WorldWideScience

Sample records for cdx-u spheromak

  1. Investigations of Low and Moderate Harmonic Fast Wave Physics on CDX-U

    International Nuclear Information System (INIS)

    Third harmonic hydrogen cyclotron fast wave heating studies are planned in the near term on CDX-U to investigate the potential for bulk ion heating. In preparation for these studies, the available radio-frequency power in CDX-U has been increased to 0.5 MW. The operating frequency of the CDX-U radio-frequency transmitter was lowered to operate in the range of 8-10 MHz, providing access to the ion harmonic range 2* ∼ 4* in hydrogen. A similar regime is accessible for the 30 MHz radio-frequency system on the National Spherical Torus Experiment (NSTX), at 0.6 Tesla in hydrogen. Preliminary computational studies over the plasma regimes of interest for NSTX and CDX-U indicate the possibility of strong localized absorption on bulk ion species

  2. CDX-U Operation with a Large Area Liquid Lithium Limiter

    International Nuclear Information System (INIS)

    The Current Drive experiment-Upgrade (CDX-U) at the Princeton Plasma Physics Laboratory has begun experiments with a fully toroidal liquid lithium limiter. CDX-U is a compact [R = 34 cm, a = 22 cm, B(subscript)toroidal = 2 kG, I(subscript)P = 100 kA, T(subscript)e(0) ∼ 100 eV, n(subscript)e(0) ∼ 5 x 1019 m-3] short-pulse (<25 msec) spherical torus with extensive diagnostics. The limiter, which consists of a shallow circular stainless steel tray of radius 34 cm and width 10 cm, can be filled with lithium to a depth of a few millimeters, and forms the lower limiting surface for the discharge. Heating elements beneath the tray are used to liquefy the lithium prior to the experiment. Surface coatings are evident on part of the lithium. Despite the surface coatings, tokamak discharges operated in contact with the lithium-filled tray show evidence of reduced impurities and recycling. The reduction in recycling is largest when the lithium is liquefied by heating to 250 degrees Celsius

  3. Results from the CDX-U lithium wall and NSTX lithium pellet experiments

    International Nuclear Information System (INIS)

    Full text: CDX-U has been operated with the vacuum vessel wall and limiter surfaces nearly completely coated with lithium, with dramatic improvements to plasma performance. Discharges achieved global energy confinement times of up to 5-6 ms, exceeding previous CDX-U results by 5x, and ITER98P(y1) scaling by 2-3x. Lithium wall coatings were applied by electron beam-induced evaporation of a lithium-filled limiter and vapor deposition from a resistively heated lithium-filled oven, up to 1000 Angstrom thick, between discharges. The e-beam experiments also produced up to 60 MW/m2 power density in a 0.3 cm2 spot. Total beam power was modest (1.6 kW), but duration was up to 300 seconds. Convective transport of heat away from the beam spot was so effective that the entire lithium inventory (140 g), rather than just the area under the beam spot, was heated to evaporation (400-500 deg C). There was no observable hot spot within the beam footprint to the limit of resolution (10 deg C) of an infrared-red camera, which imaged the surface of the lithium during beam heating. These results are promising for the future implementation of lithium plasma-facing components in reactor scale devices. Lithium coating of carbon PFCs has been initiated also on NSTX, to control the density rise during long-duration H-modes, and to optimize density profiles for non-inductive current sustainment. Lithium pellets were injected into ohmically heated helium plasmas to deposit lithium on plasma contact areas. In the first experiment, pellets were injected into repeated ohmic helium discharges to deposit about 30 mg of lithium on the Center Stack Limiter. A following deuterium reference discharge with NBI exhibited a reduction in the volume-average density by a factor of about four and a peaked density profile. In a similar subsequent experiment, diverted, Lower Single-Null helium discharges about 25 mg of lithium was deposited on the lower divertor. The density exhibited a factor of about two

  4. Results from the CDX-U lithium wall and NSTX lithium pellet experiments

    International Nuclear Information System (INIS)

    CDX-U has been operated with the vacuum vessel wall and limiter surfaces nearly completely coated with lithium, with dramatic improvements to plasma performance. Discharges achieved global energy confinement times of up to 5-6 ms, exceeding previous CDX-U results by 5x, and ITER98P(y1) scaling by 2-3. Lithium wall coatings up to A thick were applied between discharges by electron-beam-induced evaporation of a lithium-filled limiter and vapor deposition from a resistively heated oven. The e-beam power was modest (1.6 kW) but it produced up to 60 MW/m2 power density in a 0.3 cm2 spot; the duration was up to 300 s. Convective transport of heat away from the beam spot was so effective that the entire lithium inventory (140 g) was heated to evaporation (400-500 deg. C) and there was no observable hot spot on the lithium surface within the beam footprint. These results are promising for use of lithium plasma-facing components in reactor scale devices. Lithium coating has been applied to NSTX carbon plasma-facing surfaces, to control the density rise during long-duration H-modes for non-inductive current sustainment. First, lithium pellets were injected into sequences of Ohmically heated helium plasmas in both center stack limiter (CSL) and lower single-null divertor (LSND) configurations to deposit a total of 25-30 mg of lithium on the respective plasma contact areas. In both cases, the first subsequent L mode, deuterium discharge with NBI showed a reduction in the volume-average density by a factor ∼3 compared to lithium discharges before the lithium coating. Recently, a lithium evaporator was installed aimed toward the graphite tiles of the lower center stack and divertor. Twelve depositions, ranging from about 10 mg to 5 g of lithium, were performed. The effects on LSND L-mode, double-null divertor (DND) H-mode, and DND reversed-shear plasmas were variable but, immediately after coating, there were decreases in the density and significant increases in the electron

  5. Results from the CDX-U Lithium Wall and NSTX Lithium Pallet Injection and Evaporation Experiments

    International Nuclear Information System (INIS)

    CDX-U has been operated with the vacuum vessel wall and limiter surfaces nearly completely coated with lithium, producing dramatic improvements to plasma performance. Discharges achieved global energy confinement times up to 6 ms, exceeding previous CDX-U results by a factor of 5, and ITER98P(y,1) scaling by 2-3. Lithium wall coatings up to 1000 (angstrom) thick were applied between discharges by electron-beam-induced evaporation of a lithium-filled limiter and vapor deposition from a resistively heated oven. The e-beam power was modest (1.6 kW) but it produced up to 60 MW/m2 power density in a 0.3 cm2 spot; the duration was up to 300 s. Convective transport of heat away from the beam spot was so effective that the entire lithium inventory (140 g) was heated to evaporation (400-500 C) and there was no observable hot spot on the lithium surface within the beam footprint. These results are promising for use of lithium plasma-facing components in reactor scale devices. Lithium coating has also been applied to NSTX carbon plasma-facing surfaces, to control the density rise during long-duration H-modes for non-inductive current sustainment. First, lithium pellets were injected into sequences of Ohmically heated helium plasmas in both center stack limiter (CSL) and lower single-null divertor (LSND) configurations to deposit a total of 25-30 mg of lithium on the respective plasma contact areas. In both cases, the first subsequent L mode, deuterium discharge with NBI showed a reduction in the volume-average density by a factor ∼3 compared to similar discharges before the lithium coating. Recently, a lithium evaporator was installed aimed toward the graphite tiles of the lower center stack and divertor. Twelve depositions, ranging from about 10 mg to 5 g of lithium, were performed. The effects on LSND L-mode, double-null divertor (DND) H-mode, and DND reversed-shear plasmas were variable but, immediately after coating, there were decreases in the density and significant

  6. Spherical torus plasma interactions with large-area liquid lithium surfaces in CDX-U

    International Nuclear Information System (INIS)

    The current drive experiment-upgrade (CDX-U) device at the Princeton Plasma Physics Laboratory (PPPL) is a spherical torus (ST) dedicated to the exploration of liquid lithium as a potential solution to reactor first-wall problems such as heat load and erosion, neutron damage and activation, and tritium inventory and breeding. Initial lithium limiter experiments were conducted with a toroidally-local liquid lithium rail limiter (L3) from the University of California at San Diego (UCSD). Spectroscopic measurements showed a clear reduction of impurities in plasmas with the L3, compared to discharges with a boron carbide limiter. The evidence for a reduction in recycling was less apparent, however. This may be attributable to the relatively small area in contact with the plasma, and the presence of high-recycling surfaces elsewhere in the vacuum chamber. This conclusion was tested in subsequent experiments with a fully toroidal lithium limiter that was installed above the floor of the vacuum vessel. The new limiter covered over ten times the area of the L3 facing the plasma. Experiments with the toroidal lithium limiter have recently begun. This paper describes the conditioning required to prepare the lithium surface for plasma operations, and effect of the toroidal liquid lithium limiter on discharge performance

  7. Stabilized Spheromak Fusion Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, T

    2007-04-03

    The U.S. fusion energy program is focused on research with the potential for studying plasmas at thermonuclear temperatures, currently epitomized by the tokamak-based International Thermonuclear Experimental Reactor (ITER) but also continuing exploratory work on other plasma confinement concepts. Among the latter is the spheromak pursued on the SSPX facility at LLNL. Experiments in SSPX using electrostatic current drive by coaxial guns have now demonstrated stable spheromaks with good heat confinement, if the plasma is maintained near a Taylor state, but the anticipated high current amplification by gun injection has not yet been achieved. In future experiments and reactors, creating and maintaining a stable spheromak configuration at high magnetic field strength may require auxiliary current drive using neutral beams or RF power. Here we show that neutral beam current drive soon to be explored on SSPX could yield a compact spheromak reactor with current drive efficiency comparable to that of steady state tokamaks. Thus, while more will be learned about electrostatic current drive in coming months, results already achieved in SSPX could point to a productive parallel development path pursuing auxiliary current drive, consistent with plans to install neutral beams on SSPX in the near future. Among possible outcomes, spheromak research could also yield pulsed fusion reactors at lower capital cost than any fusion concept yet proposed.

  8. Spheromak injection into a tokamak

    OpenAIRE

    Brown, M R; Bellan, P. M.

    1990-01-01

    Recent results from the Caltech spheromak injection experiment [to appear in Phys. Rev. Lett.] are reported. First, current drive by spheromak injection into the ENCORE tokamak as a result of the process of magnetic helicity injection is observed. An initial 30% increase in plasma current is observed followed by a drop by a factor of 3 because of sudden plasma cooling. Second, spheromak injection results in an increase of tokamak central density by a factor of 6. The high-current/high-density...

  9. Radiated power accounting and impurity transport estimates at the CDX-U spherical torus using photodiode arrays and FUV spectroscopy.

    Science.gov (United States)

    Soukhanovskii, V. A.; Stutman, D.; Iovea, M.; Finkenthal, M.; Moos, H. W.; Hoffman, D.; Munsat, T.; Menard, J.; Majeski, R.; Kaita, R.; Jones, B.; Spaleta, J.; Taylor, G.; Efthimion, P.

    1999-11-01

    The recently installed tangentially viewing ten channel fast AXUV diode array, together with poloidally viewing spectrally filtered SXR arrays, the XUV, FUV, visible spectrometers and the fast filtered CCD camera are used for radiated power measurements and intrinsic impurity transport estimates at the CDX-U spherical torus, in plasmas with tens of kA current and temperature in sub-hundred eV range. The inferred carbon, oxygen and hydrogen emissivity profiles and measured Te and ne profiles are used as inputs for impurity transport and collisional-radiative models. Bolometric corrections are derived to account for non-linearity of the AXUV diode spectral response to lower energy photons. The impact of charge exchange between impurity ions and neutrals on impurity transport and radiated power is investigated. The temperature diagnostics potential of the CIV/CV spectral line ratio is discussed and comparisons to the Thomson scattering and EBW measurements are made. This work is supported by U.S. DoE Grant DE-FG02-86ER53214 at JHU and DoE Contract No. DE-AC02-76-CHO-3073 at PPPL.

  10. Theoretical issues in Spheromak research

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, R. H.; Hooper, E. B.; LoDestro, L. L.; Mattor, N.; Pearlstein, L. D.; Ryutov, D. D.

    1997-04-01

    This report summarizes the state of theoretical knowledge of several physics issues important to the spheromak. It was prepared as part of the preparation for the Sustained Spheromak Physics Experiment (SSPX), which addresses these goals: energy confinement and the physics which determines it; the physics of transition from a short-pulsed experiment, in which the equilibrium and stability are determined by a conducting wall (``flux conserver``) to one in which the equilibrium is supported by external coils. Physics is examined in this report in four important areas. The status of present theoretical understanding is reviewed, physics which needs to be addressed more fully is identified, and tools which are available or require more development are described. Specifically, the topics include: MHD equilibrium and design, review of MHD stability, spheromak dynamo, and edge plasma in spheromaks.

  11. Comparison of Spheromaks and FRCs

    International Nuclear Information System (INIS)

    Within the past year there have been dramatic advances in both the Spheromak and FRC branches of the Compact Toroid (CT) research program. The long-troublesome n=2 rotational instability has been controlled in FRC experiments at Osaka University and MSNW, while improved impurity control techniques have lead to the extension of spheromak configurational lifetimes to the 1 ms range at LANL and Osaka. It thus seems appropriate, on the occasion of this 5th CT Symposium, to compare the two approaches with respect to present status and potential for extrapolation to reactors and critical research needs

  12. Sustained Spheromak Physics Experiment, SSPX

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, E.B.

    1997-05-15

    The Sustained Spheromak Physics Experiment is proposed for experimental studies of spheromak confinement issues in a controlled way: in steady state relative to the confinement timescale and at low collisionality. Experiments in a flux - conserver will provide data on transport in the presence of resistive modes in shear-stabilized systems and establish operating regimes which pave the way for true steady-state experiments with the equilibrium field supplied by external coils. The proposal is based on analysis of past experiments, including the achievement of T{sub e} = 400 eV in a decaying spheromak in CTX. Electrostatic helicity injection from a coaxial ``gun`` into a shaped flux conserver will form and sustain the plasma for several milliseconds. The flux conserver minimizes fluxline intersection with the walls and provides MHD stability. Improvements from previous experiments include modem wall conditioning (especially boronization), a divertor for density and impurity control, and a bias magnetic flux for configurational flexibility. The bias flux will provide innovative experimental opportunities, including testing helicity drive on the large-radius plasma boundary. Diagnostics include Thomson scattering for T{sub e} measurements and ultra-short pulse reflectrometry to measure density and magnetic field profiles and turbulence. We expect to operate at T{sub e} of several hundred eV, allowing improved understanding of energy and current transport due to resistive MHD turbulence during sustained operation. This will provide an exciting advance in spheromak physics and a firm basis for future experiments in the fusion regime.

  13. Spheromak Impedance and Current Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, T K; Hua, D D; Stallard, B W

    2002-01-31

    It is shown that high current amplification can be achieved only by injecting helicity on the timescale for reconnection, {tau}{sub REC}, which determines the effective impedance of the spheromak. An approximate equation for current amplification is: dI{sub TOR}{sup 2}/dt {approx} I{sup 2}/{tau}{sub REC} - I{sub TOR}{sup 2}/{tau}{sub closed} where I is the gun current, I{sub TOR} is the spheromak toroidal current and {tau}{sub CLOSED} is the ohmic decay time of the spheromak. Achieving high current amplification, I{sub TOR} >> I, requires {tau}{sub REC} <<{tau}{sub CLOSED}. For resistive reconnection, this requires reconnection in a cold zone feeding helicity into a hot zone. Here we propose an impedance model based on these ideas in a form that can be implemented in the Corsica-based helicity transport code. The most important feature of the model is the possibility that {tau}{sub REC} actually increases as the spheromak temperature increases, perhaps accounting for the ''voltage sag'' observed in some experiments, and a tendency toward a constant ratio of field to current, B {proportional_to} I, or I{sub TOR} {approx} I. Program implications are discussed.

  14. Development of the STPX Spheromak System

    Science.gov (United States)

    Williams, R. L.; Clark, J.; Weatherford, C. A.

    2015-11-01

    The progress made in starting up the STPX Spheromak system, which is now installed at the Florida A&M University, is reviewed. Experimental, computational and theoretical activities are underway. The control system for firing the magnetized coaxial plasma gun and for collecting data from the diagnostic probes, based on LabView, is being tested and adapted. Preliminary results of testing the installed magnetic field probes, Langmuir triple probes, cylindrical ion probes, and optical diagnostics will be discussed. Progress in modeling this spheromak using simulation codes, such as NIMROD, will be discussed. Progress in investigating the use of algebraic topology to describe this spheromak will be reported.

  15. Dynamics of whistler spheromaks in magnetized plasmas.

    Science.gov (United States)

    Eliasson, B; Shukla, P K

    2007-11-16

    Recent laboratory experiments [Stenzel et al., Phys. Rev. Lett. 96, 095004 (2006)10.1103/PhysRevLett.96.095004] have demonstrated interesting phenomena of propagating nonlinear whistler structures (spheromaks) and stationary field-reversed configurations, whose magnetic fields exceed the ambient magnetic field strength. Our objective here is to present simulation studies for these nonlinear whistler structures based on the three-dimensional nonlinear electron magnetohydrodynamic equations. The robustness and longevity of the propagating whistler spheromaks found in the experiments are confirmed numerically. Varying the toroidal field of the spheromak in the initial conditions, we find that the polarity and the amplitude of the toroidal field determine the propagation direction and speed of the spheromak. Our simulation results are in excellent agreement with those observed in the laboratory experiments.

  16. Advances in spheromak understanding and parameters

    International Nuclear Information System (INIS)

    A spheromak is a toroidally-shaped magnetized plasma configuration in which no material links the torus so that the topology of the spheromak boundary is spherical. The magnetic fields in the plasma are generated by the internal plasma currents. In the period of ten years since the properties of a nearly force-free spheromak configuration were described using single-fluid MHD theory, remarkable theoretical and experimental advances have been made. This paper highlights some of that work. Spheromak not only have been successfully produced in the laboratory using a variety of methods, but also translated, compressed and stably sustained for many resistive-decay times. Spheromak formation, equilibrium and stability to current-driven modes have been successfully modeled by single-fluid MHD coupled with the concepts of magnetic helicity and relaxation toward the minimum-energy force-free state. There is evidence, however, that the relaxation mechanism which drives parallel plasma currents is due to effects beyond the scope of single-fluid resistive MHD. The confinement properties of clean spheromaks have been measured, and shown to be excellent, provided the fraction of open magnetic flux at the edge is decreased sufficiently. It has been shown theoretically how plasma left-angle β right-angle vol limits of ∼10% can be obtained by properly shaping either the conducting wall geometry or the spheromak current profile. In addition to studies directly relating to fusion, the use of spheromaks for other goals is briefly described, including tokamak refueling, radiation production, magnetically-insulted inertially confined fusion, demonstration of helicity injection by mechanical means, and energy storage/transfer to accelerate fast metallic projectiles

  17. EUV spectroscopy on the SSPX spheromak

    Energy Technology Data Exchange (ETDEWEB)

    Clementson, J T; Beiersdorfer, P; Gu, M F; McLean, H S; Wood, R D

    2008-03-17

    EUV plasma spectroscopy is one the diagnostics implemented at the Sustained Spheromak Physics Experiment (SSPX) at the Lawrence Livermore National Laboratory. A grating spectrometer covering the spectral region of 25-450 {angstrom} with a resolution of 0.4 {angstrom} was used as an impurity diagnostic to monitor the plasmas and to carry out atomic physics research. Several low-Z impurities have been found in the spheromak, notably B, C, N, and O. Of the heavier elements, Ti, Cu, and W were found in the plasmas. As a relatively dense and low-temperature laboratory plasma device, SSPX served as an excellent radiation source for investigation of atomic spectra in a regime not readily attained in other devices. We have injected atomic titanium and tungsten hexacarbonyl into the spheromak under different operating conditions. We also report on electron temperature and electron density measurements based on the K{alpha} lines from B IV at 60 {angstrom}.

  18. Reconnection in Spheromak formation and sustainment

    International Nuclear Information System (INIS)

    The Spheromak is a magnetic confinement device that is being explored in both the US and Japanese fusion programs. It is a member of the Compact Torus family of magnetic structures characterized by a set of closed, nested toroidal flux surfaces but without any coils, transformer cores, etc. protruding through the hole in the torus. The Speromak is closely elated to the Reversed Field Pinch (RFP) in that most of the magnetic field is produced by plasma currents flowing along the magnetic field lines (a near force free field) rather than by external coils. The Spheromak has magnetic field components of comparable strength in both the toroidal (azimuthal) and poloidal (in the plane perpendicular to the azimuthal unit vector) directions. The large internal magnetic energy in the Spheromak makes it rich in magnetohydrodynamic phenomena and reconnection, in particular, plays an important role in the formation, resistive decay and instability processes

  19. The Spheromak path to fusion energy

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, E.B., Barnes, C.W., Bellan, P.M., [and others

    1998-04-01

    The spheromak is a simple and robust magnetofluid configuration with several attractive reactor attributes including compact geometry, no material center post, high engineering {beta}, and sustained steady state operation through helicity injection. Spheromak physics was extensively studied in the US program and abroad (especially Japan) in the 1980` s with work continuing into the 1990s in Japan and the UK. Scientific results included demonstration of self-organization at constant helicity, control of the tilt and shift modes by shaped flux conservers, elucidation of the role of magnetic reconnection in the magnetic dynamo, and sustainment of a spheromak by helicity injection. Several groups attained electron temperatures above 100 eV in decaying plasmas, with CTX reaching 400 eV. This experiment had high magnetic field (>l T on the edge and {approximately} 3 T near the symmetry axis) and good confinement. More recently, analysis of CTX found the energy confinement in the plasma core to be consistent with Rechester-Rosenbluth transport in a fluctuating magnetic field, potentially scaling to good confinement at higher electron temperatures. The SPHEX group developed an understanding of the dynamo in sustained spheromaks but in a relatively cold device. These and other physics results provide a foundation for a new ``concept exploration`` experiment to study the physics of a hot, sustained spheromak. If successful, this work leads to a next generation, proof-of-principle program. The new SSPX experiment will address the physics of a large-scale sustained spheromak in a national laboratory (LLNL) setting. The key issue in near term spheromak research will be to explore the possibly deleterious effects of sustainment on confinement. Other important issues include exploring the {beta} scaling of confinement, scaling with Lundquist number S, and determining the need for active current-profile control. Collaborators from universities and other national laboratories are

  20. MHD stable high beta spheromak equilibrium

    International Nuclear Information System (INIS)

    Recent observations of a pressure driven mode in CTX indicate that its performance is being limited by the low beta stability requirements typical of conventional spheromak designs. Improved designs with higher beat limits therefore have the potential to dramatically increase the temperature and lifetime of CTX and other spheromak experiments. This paper describes the results of an optimization study examining radically different geometries, but all with minimum energy current profiles which can easily be created experimentally and should be automatically stable to all ideal and resistive current drive modes. 2 refs., 3 figs

  1. NIMROD Resistive Magnetohydrodynamic Simulations of Spheromak Physics

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, E B; Cohen, B I; McLean, H S; Wood, R D; Romero-Talamas, C A; Sovinec, C R

    2007-12-11

    The physics of spheromak plasmas is addressed by time-dependent, three-dimensional, resistive magneto-hydrodynamic simulations with the NIMROD code. Included in some detail are the formation of a spheromak driven electrostatically by a coaxial plasma gun with a flux-conserver geometry and power systems that accurately model the Sustained Spheromak Physics Experiment (SSPX) (R. D. Wood, et al., Nucl. Fusion 45, 1582 (2005)). The controlled decay of the spheromak plasma over several milliseconds is also modeled as the programmable current and voltage relax, resulting in simulations of entire experimental pulses. Reconnection phenomena and the effects of current profile evolution on the growth of symmetry-breaking toroidal modes are diagnosed; these in turn affect the quality of magnetic surfaces and the energy confinement. The sensitivity of the simulation results address variations in both physical and numerical parameters, including spatial resolution. There are significant points of agreement between the simulations and the observed experimental behavior, e.g., in the evolution of the magnetics and the sensitivity of the energy confinement to the presence of symmetry-breaking magnetic fluctuations.

  2. Steady-state spheromak reactor studies

    International Nuclear Information System (INIS)

    After summarizing the essential elements of a gun-sustained spheromak, the potential for a steady-state is explored by means of a comprehensive physics/engineering/costing model. A range of cost-optimized reactor design points is presented, and the sensitivity of cost to key physics, engineering, and operational variables is reported

  3. The evolution of a decaying spheromak

    Science.gov (United States)

    Sgro, A. G.; Mirin, A. A.; Marklin, G.

    1987-10-01

    The evolution of a low beta spheromak initially in a two-dimensional stable equilibrium having a constant J/B (the so-called minimum energy state) is calculated within the context of resistive magnetohydrodynamics. Since the initial equilibrium is stable, the spheromak at first resistively evolves through a sequence of stable quasiequilibria. This phase of the evolution is calculated with a transport code in which the resistivity is assumed to be largest at the wall and lowest at the magnetic axis. Resistive diffusion causes the safety factor q to decrease everywhere while decreasing fastest near the wall. The quasiequilibria through which the spheromak evolves are tested for stability with both an ideal linear stability code and a resistive one. The results of both stability codes are in basic agreement and show that when q drops to below (1)/(2) everywhere the spheromak becomes unstable to an n=2 mode. The agreement of the stability codes implies that the unstable mode is a resistively modified ideal mode. The unstable equilibrium is used as the initial condition in a 3-D nonlinear magnetohydrodynamic simulation. This simulation shows that after the unstable mode saturates, the spheromak resistively evolves through a sequence of three-dimensional quasiequilibria until it reaches another unstable configuration, after which it approaches the 2-D minimum energy state again. This evolutionary cycle can conceivably start again, unless the cycle time becomes comparable to the configuration decay time, which happens at high S. One consequence of the evolutionary cycle is that as the 3-D spheromak approaches the minimum energy state, the magnetic axis and hot plasma near it approach the wall and a new magnetic axis is formed. At high enough S, when the cycle time is comparable to the configuration lifetime, this convective heat loss mechanism is minimized. The 3-D code predicts that only the n=0 and n=2 modes are active. Simulations in which the n=1, 3, and 4 modes are

  4. 3D MHD Simulations of Spheromak Compression

    Science.gov (United States)

    Stuber, James E.; Woodruff, Simon; O'Bryan, John; Romero-Talamas, Carlos A.; Darpa Spheromak Team

    2015-11-01

    The adiabatic compression of compact tori could lead to a compact and hence low cost fusion energy system. The critical scientific issues in spheromak compression relate both to confinement properties and to the stability of the configuration undergoing compression. We present results from the NIMROD code modified with the addition of magnetic field coils that allow us to examine the role of rotation on the stability and confinement of the spheromak (extending prior work for the FRC). We present results from a scan in initial rotation, from 0 to 100km/s. We show that strong rotational shear (10km/s over 1cm) occurs. We compare the simulation results with analytic scaling relations for adiabatic compression. Work performed under DARPA grant N66001-14-1-4044.

  5. Simulation of Spheromak Evolution and Energy Confinement

    International Nuclear Information System (INIS)

    Simulation results are presented that illustrate the formation and decay of a spheromak plasma driven by a coaxial electrostatic plasma gun, and that model the energy confinement of the plasma. The physics of magnetic reconnection during spheromak formation is also illuminated. The simulations are performed with the three-dimensional, time-dependent, resistive magnetohydrodynamic NIMROD code. The simulation results are compared to data from the SSPX spheromak experiment at the Lawrence Livermore National Laboratory. The simulation results are tracking the experiment with increasing fidelity (e.g., improved agreement with measurements of the magnetic field, fluctuation amplitudes, and electron temperature) as the simulation has been improved in its representations of the geometry of the experiment (plasma gun and flux conserver), the magnetic bias coils, and the detailed time dependence of the current source driving the plasma gun, and uses realistic parameters. The simulations are providing a better understanding of the dominant physics in SSPX, including when the flux surfaces close and the mechanisms limiting the efficiency of electrostatic drive

  6. Computational studies of ohmic heating in the spheromak

    International Nuclear Information System (INIS)

    Time-dependent computational simulations using both single-fluid O-D and two-fluid 1 1/2-D models are developed for and utilized in an investigation of the ohmic heating of a spheromak plasma. The plasma density and composition, the applied magnetic field strength, the plasma size, and the plasma current density profile are considered for their effects on the spheromak heating rate and maximum achievable temperature. The feasibility of ohmic ignition of a reactor-size spheromak plasma is also contemplated

  7. Design Point for a Spheromak Compression Experiment

    Science.gov (United States)

    Woodruff, Simon; Romero-Talamas, Carlos A.; O'Bryan, John; Stuber, James; Darpa Spheromak Team

    2015-11-01

    Two principal issues for the spheromak concept remain to be addressed experimentally: formation efficiency and confinement scaling. We are therefore developing a design point for a spheromak experiment that will be heated by adiabatic compression, utilizing the CORSICA and NIMROD codes as well as analytic modeling with target parameters R_initial =0.3m, R_final =0.1m, T_initial =0.2keV, T_final =1.8keV, n_initial =1019m-3 and n_final = 1021m-3, with radial convergence of C =3. This low convergence differentiates the concept from MTF with C =10 or more, since the plasma will be held in equilibrium throughout compression. We present results from CORSICA showing the placement of coils and passive structure to ensure stability during compression, and design of the capacitor bank needed to both form the target plasma and compress it. We specify target parameters for the compression in terms of plasma beta, formation efficiency and energy confinement. Work performed under DARPA grant N66001-14-1-4044.

