WorldWideScience

Sample records for cdt induces formation

  1. Clostridium difficile toxin CDT induces formation of microtubule-based protrusions and increases adherence of bacteria.

    Directory of Open Access Journals (Sweden)

    Carsten Schwan

    2009-10-01

    Full Text Available Clostridium difficile causes antibiotic-associated diarrhea and pseudomembranous colitis by production of the Rho GTPase-glucosylating toxins A and B. Recently emerging hypervirulent Clostridium difficile strains additionally produce the binary ADP-ribosyltransferase toxin CDT (Clostridium difficile transferase, which ADP-ribosylates actin and inhibits actin polymerization. Thus far, the role of CDT as a virulence factor is not understood. Here we report by using time-lapse- and immunofluorescence microscopy that CDT and other binary actin-ADP-ribosylating toxins, including Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin, induce redistribution of microtubules and formation of long (up to >150 microm microtubule-based protrusions at the surface of intestinal epithelial cells. The toxins increase the length of decoration of microtubule plus-ends by EB1/3, CLIP-170 and CLIP-115 proteins and cause redistribution of the capture proteins CLASP2 and ACF7 from microtubules at the cell cortex into the cell interior. The CDT-induced microtubule protrusions form a dense meshwork at the cell surface, which wrap and embed bacterial cells, thereby largely increasing the adherence of Clostridia. The study describes a novel type of microtubule structure caused by less efficient microtubule capture and offers a new perspective for the pathogenetic role of CDT and other binary actin-ADP-ribosylating toxins in host-pathogen interactions.

  2. Human geminin promotes pre-RC formation and DNA replication by stabilizing CDT1 in mitosis

    DEFF Research Database (Denmark)

    Ballabeni, Andrea; Melixetian, Marina; Zamponi, Raffaella

    2004-01-01

    -mediated degradation by inhibiting its ubiquitination. In particular, Geminin ensures basal levels of CDT1 during S phase and its accumulation during mitosis. Consistently, inhibition of Geminin synthesis during M phase leads to impairment of pre-RC formation and DNA replication during the following cell cycle....... Moreover, we show that inhibition of CDK1 during mitosis, and not Geminin depletion, is sufficient for premature formation of pre-RCs, indicating that CDK activity is the major mitotic inhibitor of licensing in human cells. Taken together with recent data from our laboratory, our results demonstrate...

  3. Cdt1p, through its interaction with Mcm6p, is required for the formation, nuclear accumulation and chromatin loading of the MCM complex.

    Science.gov (United States)

    Wu, Rentian; Wang, Jiafeng; Liang, Chun

    2012-01-01

    Regulation of DNA replication initiation is essential for the faithful inheritance of genetic information. Replication initiation is a multi-step process involving many factors including ORC, Cdt1p, Mcm2-7p and other proteins that bind to replication origins to form a pre-replicative complex (pre-RC). As a prerequisite for pre-RC assembly, Cdt1p and the Mcm2-7p heterohexameric complex accumulate in the nucleus in G1 phase in an interdependent manner in budding yeast. However, the nature of this interdependence is not clear, nor is it known whether Cdt1p is required for the assembly of the MCM complex. In this study, we provide the first evidence that Cdt1p, through its interaction with Mcm6p with the C-terminal regions of the two proteins, is crucial for the formation of the MCM complex in both the cytoplasm and nucleoplasm. We demonstrate that disruption of the interaction between Cdt1p and Mcm6p prevents the formation of the MCM complex, excludes Mcm2-7p from the nucleus, and inhibits pre-RC assembly and DNA replication. Our findings suggest a function for Cdt1p in promoting the assembly of the MCM complex and maintaining its integrity by interacting with Mcm6p.

  4. PIP degron proteins, substrates of CRL4Cdt2, and not PIP boxes, interfere with DNA polymerase η and κ focus formation on UV damage.

    Science.gov (United States)

    Tsanov, Nikolay; Kermi, Chames; Coulombe, Philippe; Van der Laan, Siem; Hodroj, Dana; Maiorano, Domenico

    2014-04-01

    Proliferating cell nuclear antigen (PCNA) is a well-known scaffold for many DNA replication and repair proteins, but how the switch between partners is regulated is currently unclear. Interaction with PCNA occurs via a domain known as a PCNA-Interacting Protein motif (PIP box). More recently, an additional specialized PIP box has been described, the « PIP degron », that targets PCNA-interacting proteins for proteasomal degradation via the E3 ubiquitin ligase CRL4(Cdt2). Here we provide evidence that CRL4(Cdt2)-dependent degradation of PIP degron proteins plays a role in the switch of PCNA partners during the DNA damage response by facilitating accumulation of translesion synthesis DNA polymerases into nuclear foci. We show that expression of a nondegradable PIP degron (Cdt1) impairs both Pol η and Pol κ focus formation on ultraviolet irradiation and reduces cell viability, while canonical PIP box-containing proteins have no effect. Furthermore, we identify PIP degron-containing peptides from several substrates of CRL4(Cdt2) as efficient inhibitors of Pol η foci formation. By site-directed mutagenesis we show that inhibition depends on a conserved threonine residue that confers high affinity for PCNA-binding. Altogether these findings reveal an important regulative role for the CRL4(Cdt2) pathway in the switch of PCNA partners on DNA damage.

  5. Distinct Roles for CdtA and CdtC during Intoxication by Cytolethal Distending Toxins.

    Directory of Open Access Journals (Sweden)

    Shandee D Dixon

    Full Text Available Cytolethal distending toxins (CDTs are heterotrimeric protein exotoxins produced by a diverse array of Gram-negative pathogens. The enzymatic subunit, CdtB, possesses DNase and phosphatidylinositol 3-4-5 trisphosphate phosphatase activities that induce host cell cycle arrest, cellular distension and apoptosis. To exert cyclomodulatory and cytotoxic effects CDTs must be taken up from the host cell surface and transported intracellularly in a manner that ultimately results in localization of CdtB to the nucleus. However, the molecular details and mechanism by which CDTs bind to host cells and exploit existing uptake and transport pathways to gain access to the nucleus are poorly understood. Here, we report that CdtA and CdtC subunits of CDTs derived from Haemophilus ducreyi (Hd-CDT and enteropathogenic E. coli (Ec-CDT are independently sufficient to support intoxication by their respective CdtB subunits. CdtA supported CdtB-mediated killing of T-cells and epithelial cells that was nearly as efficient as that observed with holotoxin. In contrast, the efficiency by which CdtC supported intoxication was dependent on the source of the toxin as well as the target cell type. Further, CdtC was found to alter the subcellular trafficking of Ec-CDT as determined by sensitivity to EGA, an inhibitor of endosomal trafficking, colocalization with markers of early and late endosomes, and the kinetics of DNA damage response. Finally, host cellular cholesterol was found to influence sensitivity to intoxication mediated by Ec-CdtA, revealing a role for cholesterol or cholesterol-rich membrane domains in intoxication mediated by this subunit. In summary, data presented here support a model in which CdtA and CdtC each bind distinct receptors on host cell surfaces that direct alternate intracellular uptake and/or trafficking pathways.

  6. C/EBPα regulates CRL4Cdt2-mediated degradation of p21 in response to UVB-induced DNA damage to control the G1/S checkpoint

    Science.gov (United States)

    Hall, Jonathan R; Bereman, Michael S; Nepomuceno, Angelito I; Thompson, Elizabeth A; Muddiman, David C; Smart, Robert C

    2014-01-01

    The bZIP transcription factor, C/EBPα is highly inducible by UVB and other DNA damaging agents in keratinocytes. C/EBPα-deficient keratinocytes fail to undergo cell cycle arrest in G1 in response to UVB-induced DNA damage and mice lacking epidermal C/EBPα are highly susceptible to UVB-induced skin cancer. The mechanism through which C/EBPα regulates the cell cycle checkpoint in response to DNA damage is unknown. Here we report untreated C/EBPα-deficient keratinocytes have normal levels of the cyclin-dependent kinase inhibitor, p21, however, UVB-treated C/EBPα-deficient keratinocytes fail to up-regulate nuclear p21 protein levels despite normal up-regulation of Cdkn1a mRNA levels. UVB-treated C/EBPα-deficient keratinocytes displayed a 4-fold decrease in nuclear p21 protein half-life due to the increased proteasomal degradation of p21 via the E3 ubiquitin ligase CRL4Cdt2. Cdt2 is the substrate recognition subunit of CRL4Cdt2 and Cdt2 mRNA and protein levels were up-regulated in UVB-treated C/EBPα-deficient keratinocytes. Knockdown of Cdt2 restored p21 protein levels in UVB-treated C/EBPα-deficient keratinocytes. Lastly, the failure to accumulate p21 in response to UVB in C/EBPα-deficient keratinocytes resulted in decreased p21 interactions with critical cell cycle regulatory proteins, increased CDK2 activity, and inappropriate entry into S-phase. These findings reveal C/EBPα regulates G1/S cell cycle arrest in response to DNA damage via the control of CRL4Cdt2 mediated degradation of p21. PMID:25483090

  7. Break-induced ATR and Ddb1-Cul4(Cdt)² ubiquitin ligase-dependent nucleotide synthesis promotes homologous recombination repair in fission yeast

    DEFF Research Database (Denmark)

    Moss, Jennifer; Tinline-Purvis, Helen; Walker, Carol A

    2010-01-01

    Nucleotide synthesis is a universal response to DNA damage, but how this response facilitates DNA repair and cell survival is unclear. Here we establish a role for DNA damage-induced nucleotide synthesis in homologous recombination (HR) repair in fission yeast. Using a genetic screen, we found...... the Ddb1-Cul4(Cdt)² ubiquitin ligase complex and ribonucleotide reductase (RNR) to be required for HR repair of a DNA double-strand break (DSB). The Ddb1-Cul4(Cdt)² ubiquitin ligase complex is required for degradation of Spd1, an inhibitor of RNR in fission yeast. Accordingly, deleting spd1(+) suppressed...

  8. Inhibition of NEDD8-activating enzyme induces rereplication and apoptosis in human tumor cells consistent with deregulating CDT1 turnover.

    Science.gov (United States)

    Milhollen, Michael A; Narayanan, Usha; Soucy, Teresa A; Veiby, Petter O; Smith, Peter G; Amidon, Benjamin

    2011-04-15

    Loss of NEDD8-activating enzyme (NAE) function by siRNA knockdown or inhibition by the small molecule NAE inhibitor MLN4924 leads to increased steady-state levels of direct Cullin-RING ligase (CRL) substrates by preventing their ubiquitination and proteasome-dependent degradation. Many of these CRL substrates are involved in cell cycle progression, including a critical DNA replication licensing factor CDT1. Cell cycle analysis of asynchronous and synchronous cultures after NAE inhibition revealed effects on cell cycle distribution and activation of DNA break repair signaling pathways similar to that reported for CDT1 overexpression. The siRNA knockdown of cullins critical for the turnover of CDT1 recapitulated the aberrant rereplication phenotype while CDT1 knockdown was suppressing. Although NAE inhibition leads to deregulation of many CRL substrates, these data demonstrate that CDT1 accumulation mediates the DNA rereplication phenotype resulting from loss of NAE function. DNA rereplication is an unrecoverable cellular insult and the small molecule inhibitor MLN4924, currently in phase I trials, represents an unprecedented opportunity to explore this mechanism of cytotoxicity for the treatment of cancer. ©2011 AACR.

  9. The Cytolethal Distending Toxin Subunit CdtB of Helicobacter hepaticus Promotes Senescence and Endoreplication in Xenograft Mouse Models of Hepatic and Intestinal Cell Lines

    Directory of Open Access Journals (Sweden)

    Christelle Péré-Védrenne

    2017-06-01

    Full Text Available Cytolethal distending toxins (CDTs are common among pathogenic bacteria of the human and animal microbiota. CDTs exert cytopathic effets, via their active CdtB subunit. No clear description of those cytopathic effects has been reported at the cellular level in the target organs in vivo. In the present study, xenograft mouse models of colon and liver cell lines were set up to study the effects of the CdtB subunit of Helicobacter hepaticus. Conditional transgenic cell lines were established, validated in vitro and then engrafted into immunodeficient mice. After successful engraftment, mice were treated with doxycyclin to induce the expression of transgenes (red fluorescent protein, CdtB, and mutated CdtB. For both engrafted cell lines, results revealed a delayed tumor growth and a reduced tumor weight in CdtB-expressing tumors compared to controls. CdtB-derived tumors showed γ-H2AX foci formation, an increase in apoptosis, senescence, p21 and Ki-67 nuclear antigen expression. No difference in proliferating cells undergoing mitosis (phospho-histone H3 was observed. CdtB intoxication was also associated with an overexpression of cytokeratins in cells at the invasive front of the tumor as well as an increase in ploidy. All these features are hallmarks of endoreplication, as well as aggressiveness in cancer. These effects were dependent on the histidine residue at position 265 of the CdtB, underlying the importance of this residue in CdtB catalytic activity. Taken together, these data indicate that the CdtB triggers senescence and cell endoreplication leading to giant polyploid cells in these xenograft mouse models.

  10. The Copenhagen Dependency Treebank (CDT)

    DEFF Research Database (Denmark)

    Høeg Müller, Henrik; Korzen, Iørn

    2014-01-01

    the fundamentals of how CDT is marked up with semantic relations in accordance with the dependency principles governing the annotation on the other levels of CDT. Specifically, focus will be on how Generative Lexicon (GL) theory has been incorporated into the unitary theoretical dependency framework of CDT....... An annotation scheme for lexical semantics has been designed so as to account for the lexico-semantic structure of complex NPs, and the four GL qualia also appear in some of the CDT discourse relation labels as a description of parallel semantic relations at this level....

  11. Proliferating Cell Nuclear Antigen-dependent Rapid Recruitment of Cdt1 and CRL4Cdt2 at DNA-damaged Sites after UV Irradiation in HeLa Cells*

    Science.gov (United States)

    Ishii, Takashi; Shiomi, Yasushi; Takami, Toshihiro; Murakami, Yusuke; Ohnishi, Naho; Nishitani, Hideo

    2010-01-01

    The licensing factor Cdt1 is degraded by CRL4Cdt2 ubiquitin ligase dependent on proliferating cell nuclear antigen (PCNA) during S phase and when DNA damage is induced in G1 phase. Association of both Cdt2 and PCNA with chromatin was observed in S phase and after UV irradiation. Here we used a micropore UV irradiation assay to examine Cdt2 accumulation at cyclobutane pyrimidine dimer-containing DNA-damaged sites in the process of Cdt1 degradation in HeLa cells. Cdt2, present in the nucleus throughout the cell cycle, accumulated rapidly at damaged DNA sites during G1 phase. The recruitment of Cdt2 is dependent on prior PCNA chromatin binding because Cdt2 association was prevented when PCNA was silenced. Cdt1 was also recruited to damaged sites soon after UV irradiation through its PIP-box. As Cdt1 was degraded, the Cdt2 signal at damaged sites was reduced, but PCNA, cyclobutane pyrimidine dimer, and XPA (xeroderma pigmentosum, complementation group A) signals remained at the same levels. These findings suggest that Cdt1 degradation following UV irradiation occurs rapidly at damaged sites due to PCNA chromatin loading and the recruitment of Cdt1 and CRL4Cdt2, before DNA damage repair is completed. PMID:20929861

  12. PIP degron proteins, substrates of CRL4Cdt2, and not PIP boxes, interfere with DNA polymerase η and κ focus formation on UV damage

    OpenAIRE

    Tsanov, Nikolay; Kermi, Chames; Coulombe, Philippe; Van der Laan, Siem; Hodroj, Dana; Maiorano, Domenico

    2014-01-01

    Proliferating cell nuclear antigen (PCNA) is a well-known scaffold for many DNA replication and repair proteins, but how the switch between partners is regulated is currently unclear. Interaction with PCNA occurs via a domain known as a PCNA-Interacting Protein motif (PIP box). More recently, an additional specialized PIP box has been described, the « PIP degron », that targets PCNA-interacting proteins for proteasomal degradation via the E3 ubiquitin ligase CRL4Cdt2. Here we provide evidence...

  13. CDT and the Big Bang

    OpenAIRE

    Ambjorn, J.; Watabiki, Y.

    2017-01-01

    We describe a CDT-like model where breaking of W3 symmetry will lead to the emergence of time and subsequently of space. Surprisingly the simplest such models which lead to higher dimensional spacetimes are based on the four "magical" Jordan algebras of 3x3 Hermitian matrices with real, complex, quaternion and octonion entries, respectively. The simplest symmetry breaking leads to universes with spacetime dimensions 3, 4, 6, and 10.

  14. CDT meets Horava-Lifshitz gravity

    International Nuclear Information System (INIS)

    Ambjorn, J.; Goerlich, A.; Jordan, S.; Jurkiewicz, J.; Loll, R.

    2010-01-01

    The theory of causal dynamical triangulations (CDT) attempts to define a nonperturbative theory of quantum gravity as a sum over spacetime geometries. One of the ingredients of the CDT framework is a global time foliation, which also plays a central role in the quantum gravity theory recently formulated by Horava. We show that the phase diagram of CDT bears a striking resemblance with the generic Lifshitz phase diagram appealed to by Horava. We argue that CDT might provide a unifying nonperturbative framework for anisotropic as well as isotropic theories of quantum gravity.

  15. Human CDT1 associates with CDC7 and recruits CDC45 to chromatin during S phase

    DEFF Research Database (Denmark)

    Ballabeni, Andrea; Zamponi, Raffaela; Caprara, Greta

    2009-01-01

    The initiation of DNA replication is a tightly controlled process that involves the formation of distinct complexes at origins of DNA replication at specific periods of the cell cycle. Pre-Replicative Complexes are formed during telophase and early G1. They rearrange at the start of S phase to form...... pre-Initiation Complexes, which are a prerequisite for DNA replication. The CDT1 protein is required for the formation of the pre-Replicative Complexes. Here we show that human CDT1 associates with the CDC7 kinase and recruits CDC45 to chromatin. Moreover, we show that the amount of CDT1 bound...

  16. Cdt1 is differentially targeted for degradation by anticancer chemotherapeutic drugs.

    Directory of Open Access Journals (Sweden)

    Athanasia Stathopoulou

    Full Text Available BACKGROUND: Maintenance of genome integrity is crucial for the propagation of the genetic information. Cdt1 is a major component of the pre-replicative complex, which controls once per cell cycle DNA replication. Upon DNA damage, Cdt1 is rapidly targeted for degradation. This targeting has been suggested to safeguard genomic integrity and prevent re-replication while DNA repair is in progress. Cdt1 is deregulated in tumor specimens, while its aberrant expression is linked with aneuploidy and promotes tumorigenesis in animal models. The induction of lesions in DNA is a common mechanism by which many cytotoxic anticancer agents operate, leading to cell cycle arrest and apoptosis. METHODOLOGY/PRINCIPAL FINDING: In the present study we examine the ability of several anticancer drugs to target Cdt1 for degradation. We show that treatment of HeLa and HepG2 cells with MMS, Cisplatin and Doxorubicin lead to rapid proteolysis of Cdt1, whereas treatment with 5-Fluorouracil and Tamoxifen leave Cdt1 expression unaffected. Etoposide affects Cdt1 stability in HepG2 cells and not in HeLa cells. RNAi experiments suggest that Cdt1 proteolysis in response to MMS depends on the presence of the sliding clamp PCNA. CONCLUSION/SIGNIFICANCE: Our data suggest that treatment of tumor cells with commonly used chemotherapeutic agents induces differential responses with respect to Cdt1 proteolysis. Information on specific cellular targets in response to distinct anticancer chemotherapeutic drugs in different cancer cell types may contribute to the optimization of the efficacy of chemotherapy.

  17. Cdt1 revisited: complex and tight regulation during the cell cycle and consequences of deregulation in mammalian cells

    Directory of Open Access Journals (Sweden)

    Fujita Masatoshi

    2006-10-01

    Full Text Available Abstract In eukaryotic cells, replication of genomic DNA initiates from multiple replication origins distributed on multiple chromosomes. To ensure that each origin is activated precisely only once during each S phase, a system has evolved which features periodic assembly and disassembly of essential pre-replication complexes (pre-RCs at replication origins. The pre-RC assembly reaction involves the loading of a presumptive replicative helicase, the MCM2-7 complexes, onto chromatin by the origin recognition complex (ORC and two essential factors, CDC6 and Cdt1. The eukaryotic cell cycle is driven by the periodic activation and inactivation of cyclin-dependent kinases (Cdks and assembly of pre-RCs can only occur during the low Cdk activity period from late mitosis through G1 phase, with inappropriate re-assembly suppressed during S, G2, and M phases. It was originally suggested that inhibition of Cdt1 function after S phase in vertebrate cells is due to geminin binding and that Cdt1 hyperfunction resulting from Cdt1-geminin imbalance induces re-replication. However, recent progress has revealed that Cdt1 activity is more strictly regulated by two other mechanisms in addition to geminin: (1 functional and SCFSkp2-mediated proteolytic regulation through phosphorylation by Cdks; and (2 replication-coupled proteolysis mediated by the Cullin4-DDB1Cdt2 ubiquitin ligase and PCNA, an eukaryotic sliding clamp stimulating replicative DNA polymerases. The tight regulation implies that Cdt1 control is especially critical for the regulation of DNA replication in mammalian cells. Indeed, Cdt1 overexpression evokes chromosomal damage even without re-replication. Furthermore, deregulated Cdt1 induces chromosomal instability in normal human cells. Since Cdt1 is overexpressed in cancer cells, this could be a new molecular mechanism leading to carcinogenesis. In this review, recent insights into Cdt1 function and regulation in mammalian cells are discussed.

  18. Mutant analysis of Cdt1's function in suppressing nascent strand elongation during DNA replication in Xenopus egg extracts.

    Science.gov (United States)

    Nakazaki, Yuta; Tsuyama, Takashi; Azuma, Yutaro; Takahashi, Mikiko; Tada, Shusuke

    2017-09-02

    The initiation of DNA replication is strictly regulated by multiple mechanisms to ensure precise duplication of chromosomes. In higher eukaryotes, activity of the Cdt1 protein is temporally regulated during the cell cycle, and deregulation of Cdt1 induces DNA re-replication. In previous studies, we showed that excess Cdt1 inhibits DNA replication by suppressing progression of replication forks in Xenopus egg extracts. Here, we investigated the functional regions of Cdt1 that are required for the inhibition of DNA replication. We constructed a series of N-terminally or C-terminally deleted mutants of Cdt1 and examined their inhibitory effects on DNA replication in Xenopus egg extracts. Our results showed that the region spanning amino acids (a. a.) 255-620 is required for efficient inhibition of DNA replication, and that, within this region, a. a. 255-289 have a critical role in inhibition. Moreover, one of the Cdt1 mutants, Cdt1 R285A, was compromised with respect to the licensing activity but still inhibited DNA replication. This result suggests that Cdt1 has an unforeseen function in the negative regulation of DNA replication, and that this function is located within a molecular region that is distinct from those required for the licensing activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Trees and spatial topology change in CDT

    DEFF Research Database (Denmark)

    Ambjorn, Jan; Budd, Timothy George

    2013-01-01

    Generalized causal dynamical triangulations (generalized CDT) is a model of two-dimensional quantum gravity in which a limited number of spatial topology changes is allowed to occur. We solve the model at the discretized level using bijections between quadrangulations and trees. In the continuum...

  20. ATM regulates Cdt1 stability during the unperturbed S phase to prevent re-replication

    Science.gov (United States)

    Iwahori, Satoko; Kohmon, Daisuke; Kobayashi, Junya; Tani, Yuhei; Yugawa, Takashi; Komatsu, Kenshi; Kiyono, Tohru; Sugimoto, Nozomi; Fujita, Masatoshi

    2014-01-01

    Ataxia-telangiectasia mutated (ATM) plays crucial roles in DNA damage responses, especially with regard to DNA double-strand breaks (DSBs). However, it appears that ATM can be activated not only by DSB, but also by some changes in chromatin architecture, suggesting potential ATM function in cell cycle control. Here, we found that ATM is involved in timely degradation of Cdt1, a critical replication licensing factor, during the unperturbed S phase. At least in certain cell types, degradation of p27Kip1 was also impaired by ATM inhibition. The novel ATM function for Cdt1 regulation was dependent on its kinase activity and NBS1. Indeed, we found that ATM is moderately phosphorylated at Ser1981 during the S phase. ATM silencing induced partial reduction in levels of Skp2, a component of SCFSkp2 ubiquitin ligase that controls Cdt1 degradation. Furthermore, Skp2 silencing resulted in Cdt1 stabilization like ATM inhibition. In addition, as reported previously, ATM silencing partially prevented Akt phosphorylation at Ser473, indicative of its activation, and Akt inhibition led to modest stabilization of Cdt1. Therefore, the ATM-Akt-SCFSkp2 pathway may partly contribute to the novel ATM function. Finally, ATM inhibition rendered cells hypersensitive to induction of re-replication, indicating importance for maintenance of genome stability. PMID:24280901

  1. Characterization of conserved arginine residues on Cdt1 that affect licensing activity and interaction with Geminin or Mcm complex.

    Science.gov (United States)

    You, Zhiying; Ode, Koji L; Shindo, Mayumi; Takisawa, Haruhiko; Masai, Hisao

    2016-05-02

    All organisms ensure once and only once replication during S phase through a process called replication licensing. Cdt1 is a key component and crucial loading factor of Mcm complex, which is a central component for the eukaryotic replicative helicase. In higher eukaryotes, timely inhibition of Cdt1 by Geminin is essential to prevent rereplication. Here, we address the mechanism of DNA licensing using purified Cdt1, Mcm and Geminin proteins in combination with replication in Xenopus egg extracts. We mutagenized the 223th arginine of mouse Cdt1 (mCdt1) to cysteine or serine (R-S or R-C, respectively) and 342nd and 346th arginines constituting an arginine finger-like structure to alanine (RR-AA). The RR-AA mutant of Cdt1 could not only rescue the DNA replication activity in Cdt1-depleted extracts but also its specific activity for DNA replication and licensing was significantly increased compared to the wild-type protein. In contrast, the R223 mutants were partially defective in rescue of DNA replication and licensing. Biochemical analyses of these mutant Cdt1 proteins indicated that the RR-AA mutation disabled its functional interaction with Geminin, while R223 mutations resulted in ablation in interaction with the Mcm2∼7 complex. Intriguingly, the R223 mutants are more susceptible to the phosphorylation-induced inactivation or chromatin dissociation. Our results show that conserved arginine residues play critical roles in interaction with Geminin and Mcm that are crucial for proper conformation of the complexes and its licensing activity.

  2. An Inactive Geminin Mutant That Binds Cdt1

    Directory of Open Access Journals (Sweden)

    Marissa Suchyta

    2015-05-01

    Full Text Available The initiation of DNA replication is tightly regulated in order to ensure that the genome duplicates only once per cell cycle. In vertebrate cells, the unstable regulatory protein Geminin prevents a second round of DNA replication by inhibiting the essential replication factor Cdt1. Cdt1 recruits mini-chromosome maintenance complex (MCM2-7, the replication helicase, into the pre-replication complex (pre-RC at origins of DNA replication. The mechanism by which Geminin inhibits MCM2-7 loading by Cdt1 is incompletely understood. The conventional model is that Geminin sterically hinders a direct physical interaction between Cdt1 and MCM2-7. Here, we describe an inactive missense mutant of Geminin, GemininAWA, which binds to Cdt1 with normal affinity yet is completely inactive as a replication inhibitor even when added in vast excess. In fact, GemininAWA can compete with GemininWT for binding to Cdt1 and prevent it from inhibiting DNA replication. GemininAWA does not inhibit the loading of MCM2-7 onto DNA in vivo, and in the presence of GemininAWA, nuclear DNA is massively over-replicated within a single S phase. We conclude that Geminin does not inhibit MCM loading by simple steric interference with a Cdt1-MCM2-7 interaction but instead works by a non-steric mechanism, possibly by inhibiting the histone acetyltransferase HBO1.

  3. Characteristics of the new phase in CDT

    Energy Technology Data Exchange (ETDEWEB)

    Ambjoern, J. [Copenhagen University, The Niels Bohr Institute, Copenhagen Oe (Denmark); Radboud University, Institute for Mathematics, Astrophysics and Particle Physics (IMAPP), Nijmegen (Netherlands); Gizbert-Studnicki, J.; Jurkiewicz, J. [Jagiellonian University, Institute of Physics, Krakow (Poland); Goerlich, A. [Copenhagen University, The Niels Bohr Institute, Copenhagen Oe (Denmark); Jagiellonian University, Institute of Physics, Krakow (Poland); Klitgaard, N.; Loll, R. [Radboud University, Institute for Mathematics, Astrophysics and Particle Physics (IMAPP), Nijmegen (Netherlands)

    2017-03-15

    The approach of Causal Dynamical Triangulations (CDT), a candidate theory of nonperturbative quantum gravity in 4D, turns out to have a rich phase structure. We investigate the recently discovered bifurcation phase C{sub b} and relate some of its characteristics to the presence of singular vertices of very high order. The transition lines separating this phase from the ''time-collapsed'' B-phase and the de Sitter phase C{sub dS} are of great interest when searching for physical scaling limits. The work presented here sheds light on the mechanisms behind these transitions. First, we study how the B-C{sub b} transition signal depends on the volume fixing implemented in the simulations, and find results compatible with the previously determined second-order character of the transition. The transition persists in a transfer matrix formulation, where the system's time extension is taken to be minimal. Second, we relate the new C{sub b}-C{sub dS} transition to the appearance of singular vertices, which leads to a direct physical interpretation in terms of a breaking of the homogeneity and isotropy observed in the de Sitter phase when crossing from C{sub dS} to the bifurcation phase C{sub b}. (orig.)

  4. Adsorption-induced step formation

    DEFF Research Database (Denmark)

    Thostrup, P.; Christoffersen, Ebbe; Lorensen, Henrik Qvist

    2001-01-01

    Through an interplay between density functional calculations, Monte Carlo simulations and scanning tunneling microscopy experiments, we show that an intermediate coverage of CO on the Pt(110) surface gives rise to a new rough equilibrium structure with more than 50% step atoms. CO is shown to bind...... so strongly to low-coordinated Pt atoms that it can break Pt-Pt bonds and spontaneously form steps on the surface. It is argued that adsorption-induced step formation may be a general effect, in particular at high gas pressures and temperatures....

  5. Cdt1 stabilizes an open MCM ring for helicase loading.

    Science.gov (United States)

    Frigola, Jordi; He, Jun; Kinkelin, Kerstin; Pye, Valerie E; Renault, Ludovic; Douglas, Max E; Remus, Dirk; Cherepanov, Peter; Costa, Alessandro; Diffley, John F X

    2017-06-23

    ORC, Cdc6 and Cdt1 act together to load hexameric MCM, the motor of the eukaryotic replicative helicase, into double hexamers at replication origins. Here we show that Cdt1 interacts with MCM subunits Mcm2, 4 and 6, which both destabilizes the Mcm2-5 interface and inhibits MCM ATPase activity. Using X-ray crystallography, we show that Cdt1 contains two winged-helix domains in the C-terminal half of the protein and a catalytically inactive dioxygenase-related N-terminal domain, which is important for MCM loading, but not for subsequent replication. We used these structures together with single-particle electron microscopy to generate three-dimensional models of MCM complexes. These show that Cdt1 stabilizes MCM in a left-handed spiral open at the Mcm2-5 gate. We propose that Cdt1 acts as a brace, holding MCM open for DNA entry and bound to ATP until ORC-Cdc6 triggers ATP hydrolysis by MCM, promoting both Cdt1 ejection and MCM ring closure.

  6. Targeted ubiquitination of CDT1 by the DDB1-CUL4A-ROC1 ligase in response to DNA damage.

    Science.gov (United States)

    Hu, Jian; McCall, Chad M; Ohta, Tomohiko; Xiong, Yue

    2004-10-01

    Cullins assemble a potentially large number of ubiquitin ligases by binding to the RING protein ROC1 to catalyse polyubiquitination, as well as binding to various specificity factors to recruit substrates. The Cul4A gene is amplified in human breast and liver cancers, and loss-of-function of Cul4 results in the accumulation of the replication licensing factor CDT1 in Caenorhabditis elegans embryos and ultraviolet (UV)-irradiated human cells. Here, we report that human UV-damaged DNA-binding protein DDB1 associates stoichiometrically with CUL4A in vivo, and binds to an amino-terminal region in CUL4A in a manner analogous to SKP1, SOCS and BTB binding to CUL1, CUL2 and CUL3, respectively. As with SKP1-CUL1, the DDB1-CUL4A association is negatively regulated by the cullin-associated and neddylation-dissociated protein, CAND1. Recombinant DDB1 and CDT1 bind directly to each other in vitro, and ectopically expressed DDB1 bridges CDT1 to CUL4A in vivo. Silencing DDB1 prevented UV-induced rapid CDT1 degradation in vivo and CUL4A-mediated CDT1 ubiquitination in vitro. We suggest that DDB1 targets CDT1 for ubiquitination by a CUL4A-dependent ubiquitin ligase, CDL4A(DDB1), in response to UV irradiation.

  7. CdtR Regulates TcdA and TcdB Production in Clostridium difficile.

    Directory of Open Access Journals (Sweden)

    Shelley A Lyon

    2016-07-01

    Full Text Available Clostridium difficile is a global health burden and the leading cause of antibiotic-associated diarrhoea worldwide, causing severe gastrointestinal disease and death. Three well characterised toxins are encoded by this bacterium in two genetic loci, specifically, TcdB (toxin B and TcdA (toxin A in the Pathogenicity Locus (PaLoc and binary toxin (CDT in the genomically distinct CDT locus (CdtLoc. Toxin production is controlled by regulators specific to each locus. The orphan response regulator, CdtR, encoded within the CdtLoc, up-regulates CDT production. Until now there has been no suggestion that CdtR influences TcdA and TcdB production since it is not carried by all PaLoc-containing strains and CdtLoc is not linked genetically to PaLoc. Here we show that, in addition to CDT, CdtR regulates TcdA and TcdB production but that this effect is strain dependent. Of clinical relevance, CdtR increased the production of TcdA, TcdB and CDT in two epidemic ribotype 027 human strains, modulating their virulence in a mouse infection model. Strains traditionally from animal lineages, notably ribotype 078 strains, are increasingly being isolated from humans and their genetic and phenotypic analysis is critical for future studies on this important pathogen. Here we show that CdtR-mediated toxin regulation did not occur in other strain backgrounds, including a ribotype 078 animal strain. The finding that toxin gene regulation is strain dependent highlights the regulatory diversity between C. difficile isolates and the importance of studying virulence regulation in diverse lineages and clinically relevant strains. Our work provides the first evidence that TcdA, TcdB and CDT production is linked by a common regulatory mechanism and that CdtR may act as a global regulator of virulence in epidemic 027 strains.

