WorldWideScience

Sample records for cdte crystals grown

  1. Crystal Growth and Characterization of CdTe Grown by Vertical Gradient Freeze

    Science.gov (United States)

    Su, Ching-Hua; Lehoczky, S. L.; Raghothamachar, B.; Dudley, M.

    2007-01-01

    In this study, crystals of CdTe were grown from melts by the unseeded vertical gradient freeze method. The quality of grown crystal were studied by various characterization techniques including Synchrotron White Beam X-ray Topography (SWBXT), chemical analysis by glow discharge mass spectroscopy (GDMS), low temperature photoluminescence (PL), and Hall measurements. The SWBXT images from various angles show nearly strain-free grains, grains with inhomogeneous strains, as well as twinning nucleated in the shoulder region of the boule. The GDMS chemical analysis shows the contamination of Ga at a level of 3900 ppb, atomic. The low temperature PL measurement exhibits the characteristic emissions of a Ga-doped sample. The Hall measurements show a resistivity of 1 x l0(exp 7) ohm-cm at room temperature to 3 x 10(exp 9) ohm-cm at 78K with the respective hole and electron concentration of 1.7 x 10(exp 9) cm(exp -3) and 3.9 x 10(exp 7) cm(exp -3) at room temperature.

  2. Single-Crystal CdTe Homojunction Structures for Solar Cell Applications

    Science.gov (United States)

    Su, Peng-Yu; Dahal, Rajendra; Wang, Gwo-Ching; Zhang, Shengbai; Lu, Toh-Ming; Bhat, Ishwara B.

    2015-09-01

    We report two different CdTe homojunction solar cell structures. Single-crystal CdTe homojunction solar cells were grown on GaAs single-crystal substrates by metalorganic chemical vapor deposition. Arsenic and iodine were used as dopants for p-type and n-type CdTe, respectively. Another homojunction solar cell structure was fabricated by growing n-type CdTe directly on bulk p-type CdTe single-crystal substrates. The electrical properties of the different layers were characterized by Hall measurements. When arsine was used as arsenic source, the highest hole concentration was ~6 × 1016 cm-3 and the activation efficiency was ~3%. Very abrupt arsenic doping profiles were observed by secondary ion mass spectrometry. For n-type CdTe with a growth temperature of 250°C and a high Cd/Te ratio the electron concentration was ~4.5 × 1016 cm-3. Because of the 300 nm thick n-type CdTe layer, the short circuit current of the solar cell grown on the bulk CdTe substrate was less than 10 mA/cm2. The open circuit voltage of the device was 0.86 V. According to a prediction based on measurement of short circuit current density ( J sc) as a function of open circuit voltage ( V oc), an open circuit voltage of 0.92 V could be achieved by growing CdTe solar cells on bulk CdTe substrates.

  3. MBE-Grown CdTe Layers on GaAs with In-assisted Thermal Deoxidation

    Science.gov (United States)

    Arı, Ozan; Bilgilisoy, Elif; Ozceri, Elif; Selamet, Yusuf

    2016-10-01

    Molecular beam epitaxy (MBE) growth of thin (˜2 μm) CdTe layers characterized by high crystal quality and low defect density on lattice mismatched substrates, such as GaAs and Si, has thus far been difficult to achieve. In this work, we report the effects of in situ thermal deoxidation under In and As4 overpressure prior to the CdTe growth on epiready GaAs(211)B wafers, aiming to enhance CdTe crystal quality. Thermally deoxidized GaAs samples were analyzed using in situ reflection high energy electron diffraction, along with ex situ x-ray photo-electron spectroscopy (XPS) and atomic force microscopy. MBE-grown CdTe layers were characterized using x-ray diffraction (XRD) and Everson-type wet chemical defect decoration etching. We found that In-assisted desorption allowed for easier surface preparation and resulted in a smoother surface compared to As-assisted surface preparation. By applying In-assisted thermal deoxidation to GaAs substrates prior to the CdTe growth, we have obtained single crystal CdTe films with a CdTe(422) XRD rocking curve with a full-width half-maximum value of 130.8 arc-s and etch pit density of 4 × 106 cm-2 for 2.54 μm thickness. We confirmed, by XPS analysis, no In contamination on the thermally deoxidized surface.

  4. Photoluminescence of CdTe nanocrystals grown by pulsed laser ablation on a template of Si nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Guillen-Cervantes, A.; Silva-Lopez, H.; Becerril-Silva, M.; Arias-Ceron, J.S.; Campos-Gonzalez, E.; Zelaya-Angel, O. [CINVESTAV-IPN, Physics Department, Apdo. Postal 14-740, Mexico (Mexico); Medina-Torres, A.C. [Escuela Superior de Fisica y Matematicas del IPN, Mexico (Mexico)

    2014-11-12

    CdTe nanocrystals were grown on eroded Si (111) substrates at room temperature by pulsed laser ablation. Before growth, Si substrates were subjected to different erosion time in order to investigate the effect on the CdTe samples. The erosion process consists of exposition to a pulsed high-voltage electric arc. The surface consequence of the erosion process consists of Si nanoparticles which acted as a template for the growth of CdTe nanocrystals. CdTe samples were studied by X-ray diffraction (XRD), room temperature photoluminescence (RT PL) and high-resolution transmission electron microscopy (HRTEM). CdTe nanocrystals grew in the stable cubic phase, according to XRD spectra. A strong visible emission was detected in photoluminescence (PL) experiments. The PL signal was centered at 540 nm (∝2.34 eV). With the effective mass approximation, the size of the CdTe crystals was estimated around 3.5 nm. HRTEM images corroborated the physical characteristics of CdTe nanocrystals. These results could be useful for the development of CdTe optoelectronic devices. (orig.)

  5. Device Fabrication using Crystalline CdTe and CdTe Ternary Alloys Grown by MBE

    Energy Technology Data Exchange (ETDEWEB)

    Zaunbrecher, Katherine; Burst, James; Seyedmohammadi, Shahram; Malik, Roger; Li, Jian V.; Gessert, Timothy A.; Barnes, Teresa

    2015-06-14

    We fabricated epitaxial CdTe:In/CdTe:As homojunction and CdZnTe/CdTe and CdMgTe/CdTe heterojunction devices grown on bulk CdTe substrates in order to study the fundamental device physics of CdTe solar cells. Selection of emitter-layer alloys was based on passivation studies using double heterostructures as well as band alignment. Initial results show significant device integration challenges, including low dopant activation, high resistivity substrates and the development of low-resistance contacts. To date, the highest open-circuit voltage is 715 mV in a CdZnTe/CdTe heterojunction following anneal, while the highest fill factor of 52% was attained in an annealed CdTe homojunction. In general, all currentvoltage measurements show high series resistance, capacitancevoltages measurements show variable doping, and quantum efficiency measurements show low collection. Ongoing work includes overcoming the high resistance in these devices and addressing other possible device limitations such as non-optimum junction depth, interface recombination, and reduced bulk lifetime due to structural defects.

  6. Microstructural, optical and electrical properties of Cl-doped CdTe single crystals

    Directory of Open Access Journals (Sweden)

    Choi Hyojeong

    2016-09-01

    Full Text Available Microstructural, optical and electrical properties of Cl-doped CdTe crystals grown by the low pressure Bridgman (LPB method were investigated for four different doping concentrations (unintentionally doped, 4.97 × 1019 cm−3, 9.94 × 1019 cm−3 and 1.99 × 1020 cm−3 and three different locations within the ingots (namely, samples from top, middle and bottom positions in the order of the distance from the tip of the ingot. It was shown that Cl dopant suppressed the unwanted secondary (5 1 1 crystalline orientation. Also, the average size and surface coverage of Te inclusions decreased with an increase in Cl doping concentration. Spectroscopic ellipsometry measurements showed that the optical quality of the Cl-doped CdTe single crystals was enhanced. The resistivity of the CdTe sample doped with Cl at the 1.99 × 1020 cm−3 was above 1010 Ω.cm.

  7. Physical properties of Bi doped CdTe thin films grown by the CSVT method

    Energy Technology Data Exchange (ETDEWEB)

    Vigil-Galan, O.; Sastre-Hernandez, J.; Cruz-Gandarilla, F.; Aguilar-Hernandez, J.; Contreras-Puente, G.; Tufino-Velazquez, M. [Escuela Superior de Fisica y Matematicas, Instituto Politecnico Nacional, 07738 Mexico D. F. (Mexico); Marin, E. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Instituto Politecnico Nacional, 11500 Mexico, D. F. (Mexico); Saucedo, E.; Ruiz, C.M.; Bermudez, V. [Departamento de Fisica de Materiales, Universidad Autonoma de Madrid, 28049 Madrid (Spain)

    2006-09-22

    A study of the physical properties of CdTe thin films doped with Bi is presented. CdTe:Bi thin films were deposited by the close space vapor transport (CSVT) technique using powdered CdTe:Bi crystals grown by the vertical Bridgman method. CdTe:Bi crystals were obtained with nominal Bi doping concentrations varying in the 1x10{sup 17}-8x10{sup 18}cm{sup -3} range. The physical properties of CdTe:Bi thin films were studied performing photoluminescence, X-ray, SEM, photoacoustic spectroscopy and resistivity measurements. We observed a decrease of the resistivity values of CdTe:Bi films with the Bi content as low as 6x10{sup 5}{omega}-cm for Bi concentrations of 8x10{sup 18}cm{sup -3}. These are meaningful results for CdTe-based solar cells. (author)

  8. Single CdTe microwire photodetectors grown by close-spaced sublimation method.

    Science.gov (United States)

    Yang, Gwangseok; Kim, Byung-Jae; Kim, Donghwan; Kim, Jihyun

    2014-08-11

    We demonstrate single CdTe microwire field-effect transistors (FETs) that are highly sensitive to ultraviolet (UV) light. Dense CdTe microwires were catalytically grown using a close-spaced sublimation system. Structural, morphological and transport properties in conjunction with the optoelectronic properties were systemically investigated. CdTe microwire FETs exhibited p-type behaviors with field-effect mobilities up to 1.1 × 10(-3) cm2 V(-1) s(-1). Optoelectronic properties of our CdTe microwire FETs were studied under dark and UV-illumination conditions, where photoresponse was highly dependent on the back-gate bias conditions. Our CdTe microwire FET-based photodetectors are promising for high-performance micro-optoelectronic applications.

  9. Time-resolved photoluminescence of polycrystalline CdTe grown by close-spaced sublimation

    Science.gov (United States)

    Keyes, B.; Dhere, R.; Ramanathan, K.

    1994-06-01

    Polycrystalline CdTe has shown great promise as a low-cost material for thin-film, terrestrial photovoltaic applications, with efficiencies approaching 16% achieved with close-spaced sublimation (CSS)-grown CdTe. Due to the inherent complexities of polycrystalline material, much of the progress in this area has occurred through a slow trial-and-error process. This report uses time-resolved photoluminescence (TRPL) to characterize the CdTe material quality as a function of one basic growth parameter—substrate temperature. This characterization is done for two different glass substrate materials, soda-lime silicate and borosilicate.

  10. Fractal features of CdTe thin films grown by RF magnetron sputtering

    Science.gov (United States)

    Hosseinpanahi, Fayegh; Raoufi, Davood; Ranjbarghanei, Khadijeh; Karimi, Bayan; Babaei, Reza; Hasani, Ebrahim

    2015-12-01

    Cadmium telluride (CdTe) thin films were prepared by RF magnetron sputtering on glass substrates at room temperature (RT). The film deposition was performed for 5, 10, and 15 min at power of 30 W with a frequency of 13.56 MHz. The crystal structure of the prepared CdTe thin films was studied by X-ray diffraction (XRD) technique. XRD analyses indicate that the CdTe films are polycrystalline, having zinc blende structure of CdTe irrespective of their deposition time. All CdTe films showed a preferred orientation along (1 1 1) crystalline plane. The surface morphology characterization of the films was studied using atomic force microscopy (AFM). The quantitative AFM characterization shows that the RMS surface roughness of the prepared CdTe thin films increases with increasing the deposition time. The detrended fluctuation analysis (DFA) and also multifractal detrended fluctuation analysis (MFDFA) methods showed that prepared CdTe thin films have multifractal nature. The complexity, roughness of the CdTe thin films and strength of the multifractality increase as deposition time increases.

  11. Properties of CdTe nanocrystalline thin films grown on different substrates by low temperature sputtering

    Institute of Scientific and Technical Information of China (English)

    Chen Huimin; Guo Fuqiang; Zhang Baohua

    2009-01-01

    CdTe nanocrystalline thin films have been prepared on glass, Si and Al2O3 substrates by radio-frequency magnetron sputtering at liquid nitrogen temperature. The crystal structure and morphology of the films were characterized by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM). The XRD examinations revealed that CdTe films on glass and Si had a better crystal quality and higher preferential orientation along the (111) plane than the Al2O3. FESEM observations revealed a continuous and dense morphology of CdTe films on glass and Si substrates. Optical properties of nanocrystalline CdTe films deposited on glass substrates for different deposited times were studied.

  12. Stepwise cooling technique as a method of growing high-perfection Cl-compensated CdTe

    Science.gov (United States)

    Pavlyuk, M. D.; Subbotin, I. A.; Kanevsky, V. M.; Artemov, V. V.

    2017-01-01

    High-perfection crystals of Cl-compensated CdTe have been grown by the Obreimov-Shubnikov technique using a schedule of stepwise crystal cooling developed with due regard for the correct CdTe phase diagram.

  13. High Efficiency Single Crystal CdTe Solar Cells: November 19, 2009 - January 31, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Carmody, M.; Gilmore, A.

    2011-05-01

    The goal of the program was to develop single crystal CdTe-based top cells grown on Si solar cells as a platform for the subsequent manufacture of high efficiency tandem cells for CPV applications. The keys to both the single junction and the tandem junction cell architectures are the ability to grow high quality single-crystal CdTe and CdZnTe layers on p-type Si substrates, to dope the CdTe and CdZnTe controllably, both n and p-type, and to make low resistance ohmic front and back contacts. EPIR demonstrated the consistent MBE growth of CdTe/Si and CdZnTe/Si having high crystalline quality despite very large lattice mismatches; epitaxial CdTe/Si and CdZnTe/Si consistently showed state-of-the-art electron mobilities and good hole mobilities; bulk minority carrier recombination lifetimes of unintentionally p-doped CdTe and CdZnTe grown by MBE on Si were demonstrated to be consistently of order 100 ns or longer; desired n- and p-doping levels were achieved; solar cell series specific resistances <10 ?-cm2 were achieved; A single-junction solar cell having a state-of-the-art value of Voc and a unverified 16.4% efficiency was fabricated from CdZnTe having a 1.80 eV bandgap, ideal for the top junction in a tandem cell with a Si bottom junction.

  14. CdTe and CdZnTe crystals for room temperature gamma-ray detectors

    CERN Document Server

    Franc, J; Belas, E; Grill, R; Hlidek, P; Moravec, P; Bok, J B

    1999-01-01

    CdTe(Cl) detectors from CdTe single crystals, grown by the Bridgman method from Te-rich melt, were fabricated. The quality of the detectors was tested with sup 5 sup 7 Co and sup 2 sup 4 sup 1 Am sources. In the sup 5 sup 7 Co spectrum low noise is demonstrated by the presence of a 14 keV peak and good resolution approx 7 keV (FWHM) evident from the separation of 122 and 136 keV peaks. A review is given of the state-of-the-art properties of (CdZn)Te single crystals prepared for substrates in the Institute of Physics of Charles University. The quality of samples is tested by measurements of the diffusion length of minority carriers, from which the mobility-lifetime product is evaluated. (author)

  15. Impact of extended defects on recombination in CdTe heterostructures grown by molecular beam epitaxy

    Science.gov (United States)

    Zaunbrecher, Katherine N.; Kuciauskas, Darius; Swartz, Craig H.; Dippo, Pat; Edirisooriya, Madhavie; Ogedengbe, Olanrewaju S.; Sohal, Sandeep; Hancock, Bobby L.; LeBlanc, Elizabeth G.; Jayathilaka, Pathiraja A. R. D.; Barnes, Teresa M.; Myers, Thomas H.

    2016-08-01

    Heterostructures with CdTe and CdTe1-xSex (x ˜ 0.01) absorbers between two wider-band-gap Cd1-xMgxTe barriers (x ˜ 0.25-0.3) were grown by molecular beam epitaxy to study carrier generation and recombination in bulk materials with passivated interfaces. Using a combination of confocal photoluminescence (PL), time-resolved PL, and low-temperature PL emission spectroscopy, two extended defect types were identified and the impact of these defects on charge-carrier recombination was analyzed. The dominant defects identified by confocal PL were dislocations in samples grown on (211)B CdTe substrates and crystallographic twinning-related defects in samples on (100)-oriented InSb substrates. Low-temperature PL shows that twin-related defects have a zero-phonon energy of 1.460 eV and a Huang-Rhys factor of 1.50, while dislocation-dominated samples have a 1.473-eV zero-phonon energy and a Huang-Rhys factor of 1.22. The charge carrier diffusion length near both types of defects is ˜6 μm, suggesting that recombination is limited by diffusion dynamics. For heterostructures with a low concentration of extended defects, the bulk lifetime was determined to be 2.2 μs with an interface recombination velocity of 160 cm/s and an estimated radiative lifetime of 91 μs.

  16. Impact of extended defects on recombination in CdTe heterostructures grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Zaunbrecher, Katherine N. [Department of Physics, Colorado State University, Fort Collins, Colorado 80523, USA; National Renewable Energy Laboratory, Golden, Colorado 80401, USA; Kuciauskas, Darius [National Renewable Energy Laboratory, Golden, Colorado 80401, USA; Swartz, Craig H. [Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, Texas 78666, USA; Dippo, Pat [National Renewable Energy Laboratory, Golden, Colorado 80401, USA; Edirisooriya, Madhavie [Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, Texas 78666, USA; Ogedengbe, Olanrewaju S. [Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, Texas 78666, USA; Sohal, Sandeep [Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, Texas 78666, USA; Hancock, Bobby L. [Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, Texas 78666, USA; LeBlanc, Elizabeth G. [Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, Texas 78666, USA; Jayathilaka, Pathiraja A. R. D. [Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, Texas 78666, USA; Barnes, Teresa M. [National Renewable Energy Laboratory, Golden, Colorado 80401, USA; Myers, Thomas H. [Materials Science, Engineering and Commercialization Program, Texas State University, San Marcos, Texas 78666, USA

    2016-08-29

    Heterostructures with CdTe and CdTe 1-xSex (x ~ 0.01) absorbers between two wider-band-gap Cd1-xMgxTe barriers (x ~ 0.25-0.3) were grown by molecular beam epitaxy to study carrier generation and recombination in bulk materials with passivated interfaces. Using a combination of confocal photoluminescence (PL), time-resolved PL, and low-temperature PL emission spectroscopy, two extended defect types were identified and the impact of these defects on charge-carrier recombination was analyzed. The dominant defects identified by confocal PL were dislocations in samples grown on (211)B CdTe substrates and crystallographic twinning-related defects in samples on (100)-oriented InSb substrates. Low-temperature PL shows that twin-related defects have a zero-phonon energy of 1.460 eV and a Huang-Rhys factor of 1.50, while dislocation-dominated samples have a 1.473-eV zero-phonon energy and a Huang-Rhys factor of 1.22. The charge carrier diffusion length near both types of defects is ~6 um, suggesting that recombination is limited by diffusion dynamics. For heterostructures with a low concentration of extended defects, the bulk lifetime was determined to be 2.2 us with an interface recombination velocity of 160 cm/s and an estimated radiative lifetime of 91 us.

  17. SEM, EDS, PL and absorbance study of CdTe thin films grown by CSS method

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Torres, M.E.; Silva-Gonzalez, R.; Gracia-Jimenez, J.M. [Instituto de Fisica, BUAP, Apdo. Postal J-48, San Manuel, 72570 Puebla, Pue. (Mexico); Casarrubias-Segura, G. [CIE- UNAM, 62580 Temixco, Morelos (Mexico)

    2006-09-22

    Oxygen-doped CdTe films were grown on conducting glass substrates by the close spaced sublimation (CSS) method and characterized using SEM, EDS, photoluminescence (PL) and absorbance. A significant change in the polycrystalline morphology is observed when the oxygen proportion is increased in the deposition atmosphere. The EDS analysis showed that all samples are nonstoichiometric with excess Te. The PL spectra show emission bands associated with Te vacancies (V{sub Te}), whose intensities decrease as the oxygen proportion in the CSS chamber is increased. The oxygen impurities occupy Te vacancies and modify the surfaces states, improving the nonradiative process. (author)

  18. Ion implantation of CdTe single crystals

    Directory of Open Access Journals (Sweden)

    Wiecek Tomasz

    2017-01-01

    Full Text Available Ion implantation is a technique which is widely used in industry for unique modification of metal surface for medical applications. In semiconductor silicon technology ion implantation is also widely used for thin layer electronic or optoelectronic devices production. For other semiconductor materials this technique is still at an early stage. In this paper based on literature data we present the main features of the implantation of CdTe single crystals as well as some of the major problems which are likely to occur when dealing with them. The most unexpected feature is the high resistance of these crystals against the amorphization caused by ion implantation even at high doses (1017 1/cm2. The second property is the disposal of defects much deeper in the sample then it follows from the modeling calculations. The outline of principles of the ion implantation is included in the paper. The data based on RBS measurements and modeling results obtained by using SRIM software were taken into account.

  19. Ion implantation of CdTe single crystals

    Science.gov (United States)

    Wiecek, Tomasz; Popovich, Volodymir; Bester, Mariusz; Kuzma, Marian

    2016-12-01

    Ion implantation is a technique which is widely used in industry for unique modification of metal surface for medical applications. In semiconductor silicon technology ion implantation is also widely used for thin layer electronic or optoelectronic devices production. For other semiconductor materials this technique is still at an early stage. In this paper based on literature data we present the main features of the implantation of CdTe single crystals as well as some of the major problems which are likely to occur when dealing with them. The most unexpected feature is the high resistance of these crystals against the amorphization caused by ion implantation even at high doses (1017 1/cm2). The second property is the disposal of defects much deeper in the sample then it follows from the modeling calculations. The outline of principles of the ion implantation is included in the paper. The data based on RBS measurements and modeling results obtained by using SRIM software were taken into account.

  20. Vapor-phase epitaxial growth of thick single crystal CdTe on Si substrate for X-ray, gamma ray spectroscopic detector development

    Energy Technology Data Exchange (ETDEWEB)

    Niraula, Madan; Yasuda, Kazuhito; Yamashita, Hayate; Wajima, Yuto; Tsukamoto, Yudai; Matsumoto, Masahiko; Suzuki, Yuta; Takai, Noriaki; Tsukamoto, Yuki; Agata, Yasunori [Nagoya Institute of Technology, Graduate School of Engineering, Gokiso, Showa, Nagoya 466-8555 (Japan)

    2014-07-15

    We investigated MOVPE growth conditions to grow large-area and thick single crystal CdTe layers with uniform material properties directly on (211) Si substrates to develop nuclear radiation detectors. We found that group VI/II precursor flow-ratio as well as rapid thermal annealing performed by interrupting the growth at the initial stage has marked influence on the crystal quality. By using a VI/II precursor ratio of 3.0, and a 900 C anneal performed in flowing hydrogen, we were able to achieve 1-sq inch sized thick single crystal CdTe that showed uniform material properties and high crystal quality throughout the wafer. We further demonstrated that the grown crystals were suitable for fabricating nuclear radiation detector. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Roughness of CdTe thin films grown on glass by hot wall epitaxy.

    Science.gov (United States)

    Leal, F F; Ferreira, S O; Menezes-Sobrinho, I L; Faria, T E

    2005-01-12

    Cadmium telluride films were grown on glass substrates using the hot wall epitaxy (HWE) technique. The samples were polycrystalline with a preferential (111) orientation. Scanning electron micrographs reveal a grain size between 0.1 and 0.5 µm. The surface morphology of the samples was studied by measuring the roughness profile using a stylus profiler. The roughness as a function of growth time and scale size were investigated to determine the growth and roughness exponents, β and α, respectively. From the results we can conclude that the growth surface has a self-affine character with a roughness exponent α equal to 0.69 ± 0.03 and almost independent of growth time. The growth exponent β was equal to 0.38 ± 0.06. These values agree with that determined previously for CdTe(111) films grown on GaAs(100).

  2. Study of Cu-related Defect States in Single-crystal CdTe

    Science.gov (United States)

    Corwine, Caroline; Sites, James; Gessert, Timothy; Metzger, Wyatt; Dippo, Pat; Duda, Anna

    2003-10-01

    We have studied single-crystal CdTe using low-temperature photoluminescence (PL) in an effort to understand the effects of copper on the deep levels, as well as the effect of a bromine methanol (BrMe) etch on subsequent copper diffusion into CdTe. In present polycrystalline CdS/CdTe solar cell technology, the use of a back contact that contains Cu is necessary to produce high-efficiency cells. However, it is not generally understood why Cu is necessary for these devices to function well. In order to obtain further advances in the efficiencies of these solar cells, it is important to know how the back contact process may affect the defect states in CdTe. PL is one tool used to study defect states. However, before PL can be used effectively for polycrystalline CdTe solar cells, relevant spectral features first must be interpreted for single-crystal CdTe. All PL in this study was taken at 4.5 K. We report on PL peaks at 1.40 and 1.45 eV, which are seen only after Cu is diffused into single-crystal CdTe.

  3. Post-growth CdCl₂ treatment on CdTe thin films grown on graphene layers using a close-spaced sublimation method.

    Science.gov (United States)

    Jung, Younghun; Yang, Gwangseok; Chun, Seungju; Kim, Donghwan; Kim, Jihyun

    2014-05-05

    We investigated the morphological, structural and optical properties of CdCl₂-treated cadmium telluride (CdTe) thin films deposited on defective graphene using a close-spaced sublimation (CSS) system. Heat treatment in the presence of CdCl₂ caused recrystallization of CSS-grown CdTe over the as-deposited structures. The preferential (111) orientation of as-deposited CdTe films was randomized after post-growth CdCl₂ treatment. New small grains (bumps) on the surface of CdCl₂-treated CdTe films were ascribed to nucleation of the CdTe grains during the CdCl₂ treatment. The properties of as-deposited and CdCl₂-treated CdTe films were characterized by room temperature micro-photoluminescence, micro-Raman spectroscopy, scanning electron microscopy, and X-ray diffraction analysis. Our results are useful to demonstrate a substrate configuration CdTe thin film solar cells.

  4. Improvement of the crystallinity of CdTe epitaxial film grown on Si substrates by molecular beam epitaxy using the two-step growth method

    Energy Technology Data Exchange (ETDEWEB)

    Han, M.S.; Ryu, Y.S.; Song, B.K.; Kang, T.W. [Dongguk Univ., Seoul (Korea, Republic of). Dept. of Phys.; Kim, T.W. [Department of Physics, Kwangwoon University, Seoul 139-701 (Korea, Republic of)

    1997-01-05

    Molecular beam epitaxy growth of CdTe epitaxial layers on Si (100) substrates using the two-step growth method was performed to produce high-quality CdTe thin layers. The reflection high-energy electron diffraction patterns were streaky with clear Kikuchi lines, which is direct evidence for layer-by-layer two-dimensional growth of CdTe on Si. From the X-ray diffraction analysis, the grown layer was found to be a CdTe (111) epitaxial film, regardless of the film thickness. Photoluminescence (PL) measurements at 12 K showed that the defect density of the CdTe film grown on Si using two-step growth decreased in comparison with that grown using direct growth. The bound exciton appearing in the PL measurements shifted to the low energy side as the thickness of the CdTe increased. When the CdTe thickness increased from 1 to 1.8 {mu}m, the peak position of the bound exciton shifted by 7.2 meV, and the stress obtained from the exciton peak shift was -12.405 kbar. These results indicate that high quality CdTe films grown by two-step growth hold promise for applications as buffer layers for the subsequent growth of Hg{sub x}Cd{sub 1-x}Te. (orig.) 16 refs.

  5. Carrier density and lifetime for different dopants in single-crystal and polycrystalline CdTe

    Science.gov (United States)

    Burst, James M.; Farrell, Stuart B.; Albin, David S.; Colegrove, Eric; Reese, Matthew O.; Duenow, Joel N.; Kuciauskas, Darius; Metzger, Wyatt K.

    2016-11-01

    CdTe defect chemistry is adjusted by annealing samples with excess Cd or Te vapor with and without extrinsic dopants. We observe that Group I (Cu and Na) elements can increase hole density above 1016 cm-3, but compromise lifetime and stability. By post-deposition incorporation of a Group V dopant (P) in a Cd-rich ambient, lifetimes of 30 ns with 1016 cm-3 hole density are achieved in single-crystal and polycrystalline CdTe without CdCl2 or Cu. Furthermore, phosphorus doping appears to be thermally stable. This combination of long lifetime, high carrier concentration, and improved stability can help overcome historic barriers for CdTe solar cell development.

  6. Carrier density and lifetime for different dopants in single-crystal and polycrystalline CdTe

    Directory of Open Access Journals (Sweden)

    James M. Burst

    2016-11-01

    Full Text Available CdTe defect chemistry is adjusted by annealing samples with excess Cd or Te vapor with and without extrinsic dopants. We observe that Group I (Cu and Na elements can increase hole density above 1016 cm−3, but compromise lifetime and stability. By post-deposition incorporation of a Group V dopant (P in a Cd-rich ambient, lifetimes of 30 ns with 1016 cm−3 hole density are achieved in single-crystal and polycrystalline CdTe without CdCl2 or Cu. Furthermore, phosphorus doping appears to be thermally stable. This combination of long lifetime, high carrier concentration, and improved stability can help overcome historic barriers for CdTe solar cell development.

  7. Effects of heat treatment on diffusion of Cu atoms into CdTe single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Soo, Y. L. [Department of Physics, State University of New York at Buffalo, Amherst, New York 14260 (United States); Huang, S. [Department of Physics, State University of New York at Buffalo, Amherst, New York 14260 (United States); Kim, S. [Department of Physics, State University of New York at Buffalo, Amherst, New York 14260 (United States); Kioseoglou, G. [Department of Physics, State University of New York at Buffalo, Amherst, New York 14260 (United States); Kao, Y. H. [Department of Physics, State University of New York at Buffalo, Amherst, New York 14260 (United States); Compaan, A. D. [Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606 (United States); Grecu, D. [Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606 (United States); Albin, D. [National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401 (United States)

    2000-06-19

    Angular dependence of x-ray fluorescence and x-ray absorption fine structure techniques have been used to study the diffusion of Cu atoms into the photovoltaic material CdTe. Depth profile, effective valency, and local structure of Cu atoms in a Cu-doped single crystal of CdTe were investigated before and after a second heat treatment. Enhanced Cu diffusion into the CdTe single crystal was observed as a result of heating at a moderate temperature around 200 degree sign C, resulting in a redistribution of the Cu impurities through a broader depth profile. Some of the Cu atoms are believed either to form small complexes with Te or occupy interstitial sites in the host but accompanied by a large local lattice distortion while others substitute for Cd on the cation sites. The results thus demonstrate that these nondestructive x-ray characterization methods are useful for probing microstructural changes in CdTe photovoltaic materials/devices in which some Cu-containing compounds are used as back contacts. (c) 2000 American Institute of Physics.

  8. Optical characterization of epitaxial single crystal CdTe thin films on Al{sub 2}O{sub 3} (0001) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Jovanovic, S.M.; Devenyi, G.A., E-mail: devenyga@mcmaster.ca; Jarvis, V.M.; Meinander, K.; Haapamaki, C.M.; Kuyanov, P.; Gerber, M.; LaPierre, R.R.; Preston, J.S.

    2014-11-03

    The optoelectronic properties of single crystal CdTe thin films were investigated by photoluminescence spectroscopy, photoreflectance spectroscopy and variable angle spectroscopic ellipsometry. The room temperature bandgap was measured to be 1.51 eV and was consistent between spectroscopic measurements and previously reported values. Breadth of bandgap emission was consistent with high quality material. Low temperature photoluminescence spectra indicated a dominant emission consistent with bound excitons. Emissions corresponding to self-compensation defects, doping and contaminants were not found. Variable angle spectroscopic ellipsometry measurements over the near-UV to infrared range demonstrated sharp resonance peaks. All spectroscopic measurements indicate high quality thin film material of comparable or better quality than bulk CdTe. - Highlights: • High quality epitaxial CdTe thin films were grown. • Two dimensional X-ray diffraction characterization confirmed single crystal material. • Photoluminescence indicated low defect density when compared to bulk single crystals. • Optical characterization indicated the presence of room temperature excitons.

  9. Preparation and properties of evaporated CdTe films compared with single crystal CdTe. Annual report, 1 February 1983-31 January 1984

    Energy Technology Data Exchange (ETDEWEB)

    Bube, R; Fahrenbruch, A; Huber, W; Fortmann, C; Thorpe, T

    1984-09-01

    Variation of CdS/CdTe/graphite thick film solar cell properties was investigated as a function of temperature for CdS film deposition. A maximum open-circuit voltage of 0.67 V was found for a deposition temperature of 160/sup 0/C, corresponding to a CdS film resistivity of 150 ohm-cm. The effect is not due to avoidance of higher temperature annealing of the CdTe film in higher temperature CdS film depositions nor to the diffusion of In from the outermost CdS: In layer. The effect of coating the graphite before CdTe deposition with Au or Cu was also investigated. Although high concentrations of both Au or Cu could be determined after CdTe deposition, CdTe films grown on this coated graphite had lower hole densities than films grown on uncoated graphite. Photovoltaic parameters of thin-film CdS/CdTe/graphite solar cells were investigated as a function of storage time to check the stability of these cells. Initial degradation of parameters (especially fill factor) could be reversed by heat treatment in hydrogen, with subsequent properties being stable. Heat treatment of CdS/CdTe/graphite solar cells in air increases cell resistivity and decreases fill factor; heat treatment in hydrogen produces the reverse effect. The hole density is not affected by these heat treatments, suggesting that effects are associated with grain boundaries in the film.

  10. Automatic Control System for the High Pressure CdTe Crystal Growth Furnace

    OpenAIRE

    Petr Praus; Eduard Belas; Jiri Bok; Roman Fesh; Jan Franc; Pavel Hoschl

    2006-01-01

    CdTe and (CdZn)Te bulk single crystals have been widely used as substrates for MBE and LPE epitaxy of infrared (HgCd)Te as well as gamma- and X-ray detectors. The Cd1-xZnxTe (x = 0.04-0.1) single crystals with diameter up to 100 mm and height at most 40 mm were prepared in our laboratory in a vertical arrangement by gradual cooling of the melt (the Vertical Gradient Freezing method). Achievement of excellent crystal quality required full control of Cd pressure during the growth process and ap...

  11. Preparation and properties of evaporated CdTe films compared with single crystal CdTe. Progress report No. 4, August 1-October 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Bube, R H

    1981-10-01

    The hot-wall vacuum evaporation system is nearly complete and the first films are expected in early December. CdTe homojunction cells were theoretically modelled and to some extent tested experimentally using the n-type CdTe film on p-type CdTe crystal homojunction cells previously deposited at Linz. Modelling emphasizes the known importance of surface recombination velocity for such homojunction cells. The n-type layer on the experimental cell was thinned by etching from 5 micrometers to 1.5 micrometers, with a corresponding increase in short-circuit current from 0.1 to 1 mA/cm/sup 2/. This behavior is as theoretically expected; to obtain a short-circuit current of 11 mA/cm/sup 2/, as required for a 10% cell, requires a thickness of about 0.2 micrometers for a surface recombination velocity of 10/sup 6/ cm/sec and other realistic cell parameters. By doping experiments on single crystal CdTe, it has been shown that the hole density does decrease when the P dopant density is decreased below a critical value in CdTe:P crystals, thus eliminating the possibility that the major acceptors in the P-doped crystals were not P impurity. Attempts to heavily dope CdTe with As were less successful, but this may be due to the use of elemental As as the dopant in this case rather than a compound of the dopant. Cs was shown to be an effective dopant of CdTe and resistivities as low as 0.3 ohm-cm corresponding to hole densities in the low 10/sup 17/ cm/sup -3/ range were obtained. An apparent correlation between the low-temperature barrier height associated with a grain boundary in CdTe and the angle of mismatch between the two grains has been observed. Improved capacitance of grain boundary measurements should yield defect densities.

  12. Interface Characterization of Single-Crystal CdTe Solar Cells With VOC > 950 mV

    Energy Technology Data Exchange (ETDEWEB)

    Burst, James M.; Duenow, Joel N.; Kanevce, Ana; Moutinho, Helio R.; Jiang, Chun Sheng; Al-Jassim, Mowafak M.; Reese, Matthew Owen; Albin, David S.; Aguiar, Jeffrey A.; Colegrove, Eric; Ablekim, Tursun; Swain, Santosh K.; Lynn, Kelvin G.; Kuciauskas, Darius; Barnes, Teresa M.; Metzger, Wyatt K.

    2016-11-01

    Advancing CdTe solar cell efficiency requires improving the open-circuit voltage (VOC) above 900 mV. This requires long carrier lifetime, high hole density, and high-quality interfaces, where the interface recombination velocity is less than about 104 cm/s. Using CdTe single crystals as a model system, we report on CdTe/CdS electrical and structural interface properties in devices that produce open-circuit voltage exceeding 950 mV.

  13. Redetermination of Ba2CdTe3 from single-crystal X-ray data

    Directory of Open Access Journals (Sweden)

    Min Yang

    2012-10-01

    Full Text Available The previous structure determination of the title compound, dibarium tritelluridocadmate, was based on powder X-ray diffraction data [Wang & DiSalvo (1999. J. Solid State Chem. 148, 464–467]. In the current redetermination from single-crystal X-ray data, all atoms were refined with anisotropic displacement parameters. The previous structure report is generally confirmed, but with some differences in bond lengths. Ba2CdTe3 is isotypic with Ba2MX3 (M = Mn, Cd; X = S, Se and features 1∞[CdTe2/2Te2/1]4− chains of corner-sharing CdTe4 tetrahedra running parallel [010]. The two Ba2+ cations are located between the chains, both within distorted monocapped trigonal–prismatic coordination polyhedra. All atoms in the structure are located on a mirror plane.

  14. Physical properties of Bi doped CdTe thin films grown by CSVT and their influence on the CdS/CdTe solar cells PV-properties

    Energy Technology Data Exchange (ETDEWEB)

    Vigil-Galan, O. [Escuela Superior de Fisica y Matematicas-I.P.N., Edificio de Fisica Avanzada, av. IPN y Juan de Dios Batiz s/n U.P.A.L.M. 07738 Mexico D.F. (Mexico)]. E-mail: osvaldo@esfm.ipn.mx; Sanchez-Meza, E. [Escuela Superior de Fisica y Matematicas-I.P.N., Edificio de Fisica Avanzada, av. IPN y Juan de Dios Batiz s/n U.P.A.L.M. 07738 Mexico D.F. (Mexico); Ruiz, C.M. [Departamento de Fisica de Materiales, Universidad Autonoma de Madrid, Madrid 28049 (Spain); Sastre-Hernandez, J. [Escuela Superior de Fisica y Matematicas-I.P.N., Edificio de Fisica Avanzada, av. IPN y Juan de Dios Batiz s/n U.P.A.L.M. 07738 Mexico D.F. (Mexico); Morales-Acevedo, A. [Escuela Superior de Fisica y Matematicas-I.P.N., Edificio de Fisica Avanzada, av. IPN y Juan de Dios Batiz s/n U.P.A.L.M. 07738 Mexico D.F. (Mexico); CINVESTAV-IPN, Electrical Engineering Department, Av. IPN No2508, C. P. 07360, Mexico, D. F. (Mexico); Cruz-Gandarilla, F. [Escuela Superior de Fisica y Matematicas-I.P.N., Edificio de Fisica Avanzada, av. IPN y Juan de Dios Batiz s/n U.P.A.L.M. 07738 Mexico D.F. (Mexico); Aguilar-Hernandez, J. [Escuela Superior de Fisica y Matematicas-I.P.N., Edificio de Fisica Avanzada, av. IPN y Juan de Dios Batiz s/n U.P.A.L.M. 07738 Mexico D.F. (Mexico); Saucedo, E. [Departamento de Fisica de Materiales, Universidad Autonoma de Madrid, Madrid 28049 (Spain); Contreras-Puente, G. [Escuela Superior de Fisica y Matematicas-I.P.N., Edificio de Fisica Avanzada, av. IPN y Juan de Dios Batiz s/n U.P.A.L.M. 07738 Mexico D.F. (Mexico); Bermudez, V. [Departamento de Fisica de Materiales, Universidad Autonoma de Madrid, Madrid 28049 (Spain)

    2007-05-31

    The physical properties of Bi doped CdTe films, grown on glass substrates by the Closed Space Transport Vapour (CSVT) method, from different Bi doped CdTe powders are presented. The CdTe:Bi films were characterized using Photoluminescence, Hall effect, X-Ray diffraction, SEM and Photoconductivity measurements. Moreover, CdS/CdTe:Bi solar cells were made and their characteristics like short circuit current density (J {sub sc}), open circuit voltage (V {sub OC}), fill factor (FF) and efficiency ({eta}) were determined. These devices were fabricated from Bi doped CdTe layers deposited on CdS with the same growth conditions than those used for the single CdTe:Bi layers. A correlation between the CdS/CdTe:Bi solar cell characteristics and the physical properties of the Bi doped CdTe thin films are presented and discussed.

  15. Electroplating of CdTe Thin Films from Cadmium Sulphate Precursor and Comparison of Layers Grown by 3-Electrode and 2-Electrode Systems

    Directory of Open Access Journals (Sweden)

    Imyhamy M. Dharmadasa

    2017-01-01

    Full Text Available Electrodeposition of CdTe thin films was carried out from the late 1970s using the cadmium sulphate precursor. The solar energy group at Sheffield Hallam University has carried out a comprehensive study of CdTe thin films electroplated using cadmium sulfate, cadmium nitrate and cadmium chloride precursors, in order to select the best electrolyte. Some of these results have been published elsewhere, and this manuscript presents the summary of the results obtained on CdTe layers grown from cadmium sulphate precursor. In addition, this research program has been exploring the ways of eliminating the reference electrode, since this is a possible source of detrimental impurities, such as K+ and Ag+ for CdS/CdTe solar cells. This paper compares the results obtained from CdTe layers grown by three-electrode (3E and two-electrode (2E systems for their material properties and performance in CdS/CdTe devices. Thin films were characterized using a wide range of analytical techniques for their structural, morphological, optical and electrical properties. These layers have also been used in device structures; glass/FTO/CdS/CdTe/Au and CdTe from both methods have produced solar cells to date with efficiencies in the region of 5%–13%. Comprehensive work carried out to date produced comparable and superior devices fabricated from materials grown using 2E system.

  16. Pixelated CdTe detectors to overcome intrinsic limitations of crystal based positron emission mammographs

    Science.gov (United States)

    De Lorenzo, G.; Chmeissani, M.; Uzun, D.; Kolstein, M.; Ozsahin, I.; Mikhaylova, E.; Arce, P.; Cañadas, M.; Ariño, G.; Calderón, Y.

    2013-01-01

    A positron emission mammograph (PEM) is an organ dedicated positron emission tomography (PET) scanner for breast cancer detection. State-of-the-art PEMs employing scintillating crystals as detection medium can provide metabolic images of the breast with significantly higher sensitivity and specificity with respect to standard whole body PET scanners. Over the past few years, crystal PEMs have dramatically increased their importance in the diagnosis and treatment of early stage breast cancer. Nevertheless, designs based on scintillators are characterized by an intrinsic deficiency of the depth of interaction (DOI) information from relatively thick crystals constraining the size of the smallest detectable tumor. This work shows how to overcome such intrinsic limitation by substituting scintillating crystals with pixelated CdTe detectors. The proposed novel design is developed within the Voxel Imaging PET (VIP) Pathfinder project and evaluated via Monte Carlo simulation. The volumetric spatial resolution of the VIP-PEM is expected to be up to 6 times better than standard commercial devices with a point spread function of 1 mm full width at half maximum (FWHM) in all directions. Pixelated CdTe detectors can also provide an energy resolution as low as 1.5% FWHM at 511 keV for a virtually pure signal with negligible contribution from scattered events.

  17. Thermal behaviour of strontium tartrate single crystals grown in gel

    Indian Academy of Sciences (India)

    M H Rahimkutty; K Rajendra Babu; K Sreedharan Pillai; M R Sudarsana Kumar; C M K Nair

    2001-04-01

    Thermal behaviour of strontium tartrate crystals grown with the aid of sodium metasilicate gel is investigated using thermogravimetry (TG) and differential thermal analysis (DTA). Effect of magnetic field and dopant (Pb)2+ on the crystal stability is also studied using thermal analysis. This study reveals that water molecules are locked up in the lattice with different strengths in the grown crystals.

  18. CdTe nBn photodetectors with ZnTe barrier layer grown on InSb substrates

    Science.gov (United States)

    He, Zhao-Yu; Campbell, Calli M.; Lassise, Maxwell B.; Lin, Zhi-Yuan; Becker, Jacob J.; Zhao, Yuan; Boccard, Mathieu; Holman, Zachary; Zhang, Yong-Hang

    2016-09-01

    We have demonstrated an 820 nm cutoff CdTe nBn photodetector with ZnTe barrier layer grown on an InSb substrate. At room temperature, under a bias of -0.1 V, the photodetector shows Johnson and shot noise limited specific detectivity (D*) of 3 × 1013 cm Hz1/2/W at a wavelength of 800 nm and 2 × 1012 cm Hz1/2/W at 200 nm. The D* is optimized by using a top contact design of ITO/undoped-CdTe. This device not only possesses nBn advantageous characteristics, such as generation-recombination dark current suppression and voltage-bias-addressed two-color photodetection, but also offers features including responsivity enhancements by deep-depletion and by using a heterostructure ZnTe barrier layer. In addition, this device provides a platform to study nBn device physics at room temperature, which will help us to understand more sophisticated properties of infrared nBn photodetectors that may possess a large band-to-band tunneling current at a high voltage bias, because this current is greatly suppressed in the large-bandgap CdTe nBn photodetector.

  19. Automatic Control System for the High Pressure CdTe Crystal Growth Furnace

    Directory of Open Access Journals (Sweden)

    Petr Praus

    2006-08-01

    Full Text Available CdTe and (CdZnTe bulk single crystals have been widely used as substrates for MBE and LPE epitaxy of infrared (HgCdTe as well as gamma- and X-ray detectors. The Cd1-xZnxTe (x = 0.04-0.1 single crystals with diameter up to 100 mm and height at most 40 mm were prepared in our laboratory in a vertical arrangement by gradual cooling of the melt (the Vertical Gradient Freezing method. Achievement of excellent crystal quality required full control of Cd pressure during the growth process and application of high Cd pressures (up to 4 bar at growth temperature. An electronic control system was designed to control both temperature and internal pressure of two zones CZT crystal growth furnace by using two high performance PID controllers/setpoint programmers. Two wire current loop serial communication bus was used for the data exchange and computer control of the furnace electronics setup. Control software was written to supervise the crystal growth process and to collect all important data and parameters.

  20. Growth and characterization of CdTe and CdZnTe crystals for substrate application

    Science.gov (United States)

    Azoulay, Moshe; Zilber, Raphael; Shusterman, Sergy; Goldgirsh, Alex; Zontag, Itzhak

    2003-01-01

    During the last decade we have investigated the synthesis, growth and characterization of CdTe and CdZnTe semiconductor compounds. As a result, substrate crystals, suitable for mercury cadmium telluride thin film growth are prepared. The emphasis will be given to the investigation of the thermal regime during growth, reflected at the solid liquid interface shape and its influence on the crystalline quality. Seeded and unseeded growth experiments are compared in terms of structural crystalline quality. Seeded and unseeded growth experiments are compared in terms of structural crystalline perfection as well as single crystal yield. The effect of thermal annealing on IR transmittance, precipitates and inclusions will be discussed in detail. Moreover, we will show the recent new trends for simulation of crystal growth processes by CRYSVUN software as well as practical implementation of calculated data for the grwoth of II-VI crystals. Preliminary study on the vapor phase control during growth and crystal cooling procedures will also be discussed.

  1. Crystallization from amorphous structure to hexagonal quantum dots induced by an electron beam on CdTe thin films

    Science.gov (United States)

    Becerril, M.; Zelaya-Angel, O.; Medina-Torres, A. C.; Aguilar-Hernández, J. R.; Ramírez-Bon, R.; Espinoza-Beltran, F. J.

    2009-02-01

    Amorphous cadmium-telluride films were prepared by rf sputtering on Corning 7059 glass substrates at room temperature. The deposition time was 10 and 12 h with a thickness of 400 and 480 (±40 nm), respectively. As-prepared films were amorphous according to X-ray diffraction (XRD) patterns, but a win-fit-software analysis of the main XRD broad band suggests a wurtzite structure at short range. Transmission electron microscopy (TEM) at 200 keV produces crystallization of the amorphous CdTe. The TEM-electron beam induces the formation of CdTe quantum dots with the wurtzite hexagonal structure (the metastable structure of CdTe) and with ˜6 nm of average grain size. As effect of a probable distortion of the CdTe crystalline lattice, the unit cell volume (UCV) shrinks to about 30% with respect to the bulk-UCV of CdTe. Besides, the energy band gap increases as expected, according to literature data on quantum confinement.

  2. Growth and characterization of hexamethylenetetramine crystals grown from solution

    Science.gov (United States)

    Babu, B.; Chandrasekaran, J.; Balaprabhakaran, S.

    2014-06-01

    Organic nonlinear optical single crystals of hexamethylenetetramine (HMT; 10 × 10 × 5 mm3) were prepared by crystallization from methanol solution. The grown crystals were subjected to various characterization techniques such as single crystal XRD, powder XRD, UV-Vis and electrical studies. Single crystal XRD analysis confirmed the crystalline structure of the grown crystals. Their crystalline nature was also confirmed by powder XRD technique. The optical transmittance property was identified from UV-Vis spectrum. Dielectric measurements were performed as a function of frequency at different temperatures. DC conductivity and photoconductivity studies were also carried out for the crystal. The powder second harmonic generation efficiency (SHG) of the crystal was measured using Nd:YAG laser and the efficiency was found to be two times greater than that of potassium dihydrogen phosphate (KDP).

  3. Nanostructures of Indium Gallium Nitride Crystals Grown on Carbon Nanotubes.

    Science.gov (United States)

    Park, Ji-Yeon; Man Song, Keun; Min, Yo-Sep; Choi, Chel-Jong; Seok Kim, Yoon; Lee, Sung-Nam

    2015-11-16

    Nanostructure (NS) InGaN crystals were grown on carbon nanotubes (CNTs) using metalorganic chemical vapor deposition. The NS-InGaN crystals, grown on a ~5-μm-long CNT/Si template, were estimated to be ~100-270 nm in size. Transmission electron microscope examinations revealed that single-crystalline InGaN NSs were formed with different crystal facets. The observed green (~500 nm) cathodoluminescence (CL) emission was consistent with the surface image of the NS-InGaN crystallites, indicating excellent optical properties of the InGaN NSs on CNTs. Moreover, the CL spectrum of InGaN NSs showed a broad emission band from 490 to 600 nm. Based on these results, we believe that InGaN NSs grown on CNTs could aid in overcoming the green gap in LED technologies.

  4. Growth and Characterization of Agar Gel Grown Brushite Crystals

    Directory of Open Access Journals (Sweden)

    V. B. Suryawanshi

    2014-01-01

    Full Text Available Brushite [CaHPO4·2H2O] or calcium hydrogen phosphate dihydrate (CHPD also known as urinary crystal is a stable form of calcium phosphate. The brushite crystals were grown by single and double diffusion techniques in agar-agar gel at room temperature. Effects of different growth parameters were discussed in single diffusion and double diffusion techniques. Good quality star, needle, platy, rectangular, and prismatic shaped crystals in single diffusion and nuclei with dendritic growth were obtained in double diffusion. These grown nuclei were characterized by scanning electron microscopy (SEM, Fourier transform infrared (FTIR spectroscopy, X-ray diffraction (XRD, and thermogravimetric analysis (TGA. SEM has shown the different morphologies of crystals; FTIR has confirmed the presence of functional groups; crystalline nature was supported by XRD, whereas the TGA indicates total 24.68% loss in weight and formation of stable calcium pyrophosphate (Ca2P2O7 at 500°C.

  5. Twinning in vapour-grown, large volume Cd1-xZnxTe crystals

    Science.gov (United States)

    Tanner, B. K.; Mullins, J. T.; Pym, A. T. G.; Maneuski, D.

    2016-08-01

    The onset of twinning from (2 bar 1 bar 1 bar) to (1 bar 3 bar 3 bar) in large volume Cd1-xZnxTe crystals, grown by vapour transport on (2 bar 1 bar 1 bar) , often referred to as (211)B, oriented GaAs seeds, has been investigated using X-ray diffraction imaging (X-ray topography). Twinning is not associated with strains at the GaAs/CdTe interface as the initial growth was always in (2 bar 1 bar 1 bar) orientation. Nor is twinning related to lattice strains associated with injection of Zn subsequent to initial nucleation and growth of pure CdTe as in both cases twinning occurred after growth of several mm length of Cd1-xZnxTe. While in both cases examined, there was a region of disturbed growth prior to the twinning transition, in neither crystal does this strain appear to have nucleated the twinning process. In both cases, un-twinned material remained after twinning was observed, the scale of the resulting twin boundaries being sub-micron. Simultaneous twinning across the whole sample surface was observed in one sample, whereas in the other, twinning was nucleated at different points and times in the growth.

  6. Synthesis and characterization of gel-grown cobalt tartrate crystals

    Indian Academy of Sciences (India)

    V M Athivanan; M Haris; T Prasanyaa; M Amgalan

    2014-03-01

    Crystals of cobalt tartrate are grown from the gel using chemical reaction method. The functional groups are found from Fourier transform infrared spectroscopy (FTIR). The OH stretching mode owing to water, carbonyl group, CH stretching modes and metal–oxygen stretching are identified. The unit cell dimensions, interaxial angles and unit cell volume are found from powder X-ray diffraction studies (XRD) which show the orthorhombic nature of the crystal. The magnetic study is used to find the magnetic susceptibility and magnetic moment of the grown crystal. It reveals the magnetic nature of the crystal. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) are done to find the thermal properties of the crystal which manifest the water of hydration in the crystal. The variation of dielectric constant with respect to the applied frequency shows the polarization property of the crystal. The AC conductivity is increased proportionally with increase in frequency. The reverse nature is found for the AC resistivity. The nature of the composition of the crystals affects the dielectric properties.

  7. Functionalizing single crystals: incorporation of nanoparticles inside gel-grown calcite crystals.

    Science.gov (United States)

    Liu, Yujing; Yuan, Wentao; Shi, Ye; Chen, Xiaoqiang; Wang, Yong; Chen, Hongzheng; Li, Hanying

    2014-04-14

    Synthetic single crystals are usually homogeneous solids. Biogenic single crystals, however, can incorporate biomacromolecules and become inhomogeneous solids so that their properties are also extrinsically regulated by the incorporated materials. The discrepancy between the properties of synthetic and biogenic single crystals leads to the idea to modify the internal structure of synthetic crystals to achieve nonintrinsic properties by incorporation of foreign material. Intrinsically colorless and diamagnetic calcite single crystals are turned into colored and paramagnetic solids, through incorporation of Au and Fe3O4 nanoparticles without significantly disrupting the crystalline lattice of calcite. The crystals incorporate the nanoparticles and gel fibers when grown in agarose gel media containing the nanoparticles, whereas the solution-grown crystals do not. As such, our work extends the long-history gel method for crystallization into a platform to functionalize single-crystalline materials.

  8. Temperature dependent electroreflectance study of CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Raadik, T., E-mail: taavi.raadik@ttu.ee [Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Krustok, J.; Josepson, R.; Hiie, J. [Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn (Estonia); Potlog, T.; Spalatu, N. [Moldova State University, A. Mateevici str. 60, MD-2009 Chisinau (Moldova, Republic of)

    2013-05-01

    Cadmium telluride is a promising material for large scale photovoltaic applications. In this paper we study CdS/CdTe heterojunction solar cells with electroreflectance spectroscopy. Both CdS and CdTe layers in solar cells were grown sequentially without intermediate processing by the close-space sublimation method. Electroreflectance measurements were performed in the temperature range of T = 100–300 K. Two solar cells were investigated with conversion efficiencies of 4.1% and 9.6%. The main focus in this work was to study the temperature dependent behavior of the broadening parameter and the bandgap energy of CdTe thin film in solar cells. Room temperature bandgap values of CdTe were E{sub g} = 1.499 eV and E{sub g} = 1.481 eV for higher and lower efficiency solar cells, respectively. Measured bandgap energies are lower than for single crystal CdTe. The formation of CdTe{sub 1−x}S{sub x} solid solution layer on the surface of CdTe is proposed as a possible cause of lower bandgap energies. - Highlights: ► Temperature dependent electroreflectance measurements of CdS/CdTe solar cells ► Investigation of junction properties between CdS and CdTe ► Formation of CdTe{sub 1−} {sub x}S{sub x} solid solution layer in the junction area.

  9. Structural and optical properties of Cu-doped CdTe films with hexagonal phase grown by pulsed laser deposition

    Directory of Open Access Journals (Sweden)

    F. de Moure-Flores

    2012-06-01

    Full Text Available Cu-doped CdTe thin films were prepared by pulsed laser deposition on Corning glass substrates using powders as target. Films were deposited at substrate temperatures ranging from 100 to 300 °C. The X-ray diffraction shows that both the Cu-doping and the increase in the substrate temperature promote the presence of the hexagonal CdTe phase. For a substrate temperature of 300 °C a CdTe:Cu film with hexagonal phase was obtained. Raman and EDS analysis indicate that the films grew with an excess of Te, which indicates that CdTe:Cu films have p-type conductivity.

  10. Growth of CdTe: Al films; Crecimiento de peliculas de CdTe: Al

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez A, M.; Zapata T, M. [CICATA-IPN, 89600 Altamira, Tamaulipas (Mexico); Melendez L, M. [CINVESTAV-IPN, A.P. 14-740, 07000 Mexico D.F. (Mexico); Pena, J.L. [CINVESTAV-IPN, A.P. 73 Cordemex, 97310 Merida, Yucatan (Mexico)

    2006-07-01

    CdTe: AI films were grown by the close space vapor transport technique combined with free evaporation (CSVT-FE). The Aluminum (Al) evaporation was made by two kinds of sources: one made of graphite and the other of tantalum. The films were deposited on glass substrates. The Al source temperature was varied maintaining the CdTe source temperature fixed as well as the substrate temperature. The films were characterized by x-ray energy dispersive analysis (EDAX), x-ray diffraction and optical transmission. The results showed for the films grown with the graphite source for Al evaporation, the Al did not incorporate in the CdTe matrix, at least to the level of EDAX sensitivity; they maintained the same crystal structure and band gap. For the samples grown with the tantalum source, we were able to incorporate the Al. The x-ray diffraction patterns show that the films have a crystal structure that depends on Al concentration. They were cubic up to 2.16 at. % Al concentration; for 19.65 at. % we found a mixed phase; for Al concentration higher than 21 at. % the films were amorphous. For samples with cubic structure it was found that the lattice parameter decreases and the band gap increases with Al concentration. (Author)

  11. Dark Current Characteristics of a Radiation Detector Array Developed Using MOVPE-Grown Thick CdTe Layers on Si Substrate

    Science.gov (United States)

    Yasuda, K.; Niraula, M.; Fujimura, N.; Tachi, T.; Inuzuka, H.; Namba, S.; Muramatsu, S.; Kondo, T.; Agata, Y.

    2012-10-01

    We present reverse bias current (dark current) characteristics of a two-dimensional monolithic pixel-type nuclear radiation detector array fabricated using metalorganic vapor-phase epitaxy (MOVPE)-grown thick CdTe epitaxial layers on Si substrate. The (14 × 8) pixel array was formed by cutting deep vertical trenches using a dicing saw, where each pixel possesses a p-CdTe/ n-CdTe/ n +-Si heterojunction diode structure. The dark currents showed pixel-to-pixel variations when measured at higher applied biases exceeding 100 V. The dark current had a dependence on the pixel thickness, where pixels with lower CdTe thickness exhibited higher currents. Moreover, the temperature dependence of the dark current revealed that a deep level with activation energy of around 0.6 eV is responsible for the observed dark currents and their pixel-to-pixel variation. We discuss that the effective ratio of Te to Cd at the growth surface is a major factor that controls the thickness variation, and is also responsible for the formation of 0.6 eV deep levels.

  12. Spectral response of THM grown CdZnTe crystals

    DEFF Research Database (Denmark)

    Chen, H.; Awadalla, S.A.; Harris, F.

    2008-01-01

    The spectral response of several crystals grown by the Traveling Heater Method (THM) were investigated. An energy resolution of 0.98% for a Pseudo Frisch-Grid of 4 × 4 × 9 mm3 and 2.1% FWHM for a coplanar-grid of size 11 × 11 × 5 mm3 were measured using 137Cs-662 keV. In addition a 4% FWHM at 122...

  13. Comparative study of Hg xCd 1-xTe films grown on CdTe thin films previously deposited from two different techniques

    Science.gov (United States)

    Ali, A.; Abbas Shah, N.; Maqsood, A.

    2009-04-01

    High quality cadmium telluride (CdTe) thin films were grown on glass substrates with two different techniques, two evaporation source (TES) and closed space sublimation (CSS). Further to the above mercury telluride (HgTe) was then deposited by using single source on both CdTe thin films for obtaining Hg xCd 1-xTe samples. The crystalline structure of the Hg xCd 1-xTe sample grown from CSS-CdTe showed the preferential (1 1 1) orientation with smoother and larger grain size than those of TES-CdTe. The optical transmission for TES-CdTe sample was above 90% in the 1000-1500 nm range whereas it was significantly below 80% for CSS-CdTe sample. The optical transmission for TES-Hg xCd 1-xTe and CSS-Hg xCd 1-xTe was ˜60%. The resistivity at room temperature of TES-CdTe and CSS-CdTe was ˜3.33×10 9 Ω cm and ˜2.20×10 8 Ω cm, respectively, while the resistivity of TES-Hg xCd 1-xTe and CSS-Hg xCd 1-xTe samples was ˜1.73 Ω cm and ˜5.34×10 5 Ω cm, respectively. The comparative study of ternary compound prepared with the above techniques has been carried out for the first time.

  14. InP Bulk Crystals Grown from Various Stoichiometric Melt

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    InP crystal was grown from stoichiometric or non-stoichiometric melt, including P-rich and In-rich condition by the P-injection synthesis LEC method. Owing to the non-stoichiometric condition, there are many pores in the tail of the P-rich ingot. Samples were characterized by high speed photoluminescence mapping and E.P.D. mapping. The perfection (dislocation, stoichiometry and uniformity) of these samples were studied and compared. The PL peak intensity standard deviation of the 4-inch InP wafer is higher. The EPDs around the pores are higher than the other regions. Besides the stress releasing, the pores and the high concentration of dislocations around them are the leading factors causing the inhomogeneity of the wafer. By adjusting the thermal field and ensuring the chemical stoichiometry, InP crystals of larger diameters and better performance can be developed.

  15. Titanium distribution in Ti-sapphire single crystals grown by Czochralski and Verneuil technique

    Science.gov (United States)

    Alombert-Goget, G.; Li, H.; Faria, J.; Labor, S.; Guignier, D.; Lebbou, K.

    2016-01-01

    The distributions of Ti3+ and Ti4+ ions were evaluated by photoluminescence measurement in the wafers cut from different positions of the ingots grown by Czochralski and Verneuil techniques. Particular radial distributions of Ti4+ as function of the position in the ingot were observed in the crystals grown by Verneuil technique different than the crystals grown by Czochralski method.

  16. Performance of rapid-grown KDP crystals with continuous filtration

    Institute of Scientific and Technical Information of China (English)

    Guohang Hu; Yueliang Wang; Junxiu Chang; Xiaoyi Xie; Yuanan Zhao; Hongji Qi; Jianda Shao

    2015-01-01

    Rapid growth processing of KDP crystals was improved by employing continuous filtration to eliminate bulk defects.The performances of the KDP crystals, including scattering defects, laser damage resistance and transmittance, were measured and analyzed. Compared with rapid-grown KDP without continuous filtration, the transmittance in the nearinfrared was increased by at least 2%, almost all of ‘micron size’ defects were eliminated and ‘sub-micron size’ defects were decreased by approximately 90%. Laser damage testing revealed that the laser-induced damage thresholds(LIDTs),as well as the consistency of the LIDTs from sample to sample, were improved greatly. Moreover, it identified that‘micron size’ defects were the precursors which initiated laser damage at relative lower laser fluence(4–6 J cm-2),and there was a lower correlation between smaller size scattering defects and laser damage initiation. The improved consistency in the LIDTs, attributed to elimination of ‘micron size’ defects, and LIDT enhancement originated from the decreased absorption of the KDP crystals.

  17. Stoichiometry dependence of the optical and minority-carrier lifetime behaviors of CdTe epitaxial films: A low-temperature and time-resolved photoluminescence study

    Science.gov (United States)

    Tang, Kai; Zhu, Xuanting; Zhu, Liangqing; Bai, Wei; Bai, Jiawei; Dong, Wenxia; Yang, Jing; Zhang, Yuanyuan; Chen, Ye; Tang, Xiaodong; Chu, Junhao

    2016-11-01

    Cadmium telluride (CdTe) epitaxial films (EFs) were grown on near-lattice-matched Cd0.96Zn0.04Te (CZT) substrates by molecular beam epitaxy at different ambients to achieve Cd-rich samples with extra Cd molecular flux or Te-rich samples with extra Te molecular flux. The evolution of epitaxial growth was in situ monitored by reflection high-energy electron diffraction (RHEED). A two-dimensional growth mode was indicated by the streaky RHEED patterns. Crystal structures of the CdTe EFs were characterised by X-ray diffraction (XRD). XRD data suggested that the crystal quality of the CdTe EFs was improved by controlling the Cd and Te flux ratio. Low-temperature photoluminescence (PL) spectra were carried out in these CdTe EFs. The typical characteristic peak at ∼1.552 eV denoted as the bound-to-free transition was only found in CdTe samples grown under an extra Cd flux, and Cd vacancy-related defects were absent in the Cd-rich EFs, confirming the Cd-rich or Te-rich states of the epitaxial CdTe films. Finally, minority-carrier lifetime was prolonged in Cd-rich CdTe EFs as supported by time-resolved photoluminescence (TRPL) measurement.

  18. Development of single crystal CdTe solar cell for terrestrial application, adapted for use in optical concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, H.; Fuessl, B.; Seipp, E.; Thiel, R.

    1981-01-01

    During the first phase of the contract most of the work was done in order to optimize the most important structural elements of the solar cells, which were produced on the base of crystalline CdTe. Two approaches in development of such cells were made. In the first, n-CdTe crystals were covered with a p-type heterolayer as a window for sunlight; ZnTe was evaporated as a p-type layer. In the second, p-CdTe crystals were covered with a n-type heterolayer as a window. Here, CdS evaporation layers and indium-tin-oxide (ITO) sputtered layers were applied. Within the first approach the realization of ZnTe-layers simultaneously highly conductive and transparent was tried by using numerous dopants. Success finally was attained in July. Within the second approach, the development of p-CdTe/n-CdS solar cells, the resistances of the ohmic contacts on the back of the p-CdTe wafers were a major problem. We found some ways of preparing ohmic contacts of acceptable contact resistance, but an ideal problem solution is lacking still. We found a dependence of the contact resistance on the p-CdTe doping concentration. Solar cells made from p-CdTe crystals covered with nn/sup +/-CdS attained on open circuit voltage of 655 mV and a short circuit current density of 13,8 mA/cm/sup 2/ in a 100 mW/cm/sup 2/ light. Assuming a sufficiently low series resistance we expect an efficiency of about 6 percent. Besides the /sup +/-CdS layers n/sup +/-ITO-layers (indium-tin-oxide) were deposited on p-CdTe by sputtering. These cells exhibit a short circuit density a little higher but a lower open circuit voltage than the heterosolarcells with n/sup +/-CdS.

  19. Defect studies in 4H- Silicon Carbide PVT grown bulk crystals, CVD grown epilayers and devices

    Science.gov (United States)

    Byrappa, Shayan M.

    Silicon Carbide [SiC] which exists as more than 200 different polytypes is known for superior high temperature and high power applications in comparison to conventional semiconductor materials like Silicon and Germanium. The material finds plethora of applications in a diverse fields due to its unique properties like large energy bandgap, high thermal conductivity and high electric breakdown field. Though inundated with superior properties the potential of this material has not been utilized fully due to impeding factors such as defects especially the crystalline ones which limit their performance greatly. Lots of research has been going on for decades to reduce these defects and there has been subsequent improvement in the quality as the diameter of SiC commercial wafers has reached 150mm from 25mm since its inception. The main focus of this thesis has been to study yield limiting defect structures in conjunction with several leading companies and national labs using advanced characterization tools especially the Synchrotron source. The in depth analysis of SiC has led to development of strategies to reduce or eliminate the density of defects by studying how the defects nucleate, replicate and interact in the material. The strategies discussed to reduce defects were proposed after careful deliberation and analysis of PVT grown bulk crystals and CVD grown epilayers. Following are some of the results of the study: [1] Macrostep overgrowth mechanism in SiC was used to study the deflection of threading defects onto the basal plane resulting in stacking faults. Four types of stacking faults associated with deflection of c/c+a threading defects have been observed to be present in 76mm, 100mm and 150mm diameter wafers. The PVT grown bulk crystals and CVD grown epilayers in study were subjected to contrast studies using synchrotron white beam X-ray topography [SWBXT]. The SWBXT image contrast studies of these stacking faults with comparison of calculated phase shifts for

  20. Lattice constant and hardness of InSb:Bi bulk crystals grown by vertical directional solidification

    Science.gov (United States)

    Maske, Dilip; Deshpande, Manisha; Choudhary, Rashmi; Gadkari, Dattatray

    2016-05-01

    Ingots of the Bi doped InSb (InSb1-xBix) bulk semiconductor crystals were grown by specially designed Vertical Directional Solidification (VDS) technique. Substrates of seven crystals grown with various composition values of x (0 ≤ x 0.05.

  1. Scintillation properties of solution-grown trans-stilbene single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Zaitseva, Natalia, E-mail: zaitseva1@llnl.gov [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94551 (United States); Glenn, Andrew; Carman, Leslie; Paul Martinez, H.; Hatarik, Robert [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94551 (United States); Klapper, Helmut [Institut für Kristallographie, Jägerstraße 17-19, D-52066 Aachen (Germany); Payne, Stephen [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94551 (United States)

    2015-07-21

    The scintillation properties of trans-stilbene crystals grown for the first time by application of the solution growth technique to the scale of 10 cm are reported. Measurements of the scintillation light output, pulse shape discrimination, and neutron detection efficiency were made with sets of crystals cut as 50 cm diameter cylinders of different lengths from 0.3 to 10 cm. Comparison to liquid scintillators and traditional melt-grown stilbene showed that at increasing sizes new solution-grown crystals exhibit better scintillation performance that makes them promising for use in large scale neutron detectors. Results are discussed in relation to structural imperfections attributed to different methods of growth. - Highlights: • 10-cm-scale trans-stilbene single crystals grown from organic solutions. • Crystals have high optical quality required for fast neutron detection. • Scintillation performance superior to liquids and melt-grown stilbene demonstrated.

  2. Effects of various deposition times and RF powers on CdTe thin film growth using magnetron sputtering

    Science.gov (United States)

    Ghorannevis, Z.; Akbarnejad, E.; Ghoranneviss, M.

    2016-09-01

    Cadmium telluride (CdTe) is a p-type II-VI compound semiconductor, which is an active component for producing photovoltaic solar cells in the form of thin films, due to its desirable physical properties. In this study, CdTe film was deposited using the radio frequency (RF) magnetron sputtering system onto a glass substrate. To improve the properties of the CdTe film, effects of two experimental parameters of deposition time and RF power were investigated on the physical properties of the CdTe films. X-ray Diffraction (XRD), atomic force microscopy (AFM) and spectrophotometer were used to study the structural, morphological and optical properties of the CdTe samples grown at different experimental conditions, respectively. Our results suggest that film properties strongly depend on the experimental parameters and by optimizing these parameters, it is possible to tune the desired structural, morphological and optical properties. From XRD data, it is found that increasing the deposition time and RF power leads to increasing the crystallinity as well as the crystal sizes of the grown film, and all the films represent zinc blende cubic structure. Roughness values given from AFM images suggest increasing the roughness of the CdTe films by increasing the RF power and deposition times. Finally, optical investigations reveal increasing the film band gaps by increasing the RF power and the deposition time.

  3. Crystal-melt interface shape of Czochralski-grown large diameter germanium crystals

    Science.gov (United States)

    Roth, M.; Azoulay, M.; Gafni, G.; Mizrachi, M.