  8. Ion temperature measurements in the Maryland Spheromak

    Energy Technology Data Exchange (ETDEWEB)

    Gauvreau, J.L.

    1992-12-31

    Initial spectroscopic data from MS showed evidence of ion heating as deduced from the line widths of different ion species. Detailed measurements of OIV spectral emission line profiles in space and time revealed that heating takes place at early time, before spheromak formation and is occurring within the current discharge. The measured ion temperature is several times the electron temperature and cannot be explained by classical (Spitzer) resistivity. Classically, ions are expected to have lower temperatures than the electrons and therefore, lower temperatures than observed. High ion temperatures have been observed in different RFP`s and Spheromaks but are usually associated with relaxation to the Taylor state and occur in the sustainment phase. During formation, the current delivered to start the discharge is not axisymmetric and as a consequence, X-points appear in the magnetic flux. A two dimensional analysis predicts that magnetic reconnection occurring at an X-point can give rise to high ion heating rates. A simple 0-dimensional calculation showed that within the first 20 {mu}s, a conversion of mass flow kinetic energy into ion temperature could take place due to viscosity.

  9. Ion temperature measurements in the Maryland Spheromak

    International Nuclear Information System (INIS)

    Initial spectroscopic data from MS showed evidence of ion heating as deduced from the line widths of different ion species. Detailed measurements of OIV spectral emission line profiles in space and time revealed that heating takes place at early time, before spheromak formation and is occurring within the current discharge. The measured ion temperature is several times the electron temperature and cannot be explained by classical (Spitzer) resistivity. Classically, ions are expected to have lower temperatures than the electrons and therefore, lower temperatures than observed. High ion temperatures have been observed in different RFP's and Spheromaks but are usually associated with relaxation to the Taylor state and occur in the sustainment phase. During formation, the current delivered to start the discharge is not axisymmetric and as a consequence, X-points appear in the magnetic flux. A two dimensional analysis predicts that magnetic reconnection occurring at an X-point can give rise to high ion heating rates. A simple 0-dimensional calculation showed that within the first 20 μs, a conversion of mass flow kinetic energy into ion temperature could take place due to viscosity

  10. Theory of edge plasma in a spheromak

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, E.B., LLNL

    1998-05-01

    Properties of the edge plasma in the SSPX spheromak during the plasma formation and sustainment phases are discussed. For the breakdown and formation phase, the main emphasis is on the analysis of possible plasma contamination by impurities from the electrodes of the plasma gun (helicity injector). The issue of an azimuthally uniform breakdown initiation is also discussed. After the plasma settles down in the main vacuum chamber, one has to sustain the current between the electrodes, in order to continuously inject helicity. We discuss properties of the plasma on the field lines intersecting the electrodes. We conclude that the thermal balance of this plasma is maintained by Joule heating competing with parallel heat losses to the electrodes. The resulting plasma temperature is in the range of 15 - 30 eV. Under the expected operational conditions, the ``current`` velocity of the electrons is only slightly below their thermal velocity. Implications of this observation are briefly discussed.

  11. Ion kinetic effect for the bifurcated relaxation of merging spheromaks

    Science.gov (United States)

    Kawamori, Eiichirou; Ono, Yasushi; Tsuruda, Mayuko; Murata, Yukihiro; Katsurai, Makoto

    2002-11-01

    It is found that the merging spheromaks relax either into a high beta Field-Reversed Configuration(FRC) or into a spheromak in TS-3, depending on whether the initial magnetic helicity is smaller or larger than a threshold value. [1] In this study, ion kinetic effect for the relaxation was investigated in the discharge of various ion mass species such as hydrogen and helium, argon plasmas. Under the various ratios of the initial poloidal fluxes ψ_left/ ψ_right of the merging spheromaks, the poloidal eigen value λ ≡ I/ ψ of a new spheromak was measured and compared among above ion species. Here I is the poloidal current function. As a result, also in the TS-4 device, the bifurcated relaxation to a high beta configuration(FRC like) and a force-free configuration(Taylor state) was observed. No clear difference of the threshold value of ψ_left/ ψ_right to relax into the λ ˜ 0 configration was observed among abobe ion species. However, the decaying time of the magnetic configration was remarkably different at λ ˜ 0 among these ion species. We also show the experimental relults such as the correlation between the troidal mode amplitude and the relaxed state of the spheromak. [1] Y. Ono, A. Morita, T. Itagaki, and M. Katsurai, Plasma Physics and Controlled Nuclear Fusion Research (International Atomic Energy Agency, Vienna, 1992), Vol. 2, p. 619; Y. Ono, Fusion Technol. 27, 369 (1995).

  12. Simulation of Spheromak Evolution and Energy Confinement

    Science.gov (United States)

    Cohen, Bruce I.

    2004-11-01

    Electron temperatures near 400 eV were observed transiently in the Los Alamos CTX spheromak experiment.[1] Temperatures of 100-200 eV have been observed in the SSPX spheromak.[2] Understanding the energy confinement in these experiments is a challenging problem. Results from numerical simulations with the NIMROD nonlinear resistive MHD code (at zero or finite plasma pressure) have shown that closed flux surfaces with net current can arise only after electrostatic drive is reduced.[3,4] Computations in the last year have directly investigated the importance of inductive effects on energy confinement including the evolution of the temperature and number density using thermal transport coefficients, electrical resistivity, and Ohmic heating that are appropriate for collisional plasmas. In conditions with sustained coaxial electrostatic drive, the cold edge plasma impedes parallel thermal conduction to the wall, despite the chaotic magnetic topology, allowing the plasma core temperature to reach tens of eVs. When the drive is temporarily removed, relatively symmetric closed flux surfaces form. Magnetic reconnection occurs rapidly in the cold outer plasma, and core temperatures increase toward 100 eV or more. Applying a second current pulse, as in some SSPX discharges,[5] is shown to improve performance by delaying the onset of MHD modes that are resonant in the closed-flux region, and higher current, increased magnetic fields, and larger volumes of closed flux can be achieved. The simulations reveal the sensitivity with respect to symmetry-breaking magnetic fluctuations of the magnetic surfaces and the energy confinement. We present a detailed comparison of results from nonlinear simulations with laboratory measurements from SSPX[5,6] and assess transport mechanisms through computational diagnostics. The simulation results are yielding electron temperatures and other features agreeing well with SSPX observations. [1] T. R. Jarboe, Plasma Phys. Control. Fusion 36, 945

  13. Power balance and characterization of impurities in the Maryland Spheromak

    International Nuclear Information System (INIS)

    The Maryland Spheromak is a medium size magnetically confined plasma of toroidal shape. Low Te and higher ne than expected contribute to produce a radiation dominated short-lived spheromak configuration. A pyroelectric radiation detector and a VUV spectrometer have been used for space and time-resolved measurements of radiated power and impurity line emission. Results from the bolometry and VUV spectroscopy diagnostics have been combined to give the absolute concentrations of the major impurity species together with the electron temperature. The large amount of oxygen and nitrogen ions in the plasma very early in the discharge is seen to be directly responsible for the abnormally high electron density. The dominant power loss mechanisms are found to be radiation (from impurity line emission) and electron convection to the end walls during the formation phase of the spheromak configuration, and radiation only during the decay phase

  14. Power balance and characterization of impurities in the Maryland Spheromak

    Energy Technology Data Exchange (ETDEWEB)

    Cote, C.

    1993-12-31

    The Maryland Spheromak is a medium size magnetically confined plasma of toroidal shape. Low T{sub e} and higher n{sub e} than expected contribute to produce a radiation dominated short-lived spheromak configuration. A pyroelectric radiation detector and a VUV spectrometer have been used for space and time-resolved measurements of radiated power and impurity line emission. Results from the bolometry and VUV spectroscopy diagnostics have been combined to give the absolute concentrations of the major impurity species together with the electron temperature. The large amount of oxygen and nitrogen ions in the plasma very early in the discharge is seen to be directly responsible for the abnormally high electron density. The dominant power loss mechanisms are found to be radiation (from impurity line emission) and electron convection to the end walls during the formation phase of the spheromak configuration, and radiation only during the decay phase.

  15. Confinement Studies in High Temperature Spheromak Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hill, D N; Mclean, H S; Wood, R D; Casper, T A; Cohen, B I; Hooper, E B; LoDestro, L L; Pearlstein, L D; Romero-Talamas, C

    2006-10-23

    Recent results from the SSPX spheromak experiment demonstrate the potential for obtaining good energy confinement (Te > 350eV and radial electron thermal diffusivity comparable to tokamak L-mode values) in a completely self-organized toroidal plasma. A strong decrease in thermal conductivity with temperature is observed and at the highest temperatures, transport is well below that expected from the Rechester-Rosenbluth model. Addition of a new capacitor bank has produced 60% higher magnetic fields and almost tripled the pulse length to 11ms. For plasmas with T{sub e} > 300eV, it becomes feasible to use modest (1.8MW) neutral beam injection (NBI) heating to significantly change the power balance in the core plasma, making it an effective tool for improving transport analysis. We are now developing detailed designs for adding NBI to SSPX and have developed a new module for the CORSICA transport code to compute the correct fast-ion orbits in SSPX so that we can simulate the effect of adding NBI; initial results predict that such heating can raise the electron temperature and total plasma pressure in the core by a factor of two.

  16. Homopolar Gun for Pulsed Spheromak Fusion Reactors II

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, T

    2004-06-14

    A homopolar gun is discussed that could produce the high currents required for pulsed spheromak fusion reactors even with unit current amplification and open field lines during injection, possible because close coupling between the gun and flux conserver reduces gun losses to acceptable levels. Example parameters are given for a gun compatible with low cost pulsed reactors and for experiments to develop the concept.

  17. Magnetic Reconnection in the Spheromak: Physics and Consequences

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, E B; Cohen, B I; Hill, D N; LoDestro, L L; McLean, H S; Romero-Talamas, C A; Wood, R D; Sovinec, C R

    2006-02-28

    Magnetic reconnection in the spheromak changes magnetic topology by conversion of injected toroidal flux into poloidal flux and by magnetic surface closure (or opening) in a slowly decaying spheromak. Results from the Sustained Spheromak Physics Experiment, SSPX, are compared with resistive MHD simulations using the NIMROD code. Voltage spikes on the SSPX gun during spheromak formation are interpreted as reconnection across a negative-current layer close to the mean-field x-point. Field lines are chaotic during these events, resulting in rapid electron energy loss to the walls and the low T{sub e} < 50 eV seen in experiment and simulation during strong helicity injection. Closure of flux surfaces (and high T{sub e}) can occur between voltage spikes if they are sufficiently far apart in time; these topology changes are not reflected in the impedance of the axisymmetric gun. Possible future experimental scenarios in SSPX are examined in the presence of the constraints imposed by reconnection physics.

  18. Spheromak reactor with poloidal flux-amplifying transformer

    Science.gov (United States)

    Furth, Harold P.; Janos, Alan C.; Uyama, Tadao; Yamada, Masaaki

    1987-01-01

    An inductive transformer in the form of a solenoidal coils aligned along the major axis of a flux core induces poloidal flux along the flux core's axis. The current in the solenoidal coil is then reversed resulting in a poloidal flux swing and the conversion of a portion of the poloidal flux to a toroidal flux in generating a spheromak plasma wherein equilibrium approaches a force-free, minimum Taylor state during plasma formation, independent of the initial conditions or details of the formation. The spheromak plasma is sustained with the Taylor state maintained by oscillating the currents in the poloidal and toroidal field coils within the plasma-forming flux core. The poloidal flux transformer may be used either as an amplifier stage in a moving plasma reactor scenario for initial production of a spheromak plasma or as a method for sustaining a stationary plasma and further heating it. The solenoidal coil embodiment of the poloidal flux transformer can alternately be used in combination with a center conductive cylinder aligned along the length and outside of the solenoidal coil. This poloidal flux-amplifying inductive transformer approach allows for a relaxation of demanding current carrying requirements on the spheromak reactor's flux core, reduces plasma contamination arising from high voltage electrode discharge, and improves the efficiency of poloidal flux injection.

  19. Characterization of a spheromak plasma gun: The effect of refractory electrode coatings

    OpenAIRE

    Brown, M R; Bailey, A. D.; Bellan, P. M.

    1991-01-01

    In order to investigate the proposition that high-Z impurities are responsible for the anomalously short lifetime of the Caltech spheromak, the center electrode of the spheromak plasma gun has been coated with a variety of metals (bare steel, copper, nickel, chromium, rhodium, and tungsten). Visible light (230–890 nm) emitted directly from the plasma in the gun breech was monitored for each of the coated electrodes. Plasma density and temperature and spheromak lifetime were compared for each ...

  20. Numerical simulation of slow spheromak formation: Flux control by formation speed

    Energy Technology Data Exchange (ETDEWEB)

    Sato, T.; Todd, A.M.M.; Okuda, H.

    1983-03-01

    Two-dimensional magnetohydrodynamic simulations of the Princeton S-1 Spheromak have been carried out for several formation speeds. It is found that the spheromak size and shape, and hence the confined poloidal and toroidal fluxes, are largely dependent upon the formation speed, provided this is moderately slow. Specifically, the total toroidal and poloidal fluxes in a spheromak increase as the formation speed is reduced. The role of externally driven reconnection as a cause for this dependence is discussed.

  1. Motion and equilibrium of a spheromak in a toroidal flux conserver

    OpenAIRE

    Brown, M R; Cutrer, D. M.; Bellan, P. M.

    1991-01-01

    A number of experiments have been performed on spheromaks injected into the empty vacuum vessel of the Caltech ENCORE tokamak (i.e., without tokamak plasma) [Phys. Rev. Lett. 64, 2144 (1990); Phys. Fluids B 2, 1306 (1990)]. Magnetic probe arrays (in a number of configurations) have been used to make single shot, unaveraged, in situ measurements of the spheromak equilibrium. These measurements are important because (i) they reveal for the first time the equilibrium structure of spheromaks in a...

  2. Slow formation and sustainment of spheromaks by a coaxial magnetized plasma source

    Energy Technology Data Exchange (ETDEWEB)

    Jarboe, T.R.; Henins, I.; Sherwood, A.R.; Barnes, C.W.; Hoida, H.W.

    1983-07-04

    Two steps have been taken towards determining if the flux absorption and relaxation properties of a spheromak will allow dc-powered electrodes to form and sustain a steady-state spheromak. Without changing the physical properties of the spheromak, the formation time was increased from an Alfven time to a tearing time, reducing the coaxial source power from approx.10 GW to approx.500 MW. With use of approx.50 MW, spheromaks were formed and then sustained at constant density and field for 1 ms, much longer than a magnetic energy decay time.

  3. Taylor relaxation and lambda decay of unbounded, freely expanding spheromaks

    OpenAIRE

    Yee, J; Bellan, P. M.

    2000-01-01

    A magnetized coaxial gun is discharged into a much larger vacuum chamber and the subsequent evolution of the plasma is observed using high speed cameras and a magnetic probe array. Photographic results indicate four distinct regimes of operation, labeled I–IV, each possessing qualitatively different dynamics, with the parameter lambdagun = µ0Igun/Phibias determining the operative regime. Plasmas produced in Regime II are identified as detached spheromak configurations. Images depict a donut-l...

  4. Spheromak formation and sustainment studies at the sustained spheromak physics experiment using high-speed imaging and magnetic diagnostics

    OpenAIRE

    Romero-Talamás, C. A.; Holcomb, C; Bellan, P. M.; Hill, D. N.

    2006-01-01

    A high-speed imaging system with shutter speeds as fast as 2 ns and double frame capability has been used to directly image the formation and evolution of the sustained spheromak physics experiment (SSPX) [E. B. Hooper et al., Nucl. Fusion 39, 863 (1999)]. Reproducible plasma features have been identified with this diagnostic and divided into three groups, according to the stage in the discharge at which they occur: (i) breakdown and ejection, (ii) sustainment, and (iii) decay. During the fi...

  5. Progress in spheromaks for power amplification and transfer to hypervelocity projectiles

    International Nuclear Information System (INIS)

    The goal of the spheromak program at Los Alamos is to develop a new scheme to accelerate material objects to hypervelocities (velocities above a few kilometers per second). This capability would provide a valuable tool to other research programs, such as weapons lethality tests, studies of the properties of materials at extremely high pressures, and magnetically-insulated impact fusion. In the authors' scheme, the magnetized spheromak plasma, confined by a metallic wall, would act as an energy storage and transfer medium. As high explosives (HE) compress part of the metallic wall against the spheromak magnetic field, the spheromak stores energy. Once the spheromak reaches a critical dimension, the MHD equilibrium is expected to switch (much faster than the compression time) to a new configuration, which is the minimum-energy state of the new geometry. This witching action would result in the spheromak magnetic field imparting a sudden, strong pressure to a small section of the wall, which would then break away as an accelerated projectile. The scheme, including the basis for the spheromak switching effect, are described

  6. New mode of operating a magnetized coaxial plasma gun for injecting magnetic helicity into a spheromak

    International Nuclear Information System (INIS)

    By operating a magnetized coaxial plasma gun continuously with just sufficient current to enable plasma ejection, large gun-voltage spikes (∼1 kV) are produced, giving the highest sustained voltage ∼500 V and highest sustained helicity injection rate observed in the Sustained Spheromak Physics Experiment. The spheromak magnetic field increases monotonically with time, exhibiting the lowest fluctuation levels observed during formation of any spheromak (B-tilde)/B≥2%). The results suggest an important mechanism for field generation by helicity injection, namely, the merging of helicity-carrying filaments

  7. New mode of operating a magnetized coaxial plasma gun for injecting magnetic helicity into a spheromak.

    Science.gov (United States)

    Woodruff, S; Hill, D N; Stallard, B W; Bulmer, R; Cohen, B; Holcomb, C T; Hooper, E B; McLean, H S; Moller, J; Wood, R D

    2003-03-01

    By operating a magnetized coaxial plasma gun continuously with just sufficient current to enable plasma ejection, large gun-voltage spikes (approximately 1 kV) are produced, giving the highest sustained voltage approximately 500 V and highest sustained helicity injection rate observed in the Sustained Spheromak Physics Experiment. The spheromak magnetic field increases monotonically with time, exhibiting the lowest fluctuation levels observed during formation of any spheromak (B/B>/=2%). The results suggest an important mechanism for field generation by helicity injection, namely, the merging of helicity-carrying filaments.

  8. New mode of operating a magnetized coaxial plasma gun for injecting magnetic helicity into a spheromak.

    Science.gov (United States)

    Woodruff, S; Hill, D N; Stallard, B W; Bulmer, R; Cohen, B; Holcomb, C T; Hooper, E B; McLean, H S; Moller, J; Wood, R D

    2003-03-01

    By operating a magnetized coaxial plasma gun continuously with just sufficient current to enable plasma ejection, large gun-voltage spikes (approximately 1 kV) are produced, giving the highest sustained voltage approximately 500 V and highest sustained helicity injection rate observed in the Sustained Spheromak Physics Experiment. The spheromak magnetic field increases monotonically with time, exhibiting the lowest fluctuation levels observed during formation of any spheromak (B/B>/=2%). The results suggest an important mechanism for field generation by helicity injection, namely, the merging of helicity-carrying filaments. PMID:12689228

  9. Calculation of two-fluid resonant modes in spheromaks

    Science.gov (United States)

    Howell, E. C.; Sovinec, C. R.

    2010-11-01

    Numerical computation is applied to investigate two-fluid effects on resonant modes in spheromaks using the NIMROD code [C.R. Sovinec et. at., Phys. Plasmas 10(2003)]. Earlier whole-device simulations of SSPX show that MHD stability has a strong influence on confinement during the sustained decay phase [E.B. Hooper et. al., POP 15, 032502 (2008)]. Recent computations of spheromak equilibria in a cylindrical domain with prescribed peaked pressure profiles show ideal interchange behavior. A moderate reduction of growth rate (10-70%) for intermediate toroidal mode numbers (n=16˜20) is observed when two-fluid effects are included [E.C. Howell and C.R. Sovinec, APS 2009]. Here, we consider more realistic pressure and safety-factor profiles from 3D self-consistent nonlinear MHD simulations. Linear analyses of axisymmetric equilibria reconstructed from the simulations are performed, and growth rates calculated using both ion gyroviscosity and a two fluid Ohm's law are compared with resistive MHD results.

  10. Stability and confinement of spheromaks and field-reversed configurations

    International Nuclear Information System (INIS)

    The formation, confinement and stability of two types of compact toroids, spheromaks and field reversed configurations (FRC), are reviewed. Spheromaks, which contain both toroidal and poloidal magnetic fields, have been formed with magnetized coaxial plasma guns, by a combination of Z- and theta-pinch techniques and by an electrodeless slow induction technique, and trapped in both prolate and oblate flux conservers. As predicted by theory, the prolate configuration is unstable to the tilt mode, but the oblate configuration with a conducting wall is stable. Configuration lifetimes of up to 0.8 ms are observed. The FRC is a high-beta, highly prolate compact toroid formed with field-reversed theta-pinch techniques and having purely poloidal magnetic field. Theory predicts unstable fluting and internal tilting modes, but they are not observed experimentally. Configurations with high densities approx. 1015 cm-3 and with lifetimes of 50 to 120 μs are terminated by an n=2 rotational mode of instability

  11. The University of Maryland spheromak fusion experiment: Final report

    International Nuclear Information System (INIS)

    The spheromak is a magnetic plasma confinement configuration that features a simple magnetic structure free of coils that link the plasma torus. It offers the possibility of a simple and efficient confinement system for a fusion plasma. Design of the experimental apparatus occupied the first 15 months of the contract period. At the same time, computer studies of the formation of the spheromak plasma, using a two-dimensional MHD code were performed. After the first 12 months of the contract period, subcontracts were let for major components of the system, particularly for the liquid nitrogen cooled bias magnetic coils, the associated power supplies, and the capacitors for the reversal bank. When the design work was complete, the machining contract for the vacuum vessel was placed. At about this time, work on the operating system for the control computer was begun. The necessary hardware items for the data acquisition computer were decided upon and ordered at the end of the second year. The capacitor bank for the Z-directed current (I/sub z/ bank) was rebuilt from existing parts here, and construction of this bank and of the parts for the reversal bank was accomplished while the outside fabrication of other major parts was in progress. Switching hardware for the two capacitor banks was fabricated in house to reduce costs. As capacitors for the reversal bank were delivered, they were incorporated into the bank modules. A full description of the MS experimental hardware is described in this paper. 2 refs., 9 figs., 1 tab

  12. Multipulsed edge-current drive in a spheromak

    Science.gov (United States)

    Lodestro, L. L.; Cohen, B. I.; Hooper, E. B.; McLean, H. S.; Stewart, T. L.; Wood, R. D.

    2008-11-01

    Flux amplification (A)--the ratio of poloidal magnetic flux enclosed by a spheromak's toroidal core-plasma to an applied edge flux--is a critical parameter for an economic spheromak-based fusion reactor. In [1], experimental measurements of A in SSPX found good agreement with numerical studies [2] carried out with the NIMROD code over a range of ``extended formation" discharge parameters. However, SPPX appeared to be limited to A ˜ 3 while the simulated A continued to rise with increasing gun-current (Igun). Early experiments with the SSPX modular capacitor bank, on the other hand, gave some indication that d/dt also played a role and that, perhaps, multiple pulses with faster current swings in both directions could build magnetic field more efficiently. Experiments to explore this were, however, limited by gun discharge circuit inductance. In this paper we investigate the effect numerically using multipulse scenarios in the SSPX geometry with NIMROD. [1] B. Hudson et al., Phys. Plasmas 15, 056112 (2008). [2] E.B. Hooper et al., Nucl. Fusion 47, 1064 (2007). Work performed by LLNL under the auspices of the U.S. DoE, Contract DE-AC52-07NA27344.

  13. Fundamental Magnetofluid Physics Studies on the Swarthmore Spheromak Experiment: Reconnection and Sustainment

    International Nuclear Information System (INIS)

    The general goal of the Magnetofluids Laboratory at Swarthmore College is to understand how magnetofluid kinetic energy can be converted to magnetic energy as it is in the core of the earth and sun (the dynamo problem) and to understand how magnetic energy can be rapidly converted back to kinetic energy and heat as it is in solar flares (the magnetic reconnection problem). Magnetic reconnection has been studied using the Swarthmore Spheromak Experiment (SSX) which was designed and built under this Junior Faculty Grant. In SSX we generate and merge two rings of magnetized plasma called spheromaks and study their interaction. The spheromaks have many properties similar to solar flares so this work is directly relevant to basic solar physics. In addition, since the spheromak is a magnetic confinement fusion configuration, issues of formation and stability have direct impact on the fusion program

  14. 0-D study of the compression of low temperature spheromaks

    International Nuclear Information System (INIS)

    Compression of low temperature spheromak plasmas has been studied with the aid of a O-D two-fluid computer code. It is found that in a plasma which is radiation dominated, the electron temperature can be increased by up to a factor of seven for a compression of a factor of two, provided the temperature is above some critical value (approx.25eV) and the electron density particle confinement time product n/sub e/tau/sub p/ greater than or equal to 1 x 109s/cm3. If the energy balance is dominated by particle confinement losses rather than radiation losses, the effect of compression is to raise the temperature as T/sub e/ approx.C/sup 6/5/, for constant tau/sub p/

  15. Grazing-incidence spectrometer on the SSPX spheromak

    Energy Technology Data Exchange (ETDEWEB)

    Clementson, J; Beiersdorfer, P; Magee, E W

    2008-05-02

    The Silver Flat Field Spectrometer (SFFS) is a high-resolution grazing-incidence diagnostic for magnetically confined plasmas. It covers the wavelength range of 25-450 {angstrom} with a resolution of {Delta}{lambda} = 0.3 {angstrom} FWHM. The SFFS employs a spherical 1200 lines/mm grating for flat-field focusing. The imaging is done using a back-illuminated Photometrics CCD camera allowing a bandwidth of around 200 {angstrom} per spectrum. The spectrometer has been used for atomic spectroscopy on electron beam ion traps and for plasma spectroscopy on magnetic confinement devices. The design of the SFFS and the spectrometer setup at the Sustained Spheromak Physics Experiment (SSPX) in Livermore will be presented.

  16. Simple Model of the (alpha)(omega) Dynamo: Self-Excited Spheromaks

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, T K

    2010-01-26

    The astrophysical {alpha}{omega} dynamo converting angular momentum to magnetic energy can be interpreted as a self-excited Faraday dynamo together with magnetic relaxation coupling the dynamo poloidal field to the toroidal field produced by dynamo currents. Since both toroidal and poloidal fields are involved, the system can be modeled as helicity creation and transport, in a spheromak plasma configuration in quasi-equilibrium on the time scale of changes in magnetic energy. Neutral beams or plasma gun injection across field lines could create self-excited spheromaks in the laboratory.

  17. Numerical investigation and optimization of multi-pulse CHI spheromak performance

    Science.gov (United States)

    O'Bryan, J. B.; Romero-Talamas, C. A.; Woodruff, S.

    2015-11-01

    Nonlinear extended-MHD computation with the NIMROD code is used to explore spheromak formation and sustainment with multi-pulse coaxial helicity injection (CHI). The goal of this research is to optimize spheromak performance in order to find candidate modes of operation for future experimental studies. We are modeling multiple specific shots from the Sustained Spheromak Physics eXperiment (SSPX) to both diagnose the parameters that affect efficiency--in particular, how the injector current and bias flux affect plasma confinement and magnetic helicity content relative to injected power--and to validate the numerical model. Preliminary results show quantitative agreement between several synthetic and experimental diagnostic measurements. The results also find--in addition to changing the magnetic topology and being the mechanism for poloidal flux amplification [E.B. Hooper et al. PPCF 2012]--the non-axisymmetric column mode decreases the decay rate of magnetic helicity relative to the injected current. Operational regimes will eventually be extended beyond those achieved in SSPX. We are also exploring the effect of the flux conserver and injector geometries on spheromak performance. This work is supported by DARPA under grant no. N66001-14-1-4044.