  8. Geminin deploys multiple mechanisms to regulate Cdt1 before cell division thus ensuring the proper execution of DNA replication

    DEFF Research Database (Denmark)

    Ballabeni, Andrea; Zamponi, Raffaella; Moore, Jodene K

    2013-01-01

    the accumulation of Cdt1 in mitosis, because decreasing the Geminin levels prevents Cdt1 accumulation and impairs DNA replication. Geminin is known to inhibit Cdt1 function; its depletion during G2 leads to DNA rereplication and checkpoint activation. Here we show that, despite rapid Cdt1 protein turnover in G2...

  9. A new functional site W115 in CdtA is critical for Aggregatibacter actinomycetemcomitans cytolethal distending toxin.

    Directory of Open Access Journals (Sweden)

    Lu Li

    Full Text Available Aggregatibacter actinomycetemcomitans, a specific pathogen of localized aggressive periodontitis, produces a cytolethal distending toxin (CDT that arrests eukaryotic cells irreversibly in G0/G1 or G2/M phase of the cell cycle. Although structural studies show that the aromatic patch region of CdtA plays an important role in its biological activity, the functional sites of CdtA have not been firmly established. In this study, site-specific mutagenesis strategy was employed for cdtA point mutations construction so as to examine the contributions of individual amino acids to receptor binding and the biological activity of holotoxin. The binding ability was reduced in CdtA(Y181ABC holotoxin and the biological function of CDT was not weaken in CdtA(Y105ABC, CdtA(Y125ABC, CdtA(F109ABC and CdtA(S106NBC holotoxin suggesting that these sites were not critical to CDT. But the binding activity and cell cycle arrest ability of holotoxin complexes were inhibited in CdtA(W115GBC. And this site did not affect the holotoxin assembly by size exclusion chromatography. Therefore, W115 might be a critical site of CdtA binding ability. These findings suggest that the functional sites of CdtA are not only in the aromatic patch region. W115, the new functional site is critical for receptor binding and cell cycle arrest, which provides potential targets for pharmacological disruption of CDT activity.

  10. Galaxies interactions and induced star formation

    CERN Document Server

    Kennicutt Jr, Robert C; Barnes, JE

    1998-01-01

    The papers that make up this volume present a comprehensive review of the field of galaxy interaction. Galaxies are dynamic forces that evolve, interact, merge, blaze and reshape. This book offers a historical perspective and studies such topics as induced star formation.

  11. 2d CDT is 2d Horava-Lifshitz quantum gravity

    DEFF Research Database (Denmark)

    Ambjørn, J.; Glaser, L.; Sato, Y.

    2013-01-01

    Causal Dynamical Triangulations (CDT) is a lattice theory where aspects of quantum gravity can be studied. Two-dimensional CDT can be solved analytically and the continuum (quantum) Hamiltonian obtained. In this Letter we show that this continuum Hamiltonian is the one obtained by quantizing two......-dimensional projectable Horava-Lifshitz gravity....

  12. Laser filament-induced aerosol formation

    Directory of Open Access Journals (Sweden)

    H. Saathoff

    2013-05-01

    Full Text Available Using the aerosol and cloud simulation chamber AIDA, we investigated the laser filament induced particle formation in ambient air, humid synthetic air, humid nitrogen, argon–oxygen mixture, and pure argon in order to simulate the particle formation under realistic atmospheric conditions as well as to investigate the influence of typical gas-phase atmospheric constituents on the particle formation. Terawatt laser plasma filaments generated new particles in the size range 3 to 130 nm with particle production rates ranging from 1 × 107 to 5 × 109 cm−3 plasma s−1 for the given experimental conditions. In all cases the particle formation rates increased exponentially with the water content of the gas mixture. Furthermore, the presence of a few ppb of trace gases like SO2 and α-pinene clearly enhanced the particle yield by number, the latter also by mass. Our findings suggest that new particle formation is efficiently supported by oxidized species like acids generated by the photoionization of both major and minor components of the air, including N2, NH3, SO2 and organics.

  13. USP37 deubiquitinates Cdt1 and contributes to regulate DNA replication.

    Science.gov (United States)

    Hernández-Pérez, Santiago; Cabrera, Elisa; Amoedo, Hugo; Rodríguez-Acebes, Sara; Koundrioukoff, Stephane; Debatisse, Michelle; Méndez, Juan; Freire, Raimundo

    2016-10-01

    DNA replication control is a key process in maintaining genomic integrity. Monitoring DNA replication initiation is particularly important as it needs to be coordinated with other cellular events and should occur only once per cell cycle. Crucial players in the initiation of DNA replication are the ORC protein complex, marking the origin of replication, and the Cdt1 and Cdc6 proteins, that license these origins to replicate by recruiting the MCM2-7 helicase. To accurately achieve its functions, Cdt1 is tightly regulated. Cdt1 levels are high from metaphase and during G1 and low in S/G2 phases of the cell cycle. This control is achieved, among other processes, by ubiquitination and proteasomal degradation. In an overexpression screen for Cdt1 deubiquitinating enzymes, we isolated USP37, to date the first ubiquitin hydrolase controlling Cdt1. USP37 overexpression stabilizes Cdt1, most likely a phosphorylated form of the protein. In contrast, USP37 knock down destabilizes Cdt1, predominantly during G1 and G1/S phases of the cell cycle. USP37 interacts with Cdt1 and is able to de-ubiquitinate Cdt1 in vivo and, USP37 is able to regulate the loading of MCM complexes onto the chromatin. In addition, downregulation of USP37 reduces DNA replication fork speed. Taken together, here we show that the deubiquitinase USP37 plays an important role in the regulation of DNA replication. Whether this is achieved via Cdt1, a central protein in this process, which we have shown to be stabilized by USP37, or via additional factors, remains to be tested. Copyright © 2016 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  14. Rescuing loading induced bone formation at senescence.

    Directory of Open Access Journals (Sweden)

    Sundar Srinivasan

    2010-09-01

    Full Text Available The increasing incidence of osteoporosis worldwide requires anabolic treatments that are safe, effective, and, critically, inexpensive given the prevailing overburdened health care systems. While vigorous skeletal loading is anabolic and holds promise, deficits in mechanotransduction accrued with age markedly diminish the efficacy of readily complied, exercise-based strategies to combat osteoporosis in the elderly. Our approach to explore and counteract these age-related deficits was guided by cellular signaling patterns across hierarchical scales and by the insight that cell responses initiated during transient, rare events hold potential to exert high-fidelity control over temporally and spatially distant tissue adaptation. Here, we present an agent-based model of real-time Ca(2+/NFAT signaling amongst bone cells that fully described periosteal bone formation induced by a wide variety of loading stimuli in young and aged animals. The model predicted age-related pathway alterations underlying the diminished bone formation at senescence, and hence identified critical deficits that were promising targets for therapy. Based upon model predictions, we implemented an in vivo intervention and show for the first time that supplementing mechanical stimuli with low-dose Cyclosporin A can completely rescue loading induced bone formation in the senescent skeleton. These pre-clinical data provide the rationale to consider this approved pharmaceutical alongside mild physical exercise as an inexpensive, yet potent therapy to augment bone mass in the elderly. Our analyses suggested that real-time cellular signaling strongly influences downstream bone adaptation to mechanical stimuli, and quantification of these otherwise inaccessible, transient events in silico yielded a novel intervention with clinical potential.

  15. Kinetics of formation of induced mutants of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Chepurnoj, A.I.; Levkovich, N.V.; Mikhova-Tsenova, N.; Mel'nikova, L.A.

    1990-01-01

    UV and γ-radiation mutagenic effect an various strains of Saccharomyces cerevisiae was studied by analyzing formation kinetics of induced mutants at the period of postirradiation incubation. Mechanisms of induced reverse formation was suggested. The presented analysis is considered to be differential taking account of more subtle aspects of induced mutagenesis. 8 refs.; 10 figs.; 3 tabs

  16. Open-ringed structure of the Cdt1-Mcm2-7 complex as a precursor of the MCM double hexamer.

    Science.gov (United States)

    Zhai, Yuanliang; Cheng, Erchao; Wu, Hao; Li, Ningning; Yung, Philip Yuk Kwong; Gao, Ning; Tye, Bik-Kwoon

    2017-03-01

    The minichromosome maintenance complex (MCM) hexameric complex (Mcm2-7) forms the core of the eukaryotic replicative helicase. During G1 phase, two Cdt1-Mcm2-7 heptamers are loaded onto each replication origin by the origin-recognition complex (ORC) and Cdc6 to form an inactive MCM double hexamer (DH), but the detailed loading mechanism remains unclear. Here we examine the structures of the yeast MCM hexamer and Cdt1-MCM heptamer from Saccharomyces cerevisiae. Both complexes form left-handed coil structures with a 10-15-Å gap between Mcm5 and Mcm2, and a central channel that is occluded by the C-terminal domain winged-helix motif of Mcm5. Cdt1 wraps around the N-terminal regions of Mcm2, Mcm6 and Mcm4 to stabilize the whole complex. The intrinsic coiled structures of the precursors provide insights into the DH formation, and suggest a spring-action model for the MCM during the initial origin melting and the subsequent DNA unwinding.

  17. Radiation induced formation of giant cells (Saccharomyces uvarum). Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Baumstark-Khan, C; Schnitzler, L; Rink, H

    1984-02-01

    X-irradiated yeast cells (Saccharomyces uvarum) grown in liquid media stop mitosis and form giant cells. Chitin ring formation, being a prerequisite for cell separation, was studied by fluorescence microscopy using Calcofluor White, a chitin specific dye. Experiments with inhibitors of DNA synthesis (hydroxyurea) and chitin synthesis (polyoxin D) demonstrate chitin ring formation to be dependent on DNA synthesis, whereas bud formation is independent of DNA synthesis and chitin ring formation respectively. Basing on these results the formation of X-ray induced giant cells implies one DNA replication which in turn induces the formation of only one chitin ring between mother cell and giant bud. Obviously no septum can be formed. Thus cell separation does not occur, but the bud already formed, produces another bud demonstrating that bud formation itself is independent of DNA synthesis.

  18. Radiation induced formation of giant cells (Saccharomyces uvarum). Pt. 1

    International Nuclear Information System (INIS)

    Baumstark-Khan, C.; Schnitzler, L.; Rink, H.

    1984-01-01

    X-irradiated yeast cells (Saccharomyces uvarum) grown in liquid media stop mitosis and form giant cells. Chitin ring formation, being a prerequisite for cell separation, was studied by fluorescence microscopy using Calcofluor White, a chitin specific dye. Experiments with inhibitors of DNA synthesis (hydroxyurea) and chitin synthesis (polyoxin D) demonstrate chitin ring formation to be dependent on DNA synthesis, whereas bud formation is independent of DNA synthesis and chitin ring formation respectively. Basing on these results the formation of X-ray induced giant cells implies one DNA replication which in turn induces the formation of only one chitin ring between mother cell and giant bud. Obviously no septum can be formed. Thus cell separation does not occur, but the bud already formed, produces another bud demonstrating that bud formation itself is independent of DNA synthesis. (orig.)

  19. Ion beam induced stress formation and relaxation in germanium

    Energy Technology Data Exchange (ETDEWEB)

    Steinbach, T., E-mail: Tobias.Steinbach@uni-jena.de [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena (Germany); Reupert, A.; Schmidt, E.; Wesch, W. [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena (Germany)

    2013-07-15

    Ion irradiation of crystalline solids leads not only to defect formation and amorphization but also to mechanical stress. In the past, many investigations in various materials were performed focusing on the ion beam induced damage formation but only several experiments were done to investigate the ion beam induced stress evolution. Especially in microelectronic devices, mechanical stress leads to several unwanted effects like cracking and peeling of surface layers as well as changing physical properties and anomalous diffusion of dopants. To study the stress formation and relaxation process in semiconductors, crystalline and amorphous germanium samples were irradiated with 3 MeV iodine ions at different ion fluence rates. The irradiation induced stress evolution was measured in situ with a laser reflection technique as a function of ion fluence, whereas the damage formation was investigated by means of Rutherford backscattering spectrometry. The investigations show that mechanical stress builds up at low ion fluences as a direct consequence of ion beam induced point defect formation. However, further ion irradiation causes a stress relaxation which is attributed to the accumulation of point defects and therefore the creation of amorphous regions. A constant stress state is reached at high ion fluences if a homogeneous amorphous surface layer was formed and no further ion beam induced phase transition took place. Based on the results, we can conclude that the ion beam induced stress evolution seems to be mainly dominated by the creation and accumulation of irradiation induced structural modification.

  20. PyCDT: A Python toolkit for modeling point defects in semiconductors and insulators

    Science.gov (United States)

    Broberg, Danny; Medasani, Bharat; Zimmermann, Nils E. R.; Yu, Guodong; Canning, Andrew; Haranczyk, Maciej; Asta, Mark; Hautier, Geoffroy

    2018-05-01

    Point defects have a strong impact on the performance of semiconductor and insulator materials used in technological applications, spanning microelectronics to energy conversion and storage. The nature of the dominant defect types, how they vary with processing conditions, and their impact on materials properties are central aspects that determine the performance of a material in a certain application. This information is, however, difficult to access directly from experimental measurements. Consequently, computational methods, based on electronic density functional theory (DFT), have found widespread use in the calculation of point-defect properties. Here we have developed the Python Charged Defect Toolkit (PyCDT) to expedite the setup and post-processing of defect calculations with widely used DFT software. PyCDT has a user-friendly command-line interface and provides a direct interface with the Materials Project database. This allows for setting up many charged defect calculations for any material of interest, as well as post-processing and applying state-of-the-art electrostatic correction terms. Our paper serves as a documentation for PyCDT, and demonstrates its use in an application to the well-studied GaAs compound semiconductor. We anticipate that the PyCDT code will be useful as a framework for undertaking readily reproducible calculations of charged point-defect properties, and that it will provide a foundation for automated, high-throughput calculations.

  1. Recombinant human bone morphogenetic protein induces bone formation

    International Nuclear Information System (INIS)

    Wang, E.A.; Rosen, V.; D'Alessandro, J.S.; Bauduy, M.; Cordes, P.; Harada, T.; Israel, D.I.; Hewick, R.M.; Kerns, K.M.; LaPan, P.; Luxenberg, D.P.; McQuaid, D.; Moutsatsos, I.K.; Nove, J.; Wozney, J.M.

    1990-01-01

    The authors have purified and characterized active recombinant human bone morphogenetic protein (BMP) 2A. Implantation of the recombinant protein in rats showed that a single BMP can induce bone formation in vivo. A dose-response and time-course study using the rat ectopic bone formation assay revealed that implantation of 0.5-115 μg of partially purified recombinant human BMP-2A resulted in cartilage by day 7 and bone formation by day 14. The time at which bone formation occurred was dependent on the amount of BMP-2A implanted; at high doses bone formation could be observed at 5 days. The cartilage- and bone-inductive activity of the recombinant BMP-2A is histologically indistinguishable from that of bone extracts. Thus, recombinant BMP-2A has therapeutic potential to promote de novo bone formation in humans

  2. Membrane formation : diffusion induced demixing processes in ternary polymeric systems

    NARCIS (Netherlands)

    Reuvers, Albertus Johannes

    1987-01-01

    In this thesis the mechanism of membrane formation by means of immersion precipitation is studied. Immersion of a concentrated polymer solution film into a nonsolvent bath induces an exchange of solvent and nonsolvent in the film by means of diffusion. This process results in an asymmetric polymer

  3. Subtotal ablation of parietal epithelial cells induces crescent formation.

    NARCIS (Netherlands)

    Sicking, E.M.; Fuss, A.; Uhlig, S.; Jirak, P.; Dijkman, H.; Wetzels, J.; Engel, D.R.; Urzynicok, T.; Heidenreich, S.; Kriz, W.; Kurts, C.; Ostendorf, T.; Floege, J.; Smeets, B.; Moeller, M.J.

    2012-01-01

    Parietal epithelial cells (PECs) of the renal glomerulus contribute to the formation of both cellular crescents in rapidly progressive GN and sclerotic lesions in FSGS. Subtotal transgenic ablation of podocytes induces FSGS but the effect of specific ablation of PECs is unknown. Here, we established

  4. Troglitazone induced apoptosis via PPARγ activated POX-induced ROS formation in HT29 cells.

    Science.gov (United States)

    Wang, Jing; Lv, XiaoWen; Shi, JiePing; Hu, XiaoSong; DU, YuGuo

    2011-08-01

    In order to investigate the potential mechanisms in troglitazone-induced apoptosis in HT29 cells, the effects of PPARγ and POX-induced ROS were explored. [3- (4, 5)-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay, Annexin V and PI staining using FACS, plasmid transfection, ROS formation detected by DCFH staining, RNA interference, RT-PCR & RT-QPCR, and Western blotting analyses were employed to investigate the apoptotic effect of troglitazone and the potential role of PPARγ pathway and POX-induced ROS formation in HT29 cells. Troglitazone was found to inhibit the growth of HT29 cells by induction of apoptosis. During this process, mitochondria related pathways including ROS formation, POX expression and cytochrome c release increased, which were inhibited by pretreatment with GW9662, a specific antagonist of PPARγ. These results illustrated that POX upregulation and ROS formation in apoptosis induced by troglitazone was modulated in PPARγ-dependent pattern. Furthermore, the inhibition of ROS and apoptosis after POX siRNA used in troglitazone-treated HT29 cells indicated that POX be essential in the ROS formation and PPARγ-dependent apoptosis induced by troglitazone. The findings from this study showed that troglitazone-induced apoptosis was mediated by POX-induced ROS formation, at least partly, via PPARγ activation. Copyright © 2011 The Editorial Board of Biomedical and Environmental Sciences. Published by Elsevier B.V. All rights reserved.

  5. Suppression of T cell-induced osteoclast formation

    Energy Technology Data Exchange (ETDEWEB)

    Karieb, Sahar; Fox, Simon W., E-mail: Simon.fox@plymouth.ac.uk

    2013-07-12

    Highlights: •Genistein and coumestrol prevent activated T cell induced osteoclast formation. •Anti-TNF neutralising antibodies prevent the pro-osteoclastic effect of activated T cells. •Phytoestrogens inhibit T cell derived TNF alpha and inflammatory cytokine production. •Phytoestrogens have a broader range of anti-osteoclastic actions than other anti-resorptives. -- Abstract: Inhibition of T cell derived cytokine production could help suppress osteoclast differentiation in inflammatory skeletal disorders. Bisphosphonates are typically prescribed to prevent inflammatory bone loss but are not tolerated by all patients and are associated with an increased risk of osteonecrosis of the jaw. In light of this other anti-resorptives such as phytoestrogens are being considered. However the effect of phytoestrogens on T cell-induced osteoclast formation is unclear. The effect of genistein and coumestrol on activated T cell-induced osteoclastogenesis and cytokine production was therefore examined. Concentrations of genistein and coumestrol (10{sup −7} M) previously shown to directly inhibit osteoclast formation also suppressed the formation of TRAP positive osteoclast induced by con A activated T cells, which was dependent on inhibition of T cell derived TNF-α. While both reduced osteoclast formation their mechanism of action differed. The anti-osteoclastic effect of coumestrol was associated with a dual effect on con A induced T cell proliferation and activation; 10{sup −7} M coumestrol significantly reducing T cell number (0.36) and TNF-α (0.47), IL-1β (0.23) and IL-6 (0.35) expression, whereas genistein (10{sup −7} M) had no effect on T cell number but a more pronounced effect on T cell differentiation reducing expression of TNF-α (0.49), IL-1β (0.52), IL-6 (0.71) and RANKL (0.71). Phytoestrogens therefore prevent the pro-osteoclastic action of T cells suggesting they may have a role in the control of inflammatory bone loss.

  6. Mechanism of vacancy formation induced by hydrogen in tungsten

    Directory of Open Access Journals (Sweden)

    Yi-Nan Liu

    2013-12-01

    Full Text Available We report a hydrogen induced vacancy formation mechanism in tungsten based on classical molecular dynamics simulations. We demonstrate the vacancy formation in tungsten due to the presence of hydrogen associated directly with a stable hexagonal self-interstitial cluster as well as a linear crowdion. The stability of different self-interstitial structures has been further studied and it is particularly shown that hydrogen plays a crucial role in determining the configuration of SIAs, in which the hexagonal cluster structure is preferred. Energetic analysis has been carried out to prove that the formation of SIA clusters facilitates the formation of vacancies. Such a mechanism contributes to the understanding of the early stage of the hydrogen blistering in tungsten under a fusion reactor environment.

  7. Formation of novel morphologies of aragonite induced by inorganic template

    International Nuclear Information System (INIS)

    Wang, Xiaoming; Nan, Zhaodong

    2011-01-01

    Graphical abstract: Glass-slices were used as a template to induce formation and assembly of aragonite. Different morphologies, such as hemisphere, twinborn hemisphere and flower-shaped particles, were produced by direction of the glass-slices. Highlights: → Glass-slices were used as a template to induce formation and assembly of aragonite. → Hemisphere, twinborn hemisphere and flower-shaped particles were produced by direction of the glass-slices. → Planes were always appeared in these as-synthesized samples. → Thermodynamic theory was applied to explain the production of the aragonite. -- Abstract: A glass-slice was used as a template to induce formation and assembly of aragonite. Thermodynamic theory was applied to explain the production of the aragonite. Transformation of three-dimensional nucleation to template-based two-dimensional surface nucleation caused the production of aragonite. Hemisphere, twinborn hemisphere and flower-shaped particles were produced by direction of the glass-slices. Planes were always appeared in these as-synthesized samples because the nucleation and the growth of these samples were adsorbed at the surfaces of the glass-slices. The formation mechanism of the as-formed sample was proposed. Compared with organic template, the present study provides a facile method to apply inorganic template to prepare functional materials.

  8. Glucocorticoids and inhibition of bone formation induced by skeletal unloading

    International Nuclear Information System (INIS)

    Halloran, B.P.; Bikle, D.D.; Cone, C.M.; Morey-Holton, E.

    1988-01-01

    Skeletal unloading or loss of normal weight bearing in the growing animal inhibits bone formation and reduces bone calcium. To determine whether the inhibition of bone formation induced by skeletal unloading is a consequence of an increase in plasma glucocorticoids and/or an increase in bone sensitivity to glucocorticoids, the authors measured plasma corticosterone throughout the day in unloaded and normally loaded rats (hindlimb elevation model) and examined the effect of adrenalectomy on the response of bone to skeletal unloading. Plasma corticosterone levels were similar in normally loaded and unloaded rats at all times. Skeletal unloading in sham-adrenalectomized animals reduced tibial and vertebral calcium by 11.5 and 11.1%, respectively, and in adrenalectomized animals by 15.3 and 20.3%, respectively. Uptake of 45 Ca and [ 3 H]proline in the tibia was reduced by 8 and 14%, respectively, in the sham-adrenalectomized animals and by 13 and 19% in the adrenalectomized animals. Bone formation and apposition rates were reduced to the same level in sham- and adrenalectomized animals. These results suggest that the inhibition of bone formation induced by skeletal unloading is not a consequence of increased plasma glucocorticoids or an increase in bone sensitivity to the glucocorticoids but, rather, point to a local mediator in bone that senses mechanical load and transmits that information to the bone-forming cells directly

  9. Subtotal Ablation of Parietal Epithelial Cells Induces Crescent Formation

    Science.gov (United States)

    Sicking, Eva-Maria; Fuss, Astrid; Uhlig, Sandra; Jirak, Peggy; Dijkman, Henry; Wetzels, Jack; Engel, Daniel R.; Urzynicok, Torsten; Heidenreich, Stefan; Kriz, Wilhelm; Kurts, Christian; Ostendorf, Tammo; Floege, Jürgen; Smeets, Bart

    2012-01-01

    Parietal epithelial cells (PECs) of the renal glomerulus contribute to the formation of both cellular crescents in rapidly progressive GN and sclerotic lesions in FSGS. Subtotal transgenic ablation of podocytes induces FSGS but the effect of specific ablation of PECs is unknown. Here, we established an inducible transgenic mouse to allow subtotal ablation of PECs. Proteinuria developed during doxycycline-induced cellular ablation but fully reversed 26 days after termination of doxycycline administration. The ablation of PECs was focal, with only 30% of glomeruli exhibiting histologic changes; however, the number of PECs was reduced up to 90% within affected glomeruli. Ultrastructural analysis revealed disruption of PEC plasma membranes with cytoplasm shedding into Bowman’s space. Podocytes showed focal foot process effacement, which was the most likely cause for transient proteinuria. After >9 days of cellular ablation, the remaining PECs formed cellular extensions to cover the denuded Bowman’s capsule and expressed the activation marker CD44 de novo. The induced proliferation of PECs persisted throughout the observation period, resulting in the formation of typical cellular crescents with periglomerular infiltrate, albeit without accompanying proteinuria. In summary, subtotal ablation of PECs leads the remaining PECs to react with cellular activation and proliferation, which ultimately forms cellular crescents. PMID:22282596

  10. A CDT-Based Heuristic Zone Design Approach for Economic Census Investigators

    Directory of Open Access Journals (Sweden)

    Changixu Cheng

    2015-01-01

    Full Text Available This paper addresses a special zone design problem for economic census investigators that is motivated by a real-world application. This paper presented a heuristic multikernel growth approach via Constrained Delaunay Triangulation (CDT. This approach not only solved the barriers problem but also dealt with the polygon data in zoning procedure. In addition, it uses a new heuristic method to speed up the zoning process greatly on the premise of the required quality of zoning. At last, two special instances for economic census were performed, highlighting the performance of this approach.

  11. Impact-Induced Clay Mineral Formation and Distribution on Mars

    Science.gov (United States)

    Rivera-Valentin, E. G.; Craig, P. I.

    2015-01-01

    Clay minerals have been identified in the central peaks and ejecta blankets of impact craters on Mars. Several studies have suggested these clay minerals formed as a result of impact induced hydrothermalism either during Mars' Noachian era or more recently by the melting of subsurface ice. Examples of post-impact clay formation is found in several locations on Earth such as the Mjolnir and Woodleigh Impact Structures. Additionally, a recent study has suggested the clay minerals observed on Ceres are the result of impact-induced hydrothermal processes. Such processes may have occurred on Mars, possibly during the Noachian. Distinguishing between clay minerals formed preor post-impact can be accomplished by studying their IR spectra. In fact, showed that the IR spectra of clay minerals is greatly affected at longer wavelengths (i.e. mid-IR, 5-25 micron) by impact-induced shock deformation while the near-IR spectra (1.0-2.5 micron) remains relatively unchanged. This explains the discrepancy between NIR and MIR observations of clay minerals in martian impact craters noted. Thus, it allows us to determine whether a clay mineral formed from impact-induced hydrothermalism or were pre-existing and were altered by the impact. Here we study the role of impacts on the formation and distribution of clay minerals on Mars via a fully 3-D Monte Carlo cratering model, including impact- melt production using results from modern hydrocode simulations. We identify regions that are conducive to clay formation and the location of clay minerals post-bombardment.

  12. The formation of rats' choroidal neovascularization induced by acrolein

    Directory of Open Access Journals (Sweden)

    Guan-Feng Wang

    2016-04-01

    Full Text Available AIM:To investigate the formation of rats' choroidal neovascularization(CNVinduced by acrolein. METHODS:Twelve Sprague-Dawley rats were randomly divided into three groups. Acrolein 200μL(2.5 mg/kg/dwas poured into the rats' stomach for 4wk as acrolein 4wk and for 8wk as acrolein 8wk group. The same volume of fresh water was also done to the rats as the control group. Remove all eye balls and embed into paraffin with HE staining.RESLUTS:The RPE-Bruch membrane was intact with no obvious abnormality in the control group and acrolein 4wk group. Lost in the continuity of RPE and the movement of choroidal neovascularization were found in the acrolein 8wk. CONCLUSION:The long time use of acrolein can induce the formation of choroial neovascularization in rats.

  13. Branch formation induced by microbeam irradiation of Adiantum protonemata

    International Nuclear Information System (INIS)

    Wada, M.

    1998-01-01

    Branches were induced in centrifuged Adiantum protonemal cells by partial irradiation with polarized red light. Nuclear behavior and microtubule pattern change during branch formation were investigated. A branch formed at any part where a red microbeam was focused along a long apical cell. The nucleus moved towards the irradiated area and remained there until a branch developed. The pattern of microtubules changed from parallel to oblique at the irradiated area and then a transverse arrangement of microtubules appeared on both sides of the area. It appeared as if the nucleus was suspended between two microtubule rings. This nuclear behavior and the changes in microtubule pattern were different from those observed during branch formation under whole cell irradiation. From the results of this work we suggest that there is an importance for precise control of experimental conditions

  14. Induced massive star formation in the trifid nebula?

    Science.gov (United States)

    Cernicharo; Lefloch; Cox; Cesarsky; Esteban; Yusef-Zadeh; Mendez; Acosta-Pulido; Garcia Lopez RJ; Heras

    1998-10-16

    The Trifid nebula is a young (10(5) years) galactic HII region where several protostellar sources have been detected with the infrared space observatory. The sources are massive (17 to 60 solar masses) and are associated with molecular gas condensations at the edges or inside the nebula. They appear to be in an early evolutionary stage and may represent the most recent generation of stars in the Trifid. These sources range from dense, apparently still inactive cores to more evolved sources, undergoing violent mass ejection episodes, including a source that powers an optical jet. These observations suggest that the protostellar sources may have evolved by induced star formation in the Trifid nebula.

  15. Fragment formation in light-ion induced reactions

    International Nuclear Information System (INIS)

    Hirata, Yuichi

    2001-01-01

    The intermediate mass fragment (IMF) formation in the 12 GeV proton induced reaction on Au target is analyzed by the quantum molecular dynamics model combined with the JAM hadronic cascade model and the non-equilibrated percolation model. We show that the sideward peaked angular distribution of IMF occur in the multifragmentation at very short time scale around 20 fm/c where non-equilibrated features of the residual nucleus fluctuates the nucleon density and fragments in the repulsive Coulomb force are pushed for the sideward direction. (author)

  16. Functionalized Surface Geometries Induce: “Bone: Formation by Autoinduction”

    Directory of Open Access Journals (Sweden)

    Ugo Ripamonti

    2018-02-01

    Full Text Available The induction of tissue formation, and the allied disciplines of tissue engineering and regenerative medicine, have flooded the twenty-first century tissue biology scenario and morphed into high expectations of a fulfilling regenerative dream of molecularly generated tissues and organs in assembling human tissue factories. The grand conceptualization of deploying soluble molecular signals, first defined by Turing as forms generating substances, or morphogens, stemmed from classic last century studies that hypothesized the presence of morphogens in several mineralized and non-mineralized mammalian matrices. The realization of morphogens within mammalian matrices devised dissociative extractions and chromatographic procedures to isolate, purify, and finally reconstitute the cloned morphogens, found to be members of the transforming growth factor-β (TGF-β supergene family, with insoluble signals or substrata to induce de novo tissue induction and morphogenesis. Can we however construct macroporous bioreactors per se capable of inducing bone formation even without the exogenous applications of the osteogenic soluble molecular signals of the TGF-β supergene family? This review describes original research on coral-derived calcium phosphate-based macroporous constructs showing that the formation of bone is independent of the exogenous application of the osteogenic soluble signals of the TGF-β supergene family. Such signals are the molecular bases of the induction of bone formation. The aim of this review is to primarily describe today's hottest topic of biomaterials' science, i.e., to construct and define osteogenetic biomaterials' surfaces that per se, in its own right, do initiate the induction of bone formation. Biomaterials are often used to reconstruct osseous defects particularly in the craniofacial skeleton. Edentulism did spring titanium implants as tooth replacement strategies. No were else that titanium surfaces require functionalized

  17. Formation of radiation induced precipitates in VVER RPV materials

    International Nuclear Information System (INIS)

    Platonov, P.A.; Chernobaeva, A.A.

    2016-01-01

    This paper presents an analysis of experimental results received in course of research of copper-enriched precipitates (Cu-precipitates) and nickel-manganese-silicon clusters (Ni-Mn-Si clusters), which are formed in steels of VVER-type reactor pressure vessels (RPVs) under neutron irradiation. Based on this analysis, a hypothetical model is suggested for cluster formation in course of evolution of a cascade region. The model presumes cluster formation in two stages. At the first stage, in course of cascade region crystallization, a stable cluster is formed in the center of the cascade region, which consists of vacancies and Cu atoms following the mechanism of the inverse Kirkendall effect. At the second stage, diffusion of Ni, Mn and P atoms with a flow of vacancies from the matrix takes place to form a cluster. The size of a cluster is limited by a balance of vacancies' flows entering and leaving the cluster. The paper also considers a possibility of stabilization of atomic-vacancy cluster due to uneven distribution of Ni, Mn and P atoms, which explains dependence of cluster density on the content of these elements. Kinetics of cluster formation and evolution presumed by suggested model is analyzed. It is demonstrated that a fall in cluster density and an increase in their size under high irradiation doses may be caused by a decrease of matrix supersaturation with vacancies resulting from high density of dislocation loops. - Highlights: • The analysis of the mechanism of formation of radiation-induced clusters in RPV steels has been done. • Radiation-induced clusters are formed after the mechanism based on the inverse Kirkendall effect in two stages. • At post-dynamic stage a flow of vacancies moving to the center of the cascade entrains Cu atoms contained and forms a stable atom-vacancies cluster. • At the 2nd stage Cu, Ni, Mn, Si atoms forming complexes with vacancies diffuse into a cluster driving out Fe and Cr atoms from the cluster. • The cluster

  18. The Role of the CRL4Cdt2 Target Spd1 in Chromosome Segregation in Fission Yeast

    DEFF Research Database (Denmark)

    Landvad, Katrine

    Ddb1, a component of the E3 ubiquitin ligase CRL4Cdt2, is needed for proper chromosome segregation in fission yeast as ddb1 deleted cells show unequal distribution of DNA to daughter cells and sensitivity to the microtubule destabilising drug TBZ. In this study we show that Δddb1 cells have...