    1990-01-01

    Crystal-melt interface shapes of 100 to 200 mm diameter 111-line Ge grown by the Czochralski technique have been examined using the method of fast withdrawal from the melt. Initially, the interface shape is convex, then transforms gradually into a sigmoidal shape, becomes nearly planar at about one third of the final crystal length, and finally assumes a concave profile with progressively increasing curvature. The nearly planar interface has a double-facet structure, with an annular facet at the edge of the crystal in addition to the central (111) facet. Formation of the annular facet is accompanied by a giant oscillation of the pull rate when the maximum average pull rate is exceeded. Such oscillation is detrimental to crystal quality, since it introduces a region of high dislocation density. An average pull rate maximum of 2 cm/h has been found to allow for a smooth growth of 200 mm diameter crystals. The origin of the pull rate perturbation is discussed in terms of an instantaneous change in the equilibrium shape of the meniscus.

  4. Characterization of CdTe films with in situ CdCl{sub 2} treatment grown by a simple vapor phase deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Rios Flores, Araceli, E-mail: arios@mda.cinvestav.mx [Applied Physics Department, CINVESTAV-IPN Merida, C.P. 97310 Merida, Yucatan (Mexico); Castro-Rodriguez, R.; Pena, J.L. [Applied Physics Department, CINVESTAV-IPN Merida, C.P. 97310 Merida, Yucatan (Mexico); Romeo, N.; Bosio, A. [Dipartimento di fisica, Universita di Parma, Campus Universitario, Parco Area delle Scienza, 43100 Parma (Italy)

    2009-05-15

    A unique vapor phase deposition (VPD) technique was designed and built to achieve in situ CdCl{sub 2} treatment of CdTe film. The substrate temperature was 400 deg. C, and the temperature of CdTe mixture with CdCl{sub 2} source was 500 deg. C. The structural and morphological properties of CdTe have been studied as a function of wt.% CdCl{sub 2} concentration by using X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). XRD measurements show that the presence of CdCl{sub 2} vapor induces (1 1 1)-oriented growth in the CdTe film. SEM measurements have shown enhance growth of grains, in the presence of CdCl{sub 2}. From AFM the roughness of the films showed a heavy dependence on CdCl{sub 2} concentration. In the presence of 4% CdCl{sub 2} concentration, the CdTe films roughness has a root mean square (rms) value of about 275 A. This value is about 831 A for the non-treated CdTe films.

  5. Characterization of CdTe films with in situ CdCl 2 treatment grown by a simple vapor phase deposition technique

    Science.gov (United States)

    Flores, Araceli Rios; Castro-Rodríguez, R.; Peña, J. L.; Romeo, N.; Bosio, A.

    2009-05-01

    A unique vapor phase deposition (VPD) technique was designed and built to achieve in situ CdCl 2 treatment of CdTe film. The substrate temperature was 400 °C, and the temperature of CdTe mixture with CdCl 2 source was 500 °C. The structural and morphological properties of CdTe have been studied as a function of wt.% CdCl 2 concentration by using X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). XRD measurements show that the presence of CdCl 2 vapor induces (1 1 1)-oriented growth in the CdTe film. SEM measurements have shown enhance growth of grains, in the presence of CdCl 2. From AFM the roughness of the films showed a heavy dependence on CdCl 2 concentration. In the presence of 4% CdCl 2 concentration, the CdTe films roughness has a root mean square (rms) value of about 275 Å. This value is about 831 Å for the non-treated CdTe films.

  6. Surface studies on as-grown (111) faces of sodium bromate crystals

    Indian Academy of Sciences (India)

    K Kishan Rao; V Surender

    2001-12-01

    Single crystals of sodium bromate are grown at various supersaturations ranging from 3% to 8%. Surface studies have been carried out on as-grown and etched (111) faces of these crystals. Typical and systematically oriented growth hillocks are observed almost on all the faces. Further dislocation studies are made to understand the growth history of these crystals. These studies suggest that the crystals grow by 2D-growth mechanism. In addition to this, studies are also conducted on the formation of overgrowths and inclusions in these crystals.

  7. Shape Evolution of Detached Bridgman Crystals Grown in Microgravity

    Science.gov (United States)

    Volz, M. P.; Mazuruk, K.

    2015-01-01

    A theory describing the shape evolution of detached Bridgman crystals in microgravity has been developed. A starting crystal of initial radius r0 will evolve to one of the following states: Stable detached gap; Attachment to the crucible wall; Meniscus collapse. Only crystals where alpha plus omega is great than 180 degrees will achieve stable detached growth in microgravity. Results of the crystal shape evolution theory are consistent with predictions of the dynamic stability of crystallization (Tatarchenko, Shaped Crystal Growth, Kluwer, 1993). Tests of transient crystal evolution are planned for ICESAGE, a series of Ge and GeSi crystal growth experiments planned to be conducted on the International Space Station (ISS).

  8. Revealing of defects in CdTe crystals by DSL etching

    NARCIS (Netherlands)

    Bissoli, F.; Weyher, J.L.; Zappettini, A.; Zha, M.; Zanotti, L.

    2005-01-01

    The effect of DS(L) (Diluited Sirtl with or without Light) solution on CadmiumTelluride crystals has been studied in comparison with the actions due to Inoue and Nakagawa etching solutions. The use of chemical etching to reveal extended defects is a fast and useful technique for characterizing the c

  9. Thin film growth of a topological crystal insulator SnTe on the CdTe (111) surface by molecular beam epitaxy

    Science.gov (United States)

    Ishikawa, Ryo; Yamaguchi, Tomonari; Ohtaki, Yusuke; Akiyama, Ryota; Kuroda, Shinji

    2016-11-01

    We report molecular beam epitaxial growth of a SnTe (111) layer on a CdTe template, fabricated by depositing it on a GaAs (111)A substrate, instead of BaF2 which has been conventionally used as a substrate. By optimizing temperatures for the growth of both SnTe and CdTe layers and the SnTe growth rate, we could obtain SnTe layers of the single phase grown only in the (111) orientation and of much improved surface morphology from the viewpoint of the extension and the flatness of flat regions, compared to the layers grown on BaF2. In this optimal growth condition, we have also achieved a low hole density of the order of 1017 cm-3 at 4 K, the lowest value ever reported for SnTe thin films without additional doping. In the magnetoresistance measurement on this optimized SnTe layer, we observe characteristic negative magneto-conductance which is attributed to the weak antilocalization effect of the two-dimensional transport in the topological surface state.

  10. Photoluminescence study of Cu diffusion in CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Grecu, D.; Compaan, A.D. [Department of Physics, University of Toledo, Toledo, Ohio (United States)

    1999-03-01

    We report changes in the photoluminescence spectra associated with the diffusion of Cu in CdTe thin films used in CdTe/CdS solar cells. Films grown by vapor transport deposition and radio-frequency sputtering as well as single crystal CdTe were included in the study. The main effects of Cu diffusion appear to be the quenching of a donor-acceptor transition associated with Cd vacancies and the increase in intensity of a lower energy broad-band transition. The PL is subsequently used to explore the effects of electric fields on Cu diffusion. The role of Te as a diffusion barrier for Cu is investigated. {copyright} {ital 1999 American Institute of Physics.}

  11. Growth and characterization of solution-grown tetra glycine barium chloride (TGBC) single crystals

    Science.gov (United States)

    Senthil Pandian, M.; Ramasamy, P.

    2008-05-01

    The single crystals of tetra glycine barium chloride (TGBC), a semi-organic material, were grown by the solvent evaporation technique from an aqueous solution of glycine and barium chloride at ambient temperature. Good optical quality single crystals of size 11×13×7 mm 3 were grown in a period of 2 weeks. Powder X-ray diffraction (XRD) and Fourier transform infrared transmission (FTIR) have confirmed the formation of the new crystal. The grown crystals were characterized by single-crystal XRD analysis to study the crystal structure. The crystalline perfection was evaluated by high-resolution X-ray diffractometry (HRXRD). From this analysis we found that the quality of the crystal was quite good. The full-width at half-maximum (FWHM) of the diffraction curves is 8.5 arcsec, which is very close to that expected from the plane wave dynamical theory of XRD showing that the crystalline perfection is excellent. UV-Vis-NIR spectrum was recorded to study the optical transparency of the grown crystals. Thermal properties of the crystal have been investigated using thermo gravimetric (TG), differential thermal analysis (DTA). The mechanical strength of the crystal is estimated by Vicker's hardness test.

  12. Bulk crystals of L-Histidinium dihydrogen phosphate orthophosphoric acid grown by Sankaranarayanan-Ramasamy method

    Science.gov (United States)

    Ittyachan, Reena; Arunkumar, A.

    2017-01-01

    L-Histidinium dihydrogen phosphate orthophosphoric acid (LHDP) crystal of length 80 mm long and 20 mm diameter has been grown from aqueous solution along c-axis using Sankaranarayanan-Ramasamy method. The unit cell parameters were confirmed by single crystal X-ray diffraction analysis and it belongs to orthorhombic system. The UV-vis-NIR spectrum showed that the grown crystal is transparent in the entire visible region. The lower optical cut-off wavelength for this crystal was observed at 240 nm. Fluorescence studies were carried out in range of 200-700 nm. SHG efficiency was analyzed using Kurtz-Perry powder technique.

  13. Electrical and Optical Properties of Bulk ZnO Single Crystal Grown by Flux Bridgman Method

    Institute of Scientific and Technical Information of China (English)

    LI Xin-Hua; XU Jia-Yue; JIN Min; SHEN Hui; LI Xiao-Min

    2006-01-01

    Zinc oxide (ZnO) single crystals are grown by the modified vertical Bridgman method using a PbF2 flux. Themaximum size of the as-grown ZnO crystal is about φ25 mm× 5mm. The transmittance of the as-grown ZnOcrystal is more than 70% in the range of 600-800nm and the optical band gap is estimated to be 3.21 eV. Thephotoluminescence spectrum indicates that the as-grown ZnO crystal has a very low concentration of nativedefects and is much closed to its stoichiometry. The electrical measurement exhibits that the ZnO crystal haslow electrical resistivity of 0.02394Ωcm-1 and a high carrier concentration of 2.10 × 1018 cm-3

  14. Spectral, optical and mechanical studies on L-histidine hydrochloride monohydrate (LHC) single crystals grown by unidirectional growth technique

    Energy Technology Data Exchange (ETDEWEB)

    Robert, R. [Department of Physics, Government Arts College (Men), Krishnagiri (India); Justin Raj, C. [Department of Physics, Loyola College, Chennai 600 034 (India); Krishnan, S. [Department of Physics, R.M.K. Engineering College, Kavaripettai 601 206 (India); Uthrakumar, R.; Dinakaran, S. [Department of Physics, Loyola College, Chennai 600 034 (India); Jerome Das, S., E-mail: sjeromedas2004@yahoo.co [Department of Physics, Loyola College, Chennai 600 034 (India)

    2010-08-15

    Single crystals of nonlinear optical L-histidine hydrochloride monohydrate (LHC) were grown in an aqueous solution by the unidirectional crystal growth method within a period of 45 days along (1 0 1) plane. The grown crystals were subjected to single crystal X-ray diffraction analysis to confirm their orthorhombic structure having space group P2{sub 1}2{sub 1}2{sub 1}. Values of several physical parameters were determined for the grown crystal. Optical transmission studies revealed very low absorption and band gap energy was calculated for the LHC crystals. Further, some optical constant were also determined for the grown crystals. Anisotropy in Vicker's microhardness led to the assessment of fracture toughness, brittleness index and yield strength for the synthesized crystals. Nonlinear optical studies were carried out for the grown crystal and second harmonic generation (SHG) efficiency was found to be three times that of KDP crystals.

  15. Growth, characterization and dielectric property studies of gel grown barium succinate single crystals

    Indian Academy of Sciences (India)

    M P Binitha; P P Pradyumnan

    2014-05-01

    Single crystals of barium succinate (BaC4H4O4) were grown in silica gel medium using controlled chemical reaction method. Plate-like single crystals of size up to 3 × 2 × 0.2 mm3 was obtained. Single crystal X-ray diffraction (XRD) studies confirmed that structure of the title compound is tetragonal. Powder X-ray diffraction (PXRD) pattern of the grown crystal and the Fourier transform infrared (FT–IR) spectrum in the range 400–4000 cm-1 are recorded. The vibrational bands corresponding to different functional groups are assigned. Thermal stability of the grown crystals is confirmed by differential scanning calorimetry (DSC). Dielectric constant and dielectric loss have been calculated and discussed as a function of frequency at different temperatures.

  16. Identification of Ag-acceptor related photoluminescence in $^{111}\\!$Ag doped CdTe

    CERN Document Server

    Hamann, J; Deicher, M; Filz, T; Ostheimer, V; Schmitz, C; Wolf, H; Wichert, T

    1998-01-01

    Bridgman-grown, nominally undoped CdTe crystals were doped with Ag by implanting radioactive $^{111}\\!$Ag. Photoluminescence spectra of the crystals show a donor-acceptor pair (DAP) line at 1.491 eV. The decrease of the intensity of this line with a half life of T$_{1/2}$=(7.2$\\pm$0.4) d is in good agreement with the half life of the $\\beta\\!^{-}$-decay of $^{111}\\!$Ag to $^{111}\\!$Cd of 7.45 d. This decrease is not caused by the aging behavior of Ag which was reported in the literature. The data show that the involved acceptor defect contains exactly one Ag atom and confirm the earlier assignment of the acceptor to the AgCd defect. Based on the DAP line at 1.491 eV, the spectra did not reveal a contamination of the CdTe crystals by stable Ag.

  17. Characterization of potassium bromide crystals grown in the aqueous solution of picric acid

    Science.gov (United States)

    Maheswari, J. Uma; Krishnan, C.; Kalyanaraman, S.; Selvarajan, P.

    2016-12-01

    Potassium bromide crystals were grown in the aqueous solution of picric acid by slow evaporation technique at room temperature. X-ray Diffraction (XRD) analysis ensures that the grown sample is in Fm3m space group and FCC structure. Energy Dispersive X-ray Spectroscopy (EDX) reveals the presence of elements in the title compound. UV-Vis-NIR spectrum reveals that the grown sample is a promising nonlinear optical (NLO) material. FTIR analysis confirms the functional groups present in the sample. The thermogravimetric (TG) and differential thermogravimetric (DTA) analyses ensure that the sample material is thermally stable up to 160 °C. The second harmonic efficiency of the sample is 1.3 times greater than that of standard KDP. The mechanical strength of the grown sample is estimated by Vickers microhardness tester. The electrical properties were investigated by impedance analysis and the results of various studies of the grown crystals are discussed.

  18. Structural reproducibility of CdTe thin films deposited on different substrates by close space sublimation method

    Energy Technology Data Exchange (ETDEWEB)

    Potlog, T.; Spalatu, N.; Maticiuc, N. [Physics Department, Moldova State University, Chisinau (Moldova); Hiie, J.; Valdna, V.; Mikli, V.; Mere, A. [Department of Materials Science, Tallinn University of Technology, Tallinn (Estonia)

    2012-02-15

    We report on the characterization of polycrystalline CdTe thin films grown directly on glass, SnO{sub 2}-coated glass, and CdS/SnO{sub 2}/glass at relatively low temperatures by employing the close space sublimation technique (CSS). The deposited films have been characterized by using optical absorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray analysis (EDX). Based on the SEM and optical analysis, the CdTe/CdS/SnO{sub 2}/glass thin films exhibit a superior crystal quality and reproducibility in comparison to other CdTe films grown on glass and SnO{sub 2}/glass. XRD study reveals that films are polycrystalline with a cubic crystal structure. The EDX characterization indicates that all CdTe thin films are nearly stoichiometric. The optical absorption study shows a larger variation of band gap from 1.485 to 1.495 eV for CdTe grown on SnO{sub 2}-coated glass. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Growth and characterization of gel grown pure and mixed iron–manganese levo-tartrate crystals

    Indian Academy of Sciences (India)

    S J Joshi; B B Parekh; K D Vohra; M J Joshi

    2006-06-01

    Several applications of iron tartrate and manganese tartrate compounds are reported in the literature. In the present investigation, we have grown pure and mixed iron (II)–manganese levo-tartrate crystals by single diffusion gel growth technique. Crystals with spherulitic morphology were harvested. The colouration of the crystals changed from black to pinkish brown upon increasing the content of manganese in the crystals. The crystals were characterized by FTIR spectroscopy, powder XRD, TGA, VSM and dielectric study. Crystal structures of different mixed crystals were studied. From TGA it was observed that on heating the hydrated crystals became anhydrous and then converted into oxides. Paramagnetic nature of the crystals was revealed from VSM study. The variation of the dielectric constant with frequency was studied. The results are discussed.

  20. Effect of Crucibles on Qualities of Self-Seeded Aluminium Nitride Crystals Grown by Sublimation

    Institute of Scientific and Technical Information of China (English)

    HAN Qi-Feng; WANG Yu-Qi; DUAN Cheng-Hong; QIU Kai; JI Chang-Jian; LI Xin-Hua; ZHONG Fei; YIN Zhi-Jun; CAO Xian-Cun; ZHOU Xiu-Ju

    2007-01-01

    Self-seeded aluminium nitride (AIN)crystals are grown in tungsten and hot pressed boron nitride(HPBN)crucibles With different shapes by a sublimation method.The qualities of the AIN crystals are characterized by high-resolution transmission electronic microscopy(HRTEM),scanning electron microscopy(SEM)and MicroRaman spectroscopy.The results indicate that the better quality crystals can be collected in.conical tungsten crucible.

  1. Crystal growth, Judd–Ofelt analysis and radiative properties of Nd:YAG single crystal grown by HDS

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Huaixin, E-mail: guohuaixin@gmail.com; Zhang, Mingfu, E-mail: mfzhang1@hit.edu.cn; Han, Jiecai; Nie, Ying

    2013-08-15

    Nd{sup 3+}-doped Y{sub 3}A{sub l5}O{sub 12} single crystal was successfully grown by horizontal directional solidification (HDS) method; in addition optical absorption and fluorescence spectra were measured at room temperature. Base on the Judd–Ofelt theory, the intensity parameters of Nd{sup 3+} in YAG crystal grown by HDS were determined, and then three spectroscopic parameter Ω{sub t} (t=2,4,6), radiative transition probabilities, radiative lifetime and branching ratios were obtained according to the absorption spectra and fluorescence spectra, and the results were discussed as well. Furthermore, the stimulated emission cross-section of {sup 4}F{sub 3/2}–{sup 4}I{sub 11/2} transition of Nd{sup 3+} in YAG crystal grown by the HDS technique was calculated as 17.86×10{sup −20} cm{sup 2}. In comparison with Nd:YAG crystal grown by the Czochraiski technique, those results indicated that lowly Nd{sup 3+}-doped YAG crystal grown by HDS method had highly efficient stimulated emission for laser materials. -- Highlights: ► The intensity parameters of Nd{sup 3+} in YAG crystal grown by the HDS were determined base on the Judd–Ofelt theory. ► The spectroscopic quality factor Ω{sub 4}/Ω{sub 6} was stimulated to be 0.6497. ► Radiative transition probabilities, radiative lifetime and branching ratios were estimated. ► The emission cross-section calculated for the {sup 4}F{sub 3/2}→{sup 4}I{sub 11/2} transition was 17.86×10{sup −20} cm{sup 2}.

  2. Band offsets for mismatched interfaces. The special case of ZnO on CdTe (001)

    Energy Technology Data Exchange (ETDEWEB)

    Jaffe, John E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kaspar, Tiffany C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Droubay, Timothy C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Varga, Tamas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-08-02

    High-quality planar interfaces between ZnO and CdTe would be useful in optoelectronic applications, but appear difficult to achieve given the rather different crystal structures (CdTe is zinc blende with cubic lattice constant a = 6.482 Å, ZnO is hexagonal wurtzite with a = 3.253 Å and c = 5.213 Å.) However, ZnO has been reported to occur in some epitaxially stabilized films in the zinc blende structure with an fcc primitive lattice constant close to the hexagonal a value. Observing that this value equals half of the CdTe cubic lattice constant to within 1%, we propose that (001)-oriented cubic ZnO films could be grown epitaxially on a CdTe (001) surface in an R45° √2 x √2 configuration. Many terminations and alignments (in-plane fractional translations) are possible, and we describe density-functional total-energy electronic-structure calculations on several configurations to identify the most likely form of the interface, and to predict valence-band offsets between CdTe and ZnO in each case. Growth of ZnO on Te-terminated CdTe (001) is predicted to produce small or even negative (CdTe below ZnO) valence band offsets, resulting in a Type I band alignment. Growth on Cd-terminated CdTe is predicted to produce large positive offsets for a type II alignment as needed, for example, in solar cells. We also describe recent experiments that corroborate some of these predictions.

  3. Nonstoichiometry and luminescent properties of ZnSe crystals grown from the melt at high pressures

    Science.gov (United States)

    Khanh, Tran; Mozhevitina, Elena; Khomyakov, Andrew; Avetisov, Roman; Davydov, Albert; Chegnov, Vladimir; Antonov, Vladimir; Kobeleva, Svetlana; Zhavoronkov, Nikolai; Avetissov, Igor

    2017-01-01

    50 mm diameter ZnSe crystals have been grown from the melt by a vertical Bridgman technique at 100 atm argon pressure in a graphite crucible. 3D impurities concentration and nonstoichiometry mappings of the grown crystals have been defined by ICP-MS and a direct physic-chemical method, correspondingly. Photoluminescence mapping of the analyzed crystal has been done. It was found out that along the crystal height the nonstoichiometry changed from Se excess over stoichiometrical composition in the cone (bottom) part to Zn excess in the tail (upper) part passing through the stoichiometrical composition in the cylindrical part of the crystal. Metal impurities concentrated in the upper part of the crystal. The gas-forming impurities (H, C, O, N, F) had stochastic distribution but Cl impurity concentrated in the crystal peripheral part (near the crucible walls). It was found out that the as-grown crystal had a single wide PL peal with maximum of 583 nm. A proposal about complex structure luminescent center based on Cl dopant an overstoichiometric Se has been made.

  4. Electro-Plating and Characterisation of CdTe Thin Films Using CdCl2 as the Cadmium Source

    Directory of Open Access Journals (Sweden)

    Nor A. Abdul-Manaf

    2015-09-01

    Full Text Available Cadmium telluride (CdTe thin films have been successfully prepared from an aqueous electrolyte bath containing cadmium chloride (CdCl2·H2O and tellurium dioxide (TeO2 using an electrodeposition technique. The structural, electrical, morphological and optical properties of these thin films have been characterised using X-ray diffraction (XRD, Raman spectroscopy, optical profilometry, DC current-voltage (I-V measurements, photoelectrochemical (PEC cell measurement, scanning electron microscopy (SEM, atomic force microscopy (AFM and UV-Vis spectrophotometry. It is observed that the best cathodic potential is 698 mV with respect to standard calomel electrode (SCE in a three electrode system. Structural analysis using XRD shows polycrystalline crystal structure in the as-deposited CdTe thin films and the peaks intensity increase after CdCl2 treatment. PEC cell measurements show the possibility of growing p-, i- and n-type CdTe layers by varying the growth potential during electrodeposition. The electrical resistivity of the as-deposited layers are in the order of 104 Ω·cm. SEM and AFM show that the CdCl2 treated samples are more roughness and have larger grain size when compared to CdTe grown by CdSO4 precursor. Results obtained from the optical absorption reveal that the bandgap of as-deposited CdTe (1.48–1.52 eV reduce to (1.45–1.49 eV after CdCl2 treatment. Full characterisation of this material is providing new information on crucial CdCl2 treatment of CdTe thin films due to its built-in CdCl2 treatment during the material growth. The work is progressing to fabricate solar cells with this material and compare with CdTe thin films grown by conventional sulphate precursors.

  5. Growth and fabrication method of CdTe and its performance as a radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyojeong [Korea Atomic Energy Research Institute, Jeong-eup (Korea, Republic of); Sungkyunkwan University, Suwon (Korea, Republic of); Jeong, Manhee; Kim, Hansoo; Kim, Youngsoo; Ha, Jangho [Korea Atomic Energy Research Institute, Jeong-eup (Korea, Republic of); Chai, Jong-Seo [Sungkyunkwan University, Suwon (Korea, Republic of)

    2015-01-15

    A CdTe crystal ingot doped with 2000 ppm of Cl was grown by using the low-pressure Bridgman (LPB) method at the Korea Atomic Energy Research Institute (KAERI). A Semiconductor detector as a radiation detection sensor with a size of 7 (W) x 6.5 (D) x 2 (H) mm{sup 3} was fabricated from the CdTe ingot. In addition, the properties of the CdTe sample were observed through four kinds of experiments to analyze its performance. The resistivity was obtained as 1.41 x 10{sup 10} Ωcm by using a Keithley 6517A high-precision electrometer. The mobility-life time products for electrons and holes were 3.137 x 10{sup -}'4 cm{sup 2}/V and 4.868 x 10{sup -5} cm{sup 2}/V, respectively. Finally, we achieved a 16.8% energy resolution at 59.5 keV for the {sup 241}Am gamma-ray source. The CdTe semiconductor detector grown at KAERI has a performance good enough to detect low-energy gamma-rays.

  6. DC electrical conductivity measurements for pure and titanium oxide doped KDP Crystals grown by gel medium

    Science.gov (United States)

    Mareeswaran, S.; Asaithambi, T.

    2016-10-01

    Now a day's crystals are the pillars of current technology. Crystals are applied in various fields like fiber optic communications, electronic industry, photonic industry, etc. Crystal growth is an interesting and innovative field in the subject of physics, chemistry, material science, metallurgy, chemical engineering, mineralogy and crystallography. In recent decades optically good quality of pure and metal doped KDP crystals have been grown by gel growth method in room temperature and its characterizations were studied. Gel method is a very simple and one of the easiest methods among the various crystal growth methods. Potassium dihydrogen phosphate KH2PO4 (KDP) continues to be an interesting material both academically and technologically. KDP is a delegate of hydrogen bonded materials which possess very good electrical and nonlinear optical properties in addition to interesting electro-optic properties. We made an attempt to grow pure and titanium oxide doped KDP crystals with various doping concentrations (0.002, 0.004, 0.006, 0.008 and 0.010) using gel method. The grown crystals were collected after 20 days. We get crystals with good quality and shaped crystals. The dc electrical conductivity (resistance, capacitance and dielectric constant) values of the above grown crystals were measured at two different frequencies (1KHz and 100 Hz) with a temperature range of 500C to 1200C using simple two probe setup with Q band digital LCR meter present in our lab. The electrical conductivity increases with the increase of temperature. Dielectric constants value of titanium oxide doped KDP crystal was slightly decreased compared with pure KDP crystals. Results were discussed in details.

  7. Thermoelastic stresses in SiC single crystals grown by the physical vapor transport method

    Institute of Scientific and Technical Information of China (English)

    Zibing Zhang; Jing Lu; Qisheng Chen; V.Prasad

    2006-01-01

    A finite element-based thermoelastic anisotropic stress model for hexagonal silicon carbide polytype is developed for the calculation of thermal stresses in SiC crystals grown by the physical vapor transport method.The composite structure of the growing SiC crystal and graphite lid is considered in the model.The thermal expansion match between the crucible lid and SiC crystal is studied for the first time.The influence of thermal stress on the dislocation density and crystal quality iS discussed.

  8. Single-crystal semiconductor films grown on foreign substrates

    Science.gov (United States)

    Vohl, P.

    1966-01-01

    Intermediate alloy formed between foreign substrates and semiconductor material enable the growth of single crystal semiconductor films on the alloy layer. The melted film must not ball up on the surface of the substrate and neither chemically react nor alloy with the intermediate alloy formed on the substrate.

  9. Growth and characterization of pure and Cadmium chloride doped KDP Crystals grown by gel medium

    Science.gov (United States)

    Kalaivani, M. S.; Asaithambi, T.

    2016-10-01

    Crystal growth technology provides an important basis for many industrial branches. Crystals are the unrecognized pillars of modern technology. Without crystals, there is no electronic industry, no photonic industry, and no fiber optic communications. Single crystals play a major role and form the strongest base for the fast growing field of engineering, science and technology. Crystal growth is an interdisciplinary subject covering physics, chemistry, material science, chemical engineering, metallurgy, crystallography, mineralogy, etc. In past few decades, there has been a keen interest on crystal growth processes, particularly in view of the increasing demand of materials for technological applications. Optically good quality pure and metal doped KDP crystals have been grown by gel method at room temperature and their characterization have been studied. Gel method is a much uncomplicated method and can be utilized to synthesize crystals which are having low solubility. Potassium dihydrogen orthophosphate KH2PO4 (KDP) continues to be an interesting material both academically and industrially. KDP is a representative of hydrogen bonded materials which possess very good electro - optic and nonlinear optical properties in addition to interesting electrical properties. Due to this interesting properties, we made an attempt to grow pure and cadmium chloride doped KDP crystals in various concentrations (0.002, 0.004, 0.006, 0.008 and 0.010) using gel method. The grown crystals were collected after 20 days. We get crystals with good quality and shaped. The dc electrical conductivity (resistance, capacitance and dielectric constant) values were measured at frequencies in the range of 1 KHZ and 100 HZ of pure and cadmium chloride added crystal with a temperature range of 400C to 1300C using simple two probe setup with Q band digital LCR meter present in our lab. The electrical conductivity increases with increase of temperature. The dielectric constants of metal doped KDP

  10. Optical and mechanical studies on unidirectional grown tri-nitrophenol methyl p-hydroxybenzoate bulk single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Uthrakumar, R. [Department of Physics, Loyola College, Chennai 600 034 (India); Vesta, C. [Department of Physics, SDNB Vaishnav College, Chennai 600 044 (India); Robert, R. [Department of Physics, Government Arts College (Men), Krishnagiri 635 001 (India); Mangalam, G. [Department of Physics, MGR University, Chennai 600 095 (India); Jerome Das, S., E-mail: jerome@loyolacollege.ed [Department of Physics, Loyola College, Chennai 600 034 (India)

    2010-10-15

    The bulk single crystal of tri-nitrophenol methyl p-hydroxybenzoate (TNMPHB) of length 90 mm and diameter 12 mm was obtained by employing unidirectional growth technique. Single crystal X-ray diffraction studies and powder XRD analysis have been carried out to confirm the identity of the crystal. The optical band gap of the grown crystal was calculated to be 4.91 eV from UV transmission spectrum. The mechanical strength of the grown crystal has been studied using Vicker's microhardness tester. Low dielectric loss shows that the grown crystal contains lesser defects authenticating the suitability of the crystal towards device applications. The surface morphology studies have been carried out on the grown crystal.

  11. Second harmonic generation studies in L-alanine single crystals grown from solution

    Science.gov (United States)

    Boomadevi, Shanmugam; Pandiyan, Krishnamoorthy

    2014-01-01

    Single crystals of L-alanine of dimensions 2×1.1×0.5 cm3 were grown by evaporation method using deionised water as a solvent. The morphology of the grown crystals had (1 2 0) and (0 1 1) as their prominent faces. UV-vis-near IR spectrum shows the transparency range of L-alanine crystal available for frequency doubling from 250 to 1400 nm. Phase-matched second harmonic generation was observed in L-alanine sample by using 7 ns Q-switched Nd:YAG laser with OPO set up. In the present work, phase matching was achieved by angle and wavelength tuning. The angular and spectral phase-matching bandwidths were determined experimentally for a 1.5 mm thick L-alanine crystal and the results have been compared with their theoretical results. Further the possible reasons for the broadening of SHG spectrum have been discussed.

  12. Second harmonic generation studies in L-alanine single crystals grown from solution

    Energy Technology Data Exchange (ETDEWEB)

    Boomadevi, Shanmugam, E-mail: sboomi@gmail.com [Department of Physics, Periyar Maniammai University, Thanjavur-613 403, Tamil Nadu (India); Pandiyan, Krishnamoorthy [School of Electrical and Electronics Engineering, SASTRA University, Thanjavur-613 401, Tamil Nadu (India)

    2014-01-01

    Single crystals of L-alanine of dimensions 2×1.1×0.5 cm{sup 3} were grown by evaporation method using deionised water as a solvent. The morphology of the grown crystals had (1 2 0) and (0 1 1) as their prominent faces. UV–vis-near IR spectrum shows the transparency range of L-alanine crystal available for frequency doubling from 250 to 1400 nm. Phase-matched second harmonic generation was observed in L-alanine sample by using 7 ns Q-switched Nd:YAG laser with OPO set up. In the present work, phase matching was achieved by angle and wavelength tuning. The angular and spectral phase-matching bandwidths were determined experimentally for a 1.5 mm thick L-alanine crystal and the results have been compared with their theoretical results. Further the possible reasons for the broadening of SHG spectrum have been discussed.

  13. Shock-produced vapor-grown crystals in the Yanzhuang meteorite

    Institute of Scientific and Technical Information of China (English)

    谢先德; 陈鸣

    1997-01-01

    Vapor-grown crystals intimately related to shock metamorphism of meteorites were found in the Yanzhuang (H6) chondrite which had been heavily impacted in the space. These crystals include: (i) subhedral low-Ca pyroxene occurring on the wall of the pores within a silicate melt pocket that experienced a shock temperature higher than 1 500℃, (ii)Fe-Ni needle-whiskers (taenite) occurring in the cracks in the partially melted chondritic facies that experienced a shock temperature of 850-1 300℃ , (iii) troilite with abundant microholes occurring in the cracks in the brecciated facies and the lightly deformed chondritic facies that experienced a shock temperature lower than 850℃ . The occurrence and mineralogical features of vapor-grown crystals show that vaporization of minerals could be produced in heavily impacted meteorites and that a small amount of crystals could be deposited in situ from vapor plus-

  14. Controlling crystal phases in GaAs nanowires grown by Au-assisted molecular beam epitaxy.

    Science.gov (United States)

    Dheeraj, D L; Munshi, A M; Scheffler, M; van Helvoort, A T J; Weman, H; Fimland, B O

    2013-01-11

    Control of the crystal phases of GaAs nanowires (NWs) is essential to eliminate the formation of stacking faults which deteriorate the optical and electronic properties of the NWs. In addition, the ability to control the crystal phase of NWs provides an opportunity to engineer the band gap without changing the crystal material. We show that the crystal phase of GaAs NWs grown on GaAs(111)B substrates by molecular beam epitaxy using the Au-assisted vapor-liquid-solid growth mechanism can be tuned between wurtzite (WZ) and zinc blende (ZB) by changing the V/III flux ratio. As an example we demonstrate the realization of WZ GaAs NWs with a ZB GaAs insert that has been grown without changing the substrate temperature.

  15. CdTe and related compounds: physics, defects, hetero- and nano-structures, crystal growth, surfaces and applications

    CERN Document Server

    Triboulet, Robert

    Almost thirty years after the remarkable monograph of K. Zanio and the numerous conferences and articles dedicated since that time to CdTe and CdZnTe, after all the significant progresses in that field and the increasing interest in these materials for several extremely attractive industrial applications, such as nuclear detectors and solar cells, the edition of a new enriched and updated monograph dedicated to these two very topical II-VI semiconductor compounds, covering all their most prominent, modern and fundamental aspects, seemed very relevant and useful.

  16. Single crystals of bismuth silicon oxide grown by the Czochralski technique and their characterisation

    Directory of Open Access Journals (Sweden)

    ANDREJA VALCIC

    1999-09-01

    Full Text Available Single crystals of Bi12SiO20 were grown by the Czochralski technique. The critical diameter and the critical rate of rotation were calculated. Suitable polishing and etching solutions were determined. X-Ray measurements were performed on powdered samples to obtain the lattice parameters. The optical properties of the bismuth silicon oxide single crystals were investigated. The obtained results are discussed and compared with published data.

  17. Electrical conductivity measurements on gel grown KDP crystals added with urea and thiourea

    Indian Academy of Sciences (India)

    M Priya; C M Padma; T H Freeda; C Mahadevan; C Balasingh

    2001-10-01

    Pure and impurity added (with urea and thiourea) KDP single crystals were grown by the gel method using silica gels. Electrical conductivity measurements were carried out along both the unique axis and perpendicular directions at various temperatures ranging from 30 to 140°C by the conventional two-probe method. The present study shows that the conductivity in KDP crystals, for both the impurities considered, increases with the increase in impurity concentration and temperature. Activation energies were also determined and reported.

  18. Pyroelectric properties and conduction mechanism in solution grown glycine sodium nitrate single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Tyagi, Nidhi [Crystal Lab, Department of Physics & Astrophysics, University of Delhi, Delhi 7 (India); Sinha, Nidhi [Crystal Lab, Department of Physics & Astrophysics, University of Delhi, Delhi 7 (India); Department of Electronics, SGTB Khalsa College, University of Delhi, Delhi 7 (India); Yadav, Harsh [Crystal Lab, Department of Physics & Astrophysics, University of Delhi, Delhi 7 (India); Kumar, Binay, E-mail: b3kumar69@yahoo.co.in [Crystal Lab, Department of Physics & Astrophysics, University of Delhi, Delhi 7 (India)

    2015-04-01

    Nonlinear optical “glycine sodium nitrate” transparent single crystals were grown from aqueous solution by the solvent evaporation technique. The ferroelectric transition temperature was determined by dielectric measurement for GSN crystal. Temperature dependent pyroelectric coefficient and figure of merit were measured. The conduction mechanism of GSN crystal has been discussed. The ln σ−E{sup 1/2} characteristic in the high-field region supports dominating the Poole–Frenkel conduction while in the low field region; there are possibility of both Richardson–Schottky and Poole–Frenkel conduction mechanism. The activation energy of GSN crystal was found to be 0.58 eV. A low value of dielectric constant and good value of the figure of merit suggest the GSN crystal more promising for IR sensing applications. Hardness value shows the stability of GSN crystal.

  19. Growth and study of some gel grown group II single crystals of iodate

    Indian Academy of Sciences (India)

    Sharda J Shitole; K B Saraf

    2001-10-01

    Single crystals of calcium iodate and barium iodate were grown by simple gel technique by single diffusion method. The optimum conditions were established by varying various parameters such as pH of gel solution, gel concentration, gel setting time, concentration of the reactants etc. Crystals having different morphologies and habits were obtained. Prismatic, dendritic crystals of barium iodate and prismatic, needle shaped, hopper crystals of calcium iodate were obtained. Some of them were transparent, some transluscent, and few others were opaque. Both the crystals were studied using XRD, FT-IR, and thermal analysis. The crystals were doped by iron impurity. The effect of doping was studied using IR spectroscopy and thermal analysis.

  20. Control of grain size in sublimation-grown CdTe, and the improvement in performance of devices with systematically increased grain size

    OpenAIRE

    Major, Jonathan; Proskuryakov, Yuri; Durose, Ken; Zoppi, Guillaume; Forbes, Ian

    2010-01-01

    A method to control the grain size of CdTe thin films deposited by close space sublimation using chamber pressure is demonstrated. Grain diameter is shown to increase in the pressure range 2–200 Torr, following the linear relationship D (?m)=0.027×P (Torr)+0.90. A mechanism is proposed to explain the dominance of the 111 preferred orientation in the small-grained, but not the large-grained films. For a series of CdTe/CdS solar cells in which the only variable was grain size, the performance p...

  1. X-ray photoelectron spectroscopy studies of initial growth mechanism of CdTe layers grown on (100)GaAs by organometallic vapor phase epitaxy

    OpenAIRE

    1990-01-01

    Variations of the GaAs surface conditions and the adsorption of the precursor elements of Cd and Te on the (100)GaAs substrate were studied by x‐ray photoelectron spectroscopy at the initial stage of CdTe growth by organometallic vapor phase epitaxy. The stoichiometry of GaAs substrates was found to recover by annealing in the H2 environment (500°C, 5 min), while the surface was initially in an As‐rich condition after etching with H2SO4:H2O2:H2O (5:1:1). The preferential adsorption of Te on t...

  2. Optical characteristics of ZnO single crystal grown by the hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Chen, G. Z.; Yin, J. G., E-mail: gzhchen@siom.ac.cn, E-mail: yjg@siom.ac.cn; Zhang, L. H.; Zhang, P. X.; Wang, X. Y.; Liu, Y. C. [Chinese Academy of Sciences, Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics (China); Zhang, C. L. [Guilin Research Institute of Geology for Mineral Resources (China); Gu, S. L. [Nanjing University, Department of Physics (China); Hang, Y., E-mail: yhang@siom.ac.cn [Chinese Academy of Sciences, Key Laboratory of High Power Laser Materials, Shanghai Institute of Optics and Fine Mechanics (China)

    2015-12-15

    ZnO single crystals have been grown by the hydrothermal method. Raman scattering and Photoluminescence spectroscopy (PL) have been used to study samples of ZnO that were unannealed or annealed in different ambient gases. It is suggested that the green emission may originate from defects related to copper in our samples.

  3. Sublimation process and physical properties of vapor grown γ-In2Se3 platelet crystals

    Science.gov (United States)

    Ajayakumar, C. J.; Kunjomana, A. G.

    2016-11-01

    Indium selenide (γ-In2Se3) crystals have been grown by the closed tube sublimation process in the absence of seed crystals and chemical transporting agents. The composition, structure and morphology of the samples grown under different vacuum conditions were examined by energy dispersive analysis, X-ray diffraction, and scanning electron microscope. Structural features of the crystals obtained in a vacuum of 10-3 mbar exhibited a few reflections not belonging to γ phase, whereas X-ray diffraction spectra of the crystals deposited under a vacuum of 10-6 mbar revealed evidence of sharp peaks with high intensities of γ-In2Se3 crystalline phase. When growth runs were performed for 72 h, voids were observed on the surface whereas for a duration of 120 h, platelet crystals were obtained. Optical properties of these samples were investigated using the FT-IR and photoluminescence spectroscopy. The average transmittance of the platelets in the visible and near infrared region of solar spectrum was found to be ∼81% and an optical band gap of ∼2.05 eV was computed from the transmission spectrum. Photoluminescence spectra of the grown In2Se3 crystals recorded at room temperature using an excitation laser of wavelength 355 nm showed a peak in the near band edge emission (NBE) corresponding to an energy of 2.01 eV. Under an illumination power of 12 mW/cm2, the photocurrent increased linearly with applied voltage and the dark current was found to be 2.5×10-9 A for 10 V. These results suggest that the as-grown γ-In2Se3 platelets crystallized from vapor deposition, possess superior optoelectronic properties than the other phases for solar cell applications.

  4. Studies on bulk growth, structural and microstructural characterization of 4-aminobenzophenone single crystal grown from vertical Bridgman technique

    Indian Academy of Sciences (India)

    S P Prabhakaran; R Ramesh Babu; G Bhagavannarayana; K Ramamurthi

    2014-02-01

    Bulk single crystal of 4-aminobenzophenone with a size of 25 mm dia. and 35 mm length has been grown by vertical Bridgman technique. The crystal system of the grown crystal was confirmed by X-ray diffraction analysis. Crystalline perfection was analysed by high resolution X-ray diffraction studies. Chemical etching was carried out for the first time in 4-aminobenzophenone single crystal to study the defects presented in the grown crystal and the growth mechanism involved. Several organic etchants were employed with different etching time to select suitable etchant for studying dislocation pattern and other structural defects existing in the grown crystal. Etch patterns such as spirals and striations observed for the selective etchants provide considerable information on growth mechanism of the crystal.

  5. InPBi single crystals grown by molecular beam epitaxy.

    Science.gov (United States)

    Wang, K; Gu, Y; Zhou, H F; Zhang, L Y; Kang, C Z; Wu, M J; Pan, W W; Lu, P F; Gong, Q; Wang, S M

    2014-06-26

    InPBi was predicted to be the most robust infrared optoelectronic material but also the most difficult to synthesize within In-VBi (V = P, As and Sb) 25 years ago. We report the first successful growth of InPBi single crystals with Bi concentration far beyond the doping level by gas source molecular beam epitaxy. The InPBi thin films reveal excellent surface, structural and optical qualities making it a promising new III-V compound family member for heterostructures. The Bi concentration is found to be 2.4 ± 0.4% with 94 ± 5% Bi atoms at substitutional sites. Optical absorption indicates a band gap of 1.23 eV at room temperature while photoluminescence shows unexpectedly strong and broad light emission at 1.4-2.7 μm which can't be explained by the existing theory.

  6. PENINGKATAN KUALITAS FILM TIPIS CdTe SEBAGAI ABSORBER SEL SURYA DENGAN MENGGUNAKAN DOPING TEMBAGA (Cu

    Directory of Open Access Journals (Sweden)

    P. Marwoto

    2012-12-01

    Full Text Available Film tipis CdTe dengan doping tembaga (Cu berkonsenterasi 2% telah berhasil ditumbuhkan di atas substrat Indium Tin Oxide (ITO dengan metode dc magnetron sputtering. Penelitian ini dilakukan untuk mengetahui pengaruh doping Cu(2% terhadap struktur morfologi, struktur kristal, fotoluminisensi dan resistivitas listrik film CdTe. Citra morfologi Scanning Electron Microscopy (SEM dan hasil analisis struktur dengan X-Ray Diffraction (XRD menunjukkan bahwa film CdTe:Cu(2% mempunyai citra permukaan dan struktur kristal yang lebih sempurna dibandingkan film CdTe tanpa doping. Hasil analisis spektrometer fotoluminisensi menunjukkan bahwa film CdTe dan CdTe(2% mempunyai puncak fotoluminisensi pada tiga panjang gelombang yang identik yaitu 685 nm (1,81 eV, 725 nm (1,71 eV dan 740 nm (1,67 eV. Film CdTe dengan doping Cu(2% memiliki intensitas puncak fotoluminisensi yang lebih tajam pada pita energi 1,81 eV dibandingkan dengan film CdTe tanpa doping. Pengukuran arus dan tegangan (I-V menunjukkan bahwa pemberian doping Cu(2% dapat menurunkan resistivitas film dari 8,40x109 Ωcm menjadi 6,92x105 Ωcm. Sebagai absorber sel surya, kualitas film tipis CdTe telah berhasil ditingkatkan dengan pemberian doping Cu(2%.CdTe:Cu(2% thin film has been successfully grown on Indium Tin Oxide (ITO substrates by using dc magnetron sputtering. This study was carried out in order to investigate the effect of Cu(2% doping on the morphologycal structure, crystal structure, photoluminesence, and resistivity of CdTe thin film. Scanning Electron Microscopy (SEM  images and X-Ray Diffraction (XRD results showed that CdTe:Cu(2% thin film has morphologycal and crystal structures more perfect than undoped CdTe film. Photoluminesence spectroscopy results showed that CdTe and CdTe:Cu(2% thin films have luminesence peak at three identical wevelength regions i.e. 685 nm (1.81 eV, 725 nm (1.71 eV and 740 nm (1.67 eV however CdTe:Cu(2% film shows sharper photoluminescence peak at band

  7. Characteristics evaluation of stilbene single crystal grown by vertical bridgman technique

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Kwang Ho

    2012-02-15

    As the nature of organic scintillator, stilbene single crystal's decay time is only a couple of nano seconds, which makes it suitable for fast neutron detection. However, the entire amount of stilbene single crystal being used relies on import currently. As the necessity of fast neutron detection equipment such as KSTAR and Sodium-cooled Fast Reactor system increases, the goal is to have our own domestic technology through the growth of stilbene single crystal. The emission wavelength of grown stilbene single crystal is confirmed, and the property of grown stilbene single crystal is assessed compared to commercial stilbene (Ukraine ISMA research center) through gamma ray and neutron tests. In this research, we have grown stilbenes through Bridgman technique, and obtained three stilbenes out of two amples. (Two ones of {Phi} 30 mm x 15 mm, and {Phi} 40 mm x 17 mm from the first ample, and size of {Phi} 25 mm x 13 mm from the other) The grown stilbene's emission wavelength and inherent property of stilbene are confirmed. As the result of gamma ray test, we have confirmed linearity of grown stilbene's scintillator, and the relative light yield ratio is proven 101% efficiency to reference stilbene. Neutron detection efficiency of the three stilbenes amounts to 80% of reference stilbene, and FOM of them is 108% efficiency to reference stilbene's one. Although Ukraine ISMA research center still holds a dominant position with world-class efficiency and performance of its stilbene, we expect to produce a better stilbene with our domestic technology development. Through this, fast neutron detection technique can be obtained, which opens up an opportunity to be used not only in neutron monitoring system in nuclear fusion reactor, but also in alternative measurement technique as the unit price of He-3 increases recently

  8. Vapor phase epitaxy of CdTe on sapphire substrates in dependence on the vapor-flow orientation

    Science.gov (United States)

    Muslimov, A. E.; Butashin, A. V.; Vlasov, V. P.; Kanevsky, V. M.

    2016-11-01

    The growth of cadmium telluride films on a structured (0001) sapphire surface oriented at an angle of 44° to the vapor-flow direction and normal to the steps formed along the 11overline 2 0 direction is studied. It is found that this geometry of the vapor source and a substrate (heated to a temperature of 300°C) provides the growth of single-crystal CdTe films if a step height on the substrate surface is more than 1 nm. The results are explained by the occurrence of a longitudinal component of the diffusion flux of CdTe molecules and atoms toward the steps from the inner side and their high density at the step edge from the outer side due to the presence of the Ehrlich-Schwoebel barrier, which ensures the efficient supply of material and minimum supersaturation necessary for the nucleation at the step edge and growth of oriented CdTe islands. The cadmium telluride films that are grown have the ( {110} )[ {1overline 1 0} ]CdTe| {( {0001} )} .[ {11overline 2 0} ]A{l_2}{O_3} orientation and a composition similar to stoichiometric CdTe.

  9. Thermal, FT–IR and dielectric studies of gel grown sodium oxalate single crystals

    Indian Academy of Sciences (India)

    B B Parekh; P M Vyas; Sonal R Vasant; M J Joshi

    2008-04-01

    Oxalic acid metabolism is important in humans, animals and plants. The effect of oxalic acid sodium salt is widely studied in living body. The growth of sodium oxalate single crystals by gel growth is reported, which can be used to mimic the growth of crystals in vivo. The grown single crystals are colourless, transparent and prismatic. The crystals have been characterized by thermogravimetric analysis, FT–IR spectroscopy and dielectric response at various frequencies of applied field. The crystals become anhydrous at 129.3°C. Coats and Redfern relation is applied to evaluate the kinetic and thermodynamic parameters of dehydration. The dielectric study suggests very less variation of dielectric constant with frequency of applied field in the range of 1 kHz–1 MHz. The nature of variation of imaginary part of complex permittivity, dielectric loss and a.c. resistivity with applied frequency has been reported.

  10. Simulation studies and spectroscopic measurements of a position sensitive detector based on pixelated CdTe crystals

    CERN Document Server

    Karafasoulis, K; Seferlis, S; Kaissas, I; Lambropoulos, C; Loukas, D; Potiriadis, C

    2010-01-01

    Simulation studies and spectroscopic measurements are presented regarding the development of a pixel multilayer CdTe detector under development in the context of the COCAE project. The instrument will be used for the localization and identification of radioactive sources and radioactively contaminated spots. For the localization task the Compton effect is exploited. The detector response under different radiation fields as well as the overall efficiency of the detector has been evaluated. Spectroscopic measurements have been performed to evaluate the energy resolution of the detector. The efficiency of the event reconstruction has been studied in a wide range of initial photon energies by exploiting the detector's angular resolution measure distribution. Furthermore, the ability of the COCAE detector to localize radioactive sources has been investigated.

  11. Structural and optical properties of LiKB{sub 4}O{sub 7} single crystals grown by Czochralski technique

    Energy Technology Data Exchange (ETDEWEB)

    Sukumar, M. [Crystal Growth and Thin Film Laboratory, Department of Physics, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu (India); Babu, R. Ramesh, E-mail: rampap2k@yahoo.co.in [Crystal Growth and Thin Film Laboratory, Department of Physics, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu (India); Ramamurthi, K. [Crystal Growth and Thin Film Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM University, Kattankulathur 603 203, Tamil Nadu (India); Bhagavannarayana, G. [Crystal Growth and Crystallography Section, National Physical Laboratory, Krishnan Marg, New Delhi 110 012 (India)

    2015-06-15

    One of the alkali metal borates, lithium potassium borate (LiKB{sub 4}O{sub 7}) single crystal, was grown following two different micro step pulling movements employing the modified crystal puller. The influence of two different micro step pulling movements on the crystalline nature, optical properties and micro morphology of the grown LiKB{sub 4}O{sub 7} crystal was investigated by high resolution X-ray diffraction (HRXRD) analysis and birefringence interferometry and chemical etching techniques, respectively. HRXRD studies revealed that the crystalline perfection of the grown crystals is reasonably good. Interferometric images showed that the crystal grown under higher micro step pulling movement has very less number of scattering centers. The etching studies revealed that the crystal grown under higher micro steps pulling movement contains relatively low level dislocation density. - Graphical abstract: Diffraction curve recorded for LiKB{sub 4}O{sub 7} crystal from (a) top portion and (b) bottom portion. - Highlights: • LiKB{sub 4}O{sub 7} crystal was grown under two different micro stepping movements by the crystal puller. • Crystalline nature, optical properties and micro morphology of LiKB{sub 4}O{sub 7} were investigated. • The micro stepping pull movement reduces the dislocation density during the growth of LiKB{sub 4}O{sub 7} crystals.

  12. Optical investigations on Tb3+ doped L-Histidine hydrochloride mono hydrate single crystals grown by low temperature solution techniques

    Science.gov (United States)

    Rajyalakshmi, S.; Ramachandra Rao, K.; Brahmaji, B.; Samatha, K.; Visweswara Rao, T. K.; Bhagavannarayana, G.

    2016-04-01

    The potential nonlinear optical material of Terbium (Tb3+) ion doped L-Histidine hydrochloride monohydrate (LHHC) single crystals were successfully grown. Tb3+:LHHC crystals of 7 mm × 5 mm × 3 mm and 59 mm length and 15 mm diameter have been grown by the slow solvent evaporation and Sankaranarayanan-Ramasamy (SR) techniques respectively. The grown crystals were characterized by single crystal X-ray diffraction analysis to confirm the crystalline structure and morphology. High resolution X-ray diffraction (HRXRD) studies revealed that the SR grown sample shows relatively good crystalline nature with 9″ full-width at half-maximum (FWHM) for the diffraction curve. Functional groups were identified by Fourier transform infra-red spectroscopy (FTIR). The optical transparency and band gaps of grown crystals were measured by UV-Vis spectroscopy. Thermogravimetric and differential thermal analysis (TG/DTA) studies reveal that the crystal was thermally stable up to 155 °C in SR grown crystal. Surface morphology of the growth plane was observed using scanning electron microscopy (SEM). The incorporation of Tb ion was estimated by EDAX. The frequency-dependent dielectric properties of the crystals were carried out for different temperatures. Vickers hardness study carried out on (1 0 0) face at room temperature shows increased hardness of the SR method grown crystal. Second harmonic generation efficiency of SEST and SR grown crystals are 3.2 and 3.5 times greater than that of pure KDP. The Photoluminescence (PL) studies of Tb3+ ions result from the radiative intra-configurational f-f transitions that occur from the 5D4 excited state to the 7Fj (j = 6, 5, 4, 3) ground states. The decay curve of the 5D4 level of emission was observed with a long life time of 319.2041 μs for the SR grown Tb3+:LHHC crystal.

  13. Optical, crystalline perfection and mechanical studies on unidirectional grown bis(thiourea) cadmium zinc chloride single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Uthrakumar, R. [Department of Physics, Loyola College, Sterling Road, Nungambakkam, Chennai-600 034, Tamilnadu (India); Department of Physics, Sri Muthukumaran Institute of Technology, Chennai-600 069 (India); Vesta, C. [Department of Physics, SDNB Vaishnav College, Chennai-600 044 (India); Bhagavannarayana, G. [CGC Section, National Physical Laboratory, New Delhi-110 012 (India); Robert, R. [Department of Physics, Government Arts College, Krishnagiri-635 001 (India); Jerome Das, S., E-mail: sjeromedas2004@yahoo.com [Department of Physics, Loyola College, Sterling Road, Nungambakkam, Chennai-600 034, Tamilnadu (India)

    2011-02-03

    Research highlights: > Growth of bulk and optically clear single crystal of bis(thiourea) cadmium zinc chloride was successfully grown from aqueous solution by utilizing unidirectional crystal growth method. The title material belongs to orthorhombic crystal system with space group P2{sub 1}2{sub 1}2{sub 1}. The grown single crystal was free from structural grain boundaries with the FWHM value of the diffraction curve as 14 arc s. The optical transmission analysis indicates that BTCZC has a wide transparency window in the visible region with a lower cutoff wavelength at 250 nm. Hardness parameters have been calculated for the grown crystal. The dielectric studies reveal that BTCZC has low dielectric constant with fewer defects, and hence this crystal can be used as a potential material for optical applications. - Abstract: Optically transparent and bulk single crystal of bis(thiourea) cadmium zinc chloride was successfully grown by unidirectional crystal growth technique. The quality of the crystal was examined by high-resolution X-ray diffraction analysis. The cell parameters and the crystallinity of the grown crystal were estimated by the single-crystal and powder X-ray diffraction analyses, respectively. Optical transmittance of the crystal was recorded using the UV-vis-NIR spectrophotometer. The optical band gap and optical constant of the material were calculated by using transmission spectrum. Microhardness measurements were made for the grown crystal using Vicker's microhardness tester. The dielectric loss and dielectric constant measurements as a function of frequency and temperature were measured for the grown crystal.

  14. Crystalline perfection and optical properties of rapid grown KH2PO4 crystal with chromate additive

    Indian Academy of Sciences (India)

    Jianxu Ding; Bing Liu; Shenglai Wang; Xiaoming Mu; Shengjun Zhu; Guangxia Liu; Wenjie Liu; Yun Sun; Lin Liu; Duanliang Wang

    2013-10-01

    Potassium dihydrogen phosphate (KDP) crystals were grown in the presence of a series of chromate (CrO$^{2-}_{4}$) additive concentrations via rapid growth method. CrO$^{2-}_{4}$ made KDP crystals were coloured by yellowgreen, suggesting CrO$^{2-}_{4}$ had entered into the crystal lattice. The elemental analysis indicated that Cr element in KDP crystal was at ppm level. High resolution X-ray diffraction data revealed that the crystalline perfection of these as-grown KDP crystals was destroyed after CrO$^{2-}_{4}$ entered into crystal lattice, embedded in the full width at half maximum was broadened and satellite peaks appeared. Additionally, the extinction ratio was decreased with rise of CrO$^{2-}_{4}$ concentration. CrO$^{2-}_{4}$ introduced two absorption peaks centred at 360 and 280 nm and enhanced the intrinsic absorption near 220 nm, which were at the same band positions compared with the CrO$^{2-}_{4}$ or HCrO$^{-}_{4}$ transmittance spectra. Additionally, CrO$^{2-}_{4}$ could increase the size of light scattering, which was attributed to the point defects and microscopic defects by the replacement by CrO$^{2-}_{4}$ at PO$^{3-}_{4}$ position.

  15. Control of grain size in sublimation-grown CdTe, and the improvement in performance of devices with systematically increased grain size

    Energy Technology Data Exchange (ETDEWEB)

    Major, J.D.; Proskuryakov, Y.Y.; Durose, K. [Department of Physics, Science Laboratories, Durham University, South Road, Durham, DH1 3LE (United Kingdom); Zoppi, G.; Forbes, I. [Northumbria University, Northumbria Photovoltaics Applications Centre, Newcastle upon Tyne NE1 8ST (United Kingdom)

    2010-06-15

    A method to control the grain size of CdTe thin films deposited by close space sublimation using chamber pressure is demonstrated. Grain diameter is shown to increase in the pressure range 2-200 Torr, following the linear relationship D ({mu}m)=0.027 x P (Torr)+0.90. A mechanism is proposed to explain the dominance of the 111 preferred orientation in the small-grained, but not the large-grained films. For a series of CdTe/CdS solar cells in which the only variable was grain size, the performance parameters were seen to increase from 0.54% (0.94 {mu}m grains) up to a plateau of 11.3% ({>=}3.6 {mu}m grains). This corresponds to the point at which the series resistance is no longer dominated by grain boundaries, but by the contacts. (author)

  16. Growth and characterization of CdTe absorbers on GaAs by MBE for high concentration PV solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ari, Ozan; Polat, Mustafa; Selamet, Yusuf [Department of Physics, Izmir Institute of Technology, Izmir 35430 (Turkey); Karakaya, Merve [Department of Material Science and Engineering, Izmir Institute of Technology, Izmir 35430 (Turkey)

    2015-11-15

    CdTe based II-VI absorbers are promising candidates for high concentration PV solar cells with an ideal band gap for AM1.5 solar radiation. In this study, we propose single crystal CdTe absorbers grown on GaAs substrates with a molecular beam epitaxy (MBE) which is a clean deposition technology. We show that high quality CdTe absorber layers can be grown with full width half maximum of X-ray diffraction rocking curves (XRD RC) as low as 227 arc-seconds with 0.5% thickness uniformity that a 2 μm layer is capable of absorbing 99% of AM1.5 solar radiation. Bandgap of the CdTe absorber is found as 1.483 eV from spetroscopic ellipsometry (SE) measurements. Also, high absorption coefficient is calculated from the results, which is ∝5 x 10{sup 5}cm{sup -1} in solar radiation spectrum. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Growth, spectral, structural and mechanical properties of struvite crystal grown in presence of sodium fluoride

    Indian Academy of Sciences (India)

    K Suguna; M Thenmozhi; C Sekar

    2012-08-01

    Struvite or magnesium ammonium phosphate hexahydrate (MAP) is one of the components of urinary stone. Struvite stones are commonly found in women. It forms in human beings as a result of urinary tract infection with urea splitting organisms. These stones can grow rapidly forming “staghorn-calculi”, which is a painful urological disorder. Therefore, it is of prime importance to study the growth and inhibition of struvite crystals. The growth inhibition effect of struvite crystals in sodium metasilicate (SMS) gel in the presence of sodium fluoride has been carried out. Crystals obtained have been analysed by powder and single crystal XRD, SEM–EDX, FTIR and TG–DTA. The results show that the presence of fluoride significantly affects struvite crystal growth and the characteristics of the crystallites produced. The mechanical property of the grown crystals has been investigated by Vickers microhardness testing. Work hardening coefficient was found to be >1.6 for both pure and doped samples which suggests that the crystal belongs to the family of soft material. Presence of sodium fluoride further softened the crystal.

  18. Low-Angle Grain Boundaries in Sublimation Grown 6H-SiC Crystals

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    High-resolution X-ray diffractometry (HRXRD) was used to assess the quality of 6H-SiC crystals grown by sublimation method. The results show the occurrence of low-angle grain boundaries (LB) is close relative to the inclination of the crystal interface. At the central faceted region with 0° inclination the crystal is of high structural perfection. However, at the region close to the facet with less than 5° inclination LB occurs slightly and at the region close to the peripheral polytype ring with more than 5° inclination LB defect occurs heavily. The density of LB can be drastically reduced by decreasing radial temperature gradient that determines the shape of the crystal growth interface.

  19. Optical Properties of LiNbO3 Single Crystal Grown by Czochralski Method

    Science.gov (United States)

    Sahar, M. R.; Naim, N. M.; Hamzah, K.

    2011-03-01

    Pure LiNbO3 single crystal was grown by Czochralski method using Automatic Diameter Control—Crystal Growth System (ADC-CGS). The transmission spectrum was determined by using Infrared Spectroscopy while the refractive index was determined using UV-Vis spectroscopy via the Sellmeier equation. The density was also measured using the Archimedes principle. It was found that the peak for the absorption vibrational spectrum for LiNbO3 crystal occurs at 801 cm-1, 672 cm-1, 639 cm-1 and 435 cm-1. The refractive index, ne was found to be 2.480 and the crystal density was around 4.64 g/cm3.

  20. Photoluminescence of vapor and solution grown ZnTe single crystals

    Science.gov (United States)

    Biao, Y.; Azoulay, M.; George, M. A.; Burger, A.; Collins, W. E.; Silberman, E.; Su, C.-H.; Volz, M. E.; Szofran, F. R.; Gillies, D. C.

    1994-04-01

    ZnTe single crystals grown by horizontal physical vapor transport (PVT) and by vertical traveling heater method (THM) from a Te solution were characterized by photoluminescence (PL) at 10.6 K and by atomic force microscopy (AFM). Copper was identified by PL as a major impurity existing in both crystals, forming a substitutional acceptor, Cu Zn. The THM ZnTe crystals were found to contain more Cu impurity than the PVT ZnTe crystals. The formation of Cu Zn-V Te complexes and the effects of annealing, oxygen contamination and intentional Cu doping were also studied. Finally, the surface morphology analyzed by AFM was correlated to the PL results.

  1. X-ray perfection study of Verneuil-grown SrTiO 3 crystals

    Science.gov (United States)

    Yoshimura, J.; Sakamoto, T.; Usui, S.; Kimura, S.

    1998-07-01

    Dislocations, subgrain textures and other long-range strains in Verneuil-grown SrTiO 3 crystals, used widely as a substrate for growing high- Tc superconducting thin films, have been studied by reflection and transmission X-ray topography to characterize the crystal in regard to structural perfection. It was found that dislocations are nearly aligned along the directions and most of them are of pure edge type, presumably as a property of annealed crystals with simple cubic lattice. This entire dislocation alignment causes a strong long-range distortion about the [0 0 1] axis in anisotropic (1 1 0)-oriented crystal plates. Burgers vectors both of and types were observed. It was also found that the surfaces of some samples were finished highly strain-free as well as optically flat by the mechanochemical polishing.

  2. Lattice sites of Li in CdTe

    NARCIS (Netherlands)

    Restle, M; BharuthRam, K; Quintel, H; Ronning, C; Hofsass, H; Wahl, U; Jahn, SG

    1996-01-01

    The lattice site occupation of Li in CdTe at temperatures between 40 and 500 K was investigated with the emission channeling method. Radioactive Li-8 ions were implanted at low doses into CdTe single crystals. Emission channeling patterns of alpha-particles emitted in the nuclear decay of Li-8 (t(1/

  3. Influence of Zn2+ doping on the crystal structure and optical-electrical properties of CdTe thin films

    Science.gov (United States)

    Kavitha, R.; Sakthivel, K.

    2015-10-01

    The present study reports the synthesis of Cd1-xZnxTe (x = 0, 0.025, 0.050, 0.075 and 0.100) nanocrystalline thin film through a simple two step method. In the first step fine nanoparticles of Cd1-xZnxTe was prepared by solvothermal microwave irradiation (SMI) technique and then deposited as thin film using dip-coating technique. X-ray diffraction study showed that films are polycrystalline with cubic phase, which are preferentially oriented along the (1 1 1) direction. No impurity phase was observed in the XRD pattern even after higher concentration of doping (x = 0.100) of Zn. FESEM study revealed that the films are homogeneous without cracks and pinholes. TEM micrographs revealed the particles are slightly agglomerated and lesser than 25 nm. The optical absorption study revealed that pure and doped CdTe films possess a direct band gap material with bandgap values between 2.39 and 2.63 eV (±0.02 eV). The values of optical bandgap increase with an increase in dopant (Zn) concentration from x = 0.025 to 0.10. The pure cadmium telluride (CdTe) nanocrystalline film shows a strong green emission peak centered at about 525 nm. The emission peaks of Cd1-xZnxTe nanocrystalline films are red shifted from 525 nm to 611 nm according to the dopant (Zn2+) concentration. The grains in the prepared films are uniformly distributed, which was confirmed by narrow full width at half maximum (FWHM) of the emission peaks (40-65 nm). The DC conductivity has increased by 1.25 and 4 orders as the concentration of dopant increases from x = 0.025 to 0.10 at room temperature (30 °C) and 150 °C respectively. The higher conductivity value is underpinned by the smaller activation energy value and is explained by thermionic emission mechanism.

  4. Effect of flux on thermoluminescence in flux-grown BaFCl crystals. [X-and gamma-irradiation effects

    Energy Technology Data Exchange (ETDEWEB)

    Somaiah, K.; Babu, V.H. (Osmania Univ., Hyderabad (India). Dept. of Physics)

    1984-07-01

    BaFCl crystals have been grown using BaF/sub 2/ and BaCl/sub 2/ by flux technique. Glow curves, optical absorption, and TL emission spectra of X- or gamma irradiated crystals are studied. The results have been compared with those BaFCl crystals grown from NaF flux so as to study the effects of flux on these properties. It is found that crystals grown from BaF/sub 2/ flux are relatively purer. An additional TL glow peak at 460 K, an optical absorption band at 775 nm and TL emission band at 485 nm have been obtained in the presently grown crystals. The additional glow peak, optical absorption band have been attributed to F(F-bar) aggregate centers, whereas the 485 nm TL emission band to impurity centers.

  5. Electrical conductivity measurements on gel grown KDP crystals added with some ammonium compounds

    Indian Academy of Sciences (India)

    T H Freeda; C Mahadevan

    2000-08-01

    Pure and impurity added [with NH4Cl, NH4NO3, NH4H2PO4, (NH4)2CO3 and (NH4)2SO4] KDP single crystals were grown by the gel method using silica gels. Electrical conductivity measurements were carried out along both the unique axis and perpendicular directions at various temperatures ranging from 28 to 140°C by the conventional two-probe method. The present study shows that the conductivity in KDP crystals, for all the five dopants considered, increases with the increase in impurity concentration and temperature. Activation energies were also determined and reported.

  6. Synthesis and characterization of germanium monosulphide (GeS) single crystals grown using different transporting agents

    Indian Academy of Sciences (India)

    G K Solanki; Dipika B Patel; Sandip Unadkat; M K Agarwal

    2010-05-01

    This paper reports the growth of germanium monosulphide (GeS) single crystals by vapour phase technique using different transporting agents. The single crystallinity and composition of the grown crystals have been verified by transmission electron microscopy (TEM) and energy dispersive analysis of X-rays (EDAX) respectively. Resistivity measurements have been carried out in different temperature ranges. Transport parameters, e.g. resistivity, Hall coefficient, carrier concentration and mobility have been measured at varying magnetic fields. All the experimental results have been explained.

  7. Characterization of large cadmium zinc telluride crystals grown by traveling heater method

    DEFF Research Database (Denmark)

    Chen, H.; Awadalla, S.A.; Iniewski, K.

    2008-01-01

    The focus of this paper is to evaluate thick, 20 X 20 X 10 and 10 X 10 X 10 mm(3), cadmium zinc telluride (CZT), Cd0.9Zn0.1Te, crystals grown using the traveling heater method (THIM). The phenomenal spectral performance and small size and low concentration of Te inclusions/precipitates of these c......The focus of this paper is to evaluate thick, 20 X 20 X 10 and 10 X 10 X 10 mm(3), cadmium zinc telluride (CZT), Cd0.9Zn0.1Te, crystals grown using the traveling heater method (THIM). The phenomenal spectral performance and small size and low concentration of Te inclusions...

  8. Epitaxial gamma-iron silicide grown on single-crystal Si. A summary of Moessbauer results

    Energy Technology Data Exchange (ETDEWEB)

    Desimoni, J.; Sanchez, F.H

    1998-08-15

    Metastable {gamma}-FeSi{sub 2} grown on or into single-crystals of silicon can be produced by different techniques as molecular beam epitaxy, and ion implantation followed by ion beam induced epitaxial crystallisation. In these investigations, Moessbauer effect has been used to provide short range order information about the system. We present here a summary of these results, which will be compared and discussed.

  9. Properties of boron-doped epitaxial diamond layers grown on (110) oriented single crystal substrates

    OpenAIRE

    Mortet, Vincent; Pernot, J.; Jomard, F.; Soltani, A; Remes, Zdenek; Barjon, Julien; D'Haen, J; Haenen, Ken

    2015-01-01

    Boron doped diamond layers have been grown on (110) single crystal diamond substrates with B/C ratios up to 20 ppm in the gas phase. The surface of the diamond layers observed by scanning electron microscopy consists of (100) and (113) micro-facets. Fourier Transform Photocurrent Spectroscopy indicates substitutional boron incorporation. Electrical properties were measured using Hall effect from 150 to 1000 K. Secondary ion mass spectrometry analyses are consistent with the high incorporation...

  10. Microhardness Indentation Size Effect in Flux-grown Crystals of Rare Earth Aluminates

    Institute of Scientific and Technical Information of China (English)

    Jianghong GONG; Zhenduo GUAN

    2001-01-01

    The previously reported results of microhardness measurements on flux-grown crystals of rare earth aluminates were re-examined in this paper to explore the applicability of the proportional specimen resistance (PSR) model to describe the indentation size effect. It was found that the PSR model is insufficient for describing the experimental data and a modified form of this model was proposed based on the consideration of the effect of surface stress state on hardness testing.

  11. How grain boundaries affect the efficiency of poly-CdTe solar-cells: A fundamental atomic-scale study of grain boundary dislocation cores using CdTe bi-crystal thin films.