  18. Relaxed, minimum dissipation states, for a flux core spheromak sustained by helicity injection

    NARCIS (Netherlands)

    Farengo, R; Caputi, KI

    2002-01-01

    Minimum dissipation states of a flux core spheromak sustained by helicity injection are presented. Helicity balance is used as a constraint and the resistivity is considered to be non-uniform. Two types of relaxed states are found: one has a central core formed by the flux that links the electrodes

  19. Studies of Helicity Injection in a Spheromak Formed by a Large Area Planar Coaxial Gun

    Science.gov (United States)

    Hsu, Scott; Bellan, Paul; Pracko, Steven

    2000-10-01

    A new planar coaxial gun has been constructed in order to study the process of helicity injection during spheromak formation. Improvements in helicity injection, a key method for poloidal field sustainment in spheromaks, would increase the attractiveness of the spheromak configuration as a fusion energy scheme. The goal of this research is to create simple, well-defined experiments allowing the details of helicity injection to be resolved and better understood. The design of the new gun, which was motivated by insights gained from ongoing solar prominence experiments [Bellan and Hansen, Phys. Plasmas 5, 1991 (1998)], involves large planar electrodes with a low field solenoid, in contrast to smaller cylindrical guns with high field solenoids commonly in existence. More efficient spheromak formation and better ``λ-matching'' should be possible in the new setup. The formation and dynamical evolution of twisted flux tubes will be studied using a variety of optical and probe diagnostics, including (1) visible light photography using a pair of fast, gated intensified CCD cameras, (2) local magnetic field measurements using an array of small pickup coils, (3) density and electron temperature measurements using a triple Langmuir probe, and (4) measurements of local ion distribution functions using laser-induced fluorescence. Details of the new gun design and initial experimental results will be presented.

  20. Magnetic Field Generation and Energy Confinement with Te> 500 eV in the SSPX Spheromak

    Science.gov (United States)

    Hudson, B.

    2007-11-01

    The understanding of confinement and energy transport in spheromaks is key the understanding the physics of spheromak formation and self-organization as well as addressing the feasibility of the concept as a reactor scenario. In the Sustained Spheromak Physics eXperiment (SSPX), increased understanding of the physics in building and sustaining self-organized magnetic equilibria has resulted in record electron temperatures Te> 500 eV and plasma currents of ˜ 1 MA on the magnetic axis. We find that the highest edge magnetic field magnitudes (and correspondingly high Te) is achieved when λ=μ0Igun ψgun is near (but slightly below) the Kruskal-Shafranov instability limit λKS2πL12.6,-1 where L is the length of the flux-conserver (0.5 m). Building on previously reported results, power-balance analysis has shown levels of electron thermal transport χebank we are able to highly tailor the gun current to take advantage of the sensitive dependence of spheromak performance on the plasma λ. When in this optimum operating range we also find that the efficiency of field build-up (defined as the ratio of edge poloidal magnetic field to gun current) is increased 20% over prior results, to ˜1.0 T/MA. Additionally this brings the efficiency of spheromak formation into numerical agreement with results from the NIMROD 3-D MHD code. Plasma energy evolution has been studied by taking time-resolved measurements of Te(r) and ne(r) indicating a distinct and robust feature of spheromak formation; a hollow-to-peaked temperature transition with an inverse relationship to the electron density. This feature, as well as sub-microsecond transport, is being studied with the upgrade of the Thomson scattering diagnostic to double-pulse operation. We also present recent results of the impact of charge-exchange losses on overall power balance and estimates of the plasma ion temperature as measured with a neutral particle analyzer.

  1. Slow formation of field-reversed configuration by use of two merging spheromaks

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Yasushi [Univ. of Tokyo (Japan)

    1995-04-01

    A novel slow formation method of field-reversed configuration (FRC) has been developed by magnetic reconnection of two force-free spheromaks with opposite toroidal magnetic field. The merging process cancels their opposite magnetic helicities, realizing a non-Taylor relaxation from the force-free state to the high-{beta} FRC state with zero helicity. A significant increase in the ion temperature has been documented up to 180 eV during this fully anti-parallel reconnection. The dissipated toroidal magnetic energy of the merging toroids is transformed mostly to the ion thermal energy, revealing a unique relaxation mechanism to the high-beta equilibrium. The merging toroids are found to relax either to an FRC or to a new spheromak, depending on whether their total helicity is larger or smaller than a critical value. 10 refs., 5 figs.

  2. Applications of TEMCO to the spheromak and the reversed field pinch

    Energy Technology Data Exchange (ETDEWEB)

    Mirin, A.A.; Sgro, A.G.

    1986-02-01

    This paper deals with two subjects. One concerns the use of consistent boundary conditions when performing MHD simulations of the reversed field pinch. Of particular concern is the choice of constant current, which when combined with other commonly used boundary conditions, could lead to an inconsistency. The second subject area is that of MHD simulation of the CTX spheromak. A summary of results since the 1984 3-D MHD Workshop is presented.

  3. Controlled and spontaneous magnetic field generation in a gun-driven spheromak

    OpenAIRE

    WOODRUFF, S; Cohen, B. I.; Hooper, E.B.; McLean, H. S.; Stallard, B. W.; Hill, D. N.; Holcomb, C. T.; Romero-Talamás, C.; Wood, R D; Cone, G.; Sovinec, C. R.

    2005-01-01

    In the Sustained Spheromak Physics Experiment, SSPX [E. B. Hooper, D. Pearlstein, and D. D. Ryutov, Nucl. Fusion 39, 863 (1999)], progress has been made in understanding the mechanisms that generate fields by helicity injection. SSPX injects helicity (linked magnetic flux) from 1 m diameter magnetized coaxial electrodes into a flux-conserving confinement region. Control of magnetic fluctuations (delta B/B similar to 1% on the midplane edge) yields T-e profiles peaked at > 200 eV. Trends indic...

  4. Large-amplitude electron density and Hα fluctuations in the sustained spheromak physics experiment

    International Nuclear Information System (INIS)

    New types of toroidally rotating fluctuations (toroidal mode numbers n=1 and n=2) of line-integrated electron density and Hα emission, with frequencies ranging from 10 to 100 kHz, are observed in the sustained spheromak physics experiment (SSPX). The rotating directions of these fluctuations are the same as the direction determined by ExB, while the E and B directions are determined by the gun voltage and gun magnetic flux polarities, respectively. These results take advantage of one distinctive signature of spheromaks, i.e. it is possible to observe toroidal MHD activity during decay and sustainment at any toroidal angle. A theoretical constraint on line-integrated measurement is proposed and is found to be consistent with experimental observations. Fluctuation analysis in the time and frequency domains indicates that the observed density and Hα fluctuations correlate with magnetic modes. Observation of Hα fluctuations correlating with magnetic fluctuations indicates that, at least in some cases, MHD n=1 modes are due to the so-called 'dough-hook' current paths that connect the coaxial gun to the flux conserver, rather than internal kink instabilities. These results also show that electron density and Hα emission diagnostics complement other tools for spheromak mode study. (author)

  5. Magnetic flux conversion and relaxation toward a minimum-energy state in S-1 spheromak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Janos, A.

    1985-09-01

    S-1 Spheromak currents and magnetic fluxes have been measured with Rogowski coils and flux loops external to the plasma. Toroidal plasma currents up to 350 kA and spheromak configuration lifetimes over 1.0 msec have been achieved at moderate power levels. The plasma formation in the S-1 Spheromak device is based on an inductive transfer of poloidal and toroidal magnetic flux from a toroidal ''flux core'' to the plasma. Formation is programmed to guide the configuration into a force-free, minimum-energy Taylor state. Properly detailed programming of the formation process is found not to be essential since plasmas adjust themselves during formation to a final equilibrium near the Taylor state. After formation, if the plasma evolves away from the stable state, then distinct relaxation oscillation events occur which restore the configuration to that stable state. The relaxation process involves reconnection of magnetic field lines, and conversion of poloidal to toroidal magnetic flux (and vice versa) has been observed and documented. The scaling of toroidal plasma current and toroidal magnetic flux in the plasma with externally applied currents is consistent with the establishment of a Taylor state after formation. In addition, the magnetic helicity is proportional to that injected from the flux core, independent of how that helicity is generated.

  6. Magnetic flux conversion and relaxation toward a minimum-energy state in S-1 spheromak plasmas

    International Nuclear Information System (INIS)

    S-1 Spheromak currents and magnetic fluxes have been measured with Rogowski coils and flux loops external to the plasma. Toroidal plasma currents up to 350 kA and spheromak configuration lifetimes over 1.0 msec have been achieved at moderate power levels. The plasma formation in the S-1 Spheromak device is based on an inductive transfer of poloidal and toroidal magnetic flux from a toroidal ''flux core'' to the plasma. Formation is programmed to guide the configuration into a force-free, minimum-energy Taylor state. Properly detailed programming of the formation process is found not to be essential since plasmas adjust themselves during formation to a final equilibrium near the Taylor state. After formation, if the plasma evolves away from the stable state, then distinct relaxation oscillation events occur which restore the configuration to that stable state. The relaxation process involves reconnection of magnetic field lines, and conversion of poloidal to toroidal magnetic flux (and vice versa) has been observed and documented. The scaling of toroidal plasma current and toroidal magnetic flux in the plasma with externally applied currents is consistent with the establishment of a Taylor state after formation. In addition, the magnetic helicity is proportional to that injected from the flux core, independent of how that helicity is generated

  7. Final Report - Effect of Magnetic Configuration on Spheromak Performances, FY2000 - FY2001, Tracking No.00-SI-008

    Energy Technology Data Exchange (ETDEWEB)

    Hill, D N; Hooper, E B; McLean, H S; Stallard, B W; Woodruff, S; Wood, R D

    2002-02-06

    This is the final report on LDRD SI-funded research to determine the Effect of Magnetic Field Configurations on Spheromak Performance for the years FY2000-FY2001, during which a new set of bias magnetic field coils was used to change the vacuum magnetic field configuration of the SSPX spheromak at LLNL. The USDOE Office of Fusion Energy Science funded the routine operation of the SSPX facility during FY00 and FY01. A photo of the SSPX facility as it appeared in mid-FY01, appears in this report. The main distinctive feature of the spheromak is that currents in the plasma itself produce the confining toroidal magnetic field, rather than a complex set of external coils. The Sustained Spheromak Physics Experiment (SSPX) device was designed and built study how well the spheromak can contain plasma energy while dynamo processes in the plasma maintain the confining magnetic fields. The spheromak potentially offers advantages over other fusion reactor concepts because it is compact, has no field coils linking the vacuum vessel, and can be operated in a steady state with voltage applied to external electrodes. It is predicted that the ability of the SSPX to contain the plasma thermal energy will increase with increasing plasma electron temperature; that is, the hotter it is, the better it will work. Our near-term goal for the SSPX facility is to determine which of several magnetic field configurations works best to produce hot, well-confined spheromak plasmas. We also want to verify the predicted inverse relation between plasma temperature and heat loss, and to use these results to design an even higher-temperature follow-on experiment that will push closer to fusion conditions. New features of the SSPX spheromak include a large-radius coaxial plasma injector to improve efficiency, a conformal flux conserver to minimize open field lines around the plasma, a divertor to aid in cold-particle exhaust, and the programmable-bias magnetic field coils to vary the magnetic geometry

  8. Magnetohydrodynamic simulation of kink instability and plasma flow during sustainment of a coaxial gun spheromak

    International Nuclear Information System (INIS)

    Kink instability and the subsequent plasma flow during the sustainment of a coaxial gun spheromak are investigated by three-dimensional nonlinear magnetohydrodynamic simulations. Analysis of the parallel current density λ profile in the central open column revealed that the n = 1 mode structure plays an important role in the relaxation and current drive. The toroidal flow (vt ≈ 37 km/s) is driven by magnetic reconnection occurring as a result of the helical kink distortion of the central open column during repetitive plasmoid ejection and merging. (author)

  9. Energy Efficiency Analysis of the Discharge Circuit of Caltech Spheromak Experiment

    OpenAIRE

    Kumar, Deepak; Moser, Auna L.; Bellan, Paul M.

    2010-01-01

    The Caltech spheromak experiment uses a size A ignitron in switching a 59-μF capacitor bank (charged up to 8 kV) across an inductive plasma load. Typical power levels in the discharge circuit are ~200 MW for a duration of ~10 μs. This paper describes the setup of the circuit and the measurements of various impedances in the circuit. The combined impedance of the size A ignitron and the cables was found to be significantly larger than the plasma impedance. This causes the ...

  10. Design of spheromak injector using conical accelerator for large helical device

    Energy Technology Data Exchange (ETDEWEB)

    Miyazawa, J.; Yamada, H.; Yasui, K.; Kato, S. [National Inst. for Fusion Science, Toki, Gifu (Japan); Fukumoto, N.; Nagata, M.; Uyama, T. [Himeji Inst. of Tech., Hyogo (Japan)

    1999-11-01

    Optimization of CT injector for LHD has been carried out and conical electrode for adiabatic CT compression is adopted in the design. Point-model of CT acceleration in a co-axial electrode is solved to optimize the electrode geometry and the power supplies. Large acceleration efficiency of 34% is to be obtained with 3.2 m long conical accelerator and 40 kV - 42 kJ power supply. The operation scenario of a CT injector named SPICA mk. I (SPheromak Injector using Conical Accelerator) consisting of 0.8 m conical accelerator is discussed based on this design. (author)

  11. On the jets, kinks, and spheromaks formed by a planar magnetized coaxial gun

    International Nuclear Information System (INIS)

    Measurements of the various plasma configurations produced by a planar magnetized coaxial gun provide insight into the magnetic topology evolution resulting from magnetic helicity injection. Important features of the experiments are a very simple coaxial gun design so that all observed geometrical complexity is due to the intrinsic physical dynamics rather than the source shape and use of a fast multiple-frame digital camera which provides direct imaging of topologically complex shapes and dynamics. Three key experimental findings were obtained: (1) formation of an axial collimated jet [Hsu and Bellan, Mon. Not. R. Astron. Soc. 334, 257 (2002)] that is consistent with a magnetohydrodynamic description of astrophysical jets (2) identification of the kink instability when this jet satisfies the Kruskal-Shafranov limit, and (3) the nonlinear properties of the kink instability providing a conversion of toroidal to poloidal flux as required for spheromak formation by a coaxial magnetized source [Hsu and Bellan, Phys. Rev. Lett. 90, 215002 (2003)]. An interpretation is proposed for how the n=1 central column instability provides flux amplification during spheromak formation and sustainment, and it is shown that jet collimation can occur within one rotation of the background poloidal field

  12. Sustained spheromak coaxial gun operation in the presence of an n=1 magnetic distortion

    International Nuclear Information System (INIS)

    The Sustained Spheromak Physics Experiment (SSPX) [E. B. Hooper, L. D. Pearlstein, and R. H. Bulmer, Nucl. Fusion 39, 863 (1999)] uses a magnetized coaxial gun to form and sustain spheromaks by helicity injection. Internal probes give the magnetic profile within the gun. An analysis of these data show that a number of commonly applied assumptions are not completely correct, and some previously unrecognized processes may be at work. Specifically, the fraction of the available vacuum flux spanning the gun that is stretched out of the gun is variable and not usually 100%. The n=1 mode that is present during sustained discharges has its largest value of δB/B within the gun, so that instantaneously B within the gun is not axisymmetric. By applying a rigid-rotor model to account for the mode, the instantaneous field and current structure within the gun are determined. The current density is also highly nonaxisymmetric and the local value of λ≡μ0jparallel/B is not constant, although the global value λg≡μ0Ig/ψg closely matches that expected by axisymmetric models. The current distribution near the gun muzzle suggests a cross-field current exists, and this is explained as a line-tying reaction to plasma rotation

  13. On the jets, kinks, and spheromaks formed by a planar magnetized coaxial gun

    CERN Document Server

    Hsu, S C

    2004-01-01

    Measurements of the various plasma configurations produced by a planar magnetized coaxial gun provide insight into the magnetic topology evolution resulting from magnetic helicity injection. Important features of the experiments are a very simple coaxial gun design so that all observed geometrical complexity is due to the intrinsic physical dynamics rather than the source shape and use of a fast multiple-frame digital camera which provides direct imaging of topologically complex shapes and dynamics. Three key experimental findings were obtained: (1) formation of an axial collimated jet [Hsu and Bellan, Mon. Not. R. Astron. Soc. 334, 257 (2002)] that is consistent with a magnetohydrodynamic description of astrophysical jets, (2) identification of the kink instability when this jet satisfies the Kruskal-Shafranov limit, and (3) the nonlinear properties of the kink instability providing a conversion of toroidal to poloidal flux as required for spheromak formation by a coaxial magnetized source [Hsu and Bellan, P...

  14. Effect of the helicity injection rate and the Lundquist number on spheromak sustainment

    Science.gov (United States)

    García-Martínez, Pablo Luis; Lampugnani, Leandro Gabriel; Farengo, Ricardo

    2014-12-01

    The dynamics of the magnetic relaxation process during the sustainment of spheromak configurations at different helicity injection rates is studied. The three-dimensional activity is recovered using time-dependent resistive magnetohydrodynamic simulations. A cylindrical flux conserver with concentric electrodes is used to model configurations driven by a magnetized coaxial gun. Magnetic helicity is injected by tangential boundary flows. Different regimes of sustainment are identified and characterized in terms of the safety factor profile. The spatial and temporal behavior of fluctuations is described. The dynamo action is shown to be in close agreement with existing experimental data. These results are relevant to the design and operation of helicity injected devices, as well as to basic understanding of the plasma relaxation mechanism in quasi-steady state.

  15. Effect of the helicity injection rate and the Lundquist number on spheromak sustainment

    Energy Technology Data Exchange (ETDEWEB)

    García-Martínez, Pablo Luis, E-mail: pablogm@cab.cnea.gov.ar [Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Sede Andina—Universidad Nacional de Río Negro (UNRN), Av. Bustillo 9500, 8400 San Carlos de Bariloche, Río Negro (Argentina); Lampugnani, Leandro Gabriel; Farengo, Ricardo [Instituto Balseiro and Centro Atómico Bariloche (CAB-CNEA), Av. Bustillo 9500, 8400 San Carlos de Bariloche, Río Negro (Argentina)

    2014-12-15

    The dynamics of the magnetic relaxation process during the sustainment of spheromak configurations at different helicity injection rates is studied. The three-dimensional activity is recovered using time-dependent resistive magnetohydrodynamic simulations. A cylindrical flux conserver with concentric electrodes is used to model configurations driven by a magnetized coaxial gun. Magnetic helicity is injected by tangential boundary flows. Different regimes of sustainment are identified and characterized in terms of the safety factor profile. The spatial and temporal behavior of fluctuations is described. The dynamo action is shown to be in close agreement with existing experimental data. These results are relevant to the design and operation of helicity injected devices, as well as to basic understanding of the plasma relaxation mechanism in quasi-steady state.

  16. Experimental identification of the kink instability as a poloidal flux amplification mechanism for coaxial gun spheromak formation

    International Nuclear Information System (INIS)

    The magnetohydrodynamic kink instability is observed and identified experimentally as a poloidal flux amplification mechanism for coaxial gun spheromak formation. Plasmas in this experiment fall into three distinct regimes which depend on the peak gun current to magnetic flux ratio, with (I) low values resulting in a straight plasma column with helical magnetic field, (II) intermediate values leading to kinking of the column axis, and (III) high values leading immediately to a detached plasma. Onset of column kinking agrees quantitatively with the Kruskal-Shafranov limit, and the kink acts as a dynamo which converts toroidal to poloidal flux. Regime II clearly leads to both poloidal flux amplification and the development of a spheromak configuration

  17. Experimental Identification of the Kink Instability as a Poloidal Flux Amplification Mechanism for Coaxial Gun Spheromak Formation

    CERN Document Server

    Hsu, S C

    2003-01-01

    The magnetohydrodynamic kink instability is observed and identified experimentally as a poloidal flux amplification mechanism for coaxial gun spheromak formation. Plasmas in this experiment fall into three distinct regimes which depend on the peak gun current to magnetic flux ratio, with (I) low values resulting in a straight plasma column with helical magnetic field, (II) intermediate values leading to kinking of the column axis, and (III) high values leading immediately to a detached plasma. Onset of column kinking agrees quantitatively with the Kruskal-Shafranov limit, and the kink acts as a dynamo which converts toroidal to poloidal flux. Regime~II clearly leads to both poloidal flux amplification and the development of a spheromak configuration.

  18. Experimental identification of the kink instability as a poloidal flux amplification mechanism for coaxial gun spheromak formation.

    Science.gov (United States)

    Hsu, S C; Bellan, P M

    2003-05-30

    The magnetohydrodynamic kink instability is observed and identified experimentally as a poloidal flux amplification mechanism for coaxial gun spheromak formation. Plasmas in this experiment fall into three distinct regimes which depend on the peak gun current to magnetic flux ratio, with (I) low values resulting in a straight plasma column with helical magnetic field, (II) intermediate values leading to kinking of the column axis, and (III) high values leading immediately to a detached plasma. Onset of column kinking agrees quantitatively with the Kruskal-Shafranov limit, and the kink acts as a dynamo which converts toroidal to poloidal flux. Regime II clearly leads to both poloidal flux amplification and the development of a spheromak configuration.

  19. Experimental identification of the kink instability as a poloidal flux amplification mechanism for coaxial gun spheromak formation.

    Science.gov (United States)

    Hsu, S C; Bellan, P M

    2003-05-30

    The magnetohydrodynamic kink instability is observed and identified experimentally as a poloidal flux amplification mechanism for coaxial gun spheromak formation. Plasmas in this experiment fall into three distinct regimes which depend on the peak gun current to magnetic flux ratio, with (I) low values resulting in a straight plasma column with helical magnetic field, (II) intermediate values leading to kinking of the column axis, and (III) high values leading immediately to a detached plasma. Onset of column kinking agrees quantitatively with the Kruskal-Shafranov limit, and the kink acts as a dynamo which converts toroidal to poloidal flux. Regime II clearly leads to both poloidal flux amplification and the development of a spheromak configuration. PMID:12786562

  20. Experimental Identification of the Kink Instability as a Poloidal Flux Amplification Mechanism for Coaxial Gun Spheromak Formation

    OpenAIRE

    Hsu, S. C.; Bellan, P. M.

    2003-01-01

    The magnetohydrodynamic kink instability is observed and identified experimentally as a poloidal flux amplification mechanism for coaxial gun spheromak formation. Plasmas in this experiment fall into three distinct regimes which depend on the peak gun current to magnetic flux ratio, with (I) low values resulting in a straight plasma column with helical magnetic field, (II) intermediate values leading to kinking of the column axis, and (III) high values leading immediately to a detached plasma...

  1. Theoretical aspects of the use of pulsed reflectometry in a spheromak plasma

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, B. J., LLNL

    1998-06-11

    Pulsed reflectometry using both ordinary (O) and extraordinary (X) modes has the potential of providing time and space-resolved measurements of the electron density, the magnitude of the magnetic field, and the magnetic shear as a function of radius. Such a diagnostic also yields the current profile from the curl of the magnetic field. This research addresses theoretical issues associated with the use of reflectometry in the SSPX spheromak experiment at the Lawrence Livermore National Laboratory. We have extended a reflectometry simulation model to accommodate O and X-mode mixed polarization and linear mode conversion between the two polarizations. A Wentzel-Kramers-Brillouin-Jeffreys (WKBJ) formula for linear mode conversion agrees reasonably well with direct numerical solutions of the wave equation, and we have reconstructed the magnetic pitch-angle profile by matching the results of the WKBJ formula with the mode conversion data observed in simulations using a least-squares determination of coefficients in trial functions for the profile. The reflectometry data also yield information on fluctuations. Instrumental issues, e.g., the effects of microwave mixers and filters on model reflectometry pulses, have been examined to optimize the performance of the reflectometry diagnostics.

  2. Formation and sustainment of field reversed configuration (FRC) plasmas by spheromak merging and neutral beam injection

    Science.gov (United States)

    Yamada, Masaaki

    2016-03-01

    This paper briefly reviews a compact toroid reactor concept that addresses critical issues for forming, stabilizing and sustaining a field reversed configuration (FRC) with the use of plasma merging, plasma shaping, conducting shells, neutral beam injection (NBI). In this concept, an FRC plasma is generated by the merging of counter-helicity spheromaks produced by inductive discharges and sustained by the use of neutral beam injection (NBI). Plasma shaping, conducting shells, and the NBI would provide stabilization to global MHD modes. Although a specific FRC reactor design is outside the scope of the present paper, an example of a promising FRC reactor program is summarized based on the previously developed SPIRIT (Self-organized Plasmas by Induction, Reconnection and Injection Techniques) concept in order to connect this concept to the recently achieved the High Performance FRC plasmas obtained by Tri Alpha Energy [Binderbauer et al, Phys. Plasmas 22,056110, (2015)]. This paper includes a brief summary of the previous concept paper by M. Yamada et al, Plasma Fusion Res. 2, 004 (2007) and the recent experimental results from MRX.

  3. Comparisons Between Experimental Measurments and Numerical Simulations of Spheromak Formation in SSPX

    Energy Technology Data Exchange (ETDEWEB)

    Romero-Talam?s, C A; Hooper, E B; Hill, D N; Cohen, B I; McLean, H S; Wood, R D; Moller, J M

    2006-03-15

    Data from a recently installed insertable magnetic probe array in the Sustained Spheromak Physics Experiment (SSPX) [E. B. Hooper et al., Nucl. Fusion 39, 863 (1999)] is compared against NIMROD [C. R. Sovinec et al., J. Comp. Phys. 195, 355 (2004)], a full 3D resistive magnetohydrodynamic code that is used to simulate SSPX plasmas. The experiment probe consists of a linear array of chip inductors arranged in clusters that are spaced every 2 cm, and spans the entire machine radius at the flux conserver midplane. Both the experiment and the numerical simulations show the appearance, shortly after breakdown, of a column with a hollow current profile that precedes magnetic reconnection, a process essential to the formation of closed magnetic flux surfaces. However, there are differences between the experiment and the simulation in how the column evolves after it is formed. These differences are studied to help identify the mechanisms that eventually lead to closed-flux surfaces (azimuthally averaged) and flux amplification, which occur in both the experiment and the simulation.

  4. Measurements of Plasma Jets and Collimated Flux Tubes that are the Precursors of Spheromak Self-organization

    OpenAIRE

    Bellan, P. M.; You, S.; Yun, G. S.

    2007-01-01

    A magnetized planar coaxial plasma gun is used to study the physics of spheromak formation. Eight magnetic flux tubes spanning from the cathode to the anode electrode are first filled with plasma by a rapid MHD pumping mechanism which ingests plasma from nozzles at the wall. The ingested plasma convects toroidal flux and the pile-up of this flux in the flux tube causes the flux tube to become collimated. The eight collimated flux tubes first have the shape of spider legs, but then merge to fo...

  5. The Dynomak: An advanced spheromak reactor system with imposed-dynamo current drive and next-generation nuclear power technologies

    Science.gov (United States)

    Sutherland, D. A.; Jarboe, T. R.; Marklin, G.; Morgan, K. D.; Nelson, B. A.

    2013-10-01

    A high-beta spheromak reactor system has been designed with an overnight capital cost that is competitive with conventional power sources. This reactor system utilizes recently discovered imposed-dynamo current drive (IDCD) and a molten salt blanket system for first wall cooling, neutron moderation and tritium breeding. Currently available materials and ITER developed cryogenic pumping systems were implemented in this design on the basis of technological feasibility. A tritium breeding ratio of greater than 1.1 has been calculated using a Monte Carlo N-Particle (MCNP5) neutron transport simulation. High-temperature superconducting tapes (YBCO) were used for the equilibrium coil set, substantially reducing the recirculating power fraction when compared to previous spheromak reactor studies. Using zirconium hydride for neutron shielding, a limiting equilibrium coil lifetime of at least thirty full-power years has been achieved. The primary FLiBe loop was coupled to a supercritical carbon dioxide Brayton cycle due to attractive economics and high thermal efficiencies. With these advancements, an electrical output of 1000 MW from a thermal output of 2486 MW was achieved, yielding an overall plant efficiency of approximately 40%. A paper concerning the Dynomak reactor design is currently being reviewed for publication.