  19. Boundary-induced pattern formation from uniform temporal oscillation

    Science.gov (United States)

    Kohsokabe, Takahiro; Kaneko, Kunihiko

    2018-04-01

    Pattern dynamics triggered by fixing a boundary is investigated. By considering a reaction-diffusion equation that has a unique spatially uniform and limit cycle attractor under a periodic or Neumann boundary condition, and then by choosing a fixed boundary condition, we found three novel phases depending on the ratio of diffusion constants of activator to inhibitor: transformation of temporally periodic oscillation into a spatially periodic fixed pattern, travelling wave emitted from the boundary, and aperiodic spatiotemporal dynamics. The transformation into a fixed, periodic pattern is analyzed by crossing of local nullclines at each spatial point, shifted by diffusion terms, as is analyzed by using recursive equations, to obtain the spatial pattern as an attractor. The generality of the boundary-induced pattern formation as well as its relevance to biological morphogenesis is discussed.

  20. Lipopolysaccharide induces amyloid formation of antimicrobial peptide HAL-2.

    Science.gov (United States)

    Wang, Jiarong; Li, Yan; Wang, Xiaoming; Chen, Wei; Sun, Hongbin; Wang, Junfeng

    2014-11-01

    Lipopolysaccharide (LPS), the important component of the outer membrane of Gram-negative bacteria, contributes to the integrity of the outer membrane and protects the cell against bactericidal agents, including antimicrobial peptides. However, the mechanisms of interaction between antimicrobial peptides and LPS are not clearly understood. Halictines-2 (HAL-2), one of the novel antimicrobial peptides, was isolated from the venom of the eusocial bee Halictus sexcinctus. HAL-2 has exhibited potent antimicrobial activity against Gram-positive and Gram-negative bacteria and even against cancer cells. Here, we studied the interactions between HAL-2 and LPS to elucidate the antibacterial mechanism of HAL-2 in vitro. Our results show that HAL-2 adopts a significant degree of β-strand structure in the presence of LPS. LPS is capable of inducing HAL-2 amyloid formation, which may play a vital role in its antimicrobial activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Electron irradiation induced nanocrystal formation in Cu-borosilicate glass

    Energy Technology Data Exchange (ETDEWEB)

    Sabri, Mohammed Mohammed; Möbus, Günter, E-mail: g.moebus@sheffield.ac.uk [University of Sheffield, Department of Materials Science and Engineering (United Kingdom)

    2016-03-15

    Nanoscale writing of Cu nanoparticles in glasses is introduced using focused electron irradiation by transmission electron microscopy. Two types of copper borosilicate glasses, one with high and another with low Cu loading, have been tested at energies of 200–300 keV, and formation of Cu nanoparticles in a variety of shapes and sizes using different irradiation conditions is achieved. Electron energy loss spectroscopy analysis, combined with high-resolution transmission electron microscopy imaging, confirmed the irradiation-induced precipitated nanoparticles as metallic, while furnace annealing of the glass triggered dendrite-shaped particles of copper oxide. Unusual patterns of nanoparticle rings and chains under focused electron beam irradiation are also presented. Conclusively, electron beam patterning of Cu-loaded glasses is a promising alternative route to well-established femtosecond laser photoreduction of Cu ions in glass.

  2. Deuterium ion irradiation induced blister formation and destruction

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jaemin; Kim, Nam-Kyun; Kim, Hyun-Su; Jin, Younggil; Roh, Ki-Baek; Kim, Gon-Ho, E-mail: ghkim@snu.ac.kr

    2016-11-01

    Highlights: • The areal number density of blisters on the grain with (1 1 1) plane orientation increased with increasing ion fluence. • No more blisters were created above the temperature about 900 K due to high thermal mobility of ions and inactivity of traps. • The destruction of blister at the boundary induced by sputtering is proposed. • The blisters were destructed at the position about the boundary by high sputtering yield of oblique incident ions and thin thickness due to plastic deformation at the boundary. - Abstract: The blisters formation and destruction induced by the deuterium ions on a polycrystalline tungsten were investigated with varying irradiation deuterium ion fluence from 3.04 × 10{sup 23} to 1.84 × 10{sup 25} D m{sup −2} s{sup −1} and an fixed irradiated ion energy of 100 eV in an electron cyclotron resonance plasma source, which was similar to the far-scrape off layer region in the nuclear fusion reactors. Target temperature was monitored during the irradiation. Most of blisters formed easily on the grain with (1 1 1) plane orientation which had about 250 nm in diameter. In addition, the areal number density of blisters increased with increasing the ion fluence under the surface temperature reaching to about 900 K. When the fluence exceeded 4.6 × 10{sup 24} D m{sup −2}, the areal number density of the blister decreased. It could be explained that the destruction of the blister was initiated by erosion at the boundary region where the thickness of blister lid was thin and the sputtering yield was high by oblique incident ions, resulting in remaining the lid open, e.g., un-eroded center dome. It is possible to work as a tungsten dust formation from the plasma facing divertor material at far-SOL region of fusion reactor.

  3. Stabilization of beta-catenin induces pancreas tumor formation.

    Science.gov (United States)

    Heiser, Patrick W; Cano, David A; Landsman, Limor; Kim, Grace E; Kench, James G; Klimstra, David S; Taketo, Maketo M; Biankin, Andrew V; Hebrok, Matthias

    2008-10-01

    beta-Catenin signaling within the canonical Wnt pathway is essential for pancreas development. However, the pathway is normally down-regulated in the adult organ. Increased cytoplasmic and nuclear localization of beta-catenin can be detected in nearly all human solid pseudopapillary neoplasms (SPN), a rare tumor with low malignant potential. Conversely, pancreatic ductal adenocarcinoma (PDA) accounts for the majority of pancreatic tumors and is among the leading causes of cancer death. Whereas activating mutations within beta-catenin and other members of the canonical Wnt pathway are rare, recent reports have implicated Wnt signaling in the development and progression of human PDA. Here, we sought to address the role of beta-catenin signaling in pancreas tumorigenesis. Using Cre/lox technology, we conditionally activated beta-catenin in a subset of murine pancreatic cells in vivo. Activation of beta-catenin results in the formation of large pancreatic tumors at a high frequency in adult mice. These tumors resemble human SPN based on morphologic and immunohistochemical comparisons. Interestingly, stabilization of beta-catenin blocks the formation of pancreatic intraepithelial neoplasia (PanIN) in the presence of an activating mutation in Kras that is known to predispose individuals to PDA. Instead, mice in which beta-catenin and Kras are concurrently activated develop distinct ductal neoplasms that do not resemble PanIN lesions. These results demonstrate that activation of beta-catenin is sufficient to induce pancreas tumorigenesis. Moreover, they indicate that the sequence in which oncogenic mutations are acquired has profound consequences on the phenotype of the resulting tumor.

  4. Biologically induced formation of realgar deposits in soil

    Science.gov (United States)

    Drahota, Petr; Mikutta, Christian; Falteisek, Lukáš; Duchoslav, Vojtěch; Klementová, Mariana

    2017-12-01

    The formation of realgar (As4S4) has recently been identified as a prominent As sequestration pathway in the naturally As-enriched wetland soil at the Mokrsko geochemical anomaly (Czech Republic). Here we used bulk soil and pore water analyses, synchrotron X-ray absorption spectroscopy, S isotopes, and DNA extractions to determine the distribution and speciation of As as a function of soil depth and metabolic properties of microbial communities in wetland soil profiles. Total solid-phase analyses showed that As was strongly correlated with organic matter, caused by a considerable As accumulation (up to 21 g kg-1) in an organic-rich soil horizon artificially buried in 1980 at a depth of ∼80 cm. Extended X-ray absorption fine structure spectroscopy revealed that As in the buried organic horizon was predominantly present as realgar occurring as nanocrystallites (50-100 nm) in millimeter-scale deposits associated with particulate organic matter. The realgar was depleted in the 34S isotope by 9-12.5‰ relative to the aqueous sulfate supplied to the soil, implying its biologically induced formation. Analysis of the microbial communities by 16S rDNA sequencing showed that realgar deposits formed in strictly anaerobic organic-rich domains dominated by sulfate-reducing and fermenting metabolisms. In contrast, realgar deposits were not observed in similar domains with even small contributions of oxidative metabolisms. No association of realgar with specific microbial species was observed. Our investigation shows that strongly reducing microenvironments associated with buried organic matter are significant biogeochemical traps for As, with an estimated As accumulation rate of 61 g As m-2 yr-1. Nevertheless the production of biologically induced realgar in these microenvironments is too slow to lower As groundwater concentrations at our field site (∼6790 mg L-1). Our study demonstrates the intricate link between geochemistry and microbial community dynamics in wetland

  5. Specific plant induced biofilm formation in Methylobacterium species

    Science.gov (United States)

    Rossetto, Priscilla B.; Dourado, Manuella N.; Quecine, Maria C.; Andreote, Fernando D.; Araújo, Welington L.; Azevedo, João L.; Pizzirani-Kleiner, Aline A.

    2011-01-01

    Two endophytic strains of Methylobacterium spp. were used to evaluate biofilm formation on sugarcane roots and on inert wooden sticks. Results show that biofilm formation is variable and that plant surface and possibly root exudates have a role in Methylobacterium spp. host recognition, biofilm formation and successful colonization as endophytes. PMID:24031703

  6. Dilution-Induced Formation of Hybrid Perovskite Nanoplatelets.

    Science.gov (United States)

    Tong, Yu; Ehrat, Florian; Vanderlinden, Willem; Cardenas-Daw, Carlos; Stolarczyk, Jacek K; Polavarapu, Lakshminarayana; Urban, Alexander S

    2016-12-27

    Perovskite nanocrystals (NCs) are an important extension to the fascinating field of hybrid halide perovskites. Showing significantly enhanced photoluminescence (PL) efficiency and emission wavelengths tunable through halide content and size, they hold great promise for light-emitting applications. Despite the rapid advancement in this field, the physical nature and size-dependent excitonic properties have not been well investigated due to the challenges associated with their preparation. Herein we report the spontaneous formation of highly luminescent, quasi-2D organic-inorganic hybrid perovskite nanoplatelets (NPls) upon dilution of a dispersion of bulk-like NCs. The fragmentation of the large NCs is attributed to osmotic swelling induced by the added solvent. An excess of organic ligands in the solvent quickly passivates the newly formed surfaces, stabilizing the NPls in the process. The thickness of the NPls can be controlled both by the dilution level and by the ligand concentration. Such colloidal NPls and their thin films were found to be extremely stable under continuous UV light irradiation. Full tunability of the NPl emission wavelength is achieved by varying the halide ion used (bromide, iodide). Additionally, time-resolved PL measurements reveal an increasing radiative decay rate with decreasing thickness of the NPls, likely due to an increasing exciton binding energy. Similarly, measurements on iodide-containing NPls show a transformation from biexponential to monoexponential PL decay with decreasing thickness, likely due to an increasing fraction of excitonic recombination. This interesting phenomenon of change in fluorescence upon dilution is a result of the intricate nature of the perovskite material itself and is uncommon in inorganic materials. Our findings enable the synthesis of halide perovskite NCs with high quantum efficiency and good stability as well as a tuning of both their optical and morphological properties.

  7. Ion-induced aerosol formation in a H20-H2S04 system

    International Nuclear Information System (INIS)

    Raes, F.; Janssens, A.

    1986-01-01

    The results of an experiment that was set up to demonstrate the occurrence of ion-induced aerosol formation (see Part I of this paper, Raes and Janssens, 1985) are analysed quantitatively by modelling the dynamics of aerosol formation and growth under different irradiation conditions. The model calculations indicate that ion-induced aerosol formation may contribute significantly to the total particle formation in a gas mixture that is simultaneously being irradiated with u.v. and γ irradiation. However, the measurements do not appear to be accurate enough to support these calculations. A qualitative comparison of the experiments with the calculations suggests that ion-induced nucleation is actually occurring in the experiments and that the classical theory of ion-induced aerosol formation may underestimate the actual rate of aerosol formation around ions. (author)

  8. Fluctuation-Induced Pattern Formation in a Surface Reaction

    DEFF Research Database (Denmark)

    Starke, Jens; Reichert, Christian; Eiswirth, Markus

    2006-01-01

    Spontaneous nucleation, pulse formation, and propagation failure have been observed experimentally in CO oxidation on Pt(110) at intermediate pressures ($\\approx 10^{-2}$mbar). This phenomenon can be reproduced with a stochastic model which includes temperature effects. Nucleation occurs randomly...... due to fluctuations in the reaction processes, whereas the subsequent damping out essentially follows the deterministic path. Conditions for the occurence of stochastic effects in the pattern formation during CO oxidation on Pt are discussed....

  9. Non-canonical CRL4A/4B(CDT2 interacts with RAD18 to modulate post replication repair and cell survival.

    Directory of Open Access Journals (Sweden)

    Sarah Sertic

    Full Text Available The Cullin-4(CDT2 E3 ubiquitin ligase plays an essential role in DNA replication origin licensing directing degradation of several licensing factors at the G1/S transition in order to prevent DNA re-replication. Recently a RAD18-independent role of Cullin-4(CDT2 in PCNA monoubiquitylation has been proposed. In an effort to better understand the function of Cullin-4(CDT2 E3 ubiquitin ligase in mammalian Post-Replication Repair during an unperturbed S-phase, we show that down-regulation of Cullin-4(CDT2 leads to two distinguishable independent phenotypes in human cells that unveil at least two independent roles of Cullin-4(CDT2 in S-phase. Apart from the re-replication preventing activity, we identified a non-canonical Cullin-4(CDT2 complex, containing both CUL4A and CUL4B, associated to the COP9 signalosome, that controls a RAD18-dependent damage avoidance pathway essential during an unperturbed S-phase. Indeed, we show that the non-canonical Cullin-4A/4B(CDT2 complex binds to RAD18 and it is required to modulate RAD18 protein levels onto chromatin and the consequent dynamics of PCNA monoubiquitylation during a normal S-phase. This function prevents replication stress, ATR hyper-signaling and, ultimately, apoptosis. A very similar PRR regulatory mechanism has been recently described for Spartan. Our findings uncover a finely regulated process in mammalian cells involving Post-Replication Repair factors, COP9 signalosome and a non-canonical Cullin4-based E3 ligase which is essential to tolerate spontaneous damage and for cell survival during physiological DNA replication.

  10. Use of finger-prick dried blood spots (fpDBS) and capillary electrophoresis for carbohydrate deficient transferrin (CDT) screening in forensic toxicology.

    Science.gov (United States)

    Bertaso, Anna; Sorio, Daniela; Vandoros, Anthula; De Palo, Elio F; Bortolotti, Federica; Tagliaro, Franco

    2016-10-01

    Continued progress in chronic alcohol abuse investigation requires the development of less invasive procedures for screening purposes. The application of finger-prick and related dried blood spots (fpDBS) for carbohydrate deficient transferrin (CDT) detection appears suitable for this aim. Therefore, the goal of this project was to develop a screening method for CDT using fpDBS with CZE analysis. Blood samples prepared by finger-prick were placed on DBS cards and left to air dry; each dried fpDBS disc was shredded into small pieces and suspended in acid solution (60 μL of HCl 120 mmol/L). After centrifugation (10 min at 1500 × g), the collected sample was adjusted to pH 3.5. After an overnight incubation, the pH was neutralised and an iron rich solution was added. After 1 h, CZE analysis was carried out. A group of 47 individuals was studied. Parallel serum samples were collected from each investigated subject and the %CDT for each sample was measured using HPLC and CZE techniques. The fpDBS transferrin sialo isoform electropherograms were similar to those obtained with serum. Moreover, fpDBS CZE CDT percentage levels demonstrated significant statistical correlation with those obtained from serum for both HPLC and CZE %CDT (p < 0.01; r 2 = 0.8913 and 0.8976, respectively), with %CDT from 0.8 to 13.7% for fpDBS and from 0.7 to 12.7% for serum. The newly developed fpDBS procedure for CDT analysis provides a simple and inexpensive tool for use in population screening. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Bacterial lipopolysaccharide induces osteoclast formation in RAW 264.7 macrophage cells

    International Nuclear Information System (INIS)

    Islam, Shamima; Hassan, Ferdaus; Tumurkhuu, Gantsetseg; Dagvadorj, Jargalsaikhan; Koide, Naoki; Naiki, Yoshikazu; Mori, Isamu; Yoshida, Tomoaki; Yokochi, Takashi

    2007-01-01

    Lipopolysaccharide (LPS) is a potent bone resorbing factor. The effect of LPS on osteoclast formation was examined by using murine RAW 264.7 macrophage cells. LPS-induced the formation of multinucleated giant cells (MGC) in RAW 264.7 cells 3 days after the exposure. MGCs were positive for tartrate-resistant acid phosphatase (TRAP) activity. Further, MGC formed resorption pits on calcium-phosphate thin film that is a substrate for osteoclasts. Therefore, LPS was suggested to induce osteoclast formation in RAW 264.7 cells. LPS-induced osteoclast formation was abolished by anti-tumor necrosis factor (TNF)-α antibody, but not antibodies to macrophage-colony stimulating factor (M-CSF) and receptor activator of nuclear factor (NF)-κB ligand (RANKL). TNF-α might play a critical role in LPS-induced osteoclast formation in RAW 264.7 cells. Inhibitors of NF-κB and stress activated protein kinase (SAPK/JNK) prevented the LPS-induced osteoclast formation. The detailed mechanism of LPS-induced osteoclast formation is discussed

  12. Proteomic Analysis of Trauma-Induced Heterotopic Ossification Formation

    Science.gov (United States)

    2014-10-01

    journal name, book title, editors(s), publisher, volume number, page number(s), date, DOI, PMID, and/or ISBN. (1) Lay Press: a. Arthur Nead...Blast Injured. September 24, 2014. http://www.newswise.com/articles/ . c. Amy Andersen . Possible New Treatment For Soft Tissue Bone Formation In

  13. Application of a high throughput method of biomarker discovery to improvement of the EarlyCDT(®-Lung Test.

    Directory of Open Access Journals (Sweden)

    Isabel K Macdonald

    Full Text Available BACKGROUND: The National Lung Screening Trial showed that CT screening for lung cancer led to a 20% reduction in mortality. However, CT screening has a number of disadvantages including low specificity. A validated autoantibody assay is available commercially (EarlyCDT®-Lung to aid in the early detection of lung cancer and risk stratification in patients with pulmonary nodules detected by CT. Recent advances in high throughput (HTP cloning and expression methods have been developed into a discovery pipeline to identify biomarkers that detect autoantibodies. The aim of this study was to demonstrate the successful clinical application of this strategy to add to the EarlyCDT-Lung panel in order to improve its sensitivity and specificity (and hence positive predictive value, (PPV. METHODS AND FINDINGS: Serum from two matched independent cohorts of lung cancer patients were used (n = 100 and n = 165. Sixty nine proteins were initially screened on an abridged HTP version of the autoantibody ELISA using protein prepared on small scale by a HTP expression and purification screen. Promising leads were produced in shake flask culture and tested on the full assay. These results were analyzed in combination with those from the EarlyCDT-Lung panel in order to provide a set of re-optimized cut-offs. Five proteins that still displayed cancer/normal differentiation were tested for reproducibility and validation on a second batch of protein and a separate patient cohort. Addition of these proteins resulted in an improvement in the sensitivity and specificity of the test from 38% and 86% to 49% and 93% respectively (PPV improvement from 1 in 16 to 1 in 7. CONCLUSION: This is a practical example of the value of investing resources to develop a HTP technology. Such technology may lead to improvement in the clinical utility of the EarlyCDT--Lung test, and so further aid the early detection of lung cancer.

  14. Shock-induced star formation in a model of the Mice

    OpenAIRE

    Barnes, Joshua E.

    2004-01-01

    Star formation plays an important role in the fate of interacting galaxies. To date, most galactic simulations including star formation have used a density-dependent star formation rule designed to approximate a Schmidt law. Here, I present a new star formation rule which is governed by the local rate of energy dissipation in shocks. The new and old rules are compared using self-consistent simulations of NGC 4676; shock-induced star formation provides a better match to the observations of thi...

  15. γIrradiation induced formation of PCB-solvent adducts in aliphatic solvents

    International Nuclear Information System (INIS)

    Lepine, F.; Milot, S.; Gagne, N.

    1990-01-01

    γIrradiation induced formation of PCB-solvent adducts was investigated as a model for PCB residues in irradiated food. Formation of cyclohexyl adducts of PCBs was found to be significant when pure PCB congeners and Aroclor mixture were irradiated in cyclohexane and cyclohexene. Reaction pathways were investigated, and the effects of oxygen and electron scavenger were studied

  16. Formation dynamics of UV and EUV induced hydrogen plasma

    NARCIS (Netherlands)

    Dolgov, A.A.; Lee, Christopher James; Yakushev, O.; Lopaev, D.V.; Abrikosov, A.; Krivtsun, V.M.; Zotovich, A.; Bijkerk, F.

    2014-01-01

    The comparative study of the dynamics of ultraviolet (UV) and extreme ultraviolet (EUV) induced hydrogen plasma was performed. It was shown that for low H2 pressures and bias voltages, the dynamics of the two plasmas are significantly different. In the case of UV radiation, the plasma above the

  17. Induced sclerotium formation exposes new bioactive metabolites from Aspergillus sclerotiicarbonarius

    DEFF Research Database (Denmark)

    Petersen, Lene Maj; Frisvad, Jens Christian; Knudsen, Peter Boldsen

    2015-01-01

    Sclerotia are known to be fungal survival structures, and induction of sclerotia may prompt production of otherwise undiscovered metabolites. Aspergillus sclerotiicarbonarius (IBT 28362) was investigated under sclerotium producing conditions, which revealed a highly altered metabolic profile. Four...... new compounds were isolated from cultivation under sclerotium formation conditions and their structures elucidated using different analytical techniques (HRMS, UV, 1D and 2D NMR). This included sclerolizine, an alkylated and oxidized pyrrolizine, the new emindole analog emindole SC and two new...

  18. Spontaneous formation of optically induced surface relief gratings

    International Nuclear Information System (INIS)

    Leblond, H; Barille, R; Ahmadi-Kandjani, S; Nunzi, J-M; Ortyl, E; Kucharski, S

    2009-01-01

    We develop a model based on Fick's law of diffusion as a phenomenological description of the molecular motion, and on the coupled mode theory, to describe single-beam surface relief grating formation in azopolymer thin films. The model allows us to explain the mechanism of spontaneous patterning, and self-organization. It allows us to compute the surface relief profile and its evolution, with good agreement with experiments.

  19. Spontaneous formation of optically induced surface relief gratings

    Energy Technology Data Exchange (ETDEWEB)

    Leblond, H; Barille, R; Ahmadi-Kandjani, S; Nunzi, J-M [Laboratoire POMA, Universite d' Angers, CNRS FRE 2988, 2, Bd Lavoisier, 49045 Angers (France); Ortyl, E; Kucharski, S, E-mail: herve.leblond@univ-angers.f [Wroclaw University of Technology, Faculty of Chemistry, Department of Polymer Engineering and Technology, 50-370 Wroclaw (Poland)

    2009-10-28

    We develop a model based on Fick's law of diffusion as a phenomenological description of the molecular motion, and on the coupled mode theory, to describe single-beam surface relief grating formation in azopolymer thin films. The model allows us to explain the mechanism of spontaneous patterning, and self-organization. It allows us to compute the surface relief profile and its evolution, with good agreement with experiments.

  20. Characterisation of genes induced during memory formation in the chick

    International Nuclear Information System (INIS)

    Bailey, K.A.; Luermans, J.; Gibbs, M.

    2002-01-01

    Full text: Memory formation can be divided into short-term and long-term. Short-term memory involves electro-chemical activity in the neurons whereas long-term memory requires a permanent change that includes protein synthesis. One of the problems involved with identifying late memory related genes is determining an optimal system in which to study gene expression. We have used a discriminated passive avoidance task in chicks to identify genes that are differentially regulated during memory formation. A mRNA subtraction method was previously used to specifically identify several genes that are expressed in the chick intermediate medial hyperstriatum ventrale (IMHV) within two hours of training. Eight bands ranging in size from 400bp to 1100bp were obtained in the initially screen. We are currently cloning these PCR products into suitable vectors for further analysis. Two of these clones have been sequenced and analysed using both the blastn and blastx programs in ANGIS. The first clone was found to correspond to cytochrome c oxidase subunit 2. Cytochrome C oxidase (COX) is a transmembrane protein localized in the inner mitochondrial membrane and forms part of the mitochondrial respiratory chain complex. The second clone codes for the ferritin heavy chain. Ferritin is a ubiquitous protein that is involved in iron homeostasis. At present it is unclear what role these two proteins play in memory formation but further studies are being undertaken to determine the expression profiles of these genes following memory induction. Copyright (2002) Australian Neuroscience Society

  1. An in vitro model of Mycobacterium leprae induced granuloma formation.

    Science.gov (United States)

    Wang, Hongsheng; Maeda, Yumi; Fukutomi, Yasuo; Makino, Masahiko

    2013-06-20

    Leprosy is a contagious and chronic systemic granulomatous disease caused by Mycobacterium leprae. In the pathogenesis of leprosy, granulomas play a key role, however, the mechanisms of the formation and maintenance of M. leprae granulomas are still not clearly understood. To better understand the molecular physiology of M. leprae granulomas and the interaction between the bacilli and human host cells, we developed an in vitro model of human granulomas, which mimicked the in vivo granulomas of leprosy. Macrophages were differentiated from human monocytes, and infected with M. leprae, and then cultured with autologous human peripheral blood mononuclear cells (PBMCs). Robust granuloma-like aggregates were obtained only when the M. leprae infected macrophages were co-cultured with PBMCs. Histological examination showed M. leprae within the cytoplasmic center of the multinucleated giant cells, and these bacilli were metabolically active. Macrophages of both M1 and M2 types co-existed in the granuloma like aggregates. There was a strong relationship between the formation of granulomas and changes in the expression levels of cell surface antigens on macrophages, cytokine production and the macrophage polarization. The viability of M. leprae isolated from granulomas indicated that the formation of host cell aggregates benefited the host, but the bacilli also remained metabolically active. A simple in vitro model of human M. leprae granulomas was established using human monocyte-derived macrophages and PBMCs. This system may be useful to unravel the mechanisms of disease progression, and subsequently develop methods to control leprosy.

  2. Differential Use of Human Neutrophil Fcγ Receptors for Inducing Neutrophil Extracellular Trap Formation.

    Science.gov (United States)

    Alemán, Omar Rafael; Mora, Nancy; Cortes-Vieyra, Ricarda; Uribe-Querol, Eileen; Rosales, Carlos

    2016-01-01

    Neutrophils (PMN) are the most abundant leukocytes in the blood. PMN migrate from the circulation to sites of infection, where they are responsible for antimicrobial functions. PMN use phagocytosis, degranulation, and formation of neutrophil extracellular traps (NETs) to kill microbes. NETs are fibers composed of chromatin and neutrophil-granule proteins. Several pathogens, including bacteria, fungi, and parasites, and also some pharmacological stimuli such as phorbol 12-myristate 13-acetate (PMA) are efficient inducers of NETs. Antigen-antibody complexes are also capable of inducing NET formation. However the particular Fcγ receptor involved in triggering this function is a matter of controversy. In order to provide some insight into what Fcγ receptor is responsible for NET formation, each of the two human Fcγ receptors was stimulated individually by specific monoclonal antibodies and NET formation was evaluated. FcγRIIa cross-linking did not promote NET formation. Cross-linking other receptors such as integrins also did not promote NET formation. In contrast FcγRIIIb cross-linking induced NET formation similarly to PMA stimulation. NET formation was dependent on NADPH-oxidase, PKC, and ERK activation. These data show that cross-linking FcγRIIIb is responsible for NET formation by the human neutrophil.

  3. Differential Use of Human Neutrophil Fcγ Receptors for Inducing Neutrophil Extracellular Trap Formation

    Directory of Open Access Journals (Sweden)

    Omar Rafael Alemán

    2016-01-01

    Full Text Available Neutrophils (PMN are the most abundant leukocytes in the blood. PMN migrate from the circulation to sites of infection, where they are responsible for antimicrobial functions. PMN use phagocytosis, degranulation, and formation of neutrophil extracellular traps (NETs to kill microbes. NETs are fibers composed of chromatin and neutrophil-granule proteins. Several pathogens, including bacteria, fungi, and parasites, and also some pharmacological stimuli such as phorbol 12-myristate 13-acetate (PMA are efficient inducers of NETs. Antigen-antibody complexes are also capable of inducing NET formation. However the particular Fcγ receptor involved in triggering this function is a matter of controversy. In order to provide some insight into what Fcγ receptor is responsible for NET formation, each of the two human Fcγ receptors was stimulated individually by specific monoclonal antibodies and NET formation was evaluated. FcγRIIa cross-linking did not promote NET formation. Cross-linking other receptors such as integrins also did not promote NET formation. In contrast FcγRIIIb cross-linking induced NET formation similarly to PMA stimulation. NET formation was dependent on NADPH-oxidase, PKC, and ERK activation. These data show that cross-linking FcγRIIIb is responsible for NET formation by the human neutrophil.

  4. Corona discharge induced snow formation in a cloud chamber.

    Science.gov (United States)

    Ju, Jingjing; Wang, Tie-Jun; Li, Ruxin; Du, Shengzhe; Sun, Haiyi; Liu, Yonghong; Tian, Ye; Bai, Yafeng; Liu, Yaoxiang; Chen, Na; Wang, Jingwei; Wang, Cheng; Liu, Jiansheng; Chin, S L; Xu, Zhizhan

    2017-09-18

    Artificial rainmaking is in strong demand especially in arid regions. Traditional methods of seeding various Cloud Condensation Nuclei (CCN) into the clouds are costly and not environment friendly. Possible solutions based on ionization were proposed more than 100 years ago but there is still a lack of convincing verification or evidence. In this report, we demonstrated for the first time the condensation and precipitation (or snowfall) induced by a corona discharge inside a cloud chamber. Ionic wind was found to have played a more significant role than ions as extra CCN. In comparison with another newly emerging femtosecond laser filamentation ionization method, the snow precipitation induced by the corona discharge has about 4 orders of magnitude higher wall-plug efficiency under similar conditions.

  5. Enhanced SCAP glycosylation by inflammation induces macrophage foam cell formation.

    Directory of Open Access Journals (Sweden)

    Chao Zhou

    Full Text Available Inflammatory stress promotes foam cell formation by disrupting LDL receptor feedback regulation in macrophages. Sterol Regulatory Element Binding Proteins (SREBPs Cleavage-Activating Protein (SCAP glycosylation plays crucial roles in regulating LDL receptor and 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCoAR feedback regulation. The present study was to investigate if inflammatory stress disrupts LDL receptor and HMGCoAR feedback regulation by affecting SCAP glycosylation in THP-1 macrophages. Intracellular cholesterol content was assessed by Oil Red O staining and quantitative assay. The expression of molecules controlling cholesterol homeostasis was examined using real-time quantitative RT-PCR and Western blotting. The translocation of SCAP from the endoplasmic reticulum (ER to the Golgi was detected by confocal microscopy. We demonstrated that exposure to inflammatory cytokines increased lipid accumulation in THP-1 macrophages, accompanying with an increased SCAP expression even in the presence of a high concentration of LDL. These inflammatory cytokines also prolonged the half-life of SCAP by enhancing glycosylation of SCAP due to the elevated expression of the Golgi mannosidase II. This may enhance translocation and recycling of SCAP between the ER and the Golgi, escorting more SREBP2 from the ER to the Golgi for activation by proteolytic cleavages as evidenced by an increased N-terminal of SREBP2 (active form. As a consequence, the LDL receptor and HMGCoAR expression were up-regulated. Interestingly, these effects could be blocked by inhibitors of Golgi mannosidases. Our results indicated that inflammation increased native LDL uptake and endogenous cholesterol de novo synthesis, thereby causing foam cell formation via increasing transcription and protein glycosylation of SCAP in macrophages. These data imply that inhibitors of Golgi processing enzymes might have a potential vascular-protective role in prevention of atherosclerotic foam

  6. Ion implantation induced conducting nano-cluster formation in PPO

    International Nuclear Information System (INIS)

    Das, A.; Patnaik, A.; Ghosh, G.; Dhara, S.