    Energy Technology Data Exchange (ETDEWEB)

    Klie, Robert [Univ. of Illinois, Chicago, IL (United States)

    2016-10-25

    It is now widely accepted that grain boundaries in poly-crystalline CdTe thin film devices have a detrimental effect on the minority carrier lifetimes, the open circuit voltage and therefore the overall solar-cell performance. The goal of this project was to develop a fundamental understanding of the role of grain boundaries in CdTe on the carrier life-time, open-circuit voltage, Voc, and the diffusion of impurities. To achieve this goal, i) CdTe bi-crystals were fabricated with various misorientation angels, ii) the atomic- and electronic structures of the grain boundaries were characterized using scanning transmission electron microscopy (STEM), and iii) first-principles density functional theory modeling was performed on the structures determined by STEM to predict the grain boundary potential. The transport properties and minority carrier lifetimes of the bi-crystal grain boundaries were measured using a variety of approaches, including TRPL, and provided feedback to the characterization and modeling effort about the effectiveness of the proposed models.

  12. Optical and electrical properties of ZrSe3 single crystals grown by chemical vapour transport technique

    Indian Academy of Sciences (India)

    Kaushik Patel; Jagdish Prajapati; Rajiv Vaidya; S G Patel

    2005-08-01

    Single crystals of the lamellar compound, ZrSe3, were grown by chemical vapour transport technique using iodine as a transporting agent. The grown crystals were characterized with the help of energy dispersive analysis by X-ray (EDAX), which gave confirmation about the stoichiometry. The optical band gap measurement of as grown crystals was carried out with the help of optical absorption spectra in the range 700–1450 nm. The indirect as well as direct band gap of ZrSe3 were found to be 1.1 eV and 1.47 eV, respectively. The resistivity of the as grown crystals was measured using van der Pauw method. The Hall parameters of the grown crystals were determined at room temperature from Hall effect measurements. Electrical resistivity measurements were performed on this crystal in the temperature range 303–423 K. The crystals were found to exhibit semiconducting nature in this range. The activation energy and anisotropy measurements were carried out for this crystal. Pressure dependence of electrical resistance was studied using Bridgman opposed anvils set up up to 8 GPa. The semiconducting nature of ZrSe3 single crystal was inferred from the graph of resistance vs pressure. The results obtained are discussed in detail.

  13. Characterisation of vapour grown CdZnTe crystals using synchrotron X-ray topography

    Science.gov (United States)

    Egan, Christopher K.; Choubey, Ashutosh; Moore, Moreton; Cernik, Robert J.

    2012-03-01

    Synchrotron white beam X-ray topography has been used to characterise bulk crystal defects of thick vapour grown CdZnTe crystals. Whole 50 mm diameter wafers with thicknesses in the range of 2-3 mm were sliced from boules grown by the multi-tube physical vapour transport method and analysed by diffraction topography in a transmission geometry. A variety of defects were observed including cracks, voids and grain boundaries. The largest quantity of defects observed were sub-grains appearing as localised increased intensity in the topographs. The periphery of the wafers showed the highest number of defects, whereas central regions where largely defect-free. We failed to observe any inclusions or precipitates within these crystals. Surface damage from wire-saw cutting was also observed on poorly processed wafers; these defects were otherwise invisible to standard characterisation methods. X-ray topography has proven to be a useful tool for non-destructively investigating bulk extended defects in CdZnTe crystals for radiation detector applications.

  14. CdTe microwire-based ultraviolet photodetectors aligned by a non-uniform electric field

    Science.gov (United States)

    Park, Hyunik; Yang, Gwangseok; Chun, Seungju; Kim, Donghwan; Kim, Jihyun

    2013-07-01

    We report on ultraviolet (UV) photodetectors fabricated by positioning Cadmium Telluride (CdTe) microwires (μWs) precisely by dielectrophoretic (DEP) force, where CdTe μWs were grown using an Au-catalyst-assisted closed-space-sublimation (CSS) method. The optical properties of CSS-grown CdTe μWs were characterized by micro-photoluminescence and micro-Raman spectroscopies. Optoelectronic characteristics were obtained after CdTe μWs were aligned on a pre-patterned SiO2/Si substrate by a non-uniform electric field. Photocurrents were increased with increasing the light intensities. Fast and reliable photoresponse and recovery were observed when CdTe μWs were exposed to UV illuminations. We demonstrated that high quality CdTe μWs grown by the CSS method have significant potentials as optoelectronic devices.

  15. Thermal kinetic and dielectric parameters of acenaphthene crystal grown by vertical Bridgman technique

    Science.gov (United States)

    Karuppusamy, S.; Dinesh Babu, K.; Nirmal Kumar, V.; Gopalakrishnan, R.

    2016-05-01

    The bulk acenaphthene crystal was grown in a single-wall ampoule by vertical Bridgman technique. X-ray diffraction analysis confirmed the orthorhombic crystal system of title compound with space group Pcm21. Thermal behavior of compound was studied using thermogravimetry—differential scanning calorimetry analysis. Thermal kinetic parameters like activation energy, frequency factor, Avrami exponent, reaction rate and degree of conversion were calculated using Kissingers and Ozawa methods under non-isothermal condition for acenaphthene crystal and reported for the first time. The calculated thermal kinetic parameters are presented. Dielectric studies were performed to calculate the dielectric parameters such as dielectric constant, dielectric loss, AC conductivity, and activation energy from Arrhenius plot.

  16. The unoccupied electronic structure characterization of hydrothermally grown ThO{sub 2} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, T.D.; Petrosky, J.C.; McClory, J.W. [Department of Engineering Physics, Air Force Institute of Technology, WPAFB, OH (United States); Turner, D. [Oak Ridge Institute for Science and Education, Oak Ridge, TN (United States); Mann, J.M. [Sensors Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH (United States); Kolis, J.W. [Department of Chemistry and Center for Optical Materials Science and Engineering Technologies (COMSET), Clemson University, Clemson, SC (United States); Zhang, Xin; Dowben, P.A. [Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, NE (United States)

    2014-03-15

    Single crystals of thorium dioxide ThO{sub 2}, grown by the hydrothermal growth technique, have been investigated by ultraviolet photoemission spectroscopy (UPS), inverse photoemission spectroscopy (IPES), and L{sub 3}, M{sub 3}, M{sub 4}, and M{sub 5} X-ray absorption near edge spectroscopy (XANES). The experimental band gap for large single crystals has been determined to be 6 eV to 7 eV, from UPS and IPES, in line with expectations. The combined UPS and IPES, place the Fermi level near the conduction band minimum, making these crystals n-type, with extensive band tailing, suggesting an optical gap in the region of 4.8 eV for excitations from occupied to unoccupied edge states. Hybridization between the Th 6d/5f bands with O 2p is strongly implicated. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Dislocation Analysis for Large-sized Sapphire Single Crystal Grown by SAPMAC Method

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, large-sized sapphire (Φ230×210 mm, 27.5 kg) was grown by SAPMAC method (sapphire growth technique with micro-pulling and shoulder-expanding at the cooled center). Dislocation peculiarity in large sapphire boule (0001) basal plane was investigated by chemical etching, scanning electron microscopy and X-ray topography method. The triangular dislocation etch pit measured is 7.6×101~8.0×102 cm-2, in which relative high-density dislocations were generated at both initial and final stages of crystal growth. The analysis of single-crystal X-ray topography shows that there are no apparent sub-grain boundaries; the dislocation lines are isolated and straight. Finally, the origins of low-density dislocation in sapphire crystal are discussed by numerical analysis method.

  18. Thermal characteristics of pure and substituted gel grown Gd-molybdate crystals

    Indian Academy of Sciences (India)

    Vinay Hangloo; K K Bamzai; P N Kotru; M L Koul

    2004-10-01

    Polycrystalline spherulitic crystals of pure Gd-heptamolybdate and single and twinned crystals of substituted Gd–Ba-molybdate were grown by using gel encapsulation technique. The thermal behaviour of these crystals was studied using the thermoanalytical techniques, which included TG, DTA and DSC. Thermal analysis suggests decomposition of the materials in one or more than one stages. Results obtained on application of TG based models viz. Horowitz–Metzger, Coats–Redfern and Piloyan–Novikova, are reported. According to the results of the kinetics of thermal decomposition, the random nucleation model is shown to be the one that is relevant to the decomposition of single rare earth (Gd) containing material and contracting sphere to the decomposition of the substituted (Gd–Ba) one. The kinetic parameters viz. the order of reaction, frequency factor and energy of activation using above-mentioned models, are computed and shown to bear reasonably good agreement.

  19. Studies on the Properties of ZnO Crystal Plane Grown by the Innovated Hydrothermal Method

    Institute of Scientific and Technical Information of China (English)

    WANG Yong-Hao; CHEN Da-Gui; LI Wei; HUANG Jia-Kui; WANG Guo-Hong; LIN Zhang; HUANG Feng

    2008-01-01

    ZnO single crystals were grown by the innovated hydrothermal method. The crystal surfaces were polished, and then studied by atom force microscope (AFM) and wet-chemical etching (WCE). It was found that the Zn polar plane was smoother than O polar plane under the same polishing conditions. The etch pit density of Zn polar plane is 4.3×103 cm-2,which is consistent with the previous report, while the density of etch pit of O polar plane is more than 103 cm-2. After annealing treatment, the density of etch pit of Zn plane reduces to 5.8×102 cm-2 and is superior to the current report. This investigation reveals that the high quality ZnO single crystals with fine Zn polar plane can be obtained by the innovated hydrothermal method.

  20. Growth kinetics and morphology of mercuric iodide crystals grown by physical vapor transport

    Energy Technology Data Exchange (ETDEWEB)

    Nason, D. [TN Technologies, Round Rock, TX (United States); Mihalik, G. [Siemens Solar Inc., Vancouver, Washington (United States); Monchamp, R. [ROMOCO, Santa Barbara, California (United States)

    1997-06-02

    The growth kinetics of mercuric iodide single crystals grown by physical vapor transport from synthesized material were measured using an instrumented growth ampoule, and in situ crystal size resolution to {+-}0.2{mu}m was achieved. The kinetic coefficients are 2x10{sup -4}mm/s and 1.3x10{sup -4}mm/s for (001) and (110), respectively, as found from extrapolating the measured (apparent) kinetic coefficients to zero crystal size. The kinetic coefficients are nearly independent of growth rate in the practical range, {approx}1-5mm/day, indicating linear growth kinetics, and have substantial temperature coefficients of 0.3x10{sup -6}mm/(sC) and 0.4x10{sup -6}mm/(sC), respectively. The results indicate that the growth process is kinetically controlled at small crystal sizes and undergoes a transition to transport control at {approx}30-40mm crystal size, depending on the particular face. The results are consistent with a layer spreading process of growth in which adsorbed molecules surface-diffuse with activation energies congruent with 4kcal/mol and congruent with 8kcal/mol for (001) and (110), respectively

  1. Thermoelectric properties of Tl-doped PbTeSe crystals grown by directional solidification

    Science.gov (United States)

    Su, Ching-Hua

    2016-04-01

    Three Tl-doped PbTe and two Tl-doped PbTeSe crystals were grown by vertical un-seeded directional solidification method. Among them, two Tl-doped PbTe ingots, with starting composition of (Pb0.99Tl0.01)Te, were grown under Pb or Te pressure over the melt provided by a Pb or Te reservoir, respectively, whereas another ingot, with starting composition of (Pb0.98Tl0.02)Te, was grown under Te overpressure. Two Tl-doped PbTeSe crystals, with starting composition of (Pb0.98Tl0.02)(Te0.85Se0.15) and (Pb0.96Tl0.04)(Te0.85Se0.15), were grown without any over-pressure. Disk-shaped samples were sliced at different locations along the growth axis and their thermal conductivities were determined from thermal diffusivity, density, and heat capacity measurements. The electrical conductivity and Seebeck coefficient were simultaneously measured as a function of temperature for each disk sample. The Figure of Merit for the thermoelectric application, zT, was calculated from these properties from room temperature to about 640 °C. The Tl-doped PbTeSe samples have the highest zT value of 1.63 at temperature range of 425 to 475 °C, comparing to 1.13 at 410 °C for the Tl-doped PbTe samples. By substituting 15% of the Te atoms in the Tl-doped PbTe by Se atoms, the Figure of Merit of PbTeSe was enhanced by reducing the thermal conductivity about 26% and, at the same time, increasing the electrical conductivity by 43%.

  2. Effect of impurities and stress on the damage distributions of rapidly grown KDP crystals

    Energy Technology Data Exchange (ETDEWEB)

    Runkel, M.; Tan, M.; De Yoreo, J.; Zaitseva, N.

    1997-12-20

    Development of high damage threshold, 50 cm, rapidly grown KF*P frequency triplers for operation of the National Ignition Facility (NIF) in the 14 J/cm2, 351 nm, 3 ns regime requires a thorough understanding of how the crystal growth parameters and technologies affect laser induced damage. Of particular importance is determining the effect of ionic impurities (e.g. Cr3+, Fe3+, Al3+) which may be introduced in widely varying concentrations via starting salts. In addition, organic particulates can contaminate the solution as leachants from growth platforms or via mechanical ablation. Mechanical stresses in the crystals may also play a strong role in the laser-induced damage distribution (LIDD), particularly in the cases of large boules where hydrodynamic forces in the growth tank may be quite high. WE have developed a dedicated, automated damage test system with diagnostic capabilities specifically designed for measured time resolved bulk damage onset and evolution. The data obtained make it possible to construct characteristic damage threshold distributions for each sample. Test results obtained for a variety of KDP samples grown from high purity starting salts and individually doped with Lucite and Teflon, iron, chromium, and aluminium show that the LIDD drops with increasing contamination content. The results also show that solution filtration leads to increased damage performance for undoped crystals but is not solely responsibility for producing the high LIDDs required by the NIF. The highest LIDD measured on a rapidly grown sample indicate that it is possible to produce high damage threshold material using ultrahigh purity, recrystallized starting salts, continuous filtration and a platform designed to minimize internal stress during growth.

  3. Lattice variation and thermal parameters of gel grown KDP crystals added with some ammonium compounds

    Indian Academy of Sciences (India)

    T H Freeda; C Mahadevan

    2001-10-01

    Pure and impurity added (with NH4Cl, NH4NO3, NH4H2PO4, and (NH4)2SO4) KDP single crystals were grown by the gel method using silica gels. X-ray diffraction data were collected for powder samples and used for the estimation of lattice variation and thermal parameters like Debye–Waller factor, mean-square amplitude of vibration, Debye temperature and Debye frequency. The thermal parameters do not vary in a particular order with respect to impurity concentration. The results obtained are reported and discussed.

  4. Fabrication of optical element from unidirectional grown imidazole-imidazolium picrate monohydrate (IIP) organic crystals for nonlinear optical applications

    Science.gov (United States)

    Vivek, P.; Murugakoothan, P.

    2014-12-01

    Nonlinear optical bulk single crystal of Imidazole-imidazolium picrate monohydrate (IIP) has been grown by Sankaranarayanan-Ramasamy (SR) method using acetonitrile as solvent. First time we report the bulk growth of IIP crystal by SR method. The transparent IIP single crystal of maximum diameter 21 mm and length 46 mm was obtained by employing SR method. The grown crystal was subjected to high resolution X-ray diffraction, UV-vis-NIR transmittance, refractive index, hardness, dielectric and laser damage threshold studies. The crystalline perfection of the grown crystal was analyzed using HRXRD. Cut off wavelength and optical transmission window of the crystal was assessed by UV-vis-NIR and the refractive index of the crystal was found. The mechanical property of the crystal was estimated by Vicker's hardness test. The dielectric property of the crystal was measured as a function of frequency. The laser damage threshold value was determined. The particle size dependent second harmonic generation efficiency for IIP was evaluated with standard reference material potassium dihydrogen phosphate (KDP) by Kurtz-Perry powder method using Nd:YAG laser, which established the existence of phase matching. The second harmonic generation (SHG) of IIP crystal was investigated by the SHG Maker fringes technique. The mechanism of growth is revealed by carrying out chemical etching using acetonitrile as etchant.

  5. Entrapment of Inclusions in Diamond Crystals Grown from Fe-Ni-C System

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Diamond single crystals grown from Fe-Ni-C system at high temperature-high pressure (HPHT) usually contain inclusions related to the metallic catalyst. During the diamond growth, the metallic inclusions are trapped by the growth front or are formed through reaction between the contaminants trapped in the diamond. In the present paper, the metallic inclusions related to the catalyst were systematically examined by transmission electron microscopy (TEM). The chemical composition and crystal structure of the metallic inclusions were for the first time determined by selected area electron diffraction pattern (SADP) combined with energy dispersive X-ray spectrometry (EDS). It is shown that the inclusions are mainly composed of orthorhombic FeSi2, fcc (FeNi)23C6, and orthorhombic Fe3C,hexagonal Ni3C.

  6. Microstructural Characterization of CdZnTe(CZT) Crystal Ingot Grown by Bridgman Method at KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyu Hong; Kim, Han Soo; Ha, Jang Ho; Kim, Young Soo; Choi, Hyo Jeong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Cd{sub 1-x}Zn{sub x}Te crystal is an important wide band-gap IIVI compound semiconductor which is one of the most attractive radiation materials for room temperature detector, especially for gamma rays. However, the electrical and radiation detection properties of CZT crystal vary widely. They have been attributed to several metallurgical defects such as dislocation, grain- and twin-boundary, Cd vacancy, and secondary phase (Te inclusion and precipitation, etc.). They act as trapping sites of carriers, and significantly degrade the detector's performance. To reduce these defects, doping elements such as Indium is applied. That method compensates Cd vacancies. In this study, 1 inch-diameter In-doped CdZnTe ingots were grown by Vertical Bridgman Method. We conducted several microstructural analyses such as Xray diffraction, edge-pit density (EPD), and ICP-MS analysis

  7. DETERMINATION OF VICKERS MICROHARDNESS IN β-Ga2O3 SINGLE CRYSTALS GROWN FROM THEIR OWN MELT

    Directory of Open Access Journals (Sweden)

    L. I. Guzilova

    2015-05-01

    Full Text Available The results of microhardness measurements of β-Ga2O3 single crystals for (001 crystallographic face are reported. The crystals were grown by the free crystallization with the "Garnet-2M" equipment. Microhardness values ​​ were determined by the Vickers method at varying loads. A four-sided diamond pyramid was used as an indenter. The average value of gallium oxide microhardness was equal to 8.91 GPa. We have carried out comparison of the values ​​obtained with the microhardness for the other wide bandgap semiconductors - epitaxial GaN layers grown on 6H-SiC and GaP layers grown on GaP:S. The findings are usable for machining process development of β-Ga2O3 single crystal substrates. In particular, silicon carbide and electrocorundum may be recommended for β-Ga2O3 machine processing.

  8. Molecular beam epitaxy of CdTe and HgCdTe on large-area Si(100)

    Science.gov (United States)

    Sporken, R.; Lange, M. D.; Faurie, Jean-Pierre

    1991-09-01

    The current status of molecular beam epitaxy (MBE) of CdTe and HgCdTe on Si(100) is reviewed. CdTe and HgCdTe grow in the (111)B orientation on Si(100); monocrystalline films with two domains are obtained on most nominal Si(100) substrates, single domain films are grown on misoriented substrates and on nominal Si(100) preheated to 900-950 degree(s)C. Double-crystal x-ray rocking curves (DCRCs) with full-width at half-maximum (FWHM) as low as 110 arcsec are reported for HgCdTe on silicon; these layers are n-type, and electron mobilities higher than 5 X 104 cm2V-2s-1 are measured at 23 K for x equals 0.26. Excellent thickness and composition uniformity is obtained: standard deviation of the CdTe thickness 0.4% of the average thickness on 2-in. and 2.3% on 5-in., standard deviation of the Cd concentration in the HgCdTe layers 0.6% of the average concentration on 3-in. and 2.4% on 5-in. First results regarding growth of CdTe on patterned Si substrates are also reported.

  9. Study of gel grown mixed crystals of BaCa(1–)(IO3)4

    Indian Academy of Sciences (India)

    S L Garud; N K Mahajan; K B Saraf

    2009-04-01

    The growth of mixed crystals of BaCa1–(IO3)4 were carried out with simple gel method. The effect of various parameters such as pH of gel solution, gel concentration, gel setting time, concentration of reactants on the growth was studied. Crystals having different morphologies and habits were obtained. The grown crystals were characterized by XRD, FT–IR, EDAX, TGA, DTA and DSC.

  10. GaAs/Ge crystals grown on Si substrates patterned down to the micron scale

    Energy Technology Data Exchange (ETDEWEB)

    Taboada, A. G., E-mail: gonzalez@phys.ethz.ch; Kreiliger, T.; Falub, C. V.; Känel, H. von [Laboratory for Solid State Physics, ETH Zürich, Otto-Stern-Weg. 1, CH-8093 Zürich (Switzerland); Meduňa, M. [Department of Condensed Matter Physics, Masaryk University, Kotlářská 2, CZ-61137 Brno (Czech Republic); CEITEC, Masaryk University Kamenice 5, CZ-60177 Brno (Czech Republic); Salvalaglio, M.; Miglio, L. [L-NESS, Department of Materials Science, Università di Milano-Bicocca, Via R. Cozzi 55, I-20125 Milano (Italy); Isa, F. [Laboratory for Solid State Physics, ETH Zürich, Otto-Stern-Weg. 1, CH-8093 Zürich (Switzerland); L-NESS and Department of Physics, Politecnico di Milano, via Anzani 42, I-22100 Como (Italy); Barthazy Meier, E.; Müller, E. [Scientific Center for Optical and Electron Microscopy (ScopeM), ETH Zürich, Auguste-Piccard-Hof 1, CH-8093 Zürich (Switzerland); Isella, G. [L-NESS and Department of Physics, Politecnico di Milano, via Anzani 42, I-22100 Como (Italy)

    2016-02-07

    Monolithic integration of III-V compounds into high density Si integrated circuits is a key technological challenge for the next generation of optoelectronic devices. In this work, we report on the metal organic vapor phase epitaxy growth of strain-free GaAs crystals on Si substrates patterned down to the micron scale. The differences in thermal expansion coefficient and lattice parameter are adapted by a 2-μm-thick intermediate Ge layer grown by low-energy plasma enhanced chemical vapor deposition. The GaAs crystals evolve during growth towards a pyramidal shape, with lateral facets composed of (111) planes and an apex formed by (137) and (001) surfaces. The influence of the anisotropic GaAs growth kinetics on the final morphology is highlighted by means of scanning and transmission electron microscopy measurements. The effect of the Si pattern geometry, substrate orientation, and crystal aspect ratio on the GaAs structural properties was investigated by means of high resolution X-ray diffraction. The thermal strain relaxation process of GaAs crystals with different aspect ratio is discussed within the framework of linear elasticity theory by Finite Element Method simulations based on realistic geometries extracted from cross-sectional scanning electron microscopy images.

  11. Dielectric properties of highly resistive GaN crystals grown by ammonothermal method at microwave frequencies

    Directory of Open Access Journals (Sweden)

    Jerzy Krupka

    2016-03-01

    Full Text Available Permittivity, the dielectric loss tangent and conductivity of semi-insulating Gallium Nitride crystals have been measured as functions of frequency from 10 GHz to 50 GHz and temperature from 295 to 560 K employing quasi TE0np mode dielectric resonator technique. Crystals were grown using ammonothermal method. Two kinds of doping were used to obtain high resistivity crystals; one with deep acceptors in form of transition metal ions, and the other with shallow Mg acceptors. The sample compensated with transition metal ions exhibited semi-insulating behavior in the whole temperature range. The sample doped with Mg acceptors remained semi-insulating up to 390 K. At temperatures exceeding 390 K the conductivity term in the total dielectric loss tangent of Mg compensated sample becomes dominant and it increases exponentially with activation energy of 1.14 eV. It has been proved that ammonothermal method with appropriate doping allows growth of high quality, temperature stable semi-insulating GaN crystals.

  12. Photoluminescence and lasing properties of MAPbBr3 single crystals grown from solution

    Science.gov (United States)

    Aryal, Sandip; Lafalce, Evan; Zhang, Chuang; Zhai, Yaxin; Vardeny, Z. Valy

    Recent studies of solution-grown single crystals of inorganic-organic hybrid lead-trihalide perovskites have suggested that surface traps may play a significant role in their photophysics. We study electron-hole recombination in single crystal MAPbBr3 through such trap states using cw photoluminescence (PL) and ps transient photoinduced absorption (PA) spectroscopies. By varying the depth of the collecting optics we examined the contributions from surface and bulk radiative recombination. We found a surface dominated PL band at the band-edge that is similar to that observed from polycrystalline thin films, as well as a weaker red-shifted emission band that originates from the bulk crystal. The two PL bands are distinguished in their temperature, excitation intensity and polarization dependencies, as well as their ps dynamics. Additionally, amplified spontaneous emission and crystal-related cavity lasing modes were observed in the same spectral range as the PL band assigned to the surface recombination. This work was funded by AFOSR through MURI Grant RA 9550-14-1-0037.

  13. Study on Inclusions in Large Sapphire Optical Crystal Grown by SAPMAC Method

    Institute of Scientific and Technical Information of China (English)

    WANG Gui-gen; ZHANG Ming-fu; ZUO Hong-bo; HE Xiao-dong; HAN Jie-cai

    2006-01-01

    The sapphire (Al2O3) single crystal is a kind of excellent infrared transmission window materials. A large-sized sapphire (Φ225 mm×205 mm, 27.5 kg) was grown by SAPMAC method (sapphire growth technique with micro-pulling and shoulder-expanding at cooled center). Several kinds of inclusion in the large sapphire crystal were investigated by means of an optical microscopy (OM), scanning electron microscopy (SEM) and electron probe microanalysis (EPMA). The experimental results show that most inclusions are consisted of solid metallic and non-metallic particles as well as gas pores caused by the impurity of alumina as the raw material, the thermal dissociation of aluminum oxide melt and the reaction of the melt to the crucible material (Mo) at high temperatures. It is also found that in different crystal regions the inclusions are of varied sizes, morphology and chemical compositions. Finally, the measures to reduce and eliminate the inclusions are proposed to improve the crystal quality.

  14. Growth and characterization of cerium lanthanum oxalate crystals grown in hydro-silica gel

    Energy Technology Data Exchange (ETDEWEB)

    John, M.V.; Ittyachen, M.A. [Mahatma Gandhi Univ., Kerala (India). School of Pure and Applied Physics

    2001-07-01

    Single crystals of mixed cerium lanthanum oxalate (CLO) are grown by gel method. Over the hydrosilica gel prepared by mixing oxalic acid and sodium meta silicate, a mixture of aqueous solutions of cerium nitrate and lanthanum nitrate are poured gently. Cerium and lanthanum ions diffuse into the gel and react with oxalic acid to give colorless, transparent cerium lanthanum oxalate crystals with in a few days. Different growth parameters give crystals of various dimensions. Infrared (IR) spectrum confirms the presence of water molecules and carboxylic acid. X-ray diffraction (XRD) pattern of these samples reveals the crystalline nature. Diffraction peaks are indexed. Unit cell parameters are determined. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) data support the presence of 9 H{sub 2}O molecules attached to the CLO crystal lattice which are lost around 200 C as revealed by the endotherm record. Exothermic peak around 350 C-425 C shows the release of CO and CO{sub 2}. Elemental analysis done by energy dispersive X-ray fluorescence analysis (EDXRF) for the mixed rare earth compound is almost in good agreement with experimental and theoretical values. (orig.)

  15. Cathodoluminescence microscopy of hydrothermal and flux grown ZnO single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Urbieta, A.; Fernandez, P.; Piqueras, J.; Hardalov, Ch. [Departamento de Fisica de Materiales, Facultad de Fisicas, Universidad Complutense, Madrid (Spain); Sekiguchi, T. [Nanomaterials Laboratory, National Institute for Materials Science, Sengen, Tsukuba (Japan)

    2001-10-07

    Bulk ZnO single crystals grown by the hydrothermal and flux methods have been characterized by steady-state and time resolved cathodoluminescence measurements performed on the different crystalline faces. A shift of the peak near band edge towards lower energies is observed in spectra recorded with increasing delay times. This behaviour is often observed in the etch pit regions in alkali flux grown crystals, which suggests the presence of a band related to dislocations or to the point defects surrounding the dislocations. In the low-energy region, cathodoluminescence spectra show that the relative intensity of the different components of the deep level band also depends on the atomic structure of the face under study. This complex behaviour is clearly revealed from the time resolved spectra. The differences observed are attributed to the nature of the defects present in each face and, in particular, to different impurity incorporation processes that could be mainly controlled by the atomic configuration and polarity of the planes. (author)

  16. Catalytic growth of CdTe nanowires by closed space sublimation method

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Gwangseok; Jung, Younghun [Department of Chemical and Biological Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Chun, Seungju; Kim, Donghwan [Department of Materials Science and Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Kim, Jihyun, E-mail: hyunhyun7@korea.ac.kr [Department of Chemical and Biological Engineering, Korea University, Seoul 136-701 (Korea, Republic of)

    2013-11-01

    CdTe nano-/micro-structures with various morphologies were grown by using the closed space sublimation (CSS) method on a sapphire substrate by Au-catalyzed vapor–liquid–solid (VLS) mechanism. Length, diameter, and morphology of the CdTe nano-/micro-structures depended on the growth time and temperature gradient between the substrate and powdered CdTe source. Scanning electron microscopy images showed that an Au catalyst droplet existed at the tips of CdTe nanowires, which confirms that CdTe nanowires were grown by an Au-catalyzed VLS mechanism. Also, we observed that the two-dimensional CdTe film layer initially formed before the growth of the CdTe nano-/micro-wires. The optical and structural properties of CdTe nano-/micro-structures were characterized by X-ray diffraction technique and micro-Raman spectroscopy. Our study demonstrates that diverse CdTe nano-/micro-structures can be fabricated by using Au-catalyzed VLS growth process in a simple CSS chamber by controlling the temperature gradient and growth time. - Highlights: • We demonstrated CdTe nanowires using closed space sublimation method. • Au-catalyst droplets at the tips confirmed vapor–liquid–solid mechanism. • Diameters and lengths increased with increasing temperature gradient and time.

  17. Homogeneity and variation of donor doping in Verneuil-grown SrTiO3:Nb single crystals

    Science.gov (United States)

    Rodenbücher, C.; Luysberg, M.; Schwedt, A.; Havel, V.; Gunkel, F.; Mayer, J.; Waser, R.

    2016-08-01

    The homogeneity of Verneuil-grown SrTiO3:Nb crystals was investigated. Due to the fast crystal growth process, inhomogeneities in the donor dopant distribution and variation in the dislocation density are expected to occur. In fact, for some crystals optical studies show variations in the density of Ti3+ states on the microscale and a cluster-like surface conductivity was reported in tip-induced resistive switching studies. However, our investigations by TEM, EDX mapping, and 3D atom probe reveal that the Nb donors are distributed in a statistically random manner, indicating that there is clearly no inhomogeneity on the macro-, micro-, and nanoscale in high quality Verneuil-grown crystals. In consequence, the electronic transport in the bulk of donor-doped crystals is homogeneous and it is not significantly channelled by extended defects such as dislocations which justifies using this material, for example, as electronically conducting substrate for epitaxial oxide film growth.

  18. Laser characteristics of TGT-grown Nd,Y-codoped:SrF2 single crystal

    Science.gov (United States)

    Jelínek, Michal; Kubeček, Václav; Su, Liangbi; Jiang, Dapeng; Ma, Fengkai; Zhang, Qian; Cao, Yuexin; Xu, Jun

    2014-05-01

    In this contribution we present spectroscopic and laser properties of TGT (temperature gradient technique) grown Nd,Y:SrF2 crystals with neodymium concentration of 0.4, 0.65 and 0.8 at.%. The absorption cross-section, fluorescence spectra and fluorescence decay time were measured. For the laser experiments, the noncoated crystal samples 3.5 or 5 mm thick were pumped by a 796 nm laser diode matching the Nd:SrF2 absorption peak. Several output couplers with reflectivity ranging from 70 to 98 % at the generated wavelength were tested. In the pulsed pumping regime (pulseduration 2 ms, frequency 10 Hz), the maximum average output power of 75 mW was obtained with the slope efficiency as high as 48 % and the optical-to-optical efficiency of 42 % with respect to the absorbed pump power. The output beam spatial profile was nearly Gaussian in both axes, oscillations started at the wavelength of 1057 nm. At higher pumping levels, the second emission line at 1050 nm appears corresponding to our fluorescence measurements. Wavelength tuning using birefringent filter from 1048 to 1070 nm is probably given by crystal-field splitting of the 4F3/2 manifold in Nd3+. True-CW laser operation was also successfully obtained at lower pumping level with the maximum output power of 90 mW using output coupler reflectivity of 98 %.

  19. The relationship between the morphology of brushite crystals grown rapidly in silica gel and its structure

    Science.gov (United States)

    Ohta, M.; Tsutsumi, M.

    1982-02-01

    The morphology of brushite, CaHPO 4 · 2 H 2O, provides some basic information on biological mineralization. The growth, morphology and surface structures of brushite crystals grown at fairly high growth rates in silica gel at 37°C in the initial pH range of 4 to 6 (the final pH range of about 3.2 to 4.7) have been investigated. Their preferred growth direction is [101]: there is a marked tendency for calcium and phosphate ions in the gel to attach to (111) or (101) surfaces; inclusions derived from silica gel are also incorporated, mainly along the [101] direction in the initial stage of crystal growth and at higher pH values. The following order of "edge strength", which refers to a sort of resistance of crystal edge against getting out of its shape, was obtained experimentally for the edges parallel to the (010) face of brushite: [101] ⪆ [201] > [001] ⪆ [100]. The relationship between the above order and the structure of corrugated sheets with composition [CaHPO 4] is also discussed.

  20. An optimized multilayer structure of CdS layer for CdTe solar cells application

    Energy Technology Data Exchange (ETDEWEB)

    Han Junfeng, E-mail: pkuhjf@gmail.com [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Road Yiheyuan 5, Beijing 100871 (China); Institute of Materials Science, Darmstadt University of Technology, Petersenstr. 23, 64287 Darmstadt (Germany); Liao Cheng, E-mail: Cliao@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Road Yiheyuan 5, Beijing 100871 (China); Jiang Tao [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Road Yiheyuan 5, Beijing 100871 (China); Spanheimer, C.; Haindl, G.; Fu, Ganhua; Krishnakumar, V. [Institute of Materials Science, Darmstadt University of Technology, Petersenstr. 23, 64287 Darmstadt (Germany); Zhao Kui [State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Road Yiheyuan 5, Beijing 100871 (China); Klein, A.; Jaegermann, W. [Institute of Materials Science, Darmstadt University of Technology, Petersenstr. 23, 64287 Darmstadt (Germany)

    2011-04-28

    Research highlights: > Two different methods to prepare CdS films for CdTe solar cells. > A new multilayer structure of window layer for the CdTe solar cell. > Thinner CdS window layer for the solar cell than the standard CdS layer. > Higher performance of solar cells based on the new multilayer structure. - Abstract: CdS layers grown by 'dry' (close space sublimation) and 'wet' (chemical bath deposition) methods are deposited and analyzed. CdS prepared with close space sublimation (CSS) has better crystal quality, electrical and optical properties than that prepared with chemical bath deposition (CBD). The performance of CdTe solar cell based on the CSS CdS layer has higher efficiency than that based on CBD CdS layer. However, the CSS CdS suffers from the pinholes. And consequently it is necessary to prepare a 150 nm thin film for CdTe/CdS solar cell. To improve the performance of CdS/CdTe solar cells, a thin multilayer structure of CdS layer ({approx}80 nm) is applied, which is composed of a bottom layer (CSS CdS) and a top layer (CBD CdS). That bi-layer film can allow more photons to pass through it and significantly improve the short circuit current of the CdS/CdTe solar cells.

  1. Improvement of Mechanical, Thermal and Optical Properties of Barium Mixed Cobalt Tartrate Hydrate Crystals Grown by Gel Method

    OpenAIRE

    2015-01-01

    In this present work, CTH and BCTH crystals have been prepared by gel technique by using single diffusion method at room temperature. The as grown crystals were characterized by using XRD, FT-IR, UV, TG / DTA and Micro hardness studies. X-ray powder diffraction results analyzed by using suitable software suggest that a CTH and BCTH crystals belong to cubic crystal system. The unit cell volume is observed to increase with increase in the concentration of barium in cobalt tartrate due to the la...

  2. Metalorganic Vapor Phase Epitaxial Growth of (211)B CdTe on Nanopatterned (211)Si

    Science.gov (United States)

    2012-05-15

    respectively. X-ray analysis of thin CdTe films grown on these substrates gave wider full-width half-maximum (FWHM) values when compared to the layers grown...obtained in the temperature range of 575-675 °C and 505-520 °C respectively. X-ray analy- sis of thin CdTe films grown on these substrates gave wider...An effort was also made to grow thin uniformly merged ~0.6 µm (211)B CdTe film on nanopatterned (211)Si by

  3. Reduction in the crystal defect density of Zn Se layers grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Lopez L, M.; Perez C, A.; Luyo A, J.; Melendez L, M.; Tamura, M. [Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados del instituto politecnico Nacional, A.P. 14-740, 07000 Mexico D.F. (Mexico); Mendez G, V.H.; Vidal, M.A. [Instituto de Investigacion en Comunicacion Optica, Universidad Autonoma de San Luis Potosi, Alvaro Obregon 64, 78000 San Luis Potosi (Mexico)

    2000-07-01

    We present a study of the molecular beam epitaxial (MBE) grown of Zn Se layers on Ga-As and Si substrates. For the growth on GaAs substrates we investigated the effects of introducing buffer layers of Al{sub x}Ga{sub 1-x} As and In{sub x}Ga{sub 1-x} As with x = 0.01. Moreover, an analysis by secondary ion mass spectroscopy revealed that the use of AlGaAs buffer layers effectively suppress the Ga segregation onto the Zn Se layers surface. On the other hand, for the growth of Zn Se on Si substrates, we achieved a significant improvement in the crystal quality of Zn Se by irradiating the Si substrates with plasma of nitrogen prior to the growth. (Author)

  4. High quality factor two dimensional GaN photonic crystal cavity membranes grown on silicon substrate

    Science.gov (United States)

    Vico Triviño, N.; Rossbach, G.; Dharanipathy, U.; Levrat, J.; Castiglia, A.; Carlin, J.-F.; Atlasov, K. A.; Butté, R.; Houdré, R.; Grandjean, N.

    2012-02-01

    We report on the achievement of freestanding GaN photonic crystal L7 nanocavities with embedded InGaN/GaN quantum wells grown by metal organic vapor phase epitaxy on Si (111). GaN was patterned by e-beam lithography, using a SiO2 layer as a hard mask, and usual dry etching techniques. The membrane was released by underetching the Si (111) substrate. Micro-photoluminescence measurements performed at low temperature exhibit a quality factor as high as 5200 at ˜420 nm, a value suitable to expand cavity quantum electrodynamics to the near UV and the visible range and to develop nanophotonic platforms for biofluorescence spectroscopy.

  5. Glow curves and the emission of flux-grown BaFCl:Na crystals. [X radiation and gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Somaiah, K.; Hari Babu, V. (Osmania Univ., Hyderabad (India). Dept. of Physics)

    1984-08-01

    The thermoluminescence glow curves and the emission spectra of flux-grown BaFCl:Na crystals were recorded. An additional TL peak at 320 K, an optical absorption band at 570nm and an emission peak at 490 nm have been seen in X/..gamma..-irradiated crystals. Bleaching, room-temperature annealing and high-temperature emission results led us to conclude that the sodium impurity is responsible for the additional glow peak optical absorption band and emission peak.

  6. Comparative study of CdTe sources used for deposition of CdTe thin films by close spaced sublimation technique

    Directory of Open Access Journals (Sweden)

    Wagner Anacleto Pinheiro

    2006-03-01

    Full Text Available Unlike other thin film deposition techniques, close spaced sublimation (CSS requires a short source-substrate distance. The kind of source used in this technique strongly affects the control of the deposition parameters, especially the deposition rate. When depositing CdTe thin films by CSS, the most common CdTe sources are: single-crystal or polycrystalline wafers, powders, pellets or pieces, a thick CdTe film deposited onto glass or molybdenum substrate (CdTe source-plate and a sintered CdTe powder. In this work, CdTe thin films were deposited by CSS technique from different CdTe sources: particles, powder, compact powder, a paste made of CdTe and propylene glycol and source-plates (CdTe/Mo and CdTe/glass. The largest deposition rate was achieved when a paste made of CdTe and propylene glycol was used as the source. CdTe source-plates led to lower rates, probably due to the poor heat transmission, caused by the introduction of the plate substrate. The results also showed that compacting the powder the deposition rate increases due to the better thermal contact between powder particles.

  7. Comparative study of CdTe sources used for deposition of CdTe thin films by close spaced sublimation technique

    OpenAIRE

    Pinheiro,Wagner Anacleto; Falcão, Vivienne Denise; Cruz,Leila Rosa de Oliveira; Ferreira,Carlos Luiz

    2006-01-01

    Unlike other thin film deposition techniques, close spaced sublimation (CSS) requires a short source-substrate distance. The kind of source used in this technique strongly affects the control of the deposition parameters, especially the deposition rate. When depositing CdTe thin films by CSS, the most common CdTe sources are: single-crystal or polycrystalline wafers, powders, pellets or pieces, a thick CdTe film deposited onto glass or molybdenum substrate (CdTe source-plate) and a sintered C...

  8. Nanocrystal grain growth and device architectures for high-efficiency CdTe ink-based photovoltaics.

    Science.gov (United States)

    Crisp, Ryan W; Panthani, Matthew G; Rance, William L; Duenow, Joel N; Parilla, Philip A; Callahan, Rebecca; Dabney, Matthew S; Berry, Joseph J; Talapin, Dmitri V; Luther, Joseph M

    2014-09-23

    We study the use of cadmium telluride (CdTe) nanocrystal colloids as a solution-processable "ink" for large-grain CdTe absorber layers in solar cells. The resulting grain structure and solar cell performance depend on the initial nanocrystal size, shape, and crystal structure. We find that inks of predominantly wurtzite tetrapod-shaped nanocrystals with arms ∼5.6 nm in diameter exhibit better device performance compared to inks composed of smaller tetrapods, irregular faceted nanocrystals, or spherical zincblende nanocrystals despite the fact that the final sintered film has a zincblende crystal structure. Five different working device architectures were investigated. The indium tin oxide (ITO)/CdTe/zinc oxide structure leads to our best performing device architecture (with efficiency >11%) compared to others including two structures with a cadmium sulfide (CdS) n-type layer typically used in high efficiency sublimation-grown CdTe solar cells. Moreover, devices without CdS have improved response at short wavelengths.

  9. Impurity microsegregation due to periodic changes in the temperature and pulling rate of crystal grown by the Stepanov method

    Energy Technology Data Exchange (ETDEWEB)

    Zhdanov, A.V.; Nikolaeva, L.P.; Red`kin, B.S. [Institute of Solid-State Physics, Chernogolovka (Russian Federation)

    1995-12-01

    A mathematical model is proposed to describe the behavior of a doping impurity concentration in a crystal grown by the Stepanov method from a melt and subjected to periodic changes in its pulling rate and temperature of the thermal node. Various modes of these effects are discussed. The results obtained are given by graphs that characterize their influence on concentration distribution.

  10. High quality (InNb)0.1Ti0.9O2 single crystal grown using optical floating zone method

    Science.gov (United States)

    Liu, Ziyi; Song, Yongli; Wang, Xianjie; Su, Yantao; Liu, Zhiguo; Sui, Yu

    2016-07-01

    A crack-free (InNb)0.1Ti0.9O2 single crystal of 4 mm in diameter and 30 mm in length was successfully grown by the optical floating zone method. The polycrystalline feed and seed rods for growing the (InNb)0.1Ti0.9O2 single crystal were prepared by solid-state reaction method. The oxygen partial pressure significantly affected the crystal quality of the material. As shown in reflecting polarizing microphotographs, crystals grown in air have fewer grain boundaries than those grown in pure oxygen; some air-grown crystals are completely free of grain boundaries. Compared to pure TiO2 crystal, the (Nb+In) co-doped TiO2 crystal required a lower growth rate of 5 mm/h to ensure high quality.

  11. Homogeneity and variation of donor doping in Verneuil-grown SrTiO3:Nb single crystals

    OpenAIRE

    Rodenbücher, C.; Luysberg, M; Schwedt, A.; V. Havel; Gunkel, F.; Mayer, J; WASER, R

    2016-01-01

    The homogeneity of Verneuil-grown SrTiO3:Nb crystals was investigated. Due to the fast crystal growth process, inhomogeneities in the donor dopant distribution and variation in the dislocation density are expected to occur. In fact, for some crystals optical studies show variations in the density of Ti3+ states on the microscale and a cluster-like surface conductivity was reported in tip-induced resistive switching studies. However, our investigations by TEM, EDX mapping, and 3D atom probe re...

  12. Effects of CdTe growth conditions and techniques on the efficiency limiting defects and mechanisms in CdTe solar cells

    Science.gov (United States)

    Rohatgi, A.; Chou, H. C.; Jokerst, N. M.; Thomas, E. W.; Ferekides, C.; Kamra, S.; Feng, Z. C.; Dugan, K. M.

    1996-01-01

    CdTe solar cells were fabricated by depositing CdTe films on CdS/SnO2/glass substrates using close-spaced sublimation (CSS) and metalorganic chemical vapor deposition (MOCVD). Te/Cd mole ratio was varied in the range of 0.02 to 6 in the MOCVD growth ambient in an attempt to vary the native defect concentration. Polycrystalline CdTe layers grown by MOCVD and CSS both showed average grain size of about 2 μm. However, the CdTe films grown by CSS were found to be less faceted and more dense compared to the CdTe grown by MOCVD. CdTe growth techniques and conditions had a significant impact on the electrical characteristics of the cells. The CdTe solar cells grown by MOCVD in the Te-rich growth condition and by the CSS technique gave high cell efficiencies of 11.5% and 12.4%, respectively, compared to 6.6% efficient MOCVD cells grown in Cd-rich conditions. This large difference in efficiency is explained on the basis of (a) XRD measurements which showed a higher degree of atomic interdiffusion at the CdS/CdTe interface in high performance devices, (b) Raman measurements which endorsed more uniform and preferred grain orientation by revealing a sharp CdTe TO mode in the high efficiency cells, and (c) carrier transport mechanism which switched from tunneling/interface recombination to depletion region recombination in the high efficiency cells. In this study, Cu/Au layers were evaporated on CdTe for the back contact. Lower efficiency of the Te-rich MOCVD cells, compared to the CSS cells, was attributed to contact related additional loss mechanisms, such as Cd pile-up near Cu/CdTe interface which can give rise to Cd-vacancy defects in the bulk, and higher Cu concentration in the CdTe layer which can cause shunts in the device. Finally, SIMS measurements on the CdTe films of different crystallinity and grain size confirmed that grain boundaries are the main conduits for Cu migration into the CdTe film. Thus larger CdTe grain size or lower grain boundary area per unit volume

  13. High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth

    Science.gov (United States)

    Kuramata, Akito; Koshi, Kimiyoshi; Watanabe, Shinya; Yamaoka, Yu; Masui, Takekazu; Yamakoshi, Shigenobu

    2016-12-01

    β-Ga2O3 bulk crystals were grown by the edge-defined film-fed growth (EFG) process and the floating zone process. Semiconductor substrates containing no twin boundaries with sizes up to 4 in. in diameter were fabricated. It was found that Si was the main residual impurity in the EFG-grown crystals and that the effective donor concentration (N d - N a) of unintentionally doped crystals was governed by the Si concentration. Intentional n-type doping was shown to be possible. An etch pit observation revealed that the dislocation density was on the order of 103 cm-3. N d - N a for the samples annealed in nitrogen ambient was almost the same as the Si concentration, while for the samples annealed in oxygen ambient, it was around 1 × 1017 cm-3 and independent of the Si concentration.

  14. Highly resistive C-doped hydride vapor phase epitaxy-GaN grown on ammonothermally crystallized GaN seeds

    Science.gov (United States)

    Iwinska, Malgorzata; Piotrzkowski, Ryszard; Litwin-Staszewska, Elzbieta; Sochacki, Tomasz; Amilusik, Mikolaj; Fijalkowski, Michal; Lucznik, Boleslaw; Bockowski, Michal

    2017-01-01

    GaN crystals were grown by hydride vapor phase epitaxy (HVPE) and doped with C. The seeds were high-structural-quality ammonothermally crystallized GaN. The grown crystals were highly resistive at 296 K and of high structural quality. High-temperature Hall effect measurements revealed p-type conductivity and a deep acceptor level in the material with an activation energy of 1 eV. This is in good agreement with density functional theory calculations based on hybrid functionals as presented by the Van de Walle group. They obtained an ionization energy of 0.9 eV when C was substituted for N in GaN and acted as a deep acceptor.

  15. High-mobility field-effect transistors from large-area solution-grown aligned C60 single crystals.

    Science.gov (United States)

    Li, Hanying; Tee, Benjamin C-K; Cha, Judy J; Cui, Yi; Chung, Jong Won; Lee, Sang Yoon; Bao, Zhenan

    2012-02-08

    Field-effect transistors based on single crystals of organic semiconductors have the highest reported charge carrier mobility among organic materials, demonstrating great potential of organic semiconductors for electronic applications. However, single-crystal devices are difficult to fabricate. One of the biggest challenges is to prepare dense arrays of single crystals over large-area substrates with controlled alignment. Here, we describe a solution processing method to grow large arrays of aligned C(60) single crystals. Our well-aligned C(60) single-crystal needles and ribbons show electron mobility as high as 11 cm(2)V(-1)s(-1) (average mobility: 5.2 ± 2.1 cm(2)V(-1)s(-1) from needles; 3.0 ± 0.87 cm(2)V(-1)s(-1) from ribbons). This observed mobility is ~8-fold higher than the maximum reported mobility for solution-grown n-channel organic materials (1.5 cm(2)V(-1)s(-1)) and is ~2-fold higher than the highest mobility of any n-channel organic material (~6 cm(2)V(-1)s(-1)). Furthermore, our deposition method is scalable to a 100 mm wafer substrate, with around 50% of the wafer surface covered by aligned crystals. Hence, our method facilitates the fabrication of large amounts of high-quality semiconductor crystals for fundamental studies, and with substantial improvement on the surface coverage of crystals, this method might be suitable for large-area applications based on single crystals of organic semiconductors.

  16. Microhardness studies on as-grown faces of NaClO3 and NaBrO3 crystals

    Indian Academy of Sciences (India)

    K Kishan Rao; V Surender; B Saritha Rani

    2002-12-01

    Single crystals of NaClO3 and NaBrO3 are grown from their aqueous solutions at a constant temperature of 35°C by slow evaporation by using good quality seed crystals. Systematic microhardness studies are made on as-grown faces of these crystals at various loads. Typical cracks are observed at the corners of the impressions in NaClO3 whereas in addition to the cracks at the corners microcracks also appeared in NaBrO3 crystals around the impressions. The impressions formed in NaBrO3 are not very clear as in NaClO3, a possible mechanism for it is discussed. The work hardening index number () for both these crystals is around 1.6 suggesting that these are moderately harder samples. The hardness studies point out that NaBrO3 is harder than NaClO3 ( ≈ 100 kg/mm2), this could be due to strong inter ionic forces acting between Na–Br in NaBrO3 crystals. Using Gilman’s empirical relation, hardness values are calculated from the values of elastic constants (44) and are found to be close to the experimental results.

  17. Improvement of Mechanical, Thermal and Optical Properties of Barium Mixed Cobalt Tartrate Hydrate Crystals Grown by Gel Method

    Directory of Open Access Journals (Sweden)

    S. Vanaja

    2015-10-01

    Full Text Available In this present work, CTH and BCTH crystals have been prepared by gel technique by using single diffusion method at room temperature. The as grown crystals were characterized by using XRD, FT-IR, UV, TG / DTA and Micro hardness studies. X-ray powder diffraction results analyzed by using suitable software suggest that a CTH and BCTH crystals belong to cubic crystal system. The unit cell volume is observed to increase with increase in the concentration of barium in cobalt tartrate due to the lattice distortion. The band gap and optical properties have analyzed by UV-Visible spectrum. The functional groups and compound formation of the crystals have been studied by FT-IR spectrum. The mechanical properties of the grown crystals were tested by using Vicker’s microhardness studies. The work hardening coefficient (n was determined to be 3.7 for CTH, 5.3 for BCTH (1 : 1 and 6.4 for BCTH (2 : 1 and the stiffness constants for different loads were calculated and reported. Thermal analysis suggests that pure cobalt tartrate starts decomposing at 73.2 °C whereas the barium mixed cobalt tartrate brings about better thermal stability which increases with an increase in barium concentration.

  18. Growth and characterization of CdTe on GaAs/Si substrates

    Science.gov (United States)

    Radhakrishnan, G.; Nouhi, A.; Liu, J.

    1988-01-01

    Epitaxial CdTe has been grown on both (100) GaAs/Si and (111) GaAs/Si substrates. A combination of molecular beam epitaxy and metal organic chemical vapor deposition have been employed to achieve this growth. The GaAs layers are grown in Si substrates by molecular beam epitaxy, followed by the growth of CdTe on GaAs/Si substra by metalorganic chemical vapor deposition. X-ray diffraction, photoluminescence, and scanning electron microscopy have been used to characterize the CdTe films.

  19. Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites

    Science.gov (United States)

    Yakunin, Sergii; Dirin, Dmitry N.; Shynkarenko, Yevhen; Morad, Viktoriia; Cherniukh, Ihor; Nazarenko, Olga; Kreil, Dominik; Nauser, Thomas; Kovalenko, Maksym V.

    2016-09-01

    The decay of the majority of radioactive isotopes involves the emission of gamma (γ) photons with energies of ˜50 keV to 10 MeV. Detectors of such hard radiation that are low-cost, highly sensitive and operate at ambient temperatures are desired for numerous applications in defence and medicine, as well as in research. We demonstrate that 0.3-1 cm solution-grown single crystals (SCs) of semiconducting hybrid lead halide perovskites (MAPbI3, FAPbI3 and I-treated MAPbBr3, where MA = methylammonium and FA = formamidinium) can serve as solid-state gamma-detecting materials. This possibility arises from a high charge-carrier mobility-lifetime (μτ) product of 1.0-1.8 × 10-2 cm2 V-1, a low dark carrier density of 109-1011 cm-3 (refs 3,4), a low density of charge traps of 109-1010 cm-3 (refs 4,5) and a high absorptivity of hard radiation by the lead and iodine atoms. We demonstrate the utility of perovskite detectors for testing the radiopurity of medical radiotracer compounds such as 18F-fallypride. Energy-resolved sensing at room temperature is presented using FAPbI3 SCs and an 241Am source.

  20. AFM Study on Interface of HTHP As-grown Diamond Single Crystal and Metallic Film

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The study for the interface of as-grown diamond and metallic film surrounding diamond is an attractive way for understanding diamond growth mechanism at high temperature and high pressure (HTHP), because it is that through the interface carbon atom groups from the molten film are transported to growing diamond surface. It is of great interest to perform atomic force microscopy (AFM) experiment, which provides a unique technique different from that of normal optical and electron microscopy studies, to observe the interface morphology. In the present paper,we report first that the morphologies obtained by AFM on the film are similar to those of corresponding diamond surface, and they are the remaining traces after the carbon groups moving from the film to growing diamond. The fine particles and a terrace structure with homogeneous average step height are respectively found on the diamond (100) and (111) surface. Diamond growth conditions show that its growth rates and the temperature gradients in the boundary layer of the molten film at HTHP result in the differences of surface morphologies on diamond planes,being rough on (100) plane and even on the (111) plane. The diamond growth on the (100) surface at HPHT could be considered as a process of unification of these diamond fine particles or of carbon atom groups recombination on the growing diamond crystal surface. Successive growth layer steps directly suggest the layer growth mechanism of the diamond (111) plane. The sources of the layer steps might be two-dimensional nuclei and dislocations.

  1. Glow curves and the emission of flux grown BaFCl-Tb crystals

    Energy Technology Data Exchange (ETDEWEB)

    Somaiah, K.; Moinuddin, S.R.; Nambi, K.S.V.

    1987-09-01

    Flux-grown BaFCl crystals containing 0.5 mol % of terbium were irradiated at room temperature by ..gamma..-rays from a /sup 60/Co source and glow curves and thermoluminescence emission spectra recorded. In addition to glow peaks at 385 and 410/sup 0/ K, which are present for undoped BaFCl, peaks occur at 470, 505, 570 and 665/sup 0/ K. The low temperature peaks are attributed to two types of F centre at F(Cl-bar) and F(F-bar) anion vacancies and the additional peaks to the presence of the terbium impurity in the BaFCl lattice. The thermoluminescence spectra show five emission bands. Those at 420, 435, 490 and 545 nm are attributed to transitions between the 4 f excited levels. A 390 nm emission, previously attributed to radiative recombination centres in undoped BaFCl, may in the light of these results be seen to arise from background terbium impurity in the starting material.

  2. Preparation, properties and application of sapphire single-crystal fibers grown by the EFG method

    Directory of Open Access Journals (Sweden)

    Kubát J.

    2013-05-01

    Full Text Available Sapphire – the single crystal of aluminum oxide (Al2O3 – is one of the most important artificially produced materials. The sapphire fibres studied were grown in Crytur using the “edge-defined film-fed growth” (EFG technique. Their unique physical and chemical properties can be employed in various applications. Due to their high refractive index and a broad transmission band spanning the ultraviolet, visible and infrared bands, sapphire fibres are perfect waveguides in harsh environments. The current major applications are Er:YAG laser beam delivery and pyrometric and spectrometric measurements in furnaces, combustion engines, etc. In this paper we summarize an adjustment of the EFG method to grow thin filaments by giving possible molybdenum die designs. We investigated the fibres using an optical microscope and measured their transmission of an Er:YAG laser beam (2.94 μm. The attenuation of the tested samples is approximately 0.1 dB/cm.

  3. Properties of Dy 3+-doped PbWO 4 single crystal grown by modified Bridgman method

    Science.gov (United States)

    Huang, Yanlin; Zhu, Wenliang; Feng, Xiqi; Duan, Yong; Man, Zhenyong

    2003-01-01

    Undoped and Dy 3+-doped PbWO 4 single crystals were grown in the same condition by modified Bridgman method. Optical transmittance, X-ray excited luminescence, excitation and emission under UV light, thermoluminescence glow curves and X-ray pulsed excited decays were investigated on Dy 3+:PWO for the first time. Dy 3+-doping has a positive effect similar to that of rare-earth ions La 3+ and Gd 3+, such as improvement of transmittance in the wavelength region of scintillation emission (350-450 nm), compensation of trapping centers that is reflected in the thermoluminescence characteristics and suppression of slow decay component in luminescence kinetics. Analysis of luminescence spectra indicates that energy transfer could take place from the PbWO 4 host to the Dy 3+ ions, followed by characteristic emission line assigned to transition from 4F 9/2 of Dy 3+ ion to lower lying states on basis of the energy level scheme. A tentative concept of energy transfer mechanism is proposed in this paper.

  4. Solution-grown crystals for neutron radiation detectors, and methods of solution growth

    Science.gov (United States)

    Zaitseva, Natalia; Carman, M Leslie; Payne, Steve

    2014-10-28

    An organic crystal according to one embodiment includes an organic crystal comprising diphenylacetylene and stilbene or a stilbene derivative, the crystal having physical characteristics of formation from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source. A system according to one embodiment includes an organic crystal comprising diphenylacetylene and stilbene or a stilbene derivative, the crystal having physical characteristics of formation from solution, the organic crystal exhibiting a signal response signature for neutrons from a radioactive source; and a photodetector for detecting the signal response of the organic crystal. Methods of making such crystals are also provided.

  5. Annealing as grown large volume CZT single crystals increased spectral resolution

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Longxia Li

    2008-03-19

    The spectroscopic performance of current large-volume Cadmium 10% Zinc Telluride, Cd{sub 0.9}Zn{sub 0.1}Te, (CZT) detectors is impaired by cumulative effect of tellurium precipitates (secondary phases) presented in CZT single-crystal grown by low-pressure Bridgman techniques(1). This statistical effect may limit the energy resolution of large-volume CZT detectors (typically 2-5% at 662 keV for 12-mm thick devices). The stochastic nature of the interaction prevents the use of any electronic or digital charge correction techniques without a significant reduction in the detector efficiency. This volume constraint hampers the utility of CZT since the detectors are inefficient at detecting photons >1MeV and/or in low fluency situations. During the project, seven runs CZT ingots have been grown, in these ingots the indium dopant concentrations have been changed in the range between 0.5ppm to 6ppm. The I-R mapping imaging method has been employed to study the Te-precipitates. The Teprecipitates in as-grown CZT wafers, and after annealing wafers have been systematically studied by using I-R mapping system (home installed, resolution of 1.5 {micro}m). We employed our I-R standard annealing CZT (Zn=4%) procedure or two-steps annealing into radiation CZT (Zn=10%), we achieved the 'non'-Te precipitates (size < 1 {micro}m) CZT n+-type with resistivity > 10{sup 9-10} {Omega}-cm. We believe that the Te-precipitates are the p-type defects, its reducing number causes the CZT became n+-type, therefore we varied or reduced the indium dapant concentration during the growth and changed the Te-precipitates size and density by using different Cd-temperature and different annealing procedures. We have made the comparisons among Te-precipitates size, density and Indium dopant concentrations, and we found that the CZT with smaller size of Te-precipitates is suitable for radiation uses but non-Te precipitates is impossible to be used in the radiation detectors, because the CZT

  6. Recent Results on Growth of (211)B CdTe on (211)Si with Intermediate Ge and ZnTe Buffer Layers by Metalorganic Vapor-Phase Epitaxy

    Science.gov (United States)

    Shintri, Shashidhar; Rao, Sunil; Wijewarnasuriya, Priyalal; Trivedi, Sudhir; Bhat, Ishwara

    2012-10-01

    We report on the investigation of epitaxial cadmium telluride grown by metalorganic vapor-phase epitaxy (MOVPE) on (211)Si, with particular emphasis on studying the effect of changing the reactor parameters and thermal annealing conditions on the epilayer quality. The CdTe films were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), and x-ray diffraction (XRD). The best CdTe films were observed when the Te/Cd precursor partial pressure ratio was close to 3.1. It was also observed that, though annealing improved the crystal quality, a slight increase in surface roughness was observed. Similar attempts were made to improve the growth conditions of ZnTe intermediate buffer layer, which showed similar trends with changes in precursor flows.

  7. Studies on the growth aspects, structural, thermal, dielectric and third order nonlinear optical properties of solution grown 4-methylpyridinium p-nitrophenolate single crystal

    Science.gov (United States)

    Devi, S. Reena; Kalaiyarasi, S.; Zahid, I. MD.; Kumar, R. Mohan

    2016-11-01

    An ionic organic optical crystal of 4-methylpyridinium p-nitrophenolate was grown from methanol by slow evaporation method at ambient temperature. Powder and single crystal X-ray diffraction studies revealed the crystal system and its crystalline perfection. The rocking curve recorded from HRXRD study confirmed the crystal quality. FTIR spectral analysis confirmed the functional groups present in the title compound. UV-visible spectral study revealed the optical window and band gap of grown crystal. The thermal, electrical and surface laser damage threshold properties of harvested crystal were examined by using TGA/DTA, LCR/Impedance Analyzer and Nd:YAG laser system respectively. The third order nonlinear optical property of grown crystal was elucidated by Z-scan technique.

  8. The effect of radiation damage on optical and scintillation properties of BGO crystals grown by the LTG Cz technique

    CERN Document Server

    Gusev, V A; Kupriyanov, I N; Kuznecov, G N; Shlegel, V N; Antsygin, V D; Vasiliev, Y V

    2002-01-01

    BGO crystals grown by the low-thermal-gradient Czochralski technique (LTG Cz) exhibit two distinct types of behavior upon radiation damage and recovery. The crystals termed as of L-type remain colorless after gamma-radiation doses as high as 10 Mrad. As the irradiation dose increases the scintillation light output shows a weak monotonous degradation to 15-25%, saturating at around several hundreds krad doses. The crystals termed as of N-type attain yellow coloration after irradiation. The light output drops abruptly for 35-50% as early as after 1 krad and does not change further on. The present work is devoted to the study of radiation damage effects, self-recovery, optically stimulated recovery and thermo-stimulated current in the L- and N-type BGO crystals produced by LTG Cz.

  9. Single crystals of superconducting SmFeAsO{sub 1-x}F{sub y} grown at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Zhigadlo, N D; Katrych, S; Bukowski, Z; Karpinski, J [Laboratory for Solid State Physics, ETH, 8093 Zuerich (Switzerland); Weyeneth, S [Physik-Institut der Universitaet Zuerich, Winterthurerstrasse 190, 8057 Zuerich (Switzerland); Puzniak, R [Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, 02-668 Warsaw (Poland)], E-mail: zhigadlo@phys.ethz.ch, E-mail: karpinski@phys.ethz.ch

    2008-08-27

    Single crystals of SmFeAsO{sub 1-x}F{sub y} of a size up to 120 x 100 {mu}m{sup 2} have been grown from NaCl/KCl flux at a pressure of 30 kbar and temperature of 1350-1450 deg. C using the cubic anvil high-pressure technique. The superconducting transition temperature of the obtained single crystals varies between 45 and 53 K. Obtained crystals are characterized by a full diamagnetic response in low magnetic fields and by a high critical current density in high magnetic fields. Structural refinement has been performed on the single crystal. Differential thermal analysis investigations at 1 bar Ar pressure show decomposition of SmFeAsO{sub 1-x}F{sub y} at 1302 deg. C. (fast track communication)

  10. Na-doped Cu2ZnSnS4 single crystal grown by traveling-heater method

    Science.gov (United States)

    Nagaoka, Akira; Scarpulla, Michael A.; Yoshino, Kenji

    2016-11-01

    We investigate high-quality Na-doped Cu2ZnSnS4 (CZTS) single crystals grown by using the traveling-heater method and the effect of Na doping on the fundamental properties of these crystals. Na-doped CZTS single crystals were obtained from Sn solution at growth temperatures of 850-900 °C and at speeds of 4 mm/day. The crystals have a kesterite structure, as determined by powder X-ray diffraction and Raman measurements. The Hall effect properties such as hole concentration, conductivity, and hole mobility are enhanced with increasing Na concentration. These results reveal that Na improves the electrical properties of CZTS.

  11. Excitonic emission and absorption resonances in V0.25W0.75Se2 single crystals grown by direct vapour transport technique

    Science.gov (United States)

    Solanki, G. K.; Pataniya, Pratik; Sumesh, C. K.; Patel, K. D.; Pathak, V. M.

    2016-05-01

    A systematic study on emission and absorption spectra of vanadium mixed tungsten diselenide single crystals grown by direct vapour transport (DVT) technique is reported. The grown crystals were characterized by energy dispersive analysis of X-ray (EDAX), which gives the confirmation about the stoichiometry. The structural characterizations were accomplished by X-ray diffraction (XRD), surface morphology and transmission electron microscopy (TEM). These characterizations were indicating the growth of V0.25W0.75Se2 single crystal from vapour phase. The optical response of this material has been observed by combination of UV-vis-NIR spectroscopy and photo luminescence (PL) spectroscopy. A detailed study of excitonic emission and absorption resonances was carried out on grown crystals. The energy band gap was calculated for indirect allowed transition with absorbed and emitted phonon. Additionally, absorption tail for grown crystal is found to obey the Urbach's rule.

  12. Structural and electrical properties of polycrystalline CdTe films for direct X-ray imaging detectors

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Bo Kyung, E-mail: goldrain99@kaist.ac.kr [Advanced Medical Device Research Center, Korea Electrotechnology Research Institute, Ansan, Repulic of Korea (Korea, Republic of); Yang, Keedong [Advanced Medical Device Research Center, Korea Electrotechnology Research Institute, Ansan, Repulic of Korea (Korea, Republic of); Cha, Eun Seok; Yong, Seok-Min [Department of Materials Science and Engineering, KAIST, Daejeon, Repulic of Korea (Korea, Republic of); Heo, Duchang; Kim, Ryun Kyung; Jeon, Seongchae; Seo, Chang-Woo; Kim, Cho Rong [Advanced Medical Device Research Center, Korea Electrotechnology Research Institute, Ansan, Repulic of Korea (Korea, Republic of); Ahn, Byung Tae [Department of Materials Science and Engineering, KAIST, Daejeon, Repulic of Korea (Korea, Republic of); Lee, Tae-Bum [Advanced Medical Device Research Center, Korea Electrotechnology Research Institute, Ansan, Repulic of Korea (Korea, Republic of)

    2013-12-11

    We introduce polycrystalline cadmium telluride (CdTe) with high atomic number and density, low effective energy and wide band gap for application in large area diagnostic X-ray digital imaging. In this work, polycrystalline CdTe films were fabricated on ITO/glass substrate by both physical vapor deposition (PVD) with slow deposition rate and pressure of 10{sup −6} Torr and the closed space sublimation (CSS) method with high deposition rate and low vacuum pressure(10{sup −2} Torr). The various polycrystalline CdTe films were grown at different deposition rates and substrate temperatures. Physical properties such as microstructures and the crystal structure of the polycrystalline samples were investigated by SEM and XRD patterns respectively. The PVD method resulted in microstructures with columnar shape and more uniform surface, while the CSS method produced microstructures with many larger grains and less uniform surface. The films were polycrystalline structures with a preferential (111) direction. The electrical and optical properties such as the dark current as a function of applied bias voltage and X-ray sensitivity of the fabricated films were measured and investigated under X-ray exposure.

  13. Structural and electrical properties of polycrystalline CdTe films for direct X-ray imaging detectors

    Science.gov (United States)

    Cha, Bo Kyung; Yang, Keedong; Cha, Eun Seok; Yong, Seok-Min; Heo, Duchang; Kim, Ryun Kyung; Jeon, Seongchae; Seo, Chang-Woo; Kim, Cho Rong; Ahn, Byung Tae; Lee, Tae-Bum

    2013-12-01

    We introduce polycrystalline cadmium telluride (CdTe) with high atomic number and density, low effective energy and wide band gap for application in large area diagnostic X-ray digital imaging. In this work, polycrystalline CdTe films were fabricated on ITO/glass substrate by both physical vapor deposition (PVD) with slow deposition rate and pressure of 10-6 Torr and the closed space sublimation (CSS) method with high deposition rate and low vacuum pressure(10-2 Torr). The various polycrystalline CdTe films were grown at different deposition rates and substrate temperatures. Physical properties such as microstructures and the crystal structure of the polycrystalline samples were investigated by SEM and XRD patterns respectively. The PVD method resulted in microstructures with columnar shape and more uniform surface, while the CSS method produced microstructures with many larger grains and less uniform surface. The films were polycrystalline structures with a preferential (111) direction. The electrical and optical properties such as the dark current as a function of applied bias voltage and X-ray sensitivity of the fabricated films were measured and investigated under X-ray exposure.

  14. Vertical cavity lasing from melt-grown crystals of cyano-substituted thiophene/phenylene co-oligomer

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Yosuke; Yanagi, Hisao, E-mail: yanagi@ms.naist.jp [Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan); Goto, Kaname; Yamashita, Kenichi; Yamao, Takeshi; Hotta, Shu [Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan); Sasaki, Fumio [Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2015-10-19

    Vertical-cavity organic lasers are fabricated with melt-grown crystals of a cyano-substituted thiophene-phenylene co-oligomer. Due to lying molecular orientation, surface-emitting lasing is achieved even in the half-cavity crystal grown on a distributed Bragg reflector (DBR) under optical pumping at room temperature. Anticrossing splits in angle-resolved photoluminescence spectra suggest the formation of exciton-polaritons between the cavity photons and the confined Frenkel excitons. By constructing the full-cavity structure sandwiched between the top and bottom DBRs, the lasing threshold is reduced to one order, which is as low as that of the half cavity. Around the threshold, the time profile of the full-cavity emission is collapsed to a pulsed shape accompanied by a finite turn-on delay. We discuss these observed characteristics in terms of a polariton contribution to the conventional photon lasing.

  15. Evidence for graphite-like hexagonal AlN nanosheets epitaxially grown on single crystal Ag(111)

    Science.gov (United States)

    Tsipas, P.; Kassavetis, S.; Tsoutsou, D.; Xenogiannopoulou, E.; Golias, E.; Giamini, S. A.; Grazianetti, C.; Chiappe, D.; Molle, A.; Fanciulli, M.; Dimoulas, A.

    2013-12-01

    Ultrathin (sub-monolayer to 12 monolayers) AlN nanosheets are grown epitaxially by plasma assisted molecular beam epitaxy on Ag(111) single crystals. Electron diffraction and scanning tunneling microscopy provide evidence that AlN on Ag adopts a graphite-like hexagonal structure with a larger lattice constant compared to bulk-like wurtzite AlN. This claim is further supported by ultraviolet photoelectron spectroscopy indicating a reduced energy bandgap as expected for hexagonal AlN.