  6. The impedance of energy efficiency of a coaxial magnetized plasma source used for spheromak formation and sustainment

    International Nuclear Information System (INIS)

    Electrostatic (dc) helicity injection has previously been shown to successfully sustain the magnetic fields of spheromaks and tokamaks. The magnitude of the injected magnetic helicity balances (within experimental error) the flux lost be resistive decay of the toroidal equilibrium. The problem of optimizing this current drive scheme hence involves maximizing the injected helicity (the voltage-connecting-flux product) while minimizing the current (which multiplied by the voltage represents the energy input and also possible damage to the electrodes). The impedance (voltage-to-current ratio) and energy efficiency of a dc helicity injection experiment are studied on the CTX spheromak. Over several years changes were made in the physical geometry of the coaxial magnetized plasmas source as well as changes in the external electrical circuit. The source could be operated over a wide range of external charging voltage (and hence current), applied axial flux, and source gas flow rate. A database of resulting voltage, helicity injection, efficiency, electron density, and rotation has been created. These experimental results are compared to an ideal magnetohydrodynamic theory of magnetic flux flow. The theory is parameterized by the dimensionless Hall parameter, the ratio of electric to mass current. For a constant Hall parameter the theory explains why the voltage depends quadratically on the current at constant flux. The theory also explains the approximately linear dependence of the impedance-to-current ratio on the current-to-flux ratio of the source. 9 refs., 6 figs

  7. Magnetic structure in the entrance region of spheromaks sustained by a magnetized coaxial plasma gun under long pulse operation

    International Nuclear Information System (INIS)

    The magnetic structure in coaxial-gun-sustained spheromaks has been investigated. The plasma gun has been operated with a small axial/radial bias magnetic flux as compared to the azimuthal magnetic flux produced by the discharge current. Stronger magnetic field is observed in the entrance region (ER) than in the flux conserver (FC). In both ER and FC, the magnetic structure is nearly axisymmetric. The axial magnetic field in ER is amplified up to about sixteen times as large as the bias magnetic field. This amplification is limited by the drastic change in the magnetic structure, which occurs when the discharge current becomes very large. The magnetic structure before the drastic change is interpreted with the Bessel function model. The μ estimation shows that the magnetic structure is mainly determined by the boundary geometry, not by the external magnetic flux and current. (author)

  8. Safety assessment for the S-1 Spheromak

    International Nuclear Information System (INIS)

    The S-1 machine is part of the Magnetic Fusion Program. The goal of the Magnetic Fusion Program is to develop and demonstrate the practical application of fusion. S-1 is an experimental device which will provide an essential link in the research effort aiming at the realization of fusion power

  9. Maryland magnetic fusion research progam, MS spheromak

    International Nuclear Information System (INIS)

    In this report, we will summarize briefly the work done on the MS experimental device from April 1988 to the beginning of the present contract period in November 1989, and then discuss in more detail the work accomplished in the contract period, such as, impurity control, MHD equilibrium, temperature measurements, and microwave preionization

  10. Whistler instability in an electron-magnetohydrodynamic spheromak.

    Science.gov (United States)

    Stenzel, R L; Urrutia, J M; Strohmaier, K D

    2007-12-31

    A three-dimensional magnetic vortex, propagating in the whistler mode, has been produced in a laboratory plasma. Its magnetic energy is converted into electron kinetic energy. Non-Maxwellian electron distributions are formed which give rise to kinetic whistler instabilities. The propagating vortex radiates whistler modes along the ambient magnetic field. A new instability mechanism is proposed.

  11. Linear MHD Stability Analysis of the SSPX Spheromak

    Science.gov (United States)

    Jayakumar, R.; Cohen, B. I.; Hooper, E. B.; Lodestro, L. L.; McLean, H. S.; Pearlstein, L. D.; Wood, R.; Turnbull, A. D.; Sovinec, C.

    2007-11-01

    Good correlation between the toroidal mode numbers of measured magnetic fluctuations in high temperature SSPX plasmas and presence of low-order rational surfaces in the reconstructed q profiles, suggests that the quality of magnetic surfaces in SSPX is sufficiently good for applying standard linear MHD stability analyses. Previously we have reported on benchmarking the code NIMROD against GATO, with good agreement in growth rates for ideal-MHD internal kinks and an external kinks with no current on open field lines (for equilibria imported from the code Corsica). Recent stability analyses also show that presence of low order rational surfaces causes internal modes to become unstable. We will report on the progress in applying these tools for assessing beta limits in SSPX, using NIMROD analyses including current on open field lines and for comparison with experiments.

  12. On the jets, kinks, and spheromaks formed by a planar magnetized coaxial gun

    OpenAIRE

    Hsu, S. C.; Bellan, P. M.

    2004-01-01

    Measurements of the various plasma configurations produced by a planar magnetized coaxial gun provide insight into the magnetic topology evolution resulting from magnetic helicity injection. Important features of the experiments are a very simple coaxial gun design so that all observed geometrical complexity is due to the intrinsic physical dynamics rather than the source shape and use of a fast multiple-frame digital camera which provides direct imaging of topologically complex shapes and dy...

  13. Performance projections for the Lithium Tokamak eXperiment (LTX)

    International Nuclear Information System (INIS)

    Use of a large-area liquid lithium limiter in the CDX-U tokamak produced the largest enhancements in ohmic tokamak confinement ever observed. Numerical simulations of CDX-U low recycling discharges have now been performed with the ASTRA code, utilizing a model with neoclassical ion transport and boundary conditions suitable to a nonrecycling wall, with fueling via edge gas puffing. This transport model has successfully reproduced the experimental values of the energy confinement (5-6 msec), loop voltage (2, during electron beam evaporation experiments on CDX-U. Similar results were obtained with solid surface overlaying a liquid lithium-filled target, although the solid surface was in this case composed of oxides of lithium. Here we reproduce the latter experiments, using a thin walled (0.125 mm) lithium-filled container, e-beam heated from the side. Results with various target geometries will be presented. (author)

  14. Performance Projections For The Lithium Tokamak Experiment (LTX)

    Energy Technology Data Exchange (ETDEWEB)

    Majeski, R.; Berzak, L.; Gray, T.; Kaita, R.; Kozub, T.; Levinton, F.; Lundberg, D. P.; Manickam, J.; Pereverzev, G. V.; Snieckus, K.; Soukhanovskii, V.; Spaleta, J.; Stotler, D.; Strickler, T.; Timberlake, J.; Yoo, J.; Zakharov, L.

    2009-06-17

    Use of a large-area liquid lithium limiter in the CDX-U tokamak produced the largest relative increase (an enhancement factor of 5-10) in Ohmic tokamak confinement ever observed. The confinement results from CDX-U do not agree with existing scaling laws, and cannot easily be projected to the new lithium tokamak experiment (LTX). Numerical simulations of CDX-U low recycling discharges have now been performed with the ASTRA-ESC code with a special reference transport model suitable for a diffusion-based confinement regime, incorporating boundary conditions for nonrecycling walls, with fuelling via edge gas puffing. This model has been successful at reproducing the experimental values of the energy confinement (4-6 ms), loop voltage (<0.5 V), and density for a typical CDX-U lithium discharge. The same transport model has also been used to project the performance of the LTX, in Ohmic operation, or with modest neutral beam injection (NBI). NBI in LTX, with a low recycling wall of liquid lithium, is predicted to result in core electron and ion temperatures of 1-2 keV, and energy confinement times in excess of 50 ms. Finally, the unique design features of LTX are summarized.

  15. Control of the Helicity Content of a Gun-Generated Spheromak by Incorporating a Conducting Shell into a Magnetized Coaxial Plasma Gun

    Science.gov (United States)

    Matsumoto, Tadafumi; Sekiguchi, Jun'ichi; Asai, Tomohiko

    In the formation of magnetized plasmoid by a magnetized coaxial plasma gun (MCPG), the magnetic helicity content of the generated plasmoid is one of the critical parameters. Typically, the bias coil to generate a poloidal flux is mounted either on the outer electrode or inside the inner electrode. However, most of the flux generated in the conventional method spreads even radially outside of the formation region. Thus, only a fraction of the total magnetic flux is actually exploited for helicity generation in the plasmoid. In the proposed system, the plasma gun incorporates a copper shell mounted on the outer electrode. By changing the rise time of the discharge bias coil current and the geometrical structure of the shell, the magnetic field structure and its time evolution can be controlled. The effect of the copper shell has been numerically simulated for the actual gun structure, and experimentally confirmed. This may increase the magnetic helicity content results, through increased poloidal magnetic field.

  16. Chemical response of lithiated graphite with deuterium irradiation

    OpenAIRE

    Taylor, C N; B. Heim; Allain, Jean Paul

    2011-01-01

    Lithium wall conditioning has been found to enhance plasma performance for graphite walled fusion devices such as TFTR, CDX-U, T-11M, TJ-II and NSTX. Among observed plasma enhancements is a reduction in edge density and reduced deuterium recycling. The mechanism by which lithiated graphite retains deuterium is largely unknown. Under controlled laboratory conditions, X-ray photoelectron spectroscopy (XPS) is used to observe the chemical changes that occur on ATJ graphite after lithium depositi...

  17. Deuterium ion-surface interactions of liquid-lithium thin films on micro-porous molybdenum substrates

    OpenAIRE

    Heim, Bryan; Taylor, C. N.; Zigon, D. M.; O., S; Allain, Jean Paul

    2011-01-01

    Lithium has been utilized to enhance the plasma performance for a variety of fusion devices such as TFTR, CDX-U and NSTX. Lithium in both the solid and liquid states has been studied extensively for its role in hydrogen retention and reduction in sputtering yield. A liquid lithium diverter (LLD) was recently installed in the National Spherical Torus Experiment (NSTX) fusion reactor to investigate lithium applications for plasma-facing surfaces (PFS). Representative samples of LLD material wer...

  18. Final Technical Report - ''Determining How Magnetic Helicity Injection Really Works''

    International Nuclear Information System (INIS)

    This research program involved direct observation of the complicated plasma dynamics underlying spheromak formation. Spheromaks are self-organizing magnetically dominated plasma configurations which potentially offer a simple, low-cost means for confining the plasma in a controlled thermonuclear fusion reactor. The spheromak source used in these studies was a coaxial co-planar magnetized plasma gun which was specifically designed to have the simplest relevant geometry. The simplicity of the geometry facilitated understanding of the basic physics and minimized confusion that would otherwise have resulted from complexities due to the experimental geometry. The coaxial plasma gun was mounted on one end of a large vacuum tank that had excellent optical access so the spheromak formation process could be tracked in detail using ultra-high speed cameras. The main accomplishments of this research program were (1) obtaining experimental data characterizing the detailed physics underlying spheromak formation and the development of new theoretical models motivated by these observations, (2) determining the relationship between spheromak physics and astrophysical jets, (3) developing a new high-speed camera diagnostic for the SSPX spheromak at the Lawrence Livermore National Lab, and (4) training graduate students and postdoctoral fellows

  19. Final Techical Report - "Determining How Magnetic Helicity Injection Really Works"

    Energy Technology Data Exchange (ETDEWEB)

    Paul M. Bellan

    2005-02-15

    This research program involved direct observation of the complicated plasma dynamics underlying spheromak formation. Spheromaks are self-organizing magnetically dominated plasma configurations which potentially offer a simple, low-cost means for confining the plasma in a controlled thermonuclear fusion reactor. The spheromak source used in these studies was a coaxial co-planar magnetized plasma gun which was specifically designed to have the simplest relevant geometry. The simplicity of the geometry facilitated understanding of the basic physics and minimized confusion that would otherwise have resulted from complexities due to the experimental geometry. The coaxial plasma gun was mounted on one end of a large vacuum tank that had excellent optical access so the spheromak formation process could be tracked in detail using ultra-high speed cameras. The main accomplishments of this research program were (1) obtaining experimental data characterizing the detailed physics underlying spheromak formation and the development of new theoretical models motivated by these observations, (2) determining the relationship between spheromak physics and astrophysical jets, (3) developing a new high-speed camera diagnostic for the SSPX spheromak at the Lawrence Livermore National Lab, and (4) training graduate students and postdoctoral fellows.

  20. Application of a magnetized coaxial plasma gun for formation of a high-beta field-reversed configuration

    International Nuclear Information System (INIS)

    We have tested a field-reversed configuration (FRC) formation with a spheromak injection for the first time. In this method, initial pre-ionized plasma is injected as a magnetized spheromak-like plasmoid into the discharge chamber prior to main field reversal. The FRC plasma with an electron density of 1.3 x 1021 m-3, a separatrix radius of 0.04 m and a plasma length of 0.8 m was produced successfully in initial background plasma of about 1.6 x 1019 m-3 by spheromak injection. The density is about one third of the conventional formed by the z-ionized method

  1. Two novel compact toroidal concepts with Stellarator features

    International Nuclear Information System (INIS)

    Two novel compact toroidal concepts are presented. One is the Stellarator-Spheromak (SSP) and another is the Extreme-Low-Aspect-Ratio Stellarator (ELARS). An SSP device represents a hybrid between a spherical stellarator (SS) and a spheromak. This configuration retains the main advantages of spheromaks ans has a potential for improving the spheromak concept regarding its main problems. The MHD equilibrium in an SSP with very high β of the confined plasma is demonstrated. Another concept, ELARS, represents an extreme limit of the SS approach, and considers devices with stellarator features and aspect ratios A ∼ 1. We have succeeded in finding ELARS configurations with extremely compact, modular, and simple design compatible with significant rotational transform, large plasma volume, and good particle transport characteristics

  2. Surface Treatment of a Lithium Limiter for Spherical Torus Plasma Experiments

    International Nuclear Information System (INIS)

    The concept of a flowing lithium first wall for a fusion reactor may lead to a significant advance in reactor design, since it could virtually eliminate the concerns with power density and erosion, tritium retention, and cooling associated with solid walls. As part of investigations to determine the feasibility of this approach, plasma interaction questions in a toroidal plasma geometry are being addressed in the Current Drive eXperiment-Upgrade (CDX-U) spherical torus (ST). The first experiments involved a toroidally local lithium limiter (L3). Measurements of pumpout rates indicated that deuterium pumping was greater for the L3 compared to conventional boron carbide limiters. The difference in the pumpout rates between the two limiter types decreased with plasma exposure, but argon glow discharge cleaning was able to restore the pumping effectiveness of the L3. At no point, however, was the extremely low recycling regime reported in previous lithium experiments achieved. This may be due to the much larger lithium surfaces that were exposed to the plasma in the earlier work. The possibility will be studied in the next set of CDX-U experiments, which are to be conducted with a large area, fully toroidal lithium limiter

  3. Increasing the magnetic helicity content of a plasma by pulsing a magnetized source.

    Science.gov (United States)

    Woodruff, S; Stallard, B W; McLean, H S; Hooper, E B; Bulmer, R; Cohen, B I; Hill, D N; Holcomb, C T; Moller, J; Wood, R D

    2004-11-12

    By operating a magnetized coaxial gun in a pulsed mode it is possible to produce large voltage pulses of duration approximately 500 mus while reaching a few kV, giving a discrete input of helicity into a spheromak. In the sustained spheromak physics experiment (SSPX), it is observed that pulsing serves to nearly double the stored magnetic energy and double the temperature. We discuss these results by comparison with 3D MHD simulations of the same phenomenon.

  4. Increasing the magnetic helicity content of a plasma by pulsing a magnetized source.

    Science.gov (United States)

    Woodruff, S; Stallard, B W; McLean, H S; Hooper, E B; Bulmer, R; Cohen, B I; Hill, D N; Holcomb, C T; Moller, J; Wood, R D

    2004-11-12

    By operating a magnetized coaxial gun in a pulsed mode it is possible to produce large voltage pulses of duration approximately 500 mus while reaching a few kV, giving a discrete input of helicity into a spheromak. In the sustained spheromak physics experiment (SSPX), it is observed that pulsing serves to nearly double the stored magnetic energy and double the temperature. We discuss these results by comparison with 3D MHD simulations of the same phenomenon. PMID:15600933

  5. Progress towards high-performance, steady-state spherical torus.

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.G (Korea Basic Science Institute, Taejon, Republic of Korea); Kugel, W. (Princeton University, NJ); Efthimion, P. C. (Princeton University, NJ); Kissick, M. W. (University of Wisconsin, WI); Bourdelle, C. (CEA Cadarache, France); Kim, J.H (Korea Advanced Institute of Science and Technology, Taejon, Republic of Korea); Gray, T. (Princeton University, NJ); Garstka, G. D. (University of Wisconsin, WI); Fonck, R. J. (University of Wisconsin, WI); Doerner, R. (University of California, San Diego, CA); Diem, S.J. (University of Wisconsin, WI); Pacella, D. (ENEA, Frascati, Italy); Nishino, N. (Hiroshima University, Hiroshima, Japan); Ferron, J. R. (General Atomics, San Diego, CA); Skinner, C. H. (Princeton University, NJ); Stutman, D. (Johns Hopkins University, Baltimore, MD); Soukhanovskii, V. (Princeton University, NJ); Choe, W. (Korea Advanced Institute of Science and Technology, Taejon, Republic of Korea); Chrzanowski, J. (Princeton University, NJ); Mau, T.K. (University of California, San Diego, CA); Bell, Michael G. (Princeton University, NJ); Raman, R. (University of Washington, Seattle, WA); Peng, Y-K. M. (Oak Ridge National Laboratory, Oak Ridge, TN); Ono, M. (Princeton University, NJ); Park, W. (Princeton University, NJ); Hoffman, D. (Princeton University, NJ); Maqueda, R. (Los Alamos National Laboratory, Los Alamos, NM); Kaye, S. M. (Princeton University, NJ); Kaita, R. (Princeton University, NJ); Jarboe, T.R. (University of Washington, Seattle, WA); Hill, K.W. (Princeton University, NJ); Heidbrink, W. (University of California, Irvine, CA); Spaleta, J. (Princeton University, NJ); Sontag, A.C (University of Wisconsin, WI); Seraydarian, R. (University of California, San Diego, CA); Schooff, R.J. (University of Wisconsin, WI); Sabbagh, S.A. (Columbia University, New York, NY); Menard, J. (Princeton University, NJ); Mazzucato, E. (Princeton University, NJ); Lee, K. (University of California, Davis, CA); LeBlanc, B. (Princeton University, NJ); Probert, P. H. (University of Wisconsin, WI); Blanchard, W. (Princeton University, NJ); Wampler, William R.; Swain, D. W. (Oak Ridge National Laboratory, Oak Ridge, TN); Ryan, P.M. (Oak Ridge National Laboratory, Oak Ridge, TN); Rosenberg, A. (Princeton University, NJ); Ramakrishnan, S. (Princeton University, NJ); Phillips, C.K. (Princeton University, NJ); Park, H.K. (Princeton University, NJ); Roquemore, A. L. (Princeton University, NJ); Paoletti, F. (Columbia University, New York, NY); Medley, S. S. (Princeton University, NJ); Fredrickson, E. D. (Princeton University, NJ); Kessel, C. E. (Princeton University, NJ); Stevenson, T. (Princeton University, NJ); Darrow, D. S. (Princeton University, NJ); Majeski, R. (Princeton University, NJ); Bitter, M. (Princeton University, NJ); Neumeyer, C. (Princeton University, NJ); Nelson, B.A. (University of Washington, Seattle, WA); Paul, S. F. (Princeton University, NJ); Manickam, J. (Princeton University, NJ); Ostrander, C. N. (University of Wisconsin, WI); Mueller, D. (Princeton University, NJ); Lewicki, B.T (University of Wisconsin, WI); Luckhardt, S. (University of California, San Diego, CA); Johnson, D.W. (Princeton University, NJ); Grisham, L.R. (Princeton University, NJ); Kubota, Shigeru (University of California, Los Angeles, CA); Gates, D.A. (Princeton University, NJ); Bush, C. (Oak Ridge National Laboratory, Oak Ridge, TN); Synakowski, E.J. (Princeton University, NJ); Schaffer, M. (General Atomics, San Diego, CA); Boedo, J. (University of California, San Diego, CA); Maingi, R. (Oak Ridge National Laboratory, Oak Ridge, TN); Redi, M. (Princeton University, NJ); Pinsker, R. (General Atomics, San Diego, CA); Bigelow, T. (Oak Ridge National Laboratory, Oak Ridge, TN); Bell, R. E. (Princeton University, NJ)

    2004-06-01

    Research on the spherical torus (or spherical tokamak) (ST) is being pursued to explore the scientific benefits of modifying the field line structure from that in more moderate aspect ratio devices, such as the conventional tokamak. The ST experiments are being conducted in various US research facilities including the MA-class National Spherical Torus Experiment (NSTX) at Princeton, and three medium sized ST research facilities: PEGASUS at University of Wisconsin, HIT-II at University of Washington, and CDX-U at Princeton. In the context of the fusion energy development path being formulated in the US, an ST-based Component Test Facility (CTF) and, ultimately a Demo device, are being discussed. For these, it is essential to develop high performance, steady-state operational scenarios. The relevant scientific issues are energy confinement, MHD stability at high beta ({beta}), non-inductive sustainment, Ohmic-solenoid-free start-up, and power and particle handling. In the confinement area, the NSTX experiments have shown that the confinement can be up to 50% better than the ITER-98-pby2 H-mode scaling, consistent with the requirements for an ST-based CTF and Demo. In NSTX, CTF-relevant average toroidal beta values {beta}{sub T} of up to 35% with a near unity central {beta}{sub T} have been obtained. NSTX will be exploring advanced regimes where {beta}{sub T} up to 40% can be sustained through active stabilization of resistive wall modes. To date, the most successful technique for non-inductive sustainment in NSTX is the high beta poloidal regime, where discharges with a high non-inductive fraction ({approx}60% bootstrap current+NBI current drive) were sustained over the resistive skin time. Research on radio-frequency (RF) based heating and current drive utilizing high harmonic fast wave and electron Bernstein wave is also pursued on NSTX, PEGASUS, and CDX-U. For non-inductive start-up, the coaxial helicity injection, developed in HIT/HIT-II, has been adopted on NSTX

  6. Progress Towards High Performance, Steady-state Spherical Torus

    Energy Technology Data Exchange (ETDEWEB)

    M. Ono; M.G. Bell; R.E. Bell; T. Bigelow; M. Bitter; W. Blanchard; J. Boedo; C. Bourdelle; C. Bush; W. Choe; J. Chrzanowski; D.S. Darrow; S.J. Diem; R. Doerner; P.C. Efthimion; J.R. Ferron; R.J. Fonck; E.D. Fredrickson; G.D. Garstka; D.A. Gates; T. Gray; L.R. Grisham; W. Heidbrink; K.W. Hill; D. Hoffman; T.R. Jarboe; D.W. Johnson; R. Kaita; S.M. Kaye; C. Kessel; J.H. Kim; M.W. Kissick; S. Kubota; H.W. Kugel; B.P. LeBlanc; K. Lee; S.G. Lee; B.T. Lewicki; S. Luckhardt; R. Maingi; R. Majeski; J. Manickam; R. Maqueda; T.K. Mau; E. Mazzucato; S.S. Medley; J. Menard; D. Mueller; B.A. Nelson; C. Neumeyer; N. Nishino; C.N. Ostrander; D. Pacella; F. Paoletti; H.K. Park; W. Park; S.F. Paul; Y.-K. M. Peng; C.K. Phillips; R. Pinsker; P.H. Probert; S. Ramakrishnan; R. Raman; M. Redi; A.L. Roquemore; A. Rosenberg; P.M. Ryan; S.A. Sabbagh; M. Schaffer; R.J. Schooff; R. Seraydarian; C.H. Skinner; A.C. Sontag; V. Soukhanovskii; J. Spaleta; T. Stevenson; D. Stutman; D.W. Swain; E. Synakowski; Y. Takase; X. Tang; G. Taylor; J. Timberlake; K.L. Tritz; E.A. Unterberg; A. Von Halle; J. Wilgen; M. Williams; J.R. Wilson; X. Xu; S.J. Zweben; R. Akers; R.E. Barry; P. Beiersdorfer; J.M. Bialek; B. Blagojevic; P.T. Bonoli; M.D. Carter; W. Davis; B. Deng; L. Dudek; J. Egedal; R. Ellis; M. Finkenthal; J. Foley; E. Fredd; A. Glasser; T. Gibney; M. Gilmore; R.J. Goldston; R.E. Hatcher; R.J. Hawryluk; W. Houlberg; R. Harvey; S.C. Jardin; J.C. Hosea; H. Ji; M. Kalish; J. Lowrance; L.L. Lao; F.M. Levinton; N.C. Luhmann; R. Marsala; D. Mastravito; M.M. Menon; O. Mitarai; M. Nagata; G. Oliaro; R. Parsells; T. Peebles; B. Peneflor; D. Piglowski; G.D. Porter; A.K. Ram; M. Rensink; G. Rewoldt; P. Roney; K. Shaing; S. Shiraiwa; P. Sichta; D. Stotler; B.C. Stratton; R. Vero; W.R. Wampler; G.A. Wurden

    2003-10-02

    Research on the Spherical Torus (or Spherical Tokamak) is being pursued to explore the scientific benefits of modifying the field line structure from that in more moderate aspect-ratio devices, such as the conventional tokamak. The Spherical Tours (ST) experiments are being conducted in various U.S. research facilities including the MA-class National Spherical Torus Experiment (NSTX) at Princeton, and three medium-size ST research facilities: Pegasus at University of Wisconsin, HIT-II at University of Washington, and CDX-U at Princeton. In the context of the fusion energy development path being formulated in the U.S., an ST-based Component Test Facility (CTF) and, ultimately a Demo device, are being discussed. For these, it is essential to develop high-performance, steady-state operational scenarios. The relevant scientific issues are energy confinement, MHD stability at high beta (B), noninductive sustainment, ohmic-solenoid-free start-up, and power and particle handling. In the confinement area, the NSTX experiments have shown that the confinement can be up to 50% better than the ITER-98-pby2 H-mode scaling, consistent with the requirements for an ST-based CTF and Demo. In NSTX, CTF-relevant average toroidal beta values bT of up to 35% with the near unity central betaT have been obtained. NSTX will be exploring advanced regimes where bT up to 40% can be sustained through active stabilization of resistive wall modes. To date, the most successful technique for noninductive sustainment in NSTX is the high beta-poloidal regime, where discharges with a high noninductive fraction ({approx}60% bootstrap current + neutral-beam-injected current drive) were sustained over the resistive skin time. Research on radio-frequency-based heating and current drive utilizing HHFW (High Harmonic Fast Wave) and EBW (Electron Bernstein Wave) is also pursued on NSTX, Pegasus, and CDX-U. For noninductive start-up, the Coaxial Helicity Injection (CHI), developed in HIT/HIT-II, has been

  7. Progress towards high-performance, steady-state spherical torus

    Energy Technology Data Exchange (ETDEWEB)

    Ono, M.; Bell, M. G.; Bell, R. E.; Bigelow, T.; Bitter, M.; Blanchard, W.; Boedo, J.; Bourdelle, C.; Bush, C.; Choe, W.; Chrzanowski, J.; Darrow, D. S.; Diem, S. J.; Doerner, R.; Efthimion, P. C.; Ferron, J. R.; Fonck, R. J.; Fredrickson, E. D.; Garstka, G. D.; Gates, D A; Gray, T.; Grisham, L. R.; Heidbrink, W.; Hill, K. W.; Hoffman, D.; Jarboe, T. R.; Johnson, D. W.; Kaita, R.; Kaye, S. M.; Kessel, C.; Kim, J. H.; Kissick, M. W.; Kubota, S.; Kugel, H. W.; LeBlanc, B. P.; Lee, K.; Lee, S. G.; Lewicki, B. T.; Luckhardt, S.; Maingi, R.; Majeski, R.; Manickam, J.; Maqueda, R.; Mau, T. K.; Mazzucato, E.; Medley, S. S.; Menard, J.; Mueller, D.; Nelson, B. A.; Neumeyer, C.; Nishino, N.; Ostrander, C. N.; Pacella, D.; Paoletti, F.; Park, H. K.; Park, W.; Paul, S. F.; Peng, Y-K M.; Phillips, C. K.; Pinsker, R.; Probert, P. H.; Ramakrishnan, S.; Raman, R.; Redi, M.; Roquemore, A. L.; Rosenberg, A.; Ryan, P. M.; Sabbagh, S. A.; Schaffer, M.; Schooff, R. J.; Seraydarian, R.; Skinner, C. H.; Sontag, A. C.; Soukhanovskii, V.; Spaleta, J.; Stevenson, T.; Stutman, D.; Swain, D. W.; Synakowski, E.; Takase, Y.; Tang, X.; Taylor, G.; Timberlake, J.; Tritz, K. L.; Unterberg, E. A.; Halle, A. Von.; Wilgen, J.; Williams, M.; Wilson, J. R.; Xu, X.; Zweben, S. J.; Akers, R.; Barry, R. E.; Beiersdorfer, P.; Bialek, J. M.; Blagojevic, B.; Bonoli, P. T.; Carter, M. D.; Davis, W.; Deng, B.; Dudek, L.; Egedal, J.; Ellis, R.; Finkenthal, M.; Foley, J.; Fredd, E.; Glasser, A.; Gibney, T.; Gilmore, M.; Goldston, R. J.; Hatcher, R. E.; Hawryluk, R. J.; Houlberg, W.; Harvey, R.; Jardin, S. C.; Hosea, J. C.; Ji, H.; Kalish, M.; Lowrance, J.; Lao, L. L.; Levinton, F. M.; Luhmann, N. C.; Marsala, R.; Mastravito, D.; Menon, M. M.; Mitarai, O.; Nagata, M.; Oliaro, G.; Parsells, R.; Peebles, T.; Peneflor, B.; Piglowski, D.; Porter, G. D.; Ram, A. K.; Rensink, M.; Rewoldt, G.; Robinson, J.; Roney, P.; Shaing, K.; Shiraiwa, S.; Sichta, P.; Stotler, D.; Stratton, B. C.; Vero, R.; Wampler, W. R.; Wurden, G. A.