    1997-01-01

    Conversion of polymers and non-polymeric organic molecules from insulating to semiconducting materials as an effect of energetic ion implantation is an established fact. Formation of nano-clusters enriched with carbonaceous materials are made responsible for the insulator-semiconductor transition. Conduction in these implanted materials is observed to follow variable range hopping (VRH) mechanism. Poly(2,6-dimethyl phenylene oxide) [PPO] compatible in various proportion with polystyrene is used as a high thermal resistant insulating polymer. PPO has been used for the first time in the ion implantation study

  7. The role of ion-induced aerosol formation in the lower atmosphere

    International Nuclear Information System (INIS)

    Raes, Frank; Janssens, Augustin; Dingenen, Rita van

    1986-01-01

    The rate of ion-induced aerosol formation in a H 2 0-H 2 S0 4 mixture depends on the relative humidity, the relative acidity and the number of ions (clusters) available for nucleation. Figure 1 shows the rates of homogeneous and ion-induced aerosol formation as a function of the H 2 S0 4 sup((gas)) concentration, for conditions prevailing in the lower atmosphere. The rate of ion-induced aerosol formation is plotted for different concentrations of pre-existing aerosol. It can be seen that ion-induced aerosol formation will only play a role in the formation of new particles when (1) the H 2 S0 4 sup((gas)) concentration is confined within the critical values for ion-induced and homogeneous aerosol formation (about 5 x 10 7 and 4 x 10 8 cm -3 respectively), and (2) the concentration of pre-existing aerosol is lower than about 5 x 10 3 cm -3 (Dp = 0.1 μm). It will be shown by numerical calculations that such conditions may be expected above the oceans. (author)

  8. Rapamycin-induced oligomer formation system of FRB-FKBP fusion proteins.

    Science.gov (United States)

    Inobe, Tomonao; Nukina, Nobuyuki

    2016-07-01

    Most proteins form larger protein complexes and perform multiple functions in the cell. Thus, artificial regulation of protein complex formation controls the cellular functions that involve protein complexes. Although several artificial dimerization systems have already been used for numerous applications in biomedical research, cellular protein complexes form not only simple dimers but also larger oligomers. In this study, we showed that fusion proteins comprising the induced heterodimer formation proteins FRB and FKBP formed various oligomers upon addition of rapamycin. By adjusting the configuration of fusion proteins, we succeeded in generating an inducible tetramer formation system. Proteins of interest also formed tetramers by fusing to the inducible tetramer formation system, which exhibits its utility in a broad range of biological applications. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Microjet formation in a capillary by laser-induced cavitation

    Science.gov (United States)

    Peters, Ivo R.; Tagawa, Yoshiyuki; van der Meer, Devaraj; Prosperetti, Andrea; Sun, Chao; Lohse, Detlef

    2010-11-01

    A vapor bubble is created by focusing a laser pulse inside a capillary that is partially filled with water. Upon creation of the bubble, a shock wave travels through the capillary. When this shock wave meets the meniscus of the air-water interface, a thin jet is created that travels at very high speeds. A crucial ingredient for the creation of the jet is the shape of the meniscus, which is responsible for focusing the energy provided by the shock wave. We examine the formation of this jet numerically using a boundary integral method, where we prepare an initial interface at rest inside a tube with a diameter ranging from 50 to 500 μm. To simulate the effect of the bubble we then apply a short, strong pressure pulse, after which the jet forms. We investigate the influence of the shape of the meniscus, and pressure amplitude and duration on the jet formation. The jet shape and velocity obtained by the simulation compare well with experimental data, and provides good insight in the origin of the jet.

  10. Induced star formation and colors of binary and interacting galaxies

    International Nuclear Information System (INIS)

    Smirnov, M.A.; Komberg, B.V.; Moskovskij Gosudarstvennyj Univ.

    1980-01-01

    The colours of 208 galaxies in pairs and groups are compared (on colour-colour diagram) with those of single galaxies of the same morphological type. Different colours of galaxies in pairs and groups can be explained if one assumes that in some of them the star formation is slowed down, while in others it is speeded up. The latter is the most conspicuous in E, SO, and Ir2 galaxies when they are accompanied by brighter spirals. The relation of abundance rate to the rate of star formation in galaxies and to the activity level of their nuclei is discussed. This relation is particularly conspicuous in the galaxies of early morphological types (E, SO, Sa) and in systems of the type Ir2 where the relative abundance of gas is significantly above the normal. It is noted that such galaxies as well as galaxies with UV excess, Seyfertlike objects, emission-line galaxies and quasars - avoid regions occupied with rich clusters and frequently occur in pairs and small groups

  11. Heavy-ion irradiation induced diamond formation in carbonaceous materials

    International Nuclear Information System (INIS)

    Daulton, T. L.

    1999-01-01

    The basic mechanisms of metastable phase formation produced under highly non-equilibrium thermodynamic conditions within high-energy particle tracks are investigated. In particular, the possible formation of diamond by heavy-ion irradiation of graphite at ambient temperature is examined. This work was motivated, in part, by earlier studies which discovered nanometer-grain polycrystalline diamond aggregates of submicron-size in uranium-rich carbonaceous mineral assemblages of Precambrian age. It was proposed that the radioactive decay of uranium formed diamond in the fission particle tracks produced in the carbonaceous minerals. To test the hypothesis that nanodiamonds can form by ion irradiation, fine-grain polycrystalline graphite sheets were irradiated with 400 MeV Kr ions. The ion irradiated graphite (and unirradiated graphite control) were then subjected to acid dissolution treatments to remove the graphite and isolate any diamonds that were produced. The acid residues were then characterized by analytical and high-resolution transmission electron microscopy. The acid residues of the ion-irradiated graphite were found to contain ppm concentrations of nanodiamonds, suggesting that ion irradiation of bulk graphite at ambient temperature can produce diamond

  12. EGA Protects Mammalian Cells from Clostridium difficile CDT, Clostridium perfringens Iota Toxin and Clostridium botulinum C2 Toxin.

    Science.gov (United States)

    Schnell, Leonie; Mittler, Ann-Katrin; Sadi, Mirko; Popoff, Michel R; Schwan, Carsten; Aktories, Klaus; Mattarei, Andrea; Azarnia Tehran, Domenico; Montecucco, Cesare; Barth, Holger

    2016-04-01

    The pathogenic bacteria Clostridium difficile, Clostridium perfringens and Clostridium botulinum produce the binary actin ADP-ribosylating toxins CDT, iota and C2, respectively. These toxins are composed of a transport component (B) and a separate enzyme component (A). When both components assemble on the surface of mammalian target cells, the B components mediate the entry of the A components via endosomes into the cytosol. Here, the A components ADP-ribosylate G-actin, resulting in depolymerization of F-actin, cell-rounding and eventually death. In the present study, we demonstrate that 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone (EGA), a compound that protects cells from multiple toxins and viruses, also protects different mammalian epithelial cells from all three binary actin ADP-ribosylating toxins. In contrast, EGA did not inhibit the intoxication of cells with Clostridium difficile toxins A and B, indicating a possible different entry route for this toxin. EGA does not affect either the binding of the C2 toxin to the cells surface or the enzyme activity of the A components of CDT, iota and C2, suggesting that this compound interferes with cellular uptake of the toxins. Moreover, for C2 toxin, we demonstrated that EGA inhibits the pH-dependent transport of the A component across cell membranes. EGA is not cytotoxic, and therefore, we propose it as a lead compound for the development of novel pharmacological inhibitors against clostridial binary actin ADP-ribosylating toxins.

  13. The Binary Toxin CDT of Clostridium difficile as a Tool for Intracellular Delivery of Bacterial Glucosyltransferase Domains

    Directory of Open Access Journals (Sweden)

    Lara-Antonia Beer

    2018-06-01

    Full Text Available Binary toxins are produced by several pathogenic bacteria. Examples are the C2 toxin from Clostridium botulinum, the iota toxin from Clostridium perfringens, and the CDT from Clostridium difficile. All these binary toxins have ADP-ribosyltransferases (ADPRT as their enzymatically active component that modify monomeric actin in their target cells. The binary C2 toxin was intensively described as a tool for intracellular delivery of allogenic ADPRTs. Here, we firstly describe the binary toxin CDT from C. difficile as an effective tool for heterologous intracellular delivery. Even 60 kDa glucosyltransferase domains of large clostridial glucosyltransferases can be delivered into cells. The glucosyltransferase domains of five tested large clostridial glucosyltransferases were successfully introduced into cells as chimeric fusions to the CDTa adapter domain (CDTaN. Cell uptake was demonstrated by the analysis of cell morphology, cytoskeleton staining, and intracellular substrate glucosylation. The fusion toxins were functional only when the adapter domain of CDTa was N-terminally located, according to its native orientation. Thus, like other binary toxins, the CDTaN/b system can be used for standardized delivery systems not only for bacterial ADPRTs but also for a variety of bacterial glucosyltransferase domains.

  14. A new sample treatment for asialo-Tf determination with capillary electrophoresis: an added value to the analysis of CDT.

    Science.gov (United States)

    Porpiglia, Nadia Maria; De Palo, Elio Franco; Savchuk, Sergey Alexandrovich; Appolonova, Svetlana Alexandrovna; Bortolotti, Federica; Tagliaro, Franco

    2018-05-10

    The non-glycosylated glycoform of transferrin (Tf), known as asialo-Tf, was not selected (in favor of disialo-Tf) as the measurand for the standardization of carbohydrate deficient transferrin (CDT) determination because of a lower diagnostic sensitivity provided with the currently available analytical procedures for sera. However, asialo-Tf could provide an additional value to disialo-Tf in the CDT analysis employed in forensic toxicology contexts. The present work aimed at developing an easy sample preparation based on PEG precipitation in order to improve the detectability of asialo-Tf in capillary electrophoresis (CE). Equal volumes (35 μL) of serum and of 30% PEG-8000 were mixed and briefly vortexed. After centrifugation, the supernatant was iron saturated with a ferric solution (1:1, v/v). The mixture was analyzed in CE for asialo-Tf and disialo-Tf determination. PEG-8000 precipitation allowed the improvement of the baseline in the electropherograms in terms of interferences reduction particularly in the asialo-Tf migration region. The detection of asialo-Tf was possible in 89% of samples with disialo-Tf above the cut-off limit, whereas only 16% of them showed asialo-Tf by employing the traditional sample preteatment. Asialo-Tf represents an additional value to disialo-Tf as a biomarker of alcohol abuse in forensic toxicology. Copyright © 2018. Published by Elsevier B.V.

  15. EGA Protects Mammalian Cells from Clostridium difficile CDT, Clostridium perfringens Iota Toxin and Clostridium botulinum C2 Toxin

    Science.gov (United States)

    Schnell, Leonie; Mittler, Ann-Katrin; Sadi, Mirko; Popoff, Michel R.; Schwan, Carsten; Aktories, Klaus; Mattarei, Andrea; Tehran, Domenico Azarnia; Montecucco, Cesare; Barth, Holger

    2016-01-01

    The pathogenic bacteria Clostridium difficile, Clostridium perfringens and Clostridium botulinum produce the binary actin ADP-ribosylating toxins CDT, iota and C2, respectively. These toxins are composed of a transport component (B) and a separate enzyme component (A). When both components assemble on the surface of mammalian target cells, the B components mediate the entry of the A components via endosomes into the cytosol. Here, the A components ADP-ribosylate G-actin, resulting in depolymerization of F-actin, cell-rounding and eventually death. In the present study, we demonstrate that 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone (EGA), a compound that protects cells from multiple toxins and viruses, also protects different mammalian epithelial cells from all three binary actin ADP-ribosylating toxins. In contrast, EGA did not inhibit the intoxication of cells with Clostridium difficile toxins A and B, indicating a possible different entry route for this toxin. EGA does not affect either the binding of the C2 toxin to the cells surface or the enzyme activity of the A components of CDT, iota and C2, suggesting that this compound interferes with cellular uptake of the toxins. Moreover, for C2 toxin, we demonstrated that EGA inhibits the pH-dependent transport of the A component across cell membranes. EGA is not cytotoxic, and therefore, we propose it as a lead compound for the development of novel pharmacological inhibitors against clostridial binary actin ADP-ribosylating toxins. PMID:27043629

  16. BMP9-Induced Osteogenetic Differentiation and Bone Formation of Muscle-Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Li Xiang

    2012-01-01

    Full Text Available Efficient osteogenetic differentiation and bone formation from muscle-derived stem cells (MDSCs should have potential clinical applications in treating nonunion fracture healing or bone defects. Here, we investigate osteogenetic differentiation ability of MDSCs induced by bone morphogenetic protein 9 (BMP9 in vitro and bone formation ability in rabbit radius defects repairing model. Rabbit's MDSCs were extracted by type I collagenase and trypsin methods, and BMP9 was introduced into MDSCs by infection with recombinant adenovirus. Effects of BMP9-induced osteogenetic differentiation of MDSCs were identified with alkaline phosphatase (ALP activity and expression of later marker. In stem-cell implantation assay, MDSCs have also shown valuable potential bone formation ability induced by BMP9 in rabbit radius defects repairing test. Taken together, our findings suggest that MDSCs are potentiated osteogenetic stem cells which can be induced by BMP9 to treat large segmental bone defects, nonunion fracture, and/or osteoporotic fracture.

  17. Spatial pattern formation induced by Gaussian white noise.

    Science.gov (United States)

    Scarsoglio, Stefania; Laio, Francesco; D'Odorico, Paolo; Ridolfi, Luca

    2011-02-01

    The ability of Gaussian noise to induce ordered states in dynamical systems is here presented in an overview of the main stochastic mechanisms able to generate spatial patterns. These mechanisms involve: (i) a deterministic local dynamics term, accounting for the local rate of variation of the field variable, (ii) a noise component (additive or multiplicative) accounting for the unavoidable environmental disturbances, and (iii) a linear spatial coupling component, which provides spatial coherence and takes into account diffusion mechanisms. We investigate these dynamics using analytical tools, such as mean-field theory, linear stability analysis and structure function analysis, and use numerical simulations to confirm these analytical results. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. Ectopic Liver Tissue Formation in Rats with Induced Liver Fibrosis

    Directory of Open Access Journals (Sweden)

    Bauyrzhan Umbayev

    2014-12-01

    Full Text Available Introduction: The possible alternative approach to whole-organ transplantation is a cell-based therapy, which can also be used as a "bridge" to liver transplantation.  However, morphological and functional changes in the liver of patients suffering from chronic liver fibrosis and cirrhosis restrict the effectiveness of direct cell transplantation. Therefore, extra hepatic sites for cell transplantation, including the spleen, pancreas, peritoneal cavity, and subrenal capsule, could be a useful therapeutic approach for compensation of liver functions. However, a method of transplantation of hepatocytes into ectopic sites is needed to improve hepatocyte engraftment. Previously published data has demonstrated that mouse lymph nodes can support the engraftment and proliferation of hepatocytes as ES and rescue Fah mice from lethal liver failure. Thus, the aim of the study was to evaluate the engraftment of i.p. injected allogeneic hepatocytes into extra hepatic sites in albino rats with chemically induced liver fibrosis (LF. Materials and methods: Albino rats were randomly divided into 4 groups: (1 intact group (n = 18; (2 rats with induced LF (n = 18; (3 rats with induced LF and transplanted with hepatocytes (n = 18; (4 as a control, rats were treated with cyclosporine A only (n = 18. In order to prevent an immune response, groups 2 and 3 were subjected to immunosuppression by cyclosporine A (25 mg/kg per day. LF was induced using N-nitrosodimethylamine (NDMA, i.p., 10 mg/kg, three times a week for 4 weeks and confirmed by histological analysis of the liver samples. Hepatocytes transplantation (HT was performed two days after NDMA exposure cessation by i.p. injection of 5×106 freshly isolated allogeneic hepatocytes. Liver function was assessed by quantifying blood biochemical parameters (ALT, AST, GGT, total protein, bilirubin, and albumin at 1 week, 1 month, and 2 months after hepatocytes transplantation (HT. To confirm a hepatocytes

  19. Radiation-induced formation of cavities in amorphous germanium

    International Nuclear Information System (INIS)

    Wang, L.M.; Birtcher, R.C.

    1989-01-01

    Prethinned polycrystalline Ge TEM samples were irradiated with 1.5 MeV Kr + ions at room temperature while structural and morphological changes were observed in situ in the Argonne High Voltage Electron Microscope-Tandem Facility. After a Kr + dose of 1.2x10 14 ions/cm 2 , the irradiated Ge was completely amorphized. A high density of small void-like cavities was observed after a Kr + dose of 7x10 14 ions/cm 2 . With increasing Kr + ion dose, these cavities grew into large holes transforming the irradiated Ge into a sponge-like porous material after 8.5x10 15 ions/cm 2 . The radiation-induced nucleation of void-like cavities in amorphous material is astonishing, and the final structure of the irradiated Ge with enormous surface area may have potential applications

  20. Ion and laser beam induced metastable alloy formation

    International Nuclear Information System (INIS)

    Westendorp, J.F.M.

    1986-01-01

    This thesis deals with ion and laser beam induced thin film mixing. It describes the development of an Ultra High Vacuum apparatus for deposition, ion irradiation and in situ analysis of thin film sandwiches. This chamber has been developed in close collaboration with High Voltage Engineering Europa. Thin films can be deposited by an e-gun evaporator. The atom flux is monitored by a quadrupole mass spectrometer. A comparison is made between ion beam and laser mixing of Cu with Au and Cu with W. The comparison provides a better understanding of the relative importance of purely collisional mixing, the role of thermodynamic effects and the contribution of diffusion due to defect generation and migration. (Auth.)

  1. Fibrinogen-Induced Streptococcus mutans Biofilm Formation and Adherence to Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Telma Blanca Lombardo Bedran

    2013-01-01

    Full Text Available Streptococcus mutans, the predominant bacterial species associated with dental caries, can enter the bloodstream and cause infective endocarditis. The aim of this study was to investigate S. mutans biofilm formation and adherence to endothelial cells induced by human fibrinogen. The putative mechanism by which biofilm formation is induced as well as the impact of fibrinogen on S. mutans resistance to penicillin was also evaluated. Bovine plasma dose dependently induced biofilm formation by S. mutans. Of the various plasma proteins tested, only fibrinogen promoted the formation of biofilm in a dose-dependent manner. Scanning electron microscopy observations revealed the presence of complex aggregates of bacterial cells firmly attached to the polystyrene support. S. mutans in biofilms induced by the presence of fibrinogen was markedly resistant to the bactericidal effect of penicillin. Fibrinogen also significantly increased the adherence of S. mutans to endothelial cells. Neither S. mutans cells nor culture supernatants converted fibrinogen into fibrin. However, fibrinogen is specifically bound to the cell surface of S. mutans and may act as a bridging molecule to mediate biofilm formation. In conclusion, our study identified a new mechanism promoting S. mutans biofilm formation and adherence to endothelial cells which may contribute to infective endocarditis.

  2. Secondary aerosol formation from stress-induced biogenic emissions and possible climate feedbacks

    Directory of Open Access Journals (Sweden)

    Th. F. Mentel

    2013-09-01

    Full Text Available Atmospheric aerosols impact climate by scattering and absorbing solar radiation and by acting as ice and cloud condensation nuclei. Biogenic secondary organic aerosols (BSOAs comprise an important component of atmospheric aerosols. Biogenic volatile organic compounds (BVOCs emitted by vegetation are the source of BSOAs. Pathogens and insect attacks, heat waves and droughts can induce stress to plants that may impact their BVOC emissions, and hence the yield and type of formed BSOAs, and possibly their climatic effects. This raises questions of whether stress-induced changes in BSOA formation may attenuate or amplify effects of climate change. In this study we assess the potential impact of stress-induced BVOC emissions on BSOA formation for tree species typical for mixed deciduous and Boreal Eurasian forests. We studied the photochemical BSOA formation for plants infested by aphids in a laboratory setup under well-controlled conditions and applied in addition heat and drought stress. The results indicate that stress conditions substantially modify BSOA formation and yield. Stress-induced emissions of sesquiterpenes, methyl salicylate, and C17-BVOCs increase BSOA yields. Mixtures including these compounds exhibit BSOA yields between 17 and 33%, significantly higher than mixtures containing mainly monoterpenes (4–6% yield. Green leaf volatiles suppress SOA formation, presumably by scavenging OH, similar to isoprene. By classifying emission types, stressors and BSOA formation potential, we discuss possible climatic feedbacks regarding aerosol effects. We conclude that stress situations for plants due to climate change should be considered in climate–vegetation feedback mechanisms.

  3. Ionic liquid-induced aggregate formation and their applications.

    Science.gov (United States)

    Dutta, Rupam; Kundu, Sangita; Sarkar, Nilmoni

    2018-06-01

    In the last two decades, researchers have extensively studied highly stable and ordered supramolecular assembly formation using oppositely charged surfactants. Thereafter, surface-active ionic liquids (SAILs), a special class of room temperature ionic liquids (RTILs), replace the surfactants to form various supramolecular aggregates. Therefore, in the last decade, the building blocks of the supramolecular aggregates (micelle, mixed micelle, and vesicular assemblies) have changed from oppositely charged surfactant/surfactant pair to surfactant/SAIL and SAIL/SAIL pair. It is also found that various biomolecules can also interact with SAILs to construct biologically important supramolecular assemblies. The very latest addition to this combination of ion pairs is the dye molecules having a long hydrophobic chain part along with a hydrophilic ionic head group. Thus, dye/surfactant or dye/SAIL pair also produces different assemblies through electrostatic, hydrophobic, and π-π stacking interactions. Vesicles are one of the important self-assemblies which mimic cellular membranes, and thus have biological application as a drug carrier. Moreover, vesicles can act as a suitable microreactor for nanoparticle synthesis.

  4. Formation of helium induced nanostructure 'fuzz' on various tungsten grades

    International Nuclear Information System (INIS)

    Baldwin, M.J.; Doerner, R.P.

    2010-01-01

    The response of a variety of W material grades to nanostructure 'fuzz' formation is explored. W targets are exposed to He or D 2 -0.2He plasmas in PISCES-B at 900-1320 K to below sputter threshold He + ions of energy 25-60 eV for up to 2.2 x 10 4 s. SEM and XPS reveal nanoscopic reorganization of the W surface to a layer of 'fuzz' of porosity ∼90% as determined by a 'fuzz' removal/weight loss method. The variability of 'fuzz' growth is examined at 1120 K for 1 h durations: SR, SC and doped W grades - La 2 O 3 (1% wt.), Re (5% and 10% wt.), and TiC (1.5% wt.) developed 2-3 μm thick 'fuzz' layers, while a VPS grade developed a layer 4 μm thick. An RC grade revealed additional 'fuzz' at deep (>100 μm) grain boundaries. However, heat treatment up to 1900 K produced reintegration of 'fuzz' with the bulk and He release at ∼1000 K and ∼1400-1800 K due to depopulation from vacancy complexes.

  5. Novel Resorbable and Osteoconductive Calcium Silicophosphate Scaffold Induced Bone Formation

    Directory of Open Access Journals (Sweden)

    Patricia Ros-Tárraga

    2016-09-01

    Full Text Available This aim of this research was to develop a novel ceramic scaffold to evaluate the response of bone after ceramic implantation in New Zealand (NZ rabbits. Ceramics were prepared by the polymer replication method and inserted into NZ rabbits. Macroporous scaffolds with interconnected round-shaped pores (0.5–1.5 mm = were prepared. The scaffold acted as a physical support where cells with osteoblastic capability were found to migrate, develop processes, and newly immature and mature bone tissue colonized on the surface (initially and in the material’s interior. The new ceramic induced about 62.18% ± 2.28% of new bone and almost complete degradation after six healing months. An elemental analysis showed that the gradual diffusion of Ca and Si ions from scaffolds into newly formed bone formed part of the biomaterial’s resorption process. Histological and radiological studies demonstrated that this porous ceramic scaffold showed biocompatibility and excellent osteointegration and osteoinductive capacity, with no interposition of fibrous tissue between the implanted material and the hematopoietic bone marrow interphase, nor any immune response after six months of implantation. No histological changes were observed in the various organs studied (para-aortic lymph nodes, liver, kidney and lung as a result of degradation products being released.

  6. Impact of cavitation on lesion formation induced by high intensity focused ultrasound

    International Nuclear Information System (INIS)

    Fan Pengfei; Jie Yu; Yang Xin; Tu Juan; Guo Xiasheng; Zhang Dong; Huang Pintong

    2017-01-01

    High intensity focused ultrasound (HIFU) has shown a great promise in noninvasive cancer therapy. The impact of acoustic cavitation on the lesion formation induced by HIFU is investigated both experimentally and theoretically in transparent protein-containing gel and ex vivo liver tissue samples. A numerical model that accounts for nonlinear acoustic propagation and heat transfer is used to simulate the lesion formation induced by the thermal effect. The results showed that lesions could be induced in the samples exposed to HIFU with various acoustic pressures and pulse lengths. The measured areas of lesions formed in the lateral direction were comparable to the simulated results, while much larger discrepancy was observed between the experimental and simulated data for the areas of longitudinal lesion cross-section. Meanwhile, a series of stripe-wiped-off B-mode pictures were obtained by using a special imaging processing method so that HIFU-induced cavitation bubble activities could be monitored in real-time and quantitatively analyzed as the functions of acoustic pressure and pulse length. The results indicated that, unlike the lateral area of HIFU-induced lesion that was less affected by the cavitation activity, the longitudinal cross-section of HIFU-induced lesion was significantly influenced by the generation of cavitation bubbles through the temperature elevation resulting from HIFU exposures. Therefore, considering the clinical safety in HIFU treatments, more attention should be paid on the lesion formation in the longitudinal direction to avoid uncontrollable variation resulting from HIFU-induced cavitation activity. (paper)

  7. Shock-induced hotspot formation and chemical reaction initiation in PETN containing a spherical void

    International Nuclear Information System (INIS)

    Shan, Tzu-Ray; Thompson, Aidan P

    2014-01-01

    We present results of reactive molecular dynamics simulations of hotspot formation and chemical reaction initiation in shock-induced compression of pentaerythritol tetranitrate (PETN) with the ReaxFF reactive force field. A supported shockwave is driven through a PETN crystal containing a 20 nm spherical void at a sub-threshold impact velocity of 2 km/s. Formation of a hotspot due to shock-induced void collapse is observed. During void collapse, NO 2 is the dominant species ejected from the upstream void surface. Once the ejecta collide with the downstream void surface and the hotspot develops, formation of final products such as N 2 and H 2 O is observed. The simulation provides a detailed picture of how void collapse and hotspot formation leads to initiation at sub-threshold impact velocities.

  8. Radiation induced color center and colloid formation in synthetic NaCl and natural rock salt

    International Nuclear Information System (INIS)

    Levy, P.W.; Swyler, K.J.; Klaffky, R.W.

    1979-01-01

    F-center and colloid particle formation has been studied in synthetic NaCl and natural rock salt crystals with apparatus for making optical absorption measurements during irradiation. F-center and colloid formation are functions of temperature, dose, dose rate, strain applied prior to irradiation and numerous other factors. Many of the observed properties are in accord with the Jain-Lidiard theory for radiation induced F-center and colloid growth above room temperature

  9. Radiation-induced defects formation in Bi-containing vitreous chalcogenides

    International Nuclear Information System (INIS)

    Shpotyuk, O.; Vakiv, M.; Balitska, V.; Kovalskiy, A.

    1997-01-01

    Processes of formation and annihilation of coordination defects in As 2 Se 3 Bi y and (As 2 Se 3 )(Bi 2 Se 3 ) y amorphous chalcogenide semiconductors induced by influence of Co 60 gamma-irradiation are investigated by photoelectric spectroscopy method. It is obtained that radiation-induced changes of photoelectrical properties on bioconcentration of As 2 Se 3 Bi y glasses are characterized by anomalous concentration dependence. The nature of this effect is associated with diamagnetic coordination defects formation. (author). 19 refs, 3 figs

  10. Radiation-induced defects formation in Bi-containing vitreous chalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O.; Vakiv, M.; Balitska, V.; Kovalskiy, A. [Institute of Materials, Lvov (Ukraine)

    1997-12-01

    Processes of formation and annihilation of coordination defects in As{sub 2}Se{sub 3}Bi{sub y} and (As{sub 2}Se{sub 3})(Bi{sub 2}Se{sub 3}){sub y} amorphous chalcogenide semiconductors induced by influence of Co{sup 60} gamma-irradiation are investigated by photoelectric spectroscopy method. It is obtained that radiation-induced changes of photoelectrical properties on bioconcentration of As{sub 2}Se{sub 3}Bi{sub y} glasses are characterized by anomalous concentration dependence. The nature of this effect is associated with diamagnetic coordination defects formation. (author). 19 refs, 3 figs.

  11. Laser-filamentation-induced condensation and snow formation in a cloud chamber.

    Science.gov (United States)

    Ju, Jingjing; Liu, Jiansheng; Wang, Cheng; Sun, Haiyi; Wang, Wentao; Ge, Xiaochun; Li, Chuang; Chin, See Leang; Li, Ruxin; Xu, Zhizhan

    2012-04-01

    Using 1 kHz, 9 mJ femtosecond laser pulses, we demonstrate laser-filamentation-induced spectacular snow formation in a cloud chamber. An intense updraft of warm moist air is generated owing to the continuous heating by the high-repetition filamentation. As it encounters the cold air above, water condensation and large-sized particles spread unevenly across the whole cloud chamber via convection and cyclone like action on a macroscopic scale. This indicates that high-repetition filamentation plays a significant role in macroscopic laser-induced water condensation and snow formation.

  12. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Tobias Dörr

    2010-02-01

    Full Text Available Bacteria induce stress responses that protect the cell from lethal factors such as DNA-damaging agents. Bacterial populations also form persisters, dormant cells that are highly tolerant to antibiotics and play an important role in recalcitrance of biofilm infections. Stress response and dormancy appear to represent alternative strategies of cell survival. The mechanism of persister formation is unknown, but isolated persisters show increased levels of toxin/antitoxin (TA transcripts. We have found previously that one or more components of the SOS response induce persister formation after exposure to a DNA-damaging antibiotic. The SOS response induces several TA genes in Escherichia coli. Here, we show that a knockout of a particular SOS-TA locus, tisAB/istR, had a sharply decreased level of persisters tolerant to ciprofloxacin, an antibiotic that causes DNA damage. Step-wise administration of ciprofloxacin induced persister formation in a tisAB-dependent manner, and cells producing TisB toxin were tolerant to multiple antibiotics. TisB is a membrane peptide that was shown to decrease proton motive force and ATP levels, consistent with its role in forming dormant cells. These results suggest that a DNA damage-induced toxin controls production of multidrug tolerant cells and thus provide a model of persister formation.

  13. Motility of Pseudomonas aeruginosa contributes to SOS-inducible biofilm formation.

    Science.gov (United States)

    Chellappa, Shakinah T; Maredia, Reshma; Phipps, Kara; Haskins, William E; Weitao, Tao

    2013-12-01

    DNA-damaging antibiotics such as ciprofloxacin induce biofilm formation and the SOS response through autocleavage of SOS-repressor LexA in Pseudomonas aeruginosa. However, the biofilm-SOS connection remains poorly understood. It was investigated with 96-well and lipid biofilm assays. The effects of ciprofloxacin were examined on biofilm stimulation of the SOS mutant and wild-type strains. The stimulation observed in the wild-type in which SOS was induced was reduced in the mutant in which LexA was made non-cleavable (LexAN) and thus SOS non-inducible. Therefore, the stimulation appeared to involve SOS. The possible mechanisms of inducible biofilm formation were explored by subproteomic analysis of outer membrane fractions extracted from biofilms. The data predicted an inhibitory role of LexA in flagellum function. This premise was tested first by functional and morphological analyses of flagellum-based motility. The flagellum swimming motility decreased in the LexAN strain treated with ciprofloxacin. Second, the motility-biofilm assay was performed, which tested cell migration and biofilm formation. The results showed that wild-type biofilm increased significantly over the LexAN. These results suggest that LexA repression of motility, which is the initial event in biofilm development, contributes to repression of SOS-inducible biofilm formation. Copyright © 2013 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  14. Suppressor Analysis of CRL4Cdt2 Defective and cdc48-353 Temperature Sensitive Mutants in Fission Yeast

    DEFF Research Database (Denmark)

    Marinova, Irina Nikolaeva

    chaperone-like complex involved in numerous cellular processes, including protein degradation, cell cycle control, DNA repair, and vesicle fusion. The cdc48 gene is essential in fission yeast and mutations or changes in Cdc48/p97 protein expression have been linked to neurological disorders and cancer......SummaryPart 1CRL4Cdt2 E3 ligase is a key regulator of cellular proliferation and genome integrity, as it promotes the degradation of proteins involved in cell cycle progression, DNA replication and repair. In fission yeast the small intrinsically disordered protein Spd1 is targeted for degradation...... that these mutations alleviate the checkpoint dependency, the DNA damage sensitivity and the meiotic defects associated with Spd1 accumulation. Further analysis showed that whereas the V40G and S43L substitutions do not have a significant impact on Suc22R2 nuclear import function of Spd1, they affect the interaction...

  15. Photon-induced formation of CdS nanocrystals in selected areas of polymer matrices

    International Nuclear Information System (INIS)

    Athanassiou, Athanassia; Cingolani, Roberto; Tsiranidou, Elsa; Fotakis, Costas; Laera, Anna Maria; Piscopiello, Emanuela; Tapfer, Leander

    2007-01-01

    We demonstrate light-induced formation of semiconductor quantum dots in TOPAS registered polymer matrix with very high control of their size and their spatial localization. Irradiation with UV laser pulses of polymer films embedding Cd thiolate precursors results in the formation of cadmium sulfide nanocrystals well confined in the irradiation area, through a macroscopically nondestructive procedure for the host matrix. With increasing number of laser pulses, we accomplish the formation of nanoparticles with gradually increasing dimensions, resulting in the dynamic change of the spectra emitted by the formed nanocomposite areas. The findings are supported by x-ray diffraction and transmission electron microscopy measurements

  16. Osteoclasts secrete non-bone derived signals that induce bone formation

    DEFF Research Database (Denmark)

    Karsdal, Morten A; Neutzsky-Wulff, Anita V; Dziegiel, Morten Hanefeld

    2008-01-01

    Bone turnover is a highly regulated process, where bone resorption in the normal healthy individual always is followed by bone formation in a manner referred to as coupling. Patients with osteopetrosis caused by defective acidification of the resorption lacuna have severely decreased resorption......) from human osteoclasts cultured on either bone or plastic, and tested their effects on bone nodule formation by osteoblasts. Both types of CM were shown to dose-dependently induce bone nodule formation, whereas non-conditioned osteoclast culture medium had no effects. These data show that osteoclasts...

  17. A specific subtype of osteoclasts secretes factors inducing nodule formation by osteoblasts

    DEFF Research Database (Denmark)

    Henriksen, Kim; Andreassen, Kim V; Thudium, Christian S

    2012-01-01

    Osteoclasts are known to be important for the coupling process between bone resorption and formation. The aim of this study was to address when osteoclasts are anabolically active. Human monocytes were differentiated into mature osteoclasts by treatment with M-CSF and RANKL. Conditioned medium wa...... dependent and independent of their resorptive activity, secrete factors stimulating osteoblastic bone formation.......Osteoclasts are known to be important for the coupling process between bone resorption and formation. The aim of this study was to address when osteoclasts are anabolically active. Human monocytes were differentiated into mature osteoclasts by treatment with M-CSF and RANKL. Conditioned medium...... release. The osteoblastic cell line 2T3 was treated with 50% of CM or non-CM for 12days. Bone formation was assessed by Alizarin Red extraction. CM from mature osteoclasts induced bone formation, while CM from macrophages did not. Non-resorbing osteoclasts generated from osteopetrosis patients showed...

