WorldWideScience

Sample records for cdte radiation detectors

  1. Development of CdTe radiation detectors and their applications

    International Nuclear Information System (INIS)

    We have been developing radiation detectors using cadmium telluride (CdTe), which has the high radiation absorption characteristic. The image pickup tube using polycrystalline CdTe thin film has been developed at the first stage. Furthermore, the X-ray imaging line sensor with high scanning speed and the radiation spectrometer with thermo-electric Peltier cooler were developed by using CdTe single crystal, which has high electric charge collection characteristics. At present, the energy discriminating photon counting radiation line sensors are developing. In this presentation, the feature of the detector using CdTe and their applications are described examples of development until now. (author)

  2. Radiation induced polarization in CdTe detectors

    Science.gov (United States)

    Vartsky, D.; Goldberg, M.; Eisen, Y.; Shamai, Y.; Dukhan, R.; Siffert, P.; Koebel, J. M.; Regal, R.; Gerber, J.

    1988-01-01

    Polarization induced by irradiation with intense gamma ray sources has been studied in chlorine-compensated CdTe detectors. The influence of several parameters, such as applied field strength, temperature and incident photon flux, on the polarization effect have been investigated. A relationship was found between the degree of polarization, detector efficiency and detector leakage current.

  3. Radiation induced polarization in CdTe detectors

    Energy Technology Data Exchange (ETDEWEB)

    Vartsky, D.; Goldberg, M.; Eisen, Y.; Shamai, Y.; Dukhan, R.; Siffert, P.; Koebel, J.M.; Regal, R.; Gerber, J.

    1988-01-15

    Polarization induced by irradiation with intense gamma ray sources has been studied in chlorine-compensated CdTe detectors. The influence of several parameters, such as applied field strength, temperature and incident photon flux, on the polarization effect have been investigated. A relationship was found between the degree of polarization, detector efficiency and detector leakage current.

  4. Simulation of active-edge pixelated CdTe radiation detectors

    OpenAIRE

    Duarte, DD; Lipp, JD; Schneider, A.; Seller, P; Veale, MC; Wilson, MD; Baker, MA; Sellin, PJ

    2016-01-01

    The edge surfaces of single crystal CdTe play an important role in the electronic properties and performance of this material as an X-ray and γ-ray radiation detector. Edge effects have previously been reported to reduce the spectroscopic performance of the edge pixels in pixelated CdTe radiation detectors without guard bands. A novel Technology Computer Aided Design (TCAD) model based on experimental data has been developed to investigate these effects. The results presented in this paper sh...

  5. Simulation of active-edge pixelated CdTe radiation detectors

    Science.gov (United States)

    Duarte, D. D.; Lipp, J. D.; Schneider, A.; Seller, P.; Veale, M. C.; Wilson, M. D.; Baker, M. A.; Sellin, P. J.

    2016-01-01

    The edge surfaces of single crystal CdTe play an important role in the electronic properties and performance of this material as an X-ray and γ-ray radiation detector. Edge effects have previously been reported to reduce the spectroscopic performance of the edge pixels in pixelated CdTe radiation detectors without guard bands. A novel Technology Computer Aided Design (TCAD) model based on experimental data has been developed to investigate these effects. The results presented in this paper show how localized low resistivity surfaces modify the internal electric field of CdTe creating potential wells. These result in a reduction of charge collection efficiency of the edge pixels, which compares well with experimental data.

  6. Improved spectrometric performance of CdTe radiation detectors in a p-i -n design

    OpenAIRE

    Niraula, Madan; Mochizuki, Daisuke; Aoki, Toru; Hatanaka, Yoshinori; Tomita, Yasuhiro; Nihashi, Tokuaki; ニラウラ, マダン

    1999-01-01

    CdTe radiation detectors were fabricated using a p-i-n design and a significant improvement in the spectral properties was obtained during room temperature operation. An iodine doped n-CdTe layer was grown on the Te faces of the (111) oriented high resistivity CdTe crystals at the low substrate temperature of 150°C. An aluminum electrode was evaporated on the n-CdTe side for the n-type contact, while a gold electrode on the opposite side acted as the p-type contact. Very low leakage currents,...

  7. Frontal IBICC study of the induced proton radiation damage in CdTe detectors

    Energy Technology Data Exchange (ETDEWEB)

    Pastuovic, Zeljko E-mail: pastu@rudjer.irb.hr; Jaksic, Milko

    2001-07-01

    Within a continuous international effort in developing the non-cryogenic semiconductor detectors for gamma ray spectroscopy, various wide gap materials were considered. With a best performance achieved, CdTe- and CdZnTe-based detectors become today widely accepted and commercially available. In addition to possible future use of such detectors for particle-induced gamma-ray emission (PIGE), nuclear microprobes are in recent years applied more as their characterisation tool using the ion beam-induced charge collection (IBICC) technique. Several CdTe detectors of 2x2x1 mm{sup 3} size were used in this study. On the basis of frontal IBICC measurements of the charge collection efficiency (CCE) distribution, the spectroscopy performance of detectors were measured. Further degradation of charge collection efficiency and the downward trend in peak position were studied by on-line irradiation of CdTe samples with 3 MeV protons up to 10{sup 10} p/cm{sup 2} radiation dose.

  8. Frontal IBICC study of the induced proton radiation damage in CdTe detectors

    Science.gov (United States)

    Pastuović, Željko; Jakšić, Milko

    2001-07-01

    Within a continuous international effort in developing the non-cryogenic semiconductor detectors for gamma ray spectroscopy, various wide gap materials were considered. With a best performance achieved, CdTe- and CdZnTe-based detectors become today widely accepted and commercially available. In addition to possible future use of such detectors for particle-induced gamma-ray emission (PIGE), nuclear microprobes are in recent years applied more as their characterisation tool using the ion beam-induced charge collection (IBICC) technique. Several CdTe detectors of 2×2×1 mm3 size were used in this study. On the basis of frontal IBICC measurements of the charge collection efficiency (CCE) distribution, the spectroscopy performance of detectors were measured. Further degradation of charge collection efficiency and the downward trend in peak position were studied by on-line irradiation of CdTe samples with 3 MeV protons up to 10 10 p/cm2 radiation dose.

  9. Fabrication and performance of p-i-n CdTe radiation detectors

    International Nuclear Information System (INIS)

    We report on the fabrication and performance of CdTe radiation detectors in a new p-i-n structure which helps to reduce the leakage current to a minimum level. Chlorine-doped single-crystal CdTe substrates having resistivity in the order of 109 Ω cm were used in this study. Iodine-doped n-type CdTe layers were grown homoepitaxially on one face of each crystals using the hydrogen plasma-radical-assisted metalorganic chemical vapor deposition technique at low substrate temperature of 150 deg. C. Indium electrode was evaporated on the n-CdTe side while a gold electrode on the opposite side acted as a p-type contact. Detectors thus fabricated exhibited low leakage current (below 0.4 nA/mm2 at 250 V applied reverse bias for the best one) and good performance at room temperature. Spectral response of the detectors showed improved energy resolution for Am-241, Co-57, and Cs-137 radioisotopes. Detectors were further tested with X-ray photons of different intensities for their potential application in imaging systems and promising responses were obtained

  10. Growth and characterization of CdTe single crystals for radiation detectors

    CERN Document Server

    Funaki, M; Satoh, K; Ohno, R

    1999-01-01

    To improve the productivity of CdTe radiation detectors, the crystal growth by traveling heater method (THM) as well as the quality of the fabricated detectors were investigated. In the THM growth, optimization of the solvent volume was found to be essential because it affects the shape of the growth interface. The use of the slightly tilted seed from B was also effective to limit the generation of twins having different directions. Single-crystal (1 1 1) wafers, larger than 30x30 mm sup 2 were successfully obtained from a grown crystal of 50 mm diameter. Pt/CdTe/Pt detectors of dimensions 4x4x2 mm sup 3 , fabricated from the whole crystal ingot, showed an energy resolution (FWHM of 122 keV peak from a sup 5 sup 7 Co source) between 6% and 8%. Similarly, Pt/CdTe/In detectors of dimensions 2x2x0.5 mm sup 3 showed a resolution better than 3%. These characteristics encourage the practical applications of various types of CdTe detectors.

  11. Fabrication of pixelated CdTe and CdZnTe radiation detectors

    International Nuclear Information System (INIS)

    Cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) are compound semiconductor characterized by wide semiconducting band gap and high photon stopping power due to its high atomic number and density. The mobility-life time product (μ t product) for holes in the materials is smaller than that for electrons. Hence, the effect of trapping losses is more pronounced on holes than on electrons. The trapping losses for holes limit achievable energy resolutions for planar detectors. In this study, pixelated CdTe detectors and pixelated CdZnTe detectors were fabricated and tested by 662 KeV gamma-rays of 137Cs at room temperature. Electrodes were formed on both sides of CdTe crystals and CdZnTe crystals by vacuum evaporation of gold. For purpose of comparison, a planar CdTe detector and a planar CdZnTe detector were evaluated. Since the pixelated CdTe detectors and the pixelated CdZnTe detectors operated as a single-polarity charge sensing device, the obtained energy resolutions were significantly higher than those for the planar detectors. Further improvement of energy resolutions of the detectors will be achieved by optimizing electrode structures. (M. Suetake)

  12. Si, CdTe and CdZnTe radiation detectors for imaging applications

    OpenAIRE

    Schulman, Tom

    2006-01-01

    The structure and operation of CdTe, CdZnTe and Si pixel detectors based on crystalline semiconductors, bump bonding and CMOS technology and developed mainly at Oy Simage Ltd. And Oy Ajat Ltd., Finland for X- and gamma ray imaging are presented. This detector technology evolved from the development of Si strip detectors at the Finnish Research Institute for High Energy Physics (SEFT) which later merged with other physics research units to form the Helsinki Institute of Physics (HIP). General ...

  13. Compound semiconductor GaAs and CdTe nuclear radiation detectors

    International Nuclear Information System (INIS)

    The preparation technology and characteristics of semi-insulating bulk single crystal GaAs surface-barrier detectors and single crystal CdTe surface-barrier detectors are described. The spectroscopic performance of the detectors for γ-rays from 125I, 241Am and 57Co at room temperature is given. The influence of the magnitude of forward resistive induced by ohmic contacts and of the surface passivation and aging in the fabrication process of surface-barrier detectors on the performance of the detectors is discussed. Finally, the influence of the fabrication technology of ohmic contacts and selected materials, such as Ni-Ge-Au and In-Ge-Ag, on the performance of the detectors is also studied

  14. Design and optimization of large area thin-film CdTe detector for radiation therapy imaging applications

    International Nuclear Information System (INIS)

    Purpose: The authors investigate performance of thin-film cadmium telluride (CdTe) in detecting high-energy (6 MV) x rays. The utilization of this material has become technologically feasible only in recent years due to significant development in large area photovoltaic applications. Methods: The CdTe film is combined with a metal plate, facilitating conversion of incoming photons into secondary electrons. The system modeling is based on the Monte Carlo simulations performed to determine the optimized CdTe layer thickness in combination with various converter materials. Results: The authors establish a range of optimal parameters producing the highest DQE due to energy absorption, as well as signal and noise spatial spreading. The authors also analyze the influence of the patient scatter on image formation for a set of detector configurations. The results of absorbed energy simulation are used in device operation modeling to predict the detector output signal. Finally, the authors verify modeling results experimentally for the lowest considered device thickness. Conclusions: The proposed CdTe-based large area thin-film detector has a potential of becoming an efficient low-cost electronic portal imaging device for radiation therapy applications.

  15. Electric Field and Current Transport Mechanisms in Schottky CdTe X-ray Detectors under Perturbing Optical Radiation

    Directory of Open Access Journals (Sweden)

    Isabella Farella

    2013-07-01

    Full Text Available Schottky CdTe X-ray detectors exhibit excellent spectroscopic performance but suffer from instabilities. Hence it is of extreme relevance to investigate their electrical properties. A systematic study of the electric field distribution and the current flowing in such detectors under optical perturbations is presented here. The detector response is explored by varying experimental parameters, such as voltage, temperature, and radiation wavelength. The strongest perturbation is observed under 850 nm irradiation, bulk carrier recombination becoming effective there. Cathode and anode irradiations evidence the crucial role of the contacts, the cathode being Ohmic and the anode blocking. In particular, under irradiation of the cathode, charge injection occurs and peculiar kinks, typical of trap filling, are observed both in the current-voltage characteristic and during transients. The simultaneous access to the electric field and the current highlights the correlation between free and fixed charges, and unveils carrier transport/collection mechanisms otherwise hidden.

  16. Characterization of CdTe nuclear detectors for gamma radiation spectrometry

    International Nuclear Information System (INIS)

    The crystallography of CdTe is presented. The characterization of CdTe crystals manufactured at LETI was studied using a spectrometry unit, and an experimental study of surface states and contacts was simultaneously undertaken. A manufacturing process was perfected for the detectors: hand polishing and deposit of a drop of conducting lac. Measurements mode on a great number of materials revealed the interest of chlore doping, the polarization phenomenon associated (the polarization is equivalent to a voltage drop and depends on temperature), the effect of surface states and contacts. It was shown that magnesium doping is a failure and the polarization time constant has a value of about 1 msec. An electron time-of-flight experiment was performed in order to measure the mobilities in the sample at normal temperature: the values obtained are: 70-90 cm2/v.sec for holes and 800-1000 cm2/v.sec for electrons. A trapping level was observed at 0.14eV in a Cl- doped sample; trapping parameters were estimated for a few samples

  17. Gamma spectroscopic measurements using the PID350 pixelated CdTe radiation detector

    CERN Document Server

    Karafasoulis, K; Seferlis, S; Papadakis, I; Loukas, D; Lambropoulos, C; Potiriadis, C

    2010-01-01

    Spectroscopic measurements are presented using the PID350 pixelated gamma radiation detectors. A high-speed data acquisition system has been developed in order to reduce the data loss during the data reading in case of a high flux of photons. A data analysis framework has been developed in order to improve the resolution of the acquired energy spectra, using specific calibration parameters for each PID350's pixel. Three PID350 detectors have been used to construct a stacked prototype system and spectroscopic measurements have been performed in order to test the ability of the prototype to localize radioactive sources.

  18. Characterization of high-resistivity CdTe and Cd0.9Zn0.1Te crystals grown by Bridgman method for radiation detector applications

    Science.gov (United States)

    Mandal, Krishna C.; Krishna, Ramesh M.; Pak, Rahmi O.; Mannan, Mohammad A.

    2014-09-01

    CdTe and Cd0.9Zn0.1Te (CZT) crystals have been studied extensively for various applications including x- and γ-ray imaging and high energy radiation detectors. The crystals were grown from zone refined ultra-pure precursor materials using a vertical Bridgman furnace. The growth process has been monitored, controlled, and optimized by a computer simulation and modeling program developed in our laboratory. The grown crystals were thoroughly characterized after cutting wafers from the ingots and processed by chemo-mechanical polishing (CMP). The infrared (IR) transmission images of the post-treated CdTe and CZT crystals showed average Te inclusion size of ~10 μm for CdTe and ~8 μm for CZT crystal. The etch pit density was ≤ 5×104 cm-2 for CdTe and ≤ 3×104 cm-2 for CZT. Various planar and Frisch collar detectors were fabricated and evaluated. From the current-voltage measurements, the electrical resistivity was estimated to be ~ 1.5×1010 Ω-cm for CdTe and 2-5×1011 Ω-cm for CZT. The Hecht analysis of electron and hole mobility-lifetime products (μτe and μτh) showed μτe = 2×10-3 cm2/V (μτh = 8×10-5 cm2/V) and 3-6×10-3 cm2/V (μτh = 4- 6×10-5 cm2/V) for CdTe and CZT, respectively. Detectors in single pixel, Frisch collar, and coplanar grid geometries were fabricated. Detectors in Frisch grid and guard-ring configuration were found to exhibit energy resolution of 1.4% and 2.6 %, respectively, for 662 keV gamma rays. Assessments of the detector performance have been carried out also using 241Am (60 keV) showing energy resolution of 4.2% FWHM.

  19. CdZnTe and CdTe materials for X-ray and gamma ray radiation detector applications

    International Nuclear Information System (INIS)

    Good detection efficiency and high energy-resolution make Cadmium Zinc Telluride (CdZnTe) and Cadmium Telluride (CdTe) detectors attractive in many room temperature X-ray and gamma-ray detection applications such as medical and industrial imaging, industrial gauging and non-destructive testing, security and monitoring, nuclear safeguards and non-proliferation, and astrophysics. Advancement of the crystal growth and device fabrication technologies and the reduction of bulk, interface and surface defects in the devices are crucial for the widespread practical deployment of Cd1-xZnxTe-based detector technology. Here we review the effects of bulk, interface and surface defects on charge transport, charge transport uniformity and device performance and the progress in the crystal growth and device fabrication technologies aiming at reducing the concentration of harmful defects and improving Cd1-xZnxTe detector performance. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Progress in the Development of CdTe and CdZnTe Semiconductor Radiation Detectors for Astrophysical and Medical Applications

    Directory of Open Access Journals (Sweden)

    Anna Maria Mancini

    2009-05-01

    Full Text Available Over the last decade, cadmium telluride (CdTe and cadmium zinc telluride (CdZnTe wide band gap semiconductors have attracted increasing interest as X-ray and gamma ray detectors. Among the traditional high performance spectrometers based on silicon (Si and germanium (Ge, CdTe and CdZnTe detectors show high detection efficiency and good room temperature performance and are well suited for the development of compact and reliable detection systems. In this paper, we review the current status of research in the development of CdTe and CdZnTe detectors by a comprehensive survey on the material properties, the device characteristics, the different techniques for improving the overall detector performance and some major applications. Astrophysical and medical applications are discussed, pointing out the ongoing Italian research activities on the development of these detectors.

  1. High efficiency pixellated CdTe detector

    International Nuclear Information System (INIS)

    Position sensitive detectors constructed from compound semiconductors (CdTe, CdZnTe, HgI2) are being developed for a variety of applications where high sensitivity and improved energy resolution are significant advantages over scintillator or gas based systems. We have investigated the possibility of using a CdTe detector array in a SPECT gamma camera that would require a high efficiency at 140 keV. The problem of worsening photopeak efficiencies in thick detectors (due to incomplete charge collection) makes it difficult to maintain a high efficiency which, ironically, is the primary reason for choosing a thicker detector. Recent research has shown that following a simple geometrical design criterion can greatly reduce this deleterious effect. This paper reports on the results from a small prototype pixellated array fabricated using this design. We verify the 'small pixel effect' for a detector thickness and pixel size significantly larger than those used in most other work. A 9-element detector (1 x 1 mm pixels, 4 mm thick) has been fabricated and characterized in terms of energy resolution, peak-to-valley ratio and detection efficiency. Testing of the detector in a fast pulse mode to obtain its high count rate response has also been performed. (orig.)

  2. Progress in the Development of CdTe and CdZnTe Semiconductor Radiation Detectors for Astrophysical and Medical Applications

    OpenAIRE

    Anna Maria Mancini; Andrea Zappettini; Ezio Caroli; Leonardo Abbene; Stefano Del Sordo; Pietro Ubertini

    2009-01-01

    Over the last decade, cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) wide band gap semiconductors have attracted increasing interest as X-ray and gamma ray detectors. Among the traditional high performance spectrometers based on silicon (Si) and germanium (Ge), CdTe and CdZnTe detectors show high detection efficiency and good room temperature performance and are well suited for the development of compact and reliable detection systems. In this paper, we review the current status...

  3. Counting efficiency of a CdTe detector

    International Nuclear Information System (INIS)

    The purpose of this work is to obtain some data about the energy dependence of the sensitivity of a CdTe detector in order to use it for a miniature dose rate meter. The intrinsic efficiencies of the CdTe detector were measured for several photon energies between 22 and 835 keV. The results showed the great dependence of the efficiency of the CdTe detector on photon energy, for example, the intrinsic efficiencies for the photons of 122 keV and 835 keV were 71% and 8.7% respectively. Some further problems were also presented and discussed. (author)

  4. Study of correlation between the structural defects and inhomogeneities of CDTE based radiation detectors used for medical imaging

    International Nuclear Information System (INIS)

    In the present Ph.D. thesis, we investigate microstructural defects in a chlorine-doped cadmium telluride crystal (CdTe:Cl), to understand the relationship between defects and performance of CdTe-based radiation detectors. Characterization tools, such as diffraction topography and chemical etching, are used for bulk and surface investigations of the distribution of dislocations. Dislocations are arranged into walls. Most of them appear to cross the whole thickness of the sample. Very good correlation is observed between areas with variations of dark-current and photo-current, and positions of the dislocation walls revealed at the surface of the sample. Then spectroscopic analysis of these defects was performed at low temperatures. It highlighted that dislocation walls induce non-radiative recombination, but it didn't show any Y luminescence usually attributed to dislocations in the literature. Ion Beam Induced Current (IBIC) measurements were used to evaluate the influence of dislocation walls on charge carrier transport properties. This experiment shows that they reduce the mobility-lifetime product of the charge carriers. A very clear correlation was, in fact, established between the distribution of the dislocation network and the linear defects revealed by their lower CIE on the device. (author)

  5. Si and CdTe pixel detector developments at SPring-8

    International Nuclear Information System (INIS)

    Single X-ray photon counting pixel detectors have become the most advanced detector technology in synchrotron radiation experiments recently. In particular, the PILATUS detector based on a silicon sensor has reached a very mature state and represents the world's largest detector in this field. This paper first reports on threshold energy calibrations and the capability of applying an energy-resolved X-ray imaging with PILATUS. Second the design of a cadmium telluride (CdTe) pixel detector is described. A high density and high-atomic number sensor material is required in high energy X-ray applications available at SPring-8. For this purpose we are developing a CdTe pixel detector with the SP8-01 readout ASIC covering a wide dynamic range between 10 and 100 keV and containing lower and upper discriminators.

  6. Application of CdTe (CdZnTe) detectors for radioactive waste characterization

    CERN Document Server

    Dovbnya, N A; Kutny, V E

    2002-01-01

    The radiation detectors based on wide-zone semiconductor CdTe (CdZnTe) monocrystals have promising advantages for their application in investigation (characterization) of radioactive waste. Among these advantages there are the wide range of photons flux and energy, high registration efficiency and satisfactory energy resolution without deep cooling of the detector. This report discusses the obtained data concerning radiation stability of detectors, influence of different conditions (filters, collimators, registration channel fill etc.) on their energy resolution in spectrometric regime, as well as a dependence of radionuclide identification accuracy on detector size.

  7. Correction of diagnostic x-ray spectra measured with CdTe and CdZnTe detectors

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, M. [Osaka Univ., Suita (Japan). Medical School; Kanamori, H.; Toragaito, T.; Taniguchi, A.

    1996-07-01

    We modified the formula of stripping procedure presented by E. Di. Castor et al. We added the Compton scattering and separated K{sub {alpha}} radiation of Cd and Te (23 and 27keV, respectively). Using the new stripping procedure diagnostic x-ray spectra (object 4mm-Al) of tube voltage 50kV to 100kV for CdTe and CdZnTe detectors are corrected with comparison of those spectra for the Ge detector. The corrected spectra for CdTe and CdZnTe detectors coincide with those for Ge detector at lower tube voltage than 70kV. But the corrected spectra at higher tube voltage than 70kV do not coincide with those for Ge detector. The reason is incomplete correction for full energy peak efficiencies of real CdTe and CdZnTe detectors. (J.P.N.)

  8. Digital pulse-shape processing for CdTe detectors

    International Nuclear Information System (INIS)

    CdTe detectors suffer from low photo-peak efficiency and poor energy resolution. These problems are due to the drift properties of charge carriers in CdTe where particularly the holes have small mobility and trapping time. This is reflected in the amplitude and the shape of the detector output. To improve this situation a digital method is introduced where a sampling ADC is used to make a detailed measurement of the time evolution of the pulse. The measured pulse shape is fitted with a model. For the detector under study a model taking hole trapping into account significantly improves the photo-peak efficiency. The description of the hole component is, however, not fully satisfactory since for pulses with a large hole contribution a broadening of the full-energy peak occurs. Allowing for inhomogeneities in the detector material within the model partially remedies this deficiency

  9. Digital pulse-shape processing for CdTe detectors

    CERN Document Server

    Bargholtz, C; Maartensson, L; Wachtmeister, S

    2001-01-01

    CdTe detectors suffer from low photo-peak efficiency and poor energy resolution. These problems are due to the drift properties of charge carriers in CdTe where particularly the holes have small mobility and trapping time. This is reflected in the amplitude and the shape of the detector output. To improve this situation a digital method is introduced where a sampling ADC is used to make a detailed measurement of the time evolution of the pulse. The measured pulse shape is fitted with a model. For the detector under study a model taking hole trapping into account significantly improves the photo-peak efficiency. The description of the hole component is, however, not fully satisfactory since for pulses with a large hole contribution a broadening of the full-energy peak occurs. Allowing for inhomogeneities in the detector material within the model partially remedies this deficiency.

  10. Digital pulse-shape processing for CdTe detectors

    Science.gov (United States)

    Bargholtz, Chr.; Fumero, E.; Mårtensson, L.; Wachtmeister, S.

    2001-09-01

    CdTe detectors suffer from low photo-peak efficiency and poor energy resolution. These problems are due to the drift properties of charge carriers in CdTe where particularly the holes have small mobility and trapping time. This is reflected in the amplitude and the shape of the detector output. To improve this situation a digital method is introduced where a sampling ADC is used to make a detailed measurement of the time evolution of the pulse. The measured pulse shape is fitted with a model. For the detector under study a model taking hole trapping into account significantly improves the photo-peak efficiency. The description of the hole component is, however, not fully satisfactory since for pulses with a large hole contribution a broadening of the full-energy peak occurs. Allowing for inhomogeneities in the detector material within the model partially remedies this deficiency.

  11. Digital pulse-shape processing for CdTe detectors

    Energy Technology Data Exchange (ETDEWEB)

    Bargholtz, Chr.; Fumero, E.; Maartensson, L. E-mail: martensson@physto.se; Wachtmeister, S

    2001-09-21

    CdTe detectors suffer from low photo-peak efficiency and poor energy resolution. These problems are due to the drift properties of charge carriers in CdTe where particularly the holes have small mobility and trapping time. This is reflected in the amplitude and the shape of the detector output. To improve this situation a digital method is introduced where a sampling ADC is used to make a detailed measurement of the time evolution of the pulse. The measured pulse shape is fitted with a model. For the detector under study a model taking hole trapping into account significantly improves the photo-peak efficiency. The description of the hole component is, however, not fully satisfactory since for pulses with a large hole contribution a broadening of the full-energy peak occurs. Allowing for inhomogeneities in the detector material within the model partially remedies this deficiency.

  12. Characterization of M-π-n CdTe pixel detectors coupled to HEXITEC readout chip

    Science.gov (United States)

    Veale, M. C.; Kalliopuska, J.; Pohjonen, H.; Andersson, H.; Nenonen, S.; Seller, P.; Wilson, M. D.

    2012-01-01

    Segmentation of the anode-side of an M-π-n CdTe diode, where the pn-junction is diffused into the detector bulk, produces large improvements in the spatial and energy resolution of CdTe pixel detectors. It has been shown that this fabrication technique produces very high inter-pixel resistance and low leakage currents are obtained by physical isolation of the pixels of M-π-n CdTe detectors. In this paper the results from M-π-n CdTe detectors stud bonded to a spectroscopic readout ASIC are reported. The CdTe pixel detectors have 250 μm pitch and an area of 5 × 5 mm2 with thicknesses of 1 and 2 mm. The polarization and energy resolution dependence of the M-π-n CdTe detectors as a function of detector thickness are discussed.

  13. Radiative and interfacial recombination in CdTe heterostructures

    International Nuclear Information System (INIS)

    Double heterostructures (DH) were produced consisting of a CdTe film between two wide band gap barriers of CdMgTe alloy. A combined method was developed to quantify radiative and non-radiative recombination rates by examining the dependence of photoluminescence (PL) on both excitation intensity and time. The measured PL characteristics, and the interface state density extracted by modeling, indicate that the radiative efficiency of CdMgTe/CdTe DHs is comparable to that of AlGaAs/GaAs DHs, with interface state densities in the low 1010 cm−2 and carrier lifetimes as long as 240 ns. The radiative recombination coefficient of CdTe is found to be near 10−10 cm3s−1. CdTe film growth on bulk CdTe substrates resulted in a homoepitaxial interface layer with a high non-radiative recombination rate

  14. Simulation studies and spectroscopic measurements of a position sensitive detector based on pixelated CdTe crystals

    OpenAIRE

    Karafasoulis, K.; Zachariadou, K.; Seferlis, S.; Kaissas, I.; Lambropoulos, C.; Loukas, D; Potiriadis, C.

    2010-01-01

    Simulation studies and spectroscopic measurements are presented regarding the development of a pixel multilayer CdTe detector under development in the context of the COCAE project. The instrument will be used for the localization and identification of radioactive sources and radioactively contaminated spots. For the localization task the Compton effect is exploited. The detector response under different radiation fields as well as the overall efficiency of the detector has been evaluated. Spe...

  15. COBRA - Double beta decay searches using CdTe detectors

    OpenAIRE

    Zuber, K.

    2001-01-01

    A new approach (called COBRA) for investigating double beta decay using CdTe (CdZnTe) semiconductor detectors is proposed. It follows the idea that source and detector are identical. This will allow simultaneous measurements of 5 $\\beta^-\\beta^-$ - and 4 $\\beta^+\\beta^+$ - emitters at once. Half-life limits for neutrinoless double beta decay of Cd-116 and Te-130 can be improved by more than one order of magnitude with respect to current limits and sensitivities on the effective Majorana neutr...

  16. Development of a CdTe thermal neutron detector for neutron imaging

    International Nuclear Information System (INIS)

    A thin CdTe thermal neutron detector has been developed and its suitability for neutron imaging has been investigated. Simulations of the interaction of neutrons with a 0.5 mm-thick CdTe detector demonstrate the advantages of using 96 keV prompt gamma rays produced by neutron capture in 113Cd as a neutron event. Specifically, they provide a high spatial resolution and approximately the same detection efficiency as 558 keV prompt gamma rays, which are commonly used for detecting thermal neutrons in CdTe detectors. We fabricated a thin CdTe detector. Measurements using a 133Ba gamma-ray source revealed that the detector has a gamma-ray energy resolution of 3 keV at 80 keV, while measurements using a 252Cf neutron source demonstrated that the CdTe detector has good neutron/gamma ray discrimination.

  17. Miniature hybrid preamplifier for CdTe detectors

    International Nuclear Information System (INIS)

    Aeronutronic Ford has developed a rugged, miniature, room temperature operable, gamma ray detector package containing a CdTe photon detector, a charge amplifier and a pulse shaper circuit. Photon detection efficiencies between 10 percent and 40 percent are achieved for various photon energies between 100 keV and 1000 keV in a detector area of .032 square inches. The resulting package weighs approximately 8 grams and occupies approximately 0.1 cubic inch. Prototypes have been tested for aging and temperature effects on gamma detection efficiency. The intended application of the device is calibrated gamma ray counting in a warm environment while subjected to high intensity acoustic and vibration stresses as well as very large linear accelerations

  18. Wide-range plutonium isotopic analysis with CDTE detector

    Energy Technology Data Exchange (ETDEWEB)

    Vo, Duc T.; Russo, P. A. (Phyllis A.)

    2001-01-01

    Nondestructive analysis (NDA) techniques applied to bulk nuclear materials (NM) are important for nuclear safeguards and material control because of timeliness, cost-effectiveness and containment integrity. The common NDA techniques, calorimetry and neutron coincidence counting, require knowledge of the isotopic composition of the material quantitative interpretation of these measurements. Gamma-ray spectroscopy with high-resolution detectors is a well-developed NDA technique for isotopics. The use of intrinsic germanium detectors cooled to cryogenic temperatures for isotopic measurements is sometimes difficult or even impossible because of severe access limitations with the sensitive, heavy detectors. Highly portable isotopics measurements are needed for in-situ verification of bulk NM quantities or, in many cases, for measurements of holdup quantities. This paper summarizes the gamma-ray measurements with a new, portable CdTe detector. It also presents the detailed results of the wide-range isotopic analysis of plutonium with FRAM v4, the first results of this kind for a non-cryogenic detector.

  19. CdTe Timepix detectors for single-photon spectroscopy and linear polarimetry of high-flux hard x-ray radiation

    Science.gov (United States)

    Hahn, C.; Weber, G.; Märtin, R.; Höfer, S.; Kämpfer, T.; Stöhlker, Th.

    2016-04-01

    Single-photon spectroscopy of pulsed, high-intensity sources of hard X-rays — such as laser-generated plasmas — is often hampered by the pileup of several photons absorbed by the unsegmented, large-volume sensors routinely used for the detection of high-energy radiation. Detectors based on the Timepix chip, with a segmentation pitch of 55 μm and the possibility to be equipped with high-Z sensor chips, constitute an attractive alternative to commonly used passive solutions such as image plates. In this report, we present energy calibration and characterization measurements of such devices. The achievable energy resolution is comparable to that of scintillators for γ spectroscopy. Moreover, we also introduce a simple two-detector Compton polarimeter setup with a polarimeter quality of (98 ± 1)%. Finally, a proof-of-principle polarimetry experiment is discussed, where we studied the linear polarization of bremsstrahlung emitted by a laser-driven plasma and found an indication of the X-ray polarization direction depending on the polarization state of the incident laser pulse.

  20. CdTe Timepix detectors for single-photon spectroscopy and linear polarimetry of high-flux hard x-ray radiation.

    Science.gov (United States)

    Hahn, C; Weber, G; Märtin, R; Höfer, S; Kämpfer, T; Stöhlker, Th

    2016-04-01

    Single-photon spectroscopy of pulsed, high-intensity sources of hard X-rays - such as laser-generated plasmas - is often hampered by the pileup of several photons absorbed by the unsegmented, large-volume sensors routinely used for the detection of high-energy radiation. Detectors based on the Timepix chip, with a segmentation pitch of 55 μm and the possibility to be equipped with high-Z sensor chips, constitute an attractive alternative to commonly used passive solutions such as image plates. In this report, we present energy calibration and characterization measurements of such devices. The achievable energy resolution is comparable to that of scintillators for γ spectroscopy. Moreover, we also introduce a simple two-detector Compton polarimeter setup with a polarimeter quality of (98 ± 1)%. Finally, a proof-of-principle polarimetry experiment is discussed, where we studied the linear polarization of bremsstrahlung emitted by a laser-driven plasma and found an indication of the X-ray polarization direction depending on the polarization state of the incident laser pulse. PMID:27131653

  1. Gamma spectrometric characterization of various CdTe and CdZnTe detectors

    CERN Document Server

    Arlt, R; Sumah, P

    1999-01-01

    CdZnTe and CdTe detectors are now used by the Department of Safeguards of the International Atomic Energy Agency in significant numbers. To prepare, plan and support various verification methods, their properties must be well characterized and understood. In this paper we present some of the results which were obtained with large volume hemispheric CdZnTe detectors and high-resolution CdTe detectors.

  2. Prompt gamma and neutron detection in BNCT utilizing a CdTe detector.

    Science.gov (United States)

    Winkler, Alexander; Koivunoro, Hanna; Reijonen, Vappu; Auterinen, Iiro; Savolainen, Sauli

    2015-12-01

    In this work, a novel sensor technology based on CdTe detectors was tested for prompt gamma and neutron detection using boronated targets in (epi)thermal neutron beam at FiR1 research reactor in Espoo, Finland. Dedicated neutron filter structures were omitted to enable simultaneous measurement of both gamma and neutron radiation at low reactor power (2.5 kW). Spectra were collected and analyzed in four different setups in order to study the feasibility of the detector to measure 478 keV prompt gamma photons released from the neutron capture reaction of boron-10. The detector proved to have the required sensitivity to detect and separate the signals from both boron neutron and cadmium neutron capture reactions, which makes it a promising candidate for monitoring the spatial and temporal development of in vivo boron distribution in boron neutron capture therapy. PMID:26249745

  3. Characterisation of vapour phase grown CdTe and (Cd,Zn)Te for detector applications

    CERN Document Server

    Fiederle, M; Rogalla, M; Meinhardt, J; Ludwig, J; Runge, K; Benz, W

    1999-01-01

    The growth of CdTe from the vapour phase offers several improvements in crystal quality and homogeneity. CdTe and (Cd, Zn)Te were grown by the modified Markov technique. The transport properties and the detector performance are given and compared to melt grown material. (author)

  4. Radiation detector

    Science.gov (United States)

    Fultz, Brent T.

    1983-01-01

    Apparatus is provided for detecting radiation such as gamma rays and X-rays generated in backscatter Mossbauer effect spectroscopy and X-ray spectrometry, which has a large "window" for detecting radiation emanating over a wide solid angle from a specimen and which generates substantially the same output pulse height for monoenergetic radiation that passes through any portion of the detection chamber. The apparatus includes a substantially toroidal chamber with conductive walls forming a cathode, and a wire anode extending in a circle within the chamber with the anode lying closer to the inner side of the toroid which has the least diameter than to the outer side. The placement of the anode produces an electric field, in a region close to the anode, which has substantially the same gradient in all directions extending radially from the anode, so that the number of avalanche electrons generated by ionizing radiation is independent of the path of the radiation through the chamber.

  5. Position-sensitive CdTe detector using improved crystal growth method

    Science.gov (United States)

    1988-09-01

    The feasibility of developing a position-sensitive CdTe detector array for astronomical observations in the hard X-ray, soft gamma ray region is demonstrated. In principle, it was possible to improve the resolution capability for imaging measurements in this region by orders of magnitude over what is now possible through the use of CdTe detector arrays. The objective was to show that CdTe crystals of the quality, size and uniformity required for this application can be obtained with a new high pressure growth technique. The approach was to fabricate, characterize and analyze a 100 element square array and several single-element detectors using crystals from the new growth process. Results show that detectors fabricated from transversely sliced, 7 cm diameter wafers of CdTe exhibit efficient counting capability and a high degree of uniformity over their entire areas. A 100 element square array of 1 sq mm detectors was fabricated and operated.

  6. The CdTe detector module and its imaging performance

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Issei; Takayama, Takuzo; Motomura, Nobutoku [Toshiba Corp. Medical Systems Co., Otawara, Tochigi (Japan). Medical Systems R and D Center

    2001-12-01

    In recent years investigations into the application of semiconductor detector technology in gamma cameras have become active world-wide. The reason for this burst of activity is the expectation that the semiconductor-based gamma camera would outperform the conventional Anger-type gamma camera with a large scintillator and photomultipliers. Nevertheless, to date, it cannot be said that this expectation has been met. While most of the studies have used CZT (Cadmium Zinc Telluride) as the semiconductor material, we designed and fabricated an experimental detector module of CdTe (Cadmium Telluride). The module consists of 512 elements and its pixel pitch is 1.6 mm. We have evaluated its energy resolution, planar image performance, single photon emission computed tomography (SPECT) image performance and time resolution for coincidence detection. The average energy resolution was 5.5% FWHM at 140 keV. The intrinsic spatial resolution was 1.6 mm. The quality of the phantom images, both planar and SPECT, was visually superior to that of the Anger-type gamma camera. The quantitative assessment of SPECT images showed accuracy far better than that of the Anger-type camera. The coincidence time resolution was 8.6 ns. All measurement were done at room temperature, and the polarization effect that had been the biggest concern for CdTe was not significant. The results indicated that the semiconductor-based gamma camera is superior in performance to the Anger-type and has the possibility of being used as a positron emission computed tomography (PET) scanner. (author)

  7. The CdTe detector module and its imaging performance

    International Nuclear Information System (INIS)

    In recent years investigations into the application of semiconductor detector technology in gamma cameras have become active world-wide. The reason for this burst of activity is the expectation that the semiconductor-based gamma camera would outperform the conventional Anger-type gamma camera with a large scintillator and photomultipliers. Nevertheless, to date, it cannot be said that this expectation has been met. While most of the studies have used CZT (Cadmium Zinc Telluride) as the semiconductor material, we designed and fabricated an experimental detector module of CdTe (Cadmium Telluride). The module consists of 512 elements and its pixel pitch is 1.6 mm. We have evaluated its energy resolution, planar image performance, single photon emission computed tomography (SPECT) image performance and time resolution for coincidence detection. The average energy resolution was 5.5% FWHM at 140 keV. The intrinsic spatial resolution was 1.6 mm. The quality of the phantom images, both planar and SPECT, was visually superior to that of the Anger-type gamma camera. The quantitative assessment of SPECT images showed accuracy far better than that of the Anger-type camera. The coincidence time resolution was 8.6 ns. All measurement were done at room temperature, and the polarization effect that had been the biggest concern for CdTe was not significant. The results indicated that the semiconductor-based gamma camera is superior in performance to the Anger-type and has the possibility of being used as a positron emission computed tomography (PET) scanner. (author)

  8. Radiative and interfacial recombination in CdTe heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Swartz, C. H., E-mail: craig.swartz@txstate.edu; Edirisooriya, M.; LeBlanc, E. G.; Noriega, O. C.; Jayathilaka, P. A. R. D.; Ogedengbe, O. S.; Hancock, B. L.; Holtz, M.; Myers, T. H. [Materials Science, Engineering, and Commercialization Program, Texas State University, 601 University Dr., San Marcos, Texas 78666 (United States); Zaunbrecher, K. N. [National Renewable Energy Laboratory, 15013 Denver West Parkway, Mississippi RSF200, Golden, Colorado 80401 (United States)

    2014-12-01

    Double heterostructures (DH) were produced consisting of a CdTe film between two wide band gap barriers of CdMgTe alloy. A combined method was developed to quantify radiative and non-radiative recombination rates by examining the dependence of photoluminescence (PL) on both excitation intensity and time. The measured PL characteristics, and the interface state density extracted by modeling, indicate that the radiative efficiency of CdMgTe/CdTe DHs is comparable to that of AlGaAs/GaAs DHs, with interface state densities in the low 10{sup 10 }cm{sup −2} and carrier lifetimes as long as 240 ns. The radiative recombination coefficient of CdTe is found to be near 10{sup −10} cm{sup 3}s{sup −1}. CdTe film growth on bulk CdTe substrates resulted in a homoepitaxial interface layer with a high non-radiative recombination rate.

  9. Radiation detector

    International Nuclear Information System (INIS)

    The scintillation crystal is suitable for use in computer tomography. It is in the form of a wedge, at whose wide end there is a photo-electric diode. The X-rays or γ-radiation impinges on one of the wedge surfaces. The other wedge surfaces, except the wide end, are provided with light scattering coatings, so that all the light produced is directed to the photo-electric diode. (DG)

  10. CdTe and HgI2 crystals and detectors: present state and future

    International Nuclear Information System (INIS)

    After recalling the main properties of CdTe and HgI2 crystals from which the characteristics of these detectors will arise, the fabrication cycle is analysed at its various stages. The results at present achieved on CdTe and HgI2 detectors are analysed with a number of concrete applications in view such as medium power (0-200 keV) X and γ spectrometry, localisation of γ photons and solid ionisation chambers

  11. A new method for evaluation of transport properties in CdTe and CZT detectors

    CERN Document Server

    Jung, M; Fougeres, P; Hage-Ali, M; Siffert, P

    1999-01-01

    The precise evaluation of transport properties of both electrons and holes in compound semiconductor detectors, like CdTe or CZT, is of great interest for the development of these devices. Although the electron behaviour can be measured in most cases, that of holes is much more difficult. Both alpha or gamma radiations, as well as conventional computer simulations, have shown their limits. In this paper, we present a new approach based on computer simulations, which are performed at various energies. This model will be applied on various kinds of materials. The results will be discussed in terms of sensitivity of the method, electronic noise level as well as electric field distribution within the detector.

  12. Time walk correction of CdTe detectors using depth sensing technique

    International Nuclear Information System (INIS)

    A digital timing method aiming to minimize the time walk caused by the depth-dependent pulse shape variations in CdTe detectors has been developed. Detector pulses are digitized at the preamplifier stage and a full digital process is carried out to deduce and correct the time walk according to the interaction depth. A time resolution of 6.52 ns FWHM at an energy threshold of 150 keV with a CdTe detector (10x10x1 mm3) is achieved, which is close to the intrinsic resolution of the detector. The method improves the time resolution with no loss of detection efficiency and it is easy to implement. It is confirmed that the slow mobility and the short lifetime of the holes are major obstacles for further improvement in the timing performance of the CdTe detectors. The method is applicable to any semiconductor detector.

  13. A CdTe detector for Muon Transverse Profile Measurements

    CERN Document Server

    Placidi, Massimo; Schmickler, Hermann; CERN. Geneva. SPS Division; CERN. Geneva. LHC Division

    2001-01-01

    Beam diagnostics in future High Energy Accelerators will require long lived instrumentation in high radiation environment. Detectors capable of withstanding extreme radiation levels without requiring human intervention and being operated at frontiers of radiation-resistant technology are at a prime for applications in environmental-hostile situations. A research program has been launched at CERN in the framework of instrumentation developments for the LHC project aiming at individuating new solutions and technologies reliable under extreme operational conditions. Preliminary ideas are presented for applications in Muon Beams Diagnostics for future Neutrino Factories of materials presently considered and tested for application in the LHC luminosity detectors.

  14. Time walk correction of CdTe detectors using depth sensing technique

    OpenAIRE

    Nakhostin, M; Walker, PM; Sellin, PJ

    2010-01-01

    A digital timing method aiming to minimize the time walk caused by the depth-dependent pulse shape variations in CdTe detectors has been developed. Detector pulses are digitized at the preamplifier stage and a full digital process is carried out to deduce and correct the time walk according to the interaction depth. A time resolution of 6.52 ns FWHM at an energy threshold of 150 keV with a CdTe detector (10×10×1 mm3) is achieved, which is close to the intrinsic resolution of the detector. The...

  15. A simulation of a CdTe gamma ray detector based on collection efficiency profiles as determined by lateral IBIC

    International Nuclear Information System (INIS)

    Collection efficiency profiles as determined by the ion beam-induced charge (IBIC) technique have been considered to evaluate the spectroscopic performance of a cadmium telluride (CdTe) nuclear radiation detector. The dependence of such profiles on the applied bias voltage and the shaping time are presented and discussed on the basis of a theoretical model, which is also used to evaluate the electron/hole collection lengths profiles. Experimental collection efficiency profiles were used as input data of the 'ISIDE' Monte Carlo programme to simulate the CdTe response to gamma rays produced by 57Co. A systematic investigation of such spectra obtained under different detection conditions shows the effects of non constant collection efficiency profiles and ballistic deficit on the energy resolution of the detector

  16. A simulation of a CdTe gamma ray detector based on collection efficiency profiles as determined by lateral IBIC

    CERN Document Server

    Vittone, E; Lo Giudice, A; Polesello, P; Manfredotti, C

    1999-01-01

    Collection efficiency profiles as determined by the ion beam-induced charge (IBIC) technique have been considered to evaluate the spectroscopic performance of a cadmium telluride (CdTe) nuclear radiation detector. The dependence of such profiles on the applied bias voltage and the shaping time are presented and discussed on the basis of a theoretical model, which is also used to evaluate the electron/hole collection lengths profiles. Experimental collection efficiency profiles were used as input data of the 'ISIDE' Monte Carlo programme to simulate the CdTe response to gamma rays produced by sup 5 sup 7 Co. A systematic investigation of such spectra obtained under different detection conditions shows the effects of non constant collection efficiency profiles and ballistic deficit on the energy resolution of the detector.

  17. A simulation of a CdTe gamma ray detector based on collection efficiency profiles as determined by lateral IBIC

    Science.gov (United States)

    Vittone, E.; Fizzotti, F.; Lo Giudice, A.; Polesello, P.; Manfredotti, C.

    1999-06-01

    Collection efficiency profiles as determined by the ion beam-induced charge (IBIC) technique have been considered to evaluate the spectroscopic performance of a cadmium telluride (CdTe) nuclear radiation detector. The dependence of such profiles on the applied bias voltage and the shaping time are presented and discussed on the basis of a theoretical model, which is also used to evaluate the electron/hole collection lengths profiles. Experimental collection efficiency profiles were used as input data of the "ISIDE" Monte Carlo programme to simulate the CdTe response to gamma rays produced by 57Co. A systematic investigation of such spectra obtained under different detection conditions shows the effects of non constant collection efficiency profiles and ballistic deficit on the energy resolution of the detector.

  18. Development of a CdTe pixel detector with a window comparator ASIC for high energy X-ray applications

    Science.gov (United States)

    Hirono, T.; Toyokawa, H.; Furukawa, Y.; Honma, T.; Ikeda, H.; Kawase, M.; Koganezawa, T.; Ohata, T.; Sato, M.; Sato, G.; Takagaki, M.; Takahashi, T.; Watanabe, S.

    2011-09-01

    We have developed a photon-counting-type CdTe pixel detector (SP8-01). SP8-01 was designed as a prototype of a high-energy X-ray imaging detector for experiments using synchrotron radiation. SP8-01 has a CdTe sensor of 500 μm thickness, which has an absorption efficiency of almost 100% up to 50 keV and 45% even at 100 keV. A full-custom application specific integrated circuit (ASIC) was designed as a readout circuit of SP8-01, which is equipped with a window-type discriminator. The upper discriminator realizes a low-background measurement, because X-ray beams from the monochromator contain higher-order components beside the fundamental X-rays in general. ASIC chips were fabricated with a TSMC 0.25 μm CMOS process, and CdTe sensors were bump-bonded to the ASIC chips by a gold-stud bonding technique. Beam tests were performed at SPring-8. SP8-01 detected X-rays up to 120 keV. The capability of SP8-01 as an imaging detector for high-energy X-ray synchrotron radiation was evaluated with its performance characteristics.

  19. Simulation studies and spectroscopic measurements of a position sensitive detector based on pixelated CdTe crystals

    CERN Document Server

    Karafasoulis, K; Seferlis, S; Kaissas, I; Lambropoulos, C; Loukas, D; Potiriadis, C

    2010-01-01

    Simulation studies and spectroscopic measurements are presented regarding the development of a pixel multilayer CdTe detector under development in the context of the COCAE project. The instrument will be used for the localization and identification of radioactive sources and radioactively contaminated spots. For the localization task the Compton effect is exploited. The detector response under different radiation fields as well as the overall efficiency of the detector has been evaluated. Spectroscopic measurements have been performed to evaluate the energy resolution of the detector. The efficiency of the event reconstruction has been studied in a wide range of initial photon energies by exploiting the detector's angular resolution measure distribution. Furthermore, the ability of the COCAE detector to localize radioactive sources has been investigated.

  20. CdTe detector based PIXE mapping of geological samples

    International Nuclear Information System (INIS)

    A sample collected from a borehole drilled approximately 10 km ESE of Bragança, Trás-os-Montes, was analysed by standard and high energy PIXE at both CTN (previous ITN) PIXE setups. The sample is a fine-grained metapyroxenite grading to coarse-grained in the base with disseminated sulphides and fine veinlets of pyrrhotite and pyrite. Matrix composition was obtained at the standard PIXE setup using a 1.25 MeV H+ beam at three different spots. Medium and high Z elemental concentrations were then determined using the DT2fit and DT2simul codes (Reis et al., 2008, 2013 [1,2]), on the spectra obtained in the High Resolution and High Energy (HRHE)-PIXE setup (Chaves et al., 2013 [3]) by irradiation of the sample with a 3.8 MeV proton beam provided by the CTN 3 MV Tandetron accelerator. In this paper we present results, discuss detection limits of the method and the added value of the use of the CdTe detector in this context

  1. CdTe detector based PIXE mapping of geological samples

    Energy Technology Data Exchange (ETDEWEB)

    Chaves, P.C., E-mail: cchaves@ctn.ist.utl.pt [Centro de Física Atómica da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa (Portugal); IST/ITN, Instituto Superior Técnico, Universidade Técnica de Lisboa, Campus Tecnológico e Nuclear, EN10, 2686-953 Sacavém (Portugal); Taborda, A. [Centro de Física Atómica da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa (Portugal); IST/ITN, Instituto Superior Técnico, Universidade Técnica de Lisboa, Campus Tecnológico e Nuclear, EN10, 2686-953 Sacavém (Portugal); Oliveira, D.P.S. de [Laboratório Nacional de Energia e Geologia (LNEG), Apartado 7586, 2611-901 Alfragide (Portugal); Reis, M.A. [Centro de Física Atómica da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003 Lisboa (Portugal); IST/ITN, Instituto Superior Técnico, Universidade Técnica de Lisboa, Campus Tecnológico e Nuclear, EN10, 2686-953 Sacavém (Portugal)

    2014-01-01

    A sample collected from a borehole drilled approximately 10 km ESE of Bragança, Trás-os-Montes, was analysed by standard and high energy PIXE at both CTN (previous ITN) PIXE setups. The sample is a fine-grained metapyroxenite grading to coarse-grained in the base with disseminated sulphides and fine veinlets of pyrrhotite and pyrite. Matrix composition was obtained at the standard PIXE setup using a 1.25 MeV H{sup +} beam at three different spots. Medium and high Z elemental concentrations were then determined using the DT2fit and DT2simul codes (Reis et al., 2008, 2013 [1,2]), on the spectra obtained in the High Resolution and High Energy (HRHE)-PIXE setup (Chaves et al., 2013 [3]) by irradiation of the sample with a 3.8 MeV proton beam provided by the CTN 3 MV Tandetron accelerator. In this paper we present results, discuss detection limits of the method and the added value of the use of the CdTe detector in this context.

  2. Evaluation of Compton gamma camera prototype based on pixelated CdTe detectors

    OpenAIRE

    Calderón, Y.; Chmeissani, M.; Kolstein, M.; De Lorenzo, G.

    2014-01-01

    A proposed Compton camera prototype based on pixelated CdTe is simulated and evaluated in order to establish its feasibility and expected performance in real laboratory tests. The system is based on module units containing a 2×4 array of square CdTe detectors of 10×10 mm2 area and 2 mm thickness. The detectors are pixelated and stacked forming a 3D detector with voxel sizes of 2 × 1 × 2 mm3. The camera performance is simulated with Geant4-based Architecture for Medicine-Oriented Simulations(G...

  3. Tin Can Radiation Detector.

    Science.gov (United States)

    Crull, John L.

    1986-01-01

    Provides instructions for making tin can radiation detectors from empty aluminum cans, aluminum foil, clear plastic, copper wire, silica gel, and fine, unwaxed dental floss put together with tape or glue. Also provides suggestions for activities using the detectors. (JN)

  4. Performance of a new Schottky CdTe detector for hard x-ray spectroscopy

    Science.gov (United States)

    Takahashi, Tadayuki; Hirose, K.; Matsumoto, Chiho; Takizawa, Kyoko; Ohno, Ryouichi; Ozaki, Tsutomu; Mori, Kunishiro; Tomita, Yasuhiro

    1998-07-01

    We report a significant improvement of the spectral properties of a cadmium telluride (CdTe) detector. With the use of a high quality CdTe crystal, we formed a high Schottky barrier for the holes on a CdTe surface using a low work-function metal, indium. For a 2 X 2 mm(superscript 2) detector with a thickness of 0.5 mm the leakage current was measured to be 0.7 nA at room temperature (20 degree(s)C) and 10 pA at -20 degree(s)C for a 400 V bias voltage. The low-leakage current of the detector allows us to operate the detector at a higher bias voltage than previous CdTe detectors. The improved charge collection efficiency and the low-leakage current leads to an energy resolution of 1.1 - 2.5 keV FWHM in the energy range 2 keV to 150 keV at 20 degree(s)C without charge loss correction electronics. We confirmed that once a high electric field of several kV/cm is applied, the Schottky CdTe has a very good energy resolution as well as sufficient stability to be used for practical applications.

  5. CdTe detector use for PIXE characterization of TbCoFe thin films

    International Nuclear Information System (INIS)

    Peltier cooled CdTe detectors have good efficiency beyond the range of energies normally covered by Si(Li) detectors, the most common detectors in PIXE applications. An important advantage of CdTe detectors is the possibility of studying K X-rays lines instead the L X-rays lines in various cases since CdTe detectors present an energy efficiency plateau reaching 70 keV or more. The ITN CdTe useful energy range starts at K-Kα (3.312 keV) and goes up to 120 keV, just above the energy of the lowest γ-ray of the 19F(p, p'γ)19F reaction. In the new ITN HRHE-PIXE line, a CdTe detector is associated to a POLARIS microcalorimeter X-ray detector built by Vericold Technologies GmbH (an Oxford Instruments Group Company). The ITN POLARIS has a resolution of 15 eV at 1.486 keV (Al-Kα) and 24 eV at 10.550 keV (Pb-Lα1). In the present work, a TbCoFe thin film deposited on a Si substrate was analysed at the HRHE-PIXE system. The good efficiency of the CdTe detector at 45 keV (Tb-Kα), and the excellent resolution of POLARIS microcalorimeter at 6.403 keV (Fe-Kα), are presented and the new possibilities open to the IBA analysis of systems with traditionally overlapping X-rays and near mass elements are discussed.

  6. Radiation detectors laboratory

    International Nuclear Information System (INIS)

    The National Institute for Nuclear Research has established a Radiation detector laboratory that has the possibility of providing to the consultants on the handling and applications of the nuclear radiation detectors. It has special equipment to repair the radiation detectors used in spectroscopy as the hyper pure Germanium for gamma radiation and the Lithium-silica for X-rays. There are different facilities in the laboratory that can become useful for other institutions that use radiation detectors. This laboratory was created to satisfy consultant services, training and repairing of the radiation detectors both in national and regional levels for Latin America. The laboratory has the following sections: Nuclear Electronic Instrumentation; where there are all kind of instruments for the measurement and characterization of detectors like multichannel analyzers of pulse height, personal computers, amplifiers and nuclear pulse preamplifiers, nuclear pulses generator, aleatories, computer programs for radiation spectra analysis, etc. High vacuum; there is a vacuum escape measurer, two high vacuum pumps to restore the vacuum of detectors, so the corresponding measurers and the necessary tools. Detectors cleaning; there is an anaerobic chamber for the detectors handling at inert atmosphere, a smoke extraction bell for cleaning with the detector solvents. Cryogenic; there are vessels and tools for handling liquid nitrogen which is used for cooling the detectors when they required it. (Author)

  7. Measurement 20-200 keV hard X-ray based on CdTe detector in EAST Tokamak

    International Nuclear Information System (INIS)

    Background: Accurate and quantitative measurement of plasma radiation is a key issue to Tokamak, toroidal magnetic confinement device. The radiations from Tokamak cover large energy range. Driven by the determination of the obtaining of hard X-ray spectra, a new system based on a high performance CdTe detector was built up in EAST Tokamak, the first non-circle cross-section in the world. Purpose: Introduces the device of hard X-ray diagnosis system in the EAST Tokamak on the Port A. The system can measure the plasma hard X-ray (20-200 keV) spectra under different discharge conditions, including Ohmical shot and Lower Hybrid Current Drive (LHCD) shot. The research of high speed electron which produced by LHCD is also the aim of the new system. Methods: A high performance CdTe detector was using in EAST Tokamak to measure the hard X-ray (20-200 keV) spectra. Results: The results show that the new system based on a high performance CdTe can meet the requirements for measuring the EAST Tokamak. Conclusions: A preliminary experimental result showed that the system can meet the requirements for measuring the X-ray bremsstrahlung of plasma in the energy range from 20 to 200 keV Calibration result and typical measurement result on EAST are present in this paper. (authors)

  8. Testing the plutonium isotopic analysis code FRAM with various CdTe detectors.

    Energy Technology Data Exchange (ETDEWEB)

    Vo, Duc T.; Russo, P. A. (Phyllis A.)

    2002-01-01

    The isotopic analysis code Fixed-energy Response-function Analysis with Multiple efficiency (FRAM)1,2 has been proven to successfully analyze plutonium spectra taken with a portable CdTe detector with Peltier cooling, the first results of this kind for a noncryogenic detector.3 These are the first wide-range plutonium gamma-ray isotopics analysis results obtained with other than Ge spectrometers. The CdTe spectrometer measured small plutonium reference samples in reasonable count times, covering the range from low to high burnup. This paper describes further testing of FRAM with two CdTe detectors of different sizes and resolutions using different analog and digital, portable multichannel analyzers (MCAs).

  9. New CdTe photoconductor array detector for x-ray applications

    International Nuclear Information System (INIS)

    A CdTe photoconductor array x-ray detector was grown using molecular beam epitaxy (MBE) on a Si(100) substrate. The temporal response of the photoconductor arrays is as fast as 21 ps rise time and 38 ps full width half-maximum (FWHM). The spatial resolution of the photoconductor was good enough to provide 75 μm FWHM using a 50 μm synchrotron x-ray beam. A substantial number of x-ray photons are absorbed effectively within the MBE CdTe layer as observed from the linear response up to 15 keV. These results demonstrate that MBE grown CdTe is a suitable choice of the detector materials to meet the requirements for x-ray detectors

  10. Radiation detectors laboratory

    International Nuclear Information System (INIS)

    The Radiation detectors laboratory was established with the assistance of the International Atomic Energy Agency which gave this the responsibility to provide its services at National and regional level for Latin America and it is located at the ININ. The more expensive and delicate radiation detectors are those made of semiconductor, so it has been put emphasis in the use and repairing of these detectors type. The supplied services by this laboratory are: selection consultant, detectors installation and handling and associated systems. Installation training, preventive and corrective maintenance of detectors and detection systems calibration. (Author)

  11. High performance p-i-n CdTe and CdZnTe detectors

    CERN Document Server

    Khusainov, A K; Ilves, A G; Morozov, V F; Pustovoit, A K; Arlt, R D

    1999-01-01

    A breakthrough in the performance of p-i-n CdTe and CdZnTe detectors is reported. The detector stability has been significantly improved, allowing their use in precise gamma and XRF applications. Detectors with energy resolution close to Si and Ge were produced operating with only -30--35 deg. C cooling (by a Peltier cooler of 15x15x10 mm size and a consumed power less than 5 W). Presently detectors with volume of up to 300 mm sup 3 are available. In terms of photoelectric effect efficiency it corresponds to HPGe detectors with volumes of about 1.5 cm sup 3. The possibilities of further improvement of CdTe and CdZnTe detector characteristics are discussed in this paper.