    2003-12-01

    Research on the spherical torus (or spherical tokamak) (ST) is being pursued to explore the scientific benefits of modifying the field line structure from that in more moderate aspect ratio devices, such as the conventional tokamak. The ST experiments are being conducted in various US research facilities including the MA-class National Spherical Torus Experiment (NSTX) at Princeton, and three medium sized ST research facilities: PEGASUS at University of Wisconsin, HIT-II at University of Washington, and CDX-U at Princeton. In the context of the fusion energy development path being formulated in the US, an ST-based Component Test Facility (CTF) and, ultimately a Demo device, are being discussed. For these, it is essential to develop high performance, steady-state operational scenarios. The relevant scientific issues are energy confinement, MHD stability at high beta (β), non-inductive sustainment, Ohmic-solenoid-free start-up, and power and particle handling. In the confinement area, the NSTX experiments have shown that the confinement can be up to 50% better than the ITER-98-pby2 H-mode scaling, consistent with the requirements for an ST-based CTF and Demo. In NSTX, CTF-relevant average toroidal beta values βT of up to 35% with a near unity central βT have been obtained. NSTX will be exploring advanced regimes where βT up to 40% can be sustained through active stabilization of resistive wall modes. To date, the most successful technique for non-inductive sustainment in NSTX is the high beta poloidal regime, where discharges with a high non-inductive fraction (~ 60% bootstrap current+NBI current drive) were sustained over the resistive skin time. Research on radio-frequency (RF) based heating and current drive utilizing high harmonic fast wave and electron Bernstein wave is also pursued on NSTX, PEGASUS, and CDX-U. For non-inductive start-up, the coaxial helicity injection, developed in HIT/HIT-II, has been adopted on NSTX to

  8. Hall effect on a Merging Formation Process of a Field-Reversed Configuration

    Science.gov (United States)

    Kaminou, Yasuhiro; Guo, Xuehan; Inomoto, Michiaki; Ono, Yasushi; Horiuchi, Ritoku

    2015-11-01

    Counter-helicity spheromak merging is one of the formation methods of a Field-Reversed Configuration (FRC). In counter-helicity spheromak merging, two spheromaks with opposing toroidal fields merge together, through magnetic reconnection events and relax into a FRC, which has no or little toroidal field. This process contains magnetic reconnection and a relaxation phenomena, and the Hall effect has some essential effects on these process because the X-point in the magnetic reconnection or the O-point of the FRC has no or little magnetic field. However, the Hall effect as both global and local effect on counter-helicity spheromak merging has not been elucidated. In this poster, we conducted 2D/3D Hall-MHD simulations and experiments of counter-helicity spheromak merging. We find that the Hall effect enhances the reconnection rate, and reduces the generation of toroidal sheared-flow. The suppression of the ``slingshot effect'' affects the relaxation process. We will discuss details in the poster.

  9. Plasma transport control and self-sustaining fusion reactor

    International Nuclear Information System (INIS)

    The possibility of a high performance/low cost fusion reactor concept which can simultaneously satisfy (1) high beta, (2) high bootstrap fraction (self-sustaining), and (3) high confinement is discussed. In CDX-U, a tokamak configuration was created and sustained solely by internally generated bootstrap currents, in which a seed current is created through a non-classical current diffusion process. Recent theoretical studies of MHD stability limits in spherical torus .g., the National Spherical Torus Experiment (NSTX) reduced a promising regime with stable beta of 45% and bootstrap current fraction of ≥99%. Since the bootstrap current is generated by the pressure gradient, to satisfy the needed current profile for MHD stable high beta regimes, it is essential to develop a means to control the pressure profile. It is suggested that the most efficient approach for pressure profile control is through a creation of transport barriers (localized regions of low plasma transport) in the plasma. As a tool for creating the core transport barrier, poloidal-sheared-flow generation by ion Bernstein waves (IBW) near the wave absorption region appears to be promising. In PBX-M, application of IBW power produced a high-quality internal transport barrier where the ion energy and particle transport became neoclassical in the barrier region. The observation is consistent with the IBW-induced-poloidal-sheared-flow model. An experiment is planned on TFTR to demonstrate this concept with D-T reactor-grade plasmas. For edge transport control, a method based on electron ripple injection (ERI), driven by electron cyclotron heating (ECH), is being developed on CDX-U. It is estimated that both the IBW and ERI methods can create a transport barrier in reactor-grade plasmas (e.g., ITER) with a relatively small amount of power (∼10 MW much-lt Pfusion)

  10. Reduction of plasma density in the Helicity Injected Torus with Steady Inductance experiment by using a helicon pre-ionization source.

    Science.gov (United States)

    Hossack, Aaron C; Firman, Taylor; Jarboe, Thomas R; Prager, James R; Victor, Brian S; Wrobel, Jonathan S; Ziemba, Timothy

    2013-10-01

    A helicon based pre-ionization source has been developed and installed on the Helicity Injected Torus with Steady Inductance (HIT-SI) spheromak. The source initiates plasma breakdown by injecting impurity-free, unmagnetized plasma into the HIT-SI confinement volume. Typical helium spheromaks have electron density reduced from (2-3) × 10(19) m(-3) to 1 × 10(19) m(-3). Deuterium spheromak formation is possible with density as low as 2 × 10(18) m(-3). The source also enables HIT-SI to be operated with only one helicity injector at injector frequencies above 14.5 kHz. A theory explaining the physical mechanism driving the reduction of breakdown density is presented.

  11. Proceedings of the third symposium on the physics and technology of compact toroids in the magnetic fusion energy program

    International Nuclear Information System (INIS)

    This document contains papers contributed by the participants of the Third Symposium on Physics and Technology of Compact Toroids in the Magnetic Fusion Energy Program. Subjects include reactor aspects of compact toroids, energetic particle rings, spheromak configurations (a mixture of toroidal and poloidal fields), and field-reversed configurations

  12. Theoretical plasma physics: Progress report, January 1, 1987-December 31, 1987

    International Nuclear Information System (INIS)

    During the past year, research has been carried out on current drive in tokamaks and in spheromaks, fast integration techniques for magnetic field lines, alpha particle diagnostics that use CO2 laser scattering, and plasma turbulence. This paper discusses this research

  13. Annual report, October 1, 1979-September 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    This annual report covers research progress on each of the following areas: (1) PLT device, (2) PDX, (3) spheromak, (4) smaller devices, (5) theory, (6) TFTR, (7) applied physics, (8) TFTR blanket module experiments, (9) advanced toroidal facility, (10) advanced projects design and analysis, (11) engineering, and (12) fabrication, operations and maintenance. (MOW)

  14. Princeton Plasma Physics Laboratory annual report, October 1, 1984-September 30, 1985

    International Nuclear Information System (INIS)

    Summaries of research progress during this period are given for the following areas: (1) TFTR, (2) PLT, (3) PBX, (4) S-1 Spheromak, (5) Advanced Concepts Torus-1, (6) x-ray laser studies, (7) theory, (8) tokamak modeling, (9) spin-polarization, and (10) ignition studies

  15. Theoretical studies of non inductive current drive in compact toroids

    NARCIS (Netherlands)

    Farengo, R; Lifschitz, AF; Caputi, KI; Arista, NR; Clemente, RA

    2002-01-01

    Three non inductive current drive methods that can be applied to compact toroids axe studied. The use of neutral beams to drive current in field reversed configurations and spheromaks is studied using a Monte Carlo code that includes a complete ionization package and follows the exact particle orbit

  16. Confinement and heating of high beta plasmas with emphasis on compact toroids: Final progress report period ending February 15, 1987

    International Nuclear Information System (INIS)

    This report describes work performed at the University of Washington Aerospace and Energetics Research Program involving the ''compact toroid'' approach to magenetic confinement of plasmas. The five experiments comprising the effort are: The coaxial slow source experiment; the CSS project; the variable length experiment; the merging spheromak experiment; and the variable angle conical theta pinch experiment

  17. International Atomic Energy Agency Technical Committee Meeting, Innovative approaches to fusion energy, Pleasanton, CA, October 20-23, 1997

    International Nuclear Information System (INIS)

    The Purpose of this Meeting is to provide a forum for discussion of approaches to fusion other than conventional tokamaks and stellarators, such as: (1) quasi-steady-state systems (mirrors, RFP's, spheromaks, FRC'S, spherical tori,...); (2) short-pulsed systems (liners, Z-pinch variants, plasma foci, novel ICF, ...); and (3) fusion technology innovations

  18. New Approaches and Solutions of Nonlinear Force-Free Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    XIE Bai-Song

    2006-01-01

    Some new approaches for nonlinear force-free magnetic field are presented and new exact solutions are found analytically. Examples are given and some implications of results to astrophysical solar plasmas as well as tokamak or/and spheromak plasmas are discussed.PACS numbers: 52.30.Cv, 52.55.-s, 95.30.Qd

  19. Princeton Plasma Physics Laboratory annual report, October 1, 1983-September 30, 1984

    International Nuclear Information System (INIS)

    Progress made during this reporting period is reported for each of the following areas: (1) principal parameters achieved in experimental devices, (2) TFTR, (3) PLT, (4) PBX, (5) S-1 Spheromak, (6) advanced concepts Torus-1, (7) x-ray laser studies, (8) theory, (9) tokamak modeling, (10) reactor studies, (11) spin-polarized fusion program, (12) tokamak fusion core experiment, and (13) engineering

  20. Annual report, October 1, 1979-September 30, 1980

    International Nuclear Information System (INIS)

    This annual report covers research progress on each of the following areas: (1) PLT device, (2) PDX, (3) spheromak, (4) smaller devices, (5) theory, (6) TFTR, (7) applied physics, (8) TFTR blanket module experiments, (9) advanced toroidal facility, (10) advanced projects design and analysis, (11) engineering, and (12) fabrication, operations and maintenance

  1. MHD stability control in alternate confinement concept experiments

    Science.gov (United States)

    Hooper, E. B.

    2006-10-01

    High-quality plasma operation and good energy confinement in the alternate confinement experiments require control of ideal and resistive MHD instabilities. New experiments in the revitalized ICC program, supported by modern MHD computational capabilities, are demonstrating progress in this control which significantly extends previous work. Results from the classical tokamak are thereby extended into new parameter regimes, generating insight into the physics. We consider both toroidal and open concepts and, where appropriate, highlight comparisons with the tokamak, ST, and stellarator. The driving forces for ideal MHD modes are characterized using the Frieman-Rotenberg condition, which generalizes the stability analysis by including plasma flow. Stabilizing mechanisms include conducting walls (RFP, spheromak, FRC); plasma shaping as characterized by the magnetic dipole moment (spheromak, FRC); current-profile control (RFP, spheromak); sheared, super-Alfvénic flows (Z-pinch, centrifugal mirror); quadrupole magnetic wells (FRC, mirror); and high kinetic-energy density flow in good curvature regions (gas-dynamic trap). Resistive tearing is stabilized or limited by current profile control, primarily in the RFP and spheromak. Non-MHD mechanisms such as FLR can also be stabilizing and will be most effective if the MHD growth rate is minimized. Most of the experimental work to date has focused on global or large-scale modes; the possible consequences of short-wavelength or local modes will be explored. E. Frieman and M. Rotenberg, Rev. Mod. Phys. 32, 898 (1960).

  2. Princeton Plasma Physics Laboratory annual report, October 1, 1984-September 30, 1985

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, C.A. (ed.)

    1985-01-01

    Summaries of research progress during this period are given for the following areas: (1) TFTR, (2) PLT, (3) PBX, (4) S-1 Spheromak, (5) Advanced Concepts Torus-1, (6) x-ray laser studies, (7) theory, (8) tokamak modeling, (9) spin-polarization, and (10) ignition studies. (MOW)

  3. Princeton Plasma Physics Laboratory: Annual report, October 1, 1986--September 30, 1987

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    This report contains papers on the following topics: Principle Parameters Achieved in Experimental Devices (FY87); Tokamak Fusion Test Reactor; Princeton Beta Experiment-Modification; S-1 Spheromak; Current-Drive Experiment; X-Ray Laser Studies; Theoretical Division; Tokamak Modeling; Compact Ignition Tokamak; Engineering Department; Project Planning and Safety Office; Quality Assurance and Reliability; Administrative Operations; and PPPL Patent Invention Disclosures (FY87).

  4. Proceedings of the third symposium on the physics and technology of compact toroids in the magnetic fusion energy program

    Energy Technology Data Exchange (ETDEWEB)

    Siemon, R.E. (comp.)

    1981-03-01

    This document contains papers contributed by the participants of the Third Symposium on Physics and Technology of Compact Toroids in the Magnetic Fusion Energy Program. Subjects include reactor aspects of compact toroids, energetic particle rings, spheromak configurations (a mixture of toroidal and poloidal fields), and field-reversed configurations (FRC's that contain purely poloidal field).

  5. Confinement and heating of high-beta plasmas with emphasis on compact toroids. Task I. Annual report for period ending May 31, 1982

    International Nuclear Information System (INIS)

    Results are given for work during this period on each of the following areas: (1) spheromak production using conical theta pinch guns; (2) detection of CT fluctuation spectra via CO2 forward scattering; (3) high density field reversal experiment; (4) plasma compression experiment; (5) material end plugging experiment; and (6) design of computerized data acquisition systems

  6. Princeton Plasma Physics Laboratory: Annual report, October 1, 1986--September 30, 1987

    International Nuclear Information System (INIS)

    This report contains papers on the following topics: Principle Parameters Achieved in Experimental Devices (FY87); Tokamak Fusion Test Reactor; Princeton Beta Experiment-Modification; S-1 Spheromak; Current-Drive Experiment; X-Ray Laser Studies; Theoretical Division; Tokamak Modeling; Compact Ignition Tokamak; Engineering Department; Project Planning and Safety Office; Quality Assurance and Reliability; Administrative Operations; and PPPL Patent Invention Disclosures (FY87)

  7. Final Technical Report for NSF/DOE partnership grant ER54905; 2006-2009

    International Nuclear Information System (INIS)

    The nonlinear physics of electron magnetohydrodynamics (EMHD) in plasmas. Time-varying wave magnetic field exceeding the background magnetic field produces highly nonlinear whistler mode since the wave dispersion depends on the total magnetic field. There exists no theory for such whistler modes. The present experimental work is the first one to explore this regime of nonlinear whistlers. A field-reversed configuration has been found which has the same vortex topology as an MHD spheromak, termed a whistler spheromak. Whistler mirrors have compressed and twisted field lines propagating in the whistler mode. Their helicity properties have been studied. Whistler spheromaks and mirrors have different propagation and damping characteristics. Wave collisions have been studied. Head-on collisions of two whistler spheromaks form a stationary field-reversed configuration (FRC) without helicity. When whistler spheromaks are excited the toroidal current flows mainly in the toroidal null line. It is only carried by electrons since ion currents and displacement currents are negligible. A change in the poloidal (axial) magnetic field induces a toroidal electric field which drives the current. Magnetic energy is dissipated and converted into electron kinetic energy. This process is called magnetic reconnection in 2D geometries, which are simplifications for theoretical convenience but rarely occur in nature. A crucial aspect of reconnection is its rate, determined by the electron collisionality. Regular Coulomb collisions can rarely account for the observed reconnection rates. In the present experiments we have also observed fast reconnection and explained it by electron transit time damping in the finite-size null layer. Electrons move faster than a whistler spheromak, hence transit through the toroidal null line where they are freely accelerated. The transit time is essentially the collision time but no particle collisions are required. Strong electron heating and visible light

  8. Compact torus experiments and theory

    International Nuclear Information System (INIS)

    Two types of compact toroids have been studied: spheromaks and field-reversed configurations (FRC). Spheromaks, which contain both toroidal and poloidal fields, have been formed with a magnetized coaxial injector and trapped in both prolate and oblate flux conservers. As expected from theory, the prolate configuration always tilts, but the oblate configuration can be made stable even in the presence of a guide field. Observations include 150μs lifetimes, approx. 1014 cm-3, and a decrease of field fluctuations by a factor of 100 at the time of complete reconnection. Theoretical studies of the FRC (no toroidal field) have been compared with the results of two field-reversed theta-pinches, FRX-A and FRX-B

  9. Tungsten spectroscopy relevant to the diagnostics development of ITER divertor plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Clementson, J; Beiersdorfer, P; Magee, E W; McLean, H S; Wood, R D

    2009-12-01

    The ITER tokamak will have tungsten divertor tiles and, consequently, the divertor plasmas are expected to contain tungsten ions. The spectral emission from these ions can serve to diagnose the divertor for plasma parameters such as tungsten concentrations, densities, ion and electron temperatures, and flow velocities. The ITER divertor plasmas will likely have densities around 10{sup 14-15} cm{sup -3} and temperatures below 150 eV. These conditions are similar to the plasmas at the Sustained Spheromak Physics Experiment (SSPX) in Livermore. To simulate ITER divertor plasmas, a tungsten impurity was introduced into the SSPX spheromak by prefilling it with tungsten hexacarbonyl prior to the usual hydrogen gas injection and initiation of the plasma discharge. The possibility of using the emission from low charge state tungsten ions to diagnose tokamak divertor plasmas has been investigated using a high-resolution extreme ultraviolet spectrometer.

  10. Demonstration of steady inductive helicity injection

    International Nuclear Information System (INIS)

    Initial results demonstrating the concept of constant inductive helicity injection are presented. Constant helicity injection is achieved using two oscillating inductive helicity injectors, with the goal of producing a bow tie spheromak. Each injector is a 1800 segment of a reverse field pinch and they are driven 900 out of phase. Approximately 5 MW of power is injected during the 6 ms pulse, and the input power has been maintained at a fairly constant value by directly fuelling the injectors with neutral gas. Motivation for the experiment is given, including beta-limit calculations for the bow tie spheromak. Fuelling the injectors with neutral gas during the discharge is shown to produce injector parameters that are more constant in time. A series of discharges with increasing power input shows a promising increase in toroidal current. Unique construction techniques of the experiment are also described

  11. Study of electron ripple injection concept for radial electric field control in a tokamak

    International Nuclear Information System (INIS)

    A theoretical study has been performed to examine the possibility of generating a radial electric field at the periphery of a tokamak plasma. A localized magnetic well can be produced by a ripple coil system and electron cyclotron resonance heating (ECRH) is used to increase the ripple trapped fraction of the electrons. The magnetic field ripple is arranged in such a way that the ripple trapped electrons then drift vertically, due to nabla B, towards the plasma centre. A semi-analytic kinetic analysis has been performed to estimate the ECRH-induced temperature anisotropy of the electrons, which is directly related to the ripple trapping fraction; and a numerical Monte Carlo guiding centre simulation has been performed to study the generation of the radial electric field by the nabla B injection of the ripple trapped electrons and the E x B detrapping of them. The present study suggests that about 23 kW of ECRH power in the CDX-U device and 10 MW in ITER may be able to create a large enough radial electric field for the H mode transition. (author). 25 refs, 22 figs

  12. Experiments with Liquid Metal Walls: Status of the Lithium Tokamak Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kaita, Robert; Boyle, Dennis; Gray, Timothy; Granstedt, Erik; Hammett, Gregory; Jacobson, Craig M; Jones, Andrew; Kozub, Thomas; Kugel, Henry; Leblanc, Benoit; Logan, Nicholas; Lucia, Matthew; Lundberg, Daniel; Majeski, Richard; Mansfield, Dennis; Menard, Jonathan; Spaleta, Jeffrey; Strickler, Trevor

    2010-02-16

    Liquid metal walls have been proposed to address the first wall challenge for fusion reactors. The Lithium Tokamak Experiment (LTX) at the Princeton Plasma Physics Laboratory (PPPL) is the first magnetic confinement device to have liquid metal plasma-facing components (PFC's) that encloses virtually the entire plasma. In the Current Drive Experiment-Upgrade (CDX-U), a predecessor to LTX at PPPL, the highest improvement in energy confinement ever observed in Ohmically-heated tokamak plasmas was achieved with a toroidal liquid lithium limiter. The LTX extends this liquid lithium PFC by using a conducting conformal shell that almost completely surrounds the plasma. By heating the shell, a lithium coating on the plasma-facing side can be kept liquefied. A consequence of the low-recycling conditions from liquid lithium walls is the need for efficient plasma fueling. For this purpose, a molecular cluster injector is being developed. Future plans include the installation of a neutral beam for core plasma fueling, and also ion temperature measurements using charge-exchange recombination spectroscopy. Low edge recycling is also predicted to reduce temperature gradients that drive drift wave turbulence. Gyrokinetic simulations are in progress to calculate fluctuation levels and transport for LTX plasmas, and new fluctuation diagnostics are under development to test these predictions. __________________________________________________

  13. Experiments with liquid metal walls: Status of the lithium tokamak experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kaita, Robert, E-mail: kaita@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Berzak, Laura; Boyle, Dennis; Gray, Timothy; Granstedt, Erik; Hammett, Gregory; Jacobson, Craig M.; Jones, Andrew; Kozub, Thomas; Kugel, Henry; Leblanc, Benoit; Logan, Nicholas; Lucia, Matthew; Lundberg, Daniel; Majeski, Richard; Mansfield, Dennis; Menard, Jonathan; Spaleta, Jeffrey; Strickler, Trevor; Timberlake, John [Princeton Plasma Physics Laboratory, Princeton, NJ (United States)

    2010-11-15

    Abstarct: Liquid metal walls have been proposed to address the first wall challenge for fusion reactors. The lithium tokamak experiment (LTX) at the Princeton Plasma Physics Laboratory (PPPL) is the first magnetic confinement device to have liquid metal plasma-facing components (PFC's) that encloses virtually the entire plasma. In the current drive experiment-upgrade (CDX-U), a predecessor to LTX at PPPL, the highest improvement in energy confinement ever observed in ohmically heated tokamak plasmas was achieved with a toroidal liquid lithium limiter. The LTX extends this liquid lithium PFC by using a conducting conformal shell that almost completely surrounds the plasma. By heating the shell, a lithium coating on the plasma-facing side can be kept liquefied. A consequence of the low-recycling conditions from liquid lithium walls is the need for efficient plasma fueling. For this purpose, a molecular cluster injector is being developed. Future plans include the installation of a neutral beam for core plasma fueling, and also ion temperature measurements using charge-exchange recombination spectroscopy (CHERS). Low edge recycling is also predicted to reduce temperature gradients that drive drift wave turbulence. Gyrokinetic simulations are in progress to calculate fluctuation levels and transport for LTX plasmas, and new fluctuation diagnostics are under development to test these predictions.

  14. Deuterium ion-surface interactions of liquid-lithium thin films on micro-porous molybdenum substrates

    International Nuclear Information System (INIS)

    Lithium has been utilized to enhance the plasma performance for a variety of fusion devices such as TFTR, CDX-U and NSTX. Lithium in both the solid and liquid states has been studied extensively for its role in hydrogen retention and reduction in sputtering yield. A liquid lithium diverter (LLD) was recently installed in the National Spherical Torus Experiment (NSTX) fusion reactor to investigate lithium applications for plasma-facing surfaces (PFS). Representative samples of LLD material were exposed to lithium depositing and simulated plasma conditions offline at Purdue University to study changes in surface chemical functionalities of Mo, O, Li and D. X-ray photoelectron spectroscopy (XPS) conducted on samples revealed two distinct peak functionalities of lithiated porous molybdenum exposed to deuterium irradiation. The two-peak chemical functionality noticed in porous molybdenum deviates from similar studies conducted on lithiated graphite; such deviation in data is correlated to the complex surface morphology of the porous surface and the correct 'wetting' of lithium on the sample surface. The proper lithium 'wetting' on the sample surface is essential for maximum deuterium retention and corresponding LLD pumping of deuterium.

  15. EMAPS: An Efficient Multiscale Approach to Plasma Systems with Non-MHD Scale Effects

    Energy Technology Data Exchange (ETDEWEB)

    Omelchenko, Yuri A [SciberQuest, Inc; Karimabadi, Homa [SciberQuest, Inc

    2014-10-14

    Using Discrete-Event Simulation (DES) as a novel paradigm for time integration of large-scale physics-driven systems, we have achieved significant breakthroughs in simulations of multi-dimensional magnetized plasmas where ion kinetic and finite Larmor radius (FLR) and Hall effects play a crucial role. For these purposes we apply a unique asynchronous simulation tool: a parallel, electromagnetic Particle-in-Cell (PIC) code, HYPERS (Hybrid Particle Event-Resolved Simulator), which treats plasma electrons as a charge neutralizing fluid and solves a self-consistent set of non-radiative Maxwell, electron fluid equations and ion particle equations on a structured computational grid. HYPERS enables adaptive local time steps for particles, fluid elements and electromagnetic fields. This ensures robustness (stability) and efficiency (speed) of highly dynamic and nonlinear simulations of compact plasma systems such spheromaks, FRCs, ion beams and edge plasmas. HYPERS is a unique asynchronous code that has been designed to serve as a test bed for developing multi-physics applications not only for laboratory plasma devices but generally across a number of plasma physics fields, including astrophysics, space physics and electronic devices. We have made significant improvements to the HYPERS core: (1) implemented a new asynchronous magnetic field integration scheme that preserves local divB=0 to within round-off errors; (2) Improved staggered-grid discretizations of electric and magnetic fields. These modifications have significantly enhanced the accuracy and robustness of 3D simulations. We have conducted first-ever end-to-end 3D simulations of merging spheromak plasmas. The preliminary results show: (1) tilt-driven relaxation of a freely expanding spheromak to an m=1 Taylor helix configuration and (2) possibility of formation of a tilt-stable field-reversed configuration via merging and magnetic reconnection of two double-sided spheromaks with opposite helicities.

  16. [Fusion energy research

    International Nuclear Information System (INIS)

    This report discusses the following topics: principal parameters achieved in experimental devices (FY88); tokamak fusion test reactor; Princeton beta Experiment-Modification; S-1 Spheromak; current drive experiment; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical plasma; tokamak modeling; compact ignition tokamak; international thermonuclear experimental reactor; Engineering Department; Project Planning and Safety Office; quality assurance and reliability; and technology transfer

  17. Experimental Results from Initial Operation of Plasma Injector 1

    Science.gov (United States)

    Howard, Stephen

    2010-11-01

    General Fusion has begun operation of its first full-scale plasma injector, designed to accelerate high density spheromak plasmas into the compression chamber of a proposed MTF reactor. The geometry of Plasma Injector 1 (PI-1) is that of a two stage coaxial Marshal gun with a conical converging accelerator electrodes, similar in shape to the MARAUDER device, while pulsed power is applied in the same configuration as the RACE device. PI-1 is 5 meters in length and 1.9 m in diameter at the expansion region where a high aspect ratio (4.4) spheromak is formed with a minimum lambda of 9 m-1. The acceleration/compression stage is 4 m long and tapers to a final outer diameter of 40 cm. PI-1 is now operating at 1 MJ of total capacitor power, which will be doubled again before it reaches its design parameters. Diagnostics include 3 interferometer chords, 21 magnetic probes (2 axis poloidal/toroidal), 13 fast photodiode chords, as well as one Thomson scattering chord, a visible light survey spectrometer, and a Langmuir triple probe. Electrode voltage and current are also monitored. So far spheromaks of poloidal flux exceeding 100 mWb have been formed in the expansion region, and spheromaks of 40-50 mWb have been formed and accelerated out the end of the accelerator into a flux conserving target chamber. Expansion region densities are typically ˜5 x10^14cm-3, while conditions in the target chamber have reached ne˜10^16cm-3, and lifetimes of 300 μs.