  18. Swimming Motility Mediates the Formation of Neutrophil Extracellular Traps Induced by Flagellated Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Madison Floyd

    2016-11-01

    Full Text Available Pseudomonas aeruginosa is an opportunistic pathogen causing severe infections often characterized by robust neutrophilic infiltration. Neutrophils provide the first line of defense against P. aeruginosa. Aside from their defense conferred by phagocytic activity, neutrophils also release neutrophil extracellular traps (NETs to immobilize bacteria. Although NET formation is an important antimicrobial process, the details of its mechanism are largely unknown. The identity of the main components of P. aeruginosa responsible for triggering NET formation is unclear. In this study, our focus was to identify the main bacterial factors mediating NET formation and to gain insight into the underlying mechanism. We found that P. aeruginosa in its exponential growth phase promoted strong NET formation in human neutrophils while its NET-inducing ability dramatically decreased at later stages of bacterial growth. We identified the flagellum as the primary component of P. aeruginosa responsible for inducing NET extrusion as flagellum-deficient bacteria remained seriously impaired in triggering NET formation. Purified P. aeruginosa flagellin, the monomeric component of the flagellum, does not stimulate NET formation in human neutrophils. P. aeruginosa-induced NET formation is independent of the flagellum-sensing receptors TLR5 and NLRC4 in both human and mouse neutrophils. Interestingly, we found that flagellar motility, not flagellum binding to neutrophils per se, mediates NET release induced by flagellated bacteria. Immotile, flagellar motor-deficient bacterial strains producing paralyzed flagella did not induce NET formation. Forced contact between immotile P. aeruginosa and neutrophils restored their NET-inducing ability. Both the motAB and motCD genetic loci encoding flagellar motor genes contribute to maximal NET release; however the motCD genes play a more important role. Phagocytosis of P. aeruginosa and superoxide production by neutrophils were also

  19. EPR study of N+-ion-induced free radical formation in antibiotic-producers

    International Nuclear Information System (INIS)

    Xie Liqing; Zhang Yinfen; Chen Ruyi; Gao Juncheng; Zhang Peiling; Ying Hengfeng.

    1995-01-01

    Under the room temperature, electron paramagnetic resonance (EPR) spectrometer was used to study free radical formation in antibiotic-producers in order to investigate antibiotic-producer mutagenic breeding, which were induced by N + ion implanting into antibiotic-producers (e.g., Streptomyces ribosidificus, Streptomyces kanamyceticus and the phage-resistant culture of Streptomyces kanamyceticus). The results show that a lot of free radicals can be induced by N + ion implanting into antibiotic-producers, and the yields of the free radicals increase with implanting dose. The death rate of antibiotic-producers rises due to the increase of N + -ion-induced free radical yields. (author)

  20. Complement Activation Induces Neutrophil Adhesion and Neutrophil-Platelet Aggregate Formation on Vascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Magdalena Riedl

    2017-01-01

    Discussion: Therefore, our findings of (i neutrophils adhering to complement-activated endothelial cells, (ii the formation of neutrophil-platelet aggregates on endothelial cells, and (iii the ability of aHUS serum to induce similar effects identify a possible role for neutrophils in aHUS manifestation.

  1. Interleukin 17 enhances bone morphogenetic protein-2-induced ectopic bone formation

    NARCIS (Netherlands)

    Croes, M.; Kruyt, M. C.; Groen, W. M.; Van Dorenmalen, K. M.A.; Dhert, W. J.A.; Öner, F. C.; Alblas, J.

    2018-01-01

    Interleukin 17 (IL-17) stimulates the osteogenic differentiation of progenitor cells in vitro through a synergy with bone morphogenetic protein (BMP)-2. This study investigates whether the diverse responses mediated by IL-17 in vivo also lead to enhanced BMP-2-induced bone formation. Since IL-17 is

  2. The hippocampal formation: morphological changes induced by thyroid, gonadal and adrenal hormones.

    Science.gov (United States)

    Gould, E; Woolley, C S; McEwen, B S

    1991-01-01

    The hippocampal formation is of considerable interest due to its proposed role in a number of important functions, including learning and memory processes. Manipulations of thyroid, gonadal and adrenal hormones have been shown to influence hippocampal physiology as well as learning and memory. The cellular events which underlie these hormone-induced functional changes are largely unexplored. However, studies suggest that hormonal manipulations during development and in adulthood result in dramatic morphological changes within the hippocampal formation. Because neuronal physiology has been suggested to depend upon neuronal morphology, we have been determining the morphologic sensitivity of hippocampal neurons to thyroid and steroid hormones in an effort to elucidate possible structural mechanisms to account for differences in hippocampal function. In this review, hormone-induced structural changes in the developing and adult hippocampal formation are discussed, with particular emphasis on their functional relevance. Sex differences, as well as the developmental effects of thyroid hormone and glucocorticoids, are described. Moreover, the effects of ovarian steroids, thyroid hormone and glucocorticoids on neuronal morphology in the hippocampal formation of the adult rat are reviewed. These hormone-induced structural changes may account, at least in part, for previously reported hormone-induced changes in hippocampal function.

  3. Heat-induced whey protein isolate fibrils: Conversion, hydrolysis, and disulphide bond formation

    NARCIS (Netherlands)

    Bolder, S.G.; Vasbinder, A.; Sagis, L.M.C.; Linden, van der E.

    2007-01-01

    Fibril formation of individual pure whey proteins and whey protein isolate (WPI) was studied. The heat-induced conversion of WPI monomers into fibrils at pH 2 and low ionic strength increased with heating time and protein concentration. Previous studies, using a precipitation method, size-exclusion

  4. Laser-Induced Formation and Disintegration of Gold Nanopeanuts and Nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung Shin; Yoon, Jun Hee; Kim, Hyung Jun; Huh, Young Duk; Yoon, Sang Woon [Dankook University, Yongin (Korea, Republic of)

    2010-04-15

    We report the laser-induced formation of peanut-shaped gold nanoparticles (Au nanopeanuts) and gold nanowires (AuNWs), and their morphological properties. Pulsed laser irradiation of citrate-capped gold nanoparticles at 532 nm induces fragmentation, spherical growth, the formation of Au nanopeanuts, and the formation of AuNWs, sequentially. High-resolution transmission electron microscopy images reveal that the Au nanopeanuts are formed by instantaneous fusion of spherical nanoparticles in random orientation by laser heating. Furthermore, Au nanopeanuts are bridged in a linear direction to form AuNWs by an amorphous accumulation of gold atoms in the junction. The laser-produced Au nanopeanuts and AuNWs slowly disintegrate, restoring the spherical shape of the original Au nanoparticles when the laser irradiation is stopped. The addition of citrate effectively prevents them from transforming back to the nanospheres.

  5. Lysophosphatidic acid directly induces macrophage-derived foam cell formation by blocking the expression of SRBI.

    Science.gov (United States)

    Chen, Linmu; Zhang, Jun; Deng, Xiao; Liu, Yan; Yang, Xi; Wu, Qiong; Yu, Chao

    2017-09-23

    The leading cause of morbidity and mortality is the result of cardiovascular disease, mainly atherosclerosis. The formation of macrophage foam cells by ingesting ox-LDL and focal retention in the subendothelial space are the hallmarks of the early atherosclerotic lesion. Lysophosphatidic acid (LPA), which is a low-molecular weight lysophospholipid enriched in oxidized LDL, exerts a range of effects on the cardiovascular system. Previous reports show that LPA increases the uptake of ox-LDL to promote the formation of foam cells. However, as the most active component of ox-LDL, there is no report showing whether LPA directly affects foam cell formation. The aim of this study was to investigate the effects of LPA on foam cell formation, as well as to elucidate the underlying mechanism. Oil red O staining and a Cholesterol/cholesteryl ester quantitation assay were used to evaluate foam cell formation in Raw264.7 macrophage cells. We utilized a Western blot and RT-PCR to investigate the relationship between LPA receptors and lipid transport related proteins. We found that LPA promoted foam cell formation, using 200 μM for 24 h. Meanwhile, the expression of the Scavenger receptor BI (SRBI), which promotes the efflux of free cholesterol, was decreased. Furthermore, the LPA 1/3 receptor antagonist Ki16425 significantly abolished the LPA effects, indicating that LPA 1/3 was involved in the foam cell formation and SRBI expression induced by LPA. Additionally, the LPA-induced foam cell formation was blocked with an AKT inhibitor. Our results suggest that LPA-enhanced foam cell formation is mediated by LPA 1/3 -AKT activation and subsequent SRBI expression. Copyright © 2017. Published by Elsevier Inc.

  6. Nicorandil prevents sirolimus-induced production of reactive oxygen species, endothelial dysfunction, and thrombus formation

    Directory of Open Access Journals (Sweden)

    Ken Aizawa

    2015-03-01

    Full Text Available Sirolimus (SRL is widely used to prevent restenosis after percutaneous coronary intervention. However, its beneficial effect is hampered by complications of thrombosis. Several studies imply that reactive oxygen species (ROS play a critical role in endothelial dysfunction and thrombus formation. The present study investigated the protective effect of nicorandil (NIC, an anti-angina agent, on SRL-associated thrombosis. In human coronary artery endothelial cells (HCAECs, SRL stimulated ROS production, which was prevented by co-treatment with NIC. The preventive effect of NIC on ROS was abolished by 5-hydroxydecanoate but not by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. NIC also inhibited SRL-induced up-regulation of NADPH oxidase subunit p22phox mRNA. Co-treatment with NIC and SRL significantly up-regulated superoxide dismutase 2. NIC treatment significantly improved SRL-induced decrease in viability of HCAECs. The functional relevance of the preventive effects of NIC on SRL-induced ROS production and impairment of endothelial viability was investigated in a mouse model of thrombosis. Pretreatment with NIC inhibited the SRL-induced acceleration of FeCl3-initiated thrombus formation and ROS production in the testicular arteries of mice. In conclusion, NIC prevented SRL-induced thrombus formation, presumably due to the reduction of ROS and to endothelial protection. The therapeutic efficacy of NIC could represent an additional option in the prevention of SRL-related thrombosis.

  7. A Forward Genetic Screen for Molecules Involved in Pheromone-Induced Dauer Formation in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Scott J. Neal

    2016-05-01

    Full Text Available Animals must constantly assess their surroundings and integrate sensory cues to make appropriate behavioral and developmental decisions. Pheromones produced by conspecific individuals provide critical information regarding environmental conditions. Ascaroside pheromone concentration and composition are instructive in the decision of Caenorhabditis elegans to either develop into a reproductive adult or enter into the stress-resistant alternate dauer developmental stage. Pheromones are sensed by a small set of sensory neurons, and integrated with additional environmental cues, to regulate neuroendocrine signaling and dauer formation. To identify molecules required for pheromone-induced dauer formation, we performed an unbiased forward genetic screen and identified phd (pheromone response-defective dauer mutants. Here, we describe new roles in dauer formation for previously identified neuronal molecules such as the WD40 domain protein QUI-1 and MACO-1 Macoilin, report new roles for nociceptive neurons in modulating pheromone-induced dauer formation, and identify tau tubulin kinases as new genes involved in dauer formation. Thus, phd mutants define loci required for the detection, transmission, or integration of pheromone signals in the regulation of dauer formation.

  8. Fragment formation in GeV-energy proton and light heavy-ion induced reactions

    International Nuclear Information System (INIS)

    Murakami, T.; Haga, M.; Haseno, M.

    2002-01-01

    We have investigated similarities and differences among the fragment formation processes in GeV-energy light-ion and light heavy-ion induced reactions. We have newly measured inclusive and exclusive energy spectra of intermediate mass fragments (3 ≤ Z ≤ 30; IMFs) for 8-GeV 16 O and 20 Ne and 12-GeV 20 Ne induced target multifragmentations (TMFs) in order to compare them with those previously measured for 8- and 12-GeV proton induced TMFs. We fond noticeable difference in their spectrum shapes and magnitudes but all of them clearly indicate the existence of sideward-peaked components, indicating fragment formations are mainly dictated not by a incident energy per nucleon but by a total energy of the projectile. (author)

  9. Drying-induced deformation of Horonobe sedimentary rock in the Koetoi and Wakkanai formations

    International Nuclear Information System (INIS)

    Illankoon, Thilini Nuwanradha; Yee, Suu Mon; Osada, Masahiko; Maekawa, Keisuke; Tada, Hiroyuki; Kumasaka, Hiroo

    2013-01-01

    In order to increase the long-term safety of geological disposal sites, knowledge of the drying-induced deformation characteristics of the rock mass in underground ventilated galleries is necessary to understand its cracking susceptibility and the chance of further propagation of the excavation damaged zone. Hence, strain was measured in ten cylindrical mudstone specimens (4 from Koetoi formation and 6 from Wakkanai formation respectively) cored at Horonobe Underground Research Laboratory (URL), an off-site (generic) URL, to examine deformation behavior during desiccation. The specimens were prepared in one-dimensional drying conditions in a 25degC or 40degC climatic chamber with 50% relative humidity. Mercury intrusion porosimetry (MIP) was also conducted to measure the pore size distributions of each formation. The recorded data showed that the Koetoi formation specimens generated smaller maximum shrinkage values (10,000 μ) compared to those from the Wakkanai formation (13,000 μ and 24,000 μ for Wakkanai groups I and II respectively). Wakkanai formation specimens were divided into two groups (Wakkanai groups I and II) according to their strain behavior. The porosity of the Koetoi formation was 54% whereas that of the Wakkanai formation was 27 - 38%. MIP results clearly indicate that the Wakkanai formation has a greater mesopore volume (63% and 73% of porosity for Wakkanai groups I and II respectively) than the Koetoi formation (8% of porosity) which contributes to its greater shrinkage. In addition, Wakkanai groups I and II have different pore size distribution patterns. Therefore, Wakkanai groups I and II exhibit distinct strain behaviors during drying. Similarities in grain density, a decrease in porosity and a gradual increase in mesopore volume with depth confirm the progressive hardening of Horonobe sedimentary rock. The pore volume in the 0.013 - 0.025 μm pore radius range exerts a strong influence on shrinkage generation in the Wakkanai formation

  10. The influence of projectile ion induced chemistry on surface pattern formation

    Energy Technology Data Exchange (ETDEWEB)

    Karmakar, Prasanta, E-mail: prasantak@vecc.gov.in [Variable Energy Cyclotron Centre, 1/AF, Bidhannagar, Kolkata 700064 (India); Satpati, Biswarup [Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India)

    2016-07-14

    We report the critical role of projectile induced chemical inhomogeneity on surface nanostructure formation. Experimental inconsistency is common for low energy ion beam induced nanostructure formation in the presence of uncontrolled and complex contamination. To explore the precise role of contamination on such structure formation during low energy ion bombardment, a simple and clean experimental study is performed by selecting mono-element semiconductors as the target and chemically inert or reactive ion beams as the projectile as well as the source of controlled contamination. It is shown by Atomic Force Microscopy, Cross-sectional Transmission Electron Microscopy, and Electron Energy Loss Spectroscopy measurements that bombardment of nitrogen-like reactive ions on Silicon and Germanium surfaces forms a chemical compound at impact zones. Continuous bombardment of the same ions generates surface instability due to unequal sputtering and non-uniform re-arrangement of the elemental atom and compound. This instability leads to ripple formation during ion bombardment. For Argon-like chemically inert ion bombardment, the chemical inhomogeneity induced boost is absent; as a result, no ripples are observed in the same ion energy and fluence.

  11. Missing ozone-induced potential aerosol formation in a suburban deciduous forest

    Science.gov (United States)

    Nakayama, T.; Kuruma, Y.; Matsumi, Y.; Morino, Y.; Sato, K.; Tsurumaru, H.; Ramasamy, S.; Sakamoto, Y.; Kato, S.; Miyazaki, Y.; Mochizuki, T.; Kawamura, K.; Sadanaga, Y.; Nakashima, Y.; Matsuda, K.; Kajii, Y.

    2017-12-01

    As a new approach to investigating formation processes of secondary organic aerosol (SOA) in the atmosphere, ozone-induced potential aerosol formation was measured in summer at a suburban forest site surrounded by deciduous trees, near Tokyo, Japan. After passage through a reactor containing high concentrations of ozone, increases in total particle volume (average of 1.4 × 109 nm3/cm3, which corresponds to 17% that of pre-existing particles) were observed, especially during daytime. The observed aerosol formations were compared with the results of box model simulations using simultaneously measured concentrations of gaseous and particulate species. According to the model, the relative contributions of isoprene, monoterpene, and aromatic hydrocarbon oxidation to SOA formation in the reactor were 24, 21, and 55%, respectively. However, the model could explain, on average, only ∼40% of the observed particle formation, and large discrepancies between the observations and model were found, especially around noon and in the afternoon when the concentrations of isoprene and oxygenated volatile organic compounds were high. The results suggest a significant contribution of missing (unaccounted-for) SOA formation processes from identified and/or unidentified volatile organic compounds, especially those emitted during daytime. Further efforts should be made to explore and parameterize this missing SOA formation to assist in the improvement of atmospheric chemistry and climate models.

  12. Lipoxygenase independent hexanal formation in isolated soy proteins induced by reducing agents.

    Science.gov (United States)

    Lei, Q; Boatright, W L

    2008-08-01

    Compared to corresponding controls, 6.5 mM dithiothreitol (DTT) elevated headspace hexanal level over aqueous slurries of both commercial isolated soy proteins (ISP) and laboratory ISP prepared with 80 degrees C treatment. Further analysis revealed that lipoxygenase (LOX) activity was not detected from these ISP, indicating that LOX is not involved in the observed hexanal increase. Levels of the induced headspace hexanal over the ISP aqueous slurries were proportional to the amount of DTT added in the range of 0 to 65 mM. Subsequent systematic investigations with model systems revealed that iron was required for the reducing agent-induced hexanal formation from linoleic acid. Erythorbate, another reducing agent, can also induce hexanal formation in both ISP and model systems. As a comparison, the LOX activity and hexanal synthesis in defatted soy flour were examined. The corresponding results showed that defatted soy flour maintained high LOX activities and that hexanal synthesis in such sample was significantly inhibited by high concentration DTT (above 130 mM). Data from the current investigation demonstrate the existence of LOX independent hexanal formation induced by reducing agents in ISP and the potential requirement of iron as a catalyst.

  13. Nitric oxide protects macrophages from hydrogen peroxide-induced apoptosis by inducing the formation of catalase.

    Science.gov (United States)

    Yoshioka, Yasuhiro; Kitao, Tatsuya; Kishino, Takashi; Yamamuro, Akiko; Maeda, Sadaaki

    2006-04-15

    We investigated the cytoprotective effect of NO on H2O2-induced cell death in mouse macrophage-like cell line RAW264. H2O2-treated cells showed apoptotic features, such as activation of caspase-9 and caspase-3, nuclear fragmentation, and DNA fragmentation. These apoptotic features were significantly inhibited by pretreatment for 24 h with NO donors, sodium nitroprusside and 1-hydroxy-2-oxo-3,3-bis-(2-aminoethyl)-1-triazene, at a low nontoxic concentration. The cytoprotective effect of NO was abrogated by the catalase inhibitor 3-amino-1,2,4-triazole but was not affected by a glutathione synthesis inhibitor, L-buthionine-(S,R)-sulfoximine. NO donors increased the level of catalase and its activity in a concentration-dependent manner. Cycloheximide, a protein synthesis inhibitor, inhibited both the NO-induced increase in the catalase level and the cytoprotective effect of NO. These results indicate that NO at a low concentration protects macrophages from H2O2-induced apoptosis by inducing the production of catalase.

  14. Mössbauer spectroscopy study of surfactant sputtering induced Fe silicide formation on a Si surface

    Energy Technology Data Exchange (ETDEWEB)

    Beckmann, C.; Zhang, K. [2nd Institute of Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Hofsäss, H., E-mail: hans.hofsaess@phys.uni-goettingen.de [2nd Institute of Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Brüsewitz, C.; Vetter, U. [2nd Institute of Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany); Bharuth-Ram, K. [Physics Department, Durban University of Technology, Durban 4001 (South Africa)

    2015-12-01

    Highlights: • We study the formation of self-organized nanoscale dot and ripple patterns on Si. • Patterns are created by keV noble gas ion irradiation and simultaneous {sup 57}Fe co-deposition. • Ion-induced phase separation and the formation of a-FeSi{sub 2} is identified as relevant process. - Abstract: The formation of Fe silicides in surface ripple patterns, generated by erosion of a Si surface with keV Ar and Xe ions and simultaneous co-deposition of Fe, was investigated with conversion electron Mössbauer spectroscopy, atomic force microscopy and Rutherford backscattering spectrometry. For the dot and ripple patterns studied, we find an average Fe concentration in the irradiated layer between 6 and 25 at.%. The Mössbauer spectra clearly show evidence of the formation of Fe disilicides with Fe content close to 33 at.%, but very little evidence of the formation of metallic Fe particles. The results support the process of ion-induced phase separation toward an amorphous Fe disilicide phase as pattern generation mechanism. The observed amorphous phase is in agreement with thermodynamic calculations of amorphous Fe silicides.

  15. CuO reduction induced formation of CuO/Cu2O hybrid oxides

    Science.gov (United States)

    Yuan, Lu; Yin, Qiyue; Wang, Yiqian; Zhou, Guangwen

    2013-12-01

    Reduction of CuO nanowires results in the formation of a unique hierarchical hybrid nanostructure, in which the parent oxide phase (CuO) works as the skeleton while the lower oxide (Cu2O) resulting from the reduction reaction forms as partially embedded nanoparticles that decorate the skeleton of the parent oxide. Using in situ transmission electron microscopy observations of the reduction process of CuO nanowires, we demonstrate that the formation of such a hierarchical hybrid oxide structure is induced by topotactic nucleation and growth of Cu2O islands on the parent CuO nanowires.

  16. Bone formation induced in an infant by systemic prostaglandin-E2 administration

    DEFF Research Database (Denmark)

    Jørgensen, H R; Svanholm, H; Høst, A

    1988-01-01

    We report a case of long-term systemic administration of prostaglandin E2 (PGE2) to a newborn infant with ductus-dependent congenital heart disease. After 46 days of treatment, radiography showed cortical hyperostosis of the long bones. The child died 62 days after discontinuation of prostaglandin...... treatment. Histologic examination of tubular bones showed hyperostosis presumably due to prostaglandin-induced rapid formation of primitive bone. The additional finding of extensive resorption of the outer cortical surface and bone formation at the inner surface suggested a reversible phase after...

  17. Schisantherin A suppresses osteoclast formation and wear particle-induced osteolysis via modulating RANKL signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    He, Yi; Zhang, Qing; Shen, Yi; Chen, Xia; Zhou, Feng; Peng, Dan, E-mail: xyeypd@163.com

    2014-07-04

    Highlights: • Schisantherin A suppresses osteoclasts formation and function in vitro. • Schisantherin A impairs RANKL signaling pathway. • Schisantherin A suppresses osteolysis in vivo. • Schisantherin A may be used for treating osteoclast related diseases. - Abstract: Receptor activator of NF-κB ligand (RANKL) plays critical role in osteoclastogenesis. Targeting RANKL signaling pathways has been a promising strategy for treating osteoclast related bone diseases such as osteoporosis and aseptic prosthetic loosening. Schisantherin A (SA), a dibenzocyclooctadiene lignan isolated from the fruit of Schisandra sphenanthera, has been used as an antitussive, tonic, and sedative agent, but its effect on osteoclasts has been hitherto unknown. In the present study, SA was found to inhibit RANKL-induced osteoclast formation and bone resorption. The osteoclastic specific marker genes induced by RANKL including c-Src, SA inhibited OSCAR, cathepsin K and TRAP in a dose dependent manner. Further signal transduction studies revealed that SA down-regulate RANKL-induced nuclear factor-kappaB (NF-κB) signaling activation by suppressing the phosphorylation and degradation of IκBα, and subsequently preventing the NF-κB transcriptional activity. Moreover, SA also decreased the RANKL-induced MAPKs signaling pathway, including JNK and ERK1/2 posphorylation while had no obvious effects on p38 activation. Finally, SA suppressed the NF-κB and MAPKs subsequent gene expression of NFATc1 and c-Fos. In vivo studies, SA inhibited osteoclast function and exhibited bone protection effect in wear-particle-induced bone erosion model. Taken together, SA could attenuate osteoclast formation and wear particle-induced osteolysis by mediating RANKL signaling pathways. These data indicated that SA is a promising therapeutic natural compound for the treatment of osteoclast-related prosthesis loosening.

  18. Inhibition of Cariogenic Plaque Formation on Root Surface with Polydopamine-Induced-Polyethylene Glycol Coating

    Directory of Open Access Journals (Sweden)

    May Lei Mei

    2016-05-01

    Full Text Available Root caries prevention has been a challenge for clinicians due to its special anatomical location, which favors the accumulation of dental plaque. Researchers are looking for anti-biofouling material to inhibit bacterial growth on exposed root surfaces. This study aimed to develop polydopamine-induced-polyethylene glycol (PEG and to study its anti-biofouling effect against a multi-species cariogenic biofilm on the root dentine surface. Hydroxyapatite disks and human dentine blocks were divided into four groups for experiments. They received polydopamine-induced-PEG, PEG, polydopamine, or water application. Contact angle, quartz crystal microbalance, and Fourier transform infrared spectroscopy were used to study the wetting property, surface affinity, and an infrared spectrum; the results indicated that PEG was induced by polydopamine onto a hydroxyapatite disk. Salivary mucin absorption on hydroxyapatite disks with polydopamine-induced-PEG was confirmed using spectrophotometry. The growth of a multi-species cariogenic biofilm on dentine blocks with polydopamine-induced-PEG was assessed and monitored by colony-forming units, confocal laser scanning microscopy, and scanning electron microscopy. The results showed that dentine with polydopamine-induced-PEG had fewer bacteria than other groups. In conclusion, a novel polydopamine-induced-PEG coating was developed. Its anti-biofouling effect inhibited salivary mucin absorption and cariogenic biofilm formation on dentine surface and thus may be used for the prevention of root dentine caries.

  19. Hydrogen Gas Is Involved in Auxin-Induced Lateral Root Formation by Modulating Nitric Oxide Synthesis

    Directory of Open Access Journals (Sweden)

    Zeyu Cao

    2017-10-01

    Full Text Available Metabolism of molecular hydrogen (H2 in bacteria and algae has been widely studied, and it has attracted increasing attention in the context of animals and plants. However, the role of endogenous H2 in lateral root (LR formation is still unclear. Here, our results showed that H2-induced lateral root formation is a universal event. Naphthalene-1-acetic acid (NAA; the auxin analog was able to trigger endogenous H2 production in tomato seedlings, and a contrasting response was observed in the presence of N-1-naphthyphthalamic acid (NPA, an auxin transport inhibitor. NPA-triggered the inhibition of H2 production and thereafter lateral root development was rescued by exogenously applied H2. Detection of endogenous nitric oxide (NO by the specific probe 4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate (DAF-FM DA and electron paramagnetic resonance (EPR analyses revealed that the NO level was increased in both NAA- and H2-treated tomato seedlings. Furthermore, NO production and thereafter LR formation induced by auxin and H2 were prevented by 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO; a specific scavenger of NO and the inhibitor of nitrate reductase (NR; an important NO synthetic enzyme. Molecular evidence confirmed that some representative NO-targeted cell cycle regulatory genes were also induced by H2, but was impaired by the removal of endogenous NO. Genetic evidence suggested that in the presence of H2, Arabidopsis mutants nia2 (in particular and nia1 (two nitrate reductases (NR-defective mutants exhibited defects in lateral root length. Together, these results demonstrated that auxin-induced H2 production was associated with lateral root formation, at least partially via a NR-dependent NO synthesis.

  20. Vaccine-induced myositis with intramuscular sterile abscess formation: MRI and ultrasound findings

    Energy Technology Data Exchange (ETDEWEB)

    Polat, Ahmet Veysel; Bekci, Tumay; Selcuk, Mustafa Bekir [Ondokuz Mayis University, Department of Radiology, Faculty of Medicine, Samsun (Turkey); Dabak, Nevzat [Ondokuz Mayis University, Department of Orthopaedics and Traumatology, Faculty of Medicine, Samsun (Turkey); Ulu, Esra Meltem Kayahan [Samsun Medical Park Hospital, Department of Radiology, Samsun (Turkey)

    2015-12-15

    Although limb swelling is a well-known complication of vaccination, its rarity and wide band of differential diagnosis of limb swelling make it a diagnostic challenge. In this case report, we describe three cases of vaccine-induced myositis with intramuscular sterile abscess formation in patients with limb swelling and their magnetic resonance imaging and ultrasonography findings. Both radiologists and clinicians should be familiar with this rare entity, its clinical and imaging spectrum, and follow-up strategies. (orig.)

  1. Vaccine-induced myositis with intramuscular sterile abscess formation: MRI and ultrasound findings

    International Nuclear Information System (INIS)

    Polat, Ahmet Veysel; Bekci, Tumay; Selcuk, Mustafa Bekir; Dabak, Nevzat; Ulu, Esra Meltem Kayahan

    2015-01-01

    Although limb swelling is a well-known complication of vaccination, its rarity and wide band of differential diagnosis of limb swelling make it a diagnostic challenge. In this case report, we describe three cases of vaccine-induced myositis with intramuscular sterile abscess formation in patients with limb swelling and their magnetic resonance imaging and ultrasonography findings. Both radiologists and clinicians should be familiar with this rare entity, its clinical and imaging spectrum, and follow-up strategies. (orig.)

  2. Formation region and amplitude of colour superconductivity in an instanton-induced model

    CERN Document Server

    Liao Jin Feng

    2002-01-01

    Colour superconductivity is investigated in the frame of a two flavour instanton-induced model. The ratio of diquark to quark-antiquark coupling constants is restricted to be c/(N sub c -1) with 1 <=c <=2.87 and controls the formation region and amplitude of colour superconductivity. While the finite current quark mass changes the chiral transition significantly, it does not considerably change the colour superconductivity

  3. Laser-Induced Breakdown Spectroscopy (LIBS for Monitoring the Formation of Hydroxyapatite Porous Layers

    Directory of Open Access Journals (Sweden)

    Daniel Sola

    2017-12-01

    Full Text Available Laser-induced breakdown spectroscopy (LIBS is applied to characterize the formation of porous hydroxyapatite layers on the surface of 0.8CaSiO3-0.2Ca3(PO42 biocompatible eutectic glass immersed in simulated body fluid (SBF. Compositional and structural characterization analyses were also conducted by field emission scanning electron microscopy (FESEM, energy dispersive X-ray spectroscopy (EDX, and micro-Raman spectroscopy.

  4. Laser-Induced Breakdown Spectroscopy (LIBS) for Monitoring the Formation of Hydroxyapatite Porous Layers

    OpenAIRE

    Sola, Daniel; Paulés, Daniel; Grima, Lorena; Anzano, Jesús

    2017-01-01

    Laser-induced breakdown spectroscopy (LIBS) is applied to characterize the formation of porous hydroxyapatite layers on the surface of 0.8CaSiO3-0.2Ca3(PO4)2 biocompatible eutectic glass immersed in simulated body fluid (SBF). Compositional and structural characterization analyses were also conducted by field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), and micro-Raman spectroscopy.

  5. Irradiation induced aerosol formation in flue gas: experiments on low doses

    International Nuclear Information System (INIS)

    Maekelae, J.M.

    1992-01-01

    Laboratory experiments on irradiation induced aerosol formation from gaseous sulphur dioxide in humid air are presented. This work is connected to the aerosol particle formation process in the electron beam technique for cleaning flue gas. As a partial process of this method primary products of the radiolysis of water vapour convert sulphur dioxide into gaseous sulphuric acid which then nucleates with water vapour forming small acid droplets. This experimental work has been performed on relatively low absorbed doses. Aerosol particle formation is strongly dependent on dose. In the experiments, the first aerosol particles were detected already on absorbed doses of 0.1-10 mGy. The particle size in these cases is in the so-called ultrafine size range (1-20 nm). In this article three experimental set-ups with some characteristic results are presented. (Author)

  6. Oil spill dispersants induce formation of marine snow by phytoplankton-associated bacteria.

    Science.gov (United States)

    van Eenennaam, Justine S; Wei, Yuzhu; Grolle, Katja C F; Foekema, Edwin M; Murk, AlberTinka J

    2016-03-15

    Unusually large amounts of marine snow, including Extracellular Polymeric Substances (EPS), were formed during the 2010 Deepwater Horizon oil spill. The marine snow settled with oil and clay minerals as an oily sludge layer on the deep sea floor. This study tested the hypothesis that the unprecedented amount of chemical dispersants applied during high phytoplankton densities in the Gulf of Mexico induced high EPS formation. Two marine phytoplankton species (Dunaliella tertiolecta and Phaeodactylum tricornutum) produced EPS within days when exposed to the dispersant Corexit 9500. Phytoplankton-associated bacteria were shown to be responsible for the formation. The EPS consisted of proteins and to lesser extent polysaccharides. This study reveals an unexpected consequence of the presence of phytoplankton. This emphasizes the need to test the action of dispersants under realistic field conditions, which may seriously alter the fate of oil in the environment via increased marine snow formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Functionalization of PCL-3D Electrospun Nanofibrous Scaffolds for Improved BMP2-Induced Bone Formation.