  16. Detached phenomenon: Its effect on the crystal quality of Ga{sub (1−x)}In{sub x}Sb bulk crystal grown by the VDS technique

    Energy Technology Data Exchange (ETDEWEB)

    Gadkari, Dattatray, E-mail: db.gadkari@gmail.com [Department of Physics, Mithibai College, Mumbai 400056 (India)

    2013-05-15

    Vertical directional solidification (VDS) technique is used on the combined growth principals of the conventional methods since 1994, which leads to the detached growth. For evaluation of the detached growth, five bulk ingots of indium doped gallium–antimonide GaSb:In (In = 0.5, 0.25, 0.15) have been grown – without the seed, without contact to the ampoule wall, without coating and without external pressure. The gap is attributed to compensate the differential thermal dilatation that is grown with the reduced diameter than the diameter of the ampoule. VDS experiments have been proved that the sum of the contact angle and growth angle is large enough to allow detachment without any additional pressure difference under the melt to offset hydrostatic pressure. A meniscus forms at the bottom of the melt, the capillarity effect establishes due to which spontaneous gap could be created by the melt free surface, thus no thermal shear stress and thermo-mechanical stresses at the interface. Detached grown bulk GaSb:In crystals showed superior crystal quality with the highest physical properties and mobility than the crystals grown ever. The axial and radial composition profile of the grown GaSb:In ingots showed variation ≤10%. From the conical region, dislocation density decreases in the growth direction and reaches less than 10{sup 3} cm{sup −2}. - Highlights: ► Detachment: without seed, without ampoule contact, without coating, without external pressure. ► Detached ingot growth samples showed the highest physical properties and the carrier mobility. ► Initial to final transition: in detached growth, dislocations decreases and less than 10{sup 3} cm{sup −2}. ► Detached samples: Raman spectrum shows only TO phonon (110) direction of single orientation. ► Detached ingot: FTIR shows highest transmissions % but decreases on increase doping in samples.

  17. Influence of thickness on physical properties of vacuum evaporated polycrystalline CdTe thin films for solar cell applications

    Science.gov (United States)

    Chander, Subhash; Dhaka, M. S.

    2016-02-01

    This paper presents the influence of thickness on physical properties of polycrystalline CdTe thin films. The thin films of thickness 450 nm, 650 nm and 850 nm were deposited employing thermal vacuum evaporation technique on glass and indium tin oxide (ITO) coated glass substrates. The physical properties of these as-grown thin films were investigated employing the X-ray diffraction (XRD), source meter, UV-Vis spectrophotometer, scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). The structural analysis reveals that the films have zinc-blende cubic structure and polycrystalline in nature with preferred orientation (111). The structural parameters like lattice constant, interplanar spacing, grain size, strain, dislocation density and number of crystallites per unit area are calculated. The average grain size and optical band gap are found in the range 15.16-21.22 nm and 1.44-1.63 eV respectively and observed to decrease with thickness. The current-voltage characteristics show that the electrical conductivity is observed to decrease with thickness. The surface morphology shows that films are free from crystal defects like pin holes and voids as well as homogeneous and uniform. The EDS patterns show the presence of cadmium and tellurium elements in the as grown films. The experimental results reveal that the film thickness plays significant role on the physical properties of as-grown CdTe thin films and higher thickness may be used as absorber layer to solar cells applications.

  18. Twin Diamond Crystals Grown at High Temperature and High Pressure from the Fe-Ni-C System

    Institute of Scientific and Technical Information of China (English)

    尹龙卫; 袁泉; 李木森; 刘玉先; 许斌; 郝兆印

    2002-01-01

    Twin diamond crystals grown at high temperature and high pressure (HPHT) in the presence of FeNi catalyst have been examined by transmission electron microscopy (TEM). Direct observation by TEM shows that there are a large amount of twins which lie on the {111} planes in the HPHT-grown diamonds. The twins in the diamond may be formed and may extend into the inner crystal from the twin nucleus formed in the nucleation process.The twins can be formed due to the carbon atoms falling mistakenly into positions where a twin crystal can form during diamond growth, or condensation of supersaturated vacancies on the {111} plane. Some hexagonal dislocation loops related to supersaturated vacancies are found on the twins. The Moiré fringe image reveals that stacking faults terminate on the intersecting twin boundary. This suggests that, at the temperature that the HPHT diamond is grown, the bordering partial has propagated by gliding up to the twin interface, which can be described by the reaction of a Shockley partial dislocation with a twin on the {111} plane.

  19. Magnetic and magnetostrictive behavior of Dy 3+ doped CoFe 2O 4 single crystals grown by flux method

    Science.gov (United States)

    Kambale, Rahul C.; Song, K. M.; Won, C. J.; Lee, K. D.; Hur, N.

    2012-02-01

    We studied the effect of Dy 3+ content on the magnetic properties of cobalt ferrite single crystal. The single crystals of CoFe 1.9Dy 0.1O 4 were grown by the flux method using Na 2B 4O 7.10 H 2O (Borax) as a solvent (flux). The black and shiny single crystals were obtained as a product. The X-ray diffraction analysis at room temperature confirmed the spinel cubic structure with lattice constant a=8.42 Å of the single crystals. The compositional analysis endorses the presence of constituents Co, Fe and Dy elements after sintering at 1300 °C within the final structure. The magnetic hysteresis measurements at various temperatures viz. 10 K, 100 K, 200 K and 300 K reveal the soft ferrimagnetic nature of the single crystal than that of for pure CoFe 2O 4. The observed saturation magnetization ( Ms) and coercivity ( Hc) are found to be lower than that of pure CoFe 2O 4 single crystal. The magnetostriction ( λ) measurement was carried out along the [001] direction. The magnetic measurements lead to conclude that the present single crystals can be used for magneto-optic recording media.

  20. On the morphology of SrCO3 crystals grown at the interface between two immiscible liquids

    Indian Academy of Sciences (India)

    Satyanarayana Reddy; Debabrata Rautaray; S R Sainkar; Murali Sastry

    2003-04-01

    In this paper we report on the growth of strontianite crystals at the interface between an aqueous solution of Sr2+ ions and organic solutions of chloroform and hexane containing fatty acid/fatty amine molecules by reaction with sodium carbonate. When fatty acid was used as an additive at the interface, the crystals grown were self-assembled needle shaped strontianite crystallites branching out from the seed crystal via secondary nucleation. Under identical conditions of supersaturation, the presence of fatty amine molecules at the liquid–liquid interface resulted in needle shaped strontianite crystals with spherical crystallites arranged around central needles. This clearly indicates that the functionality of the head group of the amphiphiles at the liquid–liquid interface affects the morphology of the strontium carbonate crystals formed. The use of interfacial effects such as dielectric discontinuity, polarity and finite solubility of the two solvents etc opens up exciting possibilities for tailoring the morphology of crystals at the liquid–liquid interface and is currently not possible in the more popular crystal growth with similar amphiphiles at the air–water interface.

  1. Growth and micro-topographical studies of gel grown cholesterol crystals

    Indian Academy of Sciences (India)

    Anit Elizabeth; Cyriac Joseph; M A Ittyachen

    2001-08-01

    Cholesterol (C27H46O) is the most abundant and best-known steroid in the animal kingdom. The in vitro crystallization of this important biomaterial has been attempted by few researchers. Here we are reporting crystallization of pure cholesterol monohydrate crystals in gel medium. It is found that the morphology of the crystals depends on various parameters. The effect of solvent has been studied in detail. The different morphologies observed are fibrous, needle, platelet, dendrite etc. Micro topographical studies have been made and it is found that the crystals grow, at least in the last stage, by spreading of layers. However, at initial stage microcrystals formed and developed into dendrite or needle forms. These one-dimensional crystals developed into platelets and finally thickened. Further studies reveal that micro impurities play a vital role in the development of these crystals as seen by dissolution figures on the crystals. These crystals are characterized by using the XRD and IR spectroscopic methods.

  2. Structure of a heterogeneous, glycosylated, lipid-bound, in vivo-grown protein crystal at atomic resolution from the viviparous cockroach Diploptera punctata.

    Science.gov (United States)

    Banerjee, Sanchari; Coussens, Nathan P; Gallat, François-Xavier; Sathyanarayanan, Nitish; Srikanth, Jandhyam; Yagi, Koichiro J; Gray, James S S; Tobe, Stephen S; Stay, Barbara; Chavas, Leonard M G; Ramaswamy, Subramanian

    2016-07-01

    Macromolecular crystals for X-ray diffraction studies are typically grown in vitro from pure and homogeneous samples; however, there are examples of protein crystals that have been identified in vivo. Recent developments in micro-crystallography techniques and the advent of X-ray free-electron lasers have allowed the determination of several protein structures from crystals grown in cellulo. Here, an atomic resolution (1.2 Å) crystal structure is reported of heterogeneous milk proteins grown inside a living organism in their functional niche. These in vivo-grown crystals were isolated from the midgut of an embryo within the only known viviparous cockroach, Diploptera punctata. The milk proteins crystallized in space group P1, and a structure was determined by anomalous dispersion from the native S atoms. The data revealed glycosylated proteins that adopt a lipocalin fold, bind lipids and organize to form a tightly packed crystalline lattice. A single crystal is estimated to contain more than three times the energy of an equivalent mass of dairy milk. This unique storage form of nourishment for developing embryos allows access to a constant supply of complete nutrients. Notably, the crystalline cockroach-milk proteins are highly heterogeneous with respect to amino-acid sequence, glycosylation and bound fatty-acid composition. These data present a unique example of protein heterogeneity within a single in vivo-grown crystal of a natural protein in its native environment at atomic resolution.

  3. Structure of a heterogeneous, glycosylated, lipid-bound, in vivo-grown protein crystal at atomic resolution from the viviparous cockroach Diploptera punctata

    Directory of Open Access Journals (Sweden)

    Sanchari Banerjee

    2016-07-01

    Full Text Available Macromolecular crystals for X-ray diffraction studies are typically grown in vitro from pure and homogeneous samples; however, there are examples of protein crystals that have been identified in vivo. Recent developments in micro-crystallography techniques and the advent of X-ray free-electron lasers have allowed the determination of several protein structures from crystals grown in cellulo. Here, an atomic resolution (1.2 Å crystal structure is reported of heterogeneous milk proteins grown inside a living organism in their functional niche. These in vivo-grown crystals were isolated from the midgut of an embryo within the only known viviparous cockroach, Diploptera punctata. The milk proteins crystallized in space group P1, and a structure was determined by anomalous dispersion from the native S atoms. The data revealed glycosylated proteins that adopt a lipocalin fold, bind lipids and organize to form a tightly packed crystalline lattice. A single crystal is estimated to contain more than three times the energy of an equivalent mass of dairy milk. This unique storage form of nourishment for developing embryos allows access to a constant supply of complete nutrients. Notably, the crystalline cockroach-milk proteins are highly heterogeneous with respect to amino-acid sequence, glycosylation and bound fatty-acid composition. These data present a unique example of protein heterogeneity within a single in vivo-grown crystal of a natural protein in its native environment at atomic resolution.

  4. Surface Morphology and Microstructural Characterization of KCl Crystals Grown in Halite-Sylvite Brine Solutions by Electron Backscattered Diffraction Techniques

    Science.gov (United States)

    Podder, Jiban; Basu, Ritwik; Evitts, Richard William; Besant, Robert William

    2015-11-01

    In this paper, a study on the ternary NaCl-KCl-H2O system was carried out by an extractive metallurgy technique from mixed brine solutions of different compositions at room temperature (23°C). The surface morphology and microstructure were examined using a scanning electron microscope (SEM), electron backscattered diffraction (EBSD) and an energy dispersive X-ray (EDX) spectroscopy. The presence of Na{ }+ was found to reduce the stability of the solutions and increase the crystallization induction period, interfacial energy, energy of formation of the nucleus and greatly reduce the nucleation rate of KCl crystal. The surface morphology of KCl crystals is significantly changed due to presence of 5 to 10% (w/w) of NaCl as impurities in the binary solutions and shows the formation of co-crystals of different crystallographic orientation of NaCl on the KCl surface. In addition X-ray diffraction studies performed on KCl crystals grown in halite-sylvite binary solutions reveals that these crystals are cubic in nature and its lattice constant is 6.2952 Å when the NaCl concentration is small.

  5. Magnesium single crystals for biomedical applications grown in vertical Bridgman apparatus

    Science.gov (United States)

    Salunke, Pravahan; Joshi, Madhura; Chaswal, Vibhor; Zhang, Guangqi; Rosenbaum, Leonard A.; Dowling, Kevin; Decker, Paul; Shanov, Vesselin

    2016-10-01

    This paper describes successful efforts to design, build, test, and utilize a single crystal apparatus using the Bridgman approach for directional solidification. The created instrument has been successfully tested to grow magnesium single crystals from melt. Preliminary mechanical tests carried out on these single crystals indicate unique and promising properties, which can be harnessed for biomedical applications.

  6. Effects of Annealing Treatments on Luminescence and Scintillation Properties of Ce:Lu3Al5O12 Crystal Grown by Czochralski Method

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Ce:Lu3Al5O12 single crystals grown in pure N2 atmosphere by Czochralski method were annealed in oxidizing atmosphere (air) and reducing atmosphere (H2+N2), respectively. Effects of annealing treatments on luminescence and scintillation properties of the crystals were investigated. The crystal annealed in air showed the highest luminescence intensity under blue light or vacuum ultraviolet excitation in comparison with that annealed in reducing flux or the as-grown crystal. Under X-ray excitation, crystal annealed in reducing atmosphere had the lowest light yield, and crystal annealed in air had the fastest decay time under 137Cs 662 keV γ-ray excitation. Different annealing treatments resulted in different luminescence and scintillation properties, which might related with oxygen vacancies or defect existing in the crystals.

  7. Strain-relief by single dislocation loops in calcite crystals grown on self-assembled monolayers

    Science.gov (United States)

    Ihli, Johannes; Clark, Jesse N.; Côté, Alexander S.; Kim, Yi-Yeoun; Schenk, Anna S.; Kulak, Alexander N.; Comyn, Timothy P.; Chammas, Oliver; Harder, Ross J.; Duffy, Dorothy M.; Robinson, Ian K.; Meldrum, Fiona C.

    2016-06-01

    Most of our knowledge of dislocation-mediated stress relaxation during epitaxial crystal growth comes from the study of inorganic heterostructures. Here we use Bragg coherent diffraction imaging to investigate a contrasting system, the epitaxial growth of calcite (CaCO3) crystals on organic self-assembled monolayers, where these are widely used as a model for biomineralization processes. The calcite crystals are imaged to simultaneously visualize the crystal morphology and internal strain fields. Our data reveal that each crystal possesses a single dislocation loop that occupies a common position in every crystal. The loops exhibit entirely different geometries to misfit dislocations generated in conventional epitaxial thin films and are suggested to form in response to the stress field, arising from interfacial defects and the nanoscale roughness of the substrate. This work provides unique insight into how self-assembled monolayers control the growth of inorganic crystals and demonstrates important differences as compared with inorganic substrates.

  8. Ce-doped LuAG single-crystal fibers grown from the melt for high-energy physics

    CERN Document Server

    Xu, X; Moretti, F; Pauwels, K; Lecoq, P; Auffray, E; Dujardin, C

    2014-01-01

    Under a stationary stable regime undoped and Ce-doped LuAG (Lu3Al5O12) single-crystal fibers were grown by a micro-pulling-down technique. The meniscus length corresponding to the equilibrium state was <200 mu m. Fluctuations in the fiber composition and pulling rate were found to have a significant effect on the properties of the fibers grown. A great improvement in the performance was found in samples containing low Ce concentrations (<= 0.1 at.\\%) and produced using pulling rates <0.5 mm min(-1). Under such conditions a good lateral surface fiber quality was obtained and light propagation was significantly improved. Conversely, a high Ce concentration and a high pulling rate resulted in a strong degradation of the fiber surface quality causing defects to appear and a decrease in light output. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Study of Growth, Structural, Thermal and Nonlinear Optical Properties of Silica Gel Grown Calcium Iodate Monohydrate Crystals

    Directory of Open Access Journals (Sweden)

    Sharda J. Shitole

    2015-12-01

    Full Text Available Single crystals of calcium iodate, monohydrate [Ca (IO32, H2O] were grown by simple gel technique by single and double diffusion method. Morphologies and habit faces like prismatic, prismatic pyramidal, needle shaped, hopper crystals were obtained. Few crystals were opaque, some were translucent and some good quality transparent crystals were obtained. EDAX spectrum verified that crystals are of calcium iodate, monohydrate indeed and was used to find Atomic % and Weight %. Unit cell parameters were obtained from the X-ray diffractogram. The calculated unit cell parameters, β, and‘d’ values are in good agreement with reported ones. Structural analysis was done by using FTIR spectroscopy which confirmed the presence of fundamental infrared frequencies, generally observed in all iodate compounds. Thermal analysis exhibits three steps explicitly on heating the samples. The first step involves dehydration at 5500C, second step shows decomposition at 5800C, and the third step involves again decomposition at 6400C. Powder second harmonic generation experiments exhibit the nonlinear nature of the substance.

  10. Approaches to improve the Voc of CDTE devices: Device modeling and thinner devices, alternative back contacts

    Science.gov (United States)

    Walkons, Curtis J.

    An existing commercial process to develop thin film CdTe superstrate cells with a lifetime tau=1-3 ns results in Voc= 810-850 mV which is 350 mV lower than expected for CdTe with a bandgap EG = 1.5 eV. Voc is limited by 1.) SRH recombination in the space charge region; and 2.) the Cu2Te back contact to CdTe, which, assuming a 0.3 eV CdTe/Cu2Te barrier, exhibits a work function of phi Cu2Te= 5.5 eV compared to the CdTe valence band of Ev,CdTe=5.8 eV. Proposed solutions to develop CdTe devices with increased Voc are: 1.) reduce SRH recombination by thinning the CdTe layer to ≤ 1 mum; and 2.) develop an ohmic contact back contact using a material with phi BC≥5.8 eV. This is consistent with simulations using 1DSCAPS modeling of CdTe/CdS superstrate cells under AM 1.5 conditions. Two types of CdTe devices are presented. The first type of CdTe device utilizes a window/CdTe stack device with an initial 3-9 mum CdTe layer which is then chemically thinned resulting in regions of the CdTe film with thickness less than 1 mum. The CdTe surface was contacted with a liquid junction quinhydrone-Pt (QH-Pt) probe which enables rapid repeatable Voc measurements on CdTe before and after thinning. In four separate experiments, the window/CdTe stack devices with thinned CdTe exhibited a Voc increase of 30-170 mV, which if implemented using a solid state contact could cut the Voc deficit in half. The second type of CdTe device utilizes C61 PCBM as a back contact to the CdTe, selected since PCBM has a valence band maximum energy (VBM) of 5.8 eV. The PCBM films were grown by two different chemistries and the characterization of the film properties and device results are discussed. The device results show that PCBM exhibits a blocking contact with a 0.6 eV Schottky barrier and possible work function of phiPCBM = 5.2 eV.

  11. High pressure effect on MoS2 and MoSe2 single crystals grown by CVT method

    Indian Academy of Sciences (India)

    Madhavi Dave; Rajiv Vaidya; S G Patel; A R Jani

    2004-04-01

    Single crystals of MoS2 and MoSe2 were grown by chemical vapour transport method using iodine as a transporting agent and characterized by optical microscopy, energy dispersive analysis (EDAX), X-ray powder diffraction (XRD) and Hall mobility at room temperature. The variation of electrical resistance under pressure was monitored in a Bridgman anvil set-up up to 6.5 GPa to identify occurrence of any structural transition. MoS2 and MoSe2 do not undergo any structural transitions under pressure.

  12. Power scaling of directly dual-end-pumped Nd:GdVO4 laser using grown-together composite crystal.

    Science.gov (United States)

    Li, XuDong; Yu, Xin; Chen, Fei; Yan, RenPeng; Luo, Ming; Yu, JunHua; Chen, DeYing

    2010-03-29

    Power scaling of end-pumped Nd:GdVO(4) laser was realized by direct pumping, grown-together composite crystal and dual-end-pumping. A maximum CW output power of 46.0W with M(2)switch operation, peak power of 304.1kW, 58.6kW and 23.8kW, pulse width of 7.2ns, 11.3ns and 16.2ns were obtained at the repetition rates of 10kHz, 50kHz and 100kHz, respectively.

  13. Fracture Mechanics, Crack Propagation and Microhardness Studies on Flux Grown ErAlO3 Single Crystals

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Results on fracture mechanics and crack propagation have been obtained, making use of Vickers microhardness studies on two different crystallographic planes [(110) and (001)] of flux grown erbium aluminate crystals in the load ranging from 10~100 g. The variation of microhardness with load which is best explained by Hays and Kendall's law leads to the load independent values of hardness. Classification of cracks is dealt with and it is reported that the transition from Palmqvist to median types of cracks occurs at higher loads. The values of fracture toughness (Kc), and brittleness index (Bi) are calculated using median types of cracks.

  14. Surface structure determinations of crystalline ionic thin films grown on transition metal single crystal surfaces by low energy electron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Joel Glenn [Univ. of California, Berkeley, CA (United States)

    2000-05-01

    The surface structures of NaCl(100), LiF(100) and alpha-MgCl2(0001) adsorbed on various metal single crystals have been determined by low energy electron diffraction (LEED). Thin films of these salts were grown on metal substrates by exposing the heated metal surface to a molecular flux of salt emitted from a Knudsen cell. This method of investigating thin films of insulators (ionic salts) on a conducting substrate (metal) circumvents surface charging problems that plagued bulk studies, thereby allowing the use of electron-based techniques to characterize the surface.

  15. GaN Schottky diodes with single-crystal aluminum barriers grown by plasma-assisted molecular beam epitaxy

    Science.gov (United States)

    Tseng, H. Y.; Yang, W. C.; Lee, P. Y.; Lin, C. W.; Cheng, Kai-Yuan; Hsieh, K. C.; Cheng, K. Y.; Hsu, C.-H.

    2016-08-01

    GaN-based Schottky barrier diodes (SBDs) with single-crystal Al barriers grown by plasma-assisted molecular beam epitaxy are fabricated. Examined using in-situ reflection high-energy electron diffractions, ex-situ high-resolution x-ray diffractions, and high-resolution transmission electron microscopy, it is determined that epitaxial Al grows with its [111] axis coincident with the [0001] axis of the GaN substrate without rotation. In fabricated SBDs, a 0.2 V barrier height enhancement and 2 orders of magnitude reduction in leakage current are observed in single crystal Al/GaN SBDs compared to conventional thermal deposited Al/GaN SBDs. The strain induced piezoelectric field is determined to be the major source of the observed device performance enhancements.

  16. Electrodeposition, characterization and photo electrochemical properties of CdSe and CdTe

    Directory of Open Access Journals (Sweden)

    Atef Y. Shenouda

    2015-03-01

    Full Text Available CdSe and CdTe are electrodeposited using 0.1 M Cd2+ and different ion concentrations of Se and Te. The effect of the temperature on the electrodeposition process is also studied. The crystal structure of the deposited CdSe and CdTe is investigated by X-ray diffraction (XRD. Scanning electron microscopy (SEM of samples deposited at optimized parameters reveals that CdSe has spongy spherical grains while CdTe has coralloid morphology. Optical absorption shows the presence of direct transition with band gap energy 1.96 and 1.51 eV for CdSe and CdTe, respectively. The highest photo-conversion efficiencies of electrodeposited CdSe and CdTe films per unit area are 6% and 9.6%, respectively that achieved under simple laboratory conditions.

  17. Optical measurements for excitation of CdTe quantum dots

    Science.gov (United States)

    Vladescu, Marian; Feies, Valentin; Schiopu, Paul; Craciun, Alexandru; Grosu, Neculai; Manea, Adrian

    2016-12-01

    The paper presents the experimental results obtained using a laboratory setup installation for fluorescence excitation of CdTe QDs used as biomarkers for clinical diagnostics. Quantum Dots (QDs) made of Cadmium Telluride (CdTe), are highly fluorescent and they are used as robust biomarkers. Generally, QDs are referred to as the zero-dimensional colloidal crystals that possess strong size dependence and multi-colored luminescence properties. Along with its intrinsic features, such as sharp and symmetric emission, photo-stability and high quantum yields, QDs play a vital role in various applications, namely the identification of the chemical moieties, clinical diagnostics, optoelectronics, bio-imaging and bio-sensing1.

  18. Flux-enhanced monochromator by ultrasound excitation of annealed Czochralski-grown silicon crystals

    CERN Document Server

    Koehler, S; Seitz, C; Magerl, A; Mashkina, E; Demin, A

    2003-01-01

    The neutron flux from monochromator crystals can be increased by ultrasound excitation or by strain fields. Rocking curves of both a perfect float-zone silicon crystal and an annealed Czochralski silicon crystal with oxygen precipitates were measured at various levels of ultrasound excitation on a cold-neutron backscattering spectrometer. We find that the effects of the dynamic strain field from the ultrasound and the static strain field from the defects are not additive. Rocking curves were also taken at different ultrasound frequencies near resonance of the crystal/ultrasound-transducer system with a time resolution of 1 min. Pronounced effects of crystal heating are observed, which render the conditions for maximum neutron reflectivity delicate. (orig.)

  19. Characterization of pure and copper-doped iron tartrate crystals grown in silica gel

    Indian Academy of Sciences (India)

    V Mathivanan; M Haris

    2013-07-01

    Single crystal growth of pure and copper-doped iron tartrate crystals bearing composition Cu Fe(1−) C4H4O6 · H2O, where = 0, 0.07, 0.06, 0.05, 0.04, 0.03, is achieved using gel technique. The elemental analysis has been done using energy-dispersive X-ray analysis (EDAX) spectrum. The characterization studies such as Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (XRD), magnetic analysis and thermal analysis have been done for crystals with = 0 for pure iron tartrate and with = 0.05 for copper-mixed iron tartrate crystals. A detailed comparison has been made between pure and doped crystals.

  20. Effect of ZnI2 cosolute on quality and performance of γ-CuI ultrafast scintillation crystal grown via evaporation method in acetonitrile solvent

    Science.gov (United States)

    Yue, Shuangqiang; Gu, Mu; Liu, Xiaolin; Zhang, Juannan; Huang, Shiming; Liu, Bo; Ni, Chen

    2017-04-01

    γ-CuI single crystal was grown via evaporation method in ZnI2 acetonitrile solvent. The ZnI2 plays a unique role which can not only increase the solubility of CuI in acetonitrile but also introduce the Zn and I ions in the crystal. The γ-CuI crystal grown in ZnI2 acetonitrile is regular and transparent. Its size reaches up to 18 × 11 × 2 mm3 which is larger than that of the crystal grown in pure acetonitrile. In terms of the photoluminescence, the intensity of the emission at 411 nm of the crystal grown with ZnI2 as a cosolute is much higher than that of the crystal grown without ZnI2, which implies that the crystallinity of the crystal can be improved by ZnI2 doping. The X-ray excited luminescence of the crystal shows that the emission at 435 nm can be significantly enhanced and the emission near 680 nm can be suppressed by introducing Zn and I in the natural non-stoichiometry γ-CuI crystal. The nature of the phenomena is discussed. The decay time of the emission at 435 nm similar to that of the emission at 411 nm is faster than the detection limit of the instrument, i.e. less than 1 ns, and the average decay time of the emission near 680 nm is about 183 ns. The results can provide a useful guide to optimize the scintillation properties of γ-CuI single crystal.

  1. Luminescent properties of Cr-doped gallium garnet crystals grown by the micro-pulling-down method

    Science.gov (United States)

    Kurosawa, Shunsuke; Suzuki, Akira; Yamaji, Akihiro; Kamada, Kei; Pejchal, Jan; Ohashi, Yuji; Yokota, Yuui; Chani, Valery Ivanovich; Yoshikawa, Akira

    2016-10-01

    Cr-doped (GdxY1-x)3Ga5O12 crystals (x=0.00, 0.25, 0.50, 0.75 and 1.00) were grown by the micro-pulling-down method and examined for their possible application as red and infrared scintillating detectors in medical field. Although Cr:(Gd0.75Y0.25)3Ga5O12 and Cr:Gd3Ga5O12 had similar X-ray diffraction patterns, other samples showed some change in lattice constant. All the crystals had broad emission bands in the red and infrared region when excited by either 450 nm photons or X rays. These bands were associated with 4T2→A2 transitions. Moreover, redshift of the emission-peak wavelengths (4T2→4A2) and absorption peaks (4A2→4T1 and 4T2) was observed with increase of Gd content (x) in Cr-doped (GdxY1-x)3Ga5O12 due to the change of the crystal fields. The crystals had scintillation emissions in the wavelength region suitable for the real time dose monitoring in radiation therapy.

  2. X-ray diffraction of protein crystal grown in a nano-liter scale droplet in a microchannel and evaluation of its applicability.

    Science.gov (United States)

    Maeki, Masatoshi; Yoshizuka, Saori; Yamaguchi, Hiroshi; Kawamoto, Masahide; Yamashita, Kenichi; Nakamura, Hiroyuki; Miyazaki, Masaya; Maeda, Hideaki

    2012-01-01

    We describe the technical aspects of the in-situ X-ray diffraction of a protein crystal prepared by a nanodroplet-based crystallization method. We were able to obtain diffraction patterns from a crystal grown in a capillary without any manipulation. Especially in our experimental approach, the crystals that moved to the nanodroplet interface were fixed strongly enough to carry out X-ray diffraction measurements that could be attributed to the high surface tension of the nanodroplet. The crystal was damaged by an indirect action of the X-rays because our in-situ X-ray diffraction measurement was carried out in the liquid phase without freezing the crystal; however, the obtained several diffraction patterns were of sufficiently fine quality for the crystal structure factors to be generated. We consider the technical examination presented in this paper to represent a seamless coupling of crystallization to X-ray analysis.

  3. Characterization and inhibitive study of gel-grown hydroxyapatite crystals at physiological temperature

    Science.gov (United States)

    Parekh, Bharat; Joshi, Mihir; Vaidya, Ashok

    2008-04-01

    Hydroxyapatite is very useful for various biomedical applications, due to its chemical similarity with mineralized bone of human. Hydroxyapatite is also responsible for arthropathy (joint disease). In the present study, the growth of hydroxyapatite crystals was carried out by using single-diffusion gel growth technique in silica hydro gel media, at physiological temperature. The growth of hydroxyapatite crystals under slow and controlled environment in gel medium can be simulated in a simple manner to the growth in human body. The crystals, formed in the Liesegang rings, were characterized by powder XRD, FTIR and dielectric study. The diffusion study is also carried out for the hydroxyapatite crystals using the moving boundary model. The inhibitive influence of various Ayurvedic medicinal plant extracts such as Boswellia serrata gum resin , Tribulus terrestris fruits, Rotula aquatica roots, Boerhaavia diffusa roots and Commiphora wightii, on the growth of hydroxyapatite was studied. Roots of R. aquatica and B. diffusa show some inhibition of the hydroxyapatite crystals in vitro. This preclinical study will be helpful to design the therapy for prevention of hydroxyapatite-based ailments.

  4. Metastable fcc-Fe film epitaxially grown on Cu(100) single-crystal underlayer

    Science.gov (United States)

    Ohtake, Mitsuru; Shimamoto, Kohei; Futamoto, Masaaki

    2013-05-01

    Fe film of 40 nm thickness is prepared on fcc-Cu(100) single-crystal underlayer at room temperature by ultra-high vacuum molecular beam epitaxy. The film growth and the detailed structure are investigated by reflection high-energy electron diffraction, cross-sectional high-resolution transmission electron microscopy (HR-TEM), and x-ray diffraction (XRD). An Fe single-crystal with metastable fcc structure nucleates on the underlayer. The HR-TEM shows that fcc lattice is formed from the Fe/Cu interface up to the film surface. A large number of misfit dislocations are introduced around the Fe/Cu interface due to an accommodation of lattice mismatch. Dislocations exist up to the film near surface. The lattice constant is estimated by XRD to be a = 0.3607 nm. The film shows a ferromagnetic property, which reflects the property of fcc-Fe crystal with high-spin ferromagnetic state.

  5. Preparation of CdTe nanocrystal-polymer composite microspheres in aqueous solution by dispersing method

    Institute of Scientific and Technical Information of China (English)

    LI Minjie; WANG Chunlei; HAN Kun; YANG Bai

    2005-01-01

    Highly fluorescent CdTe nanocrystals were synthesized in aqueous solution, and then processible CdTe nanocrystal-polymer composites were fabricated by coating the aqueous nanocrystals with copolymers of styrene and octadecyl-p-vinyl-benzyldimethylammonium chloride (SOV- DAC) directly. A dichloromethane solution of CdTe nano- crystal-polymer composites was dispersed in the aqueous solution of poly (vinyl alcohol) (PVA) generating highly fluorescent microspheres. Experimental parameters such as the concentration of nanocrystal-polymer composites, the concentration of PVA, and stirring speed which had important effect on the preparation of the microspheres were investigated in detail with fluorescent microscope characterization.

  6. Electrodeposition, characterization and photo electrochemical properties of CdSe and CdTe

    OpenAIRE

    Atef Y. Shenouda; El Sayed, El Sayed M.

    2015-01-01

    CdSe and CdTe are electrodeposited using 0.1 M Cd2+ and different ion concentrations of Se and Te. The effect of the temperature on the electrodeposition process is also studied. The crystal structure of the deposited CdSe and CdTe is investigated by X-ray diffraction (XRD). Scanning electron microscopy (SEM) of samples deposited at optimized parameters reveals that CdSe has spongy spherical grains while CdTe has coralloid morphology. Optical absorption shows the presence of direct transition...

  7. On the doping problem of CdTe films: The bismuth case

    Energy Technology Data Exchange (ETDEWEB)

    Vigil-Galan, O. [Escuela Superior de Fisica y Matematicas del IPN, Edif. 9, UPALM, 07738 Mexico, D. F. (Mexico); Brown, M. [Department of Physics and Astronomy, The University of Toledo, 43606 Toledo, OH (United States); Ruiz, C.M. [Depto. Fisica de Materiales, Universidad Autonoma de Madrid, 28049 Madrid (Spain); Vidal-Borbolla, M.A. [Instituto de Investigacion en Comunicacion Optica, Av. Karakorum 1470, Lomas 4a. Secc., 78210 San Luis Potosi, SLP (Mexico); Ramirez-Bon, R. [CINVESTAV-IPN, U. Queretaro, Libramiento Norponiente No. 2000, Fracc. Real de Juriquilla, 76230 Santiago de Queretaro, Qro. (Mexico); Sanchez-Meza, E. [Escuela Superior de Fisica y Matematicas del IPN, Edif. 9, UPALM, 07738 Mexico, D. F. (Mexico); Tufino-Velazquez, M. [Escuela Superior de Fisica y Matematicas del IPN, Edif. 9, UPALM, 07738 Mexico, D. F. (Mexico)], E-mail: mtufinovel@yahoo.com.mx; Calixto, M. Estela [Escuela Superior de Fisica y Matematicas del IPN, Edif. 9, UPALM, 07738 Mexico, D. F. (Mexico); Compaan, A.D. [Department of Physics and Astronomy, The University of Toledo, 43606 Toledo, OH (United States); Contreras-Puente, G. [Escuela Superior de Fisica y Matematicas del IPN, Edif. 9, UPALM, 07738 Mexico, D. F. (Mexico)

    2008-08-30

    The controlled increase of hole concentration is an important issue and still an unsolved problem for polycrystalline CdTe-based solar cells. The typical hole concentration of as-grown CdTe thin-films goes up to 10{sup 13} cm{sup -3}, depending on the specific growth technique. The highest electron concentration obtained for CdS, the suitable window partner material of CdTe, is around 10{sup 15} cm{sup -3}. Thus, the PV-performance of a CdS/CdTe device can be optimized if the hole concentration in CdTe is increased. We have faced up this problem by studying the electrical properties of two types of CdTe films: CdTe films grown by Close Space Vapor Transport using a CdTe:Bi powder as the starting material and CdTe sputtered films doped by implantation with different Bi-doses. Temperature-dependent resistivity and Hall effect measurements and a discussion on the efficiency of both doping processes are presented.

  8. Effects of AIN nucleation layer thickness on crystal quality of AIN grown by plasma-assisted molecular beam epitaxy

    Institute of Scientific and Technical Information of China (English)

    Ren Fan; Hao Zhi-Biao; Hu Jian-Nan; Zhang Chen; Luo Yi

    2010-01-01

    In this paper,the effects of thickness of AIN nucleation layer grown at high temperature on AIN epi-layer crystalline quality are investigated.Crack-free AIN samples with various nucleation thicknesses are grown on sapphire substrates by plasma-assisted molecular beam epitaxy.The AIN crystalline quality is analysed by transmission electron microscope and x-ray diffraction(XRD)rocking curves in both(002)and(102)planes.The surface profiles of nucleation layer with different thicknesses after in-situ annealing are also analysed by atomic force microscope.A critical nucleation thickness for realising high quality AIN films is found.When the nucleation thickness is above a certain value,the(102)XRD full width at half maximum(FWHM)of AIN bulk increases with nucleation thickness increasing,whereas the(002)XRD FWHM shows an opposite trend.These phenomena can be attributed to the characteristics of nucleation islands and the evolution of crystal grains during AIN main layer growth.

  9. Heteroepitaxy of CdTe on Ge(211)Substrates by Molecular Beam Epitaxy%Ge(211)衬底上分子束外延CdTe薄膜

    Institute of Scientific and Technical Information of China (English)

    李艳辉; 杨春章; 苏栓; 谭英; 高丽华; 赵俊

    2011-01-01

    采用分子束外延在3英寸Ge(211)衬底上生长了10 μm厚的CdTe(211)B薄膜.CdTe表面镜面光亮,3英寸范围厚度平均值9.72 μm,偏差0.3 μm;薄膜晶体质量通过X射线双晶迴摆曲线进行评价,FWHM平均值80.23 arcsec,偏差3.03 arcsec; EPD平均值为4.5×106cm-2.通过研究CdTe薄膜厚度与FWHM和EPD的关系,得到CdTe的理想厚度为8~9 μm.%The 10μm thick CdTe(211)B has been grown by molecular beam epitaxy(MBE) on Ge(211) substrate. The surface morphology of CdTe layers with a diameter of three inches is smooth and mirror-like. The average of thick is 9.72 μm, deviation 0.3 μm; The crystalline quality was measured by an X-ray double-crystal rocking curve, the average is 80.23 arcsec, deviation 3.03 arcsec; The EPD is 4.5 × 106cm -2. We has studied the effects of the thickness onFWHM and EPD for CdTe layer, the optimum thickness of CdTe layer is 8~9 μm.

  10. Micro structural and dielectric property analysis on hydrothermally grown gadolinium doped SnO2 crystals

    Science.gov (United States)

    Pilakavil, Jaya T.; Pradyumnan, P. P.

    2016-09-01

    A series of SnO2-Gd2O3 mixed oxides were grown in aqueous medium by varying the thermodynamic parameters by hydrothermal method. X ray diffraction data identified tetragonal phases corresponding to tin oxide. The average crystallite size of the samples were between 21 and 31 nm. The morphological studies were conducted using scanning electron microscopy and compositional purity confirmed using energy dispersive spectroscopy. Detailed dielectric studies on the samples were performed in the frequency range 100 Hz-5 MHz, which showed that dielectric constant decreases with frequency in the low frequency range, whereas remains constant at higher frequencies. Impedance analysis is used to explain the effects of grain and grain boundary on transport mechanism of Gd:SnO2 particles synthesised at various pH.

  11. Biomimetic Precipitation of Uniaxially Grown Calcium Phosphate Crystals from Full-Length Human Amelogenin Sols

    Institute of Scientific and Technical Information of China (English)

    Vuk Uskokovié; Wu Li; Stefan Habelitz

    2011-01-01

    Human dental enamel forms over a period of 2 - 4 years by substituting the enamel matrix, a protein gel mostly composed of a single protein, amelogenin with fibrous apatite nanocrystals. Self-assembly of a dense amelogenin matrix is presumed to direct the growth of apatite fibers and their organization into bundles that eventually comprise the mature enamel, the hardest tissue in the mammalian body. This work aims to establish the physicochemical and biochemical conditions for the synthesis of fibrous apatite crystals under the control of a recombinant full-length human amelogenin matrix in combination with a programmable titration system. The growth of apatite substrates was initiated from supersaturated calcium phosphate solutions in the presence of dispersed amelogenin assemblies. It was shown earlier and confirmed in this study that binding of amelogenin onto apatite surfaces presents the first step that leads to substrate-specific crystal growth. In this work, we report enhanced nucleation and growth under conditions at which amelogenin and apatite carry opposite charges and adsorption of the protein onto the apatite seeds is even more favored. Experiments at pH below the isoelectric point of amelogenin showed increased protein binding to apatite and at low Ca/P molar ratios resulted in a change in crystal morphology from plate-like to fibrous and rod-shaped. Concentrations of calcium and phosphate ions in the supernatant did not show drastic decreases throughout the titration period, indicating controlled precipitation from the protein suspension metastable with respect to calcium phosphate. It is argued that ameloblasts in the developing enamel may vary the density of the protein matrix at the nano scale by varying local pH, and thus control the interaction between the mineral and protein phases. The biomimetic experimental setting applied in this study has thus proven as convenient for gaining insight into the fundamental nature of the process of

  12. Study on third order nonlinear optical properties of a metal organic complex-Monothiourea-cadmium Sulphate Dihydrate single crystals grown in silica gel

    Science.gov (United States)

    Sivanandan, T.; Kalainathan, S.

    2015-04-01

    The third order nonlinear optical properties of Monothiourea-cadmium Sulphate Dihydrate crystal were measured using a He-Ne laser (λ=632.8 nm) by a Z-scan technique. The magnitude of nonlinear refractive index (n2) and nonlinear absorption coefficient was found to be 4.4769×10-11 m2/W and 1.233×10-2 m/W respectively. The third order non-linear optical susceptibility χ(3) was found to be in the order of 3.6533×10-2 esu. The negative sign of non-linear refractive index shows the self-defocusing nature of the gel grown crystal. The second-order molecular hyperpolarizability γ of the grown crystal is 1.2822×10-33 esu. Laser damage threshold was measured by using an Nd: YAG laser (1064 nm). Photoconductivity studies of the gel grown crystal revealed that the crystal possesses positive photoconducting nature. The results obtained from Z-scan, laser damage threshold and photoconducting studies reveal that the crystal can be a possible candidate material for photonics device, optical switches, and optical power limiting application.

  13. Effects of Various RF Powers on CdTe Thin Film Growth Using RF Magnetron Sputtering

    Science.gov (United States)

    Alibakhshi, Mohammad; Ghorannevis, Zohreh

    2016-09-01

    Cadmium telluride (CdTe) film was deposited using the magnetron sputtering system onto a glass substrate at various deposition times and radio frequency (RF) powers. Ar gas was used to generate plasma to sputter the CdTe atoms from CdTe target. Effects of two experimental parameters of deposition time and RF power were investigated on the physical properties of the CdTe films. X-ray Diffraction (XRD) analysis showed that the films exhibited polycrystalline nature of CdTe structure with the (111) orientation as the most prominent peak. Optimum condition to grow the CdTe film was obtained and it was found that increasing the deposition time and RF power increases the crystallinity of the films. From the profilometer and XRD data's, the thicknesses and crystal sizes of the CdTe films increased at the higher RF power and the longer deposition time, which results in affecting the band gap as well. From atomic force microscopy (AFM) analysis we found that roughnesses of the films depend on the deposition time and is independent of the RF power.

  14. Blanket and Patterned Growth of CdTe on (211)Si Substrates by Metal-Organic Vapor Phase Epitaxy

    Science.gov (United States)

    2012-05-15

    REPORT Blanket and Patterned Growth Of CdTE On (211)Si Substrates By Metal-Organic Vapor Phase Epitaxy 14. ABSTRACT 16. SECURITY CLASSIFICATION OF...Metalorganic vapor phase epitaxy (MOVPE) of (211)B CdTe on (211)Si using intermediate Ge and ZnTe layers has been achieved for use as substrates for the...growth of HgCdTe infrared detector materials. The best (211)B CdTe films grown in this study display a low X-ray diffraction (XRD) rocking-curve

  15. Single-crystal nanowires grown via electron-beam-induced deposition

    Science.gov (United States)

    Klein, K. L.; Randolph, S. J.; Fowlkes, J. D.; Allard, L. F.; Meyer, H. M., III; Simpson, M. L.; Rack, P. D.

    2008-08-01

    Electron-beam-induced deposition (EBID) is a useful technique for direct-writing of three-dimensional dielectric, semiconductor, and metallic materials with nanoscale precision and resolution. The EBID process, however, has been limited in many cases because precursor byproducts (typically from organic precursors like W(CO)6) are incorporated into the deposited material resulting in contaminated and amorphous structures. In this work, we have investigated the structure and composition of EBID tungsten nanostructures as-deposited from a tungsten hexafluoride (WF6) precursor. High resolution transmission electron microscopy, electron diffraction and electron spectroscopy were employed to determine the effects that the electron beam scanning conditions have on the deposit characteristics. The results show that slow, one-dimensional lateral scanning produces textured β-tungsten nanowire cores surrounded by an oxide secondary layer, while stationary vertical growth leads to single-crystal [100]-oriented W3O nanowires. Furthermore we correlate how the growth kinetics affect the resultant nanowire structure and composition.

  16. Single-crystal nanowires grown via electron-beam-induced deposition

    Energy Technology Data Exchange (ETDEWEB)

    Klein, K L; Randolph, S J; Simpson, M L; Rack, P D [Materials Science and Engineering Department, University of Tennessee, 434 Dougherty Hall, Knoxville, TN 37996 (United States); Fowlkes, J D [Center for Nanophase Materials Sciences Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States); Allard, L F; III, H M Meyer [Materials Science and Technology Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831 (United States)], E-mail: prack@utk.edu

    2008-08-27

    Electron-beam-induced deposition (EBID) is a useful technique for direct-writing of three-dimensional dielectric, semiconductor, and metallic materials with nanoscale precision and resolution. The EBID process, however, has been limited in many cases because precursor byproducts (typically from organic precursors like W(CO){sub 6}) are incorporated into the deposited material resulting in contaminated and amorphous structures. In this work, we have investigated the structure and composition of EBID tungsten nanostructures as-deposited from a tungsten hexafluoride (WF{sub 6}) precursor. High resolution transmission electron microscopy, electron diffraction and electron spectroscopy were employed to determine the effects that the electron beam scanning conditions have on the deposit characteristics. The results show that slow, one-dimensional lateral scanning produces textured {beta}-tungsten nanowire cores surrounded by an oxide secondary layer, while stationary vertical growth leads to single-crystal [100]-oriented W{sub 3}O nanowires. Furthermore we correlate how the growth kinetics affect the resultant nanowire structure and composition.

  17. Dielectric and thermal studies on gel grown strontium tartrate pentahydrate crystals

    Indian Academy of Sciences (India)

    A Firdous; I Quasim; M M Ahmad; P N Kotru

    2010-08-01

    Results of dielectric and thermal studies on strontium tartrate pentahydrate crystals are described. The value of dielectric constant is shown to be independent of temperature till 360 K at all the frequencies (110–700 kHz) of the applied a.c. field. It increases abruptly achieving a peak value of 25.5 at 100 kHz; the peak value being strongly dependent on frequency. In the temperature range, 87 < < 117°C, the value of ' falls suggesting a transition at around 100°C or so. The dielectric constant, ', of the material is shown to be frequency dependent but temperature independent in the pre- or post-c range 87 < < 117°C, suggesting that the contribution towards polarization may be due to ionic or space charge polarization which gets eliminated at higher frequencies. The ferroelectric transition is supported by the results of thermoanalytical studies. It is explained that crystallographic change due to polymorphic phase transition may be occurring in the material, besides the change due to loss of water molecules, which leads to the dielectric anomaly at around 100°C. Coats–Redfern approximation method is applied for obtaining non-isothermal kinetic parameters leading to calculation of activation energies corresponding to three decomposition stages of material in the temperature ranging from 379–1113 K.

  18. Influence of CdTe thickness on structural and electrical properties of CdTe/CdS solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Salavei, A.; Rimmaudo, I. [Laboratory for Applied Physics, Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona (Italy); Piccinelli, F. [Laboratorio di Chimica dello Stato Solido, DB, Univ. Verona, and INSTM, UdR Verona, Strada Le Grazie 15, 37134 Verona (Italy); Romeo, A., E-mail: alessandro.romeo@univr.it [Laboratory for Applied Physics, Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona (Italy)

    2013-05-01

    Due to its high scalability and low production cost, CdTe solar cells have shown a very strong potential for large scale energy production. Although the number of modules produced could be limited by tellurium scarcity, it has been reported that reducing CdTe thickness down to 1.5 μm would solve this issue. There are, however, issues to be considered when reducing thickness, such as formation of pinholes, lower crystallization, and different possible effects on material diffusion within the interfaces. In this work, we present the study of CdTe solar cells fabricated by vacuum evaporation with different CdTe thicknesses. Several cells with a CdTe thickness ranging from 0.7 to 6 μm have been fabricated. The deposition process has been optimized accordingly and their physical and electrical properties have been studied. Thin cells show a different electrical behavior in terms of open circuit voltage and fill factor. Efficiencies range from 7% for thin CdTe cells to 13.5% for the standard thickness. - Highlights: ► Ultra thin CdTe absorbers have been prepared and studied. ► Grain size is depending on the CdTe thickness but spread in the grains increases. ► Lattice parameter is reduced only for ultra thin CdTe. ► The band gap reveals an intermixed CdTe absorber. ► The reason for lower efficiency of ultra thin CdTe is explained.

  19. An NMR quantum computer of the semiconductor CdTe

    Science.gov (United States)

    Shimizu, T.; Goto, A.; Hashi, K.; Ohki, S.

    2002-12-01

    We propose a method to implement a quantum computer by solid-state NMR. We can use the J-coupling for the quantum gate in CdTe. Both Cd and Te have two isotopes with spin 1/2, then we can have 4-qubits. The decoherence by dipole interaction may be minimized by preparing the isotope superlattice grown in the order of— 111Cd- 123Te- 113Cd- 125Te—in the [111] direction and by applying the magnetic field in the direction of [100], the magic angle of the dipole interaction. The optical pumping technique can be used in CdTe to make the initialization of the qubits.

  20. Europium and potassium co-doped strontium metaborate single crystals grown by the Czochralski method

    Science.gov (United States)

    Głowacki, Michał; Solarz, Piotr; Ryba-Romanowski, Witold; Martín, Inocencio R.; Diduszko, Ryszard; Berkowski, Marek

    2017-01-01

    Strontium metaborate (SrB2O4) is a suitable material for use as a matrix for luminescent dopant ions. Similarity of ionic radii of strontium and divalent europium makes it an excellent host for Eu dopant. This paper reports on the Czochralski growth and spectroscopic study of SrB2O4 single crystals doped with europium and co-doped with europium and potassium. Based on recorded luminescence spectra it was found that both Eu3+ and Eu2+ ions occur in this host. Trivalent europium ions give rise to a narrow-band long-lived red luminescence that is not affected by incorporation of potassium ions. Divalent europium ions emit a UV-blue luminescence, consisting of a large spectral band centered at ca 430 nm. In the absence of potassium ions the decay of this luminescence deviates slightly from a single exponential time dependence with a mean lifetime value of 2.0 ns. In potassium-co-doped sample a strong deviation from a single exponential decay was observed for longer stages of decay, beginning at ca 2.5 ns. This phenomenon was attributed to dissimilarity of relaxation rates of a fraction of europium ions distributed in different lattice sites that are distorted by the presence of big potassium ions. By co-doping the host with alkali ions one can influence the oxidation state of europium ions thereby enhancing the emission of trivalent europium ions. It was concluded that the material under study is a promising phosphor for visible light emission applications.

  1. Investigation on growth and defects of Ho{sup 3+}:BaY{sub 2}F{sub 8} crystals grown by Czochralski method

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Hui [Department of Materials Science, Sichuan University, 610064 Chengdu (China); Southwest Institute of Technical Physics, Chengdu 610041 (China); Guan, Zhouguo [Southwest Institute of Technical Physics, Chengdu 610041 (China); He, Zhiyu, E-mail: hzyscu@163.com [Department of Materials Science, Sichuan University, 610064 Chengdu (China); Huang, Wei [Department of Materials Science, Sichuan University, 610064 Chengdu (China); Zhang, Wei; Niu, Ruihua; Yao, Chao; Yang, Yongqiang; Zhang, Huirong; Zhang, Zhibin [Southwest Institute of Technical Physics, Chengdu 610041 (China)

    2015-11-05

    Large and heavily Ho{sup 3+}-doped BaY{sub 2}F{sub 8} single crystals were grown by the Czochralski method. X-ray powder diffraction was applied to analyze the phase of the crystal samples. Simultaneously, metallographic microscope, scanning electron microscopy and energy dispersive spectrometer were employed to observe and investigate defects in the as grown crystals. Two significant kinds of defects, namely cracking and impurities were discovered in the samples of Ho{sup 3+}:BaY{sub 2}F{sub 8} single crystals. Theoretical analyses suggested that mechanisms concerning the formation of the impurities such as bubbles and inclusions were considered to be closely related to the growth temperature and atmosphere while the former defect was primarily brought by the lattice distortion relating to the thermal stress and the impurities. Based on the results of experiments and theoretical analyses, the parameters of growth process were optimized and a crack free 20 mol% Ho{sup 3+}:BaY{sub 2}F{sub 8}single crystal has been successfully obtained. Furthermore, the UV–Vis-IR (0.2–10 μm) absorption spectra of BaY{sub 2}F{sub 8} single crystal and the crystal heavily doped with Ho{sup 3+} ions (20 mol%) have been investigated at room temperature. - Highlights: • Main reason of cleavages is the crystal lattice distortion caused by the impurities. • Lattice distortion was caused by carbon phases derived from the graphite crucible. • High quality crystal can be obtained by using CF{sub 4} and high purity graphite crucibles. • The crystal exhibits the broader absorption band and larger absorption cross section.

  2. Investigation of magnetic property of GdFeO{sub 3} single crystal grown in air by optical floating zone technique

    Energy Technology Data Exchange (ETDEWEB)

    Ramesh Babu, P. [Centre for Crystal Growth, School Advance Sciences, VIT University, Vellore, Tamil Nadu (India); Bhaumik, Indranil [Crystal Growth Laboratory, Laser Materials Development and Devices Division, Raja Ramanna Centre for Advanced Technology, Indore (India); Ganesamoorthy, S. [X-ray Scattering and Crystal Growth Section, CMPD, Material Science Group, IGCAR, Kalpakkam, Tamil Nadu (India); Kalainathan, S., E-mail: kalainathan@yahoo.com [Centre for Crystal Growth, School Advance Sciences, VIT University, Vellore, Tamil Nadu (India); Bhatt, R.; Karnal, A.K.; Gupta, P.K. [Crystal Growth Laboratory, Laser Materials Development and Devices Division, Raja Ramanna Centre for Advanced Technology, Indore (India)

    2015-05-15

    Highlights: • GdFeO{sub 3} single crystals have been grown by OFZ technique in air. • Sample exhibits one order lower coercive field than crystal grown in oxygen. • Bloch 3/2-law holds good for GdFeO{sub 3} (B-parameter as 2.69 × 10{sup −5} K{sup −3/2}). • The coercivity exhibited sharp dip at 200 and 550 K. • At 550 K pinning of the direction of weak ferromagnetism by AFM ordering vanishes. - Abstract: Single phase Gadolinium orthoferrite (GdFeO{sub 3}) with orthorhombic perovskite structure was synthesized without any garnet impurities by solid state reaction and subsequently GdFeO{sub 3} single crystals were grown by the optical floating zone technique. The temperature dependent magnetization measurement revealed the magnetic phase transition from anti-ferromagnetic ordering to paramagnetic ordering at 670 K. The overlapping of the magnetization measured under zero-field and field cooling condition in the range of 300–20 K signifies that there is no magnetic transition in this temperature range. The hysteresis loop measurements revealed that in comparison to the values reported for the crystal grown in oxygen, the air grown sample exhibits one order lower coercive field (∼75 Oe). The Bloch 3/2-law was found to hold good for GdFeO{sub 3} with the value of B-parameter as 2.69 × 10{sup −5} K{sup −3/2}. The coercivity exhibited sharp dip at 200 and 550 K. At and above 550 K the ability of the antiferromagnetic ordering to pin the direction of magnetization related to the weak ferromagnetism present in the material vanishes leading to the lowering in the coercivity.

  3. Magnetic properties of Cu-flux-grown UCu{sub 2}Si{sub 2} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Troc, R.; Bukowski, Z. [W. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-950 Wroclaw (Poland)

    2006-01-01

    In order to solve a serious problem of understanding the magnetic properties of UCu{sub 2}Si{sub 2}, we have grown single crystals of this compound from Cu-flux. Here we focus primarily on the magnetic behavior of this compound. In contrast to some previous polycrystalline and single-crystalline reports on UCu{sub 2}Si{sub 2} no signs of the transition into antiferromagnetic behavior have been observed below T {sub C}=104(1) K. The magnetic properties of this compound are highly anisotropic, with an easy axis of magnetization along the [001] direction. The saturation moment has been determined at 4.2 K to be 1.55 {mu}{sub B}. In the paramagnetic region the effective moments for the easy and hard directions are both about 3.0 {mu}{sub B}. An extensive discussion of the obtained data, compared to those recently published by Fisk et al. and Matsuda et al., also based on single crystalline materials, has been presented. No an antiferromagnetic phase above T{sub C} has been detected. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Annealing and surface conduction on Hydrogen peroxide treated bulk melt-grown, single crystal ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Mtangi, W., E-mail: wilbert.mtangi@up.ac.za [University of Pretoria, Physics Department, Pretoria 0002 (South Africa); Nel, J.M.; Auret, F.D.; Chawanda, A.; Diale, M. [University of Pretoria, Physics Department, Pretoria 0002 (South Africa); Nyamhere, C. [Nelson Mandela Metropolitan University, Physics Department, P.O. Box 77000, Port Elizabeth 6031 (South Africa)

    2012-05-15

    We report on the studies carried out on hydrogen peroxide treated melt-grown, bulk single crystal ZnO samples. Results show the existence of two shallow donors in the as-received ZnO samples with energy levels (37.8{+-}0.3) meV that has been suggested as Zn{sub i} related and possibly H-complex related and (54.5{+-}0.9) meV, which has been assigned to an Al-related donor. Annealing studies performed on the hydrogen peroxide treated samples reveal the existence of a conductive channel in the samples in which new energy levels have been observed, Zn vacancies, related to the Group I elements, X{sub Zn}. The surface donor volume concentration of the conductive channel was calculated from a theory developed by Look (2007) . Results indicate an increase in the surface volume concentration with increasing annealing temperature from 60 Multiplication-Sign 10{sup 17} cm{sup -3} at 200 Degree-Sign C to 4.37 Multiplication-Sign 10{sup 18} cm{sup -3} at 800 Degree-Sign C.

  5. High compositional homogeneity of CdTexSe1−x crystals grown by the Bridgman method

    Directory of Open Access Journals (Sweden)

    U. N. Roy

    2015-02-01

    Full Text Available We obtained high-quality CdTexSe1−x (CdTeSe crystals from ingots grown by the vertical Bridgman technique. The compositional uniformity of the ingots was evaluated by X-ray fluorescence at BNL’s National Synchrotron Light Source X27A beam line. The compositional homogeneity was highly uniform throughout the ingot, and the effective segregation coefficient of Se was ∼1.0. This high uniformity offers potential opportunity to enhance the yield of the materials for both infrared substrate and radiation-detector applications, so greatly lowering the cost of production and also offering us the prospect to grow large-diameter ingots for use as large-area substrates and for producing higher efficiency gamma-ray detectors. The concentration of secondary phases was found to be much lower, by eight- to ten fold compared to that of conventional CdxZn1−xTe (CdZnTe or CZT.

  6. Study on MBE CdTe layer on 3 inch silicon substrate%3英寸CdTe/Si复合衬底外延技术研究

    Institute of Scientific and Technical Information of China (English)

    周立庆; 刘铭; 巩锋; 董瑞清; 折伟林; 常米

    2011-01-01

    报道了采用分子束外延法,在3 in硅衬底上通过As钝化、ZnTe缓冲层生长、CdTe生长、周期性退火等工艺进行CdTe/Si复合衬底制备技术研究情况,采用光学显微镜、X射线高分辨衍射仪、原子力显微镜、红外傅里叶光谱仪和湿化学腐蚀等手段对碲化镉薄膜进行了表征,测试分析结果表明碲化镉薄膜的晶向得到了较好的控制,孪晶得到了抑制,且具有较好晶体结构质量和均匀性.%CdTe(211 )B films were grown by molecular beam epitaxy on As-passivated nominal three -inch Si( 211 )wafer using thin interfacial ZnTe (211 )B buffer layer,and in-situ cyclic annealing has been used during CdTe deposition to improved crystal quality.The CdTe films were characterized with Optical microscopy, X-ray diffraction, AFM,FTIR and wet chemical defect etching.The results indicate that the CdTe(112) B films has good crystal quality, excellent uniformity over three-inch area,twin-free and the crystalline orientation is controlled.

  7. Studies of Structure,Composition and Photoelectric Properties of CdTe Thin Film Grown by Vacuum Sublimation%真空热蒸发碲化镉薄膜的结构组成和光电性能研究

    Institute of Scientific and Technical Information of China (English)

    张溪文; 韩高荣

    2001-01-01

    Microstructure,chemical composition,film growth mechanism and photoelectric properties of CdTe films grown by vacuum sublimation were studied.Through analysis of XRD,TEM,XPS and photo/dark conductivity,the relation between substrate temperature and microstructure,composition and film oxidation was described systematically.The substrate temperature is the key parameter to decide the film quality.150 ℃ is confirmed to be the most suitable substrate temperature to obtain the film with the best photoelectric and physical properties.Furthermore,the mechanisms of film oxidation and film deposition were preliminarily discussed.%研究了真空热蒸发制备CdTe薄膜的光电性能以及微结构、化学组成和成膜机理。通过X射线衍射、透射电镜电子衍射、X光电子能谱和光、暗电导测试等分析手段,系统表述了薄膜的组成、结构、表面氧化与真空热蒸发工艺的关系。指出基板温度是决定CdTe薄膜组成和结构的关键参数,150 ℃左右制备的CdTe薄膜具有最佳光电性能和成膜质量。另外,对CdTe薄膜的氧化机制和成膜机理也进行了初步探讨。

  8. Self-catalyzed MBE grown GaAs/GaAs(x)Sb(1-x) core-shell nanowires in ZB and WZ crystal structures.

    Science.gov (United States)

    Ghalamestani, Sepideh Gorji; Munshi, A Mazid; Dheeraj, Dasa L; Fimland, Bjørn-Ove; Weman, Helge; Dick, Kimberly A

    2013-10-11

    We have investigated the growth of self-catalyzed GaAs/GaAs(x)Sb(1-x) core-shell nanowires directly on Si(111) substrates by molecular beam epitaxy. The compositions of the GaAs(x)Sb(1-x) shells are tuned in a wide range where the Sb-content is varied from 10 to ~70%, covering the miscibility gap. In addition, the GaAs(x)Sb(1-x) shells are grown on both zinc blende (ZB) and wurtzite (WZ) crystal structures. Morphological and structural characterizations of the grown nanowires indicate successful transfer of the GaAs core crystal structure to the GaAs(x)Sb(1-x) shells for both ZB and WZ nanowires, with slower shell growth rate on the WZ segments.

  9. Synthesis and characterization of BaFe{sub 2}As{sub 2} single crystals grown by in-flux technique

    Energy Technology Data Exchange (ETDEWEB)

    Garitezi, T.M.; Adriano, C.; Rosa, P.F.S.; Bittar, E.M.; Bufaical, L.; Almeida, R.L.; Granado, E.; Pagliuso, P.G., E-mail: thalesmg@ifi.unicamp.br [Universidade Estadual de Campinas (UNICAM), SP (Brazil). Instituto de Fisica Gleb Wataghin; Grant, T; Fisk, Z. [University of California, Irvine, CA (United States); Avila, M.A.; Ribeiro, R.A. [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil). Centro de Ciencias Naturais e Humanas; Kuhns, P.L.; Reyes, A.P.; Urbano, R.R. [National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL (United States)

    2013-08-15

    We report a detailed characterization of BaFe{sub 2}As{sub 2} single crystals grown by a metallic In-flux technique, an alternative to well-established growth routes using FeAs self- or Sn-flux. Electrical resistivity, magnetic susceptibility, nuclear magnetic resonance, and energy dispersive spectroscopy measurements showed no evidence of flux incorporation. More importantly, our results demonstrate that BaFe{sub 2}As{sub 2} single crystals grown by In-flux have extremely high quality. To explore the efficiency of the In-flux growth method, we have also prepared nearly optimally doped superconducting samples of Ba(Fe{sub 1} {sub -x} M {sub x} ){sub 2}As{sub 2} (M = Co, Cu, Ni, and Ru). Among other interesting features, this alternative chemical substitution method has led to enhancement of the maximum T{sub c} for most dopings. (author)

  10. The strange diffusivity of Ag atoms in CdTe

    CERN Document Server

    Wolf, H; Ostheimer, V; Schachtrup, A R; Stolwijk, N A; Wichert, T

    2001-01-01

    The diffusion of Ag atoms in CdTe was investigated using the radiotracer $^{111}\\!$Ag, which was introduced by implantation with an energy of 60 or 80 keV. The measured diffusion profiles are explained by assuming the existence of a repulsive interaction between Ag and residual Cu atoms causing a drift of the Ag atoms towards the centre of the crystal, which supposes the diffusion in a concentration gradient. This effect vanishes if the Ag concentration is increased and becomes more pronounced if the crystals are simultaneously co- doped with Cu. (11 refs).

  11. Phosphorus Doping of Polycrystalline CdTe by Diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Colegrove, Eric; Albin, David S.; Guthrey, Harvey; Harvey, Steve; Burst, James; Moutinho, Helio; Farrell, Stuart; Al-Jassim, Mowafak; Metzger, Wyatt K.

    2015-06-14

    Phosphorus diffusion in single crystal and polycrystalline CdTe material is explored using various methods. Dynamic secondary ion mass spectroscopy (SIMS) is used to determine 1D P diffusion profiles. A 2D diffusion model is used to determine the expected cross-sectional distribution of P in CdTe after diffusion anneals. Time of flight SIMS and cross-sectional cathodoluminescence corroborates expected P distributions. Devices fabricated with diffused P exhibit hole concentrations up to low 1015 cm-3, however a subsequent activation anneal enabled hole concentrations greater than 1016 cm-3. CdCl2 treatments and Cu based contacts were also explored in conjunction with the P doping process.

  12. The mechanism of twinning in zincblende structure crystals: New insights on polarity effects from a study of magnetic liquid encapsulated Czochralski grown InP single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Dudley, M.; Raghothamachar, B.; Guo, Y. [State Univ. of New York, Stony Brook, NY (United States). Dept. of Materials Science and Engineering] [and others

    1998-12-31

    Synchrotron White Beam X-ray Topography (SWBXT) and synchrotron X-ray anomalous scattering have been employed to determine the polarity of {l_brace}111{r_brace} edge facets, anchored to the three phase boundary (TPB) on which twinning is observed to nucleate in Magnetic Liquid Encapsulated Czochralski (MLEC) grown sulfur doped, <001> InP single crystals. Analysis of the results indicates that both the formation of edge facets and the nucleation of twins occur preferentially on {l_brace}{bar 1}{bar 1}{bar 1}{r_brace}{sub P} faces. Of the four possible sets of edge facets, belonging to the {l_brace}{bar 1}{bar 1}{bar 1}{r_brace}{sub P} form, which are oriented so as to be thermodynamically favored to be anchored to the TPB, two can give rise to a {l_brace}115{r_brace} to {l_brace}{bar 1}{bar 1}{bar 1}{r_brace}{sub P} external should facet conversion upon twinning, while the other two can give rise to a {l_brace}114{r_brace} to {l_brace}110{r_brace} conversion. For these cases, twinning is only observed when the {l_brace}{bar 1}{bar 1}{bar 1}{r_brace}{sub P} edge facets are anchored to the TPB in a region where the shoulder angle is close to 74.21{degree} or 70.53{degree}, facilitating the production of the {l_brace}115{r_brace} and {l_brace}114{r_brace} external should facets, respectively, prior to twinning. These observations are discussed in light of calculated surface energies of the various internal and external facets.

  13. CdTe devices and method of manufacturing same

    Energy Technology Data Exchange (ETDEWEB)

    Gessert, Timothy A.; Noufi, Rommel; Dhere, Ramesh G.; Albin, David S.; Barnes, Teresa; Burst, James; Duenow, Joel N.; Reese, Matthew

    2015-09-29

    A method of producing polycrystalline CdTe materials and devices that incorporate the polycrystalline CdTe materials are provided. In particular, a method of producing polycrystalline p-doped CdTe thin films for use in CdTe solar cells in which the CdTe thin films possess enhanced acceptor densities and minority carrier lifetimes, resulting in enhanced efficiency of the solar cells containing the CdTe material are provided.

  14. Growth of CdTe on Si(100) surface by ionized cluster beam technique: Experimental and molecular dynamics simulation

    Science.gov (United States)

    Araghi, Houshang; Zabihi, Zabiholah; Nayebi, Payman; Ehsani, Mohammad Mahdi

    2016-10-01

    II-VI semiconductor CdTe was grown on the Si(100) substrate surface by the ionized cluster beam (ICB) technique. In the ICB method, when vapors of solid materials such as CdTe were ejected through a nozzle of a heated crucible into a vacuum region, nanoclusters were created by an adiabatic expansion phenomenon. The clusters thus obtained were partially ionized by electron bombardment and then accelerated onto the silicon substrate at 473 K by high potentials. The cluster size was determined using a retarding field energy analyzer. The results of X-ray diffraction measurements indicate the cubic zinc blende (ZB) crystalline structure of the CdTe thin film on the silicon substrate. The CdTe thin film prepared by the ICB method had high crystalline quality. The microscopic processes involved in the ICB deposition technique, such as impact and coalescence processes, have been studied in detail by molecular dynamics (MD) simulation.

  15. Effects of Sn-doping on morphology and optical properties of CdTe polycrystalline films

    Institute of Scientific and Technical Information of China (English)

    Li Jin; Yang Linyu; Jian Jikang; Zou Hua; Sun Yanfei

    2009-01-01

    Sn-doped CdTe polycrystalline films were successfully deposited on ITO glass substrates by close space sublimation. The effects of Sn-doping on the microstructure, surface morphology, and optical properties of polycrystalline films were studied using X-ray diffraction, scanning electron microscopy, and ultraviolet-visible spectrophotometry, respectively. The results show that the lower molar ratio of Sn and CdTe conduces to a strongly preferential orientation of (111) in films and a larger grain size, which indicates that the crystallinity of films can be improved by appropriate Sn-doping. As the molar ratio of Sn and CdTe increases, the preferential orientation of (111) in films becomes weaker, the grain size becomes smaller, and the crystal boundary becomes indistinct, which indicates that the crystallization growth of films is incomplete. However, as the Sn content increases, optical absorption becomes stronger in the visible region. In summary, a strongly preferential orientation of (111) in films and a larger grain size can be obtained by appropriate Sn-doping (molar ratio of Sn : CdTe = 0.06 : 1), while the film retains a relatively high optical absorption in the visible region. However, Sn-doping has no obvious influence on the energy gap of CdTe films.

  16. Characterization of Smooth CdTe(111) Films by the Conventional Close-Spaced Sublimation Technique

    Science.gov (United States)

    Escobedo, A.; Quinones, S.; Adame, M.; McClure, J.; Zubia, D.; Brill, G.

    2010-04-01

    Thin epitaxial CdTe films were grown on CdTe(111)B substrates by the close-spaced sublimation (CSS) technique and were characterized over a range of experimental parameters. The source temperature was varied between 480°C and 540°C, maintaining an average constant source-substrate temperature difference Δ T of ˜130°C. Helium was used as a carrier gas at pressures between 2 Torr and 10 Torr. Scanning electron microscopy (SEM) and x-ray diffraction (XRD) were used to analyze the film morphology and structure. Growth rates ranging from 1 μm/h to 4 μm/h were observed, based on profilometer thickness measurements. The addition of a pre-growth heat treatment step and post-growth annealing treatment resulted in smooth CdTe(111) films. An evolution in growth morphology was demonstrated with SEM images and film quality was confirmed with XRD.

  17. Chemical etching of a GaSb crystal incorporated with Mn grown by the Bridgman method under microgravity conditions

    Institute of Scientific and Technical Information of China (English)

    Chen Xiaofeng; Chen Nuofu; Wu Jinliang; Zhang Xiulan; Chai Chunlin; Yu Yude

    2009-01-01

    uring crystal growth can be reflected by the observations of etch pit distribution and other structural defects. Suggestions for improving the space experiment to improve the quality of the crystal are given.

