabolism, and control of inflammation. Recently, chemerin has gained increased attention as it was found to play a critical role in the development of cardiovascular diseases. In this study, we investigated the effects of chemerin on the regulation of vascular smooth muscle cells and carotid neointimal formation after angioplasty. We found that circulating chemerin levels increased after carotid balloon injury, and that knockdown of chemerin significantly inhibited the proliferative aspects of vascular smooth muscle cells induced by platelet-derived growth factor-BB and pro-inflammatory chemokines in vitro as well as prohibited carotid neointimal hyperplasia and pro-inflammatory chemokines in vivo after angioplasty. Additionally, inhibition of chemerin down-regulated the expression of several proteins, including phosphorylated p38 mitogen-activated protein kinase, phosphorylated extracellular signal regulated kinase 1/2, nuclear factor-kappa B p65, and proliferation cell nuclear antigen. The novel finding of this study is that chemerin stimulated vascular smooth muscle cells proliferation and carotid intimal hyperplasia through activation of the mitogen-activated protein kinase signaling pathway, which may lead to vascular inflammation and remodeling, and is relevant to proliferative cardiovascular diseases. PMID:27792753

  6. Abrin P2 suppresses proliferation and induces apoptosis of colon cancer cells via mitochondrial membrane depolarization and caspase activation.

    Science.gov (United States)

    Yu, Ying; Yang, Runmei; Zhao, Xiuyun; Qin, Dandan; Liu, Zhaoyang; Liu, Fang; Song, Xin; Li, Liqin; Feng, Renqing; Gao, Nannan

    2016-05-01

    To explore the cytotoxic mechanism of abrin P2 on human colon cancer HCT-8 cells, abrin P2 was isolated from the seed of Abrus precatorius L. It was found that abrin P2 exhibited cytotoxicity toward 12 different human cancer cell lines. Our results demonstrated that abrin P2 suppressed the proliferation of human colon cancer cells (HCT-8 cells) and induced cell cycle arrest at the S and G2/M phases. The mechanism by which abrin P2 inhibited cell proliferation was via the down-regulation of cyclin B1, proliferating cell nuclear antigen and Ki67, as well as the up-regulation of P21. In addition, abrin P2 induced a dose- and time-dependent increase in the rate of HCT-8 cell apoptosis. Treatment with both Z-VAD-FMK, a broad-spectrum caspase inhibitor, and abrin P2 demonstrated that abrin P2 induced HCT-8 cell apoptosis via the activation of caspases. Together, our results revealed that abrin P2-induced apoptosis in HCT-8 cells was associated with the activation of caspases-3/-8/-9, the reduction in the Bcl-2/Bax ratio, the loss of mitochondrial membrane potential, and the increase in cytochrome c release. We further showed that abrin P2 administration effectively suppressed the growth of colon cancer xenografts in nude mice. This is the first report that abrin P2 effectively inhibits colon cancer cell growth in vivo and in vitro by suppressing proliferation and inducing apoptosis.

  7. Peroxisome proliferator-activated receptor-gamma suppresses cyclooxygenase-2 expression in human prostate cells.

    Science.gov (United States)

    Sabichi, Anita L; Subbarayan, Vemparala; Llansa, Norma; Lippman, Scott M; Menter, David G

    2004-11-01

    Recent studies have found that cyclooxygenase-2 (COX-2) protein expression was low and inducible with cytokines in prostate cancer cells (in the absence of serum) and that, in contrast, COX-2 expression was high in normal prostate epithelial cells (EC). Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) was expressed at high levels in the prostate cancer cell line PC-3 but not in ECs. In contrast to previous findings by others, PPAR-gamma ligands did not induce PPAR-gamma expression in EC or PC-3. The present study examined the relationship between PPAR-gamma and COX-2 expression patterns in EC and PC-3 in the presence and absence of serum and/or the PPAR-gamma agonist 15-deoxy-Delta12,14-prostaglandin J(2) (15d-PGJ(2)). We also evaluated the effects that the forced expression of PPAR-gamma1 and PPAR-gamma2 had on COX-2 in ECs. We found that expression of PPAR-gamma and COX-2 protein was inversely correlated in ECs and PC-3. Low COX-2 expression in PC-3 was up-regulated by serum, and 15d-PGJ(2) blocked serum-induced COX-2 expression and activity in a dose-dependent manner. 15d-PGJ(2) had no effect on COX-2 expression in ECs or PPAR-gamma expression in either cell type. However, forced expression of PPAR-gamma1 or PPAR-gamma2 in ECs suppressed the high level of endogenous COX-2. This effect was not isoform specific and was augmented by 15d-PGJ(2). The present study showed that PPAR-gamma activation can be an important regulator of COX-2 in prostate cells and may be an important target for prostate cancer chemoprevention.

  8. Genetic Validation of Cell Proliferation via Ras-Independent Activation of the Raf/Mek/Erk Pathway.

    Science.gov (United States)

    Lechuga, Carmen G; Simón-Carrasco, Lucía; Jacob, Harrys K C; Drosten, Matthias

    2017-01-01

    Signaling transmitted by the Ras family of small GTPases (H-, N-, and K-Ras) is essential for proliferation of mouse embryonic fibroblasts (MEFs). However, constitutive activation of the downstream Raf/Mek/Erk pathway can bypass the requirement for Ras proteins and allow cells to proliferate in the absence of the three Ras isoforms. Here we describe a protocol for a colony formation assay that permits evaluating the role of candidate proteins that are positive or negative regulators of cell proliferation mediated via Ras-independent Raf/Mek/Erk pathway activation. K-Ras(lox) (H-Ras (-/-), N-Ras (-/-), K-Ras (lox/lox), RERT(ert/ert)) MEFs are infected with retro- or lentiviral vectors expressing wild-type or constitutively activated candidate cDNAs, shRNAs, or sgRNAs in combination with Cas9 to ascertain the possibility of candidate proteins to function either as an activator or inhibitor of Ras-independent Raf/Mek/Erk activation. These cells are then seeded in the absence or presence of 4-Hydroxytamoxifen (4-OHT), which activates the resident CreERT2 alleles resulting in elimination of the conditional K-Ras alleles and ultimately generating Rasless cells. Colony formation in the presence of 4-OHT indicates cell proliferation via Ras-independent Raf/Mek/Erk activation.

  9. Interleukin 3 stimulates proliferation and triggers endothelial-leukocyte adhesion molecule 1 gene activation of human endothelial cells.

    Science.gov (United States)

    Brizzi, M F; Garbarino, G; Rossi, P R; Pagliardi, G L; Arduino, C; Avanzi, G C; Pegoraro, L

    1993-06-01

    Proliferation and functional activation of endothelial cells within a tissue site of inflammation are regulated by humoral factors released by cells, such as T lymphocytes and monocytes, infiltrating the perivascular space. In the present study we investigated the effects of interleukin 3 (IL-3), an activated T lymphocyte-derived cytokine, on cultured human umbilical vein endothelial cells (HUVEC). Proliferative activity, evaluated both by estimation of the fraction of cells in the S phase and by direct cell count demonstrated that IL-3, at the dose of 25 ng/ml, enhances more than threefold both DNA synthesis and cell proliferation above baseline control conditions. Binding studies with radioiodinated ligand demonstrated that HUVEC constitutively express a smaller number of IL-3 binding sites (approximately 99 binding sites per cell, with an apparent Kd of 149 pM). Accordingly, molecular analysis showed the presence of transcripts for both alpha and beta subunits of the IL-3 receptor. Functional activation of endothelial cells was evaluated by the expression of the endothelial-leukocyte adhesion molecule 1 (ELAM-1) transcript and by leukocyte adhesion. The ELAM-1 gene transcript was clearly detectable 4 h after IL-3 addition and started to decrease after 12 h. Moreover, IL-3-induced ELAM-1 transcription was followed by enhanced adhesion of neutrophils and CD4+ T cells to HUVEC. The findings that IL-3 can stimulate both proliferation and functional activation of endothelial cells suggest that this cytokine can be involved in sustaining the process of chronic inflammation.

  10. Bioactivity of mango flesh and peel extracts on peroxisome proliferator-activated receptor γ [PPARγ] activation and MCF-7 cell proliferation: fraction and fruit variability.

    Science.gov (United States)

    Wilkinson, Ashley S; Flanagan, Bernadine M; Pierson, Jean-Thomas; Hewavitharana, Amitha K; Dietzgen, Ralf G; Shaw, P Nicholas; Roberts-Thomson, Sarah J; Monteith, Gregory R; Gidley, Michael J

    2011-01-01

    Mangos are a source of bioactive compounds with potential health promoting activity. Biological activities associated with mango fractions were assessed in cell-based assays to develop effective extraction and fractionation methodologies and to define sources of variability. Two techniques were developed for extraction and fractionation of mango fruit peel and flesh. Liquid chromatography-mass spectrometry (LC-MS) was used to assess compositional differences between mango fractions in flesh extracts. Many of the extracts were effective in inhibiting the proliferation of human breast cancer cells in vitro. All fractions showed bioactivity in PPAR activation assays, but quantitative responses showed marked fruit-to-fruit variability, highlighting the need to bulk fruit prior to extraction for activity-guided fractionation of bioactive components. This study also suggests that combinations of diverse molecular components may be responsible for cell-level bioactivities from mango fractions, and that purification and activity profiling of individual components may be difficult to relate to whole fruit effects. Practical Application: Although the health benefits of fruits are strongly indicated from studies of diet and disease, it is not known what role individual fruit types can play, particularly for tropical fruits. This study shows that there is a diversity of potentially beneficial bioactivities within the flesh and peel of mango fruit, although fruit-to-fruit variation can be large. The results add to the evidence that the food approach of eating all components of fruits is likely to be more beneficial to health than consuming refined extracts, as the purification process would inevitably remove components with beneficial bioactivities.

  11. Proliferation, migration and apoptosis activities of endothelial progenitor cells in acute coronary syndrome

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-jie; LIU Wen-xian; CHEN Yun-dai; SONG Xian-tao; JIN Ze-ning; L(U) Shu-zheng

    2010-01-01

    Background There are numerous articles on the endothelial progenitor cells (EPCs) in different disease conditions.However, the functional properties of EPCs in acute coronary syndrome (ACS) are still uncertain. Here we aimed to study the number and functions of EPCs in ACS patients.Methods Patients were enrolled with admitted ACS (n=25) and another 25 gender-, age-, atherosclerotic risk factors-matched stable coronary artery disease (CAD) controls. EPCs were defined as CD34+/CD133+/VEGFR-2+ and quantified by flow cytometry. Moreover, functional properties of EPCs including colony-forming unit (CFU), proliferation,migration as well as apoptosis were evaluated and compared between the two groups. Plasma matrix metalloproteinase-9 (MMP-9) was detected in all patients as well.Results The two groups had similar medication and clinical characteristics on admission. The EPCs in ACS patients were more than 2.6 times that in stable CAD subjects (15.6±2.7 vs. 6.0±0.8/100 000 events, P <0.01). CFU was not statistically different between the two groups (10.8±2.9 vs. 8.2±1.8, number/well, P >0.05). Furthermore, EPCs isolated from ACS patients were significantly impaired in their proliferation (0.498±0.035 vs. 0.895±0.067, OD value, P <0.01) and migration capacity (20.5±3.4 vs. 30.7±4.3, number/well, P <0.01) compared with controls. Moreover, the apoptosis cell in cultured EPCs was drastically increased in ACS group ((18.3 ±2.1 )% vs. (7.8±0.4)%, P <0.01 ).Conclusions Patients with ACS exhibited apparently increased circulating EPCs as well as cultured apoptosis percentage together with a remarkable impairment of proliferation and migration activities compared with stable CAD subjects.

  12. Bile acids induce hepatic stellate cell proliferation via activation of the epidermal growth factor receptor

    NARCIS (Netherlands)

    Svegliati-Baroni, G; Ridolfi, F; Hannivoort, R; Saccomanno, S; Homan, M; De Minicis, S; Jansen, PLM; Candelaresi, C; Benedetti, A; Moshage, H

    2005-01-01

    Background B Aims: Hepatic stellate cell (HSC) proliferation is a key event in the development of liver fibrosis. In many liver diseases, HSCs are exposed to inflammatory cytokines, reactive oxygen species, and bile acids. Although inflammatory cytokines and reactive oxygen species are known to prom

  13. Piper betle shows antioxidant activities, inhibits MCF-7 cell proliferation and increases activities of catalase and superoxide dismutase

    Directory of Open Access Journals (Sweden)

    Abrahim Noor

    2012-11-01

    Full Text Available Abstract Background Breast cancer is the most common form of cancer and the focus on finding chemotherapeutic agents have recently shifted to natural products. Piper betle is a medicinal plant with various biological activities. However, not much data is available on the anti-cancer effects of P. betle on breast cancer. Due to the current interest in the potential effects of antioxidants from natural products in breast cancer treatment, we investigated the antioxidant activities of the leaves of P. betle and its inhibitory effect on the proliferation of the breast cancer cell line, MCF-7. Methods The leaves of P. betle were extracted with solvents of varying polarities (water, methanol, ethyl acetate and hexane and their phenolic and flavonoid content were determined using colorimetric assays. Phenolic composition was characterized using HPLC. Antioxidant activities were measured using FRAP, DPPH, superoxide anion, nitric oxide and hyroxyl radical scavenging assays. Biological activities of the extracts were analysed using MTT assay and antioxidant enzyme (catalase, superoxide dismutase, glutathione peroxidase assays in MCF-7 cells. Results Overall, the ethyl acetate extract showed the highest ferric reducing activity and radical scavenging activities against DPPH, superoxide anion and nitric oxide radicals. This extract also contained the highest phenolic content implying the potential contribution of phenolics towards the antioxidant activities. HPLC analyses revealed the presence of catechin, morin and quercetin in the leaves. The ethyl acetate extract also showed the highest inhibitory effect against the proliferation of MCF-7 cells (IC50=65 μg/ml. Treatment of MCF-7 cells with the plant extract increased activities of catalase and superoxide dismutase. Conclusions Ethyl acetate is the optimal solvent for the extraction of compounds with antioxidant and anti-proliferative activities. The increased activities of catalase and superoxide

  14. ChREBP Mediates Glucose Repression of Peroxisome Proliferator-activated Receptor {alpha} Expression in Pancreatic {beta}-Cells

    DEFF Research Database (Denmark)

    Boergesen, Michael; Poulsen, Lars la Cour; Schmidt, Søren Fisker;

    2011-01-01

    Chronic exposure to elevated levels of glucose and fatty acids leads to dysfunction of pancreatic β-cells by mechanisms that are only partly understood. The transcription factor peroxisome proliferator-activated receptor α (PPARα) is an important regulator of genes involved in fatty acid metaboli...... of glucose repression of PPARα gene expression in pancreatic β-cells, suggesting that ChREBP may be important for glucose suppression of the fatty acid oxidation capacity of β-cells....

  15. CDK-associated Cullin 1 promotes cell proliferation with activation of ERK1/2 in human lung cancer A549 cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Tian Jun [Respiratory Department, The First Affiliated Hospital, Xi’an Jiaotong University College of Medicine, Xi’an 710061 (China); Gao, Fei [Hua-shan Central Hospital of Xi’an, Xi’an 710043 (China); Yang, Tian; Thakur, Asmitanand; Ren, Hui; Li, Yang; Zhang, Shuo; Wang, Ting [Respiratory Department, The First Affiliated Hospital, Xi’an Jiaotong University College of Medicine, Xi’an 710061 (China); Chen, Ming Wei, E-mail: xjtucmw@163.com [Respiratory Department, The First Affiliated Hospital, Xi’an Jiaotong University College of Medicine, Xi’an 710061 (China)

    2013-07-19

    Highlights: •CDK-associated Cullin 1 (CAC1) expression increases in human lung carcinoma. •CAC1 promotes the proliferation of lung cancer A549 cells. •CAC1 promotes human lung cancer A549 cell proliferation with activation of ERK1/2. -- Abstract: Lung cancer is one of the most common causes of cancer-related death in the world, but the mechanisms remain unknown. In this study, we investigated the expression of CDK-associated Cullin 1 (CAC1) in lung cancer, the effect of CAC1 on the proliferation of human lung cancer A549 cells, and the activation of signaling pathways of mitogen-activated protein kinases (MAPKs). Results showed that CAC1 expression was higher levels in human lung carcinoma than normal lung tissue, and CAC1 siRNA reduced the proliferation of lung cancer A549 cells by decreasing cell activity and cell division in vitro. The proportion of cells treated with CAC1 siRNA increased in the G1 phase and decreased in the S and G2/M phase, indicative of G1 cell cycle arrest. Furthermore, the proportions of early/late apoptosis in lung cancer A549 cells were enhanced with CAC1 siRNA treatment. It was also found that activation of extracellular signal-regulated protein kinase (ERK) and p38 signaling pathways were involved in the proliferation of A549 cells. After CAC1 siRNA treatment, p-ERK1/2 levels decreased, and meanwhile p-p38 level increased, A549 cell proliferation increased when ERK1/2 signaling is activated by PMA. Our findings demonstrated that CAC1 promoted the proliferation of human lung cancer A549 cells with activation of ERK1/2 signaling pathways, suggesting a potential cure target for treatment of human lung cancer.

  16. Zizyphus lotus L. (Desf. modulates antioxidant activity and human T-cell proliferation

    Directory of Open Access Journals (Sweden)

    Belarbi Meriem

    2010-09-01

    Full Text Available Abstract Background Zizyphus lotus L. (Desf. also known as Jujube, is a deciduous shrub which belongs to Rhamnaceae family. This plant is used in Algerian traditional medicine for its anti-diabetic, sedative, analgesic, anti-inflammatory and hypoglycaemic activities. In the present study, we determined the concentrations of different vitamins (vitamin A, C and E and fatty acids in root, stem, leaves, fruit pulp and seed of Zizyphus lotus L. (Desf. and assessed the effects of their aqueous extracts on antioxidant status and human T-cell proliferation. Methods Aqueous filtrates from different parts, i.e, root, leaf, stem, fruit pulp and seed, of Zizyphus lotus L. (Desf. were prepared. Vitamin C levels were determined by precipitating with 10% trichloroacetic acid and vitamin A and E were assessed by HPLC. Lipid composition of these extracts was determined by gas-liquid chromatography. Anti-oxidant capacity was evaluated by using anti-radical resistance kit [Kit Radicaux Libres (KRL@; Kirial International SA, Couternon, France]. T-cell blastogenesis was assessed by the incorporation of 3H-thymidine. IL-2 gene expression was evaluated by RT-qPCR. Results Our results show that fruit pulp contained higher vitamin A and C contents than other parts of the plant. Furthermore, the fruit pulp was the richest source of linoleic acid (18:2n-6, a precursor of n-6 fatty acids. Fruit seeds possessed higher vitamin C levels than leaves, roots and stem. The leaves were the richest source of vitamin E and linolenic acid (18:3n-3, a precursor of n-3 fatty acids. The antioxidant capacity of the different extracts, measured by KRL@ test, was as follows: pulp Zizyphus lotus L. (Desf. exerted immunosuppressive effects. Conclusion Seed extracts exerted the most potent immunosuppressive effects on T cell proliferation and IL-2 mRNA expression. The results of the present study are discussed in the light of their use to modulate the immune-mediated diseases.

  17. Acetylcholine acts through M3 muscarinic receptor to activate the EGFR signaling and promotes gastric cancer cell proliferation

    Science.gov (United States)

    Yu, Huangfei; Xia, Hongwei; Tang, Qiulin; Xu, Huanji; Wei, Guoqing; Chen, Ying; Dai, Xinyu; Gong, Qiyong; Bi, Feng

    2017-01-01

    Acetylcholine (ACh), known as a neurotransmitter, regulates the functions of numerous fundamental central and peripheral nervous system. Recently, emerging evidences indicate that ACh also plays an important role in tumorigenesis. However, little is known about the role of ACh in gastric cancer. Here, we reported that ACh could be auto-synthesized and released from MKN45 and BGC823 gastric cancer cells. Exogenous ACh promoted cell proliferation in a does-dependent manner. The M3R antagonist 4-DAMP, but not M1R antagonist trihexyphenidyl and M2/4 R antagonist AFDX-116, could reverse the ACh-induced cell proliferation. Moreover, ACh, via M3R, activated the EGFR signaling to induce the phosphorylation of ERK1/2 and AKT, and blocking EGFR pathway by specific inhibitor AG1478 suppressed the ACh induced cell proliferation. Furthermore, the M3R antagonist 4-DAMP and darifenacin could markedly inhibit gastric tumor formation in vivo. 4-DAMP could also significantly enhance the cytotoxic activity of 5-Fu against the MKN45 and BGC823 cells, and induce the expression of apoptosis-related proteins such as Bax and Caspase-3. Together, these findings indicated that the autocrine ACh could act through M3R and the EGFR signaling to promote gastric cancer cells proliferation, targeting M3R or EGFR may provide us a potential therapeutic strategy for gastric cancer treatment. PMID:28102288

  18. The threonine protease activity of testes-specific protease 50 (TSP50 is essential for its function in cell proliferation.

    Directory of Open Access Journals (Sweden)

    Yu-Yin Li

    Full Text Available BACKGROUND: Testes-specific protease 50 (TSP50, a newly discovered threonine enzyme, has similar amino acid sequences and enzymatic structures to those of many serine proteases. It may be an oncogene. TSP50 is up-regulated in breast cancer epithelial cells, and ectopic expression of TSP50 in TSP50-deficient Chinese hamster ovary (CHO cells has been found to promote cell proliferation. However, the mechanisms by which TSP50 exerts its growth-promoting effects are not yet fully understood. METHODOLOGY/PRINCIPAL FINDINGS: To delineate whether the threonine protease activity of TSP50 is essential to its function in cell proliferation, we constructed and characterized a mutant TSP50, called TSP50 T310A, which was identified as a protease-dead mutant of TSP50. By a series of proliferation analyses, colony formation assays and apoptosis analyses, we showed that T310A mutation significantly depresses TSP50-induced cell proliferation in vitro. Next, the CHO stable cell line expressing either wild-type or T310A mutant TSP50 was injected subcutaneously into nude mice. We found that the T310A mutation could abolish the tumorigenicity of TSP50 in vivo. A mechanism investigation revealed that the T310A mutation prevented interaction between TSP50 and the NF-κBIκBα complex, which is necessary for TSP50 to perform its function in cell proliferation. CONCLUSION: Our data highlight the importance of threonine 310, the most critical protease catalytic site in TSP50, to TSP50-induced cell proliferation and tumor formation.

  19. Designed modulation of sex steroid signaling inhibits telomerase activity and proliferation of human prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Vikas; Sharma, Vikas; Singh, Vishal [Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226 031 (India); Sharma, Siddharth; Bishnoi, Ajay Kumar [Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226 031 (India); Chandra, Vishal; Maikhuri, J.P.; Dwivedi, Anila [Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226 031 (India); Kumar, Atul [Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226 031 (India); Gupta, Gopal, E-mail: g_gupta@cdri.res.in [Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226 031 (India)

    2014-10-15

    The predominant estrogen-receptor (ER)-β signaling in normal prostate is countered by increased ER-α signaling in prostate cancer (CaP), which in association with androgen-receptor (AR) signaling results in pathogenesis of the disease. However CaP treatments mostly target AR signaling which is initially effective but eventually leads to androgen resistance, hence simultaneous targeting of ERs has been proposed. A novel series of molecules were designed with multiple sex-steroid receptor modulating capabilities by coalescing the pharmacophores of known anti-CaP molecules that act via modulation of ER(α/β) and/or AR, viz. 3,3′diindolylmethane (DIM), mifepristone, toremifene, tamoxifen and raloxifene. N,N-diethyl-4-((2-(4-methoxyphenyl)-1H-indol-3-yl)methyl) aniline (DIMA) was identified as the most promising structure of this new series. DIMA increased annexin-V labelling, cell-cycle arrest and caspase-3 activity, and decreased expression of AR and prostate specific antigen in LNCaP cells, in vitro. Concurrently, DIMA increased ER-β, p21 and p27 protein levels in LNCaP cells and exhibited ∼ 5 times more selective binding for ER-β than ER-α, in comparison to raloxifene. DIMA exhibited a dose-dependent ER-β agonism and ER-α antagonism in classical gene reporter assay and decreased hTERT (catalytic subunit of telomerase) transcript levels in LNCaP at 3.0 μM (P < 0.05). DIMA also dose-dependently decreased telomerase enzyme activity in prostate cancer cells. It is thus concluded that DIMA acts as a multi-steroid receptor modulator and effectively inhibits proliferation of prostate cancer cells through ER-β mediated telomerase inhibition, by countering actions of ER-α and AR. Its unique molecular design can serve as a lead structure for generation of potent agents against endocrine malignancies like the CaP.

  20. MiR-27a Promotes Hepatocellular Carcinoma Cell Proliferation Through Suppression of its Target Gene Peroxisome Proliferator-activated Receptor γ

    Institute of Scientific and Technical Information of China (English)

    Shuo Li; Jing Li; Bing-Yuan Fei; Dan Shao; Yue Pan; Zhan-Hao Mo; Bao-Zhen Sun

    2015-01-01

    Background:MicroRNAs (miRNAs) function as essential posttranscriptional modulators ofgene expression,and are involved in a wide range of physiologic and pathologic states,including cancer.Numerous miRNAs are deregulated in hepatocellular carcinoma (HCC).This study aimed to investigate the role of miR-27a in the development of HCC.Methods:The expression of MiR-27a was measured by quantitative real-time polymerase chain reaction (qRT-PCR).3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide was used to examine changes in the viability of HepG2,Bel-7402,Bel-7404 hepatoma cell lines associated with up-regulation or down-regulation of miR-27a.A dual-luciferase activity assay was used to verify a target gene of miR-27a.Immunohistochemistry,qRT-PCR,Western blotting analysis,and cell cycle and apoptosis flow cytometric assays were used to elucidate the mechanism by which miR-27a modulates liver cancer cell proliferation.Results:The expression of miR-27a was significantly increased in HCC tissues and HepG2,Bel-7402,Bel-7404 hepatoma cell lines (P < 0.05).We also found that the down-regulation of miR-27a in HepG2 cells dramatically inhibited proliferation,blocked the G1 to S cell cycle transition and induced apoptosis (P < 0.05).In addition,miR-27a directly targeted the 3'-untranslated region of peroxisome proliferator-activated receptor γ (PPAR-γ),and ectopic miR-27a expression suppressed PPAR-γ expression on the mRNA and protein levels.The rosiglitazone-induced overexpression of PPAR-γ attenuated the effect of miR-27a in HCC cells.Conclusions:Our findings suggested that miRNA-27a promoted HCC cell proliferation by regulating PPAR-γ expression.MiR-27a may provide a potential therapeutic strategy for HCC treatment.

  1. MicroRNA-200a mediates nasopharyngeal carcinoma cell proliferation through the activation of nuclear factor-κB.

    Science.gov (United States)

    Shi, Zhuliang; Hu, Zhiqiang; Chen, Delu; Huang, Jie; Fan, Jie; Zhou, Subo; Wang, Xin; Hu, Jiandao; Huang, Fei

    2016-02-01

    In nasopharyngeal carcinoma (NPC), the nuclear factor-κB (NF-κB) signaling pathway is highly active. The constitutive activation of NF-κB prompts malignant cell proliferation, and microRNAs are considered an important mediator in regulating the NF-κB signaling pathway. The current study investigated the effect of microRNA-200a (miR-200a) on NF-κB activation. Reverse transcription-quantitative polymerase chain reaction was used to quantify the relative level of miR-200a in NPC tissue samples and CNE2 cells. An MTT assay was used to investigate the effect of miR-200a on cell proliferation. To investigate the activation of NF-κB, western blotting was used to measure the protein levels of NF-κB and its downstream targets. To identify the target genes of miR-200a, a luciferase reporter assay was used. The current study demonstrated that miR-200a was upregulated in NPC tissue samples and cell lines. Overexpression of miR-200a resulted in the proliferation of CNE2 cells. Western blot analysis indicated that the protein levels of p65 increased when CNE2 cells were transfected with miR-200a mimics. Additionally, the downstream targets of miR-200a were upregulated, including vascular cell adhesion molecule, intercellular adhesion molecule and monocyte chemoattractant protein-1. The luciferase assay indicated that IκBα was the target gene of miR-200a. In conclusion, miR-200a was demonstrated to enhance NPC cell proliferation by activating the NF-κB signaling pathway.

  2. Control of cell proliferation by Myc

    DEFF Research Database (Denmark)

    Bouchard, C; Staller, P; Eilers, M

    1998-01-01

    Myc proteins are key regulators of mammalian cell proliferation. They are transcription factors that activate genes as part of a heterodimeric complex with the protein Max. This review summarizes recent progress in understanding how Myc stimulates cell proliferation and how this might contribute...

  3. Shock Waves Increase T-cell Proliferation or IL-2 Expression by Activating p38 MAP Kinase

    Institute of Scientific and Technical Information of China (English)

    Tie-Cheng YU; Yi LIU; Yan TAN; Yanfang JIANG; Xueqing ZHENG; Xinxiang XU

    2004-01-01

    Shock waves were elicited by transient pressure disturbances, which could be used to treat musculoskeletal disorders. In present studies, we i. nvestigated whether the low-density shock waves (LDSWs), which are able to damage plasma membrane without impairing the vimentin or other organelles, might augment T-cell proliferation as well as IL-2 expression, and if mitogen activated protein kinase p38 (p38 MAPK)might be an underlying mechanism through which the LDSWs enhanced T-cell function. We found that the LDSWs increased activation of p38 MAPK in Jurkat T cells. The LDSWs alone didn't result in the T-cell proliferation and IL-2 expression. However, in combination with other stimuli, LDSWs could augment the T-cell proliferation and IL-2 expression. Inhibition of p38 MAPK using SB203580 reduced the stimulatory effects of the LDSWs, which indicated that the LDSWs enhanced IL-2 expression through a mechanism that involved p38 MAPK activation. We concluded that the p38 MAPK activation played a key role in the regulation of T cell function by the LDSWs.

  4. Effects of maternal diabetes on male offspring: high cell proliferation and increased activity of MMP-2 in the ventral prostate.

    Science.gov (United States)

    Damasceno, A A; Carvalho, C P; Santos, E M B; Botelho, F V; Araújo, F A; Deconte, S R; Tomiosso, T C; Balbi, A P C; Zanon, R G; Taboga, S R; Góes, R M; Ribeiro, D L

    2014-10-01

    This study presents a comprehensive view of the histological and functional status of the prostate of adult rat offspring of mothers subjected to gestational diabetes induced by alloxan. The ventral prostate of male adult offspring of diabetic (DP) or normal (CP) mothers was evaluated for collagen fibres, cell death, fibroblasts, smooth muscle cells, cell proliferation, matrix metalloproteinases (MMPs), androgen receptors (AR), transforming growth factor β1 (TGFβ-1), catalase and total antioxidant activity. The prostates of DP animals were lower in weight than those of the CP group. The DP group also exhibited hyperglycaemia and hypotestosteronemia, higher cell proliferation and AR expression, a reduction in α-actin (possibly interfering with the reproductive function of the prostate), and enhanced activity of MMP-2, although the absolute content of MMP-2 was lower in this group. These findings were associated with increased TGFβ-1 and decreased collagen distribution. The prostates of DP rats additionally exhibited reductions in catalase and total antioxidant activity. Thus, rats developing in a diabetic intrauterine environment have glycaemic and hormonal changes that impact on the structure and physiology of the prostate in adulthood. The increased AR expression possibly leads to elevated cell proliferation. Stromal remodelling was characterized by enhanced activity of MMP-2 and collagen degradation, even with increased TGFβ-1 activation. These changes associated with increased oxidative stress might interfere with tissue architecture and glandular homeostasis.

  5. Cholera Toxin Discriminates Between T Helper 1 and 2 Cells in T Cell Receptor-Mediated Activation : Role of cAMP in T Cell Proliferation

    NARCIS (Netherlands)

    Muñoz, Eduardo; Zubiaga, Ana M.; Merrow, Martha; Sauter, Nicholas P.; Huber, Brigitte T.

    1990-01-01

    CD4+ T helper (Th) clones can be divided into interleukin 2 (IL2)-secreting Th1 and IL-4-secreting Th2 cells. We show in the present report that these two Th subsets have different activation requirements for lymphokine production and proliferation: namely, cholera toxin (CT) as well as forskolin in

  6. MicroRNA-19a mediates gastric carcinoma cell proliferation through the activation of nuclear factor-κB.

    Science.gov (United States)

    Yang, Fan; Wang, Hongjian; Jiang, Zhenyu; Hu, Anxiang; Chu, Lisha; Sun, Yiling; Han, Junqing

    2015-10-01

    In gastric carcinoma, the nuclear factor‑κB (NF‑κB) signaling pathway is highly active, and the constitutive activation of NF‑κB prompts malignant cell proliferation. MicroRNAs are considered to be important mediators in the regulation of the NF‑κB signaling pathway. The present study predominantly focussed on the effects of microRNA (miR)‑19a on NF‑κB activation. Reverse transcription‑quantitative polymerase chain reaction was used to quantify the relative levels of miR‑19a in gastric carcinoma cells. MTT assays were used to determine the effect of miR‑19a on cellular proliferation. To detect the activation of NF‑κB, western blotting was performed to measure the protein levels of NF‑κB and the products of its downstream target genes. To define the target genes, luciferase reporter assays were used. miR‑19a was found to be markedly upregulated in gastric carcinoma cells. The overexpression of miR‑19a resulted in proliferation and enhanced migratory capabilities of the MGC‑803 gastric carcinoma cell line. The results of the western blot analysis demonstrated that the protein levels of p65 increased when the MGC‑803 cells were transfected with miR‑19a mimics. In addition, the downstream target genes of miR‑19a, including intercellular adhesion molecule, vascular cell adhesion molecule and monocyte chemoattractant protein‑1, were upregulated. The results of the luciferase assay indicated that IκB‑α was the target gene of miR‑19a. Therefore, the results of the present study suggested that miR‑19a enhances malignant gastric cell proliferation by constitutively activating the NF‑κB signaling pathway.

  7. EGFR is dispensable for c-Met-mediated proliferation and survival activities in mouse adult liver oval cells.

    Science.gov (United States)

    Martínez-Palacián, A; del Castillo, G; Herrera, B; Fernández, M; Roncero, C; Fabregat, I; Sánchez, A

    2012-02-01

    Liver progenitor cells rise as potential critical players in hepatic regeneration but also carcinogenesis. It is therefore mandatory to define the signals controlling their activation and expansion. Recently, by using a novel in vitro model of oval cell lines expressing a mutant tyrosine kinase-inactive form of c-Met we demonstrated that autocrine c-Met signalling plays an essential role in promoting oval cell survival. Here, we investigated the significance of the epidermal growth factor receptor (EGFR) signalling in oval cell proliferation and survival, as well as a potential functional crosstalk between the c-Met and the EGFR pathways. We found an autocrine activation of the EGFR-triggered pathway in Met(flx/flx) and Met(-/-) oval cells as judged by constitutive expression of the EGFR ligands, transforming growth factor-alpha (TGF-α) and heparin-binding EGF like growth factor (HB-EGF), and activation of EGFR. On the other hand, treatment with AG1478, a specific inhibitor of EGFR, effectively blocked endogenous and EGF-induced proliferation, while increased serum withdrawal and transforming growth factor-beta (TGF-β)-induced apoptosis. These results suggest that constitutively activated EGFR might promote oval cell proliferation and survival. We found that hepatocyte growth factor (HGF) does not transactivate EGFR nor EGF transactivates c-Met. Furthermore, treatment with AG1478 or EGFR gene silencing did not interfere with HGF-mediated activation of target signals, such as protein kinase B (AKT/PKB), and extracellular signal-regulated kinases 1/2 (ERK 1/2), nor did it have any effect on HGF-induced proliferative and antiapoptotic activities in Met(flx/flx) cells, showing that HGF does not require EGFR activation to mediate such responses. EGF induced proliferation and survival equally in Met(flx/flx) and Met(-/-) oval cells, proving that EGFR signalling does not depend on c-Met tyrosine kinase activity. Together, our results provide strong evidence that in

  8. Leptin inhibits proliferation of breast cancer cells at supraphysiological concentrations by inhibiting mitogen-activated protein kinase signaling.

    Science.gov (United States)

    Weichhaus, Michael; Broom, John; Wahle, Klaus; Bermano, Giovanna

    2014-07-01

    Leptin is a hormone secreted by white fat tissue and signals the amount of overall body fat to the hypothalamus. The circulating concentration of leptin correlates with the level of obesity. Breast cancer risk is higher in obese postmenopausal women compared with postmenopausal women of a normal weight, and high leptin concentrations may contribute to this risk. In the present study, SK-BR-3 and MDA-MB-231 breast cancer cell lines were treated with various concentrations (6.25-1,600 ng/ml) of recombinant leptin and changes in cell proliferation were assessed. The SK-BR-3 breast cancer cells exhibited a concentration-dependent increase in proliferation with physiological leptin concentrations (100 ng/ml) was observed. Cell proliferation was not affected at supraphysiological leptin concentrations (>800 ng/ml) in SK-BR-3 cells, whereas it decreased in MDA-MB-231 cells. Therefore, cell signaling and cell cycle changes were assessed at supraphysiological concentrations (1,600 ng/ml). In the two cell lines, leptin treatment decreased the mitogen-activated protein kinase (MAPK) cell signaling pathway activation. Leptin treatment did not increase Akt phosphorylation or significantly alter the cell population distribution across cell cycle stages. To the best of our knowledge, leptin-induced growth inhibition of breast cancer cells at supraphysiological concentrations has not been reported in the literature to date, and the findings of this study suggest that reduced MAPK activity may be the underlying cause. Thus, the effect of leptin on breast cancer growth warrants further investigation since leptin is considered to be one of the main mediators in the obesity-breast cancer connection.

  9. Erbin loss promotes cancer cell proliferation through feedback activation of Akt-Skp2-p27 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hao [Department of Pathophysiology, Institute of Basic Medical Sciences, Beijing 100850 (China); Laboratory of Cellular and Molecular Immunology, Medical School of Henan University, Kaifeng 475004 (China); Song, Yuhua [The Affiliated Hospital of Medical College, Qingdao University, Qingdao (China); Wu, Yan; Guo, Ning [Department of Pathophysiology, Institute of Basic Medical Sciences, Beijing 100850 (China); Ma, Yuanfang [Laboratory of Cellular and Molecular Immunology, Medical School of Henan University, Kaifeng 475004 (China); Qian, Lu, E-mail: mayf@henu.edu.cn [Department of Pathophysiology, Institute of Basic Medical Sciences, Beijing 100850 (China)

    2015-07-31

    Erbin localizes at the basolateral membrane to regulate cell junctions and polarity in epithelial cells. Dysregulation of Erbin has been implicated in tumorigenesis, and yet it is still unclear if and how disrupted Erbin regulates the biological behavior of cancer cells. We report here that depletion of Erbin leads to cancer cell excessive proliferation in vitro and in vivo. Erbin deficiency accelerates S-phase entry by down-regulating CDK inhibitors p21 and p27 via two independent mechanisms. Mechanistically, Erbin loss promotes p27 degradation by enhancing E3 ligase Skp2 activity though augmenting Akt signaling. Interestingly, we also show that Erbin is an unstable protein when the Akt-Skp2 signaling is aberrantly activated, which can be specifically destructed by SCF-Skp2 ligase. Erbin loss facilitates cell proliferation and migration in Skp2-dependent manner. Thus, our finding illustrates a novel negative feedback loop between Erbin and Akt-Skp2 signaling. It suggests disrupted Erbin links polarity loss, hyperproliferation and tumorigenesis. - Highlights: • Erbin loss leads to cancer cell excessive proliferation in vitro and in vivo. • Erbin loss accelerates cell cycle though down-regulating p21 and p27 expression. • Erbin is a novel negative modulator of Akt1-Skp2-p27 signaling pathway. • Our study suggests that Erbin loss contributes to Skp2 oncogenic function.

  10. Dauricine can inhibit the activity of proliferation of urinary tract tumor cells

    Institute of Scientific and Technical Information of China (English)

    Jun Wang; Yuan Li; Xiong-Bing Zu; Min-Feng Chen; Lin Qi

    2012-01-01

    Objective: To explore the anti-tumor effects of asiatic moonseed rhizome extraction-dauricine on bladder cancer EJ cell strain, prostate cancer PC-3Mcell strain and primary cell culture system. Methods: The main effective component-phenolic alkaloids of Menispermum dauricum was extracted and separated from asiatic moonseed rhizome by chemical method. MTT method was used to detect dauricine anti-tumor effect. Results: Dauricine had an obvious proliferation inhibition effect on the main tumor cells in urinary system. The minimum drug sensitivity concentration was between 3.81-5.15 μg/mL, and the inhibition ratio increased with the increase of concentration. Conclusions: Dauricine, the main effective component extracted from asiatic moonseed rhizome, had a good inhibition effect on tumor cells in urinary system. At the same time, Dauricine has certain inhibition effects on the primary cultured tumor cell.

  11. Tumor cells with KRAS or BRAF mutations or ERK5/MAPK7 amplification are not addicted to ERK5 activity for cell proliferation.

    Science.gov (United States)

    Lochhead, Pamela A; Clark, Jonathan; Wang, Lan-Zhen; Gilmour, Lesley; Squires, Matthew; Gilley, Rebecca; Foxton, Caroline; Newell, David R; Wedge, Stephen R; Cook, Simon J

    2016-01-01

    ERK5, encoded by MAPK7, has been proposed to play a role in cell proliferation, thus attracting interest as a cancer therapeutic target. While oncogenic RAS or BRAF cause sustained activation of the MEK1/2-ERK1/2 pathway, ERK5 is directly activated by MEK5. It has been proposed that RAS and RAF proteins can also promote ERK5 activation. Here we investigated the interplay between RAS-RAF-MEK-ERK and ERK5 signaling and studied the role of ERK5 in tumor cell proliferation in 2 disease-relevant cell models. We demonstrate that although an inducible form of CRAF (CRAF:ER*) can activate ERK5 in fibroblasts, the response is delayed and reflects feed-forward signaling. Additionally, oncogenic KRAS and BRAF do not activate ERK5 in epithelial cells. Although KRAS and BRAF do not couple directly to MEK5-ERK5, ERK5 signaling might still be permissive for proliferation. However, neither the selective MEK5 inhibitor BIX02189 or ERK5 siRNA inhibited proliferation of colorectal cancer cells harbouring KRAS(G12C/G13D) or BRAF(V600E). Furthermore, there was no additive or synergistic effect observed when BIX02189 was combined with the MEK1/2 inhibitor Selumetinib (AZD6244), suggesting that ERK5 was neither required for proliferation nor a driver of innate resistance to MEK1/2 inhibitors. Finally, even cancer cells with MAPK7 amplification were resistant to BIX02189 and ERK5 siRNA, showing that ERK5 amplification does not confer addiction to ERK5 for cell proliferation. Thus ERK5 signaling is unlikely to play a role in tumor cell proliferation downstream of KRAS or BRAF or in tumor cells with ERK5 amplification. These results have important implications for the role of ERK5 as an anti-cancer drug target.

  12. Tumor cells with KRAS or BRAF mutations or ERK5/MAPK7 amplification are not addicted to ERK5 activity for cell proliferation

    Science.gov (United States)

    Lochhead, Pamela A.; Clark, Jonathan; Wang, Lan-Zhen; Gilmour, Lesley; Squires, Matthew; Gilley, Rebecca; Foxton, Caroline; Newell, David R.; Wedge, Stephen R.; Cook, Simon J.

    2016-01-01

    Abstract ERK5, encoded by MAPK7, has been proposed to play a role in cell proliferation, thus attracting interest as a cancer therapeutic target. While oncogenic RAS or BRAF cause sustained activation of the MEK1/2-ERK1/2 pathway, ERK5 is directly activated by MEK5. It has been proposed that RAS and RAF proteins can also promote ERK5 activation. Here we investigated the interplay between RAS-RAF-MEK-ERK and ERK5 signaling and studied the role of ERK5 in tumor cell proliferation in 2 disease-relevant cell models. We demonstrate that although an inducible form of CRAF (CRAF:ER*) can activate ERK5 in fibroblasts, the response is delayed and reflects feed-forward signaling. Additionally, oncogenic KRAS and BRAF do not activate ERK5 in epithelial cells. Although KRAS and BRAF do not couple directly to MEK5-ERK5, ERK5 signaling might still be permissive for proliferation. However, neither the selective MEK5 inhibitor BIX02189 or ERK5 siRNA inhibited proliferation of colorectal cancer cells harbouring KRASG12C/G13D or BRAFV600E. Furthermore, there was no additive or synergistic effect observed when BIX02189 was combined with the MEK1/2 inhibitor Selumetinib (AZD6244), suggesting that ERK5 was neither required for proliferation nor a driver of innate resistance to MEK1/2 inhibitors. Finally, even cancer cells with MAPK7 amplification were resistant to BIX02189 and ERK5 siRNA, showing that ERK5 amplification does not confer addiction to ERK5 for cell proliferation. Thus ERK5 signaling is unlikely to play a role in tumor cell proliferation downstream of KRAS or BRAF or in tumor cells with ERK5 amplification. These results have important implications for the role of ERK5 as an anti-cancer drug target. PMID:26959608

  13. Platelet-rich plasma stimulated by pulse electric fields: Platelet activation, procoagulant markers, growth factor release and cell proliferation.

    Science.gov (United States)

    Frelinger, A L; Torres, A S; Caiafa, A; Morton, C A; Berny-Lang, M A; Gerrits, A J; Carmichael, S L; Neculaes, V B; Michelson, A D

    2016-01-01

    Therapeutic use of activated platelet-rich plasma (PRP) has been explored for wound healing, hemostasis and antimicrobial wound applications. Pulse electric field (PEF) stimulation may provide more consistent platelet activation and avoid complications associated with the addition of bovine thrombin, the current state of the art ex vivo activator of therapeutic PRP. The aim of this study was to compare the ability of PEF, bovine thrombin and thrombin receptor activating peptide (TRAP) to activate human PRP, release growth factors and induce cell proliferation in vitro. Human PRP was prepared in the Harvest SmartPreP2 System and treated with vehicle, PEF, bovine thrombin, TRAP or Triton X-100. Platelet activation and procoagulant markers and microparticle generation were measured by flow cytometry. Released growth factors were measured by ELISA. The releasates were tested for their ability to stimulate proliferation of human epithelial cells in culture. PEF produced more platelet-derived microparticles, P-selectin-positive particles and procoagulant annexin V-positive particles than bovine thrombin or TRAP. These differences were associated with higher levels of released epidermal growth factor after PEF than after bovine thrombin or TRAP but similar levels of platelet-derived, vascular-endothelial, and basic fibroblast growth factors, and platelet factor 4. Supernatant from PEF-treated platelets significantly increased cell proliferation compared to plasma. In conclusion, PEF treatment of fresh PRP results in generation of microparticles, exposure of prothrombotic platelet surfaces, differential release of growth factors compared to bovine thrombin and TRAP and significant cell proliferation. These results, together with PEF's inherent advantages, suggest that PEF may be a superior alternative to bovine thrombin activation of PRP for therapeutic applications.

  14. Immunomodulatory activity of xanthohumol: inhibition of T cell proliferation, cell-mediated cytotoxicity and Th1 cytokine production through suppression of NF-κB

    OpenAIRE

    Gao, Xiaohua; Deeb, Dorrah; Liu, Yongbo; DULCHAVSKY, SCOTT A.; Gautam, Subhash C.

    2009-01-01

    Xanthohumol (XN), a prenylated chalcone present in hops (Humulus lupus L.) and beer, exhibits anti-inflammatory, antioxidant and antiproliferative activity, but has not been studied for effects on T cell-mediated immune responses. Here we demonstrate that XN has profound immunosuppressive effects on T cell proliferation, development of IL-2 activated killer (LAK) cells, cytotoxic T lymphocytes (CTLs), and production of Th1 cytokines (IL-2, IFN-γ and TNF-α). The suppression of these cell-media...

  15. Loss of p53 induces cell proliferation via Ras-independent activation of the Raf/Mek/Erk signaling pathway.

    Science.gov (United States)

    Drosten, Matthias; Sum, Eleanor Y M; Lechuga, Carmen G; Simón-Carrasco, Lucía; Jacob, Harrys K C; García-Medina, Raquel; Huang, Sidong; Beijersbergen, Roderick L; Bernards, Rene; Barbacid, Mariano

    2014-10-21

    The Ras family of small GTPases constitutes a central node in the transmission of mitogenic stimuli to the cell cycle machinery. The ultimate receptor of these mitogenic signals is the retinoblastoma (Rb) family of pocket proteins, whose inactivation is a required step to license cell proliferation. However, little is known regarding the molecular events that connect Ras signaling with the cell cycle. Here, we provide genetic evidence to illustrate that the p53/p21 Cdk-interacting protein 1 (Cip1)/Rb axis is an essential component of the Ras signaling pathway. Indeed, knockdown of p53, p21Cip1, or Rb restores proliferative properties in cells arrested by ablation of the three Ras loci, H-, N- and K-Ras. Ras signaling selectively inactivates p53-mediated induction of p21Cip1 expression by inhibiting acetylation of specific lysine residues in the p53 DNA binding domain. Proliferation of cells lacking both Ras proteins and p53 can be prevented by reexpression of the human p53 ortholog, provided that it retains an active DNA binding domain and an intact lysine residue at position 164. These results unveil a previously unidentified role for p53 in preventing cell proliferation under unfavorable mitogenic conditions. Moreover, we provide evidence that cells lacking Ras and p53 proteins owe their proliferative properties to the unexpected retroactivation of the Raf/Mek/Erk cascade by a Ras-independent mechanism.

  16. Activated regulatory T cell regulates neural stem cell proliferation in the subventricular zone of normal and ischemic mouse brain through interleukin 10

    Directory of Open Access Journals (Sweden)

    Jixian eWang

    2015-09-01

    Full Text Available Recent studies have demonstrated that the depletion of Regulatory T cells (Tregs inhibits neural progenitor cell migration after brain ischemia. However, whether Tregs affect neural stem/progenitor cell proliferation is unclear. We explored the effect of Tregs on neurogenesis in the subventricular zone after ischemia. Tregs were isolated and activated in vitro. Adult male C57BL/6 mice underwent 60 minutes transient middle cerebral artery occlusion (tMCAO. Then Tregs (1x105 were injected into the left lateral ventricle of normal and ischemic mouse brain. Neurogenesis was determined by immunostaining. The mechanism was examined by inhibiting interleukin 10 (IL-10 and transforming growth factor (TGF- signaling. We found that the number of BrdU+ cells in the subventricular zone was significantly increased in the activated Tregs-treated mice. Double immunostaining showed that these BrdU+ cells expressed Mash1. Blocking IL-10 reduced the number of Mash1+/BrdU+ cells, but increased the amount of GFAP+/BrdU+ cells. Here we conclude that activated Tregs enhanced neural stem cell proliferation in the subventricular zone of normal and ischemic mice; blockage of IL-10 abolished Tregs-mediated neural stem cell proliferation in vivo and in vitro. Our results suggest that activated Tregs promoted neural stem cell proliferation via IL-10, which provides a new therapeutic approach for ischemic stroke.

  17. Adiponectin and AMP kinase activator stimulate proliferation, differentiation, and mineralization of osteoblastic MC3T3-E1 cells

    Directory of Open Access Journals (Sweden)

    Yamauchi Mika

    2007-11-01

    Full Text Available Abstract Background Adiponectin is a key mediator of the metabolic syndrome that is caused by visceral fat accumulation. Adiponectin and its receptors are known to be expressed in osteoblasts, but their actions with regard to bone metabolism are still unclear. In this study, we investigated the effects of adiponectin on the proliferation, differentiation, and mineralization of osteoblastic MC3T3-E1 cells. Results Adiponectin receptor type 1 (AdipoR1 mRNA was detected in the cells by RT-PCR. The adenosine monophosphate-activated protein kinase (AMP kinase was phosphorylated by both adiponectin and a pharmacological AMP kinase activator, 5-amino-imidazole-4-carboxamide-riboside (AICAR, in the cells. AdipoR1 small interfering RNA (siRNA transfection potently knocked down the receptor mRNA, and the effect of this knockdown persisted for as long as 10 days after the transfection. The transfected cells showed decreased expressions of type I collagen and osteocalcin mRNA, as determined by real-time PCR, and reduced ALP activity and mineralization, as determined by von Kossa and Alizarin red stainings. In contrast, AMP kinase activation by AICAR (0.01–0.5 mM in wild-type MC3T3-E1 cells augmented their proliferation, differentiation, and mineralization. BrdU assay showed that the addition of adiponectin (0.01–1.0 μg/ml also promoted their proliferation. Osterix, but not Runx-2, appeared to be involved in these processes because AdipoR1 siRNA transfection and AICAR treatments suppressed and enhanced osterix mRNA expression, respectively. Conclusion Taken together, this study suggests that adiponectin stimulates the proliferation, differentiation, and mineralization of osteoblasts via the AdipoR1 and AMP kinase signaling pathways in autocrine and/or paracrine fashions.

  18. FAM83D activates the MEK/ERK signaling pathway and promotes cell proliferation in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dong; Han, Sheng; Peng, Rui; Wang, Xing; Yang, Xin-Xiang; Yang, Ren-Jie; Jiao, Chen-Yu; Ding, Dong; Ji, Gu-Wei; Li, Xiang-Cheng, E-mail: drxcli@njmu.edu.cn

    2015-03-06

    Publicly available microarray data suggests that the expression of FAM83D (Family with sequence similarity 83, member D) is elevated in a wide variety of tumor types, including hepatocellular carcinoma (HCC). However, its role in the pathogenesis of HCC has not been elucidated. Here, we showed that FAM83D was frequently up-regulated in HCC samples. Forced FAM83D expression in HCC cell lines significantly promoted their proliferation and colony formation while FAM83D knockdown resulted in the opposite effects. Mechanistic analyses indicated that FAM83D was able to activate the MEK/ERK signaling pathway and promote the entry into S phase of cell cycle progression. Taken together, these results demonstrate that FAM83D is a novel oncogene in HCC development and may constitute a potential therapeutic target in HCC. - Highlights: • FAM83D is up-regulated in HCC tissues and cell lines. • Ectopic expression of FAM83D promotes HCC cell proliferation and colony formation. • Depletion of FAM83D inhibits HCC cell proliferation and colony formation. • FAM83D activates the MEK/ERK signaling pathway in HCC.

  19. Activation of peroxisome proliferator-activated receptor α induces lysosomal biogenesis in brain cells: implications for lysosomal storage disorders.

    Science.gov (United States)

    Ghosh, Arunava; Jana, Malabendu; Modi, Khushbu; Gonzalez, Frank J; Sims, Katherine B; Berry-Kravis, Elizabeth; Pahan, Kalipada

    2015-04-17

    Lysosomes are ubiquitous membrane-enclosed organelles filled with an acidic interior and are central to the autophagic, endocytic, or phagocytic pathway. In contrast to its classical function as the waste management machinery, lysosomes are now considered to be an integral part of various cellular signaling processes. The diverse functionality of this single organelle requires a very complex and coordinated regulation of its activity with transcription factor EB (TFEB), a master regulator of lysosomal biogenesis, at its core. However, mechanisms by which TFEB is regulated are poorly understood. This study demonstrates that gemfibrozil, an agonist of peroxisome proliferator-activated receptor (PPAR) α, alone and in conjunction with all-trans-retinoic acid is capable of enhancing TFEB in brain cells. We also observed that PPARα, but not PPARβ and PPARγ, is involved in gemfibrozil-mediated up-regulation of TFEB. Reporter assay and chromatin immunoprecipitation studies confirmed the recruitment of retinoid X receptor α, PPARα, and PGC1α on the PPAR-binding site on the Tfeb promoter as well. Subsequently, the drug-mediated induction of TFEB caused an increase in lysosomal protein and the lysosomal abundance in cell. Collectively, this study reinforces the link between lysosomal biogenesis and lipid metabolism with TFEB at the crossroads. Furthermore, gemfibrozil may be of therapeutic value in the treatment of lysosomal storage disorders in which autophagy-lysosome pathway plays an important role.

  20. Fenofibrate inhibited pancreatic cancer cells proliferation via activation of p53 mediated by upregulation of LncRNA MEG3.

    Science.gov (United States)

    Hu, Duanmin; Su, Cunjin; Jiang, Min; Shen, Yating; Shi, Aiming; Zhao, Fenglun; Chen, Ruidong; Shen, Zhu; Bao, Junjie; Tang, Wen

    2016-03-04

    There is still no suitable drug for pancreatic cancer treatment, which is one of the most aggressive human tumors. Maternally expressed gene 3 (MEG3), a LncRNA, has been suggested as a tumor suppressor in a range of human tumors. Studies found fenofibrate exerted anti-tumor roles in various human cancer cell lines. However, its role in pancreatic cancer remains unknown. The present study aimed to explore the impacts of fenofibrate on pancreatic cancer cell lines, and to investigate MEG3 role in its anti-tumor mechanisms. We used MTT assay to determine cells proliferation, genome-wide LncRNA microarray analysis to identify differently expressed LncRNAs, siRNA or pCDNA-MEG3 transfection to interfere or upregulate MEG3 expression, western blot to detect protein levels, real-time PCR to determine MEG3 level. Fenofibrate significantly inhibited proliferation of pancreatic cancer cells, increased MEG3 expression and p53 levels. Moreover, knockdown of MEG3 attenuated cytotoxicity induced by fenofibrate. Furthermore, overexpression of MEG3 induced cells death and increased p53 expression. Our results indicated fenofibrate inhibited pancreatic cancer cells proliferation via activation of p53 mediated by upregulation of MEG3.

  1. Effect of ligand of peroxisome proliferator-activated receptor γ on the biological characters of hepatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    Yan-Tong Guo; Xi-Sheng Leng; Tao Li; Ji-Run Peng; Sheng-Han Song; Liang-Fa Xiong; Zhi-Zhong Qin

    2005-01-01

    AIM: To study the effect of rosiglitazone, which is a ligand of peroxisome proliferator-activated receptor gamma (PPARγ), on the expression of PPARγ in hepatic stellate cells (HSCs) and on the biological characteristics of HSCs.METHODS: The activated HSCs were divided into three groups: control group, 3 μmol/L rosiglitazone group, and 10 μmol/L rosiglitazone group. The expression of PPARγ,α-smooth muscle actin (α-SMA), and type Ⅰ and Ⅲ collagen was detected by RT-PCR, Western blot and immunocytochemical staining, respectively. Cell proliferation was determined with methylthiazolyltetrazolium (MTT) colorimetric assay. Cell apoptosis was demonstrated with flow cytometry.RESULTS: The expression of PPARγ at mRNA and protein level markedly increased in HSCs of 10 μmol/L rosiglitazone group (tvalue was 10.870 and 4.627 respectively, P<0.01in both). The proliferation of HSCs in 10 μmol/L rosiglitazone group decreased significantly (t = 5.542, P<0.01), α-SMA expression level and type Ⅰ collagen synthesis ability were also reduced vs controls (tvalue= 10.256 and 14.627respectively, P<0.01 in both). The apoptotic rate of HSCs significantly increased in 10 μmol/L rosiglitazone group vs control (x2= 16.682, P<0.01).CONCLUSION: By increasing expression of PPARγ in activated HSCs, rosiglitazone, an agonist of PPARγ,decreases α-SMA expression and type Ⅰ collagen synthesis,inhibits cell proliferation, and induces cell apoptosis.

  2. Cell Proliferation Activity and Prognostic Index in Squamous Cell Lung Carcinoma

    Directory of Open Access Journals (Sweden)

    José Antonio Alvarez-Riesgo

    1998-01-01

    Full Text Available Flow Cytometry (FC has been incorporated into cancer research in relation to its prognostic value together with histological parameters and TNM stages. We have studied by means of FC the cell cycle of 132 samples from male patients with Squamous Cell Lung Carcinoma (SQCLC. All of the patients received curative surgery and the clinical follow-up was 60 months. The clinical and cytometric parameters were evaluated in order to predict the patients’ outcome. The presence of tumoural recurrence and the tumoural stage showed statistical significance associated with survival. The multivariant analysis reveals radiotherapy (p = 0.004 as protective variable and the high S-phase fraction (SPF (p = 0.001 and stage IIIA (p = 0.012 as risk factors. The SPF appears as an independent prognostic factor for overall survival time. We can build a prognostic index representative of different prognostic groups, which allows us to improve the individual monitoring of these patients.