    Science.gov (United States)

    Miszuk, Jacob M; Xu, Tao; Yao, Qingqing; Fang, Fang; Childs, Josh D; Hong, Zhongkui; Tao, Jianning; Fong, Hao; Sun, Hongli

    2018-03-01

    Bone morphogenic protein 2 (BMP2) is a key growth factor for bone regeneration, possessing FDA approval for orthopedic applications. BMP2 is often required in supratherapeutic doses clinically, yielding adverse side effects and substantial treatment costs. Considering the crucial role of materials for BMPs delivery and cell osteogenic differentiation, we devote to engineering an innovative bone-matrix mimicking niche to improve low dose of BMP2-induced bone formation. Our previous work describes a novel technique, named thermally induced nanofiber self-agglomeration (TISA), for generating 3D electrospun nanofibrous (NF) polycaprolactone (PCL) scaffolds. TISA process could readily blend PCL with PLA, leading to increased osteogenic capabilities in vitro , however, these bio-inert synthetic polymers produced limited BMP2-induced bone formation in vivo. We therefore hypothesize that functionalization of NF 3D PCL scaffolds with bone-like hydroxyapatite (HA) and BMP2 signaling activator phenamil will provide a favorable osteogenic niche for bone formation at low doses of BMP2. Compared to PCL-3D scaffolds, PCL/HA-3D scaffolds demonstrated synergistically enhanced osteogenic differentiation capabilities of C2C12 cells with phenamil. Importantly, in vivo studies showed this synergism was able to generate significantly increased new bone in an ectopic mouse model, suggesting PCL/HA-3D scaffolds act as a favorable synthetic extracellular matrix for bone regeneration.

  8. cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes

    International Nuclear Information System (INIS)

    Bhattacharjee, Rajesh; Xiang, Wenpei; Wang, Yinna; Zhang, Xiaoying; Billiar, Timothy R.

    2012-01-01

    Highlights: ► cAMP blocks cell death induced by TNF and actinomycin D in cultured hepatocytes. ► cAMP blocks NF-κB activation induced by TNF and actinomycin D. ► cAMP blocks DISC formation following TNF and actinomycin D exposure. ► cAMP blocks TNF signaling at a proximal step. -- Abstract: Tumor necrosis factor α (TNF) is a pleiotropic proinflammatory cytokine that plays a role in immunity and the control of cell proliferation, cell differentiation, and apoptosis. The pleiotropic nature of TNF is due to the formation of different signaling complexes upon the binding of TNF to its receptor, TNF receptor type 1 (TNFR1). TNF induces apoptosis in various mammalian cells when the cells are co-treated with a transcription inhibitor like actinomycin D (ActD). When TNFR1 is activated, it recruits an adaptor protein, TNF receptor-associated protein with death domain (TRADD), through its cytoplasmic death effector domain (DED). TRADD, in turn, recruits other signaling proteins, including TNF receptor-associated protein 2 (TRAF2) and receptor-associated protein kinase (RIPK) 1, to form a complex. Subsequently, this complex combines with FADD and procaspase-8, converts into a death-inducing signaling complex (DISC) to induce apoptosis. Cyclic AMP (cAMP) is a second messenger that regulates various cellular processes such as cell proliferation, gene expression, and apoptosis. cAMP analogues are reported to act as anti-apoptotic agents in various cell types, including hepatocytes. We found that a cAMP analogue, dibutyryl cAMP (db-cAMP), inhibits TNF + ActD-induced apoptosis in rat hepatocytes. The protein kinase A (PKA) inhibitor KT-5720 reverses this inhibitory effect of cAMP on apoptosis. Cytoprotection by cAMP involves down-regulation of various apoptotic signal regulators like TRADD and FADD and inhibition of caspase-8 and caspase-3 cleavage. We also found that cAMP exerts its affect at the proximal level of TNF signaling by inhibiting the formation of the DISC

  9. cAMP prevents TNF-induced apoptosis through inhibiting DISC complex formation in rat hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Rajesh [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States); Xiang, Wenpei [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States); Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People' s Republic of China (China); Wang, Yinna [Vascular Medicine Institute, University of Pittsburgh School of Medicine, 10051-5A BST 3, 3501 Fifth Avenue, Pittsburgh, PA 15261 (United States); Zhang, Xiaoying [Department of Medicine/Endocrinology Division, University of Pittsburgh Medical Center, 200 Lothrop St., Pittsburgh, PA 15213 (United States); Billiar, Timothy R., E-mail: billiartr@upmc.edu [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213 (United States)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer cAMP blocks cell death induced by TNF and actinomycin D in cultured hepatocytes. Black-Right-Pointing-Pointer cAMP blocks NF-{kappa}B activation induced by TNF and actinomycin D. Black-Right-Pointing-Pointer cAMP blocks DISC formation following TNF and actinomycin D exposure. Black-Right-Pointing-Pointer cAMP blocks TNF signaling at a proximal step. -- Abstract: Tumor necrosis factor {alpha} (TNF) is a pleiotropic proinflammatory cytokine that plays a role in immunity and the control of cell proliferation, cell differentiation, and apoptosis. The pleiotropic nature of TNF is due to the formation of different signaling complexes upon the binding of TNF to its receptor, TNF receptor type 1 (TNFR1). TNF induces apoptosis in various mammalian cells when the cells are co-treated with a transcription inhibitor like actinomycin D (ActD). When TNFR1 is activated, it recruits an adaptor protein, TNF receptor-associated protein with death domain (TRADD), through its cytoplasmic death effector domain (DED). TRADD, in turn, recruits other signaling proteins, including TNF receptor-associated protein 2 (TRAF2) and receptor-associated protein kinase (RIPK) 1, to form a complex. Subsequently, this complex combines with FADD and procaspase-8, converts into a death-inducing signaling complex (DISC) to induce apoptosis. Cyclic AMP (cAMP) is a second messenger that regulates various cellular processes such as cell proliferation, gene expression, and apoptosis. cAMP analogues are reported to act as anti-apoptotic agents in various cell types, including hepatocytes. We found that a cAMP analogue, dibutyryl cAMP (db-cAMP), inhibits TNF + ActD-induced apoptosis in rat hepatocytes. The protein kinase A (PKA) inhibitor KT-5720 reverses this inhibitory effect of cAMP on apoptosis. Cytoprotection by cAMP involves down-regulation of various apoptotic signal regulators like TRADD and FADD and inhibition of caspase-8 and caspase-3 cleavage. We also found

  10. Brain-derived neurotrophic factor mediates estradiol-induced dendritic spine formation in hippocampal neurons

    Science.gov (United States)

    Murphy, Diane D.; Cole, Nelson B.; Segal, Menahem

    1998-01-01

    Dendritic spines are of major importance in information processing and memory formation in central neurons. Estradiol has been shown to induce an increase of dendritic spine density on hippocampal neurons in vivo and in vitro. The neurotrophin brain-derived neurotrophic factor (BDNF) recently has been implicated in neuronal maturation, plasticity, and regulation of GABAergic interneurons. We now demonstrate that estradiol down-regulates BDNF in cultured hippocampal neurons to 40% of control values within 24 hr of exposure. This, in turn, decreases inhibition and increases excitatory tone in pyramidal neurons, leading to a 2-fold increase in dendritic spine density. Exogenous BDNF blocks the effects of estradiol on spine formation, and BDNF depletion with a selective antisense oligonucleotide mimics the effects of estradiol. Addition of BDNF antibodies also increases spine density, and diazepam, which facilitates GABAergic neurotransmission, blocks estradiol-induced spine formation. These observations demonstrate a functional link between estradiol, BDNF as a potent regulator of GABAergic interneurons, and activity-dependent formation of dendritic spines in hippocampal neurons. PMID:9736750

  11. Physical and biological data collected with CDT, fluorometer, and SeaSoar aboard the ship WECOMA as part of Global Ocean Ecosystem Dynamics (GLOBEC) in the North Pacific Ocean from May 30 to June 16 2000 (NODC Accession 0000986)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Physical and biological data collected with CDT, fluorometer, and SeaSoar aboard the ship WECOMA in the North Pacific Ocean from May 30 to June 16 2000. These data...

  12. Formation of radiation induced chromosome aberrations: involvement of telomeric sequences and telomerase

    International Nuclear Information System (INIS)

    Pirzio, L.

    2004-07-01

    As telomeres are crucial for chromosome integrity; we investigated the role played by telomeric sequences in the formation and in the transmission of radio-induced chromosome rearrangements in human cells. Starting from interstitial telomeric sequences (ITS) as putative region of breakage, we showed that the radiation sensitivity is not equally distributed along chromosomes and. is not affected by ITS. On the contrary, plasmid integration sites are prone to radio-induced breaks, suggesting a possible integration at sites already characterized by fragility. However plasmids do not preferentially insert at radio-induced breaks in human cells immortalized by telomerase. These cells showed remarkable karyotype stability even after irradiation, suggesting a role of telomerase in the genome maintenance despite functional telomeres. Finally, we showed that the presence of more breaks in a cell favors the repair, leading to an increase of transmissible rearrangements. (author)

  13. Formation of strain-induced quantum dots in gated semiconductor nanostructures

    Directory of Open Access Journals (Sweden)

    Ted Thorbeck

    2015-08-01

    Full Text Available A long-standing mystery in the field of semiconductor quantum dots (QDs is: Why are there so many unintentional dots (also known as disorder dots which are neither expected nor controllable. It is typically assumed that these unintentional dots are due to charged defects, however the frequency and predictability of the location of the unintentional QDs suggests there might be additional mechanisms causing the unintentional QDs besides charged defects. We show that the typical strains in a semiconductor nanostructure from metal gates are large enough to create strain-induced quantum dots. We simulate a commonly used QD device architecture, metal gates on bulk silicon, and show the formation of strain-induced QDs. The strain-induced QD can be eliminated by replacing the metal gates with poly-silicon gates. Thus strain can be as important as electrostatics to QD device operation operation.

  14. Inter-chromosomal heterogeneity in the formation of radiation induced chromosomal aberrations

    International Nuclear Information System (INIS)

    Natarajan, A.T.; Vermeulen, S.; Boei, J.J.W.A.

    1997-01-01

    It is generally assumed that radiation induced chromosomal lesions are distributed randomly and repaired randomly among the genome. Recent studies using fluorescent in situ hybridization (FISH) and chromosome specific DNA libraries indicate that some chromosomes are more sensitive for radiation induced aberration formation than others. Chromosome No. 4 in human and chromosome No. 8 in Chinese hamster have been found to involve more in exchange aberrations than others, when calculated on the basis of their DNA content. Painting with arm specific chromosome libraries indicate that the frequencies of radiation induced intra-chromosome exchanges (i.e., between the arms of a chromosome, such as centric rings and inversions) are far in excess than one would expect on the basis of the frequencies of observed inter-chromosomal exchanges. The possible factors leading to the observed heterogeneity will be discussed

  15. Prevalence, antibiogram, and cdt genes of toxigenic Campylobacter jejuni in salad style vegetables (ulam) at farms and retail outlets in Terengganu.

    Science.gov (United States)

    Khalid, Mohd Ikhsan; Tang, John Yew Huat; Baharuddin, Nabila Huda; Rahman, Nasiha Shakina; Rahimi, Nurul Faizzah; Radu, Son

    2015-01-01

    The present study was conducted to investigate the prevalence and antibiotic resistance among Campylobacter jejuni in ulam at farms and retail outlets located in Kuala Terengganu, Malaysia. A total of 526 samples (ulam, soil, and fertilizer) were investigated for the presence of C. jejuni and the gene for cytolethal distending toxin (cdt) by using a multiplex PCR method. Antibiotic susceptibility to 10 types of antibiotics was determined using the disk diffusion method for 33 C. jejuni isolates. The average prevalence of contaminated samples from farms, wet markets, and supermarkets was 35.29, 52.66, and 69.88%, respectively. The cdt gene was not detected in 24 of the 33 C. jejuni isolates, but 9 isolates harbored cdtC. Antibiotic resistance in C. jejuni isolates was highest to penicillin G (96.97% of isolates) followed by vancomycin (87.88%), ampicillin (75.76%), erythromycin (60.61%), tetracycline (9.09%), amikacin (6.06%), and norfloxacin (3.03%); none of the isolates were resistant to ciprofloxacin, enrofloxacin, and gentamicin. In this study, C. jejuni was present in ulam, and some isolates were highly resistant to some antibiotics but not to quinolones. Thus, appropriate attention and measures are required to prevent C. jejuni contamination on farms and at retail outlets.

  16. Optimization of CDT-1 and XYL1 Expression for Balanced Co-Production of Ethanol and Xylitol from Cellobiose and Xylose by Engineered Saccharomyces cerevisiae

    Science.gov (United States)

    Zha, Jian; Li, Bing-Zhi; Shen, Ming-Hua; Hu, Meng-Long; Song, Hao; Yuan, Ying-Jin

    2013-01-01

    Production of ethanol and xylitol from lignocellulosic hydrolysates is an alternative to the traditional production of ethanol in utilizing biomass. However, the conversion efficiency of xylose to xylitol is restricted by glucose repression, causing a low xylitol titer. To this end, we cloned genes CDT-1 (encoding a cellodextrin transporter) and gh1-1 (encoding an intracellular β-glucosidase) from Neurospora crassa and XYL1 (encoding a xylose reductase that converts xylose into xylitol) from Scheffersomyces stipitis into Saccharomyces cerevisiae, enabling simultaneous production of ethanol and xylitol from a mixture of cellobiose and xylose (main components of lignocellulosic hydrolysates). We further optimized the expression levels of CDT-1 and XYL1 by manipulating their promoters and copy-numbers, and constructed an engineered S. cerevisiae strain (carrying one copy of PGK1p-CDT1 and two copies of TDH3p-XYL1), which showed an 85.7% increase in xylitol production from the mixture of cellobiose and xylose than that from the mixture of glucose and xylose. Thus, we achieved a balanced co-fermentation of cellobiose (0.165 g/L/h) and xylose (0.162 g/L/h) at similar rates to co-produce ethanol (0.36 g/g) and xylitol (1.00 g/g). PMID:23844185

  17. Optimization of CDT-1 and XYL1 expression for balanced co-production of ethanol and xylitol from cellobiose and xylose by engineered Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Jian Zha

    Full Text Available Production of ethanol and xylitol from lignocellulosic hydrolysates is an alternative to the traditional production of ethanol in utilizing biomass. However, the conversion efficiency of xylose to xylitol is restricted by glucose repression, causing a low xylitol titer. To this end, we cloned genes CDT-1 (encoding a cellodextrin transporter and gh1-1 (encoding an intracellular β-glucosidase from Neurospora crassa and XYL1 (encoding a xylose reductase that converts xylose into xylitol from Scheffersomyces stipitis into Saccharomyces cerevisiae, enabling simultaneous production of ethanol and xylitol from a mixture of cellobiose and xylose (main components of lignocellulosic hydrolysates. We further optimized the expression levels of CDT-1 and XYL1 by manipulating their promoters and copy-numbers, and constructed an engineered S. cerevisiae strain (carrying one copy of PGK1p-CDT1 and two copies of TDH3p-XYL1, which showed an 85.7% increase in xylitol production from the mixture of cellobiose and xylose than that from the mixture of glucose and xylose. Thus, we achieved a balanced co-fermentation of cellobiose (0.165 g/L/h and xylose (0.162 g/L/h at similar rates to co-produce ethanol (0.36 g/g and xylitol (1.00 g/g.

  18. Transcriptome Sequencing of Chemically Induced Aquilaria sinensis to Identify Genes Related to Agarwood Formation.

    Science.gov (United States)

    Ye, Wei; Wu, Hongqing; He, Xin; Wang, Lei; Zhang, Weimin; Li, Haohua; Fan, Yunfei; Tan, Guohui; Liu, Taomei; Gao, Xiaoxia

    2016-01-01

    Agarwood is a traditional Chinese medicine used as a clinical sedative, carminative, and antiemetic drug. Agarwood is formed in Aquilaria sinensis when A. sinensis trees are threatened by external physical, chemical injury or endophytic fungal irritation. However, the mechanism of agarwood formation via chemical induction remains unclear. In this study, we characterized the transcriptome of different parts of a chemically induced A. sinensis trunk sample with agarwood. The Illumina sequencing platform was used to identify the genes involved in agarwood formation. A five-year-old Aquilaria sinensis treated by formic acid was selected. The white wood part (B1 sample), the transition part between agarwood and white wood (W2 sample), the agarwood part (J3 sample), and the rotten wood part (F5 sample) were collected for transcriptome sequencing. Accordingly, 54,685,634 clean reads, which were assembled into 83,467 unigenes, were obtained with a Q20 value of 97.5%. A total of 50,565 unigenes were annotated using the Nr, Nt, SWISS-PROT, KEGG, COG, and GO databases. In particular, 171,331,352 unigenes were annotated by various pathways, including the sesquiterpenoid (ko00909) and plant-pathogen interaction (ko03040) pathways. These pathways were related to sesquiterpenoid biosynthesis and defensive responses to chemical stimulation. The transcriptome data of the different parts of the chemically induced A. sinensis trunk provide a rich source of materials for discovering and identifying the genes involved in sesquiterpenoid production and in defensive responses to chemical stimulation. This study is the first to use de novo sequencing and transcriptome assembly for different parts of chemically induced A. sinensis. Results demonstrate that the sesquiterpenoid biosynthesis pathway and WRKY transcription factor play important roles in agarwood formation via chemical induction. The comparative analysis of the transcriptome data of agarwood and A. sinensis lays the foundation

  19. Rabies Virus Infection Induces the Formation of Stress Granules Closely Connected to the Viral Factories.

    Directory of Open Access Journals (Sweden)

    Jovan Nikolic

    2016-10-01

    Full Text Available Stress granules (SGs are membrane-less dynamic structures consisting of mRNA and protein aggregates that form rapidly in response to a wide range of environmental cellular stresses and viral infections. They act as storage sites for translationally silenced mRNAs under stress conditions. During viral infection, SG formation results in the modulation of innate antiviral immune responses, and several viruses have the ability to either promote or prevent SG assembly. Here, we show that rabies virus (RABV induces SG formation in infected cells, as revealed by the detection of SG-marker proteins Ras GTPase-activating protein-binding protein 1 (G3BP1, T-cell intracellular antigen 1 (TIA-1 and poly(A-binding protein (PABP in the RNA granules formed during viral infection. As shown by live cell imaging, RABV-induced SGs are highly dynamic structures that increase in number, grow in size by fusion events, and undergo assembly/disassembly cycles. Some SGs localize in close proximity to cytoplasmic viral factories, known as Negri bodies (NBs. Three dimensional reconstructions reveal that both structures remain distinct even when they are in close contact. In addition, viral mRNAs synthesized in NBs accumulate in the SGs during viral infection, revealing material exchange between both compartments. Although RABV-induced SG formation is not affected in MEFs lacking TIA-1, TIA-1 depletion promotes viral translation which results in an increase of viral replication indicating that TIA-1 has an antiviral effect. Inhibition of PKR expression significantly prevents RABV-SG formation and favors viral replication by increasing viral translation. This is correlated with a drastic inhibition of IFN-B gene expression indicating that SGs likely mediate an antiviral response which is however not sufficient to fully counteract RABV infection.

  20. Candesartan restores pressure-induced vasodilation and prevents skin pressure ulcer formation in diabetic mice.

    Science.gov (United States)

    Danigo, Aurore; Nasser, Mohamad; Bessaguet, Flavien; Javellaud, James; Oudart, Nicole; Achard, Jean-Michel; Demiot, Claire

    2015-02-18

    Angiotensin II type 1 receptor (AT1R) blockers have beneficial effects on neurovascular complications in diabetes and in organ's protection against ischemic episodes. The present study examines whether the AT1R blocker candesartan (1) has a beneficial effect on diabetes-induced alteration of pressure-induced vasodilation (PIV, a cutaneous physiological neurovascular mechanism which could delay the occurrence of tissue ischemia), and (2) could be protective against skin pressure ulcer formation. Male Swiss mice aged 5-6 weeks were randomly assigned to four experimental groups. In two groups, diabetes was induced by a single intraperitoneal injection of streptozotocin (STZ, 200 mg.kg(-1)). After 6 weeks, control and STZ mice received either no treatment or candesartan (1 mg/kg-daily in drinking water) during 2 weeks. At the end of treatment (8 weeks of diabetes duration), C-fiber mediated nociception threshold, endothelium-dependent vasodilation and PIV were assessed. Pressure ulcers (PUs) were then induced by pinching the dorsal skin between two magnetic plates for three hours. Skin ulcer area development was assessed during three days, and histological examination of the depth of the skin lesion was performed at day three. After 8 weeks of diabetes, the skin neurovascular functions (C-fiber nociception, endothelium-dependent vasodilation and PIV) were markedly altered in STZ-treated mice, but were fully restored by treatment with candesartan. Whereas in diabetes mice exposure of the skin to pressure induced wide and deep necrotic lesions, treatment with candersartan restored their ability to resist to pressure-induced ulceration as efficiently as the control mice. Candesartan decreases the vulnerability to pressure-induced ulceration and restores skin neurovascular functions in mice with STZ-induced established diabetes.

  1. Evidence of liquid phase during laser-induced periodic surface structures formation induced by accumulative ultraviolet picosecond laser beam

    Energy Technology Data Exchange (ETDEWEB)

    Huynh, T. T. D.; Petit, A.; Semmar, N., E-mail: nadjib.semmar@univ-orleans.fr [GREMI, UMR7344, CNRS/University of Orleans, 14 rue d' Issoudun, BP6744, 45067 Orleans Cedex 2 (France); Vayer, M. [ICMN, UMR 7374, CNRS/University of Orleans, 1b rue de la Ferollerie, CS 40059, 45071 Orleans Cedex (France); Sauldubois, A. [CME, UFR Sciences, University of Orleans, 1 Rue de Chartres, BP 6759, 45067 Orleans Cedex 2 (France)

    2015-11-09

    Laser-induced periodic surface structures (LIPSS) were formed on Cu/Si or Cu/glass thin films using Nd:YAG laser beam (40 ps, 10 Hz, and 30 mJ/cm{sup 2}). The study of ablation threshold is always achieved over melting when the variation of the number of pulses increases from 1 to 1000. But the incubation effect is leading to reduce the threshold of melting as increasing the number of laser pulse. Also, real time reflectivity signals exhibit typical behavior to stress the formation of a liquid phase during the laser-processing regime and helps to determine the threshold of soft ablation. Atomic Force Microscopy (AFM) analyses have shown the topology of the micro-crater containing regular spikes with different height. Transmission Electron Microscopy (TEM) allows finally to show three distinguished zones in the close region of isolated protrusions. The central zone is a typical crystallized area of few nanometers surrounded by a mixed poly-crystalline and amorphous area. Finally, in the region far from the protrusion zone, Cu film shows an amorphous structure. The real time reflectivity, AFM, and HR-TEM analyses evidence the formation of a liquid phase during the LIPSS formation in the picosecond regime.

  2. Radiation-induced grain subdivision and bubble formation in U3Si2 at LWR temperature

    Science.gov (United States)

    Yao, Tiankai; Gong, Bowen; He, Lingfeng; Harp, Jason; Tonks, Michael; Lian, Jie

    2018-01-01

    U3Si2, an advanced fuel form proposed for light water reactors (LWRs), has excellent thermal conductivity and a high fissile element density. However, limited understanding of the radiation performance and fission gas behavior of U3Si2 is available at LWR conditions. This study explores the irradiation behavior of U3Si2 by 300 keV Xe+ ion beam bombardment combining with in-situ transmission electron microscopy (TEM) observation. The crystal structure of U3Si2 is stable against radiation-induced amorphization at 350 °C even up to a very high dose of 64 displacements per atom (dpa). Grain subdivision of U3Si2 occurs at a relatively low dose of 0.8 dpa and continues to above 48 dpa, leading to the formation of high-density nanoparticles. Nano-sized Xe gas bubbles prevail at a dose of 24 dpa, and Xe bubble coalescence was identified with the increase of irradiation dose. The volumetric swelling resulting from Xe gas bubble formation and coalescence was estimated with respect to radiation dose, and a 2.2% volumetric swelling was observed for U3Si2 irradiated at 64 dpa. Due to extremely high susceptibility to oxidation, the nano-sized U3Si2 grains upon radiation-induced grain subdivision were oxidized to nanocrystalline UO2 in a high vacuum chamber for TEM observation, eventually leading to the formation of UO2 nanocrystallites stable up to 80 dpa.

  3. Glycerol metabolism induces Listeria monocytogenes biofilm formation at the air-liquid interface.

    Science.gov (United States)

    Crespo Tapia, Natalia; den Besten, Heidy M W; Abee, Tjakko

    2018-05-20

    Listeria monocytogenes is a food-borne pathogen that can grow as a biofilm on surfaces. Biofilm formation in food-processing environments is a big concern for food safety, as it can cause product contamination through the food-processing line. Although motile aerobic bacteria have been described to form biofilms at the air-liquid interface of cell cultures, to our knowledge, this type of biofilm has not been described in L. monocytogenes before. In this study we report L. monocytogenes biofilm formation at the air-liquid interface of aerobically grown cultures, and that this phenotype is specifically induced when the media is supplemented with glycerol as a carbon and energy source. Planktonic growth, metabolic activity assays and HPLC measurements of glycerol consumption over time showed that glycerol utilization in L. monocytogenes is restricted to growth under aerobic conditions. Gene expression analysis showed that genes encoding the glycerol transporter GlpF, the glycerol kinase GlpK and the glycerol 3-phosphate dehydrogenase GlpD were upregulated in the presence of oxygen, and downregulated in absence of oxygen. Additionally, motility assays revealed the induction of aerotaxis in the presence of glycerol. Our results demonstrate that the formation of biofilms at the air-liquid interface is dependent on glycerol-induced aerotaxis towards the surface of the culture, where L. monocytogenes has access to higher concentrations of oxygen, and is therefore able to utilize this compound as a carbon source. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Glycation induces formation of amyloid cross-beta structure in albumin.

    Science.gov (United States)

    Bouma, Barend; Kroon-Batenburg, Loes M J; Wu, Ya-Ping; Brünjes, Bettina; Posthuma, George; Kranenburg, Onno; de Groot, Philip G; Voest, Emile E; Gebbink, Martijn F B G

    2003-10-24

    Amyloid fibrils are components of proteinaceous plaques that are associated with conformational diseases such as Alzheimer's disease, transmissible spongiform encephalopathies, and familial amyloidosis. Amyloid polypeptides share a specific quarternary structure element known as cross-beta structure. Commonly, fibrillar aggregates are modified by advanced glycation end products (AGE). In addition, AGE formation itself induces protein aggregation. Both amyloid proteins and protein-AGE adducts bind multiligand receptors, such as receptor for AGE, CD36, and scavenger receptors A and B type I, and the serine protease tissue-type plasminogen activator (tPA). Based on these observations, we hypothesized that glycation induces refolding of globular proteins, accompanied by formation of cross-beta structure. Using transmission electron microscopy, we demonstrate here that glycated albumin condensates into fibrous or amorphous aggregates. These aggregates bind to amyloid-specific dyes Congo red and thioflavin T and to tPA. In contrast to globular albumin, glycated albumin contains amino acid residues in beta-sheet conformation, as measured with circular dichroism spectropolarimetry. Moreover, it displays cross-beta structure, as determined with x-ray fiber diffraction. We conclude that glycation induces refolding of initially globular albumin into amyloid fibrils comprising cross-beta structure. This would explain how glycated ligands and amyloid ligands can bind to the same multiligand "cross-beta structure" receptors and to tPA.

  5. Ammonia Released by Streptomyces aburaviensis Induces Droplet Formation in Streptomyces violaceoruber.

    Science.gov (United States)

    Schmidt, Kathrin; Spiteller, Dieter

    2017-08-01

    Streptomyces violaceoruber grown in co-culture with Streptomyces aburaviensis produces an about 17-fold higher volume of droplets on its aerial mycelium than in single-culture. Physical separation of the Streptomyces strains by either a plastic barrier or by a dialysis membrane, which allowed communication only by the exchange of volatile compounds or diffusible compounds in the medium, respectively, still resulted in enhanced droplet formation. The application of molecular sieves to bioassays resulted in the attenuation of the droplet-inducing effect of S. aburaviensis indicating the absorption of the compound. 1 H-NMR analysis of molecular-sieve extracts and the selective indophenol-blue reaction revealed that the volatile droplet-inducing compound is ammonia. The external supply of ammonia in biologically relevant concentrations of ≥8 mM enhanced droplet formation in S. violaceoruber in a similar way to S. aburaviensis. Ammonia appears to trigger droplet production in many Streptomyces strains because four out of six Streptomyces strains exposed to ammonia exhibited induced droplet production.

  6. Measured time-correlated neutron-induced radiations in a sandstone formation. Final report

    International Nuclear Information System (INIS)

    Peters, C.; Karaoglan, E.; Ertel, J.; Brotzman, J.; Kennedy, C. Jr.

    1981-07-01

    The Grand Junction Operations Office, Department of Energy, via its contractor, The Bendix Field Engineering Corporation, is developing technologies to explore for uranium as a part of the National Uranium Resource Evaluation Program. This report is addressed to measurements of the inelastic- and capture-gamma rays induced by 14 MeV neutrons in uranium ore in a simulated sandstone formation. The associated-particle technique and timing correlation was used to measure the production of inelastic-gamma rays versus time and to separate the inelastic-gamma-ray energy spectrum from the capture-gamma-ray energy spectrum. The measurements of the fission-coincidence signal demonstrate that this technique appears to be very sensitive to the presence of uranium. These measurements indicate that the fission-coincidence signal would be improved for uranium assay by using a low-energy neutron source rather than 14-MeV neutrons. The results of these measurements demonstrate that the concept of the Borehole Neutron Diagnostic Probe is a promising new logging tool. Measurements for a wide variety of controlled borehole and formation parameters are needed to determine the optimum design and to calibrate the responses. These measurements should be performed with a prototype logging tool in formations that have densities closer to those found in the field than the simulated formation used in these measurements

  7. Platelet size and density affect shear-induced thrombus formation in tortuous arterioles

    Science.gov (United States)

    Chesnutt, Jennifer K. W.; Han, Hai-Chao

    2013-10-01

    Thrombosis accounts for 80% of deaths in patients with diabetes mellitus. Diabetic patients demonstrate tortuous microvessels and larger than normal platelets. Large platelets are associated with increased platelet activation and thrombosis, but the physical effects of large platelets in the microscale processes of thrombus formation are not clear. Therefore, the objective of this study was to determine the physical effects of mean platelet volume (MPV), mean platelet density (MPD) and vessel tortuosity on platelet activation and thrombus formation in tortuous arterioles. A computational model of the transport, shear-induced activation, collision, adhesion and aggregation of individual platelets was used to simulate platelet interactions and thrombus formation in tortuous arterioles. Our results showed that an increase in MPV resulted in a larger number of activated platelets, though MPD and level of tortuosity made little difference on platelet activation. Platelets with normal MPD yielded the lowest amount of mural thrombus. With platelets of normal MPD, the amount of mural thrombus decreased with increasing level of tortuosity but did not have a simple monotonic relationship with MPV. The physical mechanisms associated with MPV, MPD and arteriole tortuosity play important roles in platelet activation and thrombus formation.

  8. Role of complex formation in the photosensitized degradation of DNA induced by N'-formylkynurenine

    International Nuclear Information System (INIS)

    Walrant, P.; Santus, R.; Charlier, M.

    1976-01-01

    N'-Formylkynurenine derivatives efficiently bind to DNA or polynucleotides. Homopolynucleotides and DNA displayed marked differences in the binding process. Association constants were derived which indicated that the oxidized indole ring is more strongly bound to DNA than the unoxidized one. Irradiation of such complexes with wavelengths greater than 320 nm induced pyrimidine dimer formation as well as DNA chain breaks. Complex formation is shown to play an important role in these photosensitized reactions. The photodynamic action of N-formylkynurenine on DNA constituents was negligible at neutral pH but guanine and xanthine derivatives were sensitizable at higher pH. Thymine dimer splitting can occur in aggregated frozen aqueous solutions of N'-formylkynurenine and thymine dimer but this photosensitized splitting was negligible in liquid solutions at room temperature. (author)

  9. Analysis of oxide formation induced by UV laser coloration of stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z.L., E-mail: zlli@SIMTech.a-star.edu.sg [Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, 638075 (Singapore); Zheng, H.Y.; Teh, K.M.; Liu, Y.C.; Lim, G.C. [Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, 638075 (Singapore); Seng, H.L.; Yakovlev, N.L. [Institute of Materials Research and Engineering, 3 Research Link, 117602 (Singapore)

    2009-12-15

    Laser-induced coloration on metal surfaces has important applications in product identification, enhancing styles and aesthetics. The color generation is the result of controlled surface oxidation during laser beam interaction with the metal surfaces. In this study, we aim to obtain in-depth understanding of the oxide formation process when an UV laser beam interacts with stainless steel in air. The oxide layer is analysed by means of optical microscopy, scanning electron microscopy (SEM) and time-of-flight secondary ion mass spectrometer (TOF-SIMS). TOF-SIMS results clearly show the formation of duplex oxide structures. The duplex structure includes an inner layer of Cr oxide solution and an outer layer of Fe oxide solution. The oxide layer thickness increased as the results of Fe diffusion to surface during multiple laser scanning passes.

  10. Analysis of oxide formation induced by UV laser coloration of stainless steel

    International Nuclear Information System (INIS)

    Li, Z.L.; Zheng, H.Y.; Teh, K.M.; Liu, Y.C.; Lim, G.C.; Seng, H.L.; Yakovlev, N.L.

    2009-01-01

    Laser-induced coloration on metal surfaces has important applications in product identification, enhancing styles and aesthetics. The color generation is the result of controlled surface oxidation during laser beam interaction with the metal surfaces. In this study, we aim to obtain in-depth understanding of the oxide formation process when an UV laser beam interacts with stainless steel in air. The oxide layer is analysed by means of optical microscopy, scanning electron microscopy (SEM) and time-of-flight secondary ion mass spectrometer (TOF-SIMS). TOF-SIMS results clearly show the formation of duplex oxide structures. The duplex structure includes an inner layer of Cr oxide solution and an outer layer of Fe oxide solution. The oxide layer thickness increased as the results of Fe diffusion to surface during multiple laser scanning passes.