  12. High performance p-i-n CdTe and CdZnTe detectors

    Science.gov (United States)

    Khusainov, A. Kh; Dudin, A. L.; Ilves, A. G.; Morozov, V. F.; Pustovoit, A. K.; Arlt, R. D.

    1999-06-01

    A breakthrough in the performance of p-i-n CdTe and CdZnTe detectors is reported. The detector stability has been significantly improved, allowing their use in precise gamma and XRF applications. Detectors with energy resolution close to Si and Ge were produced operating with only -30--35°C cooling (by a Peltier cooler of 15×15×10 mm size and a consumed power less than 5 W). Presently detectors with volume of up to 300 mm 3 are available. In terms of photoelectric effect efficiency it corresponds to HPGe detectors with volumes of about 1.5 cm 3. The possibilities of further improvement of CdTe and CdZnTe detector characteristics are discussed in this paper.

  13. Improvement of the energy resolution of CdTe detectors by pulse height correction from waveform

    OpenAIRE

    Kikawa, T.; Ichikawa, A. K.; Hiraki, T.; Nakaya, T.(Kyoto University, Department of Physics, Kyoto, Japan)

    2011-01-01

    Semiconductor detectors made of CdTe crystal have high gamma-ray detection efficiency and are usable at room temperature. However, the energy resolution of CdTe detectors for MeV gamma-rays is rather poor because of the significant hole trapping effect. We have developed a method to improve the energy resolution by correcting the pulse height using the waveform of the signal and achieved 2.0% (FWHM) energy resolution for 662keV gamma-rays. Best energy resolution was achieved at temperatures b...

  14. Improvement of the energy resolution of CdTe detectors by pulse height correction from waveform

    CERN Document Server

    Kikawa, T; Hiraki, T; Nakaya, T

    2011-01-01

    Semiconductor detectors made of CdTe crystal have high gamma-ray detection efficiency and are usable at room temperature. However, the energy resolution of CdTe detectors for MeV gamma-rays is rather poor because of the significant hole trapping effect. We have developed a method to improve the energy resolution by correcting the pulse height using the waveform of the signal and achieved 2.0% (FWHM) energy resolution for 662keV gamma-rays. Best energy resolution was achieved at temperatures between -10 degrees C and 0 degrees C.

  15. Solid-state cadmium telluride radiation detector

    International Nuclear Information System (INIS)

    The growth of CdTe single crystal and its application to CdTe detector array was studied for X-ray computed tomography (XCT) equipment. A p-type CdTe single crystal with 104 ohm.cm specific resistivity was grown in a quartz ampoule under vapor pressure control of Cd in a vertical Bridgman furnace. An 18-element detector array was fabricated with this single crystal. The detector was operated with no bias and the sensitivity was confirmed to be between 2.8 x 10-12 and 14 x 10-12 A.h/(R.mm2). Commercial CdTe single crystal was used to manufacture as 560-element detector array for XCT. Results show that CdTe detector is sensitive, linear and has high resolution. (author)

  16. Improvement of the sensitivity of CdTe semiconductor detector in the high energy region

    International Nuclear Information System (INIS)

    Cadmium Telluride, CdTe, semiconductor detectors have sufficient band gap energy (1.47 eV) to use at room temperature, and their atomic number are so large (48 and 52) that their photon detection efficiency is more excellent than that of Si or Ge. Recently CdTe crystals have become easily available because of improvements in the crystal growth method. It is a useful X-ray detector, because it has good energy resolution and high efficiency at the full energy peak at less than a few hundred keV of incident photon energy. However, if the incident photon energy become higher, the efficiency of the full energy peak become worse, and it is very difficult to distinguish the full energy peak above 1 MeV, because the mobility of charge carriers in the CdTe crystal is much smaller than in Si and Ge and it is difficult to produce a larger volume element. In order to analyze the energy of several radioisotopes, it is necessary to improve the sensitivity of CdTe detectors in high energy regions. We have previously suggested a multilayered structure of CdTe elements. This paper describes a simulation and experiment to improve the efficiency of the full energy peak in the high energy region above 1 MeV. (author)

  17. p-i-n CdTe multi-pixel detector for gamma-ray imaging fabricated by excimer laser processing

    International Nuclear Information System (INIS)

    A multi-pixel gamma-ray imaging detector unit, which has a high-energy resolution with room temperature operation, was fabricated using the diode-type CdTe detector. The diode structure was prepared by indium-doped n-type CdTe thin layer formed by excimer laser doping on one-side of high resistivity p-like single crystal CdTe wafer, and a gold electrode as a Shottkey electrode evaporated on the opposite side of the wafer. This diode-detectors showed good diode I-V characteristics with low leakage current. This CdTe detectors were pixelized in the 2mm x 2mm, and the 128 chips (32x4 chips) were mounted on the ceramic printed circuit boards at 3 mm interval with 1 mm gap. The printed circuit boards are directly connected the MCSA-EXI ASIC chip and 128 ch radiation spectrum analyzer systems. When using the Am-241 and the Co-57 as radioisotopes, the spectral response from all the pixels within 4,4 ke V of FWHM at 122 ke V peak of Co-57 for radiation performed at room temperature. The intensities of the peak from pixels were also uniform (Authors)

  18. Mossbauer spectrometer radiation detector

    Science.gov (United States)

    Singh, J. J. (Inventor)

    1973-01-01

    A Mossbauer spectrometer with high efficiencies in both transmission and backscattering techniques is described. The device contains a sodium iodide crystal for detecting radiation caused by the Mossbauer effect, and two photomultipliers to collect the radiation detected by the crystal. When used in the transmission technique, the sample or scatterer is placed between the incident radiation source and the detector. When used in a backscattering technique, the detector is placed between the incident radiation source and the sample of scatterer such that the incident radiation will pass through a hole in the crystal and strike the sample. Diagrams of the instrument are provided.

  19. Concentration of uncompensated impurities as a key parameter of CdTe and CdZnTe crystals for Schottky diode x/γ-ray detectors

    International Nuclear Information System (INIS)

    In this paper we report on the strong impact of the concentration of uncompensated impurities on the detection efficiency of CdTe and Cd0.9Zn0.1Te Schottky diodes. The results of our study explain the observed poor detection properties of some Cd0.9Zn0.1Te detectors with resistivity and lifetime of carriers comparable to those of good CdTe detectors. We show that the concentration of uncompensated impurities in a highly efficient CdTe Schottky diode detector is several orders of magnitude higher than that of a CdZnTe, which does not register the gamma spectra of commonly used isotopes (59–662 keV) by using photoelectric measurements. The significant difference of the concentration of uncompensated impurities between CdTe and Cd0.9Zn0.1Te crystals is confirmed by our study of the temperature change of the resistivity and of the Fermi level energy. The degree of compensation of the donor complex, responsible for the electrical conductivity of the material, is much lower in the CdTe crystal compared to that in the Cd0.9Zn0.1Te crystal. The calculations of the detection efficiency of x/γ-radiation by a Schottky diode result in a dependence on the concentration of uncompensated impurities described by a curve with a pronounced maximum. The position of this maximum occurs at a concentration of uncompensated impurities which ranges from 3 × 1010 to 3 × 1012 cm−3 depending on the registered photon energy of x/γ-rays and on the lifetime of the charge carriers. Our measurements and calculations lead to the conclusion that the concentration of uncompensated impurities in this range is a necessary condition for the effective operation of x- and γ-ray Schottky diode detectors based on CdTe and Cd1−xZnxTe crystals

  20. Performance of CdTe gamma-ray detectors fabricated in a new M π n design

    Science.gov (United States)

    Niraula, M.; Mochizuki, D.; Aoki, T.; Tomita, Y.; Hatanaka, Y.

    2000-06-01

    CdTe radiation detectors have been fabricated in a new M-π-n structure that provides very effective blocking for the leakage current and, as a result, excellent spectral responses are achieved. An iodine-doped n-CdTe layer was grown on the Te-faces of the (1 1 1)-oriented high-resistivity (˜10 9 Ω cm) ρ-type CdTe wafers at the low substrate temperature of 150°C. An aluminum electrode was evaporated on the n-CdTe side, while a gold electrode was evaporated on the other side. Low leakage current around 60 pA/mm 2 was typically attained for a 0.5 mm thick detector at room-temperature (25°C) for an applied reverse bias of 250 V. Improved charge collection efficiency and spectral responses for different radioisotopes in the energy range of a few tens of keV to several hundreds of keV were obtained due to the application of very large electric fields on the detectors. The performance of the detectors thus fabricated is presented.

  1. Microwave Radiation Detector

    Science.gov (United States)

    Lesh, J. R.

    1984-01-01

    Direct photon detector responds to microwave frequencies. Method based on trapped-ion frequency-generation standards proposed to detect radio-frequency (RF) radiation at 40.5 GHz. Technique used for directdetection (RF) communication, radar, and radio astronomy.

  2. Characterization of CdTe0.9Se0.1:Cl strip detectors

    International Nuclear Information System (INIS)

    CdTe0.9Se0.1:Cl is a detector grade material for gamma and X-rays. Its high resistivity and the high mobility lifetime product yield a high charge collection efficiency of 90 percent. CdTe0.9Se0.1:Cl was used for the first time to built up a strip detector. The detector performance was investigated by a 57Co source. The signal behaviour, charge collection efficiency and coupling effects were analyzed for different strips. The comparison between the signal amplitude of all strips showed a good homogeneous response for the device. For a single strip a charge collection efficiency of more than 40 percent was obtained. (orig.)

  3. CdTe detector efficiency calibration using thick targets of pure and stable compounds

    International Nuclear Information System (INIS)

    Quantitative PIXE measurements require perfectly calibrated set-ups. Cooled CdTe detectors have good efficiency for energies above those covered by Si(Li) detectors and turn on the possibility of studying K X-rays lines instead of L X-rays lines for medium and eventually heavy elements, which is an important advantage in various cases, if only limited resolution systems are available in the low energy range. In this work we present and discuss spectra from a CdTe semiconductor detector covering the energy region from Cu (Kα1 = 8.047 keV) to U (Kα1 = 98.439 keV). Pure thick samples were irradiated with proton beams at the ITN 3.0 MV Tandetron accelerator in the High Resolution High Energy PIXE set-up. Results and the application to the study of a Portuguese Ossa Morena region Dark Stone sample are presented in this work.

  4. Evaluation of Polarization Effects of e(-) Collection Schottky CdTe Medipix3RX Hybrid Pixel Detector

    OpenAIRE

    Astromskas, V.; Gimenez, EN; Lohstroh, A; Tartoni, N

    2016-01-01

    This paper focuses on the evaluation of operational conditions such as temperature, exposure time and flux on the polarization of a Schottky electron collection CdTe detector. A Schottky e- collection CdTe Medipix3RX hybrid pixel detector was developed as a part of the CALIPSO-HIZPAD2 EU project. The 128 ×128 pixel matrix and 0.75 mm thick CdTe sensor bump-bonded to Medipix3RX readout chips enabled the study of the polarization effects. Single and quad module Medipix3RX chips were used which ...

  5. Transition Radiation Detectors

    CERN Document Server

    Andronic, A

    2012-01-01

    We review the basic features of transition radiation and how they are used for the design of modern Transition Radiation Detectors (TRD). The discussion will include the various realizations of radiators as well as a discussion of the detection media and aspects of detector construction. With regard to particle identification we assess the different methods for efficient discrimination of different particles and outline the methods for the quantification of this property. Since a number of comprehensive reviews already exist, we predominantly focus on the detectors currently operated at the LHC. To a lesser extent we also cover some other TRDs, which are planned or are currently being operated in balloon or space-borne astro-particle physics experiments.

  6. Cadmium telluride nuclear radiation detectors

    International Nuclear Information System (INIS)

    The characteristics and performance of undoped high resistivity cadmium telluride detectors are compared to chlorine lifted counters. It is shown, in particular, that Undodep CdTe is in fact aluminium doped and that compensation occurs, as an silicon or germanium, by pair and triplet formation between the group III donor and the doubly charged cadmium vacancy acceptor. Furthermore, in chlorine doped samples, the polarization effect results from the unpaired level at Esub(c)-0,6eV

  7. Fast polycrystalline CdTe detectors for bunch-by-bunch luminosity monitoring in the LHC

    CERN Document Server

    Brambilla, A; Jolliot, M; Bravin, E

    2008-01-01

    The luminosity at the four interaction points of the Large Hadron Collider (LHC) must be continuously monitored in order to provide an adequate tool for the control and optimisation of beam parameters. Polycrystalline cadmium telluride (CdTe) detectors have previously been tested, showing their high potential to fulfil the requirements of luminosity measurement in the severe environment of the LHC interaction regions. Further, the large signal yield and the fast response time should allow bunch-by-bunch measurement of the luminosity at 40 MHz with high accuracy. Four luminosity monitors with two rows of five polycrystalline CdTe detectors each have been fabricated and will be installed at both sides of the low-luminosity interaction points ALICE and LHC-b. A detector housing was specially designed to meet the mechanical constraints in the LHC. A series of elementary CdTe detectors were fabricated and tested, of which 40 were selected for the luminosity monitors. A sensitivity of 104 electrons per minimum ioni...

  8. Evaluation of XRI-UNO CdTe detector for nuclear medical imaging

    International Nuclear Information System (INIS)

    Over the last two decades advances in semiconductor detector technology have reached the point where they are sufficiently sensitive to become an alternative to scintillators for high energy gamma ray detection for application in fields such as medical imaging. This paper assessed the Cadmium-Telluride (CdTe) XRI-UNO semiconductor detector produced by X-RAY Imatek for photon energies of interest in nuclear imaging. The XRI-UNO detector was found to have an intrinsic spatial resolution of <0.5mm and a high incident count rate capability up to at least 1680cps. The system spatial resolution, uniformity and sensitivity characteristics are also reported

  9. CdTe X-ray detectors for medical computerized tomography

    International Nuclear Information System (INIS)

    The kinetic and lux-ampere characteristics (BAC) of pure CdTe crystals of p- and n-types used as X-ray detectors for medical tomography are studied. It is shown that proper reproducibility of the excitation pulse form, strict LAC linearity and low photocurrent memary of the detectors with a regquired maintained sensitivity maintained may be attained using semi-insulating cadmium telluride crystals with a low concentration of adhesion centers equal to the concentration of recombination levels. In that case, the detector should operate under the double injection regime

  10. Improvement of the sensitivity of CdTe detectors in the high energy regions

    International Nuclear Information System (INIS)

    In order to improve the efficiency of the full energy peak in the high energy regions, we had previously suggested a multi-layered structure of CdTe elements and have since confirmed the sensitivity improvement of the full energy peak. And furthermore, we have suggested a new type structure of multi-layered elements in this paper and we confirmed that the efficiency of the full energy peak became higher and that more proper energy spectra were obtained by our current experiment than by the detector with the conventional structure. This paper describes a simulation and experiment to improve the efficiency of the full energy peak and to obtain the more proper energy spectra of 137Cs (662keV) and 60Co (1.17 and 1.33MeV) using the new structure of CdTe detector. (J.P.N.)

  11. Improvement of the sensitivity of CdTe detectors in the high energy regions

    Energy Technology Data Exchange (ETDEWEB)

    Nishizawa, Hiroshi; Ikegami, Kazunori; Takashima, Kazuo; Usami, Teruo [Mitsubishi Electric Corp., Tokyo (Japan); Yamamoto, Takayoshi

    1996-07-01

    In order to improve the efficiency of the full energy peak in the high energy regions, we had previously suggested a multi-layered structure of CdTe elements and have since confirmed the sensitivity improvement of the full energy peak. And furthermore, we have suggested a new type structure of multi-layered elements in this paper and we confirmed that the efficiency of the full energy peak became higher and that more proper energy spectra were obtained by our current experiment than by the detector with the conventional structure. This paper describes a simulation and experiment to improve the efficiency of the full energy peak and to obtain the more proper energy spectra of {sup 137}Cs (662keV) and {sup 60}Co (1.17 and 1.33MeV) using the new structure of CdTe detector. (J.P.N.)

  12. P-I-N CdTe gamma-ray detectors by liquid phase epitaxy (LPE)

    International Nuclear Information System (INIS)

    A new device concept of CdTe gamma ray detectors has been demonstrated by using p+(HgCdTe)-n(CdTe)-n+(HgCdTe) diode structures. Both p+ and n+-type Hg/sub 0.25/Cd/sub 0.75/Te epilayers were grown by the liquid phase epitaxy (LPE) technique on semi-insulating CdTe sensor elements. The LPE-grown P-I-N structure offers potential advantages for p-n junction formation and ohmic contact over standard ion-implanted diodes or Schottky barrier devices. Detectors with active areas of 2 mm2 were fabricated. Resolutions of 10 keV were obtained for the 122 keV gamma peak of Co57 at room temperature

  13. ALICE Transition Radiation Detector

    CERN Multimedia

    Pachmayer, Y

    2013-01-01

    The Transition Radiation Detector (TRD) is the main electron detector in ALICE. In conduction with the TPC and the ITS, it provides the necessary electron identification capability to study: - Production of light and heavy vector mesons as well as the continuum in the di-electron channel, - Semi leptonic decays of hadrons with open charm and open beauty via the single-electron channel using the displaced vertex information provided by the ITS, - Correlated DD and BB pairs via coincidences of electrons in the central barrel and muons in the forward muon arm, - Jets with high Pτ tracks in one single TRD stack.

  14. Recent Progress in CdTe and CdZnTe Detectors

    OpenAIRE

    Takahashi, Tadayui; Watanabe, Shin

    2001-01-01

    Cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) have been regarded as promising semiconductor materials for hard X-ray and Gamma-ray detection. The high atomic number of the materials (Z_{Cd} =48, Z_{Te} =52) gives a high quantum efficiency in comparison with Si. The large band-gap energy (Eg ~ 1.5 eV) allows us to operate the detector at room temperature. However, a considerable amount of charge loss in these detectors produces a reduced energy resolution. This problem arises du...

  15. CdTe in photoconductive applications. Fast detector for metrology and X-ray imaging

    International Nuclear Information System (INIS)

    Operating as a photoconductor, the sensitivity and the impulse response of semi-insulating materials greatly depend on the excitation duration compared to electron and hole lifetimes. The requirement of ohmic contact is shortly discussed. Before developing picosecond measurements with integrated autocorrelation system, this paper explains high energy industrial tomographic application with large CdTe detectors (25x15x0.9 mm3). The excitation is typically μs range. X-ray flash radiography, with 10 ns burst, is in an intermediate time domain where excitation is similar to electron life-time. In laser fusion experiment excitation is in the range of 50 ps and we develop photoconductive devices able to study very high speed X-ray emission time behaviour. Thin polycristalline MOCVD CdTe films with picosecond response are suitable to perform optical correlation measurements of single shot pulses with a very large bandwidth (- 50 GHz)

  16. Mechanism of the high X-ray sensitivity of single-crystal CdTe detectors

    International Nuclear Information System (INIS)

    One investigated into the effect of germanium amorphous impurities on X-ray sensitivity and on other features of single-crystals. One investigated into CdTe heat-stable crystals. One proposes a model of a local rearrangement of crystalline lattice near GeCd impurity atom. High X-ray sensitivity of CdTe doped by Ge impurity (doping levels = 3.0x1015 cm-3) is explained by difference of mobility of electrons and holes under ambipolar X-ray conductivity. The optimal impurity-defect composition of p-CdTe crystals serving as high-sensitive active elements of X-ray detectors is characterized by presence of GeCd, VCd defects and of VTe-Tei Frenkel pairs

  17. Recent Progress in CdTe and CdZnTe Detectors

    CERN Document Server

    Takahashi, T; Takahashi, Tadayui; Watanabe, Shin

    2001-01-01

    Cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) have been regarded as promising semiconductor materials for hard X-ray and Gamma-ray detection. The high atomic number of the materials (Z_{Cd} =48, Z_{Te} =52) gives a high quantum efficiency in comparison with Si. The large band-gap energy (Eg ~ 1.5 eV) allows us to operate the detector at room temperature. However, a considerable amount of charge loss in these detectors produces a reduced energy resolution. This problem arises due to the low mobility and short lifetime of holes. Recently, significant improvements have been achieved to improve the spectral properties based on the advances in the production of crystals and in the design of electrodes. In this overview talk, we summarize (1) advantages and disadvantages of CdTe and CdZnTe semiconductor detectors and (2) technique for improving energy resolution and photopeak efficiencies. Applications of these imaging detectors in future hard X-ray and Gamma-ray astronomy missions are briefly discus...

  18. Workshops on radiation imaging detectors

    Energy Technology Data Exchange (ETDEWEB)

    Sochinskii, N.V.; Sun, G.C.; Kostamo, P.; Silenas, A.; Saynatjoki, A.; Grant, J.; Owens, A.; Kozorezov, A.G.; Noschis, E.; Van Eijk, C.; Nagarkar, V.; Sekiya, H.; Pribat, D.; Campbell, M.; Lundgren, J.; Arques, M.; Gabrielli, A.; Padmore, H.; Maiorino, M.; Volpert, M.; Lebrun, F.; Van der Putten, S.; Pickford, A.; Barnsley, R.; Anton, M.E.G.; Mitschke, M.; Gros d' Aillon, E.; Frojdh, C.; Norlin, B.; Marchal, J.; Quattrocchi, M.; Stohr, U.; Bethke, K.; Bronnimann, C.H.; Pouvesle, J.M.; Hoheisel, M.; Clemens, J.C.; Gallin-Martel, M.L.; Bergamaschi, A.; Redondo-Fernandez, I.; Gal, O.; Kwiatowski, K.; Montesi, M.C.; Smith, K

    2005-07-01

    This document gathers the transparencies that were presented at the international workshop on radiation imaging detectors. 9 sessions were organized: 1) materials for detectors and detector structure, 2) front end electronics, 3) interconnected technologies, 4) space, fusion applications, 5) the physics of detection, 6) industrial applications, 7) synchrotron radiation, 8) X-ray sources, and 9) medical and other applications.

  19. Workshops on radiation imaging detectors

    International Nuclear Information System (INIS)

    This document gathers the transparencies that were presented at the international workshop on radiation imaging detectors. 9 sessions were organized: 1) materials for detectors and detector structure, 2) front end electronics, 3) interconnected technologies, 4) space, fusion applications, 5) the physics of detection, 6) industrial applications, 7) synchrotron radiation, 8) X-ray sources, and 9) medical and other applications

  20. Pixelized M-pi-n CdTe detector coupled to Medipix2 readout chip

    CERN Document Server

    Kalliopuska, J; Penttila, R; Andersson, H; Nenonen, S; Gadda, A; Pohjonen, H; Vanttajac, I; Laaksoc, P; Likonen, J

    2011-01-01

    We have realized a simple method for patterning an M-pi-n CdTe diode with a deeply diffused pn-junction, such as indium anode on CdTe. The method relies on removing the semiconductor material on the anode-side of the diode until the physical junction has been reached. The pixelization of the p-type CdTe diode with an indium anode has been demonstrated by patterning perpendicular trenches with a high precision diamond blade and pulsed laser. Pixelization or microstrip pattering can be done on both sides of the diode, also on the cathode-side to realize double sided detector configuration. The article compares the patterning quality of the diamond blade process, pulsed pico-second and femto-second lasers processes. Leakage currents and inter-strip resistance have been measured and are used as the basis of the comparison. Secondary ion mass spectrometry (SIMS) characterization has been done for a diode to define the pn-junction depth and to see the effect of the thermal loads of the flip-chip bonding process. Th...

  1. CdTe detectors in medicine: a review of current applications and future perspectives

    International Nuclear Information System (INIS)

    Cadmium telluride (CdTe) semiconductor sensors have been evaluated for medical applications for 15 years owing to their high stopping power, convenient energy resolution and operating conditions at room temperature. Most of the applications herein reviewed concern medical imaging procedures, i.e., nuclear medicine, including positron emission tomography and radiology with computerized tomography (XCT). Despite their attractive physical characteristics, their preliminary commercial development has been slowed down in the early 80s because of technical problems, particularly when large arrays were considered, and because of the competition with the more available and less expensive scintillators or xenon chambers which are still mounted in most modern medical imaging systems. Nowadays the characteristics of new materials have allowed the development of restricted but more specific domains of CdTe medical applications i.e. miniaturized nuclear probes dedicated to per-operative tumor detection or ambulatory monitoring of physiological (renal, cardiac) functions and bone absorptiometry using either planar or miniature tomographic systems. Supported by the features and encouraged by the growing competition between ionising and non-ionizing imaging modalities (US, MRI), research work is presently conducted with a view to using CdTe detectors in XCT. (orig.)

  2. New trends in CdTe and CdZnTe detectors for X- and gamma-ray applications

    International Nuclear Information System (INIS)

    The CdTe gamma-ray camera IBIS/ISGRI, on board the INTEGRAL satellite launched in October 2002, is currently the largest spectro-imager of this type in the world. The development of this detector, for research in the field of astrophysics, has provided the opportunity to demonstrate the feasibility of massive integration of CdTe nuclear detectors, taking advantage of the CdTe good spectral performances and high modularity. Many other groups in the world work also to further develop detectors using this material in view of improving its spectral performances (crystal quality, electrode geometry and type, electronics and filtering, etc.), the spatial resolution (pixelization of monolithic crystals) and the detection efficiency at high energy (thickness). In this review, I will detail the main directions in which to strive in order to explore these fields in the upcoming years through examples of techniques or applications

  3. Evaluation of Compton gamma camera prototype based on pixelated CdTe detectors.

    Science.gov (United States)

    Calderón, Y; Chmeissani, M; Kolstein, M; De Lorenzo, G

    2014-06-01

    A proposed Compton camera prototype based on pixelated CdTe is simulated and evaluated in order to establish its feasibility and expected performance in real laboratory tests. The system is based on module units containing a 2×4 array of square CdTe detectors of 10×10 mm(2) area and 2 mm thickness. The detectors are pixelated and stacked forming a 3D detector with voxel sizes of 2 × 1 × 2 mm(3). The camera performance is simulated with Geant4-based Architecture for Medicine-Oriented Simulations(GAMOS) and the Origin Ensemble(OE) algorithm is used for the image reconstruction. The simulation shows that the camera can operate with up to 10(4) Bq source activities with equal efficiency and is completely saturated at 10(9) Bq. The efficiency of the system is evaluated using a simulated (18) F point source phantom in the center of the Field-of-View (FOV) achieving an intrinsic efficiency of 0.4 counts per second per kilobecquerel. The spatial resolution measured from the point spread function (PSF) shows a FWHM of 1.5 mm along the direction perpendicular to the scatterer, making it possible to distinguish two points at 3 mm separation with a peak-to-valley ratio of 8. PMID:24932209

  4. A pixellated gamma-camera based on CdTe detectors clinical interests and performances

    CERN Document Server

    Chambron, J; Eclancher, B; Scheiber, C; Siffert, P; Hage-Ali, M; Regal, R; Kazandjian, A; Prat, V; Thomas, S; Warren, S; Matz, R; Jahnke, A; Karman, M; Pszota, A; Németh, L

    2000-01-01

    A mobile gamma camera dedicated to nuclear cardiology, based on a 15 cmx15 cm detection matrix of 2304 CdTe detector elements, 2.83 mmx2.83 mmx2 mm, has been developed with a European Community support to academic and industrial research centres. The intrinsic properties of the semiconductor crystals - low-ionisation energy, high-energy resolution, high attenuation coefficient - are potentially attractive to improve the gamma-camera performances. But their use as gamma detectors for medical imaging at high resolution requires production of high-grade materials and large quantities of sophisticated read-out electronics. The decision was taken to use CdTe rather than CdZnTe, because the manufacturer (Eurorad, France) has a large experience for producing high-grade materials, with a good homogeneity and stability and whose transport properties, characterised by the mobility-lifetime product, are at least 5 times greater than that of CdZnTe. The detector matrix is divided in 9 square units, each unit is composed ...

  5. Digital signal processing for CdTe detectors using VXIbus data collection systems

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, Daiji; Takahashi, Hiroyuki; Kurahashi, Tomohiko; Iguchi, Tetsuo; Nakazawa, Masaharu

    1996-07-01

    Recently fast signal digitizing technique has been developed, and signal waveforms with very short time periods can be obtained. In this paper, we analyzed each measured pulse which was digitized by an apparatus of this kind, and tried to improve an energy resolution of a CdTe semiconductor detector. The result of the energy resolution for {sup 137}Cs 662 keV photopeak was 13 keV. Also, we developed a fast data collection system based on VXIbus standard, and the counting rate on this system was obtained about 50 counts per second. (author)

  6. Radiation detector with spodumene

    Energy Technology Data Exchange (ETDEWEB)

    D' Amorim, Raquel Aline P.O.; Lima, Hestia Raissa B.R.; Souza, Susana O. [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil). Dept. de Fisica; Sasaki, Jose M., E-mail: sasaki@fisica.ufc.b [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Fisica; Caldas, Linda V.E., E-mail: lcaldas@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    In this work, {beta}-spodumene potentiality as a radiation detector was evaluated by making use of thermoluminescence (TL) and thermally stimulated exoelectron emission (TSEE) techniques. The pellets were obtained from the {beta}-spodumene powder mixed with Teflon followed by a sintering process of thermal treatments of 300 deg/30 min and 400 deg/1.5 h. The samples were irradiated in standard gamma radiation beams with doses between 5 Gy and 10 kGy. The TL emission curve showed a prominent peak at 160 deg and in the case of TSEE a prominent peak at 145 Celsius approximately. Initial results show that the material is promising for high-dose dosimetry. (author)

  7. CdTe and CdZnTe materials for room-temperature X-ray and gamma ray detectors

    Science.gov (United States)

    Eisen, Y.; Shor, A.

    1998-02-01

    Among the semiconductor materials of a wide band gap, CdTe and CdZnTe have attracted most attention as room-temperature X-ray and gamma-ray detectors. Suitable CdTe materials for nuclear detectors and, in particular, for spectrometers, have been developed over the past few decades and are mainly grown via the traveling heater method (THM). However, the manufacture of large homogeneous ingots at relatively low cost has not reached yet a proven stage. Cd 1- xZn xTe (CZT) materials, mainly grown via the high-pressure Bridgman (HPB) technique, possess several advantages over CdTe and appear to better approach the practicality of providing large volume X-ray and gamma-ray detectors at moderate costs. Continuing effort is still underway to improve the characteristics of both CdTe and CZT materials in order to achieve reproducible detectors for either low- and high-energy gamma rays. This review paper is divided into three parts: The first part describes different structural designs of detectors to improve their spectroscopic characteristics. These include hemispherical detectors, coplanar strip-electrode detectors and monolithic, two-dimensional segmented electrode arrays with pad sizes smaller than their thickness. This part will also describe various electronic methods to compensate for the poor charge collection of holes. The second part compares the characteristics of planar CdTe and CZT nuclear detectors containing metal contacts. Characteristics include: charge collection efficiencies for both electrons and holes indicated by the mobility-lifetime product, energy resolutions, leakage currents and robustness in field use. The third part is devoted to field uses of these detectors. Those include: X-ray fluorescent spectrometers, large volume spectrometers and a new generation nuclear gamma camera for medical diagnostics based on room-temperature solid-state spectrometers.

  8. Radiative recombination mechanisms in CdTe thin films deposited by elemental vapor transport

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Shamara [Department of Electrical Engineering, University of South Florida, 4202 East Fowler Ave, Tampa, FL 33620 (United States); Vatavu, Sergiu, E-mail: svatavu@usm.md [Department of Electrical Engineering, University of South Florida, 4202 East Fowler Ave, Tampa, FL 33620 (United States); Faculty of Physics and Engineering, Moldova State University, 60 A. Mateevici str., Chisinau, MD-2009, Republic of Moldova (Moldova, Republic of); Evani, Vamsi; Khan, Md; Bakhshi, Sara; Palekis, Vasilios [Department of Electrical Engineering, University of South Florida, 4202 East Fowler Ave, Tampa, FL 33620 (United States); Rotaru, Corneliu [Faculty of Physics and Engineering, Moldova State University, 60 A. Mateevici str., Chisinau, MD-2009, Republic of Moldova (Moldova, Republic of); Ferekides, Chris [Department of Electrical Engineering, University of South Florida, 4202 East Fowler Ave, Tampa, FL 33620 (United States)

    2015-05-01

    A photoluminesence (PL) study of the radiative recombination mechanisms for CdTe films deposited under different Cd and Te overpressure by elemental vapor transport is presented. The experiment and analysis have been carried out in the temperature range of 12-130 K. The intensity of the PL laser excitation beam was varied by two orders of magnitude. It has been established that the bands in the 1.47-1.50 eV are determined by transitions involving shallow D and A states and the 1.36x-1.37x eV band is due to band to level transitions. Deep transitions at 1.042 eV and 1.129 eV are due to radiative transitions to levels determined by CdTe native defects. - Highlights: • Photoluminescense (PL) of CdTe thin films is present in the 0.8-1.6 eV spectral region. • High intensity excitonic peaks are among the main radiative paths. • Radiative transitions at 1.36x eV are assisted by dislocations caused levels. • Extremal Cd/Te overpressure ratios enhance PL for 1.497 eV, 1.486 eV, 1.474 eV bands. • PL intensity reaches its max value for the 0.45 and 1.25 Cd/Te overpressure ratios.

  9. Radiative recombination mechanisms in CdTe thin films deposited by elemental vapor transport

    International Nuclear Information System (INIS)

    A photoluminesence (PL) study of the radiative recombination mechanisms for CdTe films deposited under different Cd and Te overpressure by elemental vapor transport is presented. The experiment and analysis have been carried out in the temperature range of 12-130 K. The intensity of the PL laser excitation beam was varied by two orders of magnitude. It has been established that the bands in the 1.47-1.50 eV are determined by transitions involving shallow D and A states and the 1.36x-1.37x eV band is due to band to level transitions. Deep transitions at 1.042 eV and 1.129 eV are due to radiative transitions to levels determined by CdTe native defects. - Highlights: • Photoluminescense (PL) of CdTe thin films is present in the 0.8-1.6 eV spectral region. • High intensity excitonic peaks are among the main radiative paths. • Radiative transitions at 1.36x eV are assisted by dislocations caused levels. • Extremal Cd/Te overpressure ratios enhance PL for 1.497 eV, 1.486 eV, 1.474 eV bands. • PL intensity reaches its max value for the 0.45 and 1.25 Cd/Te overpressure ratios

  10. Improvement of the energy resolution of pixelated CdTe detectors for applications in 0νββ searches

    Science.gov (United States)

    Gleixner, T.; Anton, G.; Filipenko, M.; Seller, P.; Veale, M. C.; Wilson, M. D.; Zang, A.; Michel, T.

    2015-07-01

    Experiments trying to detect 0νββ are very challenging. Their requirements include a good energy resolution and a good detection efficiency. With current fine pixelated CdTe detectors there is a trade off between the energy resolution and the detection efficiency, which limits their performance. It will be shown with simulations that this problem can be mostly negated by analysing the cathode signal which increases the optimal sensor thickness. We will compare different types of fine pixelated CdTe detectors (Timepix, Dosepix, HEXITEC) from this point of view.

  11. Improvement of the energy resolution of pixelated CdTe detectors for applications in 0νββ searches

    International Nuclear Information System (INIS)

    Experiments trying to detect 0νββ are very challenging. Their requirements include a good energy resolution and a good detection efficiency. With current fine pixelated CdTe detectors there is a trade off between the energy resolution and the detection efficiency, which limits their performance. It will be shown with simulations that this problem can be mostly negated by analysing the cathode signal which increases the optimal sensor thickness. We will compare different types of fine pixelated CdTe detectors (Timepix, Dosepix, HEXITEC) from this point of view

  12. Radiation Hazard Detector

    Science.gov (United States)

    1978-01-01

    NASA technology has made commercially available a new, inexpensive, conveniently-carried device for protection, of people exposed to potentially dangerous levels of microwave radiation. Microwaves are radio emissions of extremely high frequency. They can be hazardous but the degree of hazard is not yet well understood. Generally, it is believed that low intensity radiation of short duration is not harmful but that exposure to high levels can induce deep internal burns, affecting the circulatory and nervous systems, and particularly the eyes. The Department of Labor's Occupational Safety and Health Administration (OSHA) has established an allowable safe threshold of exposure. However, people working near high intensity sources of microwave energy-for example, radar antennas and television transmitters-may be unknowingly exposed to radiation levels beyond the safe limit. This poses not only a personal safety problem but also a problem for employers in terms of productivity loss, workman's compensation claims and possible liability litigation. Earlier-developed monitoring devices which warn personnel of dangerous radiation levels have their shortcomings. They can be cumbersome and awkward to use while working. They also require continual visual monitoring to determine if a person is in a dangerous area of radiation, and they are relatively expensive, another deterrent to their widespread adoption. In response to the need for a cheaper and more effective warning system, Jet Propulsion Laboratory developed, under NASA auspices, a new, battery-powered Microwave Radiation Hazard Detector. To bring the product to the commercial market, California Institute Research Foundation, the patent holder, granted an exclusive license to Cicoil Corporation, Chatsworth, California, an electronic components manufacturer.

  13. Application of a CdTe solid-state detector to polarization-dependent total-reflection fluorescence XAFS measurements

    International Nuclear Information System (INIS)

    A CdTe solid-state detector was applied to the measurement of polarization-dependent total-reflection fluorescence XAFS spectra. The data revealed that the detector has good sensitivity, and this, together with its compact size, make it appropriate for in-situ measurements and removal of X-ray Bragg diffraction. The detector efficiently recorded the high-energy K-edge XAFS spectra for molybdenum oxides supported on TiO2 (110). (au) 10 refs

  14. Monte Carlo simulation of the response functions of CdTe detectors to be applied in x-ray spectroscopy

    International Nuclear Information System (INIS)

    In this work, the energy response functions of a CdTe detector were obtained by Monte Carlo (MC) simulation in the energy range from 5 to 160 keV, using the PENELOPE code. In the response calculations the carrier transport features and the detector resolution were included. The computed energy response function was validated through comparison with experimental results obtained with 241Am and 152Eu sources. In order to investigate the influence of the correction by the detector response at diagnostic energy range, x-ray spectra were measured using a CdTe detector (model XR-100T, Amptek), and then corrected by the energy response of the detector using the stripping procedure. Results showed that the CdTe exhibits good energy response at low energies (below 40 keV), showing only small distortions on the measured spectra. For energies below about 80 keV, the contribution of the escape of Cd- and Te-K x-rays produce significant distortions on the measured x-ray spectra. For higher energies, the most important correction is the detector efficiency and the carrier trapping effects. The results showed that, after correction by the energy response, the measured spectra are in good agreement with those provided by a theoretical model of the literature. Finally, our results showed that the detailed knowledge of the response function and a proper correction procedure are fundamental for achieving more accurate spectra from which quality parameters (i.e., half-value layer and homogeneity coefficient) can be determined. - Highlights: • The response function of a CdTe detector was determined by Monte Carlo simulation. • The simulation takes into account all interaction process, the carrier transport and the Gaussian resolution. • The influence of different effects of spectral distortion was investigated. • CdTe detector was applied for x-ray spectroscopy. • The proper correction procedure is needed to achieve realistic x-ray spectra

  15. Development of new radiation detectors

    International Nuclear Information System (INIS)

    The works on the development of radiation detectors performed at Waseda University are described. As the fundamental studies on radiation detectors, measurement was made for the Z3 dependence of the power of metal targets to stop alpha particles or C-ions, the Fano factor in rare gas, the peak value of the energy given by fast charged particles to materials and its fluctuation, the W-value and the Fano factor of liquid rare gas, and the LET dependence of the luminescence efficiency of liquid rare gas by radiation. The development of liquid rare gas detectors has been made. The considered detector types were a pulse ionization chamber with grid (liquid Xe), a proportional luminescent counter (liquid Xe), an electromagnetic calorimeter (liquid Ar, liquid Xe), and a photo-ionization detector. The development of silicon detectors is also in progress. The silicon detectors under development are a silicon detector telescope for satellite experiment, a silicon shower detector for balloon experiment, and a micron strip silicon detector for synchrotron radiation or elementary particle experiment. The use of plastic track detectors for cosmic ray observation has been examined. The discrimination of isotopes by using a new plastic CR-39 was able to be done. The detectors for low level alpha and gamma spectroscopy have been investigated. For alpha particles, a pulse ionization chamber with a cylindrical grid has been used. For gamma-ray, a Compton-suppressed Ge(Li) detector has been used. (Kato, T.)

  16. Characterization inconsistencies in CdTe and CZT gamma-ray detectors

    International Nuclear Information System (INIS)

    In the past few years, significant developments in cadmium telluride (CdTe) and cadmium zinc telluride (CZT) semiconductor materials have taken place with respect to both quality and yield. Many of the more recent developments have occurred in the area of CZT crystal growth. This has resulted in an explosion of interest in the use of these materials in ambient temperature gamma-ray detectors. Most, if not all, of the manufacturers of CdTe and CZT have acquired government funding to continue research in development and applications, indicating the importance of these improvements in material quality. We have examined many detectors, along with the accompanying manufacturer's data, and it has become apparent that a clear standard does not exist by which each manufacturer characterizes the performance of their material. Result is a wide variety of performance claims that have no basis for comparison and normally cannot be readily reproduced. This paper first supports our observations and then proposes a standard that all manufacturers and users of these materials may use for characterization

  17. Optimization of a high-resolution collimator for a CdTe detector: Monte Carlo simulation studies

    International Nuclear Information System (INIS)

    Photon counting detectors using cadmium zinc telluride (CZT) or cadmium telluride (CdTe) have benefits compared to conventional scintillation detectors, and CZT and CdTe have advantageous physical characteristics for nuclear medicine imaging. Recently, many studies have been conducted using these materials to improve the sensitivity and the spatial resolution of the photon counting detector. By using a pixelated parallel-hole collimator, we may be able to improve the sensitivity and the spatial resolution. The purpose of this study was to optimize the design of a collimator to achieve excellent resolution and high sensitivity for a gamma camera system based on the CdTe detector. In this study we simulated a gamma camera system with a photon counting detector based on CdTe and evaluated the system's performance. We performed a simulation study of the PID 350 (Ajat Oy Ltd., Finland) CdTe detector by using a Geant4 Application for Tomographic Emission (GATE) simulation. This detector consists of small pixels (0.35 x 0.35 mm2). We designed two parallel-hole collimators with different shapes and verified their usefulness. One was the proposed pixelated parallel-hole collimator in which the hole size and the pixel size are the same, and the other was the hexagonal parallel-hole collimator, which had a hole size similar to that of the pixelated parallel-hole collimator. We evaluated the sensitivity, spatial resolution, and contrast resolution to determine which parallel-hole collimator was best for the PID 350 CdTe detector. The average sensitivity was 22.65% higher for the pixelated parallel-hole collimator than for the hexagonal parallel-hole collimator. Also, the pixelated parallel-hole collimator provided 10.7% better spatial resolution than the hexagonal parallel-hole collimator, and the contrast resolution was improved by 8.93%. These results reflect an improvement in sensitivity and spatial resolution, and indicate that the imaging performance of the pixelated

  18. Performance optimization of CdTe and CdZnTe detectors for γ-spectrometry

    International Nuclear Information System (INIS)

    This study deals with room-temperature gamma spectrometry with CdTe and CdZnTe semiconductor detectors. The aim was the improvement of energy resolution and detection efficiency. Some different phenomena have been investigated. Electronic noise knowledge has enabled us to optimize the design of filtering. Charge transport induces signal shape uncertainty and the processing circuit has been adapted in order to account for these variations. Study and simulation of electrical current induction process has permitted the development of a new Frisch-grid based detection structure. We have reached 3% energy resolutions at 122 keV without detection efficiency loss. Finally, the remaining limits of detector performances have been estimated by focusing on gamma interaction phenomena and material non-uniformity problems. (author)

  19. CdTe and CdZnTe crystals for room temperature gamma-ray detectors

    CERN Document Server

    Franc, J; Belas, E; Grill, R; Hlidek, P; Moravec, P; Bok, J B

    1999-01-01

    CdTe(Cl) detectors from CdTe single crystals, grown by the Bridgman method from Te-rich melt, were fabricated. The quality of the detectors was tested with sup 5 sup 7 Co and sup 2 sup 4 sup 1 Am sources. In the sup 5 sup 7 Co spectrum low noise is demonstrated by the presence of a 14 keV peak and good resolution approx 7 keV (FWHM) evident from the separation of 122 and 136 keV peaks. A review is given of the state-of-the-art properties of (CdZn)Te single crystals prepared for substrates in the Institute of Physics of Charles University. The quality of samples is tested by measurements of the diffusion length of minority carriers, from which the mobility-lifetime product is evaluated. (author)

  20. Radiation level detector

    International Nuclear Information System (INIS)

    The free surface of a fluid (e.g. molten steel) dense to particular ionising radiations and contained within a vessel (e.g. a casting mould) is monitored by a device which includes a radio active source (A) on oneside of the vessel and, on the other side, a detector head having a casing housing a photo-multiplier having a photo cathode coupled to a phosphor scintillator (B) of sufficient length to cover the predicted range of movement of the liquid free surface. (A) may be a point gamma source. (B) may be an activated organic crystal. The photomultiplier may operate at a constant voltage to provide linear high impedance output signals which are transformed to a low tension electric current. Low tension power supplied through a terminal is converted to high tension for the photomultiplier. (author)

  1. Development of a Schottky CdTe Medipix3RX hybrid photon counting detector with spatial and energy resolving capabilities

    Science.gov (United States)

    Gimenez, E. N.; Astromskas, V.; Horswell, I.; Omar, D.; Spiers, J.; Tartoni, N.

    2016-07-01

    A multichip CdTe-Medipix3RX detector system was developed in order to bring the advantages of photon-counting detectors to applications in the hard X-ray range of energies. The detector head consisted of 2×2 Medipix3RX ASICs bump-bonded to a 28 mm×28 mm e- collection Schottky contact CdTe sensor. Schottky CdTe sensors undergo performance degrading polarization which increases with temperature, flux and the longer the HV is applied. Keeping the temperature stable and periodically refreshing the high voltage bias supply was used to minimize the polarization and achieve a stable and reproducible detector response. This leads to good quality images and successful results on the energy resolving capabilities of the system.

  2. Radiation detectors: needs and prospects

    International Nuclear Information System (INIS)

    Important applications for x- and γ-ray spectroscopy are found in prospecting, materials characterization, environmental monitoring, the life sciences, and nuclear physics. The specific requirements vary for each application with varying degrees of emphasis on either spectrometer resolution, detection efficiency, or both. Since no one spectrometer is ideally suited to this wide range of needs, compromises are usually required. Gas and scintillation spectrometers have reached a level of maturity, and recent interest has concentrated on semiconductor spectrometers. Germanium detectors are showing continuing refinement and are the spectrometers of choice for high resolution applications. The new high-Z semiconductors, such as CdTe and HgI2, have shown steady improvement but are limited in both resolution and size and will likely be used only in applications which require their unique properties

  3. Radiation damage of germanium detectors

    Science.gov (United States)

    Pehl, R. H.

    1978-01-01

    Energetic particles can produce interstitial-vacancy pairs in a crystal by knocking the atoms from their normal positions. Detectors are unique among semiconductor devices in depending on very low concentrations of electrically active impurities, and also on efficient transport of holes and electrons over relatively large distances. Because the dense regions of damage produced by energetic particles may result in donors and/or acceptors, and also provide trapping sites for holes and electrons, detectors are very sensitive to radiation damage. In addition to these effects occurring within the detector, radiation may also change the characteristics of the exposed surfaces causing unpredictable effects on the detector leakage current. Radiation-induced surface degradation has rarely, if ever, been observed for germanium detectors. The possibility of minimizing hole trapping in charge collection by the use of a high-purity germanium coaxial detector configured with the p (+) contact on the coaxial periphery is discussed.

  4. Applications of CdTe detectors in x-ray imaging and metrology

    International Nuclear Information System (INIS)

    Operating as a photoconductor, the sensitivity and the impulse response of semi-insulating materials greatly depend on the excitation duration compared to electron and hole lifetimes. The characteristic of ohmic contact for these compounds is shortly discussed. Before developing picosecond measurements with integrated autocorrelation system, this paper explains high energy industrial tomographic application with large CdTe detectors (25x15x0.9 mm3) where spatial resolution, contrast and wide dynamic are the main criteria. The excitation is typically micros range. X-ray flash radiography with 10 ns burst, is in an intermediate time domain where excitation is similar to electron life-time in cadmium telluride. In laser fusion experiment the excitation is in the range of 50 ps and the authors develop for such high band devices photoconductive structures able to study very short x-ray emission. Thin polycrystalline MOCVD CdTe films with picosecond response is an alternative material suitable to perform optical correlation measurements of single shot pulses with a very large bandwidth (∼50 GHz)

  5. Photon counting X-ray imaging with CdTe pixel detectors based on XPAD2 circuit

    Science.gov (United States)

    Franchi, Romain; Glasser, Francis; Gasse, Adrien; Clemens, Jean-Claude

    2006-07-01

    A semiconductor hybrid pixel detector for photon counting X-ray imaging has been developed and tested under radiation. The sensor is based on recent uniform CdTe single crystal associated with XPAD 2 counting chip via innovative processes of interconnection. The building detector is 1 mm thick, with an area of 1 cm 2 and consists of 600 square pixels cells 330 μm side. The readout chip working in electron collection mode is capable of setting homogeneous threshold with only a dispersion of 730 e -. Maximum noise level has been evaluated around 15 keV. First experiments under X-rays demonstrate a very good efficiency of detection. Moreover, imaging system allows excellent linearity over a large-scale achieving count rate of 3×10 6 photons/s/mm 2. Spectrometric measurements point up the system potential in multi-energies applications by locating and resolving X-rays lines of 241Am and 57Co sources.

  6. Studies and development of a readout ASIC for pixelated CdTe detectors for space applications

    International Nuclear Information System (INIS)

    The work presented in this thesis is part of a project where a new instrument is developed: a camera for hard X-rays imaging spectroscopy. It is dedicated to fundamental research for observations in astrophysics, at wavelengths which can only be observed using space-borne instruments. In this domain the spectroscopic accuracy as well as the imaging details are of high importance. This work has been realized at CEA/IRFU (Institut de Recherche sur les lois Fondamentales de l'Univers), which has a long-standing and successful experience in instruments for high energy physics and space physics instrumentation. The objective of this thesis is the design of the readout electronics for a pixelated CdTe detector, suitable for a stacked assembly. The principal parameters of this integrated circuit are a very low noise for reaching a good accuracy in X-ray energy measurement, very low power consumption, a critical parameter in space-borne applications, and a small dead area for the full system combining the detector and the readout electronics. In this work I have studied the limits of these three parameters in order to optimize the circuit. In terms of the spectral resolution, two categories of noise had to be distinguished to determine the final performance. The first is the Fano noise limit, related to detector interaction statistics, which cannot be eliminated. The second is the electronic noise, also unavoidable; however it can be minimized through optimization of the detection chain. Within the detector, establishing a small pixel pitch of 300 μm reduces the input capacitance and the dark current. This limits the effects of the electronic noise. Also in order to limit the input capacitance the future camera is designed as a stacked assembly of the detector with the readout ASIC. This allows to reach extremely good input parameters seen by the readout electronics: a capacitance in range of 0.3 pF-1 pF and a dark current below 5 pA. In the frame of this thesis I have

  7. Study of the spectrometric performances of monolithic CdTe CdZnTe gamma ray detectors

    OpenAIRE

    Gros D'Aillon, Eric

    2005-01-01

    Pixelated monolithic CdTe / CdZnTe semiconductor gamma ray detectors are brought to replace scintillation detectors for medical applications, notably for single photon emission computed tomography (SPECT). In addition to compactness, they present better spectrometric performances: energy resolution, detection efficiency, and spatial resolution. Moreover, the photons depth of interaction in the crystal can be measured. This work aimed in studying experimentally and by simulation the correlatio...

  8. Experimental evaluation of a-Se and CdTe flat-panel x-ray detectors for digital radiography and fluoroscopy

    Science.gov (United States)

    Adachi, Susumu; Hori, Naoyuki; Sato, Kenji; Tokuda, Satoshi; Sato, Toshiyuki; Uehara, Kazuhiro; Izumi, Yoshihiro; Nagata, Hisashi; Yoshimura, Youji; Yamada, Satoshi

    2000-04-01

    Described are two types of direct-detection flat-panel X-ray detectors utilizing amorphous selenium (a-Se) and cadmium telluride (CdTe). The a-Se detector is fabricated using direct deposition onto a thin film transistor (TFT) substrate, whereas the CdTe detector is fabricated using a novel hybrid method, in which CdTe is pre-deposited onto a glass substrate and then connected to a TFT substrate. The detector array format is 512 X 512 with a pixel pitch of 150 micrometer. The imaging properties of both detectors have been evaluated with respect to X-ray sensitivity, lag, spatial resolution, and detective quantum efficiency (DQE). The modulation transfer functions (MTFs) measured at 1 lp/mm were 0.96 for a- Se and 0.65 for CdTe. The imaging lags after 33 ms were about 4% for a-Se and 22% for CdTe. The DQE values measured at zero spatial frequency were 0.75 for a-Se and 0.22 for CdTe. The results indicate that the a-Se and CdTe detectors have high potential as new digital X-ray imaging devices for both radiography and fluoroscopy.

  9. A pixellated γ-camera based on CdTe detectors clinical interests and performances

    Science.gov (United States)

    Chambron, J.; Arntz, Y.; Eclancher, B.; Scheiber, Ch; Siffert, P.; Hage Hali, M.; Regal, R.; Kazandjian, A.; Prat, V.; Thomas, S.; Warren, S.; Matz, R.; Jahnke, A.; Karman, M.; Pszota, A.; Nemeth, L.

    2000-07-01

    A mobile gamma camera dedicated to nuclear cardiology, based on a 15 cm×15 cm detection matrix of 2304 CdTe detector elements, 2.83 mm×2.83 mm×2 mm, has been developed with a European Community support to academic and industrial research centres. The intrinsic properties of the semiconductor crystals - low-ionisation energy, high-energy resolution, high attenuation coefficient - are potentially attractive to improve the γ-camera performances. But their use as γ detectors for medical imaging at high resolution requires production of high-grade materials and large quantities of sophisticated read-out electronics. The decision was taken to use CdTe rather than CdZnTe, because the manufacturer (Eurorad, France) has a large experience for producing high-grade materials, with a good homogeneity and stability and whose transport properties, characterised by the mobility-lifetime product, are at least 5 times greater than that of CdZnTe. The detector matrix is divided in 9 square units, each unit is composed of 256 detectors shared in 16 modules. Each module consists in a thin ceramic plate holding a line of 16 detectors, in four groups of four for an easy replacement, and holding a special 16 channels integrated circuit designed by CLRC (UK). A detection and acquisition logic based on a DSP card and a PC has been programmed by Eurorad for spectral and counting acquisition modes. Collimators LEAP and LEHR from commercial design, mobile gantry and clinical software were provided by Siemens (Germany). The γ-camera head housing, its general mounting and the electric connections were performed by Phase Laboratory (CNRS, France). The compactness of the γ-camera head, thin detectors matrix, electronic readout and collimator, facilitates the detection of close γ sources with the advantage of a high spatial resolution. Such an equipment is intended to bedside explorations. There is a growing clinical requirement in nuclear cardiology to early assess the extent of an

  10. A pixellated γ-camera based on CdTe detectors clinical interests and performances

    International Nuclear Information System (INIS)

    A mobile gamma camera dedicated to nuclear cardiology, based on a 15 cmx15 cm detection matrix of 2304 CdTe detector elements, 2.83 mmx2.83 mmx2 mm, has been developed with a European Community support to academic and industrial research centres. The intrinsic properties of the semiconductor crystals - low-ionisation energy, high-energy resolution, high attenuation coefficient - are potentially attractive to improve the γ-camera performances. But their use as γ detectors for medical imaging at high resolution requires production of high-grade materials and large quantities of sophisticated read-out electronics. The decision was taken to use CdTe rather than CdZnTe, because the manufacturer (Eurorad, France) has a large experience for producing high-grade materials, with a good homogeneity and stability and whose transport properties, characterised by the mobility-lifetime product, are at least 5 times greater than that of CdZnTe. The detector matrix is divided in 9 square units, each unit is composed of 256 detectors shared in 16 modules. Each module consists in a thin ceramic plate holding a line of 16 detectors, in four groups of four for an easy replacement, and holding a special 16 channels integrated circuit designed by CLRC (UK). A detection and acquisition logic based on a DSP card and a PC has been programmed by Eurorad for spectral and counting acquisition modes. Collimators LEAP and LEHR from commercial design, mobile gantry and clinical software were provided by Siemens (Germany). The γ-camera head housing, its general mounting and the electric connections were performed by Phase Laboratory (CNRS, France). The compactness of the γ-camera head, thin detectors matrix, electronic readout and collimator, facilitates the detection of close γ sources with the advantage of a high spatial resolution. Such an equipment is intended to bedside explorations. There is a growing clinical requirement in nuclear cardiology to early assess the extent of an infarct

  11. CdTe Focal Plane Detector for Hard X-Ray Focusing Optics

    Science.gov (United States)

    Seller, Paul; Wilson, Matthew D.; Veale, Matthew C.; Schneider, Andreas; Gaskin, Jessica; Wilson-Hodge, Colleen; Christe, Steven; Shih, Albert Y.; Inglis, Andrew; Panessa, Marco

    2015-01-01

    The demand for higher resolution x-ray optics (a few arcseconds or better) in the areas of astrophysics and solar science has, in turn, driven the development of complementary detectors. These detectors should have fine pixels, necessary to appropriately oversample the optics at a given focal length, and an energy response also matched to that of the optics. Rutherford Appleton Laboratory have developed a 3-side buttable, 20 millimeter x 20 millimeter CdTe-based detector with 250 micrometer square pixels (80 x 80 pixels) which achieves 1 kiloelectronvolt FWHM (Full-Width Half-Maximum) @ 60 kiloelectronvolts and gives full spectroscopy between 5 kiloelectronvolts and 200 kiloelectronvolts. An added advantage of these detectors is that they have a full-frame readout rate of 10 kilohertz. Working with NASA Goddard Space Flight Center and Marshall Space Flight Center, 4 of these 1 millimeter-thick CdTe detectors are tiled into a 2 x 2 array for use at the focal plane of a balloon-borne hard-x-ray telescope, and a similar configuration could be suitable for astrophysics and solar space-based missions. This effort encompasses the fabrication and testing of flight-suitable front-end electronics and calibration of the assembled detector arrays. We explain the operation of the pixelated ASIC readout and measurements, front-end electronics development, preliminary X-ray imaging and spectral performance, and plans for full calibration of the detector assemblies. Work done in conjunction with the NASA Centers is funded through the NASA Science Mission Directorate Astrophysics Research and Analysis Program.

  12. Efficiency spectrum of a CdTe X- and γ-ray detector with a Schottky diode

    International Nuclear Information System (INIS)

    A study on the efficiency spectrum of CdTe X- and γ-ray detectors utilizing Schottky diodes for different material parameters and diode structures is reported. Special attention is paid to the effect of deep levels and compensation on space-charge region width. It is shown that charge collection in the neutral region of the detector considerably contributes to the device efficiency. Calculations also show that the efficiency of a stacked detector can be higher than that of a bulk detector with ohmic contacts. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Photo-responsivity characterizations of CdTe films for direct-conversion X-ray detectors

    International Nuclear Information System (INIS)

    We have fabricated and investigated thin, polycrystalline, cadmium-telluride (CdTe) films in order to utilize them for optical switching readout layers in direct-conversion X-ray detectors. The polycrystalline CdTe films are fabricated on ITO glasses by using the physical vapor deposition (PVD) method at a slow deposition rate and a pressure of 10-6 torr. CdTe films with thicknesses of 5 and 20 μm are grown. The electrical and the optical characteristics of the CdTe films are investigated by measuring the dark-current and the photo-current as functions of the applied field under different wavelengths of light. Higher photo-currents are generated at the longer wavelengths of light for the same applied voltage. When a higher electrical field is applied to the 20 μm-thick CdTe film, a higher dark-current, a higher photo-current, a larger number of charges, and a higher quantum efficiency are generated.

  14. Simple dynamic electromagnetic radiation detector

    Science.gov (United States)

    Been, J. F.

    1972-01-01

    Detector monitors gamma dose rate at particular position in a radiation facility where a mixed neutron-gamma environment exists, thus determining reactor power level changes. Device also maps gamma intensity profile across a neutron-gamma beam.

  15. Radiation hard cryogenic silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Casagrande, L. E-mail: luca.casagrande@cern.ch; Abreu, M.C.; Bell, W.H.; Berglund, P.; Boer, W. de; Borchi, E.; Borer, K.; Bruzzi, M.; Buontempo, S.; Chapuy, S.; Cindro, V.; Collins, P.; D' Ambrosio, N.; Da Via, C.; Devine, S.; Dezillie, B.; Dimcovski, Z.; Eremin, V.; Esposito, A.; Granata, V.; Grigoriev, E.; Hauler, F.; Heijne, E.; Heising, S.; Janos, S.; Jungermann, L.; Konorov, I.; Li, Z.; Lourenco, C.; Mikuz, M.; Niinikoski, T.O.; O' Shea, V.; Pagano, S.; Palmieuri, V.G.; Paul, S.; Pirollo, S.; Pretzl, K.; Rato, P.; Ruggiero, G.; Smith, K.; Sonderegger, P.; Sousa, P.; Verbitskaya, E.; Watts, S.; Zavrtanik, M

    2002-01-21

    It has been recently observed that heavily irradiated silicon detectors, no longer functional at room temperature, 'resuscitate' when operated at temperatures below 130 K. This is often referred to as the 'Lazarus effect'. The results presented here show that cryogenic operation represents a new and reliable solution to the problem of radiation tolerance of silicon detectors.