  3. Cell Proliferation Activity and Prognostic Index in Squamous Cell Lung Carcinoma

    Science.gov (United States)

    Alvarez-Riesgo, José Antonio; Sampedro, Andrés; Hernández, Radhamés; Folgueras, María Victoria; Salas-Bustamante, Ana; Cueto, Antonio

    1998-01-01

    Flow Cytometry (FC) has been incorporated into cancer research in relation to its prognostic value together with histological parameters and TNM stages. We have studied by means of FC the cell cycle of 132 samples from male patients with Squamous Cell Lung Carcinoma (SQCLC). All of the patients received curative surgery and the clinical follow-up was 60 months. The clinical and cytometric parameters were evaluated in order to predict the patients’ outcome. The presence of tumoural recurrence and the tumoural stage showed statistical significance associated with survival. The multivariant analysis reveals radiotherapy (p = 0.004) as protective variable and the high S-phase fraction (SPF) (p = 0.001) and stage IIIA (p = 0.012) as risk factors. The SPF appears as an independent prognostic factor for overall survival time. We can build a prognostic index representative of different prognostic groups, which allows us to improve the individual monitoring of these patients. PMID:9762370

  4. Enhancement of amygdalin activated with β-D-glucosidase on HepG2 cells proliferation and apoptosis.

    Science.gov (United States)

    Zhou, Cunshan; Qian, Lichun; Ma, Haile; Yu, Xiaojie; Zhang, Youzuo; Qu, Wenjuan; Zhang, Xiaoxu; Xia, Wei

    2012-09-01

    The growth inhibition and induction of apoptosis brought by amygdalin and activated with β-D-glucosidase were tested for cytoactivity in HepG2 cells. The MTT viability assay showed that all samples had effects on HepG2 proliferation in dose and time response manners. IC50 of stand-alone amygdalin and activation with β-D-glucosidase on the proliferation of HepG2 cells for 48 h were 458.10 mg/mL and 3.2 mg/mL, respectively. Moreover, apoptotic cells were determined by AO/EB (acridine orange/ethidium bromide) fluorescent staining method and Annexin V-FITC/PI staining flow cytometry cell cycle analysis. With increasing of amygdalin concentration and the incubation time, the apoptotic rate was heightened. Compared with the control, there was significant difference (pamygdalin had no strong anti-HepG2 activity; however the ingredients of amygdalin activated with β-D-glucosidase had a higher and efficient anti-HepG2 activity. It was therefore suggested that this combination strategy may be applicable for treating tumors with a higher activity.

  5. Activated regulatory T cell regulates neural stem cell proliferation in the subventricular zone of normal and ischemic mouse brain through interleukin 10

    Science.gov (United States)

    Wang, Jixian; Xie, Luokun; Yang, Chenqi; Ren, Changhong; Zhou, Kaijing; Wang, Brian; Zhang, Zhijun; Wang, Yongting; Jin, Kunlin; Yang, Guo-Yuan

    2015-01-01

    Recent studies have demonstrated that the depletion of Regulatory T cells (Tregs) inhibits neural progenitor cell migration after brain ischemia. However, whether Tregs affect neural stem/progenitor cell proliferation is unclear. We explored the effect of Tregs on neurogenesis in the subventricular zone (SVZ) after ischemia. Tregs were isolated and activated in vitro. Adult male C57BL/6 mice underwent 60 min transient middle cerebral artery occlusion (tMCAO). Then Tregs (1 × 105) were injected into the left lateral ventricle (LV) of normal and ischemic mouse brain. Neurogenesis was determined by immunostaining. The mechanism was examined by inhibiting interleukin 10 (IL-10) and transforming growth factor (TGF-β) signaling. We found that the number of BrdU+ cells in the SVZ was significantly increased in the activated Tregs-treated mice. Double immunostaining showed that these BrdU+ cells expressed Mash1. Blocking IL-10 reduced the number of Mash1+/BrdU+ cells, but increased the amount of GFAP+/BrdU+ cells. Here, we conclude that activated Tregs enhanced neural stem cell (NSC) proliferation in the SVZ of normal and ischemic mice; blockage of IL-10 abolished Tregs-mediated NSC proliferation in vivo and in vitro. Our results suggest that activated Tregs promoted NSC proliferation via IL-10, which provides a new therapeutic approach for ischemic stroke. PMID:26441532

  6. Tooth development in Ambystoma mexicanum: phosphatase activities, calcium accumulation and cell proliferation in the tooth-forming tissues.

    Science.gov (United States)

    Wistuba, Joachim; Ehmcke, Jens; Clemen, Günter

    2003-06-01

    Prerequisites of tooth formation, cell proliferation in the tooth-forming tissues, calcium accumulation and the enzymatic activities of alkaline (ALP) and acid phosphatases (ACP) were investigated by immunohistochemical and histochemical methods in various developmental stages of the Mexican Axolotl, Ambystoma mexicanum. During the growth of replacement teeth, the tooth-forming tissues continually recruit cells from the surrounding regions. The basal layer of the oral epithelium, the dental lamina and sometimes even the outer enamel epithelium provide cells for the differentiated inner enamel epithelium, in which the active ameloblasts are localized. The differentiating odontoblasts are derived from proliferating cells situated basally to the replacement teeth in the mesenchymal tissue. When differentiation has started and the cells have become functional, proliferative activity can no longer be observed. Calcium is accumulated close to the site of mineralization in the inner enamel epithelium and in the odontoblasts as it is in mammals, elasmobranchii and teleostei. The activities of ACP and ALP related to the mineralization of the replacement teeth are separated spatially and not sequentially as they are in mammals. However, the results indicate a similar function of these enzymatic components in relation to tooth formation and maturation of mineral deposition. Most of the substantial processes related to tooth formation reported from other vertebrates occur in a manner similar to that in Ambystoma mexicanum, but there also seem to be basic mechanisms present that are realised in a unique way in this urodele.

  7. Cellular uptake of {sup 99m}TcN-NOET in human leukaemic HL-60 cells is related to calcium channel activation and cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Guillermet, Stephanie; Vuillez, Jean-Philippe; Caravel, Jean-Pierre; Marti-Batlle, Daniele; Fagret, Daniel [Universite de Grenoble, Radiopharmaceutiques Biocliniques, La Tronche (France); Fontaine, Eric [Universite de Grenoble, Laboratoire de Bioenergetique Fondamentale et Appliquee, Grenoble (France); Pasqualini, Roberto [Cis Bio International Schering SA, Gif-sur-Yvette (France)

    2006-01-01

    A major goal of nuclear oncology is the development of new radiolabelled tracers as proliferation markers. Intracellular calcium waves play a fundamental role in the course of the cell cycle. These waves occur in non-excitable tumour cells via store-operated calcium channels (SOCCs). Bis(N-ethoxy, N-ethyldithiocarbamato) nitrido technetium (V)-99m ({sup 99m}TcN-NOET) has been shown to interact with L-type voltage-operated calcium channels (VOCCs) in cultured cardiomyocytes. Considering the analogy between VOCCs and SOCCs, we sought to determine whether {sup 99m}TcN-NOET also binds to activated SOCCs in tumour cells in order to clarify the potential value of this tracer as a proliferation marker. Uptake kinetics of {sup 99m}TcN-NOET were measured in human leukaemic HL-60 cells over 60 min and the effect of several calcium channel modulators on 1-min tracer uptake was studied. The uptake kinetics of {sup 99m}TcN-NOET were compared both with the variations of cytosolic free calcium concentration measured by indo-1/AM and with the variations in the SG{sub 2}M cellular proliferation index. All calcium channel inhibitors significantly decreased the cellular uptake of {sup 99m}TcN-NOET whereas the activator thapsigargin induced a significant 10% increase. In parallel, SOCC activation by thapsigargin, as measured using the indo-1/AM probe, was inhibited by nicardipine. These results indicate that the uptake of {sup 99m}TcN-NOET is related to the activation of SOCCs. Finally, a correlation was observed between the tracer uptake and variations in the proliferation index SG{sub 2}M. The uptake of {sup 99m}TcN-NOET seems to be related to SOCC activation and to cell proliferation in HL-60 cells. These results indicate that {sup 99m}TcN-NOET might be a marker of cell proliferation. (orig.)

  8. Cell proliferation in gastrointestinal mucosa.

    OpenAIRE

    Wong, W M; Wright, N A

    1999-01-01

    Gastrointestinal cell proliferation plays an important role in the maintenance of the integrity of the gastrointestinal system. The study of gastrointestinal proliferation kinetics allows a better understanding of the complexity of the system, and also has important implications for the study of gastrointestinal carcinogenesis. Gastrointestinal stem cells are shown to be pluripotential and to give rise to all cell lineages in the epithelium. Carcinogenesis in the colon occurs through sequenti...

  9. Differential effect of three mitogen-activated protein kinases on lipoprotein (a)-induced human mesangial cell proliferation

    Institute of Scientific and Technical Information of China (English)

    SONG Hong-mei; WEI Min; XU Ke; LI Xue-wang

    2010-01-01

    Background Mesangial hypercellularity is a critical early histopathological finding in human and experimental glomerular diseases. Hyperlipidemia and the glomerular deposition of lipoproteins are commonly associated with mesangial hypercellularity and play an important pathobiological role in the development of glomerular diseases. The activated cytoplasmic mitogen-activated protein kinase (MAPK), including mainly extracellular-signal regulated protein kinase (ERK), c-Jun amino-terminal kinase (JNK), and p38, has been thought to translocate into the nucleus and activate various transcription factors and protooncogenes associated with cell growth and proliferation. Lipoprotein (a) (Lp(a)) has been shown to stimulate proliferation of mesangial cells, but the events of Lp(a) signaling have not yet been characterized. The purpose of this study was to investigate the signal transduction pathways involved in Lp(a)-induced cell proliferation and provide an evidence for the participation of Lp(a) in intracellular signaling pathways for mesangial cell proliferation.Methods Lp(a) was isolated from a patient who was being treated with low density lipoprotein (LDL)-apheresis by density gradient ultracentrifugation and then chromatography. Human mesangial cells (HMCs) were isolated by the sequential sieving technique and stimulated with Lp(a) in different concentration and time course. The DNA synthesis of the cells was measured by [~3H] thymidine incorporation for detecting the proliferation. The expression of all the three members of MAPK family, including ERK1/ERK2, JNK, and p38, and their phosphorylation were detected by Western blotting. Results Lp(a) could induce a significant dose-dependent proliferation of HMCs. The ~3H-TdR incorporation was 1.64±0.31, 1.69±0.48, 3.59±0.68 (P <0.01), 4.14±0.78 (P <0.01), and 4.05±0.55 (P <0.01) (10~3 cpm) at the Lp(a) concentration of 0, 5, 10, 25, and 50 μg/ml, respectively. Lp(a) induced an increase in ERK1/ERK2 phosphorylation

  10. E-cadherin promotes proliferation of human ovarian cancer cells in vitro via activating MEK/ERK pathway

    Institute of Scientific and Technical Information of China (English)

    Ling-ling DONG; Lian LIU; Chun-hong MA; Ji-sheng LI; Chao DU; Shan XU; Li-hui HAN; Li LI; Xiu-wen WANG

    2012-01-01

    Aim:E-cadherin is unusually highly expressed in most ovarian cancers.This study was designed to investigate the roles of E-cadherin in the carcinogenesis and progression of ovarian cancers.Methods:Human ovarian adenocarcinoma cell line SKOV-3 was examined.E-cadherin gene CDH1 in SKOV-3 cells was knocked down via RNA interference (RNAi),and the resultant variation of biological behavior was observed using CCK-8 and colony formation experiment.E-cadherin-mediated Ca2+-dependent cell-cell adhesion was used to study the mechanisms underlying the effects of E-cadherin on the proliferation and survival of SKOV-3 cells.The expression levels of E-cadherin,extracellular signal-related kinase (ERK),phosphorylated ERK (P-ERK) were measured using Western blot assays.Results:Transfection with CDH1-siRNA for 24-96 h significantly suppressed the growth and proliferation of SKOV-3 cells.E-cadhednmediated calcium-dependent cell-cell adhesion of SKOV-3 cells resulted in a rapid increase of P-ERK,but did not modify the expression of ERK protein.The phosphorylation of ERK in the cells was blocked by pretreatment with the MEK1 specific inhibitor PD98059 (50μmol/L),but not bythe PI3K inhibitor wortmannin (1μmol/L) or PKA inhibitor H89 (10 μmol/L).Conclusion:E-cadherin may function as a tumor proliferation enhancer via activating the MEK/ERK pathway in development of ovarian epithelial cancers.

  11. Targeting sphingosine kinase 1 in carcinoma cells decreases proliferation and survival by compromising PKC activity and cytokinesis.

    Directory of Open Access Journals (Sweden)

    Nataliya Kotelevets

    Full Text Available Sphingosine kinases (SK catalyze the phosphorylation of proapoptotic sphingosine to the prosurvival factor sphingosine 1-phosphate (S1P, thereby promoting oncogenic processes. Breast (MDA-MB-231, lung (NCI-H358, and colon (HCT 116 carcinoma cells were transduced with shRNA to downregulate SK-1 expression or treated with a pharmacologic SK-1 inhibitor. The effects of SK-1 targeting were investigated by measuring the level of intracellular sphingosine, the activity of protein kinase C (PKC and cell cycle regulators, and the mitotic index. Functional assays included measurement of cell proliferation, colony formation, apoptosis, and cell cycle analysis. Downregulation of SK-1 or its pharmacologic inhibition increased intracellular sphingosine and decreased PKC activity as shown by reduced phosphorylation of PKC substrates. In MDA-MB-231 cells this effect was most pronounced and reduced cell proliferation and colony formation, which could be mimicked using exogenous sphingosine or the PKC inhibitor RO 31-8220. SK-1 downregulation in MDA-MB-231 cells increased the number of cells with 4N and 8N DNA content, and similar effects were observed upon treatment with sphingosine or inhibitors of SK-1 or PKC. Examination of cell cycle regulators unveiled decreased cdc2 activity and expression of Chk1, which may compromise spindle checkpoint function and cytokinesis. Indeed, SK-1 kd cells entered mitosis but failed to divide, and in the presence of taxol also failed to sustain mitotic arrest, resulting in further increased endoreduplication and apoptosis. Our findings delineate an intriguing link between SK-1, PKC and components of the cell cycle machinery, which underlines the significance of SK-1 as a target for cancer therapy.

  12. VEGF-A/NRP1 stimulates GIPC1 and Syx complex formation to promote RhoA activation and proliferation in skin cancer cells

    Directory of Open Access Journals (Sweden)

    Ayumi Yoshida

    2015-09-01

    Full Text Available Neuropilin-1 (NRP1 has been identified as a VEGF-A receptor. DJM-1, a human skin cancer cell line, expresses endogenous VEGF-A and NRP1. In the present study, the RNA interference of VEGF-A or NRP1 suppressed DJM-1 cell proliferation. Furthermore, the overexpression of the NRP1 wild type restored shNRP1-treated DJM-1 cell proliferation, whereas NRP1 cytoplasmic deletion mutants did not. A co-immunoprecipitation analysis revealed that VEGF-A induced interactions between NRP1 and GIPC1, a scaffold protein, and complex formation between GIPC1 and Syx, a RhoGEF. The knockdown of GIPC1 or Syx reduced active RhoA and DJM-1 cell proliferation without affecting the MAPK or Akt pathway. C3 exoenzyme or Y27632 inhibited the VEGF-A-induced proliferation of DJM-1 cells. Conversely, the overexpression of the constitutively active form of RhoA restored the proliferation of siVEGF-A-treated DJM-1 cells. Furthermore, the inhibition of VEGF-A/NRP1 signaling upregulated p27, a CDK inhibitor. A cell-penetrating oligopeptide that targeted GIPC1/Syx complex formation inhibited the VEGF-A-induced activation of RhoA and suppressed DJM-1 cell proliferation. In conclusion, this new signaling pathway of VEGF-A/NRP1 induced cancer cell proliferation by forming a GIPC1/Syx complex that activated RhoA to degrade the p27 protein.

  13. Aryl hydrocarbon receptor nuclear translocator (ARNT) isoforms control lymphoid cancer cell proliferation through differentially regulating tumor suppressor p53 activity.

    Science.gov (United States)

    Gardella, Kacie A; Muro, Israel; Fang, Gloria; Sarkar, Krishnakali; Mendez, Omayra; Wright, Casey W

    2016-03-01

    The aryl hydrocarbon receptor nuclear translocator (ARNT) is involved in xenobiotic and hypoxic responses, and we previously showed that ARNT also regulates nuclear factor-κB (NF-κB) signaling by altering the DNA binding activity of the RelB subunit. However, our initial study of ARNT-mediated RelB modulation was based on simultaneous suppression of the two ARNT isoforms, isoform 1 and 3, and precluded the examination of their individual functions. We find here that while normal lymphocytes harbor equal levels of isoform 1 and 3, lymphoid malignancies exhibit a shift to higher levels of ARNT isoform 1. These elevated levels of ARNT isoform 1 are critical to the proliferation of these cancerous cells, as suppression of isoform 1 in a human multiple myeloma (MM) cell line, and an anaplastic large cell lymphoma (ALCL) cell line, triggered S-phase cell cycle arrest, spontaneous apoptosis, and sensitized cells to doxorubicin treatment. Furthermore, co-suppression of RelB or p53 with ARNT isoform 1 prevented cell cycle arrest and blocked doxorubicin induced apoptosis. Together our findings reveal that certain blood cancers rely on ARNT isoform 1 to potentiate proliferation by antagonizing RelB and p53-dependent cell cycle arrest and apoptosis. Significantly, our results identify ARNT isoform 1 as a potential target for anticancer therapies.

  14. Effects of AFP-activated PI3K/Akt signaling pathway on cell proliferation of liver cancer.

    Science.gov (United States)

    Zheng, Lu; Gong, Wei; Liang, Ping; Huang, XiaoBing; You, Nan; Han, Ke Qiang; Li, Yu Ming; Li, Jing

    2014-05-01

    This study aims to investigate effects of alpha-fetoprotein (AFP)-activated phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway on hepatocellular carcinoma cell proliferation. Active cirrhosis patients after hepatitis B infection (n = 20) and viral hepatitis patients with hepatocellular carcinoma (HCC) (n = 20) were selected as the subjects of the present study. Another 20 healthy subjects were selected as the control group. The serum AFP expression and liver tissue PI3K and Akt gene mRNA expression were detected. The hepatoma cell model HepG2 which had a stable expression of AFP gene was used. Real-time quantitative PCR and Western blot and other methods were used to analyze the intracellular PI3K and Akt protein levels. Compared with control group and cirrhosis group, the serum AFP levels in HCC group significantly increased, and the tissue PI3K and Akt mRNA expression also significantly increased. HepG2 cells were intervened using AFP, in which the PIK and Akt protein expression significantly increased. After intervention by use of AFP monoclonal antibodies or LY294002 inhibitor, the PIK and Akt protein expression in HepG2 cell was significantly decreased (P AFP can promote the proliferation of hepatoma cells via activation of PI3K/Akt signaling pathway.

  15. PKCε ACTIVATION PROMOTES FGF-2 EXOCYTOSIS AND INDUCES ENDOTHELIAL CELL PROLIFERATION AND SPROUTING

    Science.gov (United States)

    Monti, Martina; Donnini, Sandra; Morbidelli, Lucia; Giachetti, Antonio; Mochly-Rosen, Daria; Mignatti, Paolo; Ziche, Marina

    2013-01-01

    Protein kinase C epsilon (PKCε) activation controls fibroblast growth factor-2 (FGF-2) angiogenic signaling. Here, we examined the effect of activating PKCε on FGF-2 dependent vascular growth and endothelial activation. ψεRACK, a selective PKCε agonist induces pro-angiogenic responses in endothelial cells, including formation of capillary like structures and cell growth. These effects are mediated by FGF-2 export to the cell membrane, as documented by biotinylation and immunofluorescence, and FGF-2/FGFR1 signaling activation, as attested by ERK1/2-STAT-3 phosphorylation and de novo FGF-2 synthesis. Similarly, vascular endothelial growth factor (VEGF) activates PKCε in endothelial cells, and promotes FGF-2 export and FGF-2/FGFR1 signaling activation. ψεRACK fails to elicit responses in FGF-2−/− endothelial cells, and in cells pretreated with methylamine (MeNH2), an exocytosis inhibitor, indicating that both intracellular FGF-2 and its export toward the membrane are required for the ψεRACK activity. In vivo ψεRACK does not induce angiogenesis in the rabbit cornea. However, ψεRACK promotes VEGF angiogenic responses, an effect sustained by endothelial FGF-2 release and synthesis, since anti-FGF-2 antibody strongly attenuates VEGF responses. The results demonstrate that PKCε stimulation promotes angiogenesis and modulates VEGF activity, by inducing FGF-2 release and autocrine signaling. PMID:23880610

  16. Peroxisome Proliferator-Activated Receptorα Agonists Differentially Regulate Inhibitor of DNA Binding Expression in Rodents and Human Cells

    Directory of Open Access Journals (Sweden)

    María del Carmen González

    2012-01-01

    Full Text Available Inhibitor of DNA binding (Id2 is a helix-loop-helix (HLH transcription factor that participates in cell differentiation and proliferation. Id2 has been linked to the development of cardiovascular diseases since thiazolidinediones, antidiabetic agents and peroxisome proliferator-activated receptor (PPAR gamma agonists, have been reported to diminish Id2 expression in human cells. We hypothesized that PPARα activators may also alter Id2 expression. Fenofibrate diminished hepatic Id2 expression in both late pregnant and unmated rats. In 24 hour fasted rats, Id2 expression was decreased under conditions known to activate PPARα. In order to determine whether the fibrate effects were mediated by PPARα, wild-type mice and PPARα-null mice were treated with Wy-14,643 (WY. WY reduced Id2 expression in wild-type mice without an effect in PPARα-null mice. In contrast, fenofibrate induced Id2 expression after 24 hours of treatment in human hepatocarcinoma cells (HepG2. MK-886, a PPARα antagonist, did not block fenofibrate-induced activation of Id2 expression, suggesting a PPARα-independent effect was involved. These findings confirm that Id2 is a gene responsive to PPARα agonists. Like other genes (apolipoprotein A-I, apolipoprotein A-V, the opposite directional transcriptional effect in rodents and a human cell line further emphasizes that PPARα agonists have different effects in rodents and humans.

  17. Peroxisome proliferator-activated receptorα agonists differentially regulate inhibitor of DNA binding expression in rodents and human cells.

    Science.gov (United States)

    González, María Del Carmen; Corton, J Christopher; Acero, Nuria; Muñoz-Mingarro, Dolores; Quirós, Yolanda; Alvarez-Millán, Juan José; Herrera, Emilio; Bocos, Carlos

    2012-01-01

    Inhibitor of DNA binding (Id2) is a helix-loop-helix (HLH) transcription factor that participates in cell differentiation and proliferation. Id2 has been linked to the development of cardiovascular diseases since thiazolidinediones, antidiabetic agents and peroxisome proliferator-activated receptor (PPAR) gamma agonists, have been reported to diminish Id2 expression in human cells. We hypothesized that PPARα activators may also alter Id2 expression. Fenofibrate diminished hepatic Id2 expression in both late pregnant and unmated rats. In 24 hour fasted rats, Id2 expression was decreased under conditions known to activate PPARα. In order to determine whether the fibrate effects were mediated by PPARα, wild-type mice and PPARα-null mice were treated with Wy-14,643 (WY). WY reduced Id2 expression in wild-type mice without an effect in PPARα-null mice. In contrast, fenofibrate induced Id2 expression after 24 hours of treatment in human hepatocarcinoma cells (HepG2). MK-886, a PPARα antagonist, did not block fenofibrate-induced activation of Id2 expression, suggesting a PPARα-independent effect was involved. These findings confirm that Id2 is a gene responsive to PPARα agonists. Like other genes (apolipoprotein A-I, apolipoprotein A-V), the opposite directional transcriptional effect in rodents and a human cell line further emphasizes that PPARα agonists have different effects in rodents and humans.

  18. Recombiant DNA and cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Stein, G.S.; Stein, J.L.

    1984-01-01

    This book contains 13 chapters. Some of the chapter titles are: Expression of Dihydrofolate Reductase and Thymidylate Synthase Genes in Mammalian Cells; Expression of Histone Genes during the Cell Cycle in Human Cells; Regulation of Nonmuscle Actin Gene Expression during Early Development; and Recombinant DNA Approaches to Studying Control of Cell Proliferation: An Overview.

  19. Effects of fucoidan on proliferation, AMP-activated protein kinase, and downstream metabolism- and cell cycle-associated molecules in poorly differentiated human hepatoma HLF cells.

    Science.gov (United States)

    Kawaguchi, Takumi; Hayakawa, Masako; Koga, Hironori; Torimura, Takuji

    2015-05-01

    Survival rates are low in patients with poorly differentiated hepatocellular carcinoma (HCC). Fucoidan, a sulfated polysaccharide derived from brown seaweed, has anticancer activity; however, the effects of fucoidan on poorly differentiated HCC remain unclear. In this study, we investigated the effects of fucoidan on AMP-activated protein kinase (AMPK), a proliferation regulator, and its downstream metabolism- and cell cycle-related molecules in a poorly differentiated human hepatoma HLF cell line. HLF cells were treated with fucoidan (10, 50, or 100 µg/ml; n=4) or phosphate buffered saline (control; n=4) for 96 h. Proliferation was evaluated by counting cells every 24 h. AMPK, TSC2, mTOR, GSK3β, acetyl-CoA carboxylase (ACC), ATP-citrate lyase, p53, cyclin D1, cyclin-dependent kinase (CDK) 4, and CDK6 expression and/or phosphorylation were examined by immunoblotting 24 h after treatment with 100 µg/ml fucoidan. Cell cycle progression was analyzed by fluorescence-activated cell sorter 48 h after treatment. Treatment with 50 or 100 µg/ml fucoidan significantly and dose- and time-dependently suppressed HLF cell proliferation (PFucoidan induced AMPK phosphorylation on Ser172 24 h after treatment. Although no differences were seen in expression and phosphorylation levels of TSC2, mTOR, GSK3β, ATP-citrate lyase, and p53 between the control and fucoidan-treated HLF cells, fucoidan induced ACC phosphorylation on Ser79. Moreover, fucoidan decreased cyclin D1, CDK4 and CDK6 expression 24 h after treatment. Furthermore, HLF cells were arrested in the G1/S phase 48 h after fucoidan treatment. We demonstrated that fucoidan suppressed HLF cell proliferation with AMPK phosphorylation. We showed that fucoidan phosphorylated ACC and downregulated cyclin D1, CDK4 and CDK6 expression. Our findings suggest that fucoidan inhibits proliferation through AMPK-associated suppression of fatty acid synthesis and G1/S transition in HLF cells.

  20. Adolescent olanzapine sensitization is correlated with hippocampal stem cell proliferation in a maternal immune activation rat model of schizophrenia.

    Science.gov (United States)

    Chou, Shinnyi; Jones, Sean; Li, Ming

    2015-08-27

    Previous work established that repeated olanzapine (OLZ) administration in normal adolescent rats induces a sensitization effect (i.e. increased behavioral responsiveness to drug re-exposure) in the conditioned avoidance response (CAR) model. However, it is unclear whether the same phenomenon can be detected in animal models of schizophrenia. The present study explored the generalizability of OLZ sensitization from healthy animals to a preclinical neuroinflammatory model of schizophrenia in the CAR. Maternal immune activation (MIA) was induced via polyinosinic:polycytidylic acid (PolyI:C) administration into pregnant dams. Behavioral assessments of offspring first identified decreased maternal separation-induced pup ultrasonic vocalizations and increased amphetamine-induced hyperlocomotion in animals prenatally exposed to PolyI:C. In addition, repeated adolescent OLZ administration confirmed the generalizability of the sensitization phenomenon. Using the CAR test, adolescent MIA animals displayed a similar increase in behavioral responsiveness after repeated OLZ exposure during both the repeated drug test days as well as a subsequent challenge test. Neurobiologically, few studies examining the relationship between hippocampal cell proliferation and survival and either antipsychotic exposure or MIA have incorporated concurrent behavioral changes. Thus, the current study also sought to reveal the correlation between OLZ behavioral sensitization in the CAR and hippocampal cell proliferation and survival. 5'-bromodeoxyuridine immunohistochemistry identified a positive correlation between the magnitude of OLZ sensitization (i.e. change in avoidance suppression induced by OLZ across days) and hippocampal cell proliferation. The implications of the relationship between behavioral and neurobiological results are discussed.

  1. Calcineurin/nuclear factor of activated T cells-coupled vanilliod transient receptor potential channel 4 ca2+ sparklets stimulate airway smooth muscle cell proliferation.

    Science.gov (United States)

    Zhao, Limin; Sullivan, Michelle N; Chase, Marlee; Gonzales, Albert L; Earley, Scott

    2014-06-01

    Proliferation of airway smooth muscle cells (ASMCs) contributes to the remodeling and irreversible obstruction of airways during severe asthma, but the mechanisms underlying this disease process are poorly understood. Here we tested the hypothesis that Ca(2+) influx through the vanilliod transient receptor potential channel (TRPV) 4 stimulates ASMC proliferation. We found that synthetic and endogenous TRPV4 agonists increase proliferation of primary ASMCs. Furthermore, we demonstrate that Ca(2+) influx through individual TRPV4 channels produces Ca(2+) microdomains in ASMCs, called "TRPV4 Ca(2+) sparklets." We also show that TRPV4 channels colocalize with the Ca(2+)/calmodulin-dependent protein phosphatase calcineurin in ASMCs. Activated calcineurin dephosphorylates nuclear factor of activated T cells (NFAT) transcription factors cytosolic (c) to allow nuclear translocation and activation of synthetic transcriptional pathways. We show that ASMC proliferation in response to TRPV4 activity is associated with calcineurin-dependent nuclear translocation of the NFATc3 isoform tagged with green florescent protein. Our findings suggest that Ca(2+) microdomains created by TRPV4 Ca(2+) sparklets activate calcineurin to stimulate nuclear translocation of NFAT and ASMC proliferation. These findings further suggest that inhibition of TRPV4 could diminish asthma-induced airway remodeling.

  2. Icariin inhibits oxidized low-density lipoprotein-induced proliferation of vascular smooth muscle cells by suppressing activation of extracellular signal-regulated kinase 1/2 and expression of proliferating cell nuclear antigen.

    Science.gov (United States)

    Hu, Yanwu; Liu, Kai; Yan, Mengtong; Zhang, Yang; Wang, Yadi; Ren, Liqun

    2016-03-01

    Icariin, a flavonoid isolated from the traditional Chinese herbal medicine Epimedium brevicornum Maxim, has been shown to possess anti-inflammatory, anti‑oxidant and anti-atherosclerotic activities in vivo and in vitro. The aim of the present study was to investigate the effects of icariin on oxidized low‑density lipoprotein (ox-LDL)-induced proliferation of vascular smooth muscle cells (VSMCs) and the possible underlying mechanism. VSMCs were cultured and pre‑treated with various concentrations of icariin (0, 10, 20 or 40 µm) prior to stimulation by ox‑LDL (50 µg/ml). Cell proliferation was evaluated by an MTT assay. Flow cytometry was used to study the influence of icariin on the cell cycle. Proliferating cell nuclear antigen (PCNA) expression and phosphorylation levels of extracellular signal-regulated kinase (ERK)1/2 were detected by western blot analysis. The results indicated that icariin significantly inhibited ox‑LDL‑induced proliferation of VSMCs and phosphorylation of ERK1/2. Furthermore, icariin also blocked the ox‑LDL‑induced cell‑cycle progression at G1/S‑interphase and downregulated the expression of PCNA in VSMCs. In conclusion, the present study indicated for the first time that icariin reduced the amount of ox‑LDL‑induced proliferation of VSMCs through suppression of PCNA expression and inactivation of ERK1/2.

  3. Capsaicin enhances anti-proliferation efficacy of pirarubicin via activating TRPV1 and inhibiting PCNA nuclear translocation in 5637 cells.

    Science.gov (United States)

    Zheng, Long; Chen, Jiaqi; Ma, Zhenkun; Liu, Wei; Yang, Fei; Yang, Zhao; Wang, Ke; Wang, Xinyang; He, Dalin; Li, Lei; Zeng, Jin

    2016-01-01

    The recurrence of bladder cancer after surgery with or without chemotherapy remains a major challenge in bladder cancer treatment. Previous studies have shown that transient receptor potential vanilloid 1 (TRPV1) acts as a tumor suppressor through inducing apoptosis in bladder cancer cells. However, whether activation of TRPV1 has any synergistic effects with pirarubicin (THP), one of main drugs used in urinary bladder instillation chemotherapy to improve chemotherapeutic efficacy has remained elusive. The present study verified that TRPV1 was differentially expressed in bladder cancer cell lines. Furthermore, activation of TRPV1 by capsaicin was shown to induce growth inhibition of 5637 cells in which TRPV1 was highly expressed, while the growth of T24 cells, which express TRPV1 at low levels, was not affected. In addition, the present study demonstrated that activation of TRPV1 enhanced the anti‑proliferative effects of pirarubicin using an MTT assay and cell cycle analysis. Finally, immunofluorescent microscopy revealed that activation of TRPV1 prevented the translocation of proliferating cell nuclear antigen to the nucleus. This phenomenon was reversed by pre‑treatment with capsazepine, a specific TRPV1 antagonist. In conclusion, the present study confirmed the anti‑tumor activity of TRPV1 against bladder cancer. Activation of TRPV1 may be applied as a novel strategy to treat bladder cancer or enhance the therapeutic efficacy of traditional chemotherapeutic drugs.

  4. Sodium tanshinone IIA silate inhibits high glucose-induced vascular smooth muscle cell proliferation and migration through activation of AMP-activated protein kinase.

    Directory of Open Access Journals (Sweden)

    Wen-yu Wu

    Full Text Available The proliferation of vascular smooth muscle cells may perform a crucial role in the pathogenesis of diabetic vascular disease. AMPK additionally exerts several salutary effects on vascular function and improves vascular abnormalities. The current study sought to determine whether sodium tanshinone IIA silate (STS has an inhibitory effect on vascular smooth muscle cell (VSMC proliferation and migration under high glucose conditions mimicking diabetes without dyslipidemia, and establish the underlying mechanism. In this study, STS promoted the phosphorylation of AMP-activated protein kinase (AMPK at T172 in VSMCs. VSMC proliferation was enhanced under high glucose (25 mM glucose, HG versus normal glucose conditions (5.5 mM glucose, NG, and this increase was inhibited significantly by STS treatment. We utilized western blotting analysis to evaluate the effects of STS on cell-cycle regulatory proteins and found that STS increased the expression of p53 and the Cdk inhibitor, p21, subsequent decreased the expression of cell cycle-associated protein, cyclin D1. We further observed that STS arrested cell cycle progression at the G0/G1 phase. Additionally, expression and enzymatic activity of MMP-2, translocation of NF-κB, as well as VSMC migration were suppressed in the presence of STS. Notably, Compound C (CC, a specific inhibitor of AMPK, as well as AMPK siRNA blocked STS-mediated inhibition of VSMC proliferation and migration. We further evaluated its potential for activating AMPK in aortas in animal models of type 2 diabetes and found that Oral administration of STS for 10 days resulted in activation of AMPK in aortas from ob/ob or db/db mice. In conclusion, STS inhibits high glucose-induced VSMC proliferation and migration, possibly through AMPK activation. The growth suppression effect may be attributable to activation of AMPK-p53-p21 signaling, and the inhibitory effect on migration to the AMPK/NF-κB signaling axis.

  5. Arg-gly-asp-mannose-6-phosphate inhibits activation and proliferation of hepatic stellate cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Lian-Sheng Wang; Ying-Wei Chen; Ding-Guo Li; Han-Ming Lu

    2006-01-01

    AIM: To investigate the effect of arg-gly-asp-mannose-6phosphate (RGD-M6P) on the activation and proliferation of primary hepatic stellate cells in vitro.METHODS: Hepatic stellate cells (HSCs) were isolated from rats by in situ collagenase perfusion of liver and 18% Nycodenz gradient centrifugation and cultured on uncoated plastic plates for 24 h with DMEM containing 10% fetal bovine serum (FBS/DMEM) before the culture medium was substituted with 2% FBS/DMEM for another 24 h. Then, HSCs were cultured in 2% FBS/DMEM with transforming growth factor β1, M6P, RGD, or RGD-M6P, respectively. Cell morphology was observed under inverted microscope, smooth muscle α-actin (α-SMA)was detected by immunocytochemistry, type Ⅲprocollagen (PCⅢ) in supernatant was determined by radioimmunoassay, and the proliferation rate of HSCs was assessed by flow cytometry.RESULTS: RGD-M6P significantly inhibited the morphological transformation and the α-SMA and PC Ⅲ expressions of HSCs in vitro and also dramatically prevented the proliferation of HSCs in vitro. Such effects were remarkably different from those of RGD or M6P.CONCLUSION: The new compound, RGD-M6P, which has a dramatic effect on primary cultured HSCs in vitro, can inhibit the transformation of HSCs in culture caused by TGFβ1, suppresses the expression of PCⅢand decreases proliferation rate of HSC. RGD-M6P can be applied as a selective drug carrier targeting at HSCs,which may be a new approach to the prevention and treatment of liver fibrosis.

  6. Sodium arsenite-induced inhibition of cell proliferation is related to inhibition of IL-2 mRNA expression in mouse activated T cells

    Energy Technology Data Exchange (ETDEWEB)

    Conde, Patricia; Acosta-Saavedra, Leonor C.; Calderon-Aranda, Emma S. [Centro de Investigacion y de Estudios Avanzados, CINVESTAV, Seccion Toxicologia, P.O. Box 14-740, Mexico, D.F. (Mexico); Goytia-Acevedo, Raquel C. [Universidad Juarez del Estado de Durango, Facultad de Medicina, Gomez Palacio, Durango (Mexico)

    2007-04-15

    A proposed mechanism for the As-induced inhibition of cell proliferation is the inhibition of IL-2 secretion. However, the effects of arsenite on IL-2 mRNA expression or on the ERK pathway in activated-T cells have not yet been described. We examined the effect of arsenite on IL-2 mRNA expression, cell activation and proliferation in PHA-stimulated murine lymphocytes. Arsenite (1 and 10 {mu}M) decreased IL-2 mRNA expression, IL-2 secretion and cell proliferation. Arsenite (10 {mu}M) strongly inhibited ERK-phosphorylation. However, the partial inhibition (50%) of IL-2 mRNA produced by 1 {mu}M, consistent with the effects on IL-2 secretion and cell proliferation, could not be explained by the inhibition of ERK-phosphorylation, which was not affected at this concentration. The inhibition of IL-2 mRNA expression caused by 1 {mu}M could be associated to effects on pathways located downstream or parallel to ERK. Arsenite also decreased early activation (surface CD69{sup +} expression) in both CD4{sup +} and CD8{sup +}, and decreased total CD8{sup +} count without significantly affecting CD4{sup +}, supporting that the cellular immune response mediated by cytotoxic T cells is an arsenic target. Thus, our results suggest that arsenite decreases IL-2 mRNA levels and T-cell activation and proliferation. However, further studies on the effects of arsenite on IL-2 gene transcription and IL-2 mRNA stability are needed. (orig.)

  7. Intermediate-Conductance-Ca2-Activated K Channel Intermediate-Conductance Calcium-Activated Potassium Channel (IKCa1) is Upregulated and Promotes Cell Proliferation in Cervical Cancer

    Science.gov (United States)

    Liu, Ling; Zhan, Ping; Nie, Dan; Fan, Lingye; Lin, Hairui; Gao, Lanyang; Mao, Xiguang

    2017-01-01

    Background Accumulating data point to intermediate-conductance calcium-activated potassium channel (IKCa1) as a key player in controlling cell cycle progression and proliferation of human cancer cells. However, the role that IKCa1 plays in the growth of human cervical cancer cells is largely unexplored. Material/Methods In this study, Western blot analysis, immunohistochemical staining, and RT-PCR were first used for IKCa1protein and gene expression assays in cervical cancer tissues and HeLa cells. Then, IKCa1 channel blocker and siRNA were employed to inhibit the functionality of IKCa1 and downregulate gene expression in HeLa cells, respectively. After these treatments, we examined the level of cell proliferation by MTT method and measured IKCa1 currents by conventional whole-cell patch clamp technique. Cell apoptosis was assessed using the Annexin V-FITC/Propidium Iodide (PI) double-staining apoptosis detection kit. Results We demonstrated that IKCa1 mRNA and protein are preferentially expressed in cervical cancer tissues and HeLa cells. We also showed that the IKCa1 channel blocker, clotrimazole, and IKCa1 channel siRNA can be used to suppress cervical cancer cell proliferation and decrease IKCa1 channel current. IKCa1 downregulation by specific siRNAs induced a significant increase in the proportion of apoptotic cells in HeLa cells. Conclusions IKCa1 is overexpressed in cervical cancer tissues, and IKCa1 upregulation in cervical cancer cell linea enhances cell proliferation, partly by reducing the proportion of apoptotic cells. PMID:28280257

  8. REX-1 expression and p38 MAPK activation status can determine proliferation/differentiation fates in human mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Dilli Ram Bhandari

    Full Text Available BACKGROUND: REX1/ZFP42 is a well-known embryonic stem cell (ESC marker. However, the role of REX1, itself, is relatively unknown because the function of REX1 has only been reported in the differentiation of ESCs via STAT signaling pathways. Human mesenchymal stem cells (hMSCs isolated from young tissues and cancer cells express REX1. METHODOLOGY/PRINCIPAL FINDING: Human umbilical cord blood-derived MSCs (hUCB-MSCs and adipose tissue-derived MSCs (hAD-MSCs strongly express REX1 and have a lower activation status of p38 MAPK, but bone marrow-derived MSCs (hBM-MSCs have weak REX1 expression and higher activation of p38 MAPK. These results indicated that REX1 expression in hMSCs was positively correlated with proliferation rates but inversely correlated with the phosphorylation of p38 MAPK. In hUCB-MSCs, the roles of REX1 and p38 MAPK were investigated, and a knockdown study was performed using a lentiviral vector-based small hairpin RNA (shRNA. After REX1 knockdown, decreased cell proliferation was observed. In REX1 knocked-down hUCB-MSCs, the osteogenic differentiation ability deteriorated, but the adipogenic potential increased or was similar to that observed in the controls. The phosphorylation of p38 MAPK in hUCB-MSCs significantly increased after REX1 knockdown. After p38 MAPK inhibitor treatment, the cell growth in REX1 knocked-down hUCB-MSCs almost recovered, and the suppressed expression levels of CDK2 and CCND1 were also restored. The expression of MKK3, an upstream regulator of p38 MAPK, significantly increased in REX1 knocked-down hUCB-MSCs. The direct binding of REX1 to the MKK3 gene was confirmed by a chromatin immunoprecipitation (ChIP assay. CONCLUSIONS/SIGNIFICANCE: These findings showed that REX1 regulates the proliferation/differentiation of hMSCs through the suppression of p38 MAPK signaling via the direct suppression of MKK3. Therefore, p38 MAPK and REX-1 status can determine the cell fate of adult stem cells (ASCs. These

  9. IL-7-Induced Proliferation of Human Naive CD4 T-Cells Relies on Continued Thymic Activity

    Science.gov (United States)

    Silva, Susana L.; Albuquerque, Adriana S.; Matoso, Paula; Charmeteau-de-Muylder, Bénédicte; Cheynier, Rémi; Ligeiro, Dário; Abecasis, Miguel; Anjos, Rui; Barata, João T.; Victorino, Rui M. M.; Sousa, Ana E.

    2017-01-01

    Naive CD4 T-cell maintenance is critical for immune competence. We investigated here the fine-tuning of homeostatic mechanisms of the naive compartment to counteract the loss of de novo CD4 T-cell generation. Adults thymectomized in early childhood during corrective cardiac surgery were grouped based on presence or absence of thymopoiesis and compared with age-matched controls. We found that the preservation of the CD31− subset was independent of the thymus and that its size is tightly controlled by peripheral mechanisms, including prolonged cell survival as attested by Bcl-2 levels. Conversely, a significant contraction of the CD31+ naive subset was observed in the absence of thymic activity. This was associated with impaired responses of purified naive CD4 T-cells to IL-7, namely, in vitro proliferation and upregulation of CD31 expression, which likely potentiated the decline in recent thymic emigrants. Additionally, we found no apparent constraint in the differentiation of naive cells into the memory compartment in individuals completely lacking thymic activity despite upregulation of DUSP6, a phosphatase associated with increased TCR threshold. Of note, thymectomized individuals featuring some degree of thymopoiesis were able to preserve the size and diversity of the naive CD4 compartment, further arguing against complete thymectomy in infancy. Overall, our data suggest that robust peripheral mechanisms ensure the homeostasis of CD31− naive CD4 pool and point to the requirement of continuous thymic activity to the maintenance of IL-7-driven homeostatic proliferation of CD31+ naive CD4 T-cells, which is essential to secure T-cell diversity throughout life. PMID:28154568

  10. Matrine reduces the proliferation and invasion of colorectal cancer cells via reducing the activity of p38 signaling pathway.

    Science.gov (United States)

    Ren, Hongtao; Zhang, Shuqun; Ma, Hongbing; Wang, Yali; Liu, Di; Wang, Xijing; Wang, Zhongwei

    2014-12-01

    Matrine has been used in anti-inflammatory and anti-cancer therapies for a long time. However, the anti-metastatic effect and related mechanism(s) in colorectal cancer (CRC) are still unclear. In this study, we investigated whether the administration of matrine could inhibit the proliferation, motility, and invasion of human CRC cells via regulating p38 signaling pathway. Results showed that matrine inhibited migration and invasion of CRC cells in vitro and in vivo. Additionally, after being treated with matrine for 24 h, the expression levels of matrix metalloproteinase-2 (MMP-2) and MMP-9 as well as proteinase activity in CRC cells were reduced in a dose-dependent manner. Moreover, matrine reduced the phosphorylation level of p38 obviously. Combined treatment with p38 inhibitor (SB203580) and matrine resulted in a synergistic reduction of invasion as well as MMP-2/-9 expression in CRC cells. It was also found that matrine inhibited the proliferation and metastasis of CRC tumor in vivo. In conclusion, p38 signaling pathway may involve in matrine's inhibitory effects on migration and invasion of CRC cells by reducing the expression of MMP-2/-9, suggesting that matrine may be a potential therapeutic agent for CRC.

  11. Statins induce immunosuppressive effect on heterotopic limb allografts in rat through inhibiting T cell activation and proliferation.

    Science.gov (United States)

    Nie, Chunlei; Yang, Daping; Liu, Guofeng; Dong, Deli; Ma, Zhiqiang; Fu, Hailiang; Zhao, Zhengyu; Sun, Zhiyong

    2009-01-05

    Long-term use of immunosuppressive agents could bring many side effects. Recently, 3-Hydroxy-3-methyl-gutaryl coenzyme A reductase inhibitors (statins) have been reported to be immunomodulatory besides lowering serum cholesterol level. The aim of this study was to investigate the effects of statins on composite tissue allografts and T lymphocyte in vivo and in vitro. Rats were divided into 5 groups: syngeneic transplantation group (Lewis-Lewis); allogeneic control group (Brown Norway-Lewis, no treatment); low-dose statins group (15 mg /kg); high-dose statins group (30 mg /kg) and cyclosporin A group. In vivo, treatment of statins significantly prolonged allografts survival as compared to control group. Histological findings further supported these clinical results and demonstrated less extent of rejection. Immunohistochemical analysis showed that there was a remarkably reduced T cells infiltration in statins groups. Moreover, the serum levels of IL-2 and IFN-gamma were decreased after statins therapy, while these in control group increased significantly. Meanwhile, transcriptional activities of IL-2 and IFN-gamma were also dramatically down-regulated after statins treatment. In vitro, mixed lymphocyte reaction assay was performed and the results revealed lymphocyte proliferation was inhibited by statins in a dose-dependent manner. Furthermore, administration of statins exhibited inhibitory effects on CD3/CD28 mediated T cell activation and proliferation. Besides, the results demonstrated that statins significantly down-regulated mRNA expression and suppress cytokine production of IL-2 and IFN-gamma in vitro. In conclusion, our data demonstrated that application of statins could induce immunosuppressive effect and prolong allografts survival through inhibiting activation and proliferation of T cell and reducing production of IL-2 and IFN-gamma.

  12. Aspirin-induced AMP-activated protein kinase activation regulates the proliferation of vascular smooth muscle cells from spontaneously hypertensive rats

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Jin Young [Department of Pharmacology, College of Medicine, Yeungnam University, Daegu 705-717 (Korea, Republic of); Choi, Hyoung Chul, E-mail: hcchoi@med.yu.ac.kr [Department of Pharmacology, College of Medicine, Yeungnam University, Daegu 705-717 (Korea, Republic of)

    2011-05-06

    Highlights: {yields} Aspirin-induced AMPK phosphorylation was greater in VSMC from SHR than WKY. {yields} Aspirin-induced AMPK phosphorylation inhibited proliferation of VSMC from SHR. {yields} Low basal AMPK phosphorylation in SHR elicits increased VSMC proliferation. {yields} Inhibition of AMPK restored decreased VSMC proliferation by aspirin in SHR. {yields} Aspirin exerts anti-proliferative effect through AMPK activation in VSMC from SHR. -- Abstract: Acetylsalicylic acid (aspirin), used to reduce risk of cardiovascular disease, plays an important role in the regulation of cellular proliferation. However, mechanisms responsible for aspirin-induced growth inhibition are not fully understood. Here, we investigated whether aspirin may exert therapeutic effects via AMP-activated protein kinase (AMPK) activation in vascular smooth muscle cells (VSMC) from wistar kyoto rats (WKY) and spontaneously hypertensive rats (SHR). Aspirin increased AMPK and acetyl-CoA carboxylase phosphorylation in a time- and dose-dependent manner in VSMCs from WKY and SHR, but with greater efficacy in SHR. In SHR, a low basal phosphorylation status of AMPK resulted in increased VSMC proliferation and aspirin-induced AMPK phosphorylation inhibited proliferation of VSMCs. Compound C, an AMPK inhibitor, and AMPK siRNA reduced the aspirin-mediated inhibition of VSMC proliferation, this effect was more pronounced in SHR than in WKY. In VSMCs from SHR, aspirin increased p53 and p21 expression and inhibited the expression of cell cycle associated proteins, such as p-Rb, cyclin D, and cyclin E. These results indicate that in SHR VSMCs aspirin exerts anti-proliferative effects through the induction of AMPK phosphorylation.

  13. The splicing activator DAZAP1 integrates splicing control into MEK/Erk-regulated cell proliferation and migration

    Science.gov (United States)

    Choudhury, Rajarshi; Roy, Sreerupa Ghose; Tsai, Yihsuan S.; Tripathy, Ashutosh; Graves, Lee M.; Wang, Zefeng

    2014-01-01

    Alternative splicing of pre-messenger RNA (mRNA) is a critical stage of gene regulation in response to environmental stimuli. Here we show that DAZAP1, an RNA-binding protein involved in mammalian development and spermatogenesis, promotes inclusion of weak exons through specific recognition of diverse cis-elements. The carboxy-terminal proline-rich domain of DAZAP1 interacts with and neutralizes general splicing inhibitors, and is sufficient to activate splicing when recruited to pre-mRNA. This domain is phosphorylated by the MEK/Erk (extracellular signal-regulated protein kinase) pathway and this modification is essential for the splicing regulatory activity and the nuclear/cytoplasmic translocation of DAZAP1. Using mRNA-seq, we identify endogenous splicing events regulated by DAZAP1, many of which are involved in maintaining cell growth. Knockdown or over-expression of DAZAP1 causes a cell proliferation defect. Taken together, these studies reveal a molecular mechanism that integrates splicing control into MEK/Erk-regulated cell proliferation.

  14. Astaxanthin ameliorates lung fibrosis in vivo and in vitro by preventing transdifferentiation, inhibiting proliferation, and promoting apoptosis of activated cells.

    Science.gov (United States)

    Wang, Meirong; Zhang, Jinjin; Song, Xiaodong; Liu, Wenbo; Zhang, Lixia; Wang, Xiuwen; Lv, Changjun

    2013-06-01

    Astaxanthin, a member of the carotenoid family, is the only known ketocarotenoid transported into the brain by transcytosis through the blood-brain barrier. However, whether astaxanthin has antifibrotic functions is unknown. In this study, we investigated the effects of astaxanthin on transforming growth factor β1-mediated and bleomycin-induced pulmonary fibrosis in vitro and in vivo. The results showed that astaxanthin significantly improved the structure of the alveoli and alleviated collagen deposition in vivo. Compared with the control group, the astaxanthin-treated groups exhibited downregulated protein expressions of α-smooth muscle actin, vimentin, hydroxyproline, and B cell lymphoma/leukemia-2 as well as upregulated protein expressions of E-cadherin and p53 in vitro and in vivo. Astaxanthin also inhibited the proliferation of activated A549 and MRC-5 cells at median inhibitory concentrations of 40 and 30 μM, respectively. In conclusion, astaxanthin could relieve the symptoms and halt the progression of pulmonary fibrosis, partly by preventing transdifferentiation, inhibiting proliferation, and promoting apoptosis of activated cells.

  15. Peroxisome proliferator-activated receptor gamma B cell-specific deficient mice have an impaired antibody response1

    Science.gov (United States)

    Ramon, Sesquile; Bancos, Simona; Thatcher, Thomas H.; Murant, Thomas I.; Moshkani, Safiehkhatoon; Sahler, Julie M.; Bottaro, Andrea; Sime, Patricia J.; Phipps, Richard P.

    2012-01-01

    Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily. PPARγ, a ligand activated transcription factor, has important anti-inflammatory and anti-proliferative functions and it has been associated with diseases including diabetes, scarring and atherosclerosis among others. PPARγ is expressed in most bone marrow derived cells and influences their function. PPARγ ligands can stimulate human B cell differentiation and promote antibody production. A knowledge gap is that the role of PPARγ in B cells under physiological conditions is not known. We developed a new B cell-specific PPARγ (B-PPARγ) knockout mouse and explored the role of PPARγ during both the primary and secondary immune response. Here, we show that PPARγ deficiency in B cells decreases germinal center B cells and plasma cell development as well as the levels of circulating antigen-specific antibodies during a primary challenge. Inability to generate germinal center B cells and plasma cells is correlated to decreased MHC class II expression and decreased Bcl-6 and Blimp-1 levels. Furthermore, B-PPARγ-deficient mice have an impaired memory response, characterized by low titers of antigen-specific antibodies and low numbers of antigen-experienced antibody-secreting cells. However, B-PPARγ-deficient mice have no differences in B cell population distribution within neither primary nor secondary lymphoid organs during development. This is the first report to show under physiological conditions that PPARγ expression in B cells is required for an efficient B cell-mediated immune response as it regulates B cell differentiation and antibody production. PMID:23041568

  16. Peroxisome proliferator-activated receptor γ B cell-specific-deficient mice have an impaired antibody response.

    Science.gov (United States)

    Ramon, Sesquile; Bancos, Simona; Thatcher, Thomas H; Murant, Thomas I; Moshkani, Safiehkhatoon; Sahler, Julie M; Bottaro, Andrea; Sime, Patricia J; Phipps, Richard P

    2012-11-15

    Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor superfamily. PPARγ, a ligand-activated transcription factor, has important anti-inflammatory and antiproliferative functions, and it has been associated with diseases including diabetes, scarring, and atherosclerosis, among others. PPARγ is expressed in most bone marrow-derived cells and influences their function. PPARγ ligands can stimulate human B cell differentiation and promote Ab production. A knowledge gap is that the role of PPARγ in B cells under physiological conditions is not known. We developed a new B cell-specific PPARγ (B-PPARγ) knockout mouse and explored the role of PPARγ during both the primary and secondary immune response. In this article, we show that PPARγ deficiency in B cells decreases germinal center B cells and plasma cell development, as well as the levels of circulating Ag-specific Abs during a primary challenge. Inability to generate germinal center B cells and plasma cells is correlated to decreased MHC class II expression and decreased Bcl-6 and Blimp-1 levels. Furthermore, B-PPARγ-deficient mice have an impaired memory response, characterized by low titers of Ag-specific Abs and low numbers of Ag-experienced, Ab-secreting cells. However, B-PPARγ-deficient mice have no differences in B cell population distribution within primary or secondary lymphoid organs during development. This is the first report, to our knowledge, to show that, under physiological conditions, PPARγ expression in B cells is required for an efficient B cell-mediated immune response as it regulates B cell differentiation and Ab production.

  17. Neural stem cell activation and glial proliferation in the hippocampal CA3 region of posttraumatic epileptic rats

    Institute of Scientific and Technical Information of China (English)

    Yuanxiang Lin; Kun Lin; Dezhi Kang; Feng Wang

    2011-01-01

    The present study observed the dynamic expression of CD133, nuclear factor-κB and glial fibrillary acidic protein in the hippocampal CA3 area of the experimental posttraumatic epilepsy rats to investigate whether gliosis occurs after posttraumatic epilepsy. CD133 and nuclear factor-κB expression was increased at 1 day after posttraumatic epilepsy, peaked at 7 days, and gradually decreased up to 14 days, as seen by double-immunohistochemical staining. Glial fibrillary acidic protein/nuclear factor-κB double-labeled cells increased with time and peaked at 14 days after posttraumatic epilepsy. Results show that activation of hippocampal neural stem cells and glial proliferation after posttraumatic epilepsy-induced oxidative stress increases hippocampal glial cell density.

  18. A combination of biomolecules enhances expression of E-cadherin and peroxisome proliferator-activated receptor gene leading to increased cell proliferation in primary human meniscal cells: an in vitro study.

    Science.gov (United States)

    Pillai, Mamatha M; Elakkiya, V; Gopinathan, J; Sabarinath, C; Shanthakumari, S; Sahanand, K Santosh; Dinakar Rai, B K; Bhattacharyya, Amitava; Selvakumar, R

    2016-10-01

    The present study investigates the impact of biomolecules (biotin, glucose, chondroitin sulphate, proline) as supplement, (individual and in combination) on primary human meniscus cell proliferation. Primary human meniscus cells isolated from patients undergoing meniscectomy were maintained in Dulbecco's Modified Eagle's Medium (DMEM). The isolated cells were treated with above mentioned biomolecules as individual (0-100 µg/ml) and in combinations, as a supplement to DMEM. Based on the individual biomolecule study, a unique combination of biomolecules (UCM) was finalized using one way ANOVA analysis. With the addition of UCM as supplement to DMEM, meniscal cells reached 100 % confluency within 4 days in 60 mm culture plate; whereas the cells in medium devoid of UCM, required 36 days for reaching confluency. The impact of UCM on cell viability, doubling time, histology, gene expression, biomarkers expression, extra cellular matrix synthesis, meniscus cell proliferation with respect to passages and donor's age were investigated. The gene expression studies for E-cadherin and peroxisome proliferator-activated receptor (PPAR∆) using RT-qPCR and immunohistochemical analysis for Ki67, CD34 and Vimentin confirmed that UCM has significant impact on cell proliferation. The extracellular collagen and glycosaminoglycan secretion in cells supplemented with UCM were found to increase by 31 and 37 fold respectively, when compared to control on the 4th day. The cell doubling time was reduced significantly when supplemented with UCM. The addition of UCM showed positive influence on different passages and age groups. Hence, this optimized UCM can be used as an effective supplement for meniscal tissue engineering.

  19. FoxP3 inhibits proliferation and induces apoptosis of gastric cancer cells by activating the apoptotic signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Gui-Fen [Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai (China); Chen, Shi-Yao, E-mail: shiyao_chen@163.com [Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai (China); Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai (China); Sun, Zhi-Rong [Department of Anesthesiology, Cancer Center, Fudan University, Shanghai (China); Miao, Qing; Liu, Yi-Mei; Zeng, Xiao-Qing; Luo, Tian-Cheng [Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai (China); Ma, Li-Li; Lian, Jing-Jing [Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai (China); Song, Dong-Li [Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai (China)

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer The article revealed FoxP3 gene function in gastric cancer firstly. Black-Right-Pointing-Pointer Present the novel roles of FoxP3 in inhibiting proliferation and promoting apoptosis in gastric cancer cells. Black-Right-Pointing-Pointer Overexpression of FoxP3 increased proapoptotic molecules and repressed antiapoptotic molecules. Black-Right-Pointing-Pointer Silencing of FoxP3 reduced the expression of proapoptotic genes, such as PARP, caspase-3 and caspase-9. Black-Right-Pointing-Pointer FoxP3 is sufficient for activating the apoptotic signaling pathway. -- Abstract: Forkhead Box Protein 3 (FoxP3) was identified as a key transcription factor to the occurring and function of the regulatory T cells (Tregs). However, limited evidence indicated its function in tumor cells. To elucidate the precise roles and underlying molecular mechanism of FoxP3 in gastric cancer (GC), we examined the expression of FoxP3 and the consequences of interfering with FoxP3 gene in human GC cell lines, AGS and MKN45, by multiple cellular and molecular approaches, such as immunofluorescence, gene transfection, CCK-8 assay, clone formation assay, TUNEL assay, Flow cytometry, immunoassay and quantities polymerase chain reaction (PCR). As a result, FoxP3 was expressed both in nucleus and cytoplasm of GC cells. Up-regulation of FoxP3 inhibited cell proliferation and promoted cell apoptosis. Overexpression of FoxP3 increased the protein and mRNA levels of proapoptotic molecules, such as poly ADP-ribose polymerase1 (PARP), caspase-3 and caspase-9, and repressed the expression of antiapoptotic molecules, such as cellular inhibitor of apoptosis-1 (c-IAP1) and the long isoform of B cell leukemia/lymphoma-2 (Bcl-2). Furthermore, silencing of FoxP3 by siRNA in GC cells reduced the expression of proapoptotic genes, such as PARP, caspase-3 and caspase-9. Collectively, our findings identify the novel roles of FoxP3 in inhibiting proliferation and inducing apoptosis

  20. Ataxia-telangiectasia group D complementing gene (ATDC promotes lung cancer cell proliferation by activating NF-κB pathway.