  18. A laboratory plasma experiment for studying magnetic dynamics of accretion discs and jets

    OpenAIRE

    Hsu, S. C.; Bellan, P. M.

    2002-01-01

    This work describes a laboratory plasma experiment and initial results which should give insight into the magnetic dynamics of accretion discs and jets. A high-speed multiple-frame CCD camera reveals images of the formation and helical instability of a collimated plasma, similar to MHD models of disc jets, and also plasma detachment associated with spheromak formation, which may have relevance to disc winds and flares. The plasmas are produced by a planar magnetized coaxial gun. The resulting...

  19. Annual report covering the period October 1, 1980 to September 30, 1981

    International Nuclear Information System (INIS)

    Research during this period is described for each of the following areas: (1) Princeton Large Torus, (2) Poloidal Divertor Experiment, (3) Spheromak, (4) smaller devices, (5) x-ray laser studies, (6) theory, (7) TFTR, (8) applied physics, (9) design studies for new devices, (10) advanced projects design and analysis, (11) engineering, (12) fabrication, operations, and maintenance (13) Projects Office, (14) Computer Division, (15) Administration, and (16) Graduate Education

  20. Princeton Plasma Physics Laboratory:

    International Nuclear Information System (INIS)

    This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations

  1. Princeton Plasma Physics Laboratory:

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, C.A. (ed.)

    1986-01-01

    This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations.

  2. Spherical Tori. Report on the joint meeting of the IAEA technical committee meeting on spherical tori and the fourth international workshop on spherical tori held at the University of Tokyo, Tokyo, Japan 26-28 October 1998

    International Nuclear Information System (INIS)

    Spherical tori (ST), represented mainly by the spherical tokamak, are of growing importance for fusion research, and several new devices are planned or under construction around the world. The purpose of the Joint Meeting was to provide a forum for discussion of approaches to fusion energy based on ST. Other toroidal configurations, such as low aspect ratio helical systems and spheromaks, were also included in the scope of this meeting

  3. Princeton Plasma Physics Laboratory annual report, October 1, 1983-September 30, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, C.A. (ed.)

    1984-01-01

    Progress made during this reporting period is reported for each of the following areas: (1) principal parameters achieved in experimental devices, (2) TFTR, (3) PLT, (4) PBX, (5) S-1 Spheromak, (6) advanced concepts Torus-1, (7) x-ray laser studies, (8) theory, (9) tokamak modeling, (10) reactor studies, (11) spin-polarized fusion program, (12) tokamak fusion core experiment, and (13) engineering. (MOW)

  4. Recent results in the Los Alamos compact torus program

    Energy Technology Data Exchange (ETDEWEB)

    Tuszewski, M.; Armstrong, W.T.; Barnes, C.W.

    1983-01-01

    A Compact Toroid is a toroidal magnetic-plasma-containment geometry in which no conductors or vacuum-chamber walls pass through the hole in the torus. Two types of compact toroids are studied experimentally and theoretically at Los Alamos: spheromaks that are oblate in shape and contain both toroidal and poloidal magnetic fields, and field-reversed configurations (FRC) that are very prolate and contain poloidal field only.

  5. (Fusion energy research)

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, C.A. (ed.)

    1988-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices (FY88); tokamak fusion test reactor; Princeton beta Experiment-Modification; S-1 Spheromak; current drive experiment; x-ray laser studies; spacecraft glow experiment; plasma deposition and etching of thin films; theoretical plasma; tokamak modeling; compact ignition tokamak; international thermonuclear experimental reactor; Engineering Department; Project Planning and Safety Office; quality assurance and reliability; and technology transfer.

  6. Tilt stability of rotating current rings with passive conductors

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, E.G.; Pomphrey, N.

    1984-12-01

    We study the combined effects of rotation and resistive passive conductors on the stability of a rigid current in an external magnetic field. We present numerical and approximate analytical solutions to the equations of motion, which show that the ring is always tilt unstable on the resistive decay timescale of the conductors, although rotation and eddy currents may stabilize it over short times. Possible applications of our model include spheromaks which rotate or which are encircled by energetic particle rings.

  7. Liquid Metal Walls, Lithium, And Low Recycling Boundary Conditions In Tokamaks

    Science.gov (United States)

    Majeski, R.

    2010-05-01

    At present, the only solid material believed to be a viable option for plasma-facing components (PFCs) in a fusion reactor is tungsten. Operated at the lower temperatures typical of present-day fusion experiments, tungsten is known to suffer from surface degradation during long-term exposure to helium-containing plasmas, leading to reduced thermal conduction to the bulk, and enhanced erosion. Existing alloys are also quite brittle at temperatures under 700°C. However, at a sufficiently high operating temperature (700 - 1000 °C), tungsten is self-annealing and it is expected that surface damage will be reduced to the point where tungsten PFCs will have an acceptable lifetime in a reactor environment. The existence of only one potentially viable option for solid PFCs, though, constitutes one of the most significant restrictions on design space for DEMO and follow-on fusion reactors. In contrast, there are several candidates for liquid metal-based PFCs, including gallium, tin, lithium, and tin-lithium eutectics. We will discuss options for liquid metal walls in tokamaks, looking at both high and low recycling materials. We will then focus in particular on one of the candidate liquids, lithium. Lithium is known to have a high chemical affinity for hydrogen, and has been shown in test stands and fusion experiments to produce a low recycling surface, especially when liquid. Because it is also low-Z and is usable in a tokamak over a reasonable temperature range (200 - 400 °C), it has been now been used as a PFC in several confinement experiments (TFTR, T11-M, CDX-U, NSTX, FTU, and TJ-II), with favorable results. The consequences of substituting low recycling walls for the traditional high recycling variety on tokamak equilibria are very extensive. We will discuss some of the expected modifications, briefly reviewing experimental results, and comparing the results to expectations.

  8. Liquid Metal Walls, Lithium, And Low Recycling Boundary Conditions In Tokamaks

    International Nuclear Information System (INIS)

    At present, the only solid material believed to be a viable option for plasma-facing components (PFCs) in a fusion reactor is tungsten. Operated at the lower temperatures typical of present-day fusion experiments, tungsten is known to suffer from surface degradation during long-term exposure to helium-containing plasmas, leading to reduced thermal conduction to the bulk, and enhanced erosion. Existing alloys are also quite brittle at temperatures under 700 deg. C. However, at a sufficiently high operating temperature (700 - 1000 deg. C), tungsten is self-annealing and it is expected that surface damage will be reduced to the point where tungsten PFCs will have an acceptable lifetime in a reactor environment.The existence of only one potentially viable option for solid PFCs, though, constitutes one of the most significant restrictions on design space for DEMO and follow-on fusion reactors. In contrast, there are several candidates for liquid metal-based PFCs, including gallium, tin, lithium, and tin-lithium eutectics. We will discuss options for liquid metal walls in tokamaks, looking at both high and low recycling materials. We will then focus in particular on one of the candidate liquids, lithium.Lithium is known to have a high chemical affinity for hydrogen, and has been shown in test stands and fusion experiments to produce a low recycling surface, especially when liquid. Because it is also low-Z and is usable in a tokamak over a reasonable temperature range (200 - 400 deg. C), it has been now been used as a PFC in several confinement experiments (TFTR, T11-M, CDX-U, NSTX, FTU, and TJ-II), with favorable results. The consequences of substituting low recycling walls for the traditional high recycling variety on tokamak equilibria are very extensive. We will discuss some of the expected modifications, briefly reviewing experimental results, and comparing the results to expectations.

  9. Liquid Metal Walls, Lithium, And Low Recycling Boundary Conditions In Tokamaks

    International Nuclear Information System (INIS)

    At present, the only solid material believed to be a viable option for plasma-facing components (PFCs) in a fusion reactor is tungsten. Operated at the lower temperatures typical of present-day fusion experiments, tungsten is known to suffer from surface degradation during long-term exposure to helium-containing plasmas, leading to reduced thermal conduction to the bulk, and enhanced erosion. Existing alloys are also quite brittle at temperatures under 700 C. However, at a sufficiently high operating temperature (700-1000 C), tungsten is selfannealing and it is expected that surface damage will be reduced to the point where tungsten PFCs will have an acceptable lifetime in a reactor environment. The existence of only one potentially viable option for solid PFCs, though, constitutes one of the most significant restrictions on design space for DEMO and follow-on fusion reactors. In contrast, there are several candidates for liquid metal-based PFCs, including gallium, tin, lithium, and tin-lithium eutectics. We will discuss options for liquid metal walls in tokamaks, looking at both high and low recycling materials. We will then focus in particular on one of the candidate liquids, lithium. Lithium is known to have a high chemical affinity for hydrogen, and has been shown in test stands and fusion experiments to produce a low recycling surface, especially when liquid. Because it is also low-Z and is usable in a tokamak over a reasonable temperature range (200-400 C), it has been now been used as a PFC in several confinement experiments (TFTR, T11- M, CDX-U, NSTX, FTU, and TJ-II), with favorable results. The consequences of substituting low recycling walls for the traditional high recycling variety on tokamak equilibria are very extensive. We will discuss some of the expected modifications, briefly reviewing experimental results, and comparing the results to expectations.

  10. 13th TOPICAL CONFERENCE ON HIGH TEMPERATURE PLASMA DIAGNOSTICS SCIENTIFIC PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    C. BARNES

    2000-07-01

    Electron cyclotron emission (ECE) has been employed as a standard electron temperature profile diagnostic on many tokamaks and stellarators, but most magnetically confined plasma devices cannot take advantage of standard ECE diagnostics to measure temperature. They are either overdense, operating at high density relative to the magnetic field (e.g. {omega}{sub pe} >> {Omega}{sub ce} in a spherical torus) or they have insufficient density and temperature to reach the blackbody condition ({tau} > 2). Electron Bernstein waves (EBWs) are electrostatic waves which can propagate in overdense plasmas and have a high optical thickness at the electron cyclotron resonance layers, as a result of their large K{sub i}. This talk reports on measurements of EBW emission on the CDX-U spherical torus, where B{sub 0} {approx} 2 kG, {approx} 10{sup 13} cm{sup -3} and T{sub e} {approx} 10 - 200 eV. Results will be presented for both direct detection of EBWs and for mode-converted EBW emission. The EBW emission was absolutely calibrated and compared to the electron temperature profile measured by a multi-point Thomson scattering diagnostic. Depending on the plasma conditions, the mode-converted EBW radiation temperature was found to be {le} T{sub e} and the emission source was determined to be radially localized at the electron cyclotron resonance layer. A Langmuir triple probe was employed to measure changes in edge density profile in the vicinity of the upper hybrid resonance where the mode conversion of the EBWs is expected to occur. Changes in the mode conversion efficiency may explain the observation of mode-converted EBW radiation temperatures below T{sub e}. Initial results suggest EBW emission and EBW heating are viable concepts for plasmas where {omega}{sub pe} >> {Omega}{sub ce}.

  11. 13. TOPICAL CONFERENCE ON HIGH TEMPERATURE PLASMA DIAGNOSTICS SCIENTIFIC PROGRAM

    International Nuclear Information System (INIS)

    Electron cyclotron emission (ECE) has been employed as a standard electron temperature profile diagnostic on many tokamaks and stellarators, but most magnetically confined plasma devices cannot take advantage of standard ECE diagnostics to measure temperature. They are either overdense, operating at high density relative to the magnetic field (e.g. ωpe >> (Omega)ce in a spherical torus) or they have insufficient density and temperature to reach the blackbody condition (τ > 2). Electron Bernstein waves (EBWs) are electrostatic waves which can propagate in overdense plasmas and have a high optical thickness at the electron cyclotron resonance layers, as a result of their large Ki. This talk reports on measurements of EBW emission on the CDX-U spherical torus, where B0 ∼ 2 kG, e> ∼ 1013 cm-3 and Te ∼ 10 - 200 eV. Results will be presented for both direct detection of EBWs and for mode-converted EBW emission. The EBW emission was absolutely calibrated and compared to the electron temperature profile measured by a multi-point Thomson scattering diagnostic. Depending on the plasma conditions, the mode-converted EBW radiation temperature was found to be ≤ Te and the emission source was determined to be radially localized at the electron cyclotron resonance layer. A Langmuir triple probe was employed to measure changes in edge density profile in the vicinity of the upper hybrid resonance where the mode conversion of the EBWs is expected to occur. Changes in the mode conversion efficiency may explain the observation of mode-converted EBW radiation temperatures below Te. Initial results suggest EBW emission and EBW heating are viable concepts for plasmas where ωpe >> (Omega)ce

  12. Alternate fusion concepts

    International Nuclear Information System (INIS)

    This review summarizes the status of alternate fusion concepts and plans for their future. The concepts selected for review are those employing electromagnetic confinement for which there have been reasonable predictions of net energy gain from pure fusion and which have shown significant recent development or are the subjects of ongoing international activity. They include advanced tokamaks, stellarators, the spherical torus, reversed-field pinch and dense z-field pinch devices, field reversed configuration, and spheromaks. In addition, an overall view of the status of each concept with respect to achieving ignition and to reactor designs is presented

  13. Proceedings of the seventh symposium on the physics and technology of compact toroids in the Magnetic Fusion Energy Program

    International Nuclear Information System (INIS)

    The Seventh Symposium on Compact Toroid (CT) Research was held in Santa Fe, New Mexico, on May 21-23, 1985. As has been the case for the last few CT symposia, CT research progress was reported in a combination of invited talks and poster sessions. The following record of these presentations in the form of four page papers is in keeping with the format followed in previous years. We have continued the practice of dividing the papers into three subject categories - spheromak, FRC (Field Reversed Configuration), and other (mostly particle rings)

  14. A Laboratory Plasma Experiment for Studying Magnetic Dynamics of Accretion Discs and Jets

    CERN Document Server

    Hsu, S C

    2002-01-01

    This work describes a laboratory plasma experiment and initial results which should give insight into the magnetic dynamics of accretion discs and jets. A high-speed multiple-frame CCD camera reveals images of the formation and helical instability of a collimated plasma, similar to MHD models of disc jets, and also plasma detachment associated with spheromak formation, which may have relevance to disc winds and flares. The plasmas are produced by a planar magnetized coaxial gun. The resulting magnetic topology is dependent on the details of magnetic helicity injection, namely the force-free state eigenvalue alpha_gun imposed by the coaxial gun.

  15. Large density amplification measured on jets ejected from a magnetized plasma gun

    OpenAIRE

    Yun, Gunsu S.; You, Setthivoine; Bellan, Paul M.

    2007-01-01

    Observation of a large density amplification in the collimating plasma jet ejected from a coplanar coaxial plasma gun is reported. The jet velocity is ~30 km s^-1 and the electron density increases from ~10^20 to 10^(22–23) m^-3. In previous spheromak experiments, electron density of the order 10^(19–21) m^-3 had been measured in the flux conserver region, but no density measurement had been reported for the source gun region. The coplanar geometry of our electrodes permits direct observation...

  16. Magnetic vortex growth in the transition layer of a mildly relativistic plasma shock

    International Nuclear Information System (INIS)

    A two-dimensional particle simulation models the collision of two electron-ion plasma clouds along a quasiparallel magnetic field. The collision speed is 0.9c and the density ratio, 10. A current sheet forms at the front of the dense cloud, in which the electrons and the magnetic field reach energy equipartition with the ions. A structure composed of a solenoidal and a toroidal magnetic field grows in this sheet. It resembles the cross-section of the torus of a spheromak, which may provide the coherent magnetic fields in gamma-ray burst jets needed for their prompt emissions.

  17. Observation of the growth of a magnetic vortex in the transition layer of a mildly relativistic oblique plasma shock

    CERN Document Server

    Murphy, G C; Drury, L O'C

    2010-01-01

    A 2D particle simulation models the collision of two electron-ion plasma clouds along a quasi-parallel magnetic field. The collision speed is 0.9c and the density ratio 10. A current sheet forms at the front of the dense cloud, in which the electrons and the magnetic field reach energy equipartition with the ions. A structure composed of a solenoidal and a toroidal magnetic field grows in this sheet. It resembles that in the cross-section of the torus of a force-free spheromak, which may provide the coherent magnetic fields in gamma-ray burst (GRB) jets needed for their prompt emissions.

  18. Flux amplification and sustainment of ST plasmas by multi-pulsed coaxial helicity injection on HIST

    Science.gov (United States)

    Higashi, T.; Ishihara, M.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2010-11-01

    The Helicity Injected Spherical Torus (HIST) device has been developed towards high-current start up and sustainment by Multi-pulsed Coaxial Helicity Injection (M-CHI) method. Multiple pulses operation of the coaxial plasma gun can build the magnetic field of STs and spheromak plasmas in a stepwise manner. So far, successive gun pulses on SSPX at LLNL were demonstrated to maintain the magnetic field of spheromak in a quasi-steady state against resistive decay [1]. The resistive 3D-MHD numerical simulation [2] for STs reproduced the current amplification by the M-CHI method and confirmed that stochastic magnetic field was reduced during the decay phase. By double pulsed operation on HIST, the plasma current was effectively amplified against the resistive decay. The life time increases up to 10 ms which is longer than that in the single CHI case (4 ms). The edge poloidal fields last between 0.5 ms and 6 ms like a repetitive manner. During the second driven phase, the toroidal ion flow is driven in the same direction as the plasma current as well as in the initial driven phase. At the meeting, we will discuss a current amplification mechanism based on the merging process with the plasmoid injected secondly from the gun. [1] B. Hudson et al., Phys. Plasmas Vol.15, 056112 (2008). [2] Y. Kagei et al., J. Plasma Fusion Res. Vol.79, 217 (2003).

  19. Application of Coaxial Ion Gun for Film Generation and Ion Implantation

    Science.gov (United States)

    Takatsu, Mikio; Asai, Tomohiko; Kurumi, Satoshi; Suzuki, Kaoru; Hirose, Hideharu; Masutani, Shigeyuki

    A magnetized coaxial plasma gun (MCPG) is here utilized for deposition on high-melting-point metals. MCPGs have hitherto been studied mostly in the context of nuclear fusion research, for particle and magnetic helicity injection and spheromak formation. During spheromak formation, the electrode materials are ionized and mixed into the plasmoid. In this study, this ablation process by gun-current sputtering is enhanced for metallic thin-film generation. In the proposed system geometry, only ionized materials are electromagnetically accelerated by the self-Lorentz force, with ionized operating gas as a magnetized thermal plasmoid, contributing to the thin-film deposition. This reduces the impurity and non-uniformity of the deposited thin-film. Furthermore, as the ions are accelerated in a parallel direction to the injection axis, vertical implantation of the ions into the substrate surface is achieved. To test a potential application of the developed system, experiments were conducted involving the formation of a buffer layer on hard ceramics, for use in dental materials.

  20. Effects of the current boundary conditions at the plasma-gun gap on density in SSPX

    Science.gov (United States)

    Kolesnikov, Roman; Lodestro, L. L.; Meyer, W. H.

    2012-10-01

    The Sustained Spheromak Physics Experiment (SSPX) was a toroidal magnetic-confinement device without toroidal magnetic-field coils or a central transformer but which generated core-plasma currents by dynamo processes driven by coaxial plasma-gun injection into a flux-conserving vessel. Record electron temperatures in a spheromak (Te˜500eV) were achieved, and final results of the SSPX program were reported in [1]. Plasma density, which depended strongly on wall conditions, was an important parameter in SSPX. It was observed that density rises with Igun and that confinement improved as the density was lowered. Shortly after the last experiments, a new feature was added to the Corsica code's solver used to reconstruct SSPX equilibria. Motivated by n=0 fields observed in NIMROD simulations of SSPX, an insulating boundary condition was implemented at the plasma-gun gap. Using this option we will perform new reconstructions of SSPX equilibria and look for correlations between the location of the separatrix (which moves up the gun wall and onto the insulating gap as Igun increases) and plasma density and magnetic-flux amplification [2].[4pt] [1] H. S. McLean, APS, DPP, Dallas, TX, 2008.[0pt] [2] E. B. Hooper et al., Nucl. Fusion 47, 1064 (2007).

  1. A Challenging Solar Eruptive Event of 18 November 2003 and the Causes of the 20 November Geomagnetic Superstorm. IV. Unusual Magnetic Cloud and Overall Scenario

    CERN Document Server

    Grechnev, V V; Chertok, I M; Belov, A V; Filippov, B P; Slemzin, V A; Jackson, B V

    2014-01-01

    The geomagnetic superstorm of 20 November 2003 with Dst = -422 nT, one of the most intense in history, is not well understood. The superstorm was caused by a moderate solar eruptive event on 18 November, comprehensively studied in our preceding Papers I-III. The analysis has shown a number of unusual and extremely complex features, which presumably led to the formation of an isolated right-handed magnetic-field configuration. Here we analyze the interplanetary disturbance responsible for the 20 November superstorm, compare some of its properties with the extreme 28-29 October event, and reveal a compact size of the magnetic cloud (MC) and its disconnection from the Sun. Most likely, the MC had a spheromak configuration and expanded in a narrow angle of < 14 degree. A very strong magnetic field in the MC up to 56 nT was due to the unusually weak expansion of the disconnected spheromak in an enhanced-density environment constituted by the tails of the preceding ICMEs. Additional circumstances favoring the su...

  2. An Imposed Dynamo Current Drive Experiment: Demonstration of Confinement

    Science.gov (United States)

    Jarboe, Thomas; Hansen, Chris; Hossack, Aaron; Marklin, George; Morgan, Kyle; Nelson, Brian; Sutherland, Derek; Victor, Brian

    2014-10-01

    An experiment for studying and developing the efficient sustainment of a spheromak with sufficient confinement (current-drive power heats the plasma to its stability β-limit) and in the keV temperature range is discussed. A high- β spheromak sustained by imposed dynamo current drive (IDCD) is justified because: previous transient experiments showed sufficient confinement in the keV range with no external toroidal field coil; recent results on HIT-SI show sustainment with sufficient confinement at low temperature; the potential of IDCD of solving other fusion issues; a very attractive reactor concept; and the general need for efficient current drive in magnetic fusion. The design of a 0.55 m minor radius machine with the required density control, wall loading, and neutral shielding for a 2 s pulse is presented. Peak temperatures of 1 keV and toroidal currents of 1.35 MA and 16% wall-normalized plasma beta are envisioned. The experiment is large enough to address the key issues yet small enough for rapid modification and for extended MHD modeling of startup and code validation.

  3. Three-dimensional magnetic reconnection through a moving magnetic null

    Directory of Open Access Journals (Sweden)

    V. S. Lukin

    2011-11-01

    Full Text Available A computational study of three-dimensional magnetic reconnection between two flux ropes through a moving reconnection site is presented. The configuration is considered in the context of two interacting spheromaks constrained by a perfectly conducting cylindrical boundary and oriented to form a single magnetic field null at its center. The initial magnetic field configuration is embedded into a uniform thermal plasma and is unstable to tilting. As the spheromaks tilt, their magnetic fields begin to reconnect at the null, subsequently displacing both the null and the reconnection site. The motion of the reconnection region and the magnetic null are shown to be correlated, with stronger correlation and faster reconnection observed in plasmas with lower thermal to magnetic pressure ratio. It is also shown that ion inertial effects allow for yet faster reconnection, but do not qualitatively change the dynamics of the process. Implications of the coupling between moving magnetic nulls and reconnection sites, as well as of possible mechanisms for fast reconnection through a moving reconnection region, are discussed. The simulations are conducted using both single-fluid and Hall MHD plasma models within the HiFi multi-fluid modeling framework.

  4. NIMROD Simulation of multipulsed edge-current drive in SSPX

    Science.gov (United States)

    Lodestro, L. L.; Cohen, B. I.; Hooper, E. B.; McLean, H. S.; Wood, R. D.

    2009-11-01

    Flux amplification (A)---the ratio of poloidal magnetic flux enclosed by a spheromak's toroidal core to an applied edge flux---is a critical parameter for an economic spheromak-based fusion reactor. In [1], measurements of A in SSPX and NIMROD simulations [2] were found to be in good agreement over a range of discharge parameters while Aperformed subsequently with the modular capacitor bank gave some indication that |dIgun/dt| played a role and that increasing it might build magnetic field more efficiently, but were limited by gun discharge circuit inductance. In [3], multipulsed gun injection was investigated numerically and the results compared to SSPX. Here we report the continuation of those simulations to longer times. We find trends on timescales much longer than could be studied in SSPX, negligible effect on A of multipulsed injection at frequencies smaller than the fundamental SSPX reconnection frequency, and small increases in A for large frequencies.[4pt] [1] B. Hudson et al., Phys. Plasmas 15, 056112 (2008).[0pt] [2] E.B. Hooper et al., Nucl. Fusion 47, 1064 (2007).[0pt] [3] L.L. LoDestro et al., 50^th DPP, TP6-93 (2008).

  5. Summary of US-Japan Exchange 2004 New Directions and Physics for Compact Toroids

    Energy Technology Data Exchange (ETDEWEB)

    Intrator, T; Nagata, M; Hoffman, A; Guo, H; Steinhauer, L; Ryutov, D; Miller, R; Okada, S

    2005-08-15

    This exchange workshop was an open meeting coordinated by the P-24 Plasma Physics Group at Los Alamos National Laboratory. We brought together scientists from institutions in the US and Japan who are researching the various and complementary types of Compact Toroids (CT). Many concepts, including both experimental and theoretical investigations, are represented. The range spans Field Reversed Configuration (FRC), spheromak, Reversed Field Pinch (RFP), spherical tokamaks, linear devices dedicated to fundamental physics studies, and hybrid transitions that bridge multiple configurations. The participants represent facilities on which significant experiments are now underway: FRC Injection experiment (FIX), Translation Confinement experiment (TCS), Nihon-University Compact Torus Experiment (NUCTE), HITSI (Helicity Injection experiment, Steady Inductive Helicity Injection (HIT-SIHI)), Field Reversed Configuration experiment-Liner (FRX-L), TS-3/4, Sustained Spheromak Experiment (SSPX), Relaxation Scaling Experiment (RSX), HIST, Caltech Spheromak, or in the design process such as MRX-FRC (PPPL), Pulsed High Density experiment (PHD at UW). Several new directions and results in compact toroid (CT) research have recently emerged, including neutral-beam injection, rotating magnetic fields, flux build up from Ohmic boost coils, electrostatic helicity injection techniques, CT injection into other large devices, and high density configurations for applications to magnetized target fusion and translational compression of CT's. CT experimental programs in both the US and Japan have also shown substantial progress in the control and sustainment of CT's. Both in theory and experiment, there is increased emphasis on 3D dynamics, which is also related to astrophysical and space physics issues. 3D data visualization is now frequently used for experimental data display. There was much discussion of the effects of weak toroidal fields in FRC's and possible implications

  6. Temporal and Spatial Turbulent Spectra of MHD Plasma and an Observation of Variance Anisotropy

    CERN Document Server

    Schaffner, D A; Lukin, V S

    2014-01-01

    The nature of MHD turbulence is analyzed through both temporal and spatial magnetic fluctuation spectra. A magnetically turbulent plasma is produced in the MHD wind-tunnel configuration of the Swarthmore Spheromak Experiment (SSX). The power of magnetic fluctuations is projected into directions perpendicular and parallel to a local mean field; the ratio of these quantities shows the presence of variance anisotropy which varies as a function of frequency. Comparison amongst magnetic, velocity, and density spectra are also made, demonstrating that the energy of the turbulence observed is primarily seeded by magnetic fields created during plasma production. Direct spatial spectra are constructed using multi-channel diagnostics and are used to compare to frequency spectra converted to spatial scales using the Taylor Hypothesis. Evidence for the observation of dissipation due to ion inertial length scale physics is also discussed as well as the role laboratory experiment can play in understanding turbulence typica...