  16. Vapor transport deposition of large-area polycrystalline CdTe for radiation image sensor application

    International Nuclear Information System (INIS)

    Vapor transport deposition (VTD) process delivers saturated vapor to substrate, resulting in high-throughput and scalable process. In addition, VTD can maintain lower substrate temperature than close-spaced sublimation (CSS). The motivation of this work is to adopt several advantages of VTD for radiation image sensor application. Polycrystalline CdTe films were obtained on 300 mm x 300 mm indium tin oxide (ITO) coated glass. The polycrystalline CdTe film has columnar structure with average grain size of 3 μm ∝ 9 μm, which can be controlled by changing the substrate temperature. In order to analyze electrical and X-ray characteristics, ITO-CdTe-Al sandwich structured device was fabricated. Effective resistivity of the polycrystalline CdTe film was ∝1.4 x 109Ωcm. The device was operated under hole-collection mode. The responsivity and the μτ product estimated to be 6.8 μC/cm2R and 5.5 x 10-7 cm2/V. The VTD can be a process of choice for monolithic integration of CdTe thick film for radiation image sensor and CMOS/TFT circuitry. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Radiation Hardening of Silicon Detectors

    CERN Multimedia

    Leroy, C; Glaser, M

    2002-01-01

    %RD48 %title\\\\ \\\\Silicon detectors will be widely used in experiments at the CERN Large Hadron Collider where high radiation levels will cause significant bulk damage. In addition to increased leakage current and charge collection losses worsening the signal to noise, the induced radiation damage changes the effective doping concentration and represents the limiting factor to long term operation of silicon detectors. The objectives are to develop radiation hard silicon detectors that can operate beyond the limits of the present devices and that ensure guaranteed operation for the whole lifetime of the LHC experimental programme. Radiation induced defect modelling and experimental results show that the silicon radiation hardness depends on the atomic impurities present in the initial monocrystalline material.\\\\ \\\\ Float zone (FZ) silicon materials with addition of oxygen, carbon, nitrogen, germanium and tin were produced as well as epitaxial silicon materials with epilayers up to 200 $\\mu$m thickness. Their im...

  18. Nuclear radiation detector

    International Nuclear Information System (INIS)

    The present invention concerns a nuclear detector for neutrons and gamma rays. They are generally self quenching. They come back to initial state after the traversal of the particle which has triggered a detection. The detectors which deliver the higher charges are those which work in the regime of Geiger-Mueller. However, one does not know in the present state of the technique a gas detector which is sensitive to neutrons working in the Geiger-Mueller regime, self quenching and sensitive to neutrons and γ rays. The aim of the present invention is to overcome these difficulties

  19. CdTe and CdZnTe gamma ray detectors for medical and industrial imaging systems

    CERN Document Server

    Eisen, Y; Mardor, I

    1999-01-01

    CdTe and CdZnTe X-ray and gamma ray detectors in the form of single elements or as segmented monolithic detectors have been shown to be useful in medical and industrial imaging systems. These detectors possess inherently better energy resolution than scintillators coupled to either photodiodes or photomultipliers, and together with application specific integrated circuits they lead to compact imaging systems of enhanced spatial resolution and better contrast resolution. Photopeak efficiencies of these detectors is greatly affected by a relatively low hole mobility-lifetime product. Utilizing these detectors as highly efficient good spectrometers, demands use of techniques to improve their charge collection properties, i.e., correct for variations in charge losses at different depths of interaction in the detector. The corrections for the large hole trapping are made either by applying electronic techniques or by fabricating detector or electrical contacts configurations which differ from the commonly used pla...

  20. Department of Radiation Detectors - Overview

    International Nuclear Information System (INIS)

    Work carried out in 1996 in the Department of Radiation Detectors concentrated on three subjects: (i) Semiconductor Detectors (ii) X-ray Tube Generators (iii) Material Modification Using Ion and Plasma Beams. The Departamental objectives are: a search for new types of detectors, adapting modern technologies (especially of industrial microelectronics) to detector manufacturing, producing unique detectors tailored for physics experiments, manufacturing standard detectors for radiation measuring instruments. These objectives were accomplished in 1996 by: research on unique detectors for nuclear physics (e.g. a spherical set of particle detectors silicon ball), detectors for particle identification), development of technology of high-resistivity silicon detectors HRSi (grant proposal), development of thermoelectric cooling systems (grant proposal), research on p-i-n photodiode-based personal dosimeters, study of applicability of industrial planar technology in producing detectors, manufacturing detectors developed in previous years, re-generating and servicing customer detectors of various origin. The Department conducts research on the design and technology involved in producing X-ray generators based on X-ray tubes of special construction. Various tube models and their power supplies were developed. Some work has also been devoted to the detection and dosimetry of X-rays. X-ray tube generators are applied to non-destructive testing and are components of analytical systems such as: X-ray fluorescence chemical composition analysis, gauges of layer thickness and composition stress measurements, on-line control of processes, others where an X-ray tube may replace a radio-isotope source. In 1996, the Department: reviewed the domestic demand for X-ray generators, developed an X-ray generator for diagnosis of ostheroporosis of human limbs, prepared a grant proposal for the development of a new instrument for radiotherapy, the so-called needle-like X-ray tube. (author)

  1. Development of a modular CdTe detector plane for gamma-ray burst detection below 100 keV

    CERN Document Server

    Ehanno, M; Barret, D; Lacombe, K; Pons, R; Rouaix, G; Gevin, O; Limousin, O; Lugiez, F; Bardoux, A; Penquer, A

    2007-01-01

    We report on the development of an innovative CdTe detector plane (DPIX) optimized for the detection and localization of gamma-ray bursts in the X-ray band (below 100 keV). DPIX is part of an R&D program funded by the French Space Agency (CNES). DPIX builds upon the heritage of the ISGRI instrument, currently operating with great success on the ESA INTEGRAL mission. DPIX is an assembly of 200 elementary modules (XRDPIX) equipped with 32 CdTe Schottky detectors (4x4 mm2, 1 mm thickness) produced by ACRORAD Co. LTD. in Japan. These detectors offer good energy response up to 100 keV. Each XRDPIX is readout by the very low noise front-end electronics chip IDeF-X, currently under development at CEA/DSM/DAPNIA. In this paper, we describe the design of XRDPIX, the main features of the IDeF-X chip, and will present preliminary results of the reading out of one CdTe Schottky detector by the IDeF-X V1.0 chip. A low-energy threshold around 2.7 keV has been measured. This is to be compared with the 12-15 keV threshol...

  2. A 10 cm × 10 cm CdTe Spectroscopic Imaging Detector based on the HEXITEC ASIC

    International Nuclear Information System (INIS)

    The 250 μ m pitch 80x80 pixel HEXITEC detector systems have shown that spectroscopic imaging with an energy resolution of <1 keV FWHM per pixel can be readily achieved in the range of 5–200 keV with Al-pixel CdTe biased to −500 V. This level of spectroscopic imaging has a variety of applications but the ability to produce large area detectors remains a barrier to the adoption of this technology. The limited size of ASICs and defect free CdTe wafers dictates that building large area monolithic detectors is not presently a viable option. A 3-side buttable detector module has been developed to cover large areas with arrays of smaller detectors. The detector modules are 20.35 × 20.45 mm with CdTe bump bonded to the HEXITEC ASIC with coverage up to the edge of the module on three sides. The fourth side has a space of 3 mm to allow I/O wire bonds to be made between the ASIC and the edge of a PCB that routes the signals to a connector underneath the active area of the module. The detector modules have been assembled in rows of five modules with a dead space of 170 μ m between each module. Five rows of modules have been assembled in a staggered height array where the wire bonds of one row of modules are covered by the active detector area of a neighboring row. A data acquisition system has been developed to digitise, store and output the 24 Gbit/s data that is generated by the array. The maximum bias magnitude that could be applied to the CdTe detectors from the common voltage source was limited by the worst performing detector module. In this array of detectors a bias of −400 V was used and the detector modules had 93 % of pixels with better than 1.2 keV FWHM at 59.5 keV. An example of K-edge enhanced imaging for mammography was demonstrated. Subtracting images from the events directly above and below the K-edge of the Iodine contrast agent was able to extract the Iodine information from the image of a breast phantom and improve the contrast of the images

  3. CdZnTe and CdTe detector arrays for hard X-ray and gamma-ray astronomy

    International Nuclear Information System (INIS)

    A variety of CdZnTe and CdTe detector arrays were fabricated at NASA/GSFC for use in hard X-ray and gamma-ray astronomy. Mosaic, pixel, and 3-D position-sensitive detector arrays were built to demonstrate the capabilities for high-resolution imaging and spectroscopy for 10 to 2 MeV. This paper will summarize the different arrays and their applications for instruments being developed at NASA/GSFC. Specific topics to be addressed include materials characterization, fabrication of detectors, ASIC readout electronics, and imaging and spectroscopy tests

  4. CdZnTe and CdTe detector arrays for hard X-ray and gamma-ray astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Stahle, C.M. E-mail: carl.stahle@gsfc.nasa.gov; Parker, B.H.; Parsons, A.M.; Barbier, L.M.; Barthelmy, S.D.; Gehrels, N.A.; Palmer, D.M.; Snodgrass, S.J.; Tueller, J

    1999-10-21

    A variety of CdZnTe and CdTe detector arrays were fabricated at NASA/GSFC for use in hard X-ray and gamma-ray astronomy. Mosaic, pixel, and 3-D position-sensitive detector arrays were built to demonstrate the capabilities for high-resolution imaging and spectroscopy for 10 to 2 MeV. This paper will summarize the different arrays and their applications for instruments being developed at NASA/GSFC. Specific topics to be addressed include materials characterization, fabrication of detectors, ASIC readout electronics, and imaging and spectroscopy tests.

  5. Semiconductor radiation detectors. Device physics

    International Nuclear Information System (INIS)

    Starting from basic principles, the author, whose own contributions to these developments have been significant, describes the rapidly growing field of modern semiconductor detectors used for energy and position measurement radiation. This development was stimulated by requirements in elementary particle physics where it has led to important scientific discoveries. It has now spread to many other fields of science and technology. The book is written in a didactic way and includes an introduction to semiconductor physics. The working principles of semiconductor radiation detectors are explained in an intuitive way, followed by formal quantitative analysis. Broad coverage is also given to electronic signal readout and to the subject of radiation damage. The book is the first to comprehensively cover the semiconductor radiation detectors currently in use. It is useful as a teaching guide and as a reference work for research and applications. (orig.)

  6. Comparative study for small computer supported clearance determination with 131iodine hippuran using CdTe detectors

    International Nuclear Information System (INIS)

    With the goal to work out a simple, non-invasive method for the total clearance determination also for immobile patients, we carried out this clearance study with CdTe semi-conductor detectors. The 131iodine hippuran clearance determination was carried out on 69 patients in the nuclear medicine department of the Radiological Policlinic in the framework of a routine diagnosis with ambulant and stationary patients with a gamma camera and a connecting evaluation system. At the same time we recorded the shoulder curves using two CdTe semi-conductor detectors and deposited the data in a portable semi-conductor memory. Next the hypotheses for the routine use with the inclusion of commercially common small computers was worked out. The plasma disappearance curves which were recorded over the shoulder region were evaluated with a small computer according to the method of the modified Oberhausen tables and the Oberhausen formula. (orig./DG)

  7. 49 CFR 173.310 - Exceptions for radiation detectors.

    Science.gov (United States)

    2010-10-01

    ... for radiation detectors. Radiation detectors, radiation sensors, electron tube devices, or ionization...) Radiation detectors must be single-trip, hermetically sealed, welded metal inside containers that will...

  8. Charge collection efficiency and space charge formation in CdTe gamma and X-ray detectors

    International Nuclear Information System (INIS)

    A new extended model for the charge collection efficiency in CdTe gamma and X ray detectors is presented which allows to derive from apparent experimental gamma spectra of a quasi-monochromatic source, an 241Am source in the present case, not only the μτ products of electrons and holes individually but also the sign, spatial distribution, and temporal evolution of the net space charge accumulated in the detector. Resistive CdTe and CdZnTe as well as CdTe Schottky detectors are studied. While the resistive type is stable in time and exhibits higher μτ products, the Schottky type shows space charge accumulation which approaches saturation after about 1 h at several 1011 cm-3. This is attributed to efficient majority carrier depletion, Fermi level shift, and trap filling. Resistive detectors thus appear optimized to the needs of gamma spectroscopy even at low bias voltage, while Schottky types need higher bias to overcome the space charge. They are suited to both, gamma spectroscopy and X-ray detection in analog current mode, where they operate more stably due to the higher bias. From the point of view of materials characterization, gamma spectroscopy with Schottky detectors probes and reveals the trap density near the Fermi level (several 1012 cm-3 eV-1). We find a basically homogeneous spatial distribution suggesting the trap origin being in crystal growth rather than surface processing. Capture of photogenerated charges in traps is detrimental for current-mode operation under high X-ray flux because delayed emission from traps limits the detector''s ability to respond to fast signal changes. (orig.)

  9. Broadband optical radiation detector

    Science.gov (United States)

    Gupta, A.; Hong, S. D.; Moacanin, J. (Inventor)

    1981-01-01

    A method and apparatus for detecting optical radiation by optically monitoring temperature changes in a microvolume caused by absorption of the optical radiation to be detected is described. More specifically, a thermal lens forming material is provided which has first and second opposite, substantially parallel surfaces. A reflective coating is formed on the first surface, and a radiation absorbing coating is formed on the reflective coating. Chopped, incoming optical radiation to be detected is directed to irradiate a small portion of the radiation absorbing coating. Heat generated in this small area is conducted to the lens forming material through the reflective coating, thereby raising the temperature of a small portion of the lens forming material and causing a thermal lens to be formed therein.

  10. Characterization measurement of a thick CdTe detector for BNCT-SPECT – Detection efficiency and energy resolution

    International Nuclear Information System (INIS)

    Author's group is carrying out development of BNCT-SPECT with CdTe device, which monitors the therapy effect of BNCT in real-time. From the design calculations, the dimensions were fixed to 1.5×2×30 mm3. For the collimator it was confirmed that it would have a good spatial resolution and simultaneously the number of counts would be acceptably large. After producing the CdTe crystal, the characterization measurement was carried out. For the detection efficiency an excellent agreement between calculation and measurement was obtained. Also, the detector has a very good energy resolution so that gamma-rays of 478 keV and 511 keV could be distinguished in the spectrum. - Highlights: • BNCT-SPECT is developed with CdTe device to estimate therapy effect of BNCT. • By design calculations, CdTe dimensions are determined to be 1.5×2×30 mm3. Collimator length is 10 cm with 2 mm diameter hole. • Producing the crystal, efficiency and energy resolution were measured. • Excellent agreement was obtained between measurement and calculation. Discrimination of 478 keV and 511 keV was confirmed in the spectrum

  11. Portable Radiation Detectors

    Science.gov (United States)

    1997-01-01

    Through a Small Business Innovation Research (SBIR) contract from Kennedy Space Center, General Pneumatics Corporation's Western Research Center satisfied a NASA need for a non-clogging Joule-Thomson cryostat to provide very low temperature cooling for various sensors. This NASA-supported cryostat development played a key part in the development of more portable high-purity geranium gamma-ray detectors. Such are necessary to discern between the radionuclides in medical, fuel, weapon, and waste materials. The outcome of the SBIR project is a cryostat that can cool gamma-ray detectors, without vibration, using compressed gas that can be stored compactly and indefinitely in a standby mode. General Pneumatics also produces custom J-T cryostats for other government, commercial and medical applications.

  12. CdTe and CdZnTe gamma ray detectors for medical and industrial imaging systems

    International Nuclear Information System (INIS)

    CdTe and CdZnTe X-ray and gamma ray detectors in the form of single elements or as segmented monolithic detectors have been shown to be useful in medical and industrial imaging systems. These detectors possess inherently better energy resolution than scintillators coupled to either photodiodes or photomultipliers, and together with application specific integrated circuits they lead to compact imaging systems of enhanced spatial resolution and better contrast resolution. Photopeak efficiencies of these detectors is greatly affected by a relatively low hole mobility-lifetime product. Utilizing these detectors as highly efficient good spectrometers, demands use of techniques to improve their charge collection properties, i.e., correct for variations in charge losses at different depths of interaction in the detector. The corrections for the large hole trapping are made either by applying electronic techniques or by fabricating detector or electrical contacts configurations which differ from the commonly used planar detectors. The following review paper is divided into three parts: The first part discusses detector contact configurations for enhancing photopeak efficiencies and the single carrier collection approach which leads to improved energy resolutions and photopeak efficiencies at high gamma ray energies. The second part demonstrates excellent spectroscopic results using thick CdZnTe segmented monolithic pad and strip detectors showing energy resolutions less than 2% FWHM at 356 keV gamma rays. The third part discusses advantages and disadvantages of CdTe and CdZnTe detectors in imaging systems and describes new developments for medical diagnostics imaging systems

  13. CdTe and CdZnTe gamma ray detectors for medical and industrial imaging systems

    Science.gov (United States)

    Eisen, Y.; Shor, A.; Mardor, I.

    1999-06-01

    CdTe and CdZnTe X-ray and gamma ray detectors in the form of single elements or as segmented monolithic detectors have been shown to be useful in medical and industrial imaging systems. These detectors possess inherently better energy resolution than scintillators coupled to either photodiodes or photomultipliers, and together with application specific integrated circuits they lead to compact imaging systems of enhanced spatial resolution and better contrast resolution. Photopeak efficiencies of these detectors is greatly affected by a relatively low hole mobility-lifetime product. Utilizing these detectors as highly efficient good spectrometers, demands use of techniques to improve their charge collection properties, i.e., correct for variations in charge losses at different depths of interaction in the detector. The corrections for the large hole trapping are made either by applying electronic techniques or by fabricating detector or electrical contacts configurations which differ from the commonly used planar detectors. The following review paper is divided into three parts: The first part discusses detector contact configurations for enhancing photopeak efficiencies and the single carrier collection approach which leads to improved energy resolutions and photopeak efficiencies at high gamma ray energies. The second part demonstrates excellent spectroscopic results using thick CdZnTe segmented monolithic pad and strip detectors showing energy resolutions less than 2% FWHM at 356 keV gamma rays. The third part discusses advantages and disadvantages of CdTe and CdZnTe detectors in imaging systems and describes new developments for medical diagnostics imaging systems.

  14. Monte Carlo simulation of the response functions of CdTe detectors to be applied in x-ray spectroscopy.

    Science.gov (United States)

    Tomal, A; Santos, J C; Costa, P R; Lopez Gonzales, A H; Poletti, M E

    2015-06-01

    In this work, the energy response functions of a CdTe detector were obtained by Monte Carlo (MC) simulation in the energy range from 5 to 160keV, using the PENELOPE code. In the response calculations the carrier transport features and the detector resolution were included. The computed energy response function was validated through comparison with experimental results obtained with (241)Am and (152)Eu sources. In order to investigate the influence of the correction by the detector response at diagnostic energy range, x-ray spectra were measured using a CdTe detector (model XR-100T, Amptek), and then corrected by the energy response of the detector using the stripping procedure. Results showed that the CdTe exhibits good energy response at low energies (below 40keV), showing only small distortions on the measured spectra. For energies below about 80keV, the contribution of the escape of Cd- and Te-K x-rays produce significant distortions on the measured x-ray spectra. For higher energies, the most important correction is the detector efficiency and the carrier trapping effects. The results showed that, after correction by the energy response, the measured spectra are in good agreement with those provided by a theoretical model of the literature. Finally, our results showed that the detailed knowledge of the response function and a proper correction procedure are fundamental for achieving more accurate spectra from which quality parameters (i.e., half-value layer and homogeneity coefficient) can be determined. PMID:25599872

  15. Charge collection efficiency and space charge formation in CdTe gamma and X-ray detectors

    Science.gov (United States)

    Matz, R.; Weidner, M.

    1998-02-01

    A new extended model for the charge collection efficiency in CdTe gamma and X ray detectors is presented which allows to derive from apparent experimental gamma spectra of a quasi-monochromatic source, an 241Am source in the present case, not only the μρ products of electrons and holes individually but also the sign, spatial distribution, and temporal evolution of the net space charge accumulated in the detector. Resistive CdTe and CdZnTe as well as CdTe Schottky detectors are studied. While the resistive type is stable in time and exhibits higher μτ products, the Schottky type shows space charge accumulation which approaches saturation after about 1 h at several 10 11 cm -3. This is attributed to efficient majority carrier depletion, Fermi level shift, and trap filling. Resistive detectors thus appear optimized to the needs of gamma spectroscopy even at low bias voltage, while Schottky types need higher bias to overcome the space charge. They are suited to both, gamma spectroscopy and X-ray detection in analog current mode, where they operate more stably due ρo the higher bias. From the point of view of materials characterization, gamma spectroscopy with Schottky detectors probes and reveals the trap density near the Fermi level (several 10 12 cm -3 eV -1). We find a basically homogeneous spatial distribution suggesting the trap origin being in crystal growth rather than surface processing. Capture of photogenerated charges in traps is detrimental for current-mode operation under high X-ray flux because delayed emission from traps limits the detector's ability to respond to fast signal changes.

  16. Surprising radiation detectors

    CERN Document Server

    Fleischer, Robert

    2003-01-01

    Radiation doses received by the human body can be measured indirectly and retrospectively by counting the tracks left by particles in ordinary objects like pair of spectacles, glassware, compact disks...This method has been successfully applied to determine neutron radiation doses received 50 years ago on the Hiroshima site. Neutrons themselves do not leave tracks in bulk matter but glass contains atoms of uranium that may fission when hurt by a neutron, the recoil of the fission fragments generates a track that is detectable. The most difficult is to find adequate glass items and to evaluate the radiation shield they benefited at their initial place. The same method has been used to determine the radiation dose due to the pile-up of radon in houses. In that case the tracks left by alpha particles due to the radioactive decay of polonium-210 have been counted on the superficial layer of the window panes. Other materials like polycarbonate plastics have been used to determine the radiation dose due to heavy io...

  17. Advanced Space Radiation Detector Technology Development

    Science.gov (United States)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at the NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  18. Flexible composite radiation detector

    Science.gov (United States)

    Cooke, D. Wayne; Bennett, Bryan L.; Muenchausen, Ross E.; Wrobleski, Debra A.; Orler, Edward B.

    2006-12-05

    A flexible composite scintillator was prepared by mixing fast, bright, dense rare-earth doped powdered oxyorthosilicate (such as LSO:Ce, LSO:Sm, and GSO:Ce) scintillator with a polymer binder. The binder is transparent to the scintillator emission. The composite is seamless and can be made large and in a wide variety of shapes. Importantly, the composite can be tailored to emit light in a spectral region that matches the optimum response of photomultipliers (about 400 nanometers) or photodiodes (about 600 nanometers), which maximizes the overall detector efficiency.

  19. Advanced Radiation Detector Development

    International Nuclear Information System (INIS)

    Since our last progress report, the project at The University of Michigan has continued to concentrate on the development of gamma ray spectrometers fabricated from cadmium zinc telluride (CZT). This material is capable of providing energy resolution that is superior to that of scintillation detectors, while avoiding the necessity for cooling associated with germanium systems. In our past reports, we have described one approach (the coplanar grid electrode) that we have used to partially overcome some of the major limitations on charge collection that is found in samples of CZT. This approach largely eliminates the effect of hole motion in the formation of the output signal, and therefore leads to pulses that depend only on the motion of a single carrier (electrons). Since electrons move much more readily through CZT than do holes, much better energy resolution can be achieved under these conditions. In our past reports, we have described a 1 cm cube CZT spectrometer fitted with coplanar grids that achieved an energy resolution of 1.8% from the entire volume of the crystal. This still represents, to our knowledge, the best energy resolution ever demonstrated in a CZT detector of this size

  20. Radiation detector device for measuring ionizing radiation

    International Nuclear Information System (INIS)

    The device contains a compensating filter circuit, which guarantees measurement of the radiation dose independent of the energy or independent of the energy and direction. The compensating filter circuit contains a carrier tube of a slightly absorbing metal with an order number not higher than 35, which surrounds a tubular detector and which carries several annular filter parts on its surface. (orig./HP)

  1. K-edge imaging with the XPAD3 hybrid pixel detector, direct comparison of CdTe and Si sensors

    International Nuclear Information System (INIS)

    We investigate the improvement from the use of high-Z CdTe sensors for pre-clinical K-edge imaging with the hybrid pixel detectors XPAD3. We compare XPAD3 chips bump bonded to Si or CdTe sensors in identical experimental conditions. Image performance for narrow energy bin acquisitions and contrast-to-noise ratios of K-edge images are presented and compared. CdTe sensors achieve signal-to-noise ratios at least three times higher than Si sensors within narrow energy bins, thanks to their much higher detection efficiency. Nevertheless Si sensors provide better contrast-to-noise ratios in K-edge imaging when working at equivalent counting statistics, due to their better estimation of the attenuation coefficient of the contrast agent. Results are compared to simulated data in the case of the XPAD3/Si detector. Good agreement is observed when including charge sharing between pixels, which have a strong impact on contrast-to-noise ratios in K-edge images. (paper)

  2. K-edge imaging with the XPAD3 hybrid pixel detector, direct comparison of CdTe and Si sensors

    Science.gov (United States)

    Cassol, F.; Portal, L.; Graber-Bolis, J.; Perez-Ponce, H.; Dupont, M.; Kronland, C.; Boursier, Y.; Blanc, N.; Bompard, F.; Boudet, N.; Buton, C.; Clémens, J. C.; Dawiec, A.; Debarbieux, F.; Delpierre, P.; Hustache, S.; Vigeolas, E.; Morel, C.

    2015-07-01

    We investigate the improvement from the use of high-Z CdTe sensors for pre-clinical K-edge imaging with the hybrid pixel detectors XPAD3. We compare XPAD3 chips bump bonded to Si or CdTe sensors in identical experimental conditions. Image performance for narrow energy bin acquisitions and contrast-to-noise ratios of K-edge images are presented and compared. CdTe sensors achieve signal-to-noise ratios at least three times higher than Si sensors within narrow energy bins, thanks to their much higher detection efficiency. Nevertheless Si sensors provide better contrast-to-noise ratios in K-edge imaging when working at equivalent counting statistics, due to their better estimation of the attenuation coefficient of the contrast agent. Results are compared to simulated data in the case of the XPAD3/Si detector. Good agreement is observed when including charge sharing between pixels, which have a strong impact on contrast-to-noise ratios in K-edge images.

  3. Estimation of mammary gland composition using CdTe series detector developed for photon-counting mammography

    Science.gov (United States)

    Ihori, Akiko; Okamoto, Chizuru; Yamakawa, Tsutomu; Yamamoto, Shuichiro; Okada, Masahiro; Nakajima, Ai; Kato, Misa; Kodera, Yoshie

    2016-03-01

    Energy resolved photon-counting mammography is a new technology, which counts the number of photons that passes through an object, and presents it as a pixel value in an image of the object. Silicon semiconductor detectors are currently used in commercial mammography. However, the disadvantage of silicon is the low absorption efficiency for high X-ray energies. A cadmium telluride (CdTe) series detector has a high absorption efficiency over a wide energy range. In this study, we proposed a method to estimate the composition of the mammary gland using a CdTe series detector as a photon-counting detector. The fact that the detection rate of breast cancer in mammography is affected by mammary gland composition is now widely accepted. Assessment of composition of the mammary gland has important implications. An important advantage of our proposed technique is its ability to discriminate photons using three energy bins. We designed the CdTe series detector system using the MATLAB simulation software. The phantom contains nine regions with the ratio of glandular tissue and adipose varying in increments of 10%. The attenuation coefficient for each bin's energy was calculated from the number of input and output photons possessed by each. The evaluation results obtained by plotting the attenuation coefficient μ in a three-dimensional (3D) scatter plot show that the plots had a regular composition order congruent with that of the mammary gland. Consequently, we believe that our proposed method can be used to estimate the composition of the mammary gland.

  4. Characterization measurement of a thick CdTe detector for BNCT-SPECT - detection efficiency and energy resolution.

    Science.gov (United States)

    Murata, Isao; Nakamura, Soichiro; Manabe, Masanobu; Miyamaru, Hiroyuki; Kato, Itsuro

    2014-06-01

    Author׳s group is carrying out development of BNCT-SPECT with CdTe device, which monitors the therapy effect of BNCT in real-time. From the design calculations, the dimensions were fixed to 1.5×2×30mm(3). For the collimator it was confirmed that it would have a good spatial resolution and simultaneously the number of counts would be acceptably large. After producing the CdTe crystal, the characterization measurement was carried out. For the detection efficiency an excellent agreement between calculation and measurement was obtained. Also, the detector has a very good energy resolution so that gamma-rays of 478keV and 511keV could be distinguished in the spectrum. PMID:24581600

  5. Improved spectrometric characteristics of thallium bromide nuclear radiation detectors

    CERN Document Server

    Hitomi, K; Shoji, T; Suehiro, T; Hiratate, Y

    1999-01-01

    Thallium bromide (TlBr) is a compound semiconductor with a high atomic number and wide band gap. In this study, nuclear radiation detectors have been fabricated from the TlBr crystals. The TlBr crystals were grown by the horizontal travelling molten zone (TMZ) method using the materials purified by many pass zone refining. The crystals were characterized by measuring the resistivity, the mobility-lifetime (mu tau) product and the energy required to create an electron-hole pair (the epsilon value). Improved energy resolution has been obtained by the TlBr radiation detectors. At room temperature the full-width at half-maximum (FWHM) for the 59.5, 122 and 662 keV gamma-ray photo peak obtained from the detectors were 3.3, 8.8 and 29.5 keV, respectively. By comparing the saturated peak position of the TlBr detector with that of the CdTe detector, the epsilon value has been estimated to be about 5.85 eV for the TlBr crystal.

  6. Technological aspects of development of pixel and strip detectors based on CdTe and CdZnTe

    Energy Technology Data Exchange (ETDEWEB)

    Gostilo, V.; Ivanov, V.; Kostenko, S.; Lisjutin, I.; Loupilov, A.; Nenonen, S.; Sipila, H.; Valpas, K

    2001-03-11

    Current and spectrometrical characteristics, stability in time and reliability of pixel and strip detectors depend on initial material properties, crystal processing quality and contacts manufacture technology. The work presents analysis of current-voltage and spectrometrical characteristics for initial CdTe and CdZnTe crystals applied for pixel and strip detectors manufacture. The crystal surface preparation before contacts manufacture comprises a modified technology. The contacts were made by photolithography with the surface protected by photoresist with further windows lift-off and crystal surface metallization in lifted-off windows. Metal pads were made by gold deposition from chloroauric acid. Thermocompression, ultrasonic and pulse wirebonding, as well as traditional contacts glueing method for CdTe and CdZnTe detectors have been tested for contacts wiring. The pulse wirebonding has revealed the best results. Wiring is made of gold wire with a diameter of 30 {mu}m and is good enough for pixel and strip wirebonding, providing rather low labour-intensiveness for their assembly by standard equipment. The possibility of fabrication of pressing contacts to strip and pixel detectors by Zebra elastomeric connectors has been investigated. The pressing contacts have provided qualitative and reliable electrical contact and signal layout from pixels and strips to readout electronics. Developed technologies were applied in the manufacture of the following CdTe and CdZnTe detectors: 4x4 pixels detector with rectangular pixels 0.65x0.65 mm and pitch 0.75 mm; 4x4 pixels ring miltiple-electrode detector with anode diameter 0.32 mm and pitch 0.75 mm; strip detector with 100 {mu}m width strip and 125 {mu}m pitch. The 4x4 pixels CdZnTe detector has provided at optimal temperature energy resolutions of 808 eV and 1.19 keV at energies of 5.9 and 59.6 keV, respectively. Interstrip resistance between two strips with a distance of 25 {mu}m on detector was 2-8 G{omega}.

  7. Technological aspects of development of pixel and strip detectors based on CdTe and CdZnTe

    International Nuclear Information System (INIS)

    Current and spectrometrical characteristics, stability in time and reliability of pixel and strip detectors depend on initial material properties, crystal processing quality and contacts manufacture technology. The work presents analysis of current-voltage and spectrometrical characteristics for initial CdTe and CdZnTe crystals applied for pixel and strip detectors manufacture. The crystal surface preparation before contacts manufacture comprises a modified technology. The contacts were made by photolithography with the surface protected by photoresist with further windows lift-off and crystal surface metallization in lifted-off windows. Metal pads were made by gold deposition from chloroauric acid. Thermocompression, ultrasonic and pulse wirebonding, as well as traditional contacts glueing method for CdTe and CdZnTe detectors have been tested for contacts wiring. The pulse wirebonding has revealed the best results. Wiring is made of gold wire with a diameter of 30 μm and is good enough for pixel and strip wirebonding, providing rather low labour-intensiveness for their assembly by standard equipment. The possibility of fabrication of pressing contacts to strip and pixel detectors by Zebra elastomeric connectors has been investigated. The pressing contacts have provided qualitative and reliable electrical contact and signal layout from pixels and strips to readout electronics. Developed technologies were applied in the manufacture of the following CdTe and CdZnTe detectors: 4x4 pixels detector with rectangular pixels 0.65x0.65 mm and pitch 0.75 mm; 4x4 pixels ring miltiple-electrode detector with anode diameter 0.32 mm and pitch 0.75 mm; strip detector with 100 μm width strip and 125 μm pitch. The 4x4 pixels CdZnTe detector has provided at optimal temperature energy resolutions of 808 eV and 1.19 keV at energies of 5.9 and 59.6 keV, respectively. Interstrip resistance between two strips with a distance of 25 μm on detector was 2-8 GΩ

  8. Design of a high-resolution small-animal SPECT-CT system sharing a CdTe semiconductor detector

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Hyun-Ju; Lee, Young-Jin; Lee, Seung-Wan; Cho, Hyo-Min; Choi, Yu-Na; Kim, Hee-Joung [Yonsei University, Wonju (Korea, Republic of)

    2012-07-15

    A single photon emission computed tomography (SPECT) system with a co-registered X-y computed tomography (CT) system allows the convergence of functional information and morphologic information. The localization of radio pharmaceuticals on a SPECT can be enhanced by combining the SPECT with an anatomical modality, such as X-ray CT. Gamma-ray imaging for nuclear medicine devices and X-ray imaging systems for diagnostics has recently been developed based on semiconductor detectors, and semiconductor detector materials such as cadmium telluride (CdTe) or cadmium zinc telluride (CZT) are available for both X-ray and gamma-ray systems for small animal imaging. CdTe or CZT detectors provide strong absorption and high detection efficiency of high energy X-ray and gamma-ray photons because of their large atomic numbers. In this study, a pinhole collimator SPECT system sharing a cadmium telluride (CdTe) detector with a CT was designed. The GEANT4 application for tomographic emission (GATE) v.6.1 was used for the simulation. The pinhole collimator was designed to obtain a high spatial resolution of the SPECT system. The acquisition time for each projection was 40 seconds, and 60 projections were obtained for tomographic image acquisition. The reconstruction was performed using ordered subset expectation maximization (OS-EM) algorithms. The sensitivity and the spatial resolution were measured on the GATE simulation to evaluate the system characteristics. The spatial resolution of the system calculated from the FWHM of Gaussian fitted PSF curve was 0.69 mm, and the sensitivity of the system was measured to be 0.354 cps/kBq by using a Tc-99m point source of 1 MBq for 800 seconds. A phantom study was performed to verify the design of the dual imaging modality system. The system will be built as designed, and it can be applied as a pre-clinical imaging system.

  9. Discrimination between normal breast tissue and tumor tissue using CdTe series detector developed for photon-counting mammography

    Science.gov (United States)

    Okamoto, Chizuru; Ihori, Akiko; Yamakawa, Tsutomu; Yamamoto, Shuichiro; Okada, Masahiro; Kato, Misa; Nakajima, Ai; Kodera, Yoshie

    2016-03-01

    We propose a new mammography system using a cadmium telluride (CdTe) series photon-counting detector, having high absorption efficiency over a wide energy range. In a previous study, we showed that the use of high X-ray energy in digital mammography is useful from the viewpoint of exposure dose and image quality. In addition, the CdTe series detector can acquire X-ray spectrum information following transmission through a subject. This study focused on the tissue composition identified using spectral information obtained by a new photon-counting detector. Normal breast tissue consists entirely of adipose and glandular tissues. However, it is very difficult to find tumor tissue in the region of glandular tissue via a conventional mammogram, especially in dense breast because the attenuation coefficients of glandular tissue and tumor tissue are very close. As a fundamental examination, we considered a simulation phantom and showed the difference between normal breast tissue and tumor tissue of various thicknesses in a three-dimensional (3D) scatter plot. We were able to discriminate between both types of tissues. In addition, there was a tendency for the distribution to depend on the thickness of the tumor tissue. Thinner tumor tissues were shown to be closer in appearance to normal breast tissue. This study also demonstrated that the difference between these tissues could be made obvious by using a CdTe series detector. We believe that this differentiation is important, and therefore, expect this technology to be applied to new tumor detection systems in the future.

  10. Design of a high-resolution small-animal SPECT-CT system sharing a CdTe semiconductor detector

    International Nuclear Information System (INIS)

    A single photon emission computed tomography (SPECT) system with a co-registered X-y computed tomography (CT) system allows the convergence of functional information and morphologic information. The localization of radio pharmaceuticals on a SPECT can be enhanced by combining the SPECT with an anatomical modality, such as X-ray CT. Gamma-ray imaging for nuclear medicine devices and X-ray imaging systems for diagnostics has recently been developed based on semiconductor detectors, and semiconductor detector materials such as cadmium telluride (CdTe) or cadmium zinc telluride (CZT) are available for both X-ray and gamma-ray systems for small animal imaging. CdTe or CZT detectors provide strong absorption and high detection efficiency of high energy X-ray and gamma-ray photons because of their large atomic numbers. In this study, a pinhole collimator SPECT system sharing a cadmium telluride (CdTe) detector with a CT was designed. The GEANT4 application for tomographic emission (GATE) v.6.1 was used for the simulation. The pinhole collimator was designed to obtain a high spatial resolution of the SPECT system. The acquisition time for each projection was 40 seconds, and 60 projections were obtained for tomographic image acquisition. The reconstruction was performed using ordered subset expectation maximization (OS-EM) algorithms. The sensitivity and the spatial resolution were measured on the GATE simulation to evaluate the system characteristics. The spatial resolution of the system calculated from the FWHM of Gaussian fitted PSF curve was 0.69 mm, and the sensitivity of the system was measured to be 0.354 cps/kBq by using a Tc-99m point source of 1 MBq for 800 seconds. A phantom study was performed to verify the design of the dual imaging modality system. The system will be built as designed, and it can be applied as a pre-clinical imaging system.

  11. Design of a high-resolution small-animal SPECT-CT system sharing a CdTe semiconductor detector

    Science.gov (United States)

    Ryu, Hyun-Ju; Lee, Young-Jin; Lee, Seung-Wan; Cho, Hyo-Min; Choi, Yu-Na; Kim, Hee-Joung

    2012-07-01

    A single photon emission computed tomography (SPECT) system with a co-registered X-y computed tomography (CT) system allows the convergence of functional information and morphologic information. The localization of radiopharmaceuticals on a SPECT can be enhanced by combining the SPECT with an anatomical modality, such as X-ray CT. Gamma-ray imaging for nuclear medicine devices and X-ray imaging systems for diagnostics has recently been developed based on semiconductor detectors, and semiconductor detector materials such as cadmium telluride (CdTe) or cadmium zinc telluride (CZT) are available for both X-ray and gamma-ray systems for small-animal imaging. CdTe or CZT detectors provide strong absorption and high detection efficiency of high energy X-ray and gamma-ray photons because of their large atomic numbers. In this study, a pinhole collimator SPECT system sharing a cadmium telluride (CdTe) detector with a CT was designed. The GEANT4 application for tomographic emission (GATE) v.6.1 was used for the simulation. The pinhole collimator was designed to obtain a high spatial resolution of the SPECT system. The acquisition time for each projection was 40 seconds, and 60 projections were obtained for tomographic image acquisition. The reconstruction was performed using ordered subset expectation maximization (OS-EM) algorithms. The sensitivity and the spatial resolution were measured on the GATE simulation to evaluate the system characteristics. The spatial resolution of the system calculated from the FWHM of Gaussian fitted PSF curve was 0.69 mm, and the sensitivity of the system was measured to be 0.354 cps/kBq by using a Tc-99m point source of 1 MBq for 800 seconds. A phantom study was performed to verify the design of the dual imaging modality system. The system will be built as designed, and it can be applied as a pre-clinical imaging system.

  12. Department of Radiation Detectors: Overview

    International Nuclear Information System (INIS)

    (full text) Work carried out in 1997 in the Department of Radiation Detectors concentrated on three subjects: (i) Semiconductor Detectors (ii) X-ray Tube Generators (iii) Material Modification using Ion and Plasma Beams. Semiconductor detectors: Semiconductor detectors of ionizing radiation are among the basic tools utilized in such fields of research and industry as nuclear physics, high energy physics, medical (oncology) radiotherapy, radiological protection, environmental monitoring, energy dispersive X-ray fluorescence non-destructive analysis of chemical composition, nuclear power industry. The Department all objectives are: - search for new types of detectors, - adapting modern technologies (especially of industrial microelectronics) to detector manufacturing, - producing unique detectors tailored for physics experiments, - manufacturing standard detectors for radiation measuring instruments, - scientific development of the staff. These 1997 objectives were accomplished particularly by: - research on unique detectors for nuclear physics (e.g. transmission type Si(Li) detectors with extremely thin entrance and exit window), - development of technology of high-resistivity (HRSi) silicon detectors and thermoelectric cooling systems (KBN grant), - study of the applicability of industrial planar technology in producing detectors, - manufacturing detectors developed in previous years, re-generating and servicing customer detectors of various origin. In accomplishing of the above, the Department cooperated with interested groups of physicists from our Institute (P-I and P-II Departments), Warsaw University, Warsaw Heavy Ion Laboratory and with some technology Institutes based in Warsaw (ITME, ITE). Some detectors and services have been delivered to customers on a commercial basis. X-Rat tube generators: The Department conducts research on design and technology of producing X-ray generators based on X-ray tubes of special construction. In 1997, work on a special

  13. Hard-X and gamma-ray imaging detector for astrophysics based on pixelated CdTe semiconductors

    Science.gov (United States)

    Gálvez, J.-L.; Hernanz, M.; Álvarez, L.; Artigues, B.; Ullán, M.; Lozano, M.; Pellegrini, G.; Cabruja, E.; Martínez, R.; Chmeissani, M.; Puigdengoles, C.

    2016-01-01

    Stellar explosions are astrophysical phenomena of great importance and interest. Instruments with high sensitivities are essential to perform detailed studies of cosmic explosions and cosmic accelerators. In order to achieve the needed performance, a hard-X and gamma-ray imaging detector with mm spatial resolution and large enough efficiency is required. We present a detector module which consists of a single CdTe crystal of 12.5 × 12.5mm 2 and 2mm thick with a planar cathode and with the anode segmented in an 11x11 pixel array with a pixel pitch of 1 mm attached to the readout chip. Two possible detector module configurations are considered: the so-called Planar Transverse Field (PTF) and the Parallel Planar Field (PPF). The combination of several modules in PTF or PPF configuration will achieve the desired performance of the imaging detector. The sum energy resolution of all pixels of the CdTe module measured at 122 keV and 356 keV is 3.8% and 2% respectively, in the following operating conditions: PPF irradiation, bias voltage -500 V and temperature -10̂ C.

  14. Detectors for radiation dosimetry

    International Nuclear Information System (INIS)

    For our purposes in this review, we note the following points: (1) for charged particle detection, these counters can be filled with any noble gas-quenching gas mixture that produces satisfactory electrical signals; (2) neutron counters, in which the neutrons are detected by their interaction with the specific filling of the chamber to yield an ionizing particle, require special gas mixtures containing 3He or BF3, an alternative approach is to coat the inner surface of the cathode with a boron or lithium compound; (3) proportional counters are used if there is any need to discriminate between different types of radiation incident on the chamber by the magnitude of the ionizing energy retained within the sensitive volume of the counter; (4) proportional counters can operate at higher speeds than Geiger counters, typically up to 107 cts/sec versus less than 105/sec for the Geiger counters; and (5) Geiger counters produce very large uniform pulses which can be scaled by very simple electronics, hence, they are often used in survey meters and other portable monitoring instruments

  15. A low temperature gravitational radiation detector

    Science.gov (United States)

    Hamilton, W. O.

    1971-01-01

    The beginning design of an experiment is discussed for studying gravitational radiation by using massive detectors which are cooled to ultralow temperatures in order to improve the signal to noise ratios and the effective range and stability of the detectors. The gravitational detector, a low detection system, a cooled detector, magnetic support, superconducting shielding, and superconducting accelerometer detector are described.

  16. Optimization of the SPECT systems based on a CdTe pixelated semiconductor detector using novel parallel-hole collimators

    International Nuclear Information System (INIS)

    Recently, many studies have been conducted using semiconductor materials to improve the system's sensitivity and spatial resolution. We are able to improve the spatial resolution by using a pixelated parallel-hole collimator with equal hole and pixel sizes. However, pixelated parallel-hole collimator appears to be problematic to manufacture collimator with small holes. Therefore, we presented an idea for a novel parallel-hole collimator with a cadmium telluride (CdTe) pixelated semiconductor detector. The purpose of this study was to evaluate and optimize the novel parallel-hole collimator geometric designs with CdTe pixelated semiconductor detector using GATE simulation program. This detector was modeled on PID 350 (Oy Ajat, Finland). We designed a novel parallel-hole collimator which consists of the two overlapped pixelated parallel-hole collimators. The overlap ratios of these collimators are 1:1, 1:2, 2:1, 1:3, 3:1, 1:4, and 4:1. To evaluate the performance of this system, system's sensitivity and spatial resolution were estimated. Additionally, image figure of merit (FOM) were calculated from the sensitivity and spatial resolution for the optimization of the novel parallel-hole collimator. According to the results, the measured averages of sensitivity using the 1:1, 1:2, 2:1, 1:3, 3:1, 1:4, and 4:1 ratio were 4.45, 7.56, 7.51, 12.76, 12.65, 20.01, and 19.90 times higher than that of the pixelated parallel-hole collimator, respectively, and the measured averages of spatial resolution were estimated various values depending on the source-to-collimator distances. Finally, the FOM using the pixelated parallel-hole collimator, 1:1, 1:2, 2:1, 1:3, 3:1, 1:4, and 4:1 ratio were 0.57, 0.73, 1.05, 1.13, 1.47, 1.62, 1.95, and 2.15, respectively. We designed a novel parallel-hole collimator with various ratios of collimator septal heights using a CdTe pixelated semiconductor detector. In conclusion, we successfully established a novel parallel-hole collimator

  17. Method of manufacturing radiation detectors

    International Nuclear Information System (INIS)

    The method for manufacturing the detector for ionizing radiation and/or photons provides for an insulating layer of Si3N4, SiO2, Al2O3, Be2O3, varnish or plastic to be surfaced and above it a metal coating e.g. by means of planar technique or photoetching technique. Thereby metal insulation contacts (MIS contacts) will be created. The metal or resistance layer may be strip-shaped. In order to use the detector as neutron flux detector it is possible to put an additional strip- or raster-shaped coating of 10B or 6Li on the insulating resp. the metal layer. (DG)

  18. Charge collection properties of a CdTe Schottky diode for x- and γ-rays detectors

    International Nuclear Information System (INIS)

    The electrical characteristics of x-ray and γ-ray detectors with Schottky diodes on the basis of CdTe crystals of n-type conductivity with a resistivity of 102–103 Ω cm (300 K) are investigated. The necessary parameters of the diode structures are determined to interpret the detection characteristics of the detectors. The dependences of the charge-collection efficiency in the detectors on the carrier lifetime and concentration of uncompensated donors are obtained and the conditions for the total collection of charges generated by the photon absorption are established. Taking into account drift and diffusion photocurrent components, the spectral distribution of the quantum detection efficiency is calculated. The comparative analysis of the detection efficiency of Schottky diodes based on low-resistivity p-CdTe and n-CdTe shows the advantages of the latter, especially in a low x-ray energy region

  19. Possible use of CdTe detectors in kVp monitoring of diagnostic x-ray tubes

    OpenAIRE

    Krmar, M.; Bucalović, N.; Baucal, M.; Jovančević, N.

    2010-01-01

    It has been suggested that kVp of diagnostic X-ray devices (or maximal energy of x-ray photon spectra) should be monitored routinely; however a standardized noninvasive technique has yet to be developed and proposed. It is well known that the integral number of Compton scattered photons and the intensities of fluorescent x-ray lines registered after irradiation of some material by an x-ray beam are a function of the maximal beam energy. CdTe detectors have sufficient energy resolution to dist...

  20. Energy Calibration of a CdTe Photon Counting Spectral Detector with Consideration of its Non-Convergent Behavior

    OpenAIRE

    Jeong Seok Lee; Dong-Goo Kang; Seung Oh Jin; Insoo Kim; Soo Yeol Lee

    2016-01-01

    Fast and accurate energy calibration of photon counting spectral detectors (PCSDs) is essential for their biomedical applications to identify and characterize bio-components or contrast agents in tissues. Using the x-ray tube voltage as a reference for energy calibration is known to be an efficient method, but there has been no consideration in the energy calibration of non-convergent behavior of PCSDs. We observed that a single pixel mode (SPM) CdTe PCSD based on Medipix-2 shows some non-con...

  1. Voxel imaging pet pathfinder: a novel approach to positron emission tomography based on room temperature pixelated CdTe detector

    OpenAIRE

    Mikhaylova, Ekaterina

    2014-01-01

    El objetivo principal de esta investigación es la simulación y la evaluación de un nuevo concepto de escáner de tomografía por emisión de positrones (PET) basado en un detector pixelado de CdTe en el marco del proyecto “Voxel Imaging PET (VIP) Pathfinder”. El diseño se ha simulado con el programa “GEANT4-based Architecture for Medicine-Oriented Simulations” (GAMOS). El sistema se ha examinado siguiendo las prescripciones de los protocolos NEMA para la evaluación de los dispositivos PET. Varia...

  2. Voxel imaging pet pathfinder: a novel approach to positron emission tomography based on room temperature pixelated CdTe detector

    OpenAIRE

    Mikhaylova, Ekaterina; Fernandez Sanchez, Enrique

    2014-01-01

    El objetivo principal de esta investigación es la simulación y la evaluación de un nuevo concepto de escáner de tomografía por emisión de positrones (PET) basado en un detector pixelado de CdTe en el marco del proyecto "Voxel Imaging PET (VIP) Pathfinder". El diseño se ha simulado con el programa "GEANT4-based Architecture for Medicine-Oriented Simulations" (GAMOS). El sistema se ha examinado siguiendo las prescripciones de los protocolos NEMA para la evaluación de los dispositivos PET. Varia...

  3. A 2D 4×4 Channel Readout ASIC for Pixelated CdTe Detectors for Medical Imaging Applications

    OpenAIRE

    Macias-Montero, Jose-Gabriel; Sarraj, Maher; Chmeissani, Mokhtar; Martínez, Ricardo; Puigdengoles, Carles

    2015-01-01

    We present a 16-channel readout integrated circuit (ROIC) with nanosecond-resolution time to digital converter (TDC) for pixelated Cadmium Telluride (CdTe) gamma-ray detectors. The 4 × 4 pixel array ROIC is the proof of concept of the 10 × 10 pixel array readout ASIC for positron-emission tomography (PET) scanner, positron-emission mammography (PEM) scanner, and Compton gamma camera. The electronics of each individual pixel integrates an analog front-end with switchable gain, an analog to dig...

  4. Radiation detectors laboratory; Laboratorio de detectores de radiacion

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez J, F.J. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    The Radiation detectors laboratory was established with the assistance of the International Atomic Energy Agency which gave this the responsibility to provide its services at National and regional level for Latin America and it is located at the ININ. The more expensive and delicate radiation detectors are those made of semiconductor, so it has been put emphasis in the use and repairing of these detectors type. The supplied services by this laboratory are: selection consultant, detectors installation and handling and associated systems. Installation training, preventive and corrective maintenance of detectors and detection systems calibration. (Author)

  5. Performance evaluation of three-dimensional position-sensitive CdTe detector blocks for an ultra-high resolution brain PET scanner

    International Nuclear Information System (INIS)

    We have developed an ultra-high resolution human brain positron emission tomography (PET) scanner with the resolution of less than 1 mm FWHM, in which cadmium telluride (CdTe) semiconductor detectors were used. As the detector of the scanner, we have developed a two-dimensional position-sensitive CdTe detector (2D-PSD) which was developed in our previous study. The 2D-PSD can detect gamma rays with a position resolution of approximately 1.2 mm. We developed a three-dimensional position-sensitive CdTe detector block (3D-PSD block) by stacking 80 2D-PSDs which were connected to subsequent circuits (amplifiers, analog to digital converters, and other data processing circuits). We constructed an ultra-high resolution semiconductor brain PET gantry placing the ten 3D-PSD blocks in decagonal arrangement. In this paper, we checked all 2D-PSDs and classified their performance. As the results, we confirmed that our 3D-PSD blocks can be used to the ultra-high resolution human brain PET. We made a circuit to reduce the dead time due to restoration from polarization phenomena in CdTe detector and we could stabilize count rates. (author)

  6. Study of unfolding methods for X-ray spectra obtained with CDTE detectors in the mammography energy range

    International Nuclear Information System (INIS)

    Quality control parameters for an X-ray tube strongly depend on the accurate knowledge of the primary spectrum, but it is difficult to obtain it experimentally by direct measurements. Indirect spectrometry techniques such as Compton scattering can be used in X-ray spectrum assessment avoiding the pile-up effect in detectors. However, an unfolding method is required for this kind of measurements. In previous works, a methodology to assess primary X-ray spectra in the diagnostic energy range by means of the Compton scattering technique has been analysed. This methodology included a Monte Carlo simulation model, using the MCNP5 code, of the actual experimental set-up providing a Pulse Height Distribution (PHD) for a given primary spectrum. It reproduced the interaction of photons and electrons with the Compton spectrometer and with a High Purity Germanium detector. In this work, a CdTe detector is proposed instead of the HP Germanium. CdTe detector does not require a liquid nitrogen cooling system, but its resolution is poor for the same energy range and its efficiency comes down for energies greater than 55 keV being 70% at 90 keV. In despite of these disadvantages, CdTe detector has been considered due to its low cost and easy handling and portability. The model can provide a PHD and a Response Matrix, for different X-ray spectra, taken from the IPEM 78 catalogue. The primary spectrum can be estimated applying the MTSVD (Modified Truncated Singular Value Decomposition) and the Tikhonov unfolding method. Both unfolding methods cause some loss of information on the reconstructed primary spectra. In this paper, a comparison of the ability to obtain primary spectra using both MTSVD and Tikhonov unfolding methods has been done. As well a sensitivity analysis in order to test the proposed unfolding methods when they are applied to PHDs obtained with the MCNP model has been developed. A variation on parameters such as target materials and voltages over the mammography

  7. Modelling and 3D optimisation of CdTe pixels detector array geometry - Extension to small pixels

    Energy Technology Data Exchange (ETDEWEB)

    Zumbiehl, A. E-mail: zumbiehl@phase.c-strasbourg.fr; Hage-Ali, M.; Fougeres, P.; Koebel, J.M.; Regal, R.; Rit, C.; Ayoub, M.; Siffert, P

    2001-08-11

    CdTe and CdZnTe pixel detectors offer great interest for many applications, especially for medical and industrial imaging. Up to now, the material, generally, used and investigated for pixel arrays was CZT (Hamel et al., IEEE Trans. Nucl. Sci. 43 (3) (1996) 1422; Barrett et al., Phys. Rev. Lett. 75 (1) (1995) 156; Bennett et al., Nucl. Instr. and Meth. A 392 (1997) 260; Eskin et al., J. Appl. Phys. 85 (2) (1999) 647; Brunett et al., J. Appl. Phys. 86 (7) (1999) 3926; Luke, Nucl. Instr. and Meth. A 380 (1996) 232), but cadmium telluride can also be an appropriate choice, as shown here. However, we clearly demonstrate here that the optimal pixel configuration is highly dependent on the electrical transport properties of the material. Depending on the field of primary interest, either energy resolution or counting rate efficiency in the photopeak, the geometry for each case has to be optimised. For that purpose, we have developed a calculation of the signal induced onto the pixel. Two distinct parts are used: after showing our approach for the weighting potential calculation, we present our results performed by a 'pseudo-Monte Carlo' simulation. Results are supported by a few experimental comparisons. We argue about the optimum sizes with clarifying the problems caused by too small and too large pixel sizes. The study field is chosen to be vast, i.e. pixel size to detector thickness ratios (W/L) of 1/8-1, and detector thickness of 1.0-8.0 mm. In addition, several electrical transport properties are used. Since efficiency is often of primary interest, thick detectors could be very attractive, which are shown to be really feasible even on CdTe.

  8. Modelling and 3D optimisation of CdTe pixels detector array geometry - Extension to small pixels

    Science.gov (United States)

    Zumbiehl, A.; Hage-Ali, M.; Fougeres, P.; Koebel, J. M.; Regal, R.; Rit, C.; Ayoub, M.; Siffert, P.

    2001-08-01

    CdTe and CdZnTe pixel detectors offer great interest for many applications, especially for medical and industrial imaging. Up to now, the material, generally, used and investigated for pixel arrays was CZT (Hamel et al., IEEE Trans. Nucl. Sci. 43 (3) (1996) 1422; Barrett et al., Phys. Rev. Lett. 75 (1) (1995) 156; Bennett et al., Nucl. Instr. and Meth. A 392 (1997) 260; Eskin et al., J. Appl. Phys. 85 (2) (1999) 647; Brunett et al., J. Appl. Phys. 86 (7) (1999) 3926; Luke, Nucl. Instr. and Meth. A 380 (1996) 232), but cadmium telluride can also be an appropriate choice, as shown here. However, we clearly demonstrate here that the optimal pixel configuration is highly dependent on the electrical transport properties of the material. Depending on the field of primary interest, either energy resolution or counting rate efficiency in the photopeak, the geometry for each case has to be optimised. For that purpose, we have developed a calculation of the signal induced onto the pixel. Two distinct parts are used: after showing our approach for the weighting potential calculation, we present our results performed by a "pseudo-Monte Carlo" simulation. Results are supported by a few experimental comparisons. We argue about the optimum sizes with clarifying the problems caused by too small and too large pixel sizes. The study field is chosen to be vast, i.e. pixel size to detector thickness ratios ( W/ L) of 1/8-1, and detector thickness of 1.0-8.0 mm. In addition, several electrical transport properties are used. Since efficiency is often of primary interest, thick detectors could be very attractive, which are shown to be really feasible even on CdTe.

  9. Fast photoconductor CdTe detectors for synchrotron x-ray studies

    International Nuclear Information System (INIS)

    The Advanced Photon Source will be that brightest source of synchrotron x-rays when it becomes operational in 1996. During normal operation, the ring will be filled with 20 bunches of positrons with an interbunch spacing of 177 ns and a bunch width of 119 ps. To perform experiments with x-rays generated by positrons on these time scales one needs extremely high speed detectors. To achieve the necessary high speed, we are developing MBE-grown CdTe-base photoconductive position sensitive array detectors. The arrays fabricated have 64 pixels with a gap of 100 μm between pixels. The high speed response of the devices was tested using a short pulse laser. X-ray static measurements were performed using an x-ray tube and synchrotron radiation to study the device's response to flux and wavelength changes. This paper presents the response of the devices to some of these tests and discusses different physics aspects to be considered when designing high speed detectors

  10. Hybrid anode for semiconductor radiation detectors

    Science.gov (United States)

    Yang, Ge; Bolotnikov, Aleksey E; Camarda, Guiseppe; Cui, Yonggang; Hossain, Anwar; Kim, Ki Hyun; James, Ralph B

    2013-11-19

    The present invention relates to a novel hybrid anode configuration for a radiation detector that effectively reduces the edge effect of surface defects on the internal electric field in compound semiconductor detectors by focusing the internal electric field of the detector and redirecting drifting carriers away from the side surfaces of the semiconductor toward the collection electrode(s).

  11. CdTe and CdZnTe detectors behavior in X-ray computed tomography conditions

    CERN Document Server

    Ricq, S; Garcin, M

    2000-01-01

    The application of CdTe and CdZnTe 2D array detectors for medical X-ray Computed Tomography (XCT) is investigated. Different metallic electrodes have been deposited on High-Pressure Bridgman Method CdZnTe and on Traveling Heater Method CdTe:Cl. These detectors are exposed to X-rays in the CT irradiation conditions and are characterized experimentally in current mode. Detectors performances such as sensitivity and response speed are studied. They are correlated with charge trapping and de-trapping. The trapped carrier space charges may influence the injection from the electrodes. This enables one to get information on the nature of the predominant levels involved. The performances achieved are encouraging: dynamic ranges higher than 4 decades and current decreases of 3 decades in 4 ms after X-ray beam cut-off are obtained. Nevertheless, these detectors are still limited by high trap densities responsible for the memory effect that makes them unsuitable for XCT.

  12. Performance of a 6 mm thick CdTe detector for 166 keV gamma rays

    Science.gov (United States)

    McKee, B. T. A.; Goetz, T.; Hazlett, T.; Forkert, L.

    1988-11-01

    In order to extend the utility of CdTe detectors to higher gamma ray energies, yet avoid increasing the charge collection problems of thick detectors, a 6 mm thick detector configuration has been developed consisting of three crystals 2 mm thick and of 16 mm diameter. The active volume is over 1.0 cm 3. The performance of this detector has been evaluated for gamma rays of 166 keV energy by measuring the pulse height spectra and determining the intrinsic peak and total efficiencies over a range of bias voltages and amplifier time constants. A maximum peak and total efficiency of 41% and 80% were obtained with 200 V bias and 2 μs amplifier time constant, although under these conditions the noise width was almost 40 keV FWHM. A Monte Carlo model was used to simulate the gamma ray and electron interaction in this 6 mm detector. Charge collection, including trapping effects, was incorporated into the model. The model pulse height spectra could be approximately matched to the measured data using hole and electron effective mobility values of 60 and 600 cm 2/V s, and hole and electron mean trapping times of 25 and 15 μs. Our findings indicate that detectors such as this will not be useful for high resolution spectroscopic applications, but the high gamma ray stopping power will be of interest for applications where the noise width is acceptable. Results from the modelling imply that in this detector shallow trapping sites (reducing the effective mobility) are more important than deep trapping sites in contributing to incomplete charge collection.