    Directory of Open Access Journals (Sweden)

    Zhong-Ping Tang

    Full Text Available Previous studies suggested Ataxia-telangiectasia group D complementing gene (ATDC as an oncogene in many types of cancer. However, its expression and biological functions in non-small cell lung cancer (NSCLC remain unclear. Herein, we investigated its expression pattern in 109 cases of human NSCLC samples by immunohistochemistry and found that ATDC was overexpressed in 62 of 109 NSCLC samples (56.88%. ATDC overexpression correlated with histological type (p<0.0001, tumor status (p = 0.0227 and histological differentiation (p = 0.0002. Next, we overexpressed ATDC in normal human bronchial epithelial cell line HBE and depleted its expression in NSCLC cell lines A549 and H1299. MTT and colony formation assay showed that ATDC overexpression promoted cell proliferation while its depletion inhibited cell growth. Furthermore, cell cycle analysis showed that ATDC overexpression decreased the percentage of cells in G1 phase and increased the percentage of cells in S phase, while ATDC siRNA treatment increased the G1 phase percentage and decreased the S phase percentage. Further study revealed that ATDC overexpression could up-regulate cyclin D1 and c-Myc expression in HBE cells while its depletion down-regulated cyclin D1 and c-Myc expression in A549 and H1299 cells. In addition, ATDC overexpression was also associated with an increased proliferation index, cyclin D1 and c-Myc expression in human NSCLC samples. Further experiments demonstrated that ATDC up-regulated cyclin D1 and c-Myc expression independent of wnt/β-catenin or p53 signaling pathway. Interestingly, ATDC overexpression increased NF-κB reporter luciferase activity and p-IκB protein level. Correspondingly, NF-κB inhibitor blocked the effect of ATDC on up-regulation of cyclin D1 and c-Myc. In conclusion, we demonstrated that ATDC could promote lung cancer proliferation through NF-κB induced up-regulation of cyclin D1 and c-Myc.

  1. Increases in c-Yes expression level and activity promote motility but not proliferation of human colorectal carcinoma cells.

    Science.gov (United States)

    Barraclough, Jane; Hodgkinson, Cassandra; Hogg, Alison; Dive, Caroline; Welman, Arkadiusz

    2007-09-01

    Increases in the levels and/or activity of nonreceptor tyrosine kinases c-Src and c-Yes are often associated with colorectal carcinogenesis. The physiological consequences of increased c-Yes activity during the early and late stages of tumorigenesis, in addition to the degree of redundancy between c-Yes and c-Src in colorectal cancer cells, remain elusive. To study the consequences of increases in c-Yes levels and activity in later stages of colorectal carcinogenesis, we developed human colorectal cancer cell lines in which c-Yes levels and activity can be inducibly increased by a tightly controlled expression of wild-type c-Yes or by constitutively active mutants of c-Yes, c-YesY537F, and c-Yes Delta t6aa. c-Yes induction resulted in increased cell motility but did not promote proliferation either in vitro or in vivo. These results suggest that in later stages of colorectal carcinogenesis, elevations in c-Yes levels/activity may promote cancer spread and metastasis rather than tumor growth.

  2. A noncognate interaction with anti-receptor antibody-activated helper T cells induces small resting murine B cells to proliferate and to secrete antibody

    DEFF Research Database (Denmark)

    Owens, T

    1988-01-01

    on resting B cells (even in the presence of intact F23.1 antibody), but could induce antibody secretion by anti-Ig-preactivated B cells. Both F23.1+ clones (E9.D4 and 4.35F2) and one F23.1- clone (D2.2) could synergize with supernatants from activated E9.D4 T cells to induce B cell activation. F(ab')2......Culture of small resting allogeneic B cells (of an irrelevant haplotype) with two clones of T helper (Th) cells that were activated by the F23.1 anti-T cell receptor antibody led to the activation of B cells to proliferate and to secrete antibody. Th cell supernatants by themselves had no effect...... fragments of F23.1 induced E9.D4 to activate B cells as efficiently as intact F23.1 and B cell populations that had been incubated with F23.1 were not activated when cultured with E9.D4, although T cells recognized cell-presented F23.1 and were weakly activated. Reduction of the density of F23.1 adsorbed...

  3. BRAF activated non-coding RNA (BANCR) promoting gastric cancer cells proliferation via regulation of NF-κB1

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhi-Xin; Liu, Zhi-Qiang; Jiang, Biao; Lu, Xin-Yang; Ning, Xiao-Fei [Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining 272029 (China); Yuan, Chuan-Tao [Department of Pathology, Affiliated Hospital of Jining Medical University, Jining 272029 (China); Wang, Ai-Liang, E-mail: wang_ailiang@126.com [Department of Gastrointestinal Surgery, Affiliated Hospital of Jining Medical University, Jining 272029 (China)

    2015-09-18

    Background and objective: Long non-coding RNA, BANCR, has been demonstrated to contribute to the proliferation and migration of tumors. However, its molecular mechanism underlying gastric cancer is still unknown. In present study, we investigated whether BANCR was involved in the development of gastric cancer cells via regulation of NF-κB1. Methods: Human gastric cancer tissues were isolated as well as human gastric cell lines MGC803 and BGC823 were cultured to investigate the role of BANCR in gastric cancer. Results: BANCR expression was significantly up-regulated in gastric tumor tissues and gastric cell lines. Down-regulation of BANCR inhibited gastric cancer cell growth and promoted cell apoptosis, and it also contributed to a significant decrease of NF-κB1 (P50/105) expression and 3′UTR of NF-κB1 activity. Overexpression of NF-κB1 reversed the effect of BANCR on cancer cell growth and apoptosis. MiroRNA-9 (miR-9) targeted NF-κB1, and miR-9 inhibitor also reversed the effects of BANCR on gastric cancer cell growth and apoptosis. Conclusion: BANCR was highly expressed both in gastric tumor tissues and in cancer cells. NF-κB1 and miR-9 were involved in the role of BANCR in gastric cancer cell growth and apoptosis. - Highlights: • BANCR up-regulated in gastric cancer (GC) tissues and cell lines MGC803 and BGC823. • Down-regulation of BANCR inhibited GC cell growth and promoted cell apoptosis. • Down-regulation of BANCR contributed to decreased 3′UTR of NF-κB1 and its expression. • Overexpressed NF-κB1 reversed the effect of BANCR on GC cell growth. • miR-9 inhibitor reversed the effect of BANCR on cancer GC cell growth.

  4. Regulatory activity of azabisphosphonate-capped dendrimers on human CD4+ T cell proliferation enhances ex-vivo expansion of NK cells from PBMCs for immunotherapy

    Directory of Open Access Journals (Sweden)

    Caminade Anne-Marie

    2009-09-01

    Full Text Available Abstract Background Adoptive cell therapy with allogenic NK cells constitutes a promising approach for the treatment of certain malignancies. Such strategies are currently limited by the requirement of an efficient protocol for NK cell expansion. We have developed a method using synthetic nanosized phosphonate-capped dendrimers allowing such expansion. We are showing here that this is due to a specific inhibitory activity towards CD4+ T cell which could lead to further medical applications of this dendrimer. Methods Mononuclear cells from human peripheral blood were used to investigate the immunomodulatory effects of nanosized phosphonate-capped dendrimers on interleukin-2 driven CD4+T cell expansion. Proliferation status was investigated using flow cytometry analysis of CFSE dilution and PI incorporation experiments. Magnetic bead cell sorting was used to address activity towards individual or mixed cell sub-populations. We performed equilibrium binding assay to assess the interaction of fluorescent dendrimers with pure CD4+ T cells. Results Phosphonate-capped dendrimers are inhibiting the activation, and therefore the proliferation; of CD4+ T cells in IL-2 stimulated PBMCs, without affecting their viability. This allows a rapid enrichment of NK cells and further expansion. We found that dendrimer acts directly on T cells, as their regulatory property is maintained when stimulating purified CD4+ T cells with anti-CD3/CD28 microbeads. Performing equilibrium binding assays using a fluorescent analogue, we show that the phosphonate capped-dendrimers are specifically interacting with purified CD4+ T cells. Ultimately, we found that our protocol prevents the IL-2 related expansion of regulatory T cells that would be deleterious for the activity of infused NK cells. Conclusion High yield expansion of NK cells from human PBMCs by phosphonate-capped dendrimers and IL-2 occurs through the specific inhibition of the CD4+ lymphocyte compartment. Given the

  5. Secreted Stress-Induced Phosphoprotein 1 Activates the ALK2-SMAD Signaling Pathways and Promotes Cell Proliferation of Ovarian Cancer Cells

    Directory of Open Access Journals (Sweden)

    Chia-Lung Tsai

    2012-08-01

    Full Text Available Stress-induced phosphoprotein 1 (STIP1, a cochaperone that organizes other chaperones, heat shock proteins (HSPs, was recently shown to be secreted by human ovarian cancer cells. In neuronal tissues, binding to prion protein was required for STIP1 to activate the ERK (extracellular-regulated MAP kinase signaling pathways. However, we report that STIP1 binding to a bone morphogenetic protein (BMP receptor, ALK2 (activin A receptor, type II-like kinase 2, was necessary and sufficient to stimulate proliferation of ovarian cancer cells. The binding of STIP1 to ALK2 activated the SMAD signaling pathway, leading to transcriptional activation of ID3 (inhibitor of DNA binding 3, promoting cell proliferation. In conclusion, ovarian-cancer-tissue-secreted STIP1 stimulates cancer cell proliferation by binding to ALK2 and activating the SMAD-ID3 signaling pathways. Although animal studies are needed to confirm these mechanisms in vivo, our results may pave the way for developing novel therapeutic strategies for ovarian cancer.

  6. Mesenchymal stem cells suppress fibroblast proliferation and reduce skin fibrosis through a TGF-β3-dependent activation.

    Science.gov (United States)

    Wu, Yan; Peng, Yan; Gao, Dongyun; Feng, Changjiang; Yuan, Xiaohuan; Li, Houzhong; Wang, Ying; Yang, Lan; Huang, Sha; Fu, Xiaobing

    2015-03-01

    Recent studies showed that transplantation of mesenchymal stem cells (MSCs) significantly decreased tissue fibrosis; however, little attention has been paid to its efficacy on attenuating skin fibrosis, and the mechanism involved in its effect is poorly understood. In this work, we investigated the effects of MSCs on keloid fibroblasts and extracellular matrix deposition through paracrine actions and whether the antifibrotic properties of MSCs involved transforming growth factor-β (TGF-β)-dependent activation. In vitro experiments showed that conditioned media (CM) from MSCs decreased viability, a-smooth muscle actin expression, and collagen secretion of human keloid fibroblasts. In addition, TGF-β3 secreted by MSCs was expressed at high level under inflammatory environment, and blocking the activity of TGF-β3 apparently antagonized the suppressive activity of MSC CM, which demonstrated that TGF-β3 played a preponderant role in preventing collagen accumulation. In vivo studies showed that MSC CM infusion in a mouse dermal fibrosis model induced a significant decrease in skin fibrosis. Histological examination of tissue sections and immunohistochemical analysis for α-smooth muscle actin revealed that TGF-β3 of CM-mediated therapeutic effects could obviously attenuate matrix production and myofibroblast proliferation and differentiation. These findings suggest that TGF-β3 mediates the attenuating effect of MSCs on both the proliferation and extracellular matrix production of human keloid fibroblasts and decreases skin fibrosis of mouse model, thus providing new understanding and MSC-based therapeutic strategy for cutaneous scar treatment.

  7. The truncate mutation of Notch2 enhances cell proliferation through activating the NF-κB signal pathway in the diffuse large B-cell lymphomas.

    Directory of Open Access Journals (Sweden)

    Xinxia Zhang

    Full Text Available The Notch2 is a critical membrane receptor for B-cell functions, and also displays various biological roles in lymphoma pathogenesis. In this article, we reported that 3 of 69 (4.3% diffuse large B-cell lymphomas (DLBCLs exhibited a truncate NOTCH2 mutation at the nucleotide 7605 (G/A in the cDNA sequence, which led to partial deletion of the C-terminal of PEST (proline-, glutamic acid-, serine- and threonine-rich domain. The truncate Notch2 activated both the Notch2 and the NF-κB signals and promoted the proliferation of B-cell lymphoma cell lines, including DLBCL and Burkitt's lymphoma cell lines. Moreover, the ectopic proliferation was completely inhibited by ammonium pyrrolidinedithiocarbamate (PDTC, an NF-κB inhibitor. Simultaneously, PDTC also reduced the expression level of Notch2. Based on these results, we conclude that the Notch2 receptor with PEST domain truncation enhances cell proliferation which may be associated with the activation of the Notch2 and the NF-κB signaling. Our results are expected to provide a possible target for new DLBCL therapies by suppressing the Notch2 and the NF-κB signaling.

  8. The large conductance Ca2+ -activated K+ (BKCa channel regulates cell proliferation in SH-SY5Y neuroblastoma cells by activating the staurosporine-sensitive protein kinases

    Directory of Open Access Journals (Sweden)

    Angela eCurci

    2014-12-01

    Full Text Available Here we investigated on the role of the calcium activated K+-channels(BKCa on the regulation of the neuronal viability. Recordings of the K+-channel current were performed using patch-clamp technique in human neuroblastoma cells (SH-SY5Y in parallel with measurements of the cell viability in the absence or presence of the BKCa channel blockers iberiotoxin(IbTX and tetraethylammonium (TEA and the BKCa channel opener NS1619. Protein kinase C/A (PKC, PKA activities in the cell lysate were investigated in the presence/absence of drugs. The whole-cell K+-current showed a slope conductance calculated at negative membrane potentials of 126.3 pS and 1.717 nS(n = 46 following depolarization. The intercept of the I/V curve was -33 mV. IbTX(10-8-4x10-7M reduced the K+-current at +30 mV with an IC50 of 1.85x10-7M and an Imax of -46%(slope=2.198(n =21. NS1619(10-100x10-6M enhanced the K+-current of +141%(n =6, at -10 mV(Vm. TEA(10-5-10-3M reduced the K+-current with an IC50 of 3.54x10-5M and an Imax of -90%(slope=0.95(n =5. A concentration-dependent increase of cell proliferation was observed with TEA showing a maximal proliferative effect(MPE of +38% (10-4M. IbTX showed an MPE of +42% at 10-8M concentration, reducing it at higher concentrations. The MPE of the NS1619(100x10-6M was +42%. The PKC inhibitor staurosporine (0.2-2x10-6M antagonized the proliferative actions of IbTX and TEA. IbTX (10x10-9M, TEA (100x10-6M and the NS1619 significantly enhanced the PKC and PKA activities in the cell lysate with respect to the controls. These results suggest that BKCa channel regulates proliferation of the SH-SY5Y cells through PKC and PKA protein kinases.

  9. Differential TOR activation and cell proliferation in Arabidopsis root and shoot apexes

    Science.gov (United States)

    Li, Xiaojuan; Cai, Wenguo; Liu, Yanlin; Li, Hui; Fu, Liwen; Liu, Zengyu; Liu, Hongtao; Xu, Tongda; Xiong, Yan

    2017-01-01

    The developmental plasticity of plants relies on the remarkable ability of the meristems to integrate nutrient and energy availability with environmental signals. Meristems in root and shoot apexes share highly similar molecular players but are spatially separated by soil. Whether and how these two meristematic tissues have differential activation requirements for local nutrient, hormone, and environmental cues (e.g., light) remain enigmatic in photosynthetic plants. Here, we report that the activation of root and shoot apexes relies on distinct glucose and light signals. Glucose energy signaling is sufficient to activate target of rapamycin (TOR) kinase in root apexes. In contrast, both the glucose and light signals are required for TOR activation in shoot apexes. Strikingly, exogenously applied auxin is able to replace light to activate TOR in shoot apexes and promote true leaf development. A relatively low concentration of auxin in the shoot and high concentration of auxin in the root might be responsible for this distinctive light requirement in root and shoot apexes, because light is required to promote auxin biosynthesis in the shoot. Furthermore, we reveal that the small GTPase Rho-related protein 2 (ROP2) transduces light-auxin signal to activate TOR by direct interaction, which, in turn, promotes transcription factors E2Fa,b for activating cell cycle genes in shoot apexes. Consistently, constitutively activated ROP2 plants stimulate TOR in the shoot apex and cause true leaf development even without light. Together, our findings establish a pivotal hub role of TOR signaling in integrating different environmental signals to regulate distinct developmental transition and growth in the shoot and root. PMID:28223530

  10. Proliferation of renal mesangial cells induced by very low density lipoprotein is mediated by p42/44 mitogen activated protein kinase

    Institute of Scientific and Technical Information of China (English)

    YU Guo-qing; YUAN Wei-jie; CUI Ruo-lan; FU Peng

    2010-01-01

    Background The plasma concentration of very low density lipoprotein (VLDL) is negatively correlated to renal function in glomerular diseases. Effects of VLDL on renal function have been partially attributed to the proliferation of mesangial cells. This study examined the potential role of the p42/44 mitogen activated protein kinase (MAPK) in mesangial cell proliferation induced by VLDL.Methods Mesangial cells were treated with VLDL at different concentrations or for different time. The cell cycle of the mesangial cells was analyzed by XTi assay and flow-cytometry; MAPK activity was also assayed. In some experiments,cells were treated with VLDL together with or without 0.1 μmol/L PD 98059.Results Ten to 500 μg/ml VLDL stimulated the proliferation of mesangial cells cultured in vitro in a concentration-dependent manner. The effect was associated with an increase in p42/44 MAPK activity. Increased proliferation of mesangial cells by VLDL was significantly attenuated by PD98059, a specific p42/44 MAPK inhibitor.Conclusion These results indicate that the p42/44 MAPK pathway is an important regulator of mesangial cell proliferation and of renal functions.

  11. Involvement of reactive oxygen species and nitric oxide radicals in activation and proliferation of rat hepatic stellate cells

    NARCIS (Netherlands)

    Svegliati-Baroni, G; Saccomanno, S; van Goor, H; Jansen, P; Benedetti, A; Moshage, H

    2001-01-01

    Background/Aims: Reactive oxygen species (ROS) induce HSCs activation, proliferation and collagen gene expression in vitro. Nitric oxide (NO) represents a reactive molecule that reacts with ROS, yielding peroxynitrite. We thus verified the effect of NO on ROS-induced HSCs proliferation in vitro and

  12. Human MageB2 Protein Expression Enhances E2F Transcriptional Activity, Cell Proliferation, and Resistance to Ribotoxic Stress*

    Science.gov (United States)

    Peche, Leticia Y.; Ladelfa, María F.; Toledo, María F.; Mano, Miguel; Laiseca, Julieta E.; Schneider, Claudio; Monte, Martín

    2015-01-01

    MageB2 belongs to the melanoma antigen gene (MAGE-I) family of tumor-specific antigens. Expression of this gene has been detected in human tumors of different origins. However, little is known about the protein function and how its expression affects tumor cell phenotypes. In this work, we found that human MageB2 protein promotes tumor cell proliferation in a p53-independent fashion, as observed both in cultured cells and growing tumors in mice. Gene expression analysis showed that MageB2 enhances the activity of E2F transcription factors. Mechanistically, the activation of E2Fs is related to the ability of MageB2 to interact with the E2F inhibitor HDAC1. Cellular distribution of MageB2 protein includes the nucleoli. Nevertheless, ribotoxic drugs rapidly promote its nucleolar exit. We show that MageB2 counteracts E2F inhibition by ribosomal proteins independently of Mdm2 expression. Importantly, MageB2 plays a critical role in impairing cell cycle arrest in response to Actinomycin D. The data presented here support a relevant function for human MageB2 in cancer cells both under cycling and stressed conditions, presenting a distinct functional feature with respect to other characterized MAGE-I proteins. PMID:26468294

  13. Human mesenchymal stem cell proliferation is regulated by PGE2 through differential activation of cAMP-dependent protein kinase isoforms

    DEFF Research Database (Denmark)

    Kleiveland, Charlotte Ramstad; Kassem, Moustapha; Lea, Tor

    2008-01-01

    with synthetic cAMP analogues, resulted in enhancement of proliferation. On the other side, we found that treatment of hMSC with high concentrations of PGE2 inhibited cell proliferation by arresting the cells in G0/G1 phase, an effect we found to be mediated by PKA I. Hence, the two different PKA isoforms seem....... Furthermore, PGE2 treatment leads to enhanced nuclear translocation of beta-catenin, thus influencing cell proliferation. The presence of two PKA isoforms, types I and II, prompted us to investigate their individual contribution in PGE2-mediated regulation of proliferation. Specific activation of PKA type II......The conditions used for in vitro differentiation of hMSCs contain substances that affect the activity and expression of cyclooxygenase enzymes (COX1/COX2) and thereby the synthesis of prostanoids. hMSC constitutively produce PGE2 when cultivated in vitro. In this study we have investigated effects...

  14. Early peroxisome proliferator-activated receptor gamma regulated genes involved in expansion of pancreatic beta cell mass

    Directory of Open Access Journals (Sweden)

    Vivas Yurena

    2011-12-01

    Full Text Available Abstract Background The progression towards type 2 diabetes depends on the allostatic response of pancreatic beta cells to synthesise and secrete enough insulin to compensate for insulin resistance. The endocrine pancreas is a plastic tissue able to expand or regress in response to the requirements imposed by physiological and pathophysiological states associated to insulin resistance such as pregnancy, obesity or ageing, but the mechanisms mediating beta cell mass expansion in these scenarios are not well defined. We have recently shown that ob/ob mice with genetic ablation of PPARγ2, a mouse model known as the POKO mouse failed to expand its beta cell mass. This phenotype contrasted with the appropriate expansion of the beta cell mass observed in their obese littermate ob/ob mice. Thus, comparison of these models islets particularly at early ages could provide some new insights on early PPARγ dependent transcriptional responses involved in the process of beta cell mass expansion Results Here we have investigated PPARγ dependent transcriptional responses occurring during the early stages of beta cell adaptation to insulin resistance in wild type, ob/ob, PPARγ2 KO and POKO mice. We have identified genes known to regulate both the rate of proliferation and the survival signals of beta cells. Moreover we have also identified new pathways induced in ob/ob islets that remained unchanged in POKO islets, suggesting an important role for PPARγ in maintenance/activation of mechanisms essential for the continued function of the beta cell. Conclusions Our data suggest that the expansion of beta cell mass observed in ob/ob islets is associated with the activation of an immune response that fails to occur in POKO islets. We have also indentified other PPARγ dependent differentially regulated pathways including cholesterol biosynthesis, apoptosis through TGF-β signaling and decreased oxidative phosphorylation.

  15. Lipid nanocarriers based on natural oils with high activity against oxygen free radicals and tumor cell proliferation.

    Science.gov (United States)

    Lacatusu, I; Badea, N; Badea, G; Oprea, O; Mihaila, M A; Kaya, D A; Stan, R; Meghea, A

    2015-11-01

    The development of nano-dosage forms of phytochemicals represents a significant progress of the scientific approach in the biomedical research. The aim of this study was to assess the effectiveness of lipid nanocarriers based on natural oils (grape seed oil, fish oil and laurel leaf oil) in counteracting free radicals and combating certain tumor cells. No drug was encapsulated in the nanocarriers. The cytotoxic effect exerted by bioactive nanocarriers against two tumor cells, MDA-MB 231 and HeLa cell lines, and two normal cells, L929 and B16 cell lines, was measured using the MTT assay, while oxidative damage was assessed by measuring the total antioxidant activity using chemiluminescence analysis. The best performance was obtained for nanocarriers based on an association of grape seed and laurel leaf oils, with a capacity to scavenge about 98% oxygen free radicals. A dose of nanocarriers of 5mg·mL(-1) has led to a drastic decrease in tumor cell proliferation even in the absence of an antitumor drug (e.g. about 50% viability for MDA-MB 231 cell line and 60% viability for HeLa cell line). A comparative survival profile of normal and tumor cells, which were exposed to an effective dose of 2.5mg·mL(-1) lipid nanocarriers, has revealed a death rate of 20% for normal B16 cells and of 40% death rate for MDA-MB 231 and HeLa tumor cells. The results in this study imply that lipid nanocarriers based on grape seed oil in association with laurel leaf oil could be a candidate to reduce the delivery system toxicity and may significantly improve the therapeutic efficacy of antitumor drugs in clinical applications.

  16. Coriandrum sativum Suppresses Aβ42-Induced ROS Increases, Glial Cell Proliferation, and ERK Activation.

    Science.gov (United States)

    Liu, Quan Feng; Jeong, Haemin; Lee, Jang Ho; Hong, Yoon Ki; Oh, Youngje; Kim, Young-Mi; Suh, Yoon Seok; Bang, Semin; Yun, Hye Sup; Lee, Kyungho; Cho, Sung Man; Lee, Sung Bae; Jeon, Songhee; Chin, Young-Won; Koo, Byung-Soo; Cho, Kyoung Sang

    2016-01-01

    Alzheimer's disease (AD), the most common neurodegenerative disease, has a complex and widespread pathology that is characterized by the accumulation of amyloid [Formula: see text]-peptide (A[Formula: see text]) in the brain and various cellular abnormalities, including increased oxidative damage, an amplified inflammatory response, and altered mitogen-activated protein kinase signaling. Based on the complex etiology of AD, traditional medicinal plants with multiple effective components are alternative treatments for patients with AD. In the present study, we investigated the neuroprotective effects of an ethanol extract of Coriandrum sativum (C. sativum) leaves on A[Formula: see text] cytotoxicity and examined the molecular mechanisms underlying the beneficial effects. Although recent studies have shown the benefits of the inhalation of C. sativum oil in an animal model of AD, the detailed molecular mechanisms by which C. sativum exerts its neuroprotective effects are unclear. Here, we found that treatment with C. sativum extract increased the survival of both A[Formula: see text]-treated mammalian cells and [Formula: see text]42-expressing flies. Moreover, C. sativum extract intake suppressed [Formula: see text]-induced cell death in the larval imaginal disc and brain without affecting A[Formula: see text]42 expression and accumulation. Interestingly, the increases in reactive oxygen species levels and glial cell number in AD model flies were reduced by C. sativum extract intake. Additionally, C. sativum extract inhibited the epidermal growth factor receptor- and A[Formula: see text]-induced phosphorylation of extracellular signal-regulated kinase (ERK). The constitutively active form of ERK abolished the protective function of C. sativum extract against the [Formula: see text]-induced eye defect phenotype in Drosophila. Taken together, these results suggest that C. sativum leaves have antioxidant, anti-inflammatory, and ERK signaling inhibitory properties that

  17. Blue light inhibits proliferation of melanoma cells

    Science.gov (United States)

    Becker, Anja; Distler, Elisabeth; Klapczynski, Anna; Arpino, Fabiola; Kuch, Natalia; Simon-Keller, Katja; Sticht, Carsten; van Abeelen, Frank A.; Gretz, Norbert; Oversluizen, Gerrit

    2016-03-01

    Photobiomodulation with blue light is used for several treatment paradigms such as neonatal jaundice, psoriasis and back pain. However, little is known about possible side effects concerning melanoma cells in the skin. The aim of this study was to assess the safety of blue LED irradiation with respect to proliferation of melanoma cells. For that purpose we used the human malignant melanoma cell line SK-MEL28. Cell proliferation was decreased in blue light irradiated cells where the effect size depended on light irradiation dosage. Furthermore, with a repeated irradiation of the melanoma cells on two consecutive days the effect could be intensified. Fluorescence-activated cell sorting with Annexin V and Propidium iodide labeling did not show a higher number of dead cells after blue light irradiation compared to non-irradiated cells. Gene expression analysis revealed down-regulated genes in pathways connected to anti-inflammatory response, like B cell signaling and phagosome. Most prominent pathways with up-regulation of genes were cytochrome P450, steroid hormone biosynthesis. Furthermore, even though cells showed a decrease in proliferation, genes connected to the cell cycle were up-regulated after 24h. This result is concordant with XTT test 48h after irradiation, where irradiated cells showed the same proliferation as the no light negative control. In summary, proliferation of melanoma cells can be decreased using blue light irradiation. Nevertheless, the gene expression analysis has to be further evaluated and more studies, such as in-vivo experiments, are warranted to further assess the safety of blue light treatment.

  18. Effects of curcumin on peroxisome proliferator-activated receptor γ expression and nuclear translocation/redistribution in culture-activated rat hepatic stellate cells

    Institute of Scientific and Technical Information of China (English)

    CHENG Yang; PING Jian; XU Lie-ming

    2007-01-01

    Background The function of peroxisome proliferator-activated receptor γ (PPARγ) in hepatic fibrogenesis remains largely unknown. Curcumin is a natural substance extracted form Curcuma Longa Linn and has a variety of pharmacological effects. In this study, the effects of curcumin on the proliferation, activation and apoptosis of rat hepatic stellate cells (HSCs) through PPARγ signaling were investigated.Methods HSCs were isolated from the normal Sprague Dawley rats through in situ perfusion of the liver with Pronase E and density-gradient centrifugation with Nycodenz. Cells were treated with curcumin, troglitazone, salvianolic acid B or GW9662. The effect on HSCs proliferation was determined by MTT colorimetry. Total RNA was extracted by TRizol reagent and gene levels were determined by semi-quantitative RT-PCR. Total cellular and nuclear protein were isolated and separated by 10% sodium dodecy Isulfate polyacrylamide gel electrophoresis. Protein levels were determined by Western blot. Cell apoptosis was detected by Hoechst 33258 staining. PPARγ subcellular distribution was detected by immunofluorescent staining. The activities of MMP-2 and 9 were measured by Gelatin zymograph assay.Results Curcumin suppressed HSCs proliferation in a dose-dependent manner. As HSCs underwent gradual activation with culture prolongation the PPARγ nuclear expression level decreased. Curcumin up-regulated PPARγ expression and significantly inhibited the production of α-SMA and collagen I. PPARγ is expressed in the cytoplasm and nucleus and is evenly distributed in HSCs, but accumulated in the nucleus of HSCs and disappeared from cytoplasm after curcumin treatment. Hoechst 33258 staining showed that curcumin induced the apoptosis of culture-activated HSCs and significantly increased pro-apoptotic Bax expression and reduced anti-apoptotic Bcl-2 expression. Cyclin D1 gene, activated NFκB p65 protein and TGFβR-I protein expression were down-regulated significantly by curcumin. The

  19. The glucagon-like peptide 1 receptor agonist enhances intrinsic peroxisome proliferator-activated receptor γ activity in endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Onuma, Hirohisa; Inukai, Kouichi, E-mail: kinukai@ks.kyorin-u.ac.jp; Kitahara, Atsuko; Moriya, Rie; Nishida, Susumu; Tanaka, Toshiaki; Katsuta, Hidenori; Takahashi, Kazuto; Sumitani, Yoshikazu; Hosaka, Toshio; Ishida, Hitoshi

    2014-08-22

    Highlights: • PPARγ activation was involved in the GLP-1-mediated anti-inflammatory action. • Exendin-4 enhanced endogenous PPARγ transcriptional activity in HUVECs. • H89, a PKA inhibitor, abolished GLP-1-induced PPARγ enhancement. • The anti-inflammatory effects of GLP-1 may be explained by PPARγ activation. - Abstract: Recent studies have suggested glucagon-like peptide-1 (GLP-1) signaling to exert anti-inflammatory effects on endothelial cells, although the precise underlying mechanism remains to be elucidated. In the present study, we investigated whether PPARγ activation is involved in the GLP-1-mediated anti-inflammatory action on endothelial cells. When we treated HUVEC cells with 0.2 ng/ml exendin-4, a GLP-1 receptor agonist, endogenous PPARγ transcriptional activity was significantly elevated, by approximately 20%, as compared with control cells. The maximum PPARγ activity enhancing effect of exendin-4 was observed 12 h after the initiation of incubation with exendin-4. As H89, a PKA inhibitor, abolished GLP-1-induced PPARγ enhancement, the signaling downstream from GLP-1 cross-talk must have been involved in PPARγ activation. In conclusion, our results suggest that GLP-1 has the potential to induce PPARγ activity, partially explaining the anti-inflammatory effects of GLP-1 on endothelial cells. Cross-talk between GLP-1 signaling and PPARγ activation would have major impacts on treatments for patients at high risk for cardiovascular disease.

  20. A peptide from Porphyra yezoensis stimulates the proliferation of IEC-6 cells by activating the insulin-like growth factor I receptor signaling pathway.

    Science.gov (United States)

    Lee, Min-Kyeong; Kim, In-Hye; Choi, Youn-Hee; Nam, Taek-Jeong

    2015-02-01

    Porphyra yezoensis (P. yezoensis) is the most noteworthy red alga and is mainly consumed in China, Japan and Korea. In the present study, the effects of a P. yezoensis peptide (PY‑PE) on cell proliferation and the associated signaling pathways were examined in IEC‑6 rat intestinal epithelial cells. First, the MTS assay showed that PY‑PE induced cell proliferation in a dose‑dependent manner. Subsequently, the mechanism behind the proliferative activity induced by PY‑PE was determined. The insulin‑like growth factor‑I receptor (IGF‑IR) signaling pathway was the main focus as it plays an important role in the regulation of cell growth and proliferation. PY‑PE increased the protein and mRNA expression of IGF‑IR, insulin receptor substrate‑1, Shc and PY‑99. In addition, PY‑PE stimulated extracellular signal‑regulated kinase phosphorylation and phosphatidylinositol 3‑kinase/Akt activation but inhibited p38 and c‑Jun N‑terminal kinase phosphorylation. Furthermore, PY‑PE treatment increased protein and mRNA expression levels of activator protein‑1, which regulates cell proliferation and survival, in the nuclear fraction. These results have significant implications for understanding the role of cell proliferation signaling pathways in intestinal epithelial cells.

  1. Nifedipine inhibits advanced glycation end products (AGEs) and their receptor (RAGE) interaction-mediated proximal tubular cell injury via peroxisome proliferator-activated receptor-gamma activation

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, Takanori [Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume (Japan); Yamagishi, Sho-ichi, E-mail: shoichi@med.kurume-u.ac.jp [Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume (Japan); Takeuchi, Masayoshi [Department of Pathophysiological Science, Faculty of Pharmaceutical Science, Hokuriku University, Kanazawa (Japan); Ueda, Seiji; Fukami, Kei; Okuda, Seiya [Department of Medicine, Kurume University School of Medicine, Kurume (Japan)

    2010-07-23

    Research highlights: {yields} Nifedipine inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma}. {yields} GW9662 treatment alone increased RAGE mRNA levels in tubular cells. {yields} Nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-{kappa}B activation and increases in intercellular adhesion molecule-1 and transforming growth factor-{beta} gene expression in tubular cells, all of which were blocked by GW9662. -- Abstract: There is a growing body of evidence that advanced glycation end products (AGEs) and their receptor (RAGE) interaction evokes oxidative stress generation and subsequently elicits inflammatory and fibrogenic reactions, thereby contributing to the development and progression of diabetic nephropathy. We have previously found that nifedipine, a calcium-channel blocker (CCB), inhibits the AGE-induced mesangial cell damage in vitro. However, effects of nifedipine on proximal tubular cell injury remain unknown. We examined here whether and how nifedipine blocked the AGE-induced tubular cell damage. Nifedipine, but not amlodipine, a control CCB, inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by the simultaneous treatment of GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}). GW9662 treatment alone was found to increase RAGE mRNA levels in tubular cells. Further, nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-{kappa}B activation and increases in intercellular adhesion molecule-1 and transforming growth factor-beta gene expression in tubular cells, all of which were blocked by GW9662. Our present study provides a unique beneficial aspect of nifedipine on diabetic nephropathy; it could work as an anti-oxidative and anti-inflammatory agent against AGEs in tubular cells by suppressing RAGE expression

  2. Influence of the adipose derived hormone resistin onsignal transducer and activator of transcription factors, steroidogenesis and proliferation of Leydig cells

    Institute of Scientific and Technical Information of China (English)

    Stephanie Jean; David Landry; Mikella Daigle; Luc J. Martin

    2012-01-01

    Objective:To explore whether resistin, an adipose derived hormone linked to insulin resistance, influence steroidogenic genes expressions andLeydig cells function or not.Methods:Various Leydig cell lines were exposed to increasing doses of resistin with or without cAMP.Changes were monitored at the protein level for signal transducer and activator of transcription(STAT) factors and steroidogenic components, steroidogenic acute regulatory protein(STAR) and cholesterol side-chain cleavage enzyme(CYP11A1), for progesterone production and cell viability.Results:Resistin had no effect on progesterone production, despite an increase in nuclear translocation ofSTAT1,STAT3 andSTAT5 and unexpected synergy with cAMP in the synthesis ofSTAR and CYP11A1.In addition, exposure to normal levels of resistin(10 ng/mL) seemed to have beneficial effects onLeydig cell function, as it increased cells viability and proliferation.Conclusions:Our results suggest that resistin may function as an endocrine mediator linking metabolism and male reproduction.

  3. Hepatocyte growth factor activator inhibitor-1 is induced by bone morphogenetic proteins and regulates proliferation and cell fate of neural progenitor cells.

    Directory of Open Access Journals (Sweden)

    Raili Koivuniemi

    Full Text Available BACKGROUND: Neural progenitor cells (NPCs in the developing neuroepithelium are regulated by intrinsic and extrinsic factors. There is evidence that NPCs form a self-supporting niche for cell maintenance and proliferation. However, molecular interactions and cell-cell contacts and the microenvironment within the neuroepithelium are largely unknown. We hypothesized that cellular proteases especially those associated with the cell surface of NPCs play a role in regulation of progenitor cells in the brain. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we show that NPCs, isolated from striatal anlage of developing rat brain, express hepatocyte growth factor activator inhibitor-1 and -2 (HAI-1 and HAI-2 that are cell surface-linked serine protease inhibitors. In addition, radial glia cells derived from mouse embryonic stem cells also express HAI-1 and HAI-2. To study the functional significance of HAI-1 and HAI-2 in progenitor cells, we modulated their levels using expression plasmids or silencing RNA (siRNA transfected into the NPCs. Data showed that overexpression of HAI-1 or HAI-2 decreased cell proliferation of cultured NPCs, whilst their siRNAs had opposite effects. HAI-1 also influenced NPC differentiation by increasing the number of glial fibrillary acidic protein (GFAP expressing cells in the culture. Expression of HAI-1 in vivo decreased cell proliferation in developing neuroepithelium in E15 old animals and promoted astrocyte cell differentiation in neonatal animals. Studying the regulation of HAI-1, we observed that Bone morphogenetic protein-2 (BMP-2 and BMP-4 increased HAI-1 levels in the NPCs. Experiments using HAI-1-siRNA showed that these BMPs act on the NPCs partly in a HAI-1-dependent manner. CONCLUSIONS: This study shows that the cell-surface serine protease inhibitors, HAI-1 and HAI-2 influence proliferation and cell fate of NPCs and their expression levels are linked to BMP signaling. Modulation of the levels and actions of HAI-1

  4. Dual regulatory effects of resveratrol on activation of NF-κB and cell proliferation in human embryonal kidney 293 cells

    Institute of Scientific and Technical Information of China (English)

    YIN Hong; CHENG Guifang

    2005-01-01

    Resveratrol (3,4′,5-trihydroxystilbene, Res), a naturally occurring polyphenol, exhibits antioxidant, anti- inflammatory, potential chemopreventive and chemotherapeutic properties in preclinical studies. To further understand its potential clinical efficacy and safety, effect of Res at 10-9―10-4 mol/L on human embryonal kidney (HEK293) cell proliferation and its potential mechanism were investigated in present study. Cell viability was detected by using trypan blue dye exclusion method. Cell cycle and apoptosis were analyzed by flow cytometry with propidium iodide stain. Activation of nuclear factor-κB (NF-κB) was determined by luciferase reporter gene assay using stably transfected HEK293/κB-luc cells. Secretion of human interleukin-8 (hIL-8) was measured by ELISA. Our results show that HEK293 cell proliferation was significantly stimulated by 10-7 mol/L Res after treatment for 48 hours, or by 10-8―10-7 mol/L Res combinated with 10 ng/mL TNFα for 24 h, but was suppressed by 10-4 mol/L Res with or without TNFα. Both endogenous and TNFα-induced NF-κB activation were downregulated by Res at 10-7 mol/L, but were upregulated at 10-4 mol/L. With 10-4 mol/L Res, the content of secreted IL-8 was increased, and apoptosis rate was increased from less than 5% to 10%, together with significant cell-cycle arrest in S phase. TNFα has coordinative effects with Res on HEK293 cell apoptosis, cell-cycle arrest and IL-8 secretion. These results indicate that Res promotes cell proliferation at low concentration through down-regulation of NF-κB activation in HEK293, but suppresses its growth at high concentration through up-regulation of NF-κB activation, increasing IL-8 and cell-cycle arrest. As resveratrol has dual regulatory effect on cell proliferation in vitro, comprehensive evaluation of its potential clinical utility is needed.

  5. A circuit-based gatekeeper for adult neural stem cell proliferation: Parvalbumin-expressing interneurons of the dentate gyrus control the activation and proliferation of quiescent adult neural stem cells.

    Science.gov (United States)

    Moss, Jonathan; Toni, Nicolas

    2013-01-01

    Newborn neurons are generated in the adult hippocampus from a pool of self-renewing stem cells located in the subgranular zone (SGZ) of the dentate gyrus. Their activation, proliferation, and maturation depend on a host of environmental and cellular factors but, until recently, the contribution of local neuronal circuitry to this process was relatively unknown. In their recent publication, Song and colleagues have uncovered a novel circuit-based mechanism by which release of the neurotransmitter, γ-aminobutyric acid (GABA), from parvalbumin-expressing (PV) interneurons, can hold radial glia-like (RGL) stem cells of the adult SGZ in a quiescent state. This tonic GABAergic signal, dependent upon the activation of γ(2) subunit-containing GABA(A) receptors of RGL stem cells, can thus prevent their proliferation and subsequent maturation or return them to quiescence if previously activated. PV interneurons are thus capable of suppressing neurogenesis during periods of high network activity and facilitating neurogenesis when network activity is low.

  6. Peroxisome Proliferator-Activated Receptor (PPAR) in Regenerative Medicine: Molecular Mechanism for PPAR in Stem Cells' Adipocyte Differentiation.

    Science.gov (United States)

    Xie, Qiang; Tian, Taoran; Chen, Zhaozhao; Deng, Shuwen; Sun, Ke; Xie, Jing; Cai, Xiaoxiao

    2016-01-01

    Regenerative medicine plays an indispensable role in modern medicine and many trials and researches have therefore been developed to fit our medical needs. Tissue engineering has proven that adipose tissue can widely be used and brings advantages to regenerative medicine. Moreover, a trait of adipose stem cells being isolated and grown in vitro is a cornerstone to various applications. Since the adipose tissue has been widely used in regenerative medicine, numerous studies have been conducted to seek methods for gaining more adipocytes. To investigate molecular mechanism for adipocyte differentiation, peroxisome proliferator-activated receptor (PPAR) has been widely studied to find out its functional mechanism, as a key factor for adipocyte differentiation. However, the precise molecular mechanism is still unknown. This review thus summarizes recent progress on the study of molecular mechanism and role of PPAR in adipocyte differentiation.

  7. p21-Activated Kinases 1, 2 and 4 in Endometrial Cancers: Effects on Clinical Outcomes and Cell Proliferation.

    Directory of Open Access Journals (Sweden)

    Michelle K Y Siu

    Full Text Available p21-activated kinases (Paks are serine/threonine protein kinases involved in biological events linked to malignant tumor progression. In this study, expression of Pak1, p-Pak2 Ser20, Pak4, pPak4 Ser474 in 21 normal endometrium, 16 hyperplastic endometrium without atypia, 17 atypical complex hyperplasia and 67 endometrial cancers was assessed by immunohistochemistry and correlated with clinicopathological parameters. We also accessed the proliferative role and downstream targets of Pak1 in endometrial cancer. Pak1 was expressed in cytoplasm whereas Pak4 and p-Pak4 were expressed in both cytoplasm and nucleus of endometrial tissues. In normal endometrium, significantly higher Pak1 (P = 0.028 and cytoplasmic p-Pak2 (P = 0.048 expression was detected in proliferative endometrium than secretory endometrium. Pak1, cytoplasmic and nuclear Pak4 and nuclear p-Pak4 was significantly overexpressed in endometrial cancer when compared to atrophic endometrium (all P<0.05. Moreover, type I endometrioid carcinomas showed significantly higher Pak1 expression than type II non-endometrioid carcinomas (P<0.001. On the other hand, Pak1, Pak4 and p-Pak4 expression negatively correlated with histological grade (all P<0.05 while p-Pak2 and cytoplasmic Pak4 expression inversely correlated with myometrial invasion (all P<0.05. Furthermore, patients with endometrial cancers with lower cytoplasmic Pak4 expression showed poorer survival (P = 0.026. Multivariate analysis showed cytoplasmic Pak4 is an independent prognostic factor. Functionally, knockdown of Pak1, but not Pak4, in endometrial cancer cell line led to reduced cell proliferation along with reduced cyclin D1, estrogen receptor (ERα and progestogen receptor (PR expression. Significant correlation between Pak1 and PR expression was also detected in clinical samples. Our findings suggest that Pak1 and cytoplasmic p-Pak2 may promote cell proliferation in normal endometrium during menstral cycle. Pak1, cytoplasmic

  8. Lipid nanocarriers based on natural oils with high activity against oxygen free radicals and tumor cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Lacatusu, I.; Badea, N.; Badea, G.; Oprea, O. [University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Polizu Street No 1, 011061 Bucharest (Romania); Mihaila, M.A. [Institute of Virusology “Stefan S. Nicolau”, Center of Immunology, Bravu Road, No. 285, 030304 Bucharest (Romania); Kaya, D.A. [Department of Field Crops, Faculty of Agriculture, Mustafa Kemal University, 31030 Antakya, Hatay (Turkey); Stan, R., E-mail: rl_stan2000@yahoo.com [University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Polizu Street No 1, 011061 Bucharest (Romania); Meghea, A. [University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Polizu Street No 1, 011061 Bucharest (Romania)

    2015-11-01

    The development of nano-dosage forms of phytochemicals represents a significant progress of the scientific approach in the biomedical research. The aim of this study was to assess the effectiveness of lipid nanocarriers based on natural oils (grape seed oil, fish oil and laurel leaf oil) in counteracting free radicals and combating certain tumor cells. No drug was encapsulated in the nanocarriers. The cytotoxic effect exerted by bioactive nanocarriers against two tumor cells, MDA-MB 231 and HeLa cell lines, and two normal cells, L929 and B16 cell lines, was measured using the MTT assay, while oxidative damage was assessed by measuring the total antioxidant activity using chemiluminescence analysis. The best performance was obtained for nanocarriers based on an association of grape seed and laurel leaf oils, with a capacity to scavenge about 98% oxygen free radicals. A dose of nanocarriers of 5 mg·mL{sup −1} has led to a drastic decrease in tumor cell proliferation even in the absence of an antitumor drug (e.g. about 50% viability for MDA-MB 231 cell line and 60% viability for HeLa cell line). A comparative survival profile of normal and tumor cells, which were exposed to an effective dose of 2.5 mg·mL{sup −1} lipid nanocarriers, has revealed a death rate of 20% for normal B16 cells and of 40% death rate for MDA-MB 231 and HeLa tumor cells. The results in this study imply that lipid nanocarriers based on grape seed oil in association with laurel leaf oil could be a candidate to reduce the delivery system toxicity and may significantly improve the therapeutic efficacy of antitumor drugs in clinical applications. - Highlights: • Functional lipid nanocarriers with unique features and broad spectrum effectiveness • Lipid nanocarriers based on laureal leaf oil (LLO) and grape seed oil (GSO) • Antioxidant activity has reached 98% for nanocarriers containing 25% GSO and 2% LLO. • LLO exerts a significant cytotoxic effect against HeLa and MDA-MB 231 tumor

  9. Activation of p38, p21, and NRF-2 Mediates Decreased Proliferation of Human Dental Pulp Stem Cells Cultured under 21% O2

    Directory of Open Access Journals (Sweden)

    Marya El Alami

    2014-10-01

    Full Text Available High rates of stem cell proliferation are important in regenerative medicine and in stem cell banking for clinical use. Ambient oxygen tensions (21% O2 are normally used for in vitro culture, but physiological levels in vivo range between 3% and 6% O2. We compared proliferation of human dental pulp stem cells (hDPSCs cultured under 21% versus 3% O2. The rate of hDPSC proliferation is significantly lower at 21% O2 compared to physiological oxygen levels due to enhanced oxidative stress. Under 21% O2, increased p38 phosphorylation led to activation of p21. Increased generation of reactive oxygen species and p21 led to activation of the NRF-2 signaling pathway. The upregulation of NRF-2 antioxidant defense genes under 21% O2 may interact with cell-cycle-related proteins involved in regulating cell proliferation. Activation of p38/p21/NRF-2 in hDPSCs cultured under ambient oxygen tension inhibits stem cell proliferation and upregulates NRF-2 antioxidant defenses.

  10. Activation of p38, p21, and NRF-2 mediates decreased proliferation of human dental pulp stem cells cultured under 21% O2.

    Science.gov (United States)

    El Alami, Marya; Viña-Almunia, Jose; Gambini, Juan; Mas-Bargues, Cristina; Siow, Richard C M; Peñarrocha, Miguel; Mann, Giovanni E; Borrás, Consuelo; Viña, Jose

    2014-10-14

    High rates of stem cell proliferation are important in regenerative medicine and in stem cell banking for clinical use. Ambient oxygen tensions (21% O2) are normally used for in vitro culture, but physiological levels in vivo range between 3% and 6% O2. We compared proliferation of human dental pulp stem cells (hDPSCs) cultured under 21% versus 3% O2. The rate of hDPSC proliferation is significantly lower at 21% O2 compared to physiological oxygen levels due to enhanced oxidative stress. Under 21% O2, increased p38 phosphorylation led to activation of p21. Increased generation of reactive oxygen species and p21 led to activation of the NRF-2 signaling pathway. The upregulation of NRF-2 antioxidant defense genes under 21% O2 may interact with cell-cycle-related proteins involved in regulating cell proliferation. Activation of p38/p21/NRF-2 in hDPSCs cultured under ambient oxygen tension inhibits stem cell proliferation and upregulates NRF-2 antioxidant defenses.

  11. Recovery from rapamycin: drug-insensitive activity of yeast target of rapamycin complex 1 (TORC1) supports residual proliferation that dilutes rapamycin among progeny cells.

    Science.gov (United States)

    Evans, Stephanie K; Burgess, Karl E V; Gray, Joseph V

    2014-09-19

    The target of rapamycin complex 1 (TORC1) is a key conserved regulator of eukaryotic cell growth. The xenobiotic rapamycin is a potent inhibitor of the yeast complex. Surprisingly, the EGO complex, a nonessential in vivo activator of TORC1, is somehow required for yeast cells to recover efficiently from a period of treatment with rapamycin. Why? Here, we found that rapamycin is only a partial inhibitor of TORC1. We confirmed that saturating amounts of rapamycin do not fully inhibit proliferation of wild-type cells, and we found that the residual proliferation in the presence of the drug is dependent on the EGO complex and on the activity of TORC1. We found that this residual TORC1-dependent proliferation is key to recovery from rapamycin treatment. First, the residual proliferation rate correlates with the ability of cells to recover from treatment. Second, the residual proliferation rate persists long after washout of the drug and until cells recover. Third, the total observable pool of cell-associated rapamycin is extremely stable and decreases only with increasing cell number after washout of the drug. Finally, consideration of the residual proliferation rate alone accurately and quantitatively accounts for the kinetics of recovery of wild-type cells and for the nature and severity of the ego- mutant defect. Overall, our results revealed that rapamycin is a partial inhibitor of yeast TORC1, that persistence of the drug limits recovery, and that rapamycin is not detoxified by yeast but is passively diluted among progeny cells because of residual proliferation.

  12. Notch1 signaling regulates the proliferation and self-renewal of human dental follicle cells by modulating the G1/S phase transition and telomerase activity.

    Directory of Open Access Journals (Sweden)

    Xuepeng Chen

    Full Text Available Multipotent human dental follicle cells (HDFCs have been intensively studied in periodontal regeneration research, yet the role of Notch1 in HDFCs has not been fully understood. The aim of the current study is to explore the role of Notch1 signaling in HDFCs self-renewal and proliferation. HDFCs were obtained from the extracted wisdom teeth from adolescent patients. Regulation of Notch1 signaling in the HDFCs was achieved by overexpressing the exogenous intracellular domain of Notch1 (ICN1 or silencing Notch1 by shRNA. The regulatory effects of Notch1 on HDFC proliferation, cell cycle distribution and the expression of cell cycle regulators were investigated through various molecular technologies, including plasmid construction, retrovirus preparation and infection, qRT-PCR, western blot, RBP-Jk luciferase reporter and cell proliferation assay. Our data clearly show that constitutively activation of Notch1 stimulates the HDFCs proliferation while inhibition of the Notch1 suppresses their proliferation in vitro. In addition, the HDFCs proliferation is associated with the increased expression of cell cycle regulators, e.g. cyclin D1, cyclin D2, cyclin D3, cyclin E1, CDK2, CDK4, CDK6, and SKP2 and the decreased expression of p27 (kip1. Moreover, our data show that the G1/S phase transition (indicating proliferation and telomerase activity (indicating self-renewal can be enhanced by overexpression of ICN1 but halted by inhibition of Notch1. Together, the current study provides evidence for the first time that Notch1 signaling regulates the proliferation and self-renewal capacity of HDFCs through modulation of the G1/S phase transition and the telomerase activity.

  13. Regulation of RUNX2 transcription factor-DNA interactions and cell proliferation by vitamin D3 (cholecalciferol) prohormone activity.

    Science.gov (United States)

    Underwood, Karen F; D'Souza, David R; Mochin-Peters, Maria; Pierce, Adam D; Kommineni, Sravya; Choe, Moran; Bennett, Jessica; Gnatt, Averell; Habtemariam, Bahru; MacKerell, Alexander D; Passaniti, Antonino

    2012-04-01

    The fat-soluble prohormone cholecalciferol (Vitamin D3) is a precursor of the circulating 25-OH Vitamin D3, which is converted by 1α-hydroxylase to the biologically active 1,25-OH Vitamin D3. Active Vitamin D3 interacts with the Vitamin D receptor (VDR), a transcription factor that plays an important role in calcium mobilization and bone formation. RUNX2 is a DNA-binding transcription factor that regulates target genes important in bone formation, angiogenesis, and cancer metastasis. Using computer-assisted drug design (CADD) and a microtiter plate-based DNA-binding enzyme-linked immunosorbent assay (D-ELISA) to measure nuclear RUNX2 DNA binding, we have found that Vitamin D3 prohormones can modulate RUNX2 DNA binding, which was dose-dependent and sensitive to trypsin, salt, and phosphatase treatment. Unlabeled oligonucleotide or truncated, dominant negative RUNX2 proteins were competitive inhibitors of RUNX2 DNA binding. The RUNX2 heterodimeric partner, Cbfβ, was detected in the binding complexes with specific antibodies. Evaluation of several RUNX2:DNA targeted small molecules predicted by CADD screening revealed a previously unknown biological activity of the inactive Vitamin D3 precursor, cholecalciferol. Cholecalciferol modulated RUNX2:DNA binding at nanomolar concentrations even in cells with low VDR. Cholecalciferol and 25-OH Vitamin D3 prohormones were selective inhibitors of RUNX2-positive endothelial, bone, and breast cancer cell proliferation, but not of cells lacking RUNX2 expression. These compounds may have application in modulating RUNX2 activity in an angiogenic setting, in metastatic cells, and to promote bone formation in disease-mediated osteoporosis. The combination CADD discovery and D-ELISA screening approaches allows the testing of other novel derivatives of Vitamin D and/or transcriptional inhibitors with the potential to regulate DNA binding and biological function.

  14. Macrophage peroxisome proliferator-activated receptor γ deficiency delays skin wound healing through impairing apoptotic cell clearance in mice.

    Science.gov (United States)

    Chen, H; Shi, R; Luo, B; Yang, X; Qiu, L; Xiong, J; Jiang, M; Liu, Y; Zhang, Z; Wu, Y

    2015-01-15

    Skin wound macrophages are key regulators of skin repair and their dysfunction causes chronic, non-healing skin wounds. Peroxisome proliferator-activated receptor gamma (PPARγ) regulates pleiotropic functions of macrophages, but its contribution in skin wound healing is poorly defined. We observed that macrophage PPARγ expression was upregulated during skin wound healing. Furthermore, macrophage PPARγ deficiency (PPARγ-knock out (KO)) mice exhibited impaired skin wound healing with reduced collagen deposition, angiogenesis and granulation formation. The tumor necrosis factor alpha (TNF-α) expression in wounds of PPARγ-KO mice was significantly increased and local restoration of TNF-α reversed the healing deficit in PPARγ-KO mice. Wound macrophages produced higher levels of TNF-α in PPARγ-KO mice compared with control. In vitro, the higher production of TNF-α by PPARγ-KO macrophages was associated with impaired apoptotic cell clearance. Correspondingly, increased apoptotic cell accumulation was found in skin wound of PPARγ-KO mice. Mechanically, peritoneal and skin wound macrophages expressed lower levels of various phagocytosis-related molecules. In addition, PPARγ agonist accelerated wound healing and reduced local TNF-α expression and wound apoptotic cells accumulation in wild type but not PPARγ-KO mice. Therefore, PPARγ has a pivotal role in controlling wound macrophage clearance of apoptotic cells to ensure efficient skin wound healing, suggesting a potential new therapeutic target for skin wound healing.

  15. In vitro effects of rituximab on the proliferation, activation and differentiation of human B cells.

    NARCIS (Netherlands)

    Kamburova, E.G.; Koenen, H.J.P.M.; Boon, L.; Hilbrands, L.B.; Joosten, I.

    2012-01-01

    Rituximab is a chimeric anti-CD20 monoclonal antibody (mAb) used in B-cell malignancies, various autoimmune disorders and organ transplantation. Although administration of a single dose of rituximab results in full B-cell depletion in peripheral blood, there remains a residual B-cell population in s

  16. TLR5 signaling enhances the proliferation of human allogeneic CD40-activated B cell induced CD4hiCD25+ regulatory T cells.

    Directory of Open Access Journals (Sweden)

    Ping-Lung Chan

    Full Text Available Although diverse functions of different toll-like receptors (TLR on human natural regulatory T cells have been demonstrated recently, the role of TLR-related signals on human induced regulatory T cells remain elusive. Previously our group developed an ex vivo high-efficient system in generating human alloantigen-specific CD4(hiCD25(+ regulatory T cells from naïve CD4(+CD25(- T cells using allogeneic CD40-activated B cells as stimulators. In this study, we investigated the role of TLR5-related signals on the generation and function of these novel CD4(hiCD25(+ regulatory T cells. It was found that induced CD4(hiCD25(+ regulatory T cells expressed an up-regulated level of TLR5 compared to their precursors. The blockade of TLR5 using anti-TLR5 antibodies during the co-culture decreased CD4(hiCD25(+ regulatory T cells proliferation by induction of S phase arrest. The S phase arrest was associated with reduced ERK1/2 phosphorylation. However, TLR5 blockade did not decrease the CTLA-4, GITR and FOXP3 expressions, and the suppressive function of CD4(hiCD25(+ regulatory T cells. In conclusion, we discovered a novel function of TLR5-related signaling in enhancing the proliferation of CD4(hiCD25(+ regulatory T cells by promoting S phase progress but not involved in the suppressive function of human CD40-activated B cell-induced CD4(hiCD25(+ regulatory T cells, suggesting a novel role of TLR5-related signals in the generation of induced regulatory T cells.

  17. CYP2S1 depletion enhances colorectal cell proliferation is associated with PGE2-mediated activation of β-catenin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chao [Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030 (China); College of Life Science, Anhui Normal University, Wuhu 241000, Anhui (China); Li, Changyuan [College of Life Science, Anhui Normal University, Wuhu 241000, Anhui (China); Li, Minle; Tong, Xuemei [Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Hu, Xiaowen; Yang, Xuhan [Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030 (China); Yan, Xiaomei [School of Life Sciences & Biotechnology, Shanghai JiaoTong University, Shanghai 200240 (China); He, Lin, E-mail: helinhelin@gmail.com [Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030 (China); Wan, Chunling, E-mail: clwan@sjtu.edu.cn [Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030 (China)

    2015-02-15

    Colorectal epithelial cancer is one of the most common cancers in the world and its 5-year survival rate is still relatively low. Cytochrome P450 (CYP) enzymes in epithelial cells lining the alimentary tract play an important role in the oxidative metabolism of a wide range of xenobiotics, including (pro-)carcinogens and endogenous compounds. Although CYP2S1, a member of CYP family, strongly expressed in many extrahepatic tissues, the role of CYP2S1 in cancer remains unclear. To investigate whether CYP2S1 involves in colorectal carcinogenesis, cell proliferation was analyzed in HCT116 cells depleted of CYP2S1 using small hairpin interfering RNA. Our data show that CYP2S1 knockdown promotes cell proliferation through increasing the level of endogenous prostaglandin E2(PGE2). PGE2, in turn, reduces phosphorylation of β-catenin and activates β-catenin signaling, which contributes to the cell proliferation. Furthermore, CYP2S1 knockdown increase tumor growth in xenograft mouse model. In brief, these results demonstrate that CYP2S1 regulates colorectal cancer growth through associated with PGE2-mediated activation of β-catenin signaling. - Highlights: • Knockdown of CYP2S1 expression improve HCT116 cell proliferation in vitro and in vivo. • Elevate PGE2 production in CYP2S1 knockdown cell is associated with its proliferation. • Elevate PGE2 level in CYP2S1 knockdown cells enhance β-catenin accumulation. • β-catenin activate TCF/LEF and target gene expression thus promote cell proliferation.

  18. Human pregnancy-specific glycoprotein 1a (PSG1a) induces alternative activation in human and mouse monocytes and suppresses the accessory cell-dependent T cell proliferation.