  18. CdTe deposition by successive ionic layer adsorption and reaction (SILAR) technique onto ZnO nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, Raul; Delamoreanu, Alexandru; Saidi, Bilel; Ivanova, Valentina [CEA, LETI, MINATEC Campus, 17 Rue des Martyrs, 38054, Grenoble (France); Levy-Clement, Claude [CNRS, Institut de Chimie et des Materiaux de Paris-Est, 94320, Thiais (France)

    2014-09-15

    In this study is reported CdTe deposition by Successive Ionic Layer Adsorption and reaction (SILAR) at room temperature onto ZnO nanowires (NWs). The as-deposited CdTe layer exhibits poor crystalline quality and not well defined optical transition which is probably result of its amorphous nature. The implementation of an annealing step and chemical treatment by CdCl{sub 2} to the classical SILAR technique improved significantly the CdTe film quality. The XRD analysis showed that the as treated layers are crystallized in the cubic zinc blende structure. The full coverage of ZnO nanowires and thickness of the CdTe shell, composed of small crystallites, was confirmed by STEM and TEM analysis. The layer thickness could be controlled by the number of SILAR cycles. The sharper optical transitions for the annealed and CdCl{sub 2} treated heterostructures additionally proves the enhancement of the layer crystalline quality. For comparison CdTe was also deposited by close space sublimation (CSS) method onto ZnO nanowires. It is shown that the SILAR deposited CdTe exhibits equal crystalline and optical properties to that prepared by CSS. These results demonstrate that SILAR technique is more suitable for conformal thin film deposition on nanostructures. CdTe extremely thin film deposited by SILAR method onto ZnO nanowire. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Structural Characterization of Lateral-grown 6H-SiC am-plane Seed Crystals by Hot Wall CVD Epitaxy

    Science.gov (United States)

    Goue, Ouloide Yannick; Raghothamachar, Balaji; Dudley, Michael; Trunek, Andrew J.; Neudeck, Philip G.; Woodworth, Andrew A.; Spry, David J.

    2014-01-01

    The performance of commercially available silicon carbide (SiC) power devices is limited due to inherently high density of screw dislocations (SD), which are necessary for maintaining polytype during boule growth and commercially viable growth rates. The NASA Glenn Research Center (GRC) has recently proposed a new bulk growth process based on axial fiber growth (parallel to the c-axis) followed by lateral expansion (perpendicular to the c-axis) for producing multi-faceted m-plane SiC boules that can potentially produce wafers with as few as one SD per wafer. In order to implement this novel growth technique, the lateral homoepitaxial growth expansion of a SiC fiber without introducing a significant number of additional defects is critical. Lateral expansion is being investigated by hot wall chemical vapor deposition (HWCVD) growth of 6H-SiC am-plane seed crystals (0.8mm x 0.5mm x 15mm) designed to replicate axially grown SiC single crystal fibers. The post-growth crystals exhibit hexagonal morphology with approximately 1500 m (1.5 mm) of total lateral expansion. Preliminary analysis by synchrotron white beam x-ray topography (SWBXT) confirms that the growth was homoepitaxial, matching the polytype of the respective underlying region of the seed crystal. Axial and transverse sections from the as grown crystal samples were characterized in detail by a combination of SWBXT, transmission electron microscopy (TEM) and Raman spectroscopy to map defect types and distribution. X-ray diffraction analysis indicates the seed crystal contained stacking disorders and this appears to have been reproduced in the lateral growth sections. Analysis of the relative intensity for folded transverse acoustic (FTA) and optical (FTO) modes on the Raman spectra indicate the existence of stacking faults. Further, the density of stacking faults is higher in the seed than in the grown crystal. Bundles of dislocations are observed propagating from the seed in m-axis lateral directions

  20. Patterning thick diffused junctions on CdTe

    CERN Document Server

    Kalliopuska, Juha; Sipilä, Heikki; Andersson, Hans; Vähänen, Sami; Eränen, Simo; Tlustos, Lukas

    2009-01-01

    Dividing the detector crystal into discrete pixels enables making an imaging detector, in which the charge collected by each pixel can be read separately. Even if the detector is not meant for imaging, patterns on the crystal surface may be used as guard structures that control and limit the flow of charges in the crystal. This has been exceedingly hard for the detector crystals having thick diffused layers. The paper reports a patterning method of the thick diffused junctions on CdTe. The patterning method of In-diffused pn-junction on CdTe chip is demonstrated by using a diamond blade. The patterning is done by removing material from the pn-junction side of the chip, so that the trenches penetrate the diffused layer. As the trenches extend deeper into the bulk than the junction, the regions separated by the trench are electrically isolated. Electrical characterization results are reported for the strips separated by trenches with various depths. The strip isolation is clearly seen in both measured leakage c...

  1. Carbide Identification in Different Regions of a Thin Metal Film Covering on an HPHT As-Grown Diamond Single Crystal from Ni-Mn-C System

    Institute of Scientific and Technical Information of China (English)

    XU Bin; CUI Jian-Jun; LI Mu-Sen; LI Cheng-Mei; CHU Fu-Min; FENG Li-Ming

    2005-01-01

    @@ Diamond single crystals were synthesized in the presence of Ni-Mn catalyst under high temperature and high pressure (HPHT). A thin metal film covering on as-grown diamond formed during diamond growth was examined using transmission electron microscopy. It was shown that phase compositions of the region near the as-grown diamond are different from those of other regions in the film. We found γ-(Ni,Mn) solid solution, diamond, Ni3C and Mn23C6 in the region near the as-grown diamond, while graphite, Mn7C3 and γ-(Ni,Mn) could be found in other regions of the film. The relationship between the diamond growth and the carbides in the film was analysed briefly. It is suggested that the carbon source for diamond growth should be closely related to the decomposition of carbides in the region near the diamond single crystal at HPHT, not being directly from that of the graphite structure.

  2. Molecular beam epitaxy and metalorganic chemical vapor deposition growth of epitaxial CdTe on (100) GaAs/Si and (111) GaAs/Si substrates

    Science.gov (United States)

    Nouhi, A.; Radhakrishnan, G.; Katz, J.; Koliwad, K.

    1988-01-01

    Epitaxial CdTe has been grown on both (100)GaAs/Si and (111)GaAs/Si substrates. A combination of molecular beam epitaxy (MBE) and metalorganic chemical vapor deposition (MOCVD) has been employed for the first time to achieve this growth: the GaAs layers are grown on Si substrates by MBE and the CdTe film is subsequently deposited on GaAs/Si by MOCVD. The grown layers have been characterized by X-ray diffraction, scanning electron microscopy, and photoluminescence.

  3. Microstructure and point defects in CdTe nanowires for photovoltaic applications.

    Science.gov (United States)

    Williams, B L; Halliday, D P; Mendis, B G; Durose, K

    2013-04-05

    Defects in Au-catalysed CdTe nanowires vapour-liquid-solid-grown on polycrystalline underlayers have been critically evaluated. Their low-temperature photoluminescence spectra were dominated by excitonic emission with rarely observed above-gap emission also being recorded. While acceptor bound exciton lines due to monovalent metallic impurities (Ag, Cu or Na) were seen, only deeper, donor-acceptor-pair emission could be attributed to the Au contamination that is expected from the catalyst. Annealing under nitrogen acted to enhance the single crystal-like PL emission, whilst oxidizing and reducing anneals of the type that is used in solar cell device processing caused it to degrade. The incidence of stacking faults, polytypes and twins was related only to the growth axes of the wires ( 50%, 30% and 20%), and was not influenced by annealing. The potential electrical activity of the point and extended defects, and the suitability of these nanowire materials (including processing steps) for solar cell applications, is discussed. Overall they have a quality that is superior to that of thin polycrystalline films, although questions remain about recombination due to Au.

  4. ZnO nanowires array grown on Ga-doped ZnO single crystal for dye-sensitized solar cells.

    Science.gov (United States)

    Hu, Qichang; Li, Yafeng; Huang, Feng; Zhang, Zhaojun; Ding, Kai; Wei, Mingdeng; Lin, Zhang

    2015-06-23

    High quality ZnO nanowires arrays were homoepitaxial grown on Ga-doped ZnO single crystal (GZOSC), which have the advantages of high conductivity, high carrier mobility and high thermal stability. When it was employed as a photoanode in the DSSCs, the cell exhibited a 1.44% power-conversion efficiency under the illumination of one sun (AM 1.5G). The performance is superior to our ZnO nanowires/FTO based DSSCs under the same condition. This enhanced performance is mainly attributed to the perfect interface between the ZnO nanowires and the GZOSC substrate that contributes to lower carrier scattering and recombination rates compared with that grown on traditional FTO substrate.

  5. Development of high-efficiency, thin-film CdTe solar cells. Annual subcontract report, January 1, 1993--December 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Rohatgi, A.; Chou, H.C.; Kamra, S.; Bhat, A. [Georgia Institute of Technology, Atlanta, GA (United States)

    1994-09-01

    Polycrystalline thin film CdTe solar cells are one of the leading candidates for terrestrial photovoltaic applications. Theoretical calculations project an efficiency of 27% for single crystal, single junction CdTe cells, and the practically achievable efficiency for polycrystalline CdTe cells is 18-20%. Polycrystalline CdTe cells made by different groups show a significant variation in short circuit currents, open circuit voltages, and cell efficiencies. A better understanding of carrier loss and transport mechanism is crucial for explaining these differences, improving the yield, and bridging the gap between current and practically achievable limits in CdTe cell efficiencies. The goal of this program is to improve the understanding of the loss mechanisms in thin film CdS/CdTe solar cells and to improve their efficiency by characterizing the properties of the films as well as the finished devices.

  6. Improvement of the energy resolution of CdTe detectors by pulse height correction from waveform

    CERN Document Server

    Kikawa, T; Hiraki, T; Nakaya, T

    2011-01-01

    Semiconductor detectors made of CdTe crystal have high gamma-ray detection efficiency and are usable at room temperature. However, the energy resolution of CdTe detectors for MeV gamma-rays is rather poor because of the significant hole trapping effect. We have developed a method to improve the energy resolution by correcting the pulse height using the waveform of the signal and achieved 2.0% (FWHM) energy resolution for 662keV gamma-rays. Best energy resolution was achieved at temperatures between -10 degrees C and 0 degrees C.

  7. Synthesis, growth, structural, optical, luminescence, surface and HOMO LUMO analysis of 2-[2-(4-cholro-phenyl)-vinyl]-1-methylquinolinium naphthalene-2-sulfonate organic single crystals grown by a slow evaporation technique

    Science.gov (United States)

    Karthigha, S.; Kalainathan, S.; Maheswara Rao, Kunda Uma; Hamada, Fumio; Yamada, Manabu; Kondo, Yoshihiko

    2016-02-01

    Single crystals of 2-[2-(4-cholro-phenyl)-vinyl]-1-methylquinolinium naphthalene-2-sulfonate (4CLNS) were grown by a slow evaporation technique. The formation of molecule was confirmed from 1H NMR and FTIR analysis. The confirmation of crystal structure was done by single crystal XRD and atomic packing of grown crystal was identified. The grown single crystal crystallized in triclinic structure with centrosymmetric space group P-1. The crystalline nature of the synthesised material was recorded by powder XRD. The optical absorption properties of the grown crystals were analyzed by UV-vis spectral studies. The thermal behaviour of the title material has been studied by TG/DTA analysis which revealed the stability of the compound till its melting point 276.7 °C. The third order nonlinear optical property of 4CLNS was investigated in detail by Z scan technique and it confirms that the title crystal is suitable for photonic devices and NLO optical applications. Emissions at 519 nm in green region of the EM spectrum were found by photoluminescence studies. The charge transfer occurring within the molecule is explained by the calculated HOMO and LUMO energies.

  8. Improved structural properties and crystal coherence of superconducting NdBa2Cu3O7-δ films grown by pulsed laser ablation

    Science.gov (United States)

    Abrecht, M.; Ariosa, D.; Schmauder, T.; Saleh, S. A.; Rast, S.; Pavuna, D.

    2000-11-01

    We report on improved structural, crystallographic and electrical properties of epitaxial NdBa2Cu3O7-δ (NBCO) films grown on SrTiO3 by `off-axis' pulsed laser deposition (PLD). Transport and XRD studies show that the c-axis-oriented epitaxial films, with critical temperatures of 90-92 K, are mono phase and single-crystalline. Furthermore, very smooth, almost outgrowth-free surfaces and crystal coherences of up to 0.8 µm (to our knowledge the best value ever reported for high-Tc films) were obtained.

  9. Metal-Semiconductor Field-Effect Transistors Fabricated Using DVT Grown n-MoSe2 Crystals With Cu-Schottky Gates

    Directory of Open Access Journals (Sweden)

    C.K. Sumesh

    2011-01-01

    Full Text Available Metal-semiconductor field-effect transistors (MESFETs based on DVT grown MoSe2 crystals and Cu Schottky gate have been fabricated and studied. When Schottky gate voltage (Vgs changes from 0 to 10 V, the source-drain current (Ids increases exponentially with Vgs and the conductance shows a drastic increase with positive Vgs. The fabricated n-MoSe2 MESFET have a saturated current level of about 100 mA and maximum transconductance of about 53 mA/V. Their results suggest a way of fabricating MESFETs from layered metal dichalcogenide semiconducting materials.

  10. Three-dimensional evaluation of gettering ability for oxygen atoms at small-angle tilt boundaries in Czochralski-grown silicon crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Yutaka, E-mail: yutakaohno@imr.tohoku.ac.jp; Inoue, Kaihei; Fujiwara, Kozo; Deura, Momoko; Kutsukake, Kentaro; Yonenaga, Ichiro [Institute for Materials Research (IMR), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577 (Japan); Shimizu, Yasuo; Inoue, Koji; Ebisawa, Naoki; Nagai, Yasuyoshi [The Oarai Center, IMR, Tohoku University, Oarai, Ibaraki 311-1313 (Japan)

    2015-06-22

    Three-dimensional distribution of oxygen atoms at small-angle tilt boundaries (SATBs) in Czochralski-grown p-type silicon ingots was investigated by atom probe tomography combined with transmission electron microscopy. Oxygen gettering along edge dislocations composing SATBs, post crystal growth, was observed. The gettering ability of SATBs would depend both on the dislocation strain and on the dislocation density. Oxygen atoms would agglomerate in the atomic sites under the tensile hydrostatic stress larger than about 2.0 GPa induced by the dislocations. It was suggested that the density of the atomic sites, depending on the tilt angle of SATBs, determined the gettering ability of SATBs.

  11. Simulation of active-edge pixelated CdTe radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, D.D., E-mail: diana.duarte@stfc.ac.uk [STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX (United Kingdom); Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Lipp, J.D.; Schneider, A.; Seller, P.; Veale, M.C.; Wilson, M.D. [STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX (United Kingdom); Baker, M.A.; Sellin, P.J. [Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2016-01-11

    The edge surfaces of single crystal CdTe play an important role in the electronic properties and performance of this material as an X-ray and γ-ray radiation detector. Edge effects have previously been reported to reduce the spectroscopic performance of the edge pixels in pixelated CdTe radiation detectors without guard bands. A novel Technology Computer Aided Design (TCAD) model based on experimental data has been developed to investigate these effects. The results presented in this paper show how localized low resistivity surfaces modify the internal electric field of CdTe creating potential wells. These result in a reduction of charge collection efficiency of the edge pixels, which compares well with experimental data.

  12. Advances in the In-House CdTe Research Activities at NREL

    Energy Technology Data Exchange (ETDEWEB)

    Gessert, T.; Wu, X.; Dhere, R.; Moutinho, H.; Smith, S.; Romero, M.; Zhou, J.; Duda, A.; Corwine, C.

    2005-01-01

    NREL in-house CdTe research activities have impacted a broad range of recent program priorities. Studies aimed at industrially relevant applications have produced new materials and processes that enhance the performance of devices based on commercial materials (e.g., soda-lime glass, SnO2:F). Preliminary tests of the effectiveness of these novel components using large-scale processes have been encouraging. Similarly, electro- and nano-probe techniques have been developed and used to study the evolution and function of CdTe grain boundaries. Finally, cathodoluminescence (CL) and photoluminescence (PL) studies on single-crystal samples have yielded improved understanding of how various processes may combine to produce important defects in CdTe films.

  13. Raman tensor and domain structure study of single-crystal-like epitaxial films of CaCu3Ti4O12 grown by pulsed laser deposition

    Science.gov (United States)

    Ahlawat, Anju; Mishra, Dileep K.; Sathe, V. G.; Kumar, Ravi; Sharma, T. K.

    2013-01-01

    The local domain structure of a strain free, 150 nm thick, epitaxially grown single crystalline thin film of CaCu3Ti4O12 is probed by polarized Raman spectroscopy. The polarization dependence of the Raman intensities of the observed bands as a function of varying angle between the domain axes and the polarization vector of the scattered laser photon is measured. Theoretical formulations involving the Raman tensor are presented, which enable determination of the domain structure from the observed polarized Raman spectra, and a single-crystal-like domain structure is found. The Raman tensor elements and domain orientation direction were determined by fitting the observed Raman intensities with theoretical calculations and by carrying out Raman mapping of the film. Our data show an absence of twin domain structure and twin domain boundaries in the single-crystal-like epitaxial thin films of CaCu3Ti4O12.

  14. Programming the diameter of InSb single crystals grown by pulling from the melt using the thermal gradients in the crucible. Master's thesis

    Energy Technology Data Exchange (ETDEWEB)

    Azoulay, M.

    1984-05-01

    In the work a method is given of presetting the diameter of a crystal grown by pulling from the melt by means of a predetermined cooling plot. The parameters involved in calculating the cooling plot are the measured vertical and radial thermal gradients near the interface and the liquid to solid densities ratio. The theoretical analysis is based on the assumption that the thermal profile in the crucible vicinity is stiff, implying that any temperature change at any point near the surface is followed by exactly the same temperature change in the entire vicinity of the crucible. The method was applied successfully to the growth of defect-free InSb single crystals, 8 cm long and with diameters up to 2.5 cm.

  15. Optical and electrical properties of hydrothermally prepared CdTe nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Hadia, N.M.A.; Awad, M.A.; Mohamed, S.H.; Ibrahim, E.M.M. [Sohag University, Physics Department, Faculty of Science, Sohag (Egypt)

    2016-10-15

    The hydrothermal process was used to synthesize CdTe nanowires (NWs). Various analytical techniques were used to characterize the obtained NWs. The wire diameters were in the range 35-60 nm, and the lengths were >5 μm. The CdTe NWs had zinc-blende crystal structure. The NWs had high uniformity and high yield. FTIR analysis revealed the presence of the characteristic vibrational spectra of oxygen and hydrogen bounded to Cd and Te in CdTe NWs. The optical band gap value was 2.09 eV. The CdTe NWs showed a strong red emission band centered around 620.3 nm. The conductivity measurements were carried out in the temperature range 300-500 K and in air atmosphere. Two types of conduction mechanisms were observed with activation energies of 0.27 and 0.17 eV at high and low temperature regions, respectively. These results validate the potential of CdTe NWs for optoelectronic applications. (orig.)

  16. Synthesis of CdTe thin films on flexible metal foil by electrodeposition

    Science.gov (United States)

    Luo, H.; Ma, L. G.; Xie, W. M.; Wei, Z. L.; Gao, K. G.; Zhang, F. M.; Wu, X. S.

    2016-04-01

    CdTe thin films have been deposited onto the Mo foil from aqueous acidic bath via electrodeposition method with water-soluble Na2TeO3 instead of the usually used TeO2. X-ray diffraction studies indicate that the CdTe thin films are crystallized in zinc-blende symmetry. The effect of tellurite concentration on the morphology of the deposited thin film is investigated. In such case, the Cd:Te molar ratios in the films are both stoichiometric at different tellurite concentrations. In addition, the reduction in tellurite concentration leads to the porous thin film and weakens the crystallinity of thin film. The island growth model is used to interpret the growth mechanism of CdTe. The bandgap of the CdTe thin films is assigned to be 1.49 eV from the UV-Vis spectroscopy measurement, which is considered to serve as a promising candidate for the heterojunction solar cells.

  17. Synthesis of CdTe thin films on flexible metal foil by electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Luo, H.; Ma, L.G.; Xie, W.M.; Wei, Z.L.; Gao, K.G.; Zhang, F.M.; Wu, X.S. [Nanjing University, Collaborative Innovation Center of Advanced Microstructures, Lab of Solid State Microstructures, School of Physics, Nanjing (China)

    2016-04-15

    CdTe thin films have been deposited onto the Mo foil from aqueous acidic bath via electrodeposition method with water-soluble Na{sub 2}TeO{sub 3} instead of the usually used TeO{sub 2}. X-ray diffraction studies indicate that the CdTe thin films are crystallized in zinc-blende symmetry. The effect of tellurite concentration on the morphology of the deposited thin film is investigated. In such case, the Cd:Te molar ratios in the films are both stoichiometric at different tellurite concentrations. In addition, the reduction in tellurite concentration leads to the porous thin film and weakens the crystallinity of thin film. The island growth model is used to interpret the growth mechanism of CdTe. The bandgap of the CdTe thin films is assigned to be 1.49 eV from the UV-Vis spectroscopy measurement, which is considered to serve as a promising candidate for the heterojunction solar cells. (orig.)

  18. Relationship of Open-Circuit Voltage to CdTe Hole Concentration and Lifetime

    Energy Technology Data Exchange (ETDEWEB)

    Duenow, Joel N.; Burst, James M.; Albin, David S.; Reese, Matthew O.; Jensen, Soren A.; Johnston, Steven W.; Kuciauskas, Darius; Swain, Santosh K.; Ablekim, Tursun; Lynn, Kelvin G.; Fahrenbruch, Alan L.; Metzger, Wyatt K.

    2016-11-01

    We investigate the correlation of bulk CdTe and CdZnTe material properties with experimental open-circuit voltage (Voc) through fabrication and characterization of diverse single-crystal solar cells with different dopants. Several distinct crystal types reach Voc >900 mV. Correlations are in general agreement with Voc limits modeled from bulk minority-carrier lifetime and hole concentration.

  19. Conductive-radiative model for predicting the shape of HgI2 crystal grown in the LTVG furnace

    Science.gov (United States)

    Roux, A.; Fedoseyev, A.; Roux, Bernard

    1992-08-01

    The modeling of heat exchanges in a sealed ampoule in the LTVG (Low Temperature Vapor Growth) furnace is focused upon, in order to compute temperature fields and control the growth of HgI2 crystals from vapor phase at low temperatures. A coupled conductive radiative model was used to determine the shape of the source and the crystal at different equilibrium states (that is, without growth rate). The model involves conductivity anisotropy in the crystal and radiative exchanges between grey and diffuse surfaces (source and crystal interfaces, pyrex walls), which are considered as opaque. Internal buoyancy effect is not taken into account as the pressure inside the ampoule is very small. The source temperature is fixed. For different undercoolings, that is, for different cold finger temperatures, the 'equilibrium' isotherm between the source/gas and crystal/gas interfaces was numerically obtained. This 'equilibrium' isotherm, which is associated with the stop of the growing process, gives a crystal shape. This shape is compared with experimental results given by the ETH-Zurich group. The model would permit a better understanding and control of the future HgI2 crystal growth experiment. The computations are performed using a finite element package (FIDAP).

  20. Epitaxial growth of CdTe oriented thin films, infrared characterization and possible applications to photo-voltaic cells

    OpenAIRE

    Gerbaux, X.; Pianelli, A.; Hadni, A.; Jeanniard, C.; Strimer, P.

    1980-01-01

    The growth of CdTe oriented thin films by the ENSH method - i.e. Epitaxial Nucleation in Sub-microscopic Holes of an intermediate layer closely applied on a bulk single crystal — has been recently described. The CdTe films are generally difficult to detach from the bulk crystal. However free films are needed to study the infrared transmission in the spectral region of high absorption. To get them, the vitreous or amorphous thin intermediate layers are substituted by quite soluble an oriented ...

  1. Anomalous scaling and super-roughness in the growth of CdTe polycrystalline films

    OpenAIRE

    Mata, Angélica S.; Ferreira, Jr,Augusto; Ribeiro, Igor R. B.; Ferreira, Sukarno O.

    2011-01-01

    CdTe films grown on glass substrates covered by fluorine doped tin oxide by Hot Wall Epitaxy (HWE) were studied through the interface dynamical scaling theory. Direct measures of the dynamical exponent revealed an intrinsically anomalous scaling characterized by a global roughness exponent $\\alpha$ distinct from the local one (the Hurst exponent $H$), previously reported [Ferreira \\textit{et al}., Appl. Phys. Lett. \\textbf{88}, 244103 (2006)]. A variety of scaling behaviors was obtained with ...

  2. Measurement of mobility and lifetime of electrons and holes in a Schottky CdTe diode

    OpenAIRE

    Ariño-Estrada, G.; Chmeissani, M.; De Lorenzo, G.; Kolstein, M.; Puigdengoles, C; García, J; Cabruja, E.

    2014-01-01

    We report on the measurement of drift properties of electrons and holes in a CdTe diode grown by the travelling heating method (THM). Mobility and lifetime of both charge carriers has been measured independently at room temperature and fixed bias voltage using charge integration readout electronics. Both electrode sides of the detector have been exposed to a 241Am source in order to obtain events with full contributions of either electrons or holes. The drift time has been measured to obtain ...

  3. First Principle Calculation for the Electronic Bands and Absorption of CdTe1-xSbx

    Institute of Scientific and Technical Information of China (English)

    WANG Long; HUANG Zheng; MA Huan-feng; QIANG Wei-rong; PAN Min

    2010-01-01

    The lattice parameters for the derivatives of cadmium telluride, CdTe1-xSbx, with the zinc blend crystal structure are calculated using the generalized gradient approximation method; which is based on the density functional theory (DFT). The effects of antimony (Sb) on the lattices, electric bands, electronic state density, absorption spectroscopy, and band gap between the valence band maximum (VBM) and the conduction band minimum (CBM) of CdTe1-xSbx are discussed. The results show that the antimonic atoms in the lattice are advantageous in promoting the hole concentration and conductivities of CdTe1-xSbx. The increase of the Sb content in CdTe1-xSbx reduces the interaction among Cd, Te, and Sb; resulting in a decreased binding energy within CdTe1-xSbx as well as an increase in the electronic gap. Also discussed are the mechanics for the lattice phase change of CdTe1-xSbx at x=0.5.

  4. Effects of additive NaN3 on the HPHT synthesis of large single crystal diamond grown by TGM

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this paper,large single crystal diamond with perfect shape and high nitrogen concentration approximately 1671-1742 ppm was successfully synthesized by temperature gradient method (TGM) under high pressure and high temperature (HPHT).The HPHT synthesis conditions were about 5.5 GPa and 1500-1550 K.Sodium azide (NaN3) with different amount was added as the source of nitrogen into the synthesis system of high pure graphite and kovar alloy.The effects of additive NaN3 on crystal growth habit were investigated in detail.The crystal morphology,nitrogen concentration and existing form in synthetic diamond were characterized by means of scanning electron microscope (SEM) and infrared (IR) absorption spectra,respectively.The results show that with an increase of the content of NaN3 added in the synthesis system,the region of synthesis temperature for high-quality diamond becomes narrow,and crystal growth rate is restricted,whereas the nitrogen concentration in synthetic diamond increases.Nitrogen exists in diamond mainly in dispersed form (C-centers) and partially aggregated form (A-centers).The defects occur more frequently on crystal surface when excessive NaN3 is added in the synthesis system.

  5. Characterization of Highly Efficient CdTe Thin Film Solar Cells by Low-Temperature Photoluminescence

    Science.gov (United States)

    Okamoto, Tamotsu; Matsuzaki, Yuichi; Amin, Nowshad; Yamada, Akira; Konagai, Makoto

    1998-07-01

    Highly efficient CdTe thin film solar cells prepared by close-spaced sublimation (CSS) method with a glass/ITO/CdS/CdTe/Cu-doped carbon/Ag structure were characterized by low-temperature photoluminescence (PL) measurement. A broad 1.42 eV band probably due to VCd Cl defect complexes appeared as a result of CdCl2 treatment. CdS/CdTe junction PL revealed that a CdSxTe1-x mixed crystal layer was formed at the CdS/CdTe interface region during the deposition of CdTe by CSS and that CdCl2 treatment promoted the formation of the mixed crystal layer. Furthermore, in the PL spectra of the heat-treated CdTe after screen printing of the Cu-doped carbon electrode, a neutral-acceptor bound exciton (ACu0, X) line at 1.590 eV was observed, suggesting that Cu atoms were incorporated into CdTe as effective acceptors after the heat treatment.

  6. High Efficient Laser Operation of the Nd:KGd(WO4)2 Crystal Grown by Flux Method

    Institute of Scientific and Technical Information of China (English)

    LUO Zun-Du; CHEN Xue-Yuan; TU Chao-Yang; J. J. Romero; J. Garcia Sole

    2000-01-01

    The laser performance of Neodymium-doped potassium gadolinium tungstate (Nd:KGd(WO4)2) crystal was studied by using Ti:Sapphire laser as the pump source. The maximum optical-to-optical efficiencies for the 1.067 and 1.3 μm laser outputs were measured to be 60% and 32.3%, respectively. The internal loss coefficient of the crystal for 1.067 μm laser was estimated to be as low as 0.004 cm-1. The oscillation thresholds at 1.067 and 1.3 μm for different output transmittances are also given.

  7. Properties of Czochralski grown Ce,Gd:Y{sub 3}Al{sub 5}O{sub 12} single crystal for white light-emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Latynina, Anastasiya, E-mail: latynina.anastasiya@nims.go.jp [National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044 (Japan); Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Watanabe, Makoto; Inomata, Daisuke; Aoki, Kazuo [KOHA Co. Ltd., 2-6-8 Kouyama, Nerima, Tokyo 176-0022 (Japan); Sugahara, Yoshiyuki [Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); García Víllora, Encarnacíon [National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044 (Japan); Shimamura, Kiyoshi [National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044 (Japan); Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan)

    2013-03-15

    Highlights: ► We suggest single crystal phosphor plates (SCPPs) in a new concept of white LED. ► New concept realizes epoxy resin free package and eliminates photodegradation issue. ► SCPP showed superior stability under the high temperatures, irradiation and current. ► Quantum efficiency of SCPP was found to be as high as 93%. -- Abstract: Czochralski grown Ce and Gd-doped Y{sub 3}Al{sub 5}O{sub 12} (Ce,Gd:YAG) single crystal demonstrated superior performance features in a new concept of white LED where it is used as thin single crystal phosphor plates (SCPPs). New SCPP-based white LED realizes epoxy resin free package, which allows to eliminate the photodegradation issue of the organic material. Optical, thermal and electrical properties of SCPPs and SCPP-based white LEDs are discussed with the powder phosphor and commercial LED reference. SCPPs showed significantly higher values and better stability under the high temperatures, irradiation and current. Quantum efficiency was found to be as high as 93%.

  8. Interface reactions in CdTe solar cell processing

    Energy Technology Data Exchange (ETDEWEB)

    Albin, D.; Dhere, R.; Swartzlander-Guest, A. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1998-12-31

    Currently, the best performing CdS/CdTe solar cells use a superstrate structure in which CdTe is deposited on a heated CdS/SnO{sub 2}/Glass substrate. In the close-spaced-sublimation (CSS) process, substrate temperatures in the range 550 C to 620 C are common. Understanding how these high processing temperatures impact reactions at the CdS/CdTe interface in addition to reactions between previously deposited layers is critical. At the SnO{sub 2}/CdS interface the authors have determined that SnO{sub 2} can be susceptible to reduction, particularly in H{sub 2} ambients. Room-temperature sputtered SnO{sub 2} shows the most susceptibility. In contrast, higher growth temperature chemical vapor deposited (CVD) SnO{sub 2} appears to be much more stable. Elimination of unstable SnO{sub 2} layers, and the substitution of thermal treatments for H{sub 2} anneals has produced total-area solar conversion efficiencies of 13.6% using non-optimized SnO{sub 2} substrates and chemical-bath deposited (CBD) CdS. Alloying and interdiffusion at the CdS/CdTe interface was studied using a new lift-off approach which allows enhanced compositional and structural analysis at the interface. Small-grained CdS, grown by a low-temperature CBD process, results in more CdTe{sub 1{minus}x}S{sub x} alloying (x = 12--13%) relative to larger-grained CdS grown by high-temperature CSS (x{approximately}2--3%). Interdiffusion of S and Te at the interface, measured with lift-off samples, appears to be inversely proportional to the amount of oxygen used during the CSS CdTe deposition. The highest efficiency to date using CSS-grown CdS is 10.7% and was accomplished by eliminating oxygen during the CdTe deposition.

  9. Investigation of induced recrystallization and stress in close-spaced sublimated and radio-frequency magnetron sputtered CdTe thin films

    Energy Technology Data Exchange (ETDEWEB)

    Moutinho, H.R.; Dhere, R.G.; Al-Jassim, M.M.; Levi, D.H.; Kazmerski, L.L. [National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, Colorado 80401 (United States)

    1999-07-01

    We have induced recrystallization of small grain CdTe thin films deposited at low temperatures by close-spaced sublimation (CSS), using a standard CdCl{sub 2} annealing treatment. We also studied the changes in the physical properties of CdTe films deposited by radio-frequency magnetron sputtering after the same post-deposition processing. We demonstrated that the effects of CdCl{sub 2} on the physical properties of CdTe films are similar, and independent of the deposition method. The recrystallization process is linked directly to the grain size and stress in the films. These studies indicated the feasibility of using lower-temperature processes in fabricating efficient CSS CdTe solar cells. We believe that, after the optimization of the parameters of the chemical treatment, these films can attain a quality similar to CSS films grown using current standard conditions. {copyright} {ital 1999 American Vacuum Society.}

  10. The use of CdTe detectors for dental X-ray spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Marcus Aurelio P. dos; Fragoso, Maria da Conceicao F.; Oliveira, Mercia L.; Lima, Ricardo de A.; Hazin, Clovis A. [Centro Regional de Ciencias Nucleares (CRCN/CNEN-PE), Recife, PE (Brazil)]. E-mails: masantos@cnen.gov.br; mariacc05@yahoo.com.br; mercial@cnen.gov.br; ralima@cnen.gov.br; chazin@cnen.gov.br

    2007-07-01

    he cadmium telluride (CdTe) semiconductor detector provides high detection efficiency for use in the diagnostic x-rays energy range, because of the high atomic number and high density of the crystal. Moreover, it has the great advantage of working at room temperature, in contrast to the germanium detector, which operates in liquid nitrogen temperature. The CdTe detector has been utilized in diagnostic x-ray spectroscopy, but only scarce information about its use in dental X-ray beams has been published. In this way, a portable 3x3x1 mm{sup 3} CdTe solid state detector (XR-100T CdTe by Amptek, Inc.) with tungsten pinhole collimators, alignment device and associated software was utilized in this work for measuring the photon spectra in the dental x-ray kVp range. A single-phase dental unit with adjustable kVp and mA was employed and the x-ray spectra were experimentally determined at 50, 60 and 70 kVp with 0.5 mA tube current. The pulse height distribution obtained with this detector, however, does not represent the 'true' photon spectra. For this reason, a stripping procedure was implemented to correct the distribution in order to determine the real photon spectra. The x-ray spectra obtained with the CdTe detector were compared with the ones measured with a high-purity germanium detector (EGP200-13-TR by Eurisys Mesures). The reasonable agreement between the results obtained with both detectors for the 50 to 70 keV range show that CdTe detectors can be utilized for dental x-ray spectrometry. (author)

  11. Physical properties of Bi-doped CdTe thin films deposited by cosputtering

    Energy Technology Data Exchange (ETDEWEB)

    Becerril, M.; Zelaya-Angel, O. [Departamento de Fisica, CINVESTAV-IPN, Apdo. Postal 14-740, 07000 Mexico D.F. (Mexico); Vigil-Galan, O.; Contreras-Puente, G.; Sanchez-Meza, E. [Escuela Superior de Fisica y Matematicas, Instituto Politecnico Nacional, 07738 Mexico D.F. (Mexico)

    2007-03-15

    The structural, morphological, electrical, and optical properties of CdTe-Bi cosputtered thin films related with composition are presented. The films were grown on Corning glass substrates at room temperature from a CdTe-Bi target. The composition measurements show that the Bi content in the films ranges from x = 0.0 to x = 6.37 at%, depending on the area fraction covered by the Bi piece attached to the CdTe target. The structure of the annealed films was determined from X-ray diffraction measurements. Two kinds of structures were observed, depending on the Bi content: (1) CdTe polycrystalline films containing a small amount of Bi that is probably incorporated in the Cd and Te sites of the CdTe lattice. (2) Amorphization of the polycrystalline films, with higher Bi content. From the experimental results, we concluded that using this deposition method n/p-type Bi-doped CdTe polycrystalline films can be produced with electrical resistivity between 10{sup 2}-10{sup 3} {omega} cm and electron mobility between 10{sup 1} and 10{sup 2} cm{sup 2}V{sup -1}s{sup -1}. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Quantized Nanocrystalline CdTe Thin Films

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Nanocrystalline CdTe thin films were prepared by asymmetric rectangular pulse electrodeposition in organic solution at 110°C. STM image shows a porous network morphology constructed by interconnected spherical CdTe crystallites with a mean diameter of 4.2 nm. A pronounced size quantization was indicated in the action and absorption spectra. Potentials dependence dual conductive behavior was revealed in the photocurrent-potential (I-V) curves.

  13. Laser MBE-grown yttrium iron garnet films on GaN: characterization of the crystal structure and magnetic properties

    Science.gov (United States)

    Kaveev, A. K.; Bursian, V. E.; Gastev, S. V.; Krichevtsov, B. B.; Suturin, S. M.; Volkov, M. P.; Sokolov, N. S.

    2016-07-01

    Yttrium iron garnet (YIG) films were grown on GaN substrates using the laser molecular beam epitaxy method. X-ray diffraction data showed polycrystalline YIG layers without additional structural modifications. The magnetic properties of the YIG films were studied at room temperature with the aid of a vibration sample magnetometer, the magneto-optical Kerr effect and ferromagnetic resonance methods. ‘Easy-plane’-type magnetic anisotropy was found in the films. The gyromagnetic ratio and 4 πMS value were calculated.

  14. Deep level transient spectroscopy studies of n-type ZnO single crystals grown by different techniques.

    Science.gov (United States)

    Scheffler, L; Kolkovsky, Vl; Lavrov, E V; Weber, J

    2011-08-24

    In the present study single-crystalline ZnO samples grown from the vapor phase, the melt, and a high-temperature aqueous solution (hydrothermal growth) are investigated before and after hydrogen plasma treatments, by means of deep level transient spectroscopy (DLTS) and high-resolution Laplace DLTS. Dominant DLTS peaks are found to appear in the range of 120-350 K for all materials. The DLTS spectra depend on the procedure of growth of the ZnO. The thermal stabilities of the defects in an oxygen atmosphere and in an oxygen-lean atmosphere are analyzed. The origin of the DLTS peaks is discussed.

  15. Deep level transient spectroscopy studies of n-type ZnO single crystals grown by different techniques

    Energy Technology Data Exchange (ETDEWEB)

    Scheffler, L; Kolkovsky, Vl; Lavrov, E V; Weber, J [Technische Universitaet Dresden, 01062 Dresden (Germany)

    2011-08-24

    In the present study single-crystalline ZnO samples grown from the vapor phase, the melt, and a high-temperature aqueous solution (hydrothermal growth) are investigated before and after hydrogen plasma treatments, by means of deep level transient spectroscopy (DLTS) and high-resolution Laplace DLTS. Dominant DLTS peaks are found to appear in the range of 120-350 K for all materials. The DLTS spectra depend on the procedure of growth of the ZnO. The thermal stabilities of the defects in an oxygen atmosphere and in an oxygen-lean atmosphere are analyzed. The origin of the DLTS peaks is discussed.

  16. Photoluminescence characteristics of ZnTe bulk crystal and ZnTe epilayer grown on GaAs substrate by MOVPE

    Science.gov (United States)

    Lü, Hai-Yan; Mu, Qi; Zhang, Lei; Lü, Yuan-Jie; Ji, Zi-Wu; Feng, Zhi-Hong; Xu, Xian-Gang; Guo, Qi-Xin

    2015-12-01

    Excitation power and temperature-dependent photoluminescence (PL) spectra of the ZnTe epilayer grown on (100) GaAs substrate and ZnTe bulk crystal are investigated. The measurement results show that both the structures are of good structural quality due to their sharp bound excitonic emissions and absence of the deep level structural defect-related emissions. Furthermore, in contrast to the ZnTe bulk crystal, although excitonic emissions for the ZnTe epilayer are somewhat weak, perhaps due to As atoms diffusing from the GaAs substrate into the ZnTe epilayer and/or because of the strain-induced degradation of the crystalline quality of the ZnTe epilayer, neither the donor-acceptor pair (DAP) nor conduction band-acceptor (e-A) emissions are observed in the ZnTe epilayer. This indicates that by further optimizing the growth process it is possible to obtain a high-crystalline quality ZnTe heteroepitaxial layer that is comparable to the ZnTe bulk crystal. Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120131110006), the Key Science and Technology Program of Shandong Province, China (Grant No. 2013GGX10221), the Key Laboratory of Functional Crystal Materials and Device (Shandong University, Ministry of Education), China (Grant No. JG1401), the National Natural Science Foundation of China (Grant No. 61306113), the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91433112), and the Partnership Project for Fundamental Technology Researches of the Ministry of Education, Culture, Sports, Science and Technology, Japan.

  17. Anisotropy of ionic conduction in single-crystal Li x La(1- x )/3NbO3 solid electrolyte grown by directional solidification

    Science.gov (United States)

    Fujiwara, Yasuyuki; Taishi, Toshinori; Hoshikawa, Keigo; Kohama, Keiichi; Iba, Hideki

    2016-09-01

    The anisotropy of ionic conduction in a solid electrolyte (Li x La(1- x )/3NbO3) was experimentally confirmed for the first time. Ionic conduction measurements were carried out on the (100), (010), (001), (110), (111), and (112) planes of single-crystal ingots of Li x La(1- x )/3NbO3 grown by directional solidification. We found that the ionic conductivity in Li x La(1- x )/3NbO3 with x = 0.08 was 3.6 × 10-4 S cm-1 in the [100] and [010] directions, approximately 10 times higher than that in the [001] direction. Such anisotropy of the ionic conduction is discussed with respect to the characteristic layered structure of Li x La(1- x )/3NbO3.

  18. On linear resistivity from ~1 to 103 K in Sr2RuO4 - δ single crystals grown by flux technique

    Science.gov (United States)

    Berger, H.; Forró, L.; Pavuna, D.

    1998-03-01

    We report transport measurements on single crystals of Sr2RuO4 - δ, grown by the flux technique. The temperature dependence of the Hall coefficient is similar to the one measured in cuprates, and the linear resistivity persists up to ~1000 K, while the superconductivity remains confined below 1 K. This suggests that the linear temperature dependence of resistivity is not an exclusive signature of the anomalous normal state of high-Tc cuprates but rather of layered oxides in general, especially single-layer perovskites, possibly independently of the magnitude of the superconducting temperature. In addition, such Sr2RuO4 - δ may be used as a broad-range thermometer.

  19. X-ray crystal truncation rod scattering from MBE grown (CaF 2-SrF 2)/Si(111) superlattices

    Science.gov (United States)

    Harada, J.; Itoh, Y.; Shimura, T.; Takahashi, I.; Alvarez, J. C.; Sokolov, N. S.

    1994-01-01

    Flouride CaF 2-SrF 2 superlattices (SLs) grown by molecular beam epitaxy have been studied by means of X-ray diffractometry for the first time. The diffraction patterns showed reasonably good crystalline quality of the SLs and a type-B epitaxial relation to the Si(111) substrate. From the analysis of the crystal truncation rod (CTR) profiles, based on the pseudomorphic model, it was obtained that despite the same high temperature (770°C) of formation of the CaF 2/Si(111) interface its structure depended on the growth temperature of the SLs. The shape of the CTR profiles confirmed the existence of the superlattice which consists of one or two monolayer thick SrF 2 layers. Some CaF 2/SrF 2-interface roughness was noticeable.

  20. Synthesis and application of TiO2 single-crystal nanorod arrays grown by multicycle hydrothermal for dye-sensitized solar cells

    Science.gov (United States)

    Zhu, Jian-Jing; Zhao, Yu-Long; Zhu, Lei; Gu, Xiu-Quan; Qiang, Ying-Huai

    2014-04-01

    TiO2 is a wide band gap semiconductor with important applications in photovoltaic cells. Vertically aligned TiO2 nanorod arrays (NRs) are grown on the fluorine-doped tin oxide (FTO) substrates by a multicycle hydrothermal synthesis process. The samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and selected-area electron diffraction (SAED). It is found that dye-sensitized solar cells (DSSCs) assembled by the as-prepared TiO2 single-crystal NRs exhibit different trends under the condition of different nucleation and growth concentrations. Optimum cell performance is obtained with high nucleation concentration and low growth cycle concentration. The efficiency enhancement is mainly attributed to the improved specific surface area of the nanorod.

  1. Optical, scintillation properties and defect study of Gd2Si2O7:Ce single crystal grown by floating zone method

    Science.gov (United States)

    Feng, He; Xu, Wusheng; Ren, Guohao; Yang, Qiuhong; Xie, Jianjun; Xu, Jun; Xu, Jiayue

    2013-02-01

    Single crystal of Gd2Si2O7:Ce (GPS) presenting attractive scintillation performance was grown by the floating zone method. The vacuum ultra-violet (VUV) excitation and emission, ultra-violet (UV) excitation and emission spectra and fluorescent decay time at 77 K and RT were measured and discussed. Relative energy levels of 5d sublevels of Ce3+ in GPS:Ce are detected by the VUV excitation spectrum. The UV emission curve of GPS:1%Ce peaks around 382 nm at 77 K and moves towards longer wavelength direction as temperature increases. Thermally stimulated luminescence (TSL) was employed to investigate the defects in GPS:1%Ce. Energy depths of two traps detected in GPS:1%Ce are 0.64 and 1.00 eV.

  2. Analysis of oxygen shell splitting in hydrothermally grown single crystal ThO{sub 2}(200)

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, T.D.; Petrosky, J.C.; McClory, J.W. [Department of Engineering Physics, Air Force Institute of Technology, 2950 Hobson Way, WPAFB, OH 45433 (United States); Mann, J.M. [Air Force Research Laboratory, Sensors Directorate, Wright-Patterson AFB, OH 45433 (United States); Kolis, J.W. [Department of Chemistry and Center for Optical Materials Science and Engineering Technologies (COMSET), Clemson University, Clemson, SC 29634-0973 (United States)

    2015-11-15

    Single crystals of ThO{sub 2} have been synthesized using hydrothermal growth and studied using the X-ray absorption fine structure (XAFS) technique. The extended X-ray absorption fine structure (EXAFS) has been extracted from the XAFS and analyzed using a novel, computational Latin hypercube sampling method. The methodology not only confirms the expected space group and crystal structure, it also identifies the origin of a previously reported split O shell. Since EXAFS is a local order analysis technique, the O shell splitting is identified as an O atom occupying an interstitial site. This result is significant for examining O{sup 2-} transport in a ThO{sub 2} matrix and corroborating research indicating partial Th 5f occupancy that is similar to hyper-stoichiometric UO{sub 2+x} compounds. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Characterization of vertical Au/β-Ga2O3 single-crystal Schottky photodiodes with MBE-grown high-resistivity epitaxial layer

    Science.gov (United States)

    X, Z. Liu; C, Yue; C, T. Xia; W, L. Zhang

    2016-01-01

    High-resistivity β-Ga2O3 thin films were grown on Si-doped n-type conductive β-Ga2O3 single crystals by molecular beam epitaxy (MBE). Vertical-type Schottky diodes were fabricated, and the electrical properties of the Schottky diodes were studied in this letter. The ideality factor and the series resistance of the Schottky diodes were estimated to be about 1.4 and 4.6× 106 Ω. The ionized donor concentration and the spreading voltage in the Schottky diodes region are about 4 × 1018 cm-3 and 7.6 V, respectively. The ultra-violet (UV) photo-sensitivity of the Schottky diodes was demonstrated by a low-pressure mercury lamp illumination. A photoresponsivity of 1.8 A/W and an external quantum efficiency of 8.7 × 102% were observed at forward bias voltage of 3.8 V, the proper driving voltage of read-out integrated circuit for UV camera. The gain of the Schottky diode was attributed to the existence of a potential barrier in the i-n junction between the MBE-grown highly resistive β-Ga2O3 thin films and the n-type conductive β-Ga2O3 single-crystal substrate. Project supported by the National Nature Science Foundation of China (Grant No. 61223002) the Science and Technology Commission of Shanghai Municipality, China (Grant No. 13111103700), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 2012018530003).

  4. Solution-grown small-molecule organic semiconductor with enhanced crystal alignment and areal coverage for organic thin film transistors

    Directory of Open Access Journals (Sweden)

    Sheng Bi

    2015-07-01

    Full Text Available Drop casting of small-molecule organic semiconductors typically forms crystals with random orientation and poor areal coverage, which leads to significant performance variations of organic thin-film transistors (OTFTs. In this study, we utilize the controlled evaporative self-assembly (CESA method combined with binary solvent system to control the crystal growth. A small-molecule organic semiconductor,2,5-Di-(2-ethylhexyl-3,6-bis(5″-n-hexyl-2,2′,5′,2″]terthiophen-5-yl-pyrrolo[3,4-c]pyrrole-1,4-dione (SMDPPEH, is used as an example to demonstrate the effectiveness of our approach. By optimizing the double solvent ratios, well-aligned SMDPPEH crystals with significantly improved areal coverage were achieved. As a result, the SMDPPEH based OTFTs exhibit a mobility of 1.6 × 10−2 cm2/V s, which is the highest mobility from SMDPPEH ever reported.

  5. Calculation of the High-Temperature Point Defects Structure in Te-Rich CdTe

    Science.gov (United States)

    Dai, Shujun; Wang, Tao; Liu, Huimin; He, Yihui; Jie, Wanqi

    2016-10-01

    A thermodynamic equilibrium model for CdTe annealed under Te vapor is established, in which possible point defects and a defect reaction existing in undoped and In-doped Te-rich CdTe crystals are taken into consideration. Independent point defects, such as VCd, Cdi, and Tei, as well as defect complexes, namely TeCd-VCd (B complex), {Te}_{{Cd}}^{2 + } - {V}_{{Cd}}^{2 - } (D complex), {In}_{{Cd}}^{ + } - {V}_{{Cd}}^{ - } (A-center) and Tei-VCd (TeCd), are discussed based on the defect chemistry theory. More specially, the mass action law and quasi-chemical equations are used to calculate defects concentration and Fermi level in undoped and doped CdTe crystals with different indium concentrations. It is found that the Fermi level is controlled by a {V}_{{Cd}}^{2 - } , TeCd, and B/D-complex in undoped crystal. The concentration of VCd drops down in an obvious manner and that of TeCd rises for doped crystal with increasing [In].

  6. Material properties of pulsed-laser crystallized Si thin films grown on yttria-stabilized zirconia crystallization-induction layers by two-step irradiation method

    Science.gov (United States)

    Thi Kieu Lien, Mai; Horita, Susumu

    2016-03-01

    Amorphous Si thin films on yttria-stabilized zirconia (YSZ) layers were crystallized widely in solid phase by the two-step method with a pulsed laser, moving the sample stage. The crystalline quality, impurity diffusion, and electrical properties of the crystallized Si films were investigated. It was found that the crystallinity of the Si thin films was improved and their surface was smooth without an incubation layer at the interface, indicating the uniform crystallinity of Si on YSZ. The diffusion of Zr and Y into the Si thin films was as small as or smaller than the order of 1017 atoms/cm3. We evaluated the electrical properties of carrier concentration and Hall mobility of the Si thin films with/without YSZ layers by using the resistivity and AC Hall effect measurements. The temperature and doping concentration dependences were measured for both undoped and P-doped films. It was found that both the undoped and P-doped Si/YSZ/glass films showed higher mobilities and carrier concentrations (and therefore higher conductivities), which indicate a smaller number of defects, than the Si/glass films. This suggested that the Si film crystallized on the YSZ layer is more suitable for application to electronic devices than the Si film on glass.

  7. Interface between metallic film from Fe-Ni-C system and HPHT as-grown diamond single crystal

    Institute of Scientific and Technical Information of China (English)

    许斌; 李木森; 尹龙卫; 刘玉先; 崔建军; 宫建红

    2003-01-01

    Microstructures of surface layer (near diamond) of the metallic film from Fe-Ni-C system are composed of (Fe,Ni)3C, (Fe,Ni)23C6 and γ-(Fe,Ni), from which it can be assumed that graphite isn't directly catalyzed into diamond through the film and there exists a transition phase (Fe,Ni)3C that can decompose into diamond structure. AFM morphologies on the film/diamond interface are traces preserved after carbon groups moving from the film to diamond. The morphologies on the as-grown diamond are similar to those on corresponding films, being spherical on (100) face and sawtooth-like steps on (111) face. Diamond growth rates and temperature gradients in boundary layer of the molten film at HPHT result in morphology differences.

  8. Influence of Te doping on the dielectric and optical properties of InBi crystals grown by directional freezing

    Institute of Scientific and Technical Information of China (English)

    C.J. Ajayakumar; A.G. Kunjomana

    2014-01-01

    Stoichiometric pure and tellurium (Te) doped indium bismuthide (InBi) were grown using the directional freezing technique in a fabricated furnace. The X-ray diffraction profiles identified the crystallinity and phase composition. The surface topographical features were observed by scanning electron microscopy and atomic force microscopy. The energy dispersive analysis by X-rays was performed to identify the atomic proportion of elements. Studies on the temperature dependence of dielectric constant (ε), loss tangent (tanδ), and AC conductivity (σac) reveal the existence of a ferroelectric phase transition in the doped material at 403 K. When InBi is doped with tellurium (4.04 at%), a band gap of 0.20 eV can be achieved, and this is confirmed using Fourier transform infrared studies. The results thus show the conversion of semimetallic InBi to a semiconductor with the optical properties suitable for use in infrared detectors.

  9. Structural and photoluminescence studies on europium-doped lithium tetraborate (Eu:Li2B4O7) single crystal grown by microtube Czochralski (μT-Cz) technique

    Science.gov (United States)

    A, Kumaresh; R, Arun Kumar; N, Ravikumar; U, Madhusoodanan; B, S. Panigrahi; K, Marimuthu; M, Anuradha

    2016-05-01

    Rare earth europium (Eu3+)-doped lithium tetraborate (Eu:Li2B4O7) crystal is grown from its stoichiometric melt by microtube Czochralski pulling technique (μT-Cz) for the first time. The grown crystals are subjected to powder x-ray diffraction (PXRD) analysis which reveals the tetragonal crystal structure of the crystals. UV-vis-NIR spectral analysis is carried out to study the optical characteristics of the grown crystals. The crystal is transparent in the entire visible region, and the lower cutoff is observed to be at 304 nm. The existence of BO3 and BO4 bonding structure and the molecular associations are analyzed by Fourier transform infrared (FTIR) spectroscopy. The results of excitation and emission-photoluminescence spectra of europium ion incorporated in lithium tetraborate (LTB) single crystal reveal that the observations of peaks at 258, 297, and 318 nm in the excitation spectra and peaks at 579, 591, 597, 613, and 651 nm are observed in the emission spectra. The chromaticity coordinates are calculated from the emission spectra, and the emission intensity of the grown crystal is characterized through a CIE 1931 (Commission International d’Eclairage) color chromaticity diagram. Project supported by the Department of Science and Technology-Science and Engineering Research Board (Grant No. SR/S2/LOP-0012/2011), the Government of India for Awarding Major Research Project, the University Grants Commission-Department of Atomic Research-Consortium for Scientific Research (Grant No. CSR-KN/CSR-63/2014-2015/503), and the Kalpakkam and Indore, India.

  10. Photo-responsivity characterizations of CdTe films for direct-conversion X-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ryun Kyung; Cha, Bo Kyung; Jeon, Sung Chae; Seo, Chang Woo [Korea Electrotechnology Research Institute, Ansan (Korea, Republic of); Yun, Seung Man [Pusan National University, Busan (Korea, Republic of)

    2014-08-15

    We have fabricated and investigated thin, polycrystalline, cadmium-telluride (CdTe) films in order to utilize them for optical switching readout layers in direct-conversion X-ray detectors. The polycrystalline CdTe films are fabricated on ITO glasses by using the physical vapor deposition (PVD) method at a slow deposition rate and a pressure of 10{sup -6} torr. CdTe films with thicknesses of 5 and 20 μm are grown. The electrical and the optical characteristics of the CdTe films are investigated by measuring the dark-current and the photo-current as functions of the applied field under different wavelengths of light. Higher photo-currents are generated at the longer wavelengths of light for the same applied voltage. When a higher electrical field is applied to the 20 μm-thick CdTe film, a higher dark-current, a higher photo-current, a larger number of charges, and a higher quantum efficiency are generated.

  11. Transport and magnetic properties of epitaxial LSMO thin films grown on MgO single-crystal substrates

    Energy Technology Data Exchange (ETDEWEB)

    StrbIk, V; Spankova, M; Benacka, S [Institute of Electrical Engineering, Slovak Academy of Sciences, 9 Dubravska cesta, 841 04 Bratislava (Slovakia); Reiffers, M; Kovac, J, E-mail: elekstrb@savba.s [Institute of Experimental Physics, Slovak Academy of Sciences, 47 Watsonova, 040 01 Kotice (Slovakia)

    2010-04-01

    Thin epitaxial La{sub 0.67}Sr{sub 0.33}MnO{sub 3} (LSMO) films were deposited on single crystal MgO substrates. The electrical transport and magnetic properties of the films in the temperature range 4 - 350 K were investigated and strong correlation between them was registered. Magnetoresistance up to 52 % at temperature T = 256 K and magnetic field B = 5 T was achieved. The results obtained indicate that LSMO films with such properties are suitable for application as 'barrier' layers in superconducting-ferromagnetic-superconducting heterostructures, but optimization of LSMO film thickness is needed.

  12. Microstructure of (110)-Oriented Epitaxial SrRuO3 Thin Films Grown on Off-Cut Single Crystal YSZ(100) Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xinhua [Max-Planck-Institut fur Mikrostrukturphysik, Germany; Lee, Sung Kyun [Max-Planck-Institut fur Mikrostrukturphysik, Germany; Lee, Ho Nyung [ORNL; Hesse, Dietrich [Max-Planck-Institut fur Mikrostrukturphysik, Germany

    2005-01-01

    The microstructure of (1 1 0){sup pc}-oriented epitaxial SrRuO{sub 3} (SRO) thin films grown by pulsed laser deposition on (1 0 0)YSZ (YSZ: yttria-stabilized zirconia) single crystal substrates with a miscut angle of 5{sup o} has been investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The films grow epitaxially with their pseudocubic (1 1 0) plane parallel to the (1 0 0) surface of the YSZ single crystal substrate, and with an in-plane orientation relationship of [{ovr 1} 1 1]{sub SRO}//[0 1 1]{sub YSZ}. Cross-sectional TEM investigations show that the films have a rough, facetted surface. Generally, four different azimuthal domains are present in (1 1 0)SRO films on (1 0 0)YSZ. Their number can be significantly reduced using annealed offcut YSZ substrates before SRO deposition, and this reduction effect is shown to be much stronger on [0 1 1]-miscut (1 0 0)YSZ than on [0 0 1]-miscut ones. Size and morphology of the azimuthal pseudocubic domains and their domain boundaries, as well as of anti-phase domains and their domain boundaries are studied by plan-view and cross-section TEM.

  13. Microstructure of (110)-oriented epitaxial SrRuO{sub 3} thin films grown on off-cut single crystal YSZ(100) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Xinhua [Max-Planck Institut fuer Mikrostrukturphysik, Weinberg 2, D-06120 Halle (Germany)]. E-mail: xhzhu@mpi-halle.de; Lee, Sung Kyun [Max-Planck Institut fuer Mikrostrukturphysik, Weinberg 2, D-06120 Halle (Germany); Lee, Ho Nyung [Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Hesse, Dietrich [Max-Planck Institut fuer Mikrostrukturphysik, Weinberg 2, D-06120 Halle (Germany)

    2005-04-25

    The microstructure of (110){sup pc}-oriented epitaxial SrRuO{sub 3} (SRO) thin films grown by pulsed laser deposition on (100)YSZ (YSZ: yttria-stabilized zirconia) single crystal substrates with a miscut angle of 5{sup o} has been investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The films grow epitaxially with their pseudocubic (110) plane parallel to the (100) surface of the YSZ single crystal substrate, and with an in-plane orientation relationship of [1-bar 11]{sub SRO}//[011]{sub YSZ}. Cross-sectional TEM investigations show that the films have a rough, facetted surface. Generally, four different azimuthal domains are present in (110)SRO films on (100)YSZ. Their number can be significantly reduced using annealed offcut YSZ substrates before SRO deposition, and this reduction effect is shown to be much stronger on [011]-miscut (100)YSZ than on [001]-miscut ones. Size and morphology of the azimuthal pseudocubic domains and their domain boundaries, as well as of anti-phase domains and their domain boundaries are studied by plan-view and cross-section TEM.

  14. Scintillation properties of μPD-grown Y{sub 4}Al{sub 2}O{sub 9}:Pr (YAM:Pr) crystals

    Energy Technology Data Exchange (ETDEWEB)

    Drozdowski, Winicjusz, E-mail: wind@fizyka.umk.pl [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Brylew, Kamil [Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun (Poland); Malinowski, Michał [Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw (Poland); Turczyński, Sebastian [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland)

    2015-05-25

    Highlights: • YAM:Pr crystals do scintillate and as such deserve further interest. • Fast d–f luminescence of Pr{sup 3+} ions appears in X-ray excited spectra. • Two components (24 and 790 ns) constitute scintillation time profiles. - Abstract: Y{sub 4}Al{sub 2}O{sub 9}:Pr (YAM:Pr) crystals have been grown by the micro-pulling-down method and their scintillation properties have been investigated. YAM:0.1%Pr displays a light yield of about 2000 ph/MeV and its scintillation time profile contains a prompt component with a decay time of 23.5 ns and a contribution of 20%. Radioluminescence spectra show both fast d–f and slow f–f praseodymium emissions. Low temperature glow curves are complex, consisting of discrete peaks and broad bands related to quasi-continuous trap distributions. Overall scintillation performance of YAM:Pr deteriorates with increasing praseodymium concentration.

  15. Bioprecipitation of Calcium Carbonate Crystals by Bacteria Isolated from Saline Environments Grown in Culture Media Amended with Seawater and Real Brine

    Directory of Open Access Journals (Sweden)

    G. A. Silva-Castro

    2015-01-01

    Full Text Available The precipitation of calcium carbonate and calcium sulphate by isolated bacteria from seawater and real brine obtained in a desalination plant growth in culture media containing seawater and brine as mineral sources has been studied. However, only bioprecipitation was detected when the bacteria were grown in media with added organic matter. Biomineralization process started rapidly, crystal formation taking place in the beginning a few days after inoculation of media; roughly 90% of total cultivated bacteria showed. Six major colonies with carbonate precipitation capacity dominated bacterial community structure cultivated in heterotrophic platable bacteria medium. Taxonomic identification of these six strains through partial 16S rRNA gene sequences showed their affiliation with Gram-positive Bacillus and Virgibacillus genera. These strains were able to form calcium carbonate minerals, which precipitated as calcite and aragonite crystals and showed bacterial fingerprints or bacteria calcification. Also, carbonic anhydrase activity was observed in three of these isolated bacteria. The results of this research suggest that microbiota isolated from sea water and brine is capable of precipitation of carbonate biominerals, which can occur in situ with mediation of organic matter concentrations. Moreover, calcium carbonate precipitation ability of this microbiota could be of importance in bioremediation of CO2 and calcium in certain environments.

  16. [Spectral analysis of the effect of annealing on CdTe polycrystalline film].

    Science.gov (United States)

    Wang, Wen-Wu; Zheng, Jia-Gui; Feng, Liang-Huan; Cai, Ya-Ping; Lei, Zhi; Zhang, Jing-Quan; Li, Bing; Li, Wei; Wu, Li-Li

    2010-03-01

    Polycrystalline CdTe thin films were prepared by close-spaced sublimation (CCS) and were annealed in different condition. The thin films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy(XPS). The content distribution and valence state of all elements after annealing were studied. All results show that the as-deposited CdTe thin films are in a cubic phase and have the preferred orientation in (111) direction. After annealing, the peak intensity of (111), (220), (311) grows and the crystal grains grow up, while the crystal boundary decreases. So the compound probabilities of current carrier decrease, therefore shunt resistance and drain current are improved. From detailed analysis of X-ray photoelectron data, it is proposed that tellurium oxides present and its content reduces with depth increasing and that there are TeCl2O building blocks.

  17. Crystal Engineering for Low Defect Density and High Efficiency Hybrid Chemical Vapor Deposition Grown Perovskite Solar Cells.

    Science.gov (United States)

    Ng, Annie; Ren, Zhiwei; Shen, Qian; Cheung, Sin Hang; Gokkaya, Huseyin Cem; So, Shu Kong; Djurišić, Aleksandra B; Wan, Yangyang; Wu, Xiaojun; Surya, Charles

    2016-12-07

    Synthesis of high quality perovskite absorber is a key factor in determining the performance of the solar cells. We demonstrate that hybrid chemical vapor deposition (HCVD) growth technique can provide high level of versatility and repeatability to ensure the optimal conditions for the growth of the perovskite films as well as potential for batch processing. It is found that the growth ambient and degree of crystallization of CH3NH3PbI3 (MAPI) have strong impact on the defect density of MAPI. We demonstrate that HCVD process with slow postdeposition cooling rate can significantly reduce the density of shallow and deep traps in the MAPI due to enhanced material crystallization, while a mixed O2/N2 carrier gas is effective in passivating both shallow and deep traps. By careful control of the perovskite growth process, a champion device with power conversion efficiency of 17.6% is achieved. Our work complements the existing theoretical studies on different types of trap states in MAPI and fills the gap on the theoretical analysis of the interaction between deep levels and oxygen. The experimental results are consistent with the theoretical predictions.

  18. Microstructure of Co(112-bar 0) epitaxial thin films, grown on MgO(100) single-crystal substrates

    Energy Technology Data Exchange (ETDEWEB)

    Nukaga, Yuri; Ohtake, Mitsuru; Futamoto, Masaaki [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Kirino, Fumiyoshi, E-mail: nukaga@futamoto.elect.chuo-u.ac.j [Graduate School of Fine Arts, Tokyo National University of Fine Arts and Music, 12-8 Ueno-koen, Taito-ku, Tokyo 110-8714 (Japan)

    2010-01-01

    Co(112-bar 0) epitaxial thin films with hcp structure were prepared on MgO(100) single-crystal substrates heated at 300 {sup 0}C by ultra high vacuum molecular beam epitaxy. The microstructure is investigated by employing X-ray diffraction and high-resolution transmission electron microscopy. The film consists of two types of domains whose c-axes are rotated around the film normal by 90{sup 0} each other. Stacking faults are observed for the film along the Co[0001] direction. An atomically sharp boundary is recognized between the film and the substrate, where some misfit dislocations are introduced in the film at the Co/MgO interface. Dislocations are also observed in the film up to 15 nm thickness from the interface. Presence of such stacking faults and misfit dislocations seem to relieve the strain caused by the lattice mismatch between the film and the substrate. X-ray diffraction analysis indicates that the out-of-plane and the in-plane lattice spacings of the film are in agreement within 0.5% and 0.1%, respectively, with those of the bulk hcp-Co crystal, suggesting the strain in the film is very small.

  19. Thin yttrium iron garnet films grown by pulsed laser deposition: Crystal structure, static, and dynamic magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, N. S., E-mail: nsokolov@fl.ioffe.ru; Fedorov, V. V.; Korovin, A. M.; Suturin, S. M.; Baranov, D. A.; Gastev, S. V.; Krichevtsov, B. B.; Bursian, V. E.; Lutsev, L. V. [Ioffe Physical-Technical Institute of Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation); Maksimova, K. Yu.; Grunin, A. I. [Immanuel Kant Baltic Federal University, Kaliningrad 236041 (Russian Federation); Tabuchi, M. [Synchrotron Radiation Research Center, Nagoya University, Nagoya 464-8603 (Japan)

    2016-01-14

    Pulsed laser deposition has been used to grow thin (10–84 nm) epitaxial layers of Yttrium Iron Garnet Y{sub 3}Fe{sub 5}O{sub 12} (YIG) on (111)–oriented Gadolinium Gallium Garnet substrates at different growth conditions. Atomic force microscopy showed flat surface morphology both on micrometer and nanometer scales. X-ray diffraction measurements revealed that the films are coherent with the substrate in the interface plane. The interplane distance in the [111] direction was found to be by 1.2% larger than expected for YIG stoichiometric pseudomorphic film indicating presence of rhombohedral distortion in this direction. Polar Kerr effect and ferromagnetic resonance measurements showed existence of additional magnetic anisotropy, which adds to the demagnetizing field to keep magnetization vector in the film plane. The origin of the magnetic anisotropy is related to the strain in YIG films observed by XRD. Magneto-optical Kerr effect measurements revealed important role of magnetization rotation during magnetization reversal. An unusual fine structure of microwave magnetic resonance spectra has been observed in the film grown at reduced (0.5 mTorr) oxygen pressure. Surface spin wave propagation has been demonstrated in the in-plane magnetized films.

  20. Crystal structure and transport in merged InAs nanowires MBE grown on (001) InAs.

    Science.gov (United States)

    Kang, Jung-Hyun; Cohen, Yonatan; Ronen, Yuval; Heiblum, Moty; Buczko, Ryszard; Kacman, Perla; Popovitz-Biro, Ronit; Shtrikman, Hadas

    2013-11-13

    Molecular beam epitaxy growth of merging InAs nanowire intersections, that is, a first step toward the realization of a network of such nanowires, is reported. While InAs nanowires play already a leading role in the search for Majorana fermions, a network of these nanowires is expected to promote their exchange and allow for further development of this field. The structural properties of merged InAs nanowire intersections have been investigated using scanning and transmission electron microscope imaging. At the heart of the intersection, a sharp change of the crystal structure from wurtzite to perfect zinc blende is observed. The performed low-temperature conductance measurements demonstrate that the intersection does not impose an obstacle to current transport.

  1. Evaluation of defects generation in crystalline silicon ingot grown by cast technique with seed crystal for solar cells.

    Science.gov (United States)

    Tachibana, Tomihisa; Sameshima, Takashi; Kojima, Takuto; Arafune, Koji; Kakimoto, Koichi; Miyamura, Yoshiji; Harada, Hirofumi; Sekiguchi, Takashi; Ohshita, Yoshio; Ogura, Atsushi

    2012-04-01

    Although crystalline silicon is widely used as substrate material for solar cell, many defects occur during crystal growth. In this study, the generation of crystalline defects in silicon substrates was evaluated. The distributions of small-angle grain boundaries were observed in substrates sliced parallel to the growth direction. Many precipitates consisting of light elemental impurities and small-angle grain boundaries were confirmed to propagate. The precipitates mainly consisted of Si, C, and N atoms. The small-angle grain boundaries were distributed after the precipitation density increased. Then, precipitates appeared at the small-angle grain boundaries. We consider that the origin of the small-angle grain boundaries was lattice mismatch and/or strain caused by the high-density precipitation.

  2. 多壁碳纳米管上原位生长CdTe量子点及与牛血清蛋白的偶联%In Situ Grown CdTe Quantum Dots on MWCNTs and Its Coupling with BSA

    Institute of Scientific and Technical Information of China (English)

    陈莉华; 李佑稽; 晏学万; 杨钊; 张俊生

    2012-01-01

    以巯基乙酸为稳定剂在水溶液中使Cd2+与NaTeH在多壁碳纳米管(MWCNTs)上原位生长CdTe量子点(QDs),并与生物分子牛血清蛋白(BSA)偶联.通过电镜、荧光、紫外、傅立叶红外等技术,对量子点-碳纳米管异质结(CdTe-MWCNTs)及异质结-牛血清蛋白复合物(CdTe-MWCNTs-BSA)进行表征.结果表明,活化的碳纳米管有微弱荧光,CdTe-MWCNTs异质结及CdTe-MWCNTs-BSA复合物均具有荧光性质,在碳纳米管壁上的CdTe量子点直径大约5nm,它们具有不同的红外光谱特征.%The CdTe quantum dots grew in situ on the multiwalled carbon nanotubes (MWCNTs) with thioglycollic acid as the stabilizer, Cd2+ and NaTeH as reactant in aqueous solution. The as prepared CdTe-MWCNTs quantum dots-MWCNTs heterojunctions could couple with bovine serum albumin (BSA). Both CdTe-MWCNTs and CdTe-MWCNTs-BSA were characterized by TEM, fluorescence spec- trum,UV and FT-IR measurements. The fluorescence analysis showed that functionalized MWCNTs had weak fluorescence, both CdTe-MWCNTs heterojunctions and CdTe-MWCNTs-BSA multiplex exhibited fluorescence absorption. The TEM results revealed that the diameter of CdTe quantum dots was about 5 nm. The FT-IR spectra indicated that the CdTe quantum dots grew on the functionalized MWCNTs and coupled with BSA.