  13. Performance of a 6 mm thick CdTe detector for 166 keV gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    McKee, B.T.A.; Goetz, T.; Hazlett, T.; Forkert, L.

    1988-11-01

    In order to extend the utility of CdTe detectors to higher gamma ray energies, yet avoid increasing the charge collection problems of thick detectors, a 6 mm thick detector configuration has been developed consisting of three crystals 2 mm thick and of 16 mm diameter. The active volume is over 1.0 cm/sup 3/. The performance of this detector has been evaluated for gamma rays of 166 keV energy by measuring the pulse height spectra and determining the intrinsic peak and total efficiencies over a range of bias voltages and amplifier time constants. A maximum peak and total efficiency of 41% and 80% were obtained with 200 V bias and 2 ..mu..s amplifier time constant, although under these conditions the noise width was almost 40 keV FWHM. A Monte Carlo model was used to simulate the gamma ray and electron interaction in this 6 mm detector. Charge collection, including trapping effects, was incorporated into the model. The model pulse height spectra could be approximately matched to the measured data using hole and electron effective mobility values of 60 and 600 cm/sup 2//V s, and hole and electron mean trapping times of 25 and 15 ..mu..s. Our findings indicate that detectors such as this will not be useful for high resolution spectroscopic applications, but the high gamma ray stopping power will be of interest for applications where the noise width is acceptable. Results from the modelling imply that in this detector shallow trapping sites (reducing the effective mobility) are more important than deep trapping sites in contributing to incomplete charge collection.

  14. Radiation experience with the CDF silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Husemann, Ulrich; /Rochester U.

    2005-11-01

    The silicon detectors of the CDF experiment at the Tevatron collider are operated in a harsh radiation environment. The lifetime of the silicon detectors is limited by radiation damage, and beam-related incidents are an additional risk. This article describes the impact of beam-related incidents on detector operation and the effects of radiation damage on electronics noise and the silicon sensors. From measurements of the depletion voltage as a function of the integrated luminosity, estimates of the silicon detector lifetime are derived.

  15. Radiation detectors based by polymer materials

    International Nuclear Information System (INIS)

    Scintillation counters make use of the property of certain chemical compounds to emit short light pulses after excitation produced by the passage of charged particles or photons of high energy. These flashes of light are detected by a photomultiplier tube that converts the photons into a voltage pulse. The light emitted from the detector also can be collected, focussed and dispersed by a CCD detector. The study of the evolution of the light emission and of the radiation damage under irradiation is a primary topic in the development of radiation hard polymer based scintillator. Polymer scintillator thin films are used in monitoring radiation beam intensities and simultaneous counting of different radiations. Radiation detectors have characteristics which depend on: the type of radiation, the energy of radiation, and the material of the detector. Three types of polymer thin films were studied: a polyvinyltoluene based scintillator, fluorinated polyimide and PMMA. (authors)

  16. ALICE Transition Radiation Detector (TRD), test beam.

    CERN Multimedia

    2003-01-01

    Electrons and positrons can be discriminated from other charged particles using the emission of transition radiation - X-rays emitted when the particles cross many layers of thin materials. To develop such a Transition Radiation Detector(TRD) for ALICE many detector prototypes were tested in mixed beams of pions and electrons, as in the example shown here.

  17. Radiation damage effects on solid state detectors

    Science.gov (United States)

    Trainor, J. H.

    1972-01-01

    Totally depleted silicon diodes are discussed which are used as nuclear particle detectors in investigations of galactic and solar cosmic radiation and trapped radiation. A study of radiation and chemical effects on the diodes was conducted. Work on electron and proton irradiation of surface barrier detectors with thicknesses up to 1 mm was completed, and work on lithium-drifted silicon devices with thicknesses of several millimeters was begun.

  18. Energy Calibration of a CdTe Photon Counting Spectral Detector with Consideration of its Non-Convergent Behavior

    Science.gov (United States)

    Lee, Jeong Seok; Kang, Dong-Goo; Jin, Seung Oh; Kim, Insoo; Lee, Soo Yeol

    2016-01-01

    Fast and accurate energy calibration of photon counting spectral detectors (PCSDs) is essential for their biomedical applications to identify and characterize bio-components or contrast agents in tissues. Using the x-ray tube voltage as a reference for energy calibration is known to be an efficient method, but there has been no consideration in the energy calibration of non-convergent behavior of PCSDs. We observed that a single pixel mode (SPM) CdTe PCSD based on Medipix-2 shows some non-convergent behaviors in turning off the detector elements when a high enough threshold is applied to the comparator that produces a binary photon count pulse. More specifically, the detector elements are supposed to stop producing photon count pulses once the threshold reaches a point of the highest photon energy determined by the tube voltage. However, as the x-ray exposure time increases, the threshold giving 50% of off pixels also increases without converging to a point. We established a method to take account of the non-convergent behavior in the energy calibration. With the threshold-to-photon energy mapping function established by the proposed method, we could better identify iodine component in a phantom consisting of iodine and other components. PMID:27077856

  19. Energy Calibration of a CdTe Photon Counting Spectral Detector with Consideration of its Non-Convergent Behavior

    Directory of Open Access Journals (Sweden)

    Jeong Seok Lee

    2016-04-01

    Full Text Available Fast and accurate energy calibration of photon counting spectral detectors (PCSDs is essential for their biomedical applications to identify and characterize bio-components or contrast agents in tissues. Using the x-ray tube voltage as a reference for energy calibration is known to be an efficient method, but there has been no consideration in the energy calibration of non-convergent behavior of PCSDs. We observed that a single pixel mode (SPM CdTe PCSD based on Medipix-2 shows some non-convergent behaviors in turning off the detector elements when a high enough threshold is applied to the comparator that produces a binary photon count pulse. More specifically, the detector elements are supposed to stop producing photon count pulses once the threshold reaches a point of the highest photon energy determined by the tube voltage. However, as the x-ray exposure time increases, the threshold giving 50% of off pixels also increases without converging to a point. We established a method to take account of the non-convergent behavior in the energy calibration. With the threshold-to-photon energy mapping function established by the proposed method, we could better identify iodine component in a phantom consisting of iodine and other components.

  20. Energy Calibration of a CdTe Photon Counting Spectral Detector with Consideration of its Non-Convergent Behavior.

    Science.gov (United States)

    Lee, Jeong Seok; Kang, Dong-Goo; Jin, Seung Oh; Kim, Insoo; Lee, Soo Yeol

    2016-01-01

    Fast and accurate energy calibration of photon counting spectral detectors (PCSDs) is essential for their biomedical applications to identify and characterize bio-components or contrast agents in tissues. Using the x-ray tube voltage as a reference for energy calibration is known to be an efficient method, but there has been no consideration in the energy calibration of non-convergent behavior of PCSDs. We observed that a single pixel mode (SPM) CdTe PCSD based on Medipix-2 shows some non-convergent behaviors in turning off the detector elements when a high enough threshold is applied to the comparator that produces a binary photon count pulse. More specifically, the detector elements are supposed to stop producing photon count pulses once the threshold reaches a point of the highest photon energy determined by the tube voltage. However, as the x-ray exposure time increases, the threshold giving 50% of off pixels also increases without converging to a point. We established a method to take account of the non-convergent behavior in the energy calibration. With the threshold-to-photon energy mapping function established by the proposed method, we could better identify iodine component in a phantom consisting of iodine and other components. PMID:27077856

  1. Alternative collimator for CdTe (model XR-100T), when it is used for a direct measurements of radiodiagnostic spectra; Colimador alternativo para um detector de CdTe (modelo XR-100T), usado em medidas diretas de espectros de radiodiagnostico

    Energy Technology Data Exchange (ETDEWEB)

    Soares, C.; Guevara, M.V. Manso; Milian, F. Mas; Garcia, F., E-mail: mvictoria.mansoguevara@gmail.com [Universidade Estadual de Santa Cruz (CPqCTR/UESC), Ilheus, BA (Brazil). Departamento de Ciencias Exatas; Nieto, L. [Universidade Estadual do Sudoeste da Bahia (UESB), Itapetinga, BA (Brazil)

    2014-01-15

    The spectrum simulation is a powerful instrument of great practical and pedagogical usefulness, because it helps to understand the technical and the instrumental limits of parameters in optimized measurements of magnitudes of interest in physics. Monte Carlo models, based on particle and radiation transport, provide easy and flexible tools for simulating complex geometries and materials. Particularly, MCNPX code is used to compare, manipulate, and quantify simulated and measured spectra. The purpose of this work is to use this tool set to estimate the characteristics of a collimation device, avoiding permanent and temporary damages into the diode-pin detector, during direct measurements of the Bremsstrahlung's spectrum, which was generated from diagnosis tubes with medical purpose. The simulations were made with a maximum voltage of 150 kVp, and typical charges used in radiological protocols in the medical area. Also, differential high pulse spectra, simulated and measured with a CdTe Detector, are reported. (author)

  2. Coal mining applications of CdTe gamma ray sensors

    Energy Technology Data Exchange (ETDEWEB)

    Entine, G.; Tiernan, T.; Waer, P.; Hazlett, T. (Radiation Monitoring Devices, Inc., Watertown, MA (USA))

    1990-01-01

    Cadmium telluride (CdTe) solid-state radiation detectors have been used in the development of instrumentation that improves the efficiency of coal-mining operations by helping to locate coal seams and preventing the mining of high-sulfur coal near the edges of the seam. CdTe detectors were selected for these applications because while they are small and durable, they offer good stopping power, deliver adequate spectral response and operate at low voltage. These CdTe-based instruments have passed the mine-safety standards and are now in operation in the mine. (author).

  3. Coal mining applications of CdTe gamma ray sensors

    International Nuclear Information System (INIS)

    Cadmium telluride (CdTe) solid-state radiation detectors have been used in the development of instrumentation that improves the efficiency of coal-mining operations by helping to locate coal seams and preventing the mining of high-sulfur coal near the edges of the seam. CdTe detectors were selected for these applications because while they are small and durable, they offer good stopping power, deliver adequate spectral response and operate at low voltage. These CdTe-based instruments have passed the mine-safety standards and are now in operation in the mine. (author)

  4. A novel compact real time radiation detector.

    Science.gov (United States)

    Li, Shiping; Xu, Xiufeng; Cao, Hongrui; Tang, Shibiao; Ding, Baogang; Yin, Zejie

    2012-08-01

    A novel compact real time radiation detector with cost-effective, ultralow power and high sensitivity based on Geiger counter is presented. The power consumption of this detector which employs CMOS electro circuit and ultralow-power microcontroller is down to only 12.8 mW. It can identify the presences of 0.22 μCi (60)Co at a distance of 1.29 m. Furthermore, the detector supports both USB bus and serial interface. It can be used for personal radiation monitoring and also fits the distributed sensor network for radiation detection. PMID:22738843

  5. Development of a plasma panel radiation detector

    CERN Document Server

    Ball, R; Ben-Moshe, M; Benhammou, Y; Bensimon, R; Chapman, J W; Etzion, E; Ferretti, C; Friedman, P S; Levin, D S; Silver, Y; Varner, R L; Weaverdyck, C; Wetzel, R; Zhou, B; Anderson, T; McKinny, K; Bentefour, E H

    2014-01-01

    This article reports on an investigation of a radiation detector based on plasma display panel technology. The plasma panel sensor (PPS) is a variant of micropattern gas radiation detectors. PPS components are non-reactive and intrinsically radiation-hard materials, such as glass substrates, metal electrodes and inert gas mixtures. Plasma display panels used as detectors were tested with cosmic ray muons, beta rays and gamma rays, protons, and thermal neutrons. The results demonstrated risetimes and time resolution of a few nanoseconds, as well as spatial resolution compatible with the pixel pitch.

  6. Extensive testing of Schottky CdTe detectors for the ECLAIRs X-Gamma-ray Camera on board the SVOM mission

    OpenAIRE

    Nadege, Remoue; Didier, Barret; Olivier, Godet; Pierre, Mandrou

    2010-01-01

    We report on an on-going test campaign of more than 5000 Schottky CdTe detectors (4x4x1 mm^3), over a sample of twelve thousands, provided by Acrorad Co., Ltd (Japan). 6400 of these detectors will be used to build the detection plane of the ECLAIRs camera on the Chinese-French gamma-ray burst mission SVOM. These tests are mandatory to fulfill the prime requirement of ECLAIRs to detect gamma-ray burst photons down to 4 keV. The detectors will be operated at -20C under a reverse bias of 600 V. ...

  7. Development of innovative silicon radiation detectors

    CERN Document Server

    Balbuena, JuanPablo

    Silicon radiation detectors fabricated at the IMB-CNM (CSIC) Clean Room facilities using the most innovative techniques in detector technology are presented in this thesis. TCAD simulation comprises an important part in this work as becomes an essential tool to achieve exhaustive performance information of modelled detectors prior their fabrication and subsequent electrical characterization. Radiation tolerance is also investigated in this work using TCAD simulations through the potential and electric field distributions, leakage current and capacitance characteristics and the response of the detectors to the pass of different particles for charge collection efficiencies. Silicon detectors investigated in this thesis were developed for specific projects but also for applications in experiments which can benefit from their improved characteristics, as described in Chapter 1. Double-sided double type columns 3D (3D-DDTC) detectors have been developed under the NEWATLASPIXEL project in the framework of the CERN ...

  8. Digital performance improvements of a CdTe pixel detector for high flux energy-resolved X-ray imaging

    International Nuclear Information System (INIS)

    Photon counting detectors with energy resolving capabilities are desired for high flux X-ray imaging. In this work, we present the performance of a pixelated Schottky Al/p-CdTe/Pt detector (4×4) coupled to a custom-designed digital readout electronics for high flux measurements. The detector (4×4×2 mm3) has an anode layout based on an array of 16 pixels with a geometric pitch of 1 mm (pixel size of 0.6 mm). The 4-channel readout electronics is able to continuously digitize and process the signals from each pixel, performing multi-parameter analysis (event arrival time, pulse shape, pulse height, pulse time width, etc.) even at high fluxes and at different throughput and energy resolution conditions. The spectroscopic response of the system to monochromatic X-ray sources, at both low and high rates, is presented with particular attention to the mitigation of some typical spectral distortions (pile-up, baseline shifts and charge sharing). At a photon counting rate of 520 kcps/pixel, the system exhibits an energy resolution (FWHM at 59.5 keV) of 4.6%, 7.1% and 9% at throughputs of 0.9%, 16% and 82%, respectively. Measurements of Ag-target X-ray spectra also show the ability of the system to perform accurate estimation of the input counting rate up to 1.1 Mcps/pixel. The aim of this work is to point out, beside the appealing properties of CdTe detectors, the benefits of the digital approach in the development of high-performance energy resolved photon counting (ERPC) systems for high flux X-ray imaging

  9. Polarisation measurements with a CdTe pixel array detector for Laue hard X-ray focusing telescopes

    CERN Document Server

    Caroli, E; Pisa, A; Stephen, J B; Frontera, F; Castanheira, M T D; Sordo, S; Caroli, Ezio; Silva, Rui M. Curado da; Pisa, Alessandro; Stephen, John B.; Frontera, Filippo; Castanheira, Matilde T. D.; Sordo, Stefano del

    2006-01-01

    Polarimetry is an area of high energy astrophysics which is still relatively unexplored, even though it is recognized that this type of measurement could drastically increase our knowledge of the physics and geometry of high energy sources. For this reason, in the context of the design of a Gamma-Ray Imager based on new hard-X and soft gamma ray focusing optics for the next ESA Cosmic Vision call for proposals (Cosmic Vision 2015-2025), it is important that this capability should be implemented in the principal on-board instrumentation. For the particular case of wide band-pass Laue optics we propose a focal plane based on a thick pixelated CdTe detector operating with high efficiency between 60-600 keV. The high segmentation of this type of detector (1-2 mm pixel size) and the good energy resolution (a few keV FWHM at 500 keV) will allow high sensitivity polarisation measurements (a few % for a 10 mCrab source in 106s) to be performed. We have evaluated the modulation Q factors and minimum detectable polaris...

  10. Semiconductor High-Energy Radiation Scintillation Detector

    CERN Document Server

    Kastalsky, A; Spivak, B

    2006-01-01

    We propose a new scintillation-type detector in which high-energy radiation produces electron-hole pairs in a direct-gap semiconductor material that subsequently recombine producing infrared light to be registered by a photo-detector. The key issue is how to make the semiconductor essentially transparent to its own infrared light, so that photons generated deep inside the semiconductor could reach its surface without tangible attenuation. We discuss two ways to accomplish this, one based on doping the semiconductor with shallow impurities of one polarity type, preferably donors, the other by heterostructure bandgap engineering. The proposed semiconductor scintillator combines the best properties of currently existing radiation detectors and can be used for both simple radiation monitoring, like a Geiger counter, and for high-resolution spectrography of the high-energy radiation. The most important advantage of the proposed detector is its fast response time, about 1 ns, essentially limited only by the recombi...

  11. Property of the diamond radiation detector

    International Nuclear Information System (INIS)

    The outstanding properties of diamond, such as radiation hardness, high carrier mobility, high band gap and breakdown field, distinguish it as a good candidate for radiation detectors. In the dosimetry for radiotherapy is permanently searched the detector with high sensitivity, high stability, linear dependence of the response, small size, tissue equivalent material and fast response, for the measuring of the temporal and space variations of the dose. The diamond detector properties as high sensitivity, good spatial and temporal resolution, low Leakage currents, low capacitance, possibility to fabricate robust and compact device and high temperature operation make it possible to use these detectors in many fields from high energy physics till radiation monitoring, from Medical therapy dosimetry till synchrotron radiation measurement. (authors)

  12. Extensive simulation studies on the reconstructed image resolution of a position sensitive detector based on pixelated CdTe crystals

    CERN Document Server

    Zachariadou, K; Kaissas, I; Seferlis, S; Lambropoulos, C; Loukas, D; Potiriadis, C

    2011-01-01

    We present results on the reconstructed image resolution of a position sensitive radiation instrument (COCAE) based on extensive simulation studies. The reconstructed image resolution has been investigated in a wide range of incident photon energies emitted by point-like sources located at different source-to-detector distances on and off the detector's symmetry axis. The ability of the detector to distinguish multiple radioactive sources observed simultaneously is investigating by simulating point-like sources of different energies located on and off the detector's symmetry axis and at different positions

  13. Radiation damage in semiconductor detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kraner, H.W.

    1981-12-01

    A survey is presented of the important damage-producing interactions in semiconductor detectors and estimates of defect numbers are made for MeV protons, neutrons and electrons. Damage effects of fast neutrons in germanium gamma ray spectrometers are given in some detail. General effects in silicon detectors are discussed and damage constants and their relationship to leakage current is introduced.

  14. Energy dispersive CdTe and CdZnTe detectors for spectral clinical CT and NDT applications

    Science.gov (United States)

    Barber, W. C.; Wessel, J. C.; Nygard, E.; Iwanczyk, J. S.

    2015-06-01

    We are developing room temperature compound semiconductor detectors for applications in energy-resolved high-flux single x-ray photon-counting spectral computed tomography (CT), including functional imaging with nanoparticle contrast agents for medical applications and non-destructive testing (NDT) for security applications. Energy-resolved photon-counting can provide reduced patient dose through optimal energy weighting for a particular imaging task in CT, functional contrast enhancement through spectroscopic imaging of metal nanoparticles in CT, and compositional analysis through multiple basis function material decomposition in CT and NDT. These applications produce high input count rates from an x-ray generator delivered to the detector. Therefore, in order to achieve energy-resolved single photon counting in these applications, a high output count rate (OCR) for an energy-dispersive detector must be achieved at the required spatial resolution and across the required dynamic range for the application. The required performance in terms of the OCR, spatial resolution, and dynamic range must be obtained with sufficient field of view (FOV) for the application thus requiring the tiling of pixel arrays and scanning techniques. Room temperature cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) compound semiconductors, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel provided the sensors are designed for rapid signal formation across the x-ray energy ranges of the application at the required energy and spatial resolutions, and at a sufficiently high detective quantum efficiency (DQE). We have developed high-flux energy-resolved photon-counting x-ray imaging array sensors using pixellated CdTe and CdZnTe semiconductors optimized for clinical CT and security NDT. We have also fabricated high

  15. Energy dispersive CdTe and CdZnTe detectors for spectral clinical CT and NDT applications

    International Nuclear Information System (INIS)

    We are developing room temperature compound semiconductor detectors for applications in energy-resolved high-flux single x-ray photon-counting spectral computed tomography (CT), including functional imaging with nanoparticle contrast agents for medical applications and non-destructive testing (NDT) for security applications. Energy-resolved photon-counting can provide reduced patient dose through optimal energy weighting for a particular imaging task in CT, functional contrast enhancement through spectroscopic imaging of metal nanoparticles in CT, and compositional analysis through multiple basis function material decomposition in CT and NDT. These applications produce high input count rates from an x-ray generator delivered to the detector. Therefore, in order to achieve energy-resolved single photon counting in these applications, a high output count rate (OCR) for an energy-dispersive detector must be achieved at the required spatial resolution and across the required dynamic range for the application. The required performance in terms of the OCR, spatial resolution, and dynamic range must be obtained with sufficient field of view (FOV) for the application thus requiring the tiling of pixel arrays and scanning techniques. Room temperature cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) compound semiconductors, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel provided the sensors are designed for rapid signal formation across the x-ray energy ranges of the application at the required energy and spatial resolutions, and at a sufficiently high detective quantum efficiency (DQE). We have developed high-flux energy-resolved photon-counting x-ray imaging array sensors using pixellated CdTe and CdZnTe semiconductors optimized for clinical CT and security NDT. We have also fabricated high

  16. Particle Identification: Time-of-Flight, Cherenkov and Transition Radiation Detectors - Particle Detectors and Detector Systems

    CERN Document Server

    Ullaland, O

    2011-01-01

    Particle Identification: Time-of-Flight, Cherenkov and Transition Radiation Detectors in 'Particle Detectors and Detector Systems', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B1: Detectors for Particles and Radiation. Part 1: Principles and Methods'. This document is part of Part 1 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Section '3.3 Particle Identification: Time-of-Flight, Cherenkov and Transition Radiation Detectors' of Chapter '3 Particle Detectors and Detector Systems' with the content: 3.3 Particle Identification: Time-of-Flight, Cherenkov and Transition Radiation Detectors 3.3.1 Introduction 3.3.2 Time of Flight Measurements 3.3.2.1 Scintillator hodoscopes 3.3.2.2 Parallel plate ToF detectors 3.3.3 Cherenkov Radiation 3.3.3.1 ...

  17. Radiation tests of semiconductor detectors

    OpenAIRE

    Chmill, Valery

    2006-01-01

    This thesis investigates the response of Gallium Arsenide (GaAs) detectors to ionizing irradiation. Detectors based on π-υ junction formed by deep level centers doping. The detectors have been irradiated with 137Cs γ-rays up to 110 kGy, with 6 MeV mean energy neutron up to approximately 6 · 1014 n/cm2, with protons and mixed beam up to 1015 p/cm2. Results are presented for the effects on leakage currents and charge collection efficiencies for minimum ionizing electrons and alpha particles. Th...

  18. Processing circuitry for single channel radiation detector

    Science.gov (United States)

    Holland, Samuel D. (Inventor); Delaune, Paul B. (Inventor); Turner, Kathryn M. (Inventor)

    2009-01-01

    Processing circuitry is provided for a high voltage operated radiation detector. An event detector utilizes a comparator configured to produce an event signal based on a leading edge threshold value. A preferred event detector does not produce another event signal until a trailing edge threshold value is satisfied. The event signal can be utilized for counting the number of particle hits and also for controlling data collection operation for a peak detect circuit and timer. The leading edge threshold value is programmable such that it can be reprogrammed by a remote computer. A digital high voltage control is preferably operable to monitor and adjust high voltage for the detector.

  19. CVD diamond detectors for ionizing radiation

    CERN Document Server

    Friedl, M; Bauer, C; Berfermann, E; Bergonzo, P; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Conway, J; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Gan, K K; Gheeraert, E; Grigoriev, E; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Karl, C; Kass, R; Knöpfle, K T; Krammer, Manfred; Lo Giudice, A; Lü, R; Manfredi, P F; Manfredotti, C; Marshall, R D; Meier, D; Mishina, M; Oh, A; Pan, L S; Palmieri, V G; Pernegger, H; Pernicka, Manfred; Peitz, A; Pirollo, S; Polesello, P; Pretzl, Klaus P; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Schnetzer, S R; Sciortino, S; Speziali, V; Stelzer, H; Stone, R; Tapper, R J; Tesarek, R J; Thomson, G B; Trawick, M L; Trischuk, W; Vittone, E; Walsh, A M; Wedenig, R; Weilhammer, Peter; Ziock, H J; Zöller, M

    1999-01-01

    In future HEP accelerators, such as the LHC (CERN), detectors and electronics in the vertex region of the experiments will suffer from extreme radiation. Thus radiation hardness is required for both detectors and electronics to survive in this harsh environment. CVD diamond, which is investigated by the RD42 Collaboration at CERN, can meet these requirements. Samples of up to 2*4 cm/sup 2/ have been grown and refined for better charge collection properties, which are measured with a beta source or in a test beam. A large number of diamond samples has been irradiated with hadrons to fluences of up to 5*10/sup 15/ cm/sup -2/ to study the effects of radiation. Both strip and pixel detectors were prepared in various geometries. Samples with strip metallization have been tested with both slow and fast readout electronics, and the first diamond pixel detector proved fully functional with LHC electronics. (16 refs).

  20. CVD diamond detectors for ionizing radiation

    International Nuclear Information System (INIS)

    In future HEP accelerators, such as the LHC (CERN), detectors and electronics in the vertex region of the experiments will suffer from extreme radiation. Thus radiation hardness is required for both detectors and electronics to survive in this harsh environment. CVD diamond, which is investigated by the RD42 Collaboration at CERN, can meet these requirements. Samples of up to 2x4 cm2 have been grown and refined for better charge collection properties, which are measured with a β source or in a test beam. A large number of diamond samples has been irradiated with hadrons to fluences of up to 5x1015 cm-2 to study the effects of radiation. Both strip and pixel detectors were prepared in various geometries. Samples with strip metallization have been tested with both slow and fast readout electronics, and the first diamond pixel detector proved fully functional with LHC electronics. (author)

  1. CVD diamond detectors for ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Friedl, M. E-mail: markus.friedl@cern.ch; Adam, W.; Bauer, C.; Berdermann, E.; Bergonzo, P.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foulon, F.; Gan, K.K.; Gheeraert, E.; Grigoriev, E.; Hallewell, G.; Hall-Wilton, R.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Karl, C.; Kass, R.; Knoepfle, K.T.; Krammer, M.; Logiudice, A.; Lu, R.; Manfredi, P.F.; Manfredotti, C.; Marshall, R.D.; Meier, D.; Mishina, M.; Oh, A.; Pan, L.S.; Palmieri, V.G.; Pernegger, H.; Pernicka, M.; Peitz, A.; Pirollo, S.; Polesello, P.; Pretzl, K.; Re, V.; Riester, J.L.; Roe, S.; Roff, D.; Rudge, A.; Schnetzer, S.; Sciortino, S.; Speziali, V.; Stelzer, H.; Stone, R.; Tapper, R.J.; Tesarek, R.; Thomson, G.B.; Trawick, M.; Trischuk, W.; Vittone, E.; Walsh, A.M.; Wedenig, R.; Weilhammer, P.; Ziock, H.; Zoeller, M

    1999-10-01

    In future HEP accelerators, such as the LHC (CERN), detectors and electronics in the vertex region of the experiments will suffer from extreme radiation. Thus radiation hardness is required for both detectors and electronics to survive in this harsh environment. CVD diamond, which is investigated by the RD42 Collaboration at CERN, can meet these requirements. Samples of up to 2x4 cm{sup 2} have been grown and refined for better charge collection properties, which are measured with a {beta} source or in a test beam. A large number of diamond samples has been irradiated with hadrons to fluences of up to 5x10{sup 15} cm{sup -2} to study the effects of radiation. Both strip and pixel detectors were prepared in various geometries. Samples with strip metallization have been tested with both slow and fast readout electronics, and the first diamond pixel detector proved fully functional with LHC electronics. (author)

  2. New materials for radiation hard semiconductor detectors

    CERN Document Server

    Sellin, P J; CERN. Geneva

    2006-01-01

    We present a review of the current status of research into new semiconductor materials for use as particle tracking detectors in very high radiation environments. This work is carried out within the framework of the CERN RD50 collaboration, which is investigating detector technologies suitable for operation at the proposed Super-LHC facility (SLHC). Tracking detectors operating at the SLHC in this environment will have to be capable of withstanding radiation levels arising from a luminosity of 1035 cm-2s-1 which will present severe challenges to current tracking detector technologies. The "new materials" activity within RD50 is investigating the performance of various semiconductor materials that potentially offer radiation hard alternatives to silicon devices. The main contenders in this study are silicon carbide, gallium nitride and amorphous silicon. In this paper we review the current status of these materials, in terms of material quality, commercial availability, charge transport properties, and radiati...

  3. Fine-pitch CdTe detector for hard X-ray imaging and spectroscopy of the Sun with the FOXSI rocket experiment

    CERN Document Server

    Ishikawa, S; Watanabe, S; Uchida, Y; Takeda, S; Takahashi, T; Saito, S; Glesener, L; Buitrago-Casas, J C; Krucker, S; Christe, S

    2016-01-01

    We have developed a fine-pitch hard X-ray (HXR) detector using a cadmium telluride (CdTe) semiconductor for imaging and spectroscopy for the second launch of the Focusing Optics Solar X-ray Imager (FOXSI). FOXSI is a rocket experiment to perform high sensitivity HXR observations from 4-15 keV using the new technique of HXR focusing optics. The focal plane detector requires -30 C). Double-sided silicon strip detectors were used for the first FOXSI flight in 2012 to meet these criteria. To improve the detectors' efficiency (66 at 15 keV for the silicon detectors) and position resolution of 75 um for the second launch, we fabricated double-sided CdTe strip detectors with a position resolution of 60 um and almost 100 % efficiency for the FOXSI energy range. The sensitive area is 7.67 mm x 7.67 mm, corresponding to the field of view of 791'' x 791''. An energy resolution of about 1 keV (FWHM) and low energy threshold of 4 keV were achieved in laboratory calibrations. The second launch of FOXSI was performed on De...

  4. Radiation detector with a trapezoidal scintillator

    International Nuclear Information System (INIS)

    The detector (CsI:Tl) is suited for application in the computerized X-ray tomography. It has a pair of collimator plates from W or Ta, alligned parallel to the direction of the incident radiation. Between the collimator plates there is the scintillator with a non-rectangular parallelepipedon shape and trapezoidal cross-section. The photons released by the scintillator are collected by a photosensor lying across the direction of radiation. By the shape of the scintillator the variation in detector response for radiation of different energies is reduced for a range of angles of incidence with respect to the vertical on the scintillator base. (DG)

  5. Fine-pitch CdTe detector for hard X-ray imaging and spectroscopy of the Sun with the FOXSI rocket experiment

    OpenAIRE

    Ishikawa, S.; Katsuragawa, M.; Watanabe, S; Uchida, Y.; Takeda, S; Takahashi, T.; Saito, S.; Glesener, L.; Buitrago-Casas, J. C.; Krucker, S.; Christe, S.

    2016-01-01

    We have developed a fine-pitch hard X-ray (HXR) detector using a cadmium telluride (CdTe) semiconductor for imaging and spectroscopy for the second launch of the Focusing Optics Solar X-ray Imager (FOXSI). FOXSI is a rocket experiment to perform high sensitivity HXR observations from 4-15 keV using the new technique of HXR focusing optics. The focal plane detector requires < 100 um position resolution (to take advantage of the angular resolution of the optics) and about 1 keV energy resolutio...

  6. Material reconstruction with the Medipix2 detector with CdTe sensor

    OpenAIRE

    Guni, Ewald; Durst, J.; Michel, T; Anton, G.

    2013-01-01

    The new generation of photon counting pixelated X-ray detectors like the Medipix2 detector are gaining increasing interest in medical imaging. In contrast to conventional systems which integrate the charge released in the sensor they are able to count single photons. With this imaging detector it is possible to determine the energy of the incoming X-rays which opens up a new field of applications. One application is the detection of contrast agents in medical imaging which was shown for a sil...

  7. Spectroscopic imaging using Ge and CdTe based detector systems for hard x-ray applications.

    OpenAIRE

    Astromskas, Vytautas

    2016-01-01

    Third generation synchrotron facilities such as the Diamond Light Source (DLS) have a wide range of experiments performed for a wide range of science fields. The DLS operates at energies up to 150 keV which introduces great challenges to radiation detector technology. This work focuses on the requirements that the detector technology faces for X-ray Absorption Fine Structure (XAFS) and powder diffraction experiments in I12 and I15 beam lines, respectively. A segmented HPGe demonstrator det...

  8. Modelling and 3D optimisation of CdTe pixels detector array geometry - Extension to small pixels

    CERN Document Server

    Zumbiehl, A; Fougeres, P; Koebel, J M; Regal, R; Rit, C; Ayoub, M; Siffert, P

    2001-01-01

    CdTe and CdZnTe pixel detectors offer great interest for many applications, especially for medical and industrial imaging. Up to now, the material, generally, used and investigated for pixel arrays was CZT (Hamel et al., IEEE Trans. Nucl. Sci. 43 (3) (1996) 1422; Barrett et al., Phys. Rev. Lett. 75 (1) (1995) 156; Bennett et al., Nucl. Instr. and Meth. A 392 (1997) 260; Eskin et al., J. Appl. Phys. 85 (2) (1999) 647; Brunett et al., J. Appl. Phys. 86 (7) (1999) 3926; Luke, Nucl. Instr. and Meth. A 380 (1996) 232), but cadmium telluride can also be an appropriate choice, as shown here. However, we clearly demonstrate here that the optimal pixel configuration is highly dependent on the electrical transport properties of the material. Depending on the field of primary interest, either energy resolution or counting rate efficiency in the photopeak, the geometry for each case has to be optimised. For that purpose, we have developed a calculation of the signal induced onto the pixel. Two distinct parts are used: af...

  9. Portable gamma- and X-ray analyzers based on CdTe p-i-n detectors

    CERN Document Server

    Khusainov, A K; Bahlanov, S V; Derbin, A V; Ivanov, V V; Lysenko, V V; Morozov, F; Mouratov, V G; Muratova, V N; Petukhov, Y A; Pirogov, A M; Polytsia, O P; Saveliev, V D; Solovei, V A; Yegorov, K A; Zhucov, M P

    1999-01-01

    Several portable instruments are designed using previously reported CdTe detector technology. These can be divided into three groups according to their energy ranges: (1) 3-30 keV XRF analyzers, (2) 5-120 keV wide range XRF analyzers and (3) gamma-ray spectrometers for operation up to 1500 keV. These instruments are used to inspect several hundreds of samples in situ during a working day in applications such as a metal alloy verification at customs control. Heavy metals are identified through a 3-100 mm thick package with these instruments. Surface contamination by heavy metals (for example toxins such as Hg, Th and Pb in housing environmental control), the determination of Pb concentration in gasoline, geophysical control in mining, or nuclear material control are other applications. The weight of these XRF probes is about 1 kg and two electronic designs are used: one with embedded computer and another based on a standard portable PC. The instruments have good precision and high productivity for measurements...

  10. CdTe and CdZnTe semiconductor gamma detectors equipped with ohmic contacts

    CERN Document Server

    Lachish, U

    1999-01-01

    Semiconductor gamma detectors, equipped with ohmic contacts, are uniform and fast response devices that are not sensitive to hole trapping. Gamma generated charges flow within the detector bulk towards the ohmic contacts, and induce additional charge flow from the contacts towards them. The additional flow stems from the fundamental principles of Poisson and the continuity equations. Electrons flow from the negative contacts towards the holes and recombine with them, therefore, they overcome hole trapping. The ohmic contact effect transforms the detector into a single carrier device. Good quality ohmic contact detectors are achieved from a crystal grown by standard methods, that initially has too many traps, by adjustment of the Fermi level position within the forbidden band. The device design and its principle of operation are discussed.

  11. Electromechanically cooled germanium radiation detector system

    International Nuclear Information System (INIS)

    We have successfully developed and fielded an electromechanically cooled germanium radiation detector (EMC-HPGe) at Lawrence Livermore National Laboratory (LLNL). This detector system was designed to provide optimum energy resolution, long lifetime, and extremely reliable operation for unattended and portable applications. For most analytical applications, high purity germanium (HPGe) detectors are the standard detectors of choice, providing an unsurpassed combination of high energy resolution performance and exceptional detection efficiency. Logistical difficulties associated with providing the required liquid nitrogen (LN) for cooling is the primary reason that these systems are found mainly in laboratories. The EMC-HPGe detector system described in this paper successfully provides HPGe detector performance in a portable instrument that allows for isotopic analysis in the field. It incorporates a unique active vibration control system that allows the use of a Sunpower Stirling cycle cryocooler unit without significant spectral degradation from microphonics. All standard isotopic analysis codes, including MGA and MGA++, GAMANL, GRPANL and MGAU, typically used with HPGe detectors can be used with this system with excellent results. Several national and international Safeguards organisations including the International Atomic Energy Agency (IAEA) and U.S. Department of Energy (DOE) have expressed interest in this system. The detector was combined with custom software and demonstrated as a rapid Field Radiometric Identification System (FRIS) for the U.S. Customs Service . The European Communities' Safeguards Directorate (EURATOM) is field-testing the first Safeguards prototype in their applications. The EMC-HPGe detector system design, recent applications, and results will be highlighted

  12. Radiation and particle detector and amplifier

    Science.gov (United States)

    Schmidt, K. C. (Inventor)

    1973-01-01

    A radiation or charged particle detector is described which incorporates a channel multiplier structure to amplify the detected rays or particles. The channel multiplier structure has a support multiplying element with a longitudinal slot along one side. The element supports a pair of plates positioned contiguous with the slot. The plates funnel the particles or rays to be detected into the slotted aperture and the element, thus creating an effectively wide aperture detector of the windowless type.

  13. Semiconductor High-Energy Radiation Scintillation Detector

    OpenAIRE

    Kastalsky, A.; Luryi, S.; Spivak, B

    2006-01-01

    We propose a new scintillation-type detector in which high-energy radiation produces electron-hole pairs in a direct-gap semiconductor material that subsequently recombine producing infrared light to be registered by a photo-detector. The key issue is how to make the semiconductor essentially transparent to its own infrared light, so that photons generated deep inside the semiconductor could reach its surface without tangible attenuation. We discuss two ways to accomplish this, one based on d...

  14. CVD diamond detectors of ionising radiation

    International Nuclear Information System (INIS)

    Diamond is a resilient material with excellent physical properties for radiation experiments. As such it is an interesting material for fabrication of high performance solid-state particle detectors operating at room temperature. Its high radiation hardness makes it an ideal material in high radiation environment. High breakdown voltage allows application of high electric field and so speeds up the charge collection. Diamond manufacturing technology (CVD) allows low cost diamond production in large sheets and with higher purity than nature diamonds. There have been already produced CVD diamond detectors with coaxial geometry, planar, micro-strip and pixel detectors. Also at Slovak University of Technology have been already produced first CVD diamond layers. (authors)

  15. Neutron radiation damage studies on silicon detectors

    International Nuclear Information System (INIS)

    Effects of neutron radiation on electrical properties of Si detectors have been studied. At high neutron fluence (Φn ≥ 1012 n/cm2), C-V characteristics of detectors with high resistivities (ρ ≥ 1 kΩ-cm) become frequency dependent. A two-trap level model describing this frequency dependent effect is proposed. Room temperature anneal of neutron damaged (at LN2 temperature) detectors shows three anneal stages, while only two anneal stages were observed in elevated temperature anneal. 19 refs., 14 figs

  16. Comparison of calculated absolute full-energy peak efficiencies of CdTe and NaI detectors in the photon energy region of 15-2000 keV

    International Nuclear Information System (INIS)

    A comparison of the calculated absolute full-energy peak efficiencies of CdTe and NaI detectors, i.e. the ratio of the number of counts under the full-energy peak (FEP) to the number of photons at the same energy emitted by the source, is made for six different detectors and three source sizes. The CdTe and NaI detectors are assumed to be of equal volume. The calculations are performed in the photon energy region 15-2000 keV using water, muscle and blood as source media. (author)

  17. Multiple-mode radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Claus, Liam D.; Derzon, Mark S.; Kay, Randolph R.; Bauer, Todd; Trotter, Douglas Chandler; Henry, Michael David

    2015-08-25

    An apparatus for detecting radiation is provided. In embodiments, at least one sensor medium is provided, of a kind that interacts with radiation to generate photons and/or charge carriers. The apparatus also includes at least one electrode arrangement configured to collect radiation-generated charge from a sensor medium that has been provided. The apparatus also includes at least one photodetector configured to produce an electrical output in response to photons generated by radiation in such a sensor medium, and an electronic circuit configured to produce an output that is jointly responsive to the collected charge and to the photodetector output. At least one such electrode arrangement, at least one such photodetector, and at least one such sensor medium are combined to form an integral unit.

  18. Semiconductor high-energy radiation scintillation detector

    Energy Technology Data Exchange (ETDEWEB)

    Kastalsky, A. [University at Stony Brook, ECE Department and NY State Center for Advanced Sensor Technology, Stony Brook, NY 11794-2350 (United States); Luryi, S. [University at Stony Brook, ECE Department and NY State Center for Advanced Sensor Technology, Stony Brook, NY 11794-2350 (United States)]. E-mail: serge.luryi@stonybrook.edu; Spivak, B. [Department of Physics, University of Washington, Seattle, WA 98195 (United States)

    2006-09-15

    We propose a new scintillation-type detector in which high-energy radiation generates electron-hole pairs in a direct-gap semiconductor material that subsequently recombine producing infrared light to be registered by a photo-detector. The key issue is how to make the semiconductor essentially transparent to its own infrared light, so that photons generated deep inside the semiconductor could reach its surface without tangible attenuation. We discuss two ways to accomplish this, one based on doping the semiconductor with shallow impurities of one polarity type, preferably donors, the other by heterostructure bandgap engineering. The proposed semiconductor scintillator combines the best properties of currently existing radiation detectors and can be used for both simple radiation monitoring, like a Geiger counter, and for high-resolution spectrography of the high-energy radiation. An important advantage of the proposed detector is its fast response time, about 1 ns, essentially limited only by the recombination time of minority carriers. Notably, the fast response comes without any degradation in brightness. When the scintillator is implemented in a qualified semiconductor material (such as InP or GaAs), the photo-detector and associated circuits can be epitaxially integrated on the scintillator slab and the structure can be stacked-up to achieve virtually any desired absorption capability.

  19. Ionization box type radiation detector

    International Nuclear Information System (INIS)

    An ionization box for monitoring radiation rays, a first amplification circuit of a multi-stage amplification circuit employing a MOS type FET as an initial stage amplification device, a second amplification circuit employing a junction type FET as an initial stage amplification device, a first change-over switch for switching ionization current depending on input signals, a second change-over switch for switching output signals, and a signal level discrimination circuit are constituted integrally. When radiation dose rate is low, the ionization current is inputted to the first amplification circuit and outputted as a radiation ray monitor signal and, when the radiation dose rate is increased to higher than a predetermined value, the ionization current is inputted to the second amplification circuit and outputted as a radiation ray monitor signal. That is, monitoring accuracy is high when the ionization current is low since the MOS type FET of high input impedance is used. If the ionization current is higher than a predetermined value, there is no worry that the detection becomes impossible since the junction type FET having less worry of causing characteristic change due to high radiation dose rate is used. Accordingly, ionization box type monitor at a high monitoring reliability can be obtained. (N.H.)

  20. Model-based pulse shape correction for CdTe detectors

    CERN Document Server

    Bargholtz, C; Maartensson, L

    1999-01-01

    We present a systematic method to improve energy resolution of CdTe-detector systems with full control of the efficiency. Sampled pulses and multiple amplifier data are fitted by a model of the pulse shape including the deposited energy and the interaction point within the detector as parameters. We show the decisive improvements of spectral resolution and photo-peak efficiency that is obtained without distortion of spectral shape. The information concerning the interaction depth of individual events can be used to discriminate between beta particles and gamma quanta. (author)

  1. Model-based pulse shape correction for CdTe detectors

    Science.gov (United States)

    Bargholtz, Chr.; Fumero, E.; Mårtensson, L.

    1999-02-01

    We present a systematic method to improve energy resolution of CdTe-detector systems with full control of the efficiency. Sampled pulses and multiple amplifier data are fitted by a model of the pulse shape including the deposited energy and the interaction point within the detector as parameters. We show the decisive improvements of spectral resolution and photo-peak efficiency that is obtained without distortion of spectral shape. The information concerning the interaction depth of individual events can be used to discriminate between beta particles and gamma quanta.

  2. Metallisation of single crystal diamond radiation detectors

    Directory of Open Access Journals (Sweden)

    Ong Lucas

    2012-10-01

    Full Text Available Properties such as a large band gap, high thermal conductivity and resistance to radiation damage make diamond an extremely attractive candidate for detectors in next generation particle physics experiments. This paper presents our technique for metallisation of a single crystal diamond grown by chemical vapour deposition (CVD for use as a radiation detector, suitable for operation in places such as the Large Hadron Collider. The front and back side of the diamond are metalised with aluminium and gold on top of titanium respectively, after which the diamond is mounted and read out via a charge sensitive preamplifier. The device is found to collect charge at an efficiency of 97%.

  3. On the energy response function of a CdTe Medipix2 Hexa detector

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Thomas, E-mail: t.koenig@dkfz.de [German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Zwerger, Andreas [Freiburg Materials Research Center (FMF), Stefan-Meier-Strasse 21, 79104 Freiburg (Germany); Zuber, Marcus; Schuenke, Patrick; Nill, Simeon [German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Guni, Ewald [Erlangen Centre for Astroparticle Physics (ECAP), Erwin-Rommel-Strasse 1, 91058 Erlangen (Germany); Fauler, Alex; Fiederle, Michael [Freiburg Materials Research Center (FMF), Stefan-Meier-Strasse 21, 79104 Freiburg (Germany); Oelfke, Uwe [German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)

    2011-08-21

    X-ray imaging based on photon counting pixel detectors has received increased interest during the past years. Attached to a semiconductor of choice, some of these devices enable to resolve the spectral components of an image. This work presents the results from measuring the energy response function of a Medipix2 MXR Hexa detector, where six individual Medipix detectors were bump bonded to a 1 mm thick cadmium telluride sensor in order to form a 3x2 array of 4.2x2.8 cm{sup 2} size. The average FWHM of the photo peak of an {sup 241}Am source was found to be 2.2 and 2.1 keV for single pixels and bias voltages of 200 and 350 V, respectively, across the whole Hexa detector. This corresponds to a relative energy resolution of less than 4%. Adding up all pixel spectra of individual chips lead to an only small deterioration of energy resolution, with line widths of 2.7 and 2.5 keV. In general, a lower detection efficiency was observed for the lower voltage setting, along with a shift of the peak position towards lower energies.

  4. Low-Power Multi-Aspect Space Radiation Detector System

    Science.gov (United States)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave; Freeman, Jon C.; Burkebile, Stephen P.

    2012-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of all of these detector technologies will result in an improved detector system in comparison to existing state-of-the-art (SOA) instruments for the detection and monitoring of the deep space radiation field.

  5. Radiation effects in IRAS extrinsic infrared detectors

    Science.gov (United States)

    Varnell, L.; Langford, D. E.

    1982-01-01

    During the calibration and testing of the Infrared Astronomy Satellite (IRAS) focal plane, it was observed that the extrinsic photoconductor detectors were affected by gamma radiation at dose levels of the order of one rad. Since the flight environment will subject the focal plane to dose levels of this order from protons in single pass through the South Atlantic Anomaly, an extensive program of radiation tests was carried out to measure the radiation effects and to devise a method to counteract these effects. The effects observed after irradiation are increased responsivity, noise, and rate of spiking of the detectors after gamma-ray doses of less than 0.1 rad. The detectors can be returned almost to pre-irradiation performance by increasing the detector bias to breakdown and allowing a large current to flow for several minutes. No adverse effects on the detectors have been observed from this bias boost, and this technique will be used for IRAS with frequent calibration to ensure the accuracy of observations made with the instrument.

  6. Metal-semiconductor, composite radiation detectors

    International Nuclear Information System (INIS)

    In 1989, Naruse and Hatayama of Toshiba published a design for an increased efficiency x-ray detector. The design increased the efficiency of a semiconductor detector by interspersing layers of high-z metal within it. Semiconductors such as silicon make good, high-resolution radiation detectors, but they have low efficiency because they are low-z materials (z = 14). High-z metals, on the other hand, are good absorbers of high-energy photons. By interspersing high-z metal layers with semiconductor layers, Naruse and Hatayama combined the high absorption efficiency of the high-z metals with the good detection capabilities of a semiconductor. This project is an attempt to use the same design to produce a high-efficiency, room temperature gamma ray detector. By their nature, gamma rays require thicker metal layers to efficiently absorb them. These thicker layers change the behavior of the detector by reducing the resolution, compared to a solid state detector, and shifting the photopeak by a predictable amount. During the last year, the authors have procured and tested a commercial device with operating characteristics similar to those of a single layer of the composite device. They have modeled the radiation transport in a multi-layered device, to verify the initial calculations of layer thickness and composition. They have modeled the electrostatic field in different device designs to locate and remove high-field regions that can cause device breakdown. They have fabricated 14 single layer prototypes

  7. CdTe and CdZnTe detectors in nuclear medicine

    CERN Document Server

    Scheiber, C

    2000-01-01

    Nuclear medicine diagnostic applications are growing in search for more disease specific or more physiologically relevant imaging. The data are obtained non-invasively from large field gamma cameras or from miniaturised probes. As far as single photon emitters are concerned, often labelled with sup 9 sup 9 sup m Tc (140 keV, gamma), nuclear instrumentation deals with poor counting statistics due to the method of spatial localisation and low contrast to noise due to scatter in the body. Since the 1960s attempts have been made to replace the NaI scintillator by semiconductor detectors with better spectrometric characteristics to improve contrast and quantitative measurements. They allow direct conversion of energy and thus more compact sensors. Room-temperature semiconductor detectors such as cadmium tellure and cadmium zinc tellure have favourable physical characteristics for medical applications which have been investigated in the 1980s. During one decade, they have been used in miniaturised probes such as fo...

  8. Radiation damage in barium fluoride detector materials

    Energy Technology Data Exchange (ETDEWEB)

    Levey, P.W.; Kierstead, J.A.; Woody, C.L.

    1988-01-01

    To develop radiation hard detectors, particularly for high energy physics studies, radiation damage is being studied in BaF/sub 2/, both undoped and doped with La, Ce, Nd, Eu, Gd and Tm. Some dopants reduce radiation damage. In La doped BaF/sub 2/ they reduce the unwanted long lifetime luminescence which interferes with the short-lived fluorescence used to detect particles. Radiation induced coloring is being studied with facilities for making optical measurements before, during and after irradiation with /sup 60/C0 gamma rays. Doses of 10/sup 6/ rad, or less, create only ionization induced charge transfer effects since lattice atom displacement damage is negligible at these doses. All crystals studied exhibit color center formation, between approximately 200 and 800 nm, during irradiation and color center decay after irradiation. Thus only measurements made during irradiation show the total absorption present in a radiation field. Both undoped and La doped BaF/sub 2/ develop damage at minimum detectable levels in the UV---which is important for particle detectors. For particle detector applications these studies must be extended to high dose irradiations with particles energetic enough to cause lattice atom displacement damage. In principle, the reduction in damage provided by dopants could apply to other applications requiring radiation damage resistant materials.

  9. Integrator Circuitry for Single Channel Radiation Detector

    Science.gov (United States)

    Holland, Samuel D. (Inventor); Delaune, Paul B. (Inventor); Turner, Kathryn M. (Inventor)

    2008-01-01

    Input circuitry is provided for a high voltage operated radiation detector to receive pulses from the detector having a rise time in the range of from about one nanosecond to about ten nanoseconds. An integrator circuit, which utilizes current feedback, receives the incoming charge from the radiation detector and creates voltage by integrating across a small capacitor. The integrator utilizes an amplifier which closely follows the voltage across the capacitor to produce an integrator output pulse with a peak value which may be used to determine the energy which produced the pulse. The pulse width of the output is stretched to approximately 50 to 300 nanoseconds for use by subsequent circuits which may then use amplifiers with lower slew rates.

  10. Signal formation and decay in CdTe x-ray detectors under intense irradiation.

    Science.gov (United States)

    Jahnke, A; Matz, R

    1999-01-01

    The response of Cd(Zn)Te Schottky and resistive detectors to intense x-rays is investigated in a commercial computed tomography (CT) system to assess their potential for medical diagnostics. To describe their signal height, responsivity, signal-to-noise ratio (SNR), and detective quantum efficiency the devices are modeled as solid-state ionization chambers with spatially varying electric field and charge collection efficiency. The thicknesses and pixel areas of the discrete detector elements are 0.5-2 mm and a few mm2, respectively. The incident spectrum extends from 26 to 120 keV and comprises 10(10) quanta/s cm2. It photogenerates a carrier concentration in the semiconductor that is two to three orders of magnitude above the intrinsic concentration, but remains to a similar extent below the charge densities on the device electrodes. Stable linear operation is achieved with the Schottky-type devices under high bias. Their behavior can be modeled well if negatively charged near-midgap bulk defects with a concentration of 10(11)-10(13) cm-3 are assumed. The bulk defects explain the amount and time constant (about 100 ms) of the detrapping current measured after x-ray pulses (afterglow). To avoid screening by the trapped space charge the bias voltage should exceed 100(V) x [detector thickness/mm]2. Dark currents are of the order of the generation-recombination current, i.e., 300 pA/mm3 detector volume. With proper device design the signal height approaches the theoretical maximum of 0.2 A/W. This high responsivity, however, is not exploited in CT since the SNR is determined here by the incident quantum noise. As a consequence of the detrapping current, the response speed does not meet CT requirements. A medium-term effort for crystal growth appears necessary to achieve the required reduction of the trap density by an order of magnitude. Scintillation based detectors are, therefore, still preferred in fast operating medical diagnostic systems. PMID:9949396

  11. SIRAD – Personal radiation detectors

    International Nuclear Information System (INIS)

    SIRAD badge dosimeters provide a visual qualitative measurement of exposure to radiation for mid range dose exposure. This is performed using an active radiochromic dosimeter in a transparent window, combined into a badge assembly. When irradiated, the badges active window turns blue, which can be matched against the given colour chart for a qualitative assessment of the exposure received. Two peaks in the absorption spectra located at 617 nm and 567 nm were found. When analysed with a common computer desktop scanner, the optical density response of the film to radiation exposure is non-linear but reproducible. The net OD of the film was 0.21 when exposed to 50cGyand 0.31 at 200 cGy exposure when irradiated with a 6 MV x-ray energy beam and analysed using a broad spectrum light source. These values reduced when exposed with kilovoltage x-rays with an approximate 30% reducing in sensitivity at 50 kVp. The film provides an adequate measurement and visually qualitative assessment of radiation exposure for levels in the range of 0–50 cGy.

  12. Spectroscopy of low energy solar neutrinos using CdTe detectors

    OpenAIRE

    Zuber, K.

    2002-01-01

    The usage of a large amount of CdTe(CdZnTe) semiconductor detectors for solar neutrino spectroscopy in the low energy region is investigated. Several different coincidence signals can be formed on five different isotopes to measure the Be-7 neutrino line at 862 keV in real-time. The most promising one is the usage of Cd-116 resulting in 89 SNU. The presence of Te-125 permits even the real-time detection of pp-neutrinos. A possible antineutrino flux above 713 keV might be detected by capture o...

  13. Amorphous silicon based radiation detectors

    International Nuclear Information System (INIS)

    We describe the characteristics of thin(1 μm) and thick (>30μm) hydrogenated amorphous silicon p-i-n diodes which are optimized for detecting and recording the spatial distribution of charged particles, x-rays and γ rays. For x-ray, γ ray, and charged particle detection we can use thin p-i-n photosensitive diode arrays coupled to evaporated layers of suitable scintillators. For direct detection of charged particles with high resistance to radiation damage, we use the thick p-i-n diode arrays. 13 refs., 7 figs

  14. Luminescent detectors of ionising radiation

    International Nuclear Information System (INIS)

    At present in slow neutron imaging an active layer of an imaging plate IP contains a mixture of storage phosphors, usually BaFBr:Eu2+ used for imaging of X-rays, and a neutron converter material, usually Gd2O3, LiF. A novel Li-containing luminescent material perspective for a direct neutron conversion and storage is discussed. Irradiation of LiBaF3 crystals results in generation of Frenkel defect pairs and creation of F-type centres responsible for three absorption bands in UV-and visible spectral region. Because photo-stimulation in each of these absorption bands leads to bleaching of induced absorption, the F-type colour centres are convenient for storage of radiation dose. Photo-stimulated decay of F-centres causes recombination luminescence of impurity centres. Thermoactivated decay of F-type centres is governed by ionic process. The thermal stability of F-centres at RT and consequent material storage characteristics can be improved by doping of the LiBaF3 with heterovalent oxygen impurities. The obtained radiation energy storage, photo- and thermostimulated read-out characteristics justify that LiBaF3 is a suitable active media for imaging of slow neutrons

  15. A radiation detector. Lead tungstate

    Energy Technology Data Exchange (ETDEWEB)

    Susuki, Yoshiyuki [Furukawa Co. Ltd., Tokyo (Japan); Ishii, Mitsuru; Kobayashi, Masaaki

    2000-05-01

    Lead tungstate (PbWO) is a material for scintillator luminous by irradiation of gamma-ray, X-ray, UV-light, and so forth. As it has short attenuation time of light after its luminescence and the largest density among the scintillator materials producible industrially at present. It is focussed by decision of its adoption to the next accelerator, LHC (large Hadron collider) in CERN. On the other hand, it is also under development onto lower energy application such as SPring-8 and medical PET (position emission tomography). However, it has many problems such as evaporation of PbO which is a raw element, fragile crystal, presence of cleavage, anisotropy in thermal expansion coefficient, low radiation resistance, and so forth. By optimization of pulling-up condition, a production technique of large size crystal could be established at this time. And, by addition of rare earth elements with three equivalence such as La, and so forth, it transmission and radiation resistance were extremely improved, which was confirmed to be used for actual applications. (G.K.)

  16. Status of radiation detector and neutron monitor technology

    CERN Document Server

    Kim, Y K; Ha, J H; Han, S H; Hong, S B; Hwang, I K; Lee, W G; Moon, B S; Park, S H; Song, M H

    2002-01-01

    In this report, we describe the current states of the radiation detection technology, detectors for industrial application, and neutron monitors. We also survey the new technologies being applied to this field. The method to detect radiation is the measurement of the observable secondary effect from the interaction between incident radiation and detector material, such as ionization, excitation, fluorescence, and chemical reaction. The radiation detectors can be categorized into gas detectors, scintillation detectors, and semiconductor detectors according to major effects and main applications. This report contains the current status and operational principles of these detectors. The application fields of radiation detectors are industrial measurement system, in-core neutron monitor, medical radiation diagnostic device, nondestructive inspection device, environmental radiation monitoring, cosmic-ray measurement, security system, fundamental science experiment, and radiation measurement standardization. The st...

  17. Status of radiation detector and neutron monitor technology

    International Nuclear Information System (INIS)

    In this report, we describe the current states of the radiation detection technology, detectors for industrial application, and neutron monitors. We also survey the new technologies being applied to this field. The method to detect radiation is the measurement of the observable secondary effect from the interaction between incident radiation and detector material, such as ionization, excitation, fluorescence, and chemical reaction. The radiation detectors can be categorized into gas detectors, scintillation detectors, and semiconductor detectors according to major effects and main applications. This report contains the current status and operational principles of these detectors. The application fields of radiation detectors are industrial measurement system, in-core neutron monitor, medical radiation diagnostic device, nondestructive inspection device, environmental radiation monitoring, cosmic-ray measurement, security system, fundamental science experiment, and radiation measurement standardization. The status of the technology development of these fields are also described

  18. Development of a plasma panel radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Ball, R. [University of Michigan, Department of Physics, Ann Arbor, MI 48109 (United States); Beene, J.R. [Oak Ridge National Laboratory, Physics Division, Oak Ridge, TN 737831 (United States); Ben-Moshe, M.; Benhammou, Y.; Bensimon, B. [Tel Aviv University, Beverly and Raymond Sackler School of Physics and Astronomy, Tel Aviv (Israel); Chapman, J.W. [University of Michigan, Department of Physics, Ann Arbor, MI 48109 (United States); Etzion, E. [Tel Aviv University, Beverly and Raymond Sackler School of Physics and Astronomy, Tel Aviv (Israel); Ferretti, C. [University of Michigan, Department of Physics, Ann Arbor, MI 48109 (United States); Friedman, P.S. [Integrated Sensors, LLC, Ottawa Hills, OH 43606 (United States); Levin, D.S. [University of Michigan, Department of Physics, Ann Arbor, MI 48109 (United States); Silver, Y. [Tel Aviv University, Beverly and Raymond Sackler School of Physics and Astronomy, Tel Aviv (Israel); Varner, R.L. [Oak Ridge National Laboratory, Physics Division, Oak Ridge, TN 737831 (United States); Weaverdyck, C.; Wetzel, R.; Zhou, B. [University of Michigan, Department of Physics, Ann Arbor, MI 48109 (United States); Anderson, T.; McKinny, K. [GE Measurement and Control, Reuter-Stokes Product Line, Twinsburg, OH 44087 (United States); Bentefour, E.H. [Ion Beam Applications S.A., Louvain La Neuve, B-1348 Belgium (Belgium)

    2014-11-11

    This article reports on the development and experimental results of commercial plasma display panels adapted for their potential use as micropattern gas radiation detectors. The plasma panel sensor (PPS) design and materials include glass substrates, metal electrodes and inert gas mixtures which provide a physically robust, hermetically sealed device. Plasma display panels used as detectors were tested with cosmic ray muons, beta rays and gamma rays, protons, and thermal neutrons. The results demonstrated rise times and time resolution of a few nanoseconds, as well as sub-millimeter spatial resolution compatible with the pixel pitch.