    Science.gov (United States)

    Motrán, Claudia Cristina; Díaz, Fernando López; Gruppi, Adriana; Slavin, Daniela; Chatton, Bruno; Bocco, José Luis

    2002-09-01

    It has been proposed that pregnancy-specific factors induce the suppression of a specific arm of the maternal response accompanied by activation of the nonspecific, innate immune system. The aim of this study was to determine whether pregnancy-specific glycoprotein 1a (PSG1a), the major variant of PSG polypeptides, is able to modulate the monocyte/macrophage (Mo) metabolism to regulate T cell activation and proliferation. Using the recombinant form of this glycoprotein (rec-PSG1a), expressed in mammalian cells with a vaccinia-based expression vector, we have demonstrated that human PSG1a induces arginase activity in peripheral blood human Mo and human and murine Mo cell lines. In addition, rec-PSG1a is able to induce alternative activation because it up-regulates the arginase activity and inhibits the nitric oxide production in Mo activated by lipopolysaccharides. We also observed that rec-PSG1a is an important accessory cells-dependent T cell suppressor factor that causes partial growth arrest at the S/G2/M phase of the cell cycle. Additionally, an impaired T cell proliferative response induced by mitogens and specific antigen was observed in BALB/c mice upon in vivo expression of PSG1a. Our results suggest that PSG1a function contributes to the immunomodulation during pregnancy, having opposite effects on maternal innate and adaptative systems.

  19. Protein kinase D stabilizes aldosterone-induced ERK1/2 MAP kinase activation in M1 renal cortical collecting duct cells to promote cell proliferation.

    LENUS (Irish Health Repository)

    McEneaney, Victoria

    2010-01-01

    Aldosterone elicits transcriptional responses in target tissues and also rapidly stimulates the activation of protein kinase signalling cascades independently of de novo protein synthesis. Here we investigated aldosterone-induced cell proliferation and extra-cellular regulated kinase 1 and 2 (ERK1\\/2) mitogen activated protein (MAP) kinase signalling in the M1 cortical collecting duct cell line (M1-CCD). Aldosterone promoted the proliferative growth of M1-CCD cells, an effect that was protein kinase D1 (PKD1), PKCdelta and ERK1\\/2-dependent. Aldosterone induced the rapid activation of ERK1\\/2 with peaks of activation at 2 and 10 to 30 min after hormone treatment followed by sustained activation lasting beyond 120 min. M1-CCD cells suppressed in PKD1 expression exhibited only the early, transient peaks in ERK1\\/2 activation without the sustained phase. Aldosterone stimulated the physical association of PKD1 with ERK1\\/2 within 2 min of treatment. The mineralocorticoid receptor (MR) antagonist RU28318 inhibited the early and late phases of aldosterone-induced ERK1\\/2 activation, and also aldosterone-induced proliferative cell growth. Aldosterone induced the sub-cellular redistribution of ERK1\\/2 to the nuclei at 2 min and to cytoplasmic sites, proximal to the nuclei after 30 min. This sub-cellular distribution of ERK1\\/2 was inhibited in cells suppressed in the expression of PKD1.

  20. 1A6/DRIM, a novel t-UTP, activates RNA polymerase I transcription and promotes cell proliferation.

    Directory of Open Access Journals (Sweden)

    Qunhui Peng

    Full Text Available BACKGROUND: Ribosome biogenesis is required for protein synthesis and cell proliferation. Ribosome subunits are assembled in the nucleolus following transcription of a 47S ribosome RNA precursor by RNA polymerase I and rRNA processing to produce mature 18S, 28S and 5.8S rRNAs. The 18S rRNA is incorporated into the ribosomal small subunit, whereas the 28S and 5.8S rRNAs are incorporated into the ribosomal large subunit. Pol I transcription and rRNA processing are coordinated processes and this coordination has been demonstrated to be mediated by a subset of U3 proteins known as t-UTPs. Up to date, five t-UTPs have been identified in humans but the mechanism(s that function in the t-UTP(s activation of Pol I remain unknown. In this study we have identified 1A6/DRIM, which was identified as UTP20 in our previous study, as a t-UTP. In the present study, we investigated the function and mechanism of 1A6/DRIM in Pol I transcription. METHODOLOGY/PRINCIPAL FINDINGS: Knockdown of 1A6/DRIM by siRNA resulted in a decreased 47S pre-rRNA level as determined by Northern blotting. Ectopic expression of 1A6/DRIM activated and knockdown of 1A6/DRIM inhibited the human rDNA promoter as evaluated with luciferase reporter. Chromatin immunoprecipitation (ChIP experiments showed that 1A6/DRIM bound UBF and the rDNA promoter. Re-ChIP assay showed that 1A6/DRIM interacts with UBF at the rDNA promoter. Immunoprecipitation confirmed the interaction between 1A6/DRIM and the nucleolar acetyl-transferase hALP. It is of note that knockdown of 1A6/DRIM dramatically inhibited UBF acetylation. A finding of significance was that 1A6/DRIM depletion, as a kind of nucleolar stress, caused an increase in p53 level and inhibited cell proliferation by arresting cells at G1. CONCLUSIONS: We identify 1A6/DRIM as a novel t-UTP. Our results suggest that 1A6/DRIM activates Pol I transcription most likely by associating with both hALP and UBF and thereby affecting the acetylation of UBF.

  1. Inhibition of cell proliferation by a selective inhibitor of the Ca{sup 2+}-activated Cl{sup -} channel, Ano1

    Energy Technology Data Exchange (ETDEWEB)

    Mazzone, Amelia; Eisenman, Seth T.; Strege, Peter R. [Enteric NeuroScience Program, Mayo Clinic, Rochester, MN (United States); Yao, Zhen [Laboratory of Molecular Genetics, UCSF, San Francisco, CA (United States); Ordog, Tamas; Gibbons, Simon J. [Enteric NeuroScience Program, Mayo Clinic, Rochester, MN (United States); Farrugia, Gianrico, E-mail: farrugia.gianrico@mayo.edu [Enteric NeuroScience Program, Mayo Clinic, Rochester, MN (United States)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer T16A{sub inh}-A01 blocked Ano1 currents in HEK cells expressing Ano1. Black-Right-Pointing-Pointer T16A{sub inh}-A01 reduced proliferation in ICC primary cultures and CFPAC-1 cell line. Black-Right-Pointing-Pointer T16A{sub inh}-A01 reduced proliferation of ICC in intact smooth muscle strips. -- Abstract: Background: Ion channels play important roles in regulation of cellular proliferation. Ano1 (TMEM16A) is a Ca{sup 2+}-activated Cl{sup -} channel expressed in several tumors and cell types. In the muscle layers of the gastrointestinal tract Ano1 is selectively expressed in interstitial cells of Cajal (ICC) and appears to be required for normal gastrointestinal slow wave electrical activity. However, Ano1 is expressed in all classes of ICC, including those that do not generate slow waves suggesting that Ano1 may have other functions. Indeed, a role for Ano1 in regulating proliferation of tumors and ICC has been recently suggested. Recently, a high-throughput screen identified a small molecule, T16A{sub inh}-A01 as a specific inhibitor of Ano1. Aim: To investigate the effect of the T16A{sub inh}-A01 inhibitor on proliferation in ICC and in the Ano1-expressing human pancreatic cancer cell line CFPAC-1. Methods: Inhibition of Ano1 was demonstrated by whole cell voltage clamp recordings of currents in cells transfected with full-length human Ano1. The effect of T16A{sub inh}-A01 on ICC proliferation was examined in situ in organotypic cultures of intact mouse small intestinal smooth muscle strips and in primary cell cultures prepared from these tissues. ICC were identified by Kit immunoreactivity. Proliferating ICC and CFPAC-1 cells were identified by immunoreactivity for the nuclear antigen Ki67 or EdU incorporation, respectively. Results: T16A{sub inh}-A01 inhibited Ca{sup 2+}-activated Cl{sup -} currents by 60% at 10 {mu}M in a voltage-independent fashion. Proliferation of ICC was significantly reduced in primary cultures

  2. Signal transducer and activator of transcription 5 activation is sufficient to drive transcriptional induction of cyclin D2 gene and proliferation of rat pancreatic beta-cells

    DEFF Research Database (Denmark)

    Friedrichsen, Birgitte N; Richter, Henrijette E; Hansen, Johnny A

    2003-01-01

    in a time-dependent manner by hGH in INS-1 cells. Inhibition of protein synthesis by coincubation with cycloheximide did not affect the hGH-induced increase of cyclin D2 mRNA levels at 4 h. Expression of a dominant negative STAT5 mutant, STAT5aDelta749, partially inhibited cyclin D2 protein levels. INS-1...... cells and hGH-induced increase of mRNA-levels of the cell cycle regulator cyclin D2. In this study we have further characterized the role of STAT5 in the regulation of cyclin D expression and beta-cell proliferation by hGH. Cyclin D2 mRNA and protein levels (but not cyclin D1 and D3) were induced......-STAT5b stimulated transcriptional activation of the cyclin D2 promoter and induced hGH-independent proliferation in these cells. In primary beta-cells, adenovirus-mediated expression of CA-STAT5b profoundly stimulated DNA-synthesis (5.3-fold over control) in the absence of hGH. Our studies indicate...

  3. Lysophosphatidic acid activates peroxisome proliferator activated receptor-γ in CHO cells that over-express glycerol 3-phosphate acyltransferase-1.

    Directory of Open Access Journals (Sweden)

    Cliona M Stapleton

    Full Text Available Lysophosphatidic acid (LPA is an agonist for peroxisome proliferator activated receptor-γ (PPARγ. Although glycerol-3-phosphate acyltransferase-1 (GPAT1 esterifies glycerol-3-phosphate to form LPA, an intermediate in the de novo synthesis of glycerolipids, it has been assumed that LPA synthesized by this route does not have a signaling role. The availability of Chinese Hamster Ovary (CHO cells that stably overexpress GPAT1, allowed us to analyze PPARγ activation in the presence of LPA produced as an intracellular intermediate. LPA levels in CHO-GPAT1 cells were 6-fold higher than in wild-type CHO cells, and the mRNA abundance of CD36, a PPARγ target, was 2-fold higher. Transactivation assays showed that PPARγ activity was higher in the cells that overexpressed GPAT1. PPARγ activity was enhanced further in CHO-GPAT1 cells treated with the PPARγ ligand troglitazone. Extracellular LPA, phosphatidic acid (PA or a membrane-permeable diacylglycerol had no effect, showing that PPARγ had been activated by LPA generated intracellularly. Transient transfection of a vector expressing 1-acylglycerol-3-phosphate acyltransferase-2, which converts endogenous LPA to PA, markedly reduced PPARγ activity, as did over-expressing diacylglycerol kinase, which converts DAG to PA, indicating that PA could be a potent inhibitor of PPARγ. These data suggest that LPA synthesized via the glycerol-3-phosphate pathway can activate PPARγ and that intermediates of de novo glycerolipid synthesis regulate gene expression.

  4. Attenuation of Telomerase Activity by siRNA Targeted Telomerase RNA Leads to Apoptosis and Inhibition of Proliferation in Human Renal Carcinoma Cells

    Institute of Scientific and Technical Information of China (English)

    Rumin Wen; Junjie Liu; Wang Li; Wenfa Yang; Lijun Mao; Junnian Zheng

    2006-01-01

    OBJECTIVE Telomerase is an attractive molecular target for cancer therapy because the activation of telomerase is one of the key steps in cell immortalization and carcinogenesis. RNA interference using small-interfering RNA (siRNA) has been demonstrated to be an effective method for inhibiting the expression of a given gene in human cells. The aim of the present study was to investigate whether inhibition of telomerase activity by siRNA targeted against human telomerase RNA (hTR) can inhibit proliferation and induce apoptotic cell death in human renal carcinoma cells(HRCCs).METHODS The siRNA duplexes for hTR were synthesized and 786-O HRCCs were transfected with different concentrations of hTR-siRNA. The influence on the hTR mRNA level, telomerase activity, as well as the effect on cell proliferation and apoptosis was examined.RESULTS Anti-hTR siRNA treatment of HRCCs resulted in specific reduction of hTR mRNA and inhibition of telomerase activity. Additionally,significant inhibition of proliferation and induction of apoptosis were observed.CONCLUSION siRNA against the hTR gene can inhibit proliferation and induce apoptosis by blocking telomerase activity of HRCCs. Specific hTR inhibition by siRNA represents a promising new option for renal cancer treatment.

  5. One novel quinoxaline derivative as a potent human cyclophilin A inhibitor shows highly inhibitory activity against mouse spleen cell proliferation.

    Science.gov (United States)

    Li, Jian; Chen, Jing; Zhang, Li; Wang, Feng; Gui, Chunshan; Zhang, Li; Qin, Yu; Xu, Qiang; Liu, Hong; Nan, Fajun; Shen, Jingkang; Bai, Donglu; Chen, Kaixian; Shen, Xu; Jiang, Hualiang

    2006-08-15

    Cyclophilin A (CypA) is a ubiquitous cellular enzyme playing critical roles in many biological processes, and its inhibitor has been reported to have potential immunosuppressive activity. In this work, we reported a novel quinoxaline derivative, 2,3-di(furan-2-yl)-6-(3-N,N-diethylcarbamoyl-piperidino)carbonylamino quinoxaline (DC838, 3), which was confirmed to be a potent inhibitor against human CypA. By using the surface plasmon resonance (SPR) and fluorescence titration techniques, the kinetic analysis of CypA/DC838 interaction was quantitatively performed. CypA peptidyl prolyl cis-trans isomerase (PPIase) activity inhibition assay showed that DC838 demonstrated highly CypA PPIase inhibitory activity. In vivo assay results showed that DC838 could inhibit mouse spleen cell proliferation induced by concanavalin A (Con A). Molecular docking simulation further elucidated the specific DC838 binding to CypA at the atomic level. The current work should provide useful information in the discovery of immunosuppressor based on CypA inhibitor.

  6. Meloxicam suppresses hepatocellular carcinoma cell proliferation and migration by targeting COX-2/PGE2-regulated activation of the β-catenin signaling pathway.

    Science.gov (United States)

    Li, Tao; Zhong, Jingtao; Dong, Xiaofeng; Xiu, Peng; Wang, Fuhai; Wei, Honglong; Wang, Xin; Xu, Zongzhen; Liu, Feng; Sun, Xueying; Li, Jie

    2016-06-01

    Recurrence and metastasis are the two leading causes of poor prognosis of hepatocellular carcinoma (HCC) patients. Cyclooxygenase (COX)-2 is overexpressed in many types of cancers including HCC and promotes its metastasis. Meloxicam is a selective COX-2 inhibitor that has been reported to exert an anti-proliferation and invasion/migration response in various tumors. In this study, we examined the role of meloxicam on HCC cell proliferation and migration and explored the molecular mechanisms underlying this effect. We found that meloxicam inhibited HCC cell proliferation and had a cell cycle arrest effect in human HCC cells. Furthermore, meloxicam suppressed the ability of HCC cells expressing higher levels of COX-2 and prostaglandin E2 (PGE2) to migration via potentiating expression of E-cadherin and alleviating expression of matrix metalloproteinase (MMP)-2 and -9. COX-2/PGE2 has been considered to activate the β-catenin signaling pathway which promotes cancer cell migration. We found that treatment with PGE2 significantly enhanced nuclear accumulation of β-catenin and the activation of GSK3β which could be reversed by meloxicam in HCC cells. We also observed that HCC cell migration and upregulation of the level of MMP-2/9 and downregulation of E-cadherin induced by PGE2 were suppressed by FH535, an inhibitor of β-catenin. Taken together, these findings provide a new treatment strategy against HCC proliferation and migration.

  7. Shockwaves increase T-cell proliferation and IL-2 expression through ATP release, P2X7 receptors, and FAK activation.

    Science.gov (United States)

    Yu, Tiecheng; Junger, Wolfgang G; Yuan, Changji; Jin, An; Zhao, Yi; Zheng, Xueqing; Zeng, Yanjun; Liu, Jianguo

    2010-03-01

    Shockwaves elicited by transient pressure disturbances are used to treat musculoskeletal disorders. Previous research has shown that shockwave treatment affects T-cell function, enhancing T-cell proliferation and IL-2 expression by activating p38 mitogen-activated protein kinase (MAPK) signaling. Here we investigated the signaling pathway by which shockwaves mediate p38 MAPK phosphorylation. We found that shockwaves at an intensity of 0.18 mJ/mm(2) induce the release of extracellular ATP from human Jurkat T-cells at least in part by affecting cell viability. ATP released into the extracellular space stimulates P2X7-type purinergic receptors that induce the activation of p38 MAPK and of focal adhesion kinase (FAK) by phosphorylation on residues Tyr397 and Tyr576/577. Elimination of released ATP with apyrase or inhibition of P2X7 receptors with the antagonists KN-62 or suramin significantly weakens FAK phosphorylation, p38 MAPK activation, IL-2 expression, and T-cell proliferation. Conversely, addition of exogenous ATP causes phosphorylation of FAK and p38 MAPK. Silencing of FAK expression also reduces these cell responses to shockwave treatment. We conclude that shockwaves enhance p38 MAPK activation, IL-2 expression, and T-cell proliferation via the release of cellular ATP and feedback mechanisms that involve P2X7 receptor activation and FAK phosphorylation.

  8. Defect density in multiwalled carbon nanotubes influences ovalbumin adsorption and promotes macrophage activation and CD4(+) T-cell proliferation.

    Science.gov (United States)

    Bai, Wei; Raghavendra, Achyut; Podila, Ramakrishna; Brown, Jared M

    Carbon nanotubes (CNTs) are of great interest for the development of drugs and vaccines due to their unique physicochemical properties. The high surface area to volume ratio and delocalized pi-electron cloud of CNTs promote binding of proteins to the surface forming a protein corona. This unique feature of CNTs has been recognized for potential delivery of antigens for strong and long-lasting antigen-specific immune responses. Based on an earlier study that demonstrated increased protein binding, we propose that carboxylated multiwalled CNTs (MWCNTs) can function as an improved carrier to deliver antigens such as ovalbumin (OVA). To test this hypothesis, we coated carboxylated MWCNTs with OVA and measured uptake and activation of antigen-presenting cells (macrophages) and their ability to stimulate CD4(+) T-cell proliferation. We employed two types of carboxylated MWCNTs with different surface areas and defects (MWCNT-2 and MWCNT-30). MWCNT-2 and MWCNT-30 have surface areas of ~215 m(2)/g and 94 m(2)/g, respectively. The ratios of D- to G-band areas (I D/I G) were 0.97 and 1.37 for MWCNT-2 and MWCNT-30, respectively, samples showing that MWCNT-30 contained more defects. The increase in defects in MWCNT-30 led to increased binding of OVA as compared to MWCNT-2 (1,066±182 μg/mL vs 582±41 μg/mL, respectively). Both types of MWCNTs, along with MWCNT-OVA complexes, showed no observable toxicity to bone-marrow-derived macrophages up to 5 days. Surprisingly, we found that MWCNT-OVA complex significantly increased the expression of major histocompatibility complex class II on macrophages and production of pro-inflammatory cytokines (tumor necrosis factor-α and interleukin 6), while MWCNTs without OVA protein corona did not. The coculture of MWCNT-OVA-complex-treated macrophages and OVA-specific CD4(+) T-cells isolated from OT-II mice demonstrated robust proliferation of CD4(+) T-cells. This study provides strong evidence for a role for defects in carboxylated MWCNTs

  9. Hippocampal cell proliferation across the day : Increase by running wheel activity, but no effect of sleep and wakefulness

    NARCIS (Netherlands)

    van der Borght, K; Ferrari, F; Klauke, K; Roman, Viktor; Havekes, R; Sgoifo, A; van der Zee, EA; Meerlo, P

    2006-01-01

    The present study investigated whether proliferation of hippocampal progenitors is subject to circadian modulation. Mice were perfused using 3 h intervals throughout the light-dark cycle and brains were stained for Ki-67. Since Ki-67 is not expressed during the G0 phase of the cell cycle, we expecte

  10. Glucagon-like peptide 2 dose-dependently activates intestinal cell survival and proliferation in neonatal piglets

    DEFF Research Database (Denmark)

    Burrin, Douglas G; Stoll, Barbara; Guan, Xinfu;

    2005-01-01

    Glucagon-like peptide 2 (GLP-2) is a gut hormone that stimulates mucosal growth in total parenteral nutrition (TPN)-fed piglets; however, the dose-dependent effects on apoptosis, cell proliferation, and protein synthesis are unknown. We studied 38 TPN-fed neonatal piglets infused iv with either s...

  11. Bioactive interruptins A and B from Cyclosorus terminans: antibacterial, anticancer, stem cell proliferation and ROS scavenging activities

    Directory of Open Access Journals (Sweden)

    Sireewan Kaewsuwan

    2015-06-01

    Full Text Available The fern Cyclosorus terminans has long been consumed as a vegetable in northern Thailand. Nevertheless there has been no definitive investigation on its biological properties. Here we have isolated three coumarin derivatives, interruptins A, B and C from C. terminans. Interruptin A exhibited antibacterial activity against four Gram-positive bacteria including methicillin-sensitive Staphylococcus aureus (MSSA, methicillin-resistant S. aureus (MRSA, S. epidermidis and Bacillus subtilis with MIC values as low as 2 mg/ml. Interruptins A and B inhibited the growth of MCF-7 human breast and HT-29 human colon cancer cells with IC50 values as low as 0.13 ng/ml yet stimulated proliferation of normal ASC stem cells with no signs of toxicity. Moreover, both interruptins A and B showed a powerful capacity for scavenging intracellular ROS and performed an anti-apoptotic effect against extracellular oxidative damage by H2O2 . As a result, it is suggested that this lower plant could find a use in natural diets for treatment of infection with a special reference to MRSA, controlling breast and colon cancers, and reducing oxidative stress induced by ROS.

  12. Expression of Peroxisome Proliferator-Activated Receptor γ (PPARγ) in Human Transitional Bladder Cancer and its Role in Inducing Cell Death1

    OpenAIRE

    1999-01-01

    The present study examined the expression and role of the thiazolidinedione (TZD)-activated transcription factor, peroxisome proliferator-activated receptor γ (PPARγ), in human bladder cancers. In situ hybridization shows that PPARγ mRNA is highly expressed in all human transitional epithelial cell cancers (TCCa's) studied (n=11). PPARγ was also expressed in five TCCa cell lines as determined by RNase protection assays and immunoblot. Retinoid X receptor α (RXRα), a 9-cis-retinoic acid stimul...

  13. Topological laser speckle analyzer of differentiation and proliferation activity during morphogenesis in cell cultures

    Directory of Open Access Journals (Sweden)

    Notchenko A.V.

    2011-01-01

    Full Text Available An automated system for morpho-topological determination of cell division phases and structur al differentiation of tissues during morphogenesis was implemented on the basis of topological properties of cell cultures, considered within the framework of set and manifold theories. A simple robotic hardware and software system based on Zeiss microscope with a modified stage and a Velleman manipulator KSR-1 allow to control the laser module position, carrying out the angular irradiation of samples either in transmission or in darkfield or luminescent modes and the subsequent math ematical data processing. This low-budget system can be easily assembled and programmed in any cytomorphological or histomorphologi-cal laboratory. The code for data processing in MATLAB is given at the end of the paper.

  14. Ligustrazine-Oleanolic Acid Glycine Derivative, G-TOA, Selectively Inhibited the Proliferation and Induced Apoptosis of Activated HSC-T6 Cells.

    Science.gov (United States)

    Bi, Siling; Chu, Fuhao; Wang, Mina; Li, Bi; Mao, Pei; Zhang, Huazheng; Wang, Penglong; Guo, Wenbo; Xu, Liang; Ren, Liwei; Lei, Haimin; Zhang, Yuzhong

    2016-11-23

    Hepatic fibrosis is a naturally occurring wound-healing reaction, with an imbalance of extracellular matrix (ECM) during tissue repair response, which can further deteriorate to hepatocellular carcinoma without timely treatment. Inhibiting activated hepatic stellate cell (HSC) proliferation and inducing apoptosis are the main methods for the treatment of liver fibrosis. In our previous study, we found that the TOA-glycine derivative (G-TOA) had exhibited more significant inhibitory activity against HepG2 cells and better hydrophilicity than TOA, ligustrazine (TMP), and oleanolic acid (OA). However, inhibiting activated HSC proliferation and inducing apoptosis by G-TOA had not been reported. In this paper, the selective cytotoxicity of G-TOA was evaluated on HSC-T6 cells and L02 cells, and apoptosis mechanisms were explored. It was found that G-TOA could selectively inhibit the proliferation of activated HSC-T6 cells, induce morphological changes, early apoptosis, and mitochondrial membrane potential depolarization, increase intracellular free calcium levels, downregulate the expression of NF-κB/p65 and COX-2 protein, and decrease the ratio of Bcl-2/Bax, thereby inducing HSC-T6 cell apoptosis. Thence, G-TOA might be a potential antifibrosis agent for the therapy of hepatic fibrosis, provided that it exerts anti-fibrosis effects on activated HSC-T6 cells.

  15. Cleavage of E-Cadherin by Matrix Metalloproteinase-7 Promotes Cellular Proliferation in Nontransformed Cell Lines via Activation of RhoA

    Directory of Open Access Journals (Sweden)

    Conor C. Lynch

    2010-01-01

    Full Text Available Perturbations in cell-cell contact machinery occur frequently in epithelial cancers and result in increased cancer cell migration and invasion. Previously, we demonstrated that MMP-7, a protease implicated in mammary and intestinal tumor growth, can process the adherens junction component E-cadherin. This observation leads us to test whether MMP-7 processing of E-cadherin could directly impact cell proliferation in nontransformed epithelial cell lines (MDCK and C57MG. Our goal was to investigate the possibility that MMP-7 produced by cancer cells may have effects on adjacent normal epithelium. Here, we show that MMP-7 processing of E-cadherin mediates, (1 loss of cell-cell contact, (2 increased cell migration, (3 a loss of epithelial cell polarization and (4 increased cell proliferation via RhoA activation. These data demonstrate that MMP-7 promotes epithelial cell proliferation via the processing of E-cadherin and provide insights into the molecular mechanisms that govern epithelial cell growth.

  16. Effect of alkyl glycerophosphate on the activation of peroxisome proliferator-activated receptor gamma and glucose uptake in C2C12 cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsukahara, Tamotsu, E-mail: ttamotsu@shinshu-u.ac.jp [Department of Integrative Physiology and Bio-System Control, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Haniu, Hisao [Department of Orthopedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan); Matsuda, Yoshikazu [Clinical Pharmacology Educational Center, Nihon Pharmaceutical University, Ina-machi, Saitama 362-0806 (Japan)

    2013-04-12

    Highlights: •Alkyl-LPA specifically interacts with PPARγ. •Alkyl-LPA treatments induces lipid accumulation in C2C12 cells. •Alkyl-LPA enhanced glucose uptake in C2C12 cells. •Alkyl-LPA-treated C2C12 cells express increased amounts of GLUT4 mRNA. •Alkyl-LPA is a novel therapeutic agent that can be used for the treatment of obesity and diabetes. -- Abstract: Studies on the effects of lipids on skeletal muscle cells rarely examine the effects of lysophospholipids. Through our recent studies, we identified select forms of phospholipids, such as alkyl-LPA, as ligands for the intracellular receptor peroxisome proliferator-activated receptor gamma (PPARγ). PPARγ is a nuclear hormone receptor implicated in many human diseases, including diabetes and obesity. We previously showed that alkyl-LPA is a specific agonist of PPARγ. However, the mechanism by which the alkyl-LPA–PPARγ axis affects skeletal muscle cells is poorly defined. Our objective in the present study was to determine whether alkyl-LPA and PPARγ activation promotes glucose uptake in skeletal muscle cells. Our findings indicate that PPARγ1 mRNA is more abundant than PPARγ2 mRNA in C2C12 cells. We showed that alkyl-LPA (3 μM) significantly activated PPARγ and increased intracellular glucose levels in skeletal muscle cells. We also showed that incubation of C2C12 cells with alkyl-LPA led to lipid accumulation in the cells. These findings suggest that alkyl-LPA activates PPARγ and stimulates glucose uptake in the absence of insulin in C2C12 cells. This may contribute to the plasma glucose-lowering effect in the treatment of insulin resistance.

  17. Interferon-γ regulates the proliferation and differentiation of mesenchymal stem cells via activation of indoleamine 2,3 dioxygenase (IDO.

    Directory of Open Access Journals (Sweden)

    Juliana Croitoru-Lamoury

    Full Text Available The kynurenine pathway (KP of tryptophan metabolism is linked to antimicrobial activity and modulation of immune responses but its role in stem cell biology is unknown. We show that human and mouse mesenchymal and neural stem cells (MSCs and NSCs express the complete KP, including indoleamine 2,3 dioxygenase 1 (IDO and IDO2, that it is highly regulated by type I (IFN-β and II interferons (IFN-γ, and that its transcriptional modulation depends on the type of interferon, cell type and species. IFN-γ inhibited proliferation and altered human and mouse MSC neural, adipocytic and osteocytic differentiation via the activation of IDO. A functional KP present in MSCs, NSCs and perhaps other stem cell types offers novel therapeutic opportunities for optimisation of stem cell proliferation and differentiation.

  18. Exogenous hydrogen sulfide exerts proliferation, anti-apoptosis, migration effects and accelerates cell cycle progression in multiple myeloma cells via activating the Akt pathway.

    Science.gov (United States)

    Zheng, Dong; Chen, Ziang; Chen, Jingfu; Zhuang, Xiaomin; Feng, Jianqiang; Li, Juan

    2016-10-01

    Hydrogen sulfide (H2S), regarded as the third gaseous transmitter, mediates and induces various biological effects. The present study investigated the effects of H2S on multiple myeloma cell progression via amplifying the activation of Akt pathway in multiple myeloma cells. The level of H2S produced in multiple myeloma (MM) patients and healthy subjects was measured using enzyme-linked immunosorbent assay (ELISA). MM cells were treated with 500 µmol/l NaHS (a donor of H2S) for 24 h. The expression levels of phosphorylated-Akt (p-Akt), Bcl-2 and caspase-3 were measured by western blot assay. Cell viability was detected by Cell Counting Kit 8 (CCK-8). The cell cycle was analyzed by flow cytometry. Our results show that the concentration of H2S was higher in MM patients and that it increased in parallel with disease progression. Treating MM cells with 500 µmol/l NaHS for 24 h markedly increased the expression level of Bcl-2 and the activation of p-Akt, however, the expression level of caspase-3 was decreased, cell viability was increased, and cell cycle progression was accelerated in MM cells. NaHS also induced migration in MM cells in transwell migration assay. Furthermore, co-treatment of MM cells with 500 µmol/l NaHS and 50 µmol/l LY294002 for 24 h significantly overset these effects. In conclusion, our findings demonstrate that the Akt pathway contributes to NaHS-induced cell proliferation, migration and acceleration of cell cycle progression in MM cells.

  19. DNA Damage-Induced NF-κB Activation in Human Glioblastoma Cells Promotes miR-181b Expression and Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Rui-Xue Xu

    2015-01-01

    Full Text Available Background: Glioblastoma (GBM is the most common and most aggressive form of brain cancer. After surgery, radiotherapy is the mainstay of treatment for GBM patients. Unfortunately, the vast majority of GBM patients fail responding to radiotherapy because GBM cells remain highly resistant to radiation. Radiotherapy-induced DNA damage response may correlate with therapeutic resistance. Methods: Ionizing radiation (IR was used to induce DNA damage. Cell proliferation and migration were detected by wound-healing, MTT and apoptosis assays. Dual-luciferase assays and Western blot analysis were performed to evaluate NF-κB activation and validate microRNA targets. Real-time PCR was used to study mRNA and microRNA levels. Results: IR-induced DNA damage activated NF-κB in GBM cells which promoted expression of IL-6, IL-8 and Bcl-xL, thereby contributing to cell survival and invasion. Knockdown SENP2 expression enhanced NF-κB essential modulator (NEMO SUMOylation and NF-κB activity following IR exposure. miR-181b targets SENP2 and positively regulated NF-κB activity. Conclusion: NF-κB activation by DNA damage in GBM cells confers resistance to radiation-induced death.

  20. Increased renin production in mice with deletion of peroxisome proliferator-activated receptor-gamma in juxtaglomerular cells

    DEFF Research Database (Denmark)

    Desch, Michael; Schreiber, Andrea; Schweda, Frank;

    2010-01-01

    We recently found that endogenous (free fatty acids) and pharmacological (thiazolidinediones) agonists of nuclear receptor Peroxisome proliferator-activated receptor (PPAR)gamma stimulate renin transcription. In addition, the renin gene was identified as a direct target of PPARgamma. The mouse re...

  1. Co-culture with human synovium-derived mesenchymal stem cells inhibits inflammatory activity and increases cell proliferation of sodium nitroprusside-stimulated chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jae-Sung; Jung, Yeon-Hwa; Cho, Mi-Young; Yeo, Jee Eun; Choi, Yun-Jin; Kim, Yong Il; Koh, Yong-Gon, E-mail: yonseranglab@daum.net

    2014-05-16

    Highlights: • Co-culture of hSDMSCs with SNP-stimulated chondrocytes improves anti-inflammation. • Co-culture system produces IGF-1. • Co-culture system suppresses inflammatory genes expression. • Co-culture system improves cell proliferation. • Exogenous IGF-1 inhibits inflammatory activity in SNP-stimulated chondrocytes. - Abstract: Rheumatoid arthritis (RA) and osteoarthritis (OA) are primarily chronic inflammatory diseases. Mesenchymal stem cells (MSCs) have the ability to differentiate into cells of the mesodermal lineage, and to regulate immunomodulatory activity. Specifically, MSCs have been shown to secrete insulin-like growth factor 1 (IGF-1). The purpose of the present study was to examine the inhibitory effects on inflammatory activity from a co-culture of human synovium-derived mesenchymal stem cells (hSDMSCs) and sodium nitroprusside (SNP)-stimulated chondrocytes. First, chondrocytes were treated with SNP to generate an in vitro model of RA or OA. Next, the co-culture of hSDMSCs with SNP-stimulated chondrocytes reduced inflammatory cytokine secretion, inhibited expression of inflammation activity-related genes, generated IGF-1 secretion, and increased the chondrocyte proliferation rate. To evaluate the effect of IGF-1 on inhibition of inflammation, chondrocytes pre-treated with IGF-1 were treated with SNP, and then the production of inflammatory cytokines was analyzed. Treatment with IGF-1 was shown to significantly reduce inflammatory cytokine secretion in SNP-stimulated chondrocytes. Our results suggest that hSDMSCs offer a new strategy to promote cell-based cartilage regeneration in RA or OA.

  2. β-Elemonic acid inhibits the cell proliferation of human lung adenocarcinoma A549 cells: The role of MAPK, ROS activation and glutathione depletion.

    Science.gov (United States)

    Wu, Tsu-Tuan; Lu, Chien-Lin; Lin, Hen-I; Chen, Bing-Fang; Jow, Guey-Mei

    2016-01-01

    β-elemonic acid, a known triterpene, exhibits anti-inflammatory effects, yet research on the pharmacological effects of β-elemonic acid is rare. We investigated the anticancer effects and the related molecular mechanisms of β-elemonic acid on human non-small cell lung cancer (NSCLC) A549 cells. The effects of β-elemonic acid on the growth of A549 cells were studied using a 3-(4,5)-2,5-diphenyltetrazolium bromide (MTT) assay. Apoptosis was detected using Annexin V staining. The effect of β-elemonic acid on the cell cycle of A549 cells was assessed using the propidium iodide method. The change in reactive oxygen species (ROS) was detected using a dichlorodihydrofluorescein diacetate (DCFH-DA) assay with microscopic examination. The expression levels of Bcl-2 family proteins, mitogen-activated protein kinase (MAPK) family proteins and cyclooxygenase 2 (COX-2) were detected using western blot analysis. Our data revealed that β-elemonic acid strongly induced human A549 lung cancer cell death in a dose- and time-dependent manner as determined by the MTT assay. β-elemonic acid-induced cell death was considered to be apoptotic when the phosphatidylserine exposure was observed using Annexin V staining. The death of human A549 lung cancer cells was caused by apoptosis induced by activation of ROS activity, increase in the sub-G1 proportion, downregulation of Bcl-2 expression, upregulation of Bax expression and inhibition of the MAPK signaling pathways. These results clearly demonstrated that β-elemonic acid inhibits proliferation by inducing hypoploid cells and cell apoptosis. Moreover, the anticancer effects of β-elemonic acid were related to the MAPK signaling pathway, ROS activation and glutathione depletion in human A549 lung cancer cells.

  3. Activation of G protein-coupled receptor 30 by thiodiphenol promotes proliferation of estrogen receptor α-positive breast cancer cells.

    Science.gov (United States)

    Lei, Bingli; Peng, Wei; Xu, Gang; Wu, Minghong; Wen, Yu; Xu, Jie; Yu, Zhiqiang; Wang, Yipei

    2017-02-01

    Many studies have been shown that environmental estrogen bisphenol A (BPA) can activate nuclear receptor (estrogen receptor alpha, ERα) or membrane receptor (G-protein-coupled receptor, GPR30) in breast cancer cells and exerts genomic or nongenomic actions inducing cell proliferation. 4,4'-thiodiphenol (TDP) as one of BPA derivatives exhibits more potent estrogenic activity than BPA does. However, comparatively little is known about the ways in which TDP interferes with these signaling pathways and produces cell biological changes. This study evaluated the effect of TDP on cell viability, reactive oxygen species (ROS) formation, and intercellular calcium (Ca(2+)) fluctuation in MCF-7 breast cancer cells. The underlying molecular mechanism of cell proliferation induced by TDP was analyzed by examining the activation of ERα and GPR30-mediated phosphatidylinotidol 3-kinase/protein kinase B (PI3K/AKT) and extracellular-signa1regulated kinase (ERK1/2) signaling pathways. The results showed that exposure to 0.1-10 μM TDP for 24, 48, and 72 h significantly increased viability of MCF-7 cells. At the same concentration range, TDP exposure for 3 and 24 h markedly elevated ROS production and intracellular Ca(2+) levels. In addition, 0.01-1 μM TDP significantly increased the expression of ERα, GPR30, p-AKT and p-ERK1/2 protein. Specific protein inhibitors blocked phosphorylation of ERK1/2 and AKT and decreased TDP-induced cell proliferation. These findings show that TDP activated the GPR30-PI3K/AKT and ERK1/2 pathways, and the resulting interaction with ERα stimulated MCF-7 cell proliferation. Our results indicate a novel mechanism through which TDP may exert relevant estrogenic action in ERα positive cancer cells.

  4. Effects of Ouabain on Proliferation of Human Endothelial Cells Correlate with Na+,K+-ATPase Activity and Intracellular Ratio of Na+ and K.

    Science.gov (United States)

    Tverskoi, A M; Sidorenko, S V; Klimanova, E A; Akimova, O A; Smolyaninova, L V; Lopina, O D; Orlov, S N

    2016-08-01

    Side-by-side with inhibition of the Na+,K+-ATPase ouabain and other cardiotonic steroids (CTS) can affect cell functions by mechanisms other than regulation of the intracellular Na+ and K+ ratio ([Na+]i/[K+]i). Thus, we compared the dose- and time-dependences of the effect of ouabain on intracellular [Na+]i/[K+]i ratio, Na+,K+-ATPase activity, and proliferation of human umbilical vein endothelial cells (HUVEC). Treatment of the cells with 1-3 nM ouabain for 24-72 h decreased the [Na+]i/[K+]i ratio and increased cell proliferation by 20-50%. We discovered that the same ouabain concentrations increased Na+,K+-ATPase activity by 25-30%, as measured by the rate of (86)Rb(+) influx. Higher ouabain concentrations inhibited Na+,K+-ATPase, increased [Na+]i/[K+]i ratio, suppressed cell growth, and caused cell death. When cells were treated with low ouabain concentrations for 48 or 72 h, a negative correlation between [Na+]i/[K+]i ratio and cell growth activation was observed. In cells treated with high ouabain concentrations for 24 h, the [Na+]i/[K+]i ratio correlated positively with proliferation inhibition. These data demonstrate that inhibition of HUVEC proliferation at high CTS concentrations correlates with dissipation of the Na+ and K+ concentration gradients, whereas cell growth stimulation by low CTS doses results from activation of Na+,K+-ATPase and decrease in the [Na+]i/[K+]i ratio.

  5. Increased renin production in mice with deletion of peroxisome proliferator-activated receptor-gamma in juxtaglomerular cells.

    Science.gov (United States)

    Desch, Michael; Schreiber, Andrea; Schweda, Frank; Madsen, Kirsten; Friis, Ulla G; Weatherford, Eric T; Sigmund, Curt D; Sequeira Lopez, Maria Luisa; Gomez, R Ariel; Todorov, Vladimir T

    2010-03-01

    We recently found that endogenous (free fatty acids) and pharmacological (thiazolidinediones) agonists of nuclear receptor Peroxisome proliferator-activated receptor (PPAR)gamma stimulate renin transcription. In addition, the renin gene was identified as a direct target of PPARgamma. The mouse renin gene is regulated by PPARgamma through a distal enhancer direct repeat closely related to consensus PPAR response element (PPRE). In vitro studies demonstrated that PPARgamma knockdown stimulated PPRE-driven transcription. These data predicted that deficiency of PPARgamma would upregulate mouse renin expression. Consistent with these observations knockdown of PPARgamma increased the transcription of a reporter gene driven by the mouse renin PPRE-like motif in vitro. To study the impact of PPARgamma on renin production in vivo, we used a cre/lox system to generate double-transgenic mice with disrupted PPARgamma locus in renin-producing juxtaglomerular (JG) cells of the kidney (RC-PPARgamma(fl/fl) mice). We provide evidence that PPARgamma expression was effectively reduced in JG cells of RC-PPARgamma(fl/fl) mice. Fluorescent immunohistochemistry showed stronger renin signal in RC-PPARgamma(fl/fl) than in littermate control RC-PPARgamma(wt/wt) mice. Renin mRNA levels and plasma renin concentration in RC-PPARgamma(fl/fl) mice were almost 2-fold higher than in littermate controls. Arterial blood pressure and pressure control of renal vascular resistance, which play decisive roles in the regulation of renin production were indistinguishable between RC-PPARgamma(wt/wt) and RC-PPARgamma(fl/fl) mice. These data demonstrate that the JG-specific PPARgamma deficiency results in increased mouse renin expression in vivo thus corroborating earlier in vitro results. PPARgamma appears to be a relevant transcription factor for the control of renin gene in JG cells.

  6. A combination of desmopressin and docetaxel inhibit cell proliferation and invasion mediated by urokinase-type plasminogen activator (uPA) in human prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Hiroshi; Klotz, Laurence H. [Division of Urology, Sunnybrook Health Sciences Center, Toronto, ON (Canada); Sugar, Linda M. [Department of Pathology, Sunnybrook Health Sciences Center, Toronto, ON (Canada); Kiss, Alexander [Department of Research Design and Biostatistics, Institute for Clinical Evaluative Sciences, Sunnybrook Health Sciences Center, Toronto, ON (Canada); Venkateswaran, Vasundara, E-mail: vasundara.venkateswaran@sunnybrook.ca [Division of Urology, Sunnybrook Health Sciences Center, Toronto, ON (Canada)

    2015-08-28

    Background: This study was designed to assess the effectiveness of a combination treatment using both desmopressin and docetaxel in prostate cancer treatment. Desmopressin is a well-known synthetic analogue of the antidiuretic hormone vasopressin. It has recently been demonstrated to inhibit tumor progression and metastasis in in vivo models. Docetaxel is widely used for the treatment of castration resistant prostate cancer (CRPC) patients. However, durable responses have been uncommon to date. In this study, we investigated the anti-tumor effect of desmopressin in combination with docetaxel in vitro and in vivo. Methods: Two prostate cancer cells (PC3, LNCaP) were treated with different concentrations of desmopressin alone, docetaxel alone, and a combination of desmopressin and docetaxel. Cell proliferation was determined by MTS assay. The anti-invasive and anti-migration potential of desmopressin and in combination with docetaxel were examined by wound healing assay, migration chamber assay, and matrigel invasion assay. Results: The combination of desmopressin and docetaxel resulted in a significant inhibition of PC3 and LNCaP cell proliferation (p < 0.01). Additionally, cell migration and invasion were also inhibited by the combination when compared to that of either treatment alone in PC3 cells (p < 0.01). The anti-tumor effect of this combination treatment was associated with down-regulation of both urokinase-type plasminogen activator (uPA) and matrix metalloproteinase (MMP-2 and MMP-9) in PC3 cells. Conclusions: We are the first to elucidate the anti-tumor and anti-metastatic potential of desmopressin in combination with docetaxel in a prostate cancer model via the uPA-MMP pathway. Our finding could potentially contribute to the therapeutic profile of desmopressin and enhance the efficacy of docetaxel based treatment for CRPC. - Highlights: • Desmopressin inhibits cell proliferation in prostate cancer cells. • The expression of cyclin A and CDK2

  7. Mutation of isocitrate dehydrogenase 1 induces glioma cell proliferation via nuclear factor-κB activation in a hypoxia-inducible factor 1-α dependent manner.

    Science.gov (United States)

    Wang, Guoliang; Sai, Ke; Gong, Fanghe; Yang, Qunying; Chen, Furong; Lin, Jian

    2014-05-01

    Recently, mutations of the isocitrate dehydrogenase (IDH) 1 gene, which specifically occur in the majority of low-grade and secondary high-grade gliomas, have drawn particular attention of neuro-oncologists. Mutations of the IDH1 gene have been proposed to have significant roles in the tumorigenesis, progression and prognosis of gliomas. However, the molecular mechanism of the role of IDH1 mutants in gliomagenesis remains to be elucidated. The present study, showed that forced expression of an IDH1 mutant, of which the 132th amino acid residue arginine is substituted by histidine (IDH1R132H), promoted cell proliferation in cultured cells, while wild-type IDH1 overexpression had no effect on cell proliferation. Consistent with previous studies, it was also observed that expression of hypoxia-inducible factor 1-α (HIF1-α) was upregulated in IDH1R132H expressing cells with the induction of vascular endothelial growth factor (VEGF) expression. However, knockdown of VEGF via small RNA interference had no significant influence on the cell proliferation induced by overexpression of IDH1R132H, implying that another signaling pathway may be involved. Next, forced expression of IDH1R132H was found to activate nuclear factor-κB (NF-κB), since the inhibitory IκB protein (IκBα) was highly phosphorylated and the NF-κB p65 subunit was translocated into the nucleus. Notably, knockdown of HIF1-α significantly blocked NF-κB activation, which was induced by the overexpression of IDH1 mutants. In addition, expression of IDH1 mutants markedly induced the NF-κB target gene expression, including cyclin D1 and E and c-myc, which were involved in the regulation of cell proliferation. In conclusion, it was demonstrated that the IDH1 mutant activated NF-κB in a HIF1-α‑dependent manner and was involved in the regulation of cell proliferation.

  8. MECHANISMS OF CELL RESISTANCE TO CYTOMEGALOVIRUS ARE CONNECTED WITH CELL PROLIFERATION STATE AND TRANSCRIPTION ACTIVITY OF LEUKOCYTE AND IMMUNE INTERFERON GENES

    Directory of Open Access Journals (Sweden)

    T. M. Sokolova

    2007-01-01

    Full Text Available Abstract. Cytomegalovirus (CMV infection in diploid human fibroblasts (HF and levels of cell resistance to this virus were shown to be in direct correlation with high α-interferon (IFNα gene activity and induction of IFNγ gene transcription. Regulation of IFNα mRNA transcription was revealed to be positively associated with cellular DNA synthesis. At the same time, activities of IFNβ and IFNγ genes were at the constantly low level and were not induced in DNA-synthetic phase (S-phase of the cells. Levels of IFNα mRNA synthesis are quite different for G0- vs S-phase-synchronized HF110044 cell cultures: appropriate values for dividing cells (S-phase proved to be 100-fold higher than in resting state (G0. The mode of CMV infection in resting HF-cell could be considered either as acute, or a productive one. On the contrary, proliferating cells exhibited lagging viral syntheses and delayed cell death. Arrest of CMV replication may be, to some extent, comparable with latent infectious state, being associated with high production of IFNα. Both basal and induced levels of IFNα mRNA in CMV-resistant adult human skin fibroblast cells (HSF-1608 were 10-fold higher than in human embryo lung cell line (HELF-977, which is highly sensitive to CMV. Moreover, a short-time induction of IFNγ genes was observed in resistant cells, whereas no such effect was noticed in highly sensitive cells. CMV reproduction in sensitive cell lines (HELF-977 and HELF-110044 partially inhibits IFNα mRNA transcription at the later stages of infection (24 to 48 hours. Thus, cellular resistance and control of CMV infection in diploid fibroblasts are associated predominantly with high transcription of IFNα gene, and with temporal induction of IFNγ gene. We did not reveal any participation of IFNβ genes in protection of human diploid fibroblasts from CMV.

  9. Senegenin promotes in vitro proliferation of human neural progenitor cells

    Institute of Scientific and Technical Information of China (English)

    Fang Shi; Zhigang Liang; Zixuan Guo; Ran Li; Fen Yu; Zhanjun Zhang; Xuan Wang; Xiaomin Wang

    2011-01-01

    Senegenin, an effective component of Polygala tenuifolia root extract, promotes proliferation and differentiation of neural progenitor cells in the hippocampus.However, the effects of senegenin on mesencephalon-derived neural progenitor cells remain poorly understood.Cells from a ventral mesencephalon neural progenitor cell line (ReNcell VM) were utilized as models for pharmaceutical screening.The effects of various senegenin concentrations on cell proliferation were analyzed,demonstrating that high senegenin concentrations (5, 10, 50, and 100 pmo/L), particularly 50 pmol/L, significantly promoted proliferation of ReNcell VM cells.In the mitogen-activated protein kinase signal transduction pathway, senegenin significantly increased phosphorylation levels of extracellular signal-regulated kinases.Moreover, cell proliferation was suppressed by extracellular signal-regulated kinase inhibitors.Results suggested that senegenin contributed to in vitro proliferation of human neural progenitor cells by upregulating phosphorylation of extracellular signal-regulated kinase.

  10. JAK2V617F/STAT5 signaling pathway promotes cell proliferation through activation of Pituitary Tumor Transforming Gene 1 expression

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Xu-Liang [Department of Hematology, Heping Hospital of Changzhi Medical College, Changzhi 046000 (China); Department of Hematology, Xiangya Hospital of Centre-South University, Changsha 410008 (China); Wei, Wu; Xu, Hong-Liang; Zhang, Mei-Xiang; Qin, Xiao-Qi; Shi, Wen-Zhi; Jiang, Zhi-Ping [Department of Hematology, Heping Hospital of Changzhi Medical College, Changzhi 046000 (China); Chen, Yi-Jian [Department of Hematology, The First Affiliated Hospital, GanNan Medical University, GanZhou 341000 (China); Chen, Fang-Ping, E-mail: xychenfp@2118.cn [Department of Hematology, Xiangya Hospital of Centre-South University, Changsha 410008 (China)

    2010-08-06

    Research highlights: {yields} AG490, a member of tyrosine kinase inhibitors, could inhibit the JAK2V617F/STAT5 signaling pathway in HEL cell which harbor JAK2V617F mutation. {yields} Inhibition of the JAK2V617F/STAT5 signaling pathway inhibited the growth of HEL cells. {yields} JAK2V617F mutation promotes cell proliferation through activation of PTTG1 expression. {yields} JAK2V617F/STAT5 signaling pathway regulate PTTG1 expression at transcriptional level. -- Abstract: Gain-of-function mutations of JAK2 play crucial roles in the development of myeloproliferative neoplasms; however, the underlying downstream events of this activated signaling pathway are not fully understood. Our experiment was designed and performed to address one aspect of this issue. Here we report that AG490, a potent JAK2V617F kinase inhibitor, effectively inhibits the proliferation of HEL cells. Interestingly, AG490 also decreases the expression of PTTG1, a possible target gene of the aberrant signaling pathway, in a dose- and time-dependent manner. Furthermore, the promoter activity analyses reveal that the inhibition of the PTTG1 expression is affected at the transcriptional level. Thus, our results suggest that the JAK2V617F/STAT5 signaling pathway promotes cell proliferation through the transcriptional activation of PTTG1.

  11. IL-1β-induced matrix metalloproteinase-13 is activated by a disintegrin and metalloprotease-28-regulated proliferation of human osteoblast-like cells

    Energy Technology Data Exchange (ETDEWEB)

    Ozeki, Nobuaki; Kawai, Rie; Yamaguchi, Hideyuki; Hiyama, Taiki; Kinoshita, Katsue; Hase, Naoko; Nakata, Kazuhiko [Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651 (Japan); Kondo, Ayami [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-ku, Nagoya, Aichi 464-8650 (Japan); Mogi, Makio, E-mail: makio@dpc.agu.ac.jp [Department of Medicinal Biochemistry, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto, Chikusa-ku, Nagoya, Aichi 464-8650 (Japan); Nakamura, Hiroshi [Department of Endodontics, School of Dentistry, Aichi Gakuin University, 2-11 Suemori-dori, Chikusa-ku, Nagoya, Aichi 464-8651 (Japan)

    2014-04-15

    We reported previously that matrix metalloproteinase (MMP)-13 accelerates bone remodeling in oral periradicular lesions, and indicated a potentially unique role for MMP-13 in wound healing and regeneration of alveolar bone. The ADAM (a disintegrin and metalloprotease) family is a set of multifunctional cell surface and secreted glycoproteins, of which ADAM-28 has been localized in bone and bone-like tissues. In this study, we show that interleukin (IL)-1β induces the expression of MMP-13 and ADAM-28 in homogeneous α7 integrin-positive human skeletal muscle stem cell (α7{sup +}hSMSC)-derived osteoblast-like (α7{sup +}hSMSC-OB) cells, and promotes proliferation while inhibiting apoptosis in these cells. At higher concentrations, however, IL-1β failed to induce the expression of these genes and caused an increase in apoptosis. We further employed ADAM-28 small interfering RNA (siRNA) to investigate whether IL-1β-induced MMP-13 expression is linked to this IL-1β-mediated changes in cell proliferation and apoptosis. Silencing ADAM-28 expression potently suppressed IL-1β-induced MMP-13 expression and activity, decreased cell proliferation and increased apoptosis in α7{sup +}hSMSC-OB cells. In contrast, MMP-13 siRNA had no effect on ADAM-28 expression, suggesting ADAM-28 regulates MMP-13. Exogenous MMP-13 induced α7{sup +}hSMSC-OB cell proliferation and could rescue ADAM-28 siRNA-induced apoptosis, and we found that proMMP-13 is partially cleaved into its active form by ADAM-28 in vitro. Overall, our results suggest that IL-1β-induced MMP-13 expression and changes in cell proliferation and apoptosis in α7{sup +}hSMSC-OB cells are regulated by ADAM-28. - Highlights: • IL-1β induces the MMP-13 and ADAM-28 expression in human osteoblast-like cells. • IL-1β-induced MMP-13 expression increases proliferation and decreased apoptosis. • MMP-13 expression induced by IL-1β is regulated by ADAM-28. • proMMP-13 appears to be cleaved into its active form via

  12. The in vitro assessment of anti proliferation activity of crude diethyl ether extract of Dendrophthoe species against to myeloma culture cell

    Directory of Open Access Journals (Sweden)

    Mochamad Lazuardi

    2008-03-01

    Full Text Available Herb medicine have an active substances that can dissolved on polar, semi polar and non polar liquid extract. The methanol and ethyl acetate as a polar and semi polar extract liquid were used to study of herb medicine such as Dendrophthoe species. Diethyl ether as a non polar liquid extract was never use to study the Dendrophthoe species. The aim of this study was to investigate the anti proliferation activity of Dendrophthoe species to myeloma culture cells after extracted by non-polar extract solution (diethyl ether. The post test only control group design was used for this research. A thirty six of microtiterplates wells were used for myeloma culture cells in RPMI medium. The wells were devided placing in two groups: treatment groups and controls groups. Each three wells of six treatment subgroups added with 100 µl of 1.1; 5.5; 11; 22; 33 and 44 µg/ml crude diethyl ether extract series. A RPMI solution at similar method and volume were used as control substances. The cells were assessed by inverted microscope in 200x magnified two days after. The cells were quantified analyzed for anti proliferation activity by using 1:1 methylene blue solution. The results showed that started from 11.0 µg/ml of crude diethyl ether extract of Dendrophthoe species have been anti proliferation abilities of myeloma culture cells (p<0.05. In conclusion, actives substances of Dendrophthoe species where dissolved in non polar liquid as diethyl ether has anti proliferation activities to cancer cell in vitro.

  13. Macrophage peroxisome proliferator-activated receptor γ deficiency delays skin wound healing through impairing apoptotic cell clearance in mice

    OpenAIRE

    Chen, H.; Shi, R.; Luo, B.; Yang, X.; Qiu, L; Xiong, J.; Jiang, M; Y. Liu; Zhang, Z; Wu, Y

    2015-01-01

    Skin wound macrophages are key regulators of skin repair and their dysfunction causes chronic, non-healing skin wounds. Peroxisome proliferator-activated receptor gamma (PPARγ) regulates pleiotropic functions of macrophages, but its contribution in skin wound healing is poorly defined. We observed that macrophage PPARγ expression was upregulated during skin wound healing. Furthermore, macrophage PPARγ deficiency (PPARγ-knock out (KO)) mice exhibited impaired skin wound healing with reduced co...

  14. Desmocollin 3 mediates follicle stimulating hormone-induced ovarian epithelial cancer cell proliferation by activating the EGFR/Akt signaling pathway.

    Science.gov (United States)

    Yang, Xiao; Wang, Jing; Li, Wen-Ping; Jin, Zhi-Jun; Liu, Xiao-Jun

    2015-01-01

    Follicle-stimulating hormone (FSH) is associated with the pathogenesis of ovarian cancer. We sought to explore whether desmocollin 3 (Dsc3) mediates FSH-induced ovarian epithelial cancer cell proliferation and whether the EGFR/Akt signaling pathway may be involved in this process. Dsc3 positivity in ovarian tissue specimens from 72 patients was assessed by immunohistochemistry. The positive expression rates of Dsc3 were similar in ovarian cancer tissues (24/31:77.4%) and borderline ovarian tumor tissues (18/22:81.8%) (P>0.05), but were significantly higher in these cancerous tissues than in benign ovarian cyst tissues (3/19:15.8%) (Pcancer cells (HO8910, Skov3ip, Skov and Hey cells, but not ES-2 and in borderline ovarian MCV152 tumor cells was higher than in the immortalized ovarian epithelial cell line, Moody. FSH up-regulated the expression of Dsc3 and EGFR in a dose- and time-dependent manner. Furthermore, a converse relationship between the expression of Dsc3, EFGR and PI3K/Akt signaling was elucidated using RNA interference and PI3K/Akt inhibitor in the absence and presence of FSH. A role for these proteins in FSH-induced cell proliferation was verified, highlighting their interdependence in mediating ovarian cancer cell function. These results suggest that Dsc3 can mediate FSH-induced ovarian cancer cell proliferation by activating the EGFR/Akt signaling pathway.

  15. Targeting AMP-activated protein kinase in adipocytes to modulate obesity-related adipokine production associated with insulin resistance and breast cancer cell proliferation

    Directory of Open Access Journals (Sweden)

    Grisouard Jean

    2011-07-01

    Full Text Available Abstract Background Adipokines, e.g. TNFα, IL-6 and leptin increase insulin resistance, and consequent hyperinsulinaemia influences breast cancer progression. Beside its mitogenic effects, insulin may influence adipokine production from adipocyte stromal cells and paracrine enhancement of breast cancer cell growth. In contrast, adiponectin, another adipokine is protective against breast cancer cell proliferation and insulin resistance. AMP-activated protein kinase (AMPK activity has been found decreased in visceral adipose tissue of insulin-resistant patients. Lipopolysaccharides (LPS link systemic inflammation to high fat diet-induced insulin resistance. Modulation of LPS-induced adipokine production by metformin and AMPK activation might represent an alternative way to treat both, insulin resistance and breast cancer. Methods Human preadipocytes obtained from surgical biopsies were expanded and differentiated in vitro into adipocytes, and incubated with siRNA targeting AMPKalpha1 (72 h, LPS (24 h, 100 μg/ml and/or metformin (24 h, 1 mM followed by mRNA extraction and analyses. Additionally, the supernatant of preadipocytes or derived-adipocytes in culture for 24 h was used as conditioned media to evaluate MCF-7 breast cancer cell proliferation. Results Conditioned media from preadipocyte-derived adipocytes, but not from undifferentiated preadipocytes, increased MCF-7 cell proliferation (p Conclusions Adipocyte-secreted factors enhance breast cancer cell proliferation, while AMPK and metformin improve the LPS-induced adipokine imbalance. Possibly, AMPK activation may provide a new way not only to improve the obesity-related adipokine profile and insulin resistance, but also to prevent obesity-related breast cancer development and progression.