  3. Effects of Stoichiometry in Undoped CdTe Heteroepilayers on Si

    Energy Technology Data Exchange (ETDEWEB)

    Gessert, Timothy A.; Colegrove, Eric; Stafford, Brian; Gao, Wei; Sivananthan, Siva; Kuciauskas, Darius; Moutinho, Helio; Farrell, Stuart; Barnes, Teresa

    2015-06-14

    Crystalline CdTe layers have been grown heteroepitaxially onto crystalline Si substrates to establish material parameters needed for advanced photovoltaic (PV) device development and related simulation. These studies suggest that additional availability of the intrinsic anion (i.e., Te) during molecular beam epitaxy deposition can improve structural and optoelectronic quality of the epilayer and the interface between Si substrate and the epilayer. This is seen most notably for thin CdTe epitaxial films (<; ~10 micrometers). Although these observations are foundationally important, they are also relevant to envisioned high-performance multijunction II-VI alloy PV devices-where thin layers will be required to achieve production costs aligned with market constraints.

  4. Analyses of photoluminescence spectra of CdTe thin films at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad-Bitar, R. [University of Jordan, Amman (Jordan); Moutinho, H.; Abulfotuh, F.; Kazmerski, L. [Solar Energy Research Inst., Golden, CO (United States)

    1995-11-01

    Photoluminescence (PL) spectra of thin films of CdTe grown on glass by evaporation have been obtained at different laser powers and at different temperatures near and to the red end of the band gap. We suggest an analytical method which deconvolutes the PL spectrum into peaks corresponding to the main electronic transitions. Each spectrum was analytically fitted to eight Gaussian peaks. Gaussian peaks have been found to give the best fit to the spectrum. The quality of the fit can be checked by the fact that the positions and the widths of the eight peaks of each PL spectrum should agree with the fit to another spectrum taken at a different excitation power or a different sample temperature. These results may help to identify these peaks and suggest a model for the shallow electrically active states between the conduction and valance bands of CdTe thin films. (Author)

  5. Understanding misfit strain releasing mechanisms via molecular dynamics simulations of CdTe growth on {112}zinc-blende CdS

    Science.gov (United States)

    Zhou, X. W.; Chavez, J. J.; Almeida, S.; Zubia, D.

    2016-07-01

    Molecular dynamics simulations have been used to analyse microstructures of CdTe films grown on {112} surfaces of zinc-blende CdS. Interestingly, CdTe films grow in ⟨331⟩ orientations as opposed to ⟨112⟩ epitaxial orientations. At the CdTe-{331}/CdS-{112} interface, however, there exists an axis that is parallel to the ⟨110⟩ orientation of both CdS and CdTe. It is the direction orthogonal to this ⟨110⟩ that becomes different, being ⟨116⟩ for CdTe and ⟨111⟩ for CdS, respectively. Missing CdTe-{110} planes are found along the ⟨110⟩ axis, suggesting that the misfit strain is released by the conventional misfit dislocation mechanism along this axis. In the orthogonal axis, the misfit strain is found to be more effectively released by the new grain orientation mechanism. Our finding is supported by literature experimental observations of the change of growth direction when Cd0.96Zn0.04Te films are deposited on GaAs. Analyses of energetics clearly demonstrate the cause for the formation of the new orientation, and the insights gained from our studies can help understand the grain structures experimentally observed in lattice mismatched systems.

  6. Material and detector properties of cadmium manganese telluride (Cd{sub 1−x}Mn{sub x}Te) crystals grown by the modified floating-zone method

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, A., E-mail: hossain@bnl.gov; Gu, G.D.; Bolotnikov, A.E.; Camarda, G.S.; Cui, Y.; Roy, U.N.; Yang, G.; Liu, T.; Zhong, R.; Schneeloch, J.; James, R.B.

    2015-06-01

    We demonstrated the material- and radiation-detection properties of cadmium manganese telluride (Cd{sub 1−x}Mn{sub x}Te; x=0.06), a wide-band-gap semiconductor crystal grown by the modified floating-zone method. We investigated the presence of various bulk defects, such as Te inclusions, twins, and dislocations of several as-grown indium-doped Cd{sub 1−x}Mn{sub x}Te crystals using different techniques, viz., IR transmission microscopy, and chemical etching. We then fabricated four planar detectors from selected CdMnTe crystals, characterized their electrical properties, and tested their performance as room-temperature X- and gamma-ray detectors. Our experimental results show that CMT crystals grown by the modified floating zone method apparently are free from Te inclusions. However, we still need to optimize our growth parameters to attain high-resistivity, large-volume single-crystal CdMnTe.

  7. Absence of the 90 K structural transition in CuV{sub 2}S{sub 4} crystals grown by chemical vapour transport using TeCl{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Crandles, D A [Department of Physics, Brock University, St Catharines, ON, L2S 3A1 (Canada); Reedyk, M [Department of Physics, Brock University, St Catharines, ON, L2S 3A1 (Canada); Wardlaw, G [Department of Physics, Brock University, St Catharines, ON, L2S 3A1 (Canada); Razavi, F S [Department of Physics, Brock University, St Catharines, ON, L2S 3A1 (Canada); Hagino, T [Department of Materials Science and Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran, Hokkaido 050-8535 (Japan); Nagata, S [Department of Materials Science and Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran, Hokkaido 050-8535 (Japan); Shimono, I [Hokkaido Industrial Technology Centre, 379 Kikyo-cho, Hakodate, Hokkaido 041-0801 (Japan); Kremer, R K [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, D-70569 Stuttgart (Germany)

    2005-08-03

    Various physical properties (magnetization, specific heat, optical reflectance, electrical resistivity) of CuV{sub 2}S{sub 4} crystals grown by chemical vapour transport using TeCl{sub 4} as the transporting agent have been measured. The data show slight differences compared to samples grown using different techniques. These differences include the absence of a sharp drop in magnetization and the absence of a peak in the heat capacity near 90 K. These differences suggest that the cubic-tetragonal phase transition near 90 K does not occur in these particular crystals. The reflectance of the same crystals has been studied from (70-20 000 cm{sup -1}) for temperatures between 40 and 300 K and the data are consistent with those for a disordered metal. A high frequency absorption, perhaps an interband transition, has been observed in addition to absorption due to strongly scattered free carriers.

  8. Film Thickness Dependence of Crystal Structure in 100-Oriented Epitaxial Pb(Zr0.65Ti0.35)O3 Films Grown on Single-Crystal Substrates with Different Thermal Expansion Coefficients

    Science.gov (United States)

    Ehara, Yoshitaka; Yasui, Shintaro; Ishii, Koji; Funakubo, Hiroshi

    2012-09-01

    100-oriented epitaxial Pb(Zr0.65Ti0.35)O3 films with various film thicknesses from 0.1 to 3 µm were grown on (100)cSrRuO3 ∥ (100)SrTiO3 and (100)cSrRuO3 ∥ (100)LaNiO3 ∥ (001)CaF2 substrates. The out-of-plane/in-plane lattice parameter ratio of the films on the CaF2 substrates was larger than that on the SrTiO3 substrates up to 1.1 µm film thickness, while (90°-α) (α was defined as the internal tilt angle) was almost 0°. Results of analysis of Raman spectra and piezoresponse images suggest that the 1.1-µm-thick film grown on the (100)cSrRuO3 ∥ (100)LaNiO3 ∥ (001)CaF2 substrate had tetragonal symmetry with a polar-axis orientation. Moreover, the saturation polarization values of the films measured from P-E hysteresis loops correspond to the two Ps values estimated from the thermodynamic theory, assuming the change in the polar direction due to the symmetry change to tetragonal, and from the crystal distortion in tetragonal symmetry. This can be explained by the large compressive stress from the CaF2 substrate having a large thermal expansion coefficient.

  9. Effect of CdCl{sub 2} treatment on structural and electronic property of CdTe thin films deposited by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M.A. [Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Hossain, M.S.; Aliyu, M.M. [Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Karim, M.R. [Center of Excellence for Research in Engineering Materials (CEREM) College of Engineering, King Saud University, Riyadh, 11421 (Saudi Arabia); Razykov, T.; Sopian, K. [Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Amin, N., E-mail: nowshad@eng.ukm.my [Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Center of Excellence for Research in Engineering Materials (CEREM) College of Engineering, King Saud University, Riyadh, 11421 (Saudi Arabia)

    2013-11-01

    The structural and electrical properties of the magnetron sputtered CdTe thin films with subsequent CdCl{sub 2} solution treatment have been studied with a major focus on the influence of CdCl{sub 2} treatment to achieve high quality thin films. In this study, CdTe films with a thickness of 1.5 to 2 μm have been grown using the magnetron sputtering technique on top of glass substrate at an optimized substrate temperature of 250 °C. Aqueous CdCl{sub 2} concentration varied from 0.3 mol to 1.2 mol with the annealing temperature from 360 °C to 450 °C. The surface roughness of the films increases with the increase of solution concentration, while it fluctuates with the increase of annealing temperature. The density of nucleation centers and the strain increases for the films treated at 360 °C with 0.3 M to1.2 M while the grain growth of the films reduces. However, these strains are released at higher annealing temperatures, resulting in reduced dislocation densities, structural defects as well as increased crystalline property and grain size. The carrier concentration increases with the increase of treated CdCl{sub 2} concentration and subsequent annealing temperature. The highest carrier concentration of 1.05 × 10{sup 14}/cm{sup 3} was found for the CdTe thin films treated with 0.3 M CdCl{sub 2} solution followed by an annealing treatment at 420 °C for 20 min. - Highlights: • CdTe thin films are grown as absorption layers in CdTe solar cells by sputtering. • CdTe film quality in terms of structural and electronic properties is examined. • All growth parameters are optimized in the range of 1.5 to 2 μm CdTe films.

  10. Optical and scintillation properties of ce-doped (Gd2Y1)Ga2.7Al2.3O12 single crystal grown by Czochralski method

    Science.gov (United States)

    Wang, Chao; Wu, Yuntao; Ding, Dongzhou; Li, Huanying; Chen, Xiaofeng; Shi, Jian; Ren, Guohao

    2016-06-01

    Multicomponent garnets, due to their excellent light yield and energy resolution, become one of the most promising scintillators used for homeland security and nuclear non-proliferation applications. This work focuses on the optimization of Ce-doped (Gd,Y)3(Ga,Al)5O12 scintillators using a combination strategy of pre-screening and scale-up. Ce-doped GdxY1-xGayAl5-yO12 (x=1, 2 and y=2, 2.2, 2.5, 2.7, 3) polycrystalline powders were prepared by high-temperature solid state reaction method. The desired garnet phase in all the samples was confirmed using X-ray diffraction measurement. By comparing the radioluminescence intensity, the highest scintillation efficiency was achieved at a component of Gd2Y1Ga2.7Al2.3O12:Ce powders. A (Gd2Y1)Ga2.7Al2.3O12 doped with 1% Ce single crystal with dimensions of Ø35×40 mm was grown by Czochralski method using a oriented seed. Luminescence and scintillation properties were measured. An optical transmittance of 84% was achieved in the concerned wavelength from 500 to 800 nm. Its 5d-4f emission of Ce3+ is at 530 nm. The light yield of a Ce1%: Gd2Y1Ga2.7Al2.3O12 single crystal slab at a size of 5×5×1 mm3 can reach about 65,000±3000 Ph/MeV along with two decay components of 94 and 615 ns under 137Cs source irradiation.

  11. Influence of air annealing temperature and time on the optical properties of Yb:YAG single crystal grown by HDS method

    Science.gov (United States)

    Nie, Ying; Liu, Yang; Zhao, Yequan; Zhang, Mingfu

    2015-08-01

    8 at.% Yb:YAG plate single crystal with the dimension of 170 mm × 150 mm × 30 mm was grown in vacuum by Horizontal Directional Solidification method. Aimed at blue-green color centers, annealing treatments of 15 mm × 15 mm × 1 mm samples from 900 °C to 1400 °C for 5 h and at 900 °C from 5 h to 40 h in air were conducted. The absorption spectra, emission spectra, fluorescence lifetime and X-ray photoelectron spectroscopy of samples under different annealing conditions were measured at room temperature, respectively. Annealing at above 1000 °C for 5 h or at 900 °C for 40 h made the blue-green color centers disappear and the samples turned to transparent. Absorption coefficients decreased in the 300 nm-800 nm wavelength range, emission intensities increased and emission bands broadened around 486 nm and 1029 nm with increasing temperature up to 1200 °C, then varied inversely. These values decreased or increased monotonically with increasing annealing time at 900 °C. The maximal increases of fluorescence lifetime were 62.3% and 64.7%, respectively. The calculated emission cross section of 1200 °C for 5 h was up to 4.4 × 10-20 cm2. In X-ray photoelectron spectroscopy, the concentrations of oxygen vacancies reduced from 1.28% down to absence by annealing. These experiments show that color centers are detrimental to the optical properties of HDS-Yb:YAG laser crystal and optimal annealing treatments should be conducted.

  12. Phase diagram of Eu magnetic ordering in Sn-flux-grown Eu (Fe1-xCox) 2As2 single crystals

    Science.gov (United States)

    Jin, W. T.; Xiao, Y.; Bukowski, Z.; Su, Y.; Nandi, S.; Sazonov, A. P.; Meven, M.; Zaharko, O.; Demirdis, S.; Nemkovski, K.; Schmalzl, K.; Tran, Lan Maria; Guguchia, Z.; Feng, E.; Fu, Z.; Brückel, Th.

    2016-11-01

    The magnetic ground state of the Eu2 + moments in a series of Eu (Fe1-xCox) 2As2 single crystals grown from the Sn flux has been investigated in detail by neutron diffraction measurements. Combined with the results from the macroscopic properties (resistivity, magnetic susceptibility and specific heat) measurements, a phase diagram describing how the Eu magnetic order evolves with Co doping in Eu (Fe1-xCox) 2As2 is established. The ground-state magnetic structure of the Eu2 + spins is found to develop from the A-type antiferromagnetic (AFM) order in the parent compound, via the A-type canted AFM structure with some net ferromagnetic (FM) moment component along the crystallographic c direction at intermediate Co doping levels, finally to the pure FM order at relatively high Co doping levels. The ordering temperature of Eu declines linearly at first, reaches the minimum value of 16.5(2) K around x =0.100 (4 ) , and then reverses upwards with further Co doping. The doping-induced modification of the indirect Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction between the Eu2 + moments, which is mediated by the conduction d electrons on the (Fe,Co)As layers, as well as the change of the strength of the direct interaction between the Eu2 + and Fe2 + moments, might be responsible for the change of the magnetic ground state and the ordering temperature of the Eu sublattice. In addition, for Eu (Fe1-xCox) 2As2 single crystals with 0.10 ≤x ≤ 0.18 , strong ferromagnetism from the Eu sublattice is well developed in the superconducting state, where a spontaneous vortex state is expected to account for the compromise between the two competing phenomena.

  13. Contacts for high-resistivity (Cd,Mn)Te crystals

    Energy Technology Data Exchange (ETDEWEB)

    Witkowska-Baran, M.; James, R.; Mycielski, A.; Kochanowska, D.; Szadkowski, A.J.; Jakiela, R.; Witkowska, B.; Kaliszek, W.; Domagala, J.; Lusakowska, E.; Domukhovski, V.; Dybko, K.; Cui, Y.; and James, R.B.

    2010-09-09

    Semi-insulating (Cd,Mn)Te crystals offer a material that may compete well with the commonly used (Cd,Zn)Te crystals for manufacturing large-area X- and gamma-ray detectors. The Bridgman growth method yields good quality, high-resistivity (10{sup 9} - 10{sup 10} {Omega} {center_dot} cm) crystals of (Cd,Mn)Te:V. Doping the as-grown crystals with the compensating agent vanadium ({approx} 10{sup 16} cm{sup -3}) ensures their high resistivity; thereafter, annealing them in cadmium vapors reduces the number of cadmium vacancies. Applying the crystals as detectors necessitates having satisfactory electrical contacts. Accordingly, we explored various techniques of ensuring good electrical contacts to these semi-insulating (Cd,Mn)Te crystals, assessing metallic layers, monocrystalline semiconductor layers, and amorphous (or nanocrystalline) semiconductor layers. We found that ZnTe heavily doped ({approx} 10{sup 18} cm{sup -3}) with Sb, and CdTe heavily doped ({approx} 10{sup 17} cm{sup -3}) with In, proved satisfactory semiconductor contact layers. They subsequently enabled us to establish good contacts (with only narrow tunneling barriers) to the Au layer that usually constitutes the most external contact layer. We outline our technology of applying electrical contacts to semi-insulating (Cd,Mn)Te, and describe some important properties.

  14. Influence of arsenic flow on the crystal structure of epitaxial GaAs grown at low temperatures on GaAs (100) and (111) A substrates

    Science.gov (United States)

    Galiev, G. B.; Klimov, E. A.; Vasiliev, A. L.; Imamov, R. M.; Pushkarev, S. S.; Trunkin, I. N.; Maltsev, P. P.

    2017-01-01

    The influence of arsenic flow in a growth chamber on the crystal structure of GaAs grown by molecular-beam epitaxy at a temperature of 240°C on GaAs (100) and (111) A substrates has been investigated. The flow ratio γ of arsenic As4 and gallium was varied in the range from 16 to 50. GaAs films were either undoped, or homogeneously doped with silicon, or contained three equidistantly spaced silicon δ-layers. The structural quality of the annealed samples has been investigated by transmission electron microscopy. It is established for the first time that silicon δ-layers in "low-temperature" GaAs serve as formation centers of arsenic precipitates. Their average size, concentration, and spatial distribution are estimated. The dependence of the film structural quality on γ is analyzed. Regions 100-150 nm in size have been revealed in some samples and identified (by X-ray microanalysis) as pores. It is found that, in the entire range of γ under consideration, GaAs films on (111) A substrates have a poorer structural quality and become polycrystalline beginning with a thickness of 150-200 nm.

  15. Mapping the 3D distribution of CdSe nanocrystals in highly oriented and nanostructured hybrid P3HT-CdSe films grown by directional epitaxial crystallization.

    Science.gov (United States)

    Roiban, L; Hartmann, L; Fiore, A; Djurado, D; Chandezon, F; Reiss, P; Legrand, J-F; Doyle, S; Brinkmann, M; Ersen, O

    2012-11-21

    Highly oriented and nanostructured hybrid thin films made of regioregular poly(3-hexylthiophene) and colloidal CdSe nanocrystals are prepared by a zone melting method using epitaxial growth on 1,3,5-trichlorobenzene oriented crystals. The structure of the films has been analyzed by X-ray diffraction using synchrotron radiation, electron diffraction and 3D electron tomography to afford a multi-scale structural and morphological description of the highly structured hybrid films. A quantitative analysis of the reconstructed volumes based on electron tomography is used to establish a 3D map of the distribution of the CdSe nanocrystals in the bulk of the films. In particular, the influence of the P3HT-CdSe ratio on the 3D structure of the hybrid layers has been analyzed. In all cases, a bi-layer structure was observed. It is made of a first layer of pure oriented semi-crystalline P3HT grown epitaxially on the TCB substrate and a second P3HT layer containing CdSe nanocrystals uniformly distributed in the amorphous interlamellar zones of the polymer. The thickness of the P3HT layer containing CdSe nanoparticles increases gradually with increasing content of NCs in the films. A growth model is proposed to explain this original transversal organization of CdSe NCs in the oriented matrix of P3HT.

  16. An electrochemical quartz crystal impedance study on anti-human immunoglobulin G immobilization in the polymer grown during dopamine oxidation at an Au electrode.

    Science.gov (United States)

    He, Hua; Xie, Qingji; Yao, Shouzhuo

    2005-09-15

    The polymeric film grown during dopamine oxidation at an Au electrode was studied as a novel matrix for immobilizing anti-human immunoglobulin G (IgG) via the electrochemical quartz crystal impedance analysis (EQCIA) method. The growth of the polymeric films at Au electrodes during dopamine oxidation in neutral phosphate buffer (pH 7.4) and the immobilization of anti-human IgG into the polymeric films during their growth have been traced at real time. Lysozyme control experiments suggested that anti-human IgG was electrostatically incorporated into the polymeric film. Also, the porosity of the polymeric films has been discussed by measuring the "wet" and "dry" frequency shifts. Compared with a polypyrrole film immobilized with anti-human IgG, the proposed matrix possessed a larger amount of specific binding sites for human IgG by subsequent immunoreaction tests. The association constant of the anti-human IgG immunoreaction was obtained with satisfactory results.

  17. Electron and hole drift mobility measurements on thin film CdTe solar cells

    Science.gov (United States)

    Long, Qi; Dinca, Steluta A.; Schiff, E. A.; Yu, Ming; Theil, Jeremy

    2014-07-01

    We report electron and hole drift mobilities in thin film polycrystalline CdTe solar cells based on photocarrier time-of-flight measurements. For a deposition process similar to that used for high-efficiency cells, the electron drift mobilities are in the range of 10-1-100 cm2/V s, and holes are in the range of 100-101 cm2/V s. The electron drift mobilities are about a thousand times smaller than those measured in single crystal CdTe with time-of-flight; the hole mobilities are about ten times smaller. Cells were examined before and after a vapor phase treatment with CdCl2; treatment had little effect on the hole drift mobility, but decreased the electron mobility. We are able to exclude bandtail trapping and dispersion as a mechanism for the small drift mobilities in thin film CdTe, but the actual mechanism reducing the mobilities from the single crystal values is not known.

  18. X-ray diffraction study of epitaxial heterostructures of II-VI CdTe and ZnTe semiconductors; Etude par diffraction de rayons X d`heterostructures epitaxiees a base des semi-conducteurs II-VI CdTe et ZnTe

    Energy Technology Data Exchange (ETDEWEB)

    Bouchet-Boudet, N.

    1996-10-07

    This work deals with the structural study of II-VI semiconductor (CdTe and ZnTe) heterostructures by X-ray diffraction and reflectivity. These heterostructures have a high lattice parameter misfit and are grown by Molecular Beam Epitaxy. Two main subjects are developed: the characterization of ZnTe wires, grown by step propagation on a CdTe (001) vicinal surface, and the study of the vertical correlations in Cd{sub 0.8}Zn{sub 0.2}Te / CdTe superlattices and superlattices made of ZnTe fractional layers spaced by CdTe. The growth of organised system is up to date; its aim is to realize quantum boxes (or wires) superlattices which are laterally and vertically ordered. The deformation along the growth axis induced by a ZnTe fractional layer inserted in a CdTe matrix is modelled, in the kinematical approximation, to reproduce the reflectivity measured around the substrate (004) Bragg peak. The lateral periodicity of the wires, deposited on a vicinal surface is a new and difficult subject. Some results are obtained on a vertical superlattice grown on a 1 deg. mis-cut surface. The in-plane and out-of-plane correlation lengths of a Cd{sub 0.8}Zn{sub 0.2}Te / CdTe superlattice are deduced from the diffused scattered intensity measured at grazing incidence. The calculations are made within the `distorted Wave Born Approximation`. The vertical correlation in ZnTe boxes (or wines) superlattices can be measured around Bragg peaks. It is twice bigger in a superlattice grown on a 2 deg. mis-cut substrate than a nominal one. (author). 74 refs.

  19. Thermoelectric power and Hall effect measurements in polycrystalline CdTe thin films

    Energy Technology Data Exchange (ETDEWEB)

    Paez, B.A. [Pontificia Univ. Javeriana, Santafe de Bogota (Colombia). Thin Films Group

    2000-07-01

    Polycrystalline CdTe thin films deposited by close space sublimation (CSS), were characterized through thermoelectric power, {alpha}, Hall coefficient, and resistivity, {rho}, measurements in the range of 90 to 400 K. This was in order to determine the scattering mechanisms which mainly affect the electrical transport properties in CdTe thin films. The results were analyzed based on theoretical calculations of {alpha} against temperature. This model includes scattering processes within the grains and at the grain boundaries. Some of the parameters used in this calculation were determined experimentally: grain size, crystal structure, activation energy and effective mass. It is important to state that the main approximations were justified according to experimental measurements. (orig.)

  20. Low temperature growth of high quality CdTe polycrystalline layers

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, I R B [Departamento de Fisica, Universidade Federal de Vicosa, Vicosa, MG (Brazil); Suela, J [Departamento de Fisica, Universidade Federal de Vicosa, Vicosa, MG (Brazil); Oliveira, J E [Departamento de Fisica, Universidade Federal de Vicosa, Vicosa, MG (Brazil); Ferreira, S O [Departamento de Fisica, Universidade Federal de Vicosa, Vicosa, MG (Brazil); Motisuke, P [Laboratorio Associado de Sensores e Materiais, Instituto Nacional de Pesquisas Espaciais, Sao Jose dos Campos, SP (Brazil)

    2007-08-07

    We have investigated the growth of CdTe thin films on glass substrates by hot wall epitaxy. The layers have been characterized by scanning electron microscopy, atomic force microscopy, profilometry, x-ray diffraction and optical transmission. The grown samples are polycrystalline with a high preferential [1 1 1] orientation. Atomic force microscopy and scanning electron microscopy reveal pyramidal grain shapes with a size of around 0.3 {mu}m. The surface roughness increases with sample thickness and growth temperature, reaching about 200 nm for 10 {mu}m thick layers grown at 300 deg. C. Samples with a thickness of 2 {mu}m grown at 150 deg. C showed a roughness of less than 40 nm. Optical transmission measurements demonstrate layers with high optical quality.

  1. Low temperature growth of high quality CdTe polycrystalline layers

    Science.gov (United States)

    Ribeiro, I. R. B.; Suela, J.; Oliveira, J. E.; Ferreira, S. O.; Motisuke, P.

    2007-08-01

    We have investigated the growth of CdTe thin films on glass substrates by hot wall epitaxy. The layers have been characterized by scanning electron microscopy, atomic force microscopy, profilometry, x-ray diffraction and optical transmission. The grown samples are polycrystalline with a high preferential [1 1 1] orientation. Atomic force microscopy and scanning electron microscopy reveal pyramidal grain shapes with a size of around 0.3 µm. The surface roughness increases with sample thickness and growth temperature, reaching about 200 nm for 10 µm thick layers grown at 300 °C. Samples with a thickness of 2 µm grown at 150 °C showed a roughness of less than 40 nm. Optical transmission measurements demonstrate layers with high optical quality.

  2. Crystallographic and dielectric properties of flux grown PbB1/2'B1/2″O (B'B″: InNb, InTa, YbNb, YbTa and MgW) single crystals

    Science.gov (United States)

    Kania, Antoni

    2008-05-01

    Single crystals of PbIn 1/2Nb 1/2O 3 (PIN), PbIn 1/2Ta 1/2O 3 (PIT), PbYb 1/2Nb 1/2O 3 (PYN), PbYb 1/2Ta 1/2O 3 (PYT) and PbMg 1/2W 1/2O 3 (PMW) have been grown by the flux method. The PbO-based solvents were used. Transparent, light yellow and arrow like shaped PIN and PIT crystals of the perovskite structure were obtained. Small amounts of red and of octahedron habit PIN and PIT crystals of the pyrochlore type were simultaneously grown. In the case of PYN, PYT and PMW only the crystals of the perovskite structure have been grown. The transparent and brown PYN and PYT crystals of octahedron habit were obtained. The transparent, light yellow and of octahedron or truncated octahedron shape PMW crystals were grown. The crystals were characterised by X-ray and dielectric studies. They showed that as-grown PIN crystals are nearly disordered, exhibit the rhombohedral distortion of the pseudo-perovskite unit cell and reveal relaxor behaviour. The partially ordered PIT crystals show monoclinic distortion and undergo antiferroelectric-paraelectric phase transition. The PYN, PYT and PMW single crystals, characterised by chemical order in the B'/B″ ion sublattice, exhibit orthorhombic symmetry and undergo the first-order antiferroelectric-paraelectric phase transitions.

  3. Thin-film CdTe photovoltaic cells by laser deposition and rf sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Compaan, A.; Bohn, R.G.; Bhat, A.; Tabory, C.; Shao, M.; Li, Y.; Savage, M.E.; Tsien, L. (Department of Physics and Astronomy, The University of Toledo, Toledo, Ohio 43606 (United States))

    1992-12-01

    Laser-driven physical vapor deposition (LDPVD) and radio-frequency (rf) sputtering have been used to fabricate thin-film solar cells on SnO[sub 2]-coated glass substrates. The laser-ablation process readily permits the use of several target materials in the same vacuum chamber and complete solar cell structures have been fabricated on SnO[sub 2]-coated glass using LDPVD for the CdS, CdTe, and CdCl[sub 2]. To date the best devices ([similar to]9% AM1.5) have been obtained after a post-deposition anneal at 400 [degree]C. In addition, cells have been fabricated with the combination of LDPVD CdS, rf-sputtered CdTe, and LDPVD CdCl[sub 2]. The performance of these cells indicates considerable promise for the potential of rf sputtering for CdTe photovoltaic devices. The physical mechanisms of LDPVD have been studied by transient optical spectroscopy on the laser ablation plume. These measurements have shown that, e.g., Cd is predominantly in the neutral atomic state in the plume but with a large fraction which is highly excited internally ([ge]6 eV) and that the typical neutral Cd translational kinetic energies perpendicular to the target are 20 eV and greater. Quality of as-grown and annealed films has been analyzed by optical absorption. Raman scattering, photoluminescence, electrical conductivity, Hall effect, x-ray diffraction, and SEM/EDS.

  4. Strain relaxation of CdTe on Ge studied by medium energy ion scattering

    Science.gov (United States)

    Pillet, J. C.; Pierre, F.; Jalabert, D.

    2016-10-01

    We have used the medium energy ion scattering (MEIS) technique to assess the strain relaxation in molecular-beam epitaxial (MBE) grown CdTe (2 1 1)/Ge (2 1 1) system. A previous X-ray diffraction study, on 10 samples of the same heterostructure having thicknesses ranging from 25 nm to 10 μm has allowed the measurement of the strain relaxation on a large scale. However, the X-ray diffraction measurements cannot achieve a stress measurement in close proximity to the CdTe/Ge interface at the nanometer scale. Due to the huge lattice misfit between the CdTe and Ge, a high degree of disorder is expected at the interface. The MEIS in channeling mode is a good alternative in order to profile defects with a high depth resolution. For a 21 nm thick CdTe layer, we observed, at the interface, a high density of Cd and/or Te atoms moved from their expected crystallographic positions followed by a rapid recombination of defects. Strain relaxation mechanisms in the vicinity of the interface are discussed

  5. Edge effects in a small pixel CdTe for X-ray imaging

    Science.gov (United States)

    Duarte, D. D.; Bell, S. J.; Lipp, J.; Schneider, A.; Seller, P.; Veale, M. C.; Wilson, M. D.; Baker, M. A.; Sellin, P. J.; Kachkanov, V.; Sawhney, K. J. S.

    2013-10-01

    Large area detectors capable of operating with high detection efficiency at energies above 30 keV are required in many contemporary X-ray imaging applications. The properties of high Z compound semiconductors, such as CdTe, make them ideally suitable to these applications. The STFC Rutherford Appleton Laboratory has developed a small pixel CdTe detector with 80 × 80 pixels on a 250 μm pitch. Historically, these detectors have included a 200 μm wide guard band around the pixelated anode to reduce the effect of defects in the crystal edge. The latest version of the detector ASIC is capable of four-side butting that allows the tiling of N × N flat panel arrays. To limit the dead space between modules to the width of one pixel, edgeless detector geometries have been developed where the active volume of the detector extends to the physical edge of the crystal. The spectroscopic performance of an edgeless CdTe detector bump bonded to the HEXITEC ASIC was tested with sealed radiation sources and compared with a monochromatic X-ray micro-beam mapping measurements made at the Diamond Light Source, U.K. The average energy resolution at 59.54 keV of bulk and edge pixels was 1.23 keV and 1.58 keV, respectively. 87% of the edge pixels present fully spectroscopic performance demonstrating that edgeless CdTe detectors are a promising technology for the production of large panel radiation detectors for X-ray imaging.

  6. About the use of photoacoustic spectroscopy for the optical characterization of semiconductor thin films: CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Marin, E.; Calderon, A. [CICATA-IPN, Av. Legaria 694, 11500 Mexico D.F. (Mexico); Vigil G, O.; Sastre, J.; Contreras P, G.; Aguilar H, J. [ESFM-IPN, 07738 Mexico D.F. (Mexico); Saucedo, E.; Ruiz, C.M. [Departamento de Fisica de Materiales, Facultad de Ciencias, Universidad Autonoma de Madrid, 28049 Madrid (Spain)

    2006-07-01

    CdTe has been used satisfactorily in multiple and diverse technological applications such as detectors of X and gamma rays that operate at room temperature, for digital imagenology of X rays with medical and industrial applications and as active part in CdTe/CdS solar cells. In form of films, CdTe is generally grown with thicknesses ranging between 3 and 15 {mu}m, for which it is difficult to measure, by means of optical techniques, absorption coefficients greater than 10{sup 3} cm{sup -1} because nearly full absorption of light should occur below 800 nm. The exact determination of the optical absorption coefficient in detectors on the basis of CdTe is very important since this parameter determines the absorption length at which 90% of the photons with energies over the forbidden zone of the CdTe will be absorbed by this. In CdS/CdTe polycrystalline solar cells the greater efficiency of conversion have been reported for film thicknesses of 10 mm, however, the optimal value of this parameter depends strongly on the method and the variables of growth. The optical absorption coefficient spectrum can be determined by several methods, often involving several approximations and the knowledge of some minority carrier related electronic parameters that reduce their application in general way. In this work we propose to determine the absorption coefficient in CdTe thin films by photoacoustic spectroscopy (PAS), because this technique allow us to obtain the optical absorption spectra in thicker layers and therefore the study of the influence of the several growth and post-growth processes in the optical properties of this thin films. We measure by PAS the optical-absorption coefficients of CdTe thin films in the spectral region near the fundamental absorption edge ranging from 1.0 to 2.4 eV using an open cell in the transmission configuration. The films were deposited on different substrates by the CSVT-HW (hot wall) technique. In order to study the influence of several

  7. Improvement to thin film CdTe solar cells with controlled back surface oxidation

    OpenAIRE

    Rugen-Hankey, S.L.; Clayton, Andrew J; Barrioz, Vincent; Kartopu, Giray; Irvine, Stuart J; McGettrick, J.D.; Hammond, D.

    2015-01-01

    Thin film CdTe solar cells were produced by MOCVD, at atmospheric pressure, under a hydrogen atmosphere (i.e. oxygen-free). Window layer alloying with zinc (forming Cd1−xZnxS) and extrinsic p-type doping with arsenic (giving CdTe:As) have been used to improve photovoltaic solar cell performances, but as-grown MOCVD-CdTe PV cells are still typically characterised by low Voc (~620–690 mV). Post-deposition annealing in air for 30 min at low temperature (170 °C) prior to evaporation of the back c...

  8. Comparative study of electrical properties of Cd and Te-enriched CdTe thin films at cryogenic temperature

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Nazar Abbas, E-mail: nabbasqureshi@yahoo.co [Thin Films Research Laboratory, Department of Physics, COMSATS Institute of Information Technology, Park Road, Islamabad 45320 (Pakistan)

    2010-09-17

    Cd and Te-enriched cadmium telluride (CdTe) polycrystalline thin films were grown on corning glass substrates by Close Spaced Sublimation (CSS) technique. The structural investigations performed by means of X-ray diffraction (XRD) technique, scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX) showed that the deposited films exhibit a polycrystalline structure with <1 1 1> as preferred orientation. The optical transmittance for Te-enriched CdTe sample was above 0.8 in the range of 1500-2500 nm, which was significantly below 0.8 for Cd-enriched CdTe sample. The electrical properties of these samples were analyzed as a function of the Cd and Te concentration at cryogenic temperature. The electrical resistivity dropped several orders of magnitude. These properties are significantly changed at cryogenic temperature. The comparative study revealed that using this deposition technique, n-type, and p-type Cd and Te-enriched CdTe polycrystalline films can be produced.

  9. Modeling of the effects of different substrate materials on the residual thermal stresses in the aluminum nitride crystal grown by sublimation

    Science.gov (United States)

    Lee, R. G.; Idesman, A.; Nyakiti, L.; Chaudhuri, J.

    2009-02-01

    A three-dimensional numerical finite element modeling method is applied to compare interfacial residual thermal stress distribution in AlN single crystals grown by using different substrates such as silicon carbide, boron nitride, tungsten, tantalum carbide, and niobium carbide. A dimensionless coordinate system is used which reduces the numbers of computations and hence simplifies the stress analysis. All components of the stress distribution, both in the film and in the substrate, including the normal stress along the growth direction as well as in-plane normal stresses and shear stresses are fully investigated. This information about the stress distribution provides insight into understanding and controlling the AlN single crystal growth by the sublimation technique. The normal stress in the film at the interface along the growth direction and the shear stresses are zero except at the edges, whereas in-plane stresses are nonzero. The in-plane stresses are compressive when TaC and NbC substrates are used. A small compressive stress might be beneficial in prohibiting crack growth in the film. The compressive stress in the AlN is lower for the TaC substrate than that for the NbC. Tensile in-plane stresses are formed in the AlN for 6H-SiC, BN, and W substrates. This tensile stress in the film is detrimental as it will assist in the crack growth. The stress concentration at the edges of the AlN film at the interface is compressive in nature when TaC and NbC are used as a substrate. This causes the film to bend downward (i.e., convex shape) and assist it to adhere to the substrate. The AlN film curves upward or in a concave shape when SiC, BN, and W substrates are used since the stress concentration at the edges of the AlN film is tensile at the interface and this may cause detachment of the film from the substrate.

  10. Composition dependences of crystal structure and electrical properties of epitaxial Pb(Zr,Ti)O3 films grown on Si and SrTiO3 substrates

    Science.gov (United States)

    Okamoto, Shoji; Okamoto, Satoshi; Yokoyama, Shintaro; Akiyama, Kensuke; Funakubo, Hiroshi

    2016-10-01

    {100}-oriented Pb(Zr x ,Ti1- x )O3 (PZT) thin films of approximately 2 µm thickness and Zr/(Zr + Ti) ratios of 0.39-0.65 were epitaxially grown on (100)cSrRuO3//(100)SrTiO3 (STO) and (100)cSrRuO3//(100)cLaNiO3//(100)CeO2//(100)YSZ//(100)Si (Si) substrates having different thermal expansion coefficients by pulsed metal-organic chemical vapor deposition (MOCVD). The effects of Zr/(Zr + Ti) ratio and type of substrate on the crystal structure and dielectric, ferroelectric and piezoelectric properties of the films were systematically investigated. The X-ray diffraction measurement showed that both films changed from having a tetragonal symmetry to rhombohedral symmetry through the coexisting region with increasing Zr/(Zr + Ti) ratio. This region showed the Zr/(Zr + Ti) ratios of 0.45-0.59 for the films on the STO substrates that were wider than the films on the Si substrates. Saturation polarization values were minimum at approximately Zr/(Zr + Ti) = 0.50 for the films on the STO substrates, and no obvious Zr/(Zr + Ti) ratio dependence was detected in the films on the Si substrates. On the other hand, the maximum field-induced strain values measured by scanning force microscopy at approximately Zr/(Zr + Ti) = 0.50 at 100 kV/cm were about 0.5 and 0.1% in the films on the Si and STO, respectively.

  11. CdTe Films Deposited by Closed-space Sublimation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    CdTe films are prepared by closed-space sublimation technology. Dependence of film crystalline on substrate materials and substrate temperature is investigated. It is found that films exhibit higher crystallinity at substrate temperature higher than 400℃. And the CdTe films deposited on CdS films with higher crystallinity have bigger crystallite and higher uniformity. Treatment with CdCl2 methanol solution promotes the crystallite growth of CdTe films during annealing.

  12. Synthesis and Surface Modification of CdTe Nanocrystals

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    CdTe nanocrystals were prepared in aqueous solution via the reaction between Cd2+ and NaHTe in the presence of mercaptoacetic acid. Interactions between CdTe nanocrystals and phenylalanine were formed via electrostatic/coordinate self-assembly. The photoluminescence intensity of CdTe nanocrystals was improved obviously. The interaction mechanism was discussed and was considered to be surface passivation.

  13. Structural, thermal, laser damage, photoconductivity, NLO and mechanical properties of modified vertical Bridgman method grown AgGa0.5In0.5Se2 single crystal

    Science.gov (United States)

    Vijayakumar, P.; Ramasamy, P.

    2016-08-01

    AgGa0.5In0.5Se2 single crystal was grown using modified vertical Bridgman method. The structural perfection of the AgGa0.5In0.5Se2 single crystal has been analyzed by high-resolution X-ray diffraction rocking curve measurements. The structural and compositional uniformities of AgGa0.5In0.5Se2 were studied using Raman scattering spectroscopy at room temperature. The FWHM of the Γ1 (W1) and Γ5L (Γ15) measured at different regions of the crystal confirms that the composition throughout its length is fairly uniform. Thermal properties of the as-grown crystal, including specific heat, thermal diffusivity and thermal conductivity have been investigated. The multiple shot surface laser damage threshold value was measured using Nd:YAG laser. Photoconductivity measurements with different temperatures have confirmed the positive photoconducting behavior. Second harmonic generation (SHG) on powder samples has been measured using the Kurtz and Perry technique and the results display that AgGa0.5In0.5Se2 is a phase-matchable NLO material. The hardness behavior has been measured using Vickers micro hardness measurement and the indentation size effect has been observed. The classical Meyer's law, propositional resistance model and modified propositional resistance model have been used to analyse the micro hardness behavior.

  14. On the Neel temperature and magnetic domain wall movements of Ga{sub 2−x}Fe{sub x}O{sub 3} single crystals grown by floating-zone technique

    Energy Technology Data Exchange (ETDEWEB)

    Srimathy, B. [Crystal Growth Centre, Anna University, Chennai (India); Bhaumik, Indranil [Laser Materials Development and Devices Division, Raja Ramanna Centre for Advanced Technology, Indore (India); Ganesamoorthy, S. [X-ray Scattering and Crystal Growth Section, Material Science Group, IGCAR, Kalpakkam, Chennai (India); Bhatt, R.; Karnal, A.K. [Laser Materials Development and Devices Division, Raja Ramanna Centre for Advanced Technology, Indore (India); Kumar, J., E-mail: marsjk@gmail.com [Crystal Growth Centre, Anna University, Chennai (India)

    2014-03-25

    Highlights: • Transformation to softer magnets with increasing Fe compositions is evident. • Behavior of magnetization curves reveals the movement of magnetic domain walls. • Hopping conduction mechanism is apparent from the dielectric spectra. -- Abstract: Single crystals of piezoelectric ferrimagnet, Gallium ferrite Ga{sub 2−x}Fe{sub x}O{sub 3} (x = 0.8, 1.0 and 1.2) were grown by optical floating zone technique. Phase confirmation was done by X-ray diffraction and the lattice parameters were determined via Rietveld refinement which shows a linear variation. Composition of the grown crystals was confirmed by energy dispersive X-ray spectra. Temperature and frequency dependent dielectric spectra have been used to explain the conduction mechanism in Ga{sub 2−x}Fe{sub x}O{sub 3} single crystals. Dielectric constant of 1610 was obtained for GaFeO{sub 3} (x = 1) and increases with x. With increasing iron concentration, a linear increase in T{sub N} is observed and the crystals transform as softer magnets.

  15. CdTe nanoparticles for the deposition of CdTe films using close spaced sublimation

    Science.gov (United States)

    Schumm, Benjamin; Althues, Holger; Kaskel, Stefan

    2010-08-01

    In this work a nanostructured CdTe powder was applied as a source material for CdTe film deposition via Close Spaced Sublimation (CSS). Growth kinetics and the resulting film properties were studied and compared to the films deposited from a commercially available CdTe bulk powder as source. The nanostructured powder was synthesized by a solvothermal elemental reaction of Cd and Te in ethylene diamine leading to particles of around 100-500 nm in diameter with a specific surface area of 4.1 m 2 g -1. An increase in the deposition rate by the factor of 1.7 was observed for the nanostructured powder as compared to the bulk material.

  16. Preparation and Properties of CdTe Polycrystalline Films for Solar Cells

    Institute of Scientific and Technical Information of China (English)

    ZHENG Huajing; ZHANG Jingquan; FENG Lianghuan; ZHENG Jiagui; CAI Wei; LI Bing; CAI Yaping

    2006-01-01

    The structure and characteristics of CdTe thin films are closely dependent on the whole deposition process in close-space sublimation (CSS). The physical mechanism of CSS was analyzed and the temperature distribution in CSS system was measured, and the influences of the increasing-temperature process and pressure on the preliminary nucleus creation were studied. The results indicate: the samples deposited at different pressures have a cubical structure of CdTe and the diffraction peaks of CdS and SnO2∶F. As the atmosphere pressure increases, the crystal size of CdTe decreases, the rate of the transparency of the thin film decreases and the absorption side moves towards the short-wave direction. After a 4-minute depositing process with a substrate temperature of 500 ℃ and a source temperature of 620 ℃, the polycrystalline thin films can be made, so the production of high-quality integrated cell with SnO2:F/CdS/CdTe/Au structure is hopeful.

  17. Optical absorption enhancement of CdTe nanostructures by low-energy nitrogen ion bombardment

    Science.gov (United States)

    Akbarnejad, E.; Ghoranneviss, M.; Mohajerzadeh, S.; Hantehzadeh, M. R.; Asl Soleimani, E.

    2016-02-01

    In this paper we present the fabrication of cadmium telluride (CdTe) nanostructures by means of RF magnetron sputtering followed by low-energy ion implantation and post-thermal treatment. We have thoroughly studied the structural, optical, and morphological properties of these nanostructures. The effects of nitrogen ion bombardment on the structural parameters of CdTe nanostructures such as crystal size, microstrain, and dislocation density have been examined. From x-ray diffractometer (XRD) analysis it could be deduced that N+ ion fluence and annealing treatment helps to form (3 0 0) orientation in the crystalline structure of cadmium-telluride films. Fluctuations in optical properties like the optical band gap and absorption coefficient as a function of N+ ion fluences have been observed. The annealing of the sample irradiated by a dose of 1018 ions cm-2 has led to great enhancement in the optical absorption over a wide range of wavelengths with a thickness of 250 nm. The enhanced absorption is significantly higher than the observed value in the original CdTe layer with a thickness of 3 μm. Surface properties such as structure, grain size and roughness are noticeably affected by varying the nitrogen fluences. It is speculated that nitrogen bombardment and post-annealing treatment results in a smaller optical band gap, which in turn leads to higher absorption. Nitrogen bombardment is found to be a promising method to increase efficiency of thin film solar cells.

  18. Thin-film CdTe cells: Reducing the CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Plotnikov, V.; Liu, X.; Paudel, N.; Kwon, D.; Wieland, K.A.; Compaan, A.D., E-mail: alvin.compaan@utoledo.edu

    2011-08-31

    Polycrystalline thin-film CdTe is currently the dominant thin-film technology in world-wide PV manufacturing. With finite Te resources world-wide, it is appropriate to consider the limits to reducing the thickness of the CdTe layer in these devices. In our laboratory we have emphasized the use of magnetron sputtering for both CdS and CdTe achieving AM1.5 efficiency over 13% on 3 mm soda-lime glass with commercial TCO and 14% on 1 mm aluminosilicate glass. This deposition technique is well suited to good control of very thin layers and yields relatively small grain size which also facilitates high performance with ultra-thin layers. This paper describes our magnetron sputtering studies for fabrication of very thin CdTe cells. Our thinnest cells had CdTe thicknesses of 1 {mu}m, 0.5 {mu}m and 0.3 {mu}m and yielded efficiencies of 12%, 9.7% and 6.8% respectively. With thinner cells Voc, FF and Jsc are reduced. Current-voltage (J-V), temperature dependent J-V (J-V-T) and apparent quantum efficiency (AQE) measurements provide valuable information for understanding and optimizing cell performance. We find that the stability under light soak appears not to depend on CdTe thickness from 2.5 to 0.5 {mu}m. The use of semitransparent back contacts allows the study of bifacial response which is particularly useful in understanding carrier collection in the very thin devices.

  19. Development of surgical gamma probes with TlBr semiconductors and CsI(Tl) scintillators crystals; Desenvolvimento de sondas cirurgicas radioguiadas com semicondutores de TlBr e com cristais cintiladores de CsI (Tl)

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Fabio Eduardo da

    2006-07-01

    Radio guided surgery, using probes with radiation detectors, has been prominence in the medical area in the last decade. This technique consists in injecting a radioactive substance to concentrate in tumour and assist the localization during the surgical procedure. The radio guided surgeries allowing the identification of lymph node has revolutioned the behavior of tumour in initial stadium when are being spread by lymphatic way. The conditions imposed to the surgery due the proximity between some lymph nodes, demands of the probes, a small diameters and capacity of individual identification of these lymph nodes radiolabelled by a specific tracer. The international market supplies these probes with CdTe semiconductors and scintillators, but there is some time lack a promptly technical assistance in the Brazilian market. This work developed probes with national technology, using CsI(Tl) scintillators crystals and, in substitution to CdTe crystals semiconductors, the TlBr crystal, that is a new semiconductor detector in a world-wide development, with advantages in relation to the CdTe. Both crystals have been grown in IPEN. All the necessary electronics, specially, the preamplifier, that was also a restrictive factor for development of these types of probe in the country, have been developed with components found in the national market. Systematic measures of spatial resolution, spatial selectivity, maximum sensitivity and quality of the shielding have been carried the probes development. The results have shown that the probes, one with the CsI(Tl) crystal and another with TlBr semiconductor presented the requested performance in the international literature for radio guided probes. (author)

  20. Impact of thermal annealing on physical properties of vacuum evaporated polycrystalline CdTe thin films for solar cell applications

    Science.gov (United States)

    Chander, Subhash; Dhaka, M. S.

    2016-06-01

    A study on impact of post-deposition thermal annealing on the physical properties of CdTe thin films is undertaken in this paper. The thin films of thickness 500 nm were grown on ITO and glass substrates employing thermal vacuum evaporation followed by post-deposition thermal annealing in air atmosphere within low temperature range 150-350 °C. These films were subjected to the XRD, UV-Vis NIR spectrophotometer, source meter, SEM coupled with EDS and AFM for structural, optical, electrical and surface topographical analysis respectively. The diffraction patterns reveal that the films are having zinc-blende cubic structure with preferred orientation along (111) and polycrystalline in nature. The crystallographic parameters are calculated and discussed in detail. The optical band gap is found in the range 1.48-1.64 eV and observed to decrease with thermal annealing. The current-voltage characteristics show that the CdTe films exhibit linear ohmic behavior. The SEM studies show that the as-grown films are homogeneous, uniform and free from defects. The AFM studies reveal that the surface roughness of films is observed to increase with annealing. The experimental results reveal that the thermal annealing has significant impact on the physical properties of CdTe thin films and may be used as absorber layer to the CdTe/CdS thin films solar cells.

  1. Homogeneous CdTe quantum dots-carbon nanotubes heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Kayo Oliveira [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, CEP 36301-160, São João del-Rei, MG (Brazil); Bettini, Jefferson [Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, CEP 13083-970, Campinas, SP (Brazil); Ferrari, Jefferson Luis [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, CEP 36301-160, São João del-Rei, MG (Brazil); Schiavon, Marco Antonio, E-mail: schiavon@ufsj.edu.br [Grupo de Pesquisa em Química de Materiais – (GPQM), Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, Campus Dom Bosco, Praça Dom Helvécio, 74, CEP 36301-160, São João del-Rei, MG (Brazil)

    2015-01-15

    The development of homogeneous CdTe quantum dots-carbon nanotubes heterostructures based on electrostatic interactions has been investigated. We report a simple and reproducible non-covalent functionalization route that can be accomplished at room temperature, to prepare colloidal composites consisting of CdTe nanocrystals deposited onto multi-walled carbon nanotubes (MWCNTs) functionalized with a thin layer of polyelectrolytes by layer-by-layer technique. Specifically, physical adsorption of polyelectrolytes such as poly (4-styrene sulfonate) and poly (diallyldimethylammonium chloride) was used to deagglomerate and disperse MWCNTs, onto which we deposited CdTe quantum dots coated with mercaptopropionic acid (MPA), as surface ligand, via electrostatic interactions. Confirmation of the CdTe quantum dots/carbon nanotubes heterostructures was done by transmission and scanning electron microscopies (TEM and SEM), dynamic-light scattering (DLS) together with absorption, emission, Raman and infrared spectroscopies (UV–vis, PL, Raman and FT-IR). Almost complete quenching of the PL band of the CdTe quantum dots was observed after adsorption on the MWCNTs, presumably through efficient energy transfer process from photoexcited CdTe to MWCNTs. - Highlights: • Highly homogeneous CdTe-carbon nanotubes heterostructures were prepared. • Simple and reproducible non-covalent functionalization route. • CdTe nanocrystals homogeneously deposited onto multi-walled carbon nanotubes. • Efficient energy transfer process from photoexcited CdTe to MWCNTs.

  2. Comparative study of trap densities of states in CdTe /CdS solar cells

    Science.gov (United States)

    Proskuryakov, Y. Y.; Major, J. D.; Durose, K.; Barrioz, V.; Irvine, S. J. C.; Jones, E. W.; Lamb, D.

    2007-10-01

    Density of deep and shallow states has been investigated in three different kinds of CdTe /CdS samples, two of which were grown by metal-organic chemical vapor deposition (MOCVD) and one by close-space sublimation (CSS) methods. The MOCVD samples were p doped by As and grown either with or without a ZnO buffer layer between the transparent conductor and CdS layers. Capacitance-voltage, admittance spectroscopy, and quantum efficiency measurements show pronounced effects of As doping and ZnO incorporation. It is found that A centers and vacancies of Cd, usually observed in CSS devices, are absent in the defect spectra of MOCVD samples.

  3. ZnO layers grown by Atomic Layer Deposition: A new material for transparent conductive oxide

    Energy Technology Data Exchange (ETDEWEB)

    Godlewski, M., E-mail: godlew@ifpan.edu.p [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, Warsaw (Poland); Department of Mathematics and Natural Sciences, College of Science, Cardinal Stefan Wyszynski University, Warsaw (Poland); Guziewicz, E.; Luka, G.; Krajewski, T. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, Warsaw (Poland); Lukasiewicz, M.; Wachnicki, L.; Wachnicka, A. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, Warsaw (Poland); Department of Mathematics and Natural Sciences, College of Science, Cardinal Stefan Wyszynski University, Warsaw (Poland); Kopalko, K. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, Warsaw (Poland); Sarem, A.; Dalati, B. [Department of Physics, Faculty of Science, Tishreen University, Latakia (Syrian Arab Republic)

    2009-12-15

    We demonstrate possibility of a control (by selection of zinc precursors and variation of a growth temperature) of electrical properties of ZnO films grown by Atomic Layer Deposition (ALD). ZnO films grown by ALD are used in test photovoltaic devices (solar cells) as transparent conductive oxides for upper, transparent layer in inorganic and organic solar cells, and as n-type partners of p-type CdTe.

  4. A novel visible-light Nd-doped CdTe photocatalyst for degradation of Reactive Red 43:Synthesis, characterization, and photocatalytic properties

    Institute of Scientific and Technical Information of China (English)

    Younes HANIFEHPOUR; Nazanin HAMNABARD; Bamin KHOMAMI; Sang Woo JOO; Bong-Ki MIN; Jae Hak JUNG

    2016-01-01

    Novel high-efficiency visible-light-sensitive Nd-doped CdTe nanoparticles were prepared with various doping concentra-tions of neodymium ion by a facile hydrothermal method. The reaction products were analyzed via X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), photoelectron spectroscopy (XPS), and UV-Vis diffuse re-flectance spectroscopy techniques. Red shift was seen in the absorption band edge peak in the UV-Vis absorbance spectrum with in-creasing Nd content. The XRD and XPS results confirmed that Nd ions successfully replaced Cd atoms and were incorporated into the crystal lattice of CdTe. SEM and TEM images indicated spherical structure and high crystallinity. Even at a very low Nd/CdTe molar ratio of 2 mol.%, Nd doping could greatly enhance the photocatalytic activity of CdTe. The photocatalytic activity of Nd-doped CdTe nanoparticles was evaluated by monitoring the decolorization of RRed 43 in aqueous solution under visible-light irradiation. The color removal efficiency of Nd0.08Cd0.92Te and pure CdTe were 83.14% and 14.32% after 100 min of treatment, respectively. Among different amounts of the doping agent, 8 mol.% Nd indicated the highest decolorization. The presence of radical scavengers such as Cl−, CO32−, SO42−, and buthanol was found to reduce the decolorization efficiency.

  5. Growth of epitaxial CdTe/CdS heterostructures for single crystal thin film solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, K.; Tiwari, A.N.; Blunier, S.; Zogg, H. [Swiss Federal Inst. of Tech., Zuerich (Switzerland). Arbeitsgemeinschaft fuer Industrielle Forschung

    1994-12-31

    Epitaxial CdTe/CdS heterostructures have been grown by molecular beam epitaxy onto BaF{sub 2} covered Si (111) substrates. An epitaxial BaF{sub 2} buffer is used for compatibility reasons, and because of easier dissolution during the lift-off processing. Epitaxy of cubic CdS (111) layers on BaF{sub 2}/Si (111) is achieved; electron channeling patterns exhibit a three-fold symmetry which is a characteristic for cubic crystal structures. The growth kinetics and structural properties of epitaxial CdS and CdTe/CdS have been studied with reflection high energy electron diffraction, Rutherford backscattering spectrometry and X-ray diffraction rocking curve measurements.the full width at half maximum of the (222) CdS and (333) CdTe X-ray peaks are {approximately} 1,150 arc sec for 2.7 and 3.4 {micro}m thick CdS and CdTe layers, respectively. To fabricate CdTe/CdS single crystal thin film solar cells, a lift-off process has been developed to remove the epitaxial layers from the Si substrates.

  6. Multidirectional channeling analysis of epitaxial CdTe layers using an automatic RBS/channeling system

    Energy Technology Data Exchange (ETDEWEB)

    Wielunski, L.S.; Kenny, M.J. [CSIRO, Lindfield, NSW (Australia). Applied Physics Div.

    1993-12-31

    Rutherford Backscattering Spectrometry (RBS) is an ion beam analysis technique used in many fields. The high depth and mass resolution of RBS make this technique very useful in semiconductor material analysis [1]. The use of ion channeling in combination with RBS creates a powerful technique which can provide information about crystal quality and structure in addition to mass and depth resolution [2]. The presence of crystal defects such as interstitial atoms, dislocations or dislocation loops can be detected and profiled [3,4]. Semiconductor materials such as CdTe, HgTe and Hg+xCd{sub 1-x}Te generate considerable interest due to applications as infrared detectors in many technological areas. The present paper demonstrates how automatic RBS and multidirectional channeling analysis can be used to evaluate crystal quality and near surface defects. 6 refs., 1 fig.

  7. Ablation of CdTe with 100 {mu}s Nd:YAG laser pulses: dependence on target preparation method

    Energy Technology Data Exchange (ETDEWEB)

    Rzeszutek, J. [Instytut Fizyki, Politechnika Poznanska, ul. Nieszawska 13a, 61-965 Poznan (Poland); Savchuk, V. [Pidstryhach Institute for Applied Problems of Mechanics and Mathematics, National Academy of Sciences of Ukraine, 3B Naukova Street, 79601 Lviv (Ukraine); Oszwaldowski, M.

    2008-01-15

    The results of experimental studies of the ablation of CdTe with a pulsed Nd:YAG laser (wavelength 1064 nm) performed with 100 {mu}s pulses and repetition time of 35 Hz are presented for the pulse energy range from 0.13 to 0.25 J. The main goal is to elucidate the dependence of the ablation process on the target preparation method. The investigation of the vapour stream intensity and chemical composition and their evolution with time are performed with a quadrupole mass spectrometer synchronized with the laser pulses. These studies are performed for three kinds of targets: a target made of CdTe bulk crystal (BC target), a target made of CdTe fine powder pressed under the pressure of 700 atm (PP target), and a target made of loose CdTe powder (N-PP target). The applicability of these targets for obtaining high quality CdTe thin films is determined. The best chemical composition of the vapour stream can be obtained with the BC target. A major drawback of this target is the energetic threshold for ablation with Nd:YAG laser and resulting delay in the ablation process above the threshold. The advantage of powder targets over BC target is the lack of any ablation threshold or delay. Weaker angular dependence of the particle emission (associated with the surface roughness), if confirmed in further experiments, can be the most important advantage of PP and N-PP targets. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Giant pyroelectric coefficient determined from the frequency dependence of the pyroelectric signal generated by epitaxial Pb(Zr0.2Ti0.8)O3 layers grown on single crystal SrTiO3 substrates

    Science.gov (United States)

    Botea, M.; Iuga, A.; Pintilie, L.

    2013-12-01

    Epitaxial Pb(Zr0.2Ti0.8)O3 layers of good structural quality were grown on single crystal SrTiO3 substrates. The pyroelectric coefficient was estimated from the signal generated by the ferroelectric film working as a pyroelectric detector in the voltage mode, without pre-poling procedure. The obtained value is as high as 1.9 × 10-3 C/m2 K. The large value is attributed to the presence of 90° ferroelectric domains and to the compressive misfit strain, leading to an enhanced ferroelectric polarization.

  9. CdTe ambulatory ventricular function monitor

    Energy Technology Data Exchange (ETDEWEB)

    Lazewatsky, J.L.; Alpert, N.M.; Moore, R.H.; Boucher, C.A.; Strauss, H.W.

    1979-01-01

    A prototype device consisting of two arrays of CdTe detectors, ECG amplifiers and gate, microprocessor, and tape recorder was devised to record simultaneous ECG and radionuclide blood pool data from the left ventricle for extended periods during normal activity. The device is intended to record information concerning both normal and abnormal physiology of the heart and to permit the evaluation of new pharmaceuticals under everyday conditions. Preliminary results indicate that the device is capable of recording and reading out data from both phantoms and patients.

  10. Phase composition, structure and properties of (ZrO2)1-x-y(Sc2O3)x(Y2O3)y solid solution crystals (x=0.08-0.11; y=0.01-0.02) grown by directional crystallization of the melt

    Science.gov (United States)

    Borik, M. A.; Bredikhin, S. I.; Bublik, V. T.; Kulebyakin, A. V.; Kuritsyna, I. E.; Lomonova, E. E.; Milovich, F. O.; Myzina, V. A.; Osiko, V. V.; Ryabochkina, P. A.; Seryakov, S. V.; Tabachkova, N. Yu.

    2017-01-01

    For the first time crystals of the (ZrO2)1-x-y(Sc2O3)x(Y2O3)y solid solutions (x=0.08-0.11; y=0.01-0.02) have been grown by directional melt crystallization. We have determined the range of melt compositions for which growth from the melt produces of the (ZrO2)1-x-y(Sc2O3)x(Y2O3)y solid solution single crystals. The single-phase optically transparent single crystals following composition were grown: (ZrO2)0.9(Sc2O3)0.08(Y2O3)0.02; (ZrO2)0.89(Sc2O3)0.09(Y2O3)0.02; (ZrO2)0.89(Sc2O3)0.10(Y2O3)0.01; (ZrO2)0.88(Sc2O3)0.10(Y2O3)0.02. Comprehensive study of the crystal structure by using XRD, transmission electron microscopy, and Raman spectroscopy revealed that the all single crystals, which is identified by XRD data as cubic one, in fact have t″ tetragonal structure, which forms by small displacement of oxygen ions along the c-axis. Data on the phase stability of the crystals during mechanical crushing were obtained. The electrical conductivity was measured as a function of temperature by electrochemical impedance spectroscopy. It is established that (ZrO2)0.89(Sc2O3)0.10(Y2O3)0.01 crystals have the highest conductivity (0.168 S/cm at 1173 K).

  11. Determination of Ring-OSF Position in Czochralski Silicon Single Crystals by Numerical Analysis of Distribution of Grown-in Defects

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A numerical analysis technique that incorporates Voronkov's model were examined and used to estimate the distribution of defects during crystal growth. By comparisons of the distribution of the density of LSTD and the position of R-OSF in non-nitrogen-doped (non-N-doped) and nitrogen-doped (N-doped) silicon crystals, it is found that the results of the numerical analyses agree with practically evaluated data. The observations suggest that the R-OSF nucleus is a VO2 complex that is formed by bonds between oxygen atoms and residual vacancies consumed during the formation of void defects. This suggests that Voronkov's model can be used to accurately predict the generation and growth of defects in silicon crystals. This numerical analysis technique was also found to be an effective method of estimating the distribution of defects in silicon crystals during crystal growth.

  12. Structural and AC conductivity study of CdTe nanomaterials

    Science.gov (United States)

    Das, Sayantani; Banerjee, Sourish; Sinha, T. P.

    2016-04-01

    Cadmium telluride (CdTe) nanomaterials have been synthesized by soft chemical route using mercapto ethanol as a capping agent. Crystallization temperature of the sample is investigated using differential scanning calorimeter. X-ray diffraction and transmission electron microscope measurements show that the prepared sample belongs to cubic structure with the average particle size of 20 nm. Impedance spectroscopy is applied to investigate the dielectric relaxation of the sample in a temperature range from 313 to 593 K and in a frequency range from 42 Hz to 1.1 MHz. The complex impedance plane plot has been analyzed by an equivalent circuit consisting of two serially connected R-CPE units, each containing a resistance (R) and a constant phase element (CPE). Dielectric relaxation peaks are observed in the imaginary parts of the spectra. The frequency dependence of real and imaginary parts of dielectric permittivity is analyzed using modified Cole-Cole equation. The temperature dependence relaxation time is found to obey the Arrhenius law having activation energy ~0.704 eV. The frequency dependent conductivity spectra are found to follow the power law. The frequency dependence ac conductivity is analyzed by power law.

  13. CdTe reflection anisotropy line shape fitting

    Energy Technology Data Exchange (ETDEWEB)

    Molina-Contreras, J.R., E-mail: rmolina@correo.ita.mx [Departamento de Ingenieria Electrica y Electronica, Instituto Tecnologico de Aguascalientes, Av. Lopez Mateos 1801 Ote. Fracc. Bona Gens, Aguascalientes, Ags, 20256 (Mexico)

    2010-10-25

    In this paper, an empirical novel plane-wave time dependent ensemble is introduced to fit the RA, the reflectance (R) and the imaginary part of the dielectric function oscillation measured around the E{sub 1} and E{sub 1} + {Delta}{sub 1} transition region in II-VI semiconductors. By applying the new plane-wave time dependent ensemble to the measured spectrum for a (0 0 1) oriented CdTe undoped commercial wafer, crystallized in a zinc-blende structure, a very good agreement was found between the measured spectrum and the fitting. In addition to this, the reliability of the plane-wave time dependent ensemble was probed, by comparing the results with the calculated fitting in terms of a Fourier series and in terms of a six-order polynomial fit. Our analysis suggests, that the experimental oscillation in the line shape of the RA cannot be fitted with a Fourier series using harmonics multiples of the number which dominates the measured RA spectra in the argument of the plane-wave ensemble.

  14. Extended defects in MBE-grown CdTe-based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wichrowska, Karolina; Wosinski, Tadeusz; Kret, Slawomir; Chusnutdinow, Sergij; Karczewski, Grzegorz [Institute of Physics, Polish Academy of Sciences, Warsaw (Poland); Rawski, Michal [Analytical Laboratory, Maria Curie-Sklodowska University, Lublin (Poland); Yastrubchak, Oksana [Institute of Physics, Maria Curie-Sklodowska University, Lublin (Poland)

    2015-08-15

    Extended defects in the p -ZnTe/n -CdTe heterojunctions grown by the molecular-beam epitaxy technique on two different substrates, GaAs and CdTe, have been investigated by deep-level transient spectroscopy (DLTS) and transmission electron microscopy (TEM). Four hole traps, called H1 to H4, and one electron trap, called E3, have been revealed in the DLTS spectra measured for the heterojunctions grown on the GaAs substrates. The H1, H3, H4 and E3 traps have been attributed to the electronic states of dislocations on the ground of their logarithmic capture kinetics. The DLTS peaks associated with the H1 and E3 traps were not observed in the DLTS spectra measured for the heterojunction grown on the CdTe substrate. They are most likely associated with threading dislocations generated at the mismatched interface with the GaAs substrate. Cross-sectional TEM images point out that they are dislocations of the 60 -type. In both the types of heterojunctions the H4 trap was observed only under forward-bias filling pulse, suggesting that this trap is associated with the CdTe/ZnTe interface. In addition, TEM images revealed also the presence of intrinsic and extrinsic stacking faults in the CdTe layers, which may considerably affect their electronic properties. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Auger relative sensitivivity factors for CdTe oxide

    OpenAIRE

    P. Bartolo-Pérez; J. L. Peña; M.H. Farías

    1999-01-01

    The Auger lineshape of Te MNN in measurements of Auger spectra of CdTe oxide films with various degrees of oxidation was analyzed. By using standards from stoichiometric compounds, Auger relative sensitivity factors (RSF´s) of Cd, Te and O for CdTe oxide thin films were obtained. The value of the RFS of oxygen is about constant, 0.27-0.28, for the standard compound, CdO, TeO2 and CdTeO3 (considering the RSF of Cd as 1). However, the obtained RSF of Te changes from 0.69 in CdTe up to 0.87 in C...

  16. Process Development for High Voc CdTe Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Ferekides, C. S.; Morel, D. L.

    2011-05-01

    This is a cumulative and final report for Phases I, II and III of this NREL funded project (subcontract # XXL-5-44205-10). The main research activities of this project focused on the open-circuit voltage of the CdTe thin film solar cells. Although, thin film CdTe continues to be one of the leading materials for large-scale cost-effective production of photovoltaics, the efficiency of the CdTe solar cells have been stagnant for the last few years. This report describes and summarizes the results for this 3-year research project.

  17. Crystal growth of artificial snow

    Science.gov (United States)

    Kimura, S.; Oka, A.; Taki, M.; Kuwano, R.; Ono, H.; Nagura, R.; Narimatsu, Y.; Tanii, J.; Kamimiytat, Y.

    1984-01-01

    Snow crystals were grown onboard the space shuttle during STS-7 and STS-8 to facilitate the investigation of crystal growth under conditions of weightlessness. The experimental design and hardware are described. Space-grown snow crystals were polyhedrons looking like spheres, which were unlike snow crystals produced in experiments on Earth.

  18. Structural properties of Cu2O epitaxial films grown on c-axis single crystal ZnO by magnetron sputtering

    Science.gov (United States)

    Gan, J.; Gorantla, S.; Riise, H. N.; Fjellvâg, Ø. S.; Diplas, S.; Løvvik, O. M.; Svensson, B. G.; Monakhov, E. V.; Gunnæs, A. E.

    2016-04-01

    Epitaxial Cu2O films grown by reactive and ceramic radio frequency magnetron sputtering on single crystalline ZnO (0001) substrates are investigated. The films are grown on both O- and Zn-polar surface of the ZnO substrates. The Cu2O films exhibit a columnar growth manner apart from a ˜5 nm thick CuO interfacial layer. In comparison to the reactively sputtered Cu2O, the ceramic-sputtered films are less strained and appear to contain nanovoids. Irrespective of polarity, the Cu2O grown by reactive sputtering is observed to have (111)Cu2O||(0001)ZnO epitaxial relationship, but in the case of ceramic sputtering the films are found to show additional (110)Cu2O reflections when grown on O-polar surface. The observed CuO interfacial layer can be detrimental for the performance of Cu2O/ZnO heterojunction solar cells reported in the literature.

  19. Epitaxial single-crystal thin films of MnxTi1 - xO2 - δ grown on (rutile)TiO2 substrates with pulsed laser deposition: Experiment and theory

    Science.gov (United States)

    Ilton, Eugene S.; Droubay, Timothy C.; Chaka, Anne M.; Kovarik, Libor; Varga, Tamas; Arey, Bruce W.; Kerisit, Sebastien N.

    2015-02-01

    Epitaxial rutile-structured single-crystal MnxTi1 - xO2 - δ films were synthesized on rutile- (110) and -(001) substrates using pulsed laser deposition. The films were characterized by reflection high-energy electron diffraction (RHEED), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and aberration-corrected transmission electron microscopy (ACTEM). Under the present conditions, 400 °C and PO2 = 20 mTorr, single crystal epitaxial thin films were grown for x = 0.13, where x is the nominal average mole fraction of Mn. In fact, arbitrarily thick films could be grown with near invariant Mn/Ti concentration profiles from the substrate/film interface to the film surface. In contrast, at x = 0.25, Mn became enriched towards the surface and a secondary nano-scale phase formed which appeared to maintain the basic rutile structure but with enhanced z-contrast in the tunnels, or interstitial sites. Ab initio thermodynamic calculations provided quantitative estimates for the destabilizing effect of expanding the β-MnO2 lattice parameters to those of TiO2-rutile, the stabilizing effect of diluting Mn with increasing Ti concentration, and competing reaction pathways for surface oxide formation.