  19. Development of a plasma panel radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Ball, Robert [University of Michigan; Beene, James R [ORNL; Ben Moshe, M. [Tel Aviv University; Benhammou, Yan [Tel Aviv University; Bensimon, B [Tel Aviv University; Chapman, J. Wehrley [University of Michigan; Etzion, E [Tel Aviv University; Ferretti, Claudio [University of Michigan; Friedman, Dr. Peter S. [Integrated Sensors, LLC; Levin, Daniel S. [University of Michigan; Silver, Yiftah [Tel Aviv University; Weaverdyck, Curtis [University of Michigan; Wetzel, R. [University of Michigan; Zhou, Bing [University of Michigan; Anderson, T [GE Measurement and Control Solutions; McKinny, K [GE Measurement and Control Solutions; Bentefour, E [Ion Beam Applications

    2014-11-01

    This article reports on the development and experimental results of commercial plasma display panels adapted for their potential use as micropattern gas radiation detectors. The plasma panel sensor (PPS) design and materials include glass substrates, metal electrodes and inert gas mixtures which provide a physically robust, hermetically sealed device. Plasma display panels used as detectors were tested with cosmic ray muons, beta rays and gamma rays, protons, and thermal neutrons. The results demonstrated rise times and time resolution of a few nanoseconds, as well as sub-millimeter spatial resolution compatible with the pixel pitch.

  20. The Use of Radiation Detectors in Medicine: Radiation Detectors for Functional Imaging (2/3)

    CERN Document Server

    CERN. Geneva

    2009-01-01

    The development of radiation detectors in the field of nuclear and particle physics has had a terrific impact in medical imaging since this latter discipline took off in late ’70 with the invention of the CT scanners. The massive use in High Energy Physics of position sensitive gas detectors, of high Z and high density scintillators coupled to Photomultiplier (PMT) and Position Sensitive Photomultipliers (PSPMT), and of solid state detectors has triggered during the last 30 years a series of novel applications in Medical Imaging with ionizing radiation. The accelerated scientific progression in genetics and molecular biology has finally generated what it is now called Molecular Imaging. This field of research presents additional challenges not only in the technology of radiation detector, but more and more in the ASIC electronics, fast digital readout and parallel software. In this series of three lectures I will try to present how high energy physics and medical imaging development have both benefited by t...

  1. The Use of Radiation Detectors in Medicine: Radiation Detectors for Morphological Imaging (1/3)

    CERN Document Server

    CERN. Geneva

    2009-01-01

    The development of radiation detectors in the field of nuclear and particle physics has had a terrific impact in medical imaging since this latter discipline took off in late ’70 with the invention of the CT scanners. The massive use in High Energy Physics of position sensitive gas detectors, of high Z and high density scintillators coupled to Photomultiplier (PMT) and Position Sensitive Photomultipliers (PSPMT), and of solid state detectors has triggered during the last 30 years a series of novel applications in Medical Imaging with ionizing radiation. The accelerated scientific progression in genetics and molecular biology has finally generated what it is now called Molecular Imaging. This field of research presents additional challenges not only in the technology of radiation detector, but more and more in the ASIC electronics, fast digital readout and parallel software. In this series of three lectures I will try to present how high energy physics and medical imaging development have both benefited by t...

  2. Radiation Experience with the CMS Pixel Detector

    CERN Document Server

    Veszpremi, Viktor

    2015-01-01

    The CMS pixel detector is the innermost component of the CMS tracker occupying the region around the centre of CMS, where the LHC beams are crossed, between 4.3~cm and 30~cm in radius and 46.5~cm along the beam axis. It operates in a high-occupancy and high-radiation environment created by particle collisions. Studies of radiation damage effects to the sensors were performed throughout the first running period of the LHC. Leakage current, depletion voltage, pixel read-out thresholds, and hit finding efficiencies were monitored as functions of the increasing particle fluence. The methods and results of these measurements will be described together with their implications to detector operation as well as to performance parameters in offline hit reconstruction.

  3. Radiation experience with the CMS pixel detector

    Science.gov (United States)

    Veszpremi, V.

    2015-04-01

    The CMS pixel detector is the innermost component of the CMS tracker occupying the region around the centre of CMS, where the LHC beams are crossed, between 4.3 cm and 30 cm in radius and 46.5 cm along the beam axis. It operates in a high-occupancy and high-radiation environment created by particle collisions. Studies of radiation damage effects to the sensors were performed throughout the first running period of the LHC . Leakage current, depletion voltage, pixel readout thresholds, and hit finding efficiencies were monitored as functions of the increasing particle fluence. The methods and results of these measurements will be described together with their implications to detector operation as well as to performance parameters in offline hit reconstruction.

  4. Radiation response issues for infrared detectors

    Science.gov (United States)

    Kalma, Arne H.

    1990-01-01

    Researchers describe the most important radiation response issues for infrared detectors. In general, the two key degradation mechanisms in infrared detectors are the noise produced by exposure to a flux of ionizing particles (e.g.; trapped electronics and protons, debris gammas and electrons, radioactive decay of neutron-activated materials) and permanent damage produced by exposure to total dose. Total-dose-induced damage is most often the result of charge trapping in insulators or at interfaces. Exposure to short pulses of ionization (e.g.; prompt x rays or gammas, delayed gammas) will cause detector upset. However, this upset is not important to a sensor unless the recovery time is too long. A few detector technologies are vulnerable to neutron-induced displacement damage, but fortunately most are not. Researchers compare the responses of the new technologies with those of the mainstream technologies of PV HgCdTe and IBC Si:As. One important reason for this comparison is to note where some of the newer technologies have the potential to provide significantly improved radiation hardness compared with that of the mainstream technologies, and thus to provide greater motivation for the pursuit of these technologies.

  5. Electronic systems associated with radiation detectors

    International Nuclear Information System (INIS)

    This article deals with the instrumentation used for the detection of radiations in nuclear reactors and fuel reprocessing plants. In power reactors, the control of nuclear fissions is performed with the measurement of the neutron flux emitted by the pressure vessel. In fuel reprocessing plants the quantities of nuclear material are controlled all along the process by the measurement of the neutrons and gamma photons emitted. The measurement systems use the information contained in the series of electrical pulses delivered by the detectors. The number of pulses and the particular characteristics of each pulse are the methods used in the two different classes of measurements performed in nuclear facilities. Measurement systems are particularly sensible to the signal/noise ratio which is a determining factor in the quality of measurements: 1 - sources of error and filtering of detector pulses: detectors and processing of pulses; sources of errors (electronic noise, thermal drift, electromagnetic disturbances, piling up effects, ballistic deficit); optimum estimation and filtering (optimum energy estimation, counting optimization); 2 - measurement chains associated with detectors: counting and measurement of weak currents (effect of the connection cable, effects of high counting rates, method of fluctuations and advantage of a numerical processing of the signal, measurement of weak currents, effect of radiations on electronic components); energy measurement (filter for energy measurements, design of low-noise preamplifiers, high counting rate measurements). (J.S.)

  6. Development of CVD diamond radiation detectors

    CERN Document Server

    Adam, W; Berdermann, E; Bogani, F; Borchi, E; Bruzzi, Mara; Colledani, C; Conway, J; Dabrowski, W; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fisch, D; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Grigoriev, E A; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Kagan, H; Kania, D R; Kaplon, J; Kass, R; Knöpfle, K T; Krammer, Manfred; Manfredi, P F; Meier, D; Mishina, M; Le Normand, F; Pan, L S; Pernegger, H; Pernicka, Manfred; Pirollo, S; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Schnetzer, S R; Sciortino, S; Speziali, V; Stelzer, H; Stone, R; Tapper, R J; Tesarek, R J; Thomson, G B; Trawick, M L; Trischuk, W; Turchetta, R; Walsh, A M; Wedenig, R; Weilhammer, Peter; Ziock, H J; Zoeller, M M

    1998-01-01

    Diamond is a nearly ideal material for detecting ionizing radiation. Its outstanding radiation hardness, fast charge collection and low leakage current allow a diamond detector to be used in high ra diation, high temperature and in aggressive chemical media. We have constructed charged particle detectors using high quality CVD diamond. Characterization of the diamond samples and various detect ors are presented in terms of collection distance, $d=\\mu E \\tau$, the average distance electron-hole pairs move apart under the influence of an electric field, where $\\mu$ is the sum of carrier mo bilities, $E$ is the applied electric field, and $\\tau$ is the mobility weighted carrier lifetime. Over the last two years the collection distance increased from $\\sim$ 75 $\\mu$m to over 200 $\\mu$ m. With this high quality CVD diamond a series of micro-strip and pixel particle detectors have been constructed. These devices were tested to determine their position resolution and signal to n oise performance. Diamond detectors w...

  7. Nano structural anodes for radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Cordaro, Joseph V.; Serkiz, Steven M.; McWhorter, Christopher S.; Sexton, Lindsay T.; Retterer, Scott T.

    2015-07-07

    Anodes for proportional radiation counters and a process of making the anodes is provided. The nano-sized anodes when present within an anode array provide: significantly higher detection efficiencies due to the inherently higher electric field, are amenable to miniaturization, have low power requirements, and exhibit a small electromagnetic field signal. The nano-sized anodes with the incorporation of neutron absorbing elements (e.g., .sup.10B) allow the use of neutron detectors that do not use .sup.3He.

  8. Mobile robot prototype detector of gamma radiation

    International Nuclear Information System (INIS)

    In this paper the technological development of a mobile robot prototype detector of gamma radiation is shown. This prototype has been developed for the purpose of algorithms implementation for the applications of terrestrial radiation monitoring of exposed sources, search for missing radioactive sources, identification and delineation of radioactive contamination areas and distribution maps generating of radioactive exposure. Mobile robot detector of radiation is an experimental technology development platform to operate in laboratory environment or flat floor facilities. The prototype integrates a driving section of differential configuration robot on wheels, a support mechanism and rotation of shielded detector, actuator controller cards, acquisition and processing of sensor data, detection algorithms programming and control actuators, data recording (Data Logger) and data transmission in wireless way. The robot in this first phase is remotely operated in wireless way with a range of approximately 150 m line of sight and can extend that range to 300 m or more with the use of signal repeaters. The gamma radiation detection is performed using a Geiger detector shielded. Scan detection is performed at various time sampling periods and diverse positions of discrete or continuous angular orientation on the horizon. The captured data are geographical coordinates of robot GPS (latitude and longitude), orientation angle of shield, counting by sampling time, date, hours, minutes and seconds. The data is saved in a file in the Micro Sd memory on the robot. They are also sent in wireless way by an X Bee card to a remote station that receives for their online monitoring on a laptop through an acquisition program by serial port on Mat Lab. Additionally a voice synthesizing card with a horn, both in the robot, periodically pronounced in Spanish, data length, latitude, orientation angle of shield and detected accounts. (Author)

  9. Miniature detector measures deep space radiation

    Science.gov (United States)

    Schultz, Colin

    2011-08-01

    The 1972 journey of Apollo 17 marked not only the last time a human walked on the Moon but also the most recent manned venture beyond the outer reaches of the Earth's atmosphere. With preparations being made for humans to once again explore deep space, important steps are under way to quantify the hazards of leaving low-Earth orbit. One significant risk for long-distance missions is the increased exposure to ionizing radiation—energetic particles that can strip electrons off of otherwise neutral materials, affecting human health and the functioning of spacecraft equipment. The deep space probes that are being sent to measure the risks from ionizing radiation and other hazards can be costly, so maximizing the scientific value of each launch is important. With this goal in mind, Mazur et al. designed and developed a miniature dosimeter that was sent into lunar orbit aboard NASA's Lunar Reconnaissance Orbiter (LRO) in 2009. Weighing only 20 grams, the detector is able to measure fluctuations in ionizing radiation as low as 1 microrad (equivalent to 1.0 × 10-8 joules of energy deposited into 1 kilogram) while requiring minimal power and computer processing. The postage stamp-sized detector tracked radiation dosages for the first year of LRO's mission, with the results being confirmed by other onboard and near-Earth detectors. (Space Weather, doi:10.1029/2010SW000641, 2011)

  10. Semiconductor scintillator detector for gamma radiation

    International Nuclear Information System (INIS)

    Nowadays the devices employed to evaluate individual radiation exposition are based on dosimetric films and thermoluminescent crystals, whose measurements must be processed in specific transductors. Hence, these devices carry out indirect measurements. Although a new generation of detectors based on semiconductors which are employed in EPD's (Electronic Personal Dosemeters) being yet available, it high producing costs and large dimensions prevents the application in personal dosimetry. Recent research works reports the development of new detection devices based on photovoltaic PIN diodes, which were successfully employed for detecting and monitoring exposition to X rays. In this work, we step forward by coupling a 2mm anthracene scintillator NE1, which converts the high energy radiation in visible light, generating a Strong signal which allows dispensing the use of photomultipliers. A low gain high performance amplifier and a digital acquisition device are employed to measure instantaneous and cumulative doses for energies ranging from X rays to Gamma radiation up to 2 MeV. One of the most important features of the PIN diode relies in the fact that it can be employed as a detector for ionization radiation, since it requires a small energy amount for releasing electrons. Since the photodiode does not amplify the corresponding photon current, it must be coupled to a low gain amplifier. Therefore, the new sensor works as a scintillator coupled with a photodiode PIN. Preliminary experiments are being performed with this sensor, showing good results for a wide range of energy spectrum. (author)

  11. Dynamic defectoscopy with flat panel and CdTe Timepix X-ray detectors combined with an optical camera

    Czech Academy of Sciences Publication Activity Database

    Vavřík, Daniel; Fauler, A.; Fiederle, M.; Jandejsek, Ivan; Jakůbek, J.; Tureček, D.; Zwerger, A.

    2013-01-01

    Roč. 8, April (2013), C04009. ISSN 1748-0221. [International Workshop on Radiation Imaging Detector s /14./. Figueira da Foz, Coimbra, 01.07.2012-05.07.2012] R&D Projects: GA ČR(CZ) GA103/09/2101 Institutional support: RVO:68378297 Keywords : X-ray digital radiography * fracture mechanics * crack path * X-ray defectoscopy Subject RIV: JM - Building Engineering Impact factor: 1.526, year: 2013 http://iopscience.iop.org/1748-0221/8/04/C04009/

  12. Continued Development of Small-Pixel CZT and CdTe Detectors for Future High-Angular-Resolution Hard X-ray Missions

    Science.gov (United States)

    Krawczynski, Henric

    The Nuclear Spectroscopic Telescope Array (NuSTAR) Small Explorer Mission was launched in June 2012 and has demonstrated the technical feasibility and high scientific impact of hard X-ray astronomy. We propose to continue our current R&D program to develop finely pixelated semiconductor detectors and the associated readout electronics for the focal plane of a NuSTAR follow-up mission. The detector-ASIC (Application Specific Integrated Circuit) package will be ideally matched to the new generation of low-cost, low-mass X-ray mirrors which achieve an order of magnitude better angular resolution than the NuSTAR mirrors. As part of this program, the Washington University group will optimize the contacts of 2x2 cm^2 footprint Cadmium Zinc Telluride (CZT) and Cadmium Telluride (CdTe) detectors contacted with 100x116 hexagonal pixels at a next-neighbor pitch of 200 microns. The Brookhaven National Laboratory group will design, fabricate, and test the next generation of the HEXID ASIC matched to the new X-ray mirrors and the detectors, providing a low-power 100x116 channel ASIC with extremely low readout noise (i.e. with a root mean square noise of 13 electrons). The detectors will be tested with radioactive sources and in the focal plane of high-angular-resolution X-ray mirrors at the X-ray beam facilities at the Goddard and Marshall Space Flight Centers.

  13. Radiation Damage Effect on Si and SiC Detectors

    International Nuclear Information System (INIS)

    Silicon is an extraordinary semiconductor suited for the fabrication of radiation detector. Charge carrier lifetime and mobility are high, which is very important to make the radiation detector with low noise and good time behavior. Since the fabrication technology of the silicon was mature, one could easily make a radiation detector with a sophisticated structure. Therefore, silicon detector could be the best choice for the various application areas. The depletion layers of the reverse bias rectifying barriers are used to make the silicon radiation detector with low noise. The depletion layer could be made by a silicon surface barrier (SSB) structure or a PIN junction structure. SSB detector was made by depositing the metal electrode on the n or p type silicon wafer. The p-n junction could be made with the semiconductor fabrication process, and the X-ray or α particles could be measured with the detector. The radiation tolerance of the radiation detector is also very important for the application of the detector to the harsh environment. A study on the effect of the structure of the depletion layer on the radiation tolerance was rare in most of the previous works In the present work, the silicon detectors with two types were fabricated, and their operation characteristics are compared. The dependency of the radiation damage on the detector type was studied. We also fabricated SiC detector and the neutron and gamma irradiation effect on the detector was studied. The radiation tolerance of the detector was studied. One could see the change of the leakage current and the energy resolution in SSB detector, and the operating performance of the Si PIN detector was more stable than Si Schottky detector.

  14. Radiation damage effects in silicon detectors

    International Nuclear Information System (INIS)

    Radiation damage in silicon detectors produced by monoenergetic 14 MeV neutrons, 25 MeV protons and 20 keV X-rays was investigated. The irradiation was performed up to fluences of 1012 particles per cm2 resp. 5 kGy in short time exposures of less than 1 hour. The resulting increase of the leakage current (damage rate), change of the resistivity (impurity removal) and charge collection deficiency (decrease of trapping time constant) is discussed. Long term storage at room temperature and short term heat treatments showed appreciable annealing effects

  15. A new transition radiation detector for cosmic ray nuclei

    Science.gov (United States)

    Lheureux, J.; Meyer, P.; Muller, D.; Swordy, S.

    1981-01-01

    Test measurements on materials for transition radiation detectors at a low Lorentz factor are reported. The materials will be based on board Spacelab-2 for determining the composition and energy spectra of nuclear cosmic rays in the 1 TeV/nucleon range. The transition radiation detectors consist of a sandwich of radiator-photon detector combinations. The radiators emit X-rays and are composed of polyolefin fibers used with Xe filled multiwired proportional chamber (MWPC) detectors capable of detecting particle Lorentz factors of several hundred. The sizing of the detectors is outlined, noting the requirement of a thickness which provides a maximum ratio of transition radiation to total signal in the chambers. The fiber radiator-MWPC responses were tested at Fermilab and in an electron cyclotron. An increase in transition radiation detection was found as a square power law of Z, and the use of six radiator-MWPC on board the Spacelab-2 is outlined.

  16. Extensive testing of Schottky CdTe detectors for the ECLAIRs X-Gamma-ray Camera on board the SVOM mission

    CERN Document Server

    Nadege, Remoue; Olivier, Godet; Pierre, Mandrou

    2010-01-01

    We report on an on-going test campaign of more than 5000 Schottky CdTe detectors (4x4x1 mm^3), over a sample of twelve thousands, provided by Acrorad Co., Ltd (Japan). 6400 of these detectors will be used to build the detection plane of the ECLAIRs camera on the Chinese-French gamma-ray burst mission SVOM. These tests are mandatory to fulfill the prime requirement of ECLAIRs to detect gamma-ray burst photons down to 4 keV. The detectors will be operated at -20C under a reverse bias of 600 V. We found that 78% of the detectors already tested could be considered for the flight model. We measured a mean energy resolution of 1.8 keV at 59.6 keV. We investigated the polarization effect first at room temperature and low bias voltage for faster analysis. We found that the spectroscopic degradation in quantum efficiency, gain and energy resolution, starts as soon as the bias is turned on: first slowly and then dramatically after a time t_p which depends on the temperature and the voltage value. Preliminary tests unde...

  17. Method of neutralising the effects of electromagnetic radiation in a radiation detector and a radiation detector applying the procedure

    International Nuclear Information System (INIS)

    Circuitry is described by means of which radiation detectors of the Neher-White type, employing ionisation chambers can be unaffected by electromagnetic radiation which would otherwise cause inductive effects leading to erroneous signals. It is therefore unnecessary to use shielded cables for these instruments. (JIW)

  18. Ruggedization of CdZnTe detectors and detector assemblies for radiation detection applications

    International Nuclear Information System (INIS)

    This paper described improvements in the ruggedization of CdZnTe detectors and detector assemblies for use in radiation detection applications. Research included experimenting with various conductive and underfill adhesive material systems suitable for CZT substrates. A detector design with encapsulation patterning was developed to protect detector surfaces and to control spacing between CZT anode and PCB carrier. Robustness of bare detectors was evaluated through temperature cycling and metallization shear testing. Attachment processes using well-chosen adhesives and PCB carrier materials were optimized to improve reliability of detector assemblies, resulted in Improved Attachment Detector Assembly. These detector assemblies were subjected to aggressive temperature cycling, and varying levels of drop/shock and vibration, in accordance with modified JEDEC, ANSI and FedEx testing standards, to assess their ruggedness. Further enhanced detector assembly ruggedization methods were investigated involving adhesive conformal coating, potting and dam filling on detector assemblies, which resulted in the Enhanced Ruggedization Detector Assembly. Large numbers of CZT detectors and detector assemblies with 5 mm and 15 mm thick, over 200 in total, were tested. Their performance was evaluated by exposure to various radioactive sources using comprehensive predefined detector specifications and testing protocols. Detector assemblies from improved attachment and enhanced ruggedization showed stable performances during the harsh environmental condition tests. In conclusion, significant progress has been made in improving the reliability and enhancing the ruggedness of CZT detector assemblies for radiation detection applications deployed in operational environments. - Highlights: • We developed ruggedization methods to enhance reliability of CZT detector assemblies. • Attachment of CZT radiation detectors was improved through comparative studies. • Bare detector metallization

  19. Heat Transfer Issues in Thin-Film Thermal Radiation Detectors

    OpenAIRE

    Barry, Mamadou Yaya

    1999-01-01

    The Thermal Radiation Group at Virginia Polytechnic Institute and State University has been working closely with scientists and engineers at NASA's Langley Research Center to develop accurate analytical and numerical models suitable for designing next-generation thin-film thermal radiation detectors for earth radiation budget measurement applications. The current study provides an analytical model of the notional thermal radiation detector that takes into account thermal transport phenomena, ...

  20. Space Radiation Detector with Spherical Geometry

    Science.gov (United States)

    Wrbanek, John D. (Inventor); Fralick, Gustave C. (Inventor); Wrbanek, Susan Y. (Inventor)

    2012-01-01

    A particle detector is provided, the particle detector including a spherical Cherenkov detector, and at least one pair of detector stacks. In an embodiment of the invention, the Cherenkov detector includes a sphere of ultraviolet transparent material, coated by an ultraviolet reflecting material that has at least one open port. The Cherenkov detector further includes at least one photodetector configured to detect ultraviolet light emitted from a particle within the sphere. In an embodiment of the invention, each detector stack includes one or more detectors configured to detect a particle traversing the sphere.

  1. The HERMES dual-radiator RICH detector

    International Nuclear Information System (INIS)

    The HERMES experiment emphasizes measurements of semi-inclusive deep-inelastic scattering. Most of the hadrons produced lie between 2 and 10 GeV, a region in which it had not previously been feasible to separate pions, kaons, and protons with standard particle identification (PID) techniques. The recent development of new clear, large, homogeneous and hydrophobic silica aerogel material with a low index of refraction offered the means to apply RICH PID techniques to this difficult momentum region. The HERMES instrument uses two radiators, C4F10, a heavy fluorocarbon gas, and a wall of silica aerogel tiles. A lightweight spherical mirror constructed using a newly perfected technique to make resin-coated carbon-fiber surfaces of optical quality provides optical focusing on a photon detector consisting of 1934 photomultiplier tubes (PMT) for each detector half. The PMT array is held in a soft steel matrix to provide shielding against the residual field of the main spectrometer magnet. Ring reconstruction is accomplished with pattern recognition techniques based on a combination of inverse and direct ray tracing

  2. The HERMES dual-radiator RICH detector

    CERN Document Server

    Jackson, H E

    2003-01-01

    The HERMES experiment emphasizes measurements of semi-inclusive deep-inelastic scattering. Most of the hadrons produced lie between 2 and 10 GeV, a region in which it had not previously been feasible to separate pions, kaons, and protons with standard particle identification (PID) techniques. The recent development of new clear, large, homogeneous and hydrophobic silica aerogel material with a low index of refraction offered the means to apply RICH PID techniques to this difficult momentum region. The HERMES instrument uses two radiators, C sub 4 F sub 1 sub 0 , a heavy fluorocarbon gas, and a wall of silica aerogel tiles. A lightweight spherical mirror constructed using a newly perfected technique to make resin-coated carbon-fiber surfaces of optical quality provides optical focusing on a photon detector consisting of 1934 photomultiplier tubes (PMT) for each detector half. The PMT array is held in a soft steel matrix to provide shielding against the residual field of the main spectrometer magnet. Ring recon...

  3. Studies of ionizing radiation effects on STAR silicon drift detectors

    International Nuclear Information System (INIS)

    A 63 x 63 mm rectangular silicon drift detector was irradiated using a 60Co source and its performance was studied. The total accumulated dose was 23.5 krad. The detector performance after room temperature annealing was studied. The detector was found to be sufficiently radiation hard for RHIC applications

  4. High sensitive radiation detector for radiology dosimetry

    International Nuclear Information System (INIS)

    Fricke solution has a wide range of applications as radiation detector and dosimetry. It is particularly appreciated in terms of relevant comparative advantages, like tissue equivalence when prepared in aqueous media like gel matrix, continuous mapping capability, dose rate recorded and incident direction independence as well as linear dose response. This work presents the development and characterization of a novel Fricke gel system, based on modified chemical compositions making possible its application in clinical radiology. Properties of standard Fricke gel dosimeter for high dose levels are used as starting point and suitable chemical modifications are introduced and carefully investigated in order to attain high resolution for low dose ranges, like those corresponding to radiology interventions. The developed Fricke gel radiation dosimeter system achieves the expected typical dose dependency, actually showing linear response in the dose range from 20 up to 4000 mGy. Systematic investigations including several chemical compositions are carried out in order to obtain a good enough dosimeter response for low dose levels. A suitable composition among those studied is selected as a good candidate for low dose level radiation dosimetry consisting on a modified Fricke solution fixed to a gel matrix containing benzoic acid along with sulfuric acid, ferrous sulfate, xylenol orange and ultra-pure reactive grade water. Dosimeter samples are prepared in standard vials for its in phantom irradiation and further characterization by spectrophotometry measuring visible light transmission and absorbance before and after irradiation. Samples are irradiated by typical kV X-ray tubes and calibrated Farmer type ionization chamber is used as reference to measure dose rates inside phantoms in at vials locations. Once sensitive material composition is already optimized, dose-response curves show significant improvement regarding overall sensitivity for low dose levels. According to

  5. High sensitive radiation detector for radiology dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Valente, M.; Malano, F. [Instituto de Fisica Enrique Gaviola, Oficina 102 FaMAF - UNC, Av. Luis Medina Allende, Ciudad Universitaria, 5000 Cordoba (Argentina); Molina, W.; Vedelago, J., E-mail: valente@famac.unc.edu.ar [Laboratorio de Investigaciones e Instrumentacion en Fisica Aplicada a la Medicina e Imagenes por Rayos X, Laboratorio 448 FaMAF - UNC, Ciudad Universitaria, 5000 Cordoba (Argentina)

    2014-08-15

    Fricke solution has a wide range of applications as radiation detector and dosimetry. It is particularly appreciated in terms of relevant comparative advantages, like tissue equivalence when prepared in aqueous media like gel matrix, continuous mapping capability, dose rate recorded and incident direction independence as well as linear dose response. This work presents the development and characterization of a novel Fricke gel system, based on modified chemical compositions making possible its application in clinical radiology. Properties of standard Fricke gel dosimeter for high dose levels are used as starting point and suitable chemical modifications are introduced and carefully investigated in order to attain high resolution for low dose ranges, like those corresponding to radiology interventions. The developed Fricke gel radiation dosimeter system achieves the expected typical dose dependency, actually showing linear response in the dose range from 20 up to 4000 mGy. Systematic investigations including several chemical compositions are carried out in order to obtain a good enough dosimeter response for low dose levels. A suitable composition among those studied is selected as a good candidate for low dose level radiation dosimetry consisting on a modified Fricke solution fixed to a gel matrix containing benzoic acid along with sulfuric acid, ferrous sulfate, xylenol orange and ultra-pure reactive grade water. Dosimeter samples are prepared in standard vials for its in phantom irradiation and further characterization by spectrophotometry measuring visible light transmission and absorbance before and after irradiation. Samples are irradiated by typical kV X-ray tubes and calibrated Farmer type ionization chamber is used as reference to measure dose rates inside phantoms in at vials locations. Once sensitive material composition is already optimized, dose-response curves show significant improvement regarding overall sensitivity for low dose levels. According to

  6. Pyroelectric detector development for the Radiation Measurement system

    Science.gov (United States)

    Hubbard, G. S.; Mcmurray, Robert E., Jr.; Hanel, R. P.; Dominguez, D. E.; Valero, F. P. J.; Baumann, Hilary; Hansen, W. L.; Haller, E. E.

    1993-01-01

    A new class of high detectivity pyroelectric detectors developed for optimization of the radiation measurement system within the framework of the Atmospheric Radiation Measurement program is described. These devices are intended to provide detectivities of up to about 10 exp 11 cm Hz exp 0.5/W with cooling to about 100 K required for the detector focal plane.

  7. Electrical properties of Schottky diodes based on high-resistance CdTe crystals

    International Nuclear Information System (INIS)

    Measurement of the Schottky barrier height on the CdTe monocrystals alloyed with the Cl, Br, J during the growth process is carried out through the method of chemical transport reactions. Verification of the efficiency of the proposed F(V) function modification with the purpose of determining the Me(In, Sn)-p-CdTe diodes parameters is accomplished. The Schottky barriers with the current transmission diffusion mechanism perspective for developing high-efficiency semiconducting detectors of nuclear radiation are created on the basis of the method for the gas-phase growth of the semiinsulating CdTe monocrystals

  8. Embedded silicon detector to investigate the natural radiative environment

    International Nuclear Information System (INIS)

    A detector based on a silicon diode was developed to investigate the natural radiative environment. As the detector is embeddable, it has low power consumption and is lightweight and small. The instrument was tested under different neutron beams and used during stratospheric balloon flights. A comparison of the experimental results with Monte Carlo simulation results shows that the embeddable detector is a promising means of investigating the natural radiative environment.

  9. Wire chamber radiation detector with discharge control

    International Nuclear Information System (INIS)

    A wire chamber radiation detector has spaced apart parallel electrodes and grids defining an ignition region in which charged particles or other ionizing radiations initiate brief localized avalanche discharges and defining an adjacent memory region in which sustained glow discharges are initiated by the primary discharges. Conductors of the grids at each side of the memory section extend in orthogonal directions enabling readout of the X-Y coordinates of locations at which charged particles were detected by sequentially transmitting pulses to the conductors of one grid while detecting transmissions of the pulses to the orthogonal conductors of the other grid through glow discharges. One of the grids bounding the memory region is defined by an array of conductive elements each of which is connected to the associated readout conductor through a separate resistance. The wire chamber avoids ambiguities and imprecisions in the readout of coordinates when large numbers of simultaneous or near simultaneous charged particles have been detected. Down time between detection periods and the generation of radio frequency noise are also reduced

  10. Particle and radiation detectors based on diamond

    Energy Technology Data Exchange (ETDEWEB)

    Bergonzo, P.; Tromson, D.; Mer, C.; Guizard, B.; Foulon, F.; Brambilla, A. [LIST/DIMRI/SIAR, CEA/Saclay, Gif-sur-Yvette (France)

    2001-05-16

    CVD diamond is a remarkable material for the fabrication of particle and photon radiation detectors. The improvement of the electronic properties of the material has been under intensive investigations and led to the development of a few applications that are addressing specific industrial needs. In particular, we have used diamond layers for industrial applications where it exhibits attractive characteristics as compared with other materials: e.g., radiation and corrosion hardness for {alpha}-counters or high gamma-meters at high fluxes; high transparency to low energy X-rays for synchrotron beam line monitoring devices, etc. These specific properties can motivate the use of diamond even though the detection properties remain relatively poor. Indeed, one inherent problem with diamond is the presence of defect levels that are altering the detection characteristics. These are observed in all CVD materials but also in very high quality natural diamonds. They result in unstable responses and carrier losses. Also, it has been observed that high sensitivities may result from the progressive filling of deep levels, e.g. pumping effects, with a detrimental effect on the stability and the response time. Also, the polycrystalline nature is somewhat detrimental as it induces significant non-uniformities of the device response with respect to the position of interaction. We have investigated these features by imaging the response of CVD diamond using a micrometer size focused X-ray beam. The comparison with the grain structure showed that it has a strong influence on the field distribution. We present here recent developments studied at CEA in Saclay for the optimisation of the material with respect to the specific requirements of several applications. They include radiation hard counters; X-ray intensity, shape and beam position monitors, solar blind photodetectors, and high dose rate gamma-meters. (orig.)

  11. Point Defect Properties of Cd(Zn)Te and TlBr for Room-Temperature Gamma Radiation Detectors

    Science.gov (United States)

    Lordi, Vincenzo

    2013-03-01

    The effects of various crystal defects in CdTe, Cd1-xZnxTe (CZT), and TlBr are critical for their performance as room-temperature gamma radiation detectors. We use predictive first principles theoretical methods to provide fundamental, atomic scale understanding of the defect properties of these materials to enable design of optimal growth and processing conditions, such as doping, annealing, and stoichiometry. Several recent cases will be reviewed, including (i) accurate calculations of the thermodynamic and electronic properties of native point defects and point defect complexes in CdTe and CZT; (ii) the effects of Zn alloying on the native point defect properties of CZT; (iii) point defect diffusion and binding related to Te clustering in Cd(Zn)Te; (iv) the profound effect of native point defects--principally vacancies--on the intrinsic material properties of TlBr, particularly electronic and ionic conductivity; (v) tailored doping of TlBr to independently control the electronic and ionic conductivity; and (vi) the effects of metal impurities on the electronic properties and device performance of TlBr detectors. Prepared by LLNL under Contract DE-AC52-07NA27344 with support from the National Nuclear Security Administration Office of Nonproliferation and Verification Research and Development NA-22.

  12. Design of SJ-10 Space Radiation Detector Prototype

    CERN Document Server

    Liu, Yaqing; Cui, Xingzhu; Peng, Wenxi; Fan, Ruirui; Gao, Xiaohua Liang Ming; Zhang, Yunlong; Zhang, Chengmo; Zhang, Jiayu; Yang, Jiawei; Wang, Jinzhou; Dong, Fei Zhang Yifan; Guo, Dongya; Zhou, Dawei

    2014-01-01

    The space radiation detector is a space apparatus for detecting the outer-space particles and monitoring the radiation environment. Though identifying the particles and acquiring the biological experimental data, we can learn about the space radiation impacts on the human body and defend the space radiation damage. This paper designed a prototype of the space radiation detector for SJ-10 and evaluated the performance by the system simulation. More specifically, the space radiation impacts on the human body were analyzed including the different particles, the radiation flux and the energy channels. Then the detector system based on analysis results were built by the Monte Carlo simulation. Finally, the detection algorithms of incident energy range were proposed to identify the outer-space particles and provide the reliable radiation environment data for biological experimental apparatus.

  13. Characterization of CdTe Sensors with Schottky Contacts Coupled to Charge-Integrating Pixel Array Detectors for X-Ray Science

    CERN Document Server

    Becker, Julian; Shanks, Katherine S; Philipp, Hugh T; Weiss, Joel T; Purohit, Prafull; Chamberlain, Darol; Ruff, Jacob P C; Gruner, Sol M

    2016-01-01

    Pixel Array Detectors (PADs) consist of an x-ray sensor layer bonded pixel-by-pixel to an underlying readout chip. This approach allows both the sensor and the custom pixel electronics to be tailored independently to best match the x-ray imaging requirements. Here we present characterizations of CdTe sensors hybridized with two different charge-integrating readout chips, the Keck PAD and the Mixed-Mode PAD (MM-PAD), both developed previously in our laboratory. The charge-integrating architecture of each of these PADs extends the instantaneous counting rate by many orders of magnitude beyond that obtainable with photon counting architectures. The Keck PAD chip consists of rapid, 8-frame, in-pixel storage elements with framing periods $<$150 ns. The second detector, the MM-PAD, has an extended dynamic range by utilizing an in-pixel overflow counter coupled with charge removal circuitry activated at each overflow. This allows the recording of signals from the single-photon level to tens of millions of x-rays/...

  14. Toward VIP-PIX: A Low Noise Readout ASIC for Pixelated CdTe Gamma-Ray Detectors for Use in the Next Generation of PET Scanners.

    Science.gov (United States)

    Macias-Montero, Jose-Gabriel; Sarraj, Maher; Chmeissani, Mokhtar; Puigdengoles, Carles; Lorenzo, Gianluca De; Martínez, Ricardo

    2013-08-01

    VIP-PIX will be a low noise and low power pixel readout electronics with digital output for pixelated Cadmium Telluride (CdTe) detectors. The proposed pixel will be part of a 2D pixel-array detector for various types of nuclear medicine imaging devices such as positron-emission tomography (PET) scanners, Compton gamma cameras, and positron-emission mammography (PEM) scanners. Each pixel will include a SAR ADC that provides the energy deposited with 10-bit resolution. Simultaneously, the self-triggered pixel which will be connected to a global time-to-digital converter (TDC) with 1 ns resolution will provide the event's time stamp. The analog part of the readout chain and the ADC have been fabricated with TSMC 0.25 μm mixed-signal CMOS technology and characterized with an external test pulse. The power consumption of these parts is 200 μW from a 2.5 V supply. It offers 4 switchable gains from ±10 mV/fC to ±40 mV/fC and an input charge dynamic range of up to ±70 fC for the minimum gain for both polarities. Based on noise measurements, the expected equivalent noise charge (ENC) is 65 e(-) RMS at room temperature. PMID:24187382

  15. Optical Analysis of a Linear-Array Thermal Radiation Detector for Geostationary Earth Radiation Budget Applications

    OpenAIRE

    Sanchez, Maria Cristina

    1998-01-01

    The Thermal Radiation Group, a laboratory in the Department of Mechanical Engineering at Virginia Polytechnic Institute and State University, is currently working to develop a new technology for thermal radiation detectors. The Group is also studying the viability of replacing current Earth Radiation Budget radiometers with this new concept. This next-generation detector consists of a thermopile linear array thermal radiation detector. The principal objective of t...

  16. Radiation field mapping using a mechanical-electronic detector

    Science.gov (United States)

    Czayka, M.; Fisch, M.

    2010-04-01

    A method of radiation field mapping of a scanned electron beam using a Faraday-type detector and an electromechanical linear translator is presented. Utilizing this arrangement, fluence and fluence rate measurements can be made at different locations within the radiation field. The Faraday-type detector used in these experiments differs from most as it consists of a hollow stainless steel sphere. Results are presented in two- and three-dimensional views of the radiation field.

  17. Radiation damage studies for the DOe silicon detector

    Energy Technology Data Exchange (ETDEWEB)

    Lehner, Frank E-mail: lehnerf@physik.unizh.ch

    2004-09-01

    We report on irradiation studies performed on spare production silicon detector modules for the current DOe silicon detector. The lifetime expectations due to radiation damage effects of the existing silicon detector are reviewed. A new upgrade project was started with the goal of a complete replacement of the existing silicon detector. In that context, several investigations on the radiation hardness of new prototype silicon microstrip detectors were carried out. The irradiation on different detector types was performed with 10 MeV protons up to fluences of 10{sup 14} p/cm{sup 2} at the J.R. Mcdonald Laboratory at Kansas State University. The flux calibration was carefully checked using different normalisation techniques. As a result, we observe roughly 40-50% less radiation damage in silicon for 10 MeV p exposure than it is expected by the predicted NIEL scaling.

  18. Radiation damage measurements in room-temperature semiconductor radiation detectors

    CERN Document Server

    Franks, L A; Olsen, R W; Walsh, D S; Vizkelethy, G; Trombka, J I; Doyle, B L; James, R B

    1999-01-01

    The literature of radiation damage measurements on cadmium zinc telluride (CZT), cadmium telluride (CT), and mercuric iodide (HgI sub 2) is reviewed and in the case of CZT supplemented by new alpha particle data. CZT strip detectors exposed to intermediate energy (1.3 MeV) proton fluences exhibit increased interstrip leakage after 10 sup 1 sup 0 p/cm sup 2 and significant bulk leakage after 10 sup 1 sup 2 p/cm sup 2. CZT exposed to 200 MeV protons shows a two-fold loss in energy resolution after a fluence of 5x10 sup 9 p/cm sup 2 in thick (3 mm) planar devices but little effect in 2 mm devices. No energy resolution effects were noted from a moderated fission spectrum of neutrons after fluences up to 10 sup 1 sup 0 n/cm sup 2 , although activation was evident. Exposures of CZT to 5 MeV alpha particles at fluences up to 1.5x10 sup 1 sup 0 alpha/cm sup 2 produced a near linear decrease in peak position with fluence and increases in FWHM beginning at about 7.5x10 sup 9 alpha/cm sup 2. CT detectors show resolution...

  19. Radiation environment and shielding for a high luminosity collider detector

    International Nuclear Information System (INIS)

    Detectors now under design for use in the proposed high energy high luminosity colliders must deal with unprecedented radiation levels. We have performed a comprehensive study for the GEM detector at the SSC to determine the best way to shield critical detector components from excessive radiation, with special attention paid to the low energy neutrons and photons. We have used several detailed Monte-Carlo simulations to calculate the particle fluxes in the detector. We describe these methods and demonstrate that two orders of magnitude reduction in the neutron and photon fluxes can be obtained with appropriate shielding of critical forward regions such as the low beta quadrupoles and the forward calorimeter

  20. A Xylophone Detector of Gravitational Radiation

    Science.gov (United States)

    Tinto, Massimo

    1997-01-01

    We discuss spacecraft Doppler tracking searches for gravitational waves in which Doppler data recorded on the ground are linearly combined with Doppler measurements made on board a spacecraft. By using the four-link radio system first proposed by Vessot and Levine, we describe a new method for removing from the combined data the frequency fluctuations due to the Earth troposphere, ionosphere, and mechanical vibrations of the antenna on the ground. This technique provides also a way for reducing by several orders of magnitude, at selected Fourier components, the frequency fluctuations due to other noise sources, such as the clock on board the spacecraft or the antenna and buffeting of the probe by nongravitational forces. In this respect spacecraft Doppler tracking can be regarded as a xylophone detector of gravitational radiation. In the assumption of calibrating the frequency fluctuations induced by the interplanetary plasma, a strain sensitivity equal to 4.7 x 10(exp -18) at 10(exp -3) Hz is estimated. This experimental technique could be extended to other tests of the theory of relativity, and to radio science experiments that rely on high-precision Doppler measurements.

  1. Flame detector operable in presence of proton radiation

    Science.gov (United States)

    Walker, D. J.; Turnage, J. E.; Linford, R. M. F.; Cornish, S. D. (Inventor)

    1974-01-01

    A detector of ultraviolet radiation for operation in a space vehicle which orbits through high intensity radiation areas is described. Two identical ultraviolet sensor tubes are mounted within a shield which limits to acceptable levels the amount of proton radiation reaching the sensor tubes. The shield has an opening which permits ultraviolet radiation to reach one of the sensing tubes. The shield keeps ultraviolet radiation from reaching the other sensor tube, designated the reference tube. The circuitry of the detector subtracts the output of the reference tube from the output of the sensing tube, and any portion of the output of the sensing tube which is due to proton radiation is offset by the output of the reference tube. A delay circuit in the detector prevents false alarms by keeping statistical variations in the proton radiation sensed by the two sensor tubes from developing an output signal.

  2. Alpha particle response study of polycrstalline diamond radiation detector

    Science.gov (United States)

    Kumar, Amit; Topkar, Anita

    2016-05-01

    Chemical vapor deposition has opened the possibility to grow high purity synthetic diamond at relatively low cost. This has opened up uses of diamond based detectors for wide range of applications. These detectors are most suitable for harsh environments where standard semiconductor detectors cannot work. In this paper, we present the fabrication details and performance study of polycrystalline diamond based radiation detector. Effect of different operating parameters such as bias voltage and shaping time for charge collection on the performance of detector has been studied.

  3. Heat Transfer Issues in Thin-Film Thermal Radiation Detectors

    Science.gov (United States)

    Barry, Mamadou Y.

    1999-01-01

    The Thermal Radiation Group at Virginia Polytechnic Institute and State University has been working closely with scientists and engineers at NASA's Langley Research Center to develop accurate analytical and numerical models suitable for designing next generation thin-film thermal radiation detectors for earth radiation budget measurement applications. The current study provides an analytical model of the notional thermal radiation detector that takes into account thermal transport phenomena, such as the contact resistance between the layers of the detector, and is suitable for use in parameter estimation. It was found that the responsivity of the detector can increase significantly due to the presence of contact resistance between the layers of the detector. Also presented is the effect of doping the thermal impedance layer of the detector with conducting particles in order to electrically link the two junctions of the detector. It was found that the responsivity and the time response of the doped detector decrease significantly in this case. The corresponding decrease of the electrical resistance of the doped thermal impedance layer is not sufficient to significantly improve the electrical performance of the detector. Finally, the "roughness effect" is shown to be unable to explain the decrease in the thermal conductivity often reported for thin-film layers.

  4. A hybrid radiation detector based on a plasma display panel

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sungho; Lee, Rena [Radiation Oncology, Ewha Womans University Mokdong Hospital, Seoul 158-710 (Korea, Republic of); Yun, Min-Seok; Jang, Gi-Won [Department of Biomedical Engineering, Inje University, Gimhae 621-749 (Korea, Republic of); Park, Jikoon [Department of Radiology Science, International University of Korea, Jinjoo 660-759 (Korea, Republic of); Choi, Jang-Yong [Korea Food and Drug Administration, Seoul 122-704 (Korea, Republic of); Nam, Sanghee [Department of Biomedical Engineering, Inje University, Gimhae 621-749 (Korea, Republic of)], E-mail: nsh@bme.inje.ac.kr

    2009-10-11

    Recently, large-area image detectors have been investigated for X-ray imaging in medical diagnostic and other applications. In this paper, a new type of radiation detector is described, based on the integration of a photoconductor into a plasma display panel (PDP). This device, called a hybrid PDP detector, should be quite inexpensive, because it can directly leverage off the fabrication and materials technologies widely used in plasma display panels. Also, these new radiation detectors should operate under the most challenging environmental conditions, because they are inherently rugged and radiation-resistant and insensitive to magnetic fields. In this paper, we describe a hybrid digital radiation detector device, based on plasma display. The PDP panel is 7 in. in size with a 1000-{mu}m pixel pitch, and filled with 700 Torr of Xe gas; the hybrid PDP panel is of the same structure, except for the photoconductor deposit. The glass absorption, dark current, X-ray sensitivity, and linearity as a function of electric field were measured to investigate its electrical properties. From the results, stabilized dark current density and significant X-ray sensitivity were obtained with both panels; however, the hybrid PDP detector showed better characteristics than the PDP detector. It also had good signal response and linearity. The hybrid digital radiation detector device based on a plasma display seems to be a promising technology for use in radiology and dynamic moving imaging.

  5. Study on performance of GaN radiation detector

    International Nuclear Information System (INIS)

    Gallium nitride (GaN) as a radiation detector has many advantages, such as wide forbidden band, high resistant radiation and so on. It can be applied in high temperature and high density radiation field environment. The energy spectrum of 241Am α particle was measured by GaN semiconductor detector, and the energy resolution of which is about 30%. At the same time, the energy and detection efficiency calibration of GaN detector was carried out using Si semiconductor detector which was assumed to have 100% detection efficiency. The detection efficiency of GaN detector was up to 80.1%. Finally, current-voltage (I-V) curve was measured using Keithley 2635 electrometer. The background current density is less than 70 nA/cm2 at -15 V reverse bias. (authors)

  6. Temperature effects on radiation damage in plastic detectors

    International Nuclear Information System (INIS)

    The objective of present work was to study the temperature effect on radiation damage registration in the structure of a Solid State Nuclear Track Detector of the type CR-39. In order to study the radiation damage as a function of irradiation temperature, sheets of CR-39 detectors were irradiated with electron beams, simulating the interaction of positive ions. CR-39 detectors were maintained at a constant temperature from room temperature up to 373 K during irradiation. Two techniques were used from analyzing changes in the detector structure: Electronic Paramagnetic Resonance (EPR) and Infrared Spectroscopy (IR). It was found by EPR analysis that the amount of free radicals decrease as irradiation temperature increases. The IR spectrums show yield of new functional group identified as an hydroxyl group (OH). A proposed model of interaction of radiation with CR-39 detectors is discussed. (Author)

  7. Fabrication and utilization of semiconductor radiation detectors

    International Nuclear Information System (INIS)

    This paper describes the assembly of the equipment for the fabrication of Ge-Li drifted detectors and the technique used in the preparation of a Planar detector of 7 cm2 x 0,5 cm for the Laboratory of the Linear Accelerator at the University of Sao Paulo, as well as the utilization of a 22 cm3 coaxial detector for the analysis of fission product gamma rays at the Instituto de Engenharia Nuclear, Rio de Janeiro, R J, Brazil. (author)

  8. Solid-state radiation detectors technology and applications

    CERN Document Server

    2015-01-01

    The book discusses the current solid state material used in advance detectors manufacturing and their pros and cons and how one can tailor them using different techniques, to get the maximum performance. The book is application oriented to radiation detectors for medical, X and gamma rays application, and good reference with in-depth discussion of detector's physics as it relates to medical application tailored for engineers and scientists.

  9. Effects of ionizing radiation on cryogenic infrared detectors

    Science.gov (United States)

    Moseley, S. H.; Silverberg, R. F.; Lakew, B.

    1989-01-01

    The Diffuse Infrared Background Experiment (DIRBE) is one of three experiments to be carried aboard the Cosmic Background Explorer (COBE) satellite scheduled to be launched by NASA on a Delta rocket in 1989. The DIRBE is a cryogenic absolute photometer operating in a liquid helium dewar at 1.5 K. Photometric stability is a principal requirement for achieving the scientific objectives of this experiment. The Infrared Astronomy Satellite (IRAS), launched in 1983, which used detectors similar to those in DIRBE, revealed substantial changes in detector responsivity following exposure to ionizing radiation encountered on passage through the South Atlantic Anomaly (SAA). Since the COBE will use the same 900 Km sun-synchronous orbit as IRAS, ionizing radiation-induced performance changes in the detectors were a major concern. Here, ionizing radiation tests carried out on all the DIRBE photodetectors are reported. Responsivity changes following exposure to gamma rays, protons, and alpha particle are discussed. The detector performance was monitored following a simulated entire mission life dose. In addition, the response of the detectors to individual particle interactions was measured. The InSb photovoltaic detectors and the Blocked Impurity Band (BIB) detectors revealed no significant change in responsivity following radiation exposure. The Ge:Ga detectors show large effects which were greatly reduced by proper thermal annealing.

  10. On the limit of energy resolution in radiation detectors

    International Nuclear Information System (INIS)

    The limit of energy resolution in various radiation detectors is reviewed from the theoretical view-point. Fano-factors in gaseous, liquid and solid detector media for ionization and for scintillation are discussed and the limit of energy resolution in micro-calorimeters operated at low temperature is also discussed. (author)

  11. MediSPECT: Single photon emission computed tomography system for small field of view small animal imaging based on a CdTe hybrid pixel detector

    Science.gov (United States)

    Accorsi, R.; Autiero, M.; Celentano, L.; Chmeissani, M.; Cozzolino, R.; Curion, A. S.; Frallicciardi, P.; Laccetti, P.; Lanza, R. C.; Lauria, A.; Maiorino, M.; Marotta, M.; Mettivier, G.; Montesi, M. C.; Riccio, P.; Roberti, G.; Russo, P.

    2007-02-01

    We describe MediSPECT, a new scanner developed at University and INFN Napoli, for SPECT studies on small animals with a small field of view (FOV) and high spatial resolution. The CdTe pixel detector (a 256×256 matrix of 55 μm square pixels) operating in single photon counting for detection of gamma-rays with low and medium energy (e.g. 125I, 27-35 keV, 99mTc, 140 keV), is bump bonded to the Medipix2 readout chip. The FOV of the MediSPECT scanner with a coded aperture mask collimator ranges from 6.3 mm (system spatial resolution 110 μm at 27-35 keV) to 24.3 mm. With a 0.30 mm pinhole the FOV ranges from 2.4 to 29 mm (where the system spatial resolution is 1.0 mm at 27-35 keV and 2.0 mm at 140 keV). MediSPECT will be used for in vivo imaging of small organs or tissue structures in mouse, e.g., brain, thyroid, heart or tumor.

  12. MediSPECT: Single photon emission computed tomography system for small field of view small animal imaging based on a CdTe hybrid pixel detector

    Energy Technology Data Exchange (ETDEWEB)

    Accorsi, R. [Department of Radiology, The Children' s Hospital of Philadelphia, Philadelphia, PA (United States); Autiero, M. [Dipartimento di Scienze Fisiche, Universita di Napoli Federico II, Naples (Italy); Celentano, L. [Dipartimento di Scienze Biomorfologiche e Funzionali, Universita di Napoli Federico II, Naples (Italy)] (and others)

    2007-02-01

    We describe MediSPECT, a new scanner developed at University and INFN Napoli, for SPECT studies on small animals with a small field of view (FOV) and high spatial resolution. The CdTe pixel detector (a 256x256 matrix of 55 {mu}m square pixels) operating in single photon counting for detection of gamma-rays with low and medium energy (e.g. {sup 125}I, 27-35 keV, {sup 99m}Tc, 140 keV), is bump bonded to the Medipix2 readout chip. The FOV of the MediSPECT scanner with a coded aperture mask collimator ranges from 6.3 mm (system spatial resolution 110 {mu}m at 27-35 keV) to 24.3 mm. With a 0.30 mm pinhole the FOV ranges from 2.4 to 29 mm (where the system spatial resolution is 1.0 mm at 27-35 keV and 2.0 mm at 140 keV). MediSPECT will be used for in vivo imaging of small organs or tissue structures in mouse, e.g., brain, thyroid, heart or tumor.

  13. MediSPECT: Single photon emission computed tomography system for small field of view small animal imaging based on a CdTe hybrid pixel detector

    International Nuclear Information System (INIS)

    We describe MediSPECT, a new scanner developed at University and INFN Napoli, for SPECT studies on small animals with a small field of view (FOV) and high spatial resolution. The CdTe pixel detector (a 256x256 matrix of 55 μm square pixels) operating in single photon counting for detection of gamma-rays with low and medium energy (e.g. 125I, 27-35 keV, 99mTc, 140 keV), is bump bonded to the Medipix2 readout chip. The FOV of the MediSPECT scanner with a coded aperture mask collimator ranges from 6.3 mm (system spatial resolution 110 μm at 27-35 keV) to 24.3 mm. With a 0.30 mm pinhole the FOV ranges from 2.4 to 29 mm (where the system spatial resolution is 1.0 mm at 27-35 keV and 2.0 mm at 140 keV). MediSPECT will be used for in vivo imaging of small organs or tissue structures in mouse, e.g., brain, thyroid, heart or tumor

  14. Study of the spectrometric performances of monolithic CdZnTe / CdTe gamma ray detectors

    International Nuclear Information System (INIS)

    Pixelated monolithic CdTe/CdZnTe semiconductor gamma ray detectors are brought to replace scintillation detectors for medical applications, notably for single photon emission computed tomography (SPECT). In addition to compactness, they present better spectrometric performances: energy resolution, detection efficiency, and spatial resolution. Moreover, the photons depth of interaction in the crystal can be measured. This work aimed in studying experimentally and by simulation the correlations between anodes pitch, material physic properties (resistivity and electron transport properties), and detectors spectrometric performances. We have compared several methods of measuring the photon interaction depth, and have obtained an energy resolution ranging from 1.7% to 7% at 122 keV, according to material, for 5 mm thick detectors. Charge sharing between adjacent anodes has been studied and a measured data processing is proposed. (author)

  15. A Monte Carlo simulation study of an improved K-edge log-subtraction X-ray imaging using a photon counting CdTe detector

    Science.gov (United States)

    Lee, Youngjin; Lee, Amy Candy; Kim, Hee-Joung

    2016-09-01

    Recently, significant effort has been spent on the development of photons counting detector (PCD) based on a CdTe for applications in X-ray imaging system. The motivation of developing PCDs is higher image quality. Especially, the K-edge subtraction (KES) imaging technique using a PCD is able to improve image quality and useful for increasing the contrast resolution of a target material by utilizing contrast agent. Based on above-mentioned technique, we presented an idea for an improved K-edge log-subtraction (KELS) imaging technique. The KELS imaging technique based on the PCDs can be realized by using different subtraction energy width of the energy window. In this study, the effects of the KELS imaging technique and subtraction energy width of the energy window was investigated with respect to the contrast, standard deviation, and CNR with a Monte Carlo simulation. We simulated the PCD X-ray imaging system based on a CdTe and polymethylmethacrylate (PMMA) phantom which consists of the various iodine contrast agents. To acquired KELS images, images of the phantom using above and below the iodine contrast agent K-edge absorption energy (33.2 keV) have been acquired at different energy range. According to the results, the contrast and standard deviation were decreased, when subtraction energy width of the energy window is increased. Also, the CNR using a KELS imaging technique is higher than that of the images acquired by using whole energy range. Especially, the maximum differences of CNR between whole energy range and KELS images using a 1, 2, and 3 mm diameter iodine contrast agent were acquired 11.33, 8.73, and 8.29 times, respectively. Additionally, the optimum subtraction energy width of the energy window can be acquired at 5, 4, and 3 keV for the 1, 2, and 3 mm diameter iodine contrast agent, respectively. In conclusion, we successfully established an improved KELS imaging technique and optimized subtraction energy width of the energy window, and based on

  16. Bremstrahlung Detection and Chamber Obstruction Localisation Using Scanning Radiation Detectors

    CERN Document Server

    Naylor, G A; Robinson, D

    2005-01-01

    Radiation monitors consisting of scintillating plastic coupled to photomultipliers are used for diagnostic purposes. By scanning such a detector or a radiation scatterer, two applications are demonstrated: i) Monitoring of vacuum chamber conditioning by monitoring gas Bremstrahlung from residual gas. ii) Localisation of beam interception (beam losses) by longitudinal scanning of a radiation detector. The measurement of gas pressure inside long, small cross section, vacuum vessels is difficult due to the distance between the centre of the vacuum vessel and vacuum gauges (leading to a low vacuum conductance). The narrow beam of gamma Bremstrahlung radiation is intercepted by scanning tungsten blades in the beam line front-end allowing a radiation shower to be detected outside the vacuum vessel proportional to the gas pressure in the corresponding storage ring straight section. A second detector mounted on rails can be moved over a length of 6.5m parallel to the ESRF storage ring so as to localise regions of bea...

  17. Ion radiation damage in plastic detectors

    International Nuclear Information System (INIS)

    Plastic detectors are widely used for particle identification, micro pore and nano pore technology, neutron, gamma, radon and electron dosimeters. For some applications, plastic detectors have unique advantages among electronic detectors as 4 solid angles for ion identification in nuclear and cosmic ray physics; low-cost for massive use in indoors radon and neutron dosimeters; wide dose-range response for gamma and electron dosimetry; easy to use detectors in active geological faults in prospecting geothermal energy etc. There is a grate diversity of plastic detectors, which further improves their use in a particular application. However, the comparison test between different kinds of plastics can be time consuming, being therefore necessary to have methods for rapidly assessing plastic detectors properties. This invited talk deals in the first part with overview applications in Mexico of plastic detectors mentioned in the first paragraph. In the second part presents a general experimental relationship between the diameter-grow of positive ions tracks in several plastics for light ions, that allow to compare their energy resolution and to predict the track diameter of isotopes beams, as well as to predict the uniformity of micro pores. The formation of Nano pores produced by 238 U ions is also discussed. (Author)

  18. Detection of nuclear radiations; Detectores de radiaciones nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Tanarro Sanz, A.

    1959-07-01

    A summary of the lectures about the ordinary detectors of nuclear radiations given by the author in the Courses of Introduction to Nuclear Engineering held at the JEN up to the date of publication is given. Those lectures are considered to be a necessary introduction to Nuclear Instrumentation and Applied electronics to Nuclear Engineering so it has been intent to underline those characteristics of radiation detectors that must be taken in consideration in choosing or designing the electronic equipment associated to them in order to take advantage of each detector possibilities. (Author) 8 refs.

  19. New detectors of neutron, gamma- and X-radiations

    CERN Document Server

    Lobanov, N S

    2002-01-01

    Paper presents new detectors to record absorbed doses of neutron, gamma- and X-ray radiations within 0-1500 Mrad range. DBF dosimeter is based on dibutyl phthalate. EDS dosimeter is based on epoxy (epoxide) resin, while SD 5-40 detector is based on a mixture of dibutyl phthalate and epoxy resin. Paper describes experimental techniques to calibrate and interprets the measurement results of absorbed doses for all detectors. All three detectors cover 0-30000 Mrad measured does range. The accuracy of measurements is +- 10% independent (practically) of irradiation dose rates within 20-2000 rad/s limits under 20-80 deg C temperature

  20. Characterization of CdTe and CdZnTe detectors for gamma-ray imaging applications

    Science.gov (United States)

    Verger, L.; Boitel, M.; Gentet, M. C.; Hamelin, R.; Mestais, C.; Mongellaz, F.; Rustique, J.; Sanchez, G.