  16. Costimulation of resting B lymphocytes alters the IL-4-activated IRS2 signaling pathway in a STAT6 independent manner: implications for cell survival and proliferation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    IL-4 is an important B cell survival and growth factor.IL-4 induced the tyrosine phosphorylation of IRS2 in resting B lymphocytes and in LPS- or CD40L-activated blasts.Phosphorylated IRS2 coprecipitated with the p85 subunit of PI 3' kinase in both resting and activated cells.By contrast,association of phosphorylated IRS2 with GRB2 was not detected in resting B cells after IL-4 treatment although both proteins were expressed.However,IL-4 induced association of IRS2 with GRB2 in B cell blasts.The pattern of IL-4-induced recruitment of p85 and GRB2 to IRS2 observed in B cells derived from STAT6 null mice was identical to that observed for normal mice.While IL-4 alone does not induce activation of MEK,a MEK1 inhibitor suppressed the IL-4-induced proliferative response of LPS-activated B cell blasts.These results demonstrate that costimulation of splenic B cells alters IL-4-induced signal transduction independent of STAT6 leading to proliferation.Furthermore,proliferation induced by IL-4 in LPS-activated blasts is dependent upon the MAP kinase pathway.

  17. Natural killer cell activity, lymphocyte proliferation, and cytokine profile in tumor-bearing mice treated with MAPA, a magnesium aggregated polymer from Aspergillus oryzae.

    Science.gov (United States)

    Justo, G Z; Durán, N; Queiroz, M L S

    2003-08-01

    The present study examined the effects of MAPA, an antitumor aggregated polymer of protein magnesium ammonium phospholinoleate-palmitoleate anhydride, isolated from Aspergillus oryzae, on concanavalin A (Con A)-induced spleen cell proliferation, cytokine production and on natural killer (NK) cell activity in Ehrlich ascites tumor-bearing mice. The Ehrlich ascites tumor (EAT) growth led to diminished mitogen-induced expansion of spleen cell populations and total NK activity. This was accompanied by striking spleen enlargement, with a marked increase in total cell counts. Moreover, a substantial enhancement in IL-10 levels, paralleled by a significant decrease in IL-2 was observed, while production of IL-4 and interferon-gamma (IFN-gamma) was not altered. Treatment of mice with 5 mg/kg MAPA for 7 days promoted spleen cell proliferation, IL-2 production and NK cell activity regardless of tumor outgrowth. In addition, MAPA treatment markedly enhanced IFN-gamma levels and reduced IL-10 production relative to EAT mice. A 35% reduction in splenomegaly with normal number of nucleated cells was also found. Altogether, our results suggest that MAPA directly and/or indirectly modulates immune cell activity, and probably disengages tumor-induced suppression of these responses. Clearly, MAPA has an impact and may delay tumor outgrowth through immunotherapeutic mechanisms.

  18. Proliferation of osteoblast cells on nanotubes

    Institute of Scientific and Technical Information of China (English)

    F.WATARI; T.AKASAKA; Xiaoming LI; M.UO; A.YOKOYAMA

    2009-01-01

    Carbon nanotubes (CNT) have a unique structme and feature. In the present study, cell proliferation was performed on the scaffolds of single-walled CNTs (SWCNT), multiwalled CNTs (MWCNT), and on gra-phita, one of the representative isomorphs of pure carbon,for the sake of comparison. Scanning electron microscopy observation of the growth of osteoblast-like cells (Saps2) cultttred on CNTs showed the morphology fully developed for the whole direction, which is different from that extended to one direction on the usual scaffold. Numerous filopodia were grown from cell edge, extended far long and combined with the CNT meshwork. CNTs showed the affinity for collagen and proteins. Proliferated cell numbers are largest on SWCNTs, followed by MWCNTs, and are very low on graphite. This is in good agreement with the sequence in the results of the adsorbed amount of proteins and expression of alkaline phosphatase activity for these scaffolds. The adsorption of protains would be one of the most influential factors to make a contrast difference in cell attachment and proliferation between graphite and CNTs,both of which are isomorphs of carbon and composed of similar graphene sheet crystal structure. In addition, the nanosize meshwork structure with large porosity is another properly responsible for the excellent cell adhesion and growth on CNTs. CNTs could be the favorable materials for biomedical applications.CNTs with different structures and compositions have been synthesized and discovered [3]. Nanomaterials [2-9] and nanocomposites [10-15] may have various effects onliving organisms. In this study, a fundamental study for biomedical application, cell proliferation was performed on various nanotubes (biT), including (1) single-walled CNTs (SWCNT), (2) multiwalled CNTs (MWCNT), and on graphite, an isomorph of CNT, as a comparison.Figure 1 shows the schematic figures of two different crystal structures of carbon: graphite and CNT. Graphite has the layer-by-layer laminated

  19. Peroxisome proliferator-activated receptor-gamma inhibits transformed growth of non-small cell lung cancer cells through selective suppression of Snail.

    Science.gov (United States)

    Choudhary, Rashmi; Li, Howard; Winn, Robert A; Sorenson, Amber L; Weiser-Evans, Mary C M; Nemenoff, Raphael A

    2010-03-01

    Work from our laboratory and others has demonstrated that activation of the nuclear receptor peroxisome proliferator-activated receptor-gamma (PPARgamma) inhibits transformed growth of non-small cell lung cancer (NSCLC) cell lines in vitro and in vivo. We have demonstrated that activation of PPARgamma promotes epithelial differentiation of NSCLC by increasing expression of E-cadherin, as well as inhibiting expression of COX-2 and nuclear factor-kappaB. The Snail family of transcription factors, which includes Snail (Snail1), Slug (Snail2), and ZEB1, is an important regulator of epithelial-mesenchymal transition, as well as cell survival. The goal of this study was to determine whether the biological responses to rosiglitazone, a member of the thiazolidinedione family of PPARgamma activators, are mediated through the regulation of Snail family members. Our results indicate that, in two independent NSCLC cell lines, rosiglitazone specifically decreased expression of Snail, with no significant effect on either Slug or ZEB1. Suppression of Snail using short hairpin RNA silencing mimicked the effects of PPARgamma activation, in inhibiting anchorage-independent growth, promoting acinar formation in three-dimensional culture, and inhibiting invasiveness. This was associated with the increased expression of E-cadherin and decreased expression of COX-2 and matrix metaloproteinases. Conversely, overexpression of Snail blocked the biological responses to rosiglitazone, increasing anchorage-independent growth, invasiveness, and promoting epithelial-mesenchymal transition. The suppression of Snail expression by rosiglitazone seemed to be independent of GSK-3 signaling but was rather mediated through suppression of extracellular signal-regulated kinase activity. These findings suggest that selective regulation of Snail may be critical in mediating the antitumorigenic effects of PPARgamma activators.

  20. Peroxisome Proliferator-Activated Receptor-γ Inhibits Transformed Growth of Non-Small Cell Lung Cancer Cells through Selective Suppression of Snail

    Directory of Open Access Journals (Sweden)

    Rashmi Choudhary

    2010-03-01

    Full Text Available Work from our laboratory and others has demonstrated that activation of the nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ inhibits transformed growth of non-small cell lung cancer (NSCLC cell lines in vitro and in vivo. We have demonstrated that activation of PPARγ promotes epithelial differentiation of NSCLC by increasing expression of E-cadherin, as well as inhibiting expression of COX-2 and nuclear factor-κB. The Snail family of transcription factors, which includes Snail (Snail1, Slug (Snail2, and ZEB1, is an important regulator of epithelial-mesenchymal transition, as well as cell survival. The goal of this study was to determine whether the biological responses to rosiglitazone, a member of the thiazolidinedione family of PPARγ activators, are mediated through the regulation of Snail family members. Our results indicate that, in two independent NSCLC cell lines, rosiglitazone specifically decreased expression of Snail, with no significant effect on either Slug or ZEB1. Suppression of Snail using short hairpin RNA silencing mimicked the effects of PPARγ activation, in inhibiting anchorage-independent growth, promoting acinar formation in three-dimensional culture, and inhibiting invasiveness. This was associated with the increased expression of E-cadherin and decreased expression of COX-2 and matrix metaloproteinases. Conversely, overexpression of Snail blocked the biological responses to rosiglitazone, increasing anchorage-independent growth, invasiveness, and promoting epithelial-mesenchymal transition. The suppression of Snail expression by rosiglitazone seemed to be independent of GSK-3 signaling but was rather mediated through suppression of extracellular signal-regulated kinase activity. These findings suggest that selective regulation of Snail may be critical in mediating the antitumorigenic effects of PPARγ activators.

  1. The proliferation of amplifying neural progenitor cells is impaired in the aging brain and restored by the mTOR pathway activation.

    Science.gov (United States)

    Romine, Jennifer; Gao, Xiang; Xu, Xiao-Ming; So, Kwok Fai; Chen, Jinhui

    2015-04-01

    A decrease in neurogenesis in the aged brain has been correlated with cognitive decline. The molecular signaling that regulates age-related decline in neurogenesis is still not fully understood. We found that different subtypes of neural stem cells (NSCs) in the hippocampus were differentially impaired by aging. The quiescent NSCs decreased slowly, although the active NSCs exhibited a sharp and dramatic decline from the ages of 6-9 months and became more quiescent at an early stage during the aging process. The activity of the mammalian target of rapamycin (mTOR) signal pathway is compromised in the NSCs of the aged brain. Activating the mTOR signaling pathway increased NSC proliferation and promoted neurogenesis in aged mice. In contrast, inhibiting the mTOR signaling pathway decreased NSCs proliferation. These results indicate that an age-associated decline in neurogenesis is mainly because of the reduction in proliferation of active NSCs, at least partially because of the compromise in the mTOR signaling activity. Stimulating the mTOR signaling revitalizes the NSCs, restores their proliferation, and enhances neurogenesis in the hippocampus of the aged brain.

  2. Loss of DDB1 Leads to Transcriptional p53 Pathway Activation in Proliferating Cells, Cell Cycle Deregulation, and Apoptosis in Zebrafish Embryos

    Science.gov (United States)

    Hu, Zhilian; Holzschuh, Jochen; Driever, Wolfgang

    2015-01-01

    DNA damage-binding protein 1 (DDB1) is a large subunit of the heterodimeric DDB complex that recognizes DNA lesions and initiates the nucleotide excision repair process. DDB1 is also a component of the CUL4 E3 ligase complex involved in a broad spectrum of cellular processes by targeted ubiquitination of key regulators. Functions of DDB1 in development have been addressed in several model organisms, however, are not fully understood so far. Here we report an ENU induced mutant ddb1 allele (ddb1m863) identified in zebrafish (Danio rerio), and analyze its effects on development. Zebrafish ddb1 is expressed broadly, both maternally and zygotically, with enhanced expression in proliferation zones. The (ddb1m863 mutant allele affects the splice acceptor site of exon 20, causing a splicing defect that results in truncation of the 1140 amino acid protein after residue 800, lacking part of the β-propeller domain BPC and the C-terminal helical domain CTD. ddb1m863 zygotic mutant embryos have a pleiotropic phenotype, including smaller and abnormally shaped brain, head skeleton, eyes, jaw, and branchial arches, as well as reduced dopaminergic neuron groups. However, early forming tissues develop normally in zygotic ddb1m863 mutant embryos, which may be due to maternal rescue. In ddb1m863 mutant embryos, pcna-expressing proliferating cell populations were reduced, concurrent with increased apoptosis. We also observed a concomitant strong up-regulation of transcripts of the tumor suppressor p53 (tp53) and the cell cycle inhibitor cdkn1a (p21a/bCIP1/WAF1) in proliferating tissues. In addition, transcription of cyclin genes ccna2 and ccnd1 was deregulated in ddb1m863 mutants. Reduction of p53 activity by anti-sense morpholinos alleviated the apoptotic phenotype in ddb1m863 mutants. These results imply that Ddb1 may be involved in maintaining proper cell cycle progression and viability of dividing cells during development through transcriptional mechanisms regulating genes

  3. Epigenetic Activity of Peroxisome Proliferator-Activated Receptor Gamma Agonists Increases the Anticancer Effect of Histone Deacetylase Inhibitors on Multiple Myeloma Cells.

    Directory of Open Access Journals (Sweden)

    Nassera Aouali

    Full Text Available Epigenetic modifications play a major role in the development of multiple myeloma. We have previously reported that the PPARγ agonist pioglitazone (PIO enhances, in-vitro, the cytotoxic effect of the Histone deacetylase inhibitor (HDACi, valproic acid (VPA, on multiple myeloma cells. Here, we described the development of a new multiple myeloma mouse model using MOLP8 cells, in order to evaluate the effect of VPA/PIO combination on the progression of myeloma cells, by analyzing the proliferation of bone marrow plasma cells. We showed that VPA/PIO delays the progression of the disease and the invasion of myeloma cells in the bone marrow. Mechanistically, we demonstrated that VPA/PIO increases the cleavage of caspase 3 and PARP, and induces the acetylation of Histone 3 (H3. Furthermore, we provided evidence that PPARγ agonist is able to enhance the action of other HDACi such as Vorinostat or Mocetinostat. Using PPARγ antagonist or siPPARγ, we strongly suggest that, as described during adipogenesis, PIO behaves as an epigenetic regulator by improving the activity of HDACi. This study highlights the therapeutic benefit of PIO/VPA combination, compared to VPA treatment as a single-arm therapy on multiple myeloma and further highlights that such combination may constitute a new promising treatment strategy which should be supported by clinical trials.

  4. Propiconazole-enhanced hepatic cell proliferation is associated with dysregulation of the cholesterol biosynthesis pathway leading to activation of Erk1/2 through Ras farnesylation

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Lynea A.; Moore, Tanya; Nesnow, Stephen, E-mail: nesnow.stephen@epa.gov

    2012-04-15

    Propiconazole is a mouse hepatotumorigenic fungicide designed to inhibit CYP51, a key enzyme in the biosynthesis of ergosterol in fungi and is widely used in agriculture to prevent fungal growth. Metabolomic studies in mice revealed that propiconazole increased levels of hepatic cholesterol metabolites and bile acids, and transcriptomic studies revealed that genes within the cholesterol biosynthesis, cholesterol metabolism and bile acid biosyntheses pathways were up-regulated. Hepatic cell proliferation was also increased by propiconazole. AML12 immortalized hepatocytes were used to study propiconazole's effects on cell proliferation focusing on the dysregulation of cholesterol biosynthesis and resulting effects on Ras farnesylation and Erk1/2 activation as a primary pathway. Mevalonate, a key intermediate in the cholesterol biosynthesis pathway, increases cell proliferation in several cancer cell lines and tumors in vivo and serves as the precursor for isoprenoids (e.g. farnesyl pyrophosphate) which are crucial in the farnesylation of the Ras protein by farnesyl transferase. Farnesylation targets Ras to the cell membrane where it is involved in signal transduction, including the mitogen-activated protein kinase (MAPK) pathway. In our studies, mevalonic acid lactone (MVAL), a source of mevalonic acid, increased cell proliferation in AML12 cells which was reduced by farnesyl transferase inhibitors (L-744,832 or manumycin) or simvastatin, an HMG-CoA reductase inhibitor, indicating that this cell system responded to alterations in the cholesterol biosynthesis pathway. Cell proliferation in AML12 cells was increased by propiconazole which was reversed by co-incubation with L-744,832 or simvastatin. Increasing concentrations of exogenous cholesterol muted the proliferative effects of propiconazole and the inhibitory effects of L-733,832, results ascribed to reduced stimulation of the endogenous cholesterol biosynthesis pathway. Western blot analysis of subcellular

  5. Teaching Activities on Horizontal Nuclear Proliferation.

    Science.gov (United States)

    Zola, John

    1990-01-01

    Provides learning activities concerning the horizontal proliferation of nuclear weapons. Includes step-by-step directions for four activities: (1) the life cycle of nuclear weapons; (2) nuclear nonproliferation: pros and cons; (3) the nuclear power/nuclear weapons connection; and (4) managing nuclear proliferation. (NL)

  6. Kupffer cells promote hepatic steatosis via interleukin-1-dependent suppression of peroxisome proliferator-activated receptor activity

    NARCIS (Netherlands)

    Stienstra, R.; Saudale, F.; Duval, C.N.C.; Keshtkar, S.; Groener, C.; Rooijen, van N.; Staels, B.; Kersten, A.H.; Müller, M.R.

    2010-01-01

    Kupffer cells have been implicated in the pathogenesis of various liver diseases. However, their involvement in metabolic disorders of the liver, including fatty liver disease, remains unclear. The present study sought to determine the impact of Kupffer cells on hepatic triglyceride storage and to e

  7. Kupffer cells promote hepatic steatosis via interleukin-1beta-dependent suppression of peroxisome proliferator-activated receptor alpha activity.

    NARCIS (Netherlands)

    Stienstra, R.; Saudale, F.; Duval, C.; Keshtkar, S.; Groener, J.E.M.; Rooijen, N. van; Staels, B.; Kersten, S.; Muller, M.

    2010-01-01

    Kupffer cells have been implicated in the pathogenesis of various liver diseases. However, their involvement in metabolic disorders of the liver, including fatty liver disease, remains unclear. The present study sought to determine the impact of Kupffer cells on hepatic triglyceride storage and to e

  8. Influence of Polyphenol Extract from Evening Primrose (Oenothera Paradoxa Seeds on Proliferation of Caco-2 Cells and on Expression, Synthesis and Activity of Matrix Metalloproteinases and Their Inhibitors

    Directory of Open Access Journals (Sweden)

    Szewczyk Karolina

    2014-09-01

    Full Text Available Evening primrose (Oenothera paradoxa Hudziok seeds are a rich source of not only a valuable oil containing an essential fatty acid - ᵧ-linolenic acid (GLA - but also polyphenols which can be obtained from the biomass remaining after oil pressing. The aim of our studies was to evaluate the influence of a polyphenol extract from defatted seeds of evening primrose on human colorectal adenocarcinoma Caco-2 cell proliferation and matrix metalloproteinases (MMPs synthesis and activity. To assess the effect of evening primrose extract on Caco-2 cell proliferation, crystal violet staining and sulforhodamine B (SRB assays were used whereas mRNA expression and activity of MMPs were evaluated by RT-PCR and gelatin zymography.

  9. Pharmacological activation of CB2 receptors counteracts the deleterious effect of ethanol on cell proliferation in the main neurogenic zones of the adult rat brain

    Directory of Open Access Journals (Sweden)

    Patricia eRivera

    2015-09-01

    Full Text Available Chronic alcohol exposure reduces endocannabinoid activity and disrupts adult neurogenesis in rodents, which results in structural and functional alterations. Cannabinoid receptor agonists promote adult neural progenitor cell (NPC proliferation. We evaluated the protective effects of the selective CB1 receptor agonist ACEA, the selective CB2 receptor agonist JWH133 and the fatty-acid amide-hydrolase (FAAH inhibitor URB597, which enhances endocannabinoid receptor activity, on NPC proliferation in rats with forced consumption of ethanol (10% or sucrose liquid diets for two weeks. We performed immunohistochemical and stereological analyses of cells expressing the mitotic phosphorylation of histone-3 (phospho-H3+ and the replicating cell DNA marker 5-bromo-2’-deoxyuridine (BrdU+ in the main neurogenic zones of adult brain: subgranular zone of dentate gyrus (SGZ, subventricular zone of lateral ventricles (SVZ and hypothalamus. Animals were allowed ad libitum ethanol intake (7.3±1.1 g/kg/day after a controlled isocaloric pair-feeding period of sucrose and alcoholic diets. Alcohol intake reduced the number of BrdU+ cells in SGZ, SVZ and hypothalamus. The treatments (URB597, ACEA, JWH133 exerted a differential increase in alcohol consumption over time, but JWH133 specifically counteracted the deleterious effect of ethanol on NPC proliferation in the SVZ and SGZ, and ACEA reversed this effect in the SGZ only. JWH133 also induced an increased number of BrdU+ cells expressing neuron-specific β3-tubulin in the SVZ and SGZ. These results indicated that the specific activation of CB2 receptors rescued alcohol-induced impaired NPC proliferation, which is a potential clinical interest for the risk of neural damage in alcohol dependence.

  10. Pharmacological activation of CB2 receptors counteracts the deleterious effect of ethanol on cell proliferation in the main neurogenic zones of the adult rat brain

    Science.gov (United States)

    Rivera, Patricia; Blanco, Eduardo; Bindila, Laura; Alen, Francisco; Vargas, Antonio; Rubio, Leticia; Pavón, Francisco J.; Serrano, Antonia; Lutz, Beat; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2015-01-01

    Chronic alcohol exposure reduces endocannabinoid activity and disrupts adult neurogenesis in rodents, which results in structural and functional alterations. Cannabinoid receptor agonists promote adult neural progenitor cell (NPC) proliferation. We evaluated the protective effects of the selective CB1 receptor agonist ACEA, the selective CB2 receptor agonist JWH133 and the fatty-acid amide-hydrolase (FAAH) inhibitor URB597, which enhances endocannabinoid receptor activity, on NPC proliferation in rats with forced consumption of ethanol (10%) or sucrose liquid diets for 2 weeks. We performed immunohistochemical and stereological analyses of cells expressing the mitotic phosphorylation of histone-3 (phospho-H3+) and the replicating cell DNA marker 5-bromo-2'-deoxyuridine (BrdU+) in the main neurogenic zones of adult brain: subgranular zone of dentate gyrus (SGZ), subventricular zone of lateral ventricles (SVZ) and hypothalamus. Animals were allowed ad libitum ethanol intake (7.3 ± 1.1 g/kg/day) after a controlled isocaloric pair-feeding period of sucrose and alcoholic diets. Alcohol intake reduced the number of BrdU+ cells in SGZ, SVZ, and hypothalamus. The treatments (URB597, ACEA, JWH133) exerted a differential increase in alcohol consumption over time, but JWH133 specifically counteracted the deleterious effect of ethanol on NPC proliferation in the SVZ and SGZ, and ACEA reversed this effect in the SGZ only. JWH133 also induced an increased number of BrdU+ cells expressing neuron-specific β3-tubulin in the SVZ and SGZ. These results indicated that the specific activation of CB2 receptors rescued alcohol-induced impaired NPC proliferation, which is a potential clinical interest for the risk of neural damage in alcohol dependence. PMID:26483633

  11. Long interspersed nucleotide acid element-1 ORF-1 protein promotes proliferation and invasion of human colorectal cancer LoVo cells through enhancing ETS-1 activity.

    Science.gov (United States)

    Li, M Y; Zhu, M; Feng, F; Cai, F Y; Fan, K C; Jiang, H; Wang, Z Q; Linghu, E Q

    2014-04-14

    The human proto-oncogene long interspersed nucleotide acid element-1 (LINE-1) open reading frame-1 protein (ORF-1p) is involved in the progress of several cancers. The transcription factor ETS-1 can mediate the transcription of some downstream genes that play specific roles in the regulation of cancerous cell invasion and metastasis. In this study, the effects of LINE-1 ORF-1p on ETS-1 activity and on the proliferation and invasion of human colorectal cancer LoVo cells were investigated. Results showed that the overexpression of LINE-1 ORF-1p enhanced the transcription of ETS-1 downstream genes and increased their protein levels, and downregulation of the LINE-1 ORF-1p level by small interfering RNA (siRNA) reduced the transcriptional activation of ETS-1. In addition, overexpression of LINE-1 ORF-1p promoted LoVo cell proliferation and anchor-independent growth, and a knockdown of the LINE-1 protein level by siRNA reduced the proliferation and anchor-independent growth ability of LoVo cells. In vivo data revealed that LINE-1 ORF-1p overexpression increased LoVo tumor growth in nude mice, whereas the siRNA knockdown of endogenous LINE-1 ORF-1p expression decreased LoVo cell growth in nude mice. Therefore, LINE- 1 ORF-1p could promote LoVo cell proliferation and invasion both in vitro and in vivo, indicating that it might be a useful molecular target for the treatment of human colorectal cancer.

  12. Enhanced Proliferation of Porcine Bone Marrow Mesenchymal Stem Cells Induced by Extracellular Calcium is Associated with the Activation of the Calcium-Sensing Receptor and ERK Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Jingjing Ye

    2016-01-01

    Full Text Available Porcine bone marrow mesenchymal stem cells (pBMSCs have the potential for application in regenerative medicine. This study aims to investigate the effects of extracellular calcium (Ca2+o on pBMSCs proliferation and to explore the possible underlying mechanisms. The results demonstrated that 4 mM Ca2+o significantly promoted pBMSCs proliferation by reducing the G0/G1 phase cell percentage and by increasing the S phase cell proportion and the proliferation index of pBMSCs. Accordingly, Ca2+o stimulated the expression levels of proliferative genes such as cyclin A2, cyclin D1/3, cyclin E2, and PCNA and inhibited the expression of p21. In addition, Ca2+o resulted in a significant elevation of intracellular calcium and an increased ratio of p-ERK/ERK. However, inhibition of calcium-sensing receptor (CaSR by its antagonist NPS2143 abolished the aforementioned effects of Ca2+o. Moreover, Ca2+o-induced promotion of pBMSCs proliferation, the changes of proliferative genes expression levels, and the activation of ERK1/2 signaling pathway were effectively blocked by U0126, a selective ERK kinase inhibitor. In conclusion, our findings provided evidence that the enhanced pBMSCs proliferation in response to Ca2+o was associated with the activation of CaSR and ERK1/2 signaling pathway, which may be useful for the application of pBMSCs in future clinical studies aimed at tissue regeneration and repair.

  13. BAFF induces spleen CD4{sup +} T cell proliferation by down-regulating phosphorylation of FOXO3A and activates cyclin D2 and D3 expression

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Fang; Chen, Rongjing [Department of Orthodontics, Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai (China); Liu, Baojun [Laboratory of Lung, Inflammation and Cancers, Huashan Hospital, Fudan University, Shanghai (China); Zhang, Xiaoping [Department of Nuclear Medicine, Shanghai 10th People' s Hospital, Tongji University School of Medicine, Shanghai 200072 (China); Han, Junli; Wang, Haining [Department of General Dentistry, Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai (China); Shen, Gang [Department of Orthodontics, Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai (China); Tao, Jiang, E-mail: taojiang2012@yahoo.cn [Department of General Dentistry, Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai (China)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Firstly analyze the mechanism of BAFF and anti-CD3 co-stimulation on purified mouse splenic CD4{sup +} T cells. Black-Right-Pointing-Pointer Carrying out siRNA technology to study FOXO3A protein function. Black-Right-Pointing-Pointer Helpful to understand the T cell especially CD4{sup +} T cell's role in immunological reaction. -- Abstract: The TNF ligand family member 'B cell-activating factor belonging to the TNF family' (BAFF, also called BLyS, TALL-1, zTNF-4, and THANK) is an important survival factor for B and T cells. In this study, we show that BAFF is able to induce CD4{sup +} spleen T cell proliferation when co-stimulated with anti-CD3. Expression of phosphorylated FOXO3A was notably down-regulated and cyclins D2 and D3 were up-regulated and higher in the CD4{sup +} T cells when treated with BAFF and anti-CD3, as assessed by Western blotting. Furthermore, after FOXO3A was knocked down, expression of cyclin D1 was unchanged, compared with control group levels, but the expression of cyclins D2 and D3 increased, compared with the control group. In conclusion, our results suggest that BAFF induced CD4{sup +} spleen T cell proliferation by down-regulating the phosphorylation of FOXO3A and then activating cyclin D2 and D3 expression, leading to CD4{sup +} T cell proliferation.

  14. Cell proliferation alterations in Chlorella cells under stress conditions

    Energy Technology Data Exchange (ETDEWEB)

    Rioboo, Carmen [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain); O' Connor, Jose Enrique [Laboratorio de Citomica, Unidad Mixta de Investigacion CIPF-UVEG, Centro de Investigacion Principe Felipe, Avda. Autopista del Saler, 16, 46013 Valencia (Spain); Prado, Raquel; Herrero, Concepcion [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain); Cid, Angeles, E-mail: cid@udc.es [Laboratorio de Microbiologia, Facultad de Ciencias, Universidad de A Coruna, Campus da Zapateira s/n, 15008 A Coruna (Spain)

    2009-09-14

    Very little is known about growth and proliferation in relation to the cell cycle regulation of algae. The lack of knowledge is even greater when referring to the potential toxic effects of pollutants on microalgal cell division. To assess the effect of terbutryn, a triazine herbicide, on the proliferation of the freshwater microalga Chlorella vulgaris three flow cytometric approaches were used: (1) in vivo cell division using 5-,6-carboxyfluorescein diacetate succinimidyl ester (CFSE) staining was measured, (2) the growth kinetics were determined by cytometric cell counting and (3) cell viability was evaluated with the membrane-impermeable double-stranded nucleic acid stain propidium iodide (PI). The results obtained in the growth kinetics study using CFSE to identify the microalgal cell progeny were consistent with those determined by cytometric cell counting. In all C. vulgaris cultures, each mother cell had undergone only one round of division through the 96 h of assay and the cell division occurred during the dark period. Cell division of the cultures exposed to the herbicide was asynchronous. Terbutryn altered the normal number of daughter cells (4 autospores) obtained from each mother cell. The number was only two in the cultures treated with 250 nM. The duration of the lag phase after the exposure to terbutryn could be dependent on the existence of a critical cell size to activate cytoplasmic division. Cell size, complexity and fluorescence of chlorophyll a of the microalgal cells presented a marked light/dark (day/night) cycle, except in the non-dividing 500 nM cultures, where terbutryn arrested cell division at the beginning of the cycle. Viability results showed that terbutryn has an algastatic effect in C. vulgaris cells at this concentration. The rapid and precise determination of cell proliferation by CFSE staining has allowed us to develop a model for assessing both the cell cycle of C. vulgaris and the in vivo effects of pollutants on growth and

  15. Fucoidan inhibits proliferation of the SKM-1 acute myeloid leukaemia cell line via the activation of apoptotic pathways and production of reactive oxygen species.

    Science.gov (United States)

    Wei, Chunmei; Xiao, Qing; Kuang, Xingyi; Zhang, Tao; Yang, Zesong; Wang, Li

    2015-11-01

    Myelodysplastic syndromes (MDS) are a heterogeneous group of myeloid disorders characterized by peripheral blood cytopenias and a high risk of progression to acute myeloid leukaemia (AML). Fucoidan, a complex sulphated polysaccharide isolated from the cell wall of brown seaweeds, has recently attracted attention for its multiple biological activities and its potential as a novel candidate for cancer therapy. In the present study, the anti‑cancer activity of fucoidan was investigated in the MDS/AML cell line SKM‑1. Fucoidan inhibited proliferation, induced apoptosis and caused G1-phase arrest of the cell cycle in SKM‑1 cells as determined by a cell counting kit 8 assay and flow cytometry. Furthermore, reverse transcription quantitative polymerase chain reaction and western blot analyses indicated that treatment with fucoidan (100 µg/ml for 48 h) activated Fas and caspase‑8 in SKM‑1 cells, which are critical for the extrinsic apoptotic pathway; furthermore, caspase‑9 was activated via decreases in phosphoinositide-3 kinase/Akt signaling as indicated by reduced levels of phosphorylated Akt, suggesting the involvement of the intrinsic apoptotic pathway. In addition, fucoidan treatment of SKM‑1 cells resulted in the generation of reactive oxygen species (ROS) as determined by staining with dichloro-dihydro-fluorescein diacetate. These results suggested that the mechanisms of the anti‑cancer effects of fucoidan in SKM‑1 are closely associated with cell cycle arrest and apoptotic cell death, which partly attributed to the activation of apoptotic pathways and accumulation of intracellular ROS. Our results demonstrated that Fucoidan inhibits proliferation and induces the apoptosis of SKM‑1 cells, which provides substantial therapeutic potential for MDS treatment.

  16. IL-26 promotes the proliferation and survival of human gastric cancer cells by regulating the balance of STAT1 and STAT3 activation.

    Directory of Open Access Journals (Sweden)

    Wei You

    Full Text Available Interleukin-26 (IL-26 is one of the cytokines secreted by Th17 cells whose role in human tumors remains unknown. Here, we investigated the expression and potential role of IL-26 in human gastric cancer (GC. The expression of IL-26 and related molecules such as IL-20R1, STAT1 and STAT3 was examined by real-time PCR and immunohistochemisty. The effects of IL-26 on cell proliferation and cisplatin-induced apoptosis were analyzed by BrdU cooperation assay and PI-Annexin V co-staining, respectively. Lentiviral mediated siRNA was used to explore its mechanism of action, and IL-26 related signaling was analyzed by western blotting. Human GC tissues showed increased levels of IL-26 and its related molecules and activation of STAT3 signaling, whereas STAT1 activation did not differ significantly between GC and normal gastric tissues. Moreover, IL-26 was primarily produced by Th17 and NK cells. IL-26 promoted the proliferation and survival of MKN45 and SGC-7901 gastric cancer cells in a dose-dependent manner. Furthermore, IL-20R2 and IL-10R1, which are two essential receptors for IL-26 signaling, were expressed in both cell lines. IL-26 activated STAT1 and STAT3 signaling; however, the upregulation of the expression of Bcl-2, Bcl-xl and c-myc indicated that the effect of IL-26 is mediated by STAT3 activation. Knockdown of STAT1 and STAT3 expression suggested that the proliferative and anti-apoptotic effects of IL-26 are mediated by the modulation of STAT1/STAT3 activation. In summary, elevated levels of IL-26 in human GC promote proliferation and survival by modulating STAT1/STAT3 signaling.

  17. Fucose-Containing Sulfated Polysaccharides from Brown Seaweeds Inhibit Proliferation of Melanoma Cells and Induce Apoptosis by Activation of Caspase-3 in Vitro

    Directory of Open Access Journals (Sweden)

    Anne S. Meyer

    2011-12-01

    Full Text Available Fucose-containing sulfated polysaccharides (FCSPs extracted from seaweeds, especially brown macro-algae, are known to possess essential bioactive properties, notably growth inhibitory effects on tumor cells. In this work, we conducted a series of in vitro studies to examine the influence of FCSPs products from Sargassum henslowianum C. Agardh (FSAR and Fucus vesiculosus (FVES, respectively, on proliferation of melanoma B16 cells and to investigate the underlying apoptosis promoting mechanisms. Cell viability analysis showed that both FCSPs products, i.e., FSAR and FVES, decreased the proliferation of the melanoma cells in a dose-response fashion, with FSAR being more potent at lower dosages, and FVES being relatively more anti-proliferative than FSAR at higher dosages. Flow cytometric analysis by Annexin V staining of the melanoma cells exposed to the FCSPs products confirmed that both FSAR and FVES induced apoptosis. The FCSPs-induced apoptosis was evidenced by loss of plasma membrane asymmetry and translocation of the cell membrane phospholipids and was accompanied by the activation of caspase-3. The FCSPs bioactivity is proposed to be attributable to distinct structural features of the FCSPs, particularly the presence of sulfated galactofucans (notably in S. henslowianum and sulfated fucans (notably in F. vesiculosus. This study thus indicates that unfractionated FCSPs may exert bioactive effects on skin cancer cells via induction of apoptosis through cascades of reactions that involve activation of caspase-3.

  18. Fucose-containing sulfated polysaccharides from brown seaweeds inhibit proliferation of melanoma cells and induce apoptosis by activation of caspase-3 in vitro.

    Science.gov (United States)

    Ale, Marcel Tutor; Maruyama, Hiroko; Tamauchi, Hidekazu; Mikkelsen, Jørn D; Meyer, Anne S

    2011-12-01

    Fucose-containing sulfated polysaccharides (FCSPs) extracted from seaweeds, especially brown macro-algae, are known to possess essential bioactive properties, notably growth inhibitory effects on tumor cells. In this work, we conducted a series of in vitro studies to examine the influence of FCSPs products from Sargassumhenslowianum C. Agardh (FSAR) and Fucus vesiculosus (FVES), respectively, on proliferation of melanoma B16 cells and to investigate the underlying apoptosis promoting mechanisms. Cell viability analysis showed that both FCSPs products, i.e., FSAR and FVES, decreased the proliferation of the melanoma cells in a dose-response fashion, with FSAR being more potent at lower dosages, and FVES being relatively more anti-proliferative than FSAR at higher dosages. Flow cytometric analysis by Annexin V staining of the melanoma cells exposed to the FCSPs products confirmed that both FSAR and FVES induced apoptosis. The FCSPs-induced apoptosis was evidenced by loss of plasma membrane asymmetry and translocation of the cell membrane phospholipids and was accompanied by the activation of caspase-3. The FCSPs bioactivity is proposed to be attributable to distinct structural features of the FCSPs, particularly the presence of sulfated galactofucans (notably in S.henslowianum) and sulfated fucans (notably in F. vesiculosus). This study thus indicates that unfractionated FCSPs may exert bioactive effects on skin cancer cells via induction of apoptosis through cascades of reactions that involve activation of caspase-3.

  19. Peroxisome proliferator-activated receptor delta agonist attenuates nicotine suppression effect on human mesenchymal stem cell-derived osteogenesis and involves increased expression of heme oxygenase-1.

    Science.gov (United States)

    Kim, Dong Hyun; Liu, Jiayong; Bhat, Samerna; Benedict, Gregory; Lecka-Czernik, Beata; Peterson, Stephen J; Ebraheim, Nabil A; Heck, Bruce E

    2013-01-01

    Smoking has long been associated with osteoporosis, decreased bone mineral density, increased risk of bone fracture, and increased health costs. Nicotine, the main component of cigarette smoke, has major negative effects on bone metabolism and skeletal remodeling in vivo. Although osteoblasts and osteoblast-like cells have been used extensively to study the impact of nicotine, few studies have been performed on human mesenchymal stem cells (hMSCs). In this context, we examined the impact of nicotine on (a) hMSCs proliferation, (b) osteoblastic differentiation, (c) alkaline phosphatase (ALP) activity, and (d) expression of canonical genes during differentiation of hMSCs. MSCs isolated from human bone marrow were treated with different concentrations (0, 0.1, 1 and 10 μM) of nicotine for 7 days. Nicotine caused a dose-dependent decrease in cell proliferation, decreased heme oxygenase-1 (HO-1) expression (p nicotine caused a dose-dependent decrease in alizarin red staining for calcium and staining for ALP. Induction of HO-1 by peroxisome proliferator-activated receptor delta agonist (GW0742) prevented the effect of nicotine. Nicotine caused a dose-dependent reduction in the expression of BMP-2, a well-known marker for bone formation; however, this was prevented by GW0742 treatment. Therefore, induction of HO-1 prevents the deleterious effects of nicotine on osteogenesis in hMSC. This offers insight into both how nicotine affects bone remodeling and a therapeutic approach to prevent fracture and osteoporosis in smokers.

  20. EGCG Inhibits Proliferation, Invasiveness and Tumor Growth by Up-Regulation of Adhesion Molecules, Suppression of Gelatinases Activity, and Induction of Apoptosis in Nasopharyngeal Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Chih-Yeu Fang

    2015-01-01

    Full Text Available (−-Epigallocatechin-3-gallate (EGCG, a major green tea polyphenol, has been shown to inhibit the proliferation of a variety of tumor cells. Epidemiological studies have shown that drinking green tea can reduce the incidence of nasopharyngeal carcinoma (NPC, yet the underlying mechanism is not well understood. In this study, the inhibitory effect of EGCG was tested on a set of Epstein Barr virus-negative and -positive NPC cell lines. Treatment with EGCG inhibited the proliferation of NPC cells but did not affect the growth of a non-malignant nasopharyngeal cell line, NP460hTert. Moreover, EGCG treated cells had reduced migration and invasive properties. The expression of the cell adhesion molecules E-cadherin and β-catenin was found to be up-regulated by EGCG treatment, while the down-regulation of matrix metalloproteinases (MMP-2 and MMP-9 were found to be mediated by suppression of extracellular signal-regulated kinase (ERK phosphorylation and AP-1 and Sp1 transactivation. Spheroid formation by NPC cells in suspension was significantly inhibited by EGCG. Oral administration of EGCG was capable of suppressing tumor growth in xenografted mice bearing NPC tumors. Treatment with EGCG was found to elevate the expression of p53 and p21, and eventually led to apoptosis of NPC cells via caspase 3 activation. The nuclear translocation of NF-κB and β-catenin was also suppressed by EGCG treatment. These results indicate that EGCG can inhibit the proliferation and invasiveness, and induce apoptosis, of NPC cells, making it a promising agent for chemoprevention or adjuvant therapy of NPC.

  1. Effect of Blood Component Coatings of Enosseal Implants on Proliferation and Synthetic Activity of Human Osteoblasts and Cytokine Production of Peripheral Blood Mononuclear Cells

    Science.gov (United States)

    Hulejova, Hana; Bartova, Jirina; Riedel, Tomas; Pesakova, Vlasta

    2016-01-01

    The study monitored in vitro early response of connective tissue cells and immunocompetent cells to enosseal implant materials coated by different blood components (serum, activated plasma, and plasma/platelets) to evaluate human osteoblast proliferation and synthetic activity and inflammatory response presented as a cytokine profile of peripheral blood mononuclear cells (PBMCs) under conditions imitating the situation upon implantation. The cells were cultivated on coated Ti-plasma-sprayed (Ti-PS), Ti-etched (Ti-Etch), Ti-hydroxyapatite (Ti-HA), and ZrO2 surfaces. The plasma/platelets coating supported osteoblast proliferation only on osteoconductive Ti-HA and Ti-Etch whereas activated plasma enhanced proliferation on all surfaces. Differentiation (BAP) and IL-8 production remained unchanged or decreased irrespective of the coating and surface; only the serum and plasma/platelets-coated ZrO2 exhibited higher BAP and IL-8 expression. RANKL production increased on serum and activated plasma coatings. PBMCs produced especially cytokines playing role in inflammatory phase of wound healing, that is, IL-6, GRO-α, GRO, ENA-78, IL-8, GM-CSF, EGF, and MCP-1. Cytokine profiles were comparable for all tested surfaces; only ENA-78, IL-8, GM-CSF, and MCP-1 expression depended on materials and coatings. The activated plasma coating led to uniformed surfaces and represented a favorable treatment especially for bioinert Ti-PS and ZrO2 whereas all coatings had no distinctive effect on bioactive Ti-HA and Ti-Etch. PMID:27651560

  2. Adenine nucleotides inhibit proliferation of the human lung adenocarcinoma cell line LXF-289 by activation of nuclear factor kappaB1 and mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Schäfer, Rainer; Hartig, Roland; Sedehizade, Fariba; Welte, Tobias; Reiser, Georg

    2006-08-01

    Extracellular nucleotides have a profound role in the regulation of the proliferation of diseased tissue. We studied how extracellular nucleotides regulate the proliferation of LXF-289 cells, the adenocarcinoma-derived cell line from human lung bronchial tumor. ATP and ADP strongly inhibited LXF-289 cell proliferation. The nucleotide potency profile was ATP = ADP = ATPgammaS > > UTP, UDP, whereas alpha,beta-methylene-ATP, beta,gamma-methylene-ATP, 2',3'-O-(4-benzoylbenzoyl)-ATP, AMP and UMP were inactive. The nucleotide potency profile and the total blockade of the ATP-mediated inhibitory effect by the phospholipase C inhibitor U-73122 clearly show that P2Y receptors, but not P2X receptors, control LXF-289 cell proliferation. Treatment of proliferating LXF-289 cells with 100 microm ATP or ADP induced significant reduction of cell number and massive accumulation of cells in the S phase. Arrest in S phase is also indicated by the enhancement of the antiproliferative effect of ATP by coapplication of the cytostatic drugs cisplatin, paclitaxel and etoposide. Inhibition of LXF-289 cell proliferation by ATP was completely reversed by inhibitors of extracellular signal related kinase-activating kinase/extracellular signal related kinase 1/2 (PD98059, U0126), p38 mitogen-activated protein kinase (SB203508), phosphatidylinositol-3-kinase (wortmannin), and nuclear factor kappaB1 (SN50). Western blot analysis revealed transient activation of p38 mitogen-activated protein kinase, extracellular signal-related kinase 1/2, and nuclear factor kappaB1 and possibly new formation of p50 from its precursor p105. ATP-induced attenuation of LXF-289 cell proliferation was accompanied by transient translocation of p50 nuclear factor kappaB1 and extracellular signal-related kinase 1/2 to the nucleus in a similar time period. In summary, inhibition of LXF-289 cell proliferation is mediated via P2Y receptors by activation of multiple mitogen-activated protein kinase pathways and nuclear

  3. Nicotine as a mitogenic stimulus for pancreatic acinar cell proliferation

    Institute of Scientific and Technical Information of China (English)

    Parimal Chowdhury; Kodetthoor B Udupa

    2006-01-01

    Cell proliferation is an important process in life for growth of normal and cancer cells. The signal transduction pathways activated during this process are strictly regulated. This editorial focuses on the role of nicotine,a mitogen, in the induction of signaling pathways resulting in proliferation of pancreatic tumor cells and compares these events with those in normal acinar cells isolated from the rat pancreas. The data shows striking similarities between these two cellular systems.In addition, the editorial reviews very recent literature of the contribution of MAPK signaling in cell lines associated with human diseases. A prospective cellular model of nicotine induced activation of MAPK cascade is presented.

  4. EPO improves the proliferation and inhibits apoptosis of trophoblast and decidual stromal cells through activating STAT-5 and inactivating p38 signal in human early pregnancy.

    Science.gov (United States)

    Ji, Yu Qing; Zhang, Yu Quan; Li, Ming Qing; Du, Mei Rong; Wei, Wei Wei; Li, Da Jin

    2011-01-01

    The erythropoietin (EPO) belongs to the family of angiogenic factors, which is regulated by Hypoxia-inducible factor- 1α (HIF-1α). As known, EPO are expressed in human villi and decidua, but the function is not clear. In this study, we investigated the expression and roles of HIF-1α, EPO and its receptor (EPOR) in the biological functions of trophoblast and decidual stromal cell (DSC) in human early pregnancy. The expression of EPO, EPOR and HIF-1α was evaluated in the villi and deciduas by RT-PCR and immunohistochemistry. Thereafter, we silenced HIF-1α expression in HTR-8/SVneo cell line and decidual stromal cells (DSCs). The effects of EPO on the proliferation and apoptosis of trophoblasts and DSCs, and activation of signal molecules were investigated by BrdU proliferation assay, flow cytometry and western blot, respectively. We have observed that the HIF-1α silence results in the lower expression of EPO in trophoblasts and DSCs. The anti-EPO neutralizing antibody can inactivate the phosphorylation of STAT5 and activate p38 of these cells in a dosage-dependent manner. Furthermore, the expressions of EPO, EPOR and HIF-1α in the villi and decidua from the unexplained miscarriage were significantly lower than that of the normal early pregnancy. This study suggests that HIF-1α may regulate the expression of EPO, which plays a favorable regulatory role in the proliferation and survival of human first-trimester trophoblast cells and DSCs via inactivating p38 and activating STAT5 in an autocrine manner, while the inadequate EPO expression at maternal-fetal interface may lead to pregnancy wastage in humans.

  5. Lithium stimulates human bone marrow derived mesenchymal stem cell proliferation through GSK-3β-dependent β-catenin/Wnt pathway activation.

    Science.gov (United States)

    Zhu, Zhenzhong; Yin, Junhui; Guan, Junjie; Hu, Bin; Niu, Xin; Jin, Dongxu; Wang, Yang; Zhang, Changqing

    2014-12-01

    Mesenchymal stem cells (MSCs) are multipotent cells that have been widely used in cell based transplantation therapy. The use of MSCs requires in vitro expansion in order to fulfill their regenerative capacity. Therefore the proliferative ability of MSCs is one of the key factors which determine MSC therapeutic efficacy. In the present study, we showed for the first time that lithium, a well-known antidepressant, reversibly promoted the proliferation of human bone marrow derived MSCs in vitro. MSCs treated with 5 mm lithium proliferated more rapidly than untreated cells without undergoing apoptosis. Lithium increased the proportion of cells in S phase as well as cyclin D1 expression. Mechanistic studies revealed that these effects were dependent upon the activation of the glycogen synthase kinase 3β (GSK-3β) mediated canonical Wnt pathway. Lithium induced Ser9 phosphorylation, which results in the inhibition of GSK-3β activity, β-catenin accumulation and Wnt pathway activation. Utilizing a specific GSK-3β inhibitor SB216763 or siRNA-mediated inhibition of GSK-3β produced effects similar to those induced by lithium. In contrast, either quercetin, an inhibitor of the β-catenin/TCF pathway, or siRNA-mediated knockdown of β-catenin abolished the proliferative effect of lithium, suggesting that lithium stimulates MSC proliferation via the GSK-3β-dependent β-catenin/Wnt pathway. Collectively, these studies elucidate a novel role of lithium, which may not only provide a simple and effective way to strengthen MSC transplantation therapy efficacy but also shed light on lithium's clinical application for the treatment of certain disorders resulting from β-catenin/Wnt pathway suppression.

  6. The in vitro assessment of anti proliferation activity of crude diethyl ether extract of Dendrophthoe species against to myeloma culture cell

    OpenAIRE

    Mochamad Lazuardi

    2008-01-01

    Herb medicine have an active substances that can dissolved on polar, semi polar and non polar liquid extract. The methanol and ethyl acetate as a polar and semi polar extract liquid were used to study of herb medicine such as Dendrophthoe species. Diethyl ether as a non polar liquid extract was never use to study the Dendrophthoe species. The aim of this study was to investigate the anti proliferation activity of Dendrophthoe species to myeloma culture cells after extracted by non-polar extra...

  7. Inhibition of RUNX2 transcriptional activity blocks the proliferation, migration and invasion of epithelial ovarian carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Zhi-Qiang Wang

    Full Text Available Previously, we have identified the RUNX2 gene as hypomethylated and overexpressed in post-chemotherapy (CT primary cultures derived from serous epithelial ovarian cancer (EOC patients, when compared to primary cultures derived from matched primary (prior to CT tumors. However, we found no differences in the RUNX2 methylation in primary EOC tumors and EOC omental metastases, suggesting that DNA methylation-based epigenetic mechanisms have no impact on RUNX2 expression in advanced (metastatic stage of the disease. Moreover, RUNX2 displayed significantly higher expression not only in metastatic tissue, but also in high-grade primary tumors and even in low malignant potential tumors. Knockdown of the RUNX2 expression in EOC cells led to a sharp decrease of cell proliferation and significantly inhibited EOC cell migration and invasion. Gene expression profiling and consecutive network and pathway analyses confirmed these findings, as various genes and pathways known previously to be implicated in ovarian tumorigenesis, including EOC tumor invasion and metastasis, were found to be downregulated upon RUNX2 suppression, while a number of pro-apoptotic genes and some EOC tumor suppressor genes were induced. Taken together, our data are indicative for a strong oncogenic potential of the RUNX2 gene in serous EOC progression and suggest that RUNX2 might be a novel EOC therapeutic target. Further studies are needed to more completely elucidate the functional implications of RUNX2 and other members of the RUNX gene family in ovarian tumorigenesis.

  8. Inhibition of RUNX2 transcriptional activity blocks the proliferation, migration and invasion of epithelial ovarian carcinoma cells.

    Science.gov (United States)

    Wang, Zhi-Qiang; Keita, Mamadou; Bachvarova, Magdalena; Gobeil, Stephane; Morin, Chantale; Plante, Marie; Gregoire, Jean; Renaud, Marie-Claude; Sebastianelli, Alexandra; Trinh, Xuan Bich; Bachvarov, Dimcho

    2013-01-01

    Previously, we have identified the RUNX2 gene as hypomethylated and overexpressed in post-chemotherapy (CT) primary cultures derived from serous epithelial ovarian cancer (EOC) patients, when compared to primary cultures derived from matched primary (prior to CT) tumors. However, we found no differences in the RUNX2 methylation in primary EOC tumors and EOC omental metastases, suggesting that DNA methylation-based epigenetic mechanisms have no impact on RUNX2 expression in advanced (metastatic) stage of the disease. Moreover, RUNX2 displayed significantly higher expression not only in metastatic tissue, but also in high-grade primary tumors and even in low malignant potential tumors. Knockdown of the RUNX2 expression in EOC cells led to a sharp decrease of cell proliferation and significantly inhibited EOC cell migration and invasion. Gene expression profiling and consecutive network and pathway analyses confirmed these findings, as various genes and pathways known previously to be implicated in ovarian tumorigenesis, including EOC tumor invasion and metastasis, were found to be downregulated upon RUNX2 suppression, while a number of pro-apoptotic genes and some EOC tumor suppressor genes were induced. Taken together, our data are indicative for a strong oncogenic potential of the RUNX2 gene in serous EOC progression and suggest that RUNX2 might be a novel EOC therapeutic target. Further studies are needed to more completely elucidate the functional implications of RUNX2 and other members of the RUNX gene family in ovarian tumorigenesis.

  9. Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways

    Directory of Open Access Journals (Sweden)

    Radhakrishnan Sridhar

    2010-05-01

    Full Text Available Abstract Background Obesity is a global phenomenon and is associated with various types of cancer, including colon cancer. There is a growing interest for safe and effective bioactive compounds that suppress the risk for obesity-promoted colon cancer. Resveratrol (trans-3, 4', 5,-trihydroxystilbene, a stilbenoid found in the skin of red grapes and peanuts suppresses many types of cancers by regulating cell proliferation and apoptosis through a variety of mechanisms, however, resveratrol effects on obesity-promoted colon cancer are not clearly established. Methods We investigated the anti-proliferative effects of resveratrol on HT-29 and SW480 human colon cancer cells in the presence and absence of insulin like growth factor-1 (IGF-1; elevated during obesity and elucidated the mechanisms of action using IGF-1R siRNA in HT-29 cells which represents advanced colon carcinogenesis. Results Resveratrol (100-150 μM exhibited anti-proliferative properties in HT-29 cells even after IGF-1 exposure by arresting G0/G1-S phase cell cycle progression through p27 stimulation and cyclin D1 suppression. Treatment with resveratrol suppressed IGF-1R protein levels and concurrently attenuated the downstream Akt/Wnt signaling pathways that play a critical role in cell proliferation. Targeted suppression of IGF-1R using IGF-1R siRNA also affected these signaling pathways in a similar manner. Resveratrol treatment induced apoptosis by activating tumor suppressor p53 protein, whereas IGF-1R siRNA treatment did not affect apoptosis. Our data suggests that resveratrol not only suppresses cell proliferation by inhibiting IGF-1R and its downstream signaling pathways similar to that of IGF-1R siRNA but also enhances apoptosis via activation of the p53 pathway. Conclusions For the first time, we report that resveratrol suppresses colon cancer cell proliferation and elevates apoptosis even in the presence of IGF-1 via suppression of IGF-1R/Akt/Wnt signaling pathways and

  10. Lymphomagenic CARD11/BCL10/MALT1 signaling drives malignant B-cell proliferation via cooperative NF-κB and JNK activation.

    Science.gov (United States)

    Knies, Nathalie; Alankus, Begüm; Weilemann, Andre; Tzankov, Alexandar; Brunner, Kristina; Ruff, Tanja; Kremer, Marcus; Keller, Ulrich B; Lenz, Georg; Ruland, Jürgen

    2015-12-29

    The aggressive activated B cell-like subtype of diffuse large B-cell lymphoma is characterized by aberrant B-cell receptor (BCR) signaling and constitutive nuclear factor kappa-B (NF-κB) activation, which is required for tumor cell survival. BCR-induced NF-κB activation requires caspase recruitment domain-containing protein 11 (CARD11), and CARD11 gain-of-function mutations are recurrently detected in human diffuse large B-cell lymphoma (DLBCL). To investigate the consequences of dysregulated CARD11 signaling in vivo, we generated mice that conditionally express the human DLBCL-derived CARD11(L225LI) mutant. Surprisingly, CARD11(L225LI) was sufficient to trigger aggressive B-cell lymphoproliferation, leading to early postnatal lethality. CARD11(L225LI) constitutively associated with B-cell CLL/lymphoma 10 (BCL10) and mucosa-associated lymphoid tissue lymphoma translocation gene 1 (MALT1) to simultaneously activate the NF-κB and c-Jun N-terminal kinase (JNK) signaling cascades. Genetic deficiencies of either BCL10 or MALT1 completely rescued the phenotype, and pharmacological inhibition of JNK was, similar to NF-κB blockage, toxic to autonomously proliferating CARD11(L225LI)-expressing B cells. Moreover, constitutive JNK activity was observed in primary human activated B cell-like (ABC)-DLBCL specimens, and human ABC-DLBCL cells were also sensitive to JNK inhibitors. Thus, our results demonstrate that enforced activation of CARD11/BCL10/MALT1 signaling is sufficient to drive transformed B-cell expansion in vivo and identify the JNK pathway as a therapeutic target for ABC-DLBCL.

  11. p38 MAPK-Mediated Bmi-1 down-regulation and defective proliferation in ATM-deficient neural stem cells can be restored by Akt activation.

    Directory of Open Access Journals (Sweden)

    Jeesun Kim

    Full Text Available A-T (ataxia telangiectasia is a genetic disease caused by a mutation in the Atm (A-T mutated gene that leads to neurodegeneration. Despite an increase in the numbers of studies in this area in recent years, the mechanisms underlying neurodegeneration in human A-T are still poorly understood. Previous studies demonstrated that neural stem cells (NSCs isolated from the subventricular zone (SVZ of Atm(-/- mouse brains show defective self-renewal and proliferation, which is accompanied by activation of chronic p38 mitogen-activated protein kinase (MAPK and a lower level of the polycomb protein Bmi-1. However, the mechanism underlying Bmi-1 down-regulation and its relevance to defective proliferation in Atm(-/- NSCs remained unclear. Here, we show that over-expression of Bmi-1 increases self-renewal and proliferation of Atm(-/- NSCs to normal, indicating that defective proliferation in Atm(-/- NSCs is a consequence of down-regulation of Bmi-1. We also demonstrate that epidermal growth factor (EGF-induced Akt phosphorylation renders Bmi-1 resistant to the proteasomal degradation, leading to its stabilization and accumulation in the nucleus. However, inhibition of the Akt-dependent Bmi-1 stabilizing process by p38 MAPK signaling reduces the levels of Bmi-1. Treatment of the Atm(-/- NSCs with a specific p38 MAPK inhibitor SB203580 extended Bmi-1 posttranscriptional turnover and H2A ubiquitination in Atm(-/- NSCs. Our observations demonstrate the molecular basis underlying the impairment of self-renewal and proliferation in Atm(-/- NSCs through the p38 MAPK-Akt-Bmi-1-p21 signaling pathway.

  12. N-methylhemeanthidine chloride, a novel Amaryllidaceae alkaloid, inhibits pancreatic cancer cell proliferation via down-regulating AKT activation

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Guoli; Yao, Guangmin; Zhan, Guanqun; Hu, Yufeng [Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei PR China (China); Yue, Ming [Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Cheng, Ling; Liu, Yaping; Ye, Qi [Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei PR China (China); Qing, Guoliang [Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Zhang, Yonghui, E-mail: zhangyh@mails.tjmu.edu.cn [Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei PR China (China); Liu, Hudan, E-mail: hudanliu@hust.edu.cn [Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei PR China (China)

    2014-11-01

    We previously reported the isolation of a novel Amaryllidaceae alkaloid, N-methylhemeanthidine chloride (NMHC), from Zephyranthes candida, which exhibits potent cytotoxicity in a spectrum of tumor cells. However, the mechanism of action remains unclear. Using multiple cell lines derived from human pancreatic cancer, one of the most mortal and refractory human malignancies, we further studied the NMHC-mediated cytotoxicity and found that it induced drastic cytotoxicity in pancreatic cancer cells whereas an insignificant effect on a noncancerous cell line. The NMHC-mediated growth inhibition was more severe than the first-line chemotherapeutic agent gemcitabine, leading to cell cycle arrest, apoptotic death and decreased glycolysis. NMHC exerted its function through down-regulating AKT activation, and the ectopic expression of activated AKT rescued the growth inhibition. Consistently, NMHC injections in a pancreatic cancer xenograft model manifested the anti-tumor effect in vivo. Engrafted tumor cells underwent AKT attenuation and apoptotic death upon treatments. As such, we here demonstrate the AKT inhibition may be one of the mechanisms by which NMHC decreases tumor cell survival rate in vitro and in vivo. Our data thereby suggest that NMHC holds great promise as a potent chemotherapeutic agent against pancreatic cancer and sheds new light on obtaining such agents from natural products toward therapeutic purposes. - Highlights: • N-methylhemeanthidine chloride (NMHC) is a novel Amaryllidaceae alkaloid. • NMHC exhibits potent anti-neoplastic activity. • NMHC leads to cell cycle arrest, apoptotic death and decreased metabolism. • NMHC down-regulates the AKT signaling pathway.

  13. Ubiquitin carboxyl terminal hydrolase L1 negatively regulates TNF{alpha}-mediated vascular smooth muscle cell proliferation via suppressing ERK activation

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, Tomonaga; Li, Jinqing; Dong, Xiaoyu; Potts, Jay D. [Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States); Tang, Dong-Qi [Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610-0275 (United States); Li, Dong-Sheng, E-mail: dsli@yymc.edu.cn [Hubei Key Laboratory of Embryonic Stem Cell Research, Tai He Hospital, Yunyang Medical College, 32 S. Renmin Rd., Shiyan, Hubei 442000 (China); Cui, Taixing, E-mail: taixing.cui@uscmed.sc.edu [Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States)

    2010-01-01

    Deubiquitinating enzymes (DUBs) appear to be critical regulators of a multitude of processes such as proliferation, apoptosis, differentiation, and inflammation. We have recently demonstrated that a DUB of ubiquitin carboxyl terminal hydrolase L1 (UCH-L1) inhibits vascular lesion formation via suppressing inflammatory responses in vasculature. However, the precise underlying mechanism remains to be defined. Herein, we report that a posttranscriptional up-regulation of UCH-L1 provides a negative feedback to tumor necrosis factor alpha (TNF{alpha})-mediated activation of extracellular signal-regulated kinases (ERK) and proliferation in vascular smooth muscle cells (VSMCs). In rat adult VSMCs, adenoviral over-expression of UCH-L1 inhibited TNF{alpha}-induced activation of ERK and DNA synthesis. In contrast, over-expression of UCH-L1 did not affect platelet derived growth factor (PDGF)-induced VSMC proliferation and activation of growth stimulating cascades including ERK. TNF{alpha} hardly altered UCH-L1 mRNA expression and stability; however, up-regulated UCH-L1 protein expression via increasing UCH-L1 translation. These results uncover a novel mechanism by which UCH-L1 suppresses vascular inflammation.