  11. Laser-induced micropore formation and modification of cartilage structure in osteoarthritis healing

    Energy Technology Data Exchange (ETDEWEB)

    Sobol, Emil [Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, RussiabFederal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences, Institute of Photonic Technologies, Moscow, Russia; Baum, Olga [Federal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences, Institute of Photonic Technologies, Moscow, Russia; Shekhter, Anatoly [Sechenov First Medical University of Moscow, Institute of Regenerative Medicine, Moscow, Russia; Wachsmann-Hogiu, Sebastian [University of California, Center for Biophotonics, Department of Pathology and Laboratory Medicine, Sacramento, California, United StateseMcGill University, Department of Bioengineering, Montreal, Canada; Shnirelman, Alexander [Concordia University, Department of Mathematics and Statistics, Montreal, Canada; Alexandrovskaya, Yulia [Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, RussiabFederal Scientific Research Centre “Crystallography and Photonics” of the Russian Academy of Sciences, Institute of Photonic Technologies, Moscow, Russia; Sadovskyy, Ivan [Argonne National Laboratory, Materials Science Division, Argonne, Illinois, United States; Vinokur, Valerii [Argonne National Laboratory, Materials Science Division, Argonne, Illinois, United States

    2017-05-31

    Pores are vital for functioning of avascular tissues. Laser-induced pores play an important role in the process of cartilage regeneration. The aim of any treatment for osteoarthritis is to repair hyaline-type cartilage. The aims of this study are to answer two questions: (1) How do laser-assisted pores affect the cartilaginous cells to synthesize hyaline cartilage (HC)? and (2) How can the size distribution of pores arising in the course of laser radiation be controlled? We have shown that in cartilage, the pores arise predominately near chondrocytes, which promote nutrition of cells and signal molecular transfer that activates regeneration of cartilage. In vivo laser treatment of damaged cartilage of miniature pig joints provides cellular transformation and formation of HC. We propose a simple model of pore formation in biopolymers that paves the way for going beyond the trial-anderror approach when choosing an optimal laser treatment regime. Our findings support the approach toward laser healing of osteoarthritis.

  12. Andrographolide Inhibits Oxidized LDL-Induced Cholesterol Accumulation and Foam Cell Formation in Macrophages.

    Science.gov (United States)

    Lin, Hung-Chih; Lii, Chong-Kuei; Chen, Hui-Chun; Lin, Ai-Hsuan; Yang, Ya-Chen; Chen, Haw-Wen

    2018-01-01

    oxLDL is involved in the pathogenesis of atherosclerotic lesions through cholesterol accumulation in macrophage foam cells. Andrographolide, the bioactive component of Andrographis paniculata, possesses several biological activities such as anti-inflammatory, anti-oxidant, and anticancer functions. Scavenger receptors (SRs), including class A SR (SR-A) and CD36, are responsible for the internalization of oxLDL. In contrast, receptors for reverse cholesterol transport, including ABCA1 and ABCG1, mediate the efflux of cholesterol from macrophage foam cells. Transcription factor liver X receptor [Formula: see text] (LXR[Formula: see text] plays a key role in lipid metabolism and inflammation as well as in the regulation of ABCA1 and ABCG1 expression. Because of the contribution of inflammation to macrophage foam cell formation and the potent anti-inflammatory activity of andrographolide, we hypothesized that andrographolide might inhibit oxLDL-induced macrophage foam cell formation. The results showed that andrographolide reduced oxLDL-induced lipid accumulation in macrophage foam cells. Andrographolide decreased the mRNA and protein expression of CD36 by inducing the degradation of CD36 mRNA; however, andrographolide had no effect on SR-A expression. In contrast, andrographolide increased the mRNA and protein expression of ABCA1 and ABCG1, which were dependent on LXR[Formula: see text]. Andrographolide enhanced LXR[Formula: see text] nuclear translocation and DNA binding activity. Treatment with the LXR[Formula: see text] antagonist GGPP and transfection with LXR[Formula: see text] siRNA reversed the ability of andrographolide to stimulate ABCA1 and ABCG1 protein expression. In conclusion, inhibition of CD36-mediated oxLDL uptake and induction of ABCA1- and ABCG1-dependent cholesterol efflux are two working mechanisms by which andrographolide inhibits macrophage foam cell formation, which suggests that andrographolide could be a potential candidate to prevent

  13. Influence of short-term aluminum exposure on demineralized bone matrix induced bone formation

    Energy Technology Data Exchange (ETDEWEB)

    Severson, A.R. (Minnesota Univ., Duluth, MN (United States). Dept. of Anatomy and Cell Biology); Haut, C.F.; Firling, C.E. (Minnesota Univ., Duluth, MN (United States). Dept. of Biology); Huntley, T.E. (Minnesota Univ., Duluth, MN (United States). Dept. of Biochemistry and Molecular Biology)

    1992-12-01

    The effects of aluminum exposure on bone formation employing the demineralized bone matrix (DBM) induced bone development model were studied using 4-week-old Sprague-Dawley rats injected with a saline (control) or an aluminum chloride (experimental) solution. After 2 weeks of aluminum treatment, 20-mg portions of rat DBM were implanted subcutaneously on each side in the thoracic region of the control and experimental rats. Animals were killed 7, 12, or 21 days after implantation of the DBM and the developing plaques removed. No morphological, histochemical, or biochemical differences were apparent between plaques from day 7 control and experimental rats. Plaques from day 12 control and experimental rats exhibited cartilage formation and alkaline phosphatase activity localized in osteochondrogenic cells, chondrocytes, osteoblasts, and extracellular matrix. Unlike the plaques from control rats that contained many osteoblastic mineralizing fronts, the plaques from the 12-day experimental group had a preponderance of cartilaginous tissue, no evidence of mineralization, increased levels of alkaline phosphatase activity, and a reduced calcium content. Plaques developing for 21 days in control animals demonstrated extensive new bone formation and bone marrow development, while those in the experimental rats demonstrated unmineralized osteoid-like matrix with poorly developed bone marrow. Alkaline phosphatase activity of the plaques continued to remain high on day 21 for the control and experimental groups. Calcium levels were significantly reduced in the experimental group. These biochemical changes correlated with histochemical reductions in bone calcification. Thus, aluminum administration to rats appears to alter the differentiation and calcification of developing cartilage and bone in the DBM-induced bone formation model and suggests that aluminum by some mechanism alters the matrix calcification in growing bones. (orig.).

  14. Ridge formation induced by jets in pp collisions at 7 TeV

    International Nuclear Information System (INIS)

    Hwa, Rudolph C.; Yang, C. B.

    2011-01-01

    An interpretation of the ridge phenomenon found in pp collisions at 7 TeV is given in terms of enhancement of soft partons due to energy loss of semihard jets. A description of ridge formation in nuclear collisions can directly be extended to pp collisions since hydrodynamics is not used and azimuthal anisotropy is generated by semihard scattering. The observed ridge structure is then understood as a manifestation of soft-soft transverse correlation induced by semihard partons without long-range longitudinal correlation. Both the p T and multiplicity dependencies are well reproduced. Some predictions are made about other observables.

  15. Formation of surface nano-structures by plasma expansion induced by highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Moslem, W. M. [Department of Physics, Faculty of Science, Port Said University, Port Said (Egypt); Centre for Theoretical Physics, The British University in Egypt (BUE), El-Shorouk City, Cairo (Egypt) and International Centre for Advanced Studies in Physical Sciences, Faculty of Physics and Astronomy, Ruhr University Bochum, D-44780 Bochum (Germany); El-Said, A. S. [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Nuclear and Radiation Physics Laboratory, Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura (Egypt) and Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstr. 128, 01328 Dresden (Germany)

    2012-12-15

    Slow highly charged ions (HCIs) create surface nano-structures (nano-hillocks) on the quartz surface. The formation of hillocks was only possible by surpassing a potential energy threshold. By using the plasma expansion approach with suitable hydrodynamic equations, the creation mechanism of the nano-hillocks induced by HCIs is explained. Numerical analysis reveal that within the nanoscale created plasma region, the increase of the temperature causes an increase of the self-similar solution validity domain, and consequently the surface nano-hillocks become taller. Furthermore, the presence of the negative (positive) nano-dust particles would lead to increase (decrease) the nano-hillocks height.

  16. Radiation Induced Formation of Acrylated Palm Oil Nanoparticles using Cetyltrimethylammonium Bromide Microemulsion System

    International Nuclear Information System (INIS)

    Rida Tajau; Rida Tajau; Wan Mohd Zin Wan Yunus

    2011-01-01

    In this study, we report the preparation of Acrylated Palm Oil (APO) nanoparticles using aqueous Cetyltrimethylammonium bromide (CTAB) microemulsion system. This microemulsion system which contains the dispersed APO nano droplets was subjected to the gamma irradiation to induce the formation of the crosslinked APO nanoparticle. After irradiation at higher doses, the size of APO nanoparticles was transformed from a submicron-sized to a nano-sized of the particles. Size decreasing might be due to the intermolecular and the intramolecular crosslinking reactions of the APO nanoparticles during the irradiation process. (author)

  17. Progranulin Inhibits Human T Lymphocyte Proliferation by Inducing the Formation of Regulatory T Lymphocytes

    Directory of Open Access Journals (Sweden)

    Kyu Hwan Kwack

    2017-01-01

    Full Text Available We have examined the effect of progranulin (PGRN on human T cell proliferation and its underlying mechanism. We show that PGRN inhibits the PHA-induced multiplication of T lymphocytes. It increases the number of iTregs when T lymphocytes are activated by PHA but does not do so in the absence of PHA. PGRN-mediated inhibition of T lymphocyte proliferation, as well as the induction of iTregs, was completely reversed by a TGF-β inhibitor or a Treg inhibitor. PGRN induced TGF-β secretion in the presence of PHA whereas it did not in the absence of PHA. Our findings indicate that PGRN suppresses T lymphocyte proliferation by enhancing the formation of iTregs from activated T lymphocytes in response to TGF-β.

  18. Amyloid-β Peptide Induces Prion Protein Amyloid Formation: Evidence for Its Widespread Amyloidogenic Effect.

    Science.gov (United States)

    Honda, Ryo

    2018-04-12

    Transmissible spongiform encephalopathy is associated with misfolding of prion protein (PrP) into an amyloid β-rich aggregate. Previous studies have indicated that PrP interacts with Alzheimer's disease amyloid-β peptide (Aβ), but it remains elusive how this interaction impacts on the misfolding of PrP. This study presents the first in vitro evidence that Aβ induces PrP-amyloid formation at submicromolar concentrations. Interestingly, systematic mutagenesis of PrP revealed that Aβ requires no specific amino acid sequences in PrP, and induces the misfolding of other unrelated proteins (insulin and lysozyme) into amyloid fibrils in a manner analogous to PrP. This unanticipated nonspecific amyloidogenic effect of Aβ indicates that this peptide might be involved in widespread protein aggregation, regardless of the amino acid sequences of target proteins, and exacerbate the pathology of many neurodegenerative diseases. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Computer simulation of radiation-induced nanostructure formation in amorphous materials

    International Nuclear Information System (INIS)

    Li, K.-D.; Perez-Bergquist, Alejandro; Wang, Lumin

    2009-01-01

    In this study, 3D simulations based on a theoretical model were developed to investigate radiation-induced nanostructure formation in amorphous materials. Model variables include vacancy production and recombination rates, ion sputtering effects, and redeposition of sputtered atoms. In addition, a phase field model was developed to predict vacancy diffusion as a function of free energies of mixing and interfacial energies. The distribution profile of the vacancy production rate along the depth of an irradiated matrix was considered as a near Gaussian approximation according to Monte-Carlo TRIM code calculations. Dynamic processes responsible for nanostructure evolution were simulated by updating the vacancy concentration profile over time. Simulated morphologies include cellular nanoholes, nanowalls, nanovoids, and nanofibers, with the resultant morphology dependant upon the incident ion species and ion fluence. These simulated morphologies are consistent with experimental observations achieved under comparable experimental conditions. Our model provides a distinct numerical approach to accurately predicting morphological results for ion-irradiation-induced nanostructures.

  20. On the nano-hillock formation induced by slow highly charged ions on insulator surfaces

    Science.gov (United States)

    Lemell, C.; El-Said, A. S.; Meissl, W.; Gebeshuber, I. C.; Trautmann, C.; Toulemonde, M.; Burgdörfer, J.; Aumayr, F.

    2007-10-01

    We discuss the creation of nano-sized protrusions on insulating surfaces using slow highly charged ions. This method holds the promise of forming regular structures on surfaces without inducing defects in deeper lying crystal layers. We find that only projectiles with a potential energy above a critical value are able to create hillocks. Below this threshold no surface modification is observed. This is similar to the track and hillock formation induced by swift (˜GeV) heavy ions. We present a model for the conversion of potential energy stored in the projectiles into target-lattice excitations (heat) and discuss the possibility to create ordered structures using the guiding effect observed in insulating conical structures.

  1. Attenuation of teratoma formation by p27 overexpression in induced pluripotent stem cells.

    Science.gov (United States)

    Matsu-ura, Toru; Sasaki, Hiroshi; Okada, Motoi; Mikoshiba, Katsuhiko; Ashraf, Muhammad

    2016-02-15

    Pluripotent stem cells, such as embryonic stem cells or induced pluripotent stem cells, have a great potential for regenerative medicine. Induced pluripotent stem cells, in particular, are suitable for replacement of tissue by autologous transplantation. However, tumorigenicity is a major risk in clinical application of both embryonic stem cells and induced pluripotent stem cells. This study explores the possibility of manipulating the cell cycle for inhibition of tumorigenicity. We genetically modified mouse induced pluripotent stem cells (miPSCs) to overexpress p27 tumor suppressor and examined their proliferation rate, gene expression, cardiac differentiation, tumorigenicity, and therapeutic potential in a mouse model of coronary artery ligation. Overexpression of p27 inhibited cell division of miPSCs, and that inhibition was dependent on the expression level of p27. p27 overexpressing miPSCs had pluripotency characteristics but lost stemness earlier than normal miPSCs during embryoid body and teratoma formation. These cellular characteristics led to none or smaller teratoma when the cells were injected into nude mice. Transplantation of both miPSCs and p27 overexpressing miPSCs into the infarcted mouse heart reduced the infarction size and improved left ventricular function. The overexpression of p27 attenuated tumorigenicity by reducing proliferation and earlier loss of stemness of miPSCs. The overexpression of p27 did not affect pluripotency and differentiation characteristics of miPSC. Therefore, regulation of the proliferation rate of miPSCs offers great therapeutic potential for repair of the injured myocardium.

  2. Exercise-induced bone formation is poorly linked to local strain magnitude in the sheep tibia.

    Directory of Open Access Journals (Sweden)

    Ian J Wallace

    Full Text Available Functional interpretations of limb bone structure frequently assume that diaphyses adjust their shape by adding bone primarily across the plane in which they are habitually loaded in order to minimize loading-induced strains. Here, to test this hypothesis, we characterize the in vivo strain environment of the sheep tibial midshaft during treadmill exercise and examine whether this activity promotes bone formation disproportionately in the direction of loading in diaphyseal regions that experience the highest strains. It is shown that during treadmill exercise, sheep tibiae were bent in an anteroposterior direction, generating maximal tensile and compressive strains on the anterior and posterior shaft surfaces, respectively. Exercise led to significantly increased periosteal bone formation; however, rather than being biased toward areas of maximal strains across the anteroposterior axis, exercise-related osteogenesis occurred primarily around the medial half of the shaft circumference, in both high and low strain regions. Overall, the results of this study demonstrate that loading-induced bone growth is not closely linked to local strain magnitude in every instance. Therefore, caution is necessary when bone shaft shape is used to infer functional loading history in the absence of in vivo data on how bones are loaded and how they actually respond to loading.

  3. Physiological type I collagen organization induces the formation of a novel class of linear invadosomes

    Science.gov (United States)

    Juin, Amélie; Billottet, Clotilde; Moreau, Violaine; Destaing, Olivier; Albiges-Rizo, Corinne; Rosenbaum, Jean; Génot, Elisabeth; Saltel, Frédéric

    2012-01-01

    Invadosomes are F-actin structures capable of degrading the matrix through the activation of matrix metalloproteases. As fibrillar type I collagen promotes pro-matrix metalloproteinase 2 activation by membrane type 1 matrix metalloproteinase, we aimed at investigating the functional relationships between collagen I organization and invadosome induction. We found that fibrillar collagen I induced linear F-actin structures, distributed along the fibrils, on endothelial cells, macrophages, fibroblasts, and tumor cells. These structures share features with conventional invadosomes, as they express cortactin and N-WASP and accumulate the scaffold protein Tks5, which proved essential for their formation. On the basis of their ability to degrade extracellular matrix elements and their original architecture, we named these structures “linear invadosomes.” Interestingly, podosomes or invadopodia were replaced by linear invadosomes upon contact of the cells with fibrillar collagen I. However, linear invadosomes clearly differ from classical invadosomes, as they do not contain paxillin, vinculin, and β1/β3 integrins. Using knockout mouse embryonic fibroblasts and RGD peptide, we demonstrate that linear invadosome formation and activity are independent of β1 and β3 integrins. Finally, linear invadosomes also formed in a three-dimensional collagen matrix. This study demonstrates that fibrillar collagen I is the physiological inducer of a novel class of invadosomes. PMID:22114353

  4. Nitrogen remobilisation facilitates adventitious root formation on reversible dark-induced carbohydrate depletion in Petunia hybrida.

    Science.gov (United States)

    Zerche, Siegfried; Haensch, Klaus-Thomas; Druege, Uwe; Hajirezaei, Mohammad-Reza

    2016-10-10

    Adventitious root (AR) formation in axillary shoot tip cuttings is a crucial physiological process for ornamental propagation that is utilised in global production chains for young plants. In this process, the nitrogen and carbohydrate metabolisms of a cutting are regulated by its total nitrogen content (N t ), dark exposure during transport and irradiance levels at distinct production sites and phases through a specific plasticity to readjust metabolite pools. Here, we examined how elevated N t contents with a combined dark exposure of cuttings influence their internal N-pools including free amino acids and considered early anatomic events of AR formation as well as further root development in Petunia hybrida cuttings. Enhanced N t contents of unrooted cuttings resulted in elevated total free amino acid levels and in particular glutamate (glu) and glutamine (gln) in leaf and basal stem. N-allocation to mobile N-pools increased whereas the allocation to insoluble protein-N declined. A dark exposure of cuttings conserved initial N t and nitrate-N, while it reduced insoluble protein-N and increased soluble protein, amino- and amide-N. The increase of amino acids mainly comprised asparagine (asn), aspartate (asp) and arginine (arg) in the leaves, with distinct tissue specific responses to an elevated N supply. Dark exposure induced an early transient rise of asp followed by a temporary increase of glu. A strong positive N effect of high N t contents of cuttings on AR formation after 384 h was observed. Root meristematic cells developed at 72 h with a negligible difference for two N t levels. After 168 h, an enhanced N t accelerated AR formation and gave rise to first obvious fully developed roots while only meristems were formed with a low N t . However, dark exposure for 168 h promoted AR formation particularly in cuttings with a low N t to such an extent so that the benefit of the enhanced N t was almost compensated. Combined dark exposure and low N t of

  5. Observational evidence for supernova-induced star formation: Canis Major R1

    International Nuclear Information System (INIS)

    Herbst, W.; Assousa, G.E.

    1977-01-01

    The R association CMa R1, which contains two classical Herbig emission stars (Z CMa and HD 53367) and several other extremely young stellar objects, is found to lie at the edge of a large-scale ring of emission nebulosity. The form of the ring, which is also seen at radio wavelengths, and the absence of luminous stellar objects at its center suggest that it may be a relatively old supernova remnant (SNR). This suggestion is greatly strengthened by the discovery of an expanding H I shell coincident with the optical feature and the discovery of a runaway star, HD 54662, in CMa OB1. An age of order 5 x 10 5 years is derived for the SNR by comparing its properties with theoretical expectation based on models of SNRs evolving in a uniform medium. The close agreement between the likely ages of the stars and the age of the SNR, as well as the location of the recently formed objects with respect to the supernova shell, strongly support the hypothesis that a supernova event triggered star formation in CMa R1. Several other cases where evidence exists for supernova-induced star formation are briefly discussed, the most interesting being the Orion region where the hypothesis may provide a simple explanation for such diverse features as the runaway stars, Barnard's loop, and the gas kinematics and recent star formation in the Trapezium region

  6. Formation of thermally induced aggregates of the soya globulin beta-conglycinin.

    Science.gov (United States)

    Mills, E N; Huang, L; Noel, T R; Gunning, A P; Morris, V J

    2001-06-11

    The effect of ionic strength (I) on the formation of thermally induced aggregates by the 7S globular storage protein of soya, beta-conglycinin, has been studied using atomic force microscopy. Aggregates were only apparent when I> or =0.1, and had a fibrous appearance, with a height (diameter) of 8-11 nm. At high ionic strength (I=1.0) the aggregates appeared to associate into clumps. When aggregate formation was studied at I=0.2, it was clear that aggregation only began at temperatures above the main thermal transition for the protein at 75 degrees C, as determined by differential scanning calorimetry. This coincided with a small change in secondary structure, as indicated by circular dichroism spectroscopy, suggesting that a degree of unfolding was necessary for aggregation to proceed. Despite prolonged heating the size of the aggregates did not increase indefinitely, suggesting that certain beta-conglycinin isoforms were able to act as chain terminators. At higher protein concentrations (1% w/v) the linear aggregates appeared to form large macroaggregates, which may be the precursors of protein gel formation. The ability of beta-conglycinin to form such distinctive aggregates is discussed in relation to the presence of acidic inserts in certain of the beta-conglycinin subunits, which may play an important role in limiting aggregate length.

  7. Microwave-induced electrostatic etching: generation of highly reactive magnesium for application in Grignard reagent formation.

    Science.gov (United States)

    van de Kruijs, Bastiaan H P; Dressen, Mark H C L; Meuldijk, Jan; Vekemans, Jef A J M; Hulshof, Lumbertus A

    2010-04-07

    A detailed study regarding the influence of microwave irradiation on the formation of a series of Grignard reagents in terms of rates and selectivities has revealed that these heterogeneous reactions may display a beneficial microwave effect. The interaction between microwaves and magnesium turnings generates violent electrostatic discharges. These discharges on magnesium lead to melting of the magnesium surface, thus generating highly active magnesium particles. As compared to conventional operation the microwave-induced discharges on the magnesium surface lead to considerably shorter initiation times for the insertion of magnesium in selected substrates (i.e. halothiophenes, halopyridines, octyl halides, and halobenzenes). Thermographic imaging and surface characterization by scanning electron microscopy showed that neither selective heating nor a "specific" microwave effect was causing the reduction in initiation times. This novel and straightforward initiation method eliminates the use of toxic and environmentally adverse initiators. Thus, this initiation method limits the formation of by-products. We clearly demonstrated that microwave irradiation enables fast Grignard reagent formation. Therefore, microwave technology is promising for process intensification of Grignard based coupling reactions.

  8. Formation of high aspect ratio polyamide-6 nanofibers via electrically induced double layer during electrospinning

    International Nuclear Information System (INIS)

    Nirmala, R.; Nam, Ki Taek; Park, Soo-Jin; Shin, Yu-Shik; Navamathavan, R.; Kim, Hak Yong

    2010-01-01

    In the present study, the formation of high aspect ratio nanofibers in polyamide-6 was investigated as a function of applied voltage ranging from 15 to 25 kV using electrospinning technique. All other experimental parameters were kept constant. The electrospun polyamide-6 nanofibers were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF). FE-SEM images of polyamide-6 nanofibers showed that the diameter of the electrospun fiber was decreased with increasing applied voltage. At the critical applied voltage, the polymer solution was completely ionized to form the dense high aspect ratio nanofibers in between the main nanofibers. The diameter of the polyamide-6 nanofibers was observed to be in the range of 75-110 nm, whereas the high aspect ratio structures consisted of regularly distributed very fine nanofibers with diameters of about 9-28 nm. Trends in fiber diameter and diameter distribution were discussed for the high aspect ratio nanofibers. TEM results revealed that the formation of double layers in polyamide-6 nanofibers and then split-up into ultrafine fibers. The electrically induced double layer in combination with the polyelectrolytic nature of solution is proposed as the suitable mechanisms for the formation of high aspect ratio nanofibers in polyamide-6.

  9. Formation of Tidally Induced Bars in Galactic Flybys: Prograde versus Retrograde Encounters

    Science.gov (United States)

    Łokas, Ewa L.

    2018-04-01

    Bars in disk galaxies can be formed by interactions with other systems, including those of comparable mass. It has long been established that the effect of such interactions on galaxy morphology depends strongly on the orbital configuration, in particular the orientation of the intrinsic spin of the galactic disk with respect to its orbital angular momentum. Prograde encounters modify the morphology strongly, including the formation of tidally induced bars, while retrograde flybys should have little effect on morphology. Recent works on the subject reached conflicting conclusions, one using the impulse approximation and claiming no dependence on this angle in the properties of tidal bars. To resolve the controversy, we performed self-consistent N-body simulations of hyperbolic encounters between two identical Milky Way-like galaxies assuming different velocities and impact parameters, with one of the galaxies on a prograde and the other on a retrograde orbit. The galaxies were initially composed of an exponential stellar disk and an NFW dark halo, and they were stable against bar formation in isolation for 3 Gyr. We find that strong tidally induced bars form only in galaxies on prograde orbits. For smaller impact parameters and lower relative velocities, the bars are stronger and have lower pattern speeds. Stronger bars undergo extended periods of buckling instability that thicken their vertical structure. The encounters also lead to the formation of two-armed spirals with strength inversely proportional to the strength of the bars. We conclude that proper modeling of prograde and retrograde encounters cannot rely on the simplest impulse approximation.

  10. Mechanism of acetylcholine receptor cluster formation induced by DC electric field.

    Directory of Open Access Journals (Sweden)

    Hailong Luke Zhang

    Full Text Available BACKGROUND: The formation of acetylcholine receptor (AChR cluster is a key event during the development of the neuromuscular junction. It is induced through the activation of muscle-specific kinase (MuSK by the heparan-sulfate proteoglycan agrin released from the motor axon. On the other hand, DC electric field, a non-neuronal stimulus, is also highly effective in causing AChRs to cluster along the cathode-facing edge of muscle cells. METHODOLOGY/PRINCIPAL FINDINGS: To understand its molecular mechanism, quantum dots (QDs were used to follow the movement of AChRs as they became clustered under the influence of electric field. From analyses of trajectories of AChR movement in the membrane, it was concluded that diffuse receptors underwent Brownian motion until they were immobilized at sites of cluster formation. This supports the diffusion-mediated trapping model in explaining AChR clustering under the influence of this stimulus. Disrupting F-actin cytoskeleton assembly and interfering with rapsyn-AChR interaction suppressed this phenomenon, suggesting that these are integral components of the trapping mechanism induced by the electric field. Consistent with the idea that signaling pathways are activated by this stimulus, the localization of tyrosine-phosphorylated forms of AChR β-subunit and Src was observed at cathodal AChR clusters. Furthermore, disrupting MuSK activity through the expression of a kinase-dead form of this enzyme abolished electric field-induced AChR clustering. CONCLUSIONS: These results suggest that DC electric field as a physical stimulus elicits molecular reactions in muscle cells in the form of cathodal MuSK activation in a ligand-free manner to trigger a signaling pathway that leads to cytoskeletal assembly and AChR clustering.

  11. ION-INDUCED PROCESSING OF COSMIC SILICATES: A POSSIBLE FORMATION PATHWAY TO GEMS

    Energy Technology Data Exchange (ETDEWEB)

    Jäger, C.; Sabri, T. [Max Planck Institute for Astronomy, Heidelberg, Laboratory Astrophysics and Cluster Physics Group, Institute of Solid State Physics, Friedrich Schiller University Jena, Helmholtzweg 3, D-07743 Jena (Germany); Wendler, E. [Institute of Solid State Physics, Friedrich Schiller University Jena, Helmholtzweg 3, D-07743 Jena (Germany); Henning, Th., E-mail: cornelia.jaeger@uni-jena.de [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany)

    2016-11-01

    Ion-induced processing of dust grains in the interstellar medium and in protoplanetary and planetary disks plays an important role in the entire dust cycle. We have studied the ion-induced processing of amorphous MgFeSiO{sub 4} and Mg{sub 2}SiO{sub 4} grains by 10 and 20 keV protons and 90 keV Ar{sup +} ions. The Ar{sup +} ions were used to compare the significance of the light protons with that of heavier, but chemically inert projectiles. The bombardment was performed in a two-beam irradiation chamber for in situ ion-implantation at temperatures of 15 and 300 K and Rutherford Backscattering Spectroscopy to monitor the alteration of the silicate composition under ion irradiation. A depletion of oxygen from the silicate structure by selective sputtering of oxygen from the surface of the grains was observed in both samples. The silicate particles kept their amorphous structure, but the loss of oxygen caused the reduction of ferrous (Fe{sup 2+}) ions and the formation of iron inclusions in the MgFeSiO{sub 4} grains. A few Si inclusions were produced in the iron-free magnesium silicate sample pointing to a much less efficient reduction of Si{sup 4+} and formation of metallic Si inclusions. Consequently, ion-induced processing of magnesium-iron silicates can produce grains that are very similar to the glassy grains with embedded metals and sulfides frequently observed in interplanetary dust particles and meteorites. The metallic iron inclusions are strong absorbers in the NIR range and therefore a ubiquitous requirement to increase the temperature of silicate dust grains in IR-dominated astrophysical environments such as circumstellar shells or protoplanetary disks.

  12. Shock-induced kelyphite formation in the core of a complex impact crater

    Science.gov (United States)

    Deseta, Natalie; Boonsue, Suporn; Gibson, Roger L.; Spray, John G.

    2017-10-01

    We present a compositional and textural analysis of shock-induced microtextures in garnet porphyroblasts in migmatitic garnet-cordierite-biotite paragneisses from the centre of the Vredefort impact structure, South Africa. Detailed imaging and major element analysis of deformation features in, and adjacent to, the garnet porphyroblasts record a complex, heterogeneous distribution of shock effects at the microscale. As the most competent silicate mineral in the assemblage, with the highest Hugoniot Elastic Limit and a wide pressure-temperature stability field, the porphyroblastic garnet preserves a more diverse shock deformation response compared to minerals such as quartz and feldspar, which underwent more comprehensive shock metamorphism and subsequent annealing. The garnet porphyroblasts display pre-impact fractures that are overprinted by later intra-granular Hertzian and distinctive planar fractures associated with the impact event. Shock-induced strain localization occurred along internal slip planes and defects, including pre-existing fractures and inclusion boundaries in the garnet. Symplectitic (kelyphitic) coronas commonly enclose the garnet porphyroblasts, and inhabit intra-granular fractures. The kelyphite assemblage in fractures with open communication beyond garnet grain boundaries is characterized by orthopyroxene—cordierite—sapphirine. Conversely, the kelyphite assemblage in closed-off intra-granular fractures is highly variable, comprising spatially restricted combinations of a secondary garnet phase with a majoritic component, Al-rich orthopyroxene, sapphirine and cordierite. The impedance contrast between garnet porphyroblasts and their inclusions further facilitated the formation of shock-induced features (Al-rich orthopyroxene coronas). Together, the textural and mineralogical data suggest that these features provide a record of oscillatory shock perturbations initiated under confining pressure beneath the transient crater floor. This

  13. Flavonols Protect Against UV Radiation-Induced Thymine Dimer Formation in an Artificial Skin Mimic.

    Science.gov (United States)

    Maini, Sabia; Fahlman, Brian M; Krol, Ed S

    2015-01-01

    Exposure of skin to ultraviolet light has been shown to have a number of deleterious effects including photoaging, photoimmunosuppression and photoinduced DNA damage which can lead to the development of skin cancer. In this paper we present a study on the ability of three flavonols to protect EpiDerm™, an artificial skin mimic, against UV-induced damage. EpiDerm™ samples were treated with flavonol in acetone and exposed to UVA (100 kJ/m(2) at 365 nm) and UVB (9000 J/m(2) at 310 nm) radiation. Secretion of matrix metalloproteinase-1 (MMP-1) and tumor necrosis factor-α (TNF-a) were determined by ELISA, cyclobutane pyrimidine dimers were quantified using LC-APCI-MS. EpiDerm™ treated topically with quercetin significantly decreased MMP-1 secretion induced by UVA (100 µM) or UVB (200 µM) and TNF-a secretion was significantly reduced at 100 µM quercetin for both UVA and UVB radiation. In addition, topically applied quercetin was found to be photostable over the duration of the experiment. EpiDerm™ samples were treated topically with quercetin, kaempferol or galangin (52 µM) immediately prior to UVA or UVB exposure, and the cyclobutane thymine dimers (T-T (CPD)) were quantified using an HPLC-APCI MS/MS method. All three flavonols significantly decreased T-T (CPD) formation in UVB irradiated EpiDerm™, however no effect could be observed for the UVA irradiation experiments as thymine dimer formation was below the limit of quantitation. Our results suggest that flavonols can provide protection against UV radiation-induced skin damage through both antioxidant activity and direct photo-absorption. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  14. Dasatinib inhibits both osteoclast activation and prostate cancer PC-3-cell-induced osteoclast formation.

    Science.gov (United States)

    Araujo, John C; Poblenz, Ann; Corn, Paul; Parikh, Nila U; Starbuck, Michael W; Thompson, Jerry T; Lee, Francis; Logothetis, Christopher J; Darnay, Bryant G

    2009-11-01

    Therapies to target prostate cancer bone metastases have only limited effects. New treatments are focused on the interaction between cancer cells, bone marrow cells and the bone matrix. Osteoclasts play an important role in the development of bone tumors caused by prostate cancer. Since Src kinase has been shown to be necessary for osteoclast function, we hypothesized that dasatinib, a Src family kinase inhibitor, would reduce osteoclast activity and prostate cancer (PC-3) cell-induced osteoclast formation. Dasatinib inhibited RANKL-induced osteoclast differentiation of bone marrow-derived monocytes with an EC(50) of 7.5 nM. PC-3 cells, a human prostate cancer cell line, were able to differentiate RAW 264.7 cells, a murine monocytic cell line, into osteoclasts, and dasatinib inhibited this differentiation. In addition, conditioned medium from PC-3 cell cultures was able to differentiate RAW 264.7 cells into osteoclasts and this too, was inhibited by dasatinib. Even the lowest concentration of dasatinib, 1.25 nmol, inhibited osteoclast differentiation by 29%. Moreover, dasatinib inhibited osteoclast activity by 58% as measured by collagen 1 release. We performed in vitro experiments utilizing the Src family kinase inhibitor dasatinib to target osteoclast activation as a means of inhibiting prostate cancer bone metastases. Dasatinib inhibits osteoclast differentiation of mouse primary bone marrow-derived monocytes and PC-3 cell-induced osteoclast differentiation. Dasatinib also inhibits osteoclast degradation activity. Inhibiting osteoclast differentiation and activity may be an effective targeted therapy in patients with prostate cancer bone metastases.