  20. Epitaxial single-crystal thin films of MnxTi1-xO2-δ grown on (rutile)TiO2 substrates with pulsed laser deposition: Experiment and theory

    Energy Technology Data Exchange (ETDEWEB)

    Ilton, Eugene S.; Droubay, Timothy C.; Chaka, Anne M.; Kovarik, Libor; Varga, Tamas; Arey, Bruce W.; Kerisit, Sebastien N.

    2015-02-01

    Epitaxial rutile-structured single-crystal MnxTi1-xO2-δ films were synthesized on rutile- (110) and -(001) substrates using pulsed laser deposition. The films were characterized by reflection high-energy electron diffraction (RHEED), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and aberration-corrected transmission electron microscopy (ACTEM). Under the present conditions, 400oC and PO2 = 20 mTorr, single crystal epitaxial thin films were grown for x = 0.13, where x is the nominal average mole fraction of Mn. In fact, arbitrarily thick films could be grown with near invariant Mn/Ti concentration profiles from the substrate/film interface to the film surface. In contrast, at x = 0.25, Mn became enriched towards the surface and a secondary nano-scale phase formed which appeared to maintain the basic rutile structure but with enhanced z-contrast in the tunnels, or tetrahedral interstitial sites. Ab initio thermodynamic calculations provided quantitative estimates for the destabilizing effect of expanding the β-MnO2 lattice parameters to those of TiO2-rutile, the stabilizing effect of diluting Mn with increasing Ti concentration, and competing reaction pathways.

  1. Structure and superconductivity of (Li1-x Fe x )OHFeSe single crystals grown using A x Fe2-y Se2 (A  =  K, Rb, and Cs) as precursors

    Science.gov (United States)

    Yu, G.; Zhang, G. Y.; Ryu, G. H.; Lin, C. T.

    2016-01-01

    We present results on the hydrothermal growth of (\\text{L}{{\\text{i}}1-x}\\text{F}{{\\text{e}}x} )OHFeSe single crystals using floating-zone-grown {{A}x}\\text{F}{{\\text{e}}2-y}\\text{S}{{\\text{e}}2} (A  =  K, Rb, and Cs) as precursors. The growth proceeds by the hydrothermal ion exchange of Li/Fe-O-H for K, Rb, and Cs, resulting in a stacking layer of (\\text{L}{{\\text{i}}1-x}\\text{F}{{\\text{e}}x} )OH sandwiched between the FeSe layers. Optimal growth parameters are achieved using high quality A 0.80Fe1.81Se2 single crystals added to the mixtures of LiOH, H2O, Fe and C(NH2)2Se in an autoclave and subsequently heated to 120 °C for 2 d, to obtain highest quality single crystals. The obtained crystals have lateral dimensions up to centimeters, with the final size related to that of the precursor crystal used. All (\\text{L}{{\\text{i}}1-x}\\text{F}{{\\text{e}}x} )OHFeSe single crystals show a superconducting transition temperature T c  >  42 K, regardless of the phase of the precursor such as superconducting K0.80Fe1.81Se2 (T c  =  29.31 K) or non-superconducting Rb0.80Fe1.81Se2 or poor-superconducting Cs0.80Fe1.81Se2 (T c  =  28.67 K). The T c and transition width ΔT vary in the obtained single crystals, due to the inhomogeneity of the ionic exchange. X-ray diffraction analysis demonstrates that the 245 insulating phase is absent in the ion-exchanged single crystals, while it is observed in the {{A}x}\\text{F}{{\\text{e}}2-y}\\text{S}{{\\text{e}}2} precursors. Comparative studies of the structure, magnetization, and superconductivity on the parent A 0.80Fe1.81Se2 and the ion-exchanged (\\text{L}{{\\text{i}}1-x}\\text{F}{{\\text{e}}x} )OHFeSe crystals are discussed. A phase diagram including antiferromagnetic spin density wave and superconducting phases is also proposed.

  2. Structural study of vapour phase deposited 3,4,9,10-perylene tetracarboxylicacid diimide: Comparison between single crystal and ultra thin films grown on Pt(100)

    Energy Technology Data Exchange (ETDEWEB)

    Guillermet, O. [Universite de la Mediterranee, Aix-Marseille II, CRMC-N, UPR CNRS 7251, Campus de Luminy, case 913, F-13288 Marseille Cedex 09 (France); Mossoyan-Deneux, M. [Universite de Provence, Aix-Marseille I, L2MP, UMR CNRS 6137, Faculte des Sciences de St Jerome, F-13397 Marseille Cedex 20 (France); Giorgi, M. [Service Commun de Cristallochimie, Universite Paul Cezanne, Aix-marseille III, Faculte des Sciences de St Jerome, F-13397 Marseille Cedex 20 (France); Glachant, A. [Universite de la Mediterranee, Aix-Marseille II, CRMC-N, UPR CNRS 7251, Campus de Luminy, case 913, F-13288 Marseille Cedex 09 (France)]. E-mail: glachant@crmcn.univ-mrs.fr; Mossoyan, J.C. [Universite de Provence, Aix-Marseille I, L2MP, UMR CNRS 6137, Faculte des Sciences de St Jerome, F-13397 Marseille Cedex 20 (France)

    2006-08-30

    Structural properties of a single crystal and of a thin film of 3,4,9,10-perylene-tetracarboxylic-acid-diimide are compared. The two samples are both obtained from the vapour phase, the latter being deposited at room temperature, in an ultrahigh vacuum environment, on a clean Pt(100) substrate. In the single crystal we have pointed out interactions between adjacent molecules by overlapping of the {pi} systems in the stacks and by hydrogen bonds between neighbouring stacks. The various surface unit cells of the nanocrystals from the film, identified by means of scanning tunnelling microscopy, are not comparable to those expected from the X-ray diffraction study of the single crystal and to those already published for other substrates. This fact clearly highlights the role played by the type of substrate chosen and/or the substrate-molecule interaction that affects the stacking and crystallinity of the growing crystal on top.

  3. The effect on CdS/CdTe solar cell conversion efficiency of the presence of fluorine in the usual CdCl2 treatment of CdTe

    OpenAIRE

    O. K. Echendu; Dharmadasa, I

    2015-01-01

    The addition of CdF2 to the CdCl2 solution used in the well-known CdCl2 treatment of CdS/CdTe solar cells has been observed to drastically improve the conversion efficiency of fully fabricated CdS/CdTe solar cells. The observed improvement is as a result of further enhancement of structural and optoelectronic properties of the CdCl2+CdF2-treated CdTe layers compared to the CdCl2-treated CdTe layers. A set of CdS/CdTe samples were grown by electrochemical deposition under different conditions ...

  4. CdTe thin film solar cells produced using a chamberless inline process via metalorganic chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kartopu, G., E-mail: giray.kartopu@glyndwr.ac.uk; Barrioz, V.; Monir, S.; Lamb, D.A.; Irvine, S.J.C.

    2015-03-02

    Cd{sub 1−x}Zn{sub x}S and CdTe:As thin films were deposited using a recently developed chamberless inline process via metalorganic chemical vapour deposition (MOCVD) at atmospheric pressure and assessed for fabrication of CdTe photovoltaic (PV) solar cells. Initially, CdS and Cd{sub 1−x}Zn{sub x}S coatings were applied onto 15 × 15 cm{sup 2} float glass substrates, characterised for their optical properties, and then used as the window layer in CdTe solar cells which were completed in a conventional MOCVD (batch) reactor. Such devices provided best conversion efficiency of 13.6% for Cd{sub 0.36}Zn{sub 0.64}S and 10% for CdS which compare favourably to the existing baseline MOCVD (batch reactor) devices. Next, sequential deposition of Cd{sub 0.36}Zn{sub 0.64}S and CdTe:As films was realised by the chamberless inline process. The chemical composition of a 1 μm CdTe:As/150 nm Cd{sub 0.36}Zn{sub 0.64}S bi-layer was observed via secondary ions mass spectroscopy, which showed that the key elements are uniformly distributed and the As doping level is suitable for CdTe device applications. CdTe solar cells formed using this structure provided a best efficiency of 11.8% which is promising for a reduced absorber thickness of 1.25 μm. The chamberless inline process is non-vacuum, flexible to implement and inherits from the legacy of MOCVD towards doping/alloying and low temperature operation. Thus, MOCVD enabled by the chamberless inline process is shown to be an attractive route for thin film PV applications. - Highlights: • CdS, CdZnS and CdTe thin films grown by a chamberless inline process • The inline films assessed for fabricating CdTe solar cells • 13.6% conversion efficiency obtained for CdZnS/CdTe cells.

  5. Controlled Synthesis of Nanoscale CdTe Urchins

    Institute of Scientific and Technical Information of China (English)

    BAO Jian; SHEN Yue; SUN Yan; YUE Yang; CHEN Xin; DAI Ning

    2009-01-01

    We presented a simple route to prepare nanoscale CdTe urchins in a tri-n-octylphosphine oxide(TOPO)system.CdTe urchins consisted of a core and several attached arms.The arms were ca.3 nm wide,and their lengths could be controlled with the reaction time.The authors investigated the optical absorption and structural properties of the prepared CdTe.The lengths of the arms could be tuned into CdTe nanourchins,which led to a change in the photophysical properties of the nanoscale CdTe urchins.The results,including transmission electron microscopy(TEM) and absorption spectra,indicated that mesoporous silica and aminopropyltriethoxysilane(APTES) contributed to the formation of nanoscale CdTe urchins.

  6. Modeling Copper Diffusion in Polycrystalline CdTe Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Akis, Richard [Arizona State University; Brinkman, Daniel [Arizona State University; Sankin, Igor [First Solar; Fang, Tian [First Solar; Guo, Da [Arizona State Univeristy; Vasileska, Dragica [Arizona State University; Ringhofer, Christain [Arizona State University

    2014-06-06

    It is well known that Cu plays an important role in CdTe solar cell performance as a dopant. In this work, a finite-difference method is developed and used to simulate Cu diffusion in CdTe solar cells. In the simulations, which are done on a two-dimensional (2D) domain, the CdTe is assumed to be polycrystalline, with the individual grains separated by grain boundaries. When used to fit experimental Cu concentration data, bulk and grain boundary diffusion coefficients and activation energies for CdTe can be extracted. In the past, diffusion coefficients have been typically obtained by fitting data to simple functional forms of limited validity. By doing full simulations, the simplifying assumptions used in those analytical models are avoided and diffusion parameters can thus be determined more accurately

  7. Extracting Cu Diffusion Parameters in Polycrystalline CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Akis, Richard [Arizona State Univeristy; Brinkman, Daniel [Arizona State Univeristy; Sankin, Igor [First Solar; Fang, Tian [First Solar; Guo, Da [Arizona State Univeristy; Dragica, Vasileska [Arizona State Univeristy; Ringhofer, Christian [Arizona State University

    2014-06-13

    It is well known that Cu plays an important role in CdTe solar cell performance as a dopant. In this work, a finite-difference method is developed and used to simulate Cu diffusion in CdTe solar cells. In the simulations, which are done on a two-dimensional (2D) domain, the CdTe is assumed to be polycrystal-line, with the individual grains separated by grain boundaries. When used to fit experimental Cu concentration data, bulk and grain boundary diffusion coefficients and activation energies for CdTe can be extracted. In the past, diffusion coefficients have been typically obtained by fitting data to simple functional forms of limited validity. By doing full simulations, the simplifying assumptions used in those analytical models are avoided and diffusion parameters can thus be determined more accurately.

  8. Studies of key technologies for CdTe solar modules

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper, CdS thin films, which act as the window layer and n-type partner to the p-type CdTe layer, were prepared by chemical bath deposition (CBD). CdTe thin films were deposited by the close-spaced sublimation (CSS) method. To obtain high-quality back contacts, a Te-rich layer was created with chemical etching and back contact materials were applied after CdTe annealing. The results indicate that the ZnTe/ZnTe:Cu complex layers show superior performance over other back contacts. Finally, by using laser scribing and mechanical scribing, the CdTe mini-modules were fabricated, in which a glass/SnO2:F/CdS/CdTe/ZnTe/ZnTe:Cu/Ni solar module with a PWQC-confirmed total-area efficiency of 7.03% (54 cm2) was achieved.

  9. Spatial Distribution of Dopant Incorporation in CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Guthrey, Harvey; Moseley, John; Colegrove, Eric; Burst, James; Albin, David; Metzger, Wyatt; Al-Jassim, Mowafak

    2016-11-21

    In this work we use state-of-the-art cathodoluminescence (CL) spectrum imaging that provides spectrum-per-pixel mapping of the CL emission to examine how dopant elements are incorporated into CdTe. Emission spectra and intensity are used to monitor the spatial distribution of additional charge carriers through characteristic variations in the CL emission based on theoretical modeling. Our results show that grain boundaries play a role in the incorporation of dopants in CdTe, whether intrinsic or extrinsic. This type of analysis is crucial for providing feedback to design different processing schedules that optimize dopant incorporation in CdTe photovoltaic material, which has struggled to reach high carrier concentration values. Here, we present results on CdTe films exposed to copper, phosphorus, and intrinsic doping treatments.

  10. Highly Luminescent Hybrid SiO2-Coated CdTe Quantum Dots Retained Initial Photoluminescence Efficiency in Sol-Gel SiO2 Film.

    Science.gov (United States)

    Sun, Hongsheng; Xing, Yugui; Wu, Qinan; Yang, Ping

    2015-02-01

    A highly luminescent silica film was fabricated using tetraethyl orthosilicate (TEOS) and 3-aminopropyltrimethoxysilane (APS) through a controlled sol-gel reaction. The pre-hydrolysis of TEOS and APS which resulted in the mixture of TEOS and APS in a molecular level is a key for the formation of homogenous films. The aminopropyl groups in APS play an important role for obtaining homogeneous film with high photoluminescence (PL). Red-emitting hybrid SiO2-coated CdTe nano-crystals (NCs) were fabricated by a two-step synthesis including a thin SiO2 coating via a sol-gel process and a subsequent refluxing using green-emitting CdTe NCs. The hybrid SiO2-coated CdTe NCs were embedded in a functional SiO2 film via a two-step process including adding the NCs in SiO2 sol with a high viscosity and almost without ethanol and a subsequent spinning coating. The hybrid SiO2-coated CdTe NCs retained their initial PL efficiency (54%) in the film. Being encapsulated with the hybrid NCs in the film, no change on the absorption and PL spectra of red-emitting CdTe NCs (632 nm) was observed. This indicates the hybrid NCs is stable enough during preparation. This phenomenon is ascribed to the controlled sol-gel process and a hybrid SiO2 shell on CdTe NCs. Because these films exhibited high PL efficiency and stability, they will be utilizable for potential applications in many fields.

  11. [Spectral analyzing effects of atmosphere states on the structure and characteristics of CdTe polycrystalline thin films made by close-spaced sublimation].

    Science.gov (United States)

    Zheng, Hua-jing; Zheng, Jia-gui; Feng, Liang-huan; Zhang, Jing-quan; Xie, Er-qing

    2005-07-01

    The structure and characteristics of CdTe thin films are dependent on the working atmosphere states in close-spaced sublimation. In the present paper, CdTe polycrystalline thin films were deposited by CSS in mixture atmosphere of argon and oxygen. The physical mechanism of CSS was analyzed, and the temperature distribution in CSS system was measured. The dependence of preliminary nucleus creation on the atmosphere states (involving component and pressure) was studied. Transparencies were measured and optic energy gaps were calculated. The results show that: (1) The CdTe films deposited in different atmospheres are cubic structure. With increasing oxygen concentration, a increases and reaches the maximum at 6% oxygen concentration, then reduces, and increases again after passing the point at 12% oxygen concentration. Among them, the sample depositing at 9% oxygen concentration is the best. The optic energy gaps are 1.50-1.51 eV for all CdTe films. (2) The samples depositing at different pressures at 9% oxygen concentration are all cubical structure of CdTe, and the diffraction peaks of CdS and SnO2:F still appear. With the gas pressure increasing, the crystal size of CdTe minishes, the transparency of the thin film goes down, and the absorption side shifts to the short-wave direction. (3) The polycrystalline thin films with high quality deposit in 4 minutes under the depositing condition that the substrate temperature is 550 degrees C, and source temperature is 620 degrees C at 9% oxygen concentration.

  12. New morphology, symmetry, orientation and perfection of lysozyme crystals grown in a magnetic field when paramagnetic salts (NiCl 2, CoCl 2 and MnCl 2) are used as crystallizing agents

    Science.gov (United States)

    Yin, D. C.; Oda, Y.; Wakayama, N. I.; Ataka, M.

    2003-05-01

    Chlorides with different paramagnetic cations such as Ni 2+, Co 2+ and Mn 2+ were used as crystallizing agents instead of NaCl to crystallize hen egg-white lysozyme. NiCl 2 was found to give two types of crystals with different morphologies: one (roof-like) is a new type of orthorhombic P2 12 12 1 crystal with lattice constants a=79.0 Å, b=80.8 Å, and c=37.5 Å; the second is an ordinary tetragonal crystal of its characteristic shape with a= b=80 Å and c=38 Å. The appearance of the roof-like shape became dominant in the presence of a magnetic field. In the case of using CoCl 2 and MnCl 2, ordinary tetragonal crystals were formed. A striking fact was that the a-axis of the crystals oriented along the magnetic field when CoCl 2 was used, as opposed to the usual c-axis orientation. Large and optically perfect lysozyme crystals can be obtained in a magnetic field when NiCl 2 or MnCl 2 is used as a crystallizing agent. These profound effects of the paramagnetic cations may be caused by the coordination of Ni 2+ and Co 2+ ions to a lysozyme molecule, which was found by X-ray crystallography.

  13. CdTe Photovoltaic Devices for Solar Cell Applications

    Science.gov (United States)

    2011-12-01

    July 28, 2011 14. ABSTRACT Cadmium telluride ( CdTe ) has been recognized as a promising photovoltaic material for thin - film solar cells because of...mail.mil Phone: 301 394 0963 ABSTRACT Cadmium telluride ( CdTe ) has been recognized as a promising photovoltaic material for thin - film ...absorption coefficient allows films as thin as 2 μm to absorb more than 98% of the above-bandgap radiation. Cells with efficiencies near 17% have been

  14. CdTe Photovoltaics for Sustainable Electricity Generation

    Science.gov (United States)

    Munshi, Amit; Sampath, Walajabad

    2016-09-01

    Thin film CdTe (cadmium telluride) is an important technology in the development of sustainable and affordable electricity generation. More than 10 GW of installations have been carried out using this technology around the globe. It has been demonstrated as a sustainable, green, renewable, affordable and abundant source of electricity. An advanced sublimation tool has been developed that allows highly controlled deposition of CdTe films onto commercial soda lime glass substrates. All deposition and treatment steps can be performed without breaking the vacuum within a single chamber in an inline process that can be conveniently scaled to a commercial process. In addition, an advanced cosublimation source has been developed to allow the deposition of ternary alloys such as Cd x Mg1- x Te to form an electron reflector layer which is expected to address the voltage deficits in current CdTe devices and to achieve very high efficiency. Extensive materials characterization, including but not limited to scanning electron microscopy, transmission electron microscopy, energy dispersive x-ray spectroscopy, high resolution transmission electron microscopy and electron back-scatter diffraction, has been performed to get a better understanding of the effects of processing conditions on CdTe thin film photovoltaics. This combined with computer modeling such as density function theory modeling gives a new insight into the mechanism of CdTe photovoltaic function. With all these efforts, CdTe photovoltaics has seen great progress in the last few years. Currently, it has been recorded as the cheapest source of electricity in the USA on a commercial scale, and further improvements are predicted to further reduce the cost while increasing its utilization. Here, we give an overview of the advantages of thin film CdTe photovoltaics as well as a brief review of the challenges that need to be addressed. Some fundamental studies of processing conditions for thin film CdTe are also presented

  15. Dynamic effects in CdTe quantum-dot LEDs

    OpenAIRE

    Gallardo, D. E.

    2006-01-01

    In this work the electrical and electroluminescence properties CdTe nanocrystal films were analysed. The structure consisted of a multilayer of CdTe nanocrystals deposited by the layer-by-layer technique, sandwiched between an ITO anode and an aluminium cathode. The first part of this work was dedicated to structural and process improvement. Earlier devices, produced through a layer-by-layer (LbL) manual procedure, had an average thickness of 30nm per nanocrystal monolayer,...

  16. Model-free kinetic analysis of Sr2FeMoO6 re-crystallization process used for double-perovskite monocrystals grown by Bridgman method

    Science.gov (United States)

    Bartha, Cristina; Plapcianu, Carmen; Palade, Petru; Vizman, Daniel

    2015-12-01

    The synthesis routes for polycrystalline bulk Sr2FeMoO6 (SFMO), offer various possibilities, but in all the cases it is difficult to obtain a single phase of this compound. A new challenge in the field is to achieve mono-crystals using different growing routes and the Bridgman method represents one of them. In order to establish the optimal conditions of mono-crystals growing process, a complex thermal investigation of bulk double perovskite has been performed. Differential thermal analysis investigation in argon inert atmosphere, starting from room temperature up to 1650°C provided information about melting and re-crystallization temperature range. Both, the activation energy of Sr2FeMoO6 re-crystallization process and the re-crystallization mechanism were comparatively analyzed by two free-model estimations (Friedman and Ozawa-Flynn-Wall analysis). The resulted data are very important in order to set up the heating program of Bridgman furnace.

  17. High-quality CdTe films from nanoparticle precursors

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, D.L.; Pehnt, M.; Urgiles, E. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    In this paper the authors demonstrate that nanoparticulate precursors coupled with spray deposition offers an attractive route into electronic materials with improved smoothness, density, and lower processing temperatures. Employing a metathesis approach, cadmium iodide was reacted with sodium telluride in methanol solvent, resulting in the formation of soluble NaI and insoluble CdTe nanoparticles. After appropriate chemical workup, methanol-capped CdTe colloids were isolated. CdTe thin film formation was achieved by spray depositing the nanoparticle colloids (25-75 {Angstrom} diameter) onto substrates at elevated temperatures (T = 280-440{degrees}C) with no further thermal treatment. These films were characterized by x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM). Cubic CdTe phase formation was observed by XRD, with a contaminant oxide phase also detected. XPS analysis showed that CdTe films produced by this one-step method contained no Na or C and substantial O. AFM gave CdTe grain sizes of {approx}0.1-0.3 {mu}m for film sprayed at 400{degrees}C. A layer-by-layer film growth mechanism proposed for the one-step spray deposition of nanoparticle precursors will be discussed.

  18. Large single crystal diamond grown in FeNiMnCo-S-C system under high pressure and high temperature conditions

    Science.gov (United States)

    Zhang, He; Li, Shangsheng; Su, Taichao; Hu, Meihua; Li, Guanghui; Ma, Hongan; Jia, Xiaopeng

    2016-11-01

    Large diamonds have successfully been synthesized from FeNiMnCo-S-C system at temperatures of 1255-1393 °C and pressures of 5.3-5.5 GPa. Because of the presence of sulfur additive, the morphology and color of the large diamond crystals change obviously. The content and shape of inclusions change with increasing sulfur additive. It is found that the pressure and temperature conditions required for the synthesis decrease to some extent with the increase of S additive, which results in left down of the V-shape region. The Raman spectra show that the introduction of additive sulfur reduces the quality of the large diamond crystals. The x-ray photoelectron spectroscopy (XPS) spectra show the presence of S in the diamonds. Furthermore, the electrical properties of the large diamond crystals are tested by a four-point probe and the Hall effect method. When sulfur in the cell of diamond is up to 4.0 wt.%, the resistance of the diamond is 9.628×105 Ω·cm. It is shown that the large single crystal samples are n type semiconductors. This work is helpful for the further research and application of sulfur-doped semiconductor large diamond. Project supported by the National Natural Science Foundation of China (Grant No. 51172089), the Education Department of Henan Province, China (Grant No. 12A430010), and the Fundamental Research Funds for the Universities of Henan Province, China (Grant No. NSFRF140110).

  19. Aragonite crystals grown on bones by reaction of CO2 with nanostructured Ca(OH)2 in the presence of collagen. Implications in archaeology and paleontology.

    Science.gov (United States)

    Natali, Irene; Tempesti, Paolo; Carretti, Emiliano; Potenza, Mariangela; Sansoni, Stefania; Baglioni, Piero; Dei, Luigi

    2014-01-21

    The loss of mechanical properties affecting archeological or paleontological bones is often caused by demineralization processes that are similar to those driving the mechanisms leading to osteoporosis. One simple way to harden and to strengthen demineralized bone remains could be the in situ growth of CaCO3 crystals in the aragonite polymorph - metastable at atmospheric pressure -which is known to have very strong mechanical strength in comparison with the stable calcite. In the present study the controlled growth of aragonite crystals was achieved by reaction between atmospheric CO2 and calcium hydroxide nanoparticles in the presence of collagen within the deteriorated bones. In a few days the carbonation of Ca(OH)2 particles led to a mixture of calcite and aragonite, increasing the strength of the mineral network of the bone. Scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDS) and Fourier transform infrared (FT-IR) spectrometry showed that aragonite crystallization was achieved. The effect of the aragonite crystal formation on the mechanical properties of the deteriorated bones was investigated by means of X-rays microtomography, helium porosimetry, atomic force microscopy (AFM), and Vickers microhardness techniques. All these data enabled to conclude that the strength of the bones increased of a factor of 50-70% with respect to the untreated bone. These results could have immediate impact for preserving archeological and paleontological bone remains.

  20. 提拉法生长大尺寸γ-LiAlO2单晶的研究%Study on Large-size γ-LiAlO2 Single Crystal Grown by Czochralski Technique

    Institute of Scientific and Technical Information of China (English)

    彭观良; 邹军; 庄漪; 张涟翰; 周国清; 周圣明; 徐军; 干福熹

    2005-01-01

    由于与GaN晶格失配小(约1.4%),γ-LiAlO2单晶有望成为一种很有希望的CaN外延衬底材料.本文使用提拉法生长出了尺寸达φ45×50mm3的γ-LiAlO2单晶.对该晶体毛坯的各个有代表性的位置作了X射线粉末衍射(XRPD)分析,结果表明仅仅在晶体毛坯的底部生成了一种缺锂相(LiAl5O8).γ-LiAlO2晶体化学稳定性差,在室温时轻微水解.当在空气中于1100℃退火70h,γ-LiAlO2晶体挥发出锂组分,在表面产生缺锂相(LiAl5O8).值得注意的是,在γ-LiAlO2晶体的红外光谱区不存在氢氧根吸收带.%γ-LiAlO2 single crystals were anticipated to act as a promising substrate material for the epitaxy of GaN because of the little lattice misfit ( about 1.4% ) between each other. In the present work, largesize γ-LiAlO2 single crystal with dimension of φ45 × 50mm3 has been grown by Czochralski technique.Various representative positions of the crystal boule were examined using X-ray powder diffraction (XRPD) analysis. Only in the bottom of the crystal boule there produced a kind of lithium-poor phase (LiAl5 O8 ). The γ-LiAlO2 crystal exhibits a poor chemical stability because it hydrolyzes slightly at room temperature. When the γ-LiAlO2 crystal was annealed for 70h at 1100℃ in air-atmosphere, it volatilizes a lithium component, and produces a lithium-poor phase ( LiAl5 O8 ) layer on the surface. It is noteworthy that no hydroxyl absorption band presents in the infrared spectra region of γ-LiAlO2 crystals.

  1. Anomalous scaling and super-roughness in the growth of CdTe polycrystalline films

    Science.gov (United States)

    Mata, Angélica S.; Ferreira, Silvio C., Jr.; Ribeiro, Igor R. B.; Ferreira, Sukarno O.

    2008-09-01

    CdTe films grown on glass substrates covered by fluorine-doped tin oxide by hot-wall epitaxy were studied through the interface dynamical scaling theory. Direct measures of the dynamical exponent revealed an intrinsically anomalous scaling characterized by a global roughness exponent α , distinct from the local one (the Hurst exponent H ) previously reported by Ferreira [Appl. Phys. Lett.88, 244103 (2006)]. A variety of scaling behaviors was obtained with varying substrate temperature. In particular, a transition from an intrinsically anomalous scaling regime with H≠αrough regime with H≠α>1 at high temperatures was observed. The temperature is a growth parameter that controls both the interface roughness and dynamical scaling exponents. Nonlocal effects are pointed out as the factors ruling the anomalous scaling behavior.

  2. Measurement of mobility and lifetime of electrons and holes in a Schottky CdTe diode

    Science.gov (United States)

    Ariño-Estrada, G.; Chmeissani, M.; de Lorenzo, G.; Kolstein, M.; Puigdengoles, C.; García, J.; Cabruja, E.

    2014-12-01

    We report on the measurement of drift properties of electrons and holes in a CdTe diode grown by the travelling heating method (THM). Mobility and lifetime of both charge carriers has been measured independently at room temperature and fixed bias voltage using charge integration readout electronics. Both electrode sides of the detector have been exposed to a 241Am source in order to obtain events with full contributions of either electrons or holes. The drift time has been measured to obtain the mobility for each charge carrier. The Hecht equation has been employed to evaluate the lifetime. The measured values for μτe/h (mobility-lifetime product) are in agreement with earlier published data.

  3. Optical properties of swift ion beam irradiated CdTe thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chandramohan, S. [PG and Research Department of Physics, Kongunadu Arts and Science College, Coimbatore, Tamilnadu 641029 (India); Sathyamoorthy, R. [PG and Research Department of Physics, Kongunadu Arts and Science College, Coimbatore, Tamilnadu 641029 (India)], E-mail: rsathya59@yahoo.co.in; Sudhagar, P. [PG and Research Department of Physics, Kongunadu Arts and Science College, Coimbatore, Tamilnadu 641029 (India); Kanjilal, D.; Kabiraj, D.; Asokan, K. [Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India)

    2008-06-30

    This paper reports the effect of swift (80 MeV) oxygen (O{sup +6}) ion irradiation on the optical properties of CdTe thin films grown by conventional thermal evaporation on glass substrates. The films are found to be slightly Te-rich in composition and irradiation results no change in the elemental composition. The optical constants such as refractive index (n), absorption coefficient ({alpha}) and the optical band gap energy show significant variation in their values with increase in ion fluence. Upon irradiation the band gap energy decreased from a value of 1.53 eV to 1.46 eV whereas the refractive index (n) increased from 2.38 to 3.12 at {lambda} = 850 nm. The photoluminescence spectrum shows high density of native defects whose density strongly depends on the ion fluence. Both analyses indicate considerable defect production after swift ion beam irradiation.

  4. CdTe Thin Film Solar Cells and Modules Tutorial; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Albin, David S.

    2015-06-13

    This is a tutorial presented at the 42nd IEEE Photovoltaics Specialists Conference to cover the introduction, background, and updates on CdTe cell and module technology, including CdTe cell and module structure and fabrication.

  5. Identification of Ag-acceptors in $^{111}Ag^{111}Cd$ doped ZnTe and CdTe

    CERN Document Server

    Hamann, J; Deicher, M; Filz, T; Lany, S; Ostheimer, V; Strasser, F; Wolf, H; Wichert, T

    2000-01-01

    Nominally undoped ZnTe and CdTe crystals were implanted with radioactive /sup 111/Ag, which decays to /sup 111/Cd, and investigated by photoluminescence spectroscopy (PL). In ZnTe, the PL lines caused by an acceptor level at 121 meV are observed: the principal bound exciton (PBE) line, the donor-acceptor pair (DAP) band, and the two-hole transition lines. In CdTe, the PBE line and the DAP band that correspond to an acceptor level at 108 meV appear. Since the intensities of all these PL lines decrease in good agreement with the half-life of /sup 111/Ag of 178.8 h, both acceptor levels are concluded to be associated with defects containing a single Ag atom. Therefore, the earlier assignments to substitutional Ag on Zn- and Cd-lattice sites in the respective II-VI semiconductors are confirmed. The assignments in the literature of the S/sub 1/, S /sub 2/, and S/sub 3/ lines in ZnTe and the X/sub 1//sup Ag/, X/sub 2 //sup Ag//C/sub 1//sup Ag/, and C/sub 2//sup Ag/ lines in CdTe to Ag- related defect complexes are ...

  6. On linear resistivity from {proportional_to}1 to 10{sup 3} K in Sr{sub 2}RuO{sub 4-{delta}} single crystals grown by flux technique

    Energy Technology Data Exchange (ETDEWEB)

    Berger, H.; Forro, L.; Pavuna, D. [Ecole Polytechnique Federale, Lausanne (Switzerland). Dept. de Physique

    1998-03-01

    We report transport measurements on single crystals of Sr{sub 2}RuO{sub 4-{delta}}, grown by the flux technique. The temperature dependence of the Hall coefficient is similar to the one measured in cuprates, and the linear resistivity persists up to {proportional_to}1000 K, while the superconductivity remains confined below 1 K. This suggests that the linear temperature dependence of resistivity is not an exclusive signature of the anomalous normal state of high-T{sub c} cuprates but rather of layered oxides in general, especially single-layer perovskites, possibly independently of the magnitude of the superconducting temperature. In addition, such Sr{sub 2}RuO{sub 4-{delta}} may be used as a broad-range thermometer. (orig.). 16 refs.

  7. Testing and Further Development of Improved Etches and Etching Methods for the Analysis of Bridgman Grown Semiconductor Crystals with an Emphasis on Lead-Tin-Telluride

    Science.gov (United States)

    Barber, Patrick G.

    1998-01-01

    The goals outlined for the research project for this year have been completed, and the following supporting documentation is attached: 1. A copy of the proposal outlining the principal goals: (a) Improve the characterization of semiconductor crystals through new etches and etching procedures. (b) Developed a novel voltammetric method to characterize semiconductor crystals as a result of searching for improved etches for lead-tin-telluride. (c) Presented paper at ACCG- 10. (d) Prepared manuscripts for publication. Completed additional testing suggested by reviewers and re-submitted manuscripts. (e) Worked with an undergraduate student on this project to provide her an opportunity to have a significant research experience prior to graduation. 2. In addition to the anticipated goals the following were also accomplished: (a) Submitted the newly developed procedures for consideration as a patent or a NASA Tech Brief. (b) Submitted a paper for presentation at the forthcoming ICCG- 12 conference. 3. A copy of the final draft of the publication as submitted to the editors of the Journal of Crystal Growth.

  8. A pixellated gamma-camera based on CdTe detectors clinical interests and performances

    CERN Document Server

    Chambron, J; Eclancher, B; Scheiber, C; Siffert, P; Hage-Ali, M; Regal, R; Kazandjian, A; Prat, V; Thomas, S; Warren, S; Matz, R; Jahnke, A; Karman, M; Pszota, A; Németh, L

    2000-01-01

    A mobile gamma camera dedicated to nuclear cardiology, based on a 15 cmx15 cm detection matrix of 2304 CdTe detector elements, 2.83 mmx2.83 mmx2 mm, has been developed with a European Community support to academic and industrial research centres. The intrinsic properties of the semiconductor crystals - low-ionisation energy, high-energy resolution, high attenuation coefficient - are potentially attractive to improve the gamma-camera performances. But their use as gamma detectors for medical imaging at high resolution requires production of high-grade materials and large quantities of sophisticated read-out electronics. The decision was taken to use CdTe rather than CdZnTe, because the manufacturer (Eurorad, France) has a large experience for producing high-grade materials, with a good homogeneity and stability and whose transport properties, characterised by the mobility-lifetime product, are at least 5 times greater than that of CdZnTe. The detector matrix is divided in 9 square units, each unit is composed ...

  9. Swift heavy ion irradiation induced nanograin formation in CdTe thin films

    Science.gov (United States)

    Survase, Smita; Narayan, Himanshu; Sulania, I.; Thakurdesai, Madhavi

    2016-11-01

    Swift Heavy Ion (SHI) irradiation is a unique technique for nanograin formation through grain fragmentation. Contrary to the generally reported SHI irradiation induced grain growth on CdTe thin films, we report fragmentation leading to nanograin formation. Thermally evaporated polycrystalline CdTe thin films were irradiated with 100 MeV 197Au, 107Ag and 58Ni ions beams up to a fluence of 5 × 1012 ions/cm2. Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) were carried out for surface analysis before and after irradiation. SEM micrographs indicate that the larger grains in the as-deposited films were fragmented into smaller grains due to irradiation. The extent of fragmentation was found to increase with increasing electronic energy loss (Se). AFM pictures also supported the irradiation induced fragmentation. Structural characterization was done using X-ray Diffraction (XRD) technique. The ion induced strain and dislocation density were calculated from the XRD data. Both the strain and dislocation density were found to increase with increasing Se . The observed grain fragmentation is explained on the basis of a combined effect of strain induced disintegration of grains after the Coulomb explosion, and an 'incomplete' re-crystallization of the molten thermal spikes. Moreover, the optical band gap Eg (1.5 eV for as-deposited film), determined from UV-vis spectroscopy, increased with Se, and possibly because of ion induced strain and defect annealing.

  10. The effects of high temperature processing on the structural and optical properties of oxygenated CdS window layers in CdTe solar cells

    Science.gov (United States)

    Paudel, Naba R.; Grice, Corey R.; Xiao, Chuanxiao; Yan, Yanfa

    2014-07-01

    High efficiency CdTe solar cells typically use oxygenated CdS (CdS:O) window layers. We synthesize CdS:O window layers at room temperature (RT) and 270 °C using reactive sputtering. The band gaps of CdS:O layers deposited at RT increase when O2/(O2 + Ar) ratios in the deposition chamber increase. On the other hand, the band gaps of CdS:O layers deposited at 270 °C decrease as the O2/(O2 + Ar) ratios increase. Interestingly, however, our high temperature closed-space sublimation (CSS) processed CdTe solar cells using CdS:O window layers deposited at RT and 270 °C exhibit very similar cell performance, including similar short-circuit current densities. To understand the underlying reasons, CdS:O thin films deposited at RT and 270 °C are annealed at temperatures that simulate the CSS process of CdTe deposition. X-ray diffraction, atomic force microscopy, and UV-visible light absorption spectroscopy characterization of the annealed films reveals that the CdS:O films deposited at RT undergo grain regrowth and/or crystallization and exhibit reduced band gaps after the annealing. Our results suggest that CdS:O thin films deposited at RT and 270 °C should exhibit similar optical properties after the deposition of CdTe layers, explaining the similar cell performance.

  11. Toward epitaxially grown two-dimensional crystal hetero-structures: Single and double MoS2/graphene hetero-structures by chemical vapor depositions

    Science.gov (United States)

    Lin, Meng-Yu; Chang, Chung-En; Wang, Cheng-Hung; Su, Chen-Fung; Chen, Chi; Lee, Si-Chen; Lin, Shih-Yen

    2014-08-01

    Uniform large-size MoS2/graphene hetero-structures fabricated directly on sapphire substrates are demonstrated with layer-number controllability by chemical vapor deposition (CVD). The cross-sectional high-resolution transmission electron microscopy (HRTEM) images provide the direct evidences of layer numbers of MoS2/graphene hetero-structures. Photo-excited electron induced Fermi level shift of the graphene channel are observed on the single MoS2/graphene hetero-structure transistors. Furthermore, double hetero-structures of graphene/MoS2/graphene are achieved by CVD fabrication of graphene layers on top of the MoS2, as confirmed by the cross-sectional HRTEM. These results have paved the possibility of epitaxially grown multi-hetero-structures for practical applications.

  12. Inclusion free cadmium zinc tellurium and cadmium tellurium crystals and associated growth method

    Science.gov (United States)

    Bolotnikov, Aleskey E.; James, Ralph B.

    2010-07-20

    The present disclosure provides systems and methods for crystal growth of cadmium zinc tellurium (CZT) and cadmium tellurium (CdTe) crystals with an inverted growth reactor chamber. The inverted growth reactor chamber enables growth of single, large, high purity CZT and CdTe crystals that can be used, for example, in X-ray and gamma detection, substrates for infrared detectors, or the like. The inverted growth reactor chamber enables reductions in the presence of Te inclusions, which are recognized as an important limiting factor in using CZT or CdTe as radiation detectors. The inverted growth reactor chamber can be utilized with existing crystal growth techniques such as the Bridgman crystal growth mechanism and the like. In an exemplary embodiment, the inverted growth reactor chamber is a U-shaped ampoule.

  13. Growth of Bi-2212 single crystals by a horizontal Bridgman method using different oxygen pressure

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, M.; Makino, T.; Nakabayashi, T. [Department of Electrical and Electronic Engineering, Tottori University, Koyama-Minami, Tottori 680-8552 (Japan); Tanaka, H. [Yonago National College of Technology, 4448 Hikona Yonago, Tottori 683-8502 (Japan); Kinoshita, K., E-mail: kinoshita@ele.tottori-u.ac.j [Department of Electrical and Electronic Engineering, Tottori University, Koyama-Minami, Tottori 680-8552 (Japan); Kishida, S. [Department of Electrical and Electronic Engineering, Tottori University, Koyama-Minami, Tottori 680-8552 (Japan)

    2009-10-15

    We compared the crystallinity of the Bi-2212 single crystals grown by the horizontal Bridgman (HB) method with those grown by the vertical Bridgman (VB) method in terms of resistivity, rho. It was clarified that crystals far inside the ingot grown by HB method showed the equivalent crystallinity to crystals grown by VB method, whereas crystals near the surface of the ingot grown by HB method showed the similar crystallinity to crystals grown by TSFZ method, which is sensitive to the growth atmosphere.

  14. Numerical modeling of CdS/CdTe and CdS/CdTe/ZnTe solar cells as a function of CdTe thickness

    Energy Technology Data Exchange (ETDEWEB)

    Amin, Nowshad [Department of Electrical, Electronic and System Engineering, Faculty of Engineering, National University of Malaysia (UKM), Bangi 43600, Selangor D.E (Malaysia); Sopian, Kamaruzzaman [Solar Energy Research Institute, National University of Malaysia (UKM), Bangi 43600, Selangor D.E (Malaysia); Konagai, Makoto [Department of Electrical and Electronic Engineering, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)

    2007-08-15

    CdTe-based solar cells have long been of interest for terrestrial usage because of their high potential conversion efficiency (in the range of 18-24%) with low-cost manufacturability and concern over environmental effects. In order to conserve material and address environmental pollution concerns as well as to reduce carrier recombination loss throughout the absorber layer, efforts have been carried out to decrease the thickness of the CdTe absorption layer to 1 {mu}m. As a result, to date, the experimental part of this study has realized cell efficiencies of 15.3% and 11.5% with 7 and 1.2-{mu}m-thick CdTe layers, grown by close-spaced sublimation (CSS) [N. Amin, T. Isaka, T. Okamoto, A. Yamada, M. Konagai, Jpn. J. Appl. Phys. 38 (8) (1999) 4666; N. Amin, T. Isaka, A. Yamada, M. Konagai, Sol. Energy Matter. Sol. Cells 67 (2001) 195]. Since some problems remain with such thin 1 {mu}m CdTe layers, possible methods to realize higher efficiency have been investigated using novel solar cell structures, with the help of numerical analyses tools. In the theory part of this study, numerical analysis with a 1-D simulation program named NSSP (Numerical Solar Cell Simulation Program) has been used to simulate these structures. We investigated the viability of CdTe thickness reduction to 1 {mu}m together with the insertion of higher band-gap materials (i.e., ZnTe) at the back contacts to reduce carrier recombination loss there. The study shows potential results of the thickness reduction of CdTe absorption layer for a conventional CdS/CdTe/Cu-doped C structure with around 16% efficiency for cells below 3 {mu}m CdTe. Decreases were found in spectral response that suggest from minority carrier recombination loss at the back contact interface. A higher band-gap material like ZnTe has been inserted to produce a back surface field (BSF) to inhibit the minority carrier loss at the back contact. An increase in the efficiency to about 20% has been found for a 1 {mu}m-thin CdTe cell

  15. Structural study of epitaxial LiCoO{sub 2} films grown by pulsed laser deposition on single crystal SrTiO{sub 3} substrates

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z. [Material Measurement Laboratory, National Institute of Standard & Technologies, 100 Bureau Drive, Gaithersburg, MD 20899 (United States); Yasui, S. [Materials & Structures Laboratory, Tokyo, Institute of Technology, Tokyo (Japan); Takeuchi, S.; Creuziger, A. [Material Measurement Laboratory, National Institute of Standard & Technologies, 100 Bureau Drive, Gaithersburg, MD 20899 (United States); Maruyama, S. [Department of Applied Chemistry, Tohoku University, Sendai, Miyagi 980-8579 (Japan); Herzing, A.A. [Material Measurement Laboratory, National Institute of Standard & Technologies, 100 Bureau Drive, Gaithersburg, MD 20899 (United States); Takeuchi, I. [Department of Materials Science & Engineering, University of Maryland, College Park, MD 20742 (United States); Bendersky, L.A., E-mail: leoben@nist.gov [Material Measurement Laboratory, National Institute of Standard & Technologies, 100 Bureau Drive, Gaithersburg, MD 20899 (United States)

    2016-08-01

    Epitaxial LiCoO{sub 2} (LCO) thin films of different orientations were fabricated by pulsed laser deposition (PLD) in order to model single-crystal behavior of intercalation cathodes during electrochemical reactions. This paper demonstrates that (1) epitaxial growth of LCO on a single crystal Nb-doped SrTiO{sub 3} (Nb:STO) of different orientations occurs with a single orientation relationship; (2) surface morphology of the LCO films is established by the morphology of coalescing grains during island growth mode, whereas morphology of the grains can be visualized as different cuts from a cube with low-energy {104}{sub R-LCO} surfaces; (3) the films consist of predominately trigonal R-LiCoO{sub 2} phase, with a small fraction of the occasionally present cubic c-Li{sub x}CoO{sub 2} phase; (4) cyclic voltammetry measurements have determined rectification at interface between LCO and Nb:STO causing bias on the oxidation part of cycling, thus preventing full cycling. - Highlights: • Electron microscopy of growth and crystallography of epitaxial LiCoO{sub 2} thin films. • Films consist of trigonal LiCoO{sub 2} phase with a small fraction of spinel c-Li{sub x}CoO{sub 2}. • Surface morphology is established by the low-energy {104} faceted coalescing grains. • Cyclic voltammetry determined rectification at the LCO/STO interface.

  16. Thin film CdTe based neutron detectors with high thermal neutron efficiency and gamma rejection for security applications

    Science.gov (United States)

    Smith, L.; Murphy, J. W.; Kim, J.; Rozhdestvenskyy, S.; Mejia, I.; Park, H.; Allee, D. R.; Quevedo-Lopez, M.; Gnade, B.

    2016-12-01

    Solid-state neutron detectors offer an alternative to 3He based detectors, but suffer from limited neutron efficiencies that make their use in security applications impractical. Solid-state neutron detectors based on single crystal silicon also have relatively high gamma-ray efficiencies that lead to false positives. Thin film polycrystalline CdTe based detectors require less complex processing with significantly lower gamma-ray efficiencies. Advanced geometries can also be implemented to achieve high thermal neutron efficiencies competitive with silicon based technology. This study evaluates these strategies by simulation and experimentation and demonstrates an approach to achieve >10% intrinsic efficiency with <10-6 gamma-ray efficiency.

  17. Enhanced nucleation and post-growth investigations on HFCVD diamond films grown on silicon single crystals pretreated with Zr:diamond mixed slurry

    Energy Technology Data Exchange (ETDEWEB)

    Dua, A.K.; Roy, M.; Nuwad, J.; George, V.C.; Sawant, S.N

    2004-05-15

    Two sets, one deposited for {approx}20 min and other for {approx}1 h of diamond thin film samples are prepared following pretreatment of silicon substrates using mixed slurry containing different weight ratio of zirconium and diamond particles. The films are characterized ex situ using XRD, Raman spectroscopy, photoluminescence (PL), FTIR and atomic force microscopy (AFM). As evidenced from AFM topography, nucleation density as high as 2.5x10{sup 9} particles/cm{sup 2} could be achieved in spite of posttreatment cleaning of the substrates with methanol. It has been found that the nucleation density increases, while particle size and RMS surface roughness subsides with increasing metal concentration in the mixed slurry. Raman and PL spectra of both the 20 min and 1 h samples have been recorded to check the quality of the deposits. Although a significant amount non-diamond carbon impurities is found to be present mostly at the grain boundaries of the films, the concentration of defects due to [Si-V]{sup 0} complex reduces substantially for full-grown samples and also for 20 min samples pretreated with metal-rich slurries. The plausible role of the intermediate layers behind these effects has been explored.

  18. Resetting the Defect Chemistry in CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, Wyatt K.; Burst, James; Albin, David; Colegrove, Eric; Moseley, John; Duenow, Joel; Farrell, Stuart; Moutinho, Helio; Reese, Matt; Johnston, Steve; Barnes, Teresa; Perkins, Craig; Guthrey, Harvey; Al-Jassim, Mowafak

    2015-06-14

    CdTe cell efficiencies have increased from 17% to 21% in the past three years and now rival polycrystalline Si [1]. Research is now targeting 25% to displace Si, attain costs less than 40 cents/W, and reach grid parity. Recent efficiency gains have come largely from greater photocurrent. There is still headroom to lower costs and improve performance by increasing open-circuit voltage (Voc) and fill factor. Record-efficiency CdTe cells have been limited to Voc <; 880 mV, whereas GaAs can attain Voc of 1.10 V with a slightly smaller bandgap [2,3]. To overcome this barrier, we seek to understand and increase lifetime and carrier concentration in CdTe. In polycrystalline structures, lifetime can be limited by interface and grain-boundary recombination, and attaining high carrier concentration is complicated by morphology.

  19. Study of Back Contacts for CdTe Solar Cells

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    ZnTe/ZnTe∶Cu layer is used as a complex back contact. The parameters of CdTe solar cells with and without the complex back contacts are compared. The effects of un-doped layer thickness, doped concentration and post-deposition annealing temperature of the complex layer on solar cells performance are investigated.The results show that ZnTe/ZnTe∶Cu layer can improve back contacts and largely increase the conversion efficiency of CdTe solar cells. Un-doped layer and post-deposition annealing of high temperature can increase open voltage. Using the complex back contact, a small CdTe cell with fill factor of 73.14% and conversion efficiency of 12.93% is obtained.

  20. Recent advances in thin film CdTe solar cells

    Science.gov (United States)

    Ferekides, Chris S.; Ceekala, Vijaya; Dugan, Kathleen; Killian, Lawrence; Oman, Daniel; Swaminathan, Rajesh; Morel, Don

    1996-01-01

    CdTe thin film solar cells have been fabricated on a variety of glass substrates (borosilicate and soda lime). The CdS films were deposited to a thickness of 500-2000 Å by the chemical bath deposition (CBD), rf sputtering, or close spaced sublimation (CSS) processes. The CdTe films were deposited by CSS in the temperature range of 450-625 °C. The main objective of this work is to fabricate high efficiency solar cells using processes that can meet low cost manufacturing requirements. In an attempt to enhance the blue response of the CdTe cells, ZnS films have also been prepared (CBD, rf sputtering, CSS) as an alternative window layer to CdS. Device behavior has been found to be consistent with a recombination model.

  1. Influence of crystallographic orientation on the magnetic properties of NiFe, Co, and Ni epitaxial fcc films grown on single-crystal substrates

    Science.gov (United States)

    Ohtani, Taiki; Kawai, Tetsuroh; Ohtake, Mitsuru; Futamoto, Masaaki

    2013-08-01

    Ni80Fe20 (at. %), Co, and Ni epitaxial thin films of fcc(100) and fcc(111) orientations are prepared on single-crystal substrates by using an ultra-high-vacuum radio-frequency magnetron sputtering system. The influence of the magnetocrystalline anisotropy on the magnetostriction behavior under in-plane rotating magnetic fields is investigated. Triangular waveforms are observed in the magnetostriction measurements under low rotating fields for films that show four-fold symmetry in the in-plane magnetic anisotropies. The magnetostriction behavior is related to the motion of ninety-degree magnetic domain walls in magnetically unsaturated films. The waveform changes from a triangular to a sinusoidal shape when magnetization saturation is approached under increasing magnetic field. On the other hand, films having almost isotropic in-plane magnetic properties show sinusoidal waveforms even when the films are not magnetically saturated.

  2. Pressure cryocooling protein crystals

    Science.gov (United States)

    Kim, Chae Un; Gruner, Sol M.

    2011-10-04

    Preparation of cryocooled protein crystal is provided by use of helium pressurizing and cryocooling to obtain cryocooled protein crystal allowing collection of high resolution data and by heavier noble gas (krypton or xenon) binding followed by helium pressurizing and cryocooling to obtain cryocooled protein crystal for collection of high resolution data and SAD phasing simultaneously. The helium pressurizing is carried out on crystal coated to prevent dehydration or on crystal grown in aqueous solution in a capillary.

  3. Effects of Antimony Doping in Polycrystalline CdTe Thin-Film Solar Cells

    Science.gov (United States)

    Okamoto, Tamotsu; Ikeda, Shigeyuki; Nagatsuka, Satsuki; Hayashi, Ryoji; Yoshino, Kaoru; Kanda, Yohei; Noda, Akira; Hirano, Ryuichi

    2012-10-01

    The effects of antimony (Sb) doping of the CdTe layer in the CdTe solar cells were investigated using Sb-doped CdTe powders as source materials for CdTe deposition by the close-spaced sublimation (CSS) method. Conversion efficiency increased with increasing Sb concentration below 1×1018 cm-3, mainly owing to the improvement of the fill factor. Secondary ion microprobe mass spectrometry (SIMS) depth profile revealed that the Sb impurities at a concentration of approximately 1×1016 cm-3 were incorporated into the CdTe layer when using the Sb-doped CdTe source of 1×1018 cm-3. The observation of surface morphology showed that the grain sizes were improved by Sb addition. Therefore, the improved performance upon Sb addition to CdTe solar cells was probably due to the improvements in crystallinity, such as increased grain size.

  4. CdTe nano-structures for photovoltaic devices

    OpenAIRE

    Corregidor, V.; Alves, L. C.; FRANCO, N.; Barreiros, Maria Alexandra; Sochinskii, N. V.; Alves, E

    2013-01-01

    CdTe nano-structures with diameter of ∼100 nm and variable length (200–600 nm) were fabricated on glass substrates covered with conductive buffer layers such as NiCr, ZAO (ZnO:Al2O3 + Ta2O5) or TiPd alloys. The fabrication process consisted of the starting vapour deposition of metal catalyst dropped layer followed by the isothermal catalyst-prompted vapour growth of CdTe nano-structured layer of controllable shape and surface filling. The effect of buffer layers on the crystallographic orient...

  5. Optimization of control parameters of CdZnTe ACRT-Bridgman single crystal growth

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    [1]Kennedey, J. J., Amirtharaj, P. M., Boyd, P. R. Et al., Growth and characterization of Cd1-xZnxTe and Hg1-yZnyTe, J. Cryst. Growth, 1988, 86: 93-99.[2]Tanaka, A., Masa, Y., Seto, S. et al., Zinc and selenium co-doped CdTe substrates lattice matched to HgCdTe, J. Cryst. Growth, 1989, 94: 166-170.[3]Sen, S., Stanard, J. E., Developments in the bulk growth of Cd1-xZnxTe for substrates, Prog. Crystal Growth and Charact., 1994, 29: 253-273.[4]Azoulay, M., Rotter, S., Gafni, G. et al., Zinc segregation in CdZnTe grown under Cd/Zn partial pressure control, J. Cryst. Growth, 1992, 117: 276-280.[5]Lee, T. S., Lee, S. B., Kim, J. M. et al., Vertical Bridgman techniques to homogenize zinc composition of CdZnTe substrates, J. Electronic Materials, 1995, 24: 1057-1059.[6]Mühlberg, M., Rudolph, P., Genzel, C. Et al., Crystalline and chemical quality of CdTe and Cd1-xZnxTe grown by the Bridgman method in low temperature gradients, J. Cryst. Growth, 1990, 101: 275-280.[7]Cheuvart, P., El-Hanani, U., Schneider, D. et al., CdTe and CdZnTe crystal growth by horizontal Bridgman technique, J. Cryst. Growth, 1990, 101: 270-274.[8]Lu, Y. C., Shiau, J. J., Fiegelson, R. S. et al., Effect of vibrational stirring on the quality of Bridgman-grown CdTe, J. Cryst. Growth, 1990, 102: 807-813.[9]Butler, J. F., Doty, F. P., Apotovsky, B. Et al., γ-ray and X-ray detectors manufactured from Cd1-xZnxTe grown by a high-pressure Bridgman method, Mater. Sci. & Eng. B, 1993, 16: 291-295.[10]Capper, P., The role of accelerated crucible rotation in the growth of Hg1-xCdxTe and CdTe/CdZnTe, Prog. Crystal Growth and Charact., 1994, 28: 1-55.[11]Schulz-Dubois, E. O., Accelerated crucible rotation: hydrodynamics and stirring effect, J. Cryst. Growth, 1971, 12: 81-87.[12]Capper, P., Gosney, J. J. G., Jones, C. L. et al., Fluid flows in tall narrow containers by ACRT, Journal of Electronic Materials, 1986 15(6): 361-370.[13]Distanov, V. E., Kirdyashkin, A

  6. Study and development of new CdTe and CdZnTe detection structures for X and {gamma} imagery; Etude et realisation de nouvelles structures de detection a base de CdTe et CdZnTe pour l`imagerie X et {gamma}

    Energy Technology Data Exchange (ETDEWEB)

    Rosaz, M

    1997-10-24

    The aim of this study is to show the interest of applying cadmium telluride (CdTe) for X- and {gamma}- ray imaging applications, with specific technological (via contact nature) and geometric (via Frisch grids) structures suited for each application. This work is divided into three different but complementary parts: the first part describes a simulation model which allows a better understanding of CdTe based {gamma}- ray detectors. The new feature of this model compared to previous ones, is that it is able to take into account the electric field`s non uniform spatial distribution inside the detector s. The results enable us to de-convolute the influence of material and contact parameters on the spectrometric performances (energy resolution and peak/valley ratio) of CdTe based detectors; the second part presents different technological structures deposited upon CdTe, (grown by two different methods, i.e Bridgman and High Pressure Bridgman). These structures were characterised in X- and {gamma}- ray detection; theoretical models are developed which allow a certain insight into the detection properties of each couple (material + contact); the third part deals with new contact geometries which allow a screening effect of the bulk (analogous to the Frisch grid effect in gaseous detectors) resulting in improved energy resolution and peak/valley ratios; encouraging first results on prototypes are presented and discussed. This work has allowed a better understanding of physical behaviour of CdTe based detectors, coupled with advances in technological issues to upgrade the overall performances of these detectors for application in X- and {gamma}- ray imaging. (author) 93 refs.

  7. Effect of ZnTe and CdZnTe Alloys at the Back Contact of 1-μm-Thick CdTe Thin Film Solar Cells

    Science.gov (United States)

    Amin, Nowshad; Yamada, Akira; Konagai, Makoto

    2002-05-01

    N2-doped ZnTe was introduced onto 1-μm-thick CdTe absorbers in order to reduce the carrier recombination at the back contact of CdS/CdTe/C/Ag configuration solar cells. ZnTe films were grown by molecular beam epitaxy (MBE) on GaAs and Corning glass substrates to investigate the characteristics of the films. Epitaxial growth of ZnTe was realized on GaAs substrates and a hole concentration of 8 × 1018 cm-3 with a resistivity of 0.045 Ω \\cdotcm was achieved as a result of nitrogen doping. In contrast, polycrystalline ZnTe films were grown on Corning glass and CdTe thin films. Dark and photoconductivity of ZnTe films increased to 1.43 × 10-5 S/cm and 1.41 × 10-4 S/cm, respectively, while the Zn to Te ratio was decreased to 0.25 during MBE growth. These ZnTe films with different thicknesses were inserted into close-spaced sublimation (CSS)-grown 1-μm-thick CdTe solar cells. A conversion efficiency of 8.31% (Voc: 0.74 V, Jsc: 22.98 mA/cm2, FF: 0.49, area: 0.5 cm2) was achieved for a 0.2-μm-thick ZnTe layer with a cell configuration of CdS/CdTe/ZnTe/Cu-doped-C/Ag. Furthermore, to overcome the problem of possible recombination loss in the interface layer of CdTe and ZnTe, the intermediate ternary CdZnTe is investigated. The compositional factor in Cd1-xZnxTe:N alloy is varied and the dependence of the conductivity is evaluated. For instance, Cd0.5Zn0.5Te:N, with dark and photoconductivity of 2.13 × 10-6 and 2.9 × 10-5 S/cm, respectively, is inserted at the back contact of a 1-μm-thick CdTe solar cell. A conversion efficiency of 7.46% (Voc: 0.68 V, Jsc: 22.60 mA/cm2, FF: 0.49, area: 0.086 cm2) was achieved as the primary result for a 0.2-μm-thick Cd0.5Zn0.5Te:N layer with the cell configuration of CdS/CdTe/Cd0.5Zn0.5Te:N/Au.

  8. Widely tunable alloy composition and crystal structure in catalyst-free InGaAs nanowire arrays grown by selective area molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Treu, J., E-mail: Julian.Treu@wsi.tum.de, E-mail: Gregor.Koblmueller@wsi.tum.de; Speckbacher, M.; Saller, K.; Morkötter, S.; Xu, X.; Riedl, H.; Abstreiter, G.; Finley, J. J.; Koblmüller, G., E-mail: Julian.Treu@wsi.tum.de, E-mail: Gregor.Koblmueller@wsi.tum.de [Walter Schottky Institut, Physik Department, Center of Nanotechnology and Nanomaterials, Technische Universität München, Am Coulombwall 4, Garching 85748 (Germany); Döblinger, M. [Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, Munich 81377 (Germany)

    2016-02-01

    We delineate the optimized growth parameter space for high-uniformity catalyst-free InGaAs nanowire (NW) arrays on Si over nearly the entire alloy compositional range using selective area molecular beam epitaxy. Under the required high group-V fluxes and V/III ratios, the respective growth windows shift to higher growth temperatures as the Ga-content x(Ga) is tuned from In-rich to Ga-rich InGaAs NWs. Using correlated x-ray diffraction, transmission electron microscopy, and micro-photoluminescence spectroscopy, we identify structural defects to govern luminescence linewidths in In-rich (x(Ga) < 0.4) and Ga-rich (x(Ga) > 0.6) NWs, whereas limitations at intermediate Ga-content (0.4 < x(Ga) < 0.6) are mainly due to compositional inhomogeneities. Most remarkably, the catalyst-free InGaAs NWs exhibit a characteristic transition in crystal structure from wurtzite to zincblende (ZB) dominated phase near x(Ga) ∼ 0.4 that is further reflected in a cross-over from blue-shifted to red-shifted photoluminescence emission relative to the band edge emission of the bulk ZB InGaAs phase.

  9. Synchrotron X-ray topographic study on nature of threading mixed dislocations in 4H–SiC crystals grown by PVT method

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jianqiu; Yang, Yu; Wu, Fangzhen; Sumakeris, Joe; Leonard, Robert; Goue, Ouloide; Raghothamachar, Balaji; Dudley, Michael

    2016-10-01

    Synchrotron X-ray Topography is a powerful technique to study defects structures particularly dislocation configurations in single crystals. Complementing this technique with geometrical and contrast analysis can enhance the efficiency of quantitatively characterizing defects. In this study, the use of Synchrotron White Beam X-ray Topography (SWBXT) to determine the line directions of threading dislocations in 4H–SiC axial slices (sample cut parallel to the growth axis from the boule) is demonstrated. This technique is based on the fact that the projected line directions of dislocations on different reflections are different. Another technique also discussed is the determination of the absolute Burgers vectors of threading mixed dislocations (TMDs) using Synchrotron Monochromatic Beam X-ray Topography (SMBXT). This technique utilizes the fact that the contrast from TMDs varies on SMBXT images as their Burgers vectors change. By comparing observed contrast with the contrast from threading dislocations provided by Ray Tracing Simulations, the Burgers vectors can be determined. Thereafter the distribution of TMDs with different Burgers vectors across the wafer is mapped and investigated.

  10. Semiconductor nanocrystals photosensitize C60 crystals.

    Science.gov (United States)

    Biebersdorf, Andreas; Dietmüller, Roland; Susha, Andrei S; Rogach, Andrey L; Poznyak, Sergey K; Talapin, Dmitri V; Weller, Horst; Klar, Thomas A; Feldmann, Jochen

    2006-07-01

    Semiconductor nanocrystals (SCNCs) made of CdSe, CdTe, and InP are used to photosensitize needlelike C(60) crystals. The photocurrent is increased by up to 3 orders of magnitude as compared with C(60) crystals without SCNCs. The photocurrent spectrum can be tuned precisely by the SCNC size and material, rendering the SCNC-functionalized C(60) crystals an excellent material for spectrally tuneable photodetectors. We explain the increased photocurrent as a result of photoexcited electrons transferring from the SCNCs to the C(60) crystals and causing photoconductivity, while the complementary holes remain trapped in the SCNCs.

  11. Large-area single-crystal graphene grown on a recrystallized Cu(111) surface by using a hole-pocket method

    Science.gov (United States)

    Phan, Hoang Danh; Jung, Jaehyuck; Kim, Youngchan; Huynh, Van Ngoc; Lee, Changgu

    2016-07-01

    We describe an efficient chemical vapor deposition (CVD) method for synthesizing graphene with a single crystal orientation on the whole surface of a copper (Cu) foil. We specifically synthesized graphene on the inner surface of a folded Cu foil, on which small holes were made for regulating the permeation and adsorption of the gases used for the synthesis. We compared the results of this method, which we call a ``hole-pocket'' method, with previously developed methods involving traditional synthesis on an open Cu foil and a Cu ``pita-pocket''. From these comparisons, we found the orientation of recrystallized Cu to depend on the shape of the Cu foil. Our hole-pocket method did not require treatment of the Cu surface with a complicated process to reduce the density of nucleation seeds in order to synthesize large hexagonal graphene grains, nor did it require the use of a single-crystalline substrate because methane passing through holes on the upper side of the hole-pocket slowly decomposed into carbon atoms and the control of the evaporation of Cu inside the foil pocket helped induce a transformation of the Cu domains to Cu(111). The current hole-pocket method resulted in domains that were both large, ranging from 2-5 mm in size, and oriented in the same manner. By extending the synthesis time, we were able to obtain continuous large-area films of single-crystalline orientation on the whole surface with dimensions of several centimeters.We describe an efficient chemical vapor deposition (CVD) method for synthesizing graphene with a single crystal orientation on the whole surface of a copper (Cu) foil. We specifically synthesized graphene on the inner surface of a folded Cu foil, on which small holes were made for regulating the permeation and adsorption of the gases used for the synthesis. We compared the results of this method, which we call a ``hole-pocket'' method, with previously developed methods involving traditional synthesis on an open Cu foil and a Cu

  12. Physical properties of vacuum evaporated CdTe thin films with post-deposition thermal annealing

    Science.gov (United States)

    Chander, Subhash; Dhaka, M. S.

    2015-09-01

    This paper presents the physical properties of vacuum evaporated CdTe thin films with post-deposition thermal annealing. The thin films of thickness 500 nm were grown on glass and indium tin oxide (ITO) coated glass substrates employing thermal vacuum evaporation technique followed by post-deposition thermal annealing at temperature 450 °C. These films were subjected to the X-ray diffraction (XRD),UV-Vis spectrophotometer, source meter and atomic force microscopy (AFM) for structural, optical, electrical and surface morphological analysis respectively. The X-ray diffraction patterns reveal that the films have zinc-blende structure of single cubic phase with preferred orientation (111) and polycrystalline in nature. The crystallographic and optical parameters are calculated and discussed in brief. The optical band gap is found to be 1.62 eV and 1.52 eV for as-grown and annealed films respectively. The I-V characteristics show that the conductivity is decreased for annealed thin films. The AFM studies reveal that the surface roughness is observed to be increased for thermally annealed films.

  13. Simulation of charge transport in pixelated CdTe

    Science.gov (United States)

    Kolstein, M.; Ariño, G.; Chmeissani, M.; De Lorenzo, G.

    2014-12-01

    The Voxel Imaging PET (VIP) Pathfinder project intends to show the advantages of using pixelated semiconductor technology for nuclear medicine applications to achieve an improved image reconstruction without efficiency loss. It proposes designs for Positron Emission Tomography (PET), Positron Emission Mammography (PEM) and Compton gamma camera detectors with a large number of signal channels (of the order of 106). The design is based on the use of a pixelated CdTe Schottky detector to have optimal energy and spatial resolution. An individual read-out channel is dedicated for each detector voxel of size 1 × 1 × 2 mm3 using an application-specific integrated circuit (ASIC) which the VIP project has designed, developed and is currently evaluating experimentally. The behaviour of the signal charge carriers in CdTe should be well understood because it has an impact on the performance of the readout channels. For this purpose the Finite Element Method (FEM) Multiphysics COMSOL software package has been used to simulate the behaviour of signal charge carriers in CdTe and extract values for the expected charge sharing depending on the impact point and bias voltage. The results on charge sharing obtained with COMSOL are combined with GAMOS, a Geant based particle tracking Monte Carlo software package, to get a full evaluation of the amount of charge sharing in pixelated CdTe for different gamma impact points.

  14. Radiative and interfacial recombination in CdTe heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Swartz, C. H., E-mail: craig.swartz@txstate.edu; Edirisooriya, M.; LeBlanc, E. G.; Noriega, O. C.; Jayathilaka, P. A. R. D.; Ogedengbe, O. S.; Hancock, B. L.; Holtz, M.; Myers, T. H. [Materials Science, Engineering, and Commercialization Program, Texas State University, 601 University Dr., San Marcos, Texas 78666 (United States); Zaunbrecher, K. N. [National Renewable Energy Laboratory, 15013 Denver West Parkway, Mississippi RSF200, Golden, Colorado 80401 (United States)

    2014-12-01

    Double heterostructures (DH) were produced consisting of a CdTe film between two wide band gap barriers of CdMgTe alloy. A combined method was developed to quantify radiative and non-radiative recombination rates by examining the dependence of photoluminescence (PL) on both excitation intensity and time. The measured PL characteristics, and the interface state density extracted by modeling, indicate that the radiative efficiency of CdMgTe/CdTe DHs is comparable to that of AlGaAs/GaAs DHs, with interface state densities in the low 10{sup 10 }cm{sup −2} and carrier lifetimes as long as 240 ns. The radiative recombination coefficient of CdTe is found to be near 10{sup −10} cm{sup 3}s{sup −1}. CdTe film growth on bulk CdTe substrates resulted in a homoepitaxial interface layer with a high non-radiative recombination rate.

  15. Intracavity CdTe modulators for CO2 lasers.

    Science.gov (United States)

    Kiefer, J. E.; Nussmeier, T. A.; Goodwin, F. E.

    1972-01-01

    The use of cadmium telluride as an electrooptic material for intracavity modulation of CO2 lasers is described. Included are the predicted and measured effects of CdTe intracavity modulators on laser performance. Coupling and frequency modulation are discussed and experimental results compared with theoretically predicted performance for both techniques. Limitations on the frequency response of the two types of modulation are determined.

  16. Thermal stability of substitutional ag in CdTe

    NARCIS (Netherlands)

    Jahn, SG; Hofsass, H; Restle, M; Ronning, C; Quintel, H; BharuthRam, K; Wahl, U

    1996-01-01

    The thermal stability of substitutional Ag in CdTe was deduced from lattice location measurements at different temperatures. Substitutional Ag probe atoms were generated via transmutation doping from radioactive Cd isotopes. The lattice sites of Ag isotopes were determined by measuring the channelin

  17. Magnetic anisotropy and order structure of L10-FePt(001) single-crystal films grown epitaxially on (001) planes of MgO, SrTiO3, and MgAl2O4 substrates

    Science.gov (United States)

    Hotta, A.; Ono, T.; Hatayama, M.; Tsumura, K.; Kikuchi, N.; Okamoto, S.; Kitakami, O.; Shimatsu, T.

    2014-05-01

    L10-FePt(001) single-crystal films were grown epitaxially on SrTiO3(001), MgAl2O4(001), and MgO(001) substrates. Their uniaxial magnetic anisotropy Ku and the order structure were examined for the film thickness t range of 2-14 nm. All series of films show large Ku of 4 × 107 erg/cm3 in the thickness range higher than 10 nm, with order parameter S of 0.8 and saturation magnetization Ms of 1120 emu/cm3. Ku decreased gradually as t decreased. The Ku reduction was considerable when t decreased from 4 nm to 2 nm. No marked difference in the thickness dependence of Ku was found in any series of films, although the lattice mismatch between FePt and the substrates was markedly different. Ku reduction showed good agreement with the reduction of S for the films on MgAl2O4 and MgO. The Ku ˜ S2 plot showed an almost linear relation, which is in good agreement with theoretical predictions. Transmission electron microscopy images for a FePt film on MgO substrate revealed that the lattice mismatch between FePt(001) and MgO(001) was relaxed in the initial 1 or 2 layers of FePt(001) lattices, which is likely to be true also for two other series of films.