  14. Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) regulate murine neural progenitor cell survival, proliferation, and differentiation.

    Science.gov (United States)

    Scharf, Eugene; May, Victor; Braas, Karen M; Shutz, Kristin C; Mao-Draayer, Yang

    2008-11-01

    Neural stem/progenitor cells (NPC) have gained wide interest over the last decade from their therapeutic potential, either through transplantation or endogenous replacement, after central nervous system (CNS) disease and damage. Whereas several growth factors and cytokines have been shown to promote NPC survival, proliferation, or differentiation, the identification of other regulators will provide much needed options for NPC self-renewal or lineage development. Although previous studies have shown that pituitary adenylate cyclase-activating polypeptide (PACAP)/vasoactive intestinal peptide (VIP) can regulate stem/progenitor cells, the responses appeared variable. To examine the direct roles of these peptides in NPCs, postnatal mouse NPC cultures were withdrawn from epidermal growth factor (EGF) and fibroblastic growth factor (FGF) and maintained under serum-free conditions in the presence or absence of PACAP27, PACAP38, or VIP. The NPCs expressed the PAC1(short)null receptor isoform, and the activation of these receptors decreased progenitor cell apoptosis more than 80% from TUNEL assays and facilitated proliferation more than fivefold from bromodeoxyuridine (BrdU) analyses. To evaluate cellular differentiation, replicate control and peptide-treated cultures were examined for cell fate marker protein and transcript expression. In contrast with previous work, PACAP peptides downregulated NPC differentiation, which appeared consistent with the proliferation status of the treated cells. Accordingly, these results demonstrate that PACAP signaling is trophic and can maintain NPCs in a multipotent state. With these attributes, PACAP may be able to promote endogenous NPC self-renewal in the adult CNS, which may be important for endogenous self-repair in disease and ageing processes.

  15. Novel cAMP targets in cell proliferation

    NARCIS (Netherlands)

    Kuiperij, Hinke Bertha

    2004-01-01

    cAMP is a second messenger that plays a role in a wide variety of biological processes, one of which is the regulation of cell proliferation. Adenylate cyclases generate cAMP in the cell upon activation, followed by binding to and activation of its direct targets, PKA and Epac. PKA is a protein kina

  16. Microfluidic devices for cell cultivation and proliferation

    OpenAIRE

    Tehranirokh, Masoomeh; Kouzani, Abbas Z.; Francis, Paul S.; Kanwar, Jagat R.

    2013-01-01

    Microfluidic technology provides precise, controlled-environment, cost-effective, compact, integrated, and high-throughput microsystems that are promising substitutes for conventional biological laboratory methods. In recent years, microfluidic cell culture devices have been used for applications such as tissue engineering, diagnostics, drug screening, immunology, cancer studies, stem cell proliferation and differentiation, and neurite guidance. Microfluidic technology allows dynamic cell cul...

  17. IMPACT OF GENISTEIN AND PHYTIC ACID ON THE VIABILITY AND PROLIFERATION ACTIVITY OF NASAL POLYPS' CELLS IN AN IN VITRO MODEL.

    Science.gov (United States)

    Frączek, Marcin; Kuśmierz, Dariusz; Rostkowska-Nadolska, Beata; Kręcicki, Tomasz; Latocha, Małgorzata T

    2015-01-01

    In developed countries, chronic rhinosinusitis with nasal polyps is one of the diseases that diminish patients' quality of life most significantly. Treatment of that often incurable disease is based on the steroids and surgery in patients who had failed thorough conservative management. It appears that the introduction of new treatment agents suppressing inflammation process and inhibiting cells' proliferation would be a valuable therapeutic option. The aim of the present study was to evaluate the in vitro effect of genistein and phytic acid on the viability and growth rate of fibroblasts derived from nasal polyps. Cells were incubated with various concentrations of genistein (5-500 μM) and phytic acid (100-20,000 μM). After 72 h incubation, cells survivability and cells' growth rate were estimated by combination of WST-1 and LDH methods. QRT-PCR technique was used to determine the expression of histone H3, BCL-2, BAX and P53 genes. Caspase-8 and -9 expressions were evaluated by ELISA assay. Genistein and phytic acid significantly and in dose-specific manner decreased nasal polyps fibroblasts survivability and growth rate. Both agents in similar way decreased cell proliferation as measured by the expression of histone H3. They induce apoptotic machinery by modulating the expression of BCL-2, BAX and caspase-8 activity. Genistein and phytic acid have significant potential for a therapeutic role in the treatment of chronic rhinosinusitis.

  18. Graviola inhibits hypoxia-induced NADPH oxidase activity in prostate cancer cells reducing their proliferation and clonogenicity.

    Science.gov (United States)

    Deep, Gagan; Kumar, Rahul; Jain, Anil K; Dhar, Deepanshi; Panigrahi, Gati K; Hussain, Anowar; Agarwal, Chapla; El-Elimat, Tamam; Sica, Vincent P; Oberlies, Nicholas H; Agarwal, Rajesh

    2016-03-16

    Prostate cancer (PCa) is the leading malignancy among men. Importantly, this disease is mostly diagnosed at early stages offering a unique chemoprevention opportunity. Therefore, there is an urgent need to identify and target signaling molecules with higher expression/activity in prostate tumors and play critical role in PCa growth and progression. Here we report that NADPH oxidase (NOX) expression is directly associated with PCa progression in TRAMP mice, suggesting NOX as a potential chemoprevention target in controlling PCa. Accordingly, we assessed whether NOX activity in PCa cells could be inhibited by Graviola pulp extract (GPE) that contains unique acetogenins with strong anti-cancer effects. GPE (1-5 μg/ml) treatment strongly inhibited the hypoxia-induced NOX activity in PCa cells (LNCaP, 22Rv1 and PC3) associated with a decrease in the expression of NOX catalytic and regulatory sub-units (NOX1, NOX2 and p47(phox)). Furthermore, GPE-mediated NOX inhibition was associated with a strong decrease in nuclear HIF-1α levels as well as reduction in the proliferative and clonogenic potential of PCa cells. More importantly, GPE treatment neither inhibited NOX activity nor showed any cytotoxicity against non-neoplastic prostate epithelial PWR-1E cells. Overall, these results suggest that GPE could be useful in the prevention of PCa progression via inhibiting NOX activity.

  19. A common role for various human truncated adenomatous polyposis coli isoforms in the control of beta-catenin activity and cell proliferation.

    Directory of Open Access Journals (Sweden)

    Shree Harsha Vijaya Chandra

    Full Text Available The tumour suppressor gene adenomatous polyposis coli (APC is mutated in most colorectal cancer cases, leading to the synthesis of truncated APC products and the stabilization of β-catenin. Truncated APC is almost always retained in tumour cells, suggesting that it serves an essential function. Here, RNA interference has been used to down-regulate truncated APC in several colorectal cancer cell lines expressing truncated APCs of different lengths, thereby performing an analysis covering most of the mutation cluster region (MCR. The consequences on proliferation in vitro, tumour formation in vivo and the level and transcriptional activity of β-catenin have been investigated. Down-regulation of truncated APC results in an inhibition of tumour cell population expansion in vitro in 6 cell lines out of 6 and inhibition of tumour outgrowth in vivo as analysed in one of these cell lines, HT29. This provides a general rule explaining the retention of truncated APC in colorectal tumours and defines it as a suitable target for therapeutic intervention. Actually, we also show that it is possible to design a shRNA that targets a specific truncated isoform of APC without altering the expression of wild-type APC. Down-regulation of truncated APC is accompanied by an up-regulation of the transcriptional activity of β-catenin in 5 out of 6 cell lines. Surprisingly, the increased signalling is associated in most cases (4 out of 5 with an up-regulation of β-catenin levels, indicating that truncated APC can still modulate wnt signalling through controlling the level of β-catenin. This control can happen even when truncated APC lacks the β-catenin inhibiting domain (CiD involved in targeting β-catenin for proteasomal degradation. Thus, truncated APC is an essential component of colorectal cancer cells, required for cell proliferation, possibly by adjusting β-catenin signalling to the "just right" level.

  20. The role of 14-3-3{beta} in transcriptional activation of estrogen receptor {alpha} and its involvement in proliferation of breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoonseo; Kim, Hyungjin; Jang, Sung-Wuk [School of Life Sciences and Biotechnology, Korea University, Seoul 136-701 (Korea, Republic of); Ko, Jesang, E-mail: jesangko@korea.ac.kr [School of Life Sciences and Biotechnology, Korea University, Seoul 136-701 (Korea, Republic of)

    2011-10-14

    Highlights: {yields} 14-3-3{beta} interacts with ER{alpha} and the interaction is Akt-dependent. {yields} 14-3-3{beta} regulates the transcriptional activity of ER{alpha} in a ligand-dependent manner. {yields} 14-3-3{beta} increases expressions of ER{alpha} target genes. {yields} 14-3-3{beta} increases breast cancer cell proliferation. -- Abstract: The estrogen receptor (ER) functions as a transcription factor that mediates the effects of estrogen. ER{alpha}, which plays a crucial role in the development and progression of breast cancer, is activated by estrogen binding, leading to receptor phosphorylation, dimerization, and recruitment of co-activators and chaperons to the estrogen-bound receptor complex. The 14-3-3 proteins bind to target proteins via phosphorylation and influence many cellular events by altering their subcellular localization or acting as a chaperone. However, regulation of ER{alpha} expression and transactivation by the 14-3-3 proteins has not been reported. We demonstrate that 14-3-3{beta} functions as a positive regulator of ER{alpha} through a direct protein-protein interaction in an estrogen-dependent manner. Ectopic expression of 14-3-3{beta} stimulated ER{alpha}-mediated transcriptional activity in MCF-7 breast cancer cells. Enhanced ER{alpha} transcriptional activity due to 14-3-3{beta} increased the expressions of the endogenous ER{alpha} target genes, leading to proliferation of breast cancer cells. We suggest that 14-3-3{beta} has oncogenic potential in breast cancer via binding to ER{alpha} and activation of the transcriptional activity of ER{alpha}.

  1. Metformin inhibition of mTORC1 activation, DNA synthesis and proliferation in pancreatic cancer cells: Dependence on glucose concentration and role of AMPK

    Energy Technology Data Exchange (ETDEWEB)

    Sinnett-Smith, James; Kisfalvi, Krisztina; Kui, Robert [Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, CA (United States); Rozengurt, Enrique, E-mail: erozengurt@mednet.ucla.edu [Division of Digestive Diseases, Department of Medicine, CURE: Digestive Diseases Research Center, David Geffen School of Medicine and Molecular Biology Institute, University of California at Los Angeles, CA (United States)

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Metformin inhibits cancer cell growth but the mechanism(s) are not understood. Black-Right-Pointing-Pointer We show that the potency of metformin is sharply dependent on glucose in the medium. Black-Right-Pointing-Pointer AMPK activation was enhanced in cancer cells incubated in physiological glucose. Black-Right-Pointing-Pointer Reciprocally, metformin potently inhibited mTORC1, DNA synthesis and proliferation. Black-Right-Pointing-Pointer Metformin, at low concentrations, inhibited DNA synthesis through AMPK. -- Abstract: Metformin, a widely used anti-diabetic drug, is emerging as a potential anticancer agent but the mechanisms involved remain incompletely understood. Here, we demonstrate that the potency of metformin induced AMPK activation, as shown by the phosphorylation of its substrates acetyl-CoA carboxylase (ACC) at Ser{sup 79} and Raptor at Ser{sup 792}, was dramatically enhanced in human pancreatic ductal adenocarcinoma (PDAC) cells PANC-1 and MiaPaCa-2 cultured in medium containing physiological concentrations of glucose (5 mM), as compared with parallel cultures in medium with glucose at 25 mM. In physiological glucose, metformin inhibited mTORC1 activation, DNA synthesis and proliferation of PDAC cells stimulated by crosstalk between G protein-coupled receptors and insulin/IGF signaling systems, at concentrations (0.05-0.1 mM) that were 10-100-fold lower than those used in most previous reports. Using siRNA-mediated knockdown of the {alpha}{sub 1} and {alpha}{sub 2} catalytic subunits of AMPK, we demonstrated that metformin, at low concentrations, inhibited DNA synthesis through an AMPK-dependent mechanism. Our results emphasize the importance of using medium containing physiological concentrations of glucose to elucidate the anticancer mechanism of action of metformin in pancreatic cancer cells and other cancer cell types.

  2. Cestrum nocturnum Flower Extracts Attenuate Proliferation and Induce Apoptosis in Malignant Cells through Inducing DNA Damage and Inhibiting Topoisomerase II Activity.

    Science.gov (United States)

    Wu, Deng-Pan; Lin, Tian-Yu; Lv, Jin-Yan; Chen, Wen-Ya; Bai, Li-Ru; Zhou, Yan; Huang, Jin-Lan; Zhong, Zhen-Guo

    2017-01-01

    Most of the existing chemotherapeutic drugs have plenty of side effects. Chinese herbal medicine has been used for pharmaceutical and dietary therapy for thousands of years with more effective and fewer side effects. Cestrum nocturnum (CN) has long been used to treat digestive diseases for centuries in China. Our previous study first proved that the n-butanol part isolated from the flowers of CN produced an inhibitory effect on the proliferation of malignant cells. However, the fractions responsible for the antiproliferation effect of n-butanol part from CN flowers and related mechanisms remain unknown. Thus, in this study, we extracted fractions C4 and C5 from n-butanol part of CN flowers and investigated their immune toxicity and antitumor activities. It was found that fractions C4 and C5 exhibited great cytotoxicity to cancer cell lines but had low immune toxicity towards T and B lymphocytes in vitro. The tested fractions also attenuated proliferation and induced apoptosis at G0/G1 and G2/M phases in Bel-7404 cells through inducing DNA damage and inhibiting topoisomerase II relaxation activity. These results suggest that fractions C4 and C5 may represent important sources of potential antitumor agents due to their pronounced antitumor effects and low immune toxicity.

  3. Cestrum nocturnum Flower Extracts Attenuate Proliferation and Induce Apoptosis in Malignant Cells through Inducing DNA Damage and Inhibiting Topoisomerase II Activity

    Directory of Open Access Journals (Sweden)

    Deng-Pan Wu

    2017-01-01

    Full Text Available Most of the existing chemotherapeutic drugs have plenty of side effects. Chinese herbal medicine has been used for pharmaceutical and dietary therapy for thousands of years with more effective and fewer side effects. Cestrum nocturnum (CN has long been used to treat digestive diseases for centuries in China. Our previous study first proved that the n-butanol part isolated from the flowers of CN produced an inhibitory effect on the proliferation of malignant cells. However, the fractions responsible for the antiproliferation effect of n-butanol part from CN flowers and related mechanisms remain unknown. Thus, in this study, we extracted fractions C4 and C5 from n-butanol part of CN flowers and investigated their immune toxicity and antitumor activities. It was found that fractions C4 and C5 exhibited great cytotoxicity to cancer cell lines but had low immune toxicity towards T and B lymphocytes in vitro. The tested fractions also attenuated proliferation and induced apoptosis at G0/G1 and G2/M phases in Bel-7404 cells through inducing DNA damage and inhibiting topoisomerase II relaxation activity. These results suggest that fractions C4 and C5 may represent important sources of potential antitumor agents due to their pronounced antitumor effects and low immune toxicity.

  4. Leptin reverses corticosterone-induced inhibition of neural stem cell proliferation through activating the NR2B subunits of NMDA receptors

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Wen-Zhu [Anesthesia and Operation Center, Hainan Branch of Chinese PLA General Hospital, Hainan 572013 (China); Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing 100853 (China); Miao, Yu-Liang [Department of Anesthesiology, PLA No. 306 Hospital, Beijing 100101 (China); Guo, Wen-Zhi [Department of Anesthesiology, Beijing Military General Hospital of Chinese People’s Liberation Army, Beijing 100700 (China); Wu, Wei, E-mail: wwzwgk@163.com [Department of Head and Neck Surgery of Otolaryngology, PLA No. 306 Hospital, Beijing 100101 (China); Li, Bao-Wei [Department of Head and Neck Surgery of Otolaryngology, PLA No. 306 Hospital, Beijing 100101 (China); An, Li-Na [Department of Anesthesiology, Armed Police General Hospital, Beijing 100039 (China); Fang, Wei-Wu [Department of Anesthesiology, PLA No. 306 Hospital, Beijing 100101 (China); Mi, Wei-Dong, E-mail: elite2005gg@163.com [Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing 100853 (China)

    2014-04-25

    Highlights: • Leptin promotes the proliferation of neural stem cells isolated from embryonic mouse hippocampus. • Leptin reverses corticosterone-induced inhibition of neural stem cell proliferation. • The effects of leptin are partially mediated by upregulating NR2B subunits. - Abstract: Corticosterone inhibits the proliferation of hippocampal neural stem cells (NSCs). The removal of corticosterone-induced inhibition of NSCs proliferation has been reported to contribute to neural regeneration. Leptin has been shown to regulate brain development, improve angiogenesis, and promote neural regeneration; however, its effects on corticosterone-induced inhibition of NSCs proliferation remain unclear. Here we reported that leptin significantly promoted the proliferation of hippocampal NSCs in a concentration-dependent pattern. Also, leptin efficiently reversed the inhibition of NSCs proliferation induced by corticosterone. Interestingly, pre-treatment with non-specific NMDA antagonist MK-801, specific NR2B antagonist Ro 25-6981, or small interfering RNA (siRNA) targeting NR2B, significantly blocked the effect of leptin on corticosterone-induced inhibition of NSCs proliferation. Furthermore, corticosterone significantly reduced the protein expression of NR2B, whereas pre-treatment with leptin greatly reversed the attenuation of NR2B expression caused by corticosterone in cultured hippocampal NSCs. Our findings demonstrate that leptin reverses the corticosterone-induced inhibition of NSCs proliferation. This process is, at least partially mediated by increased expression of NR2B subunits of NMDA receptors.

  5. Kaposi's-sarcoma-associated-herpesvirus-activated dendritic cells promote HIV-1 trans-infection and suppress CD4{sup +} T cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wan; Qin, Yan; Bai, Lei [Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, the Chinese Academy of Sciences, Shanghai (China); Graduate School of the Chinese Academy of Sciences, Beijing (China); Lan, Ke [Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, the Chinese Academy of Sciences, Shanghai (China); Wang, Jian-Hua, E-mail: Jh_wang@sibs.ac.cn [Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, the Chinese Academy of Sciences, Shanghai (China)

    2013-06-05

    Infection of Kaposi's sarcoma-associated herpesvirus (KSHV) is commonly occurred in AIDS patients. KSHV and HIV-1 act cooperatively in regulating infection with each other and in human carcinogenesis. Dendritic cells (DCs), as the pivotal cells in host immunity, may be modulated by both viruses, for immunoevasion and dissemination, therefore, the interaction between DCs and each virus has been a prior focus for pathogenesis elucidation. Here, we assessed the potential effect of KSHV on DC–HIV-1 interaction. We found that KSHV stimulation could promote maturation of monocyte-derived DCs (MDDCs) and impaired the ability of MDDCs to drive proliferation of resting CD4{sup +} T cells, demonstrating the immunosuppression induced by KSHV. More importantly, KSHV-stimulated MDDCs could capture more HIV-1 and efficiently transferred these infectious viruses to Hut/CCR5 T cell line. Our results reveal the novel modulation of DC-mediated HIV-1 dissemination by KSHV, and highlight the importance of studying DC–HIV-1 interaction to elucidate HIV/AIDS pathogenesis. - Highlights: ► KSHV impaired the ability of MDDCs to drive proliferation of resting CD4{sup +} T cells. ► KSHV stimulation matured MDDCs and enhanced HIV-1 endocytosis. ► KSHV stimulated MDDCs increased ICAM-1 expression and tighten contact with T cells. ► KSHV-stimulated MDDCs promoted HIV-1 trans-infection of CD4{sup +} T cells.

  6. Granulosa cell proliferation differentiation and its role in follicular development

    Institute of Scientific and Technical Information of China (English)

    LU Cuiling; YANG Wei; HU Zhaoyuan; LIU Yixun

    2005-01-01

    Granuiosa cells (GCs) are the most important cells in the ovary that undergo serious changes morphologically and physiologically during the processes of follicular proliferation, differentiation, ovulation, lutenization and atresia. Oocyte (OC) directs GC proliferation and differentiation, while GCs influence OC maturation. Many ovarian factors are involved in the regulation of these processes via different molecular mechanisms and signal pathways. P38MAPK can selectively regulate steroidogenesis in GCs controlled by FSH; Transcript factors LRH-1 and DAX-1 play an important role in this process; FSH induces GC prolfferation and differentiation by stimulating PCNA and StAR expression and steroidogenesis. Activated ERK1/2 signal pathway may be involved in the FSH-regulated GC proliferation and differentiation. Therefore, GC is an ideal model for studying cell proliferation, differentiation and interaction,as well as signal transduction. This review briefly summarizes the latest data in the literature, including the results achieved in our laboratory.

  7. Cultured Human Periosteum-Derived Cells Can Differentiate into Osteoblasts in a Perioxisome Proliferator-Activated Receptor Gamma-Mediated Fashion via Bone Morphogenetic Protein signaling.

    Science.gov (United States)

    Chung, Jin-Eun; Park, Jin-Ho; Yun, Jeong-Won; Kang, Young-Hoon; Park, Bong-Wook; Hwang, Sun-Chul; Cho, Yeong-Cheol; Sung, Iel-Yong; Woo, Dong Kyun; Byun, June-Ho

    2016-01-01

    The differentiation of mesenchymal stem cells towards an osteoblastic fate depends on numerous signaling pathways, including activation of bone morphogenetic protein (BMP) signaling components. Commitment to osteogenesis is associated with activation of osteoblast-related signal transduction, whereas inactivation of this signal transduction favors adipogenesis. BMP signaling also has a critical role in the processes by which mesenchymal stem cells undergo commitment to the adipocyte lineage. In our previous study, we demonstrated that an agonist of the perioxisome proliferator-activated receptor γ (PPARγ), a master regulator of adipocyte differentiation, stimulates osteoblastic differentiation of cultured human periosteum-derived cells. In this study, we used dorsomorphin, a selective small molecule inhibitor of BMP signaling, to investigate whether BMP signaling is involved in the positive effects of PPARγ agonists on osteogenic phenotypes of cultured human periosteum-derived cells. Both histochemical detection and bioactivity of ALP were clearly increased in the periosteum-derived cells treated with the PPARγ agonist at day 10 of culture. Treatment with the PPARγ agonist also caused an increase in alizarin red S staining and calcium content in the periosteum-derived osteoblasts at 2 and 3 weeks of culture. In contrast, dorsomorphin markedly decreased ALP activity, alizarin red S staining and calcium content in both the cells treated with PPARγ agonist and the cells cultured in osteogenic induction media without PPARγ agonist during the culture period. In addition, the PPARγ agonist clearly increased osteogenic differentiation medium-induced BMP-2 upregulation in the periosteum-derived osteoblastic cells at 2 weeks of culture as determined by quantitative reverse transcriptase polymerase chain reaction (RT-PCR), immunoblotting, and immunocytochemical analyses. Although further study will be needed to clarify the mechanisms of PPARγ-regulated osteogenesis

  8. A proliferation-inducing ligand sustains the proliferation of human naïve (CD27⁻) B cells and mediates their differentiation into long-lived plasma cells in vitro via transmembrane activator and calcium modulator and cyclophilin ligand interactor and B-cell mature antigen.

    Science.gov (United States)

    Matsuda, Yoshiko; Haneda, Masataka; Kadomatsu, Kenji; Kobayashi, Takaaki

    2015-06-01

    Long-lived plasma cells (PCs) contribute to humoral immunity through an undefined mechanism. Memory B cells, but not human naïve B cells, can be induced to differentiate into long-lived PCs in vitro. Because evidence links a proliferation-inducing ligand (APRIL), a tumor necrosis factor family member, to the ability of bone marrow to mediate long-term PC survival, we reasoned that APRIL influences the proliferation and differentiation of naïve B cells. We describe here the development of a simple cell culture system that allowed us to show that APRIL sustained the proliferation of naïve human B cells and induced them to differentiate into long-lived PCs. Blocking the transmembrane activator and calcium modulator and cyclophilin ligand interactor or B-cell mature antigen shows they were required for the differentiation of naïve B cells into long-lived PCs in vitro. Our in vitro culture system will reveal new insights into the biology of long-lived PCs.

  9. How does the supernatant of Lactobacillus acidophilus affect the proliferation and differentiation activities of rat bone marrow-derived stromal cells?

    Science.gov (United States)

    Samadikuchaksaraei, A; Gholipourmalekabadi, M; Saberian, M; Abdollahpour Alitappeh, M; Shahidi Delshad, E

    2016-08-31

    Low proliferation rate and unwanted differentiation of bone marrow-derived stromal cells (rBMSCs) during the frequent passages have limited the use of such cells in clinical cell therapy. Recently, the researchers have focused on the effects of the components produced by some bacteria on proliferation of the stem cells. In this study, we discussed the possible effects of the Lactobacillus acidophilus supernatant on proliferation and differentiation of the rBMSCs. For this aim, the cells were isolated from rat bone marrow, characterized by culturing on tissue specific differentiation media and stained. The cells (passage two) were treated with different concentrations of the L. acidophilus supernatant (0, 0.1, 0.3, 0.9, 3, 9 and 30 &mgr;l/ml) for 14 days. The proliferation and differentiation capacity of the cells were then determined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT assay) and tissue specific staining. The results showed a positive effect of the supernatant on the cell proliferation in 3 and 9 &mgr;l/ml concentrations, while did not affect the differentiation capacity of the rBMSCs. The current study strongly suggests the L. acidophilus supernatant as an alternative material that could be added to the media with aim of improvement in the proliferation rate of the rBMSCs without affecting their differentiation capacity.

  10. Integrin αv promotes proliferation by activating ERK 1/2 in the human lung cancer cell line A549.

    Science.gov (United States)

    Fu, Shijie; Fan, Limin; Pan, Xufeng; Sun, Yifeng; Zhao, Heng

    2015-02-01

    Lung cancer is a leading cause of cancer-related death worldwide, and non-small cell lung cancer (NSCLC) constitutes ~85% of lung cancers. However, the mechanisms underlying the progression of NSCLC remain unclear. In this study, we found the mRNA and protein expression levels of integrin αv are both increased in NSCLC tissues compared to healthy ones, which indicates that integrin αv may play an important role in NSCLC progression. To further investigate the roles of integrin αv in NSCLC, we overexpressed the integrin αv gene in the NSCLC cell line A549, and found that the cell proliferative ability increased. The apoptosis of A549 cells was inhibited with overexpression of integrin αv. To elucidate the molecular mechanism underlying the role of integrin αv in promoting NSCLC progression, we studied the expression of proteins from a number of important pathways associated with tumorigenesis, and found that the extracellular signal regulated protein kinase (ERK)1/2 signaling pathway may be involved in the mediation of the observed integrin αv effects. component of an important pathway for tumorigenesis, the ERK 1/2. Following inhibition of ERK 1/2 signaling, the proliferation of A549 cells induced by integrin αv was reduced, while the inhibition of apoptosis was attenuated. Our findings demonstrate that integrin αv promotes the proliferation of the human lung cancer cell line A549 by activating the ERK 1/2 signaling pathway, which suggests that this pathway may be a promising target for the treatment of human lung cancer.

  11. Induction of aryl hydrocarbon receptor-mediated and estrogen receptor-mediated activities, and modulation of cell proliferation by dinaphthofurans.

    Science.gov (United States)

    Vondrácek, Jan; Chramostová, Katerina; Plísková, Martina; Bláha, Ludek; Brack, Werner; Kozubík, Alois; Machala, Miroslav

    2004-09-01

    A group of heterocyclic aromatic compounds, dinaphthofurans (DNFs), recently have been identified as potentially significant contaminants in freshwater sediments. In the present study, a battery of in vitro assays was used for detection of toxic effects of DNFs that are potentially associated with endocrine disruption and tumor promotion. Dinaphthofurans were found to act as relatively potent inducers of aryl hydrocarbon receptor (AhR)-mediated activity in the chemical-activated luciferase reporter gene expression DR-CALUX assay. The relative AhR-inducing potencies of DNFs were similar or even higher than relative potencies of unsubstituted polycyclic aromatic hydrocarbons (PAHs), with dinaphtho[1,2-b;2'3'-d]furan being the most potent AhR agonist. Two compounds, dinaphtho[2,1-b;2'3'-d]furan and dinaphtho[1,2-b;1'2'-d]furan, induced estrogen receptor (ER)-mediated activity in the estrogen receptor-mediated CALUX (the ER-CALUX) assay. Two types of potential tumor-promoting effects of DNFs were investigated, using in vitro bioassays for detection of inhibition of gap-junctional intercellular communication and detection of a release from contact inhibition. Although the acute inhibition of gap-junctional intercellular communication was not observed, all six tested DNFs were able to release rat liver epithelial WB-F344 cells from contact inhibition at concentrations as low as 100 nM. In summary, the present study indicated that DNFs can exert multiple biological effects in vitro, including induction of the AhR-mediated activity, release of cells from contact inhibition, and induction of ER-mediated activity.

  12. 5-Aza-2'-deoxycytidine Activates the p53/p21waf1/Cip1 Pathway to Inhibit Cell Proliferation

    Institute of Scientific and Technical Information of China (English)

    Wei-GuoZhu; TheresaHileman; YangKe; PeichangWang; ShaoliLu; WenruiDuan; ZunyanDai; TanjunTong; MiguelA.Villalona-Calero; ChristophPlass; GregoryA.Otterson

    2005-01-01

    In addition to its demethylating function, 5-aza-2'-de- oxycytidine (5-aza-CdR) also plays an important role in inducing cell cycle arrest, differentiation, and cell death. However, the mechanism by which 5-aza-CdR in. duces antineoplastic activity is not clear. In this study, we found that 5-aza-CdR at limited concentrations(0.01-5μM) induces inhibition of cell proliferation as well as increased p53/p21waf1/Cip1 expression in A549 cells (wild-type p53) but not in H1299 (p53-null) and H719 cells (p53 mutant). The p53-dependent p21wafa/Cip1 expression induced by 5-aza-CdR was not seen in A549 cells transfected with the wild-type human papilloma virus type-16 E6 gene that induces p53 degradation. Furthermore, deletion analysis and site-directed mutagenesis of the p21 promoter reveals that 5-aza-CdR induces p21wafa/Cip1 expression through two p53 binding sites in the p21 promoter. Finally, 5-aza-CdR-induced p21waf1/cip1 expression was dependent on DNA damage but not on DNA demethylation as demonstrated by comet assay and bisulfite sequencing, respectively. Our data provide useful clues for judging the therapeutic efficacy of 5-aza-CdR in the treatment of human cancer cells.

  13. Transcription factor p53 can regulate proliferation, apoptosis and secretory activity of luteinizing porcine ovarian granulosa cell cultured with and without ghrelin and FSH.

    Science.gov (United States)

    Sirotkin, A V; Benco, A; Tandlmajerova, A; Vasícek, D; Kotwica, J; Darlak, K; Valenzuela, F

    2008-11-01

    The aim of our in vitro experiments was to examine the role of transcription factor p53 in controlling the basic functions of ovarian cells and their response to hormonal treatments. Porcine ovarian granulosa cells, transfected and non-transfected with a gene construct encoding p53, were cultured with ghrelin and FSH (all at concentrations of 0, 1, 10, or 100 ng/ml). Accumulation of p53, of apoptosis-related (MAP3K5) and proliferation-related (cyclin B1) substances was evaluated by immunocytochemistry. The secretion of progesterone (P(4)), oxytocin (OT), prostaglandin F (PGF), and E (PGE) was measured by RIA. Transfection with the p53 gene construct promoted accumulation of this transcription factor within cells. It also stimulated the expression of a marker of apoptosis (MAP3K5). Over-expression of p53 resulted in reduced accumulation of a marker of proliferation (cyclin B1), P(4), and PGF secretion and increased OT and PGE secretion. Ghrelin, when added alone, did not affect p53 or P(4), but reduced MAP3K5 and increased PGF and PGE secretion. Over-expression of p53 reversed the effect of ghrelin on OT, caused it to be inhibitory to P(4) secretion, but did not modify its action on MAP3K5, PGF, or PGE. FSH promoted the accumulation of p53, MAP3K5, and cyclin B1; these effects were unaffected by p53 transfection. These multiple effects of the p53 gene construct on luteinizing granulosa cells, cultured with and without hormones 1) demonstrate the effects of ghrelin and FSH on porcine ovarian cell apoptosis and secretory activity, 2) confirm the involvement of p53 in promoting apoptosis and inhibiting P(4) secretion in these cells, 3) provide the first evidence that p53 suppress proliferation of ovarian cells, 4) provide the first evidence that p53 is involved in the control of ovarian peptide hormone (OT) and prostaglandin (PGF and PGE) secretion, and 5) suggest that p53 can modulate, but probably not mediate, the effects of ghrelin and FSH on the ovary.

  14. Nesfatin-1 inhibits ovarian epithelial carcinoma cell proliferation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yang; Pang, Xiaoyan; Dong, Mei; Wen, Fang, E-mail: wenfang64@hotmail.com; Zhang, Yi, E-mail: syzi960@yahoo.com

    2013-11-01

    Highlights: •Nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest. •Nesfatin-1 enhances HO-8910 cell apoptosis. •Nesfatin-1 inhibits HO-8910 cell proliferation via mTOR and RhoA/ROCK signaling pathway. •The first report of nesfatin-1-mediated proliferation in ovarian epithelial carcinoma. -- Abstract: Nesfatin-1, an 82-amino-acid peptide derived from a 396-amino-acid precursor protein nucleobindin 2 (NUCB2), was originally identified in hypothalamic nuclei involved in the regulation of food intake. It was recently reported that nesfatin-1 is a novel depot specific adipokine preferentially produced by subcutaneous tissue, with obesity- and food deprivation-regulated expression. Although a relation between ovarian cancer mortality and obesity has been previously established, a role of nesfatin-1 in ovarian epithelial carcinoma remains unknown. The aim of the present study is to examine the effect of nesfatin-1 on ovary carcinoma cells proliferation. We found that nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest, this inhibition could be abolished by nesfatin-1 neutralizing antibody. Nesfatin-1 enhances HO-8910 cell apoptosis, activation of mammalian target of rapamycin (mTOR) and RhoA/ROCK signaling pathway block the effects of nesfatin-1-induced apoptosis, therefore reverses the inhibition of HO-8910 cell proliferation by nesfatin-1. In conclusion, the present study demonstrated that nesfatin-1 can inhibit the proliferation in human ovarian epithelial carcinoma cell line HO-8910 cells through inducing apoptosis via mTOR and RhoA/ROCK signaling pathway. This study provides a novel regulatory signaling pathway of nesfatin-1-regulated ovarian epithelial carcinoma growth and may contribute to ovarian cancer prevention and therapy, especially in obese patients.

  15. Expression of peroxisome proliferator-activated receptor gamma (PPARgamma) in human transitional bladder cancer and its role in inducing cell death.

    Science.gov (United States)

    Guan, Y F; Zhang, Y H; Breyer, R M; Davis, L; Breyer, M D

    1999-10-01

    The present study examined the expression and role of the thiazolidinedione (TZD)-activated transcription factor, peroxisome proliferator-activated receptor gamma (PPARgamma), in human bladder cancers. In situ hybridization shows that PPARgamma mRNA is highly expressed in all human transitional epithelial cell cancers (TCCa's) studied (n=11). PPARgamma was also expressed in five TCCa cell lines as determined by RNase protection assays and immunoblot. Retinoid X receptor alpha (RXRalpha), a 9-cis-retinoic acid stimulated (9-cis-RA) heterodimeric partner of PPARgamma, was also co-expressed in all TCCa tissues and cell lines. Treatment of the T24 bladder cancer cells with the TZD PPARgamma agonist troglitazone, dramatically inhibited 3H-thymidine incorporation and induced cell death. Addition of the RXRalpha ligands, 9-cis-RA or LG100268, sensitized T24 bladder cancer cells to the lethal effect of troglitazone and two other PPAR- activators, ciglitazone and 15-deoxy-delta(12,14)-PGJ2 (15dPGJ(2)). Troglitazone treatment increased expression of two cyclin-dependent kinase inhibitors, p21(WAF1/CIP1) and p16(INK4), and reduced cyclin D1 expression, consistent with G1 arrest. Troglitazone also induced an endogenous PPARgamma target gene in T24 cells, adipocyte-type fatty acid binding protein (A-FABP), the expression of which correlates with bladder cancer differentiation. In situ hybridization shows that A-FABP expression is localized to normal uroepithelial cells as well as some TCCa's. Taken together, these results demonstrate that PPARgamma is expressed in human TCCa where it may play a role in regulating TCCa differentiation and survival, thereby providing a potential target for therapy of uroepithelial cancers.

  16. The sGC activator inhibits the proliferation and migration, promotes the apoptosis of human pulmonary arterial smooth muscle cells via the up regulation of plasminogen activator inhibitor-2

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shuai [Beijing Institute of Respiratory Medicine, Beijing Chao-yang Hospital, Capital Medical University, 8 Gongti South Rd, Beijing (China); Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, 8 Gongti South Rd, Beijing (China); Zou, Lihui [Institute of Geriatrics, Beijing Hospital, 1 Dahua Rd, Beijing (China); National Clinical Research Center for Respiratory Diseases, 1 Dahua Rd, Beijing (China); Yang, Ting; Yang, Yuanhua; Zhai, Zhenguo [Beijing Institute of Respiratory Medicine, Beijing Chao-yang Hospital, Capital Medical University, 8 Gongti South Rd, Beijing (China); Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, 8 Gongti South Rd, Beijing (China); Xiao, Fei [Institute of Geriatrics, Beijing Hospital, 1 Dahua Rd, Beijing (China); National Clinical Research Center for Respiratory Diseases, 1 Dahua Rd, Beijing (China); Wang, Chen, E-mail: chenwangcjfh@163.com [Beijing Institute of Respiratory Medicine, Beijing Chao-yang Hospital, Capital Medical University, 8 Gongti South Rd, Beijing (China); Beijing Key Laboratory of Respiratory and Pulmonary Circulation Disorders, 8 Gongti South Rd, Beijing (China); National Clinical Research Center for Respiratory Diseases, 1 Dahua Rd, Beijing (China)

    2015-03-15

    Background: Different types of pulmonary hypertension (PH) share the same process of pulmonary vascular remodeling, the molecular mechanism of which is not entirely clarified by far. The abnormal biological behaviors of pulmonary arterial smooth muscle cells (PASMCs) play an important role in this process. Objectives: We investigated the regulation of plasminogen activator inhibitor-2 (PAI-2) by the sGC activator, and explored the effect of PAI-2 on PASMCs proliferation, apoptosis and migration. Methods: After the transfection with PAI-2 overexpression vector and specific siRNAs or treatment with BAY 41-2272 (an activator of sGC), the mRNA and protein levels of PAI-2 in cultured human PASMCs were detected, and the proliferation, apoptosis and migration of PASMCs were investigated. Results: BAY 41-2272 up regulated the endogenous PAI-2 in PASMCs, on the mRNA and protein level. In PAI-2 overexpression group, the proliferation and migration of PASMCs were inhibited significantly, and the apoptosis of PASMCs was increased. In contrast, PAI-2 knockdown with siRNA increased PASMCs proliferation and migration, inhibited the apoptosis. Conclusions: PAI-2 overexpression inhibits the proliferation and migration and promotes the apoptosis of human PASMCs. Therefore, sGC activator might alleviate or reverse vascular remodeling in PH through the up-regulation of PAI-2. - Highlights: • sGC activator BAY41-2272 up regulated PAI-2 in PASMCs, on the mRNA and protein level. • PAI-2 overexpression inhibits the proliferation and migration of human PASMCs. • PAI-2 overexpression promotes the apoptosis of human PASMCs. • sGC activator might alleviate the vascular remodeling in pulmonary hypertension.

  17. Knockdown of peroxisome proliferator-activated receptor gamma coactivator-1 alpha increased apoptosis of human endometrial cancer HEC-1A cells

    Directory of Open Access Journals (Sweden)

    Yang H

    2016-08-01

    Full Text Available Hui Yang, Rui Yang, Hao Liu, Zhongqian Ren, Cuicui Wang, Da Li, Xiaoxin Ma Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People’s Republic of China Background: Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α coactivates multiple transcription factors and regulates several metabolic processes. In this study, we focused on the roles of PGC-1α in the apoptosis of endometrial cancer HEC-1A cells. Materials and methods: PGC-1α expression in the HEC-1A cells was detected with real-time polymerase chain reaction and Western blot. Small interfering RNA directed against PGC-1α was designed and synthesized, and RNA interference technology was used to knock down PGC-1α mRNA and protein expression. Cell apoptosis, cell cycle, and mitochondrial membrane potential were then analyzed using flow cytometry. The expression of apoptotic proteins, Bcl-2 and Bax, was detected with Western blot. Results: The specific downregulation of PGC-1α expression in the HEC-1A cells increased their apoptosis through the mitochondrial apoptotic pathway by reducing the expression of Bcl-2 and increasing the expression of Bax. Conclusion: These results suggest that PGC-1α influences the apoptosis of HEC-1A cells and also provides a molecular basis for further investigation of the apoptotic mechanism in human endometrial cancer. Keywords: endometrial cancer, PGC-1α, apoptosis, Bcl-2, Bax

  18. TLR7激活对Hela细胞增殖的影响%The regulation of the proliferation on activation of TLR7 in Hela cells

    Institute of Scientific and Technical Information of China (English)

    李磊; 程丰伟; 王芳; 金锐; 罗欣; 张胜权

    2014-01-01

    目的:探讨Toll样受体7(TLR7)在Hela细胞中的表达以及激活TLR7后对Hela细胞增殖和MAPKs-ERK1/2及PI3K-AKT两条信号通路的 ERK 和 AKT 磷酸化水平的影响。方法采用Real-time PCR分析TLR7在Hela细胞中的表达;使用不同浓度的TLR7激动剂 Gardiquimod经过不同的时间刺激Hela细胞,采用MTS比色法分析其对Hela细胞增殖的影响; Western blot 分析 Gardiquimod 对 Hela 细胞ERK1/2及 AKT 蛋白磷酸化水平的影响。结果 TLR7在Hela细胞中呈组成性弱表达;TLR7激动剂Gardiquimod可促进Hela细胞的增殖,且呈时间及剂量依赖性; Gardiquimod激活TLR7后可以显著增加Hela细胞中ERK1/2和AKT的蛋白磷酸化水平。结论 TLR7激动剂Gardiquimod能够活化MAPK-ERK1/2和PI3K-AKT信号通路的ERK1/2和AKT蛋白磷酸化水平,并促进Hela细胞的体外增殖。%Objective To explore the expression of Toll like receptor 7 ( TLR7 ) on Hela cells, and the effect of TLR7 agonist-Gardiquimod on the proliferation of activation of TLR7 in Hela cells and related probable mechanism. Methods Firstly, using Real-time PCR to analyze the expression of TLR7 on Hela cells. Then, the cells were treated with different concentration of Gardiquimod for different times. MTS were performed to detect the impact of Gardiquimod on the proliferation of Hela cells. Using Western blot to analyze the variation of phosphorylation of ERK1/2 and AKT when Hela cells were treated with Gardiquimod. Results The constitutive expression of TLR7 on Hela cells was weak. The activation of TLR7 by its agonist of Gardiquimod could promote the proliferation of He-la cells apparently, and existing dose and time dependence. The protein level of phosphorylation of ERK1/2 and AKT enhanced after provoking the TLR7 in Hela cells. Conclusion The TLR7 ligand, Gardiquimod can promote proliferation through excitation protein level of phosphorylation of ERK1/2 and AKT of the signal pathway, MAPK-ERK1/2 and PI3K-AKT in

  19. Conjugated linoleic acid isomers and their precursor fatty acids regulate peroxisome proliferator-activated receptor subtypes and major peroxisome proliferator responsive element-bearing target genes in HepG2 cell model

    Institute of Scientific and Technical Information of China (English)

    Sailas BENJAMIN; Silke FLOTHO; Torsten B(O)RCHERS; Friedrich SPENER

    2013-01-01

    The purpose of this study was to examine the induction profiles(as judged by quantitative reverse transcription polymerase chain reaction(qRT-PCR))of peroxisome proliferator-activated receptor(PPAR)α,β,Y subtypes and major PPAR-target genes bearing a functional peroxisome proliferator responsive element(PPRE)in HepG2 cell model upon feeding with cis-9,trans-11-octadecadienoic acid(9-CLA)or trans-10,cis-12-octadecadienoic acid (10-CLA)or their precursor fatty acids(FAs).HepG2 cells were treated with 100 μmol/L 9-CLA or 10-CLA or their precursor FAs,viz.,oleic,linoleic,and trans-11-vaccenic acids against bezafibrate control to evaluate the induction/expression profiles of PPAR α,β,Y subtypes and major PPAR-target genes bearing a functional PPRE,i.e.,fatty acid transporter(FAT),glucose transporter-2(GLUT-2),liver-type FA binding protein(L-FABP),acyl CoA oxidase-1 (ACOX-1),and peroxisomal bifunctional enzyme(PBE)with reference to β-actin as house keeping gene.Of the three housekeeping genes(glyceraldehyde 3-phosphate dehydrogenase(GAPDH),β-actin,and ubiquitin),β-actin was found to be stable.Dimethyl sulfoxide(DMSO),the common solubilizer of agonists,showed a significantly higher induction of genes analyzed.qRT-PCR profiles of CLAs and their precursor FAs clearly showed upregulation of FAT,GLUT-2,and L-FABP(~0.5-2.0-fold).Compared to 10-CLA,9-CLA decreased the induction of the FA metabolizing gene ACOX-1 less than did PBE,while 10-CLA decreased the induction of PBE less than did ACOX-1.Both CLAs and precursor FAs upregulated PPRE-bearing genes,but with comparatively less or marginal activation of PPAR subtypes.This indicates that the binding of CLAs and their precursor FAs to PPAR subtypes results in PPAR activation,thereby induction of the target transporter genes coupled with downstream lipid metabolising genes such as ACOX-1 and PBE.To sum up,the expression profiles of these candidate genes showed that CLAs and their precursor FAs are involved in lipid

  20. Dose dependent activation of retinoic acid-inducible gene-I promotes both proliferation and apoptosis signals in human head and neck squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Jingzhou Hu

    Full Text Available The retinoic-acid-inducible gene (RIG-like receptor (RLR family proteins are major pathogen reorganization receptors (PRR responsible for detection of viral RNA, which initiates antiviral response. Here, we evaluated the functional role of one RLR family member, RIG-I, in human head and neck squamous cell carcinoma (HNSCC. RIG-I is abundantly expressed both in poorly-differentiated primary cancer and lymph node metastasis, but not in normal adjacent tissues. Activation of RIG-I by transfection with low dose of 5'-triphosphate RNA (3p-RNA induces low levels of interferon and proinflammatory cytokines and promotes NF-κB- and Akt-dependent cell proliferation, migration and invasion. In contrast, activation of RIG-I by a high dose of 3p-RNA induces robust mitochondria-derived apoptosis accompanied by decreased activation of Akt, which is independent of the interferon and TNFα receptor, but can be rescued by over-expression of constitutively active Akt. Furthermore, co-immunoprecipitation experiments indicate that the CARD domain of RIG-I is essential for inducing apoptosis by interacting with caspase-9. Together, our results reveal a dual role of RIG-I in HNSCC through regulating activation of Akt, in which RIG-I activation by low-dose viral dsRNA increases host cell survival, whereas higher level of RIG-I activation leads to apoptosis. These findings highlight the therapeutic potential of dsRNA mediated RIG-I activation in the treatment of HNSCC.

  1. Down-regulated peroxisome proliferator-activated receptor γ (PPARγ) in lung epithelial cells promotes a PPARγ agonist-reversible proinflammatory phenotype in chronic obstructive pulmonary disease (COPD).

    Science.gov (United States)

    Lakshmi, Sowmya P; Reddy, Aravind T; Zhang, Yingze; Sciurba, Frank C; Mallampalli, Rama K; Duncan, Steven R; Reddy, Raju C

    2014-03-07

    Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory condition and a leading cause of death, with no available cure. We assessed the actions in pulmonary epithelial cells of peroxisome proliferator-activated receptor γ (PPARγ), a nuclear hormone receptor with anti-inflammatory effects, whose role in COPD is largely unknown. We found that PPARγ was down-regulated in lung tissue and epithelial cells of COPD patients, via both reduced expression and phosphorylation-mediated inhibition, whereas pro-inflammatory nuclear factor-κB (NF-κB) activity was increased. Cigarette smoking is the main risk factor for COPD, and exposing airway epithelial cells to cigarette smoke extract (CSE) likewise down-regulated PPARγ and activated NF-κB. CSE also down-regulated and post-translationally inhibited the glucocorticoid receptor (GR-α) and histone deacetylase 2 (HDAC2), a corepressor important for glucocorticoid action and whose down-regulation is thought to cause glucocorticoid insensitivity in COPD. Treating epithelial cells with synthetic (rosiglitazone) or endogenous (10-nitro-oleic acid) PPARγ agonists strongly up-regulated PPARγ expression and activity, suppressed CSE-induced production and secretion of inflammatory cytokines, and reversed its activation of NF-κB by inhibiting the IκB kinase pathway and by promoting direct inhibitory binding of PPARγ to NF-κB. In contrast, PPARγ knockdown via siRNA augmented CSE-induced chemokine release and decreases in HDAC activity, suggesting a potential anti-inflammatory role of endogenous PPARγ. The results imply that down-regulation of pulmonary epithelial PPARγ by cigarette smoke promotes inflammatory pathways and diminishes glucocorticoid responsiveness, thereby contributing to COPD pathogenesis, and further suggest that PPARγ agonists may be useful for COPD treatment.

  2. Traditional medicine yanggyuksanhwa-tang inhibits adipogenesis and suppresses proliferator-activated receptor gamma expression in 3T3-L1 cells

    Directory of Open Access Journals (Sweden)

    Soo-Jin Jeong

    2015-01-01

    Full Text Available Background: Yanggyuksanhwa-tang (YGSHT is a specific traditional Korean herbal formula for Soyangin according to Sasang constitutional philosophy. Although its biological activities against inflammation and cerebral infarction have been reporting, there is no information about the adipogenic activity of YGSHT. In the present study, we investigated the anti adipogenic activity of YGSHT to evaluate effects of YGSHT on adipogenesis in vitro. Materials and Methods: Using 3T3 L1 preadipocytes, we induced the cellular differentiation into adipocytes by adding insulin. Anti adipogenic activity of YGSHT was measured by oil red O staining, triglyceride assay, glycerol 3 phosphate dehydrogenase (GPDH activity test, and leptin assay. Results: YGSHT extract had no significant cytotoxicity in preadipocytes or differentiated adipocytes. YGSHT reduced the number of lipid droplets and content of triglyceride in adipose cells. YGSHT also significantly inhibited GPDH activity and decreased leptin production compared with control adipocytes. Down regulation of peroxisome proliferator activated receptor gamma (PPAR g expression at the messenger RNA level was observed in YGSHT treated adipocytes. Conclusion: Taken together, our data suggest that YGSHT has potential as an anti-obesity drug candidate.

  3. The inhibition of activated hepatic stellate cells proliferation by arctigenin through G0/G1 phase cell cycle arrest: persistent p27(Kip1) induction by interfering with PI3K/Akt/FOXO3a signaling pathway.

    Science.gov (United States)

    Li, Ao; Wang, Jun; Wu, Mingjun; Zhang, Xiaoxun; Zhang, Hongzhi

    2015-01-15

    Proliferation of hepatic stellate cells (HSCs) is vital for the development of fibrosis during liver injury. In this study, we describe that arctigenin (ATG), a major bioactive component of Fructus Arctii, exhibited selective cytotoxic activity via inhibiting platelet-derived growth factor-BB (PDGF-BB)-activated HSCs proliferation and arrested cell cycle at G0/G1 phase, which could not be observed in normal human hepatocytes in vitro. The cyclin-dependent kinase (CDK) 4/6 activities could be strongly inhibited by ATG through down-regulation of cyclin D1 and CDK4/6 expression in early G1 phase arrest. In the ATG-treated HSCs, the expression level of p27(Kip1) and the formation of CDK2-p27(Kip1) complex were also increased. p27(Kip1) silencing significantly attenuated the effect of ATG, including cell cycle arrest and suppression of proliferation in activated HSCs. We also found that ATG suppressed PDGF-BB-induced phosphorylation of Akt and its downstream transcription factor Forkhead box O 3a (FOXO3a), decreased binding of FOXO3a to 14-3-3 protein, and stimulated nuclear translocation of FOXO3a in activated HSCs. Furthermore, knockdown of FOXO3a expression by FOXO3a siRNA attenuated ATG-induced up-regulation of p27(Kip1) in activated HSCs. All the above findings suggested that ATG could increase the levels of p27(Kip1) protein through inhibition of Akt and improvement of FOXO3a activity, in turn inhibited the CDK2 kinase activity, and eventually caused an overall inhibition of HSCs proliferation.

  4. Peroxisome Proliferator-Activated Receptor Gamma Negatively Regulates the Differentiation of Bone Marrow-Derived Mesenchymal Stem Cells Toward Myofibroblasts in Liver Fibrogenesis

    Directory of Open Access Journals (Sweden)

    Shuangshuang Jia

    2015-11-01

    Full Text Available Background/Aims: Bone marrow-derived mesenchymal stem cells (BMSCs have been confirmed to have capacity to differentiate toward hepatic myofibroblasts, which contribute to fibrogenesis in chronic liver diseases. Peroxisome proliferator-activated receptor gamma (PPARγ, a ligand-activated transcription factor, has gained a great deal of recent attention as it is involved in fibrosis and cell differentiation. However, whether it regulates the differentiation of BMSCs toward myofibroblasts remains to be defined. Methods: Carbon tetrachloride or bile duct ligation was used to induce mouse liver fibrosis. Expressions of PPARγ, α-smooth muscle actin, collagen α1 (I and collagen α1 (III were detected by real-time RT-PCR and Western blot or immunofluorescence assay. Results: PPARγ expression was decreased in mouse fibrotic liver. In addition, PPARγ was declined during the differentiation of BMSCs toward myofibroblasts induced by transforming growth factor β1. Activation of PPARγ stimulated by natural or synthetic ligands suppressed the differentiation of BMSCs. Additionally, knock down of PPARγ by siRNA contributed to BMSC differentiation toward myofibroblasts. Furthermore, PPARγ activation by natural ligand significantly inhibited the differentiation of BMSCs toward myofibroblasts in liver fibrogenesis and alleviated liver fibrosis. Conclusions: PPARγ negatively regulates the differentiation of BMSCs toward myofibroblasts, which highlights a further mechanism implicated in the BMSC differentiation.

  5. NSAIDs and Cell Proliferation in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Raj Ettarh

    2010-06-01

    Full Text Available Colon cancer is common worldwide and accounts for significant morbidity and mortality in patients. Fortunately, epidemiological studies have demonstrated that continuous therapy with NSAIDs offers real promise of chemoprevention and adjunct therapy for colon cancer patients. Tumour growth is the result of complex regulation that determines the balance between cell proliferation and cell death. How NSAIDs affect this balance is important for understanding and improving treatment strategies and drug effectiveness. NSAIDs inhibit proliferation and impair the growth of colon cancer cell lines when tested in culture in vitro and many NSAIDs also prevent tumorigenesis and reduce tumour growth in animal models and in patients, but the relationship to inhibition of tumour cell proliferation is less convincing, principally due to gaps in the available data. High concentrations of NSAIDs are required in vitro to achieve cancer cell inhibition and growth retardation at varying time-points following treatment. However, the results from studies with colon cancer cell xenografts are promising and, together with better comparative data on anti-proliferative NSAID concentrations and doses (for in vitro and in vivo administration, could provide more information to improve our understanding of the relationships between these agents, dose and dosing regimen, and cellular environment.

  6. Exogenous hydrogen sulfide exerts proliferation/anti-apoptosis/angiogenesis/migration effects via amplifying the activation of NF-κB pathway in PLC/PRF/5 hepatoma cells.

    Science.gov (United States)

    Zhen, Yulan; Pan, Wanying; Hu, Fen; Wu, Hongfu; Feng, Jianqiang; Zhang, Ying; Chen, Jingfu

    2015-05-01

    Hydrogen sulfide (H2S) takes part in a diverse range of intracellular pathways and hss physical and pathological properties in vitro and in vivo. However, the effects of H2S on cancer are controversial and remain unclear. The present study investigates the effects of H2S on liver cancer progression via activating NF-κB pathway in PLC/PRF/5 hepatoma cells. PLC/PRF/5 hepatoma cells were pretreated with 500 µmol/l NaHS (a donor of H2S) for 24 h. The expression levels of CSE, CBS, phosphosphorylate (p)-NF-κB p65, caspase-3, COX-2, p-IκB and MMP-2 were measured by western blot assay. Cell viability was detected by cell counter kit 8 (CCK-8). Apoptotic cells were observed by Hoechst 33258 staining assay. The production level of H2S in cell culture medium was measured by using the sulfur-sensitive electrode method. The production of vascular endothelial growth factor (VEGF) was tested by enzyme-linked immunosorbent assay (ELISA). Our results showed that the production of H2S was dramatically increased in the PLC/PRF/5 hepatoma cells, compared with human LO2 hepatocyte cells group, along with the overexpression levels of CSE and CBS. Treatment of PLC/PRF/5 hepatoma cells with 500 µmol/l NaHS (a donor of H2S) for 24 h markedly increased the expression levels of CSE, CBS, p-IκB and NF-κB activation, leading to COX-2 and MMP-2 overexpression, and decreased caspase-3 production, as well as increased cell viability and decreased number of apoptotic cells. Otherwise, the production level of H2S and VEGF were also significantly increased. Furthermore, co-treatment of PLC/PRF/5 hepatoma cells with 500 µmol/l NaHS and 200 µmol/l PDTC for 24 h significantly overturned these indexes. The findings of the present study provide evidence that the NF-κB is involved in the NaHS-induced cell proliferation, anti-apoptisis, angiogenesis, and migration in PLC/PRF/5 hepatoma cells, and that the PDTC against the NaHS-induced effects were by inhibition of the NF-κB pathway.

  7. Diazoxide promotes oligodendrocyte precursor cell proliferation and myelination.

    Directory of Open Access Journals (Sweden)

    Birgit Fogal

    Full Text Available BACKGROUND: Several clinical conditions are associated with white matter injury, including periventricular white matter injury (PWMI, which is a form of brain injury sustained by preterm infants. It has been suggested that white matter injury in this condition is due to altered oligodendrocyte (OL development or death, resulting in OL loss and hypomyelination. At present drugs are not available that stimulate OL proliferation and promote myelination. Evidence suggests that depolarizing stimuli reduces OL proliferation and differentiation, whereas agents that hyperpolarize OLs stimulate OL proliferation and differentiation. Considering that the drug diazoxide activates K(ATP channels to hyperpolarize cells, we tested if this compound could influence OL proliferation and myelination. METHODOLOGY/FINDINGS: Studies were performed using rat oligodendrocyte precursor cell (OPC cultures, cerebellar slice cultures, and an in vivo model of PWMI in which newborn mice were exposed to chronic sublethal hypoxia (10% O(2. We found that K(ATP channel components Kir 6.1 and 6.2 and SUR2 were expressed in oligodendrocytes. Additionally, diazoxide potently stimulated OPC proliferation, as did other K(ATP activators. Diazoxide also stimulated myelination in cerebellar slice cultures. We also found that diazoxide prevented hypomyelination and ventriculomegaly following chronic sublethal hypoxia. CONCLUSIONS: These results identify KATP channel components in OLs and show that diazoxide can stimulate OL proliferation in vitro. Importantly we find that diazoxide can promote myelination in vivo and prevent hypoxia-induced PWMI.

  8. The influence of galvanic currents and voltage on the proliferation activity of lymphocytes and expression of cell surface molecules.

    Science.gov (United States)

    Podzimek, S; Hána, K; Miksovský, M; Pousek, L; Matucha, P; Meloun, M; Procházková, J

    2008-01-01

    Release of metal ions from dental metal fillings supported by galvanism can cause local or general pathological problems in sensitive and genetically susceptible individuals. We aimed to investigate in vitro lymphocyte responses and expression of surface molecules influenced by galvanic currents and voltage. Human peripheral blood lymphocytes were influenced by galvanic currents and voltages and lymphocyte proliferation was measured. Control samples were not exposed to the influence of galvanism. We also studied the expression of surface molecules by the FACS analysis. A 15-h and shorter influence of almost all tested currents and voltages caused a significant decrease in lymphocyte proliferation and the 15-h influence of 20 microA currents significantly increased expression of surface molecules CD 19, 11a/18, 19/69 and 19/95. An influence of 10 and 3 microA currents led to a significant decrease in the expression of surface molecules CD 3, 11a/18, 3/69 and 3/95 and to a significant increase in CD 19 expression. An 80 mV voltage influence led to a significant decrease in the expression of surface molecules CD 3, 11a/18, 3/69, 3/95, 19/69 and 19/95, and 200 and 300 mV voltages significantly decreased the expression of surface molecules CD 3, 19, 11a/18, 3/95 and 19/95 and significantly increased CD 19/69 expression. A long-lasting influence of galvanism can, in sensitive and genetically susceptible individuals, influence lymphocyte proliferation and surface molecule expression. The threshold for pathological values of 5 microA for galvanic currents and 100 mV for galvanic voltage was confirmed.