  7. CTR plasma engineering studies. Annual progress report, 1 December 1984-30 November 1985

    International Nuclear Information System (INIS)

    Work under this project is focused on plasma engineering developments in support of fusion reactor studies. The work described in this annual progress report covers a variety of topics ranging from plasma transport modelling for compact tori to radiation heating of the first wall in a fusion device. Sections 2 and 3 decribe computer codes developed for use with field-reversed configurations such as spheromaks and field-reversed mirrors. Section 4 presents an evaluation of the feasibility of heating a RFP-type reactor to ignition with ohmic current input alone. Sections 5 and 6 describe new work that has been initiated on optimal control theory for fusion reactors. Sections 7 to 9 discuss recent results on alpha-particle transport, instabilities, and diagnostics. In the final section, methods for analysis of the poloidal variation in the thermal wall loading of a tokamak reactor are discussed and some typical results are presented

  8. Preliminary scoping studies for nozzle-based coaxial plasma thrusters

    International Nuclear Information System (INIS)

    The ideal steady-state properties of nozzle-based coaxial plasma guns are modelled by means of a magnetic Bernoulli equation. Formulas for thrust, power usage, mass flow rate, and specific impulse using hydrogen are thereby obtained, and are used to approximately assess the mission performance capabilities of such thrusters. Parameters in the range of experience of the Los Alamos spheromak group are addressed within the context of orbit raising, slow (cargo) missions to mars, and fast missions to mars. The various internal atomic and plasma effects on hydrogen plasma thruster performance are approximately estimated or bounded. It is concluded that such devices may be relevant to mission performance at reasonable power levels

  9. Development of Multi-pulse Compact Toroid Injector System for C-2U

    Science.gov (United States)

    Allfrey, I.; Garate, E.; Morehouse, M.; Roche, T.; Gota, H.; Valentine, T.; Waggoner, W.; Putvinski, S.; Cordero, M.; Asai, T.; Matsumoto, T.; Sekiguchi, J.; the TAE Team

    2015-11-01

    The C-2U experiment aims at sustaining a dynamically formed field reversed configuration (FRC) for 5 + ms via injection of 10 +MW of neutral beams. One of the systems currently used to refuel the C-2U plasma is a single pulse compact toroid injector (CTI). The CTI is a magnetized co-axial plasma gun, which generates a spheromak-like plasma that is injected into the core of the advanced beam-driven FRC of C-2U. In order to refuel the recent long-lived plasmas in C-2U, a multi-pulse CTI system, whose modular design allows for expandable burst numbers, is being designed. Details of the pulsed power systems used to energize the single pulse and the upgraded multi-pulse CTI will be discussed. Results of injector performance carried out on a dedicated test stand as well as some refueling data on C-2U will also be presented.

  10. The evolution of the plasmoidal structure in the pinched column in plasma focus discharge

    Science.gov (United States)

    Kubes, P.; Paduch, M.; Cikhardt, J.; Klir, D.; Kravarik, J.; Rezac, K.; Cikhardtova, B.; Kortanek, J.; Zielinska, E.

    2016-04-01

    In this paper, a description is provided of the evolution of the dense spherical-like structures—plasmoids—formed in the pinched column of the dense plasma focus at the current of 1 MA at the final phase of implosion of the deuterium plasma sheath and at the phase of evolution of instabilities both at the time of HXR and neutron production. At the stratification of the plasma column, the plasma injected to the dense structures from the axially neighboring regions forms small turbulences which increase first the toroidal structures, and finally generates a non-chaotic current plasmoidal structure with central maximal density. This spontaneous evolution supports the hypothesis of the spheromak-like model of the plasmoid and its sub-millimeter analogy, high-energy spot. These spots, also called nodules formed in the filamentary structure of the current can be a source of the energy capable of accelerating the fast charged particles.

  11. The benefits of ITER for the portfolio of fusion configurations

    Energy Technology Data Exchange (ETDEWEB)

    Goldston, R.J. [Princeton Plasma Physics Lab., NJ (United States)

    2002-10-01

    Recent plasma science challenges are 1) what limits the pressure in plasmas? (macroscopic stability), 2) how do hot particles and plasma waves interact in the non-linear regime? (wave-particle interactions), 3) what causes plasma transport? (microscopic turbulence and transport) and 4) how can high-temperature plasma and material surface co-exist? (plasma-material interactions). This fusion plasma science is addressed using a 'Portfolio' of configurations, like Stellarator, Tokamak, Spherical Torus, Reversed Field Pinch, Spheromak, and Field Reversed Configuration. Namely, the scientific results from one configuration benefit progress in others. Recent example of this effort can be found in NCSX, NSTX and RFP. ITER will provide very significant benefits to the development of the full fusion portfolio; macroscopic stability, wave-particle interactions, microturbulence and transport, plasma-material interactions, and technical demonstration of an integrated fusion system. (author)

  12. Whistler modes with wave magnetic fields exceeding the ambient field.

    Science.gov (United States)

    Stenzel, R L; Urrutia, J M; Strohmaier, K D

    2006-03-10

    Whistler-mode wave packets with fields exceeding the ambient dc magnetic field have been excited in a large, high electron-beta plasma. The waves are induced with a loop antenna with dipole moment either along or opposite to the dc field. In the latter case the excited wave packets have the topology of a spheromak but are propagating in the whistler mode along and opposite to the dc magnetic field. Field-reversed configurations with net zero helicity have also been produced. The electron magnetohydrodynamics fields are force free, have wave energy density exceeding the particle energy density, and propagate stably at subelectron thermal velocities through a nearly uniform stationary ion density background.

  13. Laboratory Experiments on Propagating Plasma Bubbles into Vacuum, Vacuum Magnetic Field, and Background Plasmas

    Science.gov (United States)

    Lynn, Alan G.; Zhang, Yue; Gilmore, Mark; Hsu, Scott

    2014-10-01

    We discuss the dynamics of plasma ``bubbles'' as they propagate through a variety of background media. These bubbles are formed by a pulsed coaxial gun with an externally applied magnetic field. Bubble parameters are typically ne ~1020 m-3, Te ~ 5 - 10 eV, and Ti ~ 10 - 15 eV. The structure of the bubbles can range from unmagnetized jet-like structures to spheromak-like structures with complex magnetic flux surfaces. Some of the background media the bubbles interact with are vacuum, vacuum with magnetic field, and other magnetized plasmas. These bubbles exhibit different qualitative behavior depending on coaxial gun parameters such as gas species, gun current, and gun bias magnetic field. Their behavior also depends on the parameters of the background they propagate through. Multi-frame fast camera imaging and magnetic probe data are used to characterize the bubble evolution under various conditions.

  14. The need and prospects for improved fusion reactors

    Science.gov (United States)

    Krakowski, R. A.; Miller, R. L.; Hagenson, R. L.

    1986-09-01

    Conceptual fusion reactor studies over the past 10-15 yr have projected systems that may be too large, complex, and costly to be of commercial interest. One main direction for improved fusion reactors points toward smaller, higher-power-density approaches. First-order economic issues (i.e., unit direct cost and cost of electricity) are used to support the need for more compact fusion reactors. The results of a number of recent conceptual designs of reversed-field pinch, spheromak, and tokamak fusion reactors are summarized as examples of more compact approaches. While a focus has been placed on increasing the fusion-power-core mass power density beyond the minimum economic threshold of 100-200 kWe/tonne, other means by which the overall attractiveness of fusion as a long-term energy source are also addressed.

  15. Permutation Entropy and Statistical Complexity Analysis of Turbulence in Laboratory Plasmas and the Solar Wind

    CERN Document Server

    Weck, Peter J; Brown, Michael R; Wicks, Robert T

    2014-01-01

    The Bandt-Pompe permutation entropy and the Jensen-Shannon statistical complexity are used to analyze fluctuating time series of three different plasmas: the magnetohydrodynamic (MHD) turbulence in the plasma wind tunnel of the Swarthmore Spheromak Experiment (SSX), drift-wave turbulence of ion saturation current fluctuations in the edge of the Large Plasma Device (LAPD) and fully-developed turbulent magnetic fluctuations of the solar wind taken from the WIND spacecraft. The entropy and complexity values are presented as coordinates on the CH plane for comparison among the different plasma environments and other fluctuation models. The solar wind is found to have the highest permutation entropy and lowest statistical complexity of the three data sets analyzed. Both laboratory data sets have larger values of statistical complexity, suggesting these systems have fewer degrees of freedom in their fluctuations, with SSX magnetic fluctuations having slightly less complexity than the LAPD edge fluctuations. The CH ...

  16. Magnetic structure of Coronal Mass Ejections

    CERN Document Server

    Lyutikov, Maxim

    2012-01-01

    We present several models of the magnetic structure of solar coronal mass ejections (CMEs). First, we model CMEs as expanding force-free magnetic structures. While keeping the internal magnetic field structure of the stationary solutions, expansion leads to complicated internal velocities and rotation, while the field structures remain force-free. Second, expansion of a CME can drive resistive dissipation within the CME changing the ionization states of different ions. We fit in situ measurements of ion charge states to the resistive spheromak solutions. Finally, we consider magnetic field structures of fully confined stable magnetic clouds containing both toroidal and poloidal magnetic fields and having no surface current sheets. Expansion of such clouds may lead to sudden onset of reconnection events.

  17. Development of Synthetic Diagnostics for use in Validation

    Science.gov (United States)

    Lemmon, Danielle; Woodruff, Simon; Romero-Talamas, Carlos A.; O'Bryan, John; Darpa Spheromak Team

    2015-11-01

    Synthetic diagnostics are reproductions of experimental measurements obtained from simulation data, taking the same spatial averages (point, line, plane or volume) as in the experiment. This reduction of data facilitates meaningful direct quantitative comparisons which then allows for validation of simulation results. We demonstrate the development with data sets produced by highly spatially and temporally resolved NIMROD simulations with reference to the spheromak concept under development at UMBC. We present here results from a set of synthetic diagnostics that are scripted in Octave. Quantities such as magnetic field, temperature, and density are visually represented by color-coded graphs and movies to demonstrate how these quantities change over time. We discuss errors that enter into the computation of the quantities. Work performed under DARPA grant N66001-14-1-4044.

  18. Progress In Magnetized Target Fusion Driven by Plasma Liners

    Science.gov (United States)

    Thio, Francis Y. C.; Kirkpatrick, Ronald C.; Knapp, Charles E.; Cassibry, Jason; Eskridge, Richard; Lee, Michael; Smith, James; Martin, Adam; Wu, S. T.; Schmidt, George; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Magnetized target fusion (MTF) attempts to combine the favorable attributes of magnetic confinement fusion (MCF) for energy confinement with the attributes of inertial confinement fusion (ICF) for efficient compression heating and wall-free containment of the fusing plasma. It uses a material liner to compress and contain a magnetized plasma. For practical applications, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC).

  19. Nonlinear magnetohydrodynamics. Progress report, December 15, 1977--December 14, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Vahala, G.

    1978-01-01

    Incompressible MHD turbulence is considered for both 2D and 3D plasmas in cylindrical geometry. It is found that for virtually all initial conditions (including quiescent ones) the plasma is nonlinearly unstable in that mean square turbulent velocity fields develop. However, there is a unique stable state of extremal magnetic helicity/energy ratio for which no turbulent fields develop (in 2D with B/sub z/ = const., it is the state of extremal mean square vector potential/energy). It is force free and is just the Taylor state. A conjecture can be put forward (based on a dual cascade argument for resistive MHD) to explain Taylor's hypothesis. In spherical geometry, the stable axisymmetric state is the spheromak.

  20. CTR plasma engineering studies. Annual progress report, 1 November 1982-30 October 1983

    International Nuclear Information System (INIS)

    During FY 1983, much effort was devoted to work in support of alternate confinement concepts, especially those involving field reversal. This work includes: (1) study of possible steady-state operation of the Reversed Field Pinch (RFP) via driven dynamo action, (2) the development of particle and energy confinement scaling for the RFP and the Field Reversed Theta Pinch (FRTP), and (3) analysis of start-up (heating and plasma build) for the spheromak and Field Reversed Mirror (FRM). In addition, a block of projects were concerned with fusion product heating and the possible effects of fusion product-driven instability. These include: (1) effects of alpha-driven microinstabilities on heating in tokamaks, (2) exploratory studies of loss-cone-driven fusion product instabilities in tandem mirrors, and (3) fusion product transport, including effects of large angle scattering in reversed field devices such as the FRM

  1. Flux amplification in SSPX

    Science.gov (United States)

    Lodestro, Lynda; Hooper, E. B.; Jayakumar, R. J.; Pearlstein, L. D.; Wood, R. D.; McLean, H. S.

    2007-11-01

    Flux amplification---the ratio of poloidal flux enclosed between the magnetic and geometric axes to that between the separatrix and the geometric axis---is a key measure of efficiency for edge-current-driven spheromaks. With the new, modular capacitor bank, permitting flexible programming of the gun current, studies of flux amplification under various drive scenarios can be performed. Analysis of recent results of pulsed operation with the new bank finds an efficiency ˜ 0.2, in selected shots, of the conversion of gun energy to confined magnetic energy during the pulses, and suggests a route toward sustained efficiency at 0.2. Results of experiments, a model calculation of field build-up, and NIMROD simulations exploring this newly suggested scenario will be presented.

  2. Active Stability Control of a High-Beta Self-Organized Compact Torus

    International Nuclear Information System (INIS)

    Full text: A magnetized coaxial plasma gun (MCPG) has been proposed as an effective device for control of a high-beta self-organized compact torus of field-reversed configuration (FRC). The initial results demonstrate that the application of an MCPG suppresses the most prominent FRC instability of the centrifugally-driven interchange mode with toroidal mode number n = 2. This observation was made on the Nihon University Compact Torus Experiment (NUCTE), a flexible theta-pinch-based FRC facility. In the series of experiments, a MCPG generates a spheromak-like plasmoid which can then travel axially to merge with a pre-existing FRC. Since the MCPG is mounted on-axis and generates a significant helicity, it provides the FRC-relevant version of coaxial helicity injection (CHI) that has been applied in both spheromaks and spherical tokamaks. When CHI is applied, the onset of elliptical deformation of FRC cross-section is delayed until 45 - 50 μs from FRC formation compared to the onset time of 25 μs in the case without CHI. Besides delaying instability, MCPG application reduces the toroidal rotation frequency from 67 kHz to 41 kHz. Moreover, the flux decay time is extended from 57 to 67 μs. These changes have been made despite the quite modest flux content of the plasmoid: ∼0.05 mWb of poloidal and 0.01 mWb of toroidal flux, compared with the 0.4 mWb of poloidal flux in the pre-formed FRC. The observed global stabilization and confinement improvements suggest that the MCPG can actively control the rotational instability. This global instability can also be suppressed by externally applied static multipole fields. However, it has been known that nonaxisymmetric multipole fields have adverse effects on confinement. This indicates an advantage of MCPG in that it shows both improved confinement and stability. The conventional technique does not slow the toroidal rotation down. Therefore, MCPG introduces a different stabilization mechanism that may be the same as that

  3. Stability and {alpha}-particle confinement in the Sphellamak reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, W. Anthony; Fischer, Olivier [Ecole Polytechnique Federale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland)

    2000-10-01

    The Sphellamak is a coreless hybrid system with Tokamak, Stellarator and Spheromak features.The absence of a central conductor permits the realisation of a compact toroidal system, as internal shielding becomes un- necessary. With a peaked toroidal current profile, a sequence of reactor-sized Sphellamak equilibria is computed numerically in which the current in the helical coils I{sub hc} is varied while the toroidal plasma current I{sub p} = -30 MA and the volume average {beta} = 7.3% remain fixed. Ideal global external kink modes are weakly unstable but indicate stability for I{sub hc} > 138 MA. The local ideal magnetohydrodynamic stability criteria are satisfied in the range 42 MA < I{sub hc} < 122 MA. The peaked toroidal current generates local maximal of the modulus of the magnetic field strength in the central region of the plasma, which has very favourable implications for energetic and thermal particle confinement. This is confirmed through the computation of a very small {alpha}-particle guiding centre orbit loss fraction. (author) [French] Le Sphellamak est un systeme hybride sans noyau central compose par des elements de Tokamak, de Stellerateur et de Spheromak. L'absence de colonne centrale permet la realisation d 'un systeme toroidal compact puisque le manteau de protection interne ne devient plus necessaire. Avec un profil de courant pique, une sequence d 'equilibres Sphellamak de dimension reacteur est calculee numeriquement en variant le courant des bobines helicoidales I{sub hc} tout en fixant le courant toroidal du plasma I{sub p} = -30 MA ainsi que la moyenne volumique {beta} = 7.3%. Les modes globaux externes du type kink sont faiblement instables mais suffisent a garantir la stabilite pour I{sub hc} > 138 MA. Les criteres de stabilite magnetohydrodynamique ideale locale sont realises pour des courants de 42 MA < I{sub hc} < 122 MA. Le courant toroidal pique pro- duit localement des valeurs maximales pour le module du champs

  4. CTR plasma engineering studies. Annual progress report, 1 October 1980-30 September 1981

    International Nuclear Information System (INIS)

    During FY 81 much of the effort has been directed at the development of new models and codes involving the following three areas: (1) a 1 1/2-D code for startup and burn studies of high-β systems such as the spheromak and reversed field pinch (RFP); (2) a 1-D code for analysis of field reversed theta pinch (FR theta P) systems including scale up of present experiments and pilot reactor concepts; and (3) a dynamic burn code for analysis of pulsed systems such as the moving plasmoid reactor (MPR), including provisions for detailed treatment of high-energy particle slowing. Also refinement and extension of the continued work were performed on electric field control of impurity transport, 1-D radial hybrid start-up code for field-reversed mirror systems, nuclear elastic scattering and anomalous slowing effects on fusion product transport along with RFP start-up. Major findings and computer packages developed and tested with the corresponding systems are of vital information that can be used and compared for plasma behavior in the near-term systems

  5. Demonstration of Multipulsed Current Drive Scenario using Coaxial Helicity Injection in the HIST Spherical Torus Plasmas

    International Nuclear Information System (INIS)

    Full text: The Helicity Injected Spherical Torus (HIST) device has been developed towards high-current start up and sustainment by Mutipulsed Coaxial Helicity Injection (M-CHI) method. Multiple pulses operation of the coaxial plasma gun can build the magnetic field of spherical torus (ST) and spheromak plasmas in a stepwise manner. Successive double gun pulses have been demonstrated to amplify the magnetic field and the plasma current against resistive decay. The resistive 3D-MHD numerical simulation has reproduced the current amplification by the M-CHI method and confirmed that stochastic magnetic field is reduced so that closed flux surfaces are created during the current drive. These experimental and computational results from STs have provided, for the first time, availability of a quasi-steady-state 'refluxing' mode in which the magnetic field is allowed to decay partially before being rebuilt. Our goal is to achieve simultaneously the good energy confinement and the current sustainment by the M-CHI method. (author)

  6. Fifty Years of Magnetic Fusion Research (1958–2008: Brief Historical Overview and Discussion of Future Trends

    Directory of Open Access Journals (Sweden)

    Laila A. El-Guebaly

    2010-06-01

    Full Text Available Fifty years ago, the secrecy surrounding magnetically controlled thermonuclear fusion had been lifted allowing researchers to freely share technical results and discuss the challenges of harnessing fusion power. There were only four magnetic confinement fusion concepts pursued internationally: tokamak, stellarator, pinch, and mirror. Since the early 1970s, numerous fusion designs have been developed for the four original and three new approaches: spherical torus, field-reversed configuration, and spheromak. At present, the tokamak is regarded worldwide as the most viable candidate to demonstrate fusion energy generation. Numerous power plant studies (>50, extensive R&D programs, more than 100 operating experiments, and an impressive international collaboration led to the current wealth of fusion information and understanding. As a result, fusion promises to be a major part of the energy mix in the 21st century. The fusion roadmaps developed to date take different approaches, depending on the anticipated power plant concept and the degree of extrapolation beyond ITER. Several Demos with differing approaches will be built in the US, EU, Japan, China, Russia, Korea, India, and other countries to cover the wide range of near-term and advanced fusion systems.

  7. An ion Doppler spectrometer instrument for ion temperature and flow measurements on SSPX

    International Nuclear Information System (INIS)

    A high-resolution ion Doppler spectrometer (IDS) has been installed on the sustained spheromak plasma experiment to measure ion temperatures and plasma flow. The system is composed of a 1 m focal length Czerny-Turner spectrometer with a diffraction grating line density of 2400 lines/mm, which allows for first order spectra between 300 and 600 nm. A 16-channel photomultiplier tube detection assembly combined with output coupling optics provides a spectral resolution of 0.0126 nm/channel. We calculate in some detail the mapping of curved slit images onto the linear detector array elements. This is important in determining the wavelength resolution and setting the optimum vertical extent of the slit. Also, because of the small wavelength window of the IDS, a miniature fiber-optic survey spectrometer sensitive to a wavelength range 200-1100 nm and having a resolution of 0.2 nm is used to obtain a time-integrated spectrum for each shot to verify specific impurity line radiation. Several measurements validate the systems operation. Doppler broadening of C III 464.72 nm line in the plasma shows time-resolved ion temperatures up to 250 eV for hydrogen discharges, which is consistent with neutral particle energy analyzer measurements. Flow measurements show a sub-Alfvenic plasma flow ranging from 5 to 45 km/s for helium discharges.

  8. Annual report, October 1, 1981-September 30, 1982

    International Nuclear Information System (INIS)

    The construction of the Tokamak Fusion Test Reactor (TFTR) has been proceeding in a highly satisfactory manner, giving confidence that the project schedule will be met. The vacuum vessel and toroidal-field coil systems are now in place, and the entire mechanical assembly process is about to be completed. Experimental operation of TFTR will begin with ohmic-heating studies in early CY83, and will proceed to intensive neutral-beam heating in CY84. Radio-frequency experiments on the Princeton Large Torus (PLT) have used a new 3-MW ion cyclotron heating source to demonstrate second-harmonic heating of hydrogen ions up to temperatures of 3 keV. Lower hybrid current drive has sustained plasma currents as large as 400 kA in quasi-steady state. The 7-MW neutral-beam-heating capability of the Poloidal Divertor Experiment (PDX) was utilized to investigate finite-beta stability limits. Beta values above 3% were achieved at safety factor values as low as 1.7. A physical mechanism for beta-limitation was discovered and documented: the energetic-ion-driven, fishbone mode of MHD instability. Construction of the S-1 spheromak is progressing on schedule, with preliminary experimental operation planned for early CY83

  9. Behavior of Compact Toroid in the External Magnetic Fields

    Science.gov (United States)

    Fukumoto, N.; Ioroi, A.; Nagata, M.; Uyama, T.

    1999-11-01

    We have investigated the possibility of refueling and density control of tokamak plasmas by the spheromak-type Compact Toroid (CT) injection in the JFT-2M tokamak in collaboration with JAERI. We demonstrated the CT injection into OH plasmas and observed the core penetration at B_T=0.8 T. The tokamak electron density increased ~0.2× 10^19m-3 at a rate of 2× 10^21m-3/s. We also observed the decrease of the CT velocity by the external magnetic field of the tokamak, which is applied across the CT acceleration region. We have examined the behavior of the CT translated in the external fields B_ext using the magnetic probes and the fast framing camera at Himeji Inst. of tech.. CT plasma in the acceleration region is deformed by the Lorentz force of Jg × B_ext, where Jg is the gun current for CT acceleration. The magnetic field structures of a long CT in the drift region has been revealed to be the mixed relaxed state of m=0 and m=1. Results from CT acceleration and injection in a transverse field will be presented.

  10. Formation and Acceleration Physics on Plasma Injector 1

    Science.gov (United States)

    Howard, Stephen

    2012-10-01

    Plasma Injector 1 (PI-1) is a two stage coaxial Marshal gun with conical accelerator electrodes, similar in shape to the MARAUDER device, with power input of the same topology as the RACE device. The goal of PI-1 research is to produce a self-confined compact toroid with high-flux (200 mWb), high-density (3x10^16 cm-3) and moderate initial temperature (100 eV) to be used as the target plasma in a MTF reactor. PI-1 is 5 meters long and 1.9 m in diameter at the expansion region where a high aspect ratio (4.4) spheromak is formed with a minimum lambda of 9 m-1. The acceleration stage is 4 m long and tapers to an outer diameter of 40 cm. The capacitor banks store 0.5 MJ for formation and 1.13 MJ for acceleration. Power is delivered via 62 independently controlled switch modules. Several geometries for formation bias field, inner electrodes and target chamber have been tested, and trends in accelerator efficiency and target lifetime have been observed. Thomson scattering and ion Doppler spectroscopy show significant heating (>100 eV) as the CT is compressed in the conical accelerator. B-dot probes show magnetic field structure consistent with Grad-Shafranov models and MHD simulations, and CT axial length depends strongly on the lambda profile.

  11. Flow and dynamo measurements during the coaxial helicity injection on HIST

    Science.gov (United States)

    Ando, K.; Higashi, T.; Nakatsuka, M.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2009-11-01

    The current drive by Coaxial Helicity Injection (CHI-CD) was performed on HIST in a wide range of configurations from high-q ST to low-q ST and spheromak generated by the utilization of the toroidal field. It is a key issue to investigate the dynamo mechanism required to maintain each configuration. To identify the detail mechanisms, it is needed to manifest a role of plasma flows in the CHI-CD. For this purpose, we have measured the ion flow and the dynamo electric field using an ion Doppler spectrometer (IDS) system, a Mach probe and a dynamo probe. The new dynamo probe consists of 3-axis Mach probes and magnetic pick-up coils. The flow measurements have shown that the intermittent generation of the flow is correlated to the fluctuation seen on the electron density and current signals during the driven phase. At this time, the toroidal direction of the ion flow in the central open flux column is opposite to that of the toroidal current there, i.e. the same direction as electrons. After the plasma enters to the resistive decay phase, the toroidal flow tends to reverse to the same direction as the toroidal current. The results are consistent with the model of the repetitive plasmoid ejection and coalescence proposed for CHI-CD. The plasma jet emanating from the gun source and magnetic field generations through reconnection during the driven phase is well reflected in the 3D MHD simulation.

  12. Development of a polarization resolved spectroscopic diagnostic for measurements of the magnetic field in the Caltech coaxial magnetized plasma jet experiment

    Science.gov (United States)

    Shikama, Taiichi; Bellan, Paul M.

    2011-11-01

    Measurements of the magnetic field strength in current-carrying magnetically confined plasmas are necessary for understanding the underlying physics governing the dynamical behavior. Such a measurement would be particularly useful in the Caltech coaxial magnetized plasma gun, an experiment used for fundamental studies relevant to spheromak formation, astrophysical jet formation/propagation, solar coronal physics, and the general behavior of twisted magnetic flux tubes that intercept a boundary. In order to measure the field strength in the Caltech experiment, a non-perturbing spectroscopic method is being implemented to observe the Zeeman splitting in the emission spectra. The method is based on polarization-resolving spectroscopy of the Zeeman-split σ components, a technique previously used in both solar and laboratory plasmas. We have designed and constructed an optical system that can simultaneously detect left- and right-circularly polarized emission with both high throughput and small extinction ratio. The system will be used on the 489.5 nm NII line, chosen because of its simple Zeeman structure and minimal Stark broadening.

  13. Development of Compact Toroid Injector for C-2 FRCs

    Science.gov (United States)

    Matsumoto, Tadafumi; Sekiguchi, Junichi; Asai, Tomohiko; Gota, Hiroshi; Garate, Eusebio; Allfrey, Ian; Valentine, Travis; Smith, Brett; Morehouse, Mark; TAE Team

    2014-10-01

    Collaborative research project with Tri Alpha Energy has been started and we have developed a new compact toroid (CT) injector for the C-2 device, mainly for fueling field-reversed configurations (FRCs). The CT is formed by a magnetized coaxial plasma-gun (MCPG), which consists of coaxial cylinder electrodes; a spheromak-like plasma is generated by discharge and pushed out from the gun by Lorentz force. The inner diameter of outer electrode is 83.1 mm and the outer diameter of inner electrode is 54.0 mm. The surface of the inner electrode is coated with tungsten in order to reduce impurities coming out from the electrode. The bias coil is mounted inside of the inner electrode. We have recently conducted test experiments and achieved a supersonic CT translation speed of up to ~100 km/s. Other typical plasma parameters are as follows: electron density ~ 5 × 1021 m-3, electron temperature ~ 40 eV, and the number of particles ~0.5-1.0 × 1019. The CT injector is now planned to be installed on C-2 and the first CT injection experiment will be conducted in the near future. The detailed MCPG design as well as the test experimental results will be presented.

  14. Advanced fusion concepts project summaries, FY 1988

    International Nuclear Information System (INIS)

    This report summarizes all the projects supported by the Advanced Fusion Concepts Branch of the Applied Plasma Physics Division of the Office of Fusion Energy, US Department of Energy. Each project summary was written by the respective principal investigator using the format: title, principal investigators, funding levels, purpose, approach, progress, plans, milestones, graduate students, graduates, other professional staff, and recent publications. This report is organized into three sections: Section one contains five summaries describing work in the reversed-field pinch program being performed by a diversified group of contractors, these include a national laboratory, a private company, and several universities. Section two contains eight summaries of work from the compact toroid area which encompasses field-reversed configurations, spheromaks, and heating and formation experiments. Section three contains summaries from two other programs, a density Z-pinch experiment and high-beta Q machine experiment. The intent of this collection of project summaries is to help the contractors of the Advanced Fusion Concepts Branch understand their relationship with the rest of the branch's activities. It is also meant to provide background to those outside the program by showing the range of activities of interest of the Advanced Fusion Concepts Branch

  15. The bumpy Z-pinch

    Science.gov (United States)

    Jensen, T. H.; Chu, M. S.