    2001-02-01

    CEA-LETI in association with Bicron and Crismatec has been developing solid-state gamma camera technology based on CZT. The project included gamma camera head systems development including front-end electronics with an integrated circuit (ASIC), material growth, and detector fabrication and characterization. One feature of the work is the use of linear correlation between the amplitude and the fast rise time of the signal - which corresponds to the electron transit time in the detector, a development that was reported previously and which allows more than 80% of the 122 keV γ-photons incident on HPBM material to be recovered in a ±6.5% 2D window. In the current work, we summarize other methods to improve CZT detector performance and compare them with the Bi-Parametric Spectrum (BPS) method. The BPS method can also be applied as a diagnositic. BPS curve shapes are shown to vary with electric field, and with electron transport properties, and the correction algorithims are seen to be robust over a range of values. In addition, the technique is found to improve detectors from a variety of sources including some with special electrode geometries. In all cases, the BPS method improves efficiency (>75%) without degrading energy resolution (± 6.5% 2D window) even for a monolithic detector. The method does not overcome bulk inhomogeneity nor noise which comes from low resistivity.

  1. Use of HgI2 as gamma radiation detector

    International Nuclear Information System (INIS)

    The Mercuric Iodide (HgI2) has become one of the most promising room temperature semiconductors for the construction of X and gamma radiation detectors. The classical methods of spectroscopy have not demonstrated to achieve optimum results with HgI2 detectors, mainly due to its particular carrier transport properties. Several alternative spectroscopic methods developed in the last ten years are presented and commented, selecting for a complete study one of them: 'The Partial Charge Collection Method'. The transport properties of the carriers generated by the radiation in the detector is specially important for understanding the spectroscopic behaviour of the HgI2 detectors. For a rigorous characterization of this transport, it has been studied a digital technique for the analysis of the electric pulses produced by the radiation. Theoretically, it has been developed a Monte Carlo simulation of the radiation detection and the electronic signal treatment processes with these detectors in the energy range of 60-1300 KeV. These codes are applied to the study of the The Partial Charge Collection Method and its comparison with gaussian methods. Experimentally, this digital techniques is used for the study of the transport properties of thin HgI2 detectors. Special interest is given to the contribution of the slower carriers, the holes, obtaining some consequent of spectroscopic interest. Finally, it is presented the results obtained with the first detectors grown and mounted in CIEMAT with own technology. (author). 129 ref

  2. Proton-induced radiation damage in germanium detectors

    Science.gov (United States)

    Brueckner, J.; Koerfer, M.; Waenke, H.; Schroeder, A. N. F.; Filges, D.; Dragovitsch, P.; Englert, P. A. J.; Starr, R.; Trombka, J. I.

    1991-01-01

    High-purity germanium (HPGe) detectors will be used in future space missions for gamma-ray measurements and will be subject to interactions with energetic particles. To simulate this process, several large-volume n-type HPGe detectors were incrementally exposed to a particle fluence of up to 10 to the 8th protons/sq cm (proton energy: 1.5 GeV) at different operating temperatures (90 to 120 K) to induce radiation damage. Basic scientific and engineering data on detector performance were collected. During the incremental irradiation, the peak shape produced by the detectors showed a significant change from a Gaussian shape to a broad complex structure. After the irradiation, all detectors were thoroughly characterized by measuring many parameters. To remove the accumulated radiation damage, the detectors were stepwise-annealed at temperatures below 110 C, while kept in their specially designed cryostats. This study shows that n-type HPGe detectors can be used in charged-particle environments as high-energy resolution devices until a certain level of radiation damage is accumulated and that the damage can be removed at moderate annealing temperatures and the detector returned to operating condition.

  3. RD50 Collaboration overview: Development of new radiation hard detectors

    Science.gov (United States)

    Kuehn, S.

    2016-07-01

    Silicon sensors are widely used as tracking detectors in high energy physics experiments. This results in several specific requirements like radiation hardness and granularity. Therefore research for highly performing silicon detectors is required. The RD50 Collaboration is a CERN R&D collaboration dedicated to the development of radiation hard silicon devices for application in high luminosity collider experiments. Extensive research is ongoing in different fields since 2001. The collaboration investigates both defect and material characterization, detector characterization, the development of new structures and full detector systems. The report gives selected results of the collaboration and places an emphasis on the development of new structures, namely 3D devices, CMOS sensors in HV technology and low gain avalanche detectors.

  4. Monolithic active pixel radiation detector with shielding techniques

    Energy Technology Data Exchange (ETDEWEB)

    Deptuch, Grzegorz W.

    2016-09-06

    A monolithic active pixel radiation detector including a method of fabricating thereof. The disclosed radiation detector can include a substrate comprising a silicon layer upon which electronics are configured. A plurality of channels can be formed on the silicon layer, wherein the plurality of channels are connected to sources of signals located in a bulk part of the substrate, and wherein the signals flow through electrically conducting vias established in an isolation oxide on the substrate. One or more nested wells can be configured from the substrate, wherein the nested wells assist in collecting charge carriers released in interaction with radiation and wherein the nested wells further separate the electronics from the sensing portion of the detector substrate. The detector can also be configured according to a thick SOA method of fabrication.

  5. Development of (Cd,Zn)Te X-ray and gamma ray radiation detectors for medical and security applications

    International Nuclear Information System (INIS)

    Full text: There is a growing need for large area X-and Gamma radiation detectors for penetrating radiations in various fields of application e.g. astronomy, detectors for nuclear medicine, biosensor materials, security, non-proliferation of hazardous materials, and environmental applications etc. Direct X-rays conversion into electric charges in a semiconductor is envisaged with better spectroscopic characteristics to improve contrast and quantitative measurements compared to indirect detection using scintillators. The family of II-VI semiconductor materials combine a range of excellent properties such as their high sensitivity due to the high mobility-lifetime products, their high energy resolution as a consequence of the electron-hole pair formation energy, their reasonable maturity in terms of microelectronic technologies required for commercial detector fabrication, wide range of stopping power and band-gaps available. In particular, CdTe and CdxZn1-xTe (CZT) with Zn=0.1 offer a favorable combination of physical and chemical properties that makes it attractive as a room temperature X-ray detector material of choice for many applications involving photon energies up to several hundreds of keV. From the scientific experience accumulated in the past years, the detector properties are strongly dependent on a series of parameters which must be strictly controlled during crystal growth, such as the homogeneity, stoichiometry and the related intrinsic defects which appear during the material growth, a high mobility-lifetime for electron and holes is mandatory etc. Production of detector-grade CdTe and CdZnTe on industrial scale is still a challenge and optimal growth methods and growth conditions have been under intensive investigation. Progress in crystal growth and characterization achieved in a project of Institute partnership between Charles University in Prague and University of Freiburg, Germany which was sponsored by Alexander von Humboldt Foundation, will be

  6. Design of a transition radiation detector for cosmic rays

    Science.gov (United States)

    Hartmann, G.; Mueller, D.; Prince, T.

    1975-01-01

    Transition radiation detectors consisting of sandwiches of plastic foam radiators and multiwire proportional chambers can be used to identify cosmic ray particles with energies gamma ? E/mc-squared is greater than 10 to the 3rd and to measure their energy in the region gamma is roughly equal to 10 to the 3rd

  7. Nuclear radiation-warning detector that measures impedance

    Science.gov (United States)

    Savignac, Noel Felix; Gomez, Leo S; Yelton, William Graham; Robinson, Alex; Limmer, Steven

    2013-06-04

    This invention is a nuclear radiation-warning detector that measures impedance of silver-silver halide on an interdigitated electrode to detect light or radiation comprised of alpha particles, beta particles, gamma rays, X rays, and/or neutrons. The detector is comprised of an interdigitated electrode covered by a layer of silver halide. After exposure to alpha particles, beta particles, X rays, gamma rays, neutron radiation, or light, the silver halide is reduced to silver in the presence of a reducing solution. The change from the high electrical resistance (impedance) of silver halide to the low resistance of silver provides the radiation warning that detected radiation levels exceed a predetermined radiation dose threshold.

  8. Development of radiation hard radiation detectors : differences between Czochralski silicon and float zone silicon

    OpenAIRE

    Tuominen, Eija

    2003-01-01

    The purpose of this work was to develop radiation hard silicon detectors. Radiation detectors made of silicon are cost effective and have excellent position resolution. Therefore, they are widely used for track finding and particle analysis in large high-energy physics experiments. Silicon detectors will also be used in the CMS (Compact Muon Solenoid) experiment that is being built at the LHC (Large Hadron Collider) accelerator at CERN (European Organisation for Nuclear Research). This work w...

  9. UTILIZATION OF PHOSWICH DETECTORS FOR SIMULTANEOUS, MULTIPLE RADIATION DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    William H. Miller; Manuel Diaz de Leon

    2003-04-15

    A phoswich radiation detector is comprised of a phosphor sandwich in which several different phosphors are viewed by a common photomultiplier. By selecting the appropriate phosphors, this system can be used to simultaneously measure multiple radiation types (alpha, beta, gamma and/or neutron) with a single detector. Differentiation between the signals from the different phosphors is accomplished using digital pulse shape discrimination techniques. This method has been shown to result in accurate discrimination with highly reliable and versatile digital systems. This system also requires minimal component count (i.e. only the detector and a computer for signal processing). A variety of detectors of this type have been built and tested including: (1) a triple phoswich system for alpha/beta/gamma swipe counting, (2) two well-type detectors for measuring low levels of low energy photons in the presence of a high energy background, (3) a large area detector for measuring beta contamination in the presence of a photon background, (4) another large area detector for measuring low energy photons from radioactive elements such as uranium in the presence of a photon background. An annular geometry, triple phoswich system optimized for measuring alpha/beta/gamma radiation in liquid waste processing streams is currently being designed.

  10. Radiation hardness of cryogenic silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Niinikoski, T.O. E-mail: tapio.niinikoski@cern.ch; Abreu, M.; Bell, W.; Berglund, P.; Boer, W. de; Borchi, E.; Borer, K.; Bruzzi, M.; Buontempo, S.; Casagrande, L.; Chapuy, S.; Cindro, V.; Collins, P.; D' Ambrosio, N.; Da Via, C.; Devine, S.R.H.; Dezillie, B.; Dimcovski, Z.; Eremin, V.; Esposito, A.; Granata, V.; Grigoriev, E.; Grohmann, S.; Hauler, F.; Heijne, E.; Heising, S.; Janos, S.; Jungermann, L.; Konorov, I.; Li, Z.; Lourenco, C.; Mikuz, M.; O' Shea, V.; Pagano, S.; Palmieri, V.G.; Paul, S.; Pirollo, S.; Pretzl, K.; Mendes, P.Rato; Ruggiero, G.; Smith, K.; Sonderegger, P.; Sousa, P.; Verbitskaya, E.; Watts, S.; Zavrtanik, M

    2002-01-11

    We shall review test results which show that silicon detectors can withstand at 130 K temperature a fluence of 2x10{sup 15} cm{sup -2} of 1 MeV neutrons, which is about 10 times higher than the fluence tolerated by the best detectors operated close to room temperature. The tests were carried out on simple pad devices and on microstrip detectors of different types. The devices were irradiated at room temperature using reactor neutrons, and in situ at low temperatures using high-energy protons and lead ions. No substantial difference was observed between samples irradiated at low temperature and those irradiated at room temperature, after beneficial annealing. The design of low-mass modules for low-temperature trackers is discussed briefly, together with the cooling circuits for small and large systems.

  11. Diamond and silicon pixel detectors in high radiation environments

    Energy Technology Data Exchange (ETDEWEB)

    Tsung, Jieh-Wen

    2012-10-15

    Diamond pixel detector is a promising candidate for tracking of collider experiments because of the good radiation tolerance of diamond. The diamond pixel detector must withstand the radiation damage from 10{sup 16} particles per cm{sup 2}, which is the expected total fluence in High Luminosity Large Hadron Collider. The performance of diamond and silicon pixel detectors are evaluated in this research in terms of the signal-to-noise ratio (SNR). Single-crystal diamond pixel detectors with the most recent readout chip ATLAS FE-I4 are produced and characterized. Based on the results of the measurement, the SNR of diamond pixel detector is evaluated as a function of radiation fluence, and compared to that of planar-silicon ones. The deterioration of signal due to radiation damage is formulated using the mean free path of charge carriers in the sensor. The noise from the pixel readout circuit is simulated and calculated with leakage current and input capacitance to the amplifier as important parameters. The measured SNR shows good agreement with the calculated and simulated results, proving that the performance of diamond pixel detectors can exceed the silicon ones if the particle fluence is more than 10{sup 15} particles per cm{sup 2}.

  12. Monitoring Radiation Damage in the ATLAS Pixel Detector

    CERN Document Server

    Schorlemmer, André Lukas; Große-Knetter, Jörn; Rembser, Christoph; Di Girolamo, Beniamino

    2014-11-05

    Radiation hardness is one of the most important features of the ATLAS pixel detector in order to ensure a good performance and a long lifetime. Monitoring of radiation damage is crucial in order to assess and predict the expected performance of the detector. Key values for the assessment of radiation damage in silicon, such as the depletion voltage and depletion depth in the sensors, are measured on a regular basis during operations. This thesis summarises the monitoring program that is conducted in order to assess the impact of radiation damage and compares it to model predictions. In addition, the physics performance of the ATLAS detector highly depends on the amount of disabled modules in the ATLAS pixel detector. A worrying amount of module failures was observed during run I. Thus it was decided to recover repairable modules during the long shutdown (LS1) by extracting the pixel detector. The impact of the module repairs and module failures on the detector performance is analysed in this thesis.

  13. Recent progress in the development of transition radiation detectors

    Science.gov (United States)

    Cherry, M. L.; Hartmann, G.; Prince, T.; Mueller, D.

    1978-01-01

    Transition-radiation detectors have been used in several recent cosmic-ray experiments for particle identification at energies E/mc-squared of at least about 1000. In order to optimize the design of such detectors and to use them for energy measurements over a broad energy range, it is necessary to study the details of the transition-radiation process. Experimental results are presented which test the theoretical predictions more precisely and at higher energies than in previous experiments. The dependence of the interference pattern in the frequency spectrum on the radiator dimensions is studied, and the total transition-radiation yield generated by electrons in various radiators is measured over a very wide energy range, from 5 to 300 GeV. The significance of the individual experimental parameters in the design of transition radiation detectors is reviewed, and the characteristics of transition-radiation detectors capable of measuring particle energies over the range E/mc-squared from about 300 to 100,000 are discussed.

  14. Circuitry for use with an ionizing-radiation detector

    International Nuclear Information System (INIS)

    An improved system of circuitry for use in combination with an ionizing-radiation detector over a wide range of radiation levels includes a current-to-frequency converter together with a digital data processor for respectively producing and measuring a pulse repetition frequency which is proportional to the output current of the ionizing-radiation detector, a dc-to-dc converter for providing closely regulated operating voltages from a rechargeable battery and a bias supply for providing high voltage to the ionization chamber. The ionizing-radiation detector operating as a part of this system produces a signal responsive to the level of ionizing radiation in the vicinity of the detector, and this signal is converted into a pulse frequency which will vary in direct proportion to such level of ionizing-radiation. The data processor, by counting the number of pulses from the converter over a selected integration interval, provides a digital indication of radiation dose rate, and by accumulating the total of all such pulses provides a digital indication of total integrated dose. Ordinary frequency-to-voltage conversion devices or digital display techniques can be used as a means for providing audible and visible indications of dose and dose-rate levels

  15. High sensitivity radiation detector for capillary electrophoresis

    International Nuclear Information System (INIS)

    Capillary electrophoresis is an important new instrumental technique capable of high resolution separation and analysis of small quantities of nucleotides, amino acids, peptides, and proteins with very high efficiency and throughput. The unprecedented sensitivity of this technique will be useful for such new applications as in vivo labeling and identification of trace substances and single cell work. The principle limitation of this technique for radiolabeled molecules has been identified as the sensitivity of the detector, primarily due to the small sample volume (32P-labeled biomolecules with unprecedented sensitivity. This detector can be easily retrofitted into existing CE apparatus

  16. Cryogenic Si detectors for ultra radiation hardness in SLHC environment

    International Nuclear Information System (INIS)

    Radiation hardness up to 1016 neq/cm2 is required in the future HEP experiments for most inner detectors. However, 1016 neq/cm2 fluence is well beyond the radiation tolerance of even the most advanced semiconductor detectors fabricated by commonly adopted technologies: the carrier trapping will limit the charge collection depth to an effective range of 20-30 μm regardless of depletion depth. Significant improvement of the radiation hardness of silicon sensors has been taken place within RD39. Fortunately the cryogenic tool we have been using provides us a convenient way to solve the detector charge collection efficiency (CCE) problem at SLHC radiation level (1016 neq/cm2). There are two key approaches in our efforts: (1) use of the charge/current injection to manipulate the detector internal electric field in such a way that it can be depleted at a modest bias voltage at cryogenic temperature range (≤230 K); and (2) freezing out of the trapping centers that affects the CCE at cryogenic temperatures lower than that of the LN2 temperature. In our first approach, we have developed the advanced radiation hard detectors using charge or current injection, the current injected diodes (CID). In a CID, the electric field is controlled by injected current, which is limited by the space charge, yielding a nearly uniform electric field in the detector, independent of the radiation fluence. In our second approach, we have developed models of radiation-induced trapping levels and the physics of their freezing out at cryogenic temperatures. In this approach, we intend to study the trapping effect at temperatures below LN2 temperature. A freeze-out of trapping can certainly help in the development of ultra-radiation hard Si detectors for SLHC. A detector CCE measurement system using ultra-fast picosecond laser with a He cryostat has been built at CERN. This system can be used to find out the practical cryogenic temperature range that can be used to freeze out the radiation

  17. Experimental studies of radiation damage of silicon detectors

    International Nuclear Information System (INIS)

    New particle physics experiments are correlated with high luminosity and/or high energy. The new generation of colliding beam machines which will be constructed will make an extrapolation of a factor of 100 in the center of mass energy and of 1000 in luminosity beyond present accelerators. The scientific community hopes that very exciting physics results could be achieved this way, from the solution to the problem of electroweak symmetry breaking to the possible discovery of new, unpredicted phenomena. The particles which compose the radiation field are: electrons, pions, neutrons, protons and photons. It has become evident that the problem of the radiation resistance of detectors in this severe environment is a crucial one. This situation is complicated more by the fact that detectors must work all the run time of the machine, and better all the time of the experiment, without replacement (part or whole). So, studies related to the investigation of the radiation hardness of all detector parts, are developing. The studies are in part material and device characterization after irradiation, and in part technological developments, made in order to find harder, cheaper technologies, for larger surfaces. Semiconductor detectors have proven to be a good choice for vertex and calorimeter. Both fixed target machines and colliders had utilized in the past silicon junction detectors as the whole or part of the detection system. Precision beam hodoscopes and sophisticated trigger devices with silicon are equally used. The associated electronics in located near the detectors, and is subjected to the same radiation fields. Studies of material and device radiation hardness are developing in parallel. Here the authors present results on the radiation hardness of silicon, both as a bulk material and as detectors, to neutron irradiation at high fluences

  18. The HERMES dual-radiator ring imaging Cherenkov detector

    CERN Document Server

    Akopov, N; Bailey, K; Bernreuther, S; Bianchi, N; Capitani, G P; Carter, P; Cisbani, E; De Leo, R; De Sanctis, E; De Schepper, D; Dzhordzhadze, V; Filippone, B W; Frullani, S; Garibaldi, F; Hansen, J O; Hommez, B; Iodice, M; Jackson, H E; Jung, P; Kaiser, R; Kanesaka, J; Kowalczyk, R; Lagamba, L; Maas, A; Muccifora, V; Nappi, E; Negodaeva, K; Nowak, Wolf-Dieter; O'Connor, T; O'Neill, T G; Potterveld, D H; Ryckbosch, D; Sakemi, Y; Sato, F; Schwind, A; Shibata, T A; Suetsugu, K; Thomas, E; Tytgat, M; Urciuoli, G M; Van De Kerckhove, K; Van De Vyver, R; Yoneyama, S; Zhang, L F; Zohrabyan, H G

    2002-01-01

    The construction and use of a dual radiator Ring Imaging Cherenkov (RICH) detector is described. This instrument was developed for the HERMES experiment at DESY which emphasises measurements of semi-inclusive deep-inelastic scattering. It provides particle identification for pions, kaons, and protons in the momentum range from 2 to 15 GeV, which is essential to these studies. The instrument uses two radiators, C sub 4 F sub 1 sub 0 , a heavy fluorocarbon gas, and a wall of silica aerogel tiles. The use of aerogel in a RICH detector has only recently become possible with the development of clear, large, homogeneous and hydrophobic aerogel. A lightweight mirror was constructed using a newly perfected technique to make resin-coated carbon-fiber surfaces of optical quality. The photon detector consists of 1934 photomultiplier tubes (PMT) for each detector half, held in a soft steel matrix to provide shielding against the residual field of the main spectrometer magnet.

  19. The HERMES dual-radiator ring imaging Cerenkov detector

    CERN Document Server

    Akopov, N Z; Bailey, K; Bernreuther, S; Bianchi, N; Capitani, G P; Carter, P; Cisbani, E; De Leo, R; De Sanctis, E; De Schepper, D; Dzhordzhadze, V; Filippone, B W; Frullani, S; Garibaldi, F; Hansen, J O; Hommez, B; Iodice, M; Jackson, H E; Jung, P; Kaiser, R; Kanesaka, J; Kowalczyk, R; Lagamba, L; Maas, A; Muccifora, V; Nappi, E; Negodaeva, K; Nowak, Wolf-Dieter; O'Connor, T; O'Neill, T G; Potterveld, D H; Ryckbosch, D; Sakemi, Y; Sato, F; Schwind, A; Shibata, T A; Suetsugu, K; Thomas, E; Tytgat, M; Urciuoli, G M; Van de Kerckhove, K; Van de Vyver, R; Yoneyama, S; Zohrabyan, H G; Zhang, L F

    2002-01-01

    The construction and use of a dual radiator Ring Imaging Cerenkov(RICH) detector is described. This instrument was developed for the HERMES experiment at DESY which emphasizes measurements of semi-inclusive deep-inelastic scattering. It provides particle identification for pions, kaons, and protons in the momentum range from 2 to 15 GeV, which is essential to these studies. The instrument uses two radiators, C4F10, a heavy fluorocarbon gas, and a wall of silica aerogel tiles. The use of aerogel in a RICH detector has only recently become possible with the development of clear, large homogeneous and hydrophobic aerogel. A lightweight mirror was constructed using a newly perfected technique to make resin-coated carbon-fiber surfaces of optical quality. The photon detector consists of 1934 photomultiplier tubes for each detector half, held in a soft steel matrix to provide shielding against the residual field of the main spectrometer magnet.

  20. The HERMES dual-radiator ring imaging Cherenkov detector

    International Nuclear Information System (INIS)

    The construction and use of a dual radiator Ring Imaging Cherenkov (RICH) detector is described. This instrument was developed for the HERMES experiment at DESY which emphasises measurements of semi-inclusive deep-inelastic scattering. It provides particle identification for pions, kaons, and protons in the momentum range from 2 to 15 GeV, which is essential to these studies. The instrument uses two radiators, C4F10, a heavy fluorocarbon gas, and a wall of silica aerogel tiles. The use of aerogel in a RICH detector has only recently become possible with the development of clear, large, homogeneous and hydrophobic aerogel. A lightweight mirror was constructed using a newly perfected technique to make resin-coated carbon-fiber surfaces of optical quality. The photon detector consists of 1934 photomultiplier tubes (PMT) for each detector half, held in a soft steel matrix to provide shielding against the residual field of the main spectrometer magnet

  1. Tests of large Cherenkov detectors with silica aerogel as radiator

    CERN Document Server

    Bénot, M; Tavernier, S; Van Den Bogaert, F; Henri, V P; Herquet, P; Kesteman, J; Pingot, O; Johansson, K E; Norrby, J; Lagnaux, J P

    1978-01-01

    Cerenkov detectors with silica aerogel as radiator, and a detector surface of about 18*52 cm/sup 2/, have been tested in a particle beam at the CERN Proton Synchrotron. For 9 cm thickness of silica aerogel the number of photoelectrons for beta =1 particles was found to be 4.6 and 5.5 respectively, depending on the light collection system used. (11 refs).

  2. Tests of large Cerenkov detectors with silica aerogel as radiator

    International Nuclear Information System (INIS)

    Cerenkov detectors with silica aerogel as radiator, and a detector surface of about 18X52cm2, have been tested in a particle beam at the CERN Proton Synchrotron. For 9cm thickness of silica aerogel the number of photoelectrons for β=1 particles was found to be 4.6 and 5.5 respectively, depending on the light collection system used. (Auth.)

  3. Development of a (Hg, Cd)Te photodiode detector, Phase 2. [for 10.6 micron spectral region

    Science.gov (United States)

    1972-01-01

    High speed sensitive (Hg,Cd)Te photodiode detectors operating in the 77 to 90 K temperature range have been developed for the 10.6 micron spectral region. P-N junctions formed by impurity (gold) diffusion in p-type (Hg, Cd) Te have been investigated. It is shown that the bandwidth and quantum efficiency of a diode are a constant for a fixed ratio of mobility/lifetime ratio of minority carriers. The minority carrier mobility and lifetime uniquely determine the bandwidth and quantum efficiency and indicate the shallow n on p (Hg,Cd) Te diodes are preferable as high performance, high frequency devices.

  4. Radiation hardness of three-dimensional polycrystalline diamond detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lagomarsino, Stefano, E-mail: lagomarsino@fi.infn.it; Sciortino, Silvio [National Institute of Nuclear Physics (INFN), Via B. Rossi, 1-3, 50019 Sesto Fiorentino (Italy); Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Bellini, Marco [European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino (Italy); Istituto Nazionale di Ottica (INO-CNR), Largo Enrico Fermi 6, 50125 Firenze (Italy); Corsi, Chiara [Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino (Italy); Cindro, Vladimir [Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia); Kanxheri, Keida; Servoli, Leonello [National Institute of Nuclear Physics (INFN), Via A. Pascoli, 06123 Perugia (Italy); Department of Physics, University of Perugia, Via A. Pascoli, 06123 Perugia (Italy); Morozzi, Arianna [Department of Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia (Italy); Passeri, Daniele [National Institute of Nuclear Physics (INFN), Via A. Pascoli, 06123 Perugia (Italy); Department of Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia (Italy); Schmidt, Christian J. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt (Germany)

    2015-05-11

    The three-dimensional concept in particle detection is based on the fabrication of columnar electrodes perpendicular to the surface of a solid state radiation sensor. It permits to improve the radiation resistance characteristics of a material by lowering the necessary bias voltage and shortening the charge carrier path inside the material. If applied to a long-recognized exceptionally radiation-hard material like diamond, this concept promises to pave the way to the realization of detectors of unprecedented performances. We fabricated conventional and three-dimensional polycrystalline diamond detectors, and tested them before and after neutron damage up to 1.2 ×10{sup 16 }cm{sup −2}, 1 MeV-equivalent neutron fluence. We found that the signal collected by the three-dimensional detectors is up to three times higher than that of the conventional planar ones, at the highest neutron damage ever experimented.

  5. The Dielectric Bolometer, A New Type of Thermal Radiation Detector

    Science.gov (United States)

    Hanel, R. A.

    1960-01-01

    Thermal detectors for the infrared, such as thermocouples and bolometers, are limited in their ultimate sensitivity predominantly by Johnson noise rather than temperature noise. Low noise figures are hard to achieve since Johnson noise preponderates temperature noise, which is the only essential noise for thermal detectors. The dielectric constants of some materials are sufficiently temperature dependent to make a new type of bolometer feasible. The basic theory of a dielectric bolometer, as shown here, promises noise figures below 3 decibels even at chopper frequencies well above the 1/tau value of the detector. Ferroelectrics such as barium-strontium titanate and others seem to be well suited for radiation-cooled dielectric bolometers.

  6. Radiation damage measurements on CZT drift strip detectors

    DEFF Research Database (Denmark)

    Kuvvetli, Irfan; Budtz-Jørgensen, Carl; Korsbech, Uffe C C;

    2003-01-01

    At DSRI, in collaboration with the cyclotron facility at Copenhagen University Hospital, we have performed a study of radiation effects exposing a 2.7 mm thick CZT drift strip detector to 30 MeV protons. The detector characteristics were evaluated after exposure to a number of fluences in the range....... A numerical model that emulates the physical processes of the charge transport in the CZT detector was used to derive the charge trapping parameter, mutau(e), (the product of charge mobility and trapping time) as a function of fluence. The analysis showed that the electron trapping increased proportionately...

  7. Radiation detectors as surveillance monitors for IAEA safeguards

    International Nuclear Information System (INIS)

    Radiation detectors used for personnel dosimetry are examined for use under IAEA Safeguards as monitors to confirm the passage or nonpassage (YES/NO) of plutonium-bearing nuclear material at barrier penetrations declared closed. In this application where backgrounds are ill defined, no advantage is found for a particular detector type because of intrinsic efficiency. Secondary considerations such as complexity, ease of tamper-proofing, and ease of readout are used to recommend specific detector types for routine monitoring and for data-base measurements. Recommendations are made for applications, data acquisition, and instrument development

  8. The Gamma-Ray Response of Silicon Carbide Radiation Detectors

    International Nuclear Information System (INIS)

    Silicon Carbide (SiC) radiation detectors are being developed for charged-particle, neutron, and gamma-ray detection. SiC is a wide band gap semiconductor that offers several advantages for use as a solid-state radiation detector. Among these are the ability of SiC devices to operate at elevated temperatures and their improved resistance to radiation compared to other semiconductors. SiC charged-particle detectors have been shown to have good energy resolution for alpha particles. Furthermore, pulse heights and full-widths at half-maximum were found to be completely unperturbed by changes in temperature up to 89 C. In subsequent measurements, SiC neutron detectors based on detection of neutron-induced tritons from a juxtaposed 6LiF foil were shown to have a highly linear response to thermal neutron flux in the range from 1.76 x 104 to 3.59 x 1010 cm-2/s in National Institute of Standards and Technology neutron fields. An important attribute of SiC radiation detectors is their ability to operate in and monitor intense gamma-ray fields while in pulse-mode operation

  9. R&D for Better Nuclear Security: Radiation Detector Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kammeraad, J E

    2009-04-02

    I am going to talk about the need for better materials for radiation detectors. I believe that government investment in this area can enable transformational technology change that could impact domestic nuclear security and also national nuclear security in some very positive and powerful ways. I'm not going to give you a lecture on how radiation detectors work, but I am going to tell you a bit about today's off-the-shelf technology and why it is not sufficient, what we need, and what security benefit you could get from improvements. I think we're at a critical point in time for some very impactful investments. In particular I'm going to focus on the use of gamma-ray radiation detectors at ports of entry. Not long before DHS was formed, Congress decreed that counter measures against the delivery of radiological and nuclear threats would be put in place at US ports of entry, under the authority of US Customs (later Customs and Border Protection in DHS). This included the screening of all cars and trucks passing through a port of entry. Existing off-the-shelf radiation detectors had to be selected for this purpose. Plans were made to make the most of the available technologies, but there are some inherent limitations of these detectors, plus the operational setting can bring out other limitations.

  10. Transition-radiation-Compton-scattering detector for very relativistic nuclei

    Science.gov (United States)

    Osborne, W. Z.; Mack, J. E.

    1975-01-01

    The paper presents the design and predicted performance of a large acceptance (2 sq m sr) transition-radiation-Compton-scattering detector system which can be used to measure energy spectra up to several thousand Gev/nucleon for nuclei with Z between 6 and 28, as well as up to 40,000 GeV/nucleon for He. The following circumstances made such a detector system practicable: (1) transition radiation output is proportional to the square of particle charge; (2) output varies at least as rapidly as the square of Lorentz factor over the range from several hundred to several thousand.

  11. Effect of temperature on silicon PIN photodiode radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Han Soo; Jeong, Man Hee; Kim, Young Soo; HA, Jang Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Seong Yeon [Yonsei University, Wonju (Korea, Republic of)

    2014-03-15

    One of the noise sources of a semiconductor radiation detector is thermal noise, which degrades the performance, such as the energy resolution and unexpected random pulse signals. In this study, PIN photodiode radiation detectors, with different active areas were designed and fabricated for an experimental comparison of the energy resolutions for different temperatures and capacitances by using a Ba-133 calibration gamma-ray source. The experimental temperature was approximately in the range from -7 to 24 .deg. C and was controlled by using a peltier device. The design considerations and the electrical characteristics, such as the I-V and the C-V characteristics, are also addressed.

  12. Radiation hardness of polysulphone and polycarbonate elements for LHC detectors

    CERN Document Server

    Hauviller, Claude; Bychkov, V; Golikov, V V; Kekelidze, G D; Lobastov, S P; Luschikov, V I; Peshekhonov, V D

    1998-01-01

    In the TRT Inner Detector being developed for ATLAS, elements made from plastic materials are widely used. In order to meet necessary requirements of the construction, these materials should have a high radiation hardness. This work presents a study of mechanical features of polysulphone and polycarbonate in dependence on the radiation dose. The results of measurements have shown a weak dependence of mechanical properties of polysulphone and polycarbonate on the absorbed dose up to the value of 1 MGy. So, the products from these materials could be used to construct detectors at LHC, at least on the mechanical point of view.

  13. Organic semiconductors as real-time radiation detectors

    International Nuclear Information System (INIS)

    In this study, the possibility of using π-conjugated organic semiconducting polymers as real-time radiation detectors was explored. Polyaniline (PAni) was used to fabricate radiation sensors because of its relative long-term stability in air. Each fabricated sensor was then subjected to irradiation by α- and β-particles, and the real-time response was measured. The multichannel analyzer (MCA) data of the response signal for each irradiation was acquired and the detection efficiency, relative to the electrode bias voltage of the detector, was extracted

  14. An intercomparison of detectors for measurement of background radiation

    International Nuclear Information System (INIS)

    Measurements of the background radiation were made in 1978 at 14 locations with a high-pressure ionization chamber, thermoluminiscence dosimeters (TLD's), two NaI(Tl) detectors, and a Ge(Li) spectrometer system. Simultaneous measurements with the ionization chamber and the spectrometer system provide reliable estimates of the total background exposure rate, of the individual contributors to the terrestrial exposure rate, and of the exposure rate from the secondary cosmic radiation. The TLD results agree with those of the ionization chamber. The NaI(Tl) detector results show that accurate estimates of the terrestrial exposure rate can be obtained if empirical corrections are applied. (author)

  15. [Effects of ionizing radiation on scintillators and other particle detectors

    International Nuclear Information System (INIS)

    It is my task to summarise the great variety of topics (covering a refreshing mix of physics, chemistry and technology) presented at this conference, which has focused on the effects of ionising radiation on scintillators and other particle detectors. One of the reasons and the central interest of many of the participants was the use of such detectors in experiments at two future large hadron colliders: the Superconducting Super Collider to be operating outside of Dallas in the United States by the turn of the decade and its European counterpart the Large Hadron Collider to be operating outside of Geneva in Switzerland on a similar time scale. These accelerators are the ''apple of the high energy physicist's eye.'' Their goal is to uncover the elusive Higgs particle and thereby set the cornerstone in our current knowledge of elementary particle interactions. This is the Quest, and from this lofty height the presentations rapidly moved on to the specific questions of experimental science: how such an experiment is carried out; why radiation damage is an issue; how radiation damage affects detectors; which factors affect radiation damage characteristics; which factors are not affected by radiation damage; and how better detectors may be constructed. These were the substance of this conference

  16. Dislocation-induced electronic levels in semi-insulated CdTe

    International Nuclear Information System (INIS)

    We studied deformation-induced defects in semi-insulating CdTe and CdZnTe by infrared photoluminescence (PL) and compared our data with earlier results. We confirmed the direct correlation between Y-emission and dislocation density in both compounds. The Y-band intensified near an indenter deformation or near a scribing line, but was barely visible in low-dislocation areas (etch pit density 5 cm-2). Plastic deformation also increased the concentrations of grown-in defects, namely, those of an important midgap level EC-0.74 eV in CdTe and Cd1-xZnxTe (x<0.1), the materials of choice in today's detector technology. Our findings demonstrate that dislocation-induced defects can degrade charge collection in radiation detectors.

  17. The pin detector - a simple, robust, cheap and effective nuclear radiation detector

    International Nuclear Information System (INIS)

    The development of a series of radiation detectors based on the point anode is reported. Using readily available preformed pins from a variety of electrical connectors as the anodes, a family of devices has been created with useful properties as X-ray detectors, radiation monitors and internal beta counters. A wide variety of gas fillings can be used, argon/CH4 premix being the most convenient. The structures are robust and call for no precision alignments so keeping costs down. Performance of the devices in respect of sensitivity and pulse height resolution is comparable to that of conventional wire counters. (orig.)

  18. Assessment of integrated solar ultraviolet radiation by PM-355 detectors

    International Nuclear Information System (INIS)

    The increase in environmental solar UV radiation due to depletion of ozone layer is a recent challenge to human health (skin cancer and eye effects) in countries having clear skies. Therefore, applying integrated, passive and inexpensive techniques to assess solar UV radiation is very much essential. Measurements of environmental solar UV radiation in Dhahran, Saudi Arabia area were carried out for a period of two months in the summer period in 1996 using two techniques in parallel namely: passive nuclear track detectors and active solar UV radiometers. Some of the nuclear track detectors were mounted in different conditions such as: under shadow band, on solar tracking mechanism following the solar rays. Others were mounted on perpendicular, tilted and horizontal surfaces in sunlight. All detectors were attached to a wooden background of the same thickness (0.5 cm) to eliminate interference of the heat effect of various support materials and have uniformity of the support materials. The assessment was carried out for different periods extending from two to nine weeks continuously. The investigated period covered the hottest months in Saudi Arabia (July and August) when the sky was clear of clouds. The results indicate linear correlation between alpha track diameters and the integrated exposure to solar UV as measured by the solar UV radiometer for all nuclear track detector positions and orientations. The highest slope has been observed for the detectors placed on solar tracking mechanism following the solar rays and the lowest from detectors oriented under the shadow band on horizontal position (measuring the diffused UV radiation only). The results show that most of the measured UV radiation (60%) were from the diffused UV radiation. The characteristics of the upper layer of the detectors are changed after chemical etching very quickly, with increase in the exposure time to UV solar radiation at certain orientation. The results encourage the use of nuclear track

  19. Recent progress in the transition radiation detector techniques

    Science.gov (United States)

    Yuan, L. C. L.

    1973-01-01

    A list of some of the major experimental achievements involving charged particles in the relativistic region are presented. With the emphasis mainly directed to the X-ray region, certain modes of application of the transition radiation for the identification and separation of relativistic charged particles are discussed. Some recent developments in detection techniques and improvements in detector performances are presented. Experiments were also carried out to detect the dynamic radiation, but no evidence of such an effect was observed.

  20. Successful beam tests for ALICE Transition Radiation Detector

    CERN Multimedia

    2002-01-01

    Another round of beam tests of prototypes for the Transition Radiation Detector (TRD) for ALICE has been completed and there are already some good results. Mass production of the components of the detector will start early next year.   Top view of the setup for the Transition Radiation Detector prototype tests at CERN.On the left, can be seen the full-scale TRD prototype together with four smaller versions. These are busy days for the TRD (Transition Radiation Detector) team of ALICE. Twenty people - mainly from Germany, but also from Russia and Japan - were working hard during the beam tests this autumn at CERN to assess the performance of their detector prototypes. Analysis of the data shows that the TRD can achieve the desired physics goal even for the highest conceivable multiplicities in lead-lead collisions at the LHC. In its final configuration in the ALICE experiment, the TRD will greatly help in identifying high-momentum electrons, which are 'needles in a haystack' that consists mostly of...

  1. Construction of lithium-drifted silicon radiation detectors

    International Nuclear Information System (INIS)

    The purpose of this work was to develop, at the Nuclear Instrumentation Laboratory (LIN) of COPPE/UFRJ, the technique of the construction of Lithium-Drifted Silicon Radiation Detectors (Si(Li)), that would be a cheaper alternative for detectors normally used in bone densitometer and mainly, computerized tomographs, which requires a large number of detectors to operate efficiently. Among 24 detectors constructed 8 had no guard ring. All detectors were evaluated at room temperature and 5O C, taking energy spectra from several radioactive sources (241 Am, 133 Ba, 57 Co e 137 Cs). Most of the detectors showed sensibility to radiation incidence. These without guard ring, presented high leakage currents, but only two of them, gave reasonable spectra, with resolutions for 241 Am (60 KeV), of 20 KeV at room temperature and 14 keV, when cooled to 50 C. For gamma rays from 60 to 662 keV at 50 C, had resolutions between 14 and 18 keV. (author)

  2. Application of solid state nuclear track detectors in radiation protection

    International Nuclear Information System (INIS)

    This article reviews the current status of the application of nuclear track detectors with emphasis on recent developments in the field of radiation protection. Track etch detectors have been used for the measurements of low level radiation in the environment, fast neutron and radon daughter inhalation dose. Recent developments in the field of dosimetry seem to be promising. In fast neutron dosimetry, track etch detectors can be used without inclusion of fissile materials by using the electrochemical etching technique. These detectors can provide important information in the energy range upto 250 keV. Survey of this range of energy with TLD is difficult because they are extremely energy dependent and over-respond to low energy neutrons. Measurement of radon using track detectors can help to lower the cost of the radon dosimeters. Certain detectors are sensitive to alpha particles from radon and their progeny. Higher sensitivity permits their use in a passive type of personnel dosimeter, which does not require the troublesome aspects of air sampling for the collection of radon daughter samples. (author), 38 refs., 8 tabs., 12 figs

  3. Compensation of radiation damages for SOI pixel detector via tunneling

    CERN Document Server

    Yamada, Miho; Kurachi, Ikuo

    2015-01-01

    We are developing monolithic pixel detectors based on SOI technology for high energy physics, X-ray applications and so on.To employ SOI pixel detector on such radiation environments, we have to solve effects of total ionization damages (TID) for transistors which are enclosed in oxide layer.The holes which are generated and trapped in the oxide layers after irradiation affect characteristics of near-by transistors due to its positive electric field.Annealing and radiation of ultraviolet are not realistic to remove trapped holes for a fabricated detector due to thermal resistance of components and difficulty of handling. We studied compensation of TID effects by tunneling using a high-voltage. For decrease of trapped holes, applied high-voltage to buried p-well which is under oxide layer to inject the electrons into the oxide layer.In this report, recent progress of this study is shown.

  4. Advances in the project about Pin type silicon radiation detectors

    International Nuclear Information System (INIS)

    The obtained advances in the collaboration project ININ-CINVESTAV about development of Pin type semiconductor radiation detectors here are presented. It has been characterized the response to different types of radiation made in CINVESTAV and INAOE. Measurements have been realized with different types of sensitive to charge preamplifiers determining the main characteristics which must be executed to be able to be employed with low capacitance detectors. As applications it has been possible to measure the irradiation time in a mammography machine and X-ray energy spectra have been obtained in the order of 14 KeV, with 4 KeV at ambient temperature. The future actions of project have been indicated and the possible applications of these detectors. (Author)

  5. Charge collection in semiconductor radiation detectors

    International Nuclear Information System (INIS)

    Semiconductor particle-detectors operate like ion chambers by collecting the charge liberated by an incident-ionizing particle. However the mechanism of charge collection is much more complicated than that of the ion chamber, depending in detail on the properties of the semiconductor, the potential distribution in the device and the ionization density along the initial track. Loss of charge can be attributed to two effects - recombination along the initial track and subsequent trapping of the moving carriers. These effects can be separated by using particles of widely differing ionization densities. Such investigations have been carried out for various silicon devices fabricated in different ways and covering a wide range of resistivities. Analytical results have been derived applicable to the general case of charge loss through trapping, and some results have also been obtained concerning recombination loss. (author)

  6. Radiation Response of Emerging High Gain, Low Noise Detectors

    Science.gov (United States)

    Becker, Heidi N.; Farr, William H; Zhu, David Q.

    2007-01-01

    Data illustrating the radiation response of emerging high gain, low noise detectors are presented. Ionizing dose testing of silicon internal discrete avalanche photodiodes, and 51-MeV proton testing of InGaAs/InAlAs avalanche photodiodes operated in Geiger mode are discussed.

  7. Easy Mode Course for Personal Radiation Detectors Thermo Rad Eye

    International Nuclear Information System (INIS)

    The presentation describes the use of the Rad Eye Personal Radiation Detector for monitoring and searching.The search alarm of the Rad Eye is based on 6 sigma and its safety alarm is set at 10000 counts per second and 100 micro Sv/h, which is the IAEA default setting

  8. Research on radiation detectors, boiling transients, and organic lubricants

    Science.gov (United States)

    1974-01-01

    The accomplishments of a space projects research facility are presented. The subjects discussed are: (1) a study of radiation resistant semiconductor devices, (2) synthesis of high temperature organic lubricants, (3) departure from phase equilibrium during boiling transients, (4) effects of neutron irradiation on defect state in tungsten, and (5) determination of photon response function of NE-213 liquid scintillation detectors.

  9. Spectra of radioactive nuclides radiation, measured with semiconductor detectors. 2

    International Nuclear Information System (INIS)

    The second part of the atlas 'Radiation spectra of radionuclides measured with semiconductor detectors' is presented including 259 spectra of 126 alpha, beta, gamma, and X ray emitters. Some spectra of the first part of the atlas are given at another scale and sometimes for other energy ranges. The total number of investigated radionuclides amounts to 261 of which 69 are new ones

  10. Evaluation of a digital optical ionizing radiation particle track detector

    International Nuclear Information System (INIS)

    An ionizing radiation particle track detector is outlined which can, in principle, determine the three-dimensional spatial distribution of all the secondary electrons produced by the passage of ionizing radiation through a low-pressure (0.1 to 10 kPa) gas. The electrons in the particle track are excited by the presence of a high-frequency AC electric field, and two digital cameras image the optical radiation produced in electronic excitation collisions of the surroundings gas by the electrons. The specific requirements of the detector for neutron dosimetry and microdosimetry are outlined (i.e., operating conditions of the digital cameras, high voltage fields, gas mixtures, etc.) along with an estimate of the resolution and sensitivity achievable with this technique. The proposed detector is shown to compare favorable with other methods for obtaining the details of the track structure, particularly in the quality of the information obtainable about the particle track and the comparative simplicity and adaptability of the detector for measuring the secondary electron track structure for many forms of ionizing radiation over a wide range of energies

  11. Proximity focusing RICH detector based on multilayer silica aerogel radiator

    International Nuclear Information System (INIS)

    The performance of a proximity focusing Ring Imaging Cherenkov detector equipped with a radiator of silica aerogel is presented. The aerogel tile used is a monolith with variable index of refraction. Cherenkov photons are detected with high granularity by eight Hamamatsu H9500 flat panel multi anode phototubes.

  12. Proximity focusing RICH detector based on multilayer silica aerogel radiator

    CERN Document Server

    De Leo, R; Bellunato, T; Calvi, M; Cisbani, E; Cusanno, F; Garibaldi, F; Lagamba, L; Marra, M; Marrone, S; Matteuzzi, C; Musico, P; Nappi, E; Perego, D L; Torrioli, S; Vilardi, I

    2010-01-01

    The performance of a proximity focusing Ring Imaging Cherenkov detector equipped with a radiator of silica aerogel is presented. The aerogel tile used is a monolith with variable index of refraction. Cherenkov photons are detected with high granularity by eight Hamamatsu H9500 flat panel multi anode phototubes.

  13. Gas analysis system for ageing studies of gaseous radiation detectors

    International Nuclear Information System (INIS)

    A special gas analysis system has been constructed to analyze compounds created in electron avalanches in gaseous radiation detectors during their operation. The analysis method is based on utilisation of cryogenic concentration unit connected to a tandem gas chromatograph and a mass spectrometer. The system has been designed for quantitative analysis of organic compounds potentially involved in ageing processes of detectors. It can be exploited to identify compounds prone to polymerise and to measure variation of compounds as a function of detector construction materials and additives in the gas mixture. As a quantitative instrument it can be used to measure dependence of concentration of compounds on operating parameters of detectors, e.g. gas amplification and irradiation rate and type

  14. The effects of radiation on gallium arsenide radiation detectors

    International Nuclear Information System (INIS)

    Semi-insulating, undoped, liquid encapsulated Czochralski (SI-U LEC) GaAs detectors have been irradiated with 1 MeV neutrons, 24 GeV/c protons, and 300 MeV/c pions. The maximum fluences used were 6 x 1014, 3 x 1014, and 1.8 x 1014 particles/cm2, respectively. For all three types of irradiation, the charge collection efficiencies (cce) of the detector are reduced due to the reduction in the electron and hole mean free paths. Pion and proton irradiations produce a greater reduction in cce than neutron irradiation, with the pions having the greatest effect. The effect of annealing the detectors at room temperature, at 200 C and at 450 C with a flash lamp have been shown to reduce the leakage current and increase the cce of the irradiated detectors. The flash-lamp anneal produced the greatest increase in the cce from 26% to 70% by increasing the mean free path of the electrons. Two indium-doped samples were irradiated with 24 GeV/c protons and demonstrated no improvement over SI-U GaAs with respect to post-irradiation cce. (orig.)

  15. Monte Carlo simulation of gas-filled radiation detectors

    International Nuclear Information System (INIS)

    A new simulation code has been developed that allows the response of gas-filled proportional counters to be calculated. The code is an electron transport code that simulates the elastic and inelastic scattering processes that occur as a result of electron-impact collisions with the gas atoms. The simulation concentrates on the avalanche development after the primary ionising particle has freed electrons in the gas volume, by tracking electrons until they reach the anode of the counter. The dynamics of the ions that accumulate in the gas volume are also considered. A major motivation for this work is the general renewed interest in proportional counters over the last decade, since the advent of micro-pattern detectors such as the micro-strip and the micro-gap detector. It is argued that the low relative cost, intrinsic amplification and environmental stability of these detectors gives them considerable advantages over other types of radiation detectors. The code has been benchmarked against experimental data. The manner in which the variation in the avalanche statistics affects the energy resolution properties of the detector is examined for single wire counters, micro-strip and micro-gap counters. The stability of micro-gap detectors when subjected to high rates of irradiation is also examined. It is envisaged that these detectors will be used in the future as part of a multiphase flow tomography device for imaging the flow of oil/water/natural gas mixtures that have been pumped through pipes from the seabed. (author)

  16. Fabrication of HgI2 nuclear radiation detectors

    International Nuclear Information System (INIS)

    HgI2 nuclear radiation detectors were fabricated and their performance was tested. Crystals of a few mm squares and about one mm thickness were grown by vapor transport method using a two-temperature-region electric furnace in which commercially-available HgI2 powder of 99.2 to 99.8%. Purity was sealed in a Pylex ampoule. Detectors were fabricated using Aquadag-paint electrodes and tested using 5.5MeV alpha-particles, 59.5keV gamma-rays and LX-rays from 241Am. The best detector showed a FWHM energy resolution of 4.9keV for 59.5 keV gamma-rays while it is difficult to obtain detectors having good energy resolution. The following were confirmed; charge collection of holes was worse than that of electrons. Crystals having better transparency and better cleavability resulted in better detector performance. Dark solidified residue was found after one vapor transport of the commercially-available powder. Humiseal paint on the detector surface improved the applicable high voltage, the long-term stability and also the energy resolution. The average energy per electron-hole pair was about 4.2eV. The energy resolution improved as the temperature decreased from 500C to 00C. The performance of the detectors made of solvent-evaporation method was worse than that made of vacuum transport method. (author)

  17. A radiation detector design mitigating problems related to sawed edges

    International Nuclear Information System (INIS)

    In pixelated silicon radiation detectors that are utilized for the detection of UV, visible, and in particular Near Infra-Red (NIR) light it is desirable to utilize a relatively thick fully depleted Back-Side Illuminated (BSI) detector design providing 100% Fill Factor (FF), low Cross-Talk (CT), and high Quantum Efficiency (QE). The optimal thickness of such detectors is typically less than 300μm and above 40μm and thus it is more or less mandatory to thin the detector wafer from the backside after the front side of the detector has been processed and before a conductive layer is formed on the backside. A TAIKO thinning process is optimal for such a thickness range since neither a support substrate on the front side nor lithographic steps on the backside are required. The conductive backside layer should, however, be homogenous throughout the wafer and it should be biased from the front side of the detector. In order to provide good QE for blue and UV light the conductive backside layer should be of opposite doping type than the substrate. The problem with a homogeneous backside layer being of opposite doping type than the substrate is that a lot of leakage current is typically generated at the sawed chip edges, which may increase the dark noise and the power consumption. These problems are substantially mitigated with a proposed detector edge arrangement which 2D simulation results are presented in this paper

  18. CdZnTe array detectors for synchrotron radiation applications

    International Nuclear Information System (INIS)

    An X-ray linear-array detector was fabricated using high-pressure Bridgman-grown CdZnTe. The detector area was 175 x 800 μm and the pitch size was 250 μm. The measured dark current for the test 16-element detector was as low as 0.1 pA at 800 V cm-1 with excellent uniformity. Energy spectra were measured using a 57Co radiation source. Both a small-pixel effect and charge sharing were observed. For the arrays, an average 5.8% full width a half-maximum (FWHM) at the 122 keV photopeak was obtained with a standard deviation of 0.2%. A large-area detector (1 x 1 cm) of the same material before fabrication exhibited a low-energy tail at the photopeak, which limits the photopeak FWHM to 8%, typically due to hole trapping. At energies below 60 keV, charge sharing between elements was observed. The charge sharing was greatly reduced by providing a path to ground for unwanted charges. A prototype readout electronic system for an eight-channel array detector was developed. A readout system intended for a multielement solid-state detector system was also used. The array detector will be used for high-energy diffraction and Compton scattering measurements at the Advanced Photon Source. (au)

  19. PIN photo-diodes as radiation detectors in accelerator applications

    International Nuclear Information System (INIS)

    We have been using PIN photo-diodes originally suited for light detection as radiation detectors in several applications: photon monitoring in X-ray machines in industrial and medical applications, X-ray spectroscopy for identification of radioactive materials and XRF, and charged particle spectroscopy. The versatility of these devices as radiation detectors has led us to apply it in several accelerator experiments. This work presents an overview of the results obtained in several experiments: the measurement of charged particles up to 12 MeV in a Tandem accelerator, the measurement of the Bremstralung radiation obtained in an experimental electron accelerator in the range from 70 keV to 470 keV, the direct measurement of the intensity of the electron beam; also the application of PIN photo-diodes in the measurement of the intensity of photons in lineal accelerators used in radiotherapy up to 18 MeV. The front end conditioning electronics associated with the detectors is also described for every application: low noise charge sensitive preamplifiers and current amplifiers are used. The PIN diodes are a good choice for radiation detection in several accelerator applications with the advantage of a good position resolution due to its small size, good sensitivity for different radiation fields and low cost, and can be used to build a wide variety of detection systems around accelerator experiments. (author)

  20. Studying radiative B decays with the Atlas detector

    International Nuclear Information System (INIS)

    This thesis is dedicated to the study of radiative B decays with the ATLAS detector at the LHC (large hadron collider). Radiative decays belong to the rare decays family. Rare decays transitions involve flavor changing neutral currents (for example b → sγ), which are forbidden at the lowest order in the Standard Model. Therefore these processes occur only at the next order, thus involving penguin or box diagrams, which are very sensitive to 'new physics' contributions. The main goal of our study is to show that it would be possible to develop an online selection strategy for radiative B decays with the ATLAS detector. To this end, we have studied the treatment of low energy photons by the ATLAS electromagnetic calorimeter (ECal). Our analysis shows that ATLAS ECal will be efficient with these particles. This property is extensively used in the next section, where a selection strategy for radiative B decays is proposed. Indeed, we look for a low energy region of interest in the ECal as soon as the level 1 of the trigger. Then, photon identification cuts are performed in this region at level 2. However, a large part of the proposed selection scheme is also based on the inner detector, particularly at level 2. The final results show that large amounts of signal events could be collected in only one year by ATLAS. A preliminary significance (S/√B) estimation is also presented. Encouraging results concerning the observability of exclusive radiative B decays are obtained. (author)

  1. Study of radiation detectors response in standard X, gamma and beta radiation standard beams

    International Nuclear Information System (INIS)

    The response of 76 Geiger-Mueller detectors, 4 semiconductor detectors and 34 ionization chambers were studied. Many of them were calibrated with gamma radiation beams (37Cs and 60Co), and some of them were tested in beta radiation (90Sr+9'0Y e 204Tl) and X radiation (N-60, N-80, N-100, N-150) beams. For all three types of radiation, the calibration factors of the instruments were obtained, and the energy and angular dependences were studied. For beta and gamma radiation, the angular dependence was studied for incident radiation angles of 0 deg and +- 45 deg. The curves of the response of the instruments were obtained over an angle interval of 0 deg to +- 90 deg, for gamma, beta and X radiations. The calibration factors obtained for beta radiation were compared to those obtained for gamma radiation. For gamma radiation, 24 of the 66 tested Geiger-Mueller detectors presented results for the energy dependence according to international recommendation of ISO 4037-2 and 56 were in accordance with the Brazilian ABNT 10011 recommendation. The ionization chambers and semiconductors were in accordance to national and international recommendations. All instruments showed angular dependence less than 40%. For beta radiation, the instruments showed unsatisfactory results for the energy dependence and angular dependence. For X radiation, the ionization chambers presented results for energy dependence according to the national recommendation, and the angular dependence was less than 40%. (author)

  2. Examination results of the Three Mile Island radiation detector HP-R-212

    International Nuclear Information System (INIS)

    Area radiation detector HP-R-212 was removed from the Three Mile Island containment building on November 13, 1981. The detector apparently started to fail during November 1979 and by the first part of December 1979 the detector readings had degraded from 1 R/hr to 20 mR/hr. This report discusses the cause of failure, detector radiation measurement characteristics, and our estimates of the total gamma radiation dose received by the detector electronics

  3. Multi-directional radiation detector using photographic film

    International Nuclear Information System (INIS)

    Ionising radiation has always been part of our surrounding and people are continuously exposed to it. Ionising radiation is harmful to human health, thus it is vital to monitor the radiation. To monitor radiation, there are three main points that should be observed cautiously, which are energy, quantity, and direction of the radiation sources. A three dimensional (3D) dosimeter is an example of a radiation detector that provide these three main points. This dosimeter is able to record the radiation dose distribution in 3D. Applying the concept of dose detection distribution, study has been done to design a multi-directional radiation detector of different filter thicknesses. This is obtained by designing a cylinder shaped aluminum filter with several layers of different thickness. Black and white photographic material is used as a radiation-sensitive material and a PVC material has been used as the enclosure. The device is then exposed to a radiation source with different exposure factors. For exposure factor 70 kVp, 16 mAs; the results have shown that optical density (OD) value at 135° is 1.86 higher compared with an OD value at 315° which is 0.71 as the 135° area received more radiation compare to 315° region. Furthermore, with an evidence of different angle of film give different value of OD shows that this device has a multidirectional ability. Materials used to develop this device are widely available in the market, thus reducing the cost of development and making it suitable for commercialisation

  4. A comparison of various strategies to equalize the lower energy thresholds of a CdTe Medipix2 hexa detector for X-ray imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, T; Zuber, M; Schuenke, P; Nill, S; Oelfke, U [German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Zwerger, A; Fauler, A; Fiederle, M, E-mail: t.koenig@dkfz.de [Freiburg Materials Research Center (FMF), Stefan-Meier-Strasse 21, 79104 Freiburg (Germany)

    2011-01-15

    Technological advances have made possible the development of pixelized photon counting semiconductor detectors, many of which are used in X-ray imaging to resolve the spectral composition of the incident photons. Here, in a so-called Hexa detector, we employ a 3 x 2 array of Medipix2 MXR readout chips, bump bonded to a cadmium telluride sensor of 1 mm thickness with a pixel pitch of 165 {mu}m. Each pixel in this assembly offers two variable energy thresholds, which enables counting of only those photons within an energy range of interest. As manufacturing tolerances cause deviations in each of the pixel's responses, the two thresholds can be calibrated for every pixel to render their response to radiation more homogeneous. In this work, we compare various methods that we chose to equalize the lower thresholds: a) the noise edge of the detector electronics, the characteristic X-rays from b) silver and c) tantalum foils as well as flat fields obtained at d) 40 and e) 120 kVp. It will be shown that the energy dependence in the resulting adjustment bit maps are only small, whereas the question as to which strategy to choose (peak position vs. image homogeneity) will have a greater influence on the resulting corrections. Additionally, we observed a decrease in the mean adjustment values with increasing distance from the central axis of the Hexa detector under study.