  9. Overexpression of integrin αv facilitates proliferation and invasion of oral squamous cell carcinoma cells via MEK/ERK signaling pathway that is activated by interaction of integrin αvβ8 with type Ⅰ collagen.

    Science.gov (United States)

    Hayashido, Yasutaka; Kitano, Hisataka; Sakaue, Taishi; Fujii, Takahiko; Suematsu, Mirei; Sakurai, Shigeru; Okamoto, Tetsuji

    2014-11-01

    To examine the role of integrin αv subunit in the progression of squamous cell carcinoma (SCC), oral SCC cells were stably transfected with integrin αv cDNA. Integrin αv transfectants exhibited the enhancement of proliferation on type Ⅰ collagen, and seemed to have a high ability to invade type Ⅰ collagen gel. Overexpression of integrin αv led to rapid phosphorylation of focal adhesion kinase (FAK), mitogen‑activated protein kinase kinase 1/2 (MEK1/2) and extracellular signal‑regulated kinase 1/2 (ERK1/2) in SCC cells on type Ⅰ collagen. The downregulation of integrin β8 in integrin αv transfectants by its specific antisense oligonucleotide led to a decrease in type Ⅰ collagen‑stimulated activation of FAK and the MEK/ERK signaling pathway, and also suppressed the proliferation on type Ⅰ collagen and the invasiveness into type Ⅰ collagen gel. Moreover, the expression of integrin β8 was induced following transfection with integrin αv cDNA. These results indicated that the overexpression of integrin αv induces integrin αvβ8 heterodimer formation and the binding of integrin αvβ8 to type Ⅰ collagen might enhance the proliferation and invasion of SCC cells via the activation of the MEK/ERK signaling pathway.

  10. Eicosapentaenoic acid increases cytochrome P-450 2J2 gene expression and epoxyeicosatrienoic acid production via peroxisome proliferator-activated receptor γ in endothelial cells.

    Science.gov (United States)

    Wang, Dahai; Hirase, Tetsuaki; Nitto, Takeaki; Soma, Masaaki; Node, Koichi

    2009-12-01

    ω-3 fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), have beneficial effects on cardiovascular diseases. Cytochrome P-450 (CYP) 2J2 that is expressed in endothelial cells metabolizes arachidonic acids to biologically active epoxyeicosatrienoic acids (EETs) that possess anti-inflammatory and anti-thrombotic effects. We studied the effects of EPA and DHA on the expression of CYP 2J2 mRNA by reverse transcription-polymerase chain reaction in cultured human umbilical vein endothelial cells and found that EPA, but not DHA, increased the expression of CYP 2J2 mRNA in a dose-dependent and a time-dependent manner. EPA-induced CYP 2J2 expression was significantly inhibited by pretreatment with a peroxisome proliferator-activated receptor (PPAR) γ antagonist, GW9662. EPA, but not DHA, caused a significant increase in cellular levels of 11,12-dihydroxyeicosatrienoic acid that is a stable metabolite of 11,12-EET, which was blocked by pretreatment with GW9662. These data demonstrate that EPA increases CYP 2J2 mRNA expression and 11,12-EET production via PPARγ in endothelial cells and indicate a novel protective role of EPA and PPARγ against vascular inflammation.

  11. Histamine inhibits adrenocortical cell proliferation but does not affect steroidogenesis.

    Science.gov (United States)

    Pagotto, Romina Maria; Pereyra, Elba Nora; Monzón, Casandra; Mondillo, Carolina; Pignataro, Omar Pedro

    2014-04-01

    Histamine (HA) is a neurotransmitter synthesized in most mammalian tissues exclusively by histidine decarboxylase enzyme. Among the plethora of actions mediated by HA, the modulatory effects on steroidogenesis and proliferation in Leydig cells (LCs) have been described recently. To determine whether the effects on LCs reported could be extrapolated to all steroidogenic systems, in this study, we assessed the effect of this amine on adrenal proliferation and steroidogenesis, using two adrenocortical cell lines as experimental models, murine Y1 cells and human NCI-H295R cells. Even when steroidogenesis was not modified by HA in adrenocortical cells, the biogenic amine inhibited the proliferation of H295R cells. This action was mediated by the activation of HRH1 subtype and an increase in the production of inositol phosphates as second messengers, causing cell-cycle arrest in the G2/M phase. These results indicate a new role for HA in the proliferation of human adrenocortical cells that could contribute to a better understanding of tumor pathology as well as to the development of new therapeutic agents.

  12. Ginsenosides stimulated the proliferation of mouse spermatogonia involving activation of protein kinase C

    Institute of Scientific and Technical Information of China (English)

    Da-lei ZHANG; Kai-ming WANG; Cai-qiao ZHANG

    2009-01-01

    The effect of ginsenosides on proliferation of type A spermatogonia was investigated in 7-day-old mice.Spermatogonia were characterized by c-kit expression and cell proliferation was assessed by immunocytochemical demonstration of proliferating cell nuclear antigen (PCNA).After 72-h culture,Sertoli cells formed a confluent monolayer to which numerous spermatogonial colonies attached.Spermatogonia were positive for c-kit staining and showed high proliferating activity by PCNA expression.Ginsenosides (1.0~10 μg/ml) significantly stimulated proliferation of spermatogonia.Activation of protein kinase C (PKC) elicited proliferation of spermatogonia at 10-8 to 107 mol/L and the PKC inhibitor H7 inhibited this effect.Likewise,ginsenosides-stimulated spermatogonial proliferation was suppressed by combined treatment of H7.These results indicate that the proliferating effect ofginsenosides on mouse type A spermatogonia might be mediated by a mechanism involving the PKC signal transduction pathway.

  13. Metabolic profiling of hematopoietic stem and progenitor cells during proliferation and differentiation into red blood cells.

    Science.gov (United States)

    Daud, Hasbullah; Browne, Susan; Al-Majmaie, Rasoul; Murphy, William; Al-Rubeai, Mohamed

    2016-01-25

    An understanding of the metabolic profile of cell proliferation and differentiation should support the optimization of culture conditions for hematopoietic stem and progenitor cell (HSPC) proliferation, differentiation, and maturation into red blood cells. We have evaluated the key metabolic parameters during each phase of HSPC culture for red blood cell production in serum-supplemented (SS) and serum-free (SF) conditions. A simultaneous decrease in growth rate, total protein content, cell size, and the percentage of cells in the S/G2 phase of cell cycle, as well as an increase in the percentage of cells with a CD71(-)/GpA(+) surface marker profile, indicates HSPC differentiation into red blood cells. Compared with proliferating HSPCs, differentiating HSPCs showed significantly lower glucose and glutamine consumption rates, lactate and ammonia production rates, and amino acid consumption and production rates in both SS and SF conditions. Furthermore, extracellular acidification was associated with late proliferation phase, suggesting a reduced cellular metabolic rate during the transition from proliferation to differentiation. Under both SS and SF conditions, cells demonstrated a high metabolic rate with a mixed metabolism of both glycolysis and oxidative phosphorylation (OXPHOS) in early and late proliferation, an increased dependence on OXPHOS activity during differentiation, and a shift to glycolytic metabolism only during maturation phase. These changes indicate that cell metabolism may have an important impact on the ability of HSPCs to proliferate and differentiate into red blood cells.

  14. Ras-activated RSK1 phosphorylates EBP50 to regulate its nuclear localization and promote cell proliferation.

    Science.gov (United States)

    Lim, Hooi Cheng; Jou, Tzuu-Shuh

    2016-03-01

    Differential subcellular localization of EBP50 leads to its controversial role in cancer biology either as a tumor suppressor when it resides at the membrane periphery, or a tumor facilitator at the nucleus. However, the mechanism behind nuclear localization of EBP50 remains unclear. A RNA interference screening identified the downstream effector of the Ras-ERK cascade, RSK1, as the molecule unique for nuclear transport of EBP50. RSK1 binds to EBP50 and phosphorylates it at a conserved threonine residue at position 156 (T156) under the regulation of growth factor. Mutagenesis experiments confirmed the significance of T156 residue in nuclear localization of EBP50, cellular proliferation, and oncogenic transformation. Our study sheds light on a possible therapeutic strategy targeting at this aberrant nuclear expression of EBP50 without affecting the normal physiological function of EBP50 at other subcellular localization.

  15. Stimulation of murine stem cell proliferation by circulating activities produced during the recovery of a radiation-induced hematopoietic injury. Estimulacion proliferativa de celulas madre hematopoyeticas de raton por actividades circulantes producidas durante la recuperacion de un dano hematopoyetico radioinducido

    Energy Technology Data Exchange (ETDEWEB)

    Grande Azanedo, M.T.

    1989-02-01

    The proliferative activity of CFU-S, low in normal steady state, increases after treatment with different aggressors, i.e., radiation. This stimulation has been attributed in part to a local regulation system of stem cell proliferation, and at least in part to a humoral regulatory system. In the present work it has been investigated the role that circulating activities have in the CFU-S stimulation, by means of in vitro and in vivo incubation assays with diffusion chambers. The results show that bone marrow of mice irradiated with 5 Gy produces in vitro diffusible activities capable of stimulating the CFU-S proliferation. As well with this same dose circulating activities are also produced in vivo. In addition we have observed that these activities are only released during the periods of active hematopoietic regeneration that follow irradiation with moderate doses (1.5 and 5 Gy). In another set of experiments we saw that the stimulating activities are also detected in serum of mice irradiated with 5 Gy. These serum activities modify the proliferative state of very primitive precursors (12 d CFU-S). When the serum activities are added to long term bone marrow cultures the CFU-S are also stimulated to proliferate. Finally, we observed that the radiation-induced serum activities stimulate the proliferation of bone marrow CFU-S when injected into normal mice, suggesting that such activities are involved in the regulation of CFU-S proliferation.

  16. Tumor necrosis factor alpha promotes the proliferation of human nucleus pulposus cells via nuclear factor-κB, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinase.

    Science.gov (United States)

    Wang, Xiao-Hu; Hong, Xin; Zhu, Lei; Wang, Yun-Tao; Bao, Jun-Ping; Liu, Lei; Wang, Feng; Wu, Xiao-Tao

    2015-04-01

    Although tumor necrosis factor alpha (TNF-α) is known to play a critical role in intervertebral disc (IVD) degeneration, the effect of TNF-α on nucleus pulposus (NP) cells has not yet been elucidated. The aim of this study was to explore the effect of TNF-α on proliferation of human NP cells. NP cells were treated with different concentrations of TNF-α. Cell proliferation was determined by cell counting kit-8 (CCK-8) analysis and Ki67 immunofluorescence staining, and expression of cyclin B1 was studied by quantitative real-time RT-PCR. Cell cycle was measured by flow cytometry and cell apoptosis was analyzed using an Annexin V-fluorescein isothiocyanate (FITC) & propidium iodide (PI) apoptosis detection kit. To identify the mechanism by which TNF-α induced proliferation of NP cells, selective inhibitors of major signaling pathways were used and Western blotting was carried out. Treatment with TNF-α increased cell viability (as determined by CCK-8 analysis) and expression of cyclin B1 and the number of Ki67-positive and S-phase NP cells, indicating enhancement of proliferation. Consistent with this, NP cell apoptosis was suppressed by TNF-α treatment. Moreover, inhibition of NF-κB, c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) blocked TNF-α-stimulated proliferation of NP cells. In conclusion, the current findings suggest that the effect of TNF-α on IVD degeneration involves promotion of the proliferation of human NP cells via the NF-κB, JNK, and p38 MAPK pathways.

  17. Menin represses tumorigenesis via repressing cell proliferation

    OpenAIRE

    Wu, Ting; Hua, Xianxin

    2011-01-01

    Multiple endocrine neoplasia type 1 (MEN1) results from mutations in the tumor suppressor gene, MEN1, which encodes nuclear protein menin. Menin is important for suppressing tumorigenesis in various endocrine and certain non-endocrine tissues. Although menin suppresses MEN1 through a variety of mechanisms including regulating apoptosis and DNA repair, the role of menin in regulating cell proliferation is one of the best-studied functions. Here, we focus on reviewing various mechanisms underly...

  18. Cyclin C stimulates β-cell proliferation in rat and human pancreatic β-cells

    OpenAIRE

    2015-01-01

    Activation of pancreatic β-cell proliferation has been proposed as an approach to replace reduced functional β-cell mass in diabetes. Quiescent fibroblasts exit from G0 (quiescence) to G1 through pRb phosphorylation mediated by cyclin C/cdk3 complexes. Overexpression of cyclin D1, D2, D3, or cyclin E induces pancreatic β-cell proliferation. We hypothesized that cyclin C overexpression would induce β-cell proliferation through G0 exit, thus being a potential therapeutic target to recover funct...

  19. Tetraspanin CD9 modulates human lymphoma cellular proliferation via histone deacetylase activity

    Energy Technology Data Exchange (ETDEWEB)

    Herr, Michael J. [Vascular Biology Center of Excellence, The University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Department of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Department of Molecular Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Department of Surgery, The University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Longhurst, Celia M.; Baker, Benjamin [Vascular Biology Center of Excellence, The University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Homayouni, Ramin [Department of Biology, Bioinformatics Program, University of Memphis, Memphis, TN 38152 (United States); Speich, Henry E.; Kotha, Jayaprakash [Vascular Biology Center of Excellence, The University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Jennings, Lisa K., E-mail: ljennings@uthsc.edu [Vascular Biology Center of Excellence, The University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Department of Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Department of Molecular Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Department of Surgery, The University of Tennessee Health Science Center, Memphis, TN 38163 (United States); Department of Biology, Bioinformatics Program, University of Memphis, Memphis, TN 38152 (United States)

    2014-05-16

    Highlights: • CD9 is differentially expressed in human Burkitt’s lymphoma cells. • We found that CD9 expression promotes these cells proliferation. • CD9 expression also increases HDAC activity. • HDAC inhibition decreased both cell proliferation and importantly CD9 expression. • CD9 may dictate HDAC efficacy and play a role in HDAC regulation. - Abstract: Non-Hodgkin Lymphoma (NHL) is a type of hematological malignancy that affects two percent of the overall population in the United States. Tetraspanin CD9 is a cell surface protein that has been thoroughly demonstrated to be a molecular facilitator of cellular phenotype. CD9 expression varies in two human lymphoma cell lines, Raji and BJAB. In this report, we investigated the functional relationship between CD9 and cell proliferation regulated by histone deacetylase (HDAC) activity in these two cell lines. Introduction of CD9 expression in Raji cells resulted in significantly increased cell proliferation and HDAC activity compared to Mock transfected Raji cells. The increase in CD9–Raji cell proliferation was significantly inhibited by HDAC inhibitor (HDACi) treatment. Pretreatment of BJAB cells with HDAC inhibitors resulted in a significant decrease in endogenous CD9 mRNA and cell surface expression. BJAB cells also displayed decreased cell proliferation after HDACi treatment. These results suggest a significant relationship between CD9 expression and cell proliferation in human lymphoma cells that may be modulated by HDAC activity.

  20. Isorhamnetin inhibits cell proliferation and induces apoptosis in breast cancer via Akt and mitogen‑activated protein kinase kinase signaling pathways.

    Science.gov (United States)

    Hu, Shan; Huang, Liming; Meng, Liwei; Sun, He; Zhang, Wei; Xu, Yingchun

    2015-11-01

    Breast cancer is the most common cause of female cancer-associated mortality. Although treatment options, including chemotherapy, radiotherapy and surgery have led to a decline in the mortality rates associated with breast cancer, drug resistance remains one of the predominant causes for poor prognosis and high recurrence rates. The present study investigated the potential effects of the natural product, isorhamnetin on breast cancer, and examined the effects of isorhamnetin on the Akt/mammalian target of rapamycin (mTOR) and the mitogen-activated protein kinase (MAPK)/MAPK kinase (MEK) signaling cascades, which are two important signaling pathways for endocrine therapy resistance in breast cancer. The results of the present study indicate that isorhamnetin inhibits cell proliferation and induces cell apoptosis. In addition, isorhamnetin was observed to inhibit the Akt/mTOR and the MEK/extracellular signal-regulated kinase phosphorylation cascades. The inhibition of these two signaling pathways was attenuated by the two Akt and MEK1 inhibitors, but not by the nuclear factor-κB inhibitor. Furthermore, epidermal growth factor inhibited the effects of isorhamnetin via activation of the Akt and MEK signaling pathways. These results indicate that isorhamnetin exhibits antitumor effects in breast cancer, which are mediated by the Akt and MEK signaling pathways.

  1. Signal peptide peptidase-mediated nuclear localization of heme oxygenase-1 promotes cancer cell proliferation and invasion independent of its enzymatic activity.

    Science.gov (United States)

    Hsu, F-F; Yeh, C-T; Sun, Y-J; Chiang, M-T; Lan, W-M; Li, F-A; Lee, W-H; Chau, L-Y

    2015-04-30

    Heme oxygenase-1 (HO-1) is a heme-degrading enzyme anchored in the endoplasmic reticulum by a carboxyl-terminal transmembrane segment (TMS). HO-1 is highly expressed in various cancers and its nuclear localization is associated with the progression of some cancers. Nevertheless, the mechanism underlying HO-1 nuclear translocation and its pathological significance remain elusive. Here we show that the signal peptide peptidase (SPP) catalyzes the intramembrane cleavage of HO-1. Coexpression of HO-1 with wild-type SPP, but not a dominant-negative SPP, promoted the nuclear localization of HO-1 in cells. Mass spectrometry analysis of cytosolic HO-1 isolated from HeLa cells overexpressing HO-1 and SPP revealed two adjacent intramembrane cleavage sites located after S275 and F276 within the TMS. Mutations of S275F276 to A275L276 significantly hindered SPP-mediated HO-1 cleavage and nuclear localization. Nuclear HO-1 was detected in A549 and DU145 cancer cell lines expressing high levels of endogenous HO-1 and SPP. SPP knockdown or inhibition significantly reduced nuclear HO-1 localization in A549 and DU145 cells. The positive nuclear HO-1 stain was also evident in lung cancer tissues expressing high levels of HO-1 and SPP. Overexpression of a truncated HO-1 (t-HO-1) lacking the TMS in HeLa and H1299 cells promoted cell proliferation and migration/invasion. The effect of t-HO-1 was not affected by a mutation in the catalytic site. However, blockade of t-HO-1 nuclear localization abolished t-HO-1-mediated effect. The tumorigenic effect of t-HO-1 was also demonstrated in the mouse model. These findings disclose that SPP-mediated intramembrane cleavage of HO-1 promotes HO-1 nuclear localization and cancer progression independent of HO-1 enzymatic activity.

  2. GLUL Promotes Cell Proliferation in Breast Cancer.

    Science.gov (United States)

    Wang, Yanyan; Fan, Shaohua; Lu, Jun; Zhang, Zifeng; Wu, Dongmei; Wu, Zhiyong; Zheng, Yuanlin

    2016-10-28

    Glutamate-ammonia ligase (GLUL) belongs to the glutamine synthetase family. It catalyzes the synthesis of glutamine from glutamate and ammonia in an ATP-dependent reaction. Here, we found higher expression of GLUL in the breast cancer patients was associated with larger tumor size and higher level of HER2 expression. In addition, GLUL was heterogeneously expressed in various breast cancer cells. The mRNA and protein expression levels of GLUL in SK-BR-3 cells were obviously higher than that in the other types of breast cancer cells. Results showed GLUL knockdown in SK-BR-3 cells could significantly decrease the proliferation ability. Furthermore, GLUL knockdown markedly inhibited the p38 MAPK and ERK1/ERK2 signaling pathways in SK-BR-3 cells. Thus, GLUL may represent a novel target for selectively inhibiting p38 MAPK and ERK1/ERK2 signaling pathways and the proliferation potential of breast cancer cells. This article is protected by copyright. All rights reserved.

  3. Fucans, sulfated polysaccharides extracted from brown seaweeds, inhibit vascular smooth muscle cell proliferation. I. Comparison with heparin for antiproliferative activity, binding and internalization.

    Science.gov (United States)

    Logeart, D; Prigent-Richard, S; Jozefonvicz, J; Letourneur, D

    1997-12-01

    Smooth muscle cell (SMC) proliferation is inhibited both in vivo and in vitro by heparin. However, the precise mechanisms of action are still not understood. The analogy between two sulfated polysaccharides, heparin and fucan, has led us to compare in detail their effects on SMC growth. We have prepared and characterized a 19 kDa fucan fraction from brown seaweed, Ascophyllum nodosum. Fucan affects the growth of SMCs in a time- and dose-dependent, reversible and non-toxic fashion. As determined by cell counting, [3H]thymidine incorporation, and microcytofluorimetry analysis, heparin was less active than fucan in inhibiting SMC growth. Fucan and heparin act by preferential blocking of G0/G1, thus decreasing the G0/S transition. Binding experiments with [125I]fucan indicated saturable, unlabeled-fucan displaceable binding sites with an apparent Kd of 30 nM. Moreover, displacement experiments performed with various polysaccharides revealed that antiproliferative compounds interacted with these membrane sites, but non-antiproliferative polysaccharides (dextran, chondroitin sulfate) did not, providing evidence of a correlation between binding to SMCs and their antiproliferative activity. When cells were exposed at 37 degrees C to a fluorescent 5-([4,6-dichlorotriazin-2-yl]-amino)fluorescein (DTAF)-fucan, internalization occurred and punctate vesicles were observed which accumulated rapidly in the perinuclear region as previously reported for heparin. Nuclear preparations (membranes + contents) of cultured SMCs previously incubated with radiolabeled heparin or fucan indicated the presence of radioactivity, suggesting an antiproliferative action of both polysaccharides at the nuclear level. Collectively, these observations indicated that fucan and heparin share some similar mechanisms of action, such as SMC growth inhibition, binding, and internalization. In the accompanying paper (Logeart et al., Eur. J. Cell Biol. 74, 1997, this issue), we describe the effect of fucans

  4. IFN-γ promotes muscle damage in the mdx mouse model of Duchenne muscular dystrophy by suppressing M2 macrophage activation and inhibiting muscle cell proliferation.

    Science.gov (United States)

    Villalta, S Armando; Deng, Bo; Rinaldi, Chiara; Wehling-Henricks, Michelle; Tidball, James G

    2011-11-15

    Duchenne muscular dystrophy is a degenerative disorder that leads to death by the third decade of life. Previous investigations have shown that macrophages that invade dystrophic muscle are a heterogeneous population consisting of M1 and M2 macrophages that promote injury and repair, respectively. In the present investigation, we tested whether IFN-γ worsens the severity of mdx dystrophy by activating macrophages to a cytolytic M1 phenotype and by suppressing the activation of proregenerative macrophages to an M2 phenotype. IFN-γ is a strong inducer of the M1 phenotype and is elevated in mdx dystrophy. Contrary to our expectations, null mutation of IFN-γ caused no reduction of cytotoxicity of macrophages isolated from mdx muscle and did not reduce muscle fiber damage in vivo or improve gross motor function of mdx mice at the early, acute peak of pathology. In contrast, ablation of IFN-γ reduced muscle damage in vivo during the regenerative stage of the disease and increased activation of the M2 phenotype and improved motor function of mdx mice at that later stage of the disease. IFN-γ also inhibited muscle cell proliferation and differentiation in vitro, and IFN-γ mutation increased MyoD expression in mdx muscle in vivo, showing that IFN-γ can have direct effects on muscle cells that could impair repair. Taken together, the findings show that suppression of IFN-γ signaling in muscular dystrophy reduces muscle damage and improves motor performance by promoting the M2 macrophage phenotype and by direct actions on muscle cells.

  5. MicroRNA-500 sustains nuclear factor-κB activation and induces gastric cancer cell proliferation and resistance to apoptosis

    Science.gov (United States)

    Yuan, Zhongyu; Liu, Junling; Sun, Jian; Lei, Fangyong; Wu, Shu; Li, Su; Zhang, Dongsheng

    2015-01-01

    Ubiquitin deconjugation of key signalling molecules by deubiquitinases (DUBs) such as cylindromatosis (CYLD), A20, and OTU deubiquitinase 7B (OTUD7B) has emerged as an important regulatory mechanism in the downregulation of NF-κB signalling and homeostasis. However, how these serial negative regulations are simultaneously disrupted to result in constitutive activation of NF-κB signalling in cancers remains puzzling. Here, we report that the miR-500 directly repressed the expression of CYLD, OTUD7B, and the A20 complex component Tax1-binding protein 1 (TAX1BP1), leading to ubiquitin conjugation of receptor-interacting protein 1 (RIP1) and sustained NF-ĸB activation. Furthermore, we found that miR-500 promoted gastric cancer cell proliferation, survival, and tumorigenicity. Importantly, miR-500 was upregulated in gastric cancer and was highly correlated with malignant progression and poor survival. Hence, we report the uncovering of a novel mechanism for constitutive NF-κB activation, indicating the potentially pivotal role of miR-500 in the progression of gastric cancer. PMID:25595906

  6. A sharp T-cell antigen receptor signaling threshold for T-cell proliferation

    OpenAIRE

    Au-Yeung, Byron B.; Zikherman, Julie; James L. Mueller; Ashouri, Judith F.; Matloubian, Mehrdad; Cheng, Debra A.; Chen, Yiling; Shokat, Kevan M; Weiss, Arthur

    2014-01-01

    Biochemical signals triggered by the T-cell receptor (TCR) are required for stimulating T cells and can be initiated within seconds. However, a hallmark of T-cell activation, cell division, occurs hours after TCR signaling has begun, implying that T cells require a minimum duration and/or accumulate TCR signaling events to drive proliferation. To visualize the accumulated signaling experienced by T cells, we used a fluorescent reporter gene that is activated by TCR stimulation. This technique...

  7. 高糖对HUVEC功能的影响及机制研究%Effect of glucose on human umbilical vein endothelial cells activity and proliferation

    Institute of Scientific and Technical Information of China (English)

    王秀华; 方春钱; 吴晨光; 王丽

    2011-01-01

    Objective To investigate the effect of glucose on human umbilical vein endothelial cells (HUVECs). Methods HUVECs were cultured in vitro with endothelial cell medium. Different dose (10, 20, 30, 40,50 mmol/L) of glucose were added to the HUVECs. Effect of glucose on the HUVECs activity and proliferation were determined by NO content,eNOS activity and cell apoptosis a-nalysis. Results Glucose exhibited dose - dependent ihibitory effect on the HUVECs cell prolifera-tive activity. Glucose could inhibit the effect of eNOs activity and the ability of produce NO on the HUVECs, also exhibited dose -dependence. Conclusions Glucose inhibited the activity and the ability of HUVECs, and the mechanism might be related to up -regulating cell apoptosis and ROS.%目的 观察葡萄糖对人脐静脉内皮细胞(HUVECs)活性功能的影响及机制研究.方法 内皮细胞培养液体外培养HUVEC,用不同浓度(10、20、30、40、50mmol/L)的葡萄糖作用于HUVEC,用NO含量、eNOS活性检测、细胞凋亡测定和细胞内ROS检测方法,观察不同浓度葡萄糖作用后的HUVEC功能活性的影响.结果 高糖对HUVEC的增殖活性具有剂量依赖性抑制作用.高糖剂量依赖性抑制HUVEC细胞eNOs活性、NO的产生,增强细胞凋亡和细胞内ROS的生成.结论 葡萄糖对人脐静脉内皮细胞(HUVECs)活性功能具有抑制作用,其机制与增强细胞凋亡和增加细胞内ROS有关.

  8. Prostate progenitor cells proliferate in response to castration

    Directory of Open Access Journals (Sweden)

    Xudong Shi

    2014-07-01

    Full Text Available Androgen-deprivation is a mainstay of therapy for advanced prostate cancer but tumor regression is usually incomplete and temporary because of androgen-independent cells in the tumor. It has been speculated that these tumor cells resemble the stem/progenitor cells of the normal prostate. The purpose of this study was to examine the response of slow-cycling progenitor cells in the adult mouse prostate to castration. Proliferating cells in the E16 urogenital sinus were pulse labeled by BrdU administration or by doxycycline-controlled labeling of the histone-H2B GFP mouse. A small population of labeled epithelial cells in the adult prostate localized at the junction of the prostatic ducts and urethra. Fluorescence-activated cell sorting (FACS showed that GFP label-retaining cells were enriched for cells co-expressing stem cell markers Sca-1, CD133, CD44 and CD117 (4- marker cells; 60-fold enrichment. FACS showed, additionally, that 4-marker cells were androgen receptor positive. Castration induced proliferation and dispersal of E16 labeled cells into more distal ductal segments. When naïve adult mice were administered BrdU daily for 2 weeks after castration, 16% of 4-marker cells exhibited BrdU label in contrast to only 6% of all epithelial cells (P < 0.01. In sham-castrated controls less than 4% of 4-marker cells were BrdU labeled (P < 0.01. The unexpected and admittedly counter-intuitive finding that castration induced progenitor cell proliferation suggests that androgen deprivation therapy in men with advanced prostate cancer could not only exert pleiotrophic effects on tumor sub-populations but may induce inadvertent expansion of tumor stem cells.

  9. Fibrosarcoma versus fibromatoses and cellular nodular fasciitis. A comparative study of their proliferative activity using proliferating cell nuclear antigen, DNA flow cytometry, and p53.

    Science.gov (United States)

    Oshiro, Y; Fukuda, T; Tsuneyoshi, M

    1994-07-01

    We analyzed the proliferative activities, immunoreactivity of the p53 protein, and aneuploidy in patients with benign and malignant fibrous lesions, including 19 with nodular fasciitis (cellular type) (6-88 years old, mean 42.9), 11 with abdominal fibromatoses (22-74 years old, mean 37.9), 13 with extraabdominal fibromatoses (2-38 years old, mean 19.5), and 23 with fibrosarcomas (adult type: 16-71 years old, mean 47.3; infantile type: 3 months to 9 years, mean 2.9) using immunohistochemistry to determine proliferating cell nuclear antigen (PC10) and p53 protein (CM1) as well as performing DNA flow cytometry. The proliferating cell nuclear antigen (PCNA) score was measured as the ratio of PCNA-positive nuclear size/total nuclear size determined by an image analysis computer system. The distribution pattern of the PCNA-positive cells was uneven in each instance of nodular fasciitis, in contrast to the distribution in abdominal fibromatosis, extraabdominal fibromatosis, and fibrosarcoma. Both fibrosarcoma (28.4 +/- 20.0) and nodular fasciitis (33.6 +/- 20.9) exhibited a larger value and a greater variation in the PCNA score than did either abdominal (13.5 +/- 14.5) or extraabdominal fibromatosis (19.9 +/- 21.5). Abdominal fibromatosis exhibited a smaller value and less variation in the score. In short, the PCNA score did not correlate with the malignant potential. The proliferative index (S + G2 + M fraction) in fibrosarcoma was significantly higher than in either nodular fasciitis or abdominal fibromatosis. Aneuploidy was detected in five cases (26%) of fibrosarcoma, while six (26%) fibrosarcomas showed p53 positivity. Furthermore, p53-positive patients had a worse survival (0.01 < p < 0.05), and p53 positivity correlated with the proliferative index (p < 0.01). In conclusion, the PCNA score simply indicates the proliferative activity independent of malignant potential. On the other hand, p53 positivity, proliferative index, and aneuploidy are all indicators of

  10. A peroxisome proliferator-activated receptor ligand MCC-555 imparts anti-proliferative response in pancreatic cancer cells by PPARgamma-independent up-regulation of KLF4

    Energy Technology Data Exchange (ETDEWEB)

    Min, Kyung-Won [Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996 (United States); Zhang, Xiaobo [Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996 (United States); College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi, 712100 (China); Imchen, Temjenmongla [Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996 (United States); Baek, Seung Joon, E-mail: sbaek2@utk.edu [Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996 (United States)

    2012-09-01

    MCC-555 is a novel PPARα/γ dual ligand of the thiazolidinedione class and was recently developed as an anti-diabetic drug with unique properties. MCC-555 also has anti-proliferative activity through growth inhibition and apoptosis induction in several cancer cell types. Our group has shown that MCC-555 targets several proteins in colorectal tumorigenesis including nonsteroidal anti-inflammatory drug (NSAID)-activated gene (NAG-1) which plays an important role in chemoprevention responsible for chemopreventive compounds. NAG-1 is a member of the TGF-β superfamily and is involved in tumor progression and development; however, NAG-1's roles in pancreatic cancer have not been studied. In this report, we found that MCC-555 alters not only NAG-1 expression, but also p21 and cyclin D1 expression. NAG-1 and p21 expression was not blocked by PPARγ-specific antagonist GW9662, suggesting that MCC-555-induced NAG-1 and p21 expression is independent of PPARγ activation. However, decreasing cyclin D1 by MCC-555 seems to be affected by PPARγ activation. Further, we found that the GC box located in the NAG-1 promoter play an important role in NAG-1 transactivation by MCC-555. Subsequently, we screened several transcription factors that may bind to the GC box region in the NAG-1 promoter and found that KLF4 potentially binds to this region. Expression of KLF4 precedes NAG-1 and p21 expression in the presence of MCC-555, whereas blocking KLF4 expression using specific KLF4 siRNA showed that both NAG-1 and p21 expression by MCC-555 was blocked. In conclusion, MCC-555's actions on anti-proliferation involve both PPARγ-dependent and -independent pathways, thereby enhancing anti-tumorigenesis in pancreatic cancer cells. -- Highlights: ► PPARα/γ ligand MCC-555 exhibits anti-proliferative activity in pancreatic cancer cells. ► MCC-555 affects KLF4 expression following by NAG-1 and p21 expression in a PPARγ independent manner. ► MCC-555 also affects cyclin D1 down

  11. Novel factors modulating human β-cell proliferation.

    Science.gov (United States)

    Shirakawa, J; Kulkarni, R N

    2016-09-01

    β-Cell dysfunction in type 1 and type 2 diabetes is accompanied by a progressive loss of β-cells, and an understanding of the cellular mechanism(s) that regulate β-cell mass will enable approaches to enhance hormone secretion. It is becoming increasingly recognized that enhancement of human β-cell proliferation is one potential approach to restore β-cell mass to prevent and/or cure type 1 and type 2 diabetes. While several reports describe the factor(s) that enhance β-cell replication in animal models or cell lines, promoting effective human β-cell proliferation continues to be a challenge in the field. In this review, we discuss recent studies reporting successful human β-cell proliferation including WS6, an IkB kinase and EBP1 inhibitor; harmine and 5-IT, both DYRK1A inhibitors; GNF7156 and GNF4877, GSK-3β and DYRK1A inhibitors; osteoprotegrin and Denosmab, receptor activator of NF-kB (RANK) inhibitors; and SerpinB1, a protease inhibitor. These studies provide important examples of proteins and pathways that may prove useful for designing therapeutic strategies to counter the different forms of human diabetes.

  12. Bezafibrate enhances proliferation and differentiation of osteoblastic MC3T3-E1 cells via AMPK and eNOS activation

    Institute of Scientific and Technical Information of China (English)

    Xing ZHONG; Ling-ling XIU; Guo-hong WEI; Yuan-yuan LIU; Lei SU; Xiao-pei CAO; Yan-bing LI; Hai-peng XIAO

    2011-01-01

    Aim: To investigate the effects of bezafibrate on the proliferation and differentiation of osteoblastic MC3T3-E1 cells, and to determine the signaling pathway underlying the effects.Methods: MC3T3-E1 cells, a mouse osteoblastic cell line, were used. Cell viability and proliferation were examined using MTT assay and colorimetric BrdU incorporation assay, respectively. NO production was evaluated using the Griess reagent. The mRNA expression of ALP, collagen I, osteocalcin, BMP-2, and Runx-2 was measured using real-time PCR. Western blot analysis was used to detect the expression of AMPK and eNOS proteins.Results: Bezafibrate increased the viability and proliferation of MC3T3-E1 cells in a dose- and time-dependent manner. Bezafibrate (100 μmol/L) significantly enhanced osteoblastic mineralization and expression of the differentiation markers ALP, collagen I and osteocalcin. Bezaflbrate (100 μmol/L) increased phosphorylation of AMPK and eNOS, which led to an increase of NO production by 4.08-fold, and upregulating BMP-2 and Runx-2 mRNA expression. These effects could be blocked by AMPK inhibitor compound C (5 μmol/L), or the PPARβ inhibitor GSK0660 (0.5 μmol/L), but not by the PPARa inhibitor MK886 (10 μmol/L). Furthermore, GSK0660, compound C, or N-nitro-L-arginine methyl ester hydrochloride (L-NAME, 1 mmol/L) could reverse the stimulatory effects of bezafibrate (100 pmol/L) on osteoblast proliferation and differentiation, whereas MK886 only inhibited bezafibrate-induced osteoblast prolifera-tion.Conclusion: Bezafibrate stimulates proliferation and differentiation of MC3T3-E1 cells, mainly via a PPARβ-dependent mechanism. The drug might be beneficial for osteoporosis by promoting bone formation.

  13. PEROXISOME PROLIFERATOR-ACTIVATED RECEPTORα (PPARα) AGONISTS DIFFERENTIALLY REGULATE INHIBITOR OF DNA BINDING (ID2) EXPRESSION IN RODENTS AND HUMAN CELLS

    Science.gov (United States)

    Abstract Inhibitor of DNA binding (Id2) is a member of the helix-loop-helix (HLH) transcription factor family whose members play important roles in cell differentiation and proliferation. Id2 has been linked to the development of cardiovascular diseases since thiazolidinediones,...

  14. Peroxisome proliferator-activated receptor-γ activation enhances insulin-stimulated glucose disposal by reducing ped/pea-15 gene expression in skeletal muscle cells: evidence for involvement of activator protein-1.

    Science.gov (United States)

    Ungaro, Paola; Mirra, Paola; Oriente, Francesco; Nigro, Cecilia; Ciccarelli, Marco; Vastolo, Viviana; Longo, Michele; Perruolo, Giuseppe; Spinelli, Rosa; Formisano, Pietro; Miele, Claudia; Beguinot, Francesco

    2012-12-14

    The gene network responsible for inflammation-induced insulin resistance remains enigmatic. In this study, we show that, in L6 cells, rosiglitazone- as well as pioglitazone-dependent activation of peroxisome proliferator-activated receptor-γ (PPARγ) represses transcription of the ped/pea-15 gene, whose increased activity impairs glucose tolerance in mice and humans. Rosiglitazone enhanced insulin-induced glucose uptake in L6 cells expressing the endogenous ped/pea-15 gene but not in cells expressing ped/pea-15 under the control of an exogenous promoter. The ability of PPARγ to affect ped/pea-15 expression was also lost in cells and in C57BL/6J transgenic mice expressing ped/pea-15 under the control of an exogenous promoter, suggesting that ped/pea-15 repression may contribute to rosiglitazone action on glucose disposal. Indeed, high fat diet mice showed insulin resistance and increased ped/pea-15 levels, although these effects were reduced by rosiglitazone treatment. Both supershift and ChIP assays revealed the presence of the AP-1 component c-JUN at the PED/PEA-15 promoter upon 12-O-tetradecanoylphorbol-13-acetate stimulation of the cells. In these experiments, rosiglitazone treatment reduced c-JUN presence at the PED/PEA-15 promoter. This effect was not associated with a decrease in c-JUN expression. In addition, c-jun silencing in L6 cells lowered ped/pea-15 expression and caused nonresponsiveness to rosiglitazone, although c-jun overexpression enhanced the binding to the ped/pea-15 promoter and blocked the rosiglitazone effect. These results indicate that PPARγ regulates ped/pea-15 transcription by inhibiting c-JUN binding at the ped/pea-15 promoter. Thus, ped/pea-15 is downstream of a major PPARγ-regulated inflammatory network. Repression of ped/pea-15 transcription might contribute to the PPARγ regulation of muscle sensitivity to insulin.

  15. Inhibition of ALK enzymatic activity in T-cell lymphoma cells induces apoptosis and suppresses proliferation and STAT3 phosphorylation independently of Jak3

    DEFF Research Database (Denmark)

    Marzec, Michal; Kasprzycka, Monika; Ptasznik, Andrzej;

    2005-01-01

    Aberrant expression of the ALK tyrosine kinase as a chimeric protein with nucleophosmin (NPM) and other partners plays a key role in malignant cell transformation of T-lymphocytes and other cells. Here we report that two small-molecule, structurally related, quinazoline-type compounds, WHI-131...... and WHI-154, directly inhibit enzymatic activity of NPM/ALK as demonstrated by in vitro kinase assays using a synthetic tyrosine-rich oligopeptide and the kinase itself as the substrates. The inhibition of NPM/ALK activity resulted in malignant T cells in suppression of their growth, induction...... of apoptosis and inhibition of tyrosine phosphorylation of STAT3, the key effector of the NPM/ALK-induced oncogenesis. We also show that the STAT3 tyrosine phosphorylation is mediated in the malignant T cells by NPM/ALK independently of Jak3 kinase as evidenced by the presence of STAT3 phosphorylation...

  16. Matrix Stiffness Regulates Endothelial Cell Proliferation through Septin 9

    Science.gov (United States)

    Yeh, Yi-Ting; Hur, Sung Sik; Chang, Joann; Wang, Kuei-Chun; Chiu, Jeng-Jiann; Li, Yi-Shuan; Chien, Shu

    2012-01-01

    Endothelial proliferation, which is an important process in vascular homeostasis, can be regulated by the extracellular microenvironment. In this study we demonstrated that proliferation of endothelial cells (ECs) was enhanced on hydrogels with high stiffness (HSG, 21.5 kPa) in comparison to those with low stiffness (LSG, 1.72 kPa). ECs on HSG showed markedly prominent stress fibers and a higher RhoA activity than ECs on LSG. Blockade of RhoA attenuated stress fiber formation and proliferation of ECs on HSG, but had little effect on ECs on LSG; enhancement of RhoA had opposite effects. The phosphorylations of Src and Vav2, which are positive RhoA upstream effectors, were higher in ECs on HSG. The inhibition of Src/Vav2 attenuated the HSG-mediated RhoA activation and EC proliferation but exhibited nominal effects on ECs on LSG. Septin 9 (SEPT9), the negative upstream effector for RhoA, was significantly higher in ECs on LSG. The inhibition of SEPT9 increased RhoA activation, Src/Vav2 phosphorylations, and EC proliferation on LSG, but showed minor effects on ECs on HSG. We further demonstrated that the inactivation of integrin αvβ3 caused an increase of SEPT9 expression in ECs on HSG to attenuate Src/Vav2 phosphorylations and inhibit RhoA-dependent EC proliferation. These results demonstrate that the SEPT9/Src/Vav2/RhoA pathway constitutes an important molecular mechanism for the mechanical regulation of EC proliferation. PMID:23118862

  17. Matrix stiffness regulates endothelial cell proliferation through septin 9.

    Directory of Open Access Journals (Sweden)

    Yi-Ting Yeh

    Full Text Available Endothelial proliferation, which is an important process in vascular homeostasis, can be regulated by the extracellular microenvironment. In this study we demonstrated that proliferation of endothelial cells (ECs was enhanced on hydrogels with high stiffness (HSG, 21.5 kPa in comparison to those with low stiffness (LSG, 1.72 kPa. ECs on HSG showed markedly prominent stress fibers and a higher RhoA activity than ECs on LSG. Blockade of RhoA attenuated stress fiber formation and proliferation of ECs on HSG, but had little effect on ECs on LSG; enhancement of RhoA had opposite effects. The phosphorylations of Src and Vav2, which are positive RhoA upstream effectors, were higher in ECs on HSG. The inhibition of Src/Vav2 attenuated the HSG-mediated RhoA activation and EC proliferation but exhibited nominal effects on ECs on LSG. Septin 9 (SEPT9, the negative upstream effector for RhoA, was significantly higher in ECs on LSG. The inhibition of SEPT9 increased RhoA activation, Src/Vav2 phosphorylations, and EC proliferation on LSG, but showed minor effects on ECs on HSG. We further demonstrated that the inactivation of integrin α(vβ(3 caused an increase of SEPT9 expression in ECs on HSG to attenuate Src/Vav2 phosphorylations and inhibit RhoA-dependent EC proliferation. These results demonstrate that the SEPT9/Src/Vav2/RhoA pathway constitutes an important molecular mechanism for the mechanical regulation of EC proliferation.

  18. Danhong inhibits oxidized low-density lipoprotein-induced immune maturation of dentritic cells via a peroxisome proliferator activated receptor γ-mediated pathway.

    Science.gov (United States)

    Liu, Hongying; Wang, Shijun; Sun, Aijun; Huang, Dong; Wang, Wei; Zhang, Chunyu; Shi, Dazhuo; Chen, Keji; Zou, Yunzeng; Ge, Junbo

    2012-01-01

    Danhong injection (DHI), a Chinese Materia Medica standardized product extracted from Radix Salviae miltiorrhizae and Flos Carthami tinctorii, is effective in the treatment of atherosclerosis (AS)-related diseases. It is widely recognized that AS is a complex inflammatory disease of the arterial wall and the dendritic cells (DCs) is a major player in the pathogenesis of AS via mediating atherosclerotic antigen presenting and T lymphocytes. Here, we determined the effect and possible mechanism of DHI on oxidized low-density lipoprotein (ox-LDL)-induced maturation and immune function of DCs. Human monocyte-derived DCs were incubated with DHI or ciglitazone and were subsequently stimulated with ox-LDL to induce maturation. Similar to ciglitazone, a peroxisome proliferator activated receptor (PPAR) γ agonist, DHI, could significantly reduce ox-LDL-induced expressions of mature markers, enhance the endocytotic function, and inhibit secretions of cytokine on DCs. These effects of DHI could be partly reversed by silencing the PPARγ. In conclusion, DHI could inhibit ox-LDL-induced maturation of DCs partly through activating a PPARγ-mediated signaling pathway.

  19. The ubiquitin ligase HectH9 regulates transcriptional activation by Myc and is essential for tumor cell proliferation

    DEFF Research Database (Denmark)

    Adhikary, Sovana; Marinoni, Federica; Hock, Andreas

    2005-01-01

    The Myc oncoprotein forms a binary activating complex with its partner protein, Max, and a ternary repressive complex that, in addition to Max, contains the zinc finger protein Miz1. Here we show that the E3 ubiquitin ligase HectH9 ubiquitinates Myc in vivo and in vitro, forming a lysine 63-linke...

  20. Opioid-induced proliferation of vascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Sandra Leo

    2009-05-01

    Full Text Available Sandra Leo1,2, Rony Nuydens1, Theo F Meert11Pain and Neurology, CNS Department, Johnson and Johnson Pharmaceutical Research and Development, a division of Janssen Pharmaceutica N.V, Beerse, Belgium; 2Laboratory of Biological Psychology, University of Leuven, Leuven, BelgiumAbstract: Angiogenesis is an important issue in cancer research and opioids are often used to treat pain in cancer patients. Therefore it is important to know if the use of opioids is associated with an aberrant stimulation of tumor growth triggered by the stimulation of angiogenesis in cancer patients. Some studies in the literature have suggested the presence of the μ3 opioid receptor, known as the receptor for many opioids, on endothelial cells, which are key players in the process of angiogenesis. In this study we used endothelial cells known to express the μ3 opioid receptor (MOR3, to evaluate the effects of morphine on angiogenesis. We first investigated the effect of morphine on the proliferation of endothelial cells. We showed that morphine is able to stimulate vascular endothelial cell proliferation in vitro. This effect of morphine is mediated by the mitogen-activated protein kinase (MAPK pathway as pre-treatment with PD98059 inhibited this excessive proliferation. Because previous studies indicated nitric oxide (NO as a downstream messenger we investigated the role of NO in the aberrant proliferation of endothelial cells. Our data could not confirm these findings using intracellular NO measurements and quantitative fluorescence microscopy. The potential use and pitfalls of opioids in cancer patients is discussed in light of these negative findings. Keywords: endothelial cells, morphine, cell proliferation, MAPK, nitric oxide, μ3 opioid receptor, angiogenesis

  1. Mal/SRF is dispensable for cell proliferation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Barry J Thompson

    Full Text Available The Mal/SRF transcription factor is regulated by the level of G-actin in cells and has important roles in cell migration and other actin-dependent processes in Drosophila. A recent report suggests that Mal/SRF and an upstream regulator, Pico, are required for cell proliferation and tissue growth in Drosophila. I find otherwise. Mutation of Mal or SRF does not affect cell proliferation in the fly wing. Furthermore, I cannot reproduce the reported effects of Pico RNAi or Pico overexpression on body size. Nevertheless, I can confirm that overexpression of Pico or Mal causes tissue overgrowth specifically in the fly wing--where SRF is most highly expressed. My results indicate that Mal/SRF can promote tissue growth when abnormally active, but is not normally required for tissue growth during development.

  2. Cyclin C stimulates β-cell proliferation in rat and human pancreatic β-cells

    Science.gov (United States)

    Jiménez-Palomares, Margarita; López-Acosta, José Francisco; Villa-Pérez, Pablo; Moreno-Amador, José Luis; Muñoz-Barrera, Jennifer; Fernández-Luis, Sara; Heras-Pozas, Blanca; Perdomo, Germán; Bernal-Mizrachi, Ernesto

    2015-01-01

    Activation of pancreatic β-cell proliferation has been proposed as an approach to replace reduced functional β-cell mass in diabetes. Quiescent fibroblasts exit from G0 (quiescence) to G1 through pRb phosphorylation mediated by cyclin C/cdk3 complexes. Overexpression of cyclin D1, D2, D3, or cyclin E induces pancreatic β-cell proliferation. We hypothesized that cyclin C overexpression would induce β-cell proliferation through G0 exit, thus being a potential therapeutic target to recover functional β-cell mass. We used isolated rat and human islets transduced with adenovirus expressing cyclin C. We measured multiple markers of proliferation: [3H]thymidine incorporation, BrdU incorporation and staining, and Ki67 staining. Furthermore, we detected β-cell death by TUNEL, β-cell differentiation by RT-PCR, and β-cell function by glucose-stimulated insulin secretion. Interestingly, we have found that cyclin C increases rat and human β-cell proliferation. This augmented proliferation did not induce β-cell death, dedifferentiation, or dysfunction in rat or human islets. Our results indicate that cyclin C is a potential target for inducing β-cell regeneration. PMID:25564474

  3. Short-Chain Fatty Acids Stimulate Angiopoietin-Like 4 Synthesis in Human Colon Adenocarcinoma Cells by Activating Peroxisome Proliferator-Activated Receptor γ

    DEFF Research Database (Denmark)

    Alex, Sheril; Lange, Katja; Amolo, Tom;

    2013-01-01

    with the notion that fermentation leads to PPAR activation in vivo, feeding mice a diet rich in inulin induced PPAR target genes and pathways in the colon. We conclude that (i) SCFA potently stimulate ANGPTL4 synthesis in human colon adenocarcinoma cells and (ii) SCFA transactivate and bind to PPARγ. Our data...

  4. Plant cell proliferation inside an inorganic host.

    Science.gov (United States)

    Perullini, Mercedes; Rivero, María Mercedes; Jobbágy, Matías; Mentaberry, Alejandro; Bilmes, Sara A

    2007-01-10

    In recent years, much attention has been paid to plant cell culture as a tool for the production of secondary metabolites and the expression of recombinant proteins. Plant cell immobilization offers many advantages for biotechnological processes. However, the most extended matrices employed, such as calcium-alginate, cannot fully protect entrapped cells. Sol-gel chemistry of silicates has emerged as an outstanding strategy to obtain biomaterials in which living cells are truly protected. This field of research is rapidly developing and a large number of bacteria and yeast-entrapping ceramics have already been designed for different applications. But even mild thermal and chemical conditions employed in sol-gel synthesis may result harmful to cells of higher organisms. Here we present a method for the immobilization of plant cells that allows cell growth at cavities created inside a silica matrix. Plant cell proliferation was monitored for a 6-month period, at the end of which plant calli of more than 1 mm in diameter were observed inside the inorganic host. The resulting hybrid device had good mechanical stability and proved to be an effective barrier against biological contamination, suggesting that it could be employed for long-term plant cell entrapment applications.

  5. Interleukin-1 regulates proliferation and differentiation of oligodendrocyte progenitor cells.

    Science.gov (United States)

    Vela, José M; Molina-Holgado, Eduardo; Arévalo-Martín, Angel; Almazán, Guillermina; Guaza, Carmen

    2002-07-01

    Interleukin-1 (IL-1) is a pleiotropic cytokine expressed during normal CNS development and in inflammatory demyelinating diseases, but remarkably little is known about its effect on oligodendroglial cells. In this study we explored the role of IL-1beta in oligodendrocyte progenitors and differentiated oligodendrocytes. The effects of IL-1beta were compared to those of IL-1 receptor antagonist, the specific inhibitor of IL-1 activity, since progenitors and differentiated oligodendrocytes produce IL-1beta and express IL-1 receptors. Unlike other proinflammatory cytokines (TNFalpha and IFNgamma), IL-1beta was not toxic for oligodendrocyte lineage cells. However, this cytokine inhibited proliferation of oligodendrocyte progenitors in the presence of growth factors (PDGF plus bFGF). This was evidenced by a significant decrease in both cells incorporating bromodeoxyuridine (45%) and total cell numbers (57%) after 6 days of treatment. Interestingly, IL-1beta blocked proliferation at the late progenitor/prooligodendrocyte (O4+) stage but did not affect proliferation of early progenitors (A2B5+). Inhibition of proliferation paralleled with promotion of differentiation, as revealed by the increased percentage of R-mab+ cells (6.7-fold). Moreover, when oligodendrocyte progenitors were allowed to differentiate in the absence of growth factors, treatment with IL-1beta promoted maturation to the MBP+ stage (4.2-fold) and survival of differentiating oligodendrocytes (2.1-fold). Regarding intracellular signaling, IL-1beta activated the p38 mitogen-activated protein kinase (MAPK) but not the p42/p44 MAPK and, when combined with growth factors, intensified p38 activation but inhibited the growth-factor-induced p42/p44 activation. IL-1beta also induced a time-dependent inhibition of PFGF-Ralpha gene expression. These results support a role for IL-1beta in promoting mitotic arrest and differentiation of oligodendrocyte progenitors as well as maturation and survival of differentiating

  6. Cell proliferation is necessary for the regeneration of oral structures in the anthozoan cnidarian Nematostella vectensis

    Directory of Open Access Journals (Sweden)

    Passamaneck Yale J

    2012-12-01

    Full Text Available Abstract Background The contribution of cell proliferation to regeneration varies greatly between different metazoan models. Planarians rely on pluripotent neoblasts and amphibian limb regeneration depends upon formation of a proliferative blastema, while regeneration in Hydra can occur in the absence of cell proliferation. Recently, the cnidarian Nematostella vectensis has shown potential as a model for studies of regeneration because of the ability to conduct comparative studies of patterning during embryonic development, asexual reproduction, and regeneration. The present study investigates the pattern of cell proliferation during the regeneration of oral structures and the role of cell proliferation in this process. Results In intact polyps, cell proliferation is observed in both ectodermal and endodermal tissues throughout the entire oral-aboral axis, including in the tentacles and physa. Following bisection, there is initially little change in proliferation at the wound site of the aboral fragment, however, beginning 18 to 24 hours after amputation there is a dramatic increase in cell proliferation at the wound site in the aboral fragment. This elevated level of proliferation is maintained throughout the course or regeneration of oral structures, including the tentacles, the mouth, and the pharynx. Treatments with the cell proliferation inhibitors hydroxyurea and nocodazole demonstrate that cell proliferation is indispensable for the regeneration of oral structures. Although inhibition of regeneration by nocodazole was generally irreversible, secondary amputation reinitiates cell proliferation and regeneration. Conclusions The study has found that high levels of cell proliferation characterize the regeneration of oral structures in Nematostella, and that this cell proliferation is necessary for the proper progression of regeneration. Thus, while cell proliferation contributes to regeneration of oral structures in both Nematostella and

  7. Peroxisome proliferator-activated receptor alpha (PPARalpha) potentiates, whereas PPARgamma attenuates, glucose-stimulated insulin secretion in pancreatic beta-cells

    DEFF Research Database (Denmark)

    Ravnskjaer, Kim; Boergesen, Michael; Rubi, Blanca

    2005-01-01

    ) by mechanisms unknown to date. It has been speculated that some of these long-term effects are mediated by members of the peroxisome proliferator-activated receptor (PPAR) family via an induction of uncoupling protein-2 (UCP2). In this study we show that adenoviral coexpression of PPARalpha and retinoid X...

  8. Time-dependence of cardiomyocyte differentiation disturbed by peroxisome proliferator-activated receptor a inhibitor GW6471 in murine embryonic stem cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Ling DING; Xing-guang LIANG; Yi-jia LOU

    2007-01-01

    Aim: To investigate the possible roles of peroxisome proliferator-activated recep-tor α (PPARα) and the signal pathway regulating the transcription of PPARα in the cardiomyocyte differentiation course of marine embryonic stem (ES) cells in vitro. Methods: The expression of PPARa during cardiomyocyte differentiation was analyzed using both Western blotting and immunofluorescence. Cardiac specific genes and sarcomeric proteins were evaluated when embryoid bodies were challenged with PPARα specific inhibitor GW6471 at different time courses.The phosphorylation of p38 mitogen-activated protein kinase (MAPK) was stud-ied in the differentiation process, and its specific inhibitor SB203580 was em-ployed to study the function of p38 MAPK on cardiac differentiation and the expression of PPARα. Results: The expression of PPARα was observed to be at a low level in undifferentiated ES cells and markedly induced with the appearance of beating clusters. The inhibition of PPARa by its specific inhibitor GW6471 (1 x 10-5 mol/L) significantly prevented cardiomyocyte differentiation and resulted in the reduced expression of cardiac sarcomeric proteins (ie α-actinin, troponin-T) and specific genes (ie α-MHC, MLC2v) in a time-dependent manner. In the differ-entiation course, p-p38 MAPK was maintained at a high level from d 3 followed by a decrease from d 10. The inhibition of the p38 MAPK pathway by SB203580 between d 3 and d 7 efficiently prevented cardiomyocyte differentiation and re-sulted in the capture of the upregulation of PPARα. Conclusion: Taken together,these results showed a close association between PPARα and cardiomyocyte differentiation in vitro, and p38 MAPK was partly responsible for the regulation of PPARα.

  9. Inhibitory Effect of Cantharidin on Proliferation of A549 Cells

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-hua; YIN Yuan-qin; SUI Cheng-guang; MENG Fan-dong; MA Ping; JIANG You-hong

    2007-01-01

    Objective: To study the inhibition of Cantharidin against the proliferation of human lung cancer A549 cells and its mechanism. Methods: MTT assay was employed to determine the inhibition of Cantharidin against proliferation of A549 cells and flow Cytometry was applied to analyze A549 cell cycle and the effect of Cantharidin on cell cycle. Results: Cantharidin showed inhibition against the proliferation of A549 cells, and the inhibition was mediated by blocking A549 cell cycle at G2/M phase significantly. Conclusion: Cantharidin exhibits inhibition against the proliferation of human lung cancer A549 cells.

  10. Coordinate reduction in cell proliferation and cell death in mouse olfactory epithelium from birth to maturity

    NARCIS (Netherlands)

    Fung, KM; Peringa, J; Venkatachalam, S; Lee, VMY; Trojanowski, JQ

    1997-01-01

    We investigated cell proliferation and cell death in the olfactory epithelium (OE) of mice from birth to maturity using bromodeoxyuridine and terminal deoxynucleotidyl transferase nick end labeling. We show that cell death events and proliferative activity diminish concomitantly with age in the OE.

  11. Quantitative proteomic analysis of HIV-1 infected CD4+ T cells reveals an early host response in important biological pathways: Protein synthesis, cell proliferation, and T-cell activation

    Energy Technology Data Exchange (ETDEWEB)

    Navare, Arti T.; Sova, Pavel; Purdy, David E.; Weiss, Jeffrey M. [Department of Microbiology, University of Washington, Seattle, WA (United States); Wolf-Yadlin, Alejandro [Department of Genome Sciences, University of Washington, Seattle, WA (United States); Korth, Marcus J.; Chang, Stewart T.; Proll, Sean C. [Department of Microbiology, University of Washington, Seattle, WA (United States); Jahan, Tahmina A. [Proteomics Resource, UW Medicine at South Lake Union, Seattle, WA (United States); Krasnoselsky, Alexei L.; Palermo, Robert E. [Department of Microbiology, University of Washington, Seattle, WA (United States); Katze, Michael G., E-mail: honey@uw.edu [Department of Microbiology, University of Washington, Seattle, WA (United States); Washington National Primate Research Center, University of Washington, Seattle, WA (United States)

    2012-07-20

    Human immunodeficiency virus (HIV-1) depends upon host-encoded proteins to facilitate its replication while at the same time inhibiting critical components of innate and/or intrinsic immune response pathways. To characterize the host cell response on protein levels in CD4+ lymphoblastoid SUP-T1 cells after infection with HIV-1 strain LAI, we used mass spectrometry (MS)-based global quantitation with iTRAQ (isobaric tag for relative and absolute quantification). We found 266, 60 and 22 proteins differentially expressed (DE) (P-value{<=}0.05) at 4, 8, and 20 hours post-infection (hpi), respectively, compared to time-matched mock-infected samples. The majority of changes in protein abundance occurred at an early stage of infection well before the de novo production of viral proteins. Functional analyses of these DE proteins showed enrichment in several biological pathways including protein synthesis, cell proliferation, and T-cell activation. Importantly, these early changes before the time of robust viral production have not been described before.