    1981-06-01

    The 'bumpy Z-pinch' is a magnetic configuration with potential usefulness for fusion reactors. A conceptually simple version of the configuration is axisymmetric. It contains regions of closed and open field lines. In the region of closed field lines, the field line topology is much like that of a tokamak; these regions link the region of open field lines around the axis of symmetry. Assuming that the plasma spontaneously maintains an equilibrium as described by Taylor (1974), it is possible to maintain indefinitely the regions of closed field lines by driving an axial current through the plasma in the region of open field lines. The ratio between the total axial driven current and the total poloidal current in each of the tokamak-like regions can, in principle, be made arbitrarily small, which means that the load impedance can be arbitrarily large. In addition, the configuration has the inherent virtue similar to that of the spheromak that the tokamak-like part of the plasma does not link any material coils.

  16. Study of plasma equilibrium in toroidal fusion devices using mesh-free numerical calculation method

    Science.gov (United States)

    Rasouli, C.; Abbasi Davani, F.; Rokrok, B.

    2016-08-01

    Plasma confinement using external magnetic field is one of the successful ways leading to the controlled nuclear fusion. Development and validation of the solution process for plasma equilibrium in the experimental toroidal fusion devices is the main subject of this work. Solution of the nonlinear 2D stationary problem as posed by the Grad-Shafranov equation gives quantitative information about plasma equilibrium inside the vacuum chamber of hot fusion devices. This study suggests solving plasma equilibrium equation which is essential in toroidal nuclear fusion devices, using a mesh-free method in a condition that the plasma boundary is unknown. The Grad-Shafranov equation has been solved numerically by the point interpolation collocation mesh-free method. Important features of this approach include truly mesh free, simple mathematical relationships between points and acceptable precision in comparison with the parametric results. The calculation process has been done by using the regular and irregular nodal distribution and support domains with different points. The relative error between numerical and analytical solution is discussed for several test examples such as small size Damavand tokamak, ITER-like equilibrium, NSTX-like equilibrium, and typical Spheromak.

  17. CTR plasma engineering studies. Annual progress report, 1 November 1981-30 October 1982

    International Nuclear Information System (INIS)

    During FY 82, much effort was devoted to work in support of alternate confinement concepts, especially those involving field reversal. This work includes: (1) development of particle and energy confinement scaling for the Reversed Field Pinch (RFP) and the Field Reversed Theta Pinch (FRTP), and (2) analysis of start-up (heating and plasma build) for the spheromak and Field Reversed Mirror (FRM). In addition, a block of projects were concerned with fusion product effects, including heating and ash build-up. These include, (1) a study of possible use of radial electric fields to control ash build-up in tokamaks, (2) effects of alpha-driven microinstabilities on heating in tokamaks, and (3) fusion product transport, including effects of large angle scattering on orbits, in EBT and FRM devices. In a related study, the possibility of hot-ion mode operation (assuming strong transfer of fusion product energy to ions, e.g. via microinstabilities) was done with emphasis on calculation of ion-electron equilibration rates

  18. Fast magnetic and electric dynamos in flat Klein bottle plasma flows

    CERN Document Server

    de Andrade, L C Garcia

    2009-01-01

    Recently Shukurov et al [Phys Rev \\textbf{E} (2008)] presented a numerical solution of a Moebius strip dynamo flow, to investigate its use in modelling dynamo flows in Perm torus of liquid sodium dynamo experiments. Here, by analogy one presents an electric dynamo on a twisted torus or Klein bottle topology. An exact solution in the form of flat Klein bottle dynamo flow is obtained. It is shown that even in the absence of magnetic dynamos initial electric fields can be amplified in distinct points of the Klein bottle. In this case diffusion is taken as ${\\eta}\\approx{5.0{\\times}10^{-3}{\\Omega}-m}$ the electric potential is obtained. The difference of electric fields at the beginning of plasma flow profile is ${\\Delta}E_{Dyn}\\approx{468\\frac{V}{m}}$, which is stronger than the electric dynamo field obtained in the magnetic axis of spheromaks, which is of the order of $E_{Dyn}\\approx{200\\frac{V}{m}}$. The potential of the dynamo at the surface of the Earth computed by Boozer [Phys Fluids \\textbf{B} (1993)] of $...

  19. Interaction of the neutral deuterium flux with a field-reversed configuration

    International Nuclear Information System (INIS)

    Recycling effects arising from the penetration of cold neutrals into a hot plasma has been known to contribute to confinement properties of tokamaks, mirrors, RFPs, and spheromaks. To data, however, ionization and charge exchange processes associated with the possible influx of neutrals have been neglected in FRC transport models, or their effects have been found negligible for experiments with short lifetimes (< 20 μs). These processes are also neglected when ascertaining the experimental particle confinement time tau/sub N/. As experimental FRC lifetimes have recently been extended to record values (greater than or equal to 300 μs), these effects on transport may no longer be negligible. Furthermore, these losses can be enhanced when FRCs translate at axial speeds much greater than the thermal speeds of the neutrals. The purpose of this analysis is to examine the interaction of neutral deuterium with an FRC. The relevant atomic and molecular processes are reviewed. A simple, steady-state, multi-species 1-D (radial) neutral transport model is described and applied to FRC plasma parameters observed earlier. Estimates of the power loss due to these neutrals are made for both stationary and translating plasmas

  20. Exploring reconnection, current sheets, and dissipation in a laboratory MHD turbulence experiment

    Science.gov (United States)

    Schaffner, D. A.

    2015-12-01

    The Swarthmore Spheromak Experiment (SSX) can serve as a testbed for studying MHD turbulence in a controllable laboratory setting, and in particular, explore the phenomena of reconnection, current sheets and dissipation in MHD turbulence. Plasma with turbulently fluctuating magnetic and velocity fields can be generated using a plasma gun source and launched into a flux-conserving cylindrical tunnel. No background magnetic field is applied so internal fields are allowed to evolve dynamically. Point measurements of magnetic and velocity fluctuations yield broadband power-law spectra with a steepening breakpoint indicative of the onset of a dissipation scale. The frequency range at which this steepening occurs can be correlated to the ion inertial scale of the plasma, a length which is characteristic of the size of current sheets in MHD plasmas and suggests a connection to dissipation. Observation of non-Gaussian intermittent jumps in magnetic field magnitude and angle along with measurements of ion temperature bursts suggests the presence of current sheets embedded within the turbulent plasma, and possibly even active reconnection sites. Additionally, structure function analysis coupled with appeals to fractal scaling models support the hypothesis that current sheets are associated with dissipation in this system.

  1. Temporal and spatial turbulent spectra of MHD plasma and an observation of variance anisotropy

    International Nuclear Information System (INIS)

    The nature of magnetohydrodynamic (MHD) turbulence is analyzed through both temporal and spatial magnetic fluctuation spectra. A magnetically turbulent plasma is produced in the MHD wind tunnel configuration of the Swarthmore Spheromak Experiment. The power of magnetic fluctuations is projected into directions perpendicular and parallel to a local mean field; the ratio of these quantities shows the presence of variance anisotropy which varies as a function of frequency. Comparisons among magnetic, velocity, and density spectra are also made, demonstrating that the energy of the turbulence observed is primarily seeded by magnetic fields created during plasma production. Direct spatial spectra are constructed using multi-channel diagnostics and are used to compare to frequency spectra converted to spatial scales using the Taylor hypothesis. Evidence for the observation of dissipation due to ion inertial length scale physics is also discussed, as well as the role laboratory experiments can play in understanding turbulence typically studied in space settings such as the solar wind. Finally, all turbulence results are shown to compare fairly well to a Hall-MHD simulation of the experiment.

  2. Temporal and spatial turbulent spectra of MHD plasma and an observation of variance anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Schaffner, D. A.; Brown, M. R. [Swarthmore College, Swarthmore, PA (United States); Lukin, V. S. [Space Science Division, Naval Research Laboratory, Washington, DC (United States)

    2014-08-01

    The nature of magnetohydrodynamic (MHD) turbulence is analyzed through both temporal and spatial magnetic fluctuation spectra. A magnetically turbulent plasma is produced in the MHD wind tunnel configuration of the Swarthmore Spheromak Experiment. The power of magnetic fluctuations is projected into directions perpendicular and parallel to a local mean field; the ratio of these quantities shows the presence of variance anisotropy which varies as a function of frequency. Comparisons among magnetic, velocity, and density spectra are also made, demonstrating that the energy of the turbulence observed is primarily seeded by magnetic fields created during plasma production. Direct spatial spectra are constructed using multi-channel diagnostics and are used to compare to frequency spectra converted to spatial scales using the Taylor hypothesis. Evidence for the observation of dissipation due to ion inertial length scale physics is also discussed, as well as the role laboratory experiments can play in understanding turbulence typically studied in space settings such as the solar wind. Finally, all turbulence results are shown to compare fairly well to a Hall-MHD simulation of the experiment.

  3. Annual report, October 1, 1981-September 30, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, C.A. (ed.)

    1984-01-01

    The construction of the Tokamak Fusion Test Reactor (TFTR) has been proceeding in a highly satisfactory manner, giving confidence that the project schedule will be met. The vacuum vessel and toroidal-field coil systems are now in place, and the entire mechanical assembly process is about to be completed. Experimental operation of TFTR will begin with ohmic-heating studies in early CY83, and will proceed to intensive neutral-beam heating in CY84. Radio-frequency experiments on the Princeton Large Torus (PLT) have used a new 3-MW ion cyclotron heating source to demonstrate second-harmonic heating of hydrogen ions up to temperatures of 3 keV. Lower hybrid current drive has sustained plasma currents as large as 400 kA in quasi-steady state. The 7-MW neutral-beam-heating capability of the Poloidal Divertor Experiment (PDX) was utilized to investigate finite-beta stability limits. Beta values above 3% were achieved at safety factor values as low as 1.7. A physical mechanism for beta-limitation was discovered and documented: the energetic-ion-driven, fishbone mode of MHD instability. Construction of the S-1 spheromak is progressing on schedule, with preliminary experimental operation planned for early CY83.

  4. A mimetic spectral element solver for the Grad-Shafranov equation

    Science.gov (United States)

    Palha, A.; Koren, B.; Felici, F.

    2016-07-01

    In this work we present a robust and accurate arbitrary order solver for the fixed-boundary plasma equilibria in toroidally axisymmetric geometries. To achieve this we apply the mimetic spectral element formulation presented in [56] to the solution of the Grad-Shafranov equation. This approach combines a finite volume discretization with the mixed finite element method. In this way the discrete differential operators (∇, ∇×, ∇ṡ) can be represented exactly and metric and all approximation errors are present in the constitutive relations. The result of this formulation is an arbitrary order method even on highly curved meshes. Additionally, the integral of the toroidal current Jϕ is exactly equal to the boundary integral of the poloidal field over the plasma boundary. This property can play an important role in the coupling between equilibrium and transport solvers. The proposed solver is tested on a varied set of plasma cross sections (smooth and with an X-point) and also for a wide range of pressure and toroidal magnetic flux profiles. Equilibria accurate up to machine precision are obtained. Optimal algebraic convergence rates of order p + 1 and geometric convergence rates are shown for Soloviev solutions (including high Shafranov shifts), field-reversed configuration (FRC) solutions and spheromak analytical solutions. The robustness of the method is demonstrated for non-linear test cases, in particular on an equilibrium solution with a pressure pedestal.

  5. A Challenging Solar Eruptive Event of 18 November 2003 and the Causes of the 20 November Geomagnetic Superstorm. III. Catastrophe of the Eruptive Filament in a Magnetic Null Point and Formation of an Opposite-Handedness CME

    CERN Document Server

    Uralov, A M; Rudenko, G V; Myshyakov, I I; Chertok, I M; Filippov, B P; Slemzin, V A

    2014-01-01

    Our analysis in Papers I and II (Grechnev et al., 2014, Solar Phys. 289, 289 and 1279) of the 18 November 2003 solar event responsible for the 20 November geomagnetic superstorm has revealed a complex chain of eruptions. In particular, the eruptive filament encountered a topological discontinuity located near the solar disk center at a height of about 100 Mm, bifurcated, and transformed into a large cloud, which did not leave the Sun. Concurrently, an additional CME presumably erupted close to the bifurcation region. The conjectures about the responsibility of this compact CME for the superstorm and its disconnection from the Sun are confirmed in Paper IV (Grechnev et al., Solar Phys., submitted), which concludes about its probable spheromak-like structure. The present paper confirms the presence of a magnetic null point near the bifurcation region and addresses the origin of the magnetic helicity of the interplanetary magnetic clouds and their connection to the Sun. We find that the orientation of a magnetic...

  6. Permutation entropy and statistical complexity analysis of turbulence in laboratory plasmas and the solar wind.

    Science.gov (United States)

    Weck, P J; Schaffner, D A; Brown, M R; Wicks, R T

    2015-02-01

    The Bandt-Pompe permutation entropy and the Jensen-Shannon statistical complexity are used to analyze fluctuating time series of three different turbulent plasmas: the magnetohydrodynamic (MHD) turbulence in the plasma wind tunnel of the Swarthmore Spheromak Experiment (SSX), drift-wave turbulence of ion saturation current fluctuations in the edge of the Large Plasma Device (LAPD), and fully developed turbulent magnetic fluctuations of the solar wind taken from the Wind spacecraft. The entropy and complexity values are presented as coordinates on the CH plane for comparison among the different plasma environments and other fluctuation models. The solar wind is found to have the highest permutation entropy and lowest statistical complexity of the three data sets analyzed. Both laboratory data sets have larger values of statistical complexity, suggesting that these systems have fewer degrees of freedom in their fluctuations, with SSX magnetic fluctuations having slightly less complexity than the LAPD edge I(sat). The CH plane coordinates are compared to the shape and distribution of a spectral decomposition of the wave forms. These results suggest that fully developed turbulence (solar wind) occupies the lower-right region of the CH plane, and that other plasma systems considered to be turbulent have less permutation entropy and more statistical complexity. This paper presents use of this statistical analysis tool on solar wind plasma, as well as on an MHD turbulent experimental plasma.

  7. Princeton Plasma Physics Laboratory annual report, October 1, 1982-September 30, 1983

    International Nuclear Information System (INIS)

    The Tokamak Fusion Test Reactor (TFTR) achieved first plasma at 3:05 a.m. on December 24, 1982. During the course of the year, the plasma current was raised to a maximum of 1 MA, and extensive confinement studies were carried out with ohmic-heated plasmas. The most important finding was that tokamak energy confinement time increases as the cube of the plasma size. The Princeton Large Torus (PLT) carried out a number of high-powered plasma-heating experiments in the ion cyclotron frequency range, and also demonstrated for the first time that a 100-kA tokamak discharge can be built up by means of rf-waves in the lower hybrid range, without any need for inductive current drive by the conventional tokamak transformer system. The Poloidal Divertor Experiment (PDX) demonstrated that substantial improvements in plasma confinement during intense neutral-beam heating can be obtained by means of either a magnetic divertor or a mechanical scoop limiter. The S-1 spheromak experiment has come into operation, with first plasma in January 1983, and machine completion in August. The soft X-ray laser development experiment continues to make strong progress towards the demonstration of laser amplification. Thus far, a single-pass gain of 3.5 has been achieved, using the 182 A line of CVI. Theoretical MHD-stability studies have shed new light on the nature of the energetic-ion-driven ''fishbone instability,'' and the utilization of the bean-shaping technique to reach higher beta values in the tokamak

  8. Models of large-scale magnetic fields in stellar interiors. Application to solar and ap stars

    International Nuclear Information System (INIS)

    Stellar astrophysics needs today new models of large-scale magnetic fields, which are observed through spectropolarimetry at the surface of Ap/Bp stars, and thought to be an explanation for the uniform rotation of the solar radiation zone, deduced from helio seismic inversions. During my PhD, I focused on describing the possible magnetic equilibria in stellar interiors. The found configurations are mixed poloidal-toroidal, and minimize the energy for a given helicity, in analogy with Taylor states encountered in spheromaks. Taking into account the self-gravity leads us to the 'non force-free' equilibria family, that will thus influence the stellar structure. I derived all the physical quantities associated with the magnetic field; then I evaluated the perturbations they induce on gravity, thermodynamic quantities as well as energetic ones, for a solar model and an Ap star. 3D MHD simulations allowed me to show that these equilibria form a first stable states family, the generalization of such states remaining an open question. It has been shown that a large-scale magnetic field confined in the solar radiation zone can induce an oblateness comparable to a high core rotation law. I also studied the secular interaction between the magnetic field, the differential rotation and the meridional circulation in the aim of implementing their effects in a next generation stellar evolution code. The influence of the magnetism on convection has also been studied. Finally, hydrodynamic processes responsible for the mixing have been compared with diffusion and a change of convection's efficiency in the case of a CoRoT star target. (author)

  9. Engineering overview of the National Spherical Tokamak Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Chrzanowski, J.H.; Fan, H.M.; Heitzenroeder, P.J.; Ono, M.; Robinson, J. [Princeton Plasma Physics Lab., NJ (United States)

    1995-12-31

    The National Spherical Tokamak Experiment (NSTX) is an ultra low aspect ratio device designed for a plasma current of 1 MA. It features auxiliary heating and current drive and a close-fitting conducting shell to maximize plasma pressure. NSTX is designed for a 5 sec. experimental pulse to demonstrate quasi-steady state non-inductively driven advanced tokamak operation. The device will be sited in the former Princeton Large Torus (PLT) test cell and will utilize the PLT radiation shielding, base structure, and cell utilities. NSTX will utilize the S-1 Spheromak vacuum vessel, poloidal field coils, and capacitor banks (for helicity injection). The poloidal Beta Experiment-Modified (PBX-M) power supplies will be shared to power the PF and TF coil systems. Existing RF hardware and infrastructure will be used for heating systems. TFTR data acquisition and diagnostics resources are planned to be used. In total, NSTX will utilize site credits with a value of {approximately}$50 M, reducing base construction cost of the device to $18.6 M. Twelve water-cooled copper demountable toroidal field (TF) coils provide the 5.4 kg (pulsed) and 3.5 kg (long pulse > 5 sec) toroidal field at the plasma center. Poloidal fields are generated by windings contained in the center column and four pairs water-cooled copper coils supported directly on the vacuum vessel. One of the most critical components of the device is the center stack, which consists of the inner legs of the TF coils overwrapped with ohmic heating and poloidal field windings. The ohmic heating coil windings are designed to optimize the V-s and together with the PF coils, produce a flux swing of 1 V-s.

  10. Princeton Plasma Physics Laboratory annual report, October 1, 1982-September 30, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, C.A. (ed.)

    1983-01-01

    The Tokamak Fusion Test Reactor (TFTR) achieved first plasma at 3:05 a.m. on December 24, 1982. During the course of the year, the plasma current was raised to a maximum of 1 MA, and extensive confinement studies were carried out with ohmic-heated plasmas. The most important finding was that tokamak energy confinement time increases as the cube of the plasma size. The Princeton Large Torus (PLT) carried out a number of high-powered plasma-heating experiments in the ion cyclotron frequency range, and also demonstrated for the first time that a 100-kA tokamak discharge can be built up by means of rf-waves in the lower hybrid range, without any need for inductive current drive by the conventional tokamak transformer system. The Poloidal Divertor Experiment (PDX) demonstrated that substantial improvements in plasma confinement during intense neutral-beam heating can be obtained by means of either a magnetic divertor or a mechanical scoop limiter. The S-1 spheromak experiment has come into operation, with first plasma in January 1983, and machine completion in August. The soft X-ray laser development experiment continues to make strong progress towards the demonstration of laser amplification. Thus far, a single-pass gain of 3.5 has been achieved, using the 182 A line of CVI. Theoretical MHD-stability studies have shed new light on the nature of the energetic-ion-driven ''fishbone instability,'' and the utilization of the bean-shaping technique to reach higher beta values in the tokamak.

  11. KTM Tokamak is prototype of X XI century reactor. Future International laboratory of thermonuclear materials testing and power engineering

    International Nuclear Information System (INIS)

    In 29-31 May of 2000 the presentation of the joint Kazakhstan-Russian draft of Kazakhstan material-testing tokamak (KTM) was carried out. KTM tokamak is implementing by decision of the President and Government of Republic of Kazakhstan for supporting of the Kazakhstan participation in development of draft within framework of ITER fusion reactor construction. Scientific head of the project is Russian academician - Velikhov V. and Russian Research Center 'Kurchatovskij Institute' , General designers - Scientific Research Institute for Electrophysical Equipment after D. V. Efremov (Russian Federation) and Kazakh Research Inst. for Energy Industry (KazNIIEhnergoprom). Scientific part of the project is working out in National Nuclear Center of Republic of Kazakhstan and Scientific Research Institute of Experimental and Theoretical Physics. KTM tokamak is experimental fusion device for materials testing study, as well as for designing of methods for protection of the reactor first wall, in-chamber elements and divertor planes, high frequency heat of antennas in energetic load regimes close to both the ITER and the future fusion energy reactors. KTM by it design presents spheric tokamak, which successfully combining advantages of the spheromaks (compactness) and the tokamaks (high plasma density). Now in the world there are similar operating spheric tokamaks: NSTX (USA), MAST (Great Britain), GLOBUS-M (Russian Federation). Principal peculiarity of KTM tokamak is existence of moving divertor device, which with help of manipulator allows to changing of examining samples without high vacuum disruption. Values of the thermal loads and fluences in the KTM are equal or higher than loads in operating tokamaks and correspond with ITER reactor loads. KTM tokamak will be the only mega-ampere device in the world with the aspect ratio A=2

  12. Exploiting Laboratory and Heliophysics Plasma Synergies

    Directory of Open Access Journals (Sweden)

    Jill Dahlburg

    2010-05-01

    provides direct experimental observation of reconnection dynamics; and the Swarthmore Spheromak Experiment, which provides well-diagnosed data on three-dimensional (3D null-point magnetic reconnection that is also applicable to solar active regions embedded in pre-existing coronal fields. New computer capabilities highlighted include: HYPERION, a fully compressible 3D magnetohydrodynamics (MHD code with radiation transport and thermal conduction; ORBIT-RF, a 4D Monte-Carlo code for the study of wave interactions with fast ions embedded in background MHD plasmas; the 3D implicit multi-fluid MHD spectral element code, HiFi; and, the 3D Hall MHD code VooDoo. Research synergies for these new tools are primarily in the areas of magnetic reconnection, plasma charged particle acceleration, plasma wave propagation and turbulence in a diverging magnetic field, plasma atomic processes, and magnetic dynamo behavior.

  13. Research using small tokamaks

    International Nuclear Information System (INIS)

    discharges, production and self-organization of a turbulent plasma column in a spheromak (''SK-CG-1''), and (iv) a planned large-aspect ratio, high-beta tokamak (HBT-EP) experiment. Refs, figs and tabs

  14. Theoretical Study of Radiation from a Broad Range of Impurity Ions for Magnetic Fusion Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Safronova, Alla [Univ. of Nevada, Reno, NV (United States)

    2014-03-14

    Spectroscopy of radiation emitted by impurities plays an important role in the study of magnetically confined fusion plasmas. The measurements of these impurities are crucial for the control of the general machine conditions, for the monitoring of the impurity levels, and for the detection of various possible fault conditions. Low-Z impurities, typically present in concentrations of 1%, are lithium, beryllium, boron, carbon, and oxygen. Some of the common medium-Z impurities are metals such as iron, nickel, and copper, and high-Z impurities, such as tungsten, are present in smaller concentrations of 0.1% or less. Despite the relatively small concentration numbers, the aforementioned impurities might make a substantial contribution to radiated power, and also influence both plasma conditions and instruments. A detailed theoretical study of line radiation from impurities that covers a very broad spectral range from less than 1 Å to more than 1000 Å has been accomplished and the results were applied to the LLNL Electron Beam Ion Trap (EBIT) and the Sustained Spheromak Physics Experiment (SSPX) and to the National Spherical Torus Experiment (NSTX) at Princeton. Though low- and medium-Z impurities were also studied, the main emphasis was made on the comprehensive theoretical study of radiation from tungsten using different state-of-the-art atomic structure codes such as Relativistic Many-Body Perturbation Theory (RMBPT). The important component of this research was a comparison of the results from the RMBPT code with other codes such as the Multiconfigurational Hartree–Fock developed by Cowan (COWAN code) and the Multiconfiguration Relativistic Hebrew University Lawrence Atomic Code (HULLAC code), and estimation of accuracy of calculations. We also have studied dielectronic recombination, an important recombination process for fusion plasma, for variety of highly and low charged tungsten ions using COWAN and HULLAC codes. Accurate DR rate coefficients are needed for

  15. Final Technical Report for NSF/DOE partnership grant 1004284/ER54905/SC0004660; 2011- 2013

    Energy Technology Data Exchange (ETDEWEB)

    Stenzel, Reiner [University of California, Los Angeles, CA (United States); Urrutia, Manuel [University of California, Los Angeles, CA (United States)

    2014-10-15

    Research has been performed on two topics: (1) Nonlinear time-dependent phenomena in the regime of electron magnetohydrodynamics (EMHD). (2) Plasma structures forming ”bubbles”. The latter are regions of localized density depletions or enhancements separated from the ambient plasma by sheaths or double layers. Three-dimensional magnetic null points can also be considered as ”magnetic bubbles”. Nonlinear EMHD fields are generated by pulsed magnetic loops. The magnetic field varies in time faster than an ion cyclotron period, hence interacts only with electrons. Space charge electric fields are created when magnetic forces try to separate electrons from ions. Electric and magnetic forces nearly balance to keep the plasma quasi neutral. This leads to rotational electron motions, i.e. Hall currents and associated magnetic perturbations. When the time scale falls between the ion and electron cyclotron period the magnetic perturbation is convected in the whistler mode. When the time-varying magnetic field exceeds the background magnetic field the whistler mode becomes highly nonlinear since its properties depend on the total magnetic field. When the time-varying magnetic field creates magnetic null points or null lines EMHD breaks down. Electrons can be accelerated in null lines which dissipated magnetic energy like in magnetic reconnection. Energized electrons with anisotropic distributions create secondary whistler instabilities. These effects have been observed in field topologies resembling spheromaks and field-reversed configurations (FRCs). The whistler mode propagation near magnetic nulls is not trivial when the field gradients and wavelength are comparable. Ray tracing is inappropriate when the WKB approximation breaks down. Experiments have been started to map wave propagation on curved field lines with null points. Initial results show that whistlers in highly nonuniform fields have highly oblique phase velocities but the energy flow remains dominantly

  16. Self-organization in magnetic flux ropes

    Science.gov (United States)

    Lukin, Vyacheslav S.

    2014-06-01

    This cross-disciplinary special issue on 'Self-organization in magnetic flux ropes' follows in the footsteps of another collection of manuscripts dedicated to the subject of magnetic flux ropes, a volume on 'Physics of magnetic flux ropes' published in the American Geophysical Union's Geophysical Monograph Series in 1990 [1]. Twenty-four years later, this special issue, composed of invited original contributions highlighting ongoing research on the physics of magnetic flux ropes in astrophysical, space and laboratory plasmas, can be considered an update on our state of understanding of this fundamental constituent of any magnetized plasma. Furthermore, by inviting contributions from research groups focused on the study of the origins and properties of magnetic flux ropes in a variety of different environments, we have attempted to underline both the diversity of and the commonalities among magnetic flux ropes throughout the solar system and, indeed, the universe. So, what is a magnetic flux rope? The answer will undoubtedly depend on whom you ask. A flux rope can be as narrow as a few Larmor radii and as wide as the Sun (see, e.g., the contributions by Heli Hietala et al and by Angelous Vourlidas). As described below by Ward Manchester IV et al , they can stretch from the Sun to the Earth in the form of interplanetary coronal mass ejections. Or, as in the Swarthmore Spheromak Experiment described by David Schaffner et al , they can fit into a meter-long laboratory device tended by college students. They can be helical and line-tied (see, e.g., Walter Gekelman et al or J Sears et al ), or toroidal and periodic (see, e.g., John O'Bryan et al or Philippa Browning et al ). They can form in the low plasma beta environment of the solar corona (Tibor Török et al ), the order unity beta plasmas of the solar wind (Stefan Eriksson et al ) and the plasma pressure dominated stellar convection zones (Nicholas Nelson and Mark Miesch). In this special issue, Setthivoine You