  5. Advanced technology lunar telescopes III. Radiation resistant detectors

    International Nuclear Information System (INIS)

    A practical lunar telescope requires high resolution imaging array detectors that are immune to (or can be easily shielded from) solar flare particle radiation and cosmic rays. Charge-coupled devices (CCDs), the detectors of choice for ground-based applications, fall short in this respect because of their high susceptibility to radiation induced bulk traps and loss of charge transfer efficiency (CTE). Blooming in CCDs also limits the dynamic range and degrades resolution, while the well known red leak problem hinders observations in the ultraviolet. The authors describe an ongoing program at NASA GSFC to develop intensified random-access Charge-Injection Devices (CIDs), a new generation of space uv detectors which do not have the shortcomings of CCDs. CIDs, like CCDs, are silicon array detectors. Unlike CCDs, however, CIDs have more than 100x greater tolerance to ionizing particle radiation. Since CIDs do not transfer charge, CTE degradation has very little effect on the overall sensitivity and noise level. CIDs can perform extremely fast windowing of selected regions of interest with high signal levels (e.g. bright cores of galaxies or strong emission lines, etc) while monitoring the remainder of the array at lower rates. This selective readout ability plus the lack of blooming give CIDs a high dynamic range of operation but with minimal demands on the memory storage and telemetry data bandwidth. The authors demonstrate the operation of a row-windowing CID and discuss the potential applications of these devices to astronomical research from the moon

  6. Characterization of a radiation detector for aircraft measurements

    Energy Technology Data Exchange (ETDEWEB)

    Holanda M, L. de; Federico, C. A.; Caldas, L. V. E., E-mail: lcaldas@ipen.br [Instituto de Pesquisas Energeticas e Nucleares, Av. Lineu Prestes 2242, Cidade Universitaria, CEP 05508-000, Sao Paulo (Brazil)

    2014-08-15

    Air crews, as pilots and flight attendants, are subjected to cosmic ray doses which can be higher than the average doses on workers from the nuclear industry. The diversity of particles of high energies present in the radiation field on board of air crafts turns the determination of the incident dose difficult, and requires special care regarding dosimetric systems to be used in this kind of radiation field. The Brazilian Air Force, through its Institute for Advanced Studies (Instituto de Estudos Avancados, IEAv/DCTA) in conjunction with the Institute of Energetic and Nuclear Research (Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP) are working on this subject since 2008. A prototype of a radiation detector for aircraft measurements was previously built and tested in flight and laboratory conditions. The detector is able of measuring a quantity known as absorbed dose (using passive dosimeters), which will subsequently be correlated to the ambient dose equivalent and the effective dose received by air crews. In this context, a theoretical approach through Monte Carlo simulations with the computational codes MCNP5 and MCNPX was used to model and characterize the detector response at such experimental conditions. This work presents the preliminary results of the computational modeling, with special emphasis on the comparison between the absorbed doses measured and simulated, and its relationship with the ambient dose equivalent and the effective dose for this detector. (author)

  7. Method of fabricating a self-powered radiation detector

    International Nuclear Information System (INIS)

    A method is disclosed of fabricating a self-powered nuclear radiation detector assembly, comprising detector portion of accurately predetermined dimensions and a cable portion connected to the detector portion to carry the signal current which is generated in a radiation flux field to remote monitor means. The detector portion consists of a radiation responsive elongated central emitter electrode which is insulated from a generally tubular sheath collector electrode. The emitter electrode and signal cable center wire are electrically connected at one end and disposed within the collector electrode tubular sheath with compressible insulating means disposed between the wires and the tubular sheath. The above assembly is reduced in diameter while elongating the tubular sheath and emitter wire and signal cable wire. The emitter wire is reduced to a predetermined desired diameter and is trimmed to a predetermined length. An end cap is hermetically sealed to the tubular sheath the extending end of the emitter with insulating means between the emitter end and the end cap

  8. The effects of ultraviolet radiation on some plastic detectors

    International Nuclear Information System (INIS)

    Exposure to ultraviolet (U.V.) radiation could lead to the development of phototoxicity, photoallergy and enhancement of photocarcinogenesis (IRPA 1979). For the measurement of the dose of ultraviolet radiation harmful to human bodies, it is desirable to use a detector with a response curve similar to the human action spectra for erythema and for ultraviolet radiation. It is not easy to obtain a detector which satisfies the requirement unless a very complicated setup of spectrometer with suitable photodetectors is employed. For the purpose of measuring the personal dose, a passive type of detector is preferred. Davis et al (1976) has developed a detector using polysulphone for this purpose. The response curve shows a broad peak extending from 260 to 325 nm. Other detectors (spectrosonics, Partridge and Barton 1978, Fanslow et al 1983), which were developed for similar purposes, have a sharp peak around 280 to 320 nm. These response curves are not very good approximations to the human action spectrum which has a sharp cut-off at around 300 nm. They tend to overestimate the contribution on the long wavelength region (300-320 nm) of UV-B. The integrated response in the UV-B region could be twice the total area of the human action spectrum in the same region of wavelength. The irradiance of these long wavelengths is at least ten times that of the short wavelengths (less than 300 nm) in the solar spectrum. A search for materials with a better approximation than the three types of detectors mentioned above would be useful in the development of a more accurate dosimeter. In this paper, we will report our preliminary results on a new type of plastic material

  9. Response of radiation detectors in electron accelerator environment

    International Nuclear Information System (INIS)

    Full text: Due to the complex nature of radiation field present in high-energy electron accelerators and in associated systems, radiation measurements and interpretation of the results become a difficult task. In the present paper response of radiation instruments due to pulsed radiation of different duty cycle, radio frequency (RF) and low frequency (LF) interference from radio frequency generators (eg. magnetron) and associated systems are studied and the results are presented. The results show that gas filled detectors operated in the multiplicative region (eg. GM tube) severely underestimate the radiation field at very low duty cycles. The response is found to improve as the duty cycle is increased. RF, LF and magnetic field interference also is studied and the results are discussed

  10. Radiation damage monitoring of the ATLAS pixel detector

    CERN Document Server

    Seidel, Sally; The ATLAS collaboration

    2015-01-01

    A measurement has been made of the radiation damage incurred by the ATLAS Pixel Detector barrel silicon modules from the beginning of operations through the end of 2012. This translates to hadronic fluence received over the full period of operation at energies up to and including 8 TeV. The measurement is based on a per-module record of the silicon sensor leakage current. The results are presented as a function of integrated luminosity and compared to predictions by the Hamburg Model. This information can be used to predict limits on the lifetime of the Pixel Detector due to current, for various operating scenarios.

  11. Development of Superconducting Tunnel Junction as an Imaging Radiation Detector

    Science.gov (United States)

    Yamasaki, N. Y.; Rokutanda, E.; Kikuchi, K.; Kushino, A.; Ohashi, T.; Kurakado, M.

    Superconducting tunnel junctions (STJs) as X-ray detectors have been developed mainly aiming at high resolution spectrometers. We archived an energy resolution of 106 eV at 5.9 keV (FWHM) using an STJ developed at Nippon Steel Corporation with a cooled (~ 100K) FET. Furthermore, series-connected STJs as an imaging radiation detector are developed. Both the pulse hight and the rise time of signals from 241Am α-particles irradiated on a series-connected STJ give a good position sensitivity, indicating the intrinsic position resolution less than 0.5 mm

  12. Analysis of portable gamma flaw detectors concerning radiation hygiene

    International Nuclear Information System (INIS)

    Design and shields of gamma flaw detectors as one of the main factors responsible for personnel dose were studied. The analysis was conducted using the results of radiation hygienic surveys of gamma flaw detection laboratories functioning constantly in Estonia. It is shown that recently the replacement of GUP apparatuses by flaw detectors of RID and ''Gamma-RID'' (types which have design and shielding advantages is observed. However personnel doses have not reduced considerably for the last 10 years. This fact is attributed to design disadvantages of the RID and ''Gamma-RID'' apparatuses the removing of which will give the decreasing of annual personnel dose by 80 %

  13. Radiation non-multiply harmonics in nonlinear junction detector.

    Directory of Open Access Journals (Sweden)

    M. V. Zinchenko

    2011-06-01

    Full Text Available In the theoretically investigated experimentally detected the effect of negative differential resistance on the current-voltage characteristics OF the diode structures with the impact of powerful MICROWAVE radiation. Proved the expediency of usage in nonlinear junction detector high levels of power probing signal, because with a certain probability, it becomes possible to generate the object of the study of nonlinear radar own fluctuations. That in turn allows to introduce additional mode of identification mortgage devices for not the multiple harmonic in the nonlinear junction detector.

  14. Design of a wire imaging synchrotron radiation detector

    International Nuclear Information System (INIS)

    This paper documents the design of a detector invented to measure the positions of synchrotron radiation beams for the precision energy spectrometers of the Stanford Linear Collider (SLC). The energy measurements involve the determination, on a pulse-by-pulse basis, of the separation of pairs of intense beams of synchrotron photons in the MeV energy range. The detector intercepts the beams with arrays of fine wires. The ejection of Compton recoil electrons results in charges being developed in the wires, thus enabling a determination of beam positions. 10 refs., 4 figs

  15. Proceedings of the workshop on radiation detector and its application

    International Nuclear Information System (INIS)

    This workshop was held from January 23 to 25, 1996 at National Laboratory for High Energy Physics. At the workshop, lectures were given on the development of the single ion detector using MCP in heavy ion microbeam device, the response of MCP to single heavy ion, the response of a superheated liquid drop type detector to low LET radiation, the response characteristics of a CR-39 flight track detector to hydrogen isotopes, the analysis of small nuclear flight tracks on CR-39 with an interatomic force microscope, charge-sensible amplifiers, the signal-processing circuit for position detection, time and depth-resolved measurement of ion tracks in condensed matter, the response of a thin Si detector to electrons, the method of expressing gas-amplifying rate curves in proportional count gas for low temperature, the characteristics of self annihilating streamer by ultraviolet laser, the development of slow positron beam using radioisotopes, the development of a tunnel junction type x-ray detector, the development of the pattern-analyzing system for PIXE spectra, the characteristics of NE213-CaF2 bond type neutron detector and many others. In this report, the gists of these papers are collected. (K.I.)

  16. Responses of diode detectors to radiation beams from teletherapy machines

    International Nuclear Information System (INIS)

    Responses of diode detectors to radiation beams from teletherapy machines. It has been carried out responses to two sets of diode detector by using the beams of teletherapy Co-60 and medical linear accelerator. Each set of consist of 8 diode detectors was irradiated by using gamma beams from teletherapy Co-60 machines and 6 MV and 10 MV foron beams from medical linear accelerator and 6.9.12.16. and 20 MeV electron beams from medical linear accelerator. The detectors were positioned on the phantom circularly and radially and electronic equilibrium condition for all type and energy beams. It was found that every detectors had own individual response and it is not to be uniformity, since the fluctuation in between 16.6 % to 30.9 %. All detectors responses are linear to gamma and foron beams, and also for energy above 6 MeV for electron beams. Nonlinearity response occurs for 6 MeV electron beam, it is probably from the assumption of electronic equilibrium

  17. Development of Radiation Hard Radiation Detectors, Differences between Czochralski Silicon and Float Zone Silicon

    CERN Document Server

    Tuominen, Eija

    2012-01-01

    The purpose of this work was to develop radiation hard silicon detectors. Radiation detectors made ofsilicon are cost effective and have excellent position resolution. Therefore, they are widely used fortrack finding and particle analysis in large high-energy physics experiments. Silicon detectors willalso be used in the CMS (Compact Muon Solenoid) experiment that is being built at the LHC (LargeHadron Collider) accelerator at CERN (European Organisation for Nuclear Research). This work wasdone in the CMS programme of Helsinki Institute of Physics (HIP).Exposure of the silicon material to particle radiation causes irreversible defects that deteriorate theperformance of the silicon detectors. In HIP CMS Programme, our approach was to improve theradiation hardness of the silicon material with increased oxygen concentration in silicon material. Westudied two different methods: diffusion oxygenation of Float Zone silicon and use of high resistivityCzochralski silicon.We processed, characterised, tested in a parti...

  18. Radiation damage in silicon. Defect analysis and detector properties

    International Nuclear Information System (INIS)

    Silicon microstrip and pixel detectors are vital sensor-components as particle tracking detectors for present as well as future high-energy physics (HEP) experiments. All experiments at the large Hadron Collider (LHC) are equipped with such detectors. Also for experiments after the upgrade of the LHC (the so-called Super-LHC), with its ten times higher luminosity, or the planned International Linear Collider (ILC) silicon tracking detectors are forseen. Close to the interaction region these detectors have to face harsh radiation fields with intensities above the presently tolerable level. defect engineering of the used material, e. g. oxygen enrichment of high resistivity float zone silicon and growing of thin low resistivityepitaxial layers on Czochralski silicon substrates has been established to improve the radiation hardness of silicon sensors. This thesis focuses mainly on the investigation of radiation induced defects and their differences observed in various kinds of epitaxial silicon material. Comparisons with other materials like float zone or Czochralski silicon are added. Deep Level Transient Spectroscopy (DLTS) and Thermally Stimulated Current (TSC) measurements have been performed after γ-, electron-, proton- and neutron-irradiation. The differenced in the formation of vacancy and interstitial related defects as well as so-called clustered regions were investigated for various types of irradiation. In addition to the well known defects VOi, CiOi, CiCs, VP or V2 several other defect complexes have been found and investigated. Also the material dependence of the defect introduction rates and the defect annealing behavior has been studied by isothermal and isochronal annealing experiments. Especially the IO2 defect which is an indicator for the oxygen-dimer content of the material has been investigated in detail. On the basis of radiation induced defects like the bistable donor (BD) defect and a deep acceptor, a model has been introduced to describe the

  19. Radiation damage in silicon. Defect analysis and detector properties

    Energy Technology Data Exchange (ETDEWEB)

    Hoenniger, F.

    2008-01-15

    Silicon microstrip and pixel detectors are vital sensor-components as particle tracking detectors for present as well as future high-energy physics (HEP) experiments. All experiments at the large Hadron Collider (LHC) are equipped with such detectors. Also for experiments after the upgrade of the LHC (the so-called Super-LHC), with its ten times higher luminosity, or the planned International Linear Collider (ILC) silicon tracking detectors are forseen. Close to the interaction region these detectors have to face harsh radiation fields with intensities above the presently tolerable level. defect engineering of the used material, e. g. oxygen enrichment of high resistivity float zone silicon and growing of thin low resistivityepitaxial layers on Czochralski silicon substrates has been established to improve the radiation hardness of silicon sensors. This thesis focuses mainly on the investigation of radiation induced defects and their differences observed in various kinds of epitaxial silicon material. Comparisons with other materials like float zone or Czochralski silicon are added. Deep Level Transient Spectroscopy (DLTS) and Thermally Stimulated Current (TSC) measurements have been performed after {gamma}-, electron-, proton- and neutron-irradiation. The differenced in the formation of vacancy and interstitial related defects as well as so-called clustered regions were investigated for various types of irradiation. In addition to the well known defects VO{sub i}, C{sub i}O{sub i}, C{sub i}C{sub s}, VP or V{sub 2} several other defect complexes have been found and investigated. Also the material dependence of the defect introduction rates and the defect annealing behavior has been studied by isothermal and isochronal annealing experiments. Especially the IO{sub 2} defect which is an indicator for the oxygen-dimer content of the material has been investigated in detail. On the basis of radiation induced defects like the bistable donor (BD) defect and a deep

  20. Multipurpose High Sensitivity Radiation Detector: Terradex

    International Nuclear Information System (INIS)

    Terradex project aims to realise an accurate and programmable multiparametric tool which will measure relevant physical quantities such as observation time, energy and type of all decay products of three naturally occurring decay chains of uranium and thorium series present in nature as well as the decay products of man-made radioactivity. The measurements described in this work are based on the performance tests of the first version of an instrument that is designed to provide high counting accuracy, by introducing self-triggering, delayed time-coincidence technique, of products of a given decay chain. In order to qualify the technique and to calibrate the Terradex, a 222Rn source is used. The continuous and accurate monitoring of radon concentration in air is realised by observing the alpha and beta particles produced by the decay of 222Rn and its daughters and tag each of them with a precise occurrence time. The validity of delayed coincident technique by using the state of the art electronics with application of novel data sampling and analysis methods are discussed. The flexibility of sampling protocols and the advantages of online calibration capability to achieve the highest level of precision in natural and man-made radiation measurements are also described

  1. Multipurpose High Sensitivity Radiation Detector: Terradex

    Energy Technology Data Exchange (ETDEWEB)

    Alpat, Behcet [Dipartimento di Fisica dell' Universita di Perugia and INFN Sezione di Perugia (Italy)]. E-mail: behcet.alpat@pg.infn.it; Aisa, Damiano [Dipartimento di Fisica dell' Universita di Perugia and INFN Sezione di Perugia (Italy); Bizzarri, Marco [Dipartimento di Fisica dell' Universita di Perugia and INFN Sezione di Perugia (Italy); Blasko, Sandor [Dipartimento di Fisica dell' Universita di Perugia and INFN Sezione di Perugia (Italy); Esposito, Gennaro [Dipartimento di Fisica dell' Universita di Perugia and INFN Sezione di Perugia (Italy); Farnesini, Lucio [Dipartimento di Fisica dell' Universita di Perugia and INFN Sezione di Perugia (Italy); Fiori, Emmanuel [Dipartimento di Fisica dell' Universita di Perugia and INFN Sezione di Perugia (Italy); Papi, Andrea [Dipartimento di Fisica dell' Universita di Perugia and INFN Sezione di Perugia (Italy); Postolache, Vasile [Dipartimento di Fisica dell' Universita di Perugia and INFN Sezione di Perugia (Italy); Renzi, Francesca [Dipartimento di Fisica dell' Universita di Perugia and INFN Sezione di Perugia (Italy); Ionica, Romeo [Politecnica University of Bucarest, Splaiul Indipendentei, Bucharest (Romania); Manolescu, Florentina [Space Science Institute of Bucharest, Maugurele, Bucharest (Romania); Ozkorucuklu, Suat [Suleyman Demirel Universitesi, Isparta (Turkey); Denizli, Haluk [Abant Izzet Baysal Universitesi, Bolu (Turkey); Tapan, Ilhan [Uludag Universitesi, Bursa (Turkey); Ercan Pilicer [Uludag Universitesi, Bursa (Turkey); Egidi, Felice [SITE Technology, Carsoli (Italy); Moretti, Cesare [SITE Technology, Carsoli(AQ) (Italy); Dicola, Luca [SITE Technology, Carsoli(AQ) (Italy)

    2007-05-11

    Terradex project aims to realise an accurate and programmable multiparametric tool which will measure relevant physical quantities such as observation time, energy and type of all decay products of three naturally occurring decay chains of uranium and thorium series present in nature as well as the decay products of man-made radioactivity. The measurements described in this work are based on the performance tests of the first version of an instrument that is designed to provide high counting accuracy, by introducing self-triggering, delayed time-coincidence technique, of products of a given decay chain. In order to qualify the technique and to calibrate the Terradex, a {sup 222}Rn source is used. The continuous and accurate monitoring of radon concentration in air is realised by observing the alpha and beta particles produced by the decay of {sup 222}Rn and its daughters and tag each of them with a precise occurrence time. The validity of delayed coincident technique by using the state of the art electronics with application of novel data sampling and analysis methods are discussed. The flexibility of sampling protocols and the advantages of online calibration capability to achieve the highest level of precision in natural and man-made radiation measurements are also described.

  2. Variable-Temperature Cryostat For Radiation-Damage Testing Of Germanium Detectors

    Science.gov (United States)

    Floyd, Samuel R.; Puc, Bernard P.

    1992-01-01

    Variable-temperature cryostats developed to study radiation damage to, and annealing of, germanium gamma-ray detectors. Two styles: one accommodates large single detector and one accommodates two medium-sized detectors. New cryostats allow complete testing of large-volume germanium gamma-ray detectors without breaking cryostat vacuum and removing detectors for annealing.

  3. Solid-state radiation detectors for active personal dosimetry and radiations source tracking

    International Nuclear Information System (INIS)

    We report on the design of the readout electronics using PIN diode radiation detector of 5 mm thickness for nuclear safety and active personal dosimetry. Our effort consisted in designing and fabricating the electronics to reflect the needs of gamma radiations dosimetry and hybrids PIN diode arrays for charged particle detectors. We report results obtained during testing and characterizing the new devices in gamma fields, operating at room temperature. There were determined the energy spectrum resolution, radiation hardness and readout rate. Also, data recording methods and parallel acquisition problems from a transducer matrix are presented. (authors)

  4. Radiation tests of the Silicon Drift Detectors for LOFT

    CERN Document Server

    Del Monte, E; Bozzo, E; Bugiel, S; Diebold, S; Evangelista, Y; Kendziorra, E; Muleri, F; Perinati, E; Rachevski, A; Zampa, G; Zampa, N; Feroci, M; Pohl, M; Santangelo, A; Vacchi, A

    2014-01-01

    During the three years long assessment phase of the LOFT mission, candidate to the M3 launch opportunity of the ESA Cosmic Vision programme, we estimated and measured the radiation damage of the silicon drift detectors (SDDs) of the satellite instrumentation. In particular, we irradiated the detectors with protons (of 0.8 and 11 MeV energy) to study the increment of leakage current and the variation of the charge collection efficiency produced by the displacement damage, and we "bombarded" the detectors with hypervelocity dust grains to measure the effect of the debris impacts. In this paper we describe the measurements and discuss the results in the context of the LOFT mission.

  5. Charge transport properties of CdMnTe radiation detectors

    Directory of Open Access Journals (Sweden)

    Prokopovich D. A.

    2012-10-01

    Full Text Available Growth, fabrication and characterization of indium-doped cadmium manganese telluride (CdMnTe radiation detectors have been described. Alpha-particle spectroscopy measurements and time resolved current transient measurements have yielded an average charge collection efficiency approaching 100 %. Spatially resolved charge collection efficiency maps have been produced for a range of detector bias voltages. Inhomogeneities in the charge transport of the CdMnTe crystals have been associated with chains of tellurium inclusions within the detector bulk. Further, it has been shown that the role of tellurium inclusions in degrading charge collection is reduced with increasing values of bias voltage. The electron drift velocity was calculated from the rise time distribution of the preamplifier output pulses at each measured bias. From the dependence of drift velocity on applied electric field the electron mobility was found to be μn = (718 ± 55 cm2/Vs at room temperature.

  6. Development of high voltage power supply for nuclear radiation detectors

    International Nuclear Information System (INIS)

    The purpose of this thesis is to develop a versatile NIM compatible high voltage power supply for proper operation of nuclear radiation detectors especially for those high resolution detectors such as semiconductor detectors, and proportional counters which require high voltage power supply with very low output ripple and high output stability. A driven type dc-ac inverter and a voltage multiplier are applied to convert a low de voltage to high dc voltage. The filter circuit is used to reduce the output ripple when the power supply is loaded and a close-loop voltage control circuit is used to minimize the drift in the output voltage. Adjustment of the output level for desired value is done through a three turn high precision potentiometer. Besides, micro-circuits are used in order to reduce undesirable temperature effect and at the same time to minimize size and weight of the high voltage module

  7. Charge transport properties of CdMnTe radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kim K.; Rafiel, R.; Boardman, M.; Reinhard, I.; Sarbutt, A.; Watt, G.; Watt, C.; Uxa, S.; Prokopovich, D.A.; Belas, E.; Bolotnikov, A.E.; James, R.B.

    2012-04-11

    Growth, fabrication and characterization of indium-doped cadmium manganese telluride (CdMnTe)radiation detectors have been described. Alpha-particle spectroscopy measurements and time resolved current transient measurements have yielded an average charge collection efficiency approaching 100 %. Spatially resolved charge collection efficiency maps have been produced for a range of detector bias voltages. Inhomogeneities in the charge transport of the CdMnTe crystals have been associated with chains of tellurium inclusions within the detector bulk. Further, it has been shown that the role of tellurium inclusions in degrading chargecollection is reduced with increasing values of bias voltage. The electron transit time was determined from time of flight measurements. From the dependence of drift velocity on applied electric field the electron mobility was found to be n = (718 55) cm2/Vs at room temperature.

  8. Radiation Tolerance of Aluminum Microwave Kinetic Inductance Detector

    Science.gov (United States)

    Karatsu, K.; Dominjon, A.; Fujino, T.; Funaki, T.; Hazumi, M.; Irie, F.; Ishino, H.; Kida, Y.; Matsumura, T.; Mizukami, K.; Naruse, M.; Nitta, T.; Noguchi, T.; Oka, N.; Sekiguchi, S.; Sekimoto, Y.; Sekine, M.; Shu, S.; Yamada, Y.; Yamashita, T.

    2016-08-01

    Microwave kinetic inductance detector (MKID) is one of the candidates of focal plane detector for future satellite missions such as LiteBIRD. For the space use of MKIDs, the radiation tolerance is one of the challenges to be characterized prior to the launch. Aluminum (Al) MKIDs with 50 nm thickness on silicon substrate and on sapphire substrate were irradiated with a proton beam of 160 MeV at the heavy ion medical accelerator in Chiba. The total water-equivalent absorbed dose was ˜ 10 krad which should simulate the worst radiation absorption of 5 years observation at the Lagrange point L2. We measured characteristics of these MKIDs before and after the irradiation. We found no significant changes on resonator quality factor, responsivity, and recombination time of quasi-particles. The change on electrical noise equivalent power was also evaluated, and no significant increase was found at the noise level of O(10^{-18}) W/√{ Hz }.

  9. Plane electrode device for multiwire detector for ionizing radiations

    International Nuclear Information System (INIS)

    A multiwire proportional counter type detector with thin slits instead of wires is presented. It can detect either charged particles (positive or negative) or radiation. The detector can be used as a counter or as an image converter. In radiography, it can replace photographic film or TV camera systems. It can also be used to measure particle or radiation energy. The slits which replace wires in the anode are introduced between two parallel microstrip conductors with different potentials. A quasi-polar electric field is produced between these strips. To obtain high fields, the slits are extremely narrow. Microstrips less than a micron can be obtained, giving structural dimensions of a few microns, i.e., 100 times smaller than the spacing in a classic wire anode

  10. Synchrotron radiation computed laminography using an inclined detector.

    Science.gov (United States)

    Zhang, Jie; Li, Gang; Yi, Qiru; Chen, Yu; Gao, Zhenhua; Jiang, Xiaoming

    2015-01-01

    Synchrotron radiation computed laminography (SR-CL) has been in use in three-dimensional non-destructive imaging of flat objects for several years. A new set-up is proposed based on the traditional SR-CL method but with the detector inclined at the same angle as the sample inclination to collect projections. The results of computer simulations and real-sample experiments demonstrate that reconstructions acquired using an inclined detector are of better quality compared with those acquired using ordinary detecting methods, especially for the situation of few projections and small difference of attenuation ratio of the sample. This method could be applied to obtain high-quality images of weak-contrast samples with short measurement time and mild radiation damage. PMID:25537599

  11. A study of radiation-hard detectors using proton beam

    International Nuclear Information System (INIS)

    We studied radiation damage effect of inorganic and organic scintillators developed in Korea by proton beam irradiation using the MC-50 Cyclotron facility in Atomic Cancer Hospital. After developing radiation hard detectors, it can be used for the proton beam flux and energy monitoring in a real time. We also perform a research on electronics and DAQ for such a device. The following is our major study : a development of liquid scintillator, a development of plastic scintillator, a study on liquid scintillator response, simulation study of liquid scintillator by proton beam interaction, detector irradiation at MC-50 Cyclotron facility and a study of response change, a development of electronics for proton flux monitoring and a feasibility study of low proton flux monitoring, initial study of inorganic scintillator by the proton beamtest

  12. Radiation damage of the HEAO C-1 germanium detectors

    Science.gov (United States)

    Mahoney, W. A.; Ling, J. C.; Jacobson, A. S.

    1981-01-01

    The effects of radiation damage from proton bombardment of the four HEAO C-1 high purity germanium detectors have been measured and compared to predictions. Because of the presence of numerous gamma-ray lines in the detector background spectra and because of the relatively long exposure time of the HEAO 3 satellite to cosmic-ray and trapped protons, it has been possible to measure both the energy and time dependence of radiation damage. After 100 d in orbit, each of the four detectors has been exposed to approximately 3 x 10 to the 7th protons/sq cm, and the average energy resolution at 1460 keV had degraded from 3.2 keV fwhm to 8.6 keV fwhm. The lines were all broadened to the low energy side although the line profile was different for each of the four detectors. The damage-related contribution to the degradation in energy resolution was found to be linear in energy and proton influence.

  13. Radiation-hard semiconductor detectors for SuperLHC

    CERN Document Server

    Bruzzi, Mara; Al-Ajili, A A; Alexandrov, P; Alfieri, G; Allport, Philip P; Andreazza, A; Artuso, M; Assouak, S; Avset, B S; Barabash, L; Baranova, E; Barcz, A; Basile, A; Bates, R; Belova, N; Betta, G F D; Biagi, S F; Bilei, G M; Bisello, D; Blue, A; Blumenau, A; Boisvert, V; Bölla, G; Bondarenko, G B; Borchi, E; Borrello, L; Bortoletto, D; Boscardin, M; Bosisio, L; Bowcock, T J V; Brodbeck, T J; Broz, J; Brukhanov, A; Brzozowski, A; Buda, M; Buhmann, P; Buttar, C; Campabadal, F; Campbell, D; Candelori, A; Casse, G; Cavallini, A; Chilingarov, A G; Chren, D; Cindro, V; Citterio, M; Collins, P; Coluccia, R; Contarato, D; Coutinho, J; Creanza, D; Cunningham, W; Cvetkov, V; Davies, G; Dawson, I; De Palma, M; Demina, R; Dervan, P; Dierlamm, A; Dittongo, S; Dobrzanski, L; Dolezal, Z; Dolgolenko, A; Eberlein, T; Eremin, V; Fall, C; Fasolo, F; Ferbel, T; Fizzotti, F; Fleta, C; Focardi, E; Forton, E; Franchenko, S; Fretwurst, E; Gamaz, F; García-Navarro, J E; García, C; Gaubas, E; Genest, M H; Gill, K A; Giolo, K; Glaser, M; Gössling, C; Golovine, V; Gorelov, I; Goss, J; Gouldwell, A; Grégoire, G; Gregori, P; Grigoriev, E; Grigson, C; Grillo, A; Groza, A; Guskov, J; Haddad, L; Harding, R; Härkönen, J; Hauler, F; Hayama, S; Hoeferkamp, M; Honniger, F; Horazdovsky, T; Horisberger, R P; Horn, M; Houdayer, A; Hourahine, B; Hruban, A; Hughes, G; Ilyashenko, Yu S; Irmscher, K; Ivanov, A; Jarasiunas, K; Jin, T; Jones, B K; Jones, R; Joram, C; Jungermann, L; Kalinina, E; Kaminski, P; Karpenko, A; Karpov, A; Kazlauskiene, V; Kazukauskas, V; Khivrich, V; Khomenkov, V P; Kierstead, J A; Klaiber Lodewigs, J M; Kleverman, M; Klingenberg, R; Kodys, P; Kohout, Z; Korjenevski, S; Kowalik, A; Kozlowski, R; Kozodaev, M; Kramberger, G; Krasel, O; Kuznetsov, A; Kwan, S; Lagomarsino, S; Lari, T; Lassila-Perini, K M; Lastovetsky, V F; Latino, G; Latushkin, S T; Lazanu, I; Lazanu, S; Lebel, C; Leinonen, K; Leroy, C; Li, Z; Lindström, G; Lindström, L; Linhart, V; Litovchenko, A P; Litovchenko, P G; Litvinov, V; Lo Giudice, A; Lozano, M; Luczynski, Z; Luukka, Panja; Macchiolo, A; Mainwood, A; Makarenko, L F; Mandic, I; Manfredotti, C; Martí i García, S; Marunko, S; Mathieson, K; Melone, J; Menichelli, D; Meroni, C; Messineo, A; Miglio, S; Mikuz, M; Miyamoto, J; Moll, M; Monakhov, E; Moscatelli, F; Mozzanti, A; Murin, L; Naoumov, D; Nava, F; Nossarzhevska, E; Nummela, S; Nysten, J; Olivero, P; O'Shea, V; Palviainen, T; Paolini, C; Parkes, C; Passeri, D; Pein, U; Pellegrini, G; Perera, L; Petasecca, M; Piatkowski, B; Piemonte, C; Pignatel, G U; Pinho, N; Pintilie, I; Pintilie, L; Polivtsev, L; Polozov, P; Popa, A I; Popule, J; Pospísil, S; Pucker, G; Radicci, V; Rafí, J M; Ragusa, F; Rahman, M; Rando, R; Röder, R; Rohe, T; Ronchin, S; Rott, C; Roy, A; Roy, P; Ruzin, A; Ryazanov, A; Sadrozinski, H F W; Sakalauskas, S; Scaringella, M; Schiavulli, L; Schnetzer, S; Schumm, B; Sciortino, S; Scorzoni, A; Segneri, G; Seidel, S; Seiden, A; Sellberg, G; Sellin, P J; Sentenac, D; Sevilla, S G; Shipsey, I; Sícho, P; Sloan, T; Solar, M; Son, S; Sopko, B; Spencer, N; Stahl, J; Stavitski, I; Stolze, D; Stone, R; Storasta, J; Strokan, N; Strupinski, W; Sudzius, M; Surma, B; Suuronen, J; Suvorov, A; Svensson, B G; Tipton, P; Tomasek, M; Troncon, C; Tsvetkov, A; Tuominen, E; Tuovinen, E; Tuuva, T; Tylchin, M; Uebersee, H; Uher, J; Ullán, M; Vaitkus, J V; Vanni, P; Velthuis, J; Verbitskaya, E; Verzellesi, G; Vrba, V; Wagner, G; Wilhelm, I; Worm, S; Wright, V; Wunstorf, R; Zabierowski, P; Zaluzhny, A; Zavrtanik, M; Zen, M; Zhukov, V; Zorzi, N; de Boer, Wim

    2005-01-01

    An option of increasing the luminosity of the Large Hadron Collider (LHC) at CERN to 10/sup 35/ cm-/sup 2/s-/sup 1/ has been envisaged to extend the physics reach of the machine. An efficient tracking down to a few centimetres from the interaction point will be required to exploit the physics potential of the upgraded LHC. As a consequence, the semiconductor detectors close to the interaction region will receive severe doses of fast hadron irradiation and the inner tracker detectors will need to survive fast hadron fluences of up to above 10 /sup 16/ cm-/sup 2/. The CERN-RD50 project "Development of Radiation Hard Semiconductor Devices for Very High Luminosity Colliders" has been established in 2002 to explore detector materials and technologies that will allow to operate devices up to, or beyond, this limit. The strategies followed by RD50 to enhance the radiation tolerance include the development of new or defect engineered detector materials (SiC, GaN, Czochralski and epitaxial silicon, oxygen enriched Flo...

  14. Calibration of the active radiation detector for Spacelab-One

    Science.gov (United States)

    1982-01-01

    The flight models of the active radiation detector (ARD) for the ENV-01 environmental monitor were calibrated using gamma radiation. Measured sensitivities of the ion chambers were 6.1 + or - 0.3 micron rad per count for ARD S/N1, and 10.4 + or - 0.5 micron rad per count for ARD S/N2. Both were linear over the measured range 0.10 to 500 m/rad hour. The particle counters (proportional counters) were set to respond to approximately 85% of minimum ionizing particles of unit charge passing through them. These counters were also calibrated in the gamma field.

  15. CMOS sensor as charged particles and ionizing radiation detector

    International Nuclear Information System (INIS)

    This paper reports results of CMOS sensor suitable for use as charged particles and ionizing radiation detector. The CMOS sensor with 640 × 480 pixels area has been integrated into an electronic circuit for detection of ionizing radiation and it was exposed to alpha particle (Am-241, Unat), beta (Sr-90), and gamma photons (Cs-137). Results show after long period of time (168 h) irradiation the sensor had not loss of functionality and also the energy of the charge particles and photons were very well obtained

  16. Radiation damage of pixelated photon detector by neutron irradiation

    Science.gov (United States)

    Nakamura, Isamu

    2009-10-01

    Radiation Damage of Pixelated Photon Detector by neutron irradiation is reported. MPPC, one of PPD or Geiger-mode APD, developed by Hamamatsu Photonics, is planned to be used in many high energy physics experiments. In such experiments radiation damage is a serious issue. A series of neutron irradiation tests is performed at the Reactor YAYOI of the University of Tokyo. MPPCs were irradiated at the reactor up to 1012 neutron/cm2. In this paper, the effect of neutron irradiation on the basic characteristics of PPD including gain, noise rate, photon detection efficiency is presented.

  17. Dielectric Resonators as Radiation Detectors at Low Temperatures

    Science.gov (United States)

    Yamasaki, N. Y.; Sekiya, N.; Kikuchi, T.; Hoshino, M.; Mitsuda, K.; Sato, K.

    2015-10-01

    GHz LC resonators whose resonance frequency depends on temperature may be put to use as radiation detectors. We have demonstrated that a resonator utilizing STO (SrTiO) at 4 and 2 K detected infrared light emitting diode (LED) light, by a shift of resonance frequency around 2 GHz. A suitable design of a resonator array with temperature-dependent dielectric material will be used as a large-format microcalorimeter array without or with only very small Johnson noise.

  18. Avalanche photodiodes as large dynamic range detectors for synchrotron radiation

    International Nuclear Information System (INIS)

    We investigated silicon-based avalanche photodiodes (APDs) as X-ray detectors in terms of their linearity, maximum counting rates, and dynamic range with 8.4 keV synchrotron radiation. Measurements resulted in counting rates that extend from the APD's noise level of 10-2 Hz to saturation counting rates in excess of 108 Hz. In addition, by monitoring the APD's noise level and photon counting efficiency between synchrotron bursts, we demonstrate nine orders of magnitude dynamic range. ((orig.))

  19. Radiation tests for a single-GEM-loaded gaseous detector

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyong Sei; Hong, Byung Sik; Park, Sung Keun [Korea University, Seoul (Korea, Republic of); Kim, Sang Yeol [NoticeKorea, Anyang (Korea, Republic of)

    2014-11-15

    We report on a systematic study of a single-gas-electron-multiplier (GEM)-loaded gaseous detector developed for precision measurements of high-energy particle beams and for dose verification in particle therapy. In the present study, a 256-channel prototype detector having an active area of 16 x 16 cm{sup 2} and operating using a continuous current-integration-mode signal-processing method was manufactured and tested with X-rays emitted from a 70-kV X-ray generator and 43-MeV protons provided by the MC50 proton cyclotron at the Korea Institute of Radiological and Medical Science(KIRAMS). The amplified detector response was measured for X-rays with an intensity of about 5 x 10{sup 6} Hz cm{sup -2}. The linearity of the detector response to the particle flux was examined and validated by using 43-MeV proton beams. The non-uniform development of the amplification for the gas electrons in space was corrected by applying a proper calibration to the channel responses of the measured beam-profile data. We conclude from the radiation tests that the detector developed in the present study will allow us to perform quality measurements of various high-energy particle beams and to apply the technology to dose-verification measurements in particle therapy.

  20. VeriTainer radiation detector for intermodal shipping containers

    International Nuclear Information System (INIS)

    The VeriSpreaderTM radiation detection system will monitor every container passing through a shipping terminal without impeding the flow of commerce by making the radiation measurements during normal container handling. This is accomplished by integrating neutron and spectroscopic γ-ray detectors into a container crane spreader bar, the part of the crane that directly engages the intermodal shipping containers while moving from ship to shore and vice versa. The use of a spectroscopic γ-detector reduces the rate of nuisance alarms due to naturally occurring radioactive material (NORM). The combination of γ and neutron detection reduces the effectiveness of shielding and countermeasures. The challenges in this spreader bar-based approach arise from the harsh environment, particularly the mechanical shock and the vibration of the moving spreader bar, since the measurement is taken while the container is moving. The electrical interfaces in the port environment, from the crane to a central monitoring office, present further challenges. It is the packaging, electronic interfaces, and data processing software that distinguish this system, which is based on conventional radiation sensors. The core of the system is Amptek's GAMMA-RAD, which integrates a ruggedized scintillator/PMT, digital pulse shaping electronics, electronics for the neutron detector, power supplies, and an Ethernet interface. The design of the VeriTainer system and results from both the laboratory and a proof-of-concept test at the Port of Oakland, California will be presented

  1. Radiation damage effects on X-ray silicon detectors

    International Nuclear Information System (INIS)

    The paper describes some results concerning technology and behaviour of X-and gamma-ray n+pp+ silicon detectors used in physics research, industrial and medical radiography and non-destructive testing. These detectors work at the room-temperature and can be used individually to detect X-and soft gamma-rays, or coupled with scintillators for higher incoming energies. Electrical characteristics of these photodiodes, their modification after exposure to radiation and results of spectroscopic X-and gamma-ray measurements are discussed. Devices manufactured under this technology proved to be stable after an exposure in high intensity gamma field with the dose range of 10 Krad-5 Mrad. Nuclear radiation resistance was studied by irradiation with 60 Co gamma source (1.17 and 1.33 MeV) at dose rates of 59 Krad/hour and 570 Krad/hour. Results indicate that proposed structures enable the development of reliable silicon detectors to be used in a high gamma-radiation environments encountered in a lot of applications. (authors)

  2. Extending the C-V method of establishing MIS detector quality to mercuric iodide radiation detectors

    International Nuclear Information System (INIS)

    It has been observed that mercuric iodide capacitance measurements provide good indication about the quality of the crystal and its suitability as a room temperature radiation detector. Such capacitance / voltage measurements show a peak at low frequency. The sharpness of the peak is proportional to the quality of the crystal, and the peak is very similar to metal insulator semiconductor (MIS) capacitance curves. The paper proposes a model for the mercuric iodide capacitance. (author)

  3. Mobile robot prototype detector of gamma radiation; Prototipo de robot movil detector de radiacion gamma

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez C, R.M. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Duran V, M. D.; Jardon M, C. I., E-mail: raulmario.vazquez@inin.gob.mx [Tecnologico de Estudios Superiores de Villa Guerrero, Carretera Federal Toluca-Ixtapan de la Sal Km. 64.5, La Finca Villa Guerrero, Estado de Mexico (Mexico)

    2014-10-15

    In this paper the technological development of a mobile robot prototype detector of gamma radiation is shown. This prototype has been developed for the purpose of algorithms implementation for the applications of terrestrial radiation monitoring of exposed sources, search for missing radioactive sources, identification and delineation of radioactive contamination areas and distribution maps generating of radioactive exposure. Mobile robot detector of radiation is an experimental technology development platform to operate in laboratory environment or flat floor facilities. The prototype integrates a driving section of differential configuration robot on wheels, a support mechanism and rotation of shielded detector, actuator controller cards, acquisition and processing of sensor data, detection algorithms programming and control actuators, data recording (Data Logger) and data transmission in wireless way. The robot in this first phase is remotely operated in wireless way with a range of approximately 150 m line of sight and can extend that range to 300 m or more with the use of signal repeaters. The gamma radiation detection is performed using a Geiger detector shielded. Scan detection is performed at various time sampling periods and diverse positions of discrete or continuous angular orientation on the horizon. The captured data are geographical coordinates of robot GPS (latitude and longitude), orientation angle of shield, counting by sampling time, date, hours, minutes and seconds. The data is saved in a file in the Micro Sd memory on the robot. They are also sent in wireless way by an X Bee card to a remote station that receives for their online monitoring on a laptop through an acquisition program by serial port on Mat Lab. Additionally a voice synthesizing card with a horn, both in the robot, periodically pronounced in Spanish, data length, latitude, orientation angle of shield and detected accounts. (Author)

  4. Influence of Detector Radiation Damage on CR Mammography Quality Control.

    Science.gov (United States)

    Moriwaki, Atsumi; Ishii, Mie; Terazono, Shiho; Arao, Keiko; Ishii, Rie; Sanada, Taizo; Yoshida, Akira

    2016-05-01

    Recently, radiation damage to the detector apparatus employed in computed radiography (CR) mammography has become problematic. The CR system and the imaging plate (IP) applied to quality control (QC) program were also used in clinical mammography in our hospital, and the IP to which radiation damage has occurred was used for approximately 5 years (approximately 13,000 exposures). We considered using previously acquired QC image data, which is stored in a server, to investigate the influence of radiation damage to an IP. The mammography unit employed in this study was a phase contrast mammography (PCM) Mermaid (KONICA MINOLTA) system. The QC image was made newly, and it was output in the film, and thereafter the optical density of the step-phantom image was measured. An input (digital value)-output (optical density) conversion curve was plotted using the obtained data. The digital values were then converted to optical density values using a reference optical density vs. digital value curve. When a high radiation dose was applied directly, radiation damage occurred at a position on the IP where no object was present. Daily QC for mammography is conducted using an American College of Radiology (ACR) accreditation phantom and acrylic disc, and an environmental background density measurement is performed as one of the management indexes. In this study, the radiation damage sustained by the acrylic disc was shown to differ from that of the background. Thus, it was revealed that QC results are influenced by radiation damage. PMID:27211088

  5. Field Testing of a Portable Radiation Detector and Mapping System

    International Nuclear Information System (INIS)

    Researchers at the Savannah River Site (SRS) have developed a man- portable radiation detector and mapping system (RADMAPS) which integrates the accumulation of radiation information with precise ground locations. RADMAPS provides field personnel with the ability to detect, locate, and characterize nuclear material at a site or facility by analyzing the gamma or neutron spectra and correlating them with position. the man-portable field unit records gamma or neutron count rate information and its location, along with date and time, using an embedded Global Positioning System (GPS). RADMAPS is an advancement in data fusion, integrating several off-the-shelf technologies with new computer software resulting in a system that is simple to deploy and provides information useful to field personnel in an easily understandable form. Decisions on subsequent actions can be made in the field to efficiently use available field resources. The technologies employed in this system include: recording GPS, radiation detection (typically scintillation detectors), pulse height analysis, analog-to-digital converters, removable solid-state (Flash or SRAM) memory cards, Geographic Information System (GIS) software and personal computers with CD-ROM supporting digital base maps. RADMAPS includes several field deployable data acquisition systems designed to simultaneously record radiation and geographic positions. This paper summarizes the capabilities of RADMAPS and some of the results of field tests performed with the system

  6. SENTIRAD-An innovative personal radiation detector based on a scintillation detector and a silicon photomultiplier

    International Nuclear Information System (INIS)

    The alarming personal radiation detector (PRD) is a device intended for Homeland Security (HLS) applications. This portable device is designed to be worn or carried by security personnel to detect photon-emitting radioactive materials for the purpose of crime prevention. PRD is required to meet the scope of specifications defined by various HLS standards for radiation detection. It is mandatory that the device be sensitive and simultaneously small, pocket-sized, of robust mechanical design and carriable on the user's body. To serve these specialized purposes and requirements, we developed the SENTIRAD, a new radiation detector designed to meet the performance criteria established for counterterrorist applications. SENTIRAD is the first commercially available PRD based on a CsI(Tl) scintillation crystal that is optically coupled with a silicon photomultiplier (SiPM) serving as a light sensor. The rapidly developing technology of SiPM, a multipixel semiconductor photodiode that operates in Geiger mode, has been thoroughly investigated in previous studies. This paper presents the design considerations, constraints and radiological performance relating to the SENTIRAD radiation sensor.

  7. SENTIRAD—An innovative personal radiation detector based on a scintillation detector and a silicon photomultiplier

    Science.gov (United States)

    Osovizky, A.; Ginzburg, D.; Manor, A.; Seif, R.; Ghelman, M.; Cohen-Zada, I.; Ellenbogen, M.; Bronfenmakher, V.; Pushkarsky, V.; Gonen, E.; Mazor, T.; Cohen, Y.

    2011-10-01

    The alarming personal radiation detector (PRD) is a device intended for Homeland Security (HLS) applications. This portable device is designed to be worn or carried by security personnel to detect photon-emitting radioactive materials for the purpose of crime prevention. PRD is required to meet the scope of specifications defined by various HLS standards for radiation detection. It is mandatory that the device be sensitive and simultaneously small, pocket-sized, of robust mechanical design and carriable on the user's body. To serve these specialized purposes and requirements, we developed the SENTIRAD, a new radiation detector designed to meet the performance criteria established for counterterrorist applications. SENTIRAD is the first commercially available PRD based on a CsI(Tl) scintillation crystal that is optically coupled with a silicon photomultiplier (SiPM) serving as a light sensor. The rapidly developing technology of SiPM, a multipixel semiconductor photodiode that operates in Geiger mode, has been thoroughly investigated in previous studies. This paper presents the design considerations, constraints and radiological performance relating to the SENTIRAD radiation sensor.

  8. Semiconductor scintillator detector for gamma radiation; Detector cintilador semicondutor para radiacao gama

    Energy Technology Data Exchange (ETDEWEB)

    Laan, F.T.V. der; Borges, V.; Zabadal, J.R.S., E-mail: ftvdl@ufrgs.br, E-mail: borges@ufrgs.br, E-mail: jorge.zabadal@ufrgs.br [Universidade Federal do Rio Grande do Sul (GENUC/DEMEC/UFRGS), Porto Alegre, RS (Brazil). Grupo de Estudos Nucleares. Departamento de Engenharia Mecanica

    2015-07-01

    Nowadays the devices employed to evaluate individual radiation exposition are based on dosimetric films and thermoluminescent crystals, whose measurements must be processed in specific transductors. Hence, these devices carry out indirect measurements. Although a new generation of detectors based on semiconductors which are employed in EPD's (Electronic Personal Dosemeters) being yet available, it high producing costs and large dimensions prevents the application in personal dosimetry. Recent research works reports the development of new detection devices based on photovoltaic PIN diodes, which were successfully employed for detecting and monitoring exposition to X rays. In this work, we step forward by coupling a 2mm anthracene scintillator NE1, which converts the high energy radiation in visible light, generating a Strong signal which allows dispensing the use of photomultipliers. A low gain high performance amplifier and a digital acquisition device are employed to measure instantaneous and cumulative doses for energies ranging from X rays to Gamma radiation up to 2 MeV. One of the most important features of the PIN diode relies in the fact that it can be employed as a detector for ionization radiation, since it requires a small energy amount for releasing electrons. Since the photodiode does not amplify the corresponding photon current, it must be coupled to a low gain amplifier. Therefore, the new sensor works as a scintillator coupled with a photodiode PIN. Preliminary experiments are being performed with this sensor, showing good results for a wide range of energy spectrum. (author)

  9. Photoluminescence and Photonics: from miniaturised light sources to radiation detectors

    International Nuclear Information System (INIS)

    Photonics is the science of the harnessing of light. Photonics encompasses the generation of light, the detection of light, the management of light through guidance, manipulation, and amplification. Luminescence phenomena are widely used in solid state light sources and radiation detectors based on point defects in insulators. Among them, 2 ed F3+ aggregate colour centres are induced in lithium fluoride (LiF) by various kinds of ionizing radiation and are laser active in the visible spectral region. They have been studied and successfully used at Frascati ENEA Research Centre for realizing prototypes of both miniaturized light sources, in the form of waveguides and vertical optical micro cavities for integrated optics, and of novel X-ray imaging detectors, based on the optical reading of photoluminescence of the locally induced defects. The highest intrinsic spatial resolution on a wide field of view and their versatility, achieved by the growth of LiF thin films by thermal evaporation, allow using such detectors in the frameworks of nano photonics, life science and energy. Recently, they have been also used in the advanced diagnostics of proton beams, with promising results in imaging and dosimetry based on photoluminescence

  10. Applications of noble gas radiation detectors to counter-terrorism

    International Nuclear Information System (INIS)

    Radiation detectors are essential tools in the detection, analysis and disposition of potential terrorist devices containing hazardous radioactive and/or fissionable materials. For applications where stand-off distance and source shielding are limiting factors, large detectors have advantages over small ones. The ability to distinguish between Special Nuclear Materials and false-positive signals from natural or man-made benign sources is also important. Ionization chambers containing compressed noble gases, notably xenon and helium-3, can be scaled up to very large sizes, improving the solid angle for acceptance of radiation from a distant source. Gamma spectrometers using Xe have a factor of three better energy resolution than NaI scintillators, allowing better discrimination between radioisotopes. Xenon detectors can be constructed so as to have extremely low leakage currents, enabling them to operate for long periods of time on batteries or solar cells. They are not sensitive to fluctuations in ambient temperature, and are therefore suitable for deployment in outdoor locations. Position-sensitive 3He chambers have been built as large as 3000 cm2, and with spatial resolution of less than 1 mm. Combined with coded apertures made of cadmium, they can be used to create images of thermal neutron sources. The natural background of spallation neutrons from cosmic rays generates a very low count rate, so this instrument could be quite effective at identifying a man-made source, such as a spontaneous fission source (Pu) in contact with a moderator (high explosive)

  11. Intrinsic Radiation in Lutetium Based PET Detector: Advantages and Disadvantages

    CERN Document Server

    Wei, Qingyang

    2015-01-01

    Lutetium (Lu) based scintillators such as LSO and LYSO, are widely used in modern PET detectors due to their high stopping power for 511 keV gamma rays, high light yield and short decay time. However, 2.6% of naturally occurring Lu is 176Lu, a long-lived radioactive element including a beta decay and three major simultaneous gamma decays. This phenomenon introduces random events to PET systems that affects the system performance. On the other hand, the advantages of intrinsic radiation of 176Lu (IRL) continues to be exploited. In this paper, research literatures about IRL in PET detectors are reviewed. Details about the adverse effects of IRL to PET and their solutions, as well as the useful applications are presented and discussed.

  12. Progress in the development of a tracking transition radiation detector

    International Nuclear Information System (INIS)

    The purpose of the TRD/Tracker is to provide charged particle tracking in the r-z plane and to provide particle identification capabilities that are independent of and complementary to calorimetric methods. The tracking goals include observation of the charged particle multiplicity and topology, reconstruction of the primary vertex or vertices, and assignment of charged particles to the correct vertex. Particle identification goals include the independent validation of electron candidates selected by calorimetric signatures, the rejection of false electron candidates that rise from accidental overlaps of low momentum charged particles with photon-induced electromagnetic showers in the calorimeter, and the identification of electrons arising from Dalitz decays or from photon conversions. The authors report on progress towards the development of an integrated transition radiation detector and charged particle tracker. Mechanical design and simulation of a detector has been pursued; a prototype device with 240 channels has been constructed and tested. Innovative construction techniques have been developed

  13. Silicon detectors operating beyond the LHC collider conditions: scenarios for radiation fields and detector degradation

    International Nuclear Information System (INIS)

    Particle physics makes its greatest advances with experiments at the highest energies. The way to advance to a higher energy regime is through hadron colliders, or through non-accelerator experiments, as for example the space astroparticle missions. In the near future, the Large Hadron Collider (LHC) will be operational, and beyond that, its upgrades: the Super-LHC (SLHC) and the hypothetical Very Large Hadron Collider (VLHC). At the present time, there are no detailed studies for future accelerators, except those referring to LHC. For the new hadron collider LHC and some of its updates in luminosity and energy, the silicon detectors could represent an important option, especially for the tracking system and calorimetry. The main goal of this paper is to analyse the expected long-time degradation of the silicon as material and for silicon detectors, during continuous radiation, in these hostile conditions. The behaviour of silicon in relation to various scenarios for upgrade in energy and luminosity is discussed in the frame of a phenomenological model developed previously by the authors and now extended to include new mechanisms, able to explain and give solutions to discrepancies between model predictions and detector behaviour after hadron irradiation. Different silicon material parameters resulting from different technologies are considered to evaluate what materials are harder to radiation and consequently could minimise the degradation of device parameters in conditions of continuous long time operation. (authors)

  14. The influence of different growth procedures on the suitability of cadmium crystals as nuclear radiation detectors. Einfluss unterschiedlicher Zuechtungsverfahren auf die Eignung von Cadmiumtellurid-Kristallen als Kernstrahlungs-Detektoren

    Energy Technology Data Exchange (ETDEWEB)

    Marquardt, H.

    1991-07-04

    CdTe crystals which are suitable to serve as detectors and had been produced with different methods were subjected to tests: THM-material (compensation with Cl-10{sup 19} atoms/cm{sup 3} CdTe); (2) Bridgman material; (3) Sublimation material. Results: THM has almost reached international standards (Eurorad-detector). Bridgman material is very good for low cost production of counters (without spectral resolution) in large numbers. CdTe remains the most promising candidate for {gamma}-detectors at room temperature. (HP).

  15. Charge transport properties of p-CdTe/n-CdTe/n+-Si diode-type nuclear radiation detectors based on metalorganic vapor-phase epitaxy-grown epilayers

    International Nuclear Information System (INIS)

    Charge transport properties of p-CdTe/n-CdTe/n+-Si diode-type nuclear radiation detectors, fabricated by growing p-and n-type CdTe epilayers on (211) n+-Si substrates using metalorganic vapor-phase epitaxy (MOVPE), were studied by analyzing current-voltage characteristics measured at various temperatures. The diode fabricated shows good rectification properties, however, both forward and reverse biased currents deviate from their ideal behavior. The forward current exhibits typical feature of multi-step tunneling at lower biases; however, becomes space charge limited type when the bias is increased. On the other hand, the reverse current exhibits thermally activated tunneling-type current. It was found that trapping centers at the p-CdTe/n-CdTe junction, which were formed due to the growth induced defects, determine the currents of this diode, and hence limit the performance of the nuclear radiation detectors developed

  16. Fabrication of advanced military radiation detector sensor and performance evaluation

    International Nuclear Information System (INIS)

    Recently, our country is facing a continuous nuclear weapons threat. Therefore, we must have a high-level nuclear weapons protection system. The best protection against nuclear weapons is detecting their use to reduce casualties in our country to a minimum. That means, the development of a military radiation detector is a very important issue. The Korea army is using the 'PDR - 1K portable military radiation surveymeter' in NBC (Nuclear, Biological, Chemical warfare) operations. The PDR - 1K military detector can measure beta and gamma rays only but it cannot detect alpha particles. Because of its characteristics, the Korea army has weaknesses in tactical operations. The PDR - 1K sensor is based on a GM - tube sensor system. For the mechanical structure, detectors utilizing a GM-tube sensor do not work on a high - radiation battlefield and they do not carry out nuclide analysis for fixed electron signal output. In the meantime, the United States of America and Germany are using 'AN/PDR - 77' and 'SVG - 2' that were made from scintillator sensors. They have excellent physical qualities and radiation responses for military use. Also, nuclide analysis is available. Therefore, in this study we fabricated a military - grade scintillator radiation sensor that is able to detect alpha, beta, and gamma - rays to overcome PDR - 1K's weaknesses. Also, physical characteristics and radiation response evaluation for the fabricated sensors was carried out. The alpha - particle sensor and beta - ray sensor were fabricated using a ZnS(Ag) powder state scintillator, and a Saint - Gobain organic plastic scintillator BC-408 panel, respectively. The gamma ray sensor was manufactured using a 10 x 10 x 10 mm3 CsI(Tl) inorganic scintillator crystal. A detailed explanation follows. The alpha particle sensor was fabricated by using air - brushing method to Zns(Ag) powder scintillator spreading. The ZnS(Ag) layer thickness was 35 μm (detection efficiency: 41%). This alpha - particle sensor

  17. Cryogenic radiation detector with high-density conductor array

    International Nuclear Information System (INIS)

    A detector for infrared radiation, having a multicell photosensor disposed at the top of a cold finger in an evacuated container, comprises a stack of annular ceramic layers coaxially surrounding the cold finger and serving as supports for several arrays of radially extending metallic strips screen-printed on respective layers in angularly offset relationship. The metallic strips are conductively connected to respective cells of the sensor to serve as output leads thereof. The conductive connections include axially extending metal pins spacedly surrounding the cold finger while being linked with the sensor cells by short, thin wires spanning an intervening annular gap

  18. Radiation Hardness of CCD Vertex Detectors for the ILC

    OpenAIRE

    Sopczak, Andre; Bekhouche, Khaled; Bowdery, Chris; Damerell, Chris; Davies, Gavin; Dehimi, Lakhdar; Greenshaw, Tim; Koziel, Michal; Stefanov, Konstantin; Woolliscroft, Tim; Worm, Steve

    2006-01-01

    Results of detailed simulations of the charge transfer inefficiency of a prototype CCD chip are reported. The effect of radiation damage in a particle detector operating at a future accelerator is studied by examining two electron trap levels, 0.17 eV and 0.44 eV below the bottom of the conduction band. Good agreement is found between simulations using the ISE-TCAD DESSIS program and an analytical model for the 0.17 eV level. Optimum operation is predicted to be at about 250 K where the effec...

  19. Manufacturing process for electrodes for ionizing radiation detectors

    International Nuclear Information System (INIS)

    A manufacturing proces for electrodes for ionizing radiation detectors, particularly electrodes for X-ray multidetectors, is proposed. It consists of electrodepositing at least one layer of an electrically conducting material on at least one side of a relatively flat plate. A ductile material is used to form the conducting layer. The assembly formed by the plate covered by the ductile conducting material is subjected to pressing to crush the ductile conducting material at least in the zones where the assembly formed by the plate and the covering material has a total thickness superior to a constant thickness desired for the electrode

  20. IceCube: A Cubic Kilometer Radiation Detector

    International Nuclear Information System (INIS)

    IceCube is a 1 km3 neutrino detector now being built at the Amudsen-Scott South Pole Station. It consists of 4800 Digital Optical Modules (DOMs) which detect Cherenkov radiation from the charged particles produced in neutrino interactions. IceCube will observe astrophysical neutrinos with energies above about 100 GeV. IceCube will be able to separate νμ, νt, and ντ interactions because of their different topologies. IceCube construction is currently 50% complete

  1. A Study of an Acrylic Cerenkov Radiation Detector

    CERN Document Server

    Porter, B; De Barbaro, P; Bodek, Arie; Budd, H S

    1999-01-01

    An experiment investigating the angle of Cerenkov light emitted by 3-MeV electrons traversing an acrylic detector has been developed for use in the advanced physics laboratory course at the University of Rochester. In addition to exploring the experimental phenomena of Cerenkov radiation and total internal reflection, the experiment introduces students to several experimental techniques used in actual high energy and nuclear physics experiments, as well as to analysis techniques involving Poisson statistics. [to be published in Am. J. Phys. 67 (Oct/Nov 1999).

  2. Method of fabricating self-powered nuclear radiation detector assemblies

    International Nuclear Information System (INIS)

    In a method of fabricating a self-powered nuclear radiation detector assembly an emitter electrode wire and signal cable center wire are connected and disposed within the collector electrode tubular sheath with compressible insulating means disposed between the wires and the tubular sheath. The above assembly is reduced in diameter while elongating the tubular sheath and the emitter wire and signal cable wire. The emitter wire is reduced to a predetermined desired diameter, and is trimmed to a predetermined length. An end cap is hermetically sealed to the tubular sheath at the extending end of the emitter with insulating means between the emitter end and the end cap. (author)

  3. Intrinsic Radiation in Lutetium Based PET Detector: Advantages and Disadvantages

    OpenAIRE

    Wei, Qingyang

    2015-01-01

    Lutetium (Lu) based scintillators such as LSO and LYSO, are widely used in modern PET detectors due to their high stopping power for 511 keV gamma rays, high light yield and short decay time. However, 2.6% of naturally occurring Lu is 176Lu, a long-lived radioactive element including a beta decay and three major simultaneous gamma decays. This phenomenon introduces random events to PET systems that affects the system performance. On the other hand, the advantages of intrinsic radiation of 176...