  12. Simvastatin suppresses breast cancer cell proliferation induced by senescent cells

    NARCIS (Netherlands)

    Liu, Su; Uppal, Harpreet; Demaria, Marco; Desprez, Pierre-Yves; Campisi, Judith; Kapahi, Pankaj

    2015-01-01

    Cellular senescence suppresses cancer by preventing the proliferation of damaged cells, but senescent cells can also promote cancer though the pro-inflammatory senescence-associated secretory phenotype (SASP). Simvastatin, an HMG-coA reductase inhibitor, is known to attenuate inflammation and preven

  13. Modeling Nonalcoholic Fatty Liver Disease with Human Pluripotent Stem Cell-Derived Immature Hepatocyte-Like Cells Reveals Activation of PLIN2 and Confirms Regulatory Functions of Peroxisome Proliferator-Activated Receptor Alpha

    Science.gov (United States)

    Graffmann, Nina; Ring, Sarah; Kawala, Marie-Ann; Wruck, Wasco; Ncube, Audrey; Trompeter, Hans-Ingo

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD/steatosis) is a metabolic disease characterized by the incorporation of fat into hepatocytes. In this study, we developed an in vitro model for NAFLD based on hepatocyte-like cells (HLCs) differentiated from human pluripotent stem cells. We induced fat storage in these HLCs and detected major expression changes of metabolism-associated genes, as well as an overall reduction of liver-related microRNAs. We observed an upregulation of the lipid droplet coating protein Perilipin 2 (PLIN2), as well as of numerous genes of the peroxisome proliferator-activated receptor (PPAR) pathway, which constitutes a regulatory hub for metabolic processes. Interference with PLIN2 and PPARα resulted in major alterations in gene expression, especially affecting lipid, glucose, and purine metabolism. Our model recapitulates many metabolic changes that are characteristic for NAFLD. It permits the dissection of disease-promoting molecular pathways and allows us to investigate the influences of distinct genetic backgrounds on disease progression. PMID:27308945

  14. Nifedipine, a calcium channel blocker, inhibits advanced glycation end product (AGE)-elicited mesangial cell damage by suppressing AGE receptor (RAGE) expression via peroxisome proliferator-activated receptor-gamma activation

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, Takanori [Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011 (Japan); Yamagishi, Sho-ichi, E-mail: shoichi@med.kurume-u.ac.jp [Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011 (Japan); Takeuchi, Masayoshi [Department of Pathophysiological Science, Faculty of Pharmaceutical Science, Hokuriku University, Kanazawa (Japan); Ueda, Seiji; Fukami, Kei; Okuda, Seiya [Department of Medicine, Kurume University School of Medicine, Kurume (Japan)

    2009-07-24

    The interaction between advanced glycation end products (AGE) and their receptor RAGE mediates the progressive alteration in renal architecture and loss of renal function in diabetic nephropathy. Oxidative stress generation and inflammation also play a central role in diabetic nephropathy. This study investigated whether and how nifedipine, a calcium channel blocker (CCB), blocked the AGE-elicited mesangial cell damage in vitro. Nifedipine, but not amlodipine, a control CCB, down-regulated RAGE mRNA levels and subsequently reduced reactive oxygen species (ROS) generation in AGE-exposed mesangial cells. AGE increased mRNA levels of vascular cell adhesion molecule-1 (VCAM-1) and induced monocyte chemoattractant protein-1 (MCP-1) production in mesangial cells, both of which were prevented by the treatment with nifedipine, but not amlodipine. The beneficial effects of nifedipine on AGE-exposed mesangial cells were blocked by the simultaneous treatment of GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}). Although nifedipine did not affect expression levels of PPAR-{gamma}, it increased the PPAR-{gamma} transcriptional activity in mesangial cells. Our present study provides a unique beneficial aspect of nifedipine on diabetic nephropathy; it could work as an anti-inflammatory agent against AGE by suppressing RAGE expression in cultured mesangial cells via PPAR-{gamma} activation.

  15. H3K27 acetylation activated-long non-coding RNA CCAT1 affects cell proliferation and migration by regulating SPRY4 and HOXB13 expression in esophageal squamous cell carcinoma.

    Science.gov (United States)

    Zhang, Erbao; Han, Liang; Yin, Dandan; He, Xuezhi; Hong, Linzhi; Si, Xinxin; Qiu, Mantang; Xu, Tongpeng; De, Wei; Xu, Lin; Shu, Yongqian; Chen, Jinfei

    2016-12-11

    Recently, long non-coding RNAs (lncRNAs) have been shown to have important regulatory roles in human cancer biology. In our study, we found that lncRNA CCAT1, whose expression is significantly increased and is correlated with outcomes in Esophageal Squamous Cell Carcinoma (ESCC). Consecutive experiments confirmed that H3K27-acetylation could activate expression of colon cancer associated transcript-1 (CCAT1). Further experiments revealed that CCAT1 knockdown significantly repressed the proliferation and migration both in vitro and in vivo RNA-seq analysis revealed that CCAT1 knockdown preferentially affected genes that are linked to cell proliferation, cell migration and cell adhesion. Mechanistic investigations found that CCAT1 could serve as a scaffold for two distinct epigenetic modification complexes (5' domain of CCAT1 binding Polycomb Repressive Complex 2 (PRC2) while 3' domain of CCAT1 binding SUV39H1) and modulate the histone methylation of promoter of SPRY4 (sprouty RTK signaling antagonist 4) in nucleus. In cytoplasm, CCAT1 regulates HOXB13 as a molecular decoy for miR-7, a microRNA that targets both CCAT1 and HOXB13, thus facilitating cell growth and migration. Together, our data demonstrated the important roles of CCAT1 in ESCC oncogenesis and might serve as targets for ESCC diagnosis and therapy.

  16. Peroxisome Proliferator Activated Receptors and Lipoprotein Metabolism

    Directory of Open Access Journals (Sweden)

    Sander Kersten

    2008-01-01

    Full Text Available Plasma lipoproteins are responsible for carrying triglycerides and cholesterol in the blood and ensuring their delivery to target organs. Regulation of lipoprotein metabolism takes place at numerous levels including via changes in gene transcription. An important group of transcription factors that mediates the effect of dietary fatty acids and certain drugs on plasma lipoproteins are the peroxisome proliferator activated receptors (PPARs. Three PPAR isotypes can be distinguished, all of which have a major role in regulating lipoprotein metabolism. PPARα is the molecular target for the fibrate class of drugs. Activation of PPARα in mice and humans markedly reduces hepatic triglyceride production and promotes plasma triglyceride clearance, leading to a clinically significant reduction in plasma triglyceride levels. In addition, plasma high-density lipoprotein (HDL-cholesterol levels are increased upon PPARα activation in humans. PPARγ is the molecular target for the thiazolidinedione class of drugs. Activation of PPARγ in mice and human is generally associated with a modest increase in plasma HDL-cholesterol and a decrease in plasma triglycerides. The latter effect is caused by an increase in lipoprotein lipase-dependent plasma triglyceride clearance. Analogous to PPARα, activation of PPARβ/δ leads to increased plasma HDL-cholesterol and decreased plasma triglyceride levels. In this paper, a fresh perspective on the relation between PPARs and lipoprotein metabolism is presented. The emphasis is on the physiological role of PPARs and the mechanisms underlying the effect of synthetic PPAR agonists on plasma lipoprotein levels.

  17. RNA interference targeting CD147 inhibits the proliferation, invasiveness, and metastatic activity of thyroid carcinoma cells by down-regulating glycolysis.

    Science.gov (United States)

    Huang, Peng; Chang, Shi; Jiang, Xiaolin; Su, Juan; Dong, Chao; Liu, Xu; Yuan, Zhengtai; Zhang, Zhipeng; Liao, Huijun

    2015-01-01

    A high rate of glycolytic flux, even in the presence of oxygen, is a key metabolic hallmark of cancer cells. Lactate, the end product of glycolysis, decreases the extracellular pH and contributes to the proliferation, invasiveness and metastasis of tumor cells. CD147 play a crucial role in tumorigenicity, invasion and metastasis; and CD147 also interacts strongly and specifically with monocarboxylate transporter1 (MCT1) that mediates the transport of lactate. The objective of this study was to determine whether CD147 is involved, via its association with MCT1 to transport lactate, in glycolysis, contributing to the progression of thyroid carcinoma. The expression levels of CD147 in surgical specimens of normal thyroid, nodular goiter (NG), well-differentiated thyroid carcinoma (WDTC), and undifferentiated thyroid carcinoma (UDTC) were determined using immunohistochemical techniques. The effects of CD147 silencing on cell proliferation, invasiveness, metastasis, co-localization with MCT1, glycolysis rate and extracellular pH of thyroid cancer cells (WRO and FRO cell lines) were measured after CD147 was knocked-down using siRNA targeting CD147. Immunohistochemical analysis of thyroid carcinoma (TC) tissues revealed significant increases in signal for CD147 compared with normal tissue or NG, while UDTC expressed remarkably higher levels of CD147 compared with WDTC. Furthermore, silencing of CD147 in TC cells clearly abrogated the expression of MCT1 and its co-localization with CD147 and dramatically decreased both the glycolysis rate and extracellular pH. Thus, cell proliferation, invasiveness, and metastasis were all significantly decreased by siRNA. These results demonstrate in vitro that the expression of CD147 correlates with the degree of dedifferentiation of thyroid cancer, and show that CD147 interacts with MCT1 to regulate tumor cell glycolysis, resulting in the progression of thyroid carcinoma.

  18. Peroxisomes in Different Skeletal Cell Types during Intramembranous and Endochondral Ossification and Their Regulation during Osteoblast Differentiation by Distinct Peroxisome Proliferator-Activated Receptors.

    Directory of Open Access Journals (Sweden)

    Guofeng Qian

    Full Text Available Ossification defects leading to craniofacial dysmorphism or rhizomelia are typical phenotypes in patients and corresponding knockout mouse models with distinct peroxisomal disorders. Despite these obvious skeletal pathologies, to date no careful analysis exists on the distribution and function of peroxisomes in skeletal tissues and their alterations during ossification. Therefore, we analyzed the peroxisomal compartment in different cell types of mouse cartilage and bone as well as in primary cultures of calvarial osteoblasts. The peroxisome number and metabolism strongly increased in chondrocytes during endochondral ossification from the reserve to the hypertrophic zone, whereas in bone, metabolically active osteoblasts contained a higher numerical abundance of this organelle than osteocytes. The high abundance of peroxisomes in these skeletal cell types is reflected by high levels of Pex11β gene expression. During culture, calvarial pre-osteoblasts differentiated into secretory osteoblasts accompanied by peroxisome proliferation and increased levels of peroxisomal genes and proteins. Since many peroxisomal genes contain a PPAR-responsive element, we analyzed the gene expression of PPARɑ/ß/ɣ in calvarial osteoblasts and MC3T3-E1 cells, revealing higher levels for PPARß than for PPARɑ and PPARɣ. Treatment with different PPAR agonists and antagonists not only changed the peroxisomal compartment and associated gene expression, but also induced complex alterations of the gene expression patterns of the other PPAR family members. Studies in M3CT3-E1 cells showed that the PPARß agonist GW0742 activated the PPRE-mediated luciferase expression and up-regulated peroxisomal gene transcription (Pex11, Pex13, Pex14, Acox1 and Cat, whereas the PPARß antagonist GSK0660 led to repression of the PPRE and a decrease of the corresponding mRNA levels. In the same way, treatment of calvarial osteoblasts with GW0742 increased in peroxisome number and

  19. Nfkb1 activation by the E26 transformation-specific transcription factors PU.1 and Spi-B promotes Toll-like receptor-mediated splenic B cell proliferation.

    Science.gov (United States)

    Li, Stephen K H; Abbas, Ali K; Solomon, Lauren A; Groux, Gaëlle M N; DeKoter, Rodney P

    2015-05-01

    Generation of antibodies against T-independent and T-dependent antigens requires Toll-like receptor (TLR) engagement on B cells for efficient responses. However, the regulation of TLR expression and responses in B cells is not well understood. PU.1 and Spi-B (encoded by Sfpi1 and Spib, respectively) are transcription factors of the E26 transformation-specific (ETS) family and are important for B cell development and function. It was found that B cells from mice knocked out for Spi-B and heterozygous for PU.1 (Sfpi1(+/-) Spib(-/-) [PUB] mice) proliferated poorly in response to TLR ligands compared to wild-type (WT) B cells. The NF-κB family member p50 (encoded by Nfkb1) is required for lipopolysaccharide (LPS) responsiveness in mice. PUB B cells expressed reduced Nfkb1 mRNA transcripts and p50 protein. The Nfkb1 promoter was regulated directly by PU.1 and Spi-B, as shown by reporter assays and chromatin immunoprecipitation analysis. Occupancy of the Nfkb1 promoter by PU.1 was reduced in PUB B cells compared to that in WT B cells. Finally, infection of PUB B cells with a retroviral vector encoding p50 substantially restored proliferation in response to LPS. We conclude that Nfkb1 transcriptional activation by PU.1 and Spi-B promotes TLR-mediated B cell proliferation.

  20. Adipogenesis licensing and execution are disparately linked to cell proliferation

    Institute of Scientific and Technical Information of China (English)

    Wei Guo; Kun-Ming Zhang; Kang Tu; Yi-Xue Li; Li Zhu; Hua-Sheng Xiao; Ying Yang; Jia-Rui Wu

    2009-01-01

    Coordination of cell differentiation and proliferation is a key issue in the development process of multi-cellular organisms and stem cells. Here we provide evidence that the establishment of adipocyte differentiation of 3T3-LI cells requires two processes: the licensing of an adipogenesis gene-expression program within a particular growth-arrest stage, i.e., the contact-inhibition stage, and then the execution of this program in a cell-cycle-independent manner,by which the licensed progenitors are differentiated into adipocytes in the presence of inducing factors. Our results showed that differentiation licensing of 3T3-L1 cells during the contact-inhibition stage involved epigenetic modifications such as DNA methylation and histone modifications, whereas disturbing these epigenetic modifications by DNA methylation inhibitors or RNAi during the contact-inhibition stage significantly reduced adipogenesis efficiency.More importantly, when these licensed 3T3-LI cells were re-cultured under non-differentiating conditions or treated only with insulin, this adipogenesis commitment could be maintained from one cell generation to the next, whereby the licensed program could be activated in a cell-cycle-independent manner once these cells were subjected to adipogenesis-inducing conditions. This result suggests that differentiation licensing and differentiation execution can be uncoupled and disparately linked to cell proliferation. Our findings deliver a new concept that cell-fate decision can be subdivided into at least two stages, licensing and execution, which might have different regulatory relationships with cell proliferation, in addition, this new concept may provide a clue for developing new strategies against obesity.

  1. Overexpression of Dishevelled-2 contributes to proliferation and migration of human esophageal squamous cell carcinoma.

    Science.gov (United States)

    Zhou, Guoren; Ye, Jinjun; Sun, Lei; Zhang, Zhi; Feng, Jifeng

    2016-06-01

    Dishevelled-2 (Dvl2) was associated with tumor cell proliferation and migration. We aimed to examine the mechanism of Dvl2 in esophageal squamous cell carcinoma (ESCC). Dvl2 was overexpressed in human ESCC tissues and cell lines ECA109 and TE1 cells. CCK-8 and colony formation assay was performed to evaluate the proliferation in ECA109 cells transfected with Dvl2-shRNA. Wound-healing assay and transwell assay were used to examine the activities of migration and invasion in Dvl2-silenced ESCC cells. Knockdown of Dvl2 significantly reduced ECA109 cell proliferation and migration. Moreover, we demonstrated that the proliferation and migration ability of Dvl2 might through the activation of Wnt pathway by targeting the Cyclin D1 and MMP-9. We came to the conclusion that the proliferation and migration effects of Dvl2 might contribute to malignant development of human ESCC.

  2. Nifedipine promotes the proliferation and migration of breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Dong-Qing Guo

    Full Text Available Nifedipine is widely used as a calcium channel blocker (CCB to treat angina and hypertension,but it is controversial with respect the risk of stimulation of cancers. In this study, we demonstrated that nifedipine promoted the proliferation and migration of breast cancer cells both invivo and invitro. However, verapamil, another calcium channel blocker, didn't exert the similar effects. Nifedipine and high concentration KCl failed to alter the [Ca2+]i in MDA-MB-231 cells, suggesting that such nifedipine effect was not related with calcium channel. Moreover, nifedipine decreased miRNA-524-5p, resulting in the up-regulation of brain protein I3 (BRI3. Erk pathway was consequently activated and led to the proliferation and migration of breast cancer cells. Silencing BRI3 reversed the promoting effect of nifedipine on the breast cancer. In a summary, nifedipine stimulated the proliferation and migration of breast cancer cells via the axis of miRNA-524-5p-BRI3-Erk pathway independently of its calcium channel-blocking activity. Our findings highlight that nifedipine but not verapamil is conducive for breast cancer growth and metastasis, urging that the caution should be taken in clinic to prescribe nifedipine to women who suffering both hypertension and breast cancer, and hypertension with a tendency in breast cancers.

  3. Nuclear factor of activated T cells c1 mediates p21-activated kinase 1 activation in the modulation of chemokine-induced human aortic smooth muscle cell F-actin stress fiber formation, migration, and proliferation and injury-induced vascular wall remodeling.

    Science.gov (United States)

    Kundumani-Sridharan, Venkatesh; Singh, Nikhlesh K; Kumar, Sanjay; Gadepalli, Ravisekhar; Rao, Gadiparthi N

    2013-07-26

    Recent literature suggests that cyclin-dependent kinases (CDKs) mediate cell migration. However, the mechanisms were not known. Therefore, the objective of this study is to test whether cyclin/CDKs activate Pak1, an effector of Rac1, whose involvement in the modulation of cell migration and proliferation is well established. Monocyte chemotactic protein 1 (MCP1) induced Pak1 phosphorylation/activation in human aortic smooth muscle cells (HASMCs) in a delayed time-dependent manner. MCP1 also stimulated F-actin stress fiber formation in a delayed manner in HASMCs, as well as the migration and proliferation of these cells. Inhibition of Pak1 suppressed MCP1-induced HASMC F-actin stress fiber formation, migration, and proliferation. MCP1 induced cyclin D1 expression as well as CDK6 and CDK4 activities, and these effects were dependent on activation of NFATc1. Depletion of NFATc1, cyclin D1, CDK6, or CDK4 levels attenuated MCP1-induced Pak1 phosphorylation/activation and resulted in decreased HASMC F-actin stress fiber formation, migration, and proliferation. CDK4, which appeared to be activated downstream of CDK6, formed a complex with Pak1 in response to MCP1. MCP1 also activated Rac1 in a time-dependent manner, and depletion/inhibition of its levels/activation abrogated MCP1-induced NFATc1-cyclin D1-CDK6-CDK4-Pak1 signaling and, thereby, decreased HASMC F-actin stress fiber formation, migration, and proliferation. In addition, smooth muscle-specific deletion of NFATc1 led to decreased cyclin D1 expression and CDK6, CDK4, and Pak1 activities, resulting in reduced neointima formation in response to injury. Thus, these observations reveal that Pak1 is a downstream effector of CDK4 and Rac1-dependent, NFATc1-mediated cyclin D1 expression and CDK6 activity mediate this effect. In addition, smooth muscle-specific deletion of NFATc1 prevented the capacity of vascular smooth muscle cells for MCP-1-induced activation of the cyclin D1-CDK6-CDK4-Pak1 signaling axis, affecting

  4. Comparative studies on the chemical and cell-based antioxidant activities and antitumor cell proliferation properties of soy milk manufactured by conventional and commercial UHT methods.

    Science.gov (United States)

    Xu, Baojun; Chang, Sam K C; Liu, Zhisheng; Yuan, Shaohong; Zou, Yanping; Tan, Yingying

    2010-03-24

    The aims of this work were to compare antiproliferation, antioxidant activities and total phytochemicals and individual isoflavone profiles in soy milk processed by various methods including traditional stove cooking, direct steam injection, direct ultrahigh temperature (UHT), indirect UHT, and a two-stage simulated industry method, and a selected commercial soy milk product. Various processing methods significantly affected total saponin, phytic acid, and total phenolic content and individual isoflavone distribution. The laboratory UHT and the two-stage processed soy milk exhibited relatively higher total phenolic content, total flavonoid content, saponin and phytic acid than those processed by the traditional and steam processed methods. Thermal processing caused obvious intertransformation but did not cause severe degradation except for breaking down of aglycons. Thermal processing significantly increased antioxidant capacities of soy milk determined by chemical analyses, but decreased cellular antioxidant capacities as compared to the raw soy milk. The raw and all processed soy milk exhibited antipoliferative activities against human HL-60 leukemia cells, AGS gastric tumor cells, and DU145 prostate cancer cells in a dose-dependent manner. The raw soy milk, but not the processed soy milk, exhibited a dose-dependent antiproliferative effect against colorectal adenocarcinoma Caco-2 cells. Taken together, these results indicate that various thermal processing methods change not only phytochemcials but also potential health-promoting effects of soy milk.

  5. Angiotensin Converting Enzyme Regulates Cell Proliferation and Migration

    Science.gov (United States)

    Carvalho, Clarissa Coelho; Florentino, Rodrigo Machado; França, Andressa; Matias, Eveline; Guimarães, Paola Bianchi; Batista, Carolina; Freire, Valder; Carmona, Adriana Karaoglanovic; Pesquero, João Bosco; de Paula, Ana Maria; Foureaux, Giselle; Leite, Maria de Fatima

    2016-01-01

    Background The angiotensin-I converting enzyme (ACE) plays a central role in the renin-angiotensin system, acting by converting the hormone angiotensin-I to the active peptide angiotensin-II (Ang-II). More recently, ACE was shown to act as a receptor for Ang-II, and its expression level was demonstrated to be higher in melanoma cells compared to their normal counterparts. However, the function that ACE plays as an Ang-II receptor in melanoma cells has not been defined yet. Aim Therefore, our aim was to examine the role of ACE in tumor cell proliferation and migration. Results We found that upon binding to ACE, Ang-II internalizes with a faster onset compared to the binding of Ang-II to its classical AT1 receptor. We also found that the complex Ang-II/ACE translocates to the nucleus, through a clathrin-mediated process, triggering a transient nuclear Ca2+ signal. In silico studies revealed a possible interaction site between ACE and phospholipase C (PLC), and experimental results in CHO cells, demonstrated that the β3 isoform of PLC is the one involved in the Ca2+ signals induced by Ang-II/ACE interaction. Further studies in melanoma cells (TM-5) showed that Ang-II induced cell proliferation through ACE activation, an event that could be inhibited either by ACE inhibitor (Lisinopril) or by the silencing of ACE. In addition, we found that stimulation of ACE by Ang-II caused the melanoma cells to migrate, at least in part due to decreased vinculin expression, a focal adhesion structural protein. Conclusion ACE activation regulates melanoma cell proliferation and migration. PMID:27992423

  6. SerpinB1 Promotes Pancreatic β Cell Proliferation.

    Science.gov (United States)

    El Ouaamari, Abdelfattah; Dirice, Ercument; Gedeon, Nicholas; Hu, Jiang; Zhou, Jian-Ying; Shirakawa, Jun; Hou, Lifei; Goodman, Jessica; Karampelias, Christos; Qiang, Guifeng; Boucher, Jeremie; Martinez, Rachael; Gritsenko, Marina A; De Jesus, Dario F; Kahraman, Sevim; Bhatt, Shweta; Smith, Richard D; Beer, Hans-Dietmar; Jungtrakoon, Prapaporn; Gong, Yanping; Goldfine, Allison B; Liew, Chong Wee; Doria, Alessandro; Andersson, Olov; Qian, Wei-Jun; Remold-O'Donnell, Eileen; Kulkarni, Rohit N

    2016-01-12

    Although compensatory islet hyperplasia in response to insulin resistance is a recognized feature in diabetes, the factor(s) that promote β cell proliferation have been elusive. We previously reported that the liver is a source for such factors in the liver insulin receptor knockout (LIRKO) mouse, an insulin resistance model that manifests islet hyperplasia. Using proteomics we show that serpinB1, a protease inhibitor, which is abundant in the hepatocyte secretome and sera derived from LIRKO mice, is the liver-derived secretory protein that regulates β cell proliferation in humans, mice, and zebrafish. Small-molecule compounds, that partially mimic serpinB1 effects of inhibiting elastase activity, enhanced proliferation of β cells, and mice lacking serpinB1 exhibit attenuated β cell compensation in response to insulin resistance. Finally, SerpinB1 treatment of islets modulated proteins in growth/survival pathways. Together, these data implicate serpinB1 as an endogenous protein that can potentially be harnessed to enhance functional β cell mass in patients with diabetes.

  7. Evaluation of germ-cell kinetics in infertile patients with proliferating cell nuclear antigen proliferating index

    Institute of Scientific and Technical Information of China (English)

    Li ZENG; Xiang-Tian KONG; Jin-Wei SU; Tong-Li XIA; Yan-Qun NA; Ying-Lu GUO

    2001-01-01

    To explore the usefulness of proliferating cell nuclear antigen proliferating index (PCNA PI) in the pathological diagnosis and treatment of male infertility. Methods: Testicular biopsy specimen obtained from 48 cases of male infertility and 2 normal controls were fixed and embedded. The sections were stained with anti-PCNA monoclonal antibodies or haematoxylin/eosin. Proliferating index (PI), expressed as the percentage of germ-cell nuclei positively stained with PCNA antibody, was assessed from more than 20 seminiferous tubules or 600 germ-cells. Results: The infertile patients were divided into 4 groups: Group 1, normal spermatogenesis ( 14 cases); Group 2, hypospermatogenesis (16 cases); Group 3, germinal arrest (10 cases); Group 4, Sertoli cell only syndrome (8 cases). The PCNA PI of normal control testis was 86.5% (mean value). Group 3 had a significantly lower PCNA PI (29.8%) than normal testis; Group 1 and 2 had similar Pis (82.3% and 82.3%, respectively) as the control testis. PI of the negative control (Group 4) was 0 as no germ-cells were found. Conclusion: PCNA PI is useful for assessing germ-cell kinetics, especially for pathological diagnosis of germinal arrest which is difficult to differentiate by routine HE staining technique. In germinal arrest, there is a significantly lowered PCNA PI, which is an indication of DNA synthesis deterioration, suggesting the use of therapies be different from those for hypospermatogenesis.

  8. Neural and Oligodendrocyte Progenitor Cells: Transferrin Effects on Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Lucas Silvestroff

    2013-02-01

    Full Text Available NSC (neural stem cells/NPC (neural progenitor cells are multipotent and self-renew throughout adulthood in the SVZ (subventricular zone of the mammalian CNS (central nervous system. These cells are considered interesting targets for CNS neurodegenerative disorder cell therapies, and understanding their behaviour in vitro is crucial if they are to be cultured prior to transplantation. We cultured the SVZ tissue belonging to newborn rats under the form of NS (neurospheres to evaluate the effects of Tf (transferrin on cell proliferation. The NS were heterogeneous in terms of the NSC/NPC markers GFAP (glial fibrillary acidic protein, Nestin and Sox2 and the OL (oligodendrocyte progenitor markers NG2 (nerve/glia antigen 2 and PDGFRα (platelet-derived growth factor receptor α. The results of this study indicate that aTf (apoTransferrin is able to increase cell proliferation of SVZ-derived cells in vitro, and that these effects were mediated at least in part by the TfRc1 (Tf receptor 1. Since OPCs (oligodendrocyte progenitor cells represent a significant proportion of the proliferating cells in the SVZ-derived primary cultures, we used the immature OL cell line N20.1 to show that Tf was able to augment the proliferation rate of OPC, either by adding aTf to the culture medium or by overexpressing rat Tf in situ. The culture medium supplemented with ferric iron, together with aTf, increased the DNA content, while ferrous iron did not. The present work provides data that could have a potential application in human cell replacement therapies for neurodegenerative disease and/or CNS injury that require the use of in vitro amplified NPCs.

  9. Biciliated ependymal cell proliferation contributes to spinal cord growth.

    Science.gov (United States)

    Alfaro-Cervello, Clara; Soriano-Navarro, Mario; Mirzadeh, Zaman; Alvarez-Buylla, Arturo; Garcia-Verdugo, Jose Manuel

    2012-10-15

    Two neurogenic regions have been described in the adult brain, the lateral ventricle subventricular zone and the dentate gyrus subgranular zone. It has been suggested that neural stem cells also line the central canal of the adult spinal cord. Using transmission and scanning electron microscopy and immunostaining, we describe here the organization and cell types of the central canal epithelium in adult mice. The identity of dividing cells was determined by 3D ultrastructural reconstructions of [(3) H]thymidine-labeled cells and confocal analysis of bromodeoxyuridine labeling. The most common cell type lining the central canal had two long motile (9+2) cilia and was vimentin+, CD24+, FoxJ1+, Sox2+, and CD133+, but nestin- and glial fibrillary acidic protein (GFAP)-. These biciliated ependymal cells of the central canal (Ecc) resembled E2 cells of the lateral ventricles, but their basal bodies were different from those of E2 or E1 cells. Interestingly, we frequently found Ecc cells with two nuclei and four cilia, suggesting they are formed by incomplete cytokinesis or cell fusion. GFAP+ astrocytes with a single cilium and an orthogonally oriented centriole were also observed. The majority of dividing cells corresponded to biciliated Ecc cells. Central canal proliferation was most common during the active period of spinal cord growth. Pairs of labeled Ecc cells were observed within the central canal in adult mice 2.5 weeks post labeling. Our work suggests that the vast majority of postnatal dividing cells in the central canal are Ecc cells and their proliferation is associated with the growth of the spinal cord.

  10. Cancer specificity of promoters of the genes controlling cell proliferation.

    Science.gov (United States)

    Kashkin, Kirill; Chernov, Igor; Stukacheva, Elena; Monastyrskaya, Galina; Uspenskaya, Natalya; Kopantzev, Eugene; Sverdlov, Eugene

    2015-02-01

    Violation of proliferation control is a common feature of cancer cells. We put forward the hypothesis that promoters of genes involved in the control of cell proliferation should possess intrinsic cancer specific activity. We cloned promoter regions of CDC6, POLD1, CKS1B, MCM2, and PLK1 genes into pGL3 reporter vector and studied their ability to drive heterologous gene expression in transfected cancer cells of different origin and in normal human fibroblasts. Each promoter was cloned in short (335-800 bp) and long (up to 2.3 kb) variants to cover probable location of core and whole promoter regulatory elements. Cloned promoters were significantly more active in cancer cells than in normal fibroblasts that may indicate their cancer specificity. Both versions of CDC6 promoters were shown to be most active while the activities of others were close to that of BIRC5 gene (survivin) gene promoter. Long and short variants of each cloned promoter demonstrated very similar cancer specificity with the exception of PLK1-long promoter that was substantially more specific than its short variant and other promoters under study. The data indicate that most of the important cis-regulatory transcription elements responsible for intrinsic cancer specificity are located in short variants of the promoters under study. CDC6 short promoter may serve as a promising candidate for transcription targeted cancer gene therapy.

  11. Controling stem cell proliferation - CKIs at work

    NARCIS (Netherlands)

    Bruggeman, SWM; van Lohuizen, M

    2006-01-01

    The cyclin-dependent kinase inhibitors or CKIs are well recognized as intrinsic regulators of the cell cycle. Here, we discuss recent data implicating their activity in restraining adult stem cell self-renewal, and the role that proteins regulating CKI expression play in this process.

  12. SerpinB1 Promotes Pancreatic β Cell Proliferation

    Energy Technology Data Exchange (ETDEWEB)

    El Ouaamari, Abdelfattah; Dirice, Ercument; Gedeon, Nicholas; Hu, Jiang; Zhou, Jian-Ying; Shirakawa, Jun; Hou, Lifei; Goodman, Jessica; Karampelias, Christos; Qiang, Guifeng; Boucher, Jeremie; Martinez, Rachael; Gritsenko, Marina A.; De Jesus, Dario F.; Kahraman, Sevim; Bhatt, Shweta; Smith, Richard D.; Beer, Hans-Dietmar; Jungtrakoon, Prapaporn; Gong, Yanping; Goldfine, Allison B.; Liew, Chong Wee; Doria, Alessandro; Andersson, Olov; Qian, Wei-Jun; Remold-O’Donnell, Eileen; Kulkarni, Rohit N.

    2016-01-01

    Compensatory β-cell growth in response to insulin resistance is a common feature in diabetes. We recently reported that liver-derived factors participate in this compensatory response in the liver insulin receptor knockout (LIRKO) mouse, a model of significant islet hyperplasia. Here we show that serpinB1 is a liver-derived secretory protein that controls β-cell proliferation. SerpinB1 is abundant in the hepatocyte secretome and sera derived from LIRKO mice. SerpinB1 and small molecule compounds that partially mimic serpinB1 activity enhanced proliferation of zebrafish, mouse and human β-cells. We report that serpinB1-induced β-cell replication requires protease inhibition activity and mice lacking serpinB1 exhibit attenuated β-cell replication in response to insulin resistance. Finally, SerpinB1-treatment of islets modulated signaling proteins in growth and survival pathways such as MAPK, PKA and GSK3. Together, these data implicate SerpinB1 as a protein that can potentially be harnessed to enhance functional β-cell mass in patients with diabetes.

  13. Ligustrazine attenuates the platelet-derived growth factor-BB-induced proliferation and migration of vascular smooth muscle cells by interrupting extracellular signal-regulated kinase and P38 mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Yu, Lifei; Huang, Xiaojing; Huang, Kai; Gui, Chun; Huang, Qiaojuan; Wei, Bin

    2015-07-01

    The abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) leads to intimal thickening of the aorta and is, therefore, important in the development of arteriosclerosis. As a result, the use of antiproliferative and antimigratory agents for VSMCs offers promise for the treatment of vascular disorders. Although several studies have demonstrated that ligustrazine may be used to treat heart and blood vessel diseases, the detailed mechanism underlying its actions remain to be elucidated. In the present study, the inhibitory effect of ligustrazine on platelet-derived growth factor (PDGF)-BB-stimulated VSMC proliferation and migration, and the underlying mechanisms were investigated. The findings demonstrated that ligustrazine significantly inhibited PDGF-BB-stimulated VSMC proliferation. VSMCs dedifferentiated into a proliferative phenotype under PDGF-BB stimulation, which was effectively reversed by the administration of ligustrazine. In addition, ligustrazine also downregulated the production of nitric oxide and cyclic guanine monophosphate, induced by PDGF-BB. Additionally, ligustrazine significantly inhibited PDGF-BB-stimulated VSMC migration. Mechanistic investigation indicated that the upregulation of cell cycle-associated proteins and the activation of the extracellular signal-regulated kinase (ERK) and P38 mitogen-activated protein kinase (MAPK) signaling induced by PDGF-BB was suppressed by the administration of ligustrazine. In conclusion, the present study, demonstrated for the first time, to the best of our knowledge, that ligustrazine downregulated PDGF-BB-induced VSMC proliferation and migration partly, at least, through inhibiting the activation of the ERK and P38 MAPK signaling.

  14. Hypoxia-inducible factor-1α increased the expression of peroxisome proliferator activated receptor α in lung cancer cell A549

    Institute of Scientific and Technical Information of China (English)

    张惠兰; 张珍祥; 徐永健

    2004-01-01

    @@ Hypoxia plays a fundamental role in many pathologic processes. Hypoxia-inducible factor-1 (HIF-1) is a heterodimeric basic helix-loop-helix-per-aryl hydrocarbon receptor ARNT-sim (PAS) domain protein, consisting of α and β subunits and is precisely regulated by cellular oxygen levels.1 The peroxisome proliferator-activated receptors (PPARs) are family nuclear hormone-binding proteins with increasing diverse functions as transcriptional regulators, owning three subtypes (α, β, and γ).2 PPARα plays a critical physiological role as lipid sensors and regulators of proliferation.3 Hypoxia can elicit up-regulation of PPAR-α expression.4 Herein, we report the results of an investigation on the correlation of HIF-1α and PPARα.

  15. Peroxisome proliferator-activated receptors for hypertension

    Institute of Scientific and Technical Information of China (English)

    Daisuke; Usuda; Tsugiyasu; Kanda

    2014-01-01

    Peroxisome proliferator-activated receptors(PPARs) are ligand-activated transcription factors belonging to the nuclear receptor superfamily, which is composed of four members encoded by distinct genes(α, β, γ, and δ). The genes undergo transactivation or transrepression under specific mechanisms that lead to the induction or repression of target gene expression. As is the case with other nuclear receptors, all four PPAR isoforms contain five or six structural regions in four functional domains; namely, A/B, C, D, and E/F. PPARs have many functions, particularly functions involving control of vascular tone, inflammation, and energy homeostasis, and are, therefore, important targets for hypertension, obesity, obesity-induced inflammation, and metabolic syndrome in general. Hence, PPARs also represent drug targets, and PPARα and PPARγ agonists are used clinically in the treatment of dyslipidemia and type 2 diabetes mellitus, respectively. Because of their pleiotropic effects, they have been identified as active in a number of diseases and are targets for the development of a broad range of therapies for a variety of diseases. It is likely that the range of PPARγ agonist therapeutic actions will result in novel approaches to lifestyle and other diseases. The combination of PPARs with reagents or with other cardiovascular drugs, such as diuretics and angiotensin Ⅱ receptor blockers, should be studied.This article provides a review of PPAR isoform characteristics, a discussion of progress in our understanding of the biological actions of PPARs, and a summary of PPAR agonist development for patient management. We also include a summary of the experimental and clinical evidence obtained from animal studies and clinical trials conducted to evaluate the usefulness and effectiveness of PPAR agonists in the treatment of lifestyle-related diseases.

  16. Fucan effect on CHO cell proliferation and migration.

    Science.gov (United States)

    Nobre, Leonardo Thiago Duarte Barreto; Vidal, Arthur Anthunes Jacome; Almeida-Lima, Jailma; Oliveira, Ruth Medeiros; Paredes-Gamero, Edgar Jean; Medeiros, Valquiria Pereira; Trindade, Edvaldo Silva; Franco, Celia Regina Cavichiolo; Nader, Helena Bonciani; Rocha, Hugo Alexandre Oliveira

    2013-10-15

    Fucan is a term used to denominate sulfated L-fucose rich polysaccharides. Here, a heterofucan, named fucan B, was extracted from the Spatoglossum schröederi seaweed. This 21.5 kDa galactofucan inhibited CHO-K1 proliferation and migration when fibronectin was the substrate. Fucan B derivatives revealed that such effects depend on their degree of sulfation. Fucan B did not induce cell death, but promoted G1 cell cycle arrest. Western blotting and flow cytometry analysis suggest that fucan B binds to fibronectin and activates integrin, mainly integrin α5β1, which induces FAK/RAS/MEK/ERK activation. FAK activation inhibits CHO-K1 migration on fibronectin and ERK blocks cell cycle progression. This study indicates that fucan B could be applied in developing new antitumor drugs.

  17. Interleukin-2 carbohydrate recognition modulates CTLL-2 cell proliferation.

    Science.gov (United States)

    Fukushima, K; Yamashita, K

    2001-03-01

    Interleukin-2 (IL-2) specifically recognizes high-mannose type glycans with five or six mannosyl residues. To determine whether the carbohydrate recognition activity of IL-2 contributes to its physiological activity, the inhibitory effects of high-mannose type glycans on IL-2-dependent CTLL-2 cell proliferation were investigated. Man(5)GlcNAc(2)Asn added to CTLL-2 cell cultures inhibited not only phosphorylation of tyrosine kinases but also IL-2-dependent cell proliferation. We found that a complex of IL-2, IL-2 receptor alpha, beta, gamma subunits, and tyrosine kinases was formed in rhIL-2-stimulated CTLL-2 cells. Among the components of this complex, only the IL-2 receptor alpha subunit was stained with Galanthus nivalis agglutinin which specifically recognizes high-mannose type glycans. This staining was diminished after digestion of the glycans with endo-beta-N-acetylglucosaminidase H or D, suggesting that at least a N-glycan containing Man(5)GlcNAc(2) is linked to the extracellular portion of the IL-2 receptor alpha subunit. Our findings indicate that IL-2 binds the IL-2 receptor alpha subunit through Man(5)GlcNAc(2) and a specific peptide sequence on the surface of CTLL-2 cells. When IL-2 binds to the IL-2Ralpha subunit, this may trigger formation of the high affinity complex of IL-2-IL-2Ralpha, -beta, and -gamma subunits, leading to cellular signaling.

  18. Kaempferol inhibits cell proliferation and glycolysis in esophagus squamous cell carcinoma via targeting EGFR signaling pathway.

    Science.gov (United States)

    Yao, Shihua; Wang, Xiaowei; Li, Chunguang; Zhao, Tiejun; Jin, Hai; Fang, Wentao

    2016-08-01

    Antitumor activity of kaempferol has been studied in various tumor types, but its potency in esophagus squamous cell carcinoma is rarely known. Here, we reported the activity of kaempferol against esophagus squamous cell carcinoma as well as its antitumor mechanisms. Results of cell proliferation and colony formation assay showed that kaempferol substantially inhibited tumor cell proliferation and clone formation in vitro. Flow cytometric analysis demonstrated that tumor cells were induced G0/G1 phase arrest after kaempferol treatment, and the expression of protein involved in cell cycle regulation was dramatically changed. Except the potency on cell proliferation, we also discovered that kaempferol had a significant inhibitory effect against tumor glycolysis. With the downregulation of hexokinase-2, glucose uptake and lactate production in tumor cells were dramatically declined. Mechanism studies revealed kaempferol had a direct effect on epidermal growth factor receptor (EGFR) activity, and along with the inhibition of EGFR, its downstream signaling pathways were also markedly suppressed. Further investigations found that exogenous overexpression of EGFR in tumor cells substantially attenuated glycolysis suppression induced by kaempferol, which implied that EGFR also played an important role in kaempferol-mediated glycolysis inhibition. Finally, the antitumor activity of kaempferol was validated in xenograft model and kaempferol prominently restrained tumor growth in vivo. Meanwhile, dramatic decrease of EGFR activity and hexokinase-2 expression were observed in kaempferol-treated tumor tissue, which confirmed these findings in vitro. Briefly, these studies suggested that kaempferol, or its analogues, may serve as effective candidates for esophagus squamous cell carcinoma management.

  19. Beta cell proliferation and growth factors

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis; Svensson, C; Møldrup, Annette

    1999-01-01

    Formation of new beta cells can take place by two pathways: replication of already differentiated beta cells or neogenesis from putative islet stem cells. Under physiological conditions both processes are most pronounced during the fetal and neonatal development of the pancreas. In adulthood little...... increase in the beta cell number seems to occur. In pregnancy, however, a marked hyperplasia of the beta cells is observed both in rodents and man. Increased mitotic activity has been seen both in vivo and in vitro in islets exposed to placental lactogen (PL), prolactin (PRL) and growth hormone (GH......). Receptors for both GH and PRL are expressed in islet cells and are upregulated during pregnancy. By mutational analysis we have identified different functional domains of the cytoplasmic part of the GH receptor. Thus the mitotic signaling only requires the membrane proximal part of the receptor...

  20. Inhibitory effects of Tabebuia impetiginosa inner bark extract on platelet aggregation and vascular smooth muscle cell proliferation through suppressions of arachidonic acid liberation and ERK1/2 MAPK activation.

    Science.gov (United States)

    Son, Dong-Ju; Lim, Yong; Park, Young-Hyun; Chang, Sung-Keun; Yun, Yeo-Pyo; Hong, Jin-Tae; Takeoka, Gary R; Lee, Kwang-Geun; Lee, Sung-Eun; Kim, Mi-Ran; Kim, Jeong-Han; Park, Byeoung-Soo

    2006-11-03

    The antiplatelet and antiproliferative activities of extract of Tabebuia impetiginosa inner bark (taheebo) were investigated using washed rabbit platelets and cultured rat aortic vascular smooth muscle cells (VSMCs) in vitro. n-Hexane, chloroform and ethyl acetate fractions showed marked and selective inhibition of platelet aggregation induced by collagen and arachidonic acid (AA) in a dose-dependent manner. These fractions, especially the chloroform fraction, also significantly suppressed AA liberation induced by collagen in [(3)H]AA-labeled rabbit platelets. The fractions, especially the chloroform fraction, potently inhibited cell proliferation and DNA synthesis induced by platelet derived growth factor (PDGF)-BB, and inhibited the levels of phosphorylated extracellular signal regulated kinase (ERK1/2) mitogen activated protein kinase (MAPK) stimulated by PDGF-BB, in the same concentration range that inhibits VSMC proliferation and DNA synthesis.

  1. EEN regulates the proliferation and survival of multiple myeloma cells by potentiating IGF-1 secretion

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Er-Wen [Guangzhou Institute of Forensic Science, Guangzhou (China); Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou (China); Xue, Sheng-Jiang [Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou (China); Li, Xiao-Yan [Department of Pharmacy, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China); Xu, Suo-Wen [Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou (China); Cheng, Jian-Ding; Zheng, Jin-Xiang [Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou (China); Shi, He; Lv, Guo-Li; Li, Zhi-Gang; Li, Yue; Liu, Chang-Hui; Chen, Xiao-Hui; Liu, Hong [Guangzhou Institute of Forensic Science, Guangzhou (China); Li, Jie, E-mail: mdlijie@sina.com [Department of Anaesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou (China); Liu, Chao, E-mail: liuchaogaj@21cn.com [Guangzhou Institute of Forensic Science, Guangzhou (China)

    2014-05-02

    Highlights: • Levels of EEN expression paralleled with the rate of cell proliferation. • EEN was involved in the proliferation and survival of multiple myeloma (MM) cells. • EEN regulated the activity of IGF-1-Akt/mTOR pathway. • EEN regulated proliferation and survival of MM cells by enhancing IGF-1 secretion. - Abstract: The molecular mechanisms of multiple myeloma are not well defined. EEN is an endocytosis-regulating molecule. Here we report that EEN regulates the proliferation and survival of multiple myeloma cells, by regulating IGF-1 secretion. In the present study, we observed that EEN expression paralleled with cell proliferation, EEN accelerated cell proliferation, facilitated cell cycle transition from G1 to S phase by regulating cyclin-dependent kinases (CDKs) pathway, and delayed cell apoptosis via Bcl2/Bax-mitochondrial pathway. Mechanistically, we found that EEN was indispensable for insulin-like growth factor-1 (IGF-1) secretion and the activation of protein kinase B-mammalian target of rapamycin (Akt-mTOR) pathway. Exogenous IGF-1 overcame the phenotype of EEN depletion, while IGF-1 neutralization overcame that of EEN over-expression. Collectively, these data suggest that EEN may play a pivotal role in excessive cell proliferation and insufficient cell apoptosis of bone marrow plasma cells in multiple myeloma. Therefore, EEN may represent a potential diagnostic marker or therapeutic target for multiple myeloma.

  2. H2A/K pseudogene mutation may promote cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jisheng; Jing, Ruirui; Lv, Xin; Wang, Xiaoyue; Li, Junqiang; Li, Lin; Li, Cuiling; Wang, Daoguang; Bi, Baibing; Chen, Xinjun [Cancer Research Center, Shandong University School of Medicine, Jinan 250012 (China); Yang, Jing-Hua, E-mail: sdu_crc_group1@126.com [Cancer Research Center, Shandong University School of Medicine, Jinan 250012 (China); Department of Surgery, VA Boston Healthcare System, Boston University School of Medicine, Boston 510660, MA (United States)

    2016-05-15

    Highlights: • The mutant H2A/K pseudogene is active. • The mutant H2A/K pseudogene can promote cell proliferation. - Abstract: Little attention has been paid to the histone H2A/K pseudogene. Results from our laboratory showed that 7 of 10 kidney cancer patients carried a mutant H2A/K pseudogene; therefore, we were interested in determining the relationship between mutant H2A/K and cell proliferation. We used shotgun and label-free proteomics methods to study whether mutant H2A/K lncRNAs affected cell proliferation. Quantitative proteomic analysis indicated that the expression of mutant H2A/K lncRNAs resulted in the upregulation of many oncogenes, which promoted cell proliferation. Further interaction analyses revealed that a proliferating cell nuclear antigen (PCNA)-protein interaction network, with PCNA in the center, contributes to cell proliferation in cells expressing the mutant H2A/K lncRNAs. Western blotting confirmed the critical upregulation of PCNA by mutant H2A/K lncRNA expression. Finally, the promotion of cell proliferation by mutant H2A/K lncRNAs (C290T, C228A and A45G) was confirmed using cell proliferation assays. Although we did not determine the exact mechanism by which the oncogenes were upregulated by the mutant H2A/K lncRNAs, we confirmed that the mutant H2A/K lncRNAs promoted cell proliferation by upregulating PCNA and other oncogenes. The hypothesis that cell proliferation is promoted by the mutant H2A/K lncRNAs was supported by the protein expression and cell proliferation assay results. Therefore, mutant H2A/K lncRNAs may be a new factor in renal carcinogenesis.

  3. Xanthohumol inhibits proliferation of laryngeal squamous cell carcinoma.

    Science.gov (United States)

    Li, Yan; Wang, Kai; Yin, Shankai; Zheng, Hongliang; Min, Daliu

    2016-12-01

    Xanthohumol is a flavonoid compound that exhibits antioxidant and anticancer effects, and is used to treat atherosclerosis. The aim of the present study was to investigate the effect of xanthohumol on the cell proliferation of laryngeal squamous cell carcinoma and to understand the mechanism of its action. The effects of xanthohumol on the cell viability and apoptosis rate of laryngeal squamous cell carcinoma SCC4 cells were assessed by Annexin V-fluorescein isothiocyanate/propidium iodide staining. In addition, the expression levels of pro-apoptotic proteins, caspase-3, caspase-8, caspase-9, poly ADP ribose polymerase (PARP) p53 and apoptosis-inducing factor (AIF), as well as anti-apoptotic markers, B-cell lymphoma 2 (Bcl-2) and myeloid cell leukemia 1 (Mcl-1), were analyzed by western blotting. The results revealed that treatment with 40 µM xanthohumol significantly inhibited the proliferation of SCC4 cells. Furthermore, xanthohumol treatment (40 µM) induced SCC4 cell apoptosis, as indicated by the significant increase in activity and expression of caspase-3, caspase-8, caspase-9, PARP, p53 and AIF. By contrast, the protein expression of Bcl-2 and Mcl-1 was significantly decreased following treatment with 40 µM xanthohumol. Taken together, the results of the present study indicated that xanthohumol mediates growth suppression and apoptosis induction, which was mediated via the suppression of Bcl-2 and Mcl-1 and activation of PARP, p53 and AIF signaling pathways. Therefore, future studies that investigate xanthohumol as a potential therapeutic agent for laryngeal squamous cell carcinoma are required.

  4. Vasoactive intestinal peptide (VIP) inhibits human renal cell carcinoma proliferation.

    Science.gov (United States)

    Vacas, Eva; Fernández-Martínez, Ana B; Bajo, Ana M; Sánchez-Chapado, Manuel; Schally, Andrew V; Prieto, Juan C; Carmena, María J

    2012-10-01

    Clear renal cell carcinoma (cRCC) is an aggressive and fatal neoplasm. The present work was undertaken to investigate the antiproliferative potential of vasoactive intestinal peptide (VIP) exposure on non-tumoral (HK2) and tumoral (A498, cRCC) human proximal tubular epithelial cell lines. Reverse transcription and semiquantitative PCR was used at the VIP mRNA level whereas enzyme immunoanalysis was performed at the protein level. Both renal cell lines expressed VIP as well as VIP/pituitary adenylate cyclase-activating peptide (VPAC) receptors whereas only HK2 cells expressed formyl peptide receptor-like 1 (FPRL-1). Receptors were functional, as shown by VIP stimulation of adenylyl cyclase activity. Treatment with 0.1μM VIP (24h) inhibited proliferation of A498 but not HK2 cells as based on a reduction in the incorporation of [(3)H]-thymidine and BrdU (5'-Br-2'-deoxyuridine), PCNA (proliferating-cell nuclear antigen) expression and STAT3 (signal transducer and activator of transcription 3) expression and activation. VPAC(1)-receptor participation was established using JV-1-53 antagonist and siRNA transfection. Growth-inhibitory response to VIP was related to the cyclic adenosine monophosphate (cAMP)/exchange protein directly activated by cAMP (EPAC)/phosphoinositide 3-kinase (PI3-K) signaling systems as shown by studies on adenylate cyclase stimulation, and using the EPAC-specific compound 8CPT-2Me-cAMP and specific kinase inhibitors such as H89, wortmannin and PD98059. The efficacy of VIP on the prevention of tumor progression was confirmed in vivo using xenografted athymic mouse. These actions support a potential role of this peptide and its agonists in new therapies for cRCC.

  5. Adenovirus-mediated Transfer of p53 and p16 Inhibiting Proliferating Activity of Human Bladder Cancer Cell EJ in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    朱朝辉; 邢诗安; 林晨; 曾甫清; 鲁功成; 付明; 张雪艳; 梁萧; 吴旻

    2002-01-01

    Summary: To evaluate the effects of adenovirus (Ad)-mediated transfer of p53 and p16 on humanbladder cancer cells EJ, EJ were transfected with Ad-p53 and Ad-p16. Cell growth, morphologi-cal change, cell cycle, apoptosis were measured using MTT assay, flow gytometry, cloning forma-tion, immunocytochemical assays. Ad-p16 or Ad-p53 alone could inhibit the proliferating activityof EJ cells in vitro. Ad-p53 could induce apoptosis of partial EJ cells. G1 arrest was observed 72 hafter infection with Ad-p16, but apoptosis was not obvious. The transfer of Ad-p16 and Ad-p53could significantly inhibit the growth of EJ cells, decrease the cloning formation rate and induceapoptosis of large number of EJ cells. The occurrence time of subcutaneous tumor was delayed andthe tumor volume in 4 weeks was diminished by using Ad-p53 combined with Ad-p16 and the dif-ference was significant compared with using Ad-p53 or Ad-p16 alone. It was suggested that thetransfer of wild-type p53 and p16 could significantly inhibit the growth of human bladder cancer invitro and in vivo.

  6. Stimulation of neoplastic mouse lung cell proliferation by alveolar macrophage-derived, insulin-like growth factor-1 can be blocked by inhibiting MEK and PI3K activation

    Directory of Open Access Journals (Sweden)

    Malkinson Alvin M

    2011-06-01

    Full Text Available Abstract Background Worldwide, lung cancer kills more people than breast, colon and prostate cancer combined. Alterations in macrophage number and function during lung tumorigenesis suggest that these immune effector cells stimulate lung cancer growth. Evidence from cancer models in other tissues suggests that cancer cells actively recruit growth factor-producing macrophages through a reciprocal signaling pathway. While the levels of lung macrophages increase during tumor progression in mouse models of lung cancer, and high pulmonary macrophage content correlates with a poor prognosis in human non-small cell lung cancer, the specific role of alveolar macrophages in lung tumorigenesis is not clear. Methods After culturing either an immortalized lung macrophage cell line or primary murine alveolar macrophages from naïve and lung-tumor bearing mice with primary tumor isolates and immortalized cell lines, the effects on epithelial proliferation and cellular kinase activation were determined. Insulin-like growth factor-1 (IGF-1 was quantified by ELISA, and macrophage conditioned media IGF-1 levels manipulated by IL-4 treatment, immuno-depletion and siRNA transfection. Results Primary macrophages from both naïve and lung-tumor bearing mice stimulated epithelial cell proliferation. The lungs of tumor-bearing mice contained 3.5-times more IGF-1 than naïve littermates, and media conditioned by freshly isolated tumor-educated macrophages contained more IGF-1 than media conditioned by naïve macrophages; IL-4 stimulated IGF-1 production by both macrophage subsets. The ability of macrophage conditioned media to stimulate neoplastic proliferation correlated with media IGF-1 levels, and recombinant IGF-1 alone was sufficient to induce epithelial proliferation in all cell lines evaluated. Macrophage-conditioned media and IGF-1 stimulated lung tumor cell growth in an additive manner, while EGF had no effect. Macrophage-derived factors increased p-Erk1/2, p

  7. Dendritic cell-nerve clusters are sites of T cell proliferation in allergic airway inflammation.

    Science.gov (United States)

    Veres, Tibor Z; Shevchenko, Marina; Krasteva, Gabriela; Spies, Emma; Prenzler, Frauke; Rochlitzer, Sabine; Tschernig, Thomas; Krug, Norbert; Kummer, Wolfgang; Braun, Armin

    2009-03-01

    Interactions between T cells and dendritic cells in the airway mucosa precede secondary immune responses to inhaled antigen. The purpose of this study was to identify the anatomical locations where dendritic cell-T cell interactions occur, resulting in T cells activation by dendritic cells. In a mouse model of allergic airway inflammation, we applied whole-mount immunohistology and confocal microscopy to visualize dendritic cells and T cells together with nerves, epithelium, and smooth muscle in three dimensions. Proliferating T cells were identified by the detection of the incorporation of the nucleotide analogue 5-ethynyl-2'-deoxyuridine into the DNA. We developed a novel quantification method that enabled the accurate determination of cell-cell contacts in a semi-automated fashion. Dendritic cell-T cell interactions occurred beneath the smooth muscle layer, but not in the epithelium. Approximately 10% of the dendritic cells were contacted by nerves, and up to 4% of T cells formed clusters with these dendritic cells. T cells that were clustered with nerve-contacting dendritic cells proliferated only in the airways of mice with allergic inflammation but not in the airways of negative controls. Taken together, these results suggest that during the secondary immune response, sensory nerves influence dendritic cell-driven T cell activation in the airway mucosa.

  8. A Chinese Herbal Decoction, Danggui Buxue Tang, Stimulates Proliferation, Differentiation and Gene Expression of Cultured Osteosarcoma Cells: Genomic Approach to Reveal Specific Gene Activation

    Directory of Open Access Journals (Sweden)

    Roy C. Y. Choi

    2011-01-01

    Full Text Available Danggui Buxue Tang (DBT, a Chinese herbal decoction used to treat ailments in women, contains Radix Astragali (Huangqi; RA and Radix Angelicae Sinensis (Danggui; RAS. When DBT was applied onto cultured MG-63 cells, an increase of cell proliferation and differentiation of MG-63 cell were revealed: both of these effects were significantly higher in DBT than RA or RAS extract. To search for the biological markers that are specifically regulated by DBT, DNA microarray was used to reveal the gene expression profiling of DBT in MG-63 cells as compared to that of RA- or RAS-treated cells. Amongst 883 DBT-regulated genes, 403 of them are specifically regulated by DBT treatment, including CCL-2, CCL-7, CCL-8, and galectin-9. The signaling cascade of this DBT-regulated gene expression was also elucidated in cultured MG-63 cells. The current results reveal the potential usage of this herbal decoction in treating osteoporosis and suggest the uniqueness of Chinese herbal decoction that requires a well-defined formulation. The DBT-regulated genes in the culture could serve as biological responsive markers for quality assurance of the herbal preparation.

  9. Inhibition of fatty acid metabolism reduces human myeloma cells proliferation.

    Directory of Open Access Journals (Sweden)

    José Manuel Tirado-Vélez

    Full Text Available Multiple myeloma is a haematological malignancy characterized by the clonal proliferation of plasma cells. It has been proposed that targeting cancer cell metabolism would provide a new selective anticancer therapeutic strategy. In this work, we tested the hypothesis that inhibition of β-oxidation and de novo fatty acid synthesis would reduce cell proliferation in human myeloma cells. We evaluated the effect of etomoxir and orlistat on fatty acid metabolism, glucose metabolism, cell cycle distribution, proliferation, cell death and expression of G1/S phase regulatory proteins in myeloma cells. Etomoxir and orlistat inhibited β-oxidation and de novo fatty acid synthesis respectively in myeloma cells, without altering significantly glucose metabolism. These effects were associated with reduced cell viability and cell cycle arrest in G0/G1. Specifically, etomoxir and orlistat reduced by 40-70% myeloma cells proliferation. The combination of etomoxir and orlistat resulted in an additive inhibitory effect on cell proliferation. Orlistat induced apoptosis and sensitized RPMI-8226 cells to apoptosis induction by bortezomib, whereas apoptosis was not altered by etomoxir. Finally, the inhibitory effect of both drugs on cell proliferation was associated with reduced p21 protein levels and phosphorylation levels of retinoblastoma protein. In conclusion, inhibition of fatty acid metabolism represents a potential therapeutic approach to treat human multiple myeloma.

  10. A sharp T-cell antigen receptor signaling threshold for T-cell proliferation

    Science.gov (United States)

    Au-Yeung, Byron B.; Zikherman, Julie; Mueller, James L.; Ashouri, Judith F.; Matloubian, Mehrdad; Cheng, Debra A.; Chen, Yiling; Shokat, Kevan M.; Weiss, Arthur

    2014-01-01

    T-cell antigen receptor (TCR) signaling is essential for activation, proliferation, and effector function of T cells. Modulation of both intensity and duration of TCR signaling can regulate these events. However, it remains unclear how individual T cells integrate such signals over time to make critical cell-fate decisions. We have previously developed an engineered mutant allele of the critical T-cell kina