  18. Electrostatic assembles and optical properties of Au CdTe QDs and Ag/Au CdTe QDs

    Science.gov (United States)

    Yang, Dongzhi; Wang, Wenxing; Chen, Qifan; Huang, Yuping; Xu, Shukun

    2008-09-01

    Au-CdTe and Ag/Au-CdTe assembles were firstly investigated through the static interaction between positively charged cysteamine-stabilized CdTe quantum dots (QDs) and negatively charged Au or core/shell Ag/Au nano-particles (NCs). The CdTe QDs synthesized in aqueous solution were capped with cysteamine which endowed them positive charges on the surface. Both Au and Ag/Au NCs were prepared through reducing precursors with gallic acid obtained from the hydrolysis of natural plant poly-phenols and favored negative charges on the surface of NCs. The fluorescence spectra of CdTe QDs exhibited strong quenching with the increase of added Au or Ag/Au NCs. Railey resonance scattering spectra of Au or Ag/Au NCs increased firstly and decreased latter with the concentration of CdTe QDs, accompanied with the solution color changing from red to purple and colorless at last. Experimental results on the effects of gallic acid, chloroauric acid tetrahydrate and other reagents demonstrated the static interaction occurred between QDs and NCs. This finding reveals the possibilities to design and control optical process and electromagnetic coupling in hybrid structures.

  19. Growth of ZnO nanowires through thermal oxidation of metallic zinc films on CdTe substrates

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, O., E-mail: oscar@fmc.uva.es [Optronlab Group, Dpto. Fisica Materia Condensada, Edificio I-D, Universidad de Valladolid, Paseo de Belen 1, 47011, Valladolid (Spain); Hortelano, V.; Jimenez, J. [Optronlab Group, Dpto. Fisica Materia Condensada, Edificio I-D, Universidad de Valladolid, Paseo de Belen 1, 47011, Valladolid (Spain); Plaza, J.L.; Dios, S. de; Olvera, J.; Dieguez, E. [Laboratorio de Crecimiento de Cristales, Departamento de Fisica de Materiales, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Fath, R.; Lozano, J.G.; Ben, T.; Gonzalez, D. [Dpto. Ciencia de los Materiales e Ingenieria Metalurgica y Q.I., Facultad de Ciencias, Apdo. 40, 11510 Puerto Real, Cadiz (Spain); Mass, J. [Dpto. de Fisica, Universidad del Norte, Km.5 Via Puerto Colombia, Barranquilla (Colombia)

    2011-04-28

    Research highlights: > ZnO nanowires grown from thermal Zn oxidation. > TEM reveals high quality thin nanowires several microns long. > New phase formation at long oxidation time. > Good spectroscopic properties measured by Raman, Photo and Cathodoluminsecence spectroscopies. - Abstract: <112-bar 0> wurtzite ZnO nanowires (NWs) have been obtained by oxidizing in air at 500 deg. C thermally evaporated Zn metal films deposited onto CdTe substrates. The presence of Cd atoms from the substrate on the ZnO seeding layer and NWs seems to affect the growth of the NWs. The effects of the oxidation time on the structural and optical properties of the NWs are described in detail. It is shown that the NWs density decreases and their length increases when increasing the oxidation time. Thicker Zn layers result in thinner and longer ZnO NWs. Very long oxidation times also lead to the formation of a new CdO phase which is related to the partial destruction and quality reduction of the NWs. The possible process for ZnO NW formation on CdTe substrates is discussed.

  20. Characterization of CdTe Films Deposited at Various Bath Temperatures and Concentrations Using Electrophoretic Deposition

    Directory of Open Access Journals (Sweden)

    Zulkarnain Zainal

    2012-05-01

    Full Text Available CdTe film was deposited using the electrophoretic deposition technique onto an ITO glass at various bath temperatures. Four batch film compositions were used by mixing 1 to 4 wt% concentration of CdTe powder with 10 mL of a solution of methanol and toluene. X-ray Diffraction analysis showed that the films exhibited polycrystalline nature of zinc-blende structure with the (111 orientation as the most prominent peak. From the Atomic Force Microscopy, the thickness and surface roughness of the CdTe film increased with the increase of CdTe concentration. The optical energy band gap of film decreased with the increase of CdTe concentration, and with the increase of isothermal bath temperature. The film thickness increased with respect to the increase of CdTe concentration and bath temperature, and following, the numerical expression for the film thickness with respect to these two variables has been established.

  1. Characterization of CdTe films deposited at various bath temperatures and concentrations using electrophoretic deposition.

    Science.gov (United States)

    Daud, Mohd Norizam Md; Zakaria, Azmi; Jafari, Atefeh; Ghazali, Mohd Sabri Mohd; Abdullah, Wan Rafizah Wan; Zainal, Zulkarnain

    2012-01-01

    CdTe film was deposited using the electrophoretic deposition technique onto an ITO glass at various bath temperatures. Four batch film compositions were used by mixing 1 to 4 wt% concentration of CdTe powder with 10 mL of a solution of methanol and toluene. X-ray Diffraction analysis showed that the films exhibited polycrystalline nature of zinc-blende structure with the (111) orientation as the most prominent peak. From the Atomic Force Microscopy, the thickness and surface roughness of the CdTe film increased with the increase of CdTe concentration. The optical energy band gap of film decreased with the increase of CdTe concentration, and with the increase of isothermal bath temperature. The film thickness increased with respect to the increase of CdTe concentration and bath temperature, and following, the numerical expression for the film thickness with respect to these two variables has been established.

  2. First-principles study of roles of Cu and Cl in polycrystalline CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ji-Hui; Park, Ji-Sang; Metzger, Wyatt [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Yin, Wan-Jian [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); College of Physics, Optoelectronics and Energy and Collaborative, Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Wei, Su-Huai, E-mail: suhuaiwei@csrc.ac.cn [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Beijing Computational Science Research Center, Beijing 100094 (China)

    2016-01-28

    Cu and Cl treatments are important processes to achieve high efficiency polycrystalline cadmium telluride (CdTe) solar cells, thus it will be beneficial to understand the roles they play in both bulk CdTe and CdTe grain boundaries (GBs). Using first-principles calculations, we systematically study Cu and Cl-related defects in bulk CdTe. We find that Cl has only a limited effect on improving p-type doping and too much Cl can induce deep traps in bulk CdTe, whereas Cu can enhance p-type doping of bulk CdTe. In the presence of GBs, we find that, in general, Cl and Cu will prefer to stay at GBs, especially for those with Te-Te wrong bonds, in agreement with experimental observations.

  3. Structure of shaped sapphire grown from multicapillary dies

    Science.gov (United States)

    Dobrovinskaya, E. R.; Litvinov, L. A.; Pischik, V. V.

    1990-07-01

    Peculiarities in grain structure development have been studied in sapphire crystals grown with multicapillary channels in the die to feed melt to the crystallization zone. A new mechanism of grain boundary formation based on gas-bubble collapse at the crystal-melt interface is proposed.

  4. Potentiality of photorefractive CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Moisan, J.Y.; Gravey, P.; Picoli, G.; Wolffer, N.; Vieux, V. (Dept. Technologies Appliquees a la Connectique, Centre National d' Etudes des Telecommunications, 22 - Lannion (France))

    1993-01-30

    For optical telecommunication networks, optical switching is now being studied. Different solutions have been proposed (integrated optics, free space switching, etc.), and reconfigurable optical interconnects, based on phase conjugation, should be one interesting method. For example, some results have been obtained with a double-phase conjugated mirror configuration, allowing reconfigurable connection between single-mode optical fibres. These phase-conjugated optics use photorefractive crystals and the first demonstration has been given using Bi[sub 12]TiO[sub 20] photorefractive crystals. In a telecommunication network, semiconductive crystals with a good efficiency in the near-IR wavelength are needed. Our first experiments were carried out with InP:Fe crystals at 1.3 [mu]m. However, it is well known, from published studies, that II-VI materials are, in principle, more interesting for the following reasons. The electro-optic coefficient is higher (and therefore the figure of merit is higher). The solubility of dopants is higher (and therefore the space charge electric field, which modulates the refractive index of the material, may be higher). Next we tested a CdTe:V crystal and, in a two-wave mixing experiment without an external electric field, an amplification gain was observed and a high photosensitivity demonstrated at 1.3 [mu]m. In this paper, we shall describe the photorefractive effect and explain our choice of the CdTe:V crystal, taking into account the parameters of this photorefractive effect and some other parameters required by the applications in the optical beam steering field. Next the results will be given, and finally an optical configuration using phase conjugation will be presented as an example of application. (orig.).

  5. Luminescence effects of ion-beam bombardment of CdTe surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Olvera, J., E-mail: javier.olvera@uam.e [Laboratorio de Crecimiento de Cristales, Dpto. de Fisica de Materiales, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Martinez, O. [Optronlab Group, Dpto. Fisica Materia Condensada, Edificio I-D, Universidad de Valladolid, Paseo de Belen 1, 47011 Valladolid (Spain); Plaza, J.L.; Dieguez, E. [Laboratorio de Crecimiento de Cristales, Dpto. de Fisica de Materiales, Facultad de Ciencias, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2009-09-15

    In the present work, we report the effect of low-energy ion bombardment on CdTe surfaces. The effect is revealed by FESEM images and photoluminescence (PL) measurements carried out before and after irradiation of CdTe polycrystals by means of an ion-beam sputtering (IBS) system. An important improvement in the luminescence of CdTe was observed in the irradiated areas, related to defect-free surfaces.

  6. Sputtered CdTe thin film solar cells with Cu{sub 2}Te/Au back contact

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yongseob [Department of Photoelectronics Information, Chosun College of Science and Technology, Pilmudaero 309-1, Dong-gu, Gwangju 501-744 (Korea, Republic of); Lee, Suho; Yi, Junsin; Choi, Byung-Duck [School of Electronic and Electrical Engineering, Sungkyunkwan University, Cheoncheon-dong 300, Jangan-gu, Suwon 440-746 (Korea, Republic of); Kim, Doyoung [School of Electricity and Electronics, Ulsan College, Daehak-ro 57, Nam-gu, Ulsan 680-749 (Korea, Republic of); Lee, Jaehyeong, E-mail: jaehyeong@skku.edu [School of Electronic and Electrical Engineering, Sungkyunkwan University, Cheoncheon-dong 300, Jangan-gu, Suwon 440-746 (Korea, Republic of)

    2013-11-01

    In this work, Cu{sub 2}Te/Au back contact for CdTe thin film solar cells were prepared by vacuum evaporation. Influence of annealing temperature on the structure and electrical properties of Cu{sub 2}Te films were investigated by field emission scanning electron microscope, X-ray diffraction, and Hall effect measurement. Also, CdS/CdTe thin film solar cells were fabricated by magnetron sputtering process, which is favorable for large area deposition and mass production, and the photovoltaic characteristics were studied. As the annealing temperature was increased, the crystal structure transformed from Cu{sub 2}Te for as-deposited film to Cu{sub 2−x}Te hexagonal phase, and the grains in the film became bigger. The electrical resistivity was slightly higher by the annealing. The cell efficiency was significantly improved by the heat treatment, and showed a maximum value of 9.14% at 180 °C. From these results, Cu{sub 2}Te/Au contact acts as the proper pseudo-ohmic contact onto CdTe film. However, further increase of annealing temperature caused the deterioration of cell performance. - Highlights: • Annealing effects of the vacuum evaporated Cu{sub 2}Te films were investigated. • The transformation from Cu{sub 2}Te to Cu{sub 2−x}Te hexagonal phase occurred by annealing. • The performance of the solar cell was highly increased by annealing at 180 °C. • Cu{sub 2}Te/Au contact acts as the proper pseudo-ohmic contact onto CdTe film.

  7. CdTe polycrystalline films on Ni foil substrates by screen printing and their photoelectric performance

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Huizhen [National Key Lab of Superhard Materials, Jilin University, Changchun 130012 (China); Ma, Jinwen [College of New Energy, Bohai University, Jinzhou, Liaoning 121013 (China); Mu, Yannan [National Key Lab of Superhard Materials, Jilin University, Changchun 130012 (China); Department of Physics and Chemistry, Heihe University, Heihe 164300 (China); Su, Shi; Lv, Pin; Zhang, Xiaoling; Zhou, Liying; Li, Xue; Liu, Li; Fu, Wuyou [National Key Lab of Superhard Materials, Jilin University, Changchun 130012 (China); Yang, Haibin, E-mail: yanghb@jlu.edu.cn [National Key Lab of Superhard Materials, Jilin University, Changchun 130012 (China)

    2015-06-15

    Highlights: • The sintered CdTe polycrystalline films by a simple screen printing. • The flexible Ni foil was chose as substrates to reduce the weight of the electrode. • The compact CdTe film was obtained at 550 °C sintering temperature. • The photoelectric activity of the CdTe polycrystalline films was excellent. - Abstract: CdTe polycrystalline films were prepared on flexible Ni foil substrates by sequential screen printing and sintering in a nitrogen atmosphere for the first time. The effect of temperature on the quality of the screen-printed film was investigated in our work. The high-quality CdTe films were obtained after sintering at 550 °C for 2 h. The properties of the sintered CdTe films were characterized by scanning electron microscopy, X-ray diffraction pattern and UV–visible spectroscopy. The high-quality CdTe films have the photocurrent was 2.04 mA/cm{sup 2}, which is higher than that of samples prepared at other temperatures. Furthermore, CdCl{sub 2} treatment reduced the band gap of the CdTe film due to the larger grain size. The photocurrent of photoelectrode based on high crystalline CdTe polycrystalline films after CdCl{sub 2} treatment improved to 2.97 mA/cm{sup 2}, indicating a potential application in photovoltaic devices.

  8. Photoluminescence and Electroluminescence Properties of CdTe Nanoparticles in Conjugated Polymer Hosts

    Institute of Scientific and Technical Information of China (English)

    GUO, Fengqi; XIE, Puhui

    2009-01-01

    The photoinduced energy transfer process from conjugated polymer (PPE4+) to CdTe nanocrystals was found both in solutions and in thin films by a fluorescence spectroscopic technique. Films of PPE4+ blended with CdTe-2 nanocrystals were formed by an electrostatic layer-by-layer assembly technique. Light emitting diodes were fabricated using CdTe-2 as an emitter in PPE4+ host. PPE4+ works as a molecular wire in the energy transfer process from the polymer to the CdTe-2 nanocrystals.

  9. Review of Photovoltaic Energy Production Using CdTe Thin-Film Modules: Extended Abstract Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Gessert, T. A.

    2008-09-01

    CdTe has near-optimum bandgap, excellent deposition traits, and leads other technologies in commercial PV module production volume. Better understanding materials properties will accelerate deployment.

  10. Synchrotron radiation photoemission study of Pb{sub 1−x}Cd{sub x}Te crystal with local structure

    Energy Technology Data Exchange (ETDEWEB)

    Orlowski, B.A.; Szczerbakow, A.; Dziawa, P.; Gas, K.; Reszka, A.; Kowalski, B.J. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Thiess, S.; Drube, W. [Hamburger Synchrotronstrahlungslabor HASYLAB am DESY, Notkestr. 85, D-22603 Hamburg (Germany)

    2015-12-01

    The paper presents photoemission study of core level binding energy shifts caused by local crystalline structure collapse in cubic Pb{sub 1−x}Cd{sub x}Te crystal. Photoemission spectra of two kinds of semiconductor samples are compared. The first one is ternary crystal of Pb{sub 0.94}Cd{sub 0.06}Te with the frozen rock salt structure where the crystalline local structure collapse is expected due to the difference of ion radii of Cd and Pb cations. The second sample was the CdTe(22 nm)/PbTe(6 nm)/CdTe(4 μm)/GaAs(1 1 1)B nanostructure grown by molecular beam epitaxy (MBE) method, where crystalline local structure is not expected to be created. The photoemission spectra show that for the crystal with local structure the electron binding energies of cations are higher (e.g. +0.2 eV) whereas for anions they are lower (e.g. −0.08 eV) than in the multilayer structure. A model is proposed to explain obtained results by the local crystalline structure collapse in Pb{sub 0.94}Cd{sub 0.06}Te crystal.

  11. Optical and scintillation properties of Ce-doped (Gd{sub 2}Y{sub 1})Ga{sub 2.7}Al{sub 2.3}O{sub 12} single crystal grown by Czochralski method

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chao; Wu, Yuntao; Ding, Dongzhou; Li, Huanying; Chen, Xiaofeng; Shi, Jian; Ren, Guohao, E-mail: rgh@mail.sic.ac.cn

    2016-06-01

    Multicomponent garnets, due to their excellent light yield and energy resolution, become one of the most promising scintillators used for homeland security and nuclear non-proliferation applications. This work focuses on the optimization of Ce-doped (Gd,Y){sub 3}(Ga,Al){sub 5}O{sub 12} scintillators using a combination strategy of pre-screening and scale-up. Ce-doped Gd{sub x}Y{sub 1−x}Ga{sub y}Al{sub 5−y}O{sub 12} (x=1, 2 and y=2, 2.2, 2.5, 2.7, 3) polycrystalline powders were prepared by high-temperature solid state reaction method. The desired garnet phase in all the samples was confirmed using X-ray diffraction measurement. By comparing the radioluminescence intensity, the highest scintillation efficiency was achieved at a component of Gd{sub 2}Y{sub 1}Ga{sub 2.7}Al{sub 2.3}O{sub 12}:Ce powders. A (Gd{sub 2}Y{sub 1})Ga{sub 2.7}Al{sub 2.3}O{sub 12} doped with 1% Ce single crystal with dimensions of Ø35×40 mm was grown by Czochralski method using a <111> oriented seed. Luminescence and scintillation properties were measured. An optical transmittance of 84% was achieved in the concerned wavelength from 500 to 800 nm. Its 5d–4f emission of Ce{sup 3+} is at 530 nm. The light yield of a Ce1%: Gd{sub 2}Y{sub 1}Ga{sub 2.7}Al{sub 2.3}O{sub 12} single crystal slab at a size of 5×5×1 mm{sup 3} can reach about 65,000±3000 Ph/MeV along with two decay components of 94 and 615 ns under {sup 137}Cs source irradiation.

  12. Hard X-ray polarimetry with Caliste, a high performance CdTe based imaging spectrometer

    Science.gov (United States)

    Antier, S.; Ferrando, P.; Limousin, O.; Caroli, E.; Curado da Silva, R. M.; Blondel, C.; Chipaux, R.; Honkimaki, V.; Horeau, B.; Laurent, P.; Maia, J. M.; Meuris, A.; Del Sordo, S.; Stephen, J. B.

    2015-06-01

    Since the initial exploration of the X- and soft γ-ray sky in the 60's, high-energy celestial sources have been mainly characterized through imaging, spectroscopy and timing analysis. Despite tremendous progress in the field, the radiation mechanisms at work in sources such as neutrons stars, black holes, and Active Galactic Nuclei are still unclear. The polarization state of the radiation is an observational parameter which brings key additional information about the physical processes in these high energy sources, allowing the discrimination between competing models which may otherwise all be consistent with other types of measurement. This is why most of the projects for the next generation of space missions covering the few tens of keV to the MeV region require a polarization measurement capability. A key element enabling this capability, in this energy range, is a detector system allowing the identification and characterization of Compton interactions as they are the main process at play. The compact hard X-ray imaging spectrometer module, developed in CEA with the generic name of "Caliste" module, is such a detector. In this paper, we present experimental results for two types of Caliste-256 modules, one based on a CdTe crystal, the other one on a CdZnTe crystal, which have been exposed to linearly polarized beams at the European Synchrotron Radiation Facility (ESRF). These results, obtained at 200 and 300 keV, demonstrate the capability of these modules to detect Compton events and to give an accurate determination of the polarization parameters (polarization angle and fraction) of the incoming beam. For example, applying an optimized selection to our data set, equivalent to select 90° Compton scattered interactions in the detector plane, we find a modulation factor Q of 0.78 ± 0.06 in the 200-300 keV range. The polarization angle and fraction are derived with accuracies of approximately 1° and 5 % respectively for both CdZnTe and CdTe crystals. The

  13. Dependence of CdTe response of bias history

    Energy Technology Data Exchange (ETDEWEB)

    Sites, J.R.; Sasala, R.A.; Eisgruber, I.L. [Colorado State Univ., Boulder, CO (United States)

    1995-11-01

    Several time-dependent effect have been observed in CdTe cells and modules in recent years. Some appear to be related to degradation at the back contact, some to changes in temperature at the thin-film junction, and some to the bias history of the cell or module. Back-contact difficulties only occur in some cases, and the other two effects are reversible. Nevertheless, confusion in data interpretation can arise when these effects are not characterized. This confusion can be particularly acute when more than one time-dependent effect occurs during the same measurement cycle. The purpose of this presentation is to help categorize time-dependent effects in CdTe and other thin-film cells to elucidate those related to bias history, and to note differences between cell and module analysis.

  14. Digital pulse-shape processing for CdTe detectors

    CERN Document Server

    Bargholtz, C; Maartensson, L; Wachtmeister, S

    2001-01-01

    CdTe detectors suffer from low photo-peak efficiency and poor energy resolution. These problems are due to the drift properties of charge carriers in CdTe where particularly the holes have small mobility and trapping time. This is reflected in the amplitude and the shape of the detector output. To improve this situation a digital method is introduced where a sampling ADC is used to make a detailed measurement of the time evolution of the pulse. The measured pulse shape is fitted with a model. For the detector under study a model taking hole trapping into account significantly improves the photo-peak efficiency. The description of the hole component is, however, not fully satisfactory since for pulses with a large hole contribution a broadening of the full-energy peak occurs. Allowing for inhomogeneities in the detector material within the model partially remedies this deficiency.

  15. Optical properties of CdTe: Experiment and modeling

    Science.gov (United States)

    Adachi, Sadao; Kimura, Toshifumi; Suzuki, Norihiro

    1993-09-01

    The real epsilon(sub 1) and imaginary epsilon(sub 2) portions of the dielectric function of CdTe were measured by spectroscopic ellipsometry (SE) in the 1.1-5.6 eV photon-energy range at room temperature. The data obtained were analyzed using different theoretical models, namely the harmonic-oscillator approximation, the standard critical point, and the model dielectric function. These models include the E(sub 0), E(sub 0) + Delta(sub 0), E(sub 1), E(sub 1) + Delta(sub 1), and E(sub 2) gaps as the main dispersion mechanisms. The consequences were reported and of particular interest was the difference in the analyzed results between these theoretical models. Dielectric-related optical constants of CdTe, such as the complex refractive index, the absorption coefficient, and normal-incidence reflectivity, were also investigated.

  16. Imaging performance comparison between a LaBr3: Ce scintillator based and a CdTe semiconductor based photon counting compact gamma camera.

    Science.gov (United States)

    Russo, P; Mettivier, G; Pani, R; Pellegrini, R; Cinti, M N; Bennati, P

    2009-04-01

    The authors report on the performance of two small field of view, compact gamma cameras working in single photon counting in planar imaging tests at 122 and 140 keV. The first camera is based on a LaBr3: Ce scintillator continuous crystal (49 x 49 x 5 mm3) assembled with a flat panel multianode photomultiplier tube with parallel readout. The second one belongs to the class of semiconductor hybrid pixel detectors, specifically, a CdTe pixel detector (14 x 14 x 1 mm3) with 256 x 256 square pixels and a pitch of 55 microm, read out by a CMOS single photon counting integrated circuit of the Medipix2 series. The scintillation camera was operated with selectable energy window while the CdTe camera was operated with a single low-energy detection threshold of about 20 keV, i.e., without energy discrimination. The detectors were coupled to pinhole or parallel-hole high-resolution collimators. The evaluation of their overall performance in basic imaging tasks is presented through measurements of their detection efficiency, intrinsic spatial resolution, noise, image SNR, and contrast recovery. The scintillation and CdTe cameras showed, respectively, detection efficiencies at 122 keV of 83% and 45%, intrinsic spatial resolutions of 0.9 mm and 75 microm, and total background noises of 40.5 and 1.6 cps. Imaging tests with high-resolution parallel-hole and pinhole collimators are also reported.

  17. CdTe Nanowires studied by Transient Absorption Microscopy

    Directory of Open Access Journals (Sweden)

    Kuno M.

    2013-03-01

    Full Text Available Transient absorption measurements were performed on single CdTe nanowires. The traces show fast decays that were assigned to charge carrier trapping at surface states. The observed power dependence suggests the existence of a trap-filling mechanism. Acoustic phonon modes were also observed, which were assigned to breathing modes of the nanowires. Both the fundamental breathing mode and the first overtone were observed, and the dephasing times provide information about how the nanowires interact with their environment.

  18. Optical modeling of graphene contacted CdTe solar cells

    Science.gov (United States)

    Aldosari, Marouf; Sohrabpoor, Hamed; Gorji, Nima E.

    2016-04-01

    For the first time, an optical model is applied on CdS/CdTe thin film solar cells with graphene front or back contact. Graphene is highly conductive and is as thin as a single atom which reduces the light reflection and absorption, and thus enhances the light transmission to CdTe layer for a wide range of wavelengths including IR. Graphene as front electrode of CdTe devices led to loss in short circuit current density of 10% ΔJsc ≤ 15% compared to the conventional electrodes of TCO and ITO at CdS thickness of dCdS = 100 nm. In addition, all the multilayer graphene electrodes with 2, 4, and 7 graphene layers led to Jsc ≤ 20 mA/cm2. Therefore, we conclude that a single monolayer graphene with hexagonal carbon network reduces optical losses and enhances the carrier collection measured as Jsc. In another structure design, we applied the optical model to graphene back contacted CdS/CdTe device. This scheme allows double side irradiation of the cell which is expected to enhance the Jsc. We obtained 1 ∼ 6 , 23, and 38 mA/cm2 for back, front and bifacial illumination of graphene contacted CdTe cell with CdS = 100 nm. The bifacial irradiated cell, to be efficient, requires an ultrathin CdTe film with dCdTe ≤ 1 μm. In this case, the junction electric field extends to the back region and collects out the generated carriers efficiently. This was modelled by absorptivity rather than transmission rate and optical losses. Since the literature suggest that ZnO can increase the graphene conductivity and enhance the Jsc, we performed our simulations for a graphene/ZnO electrode (ZnO = 100 nm) instead of a single graphene layer.

  19. Simulation of charge transport in pixelated CdTe

    OpenAIRE

    Kolstein, M.; G Ariño; Chmeissani, M.; De Lorenzo, G.

    2014-01-01

    The Voxel Imaging PET (VIP) Pathfinder project intends to show the advantages of using pixelated semiconductor technology for nuclear medicine applications to achieve an improved image reconstruction without efficiency loss. It proposes designs for Positron Emission Tomography (PET), Positron Emission Mammography (PEM) and Compton gamma camera detectors with a large number of signal channels (of the order of 106). The design is based on the use of a pixelated CdTe Schottky detector to have op...

  20. High efficiency CSS CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ferekides, C.S.; Marinskiy, D.; Viswanathan, V.; Tetali, B.; Palekis, V.; Selvaraj, P.; Morel, D.L. [University of South Florida, Tampa, FL (United States). Dept. of Electrical Engineering

    2000-02-21

    Cadmium telluride (CdTe) has long been recognized as a strong candidate for thin film solar cell applications. It has a bandgap of 1.45 eV, which is nearly ideal for photovoltaic energy conversion. Due to its high optical absorption coefficient essentially all incident radiation with energy above its band-gap is absorbed within 1-2 {mu}m from the surface. Thin film CdTe solar cells are typically heterojunctions, with cadmium sulfide (CdS) being the n-type junction partner. Small area efficiencies have reached the 16.0% level and considerable efforts are underway to commercialize this technology. This paper will present work carried out at the University South Florida sponsored by the National Renewable Energy Laboratory of the United States Department of Energy, on CdTe/CdS solar cells fabricated using the close spaced sublimation (CSS) process. The CSS technology has attractive features for large area applications such as high deposition rates and efficient material utilization. The structural and optical properties of CSS CdTe and CdS films and junctions will be presented and the influence of some important CSS process parameters will be discussed. (orig.)

  1. Manufacturing of CSS CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet, D. [ANTEC Solar GmbH, Rudisleben (Germany)

    2000-02-21

    Due to its basic physical and chemical properties CdTe has become a favoured base material for thin film solar cells, using robust, high-throughput manufacturing procedures. The technology shows significant potential for attaining cost levels of <0.5 Euro/W{sub p}. Close-spaced sublimation (CSS) is the fastest and simplest deposition process for both semiconductors used, CdTe and CdS, permitting in-line production at a high linear speed of about 1 m/min. The individual manufacturing steps for integrated modules are explained in view of their incorporation into the production line. ANTEC solar GmbH is engaged to enter the production of CdTe thin film modules on a scale of 10 MW{sub p} (100000 m{sup 2}) per annum, using CSS as the deposition procedure for the semiconductor films, and high-rate in-line sputtering for transparent and opaque contacts. Standard module size will be 60 x 120 cm{sup 2}. The production line is presently under construction. (orig.)

  2. RHEED study of the (1 1 0) cleavage surface of CdTe:Cr single crystals

    Science.gov (United States)

    Sagan, P.; Kuzma, M.

    2007-03-01

    The structure of (1 1 0) plane of Cr-doped CdTe single crystals has been studied by reflection high energy electron diffraction and scanning electron microscopy. Diffraction patterns consist of diffraction spots and Kikuchi lines. However, for very small incident angle, the Debye rings are observed. The constant lattice attributed to these rings is 0.8% less then for pure CdTe. These anomalous properties of the near surface layer are likely to occur due to the concentration of Cr atoms creating compressive surface strains or the effect of crystal cleavage.

  3. The effects of high temperature processing on the structural and optical properties of oxygenated CdS window layers in CdTe solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Paudel, Naba R.; Grice, Corey R.; Xiao, Chuanxiao; Yan, Yanfa [Department of Physics and Astronomy, and Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, Ohio 43606 (United States)

    2014-07-28

    High efficiency CdTe solar cells typically use oxygenated CdS (CdS:O) window layers. We synthesize CdS:O window layers at room temperature (RT) and 270 °C using reactive sputtering. The band gaps of CdS:O layers deposited at RT increase when O{sub 2}/(O{sub 2} + Ar) ratios in the deposition chamber increase. On the other hand, the band gaps of CdS:O layers deposited at 270 °C decrease as the O{sub 2}/(O{sub 2} + Ar) ratios increase. Interestingly, however, our high temperature closed-space sublimation (CSS) processed CdTe solar cells using CdS:O window layers deposited at RT and 270 °C exhibit very similar cell performance, including similar short-circuit current densities. To understand the underlying reasons, CdS:O thin films deposited at RT and 270 °C are annealed at temperatures that simulate the CSS process of CdTe deposition. X-ray diffraction, atomic force microscopy, and UV-visible light absorption spectroscopy characterization of the annealed films reveals that the CdS:O films deposited at RT undergo grain regrowth and/or crystallization and exhibit reduced band gaps after the annealing. Our results suggest that CdS:O thin films deposited at RT and 270 °C should exhibit similar optical properties after the deposition of CdTe layers, explaining the similar cell performance.

  4. Electronic stopping power of slow H+ and He2+ ions in CdTe from first principle

    Science.gov (United States)

    Li, Chang-kai; Mao, Fei; Fu, Yan-long; Liao, Bin; Ouyang, Xiao-ping; Zhang, Feng-Shou

    2017-02-01

    We study through time-dependent density-functional theory (TDDFT) method the electronic stopping power of low-energy protons and helium ions moving through CdTe under the condition of channeling. The agreement between our calculated results and SRIM data roughly up to the stopping maximum for the proton along the and crystalline axes and for helium ions along crystalline axis is satisfactory, which can be explained by the energy transfer mechanism that electron-hole excitation caused by ions in the solid. However, in the channel of for helium ions, a transition between two velocities regimes is observed at about v = 0.4 a.u. This may be an indication of extra energy loss channel beyond the electron-hole excitation. To analyze it, we calculate the amount of electrons captured by the moving projectiles in real time. It is found that the soft transition between two velocities regimes can be attributed to the charge transfer and charge resonance between helium ion and host atoms of CdTe crystal, which are considered as additional energy loss channels.

  5. Identification of Ag-acceptors in $^{111}\\!$Ag $^{111}\\!$Cd doped ZnTe and CdTe

    CERN Document Server

    Hamann, J; Deicher, M; Filz, T; Lany, S; Ostheimer, V; Strasser, F; Wolf, H; Wichert, T

    2000-01-01

    Nominally undoped ZnTe and CdTe crystals were implanted with radioactive $^{111}\\!$Ag, which decays to $^{111}\\!$Cd, and investigated by photoluminescence spectroscopy (PL). In ZnTe, the PL lines caused by an acceptor level at 121 meV are observed: the principal bound exciton (PBE) line, the donor-acceptor pair (DAP) band, and the two-hole transition lines. In CdTe, the PBE line and the DAP band that correspond to an acceptor level at 108 meV appear. Since the intensities of all these PL lines decrease in good agreement with the half-life of $^{111}\\!$Ag of 178.8 h, both acceptor levels are concluded to be associated with defects containing a single Ag atom. Therefore, the earlier assignments to substitutional Ag on Zn- and Cd-lattice sites in the respective II-VI semiconductors are confirmed. The assignments in the literature of the S$_1$, S$_2$, and S$_3$ lines in ZnTe and the X$\\scriptstyle^\\textrm{Ag}_{1}\\,\\,,$ X$\\scriptstyle^\\textrm{Ag}_{2}$/ C$\\scriptstyle^\\textrm{Ag}_{1}\\,$ and C$\\scriptstyle^\\textrm{...

  6. Hard-X and gamma-ray imaging detector for astrophysics based on pixelated CdTe semiconductors

    Science.gov (United States)

    Gálvez, J.-L.; Hernanz, M.; Álvarez, L.; Artigues, B.; Ullán, M.; Lozano, M.; Pellegrini, G.; Cabruja, E.; Martínez, R.; Chmeissani, M.; Puigdengoles, C.

    2016-01-01

    Stellar explosions are astrophysical phenomena of great importance and interest. Instruments with high sensitivities are essential to perform detailed studies of cosmic explosions and cosmic accelerators. In order to achieve the needed performance, a hard-X and gamma-ray imaging detector with mm spatial resolution and large enough efficiency is required. We present a detector module which consists of a single CdTe crystal of 12.5 × 12.5mm 2 and 2mm thick with a planar cathode and with the anode segmented in an 11x11 pixel array with a pixel pitch of 1 mm attached to the readout chip. Two possible detector module configurations are considered: the so-called Planar Transverse Field (PTF) and the Parallel Planar Field (PPF). The combination of several modules in PTF or PPF configuration will achieve the desired performance of the imaging detector. The sum energy resolution of all pixels of the CdTe module measured at 122 keV and 356 keV is 3.8% and 2% respectively, in the following operating conditions: PPF irradiation, bias voltage -500 V and temperature -10̂ C.

  7. Recrystallization phenomena of solution grown paraffin dendrites

    NARCIS (Netherlands)

    Hollander, F.F.A.; Stasse, O.; Suchtelen, van J.; Enckevort, van W.J.P.

    2001-01-01

    Paraffin crystals were grown from decane solutions using a micro-Bridgman set up for in-situ observation of the morphology at the growth front. It is shown that for large imposed velocities, dendrites are obtained. After dendritic growth, aging or recrystallization processes set in rather quickly, c

  8. Optical characterization of ferroelectric glycinium phosphite single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Perumal, R.; Senthil Kumar, K. [Crystal Growth Centre, Anna University, Sardar Patel Road, Chennai, Tamil Nadu 600025 (India); Moorthy Babu, S., E-mail: babu@annauniv.ed [Crystal Growth Centre, Anna University, Sardar Patel Road, Chennai, Tamil Nadu 600025 (India); Bhagavannarayana, G. [Crystal Growth and Crystallography Section, National Physical Laboratory, CSIR, Dr. K.S. Krishnan Marg, New Delhi 110012 (India)

    2010-02-04

    Single crystals of glycinium phosphite (GPI) were grown by isothermal evaporation and conventional temperature-lowering techniques. Single crystal and powder X-ray diffraction analysis confirm the monoclinic structure of the as grown crystals. The structural perfection of the as grown crystal was determined through HRXRD analysis. FTIR and Raman analysis revealed the functional groups present in the grown crystals. The optical absorption of the grown crystal was analyzed and the refractive index values for different wavelengths were measured by prism coupling technique. Thermal stability, melting temperature and phase transition temperature of the as grown crystals were identified from TGA/DSC analysis. The dielectric impedance analysis indicates the continuous phase transition nature of the grown crystals. The mechanical strength and hardening co-efficient were determined from Vicker's microhardness measurements for different loads with constant dwell time. The growth mechanism and the defects were analyzed through chemical etching analysis from various crystallographic planes and etching periods.

  9. The growth of CdTe thin film by close space sublimation system

    Science.gov (United States)

    Alamri, S. N.

    2003-12-01

    The effects of source and substrate temperature, ambient gas pressure and the separation between source and substrate on the growth rate of CdTe using the close space sublimation (CSS) system have been investigated. The growth rate increased as the source temperature increased with an activation energy of 1.9 eV and it was constant and independent of the substrate temperature, up to some breakpoint temperature, above which the rate decreased rapidly to zero. Free sublimation and transport is involved at low pressures such as 7.5 × 10-5 mbar, whereas diffusion-limited transport was involved at pressures of 2 and 6 mbar of N2. The growth rate increased as the separation between the source and the substrate decreased. The film's grain size increased from <1 m at 335 °C to more than 2.5 m at above 445 °C. Analysis of the XRD traces indicated that the films grown at 335 °C were a highly preferred (111) orientation and the (111) texture coefficient reduced when the substrate temperature increased. (

  10. Temperature-dependent photoluminescence of highly luminescent water-soluble CdTe quantum dots

    Institute of Scientific and Technical Information of China (English)

    Ji Wei Liu; Yu Zhang; Cun Wang Ge; Yong Long Jin; Sun Ling Hu; Ning Gu

    2009-01-01

    Highly luminescent water-soluble CdTe quantum dots (QDs) have been synthesized with an electrogenerated precursor. The obtained CdTe QDs can possess good crystallizability, high quantum yield (QY) and favorable stability. Furthermore, a detection system is designed firstly for the investigation of the temperature-dependent PL of the QDs.

  11. Fabrication of the structures with autocatalytic CdTe nanowires using magnetron sputtering deposition

    Science.gov (United States)

    Soshnikov, I. P.; Semenov, A. A.; Belyavskii, P. Yu.; Shtrom, I. V.; Kotlyar, K. P.; Lysak, V. V.; Kudryashov, D. A.; Pavlov, S. I.; Nashchekin, A. V.; Cirlin, G. E.

    2016-12-01

    We report the possibility of autocatalytic synthesis of highly crystalline perfect CdTe nanowires by magnetron presputtering deposition through the windows in ultrathin layers of SiO2. The photoluminescence spectra of obtained CdTe nanowires exhibit an emission band in the 1.4-1.7 eV region, indicating crystalline perfection of the nanowires.

  12. Translocation and neurotoxicity of CdTe quantum dots in RMEs motor neurons in nematode Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yunli; Wang, Xiong; Wu, Qiuli; Li, Yiping; Wang, Dayong, E-mail: dayongw@seu.edu.cn

    2015-02-11

    Graphical abstract: - Highlights: • We investigated in vivo neurotoxicity of CdTe QDs on RMEs motor neurons in C. elegans. • CdTe QDs in the range of μg/L caused neurotoxicity on RMEs motor neurons. • Bioavailability of CdTe QDs may be the primary inducer for CdTe QDs neurotoxicity. • Both oxidative stress and cell identity regulate the CdTe QDs neurotoxicity. • CdTe QDs were translocated and deposited into RMEs motor neurons. - Abstract: We employed Caenorhabditis elegans assay system to investigate in vivo neurotoxicity of CdTe quantum dots (QDs) on RMEs motor neurons, which are involved in controlling foraging behavior, and the underlying mechanism of such neurotoxicity. After prolonged exposure to 0.1–1 μg/L of CdTe QDs, abnormal foraging behavior and deficits in development of RMEs motor neurons were observed. The observed neurotoxicity from CdTe QDs on RMEs motor neurons might be not due to released Cd{sup 2+}. Overexpression of genes encoding Mn-SODs or unc-30 gene controlling cell identity of RMEs neurons prevented neurotoxic effects of CdTe QDs on RMEs motor neurons, suggesting the crucial roles of oxidative stress and cell identity in regulating CdTe QDs neurotoxicity. In nematodes, CdTe QDs could be translocated through intestinal barrier and be deposited in RMEs motor neurons. In contrast, CdTe@ZnS QDs could not be translocated into RMEs motor neurons and therefore, could only moderately accumulated in intestinal cells, suggesting that ZnS coating might reduce neurotoxicity of CdTe QDs on RMEs motor neurons. Therefore, the combinational effects of oxidative stress, cell identity, and bioavailability may contribute greatly to the mechanism of CdTe QDs neurotoxicity on RMEs motor neurons. Our results provide insights into understanding the potential risks of CdTe QDs on the development and function of nervous systems in animals.

  13. NREL Collaboration Breaks 1-Volt Barrier in CdTe Solar Technology

    Energy Technology Data Exchange (ETDEWEB)

    2016-05-01

    NREL scientists have worked with Washington State University and the University of Tennessee to improve the maximum voltage available from CdTe solar cells. Changes in dopants, stoichiometry, interface design, and defect chemistry improved the CdTe conductivity and carrier lifetime by orders of magnitude, thus enabling CdTe solar cells with open-circuit voltages exceeding 1 volt for the first time. Values of current density and fill factor for CdTe solar cells are already at high levels, but sub-par voltages has been a barrier to improved efficiencies. With voltages pushed beyond 1 volt, CdTe cells have a path to produce electricity at costs less than fossil fuels.

  14. Influence of microgravity on Ce-doped Bi12SiO20 crystal defect

    Indian Academy of Sciences (India)

    Y F Zhou; J Y Xu; Y Liu; L D Chen; Y Y Huang; W X Huang

    2007-06-01

    Space grown BSO crystal doped with Ce was characterized by means of X-ray fluorescence spectra, X-ray topography, dislocation density etc. Influence of microgravity on Ce-doped BSO crystal defect was studied by comparing space grown BSO crystal with ground grown one. These results show that compositional homogeneity and structural perfection of crystal can be improved under microgravity conditions.

  15. The Study on the Properties of CdTe Buffer Layer for MBE HgCdTe Epilayer%分子束外延HgCdTe薄膜的CdTe缓冲层特性研究

    Institute of Scientific and Technical Information of China (English)

    宋立媛; 唐利斌; 李艳辉; 孔令德; 陈雪梅

    2009-01-01

    CdTe是GaAs衬底上分子束外延(MBE)HgCdTe薄膜时的缓冲层,引入缓冲层的目的是减小失配位错,CdTe缓冲层的生长直接影响到后续HgCdTe薄膜的制备质量,然而目前现有文献鲜有报道CdTe缓冲层的最佳厚度.采用X射线双晶衍射、位错腐蚀坑密度(EPD)、FT-IR和椭圆偏振光谱的方法,从CdTe缓冲层厚度对位错密度的影响入手,分析并确定了理想的CdTe缓冲层厚度.%CdTe is the buffer layer of GaAs substrate for HgCdTe eoilayer grown by MBE,The purpose for introduction of buffer laver is to decrease the mismatched dislocation,the growth of CdTe buffer layer directly affects the quality of foilowing grown HgCdTe thin film.However,up to now only few papers have reported the optimum thickness for CdTe buffer layer.By using of X-ray double ervstal diffraction,EPD,FT-IR as well as soectroscopic ellipsometry the paper has studied the effects of the thickness on EPD for CdTe buffer layer,the optimum thickness of CdTe buffer layer has been obtained.

  16. Development of monocrystalline CdTe solar cells for terrestrial applications, especially for optical concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, H.; Fuessl, B.; Seipp, E.; Thiel, R.

    1981-01-01

    During the first phase of the contract most of the work was done in order to optimise the most important structural elements of the solar cells, which were produced on the base of crystalline CdTe. Two approaches in development of such cells were made: n-CdTe crystals were covered with a p-type heterolayer as a window for sunlight; ZnTe was evaporated as a p-type layer. p-CdTe crystals were covered with a n-type heterolayer as a window. Here, CdS evaporation layers and indium-tin-oxide (ITO) sputtered layers were applied. Within the first approach the realisation of ZnTe-layers simultaneously highly conductive and transparent was tried by using numerous dopants. Within the second approach, the development of p-CdTe/n-CdS solar cells, the resistances of the ohmic contacts on the back of the p-CdTe wafers were a major problem. We found some ways of preparing ohmic contacts of acceptable contact resistance, but an ideal problem solution is lacking still. We found a dependence of the contact resistance on the p-CdTe doping concentration. Solar cells made from p-CdTe crystals covered with n/sup +/-CdS attained an open circuit voltage of 655 mV and a short circuit current density of 13.8 mA/cm/sup 2/ in a 100 mW/cm/sup 2/ light. Assuming a sufficiently low series resistance we expect an efficiency of about 6 percent. Besides the n/sup +/-CdS layers n/sup +/-ITO-layers (indium-tin-oxide) were deposited on p-CdTe by sputtering. These cells exhibit a short circuit density a little higher but a lower open circuit voltage than the heterosolarcells with n/sup +/-CdS.

  17. A new model for the O{sub Te}-V{sub Cd} complex in CdTe

    Energy Technology Data Exchange (ETDEWEB)

    Bastin, Dirk; Lavrov, Edward; Weber, Joerg [Technische Univ. Dresden (Germany); Schneider, Juergen; Fauler, Alex; Fiederle, Michael [Freiburger Materialforschungszentrum, 79104 Freiburg im Breisgau (Germany)

    2012-07-01

    CdTe single crystals treated in CdSO{sub 4} vapor at 850 C are investigated by IR absorption. Two local vibrational modes (LVM) at 1096.8 (v{sub 1}) and 1108.4 cm{sup -1} (v{sub 2}) appear in the sample as the result of the thermal treatment. The modes were previously identified by Chen et al. as vibrations of the O{sub Te}-V{sub Cd} complex. We detect in our samples additional LVMs with intensities which match the natural abundance of the sulfur isotopes. The reported dependence of the absorption intensities of v{sub 1} and v{sub 2} from the oxygen concentration of the samples points to a model of an sulfur-oxygen complex of the vibrating center. From the intensities of the IR absorption involving the {sup 18}O isotope, we conclude that two oxygen atoms contribute to the LVMs.

  18. Investigation on Structure and Optical Properties of Gd-doped CdTe Films%Gd掺杂CdTe薄膜的结构和光学特性研究

    Institute of Scientific and Technical Information of China (English)

    何志刚; 李蓉萍; 董海成; 安晓晖; 吴蓉; 李忠贤

    2011-01-01

    CdTe thin films and Gd - doped CdTe thin films were prepared by vacuum thermal evaporation on glass substrates. The effect of heat - treatment and doping content of Gd on the structure, optical characteristics of CdTe films was studied. The results show that all thin films are cube sphalerite structure. Gd doping doesn't change crystal structure of thin films, but it makes average crystal size of CdTe films tum small, the lattice constant and crystal cell volume tum big appreciably, and a preferential growth orientation along [220] tum to along [ 111 ] . The transmissivity becomes higher in visible spectrad range and the optical band gap changes small by Cd doping.%用真空热蒸发法在玻璃衬底制备CdTe和Cd掺杂CdTe薄膜.研究热处理和Gd掺杂量对CdTe薄膜结构、光学特性的影响.结果表明,薄膜均为立方闪锌矿结构,Gd的掺入没有改变薄膜的晶体结构,但使薄膜的晶粒尺寸减小,晶格常数和晶胞体积略有增大,并使其择优取向由[220]晶向变为[111]晶向.掺Gd使薄膜在可见光范围透过率增强,但对光能隙影响不大.

  19. Degradation and capacitance: voltage hysteresis in CdTe devices

    Science.gov (United States)

    Albin, D. S.; Dhere, R. G.; Glynn, S. C.; del Cueto, J. A.; Metzger, W. K.

    2009-08-01

    CdS/CdTe photovoltaic solar cells were made on two different transparent conducting oxide (TCO) structures in order to identify differences in fabrication, performance, and reliability. In one set of cells, chemical vapor deposition (CVD) was used to deposit a bi-layer TCO on Corning 7059 borosilicate glass consisting of a F-doped, conductive tin-oxide (cSnO2) layer capped by an insulating (undoped), buffer (iSnO2) layer. In the other set, a more advanced bi-layer structure consisting of sputtered cadmium stannate (Cd2SnO4; CTO) as the conducting layer and zinc stannate (Zn2SnO4; ZTO) as the buffer layer was used. CTO/ZTO substrates yielded higher performance devices however performance uniformity was worse due to possible strain effects associated with TCO layer fabrication. Cells using the SnO2-based structure were only slightly lower in performance, but exhibited considerably greater performance uniformity. When subjected to accelerated lifetime testing (ALT) at 85 - 100 °C under 1-sun illumination and open-circuit bias, more degradation was observed in CdTe cells deposited on the CTO/ZTO substrates. Considerable C-V hysteresis, defined as the depletion width difference between reverse and forward direction scans, was observed in all Cu-doped CdTe cells. These same effects can also be observed in thin-film modules. Hysteresis was observed to increase with increasing stress and degradation. The mechanism for hysteresis is discussed in terms of both an ionic-drift model and one involving majority carrier emission in the space-charge region (SCR). The increased generation of hysteresis observed in CdTe cells deposited on CTO/ZTO substrates suggests potential decomposition of these latter oxides when subjected to stress testing.

  20. Electronic states of germanium grown under micro-gravity condition

    Energy Technology Data Exchange (ETDEWEB)

    Sugahara, A. [Department of Physics, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan)]. E-mail: sugahara@tsurugi.phys.sci.osaka-u.ac.jp; Ogawa, T. [Department of Physics, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Fujii, K. [Department of Physics, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Ohyama, T. [Liberal Arts, Fukui University of Technology, 3-6-1 Gakuen, Fukui, Fukui 910-8505 (Japan); Nakata, J. [Kyoto Semiconductor Corp. 418-9 Yodo Saime-cho, Fushimi-ku, Kyoto 613-0915 (Japan)

    2006-04-01

    Magneto-optical absorption measurements of Sb-doped germaniums grown under micro-gravity condition were carried out to investigate the influence of the gravity on crystal growth, using far-infrared laser and microwave. For comparison, we prepared two germanium crystals grown in the same conditions except the gravity conditions. In spite of the quite short growth period, the germanium grown under micro-gravity has a quite good quality. The lineshape analysis of Zeeman absorption peaks due to donor electrons indicates the existence of residual thermal acceptors.

  1. High-Efficiency, Commercial Ready CdTe Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Sites, James R. [Colorado State Univ., Fort Collins, CO (United States)

    2015-11-19

    Colorado State’s F-PACE project explored several ways to increase the efficiency of CdTe solar cells and to better understand the device physics of those cells under study. Increases in voltage, current, and fill factor resulted in efficiencies above 17%. The three project tasks and additional studies are described in detail in the final report. Most cells studied were fabricated at Colorado State using an industry-compatible single-vacuum closed-space-sublimation (CSS) chamber for deposition of the key semiconductor layers. Additionally, some cells were supplied by First Solar for comparison purposes, and a small number of modules were supplied by Abound Solar.

  2. Growth of dopamine crystals

    Science.gov (United States)

    Patil, Vidya; Patki, Mugdha

    2016-05-01

    Many nonlinear optical (NLO) crystals have been identified as potential candidates in optical and electro-optical devices. Use of NLO organic crystals is expected in photonic applications. Hence organic nonlinear optical materials have been intensely investigated due to their potentially high nonlinearities, and rapid response in electro-optic effect compared to inorganic NLO materials. There are many methods to grow organic crystals such as vapor growth method, melt growth method and solution growth method. Out of these methods, solution growth method is useful in providing constraint free crystal. Single crystals of Dopamine have been grown by evaporating the solvents from aqueous solution. Crystals obtained were of the size of orders of mm. The crystal structure of dopamine was determined using XRD technique. Images of crystals were obtained using FEG SEM Quanta Series under high vacuum and low KV.

  3. Probabilistic electron density distribution in CdTe at RT and 200K

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, R. [Department of Physics, The Madura College, Madurai - 625 011, Tamil Nadu (India); Israel, S. [Department of Physics, American College, Madurai - 625 002, Tamil Nadu (India); Ono, Y.; Kajitani, T. [Department of Applied Physics, Graduate School of Engineering, Tohoku University, Sendai 980-8579 (Japan); Ohno, K. [Institute for Materials Research, Tohoku University, Sendai, 980-8577 (Japan); Isshiki, M. [Institute for Advanced Materials Processing, Tohoku University, Sendai, 980-8577 (Japan); Rajaram, R.K. [School of Physics, Madurai Kamaraj University, Madurai - 625 021, Tamil Nadu (India)

    2006-03-15

    The bonding between the atoms in the II-VI compound semiconductors has always been a subject of rigorous research because of their tremendous applications in a variety of fields. The bonding and ionic character in CdTe at 300 and 200 K have been determined quantitatively as well as qualitatively using single crystal X-ray data sets and MEM (Maximum Entropy Method) as the tool for the reconstruction of the electron densities distributed within the unit cell. The ab-initio band calculation of the total and valence charge densities have been carried out theoretically by means of the local density approximation (LDA) method in support of the experimentally derived MEM maps. The difference density maps show fewer errors between the theoretical and experimental charge density and thus gives credence to the results accordingly. Along the bonding direction [111], the mid-bond electron densities are found to be 0.233 e/Aa{sup 3} and 0.284 e/Aa{sup 3} at 300 K and 200 K at distances 1.4026 Aa and 1.4036 Aa respectively. The densities along [100] and [110] show an increase in the charge concentration at the bond at lower temperatures. copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim. (orig.)

  4. Quantum spin Hall effect in α -Sn /CdTe(001 ) quantum-well structures

    Science.gov (United States)

    Küfner, Sebastian; Matthes, Lars; Bechstedt, Friedhelm

    2016-01-01

    The electronic and topological properties of heterovalent and heterocrystalline α -Sn/CdTe(001) quantum wells (QWs) are studied in dependence on the thickness of α -Sn by means of ab initio calculations. We calculate the topological Z2 invariants of the respective bulk crystals, which identify α -Sn as strong three-dimensional (3D) topological insulators (TIs), whereas CdTe is a trivial insulator. We predict the existence of two-dimensional (2D) topological interface states between both materials and show that a topological phase transition from a trivial insulating phase into the quantum spin Hall (QSH) phase in the QW structures occurs at much higher thicknesses than in the HgTe case. The QSH effect is characterized by the localization, dispersion, and spin polarization of the topological interface states. We address the distinction of the 3D and 2D TI characters of the studied QW structures, which is inevitable for an understanding of the underlying quantum state of matter. The 3D TI nature is characterized by two-dimensional topological interface states, while the 2D phase exhibits one-dimensional edge states. The two different state characteristics are often intermixed in the discussion of the topology of 2D QW structures, especially, the comparison of ab initio calculations and experimental transport studies.

  5. Raman characterization of a new Te-rich binary compound: CdTe2.

    Science.gov (United States)

    Rousset, Jean; Rzepka, Edouard; Lincot, Daniel

    2009-04-02

    Structural characterization by Raman spectroscopy of CdTe thin films electrodeposited in acidic conditions is considered in this work. This study focuses on the evolution of material properties as a function of the applied potential and the film thickness, demonstrating the possibility to obtain a new Te-rich compound with a II/VI ratio of 1/2 under specific bath conditions. Raman measurements carried out on etched samples first allow the elimination of the assumption of a mixture of phases CdTe + Te and tend to confirm the formation of the CdTe(2) binary compound. The signature of this phase on the Raman spectrum is the increase of the LO band intensity compared to that obtained for the CdTe. The influence of the laser power is also considered. While no effect is observed on CdTe films, the increase of the incident irradiation power leads to the decomposition of the CdTe(2) compound into two more stable phases namely CdTe and Te.

  6. Highly luminescent hybrid SiO2-coated CdTe quantum dots: synthesis and properties.

    Science.gov (United States)

    Liu, Ning; Yang, Ping

    2013-01-01

    Novel hybrid SiO2-coated CdTe quantum dots (QDs) were created using CdTe QDs coated with a hybrid SiO2 shell containing Cd(2+) ions and a sulfur source via a sol-gel process in aqueous solution. Aqueous CdTe QDs with tunable emitting color created through a reaction between cadmium chloride and sodium hydrogen telluride was used as cores for the preparation of hybrid SiO2-coated CdTe QDs. In our experiments we found that the surface state of the cores and preparation conditions that affect the formation of the hybrid SiO2 shell also greatly affect photoluminescence of the hybrid SiO2-coated CdTe QDs. The generation of CdS-like clusters in the vicinity of the CdTe QDs, caused the quantum size effect of the QDs to be greatly reduced, which changes photoluminescence properties of the hybrid QDs fundamentally. Namely, the novel hybrid SiO2 shell played an important role in generating a series of specific optical properties. In addition, the novel hybrid SiO2 shell can be created if no CdTe QD is added. In order to gain an insight into the inter structure of the hybrid shell, we characterized the hybrid SiO2-coated CdTe QDs using X-ray diffraction analysis and discuss the formation mechanism of such a hybrid structure. This work is significant because the novel hybrid SiO2-coated CdTe QDs with its excellent properties can be used in many applications, such as biolabeling and optoelectronic devices.

  7. Fluoroscopic x-ray demonstrator using a CdTe polycrystalline layer coupled to a CMOS readout chip

    Science.gov (United States)

    Arques, M.; Renet, S.; Brambilla, A.; Feuillet, G.; Gasse, A.; Billon-Pierron, N.; Jolliot, M.; Mathieu, L.; Rohr, P.

    2010-04-01

    Dynamic X-ray imagers require large surface, fast and highly sensitive X-ray absorbers and dedicated readout electronics. Monocrystalline photoconductors offer the sensitivity, speed, and MTF performances. Polycristalline photoconductors offer the large surface at a moderate cost. The challenge for them is to maintain the first performances at a compatible level with the medical applications requirements. This work has been focused on polycristalline CdTe grown by Close Space Sublimation (CSS) technique. This technique offers the possibility to grow large layers with a high material evaporation yield. This paper presents the results obtained with an image demonstrator using 350μm thick CdTe_css layers coupled to a CMOS readout circuit with Indium bumping. The present demonstrator has 200 x 200 pixels, with a pixel pitch of 75μm ×75μm. A total image surface of 15mm × 15mm has then been obtained. The ASIC works in an integration mode, i.e. each pixel accumulates the charges coming from the CdTe layer on a capacitor, converting them to a voltage. Single images as well as video sequences have been obtained. X-ray performance at 16 frames per second rate is measured. In particular a readout noise of 0.5 X ray, an MTF of 50% at 4 lp/mm and a DQE of 20% at 4lp/mm and 600 nGy are obtained. Although present demonstrator surface is moderate, it demonstrates that high performance can be expected from this assembly concept and its interest for medical applications.

  8. A pixellated γ-camera based on CdTe detectors clinical interests and performances

    Science.gov (United States)

    Chambron, J.; Arntz, Y.; Eclancher, B.; Scheiber, Ch; Siffert, P.; Hage Hali, M.; Regal, R.; Kazandjian, A.; Prat, V.; Thomas, S.; Warren, S.; Matz, R.; Jahnke, A.; Karman, M.; Pszota, A.; Nemeth, L.

    2000-07-01

    A mobile gamma camera dedicated to nuclear cardiology, based on a 15 cm×15 cm detection matrix of 2304 CdTe detector elements, 2.83 mm×2.83 mm×2 mm, has been developed with a European Community support to academic and industrial research centres. The intrinsic properties of the semiconductor crystals - low-ionisation energy, high-energy resolution, high attenuation coefficient - are potentially attractive to improve the γ-camera performances. But their use as γ detectors for medical imaging at high resolution requires production of high-grade materials and large quantities of sophisticated read-out electronics. The decision was taken to use CdTe rather than CdZnTe, because the manufacturer (Eurorad, France) has a large experience for producing high-grade materials, with a good homogeneity and stability and whose transport properties, characterised by the mobility-lifetime product, are at least 5 times greater than that of CdZnTe. The detector matrix is divided in 9 square units, each unit is composed of 256 detectors shared in 16 modules. Each module consists in a thin ceramic plate holding a line of 16 detectors, in four groups of four for an easy replacement, and holding a special 16 channels integrated circuit designed by CLRC (UK). A detection and acquisition logic based on a DSP card and a PC has been programmed by Eurorad for spectral and counting acquisition modes. Collimators LEAP and LEHR from commercial design, mobile gantry and clinical software were provided by Siemens (Germany). The γ-camera head housing, its general mounting and the electric connections were performed by Phase Laboratory (CNRS, France). The compactness of the γ-camera head, thin detectors matrix, electronic readout and collimator, facilitates the detection of close γ sources with the advantage of a high spatial resolution. Such an equipment is intended to bedside explorations. There is a growing clinical requirement in nuclear cardiology to early assess the extent of an

  9. Close space sublimation of CdTe for solar cells and the effect of underlying layers

    OpenAIRE

    Wakeling, B. R.

    2010-01-01

    This work has focused on the design, construction and testing of a close space sublimation system for CdTe deposition. In addition, it also focused on variations to the treatment and fabrication procedures of the transparent conducting oxide and CdS layers prior to the CdTe deposition, in order to influence the structure and electrical properties of the CdTe/CdS interface. CdTe was deposited by the physical vapour process, close space sublimation. The equipment used was custom built for this ...

  10. Narrowing the size distribution of CdTe nanocrystals using digestive ripening

    Indian Academy of Sciences (India)

    Mona Mittal; Sameer Sapra

    2015-06-01

    Digestive ripening of polydispersed colloidal CdTe nanocrystals is performed which results in monodispersed nanocrystals (NCs) as studied by optical spectroscopy. Optimization of ligand and refluxing time is carried out. Monodispersed NCs are obtained using mercaptopropionic acid (MPA) as a digestive ripening agent at a refluxing time of 1–2 h. Digestive ripening of CdTe NCs, which are less polydispersed, is also executed and it leads to more monodispersed NCs. In all the cases, there is a shift of maximum emission wavelength of CdTe NCs after digestive ripening that may be due to Ostwald ripening along with digestive ripening.

  11. Advanced CdTe Photovoltaic Technology: September 2007 - March 2009

    Energy Technology Data Exchange (ETDEWEB)

    Barth, K.

    2011-05-01

    During the last eighteen months, Abound Solar (formerly AVA Solar) has enjoyed significant success under the SAI program. During this time, a fully automated manufacturing line has been developed, fabricated and commissioned in Longmont, Colorado. The facility is fully integrated, converting glass and semiconductor materials into complete modules beneath its roof. At capacity, a glass panel will enter the factory every 10 seconds and emerge as a completed module two hours later. This facility is currently undergoing trials in preparation for large volume production of 120 x 60 cm thin film CdTe modules. Preceding the development of the large volume manufacturing capability, Abound Solar demonstrated long duration processing with excellent materials utilization for the manufacture of high efficiency 42 cm square modules. Abound Solar prototype modules have been measured with over 9% aperture area efficiency by NREL. Abound Solar demonstrated the ability to produce modules at industry leading low costs to NREL representatives. Costing models show manufacturing costs below $1/Watt and capital equipment costs below $1.50 per watt of annual manufacturing capacity. Under this SAI program, Abound Solar supported a significant research and development program at Colorado State University. The CSU team continues to make progress on device and materials analysis. Modeling for increased device performance and the effects of processing conditions on properties of CdTe PV were investigated.

  12. Performance characteristics of CdTe drift ring detector

    Science.gov (United States)

    Alruhaili, A.; Sellin, P. J.; Lohstroh, A.; Veeramani, P.; Kazemi, S.; Veale, M. C.; Sawhney, K. J. S.; Kachkanov, V.

    2014-03-01

    CdTe and CdZnTe material is an excellent candidate for the fabrication of high energy X-ray spectroscopic detectors due to their good quantum efficiency and room temperature operation. The main material limitation is associated with the poor charge transport properties of holes. The motivation of this work is to investigate the performance characteristics of a detector fabricated with a drift ring geometry that is insensitive to the transport of holes. The performance of a prototype Ohmic CdTe drift ring detector fabricated by Acrorad with 3 drift rings is reported; measurements include room temperature current voltage characteristics (IV) and spectroscopic performance. The data shows that the energy resolution of the detector is limited by leakage current which is a combination of bulk and surface leakage currents. The energy resolution was studied as a function of incident X-ray position with an X-ray microbeam at the Diamond Light Source. Different ring biasing schemes were investigated and the results show that by increasing the lateral field (i.e. the bias gradient across the rings) the active area, evaluated by the detected count rate, increased significantly.

  13. APPROACHING CRYOGENIC GE PERFORMANCE WITH PELTIER COOLED CDTE

    Energy Technology Data Exchange (ETDEWEB)

    Khusainov, A. K. (A. Kh.); Iwanczyk, J. S. (Jan S.); Patt, B. E. (Bradley E.); Prirogov, A. M. (Alexandre M.); Vo, Duc T.

    2001-01-01

    A new class of hand-held, portable spectrometers based on large area (lcm2) CdTe detectors of thickness up to 3mm has been demonstrated to produce energy resolution of between 0.3 and 0.5% FWHM at 662 keV. The system uses a charge loss correction circuit for improved efficiency, and detector temperature stabilization to ensure consistent operation of the detector during field measurements over a wide range of ambient temperature. The system can operate continuously for up to 8hrs on rechargeable batteries. The signal output from the charge loss corrector is compatible with most analog and digital spectroscopy amplifiers and multi channel analyzers. Using a detector measuring 11.2 by 9.1 by 2.13 mm3, we have recently been able to obtain the first wide-range plutonium gamma-ray isotopic analysis with other than a cryogenically cooled germanium spectrometer. The CdTe spectrometer is capable of measuring small plutonium reference samples in about one hour, covering the range from low to high burnup. The isotopic analysis software used to obtain these results was FRAM, Version 4 from LANL. The new spectrometer is expected to be useful for low-grade assay, as well as for some in-situ plutonium gamma-ray isotopics in lieu of cryogenically cooled Ge.

  14. Emitter Choice for Epitaxial CdTe Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tao; Kanevce, Ana; Sites, James R.

    2016-11-21

    High-quality epitaxial CdTe layers with low defect density and high carrier concentration have been demonstrated by several research groups. Nevertheless, one primary challenge for high-performance epitaxial CdTe solar cells is how to choose a suitable emitter partner for the junction formation. The numerical simulations show that a type I heterojunction with small conduction band offset (0.1 eV = ..delta..Ec = 0.3 eV) is necessary to maintain a good cell efficiency even with large interface recombination. Otherwise, a small 'cliff' can assist interface recombination causing smaller Voc, and a large 'spike' (..delta..Ec = 0.4 eV) can impede the photo current and lead to a reduction of JSC and FF. Among the three possible emitters, CdS, CdMgTe, and MgZnO, CdMgTe (with ~30% Mg) and MgZnO (with ~ 20% Mg) are likely to be a better choice since their type-I junction can tolerate a larger density of interface defects.

  15. Preparation and properties of evaporated CdTe films

    Science.gov (United States)

    Bube, R. H.; Fahrenbruch, A. L.; Chien, K. F.

    1987-07-01

    Previous work on evaporated CdTe films for photovoltaics showed no clear path to successful p-type doping of CdTe during deposition. Post-deposition annealing of the films in various ambients thus was examined as a means of doping. Anneals were done in Te, Cd, P, and As vapors and in vacuum, air and Ar, all of which showed large effects on series resistance and diode parameters. With As, series resistance values of In/p-CdTe/graphite structures decreased markedly. This decrease was due to a decrease in grain boundary and/or back contact barrier height, and thus was due to large increases in mobility; the carrier density was not altered substantially. Although the series-resistance decreases were substantial, the diode characteristics became worse. The decreases were not observed when CdS/CdTe cells were fabricated on Te vapor-annealed films. Preparation of ZnO films by reactive evaporation yielded promising results. Deposition of p-ZnTe films by hot-wall vapor evaporation, using conventional techniques, yielded acceptable specimens.

  16. ISGRI: a CdTe array imager for INTEGRAL

    Science.gov (United States)

    Lebrun, Francois; Blondel, Claire; Fondeur, Irene; Goldwurm, Andrea; Laurent, Phillipe; Leray, Jean P.

    1996-10-01

    The INTEGRAL soft gamma-ray imager (ISGRI) is a large and thin CdTe array. Operating at room temperature, this gamma camera covers the lower part (below 200 keV) of the energy domain (20 keV - 10 MeV) of the imager on board the INTEGRAL Satellite (IBIS). The ASIC's front-end electronics features particularly a low noise preamplifier, allowing a threshold below 20 keV and a pulse rise-time measurement which permits a charge loss correction. The charge loss correction and its performances are presented as well as the results of various studies on CdTe thermal behavior and radiation hardness. At higher energy (above 200 keV) ISGRI will operate in conjunction with PICsIT, the IBIS CsI gamma camera. A selection among the events in coincidence performed on the basis of the Compton scattering properties reduces strongly the background. This allows an improvement of the sensitivity and permits short term imaging and spectral studies (high energy pulsars) which otherwise would not have fit within the IBIS telemetry allocation.

  17. Facile preparation of highly luminescent CdTe quantum dots within hyperbranched poly(amidoamine)s and their application in bio-imaging.

    Science.gov (United States)

    Shi, Yunfeng; Liu, Lin; Pang, Huan; Zhou, Hongli; Zhang, Guanqing; Ou, Yangyan; Zhang, Xiaoyin; Du, Jimin; Xiao, Wangchuan

    2014-03-13

    A new strategy for facile preparation of highly luminescent CdTe quantum dots (QDs) within amine-terminated hyperbranched poly(amidoamine)s (HPAMAM) was proposed in this paper. CdTe precursors were first prepared by adding NaHTe to aqueous Cd2+ chelated by 3-mercaptopropionic sodium (MPA-Na), and then HPAMAM was introduced to stabilize the CdTe precursors. After microwave irradiation, highly fluorescent and stable CdTe QDs stabilized by MPA-Na and HPAMAM were obtained. The CdTe QDs showed a high quantum yield (QY) up to 58%. By preparing CdTe QDs within HPAMAM, the biocompatibility properties of HPAMAM and the optical, electrical properties of CdTe QDs can be combined, endowing the CdTe QDs with biocompatibility. The resulting CdTe QDs can be directly used in biomedical fields, and their potential application in bio-imaging was investigated.

  18. Influence of solvents on the habit modification of alpha lactose monohydrate single crystals

    Science.gov (United States)

    Parimaladevi, P.; Srinivasan, K.

    2013-02-01

    Restricted evaporation of solvent method was adopted for the growth of alpha lactose monohydrate single crystals from different solvents. The crystal habits of grown crystals were analysed. The form of crystallization was confirmed by powder x-ray diffraction analysis. Thermal behaviour of the grown crystals was studied by using differential scanning calorimetry.

  19. Crystal growth and characterization of new semiorganic nonlinear optical single crystals

    Science.gov (United States)

    Kulshrestha, Shobha; Shrivastava, A. K.

    2016-05-01

    An organic material of a L-histidine monohydrochloride single crystal was grown in a distilled water solution using the slow evaporation method at 40-45°C. The grown crystal was transparent and colourless, with a size of about 20 × 9 × 5 mm3, obtained within a period of 21 days. The solubility of grown crystals have found out at various temperatures. The UV-visible transmittance studies show that the grown crystals have wide optical transparency in the entire visible region It is observed that the crystal has transparency window from 255nm to 700nm and its energy gap (Eg) found to be is 3.1eV. The grown crystal was subjected to powder X-ray diffraction analysis, confirming that the orthorhombic crystalline nature of the crystal. To identify the surface morphology, the as grown crystal was subjected to FE-SEM technique. The chemical composition of the grown crystal was estimated by Energy dispersive X-ray analysis. The optical behaviour of the grown crystal was analyzed by PL study.

  20. Crystal growth and characterization of L-valine cadmium acetate a semiorganic NLO crystals

    Science.gov (United States)

    Chandrasekaran, J.; Ilayabarathi, P.; Maadeswaran, P.

    2012-08-01

    A new semiorganic nonlinear optical material, L-valine cadmium acetate, was grown successfully from aqueous solution by slow evaporation method. The grown crystals characterized by using Powder X-ray diffraction analysis confirms the structure of the grown title compound. The functional groups have been identified using FTIR spectral data. Transmittance compound was analyzed by using UV-vis spectrum. The thermal behavior of the grown crystal was determined with the aid of thermogravimetric analysis (TGA), differential thermal analysis (DTA) and differential scanning calorimetry (DSC). The dielectric constant was studied as a function of frequency for various temperatures. The grown crystal has positive photoconductivity nature. The fluorescence spectrum of the crystal was recorded and its optical band gap is about 3.4479 eV. Second order nonlinear optical property of the grown crystal has been confirmed by modified Kurtz-Perry powder second harmonic generation (SHG) test.