  4. Thin film cadmium telluride charged particle sensors for large area neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, J. W.; Smith, L.; Calkins, J.; Mejia, I.; Cantley, K. D.; Chapman, R. A.; Quevedo-Lopez, M.; Gnade, B., E-mail: gnade@utdallas.edu [Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080 (United States); Kunnen, G. R.; Allee, D. R. [Flexible Display Center, Arizona State University, Phoenix, Arizona 85284 (United States); Sastré-Hernández, J.; Contreras-Puente, G. [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Mexico City 07738 (Mexico); Mendoza-Pérez, R. [Universidad Autónoma de la Ciudad de México, Mexico City 09790 (Mexico)

    2014-09-15

    Thin film semiconductor neutron detectors are an attractive candidate to replace {sup 3}He neutron detectors, due to the possibility of low cost manufacturing and the potential for large areas. Polycrystalline CdTe is found to be an excellent material for thin film charged particle detectors—an integral component of a thin film neutron detector. The devices presented here are characterized in terms of their response to alpha and gamma radiation. Individual alpha particles are detected with an intrinsic efficiency of >80%, while the devices are largely insensitive to gamma rays, which is desirable so that the detector does not give false positive counts from gamma rays. The capacitance-voltage behavior of the devices is studied and correlated to the response due to alpha radiation. When coupled with a boron-based neutron converting material, the CdTe detectors are capable of detecting thermal neutrons.

  5. High-Speed, Low Power 256 Channel Gamma Radiation Array Detector ASIC Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Building on prior success in detector electronics, we propose to design and fabricate a 256 channel readout ASIC for solid state gamma radiation array detectors...

  6. High field CdS detector for infrared radiation

    Science.gov (United States)

    Tyagi, R. C.; Robertson, J. B.; Boer, K. W.; Hadley, H. C., Jr. (Inventor)

    1974-01-01

    An infrared radiation detector including a cadmium sulfide platelet having a cathode formed on one of its ends and an anode formed on its other end is presented. The platelet is suitably doped such that stationary high-field domains are formed adjacent the cathode when based in the negative differential conductivity region. A negative potential is applied to the cathode such that a high-field domain is formed adjacent to the cathode. A potential measuring probe is located between the cathode and the anode at the edge of the high-field domain and means are provided for measuring the potential at the probe whereby this measurement is indicative of the infrared radiation striking the platelet.

  7. Response of personal radiation detectors to simulated criticality accident pulses

    International Nuclear Information System (INIS)

    Personal radiation detection instruments (PRDIs) are often used to augment the protection provided by the installed criticality accident alarm system (CAAS). ANSI/ANS-8.3-1997 provides examples of situations when PRDIs could be used, including hor ellipsisalarm system maintenance or testing, evacuation drills, activities in areas not normally occupied by personnel, or other special operations. These instruments were designed for use in radiological control applications. Consequently, documented performance capabilities under conditions typical of the initial pulse from a criticality accident are not readily available. This paper describes testing performed to demonstrate the capability of the PRDIs to respond to radiation pulses similar to that which would be expected to occur in the event of a criticality accident. Detector responses for low-power, oscillating, or slow excursions were either available from manufacturing data or bounded by the initial pulse

  8. Recent results on the development of radiation-hard diamond detectors

    CERN Document Server

    Conway, J S; Bauer, C; Berdermann, E; Bergonzo, P; Bogani, F; Borchi, E; Brambilla, A; Bruzzi, Mara; Colledani, C; Dabrowski, W; Da Graca, J; Delpierre, P A; Deneuville, A; Dulinski, W; van Eijk, B; Fallou, A; Fizzotti, F; Foulon, F; Friedl, M; Gan, K K; Gheeraert, E; Grigoriev, E; Hallewell, G D; Hall-Wilton, R; Han, S; Hartjes, F G; Hrubec, Josef; Husson, D; Jamieson, D; Kagan, H; Kania, D R; Kaplon, J; Karl, C; Kass, R; Knöpfle, K T; Krammer, Manfred; Lo Giudice, A; Lü, R; Manfredi, P F; Manfredotti, C; Marshall, R D; Meier, D; Mishina, M; Oh, A; Pan, L S; Palmieri, V G; Pernicka, Manfred; Peitz, A; Pirollo, S; Plano, R; Polesello, P; Prawer, S; Pretzl, Klaus P; Procario, M; Re, V; Riester, J L; Roe, S; Roff, D G; Rudge, A; Russ, J; Schnetzer, S; Sciortino, S; Somalwar, S V; Speziali, V; Stelzer, H; Stone, R; Suter, B; Tapper, R J; Tesarek, R; Thomson, G B; Trawick, M; Trischuk, W; Vittone, E; Walsh, A M; Wedenig, R; Weilhammer, Peter; White, C; Ziock, H J; Zöller, M

    1999-01-01

    Charged particle detectors made from chemical vapor deposition (CVD) diamond have radiation hardness greatly exceeding that of silicon- based detectors. The CERN-based RD42 Collaboration has developed and tested CVD diamond microstrip and pixel detectors with an eye to their application in the intense radiation environment near the interaction region of hadron colliders. This paper presents recent results from tests of these detectors. (4 refs).

  9. Development of Personal Radiation Detector Instrument with Multi Channel Analyzer and Wireless Communication

    International Nuclear Information System (INIS)

    According to the Department of Homeland Security specifications regarding illicit traffic of nuclear materials, a Personal Radiation Detector has been developed. Personal Radiation Detectors are small, lightweight radiation monitors worn on the body, used to detect the presence of or to search for gamma and neutron radiation. This type of instrument can be supplied to unprofessional radiation trained personnel for detection and alert of radioactive materials. A wireless connection of Personal Radiation Detector instruments to a remote risk assessment center increases the possibly to contain a radiological incident in its beginning, until the nuclear Hazards Materials specialists estimate and evaluate the event. Integrating spectrometry capability and wireless communication into the Personal Radiation Detector has many advantages. For example, energy spectrum can be transmitted from the field in real time, enabling the specialist at the risk assessment center to manage the control actions in an event involving the presence of radioactive materials. A Personal Radiation Detector developed instrument, the Personal Detector system-100, includes internal low power Multi Channel Analyzer and Blue Tooth wireless communication. The detector includes neutron and gamma scintillators, a tube, novel pulse processing electronics and sophisticated software. In order to decrease the power consumption, a Cockcroft Walton type power supply was developed. The Personal Radiation Detector software enables fast alert in case of radiation increase over background. This work introduces the Multi Channel Analyzer design approach and experiments results showing the actual performances of the Personal Detector system-100

  10. Radiation Tolerance of Cryogenic Beam Loss Monitor Detectors

    CERN Document Server

    Kurfuerst, C; Bartosik, M; Dehning, B; Eisel, T; Sapinski, M; Eremin, V; Verbitskaya, E; Fabjan, C; Griesmayer, E

    2013-01-01

    At the triplet magnets, close to the interaction regions of the LHC, the current Beam Loss Monitoring system is sensitive to the particle showers resulting from the collision of the two beams. For the future, with beams of higher energy and intensity resulting in higher luminosity, distinguishing between these interaction products and possible quench-provoking beam losses from the primary proton beams will be challenging. Investigations are therefore underway to optimise the system by locating the beam loss detectors as close as possible to the superconducting coils of the triplet magnets. This means putting detectors inside the cold mass in superfluid helium at 1.9 K. Previous tests have shown that solid state diamond and silicon detectors as well as liquid helium ionisation chambers are promising candidates. This paper will address the final open question of their radiation resistance for 20 years of nominal LHC operation, by reporting on the results from high irradiation beam tests carried out at CERN in a...

  11. Large area radiation detectors based on II VI thin films

    Science.gov (United States)

    Quevedo-Lopez, Manuel

    2015-03-01

    The development of low temperature device technologies that have enabled flexible displays also present opportunities for flexible electronics and flexible integrated systems. Of particular interest are possible applications in flexible, low metal content, sensor systems for unattended ground sensors, smart medical bandages, electronic ID tags for geo-location, conformal antennas, neutron/gamma-ray/x-ray detectors, etc. In this talk, our efforts to develop novel CMOS integration schemes, circuits, memory, sensors as well as novel contacts, dielectrics and semiconductors for flexible electronics are presented. In particular, in this presentation we discuss fundamental materials properties including crystalline structure, interfacial reactions, doping, etc. defining performance and reliability of II-VI-based radiation sensors. We investigate the optimal thickness of a semiconductor diode for thin-film solid state thermal neutron detectors. Besides II-VI materials, we also evaluated several diode materials, Si, CdTe,GaAs, C (diamond), and ZnO, and two neutron converter materials,10B and 6LiF. We determine the minimum semiconductor thickness needed to achieve maximum neutron detection efficiency. By keeping the semiconductor thickness to a minimum, gamma rejection is kept as high as possible. In this way, we optimize detector performance for different thin-film semiconductor materials.

  12. Processing and characterization of epitaxial GaAs radiation detectors

    CERN Document Server

    Wu, X; Arsenovich, T; Gädda, A; Härkönen, J; Junkes, A; Karadzhinova, A; Kostamo, P; Lipsanen, H; Luukka, P; Mattila, M; Nenonen, S; Riekkinen, T; Tuominen, E; Winkler, A

    2015-01-01

    GaAs devices have relatively high atomic numbers (Z=31, 33) and thus extend the X-ray absorption edge beyond that of Si (Z=14) devices. In this study, radiation detectors were processed on GaAs substrates with 110 $\\mu\\textrm{m}$ - 130 $\\mu\\textrm{m}$ thick epitaxial absorption volume. Thick undoped and heavily doped p$^+$ epitaxial layers were grown using a custom-made horizontal Chloride Vapor Phase Epitaxy (CVPE) reactor, the growth rate of which was about 10 $\\mu\\textrm{m}$/h. The GaAs p$^+$/i/n$^+$ detectors were characterized by Capacitance Voltage ($CV$), Current Voltage ($IV$), Transient Current Technique (TCT) and Deep Level Transient Spectroscopy (DLTS) measurements. The full depletion voltage ($V_{\\textrm{fd}}$) of the detectors with 110 $\\mu\\textrm{m}$ epi-layer thickness is in the range of 8 V - 15 V and the leakage current density is about 10 nA/cm$^2$. The signal transit time determined by TCT is about 5 ns when the bias voltage is well above the value that produces the peak saturation drift ve...

  13. Processing and characterization of epitaxial GaAs radiation detectors

    Science.gov (United States)

    Wu, X.; Peltola, T.; Arsenovich, T.; Gädda, A.; Härkönen, J.; Junkes, A.; Karadzhinova, A.; Kostamo, P.; Lipsanen, H.; Luukka, P.; Mattila, M.; Nenonen, S.; Riekkinen, T.; Tuominen, E.; Winkler, A.

    2015-10-01

    GaAs devices have relatively high atomic numbers (Z=31, 33) and thus extend the X-ray absorption edge beyond that of Si (Z=14) devices. In this study, radiation detectors were processed on GaAs substrates with 110 - 130 μm thick epitaxial absorption volume. Thick undoped and heavily doped p+ epitaxial layers were grown using a custom-made horizontal Chloride Vapor Phase Epitaxy (CVPE) reactor, the growth rate of which was about 10 μm / h. The GaAs p+/i/n+ detectors were characterized by Capacitance Voltage (CV), Current Voltage (IV), Transient Current Technique (TCT) and Deep Level Transient Spectroscopy (DLTS) measurements. The full depletion voltage (Vfd) of the detectors with 110 μm epi-layer thickness is in the range of 8-15 V and the leakage current density is about 10 nA/cm2. The signal transit time determined by TCT is about 5 ns when the bias voltage is well above the value that produces the peak saturation drift velocity of electrons in GaAs at a given thickness. Numerical simulations with an appropriate defect model agree with the experimental results.

  14. Ambient temperature cadmium zinc telluride radiation detector and amplifier circuit

    International Nuclear Information System (INIS)

    A low noise, low power consumption, compact, ambient temperature signal amplifier for a Cadmium Zinc Telluride (CZT) radiation detector is disclosed. The amplifier can be used within a larger system (e.g., including a multi-channel analyzer) to allow isotopic analysis of radionuclides in the field. In one embodiment, the circuit stages of the low power, low noise amplifier are constructed using integrated circuit (IC) amplifiers , rather than discrete components, and include a very low noise, high gain, high bandwidth dual part preamplification stage, an amplification stage, and an filter stage. The low noise, low power consumption, compact, ambient temperature amplifier enables the CZT detector to achieve both the efficiency required to determine the presence of radionuclides and the resolution necessary to perform isotopic analysis to perform nuclear material identification. The present low noise, low power, compact, ambient temperature amplifier enables a CZT detector to achieve resolution of less than 3% full width at half maximum at 122 keV for a Cobalt-57 isotope source. By using IC circuits and using only a single 12 volt supply and ground, the novel amplifier provides significant power savings and is well suited for prolonged portable in-field use and does not require heavy, bulky power supply components. 9 figs

  15. Room temperature aluminum antimonide radiation detector and methods thereof

    Energy Technology Data Exchange (ETDEWEB)

    Lordi, Vincenzo; Wu, Kuang Jen J.; Aberg, Daniel; Erhart, Paul; Coombs, III, Arthur W; Sturm, Benjamin W

    2015-03-03

    In one embodiment, a method for producing a high-purity single crystal of aluminum antimonide (AlSb) includes providing a growing environment with which to grow a crystal, growing a single crystal of AlSb in the growing environment which comprises hydrogen (H.sub.2) gas to reduce oxide formation and subsequent incorporation of oxygen impurities in the crystal, and adding a controlled amount of at least one impurity to the growing environment to effectively incorporate at least one dopant into the crystal. In another embodiment, a high energy radiation detector includes a single high-purity crystal of AlSb, a supporting structure for the crystal, and logic for interpreting signals obtained from the crystal which is operable as a radiation detector at a temperature of about 25.degree. C. In one embodiment, a high-purity single crystal of AlSb includes AlSb and at least one dopant selected from a group consisting of selenium (Se), tellurium (Te), and tin (Sn).

  16. A conductive surface coating for Si-CNT radiation detectors

    International Nuclear Information System (INIS)

    Silicon–Carbon Nanotube radiation detectors need an electrically conductive coating layer to avoid the nanotube detachment from the silicon substrate and uniformly transmit the electric field to the entire nanotube active surface. Coating material must be transparent to the radiation of interest, and must provide the drain voltage necessary to collect charges generated by incident photons. For this purpose various materials have been tested and proposed in photodetector and photoconverter applications. In this article interface properties and electrical contact behavior of Indium Tin Oxide films on Carbon Nanotubes have been analyzed. Ion Beam Sputtering has been used to grow the transparent conductive layer on the nanotubes. The films were deposited at room temperature with Oxygen/Argon mixture into the sputtering beam, at fixed current and for different beam energies. Optical and electrical analyses have been performed on films. Surface chemical analysis and in depth profiling results obtained by X-ray Photoelectron Spectroscopy of the Indium Tin Oxide layer on nanotubes have been used to obtain the interface composition. Results have been applied in photodetectors realization based on multi wall Carbon Nanotubes on silicon. - Highlights: • ITO was deposited by Ion Beam Sputtering on MWCNT. • ITO on CNT makes an inter-diffusion layer of the order of one hundred nanometers. • Improvements of quantum efficiency of photon detectors based on CNT with ITO

  17. Laser system for testing radiation imaging detector circuits

    Science.gov (United States)

    Zubrzycka, Weronika; Kasinski, Krzysztof

    2015-09-01

    Performance and functionality of radiation imaging detector circuits in charge and position measurement systems need to meet tight requirements. It is therefore necessary to thoroughly test sensors as well as read-out electronics. The major disadvantages of using radioactive sources or particle beams for testing are high financial expenses and limited accessibility. As an alternative short pulses of well-focused laser beam are often used for preliminary tests. There are number of laser-based devices available on the market, but very often their applicability in this field is limited. This paper describes concept, design and validation of laser system for testing silicon sensor based radiation imaging detector circuits. The emphasis is put on keeping overall costs low while achieving all required goals: mobility, flexible parameters, remote control and possibility of carrying out automated tests. The main part of the developed device is an optical pick-up unit (OPU) used in optical disc drives. The hardware includes FPGA-controlled circuits for laser positioning in 2 dimensions (horizontal and vertical), precision timing (frequency and number) and amplitude (diode current) of short ns-scale (3.2 ns) light pulses. The system is controlled via USB interface by a dedicated LabVIEW-based application enabling full manual or semi-automated test procedures.

  18. Some issues of superconducting tunnel junction for radiation detector

    International Nuclear Information System (INIS)

    In the case of applying superconducting tunnel junctions to devices, it is roughly divided into those utilizing Josephson effect which is the tunnel effect of Cooper pair and those utilizing the tunnel effect of quasi-particles. Owing to the high speed switching of Josephson effect, the development of computer elements, analog signal processing, A/D converters and others is advanced. Owing to the high sensitivity to magnetic fields, there is SQUID application, and owing to the high accuracy, it is applied to voltage standard and potentiometers. As the devices utilizing the tunnel effect of quasi-particles, owing to its high sensitivity, the development of radiation detectors, and owing to its high speed and nonequilibrium superconductivity, the development of superconducting three-terminal elements are advanced. Owing to its high frequency, it is applied to receivers and amplifiers. As the general performance demanded for superconducting tunnel junctions, large gap voltage, large Vm value, mechanical strength, the stability to thermal cycles, the controllability and reproducibility of critical current, the flexibility of manufacturing processes and so on are enumerated. The tunnel junctions for radiation detectors are described. (K.I.)

  19. Methodology for Assessing Radiation Detectors Used by Emergency Responders

    International Nuclear Information System (INIS)

    The threat of weapons of mass destruction terrorism resulted in the U.S. Department of Homeland Security deploying large quantities of radiation detectors throughout the emergency responder community. However, emergency responders specific needs were not always met by standard health physics instrumentation used in radiation facilities. Several American National Standards Institute standards were developed and approved to evaluate the technical capabilities of detection equipment. Establishing technical capability is a critical step, but it is equally important to emergency responders that the instruments are easy to operate and can withstand the rugged situations they encounter. The System Assessment and Validation for Emergency Responders (SAVER) Program (managed by the U.S. Department of Homeland Security, Office of Grants and Training, Systems Support Division) focuses predominantly on the usability, ergonomics, readability, and other features of the detectors, rather than performance controlled by industry standards and the manufacturers. National Security Technologies, LLC, as a SAVER Technical Agent, conducts equipment evaluations using active emergency responders who are familiar with the detection equipment and knowledgeable of situations encountered in the field, which provides more relevant data to emergency responders

  20. A semiconductor parameter analyzer for ionizing radiation detectors

    International Nuclear Information System (INIS)

    Electrometers and ion chamber are normally used to make several types of measurements in a radiation field and there is a unique voltage applied to each detector type. Some electronic devices that are built of semiconductor materials like silicon crystal can also be used for the same purpose. In this case, a characteristic curve of the device must be acquired to choose an operation point which consists of an electrical current or voltage to be applied to the device. Unlike ion chambers, such an electronic device can have different operation points depending on its current versus voltage curve (I x V). The best operation point of the device is also a function of the radiation, energy, dose rate and fluence. The purpose of this work is to show a semiconductor parameter analyzer built to acquire I x V curves as usually, and the innovation here is the fact that it can be used to obtain such a parametric curve when a quad-polar device is under irradiation. The results demonstrate that the system is a very important tool to scientists interested to evaluate a semiconductor detector before, during and after irradiation. A collection of results for devices under an X-ray beam and a neutron fluence are presented: photodiode, phototransistors, bipolar transistor and MOSFET. (author)

  1. Low power, low noise, charge sensitive amplifier in CMOS 0.18 μm technology for the readout of fine pitch pixelated CdTe detector

    International Nuclear Information System (INIS)

    Our group is currently developing a new project dedicated to the design of new Cd(Zn)Te spectro-imaging systems for future space borne astrophysics missions. The main goal is to build a spectro-imaging system with matrix ASIC hybridized to pixelated Cd(Zn)Te detector with typical pixel of 300 μm pitch and typical energy resolution of 0.5 keV at 60 keV. Before designing a complete matrix of readout channels, we designed a prototype ASIC to evaluate the microelectronic technology in terms of noise and tolerance to radiation. We designed an ASIC in the standard AMS 0.18 μm CMOS technology dedicated to the readout of very low capacitance (≤1 pF) and very low dark current (≤5 pA) Cd(Zn)Te detectors. The Caterpylar AMS is a set of 30 low noise low power Charge Sensitive Amplifiers (CSAs). All the CSAs have the same folded cascade architecture, only the type (PMOS or NMOS) and the geometry of the input transistors differ between CSAs. The noise performances of the technology are very good since a minimal ENC of 9 e(-)rms has been measured with power consumption in the CSA of 12 μW only. Influence of the W/L ratio and W * L product of input transistor on noise has been measured and discussed. We connected one of the CSA to a silicon diode and measured an energy resolution of 580 eV FWHM at 122 keV with a 57Co source and of 470 eV FWHM at 59.5 keV with a 241Am source. (authors)

  2. Radiation flaw detector for testing non-uniform surface bodies of revolution

    International Nuclear Information System (INIS)

    Radiation flaw detector for testing bodies of revolution with non-uniform surface, welded joints, etc., based on spatial filtration and differentiation of ionizing radiation flux has been described. The calculation of the most important unit of flaw detector - integrators - is made. Experimental studies of the sensitivity have shown, that the radiation flaw detector can be used for rapid testing of products with the sensitivity comparable with the sensitivity of radiographic testing of steel

  3. Advanced radiation detector development: Advanced semiconductor detector development: Development of a oom-temperature, gamma ray detector using gallium arsenide to develop an electrode detector

    International Nuclear Information System (INIS)

    The advanced detector development project at the University of Michigan has completed the first full year of its current funding. Our general goals are the development of radiation detectors and spectrometers that are capable of portable room temperature operation. Over the past 12 months, we have worked primarily in the development of semiconductor spectrometers with open-quotes single carrierclose quotes response that offer the promise of room temperature operation and good energy resolution in gamma ray spectroscopy. We have also begun a small scale effort at investigating the properties of a small non-spectroscopic detector system with directional characteristics that will allow identification of the approximate direction in which gamma rays are incident. These activities have made use of the extensive clean room facilities at the University of Michigan for semiconductor device fabrication, and also the radiation measurement capabilities provided in our laboratory in the Phoenix Building on the North Campus. In addition to our laboratory based activities, Professor Knoll has also been a participant in several Department of Energy review activities held in the Forrestal Building and at the Germantown site. The most recent of these has been service on a DOE review panel chaired by Dr. Hap Lamonds that is reviewing the detector development programs supported through the Office of Arms Control and International Security

  4. Comparison of NaI(Tl), CdTe, and HgI2 surgical probes: physical characterization.

    Science.gov (United States)

    Barber, H B; Barrett, H H; Hickernell, T S; Kwo, D P; Woolfenden, J M; Entine, G; Ortale Baccash, C

    1991-01-01

    The physical properties of three surgical probes containing different radiation detectors are compared: a NaI(Tl) scintillator with a flexible, fiber-optic light guide, and two semiconductor detectors that operate at room temperature, CdTe and HgI2. Also compared are spectra, energy resolutions, and counting efficiencies measured at a variety of gamma-ray energies between 30 and 1000 keV. The energy resolution of the NaI probe is substantially poorer than that of either semiconductor probe due in part to light losses in coupling the scintillator to the fiber optics. The semiconductor probes have complex spectral response due to charge-carrier trapping and K x-ray escape, and not all photoelectric interactions in these detectors contribute to the useful part of the photopeak. Above 120 keV the counting efficiency for the NaI probe is an order of magnitude higher than for the CdTe and HgI2 probes. Both energy resolution and counting efficiency are slightly better for the HgI2 probe than for the CdTe probe. PMID:1870478

  5. Use of radiation detectors in remote monitoring for containment and surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Dupree, S.A.; Ross, M. [Sandia National Labs., Albuquerque, NM (United States); Bonino, A. [Nuclear Regulatory Authority of Argentina, Buenos Aires (Argentina); Lucero, R.; Hasimoto, Yu [PNC Oarai Engineering Center, Ibaraki (Japan)

    1998-07-01

    Radiation detectors have been included in several remote monitoring field trial systems to date. The present study considers detectors at Embalse, Argentina, and Oarai, Japan. At Embalse four gamma detectors have been operating in the instrumentation tubes of spent fuel storage silos for up to three years. Except for minor fluctuations, three of the detectors have operated normally. One of the detectors appears never to have operated correctly. At Oarai two gamma detectors have been monitoring a spent-fuel transfer hatch for over 18 months. These detectors have operated normally throughout the period, although one shows occasional noise spikes.

  6. Field Deployable Gamma Radiation Detectors for DHS Use

    Energy Technology Data Exchange (ETDEWEB)

    Sanjoy Mukhopadhyay

    2007-08-01

    Recently, the Department of Homeland Security (DHS) has integrated all nuclear detection research, development, testing, evaluation, acquisition, and operational support into a single office: the Domestic Nuclear Detection Office (DNDO). The DNDO has specific requirements set for all commercial off-the-shelf and government off-the-shelf radiation detection equipment and data acquisition systems. This article would investigate several recent developments in field deployable gamma radiation detectors that are attempting to meet the DNDO specifications. Commercially available, transportable, handheld radio isotope identification devices (RIID) are inadequate for DHS requirements in terms of sensitivity, resolution, response time, and reach-back capability. The leading commercial vendor manufacturing handheld gamma spectrometer in the United States is Thermo Electron Corporation. Thermo Electron's identiFINDER{trademark}, which primarily uses sodium iodide crystals (3.18 x 2.54cm cylinders) as gamma detectors, has a Full-Width-at-Half-Maximum energy resolution of 7 percent at 662 keV. Thermo Electron has just recently come up with a reach-back capability patented as RadReachBack{trademark} that enables emergency personnel to obtain real-time technical analysis of radiation samples they find in the field. The current project has the goal to build a prototype handheld gamma spectrometer, equipped with a digital camera and an embedded cell phone to be used as an RIID with higher sensitivity, better resolution, and faster response time (able to detect the presence of gamma-emitting radio isotopes within 5 seconds of approach), which will make it useful as a field deployable tool. The handheld equipment continuously monitors the ambient gamma radiation, and, if it comes across any radiation anomalies with higher than normal gamma gross counts, it sets an alarm condition. When a substantial alarm level is reached, the system automatically triggers the saving of relevant

  7. Field Deployable Gamma Radiation Detectors for DHS Use

    International Nuclear Information System (INIS)

    Recently, the Department of Homeland Security (DHS) has integrated all nuclear detection research, development, testing, evaluation, acquisition, and operational support into a single office: the Domestic Nuclear Detection Office (DNDO). The DNDO has specific requirements set for all commercial off-the-shelf and government off-the-shelf radiation detection equipment and data acquisition systems. This article would investigate several recent developments in field deployable gamma radiation detectors that are attempting to meet the DNDO specifications. Commercially available, transportable, handheld radio isotope identification devices (RIID) are inadequate for DHS requirements in terms of sensitivity, resolution, response time, and reach-back capability. The leading commercial vendor manufacturing handheld gamma spectrometer in the United States is Thermo Electron Corporation. Thermo Electron's identiFINDER(trademark), which primarily uses sodium iodide crystals (3.18 x 2.54cm cylinders) as gamma detectors, has a Full-Width-at-Half-Maximum energy resolution of 7 percent at 662 keV. Thermo Electron has just recently come up with a reach-back capability patented as RadReachBack(trademark) that enables emergency personnel to obtain real-time technical analysis of radiation samples they find in the field. The current project has the goal to build a prototype handheld gamma spectrometer, equipped with a digital camera and an embedded cell phone to be used as an RIID with higher sensitivity, better resolution, and faster response time (able to detect the presence of gamma-emitting radio isotopes within 5 seconds of approach), which will make it useful as a field deployable tool. The handheld equipment continuously monitors the ambient gamma radiation, and, if it comes across any radiation anomalies with higher than normal gamma gross counts, it sets an alarm condition. When a substantial alarm level is reached, the system automatically triggers the saving of relevant

  8. Construction and performance of the ALICE Transition Radiation Detector

    International Nuclear Information System (INIS)

    The Transition Radiation Detector (TRD) has been designed to identify electrons in the pion dominated background of heavy-ions collisions. As electrons do not interact strongly, they allow to probe the early phase of the interaction. As trigger on high-pt e+e- pairs within 6.5 μs after collision, the TRD can initiate the readout of the Time Projection Chamber (TPC). The TRD is composed of 18 super modules arranged in a barrel geometry in the central part of the ALICE detector. It offers almost 1.2 million readout channels on a total area of close to 700 m2. The particle detection properties of the TRD depend crucially on details in the design of the cathode pad readout plane. The design parameters of the TRD readout pad plane are introduced and analysed regarding their physical properties. The noise patterns observed in the detector can be directly linked to the static pad capacitance distribution and corrected for it. A summary is then given of the TRD services infrastructure at CERN: a 70 kW low voltage system, a 1080 channel 2.5 kV high voltage setup and the Ethernet network serving more than 600 nodes. Two beam tests were conducted at the CERN PS accelerator in 2004 and 2007 using full sized TRD chambers from series production. Details on the setups are presented with particular emphasis on the custom tailored data acquisition systems. Finally the performance of the TRD is studied, focusing on the pion rejection capability and the excellent position resolution. (orig.)

  9. Construction and performance of the ALICE Transition Radiation Detector

    Energy Technology Data Exchange (ETDEWEB)

    Emschermann, David

    2010-01-20

    The Transition Radiation Detector (TRD) has been designed to identify electrons in the pion dominated background of heavy-ions collisions. As electrons do not interact strongly, they allow to probe the early phase of the interaction. As trigger on high-p{sub t} e{sup +}e{sup -} pairs within 6.5 {mu}s after collision, the TRD can initiate the readout of the Time Projection Chamber (TPC). The TRD is composed of 18 super modules arranged in a barrel geometry in the central part of the ALICE detector. It offers almost 1.2 million readout channels on a total area of close to 700 m{sup 2}. The particle detection properties of the TRD depend crucially on details in the design of the cathode pad readout plane. The design parameters of the TRD readout pad plane are introduced and analysed regarding their physical properties. The noise patterns observed in the detector can be directly linked to the static pad capacitance distribution and corrected for it. A summary is then given of the TRD services infrastructure at CERN: a 70 kW low voltage system, a 1080 channel 2.5 kV high voltage setup and the Ethernet network serving more than 600 nodes. Two beam tests were conducted at the CERN PS accelerator in 2004 and 2007 using full sized TRD chambers from series production. Details on the setups are presented with particular emphasis on the custom tailored data acquisition systems. Finally the performance of the TRD is studied, focusing on the pion rejection capability and the excellent position resolution. (orig.)

  10. Technique of absolute efficiency determination for gamma radiation semiconductor detectors

    International Nuclear Information System (INIS)

    Simple technique is suggested to determine the absolute efficiency (E) of semiconductor detectors (SCD) which employes low-intensity neutron sources wide spread in scientific laboratories. The technique is based on using radioactive nuclide gamma radiation in decay chains of heavy element fission fragments, uranium-235, for example. Cumulative yields of a number of nulcides following heavy element fission are measured to a high accuracy (1-5%), which permits to . the value E is determined for a wide energy range (from X- ray to some MeV); using a nuclide with a well known decay scheme and measured to a high accuracy cumulative yield 140La, for example, one can calibrate in absolute values comparatively easily obtained plots of the SCD relative efficiency. The technique allows to determine the E value for extended plane (and volumetric) sources of an arbitrary form. Some nuclides, convenient for the determination of E, and their nuclear characteristics are tabulated

  11. Process guiding for the ZEUS transition-radiation detector

    International Nuclear Information System (INIS)

    The Transition-Radiation-Detector (TRD) has been built to separate electrons from pions. It needs a complex gassystem which has to be controlled and monitored by a computer. To enable a test of the gassystem and the TRD's highvoltagesystem a stand-alone-version of the HWC/HWM (hardware-control and hardware-monitoring) had been developed. This stand-alone-version consists of an elementary computer- and software-system. VIP and MVME-147 computers have been selected for the computer-hardware. The computers for realtimeprocessing base on this processors, the VMEbus and digital to analog converters and analog to digital converters. The software-system based on OS/9 device-drivers. With this components monitoring and controlling software has been written. (orig.)

  12. Personal Radiation Detector Field Test and Evaluation Campaign

    International Nuclear Information System (INIS)

    Following the success of the Anole test of portable detection system, the U.S. Department of Homeland Security (DHS) Domestic Nuclear Detection Office organized a test and evaluation campaign for personal radiation detectors (PRDs), also known as 'Pagers'. This test, 'Bobcat', was conducted from July 17 to August 8, 2006, at the Nevada Test Site. The Bobcat test was designed to evaluate the performance of PRDs under various operational scenarios, such as pedestrian surveying, mobile surveying, cargo container screening, and pedestrian chokepoint monitoring. Under these testing scenarios, many operational characteristics of the PRDs, such as gamma and neutron sensitivities, positive detection and false alarm rates, response delay times, minimum detectable activities, and source localization errors, were analyzed. This paper will present the design, execution, and methodologies used to test this equipment for the DHS

  13. Recent developments in photomultipliers for nuclear radiation detectors

    International Nuclear Information System (INIS)

    One of the recent developments in Hamamatsu photomultipliers for nuclear radiation detectors is a small photomultiplier developed for positron CT in nuclear medicine having excellent timing properties; the time resolution with BGO and CsF scintillators was observed for 511 keV positron annihilation γ-rays to be 2.24 ns and 0.34 ns, respectively. Two types of new photomultipliers having special structures have recently been developed. One is a photomultiplier for high pressure use capable of withstanding up to 600 atm pressure while another is a 'large-angle-of-view' photomultiplier for a proton decay experiment having a 20' diameter hemispherical photocathode. A newly developed proximity focus type of microchannel plate photomultiplier provides a very fast time response of 130 ps and is usable in strong magnetic fields such as in calorimeters. (orig.)

  14. Radiation damage test of position sensitive silicon detectors

    International Nuclear Information System (INIS)

    A study of radiation damage of position sensitive silicon detectors (PSDs), for use as a position monitor of high energy heavy ion beams, was carried out. It is revealed that the position linearity of the standard PSD is strongly affected even by an absorbed dose around 100 Gy. The reason of the distortion of position linearity was considered to be a positive charge build-up in the SiO2 layer covering the PSD. To overcome the problem, new types of PSDs have been developed raising impurity density in the resistive layer and removing the SiO2 layer. A PSD with a distortion of less than 100 μm over an effective area of 13 mm x 13 mm is obtained which is usable as a heavy ion beam monitor. (orig.)

  15. Personal Radiation Detector Field Test and Evaluation Campaign

    Energy Technology Data Exchange (ETDEWEB)

    Chris A. Hodge, Ding Yuan, Raymond P. Keegan, Michael A. Krstich

    2007-07-09

    Following the success of the Anole test of portable detection system, the U.S. Department of Homeland Security (DHS) Domestic Nuclear Detection Office organized a test and evaluation campaign for personal radiation detectors (PRDs), also known as 'Pagers'. This test, 'Bobcat', was conducted from July 17 to August 8, 2006, at the Nevada Test Site. The Bobcat test was designed to evaluate the performance of PRDs under various operational scenarios, such as pedestrian surveying, mobile surveying, cargo container screening, and pedestrian chokepoint monitoring. Under these testing scenarios, many operational characteristics of the PRDs, such as gamma and neutron sensitivities, positive detection and false alarm rates, response delay times, minimum detectable activities, and source localization errors, were analyzed. This paper will present the design, execution, and methodologies used to test this equipment for the DHS.

  16. Two-dimension multiwire detector for ionizing radiation

    International Nuclear Information System (INIS)

    A multiwire proportional Counter of 100 x 100 mm2 sensitive area has been developed. The chamber is formed by three planes: a cathode plane of 50 μm gold coated tungsten wires stretched on an Epoxi frame; and anode plane made of 20 μm gold plated tungsten wires stretched at 45 deg C with respect to the first cathode wires; and second cathode plane made of copper strips on a printed circuit board at 90 deg C with respect to the first cathode. The cathode strips are connected to the taps of delay-lines chips. The position of the incidence of radiation is extracted by measuring the time difference of the pulse arriving at the extremities of the delay-line chain for each coordinate. The performance of the detector has been tested using 5.89 KeV X-rays from a 55 Fe source, and 8.04 KeV from Rigaku X-rays generator, operating the detector with 90% Ar + 10% CH4 gas mixture at 930 mbar. An energy resolution of 26% was obtained. An integral non linearity better than 0.3% and a position resolution better than 1 mm have been observed. The information corresponding to each one of the coordinates were digitized by a TDC in a CAMAC system and stored event by event in a micro-computer (IBM-AT). (author)

  17. Radiation Detector Characterization at APO While Stacking pbars in 1999

    International Nuclear Information System (INIS)

    The Main Injector provided beam for pbar stacking for the first time in 1999 over the period 12/20 to 12/21. The purpose of this memo is to record some observations on the response of various radiation detectors as a function of beam on the pbar targel. The detectors include a Scarecrow in the APO Vault, a Chipmunk just upstream of the APO vault, and a Chipmunk in the water cage adjacent to the Pulsed Magnet pump skid in the water systems cage. In addition, there are air monitors, one sampling in the PreVault enclosure and one sampling at the exhaust stack at the upstream end of lhe PreTarget enclosure. All data was collected by the ACNET system Lumberjack data logger. Beam intensity data was summed over consecutive 10 minute periods and normalized to an hourly intensity. The Chipmunk, Scarecrow, and Air Monitor data are based 10 minute averages taken over periods which coincide with normalized beam intensity.

  18. Advances in Physical and Biological Radiation Detectors. Proceedings of a Symposium on New Developments in Physical and Biological Radiation Detectors

    International Nuclear Information System (INIS)

    Radiation dosimetry is a fundamental part of all radiation protection work. The measurements are made with a variety of instruments, and health physicists, after professional interpretation of the data, can assess the levels of exposure which might be encountered in a given area or the individual doses received by workers, visitors and others at places where the possibility of radiation exposure exists. The types of radiation concerned here are photon radiations, ranging from soft X-rays to gamma rays, and particulate radiations such as β-rays, α-particles, protons, neutrons and fission fragments. The type of technique used depends not only on the type of radiation but also on such factors as whether the radiation is from a source internal or external to the body. Radiation dosimetry is not only used at nuclear facilities; it has diverse applications, for example in determining doses when radiation sources are employed for medical diagnostics and therapy, in safeguarding workers in any industry where isotopes are used, and in assessing the effect of both naturally occurring and man-made radiations on the general public and the environment. The advances of modern technology have increased the variety of sources; an example can be given from colour television, where the high potential necessary in certain colour cathode-ray tubes generates a non-negligible amount of X-rays. The Symposium on New Developments in Physical and Biological Radiation Detectors was one of a continuing series of meetings in which the International Atomic Energy Agency furthers the exchange of information on all aspects of personnel and area dosimetry. The Symposium was devoted in particular to a study of the dose meters themselves - their radiation-sensitive elements (both physical and biological),their instrumentation, and calibration and standardization. Several speakers suggested that the situation in the standardization and calibration of measuring equipment and sources was

  19. On an inertial observer's interpretation of the detection of radiation by linearly accelerated particle detectors

    International Nuclear Information System (INIS)

    The detection of radiation by linearly accelerated particle detectors is discussed from the point of view of an inertial observer. An alternative interpretation to that of Unruh is presented. It is argued that the main physical effect is the emission of negative energy (as compared with Minkowski space) by the detector. This is shown to be the only important effect for 'macroscopic' detectors. (author)

  20. Examination system utilizing ionizing radiation and a flexible, miniature radiation detector probe

    International Nuclear Information System (INIS)

    An optimized examination system and method based on the Reverse Geometry X-Ray trademark (RGX trademark) radiography technique are presented. The examination system comprises a radiation source, at least one flexible, miniature radiation detector probe positioned in appropriate proximity to the object to be examined and to the radiation source with the object located between the source and the probe, a photodetector device attachable to an end of the miniature radiation probe, and a control unit integrated with a display device connected to the photodetector device. The miniature radiation detector probe comprises a scintillation element, a flexible light guide having a first end optically coupled to the scintillation element and having a second end attachable to the photodetector device, and an opaque, environmentally-resistant sheath surrounding the flexible light guide. The probe may be portable and insertable, or may be fixed in place within the object to be examined. An enclosed, flexible, liquid light guide is also presented, which comprises a thin-walled flexible tube, a liquid, preferably mineral oil, contained within the tube, a scintillation element located at a first end of the tube, closures located at both ends of the tube, and an opaque, environmentally-resistant sheath surrounding the flexible tube. The examination system and method have applications in non-destructive material testing for voids, cracks, and corrosion, and may be used in areas containing hazardous materials. In addition, the system and method have applications for medical and dental imaging. 5 figs

  1. Silicon pixel detectors of a double-sided guard ring structure for radiation hardness

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hyo Sung [Yonsei Univ., Wonju (Korea, Republic of); Chien, Chih Yung [Johns Hopkins Univ., Baltimore (United States)

    2003-08-01

    The lifetime of silicon detectors in a severe radiation environment at CERN LHC depends strongly upon careful detector design and material selection due to the anticipated radiation -induced damage. We recently fabricated more radiation-tolerant silicon pixel detectors of a double-sided guard ring structure. The electrical characterization of such detectors was performed before and after irradiation to neutron fluence (1Mev equivalent ) up to 6 x 10{sup 14} n/cm{sup 2} by measuring the leakage current, the full depletion voltage, and the potential distribution over the guard rings.

  2. Two-dimension multiwire detector for ionizing radiation; Detector multifilar bidimensional para radiacao ionizante

    Energy Technology Data Exchange (ETDEWEB)

    Barberino, Carlos Henrique

    1993-12-31

    A multiwire proportional Counter of 100 x 100 mm{sup 2} sensitive area has been developed. The chamber is formed by three planes: a cathode plane of 50 {mu}m gold coated tungsten wires stretched on an Epoxi frame; and anode plane made of 20 {mu}m gold plated tungsten wires stretched at 45 deg C with respect to the first cathode wires; and second cathode plane made of copper strips on a printed circuit board at 90 deg C with respect to the first cathode. The cathode strips are connected to the taps of delay-lines chips. The position of the incidence of radiation is extracted by measuring the time difference of the pulse arriving at the extremities of the delay-line chain for each coordinate. The performance of the detector has been tested using 5.89 KeV X-rays from a {sup 55} Fe source, and 8.04 KeV from Rigaku X-rays generator, operating the detector with 90% Ar + 10% CH{sub 4} gas mixture at 930 mbar. An energy resolution of 26% was obtained. An integral non linearity better than 0.3% and a position resolution better than 1 mm have been observed. The information corresponding to each one of the coordinates were digitized by a TDC in a CAMAC system and stored event by event in a micro-computer (IBM-AT). (author) 56 refs., 68 figs.

  3. Radiation detector device for rejecting and excluding incomplete charge collection events

    Energy Technology Data Exchange (ETDEWEB)

    Bolotnikov, Aleksey E.; De Geronimo, Gianluigi; Vernon, Emerson; Yang, Ge; Camarda, Giuseppe; Cui, Yonggang; Hossain, Anwar; Kim, Ki Hyun; James, Ralph B.

    2016-05-10

    A radiation detector device is provided that is capable of distinguishing between full charge collection (FCC) events and incomplete charge collection (ICC) events based upon a correlation value comparison algorithm that compares correlation values calculated for individually sensed radiation detection events with a calibrated FCC event correlation function. The calibrated FCC event correlation function serves as a reference curve utilized by a correlation value comparison algorithm to determine whether a sensed radiation detection event fits the profile of the FCC event correlation function within the noise tolerances of the radiation detector device. If the radiation detection event is determined to be an ICC event, then the spectrum for the ICC event is rejected and excluded from inclusion in the radiation detector device spectral analyses. The radiation detector device also can calculate a performance factor to determine the efficacy of distinguishing between FCC and ICC events.

  4. Performance characteristics of a silicon photomultiplier based compact radiation detector for Homeland Security applications

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hye Min, E-mail: ramilab2011@gmail.com; Joo, Koan Sik

    2015-05-01

    A next-generation compact radiation detector was studied for more accurate measurement of radiation and for improvement of detector reliability for the purpose of developing radiation protection technology and military applications. The previously used radiation detector had some limitations due to its bulky size, limited range and its environment for radiation measurement. On the other hand, the compact radiation detector examined in this study utilizes a silicon photomultiplier which appears to be more suitable for this application because of its physical superiority characterized by its small size, high sensitivity, and durability. Accordingly, a SiPM based scintillation detector has been developed as part of this basic study of military radiation detectors. The detector has been tested for its ability to obtain the operating characteristics of a sensor and analyzed with variations of parameter values and for efficiency of detection in accordance with its ability to measure radiation in the environment. Two SiPM based Scintillation detectors with LYSO, BGO and CsI:Tl scintillators were developed and the detectors were analyzed by a number of operating characteristics such as reverse bias, operating temperature and high magnetic field, that depend on environmental changes in radiation measurement. The Photon count rate and spectra were compared for these three scintillators. We found that there were variations in the radiation detection which were characterized by reverse bias, temperature and high magnetic field. It was also found that there was an 11.9% energy resolution for the LYSO, 15.5% for BGO and 13.5% for CsI:Tl using Array SiPM, and 18% for CsI:Tl energy resolution using single SiPM when we measured energy resolution of 511 keV for {sup 22}Na. These results demonstrate the potential widespread use of SiPM based compact radiation detectors for Homeland Security applications.

  5. Performance characteristics of a silicon photomultiplier based compact radiation detector for Homeland Security applications

    International Nuclear Information System (INIS)

    A next-generation compact radiation detector was studied for more accurate measurement of radiation and for improvement of detector reliability for the purpose of developing radiation protection technology and military applications. The previously used radiation detector had some limitations due to its bulky size, limited range and its environment for radiation measurement. On the other hand, the compact radiation detector examined in this study utilizes a silicon photomultiplier which appears to be more suitable for this application because of its physical superiority characterized by its small size, high sensitivity, and durability. Accordingly, a SiPM based scintillation detector has been developed as part of this basic study of military radiation detectors. The detector has been tested for its ability to obtain the operating characteristics of a sensor and analyzed with variations of parameter values and for efficiency of detection in accordance with its ability to measure radiation in the environment. Two SiPM based Scintillation detectors with LYSO, BGO and CsI:Tl scintillators were developed and the detectors were analyzed by a number of operating characteristics such as reverse bias, operating temperature and high magnetic field, that depend on environmental changes in radiation measurement. The Photon count rate and spectra were compared for these three scintillators. We found that there were variations in the radiation detection which were characterized by reverse bias, temperature and high magnetic field. It was also found that there was an 11.9% energy resolution for the LYSO, 15.5% for BGO and 13.5% for CsI:Tl using Array SiPM, and 18% for CsI:Tl energy resolution using single SiPM when we measured energy resolution of 511 keV for 22Na. These results demonstrate the potential widespread use of SiPM based compact radiation detectors for Homeland Security applications

  6. Design of a Silicon Photomultiplier Based Compact Radiation Detector for Homeland Security Screening

    International Nuclear Information System (INIS)

    Next-generation compact radiation detector was studied for more accurate measurement of radiation and improvement of reliability of the detector with purpose of developing of radiation protection technology and military application. The radiation detector which was used previously had some limitations due to the bulky size, limited range and the environment of radiation measurement. On the other hand, the compact radiation detector under this study which has adopted the silicon photomultiplier seems to be suitable for the application because of its physical excellence which are characterized by its small size, high sensitivity and durability. Accordingly, a SiPM based Scintillation detector has been made as a part of basic study of military radiation detector development. The detector has been tested for obtaining the operating characteristics of a sensor and analyzed with variation of parameter values and the efficiency of detection in accordance with the factor of measurement environment of radiation. The two SiPM based Scintillation detectors with the LYSO, BGO and CsI:Tl scintillator were made and the detectors were analyzed with the variation of operating characteristics as reverse bias, operating temperature and high magnetic field that are depend on environmental changes of radiation measurement. The results of three scintillators for a photon count rate and spectra were compared with each other. It was found that there are variations of radiation detection which are characterized by reverse bias, temperature and high magnetic field. Also, It was found that there were the 11.9 % for the LYSO, 15.5 % for BGO and 13.5 % for CsI:Tl energy resolution using array SiPM, and 18 % for CsI:Tl energy resolution using single SiPM, respectively when we measured energy resolution of 511 keV for 22Na. The results demonstrate the potential of SiPM based compact radiation detector to be used widely for Homeland Security applications. (authors)

  7. Novel computational methods for image analysis and quantification using position sensitive radiation detectors

    OpenAIRE

    Sanchez Crespo, Alejandro

    2005-01-01

    The major advantage of position sensitive radiation detector systems lies in their ability to non invasively map the regional distribution of the emitted radiation in real-time. Three of such detector systems were studied in this thesis, gamma-cameras, positron cameras and CMOS image sensors. A number of physical factors associated to these detectors degrade the qualitative and quantitative properties of the obtained images. These blurring factors could be divided into two groups. The first g...

  8. Radiation detection. Chapter 4. Effects of tellurium precipitates on charge collection in CZT (CdZnTe) nuclear radiation detectors

    International Nuclear Information System (INIS)

    It has been recently demonstrated that individual Tellurium (Te) precipitates identified with infrared (IR) transmission microscopes in radiation detector-grade CdZnTe (CZT) crystals correlate precisely with poor charge collection. This indicates that Te precipitates adversely affect the electron charge collection efficiency and thus the performance of nuclear radiation detectors produced from the crystals. By employing different techniques it is investigated how Te precipitates affect different CZT devices. These measurements indicate that Te precipitates put limits on the size, electrode configurations and spectral performance of CZT detectors. These limits can be relaxed by lowering the size and density of Te precipitates in the detectors

  9. Performance of bulk SiC radiation detectors

    CERN Document Server

    Cunningham, W; Lamb, G; Scott, J; Mathieson, K; Roy, P; Bates, R; Thornton, P; Smith, K M; Cusco, R; Glaser, M; Rahman, M

    2002-01-01

    SiC is a wide-gap material with excellent electrical and physical properties that may make it an important material for some future electronic devices. The most important possible applications of SiC are in hostile environments, such as in car/jet engines, within nuclear reactors, or in outer space. Another area where the material properties, most notably radiation hardness, would be valuable is in the inner tracking detectors of particle physics experiments. Here, we describe the performance of SiC diodes irradiated in the 24 GeV proton beam at CERN. Schottky measurements have been used to probe the irradiated material for changes in I-V characteristics. Other methods, borrowed from III-V research, used to study the irradiated surface include atomic force microscope scans and Raman spectroscopy. These have been used to observe the damage to the materials surface and internal lattice structure. We have also characterised the detection capabilities of bulk semi-insulating SiC for alpha radiation. By measuring ...

  10. Radiation damage on p-type silicon detectors

    CERN Document Server

    Pirollo, S; Borchi, E; Bruzzi, M; Catacchini, E; Lazanu, S; Li, Z; Sciortino, S

    1999-01-01

    Two sets of p-type silicon (high resistivity bulk and low resistivity epitaxial) samples and one set of n sup + -p junctions have been irradiated with fast neutrons up to 8x10 sup 1 sup 3 cm sup - sup 2. I-V and C-V characteristics as well as Thermally Stimulated Currents (TSC) and Hall Effect (HE) analyses have been performed on the irradiated samples and diodes in view to determine the radiation-induced damage and the change in the electrical properties. A change in the effective carrier concentration and in the leakage current after irradiation similar to the one found for p sup + -n detectors has been observed in p-type diodes. An increase with the fluence of the resistivity and Hall coefficient was measured at room temperature both for the low and high resistivity sets. This evidence has been explained in terms of a two-level model taking into account a linear increase in concentration with the fluence of the main radiation-induced defects observed with TSC, probably related to divacancy and carbon-oxyge...

  11. A conductive surface coating for Si-CNT radiation detectors

    Science.gov (United States)

    Valentini, Antonio; Valentini, Marco; Ditaranto, Nicoletta; Melisi, Domenico; Aramo, Carla; Ambrosio, Antonio; Casamassima, Giuseppe; Cilmo, Marco; Fiandrini, Emanuele; Grossi, Valentina; Guarino, Fausto; Angela Nitti, Maria; Passacantando, Maurizio; Santucci, Sandro; Ambrosio, Michelangelo

    2015-08-01

    Silicon-Carbon Nanotube radiation detectors need an electrically conductive coating layer to avoid the nanotube detachment from the silicon substrate and uniformly transmit the electric field to the entire nanotube active surface. Coating material must be transparent to the radiation of interest, and must provide the drain voltage necessary to collect charges generated by incident photons. For this purpose various materials have been tested and proposed in photodetector and photoconverter applications. In this article interface properties and electrical contact behavior of Indium Tin Oxide films on Carbon Nanotubes have been analyzed. Ion Beam Sputtering has been used to grow the transparent conductive layer on the nanotubes. The films were deposited at room temperature with Oxygen/Argon mixture into the sputtering beam, at fixed current and for different beam energies. Optical and electrical analyses have been performed on films. Surface chemical analysis and in depth profiling results obtained by X-ray Photoelectron Spectroscopy of the Indium Tin Oxide layer on nanotubes have been used to obtain the interface composition. Results have been applied in photodetectors realization based on multi wall Carbon Nanotubes on silicon.

  12. Characterisation of an electron collecting CdTe strip sensor using the MYTHEN readout chip

    International Nuclear Information System (INIS)

    MYTHEN is a single photon counting hybrid strip X-ray detector that has found application in x-ray powder diffraction (XRPD) experiments at synchrotrons worldwide. Originally designed to operate with hole collecting silicon sensors, MYTHEN is suited for detecting X-rays above 5 keV, however many PD beamlines have been designed for energies above 50 keV where silicon sensors have an efficiency of only few percent. In order to adapt MYTHEN to meet these energies the absorption efficiency of the sensor must be substantially increased. Cadmium-Telluride (CdTe) has an absorption efficiency approximately 30 times that of silicon at 50 keV, and is therefore a very promising replacement candidate for silicon. Furthermore, the large dynamic range of the pre-amplifier of MYTHEN and its double polarity capability has enabled the characterisation of an electron collecting Schottky type CdTe sensor. A CdTe MYTHEN system has undergone a series of characterisation experiments including stress test of bias and radiation induced polarizations. The performance of this system will be presented and discussed

  13. A cylindrical xenon ionization chamber detector for high resolution, room temperature gamma radiation spectroscopy

    International Nuclear Information System (INIS)

    A 0.75 l gridded cylindrical ionization chamber gamma radiation detector using highly purified xenon near the critical point as the detection medium is described. The detector operates at room temperature with a noise subtracted intrinsic energy resolution of 1.8% at 662 keV. The detector design and performance variables are discussed in comparison to previous planar and cylindrical xenon detectors. (orig.)

  14. Industrial workshop on LASL semiconductor radiation-detector research and development

    International Nuclear Information System (INIS)

    An Industrial Workshop on LASL Semiconductor Radiation Detector Research and Development was held at the Los Alamos Scientific Laboratory (LASL) in the spring of 1977. The purpose was to initiate communication between our detector research and development program and industry. LASL research programs were discussed with special emphasis on detector problems. Industrial needs and capabilities in detector research and development were also presented. Questions of technology transfer were addressed. The notes presented here are meant to be informal, as were the presentations

  15. Plural-wavelength flame detector that discriminates between direct and reflected radiation

    Science.gov (United States)

    Hall, Gregory H. (Inventor); Barnes, Heidi L. (Inventor); Medelius, Pedro J. (Inventor); Simpson, Howard J. (Inventor); Smith, Harvey S. (Inventor)

    1997-01-01

    A flame detector employs a plurality of wavelength selective radiation detectors and a digital signal processor programmed to analyze each of the detector signals, and determine whether radiation is received directly from a small flame source that warrants generation of an alarm. The processor's algorithm employs a normalized cross-correlation analysis of the detector signals to discriminate between radiation received directly from a flame and radiation received from a reflection of a flame to insure that reflections will not trigger an alarm. In addition, the algorithm employs a Fast Fourier Transform (FFT) frequency spectrum analysis of one of the detector signals to discriminate between flames of different sizes. In a specific application, the detector incorporates two infrared (IR) detectors and one ultraviolet (UV) detector for discriminating between a directly sensed small hydrogen flame, and reflections from a large hydrogen flame. The signals generated by each of the detectors are sampled and digitized for analysis by the digital signal processor, preferably 250 times a second. A sliding time window of approximately 30 seconds of detector data is created using FIFO memories.

  16. Performance of an LPD prototype detector at MHz frame rates under Synchrotron and FEL radiation

    Science.gov (United States)

    Koch, A.; Hart, M.; Nicholls, T.; Angelsen, C.; Coughlan, J.; French, M.; Hauf, S.; Kuster, M.; Sztuk-Dambietz, J.; Turcato, M.; Carini, G. A.; Chollet, M.; Herrmann, S. C.; Lemke, H. T.; Nelson, S.; Song, S.; Weaver, M.; Zhu, D.; Meents, A.; Fischer, P.

    2013-11-01

    A MHz frame rate X-ray area detector (LPD — Large Pixel Detector) is under development by the Rutherford Appleton Laboratory for the European XFEL. The detector will have 1 million pixels and allows analogue storage of 512 images taken at 4.5 MHz in the detector front end. The LPD detector has 500 μm thick silicon sensor tiles that are bump bonded to a readout ASIC. The ASIC's preamplifier provides relatively low noise at high speed which results in a high dynamic range of 105 photons over an energy range of 5-20 keV. Small scale prototypes of 32 × 256 pixels (LPD 2-Tile detector) and 256 × 256 pixels (LPD supermodule detector) are now available for X-ray tests. The performance of prototypes of the detector is reported for first tests under synchrotron radiation (PETRA III at DESY) and Free-Electron-Laser radiation (LCLS at SLAC). The initial performance of the detector in terms of signal range and noise, radiation hardness and spatial and temporal response are reported. The main result is that the 4.5 MHz sampling detection chain is reliably working, including the analogue on-chip memory concept. The detector is at least radiation hard up to 5 MGy at 12 keV. In addition the multiple gain concept has been demonstrated over a dynamic range to 104 at 12 keV with a readout noise equivalent to < 1 photon rms in its most sensitive mode.

  17. Performance of an LPD prototype detector at MHz frame rates under Synchrotron and FEL radiation

    International Nuclear Information System (INIS)

    A MHz frame rate X-ray area detector (LPD — Large Pixel Detector) is under development by the Rutherford Appleton Laboratory for the European XFEL. The detector will have 1 million pixels and allows analogue storage of 512 images taken at 4.5 MHz in the detector front end. The LPD detector has 500 μm thick silicon sensor tiles that are bump bonded to a readout ASIC. The ASIC's preamplifier provides relatively low noise at high speed which results in a high dynamic range of 105 photons over an energy range of 5–20 keV. Small scale prototypes of 32 × 256 pixels (LPD 2-Tile detector) and 256 × 256 pixels (LPD supermodule detector) are now available for X-ray tests. The performance of prototypes of the detector is reported for first tests under synchrotron radiation (PETRA III at DESY) and Free-Electron-Laser radiation (LCLS at SLAC). The initial performance of the detector in terms of signal range and noise, radiation hardness and spatial and temporal response are reported. The main result is that the 4.5 MHz sampling detection chain is reliably working, including the analogue on-chip memory concept. The detector is at least radiation hard up to 5 MGy at 12 keV. In addition the multiple gain concept has been demonstrated over a dynamic range to 104 at 12 keV with a readout noise equivalent to < 1 photon rms in its most sensitive mode

  18. A liquid radiation detector with high spatial resolution

    Science.gov (United States)

    Alvarez, L.

    1972-01-01

    Detector, using point anode, minimizes problem of oblique tracks by permitting construction of very thin counter. Detector is useful in cosmic ray and high energy physics research and X-ray and neutron diffraction technology.

  19. X-ray diffuse scattering for evaluation of wide bandgap semiconductor nuclear radiation detectors

    International Nuclear Information System (INIS)

    The crystalline perfection of solid state radiation detectors was examined using triple axis x-ray diffraction. Triple axis techniques provide a means to analyze the origin of diffraction peak broadening: the effects of strain (due to deviations in alloy composition or stoichiometry) and lattice tilts (mosaic structure) can be separated. Cd1-xZnxTe (x∼0.1), HgI2, and GaAs detector materials were studied. In the cases of Cd1-xZnxTe and HgI2 the crystalline properties of detectors with different spectral responses to γ-radiation were determined. Increased mosaicity was universally found to be related to deteriorated detector properties. For Cd1-xZnxTe, detectors with poor performance possessed greater levels of diffuse scatter due to lattice tilts than did high quality detectors. For GaAs, low angle grain boundaries were attributed to impaired detector performance. Additionally, in large HgI2 detectors, deviations from stoichiometry were also related to reduced performance. Interestingly, HgI2 detectors which possessed a sharp spectral response to γ-radiation but also showed polarization were of comparable crystallinity to those detectors which did not exhibit polarization effects. This initial analysis suggests that polarization is related to native point defects or chemical impurities which do not significantly alter the crystallinity of the material. Overall, within a given class of materials, improved detector performance (better spectral response) always correlated with better material quality. (orig.)

  20. Plasma Processes : Plasma sprayed alumina coatings for radiation detector development

    Indian Academy of Sciences (India)

    Mary Alex; V Balagi; K R Prasad; K P Sreekumar; P V Ananthapadmanabhan

    2000-11-01

    Conventional design of radiation detectors uses sintered ceramic insulating modules. The major drawback of these ceramic components is their inherent brittleness. Ion chambers, in which these ceramic spacers are replaced by metallic components with plasma spray coated alumina, have been developed in our Research Centre. These components act as thin spacers that have good mechanical strength as well as high electrical insulation and replace alumina insulators with the same dimensions. As a result, the design of the beam loss monitor ion chamber for CAT could be simplified by coating the outer surface of the HT electrode with alumina. One of the chambers developed for isotope calibrator for brachytherapy gamma sources has its outer aluminium electrode (60 mm dia × 220 mm long) coated with 250 thick alumina (97%) + titania (3%). In view of potential applications in neutron-sensitive ion chambers used in reactor control instrumentation, studies were carried out on alumina 100 to 500 thick coatings on copper, aluminium and SS components. The electrical insulation varied from 108 ohms to 1012 ohms for coating thicknesses above 200 . The porosity in the coating resulted in some fall in electrical insulation due to moisture absorption. An improvement could be achieved by providing the ceramic surface with moisture-repellent silicone oil coating. Irradiation at Apsara reactor core location showed that the coating on aluminium was found to be unaffected after exposure to 1017 nvt fluence.