  15. Formation and damping of a shock wave induced by laser in a metallic target

    International Nuclear Information System (INIS)

    Cottet, F.

    1981-01-01

    In the first part of this work, a numerical simulation of the formation and of the damping of the shock wave induced in a solid target by a laser impulse is developed. It allows to interpret the experimental obtained in the second part of the study. Two series of experiments have been realized. An iron target metallographic study is intended to verify if laser shocks produce effects comparable with conventional shocks, particularly a deformation by albite twinning the existence of which is related to the shock amplitude and its evolution during the propagation in the target. Macles observation become a possible mean to estimate the value of the induced pressures. Another experiment series has been realized to determine more directly the shock parameters. Piezoelectric cermets have been used to detect a shock-wave passage and to measure the time taken to go through targets of variable thickness. The numerical solution allows, afterwards, to deduce the maximum pressure of the induced shock. The most part of the tests have been done on copper targets, the behaviour of which is well known in a large pressure domain. Some tests have been realized on aluminium and iron targets [fr

  16. Radiation-induced segregation and void formation in C+ ion-irradiated vanadium-carbon alloys

    International Nuclear Information System (INIS)

    Takeyama, T.; Ohnuki, S.; Takahashi, H.; Sato, Y.; Mochizuki, S.

    1982-01-01

    To clarify the effect of interstitial elements on radiation-induced segregation and void formation in V and V-C alloys irradiated by 200 keV C + ions to a dose of 48 dpa at 973 K, the microstructural observation and the measurement of C segregation to the surfaces were carried out by TEM and XPS. Voids, dislocations and precipitates were produced in all of the specimens during irradiation. The addition of C in V led to a reduction of void size and to increase in void number density, consequently the void swelling was suppressed strongly. Radiation-induced segregation of C was observed clearly on and near the irradiated surfaces of V-C alloys and as a result of the enrichment of C atoms, carbides precipitated on the surfaces. It is the first evidence of the radiation-induced segregation of interstitial elements on the surfaces. Also, quasi-carbides were observed on the (210) habit plaints near large voids and dislocations in V. The phenomena show that C atoms, which was insolved and/or implanted, interact strongly with vacancies rather than self-interstitial atoms and migrate with vacancies toward defect sinks, such as surfaces, voids, and dislocations. The segregated zones of C reduced the sink efficiency of the defects, and showed the effect of the suppression on void in V-C alloys. (author)

  17. Laforin prevents stress-induced polyglucosan body formation and Lafora disease progression in neurons.

    Science.gov (United States)

    Wang, Yin; Ma, Keli; Wang, Peixiang; Baba, Otto; Zhang, Helen; Parent, Jack M; Zheng, Pan; Liu, Yang; Minassian, Berge A; Liu, Yan

    2013-08-01

    Glycogen, the largest cytosolic macromolecule, is soluble because of intricate construction generating perfect hydrophilic-surfaced spheres. Little is known about neuronal glycogen function and metabolism, though progress is accruing through the neurodegenerative epilepsy Lafora disease (LD) proteins laforin and malin. Neurons in LD exhibit Lafora bodies (LBs), large accumulations of malconstructed insoluble glycogen (polyglucosans). We demonstrated that the laforin-malin complex reduces LBs and protects neuronal cells against endoplasmic reticulum stress-induced apoptosis. We now show that stress induces polyglucosan formation in normal neurons in culture and in the brain. This is mediated by increased glucose-6-phosphate allosterically hyperactivating muscle glycogen synthase (GS1) and is followed by activation of the glycogen digesting enzyme glycogen phosphorylase. In the absence of laforin, stress-induced polyglucosans are undigested and accumulate into massive LBs, and in laforin-deficient mice, stress drastically accelerates LB accumulation and LD. The mechanism through which laforin-malin mediates polyglucosan degradation remains unclear but involves GS1 dephosphorylation by laforin. Our work uncovers the presence of rapid polyglucosan metabolism as part of the normal physiology of neuroprotection. We propose that deficiency in the degradative phase of this metabolism, leading to LB accumulation and resultant seizure predisposition and neurodegeneration, underlies LD.

  18. The genetic basis of constitutive and herbivore-induced ESP-independent nitrile formation in Arabidopsis.

    Science.gov (United States)

    Burow, Meike; Losansky, Anja; Müller, René; Plock, Antje; Kliebenstein, Daniel J; Wittstock, Ute

    2009-01-01

    Glucosinolates are a group of thioglucosides that are components of an activated chemical defense found in the Brassicales. Plant tissue damage results in hydrolysis of glucosinolates by endogenous thioglucosidases known as myrosinases. Spontaneous rearrangement of the aglucone yields reactive isothiocyanates that are toxic to many organisms. In the presence of specifier proteins, alternative products, namely epithionitriles, simple nitriles, and thiocyanates with different biological activities, are formed at the expense of isothiocyanates. Recently, simple nitriles were recognized to serve distinct functions in plant-insect interactions. Here, we show that simple nitrile formation in Arabidopsis (Arabidopsis thaliana) ecotype Columbia-0 rosette leaves increases in response to herbivory and that this increase is independent of the known epithiospecifier protein (ESP). We combined phylogenetic analysis, a screen of Arabidopsis mutants, recombinant protein characterization, and expression quantitative trait locus mapping to identify a gene encoding a nitrile-specifier protein (NSP) responsible for constitutive and herbivore-induced simple nitrile formation in Columbia-0 rosette leaves. AtNSP1 is one of five Arabidopsis ESP homologues that promote simple nitrile, but not epithionitrile or thiocyanate, formation. Four of these homologues possess one or two lectin-like jacalin domains, which share a common ancestry with the jacalin domains of the putative Arabidopsis myrosinase-binding proteins MBP1 and MBP2. A sixth ESP homologue lacked specifier activity and likely represents the ancestor of the gene family with a different biochemical function. By illuminating the genetic and biochemical bases of simple nitrile formation, our study provides new insights into the evolution of metabolic diversity in a complex plant defense system.

  19. Influence of crystal orientation on the formation of femtosecond laser-induced periodic surface structures and lattice defects accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Sedao, Xxx; Garrelie, Florence, E-mail: florence.garrelie@univ-st-etienne.fr; Colombier, Jean-Philippe; Reynaud, Stéphanie; Pigeon, Florent [Université de Lyon, CNRS, UMR5516, Laboratoire Hubert Curien, Université de Saint Etienne, Jean Monnet, F-42023 Saint-Etienne (France); Maurice, Claire; Quey, Romain [Ecole Nationale Supérieure des Mines de Saint-Etienne, CNRS, UMR5307, Laboratoire Georges Friedel, F-42023 Saint-Etienne (France)

    2014-04-28

    The influence of crystal orientation on the formation of femtosecond laser-induced periodic surface structures (LIPSS) has been investigated on a polycrystalline nickel sample. Electron Backscatter Diffraction characterization has been exploited to provide structural information within the laser spot on irradiated samples to determine the dependence of LIPSS formation and lattice defects (stacking faults, twins, dislocations) upon the crystal orientation. Significant differences are observed at low-to-medium number of laser pulses, outstandingly for (111)-oriented surface which favors lattice defects formation rather than LIPSS formation.

  20. Sulforaphane-induced transcription of thioredoxin reductase in lens: possible significance against cataract formation

    Directory of Open Access Journals (Sweden)

    Varma SD

    2013-10-01

    Full Text Available Shambhu D Varma, Krish Chandrasekaran, Svitlana Kovtun Department of Ophthalmology and Visual Sciences, University of Maryland, Baltimore, MD, USA Purpose: Sulforaphane is a phytochemically derived organic isothiocyanate 1-isothiocyanato-4-methylsulfinyl-butane present naturally in crucifers, including broccoli and cauliflower. Biochemically, it has been reported to induce the transcription of several antioxidant enzymes. Since such enzymes have been implicated in preventing cataract formation triggered by the intraocular generation of oxy-radical species, the purpose of this investigation was to examine whether it could induce the formation of antioxidant enzymes in the eye lens. Thioredoxin reductase (TrxR was used as the target of such induction. Methods: Mice lenses were cultured for an overnight period of 17 hours in medium 199 fortified with 10% fetal calf serum. Incubation was conducted in the absence and presence of sulforaphane (5 µM. Subsequently, the lenses were homogenized in phosphate-buffered saline (PBS, followed by centrifugation. TrxR activity was determined in the supernatant by measuring the nicotinamide adenine dinucleotide phosphate (reduced (NADPH-dependent reduction of 5,5´-dithiobis-2-nitrobenzoic acid (DTNB. Non-specific reduction of DTNB was corrected for by conducting parallel determinations in the presence of aurothiomalate. The reduction of DTNB was followed spectrophotometrically at 410 nm. Results: The activity of TrxR in the lenses incubated with sulforaphane was found to be elevated to 18 times of that observed in lenses incubated without sulforaphane. It was also noticeably higher in the lenses incubated without sulforaphane than in the un-incubated fresh lenses. However, this increase was much lower than that observed for lenses incubated with sulforaphane. Conclusion: Sulforaphane has been found to enhance TrxR activity in the mouse lens in culture. In view of the protective effect of the antioxidant enzymes

  1. Raffinose Induces Biofilm Formation by Streptococcus mutans in Low Concentrations of Sucrose by Increasing Production of Extracellular DNA and Fructan.

    Science.gov (United States)

    Nagasawa, Ryo; Sato, Tsutomu; Senpuku, Hidenobu

    2017-08-01

    Streptococcus mutans is the primary etiological agent of dental caries and causes tooth decay by forming a firmly attached biofilm on tooth surfaces. Biofilm formation is induced by the presence of sucrose, which is a substrate for the synthesis of extracellular polysaccharides but not in the presence of oligosaccharides. Nonetheless, in this study, we found that raffinose, which is an oligosaccharide with an intestinal regulatory function and antiallergic effect, induced biofilm formation by S. mutans in a mixed culture with sucrose, which was at concentrations less than those required to induce biofilm formation directly. We analyzed the possible mechanism behind the small requirement for sucrose for biofilm formation in the presence of raffinose. Our results suggested that sucrose contributed to an increase in bacterial cell surface hydrophobicity and biofilm formation. Next, we examined how the effects of raffinose interacted with the effects of sucrose for biofilm formation. We showed that the presence of raffinose induced fructan synthesis by fructosyltransferase and aggregated extracellular DNA (eDNA, which is probably genomic DNA released from dead cells) into the biofilm. eDNA seemed to be important for biofilm formation, because the degradation of DNA by DNase I resulted in a significant reduction in biofilm formation. When assessing the role of fructan in biofilm formation, we found that fructan enhanced eDNA-dependent cell aggregation. Therefore, our results show that raffinose and sucrose have cooperative effects and that this induction of biofilm formation depends on supportive elements that mainly consist of eDNA and fructan. IMPORTANCE The sucrose-dependent mechanism of biofilm formation in Streptococcus mutans has been studied extensively. Nonetheless, the effects of carbohydrates other than sucrose are inadequately understood. Our findings concerning raffinose advance the understanding of the mechanism underlying the joint effects of sucrose and

  2. Chromosomal instability can be induced by the formation of breakage-prone chromosome rearrangement junctions

    International Nuclear Information System (INIS)

    Allen, R.N.; Ritter, L.; Moore, S.R.; Grosovsky, A.J.

    2003-01-01

    Full text: Studies in our lab have led to the hypothesis that chromosomal rearrangements can generate novel breakage-prone sites, resulting in chromosomal instability acting predominantly in cis. For example, specific breakage of large blocks of centromeric region heterochromatin on chromosome 16q by treatment with 2,6-diaminopurine (DAP) is associated with repeated rearrangement of chromosome 16q during outgrowth of DAP-treated clones, thereby establishing a link between the initial site of damage and the occurrence of persistent chromosomal instability. Similarly, karyotypic analysis of gamma ray induced instability demonstrated that chromosomal rearrangements in sub-clones were significantly clustered near the site of previously identified chromosomal rearrangement junctions in unstable parental clones. This study investigates the hypothesis that integration of transfected sequences into host chromosomes could create breakage-prone junction regions and persistent genomic instability without exposure to DNA-damage agents. These junctions may mimic the unstable chromosomal rearrangements induced by DAP or radiation, and thus provide a test of the broader hypothesis that instability can to some extent be attributed to the formation of novel chromosomal breakage hot spots. These experiments were performed using human-hamster hybrid AL cells containing a single human chromosome 11, which was used to monitor instability in a chromosomal painting assay. AL cells were transfected with a 2.5 Kb fragment containing multiple copies of the 180 bp human alpha heterochromatic repeat, which resulted in chromosomal instability in 41% of the transfected clones. Parallel exposure to gamma-radiation resulted in a similar level of chromosomal instability, although control transfections with plasmid alone did not lead to karyotypic instability. Chromosomal instability induced by integration of alpha heterochromatic repeats was also frequently associated with delayed reproductive

  3. Studies for the application of Boron neutron capture therapy (BNCT) to the treatment of differentiated thyroid cancer (CDT)

    International Nuclear Information System (INIS)

    Carpano, Marina; Thomasz, Lisa; Perona, Marina; Juvenal, Guillermo J.; Pisarev, Mario; Dagrosa, Maria A.; Nievas, Susana I.; Pozzi, Emiliano; Thorp, Silvia

    2009-01-01

    Boron neutron capture therapy (BNCT) is a high linear energy transfer (LET) radiotherapy for cancer, which it is based on the nuclear reaction that occurs when boron-10 that it is a non radioactive isotope of the natural elemental boron, is irradiated with low energy thermal neutrons to produce an alpha particle and a nucleus of lithium-7. Both particles have a range smaller than the diameter of a cell causing cell tumor death without significant damage to the surrounding normal tissues. In previous studies we have shown that BNCT can be a possibility for the treatment of undifferentiated thyroid cancer (UTC). However, more than 80 % of patients with thyroid neoplasm present differentiated carcinoma (CDT). These carcinomas are treated by surgery followed by therapy with 131 I and mostly these forms are well controlled. But in some patients recurrence of the tumor is observed. BNCT can be an alternative for these patients in who the tumor lost the capacity to concentrate iodide. The aim of these studies was to evaluate the possibility of treating differentiated thyroid cancer by BNCT. Materials and Methods: The human cell lines of follicular (WRO) and papillary carcinomas (TPC-1) were grown in RPMI and modified DMEM medium respectively. Both supplemented with 10 % of SFB. The cell line of thyroid rat, FRTL-5, used as control normal, was cultured in DMEM/F12. The uptakes of 125 I and p-borophenylalanine BPA (6.93mM) were studied. The intracellular boron concentration was measured by inductively coupled plasma optical emission spectroscopy (ICP-OES) at 2 hr post incubation. The NIH strain of male nude mice, aged 6 to 8 weeks and weighing 20 to 25 g were implanted (s.c) in the back right flank with different concentrations of tumor cells. The size of the tumors was measured with a caliper twice or three times a week and the volume was calculated according the following formulae: A 2 x B/2 (were A is the width and B is the length). To evaluate the BPA uptake, animals

  4. Menadione-induced DNA fragmentation without 8-oxo-2'-deoxyguanosine formation in isolated rat hepatocytes

    DEFF Research Database (Denmark)

    Fischer-Nielsen, A; Corcoran, G B; Poulsen, H E

    1995-01-01

    Menadione (2-methyl-1,4-naphthoquinone) induces oxidative stress in cells causing perturbations in the cytoplasm as well as nicking of DNA. The mechanisms by which DNA damage occurs are still unclear, but a widely discussed issue is whether menadione-generated reactive oxygen species (ROS) directly...... damage DNA. In the present study, we measured the effect of menadione on formation of 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxodG), an index of oxidative DNA base modifications, and on DNA fragmentation. Isolated hepatocytes from phenobarbital-pretreated rats were exposed to menadione, 25-400 micro......M, for 15, 90 or 180 min with or without prior depletion of reduced glutathione (GSH) by diethyl maleate. Menadione caused profound GSH depletion and internucleosomal DNA fragmentation, which was demonstrated by a prominent fragmentation ladder on agarose gel electrophoresis. We found no oxidative...

  5. In vivo differentiation of induced pluripotent stem cells into neural stem cells by chimera formation.

    Science.gov (United States)

    Choi, Hyun Woo; Hong, Yean Ju; Kim, Jong Soo; Song, Hyuk; Cho, Ssang Gu; Bae, Hojae; Kim, Changsung; Byun, Sung June; Do, Jeong Tae

    2017-01-01

    Like embryonic stem cells, induced pluripotent stem cells (iPSCs) can differentiate into all three germ layers in an in vitro system. Here, we developed a new technology for obtaining neural stem cells (NSCs) from iPSCs through chimera formation, in an in vivo environment. iPSCs contributed to the neural lineage in the chimera, which could be efficiently purified and directly cultured as NSCs in vitro. The iPSC-derived, in vivo-differentiated NSCs expressed NSC markers, and their gene-expression pattern more closely resembled that of fetal brain-derived NSCs than in vitro-differentiated NSCs. This system could be applied for differentiating pluripotent stem cells into specialized cell types whose differentiation protocols are not well established.

  6. Locally formation of Ag nanoparticles in chalcogenide phase change thin films induced by nanosecond laser pulses

    International Nuclear Information System (INIS)

    Huang, Huan; Zhang, Lei; Wang, Yang; Han, Xiaodong; Wu, Yiqun; Zhang, Ze; Gan, Fuxi

    2012-01-01

    A simple method to optically synthesize Ag nanoparticles in Ge 2 Sb 2 Te 5 phase change matrix is described. The fine structures of the locally formed phase change chalcogenide nanocomposite are characterized by high-resolution transmission electron microscopy. The formation mechanism of the nanocomposite is discussed with temperature evolution and distribution simulations. This easy-prepared metal nano-particle-embedded phase change microstructure will have great potential in nanophotonics applications, such as for plasmonic functional structures. This also provides a generalized approach to the preparation of well-dispersed nanoparticle-embedded composite thin films in principle. -- Highlights: ► We describe a method to prepare chalcogenide microstructures with Ag nanoparticles. ► We give the fine structural images of phase change nanocomposites. ► We discuss the laser-induced fusion mechanism by temperature simulation. ► This microstructure will have great potential in nanophotonics applications.

  7. Human Metapneumovirus Induces Formation of Inclusion Bodies for Efficient Genome Replication and Transcription.

    Science.gov (United States)

    Cifuentes-Muñoz, Nicolás; Branttie, Jean; Slaughter, Kerri Beth; Dutch, Rebecca Ellis

    2017-12-15

    induce the formation of large cytoplasmic granules, named inclusion bodies, for genome replication and transcription. Unlike other cytoplasmic structures, such as stress granules and processing bodies, inclusion bodies are exclusively present in infected cells and contain HMPV RNA and proteins to more efficiently transcribe and replicate the viral genome. Though inclusion body formation is nuanced, it corresponds to a more generalized strategy used by different viruses, including filoviruses and rhabdoviruses, for genome transcription and replication. Thus, an understanding of inclusion body formation is crucial for the discovery of innovative therapeutic targets. Copyright © 2017 American Society for Microbiology.

  8. Laser-induced micropore formation and modification of cartilage structure in osteoarthritis healing.

    Science.gov (United States)

    Sobol, Emil; Baum, Olga; Shekhter, Anatoly; Wachsmann-Hogiu, Sebastian; Shnirelman, Alexander; Alexandrovskaya, Yulia; Sadovskyy, Ivan; Vinokur, Valerii

    2017-09-01

    Pores are vital for functioning of avascular tissues. Laser-induced pores play an important role in the process of cartilage regeneration. The aim of any treatment for osteoarthritis is to repair hyaline-type cartilage. The aims of this study are to answer two questions: (1) How do laser-assisted pores affect the cartilaginous cells to synthesize hyaline cartilage (HC)? and (2) How can the size distribution of pores arising in the course of laser radiation be controlled? We have shown that in cartilage, the pores arise predominately near chondrocytes, which promote nutrition of cells and signal molecular transfer that activates regeneration of cartilage. In vivo laser treatment of damaged cartilage of miniature pig joints provides cellular transformation and formation of HC. We propose a simple model of pore formation in biopolymers that paves the way for going beyond the trial-and-error approach when choosing an optimal laser treatment regime. Our findings support the approach toward laser healing of osteoarthritis.

  9. Inhibition of Ribosome Recruitment Induces Stress Granule Formation Independently of Eukaryotic Initiation Factor 2α Phosphorylation

    Science.gov (United States)

    Mazroui, Rachid; Sukarieh, Rami; Bordeleau, Marie-Eve; Kaufman, Randal J.; Northcote, Peter; Tanaka, Junichi; Gallouzi, Imed

    2006-01-01

    Cytoplasmic aggregates known as stress granules (SGs) arise as a consequence of cellular stress and contain stalled translation preinitiation complexes. These foci are thought to serve as sites of mRNA storage or triage during the cell stress response. SG formation has been shown to require induction of eukaryotic initiation factor (eIF)2α phosphorylation. Herein, we investigate the potential role of other initiation factors in this process and demonstrate that interfering with eIF4A activity, an RNA helicase required for the ribosome recruitment phase of translation initiation, induces SG formation and that this event is not dependent on eIF2α phosphorylation. We also show that inhibition of eIF4A activity does not impair the ability of eIF2α to be phosphorylated under stress conditions. Furthermore, we observed SG assembly upon inhibition of cap-dependent translation after poliovirus infection. We propose that SG modeling can occur via both eIF2α phosphorylation-dependent and -independent pathways that target translation initiation. PMID:16870703

  10. Inhibition of ribosome recruitment induces stress granule formation independently of eukaryotic initiation factor 2alpha phosphorylation.

    Science.gov (United States)

    Mazroui, Rachid; Sukarieh, Rami; Bordeleau, Marie-Eve; Kaufman, Randal J; Northcote, Peter; Tanaka, Junichi; Gallouzi, Imed; Pelletier, Jerry

    2006-10-01

    Cytoplasmic aggregates known as stress granules (SGs) arise as a consequence of cellular stress and contain stalled translation preinitiation complexes. These foci are thought to serve as sites of mRNA storage or triage during the cell stress response. SG formation has been shown to require induction of eukaryotic initiation factor (eIF)2alpha phosphorylation. Herein, we investigate the potential role of other initiation factors in this process and demonstrate that interfering with eIF4A activity, an RNA helicase required for the ribosome recruitment phase of translation initiation, induces SG formation and that this event is not dependent on eIF2alpha phosphorylation. We also show that inhibition of eIF4A activity does not impair the ability of eIF2alpha to be phosphorylated under stress conditions. Furthermore, we observed SG assembly upon inhibition of cap-dependent translation after poliovirus infection. We propose that SG modeling can occur via both eIF2alpha phosphorylation-dependent and -independent pathways that target translation initiation.

  11. Laser-induced micropore formation and modification of cartilage structure in osteoarthritis healing

    Science.gov (United States)

    Sobol, Emil; Baum, Olga; Shekhter, Anatoly; Wachsmann-Hogiu, Sebastian; Shnirelman, Alexander; Alexandrovskaya, Yulia; Sadovskyy, Ivan; Vinokur, Valerii

    2017-09-01

    Pores are vital for functioning of avascular tissues. Laser-induced pores play an important role in the process of cartilage regeneration. The aim of any treatment for osteoarthritis is to repair hyaline-type cartilage. The aims of this study are to answer two questions: (1) How do laser-assisted pores affect the cartilaginous cells to synthesize hyaline cartilage (HC)? and (2) How can the size distribution of pores arising in the course of laser radiation be controlled? We have shown that in cartilage, the pores arise predominately near chondrocytes, which promote nutrition of cells and signal molecular transfer that activates regeneration of cartilage. In vivo laser treatment of damaged cartilage of miniature pig joints provides cellular transformation and formation of HC. We propose a simple model of pore formation in biopolymers that paves the way for going beyond the trial-and-error approach when choosing an optimal laser treatment regime. Our findings support the approach toward laser healing of osteoarthritis.

  12. Strong homeostatic TCR signals induce formation of self-tolerant virtual memory CD8 T cells.

    Science.gov (United States)

    Drobek, Ales; Moudra, Alena; Mueller, Daniel; Huranova, Martina; Horkova, Veronika; Pribikova, Michaela; Ivanek, Robert; Oberle, Susanne; Zehn, Dietmar; McCoy, Kathy D; Draber, Peter; Stepanek, Ondrej

    2018-05-11

    Virtual memory T cells are foreign antigen-inexperienced T cells that have acquired memory-like phenotype and constitute 10-20% of all peripheral CD8 + T cells in mice. Their origin, biological roles, and relationship to naïve and foreign antigen-experienced memory T cells are incompletely understood. By analyzing T-cell receptor repertoires and using retrogenic monoclonal T-cell populations, we demonstrate that the virtual memory T-cell formation is a so far unappreciated cell fate decision checkpoint. We describe two molecular mechanisms driving the formation of virtual memory T cells. First, virtual memory T cells originate exclusively from strongly self-reactive T cells. Second, the stoichiometry of the CD8 interaction with Lck regulates the size of the virtual memory T-cell compartment via modulating the self-reactivity of individual T cells. Although virtual memory T cells descend from the highly self-reactive clones and acquire a partial memory program, they are not more potent in inducing experimental autoimmune diabetes than naïve T cells. These data underline the importance of the variable level of self-reactivity in polyclonal T cells for the generation of functional T-cell diversity. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.

  13. Deep vein thrombus formation induced by flow reduction in mice is determined by venous side branches.

    Science.gov (United States)

    Brandt, Moritz; Schönfelder, Tanja; Schwenk, Melanie; Becker, Christian; Jäckel, Sven; Reinhardt, Christoph; Stark, Konstantin; Massberg, Steffen; Münzel, Thomas; von Brühl, Marie-Luise; Wenzel, Philip

    2014-01-01

    Interaction between vascular wall abnormalities, inflammatory leukocytes, platelets, coagulation factors and hemorheology in the pathogenesis of deep vein thrombosis (DVT) is incompletely understood, requiring well defined animal models of human disease. We subjected male C57BL/6 mice to ligation of the inferior vena cava (IVC) as a flow reduction model to induce DVT. Thrombus size and weight were analyzed macroscopically and sonographically by B-mode, pulse wave (pw) Doppler and power Doppler imaging (PDI) using high frequency ultrasound. Thrombus size varied substantially between individual procedures and mice, irrespective of the flow reduction achieved by the ligature. Interestingly, PDI accurately predicted thrombus size in a very robust fashion (r2 = 0.9734, p thrombus weight (r2 = 0.5597, p thrombus formation. Occlusion of side branches prior to ligation of IVC did not increase thrombus size, probably due to patent side branches inaccessible to surgery. Venous side branches influence thrombus size in experimental DVT and might therefore prevent thrombus formation. This renders vessel anatomy and hemorheology important determinants in mouse models of DVT, which should be controlled for.

  14. Low energy helium ion irradiation induced nanostructure formation on tungsten surface

    International Nuclear Information System (INIS)

    Al-Ajlony, A.; Tripathi, J.K.; Hassanein, A.

    2017-01-01

    We report on the low energy helium ion irradiation induced surface morphology changes on tungsten (W) surfaces under extreme conditions. Surface morphology changes on W surfaces were monitored as a function of helium ion energy (140–300 eV), fluence (2.3 × 10 24 –1.6 × 10 25 ions m −2 ), and flux (2.0 × 10 20 –5.5 × 10 20 ion m −2 s −1 ). All the experiments were performed at 900° C. Our study shows significant effect of all the three ion irradiation parameters (ion flux, fluence, and energy) on the surface morphology. However, the effect of ion flux is more pronounced. Variation of helium ion fluence allows to capture the very early stages of fuzz growth. The observed fuzz growth and morphology changes were understood in the realm of various possible phenomena. The study has relevance and important impact in the current and future nuclear fusion applications. - Highlights: •Reporting formation of W nanostructure (fuzz) due to low energy He ion beam irradiation. •Observing the very early stages for the W-Fuzz formation. •Tracking the surface morphological evolution during the He irradiation. •Discussing in depth our observation and drawing a possible scenario that explain this phenomenon. •Studying various ions irradiation parameters such as flux, fluence, and ions energy.

  15. Turning snails into slugs: induced body plan changes and formation of an internal shell.

    Science.gov (United States)

    Osterauer, Raphaela; Marschner, Leonie; Betz, Oliver; Gerberding, Matthias; Sawasdee, Banthita; Cloetens, Peter; Haus, Nadine; Sures, Bernd; Triebskorn, Rita; Köhler, Heinz-R

    2010-01-01

    The archetypal body plan of conchiferan molluscs is characterized by an external calcareous shell, though internalization of shells has evolved independently in a number of molluscan clades, including gastropod families. In gastropods, the developmental process of torsion is regarded as a hallmark that is associated with a new anatomical configuration. This configuration is present in extant prosobranch gastropod species, which predominantly bear external shells. Here, we show that short-term exposure to platinum during development uncouples at least two of the processes associated with torsion of the freshwater snail Marisa cornuarietis. That is, the anus of the treated snails is located anteriorly, but the gill and the designated mantle tissue remains in a posterior location, thus preventing the formation of an external shell. In contrast to the prosobranchian archetype, platinum treatment results in the formation of a posterior gill and a cone-shaped internal shell, which persists across the lifetime. This first finding of artificially induced snail-slug conversion was also seen in the pulmonate snail Planorbarius corneus and demonstrates that selective alteration of embryonic key processes can result in fundamental changes of an existing body plan and-if altered regulation is inherited-may give rise to a new one. © 2010 Wiley Periodicals, Inc.

  16. Saccharomyces boulardii administration can inhibit the formation of gastric lymphoid follicles induced by Helicobacter suis infection.

    Science.gov (United States)

    Yang, Lin; Tian, Zi-Bin; Yu, Ya-Nan; Zhang, Cui-Ping; Li, Xiao-Yu; Mao, Tao; Jing, Xue; Zhao, Wen-Jun; Ding, Xue-Li; Yang, Ruo-Ming; Zhang, Shuai-Qing

    2017-01-01

    Helicobacter suis has a greater tendency to induce gastric mucosa-associated lymphoid tissue lymphoma compared with other Helicobacter species in humans and animals. Saccharomyces boulardii has been established as an adjunct to H. pylori eradication treatment, but the effect of S. boulardii administration alone on Helicobacter infection remains unclear. Here, we found that S. boulardii administration effectively decreased the bacterial load of H. suis and inhibited the formation of lymphoid follicles in the stomach post-infection. The levels of H. suis-specific immunoglobulin A (IgA) and secretory IgA in the gastric juice and small intestinal secretions and the production of mouse β-defensin-3 in the small intestinal secretions were significantly increased by S. boulardii administration at 12 weeks after H. suis infection. In addition, feeding with S. boulardii inhibited the expression of inflammatory cytokines and lymphoid follicle formation-related factors after H. suis infection. These results suggested that S. boulardii may be useful for the prevention and treatment of Helicobacter infection-related diseases in humans. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Low energy helium ion irradiation induced nanostructure formation on tungsten surface

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ajlony, A., E-mail: montaserajlony@yahoo.com; Tripathi, J.K.; Hassanein, A.

    2017-05-15

    We report on the low energy helium ion irradiation induced surface morphology changes on tungsten (W) surfaces under extreme conditions. Surface morphology changes on W surfaces were monitored as a function of helium ion energy (140–300 eV), fluence (2.3 × 10{sup 24}–1.6 × 10{sup 25} ions m{sup −2}), and flux (2.0 × 10{sup 20}–5.5 × 10{sup 20} ion m{sup −2} s{sup −1}). All the experiments were performed at 900° C. Our study shows significant effect of all the three ion irradiation parameters (ion flux, fluence, and energy) on the surface morphology. However, the effect of ion flux is more pronounced. Variation of helium ion fluence allows to capture the very early stages of fuzz growth. The observed fuzz growth and morphology changes were understood in the realm of various possible phenomena. The study has relevance and important impact in the current and future nuclear fusion applications. - Highlights: •Reporting formation of W nanostructure (fuzz) due to low energy He ion beam irradiation. •Observing the very early stages for the W-Fuzz formation. •Tracking the surface morphological evolution during the He irradiation. •Discussing in depth our observation and drawing a possible scenario that explain this phenomenon. •Studying various ions irradiation parameters such as flux, fluence, and ions energy.

  18. Human papillomavirus 16 E5 induces bi-nucleated cell formation by cell-cell fusion

    International Nuclear Information System (INIS)

    Hu Lulin; Plafker, Kendra; Vorozhko, Valeriya; Zuna, Rosemary E.; Hanigan, Marie H.; Gorbsky, Gary J.; Plafker, Scott M.; Angeletti, Peter C.; Ceresa, Brian P.

    2009-01-01

    Human papillomaviruses (HPV) 16 is a DNA virus encoding three oncogenes - E5, E6, and E7. The E6 and E7 proteins have well-established roles as inhibitors of tumor suppression, but the contribution of E5 to malignant transformation is controversial. Using spontaneously immortalized human keratinocytes (HaCaT cells), we demonstrate that expression of HPV16 E5 is necessary and sufficient for the formation of bi-nucleated cells, a common characteristic of precancerous cervical lesions. Expression of E5 from non-carcinogenic HPV6b does not produce bi-nucleate cells. Video microscopy and biochemical analyses reveal that bi-nucleates arise through cell-cell fusion. Although most E5-induced bi-nucleates fail to propagate, co-expression of HPV16 E6/E7 enhances the proliferation of these cells. Expression of HPV16 E6/E7 also increases bi-nucleated cell colony formation. These findings identify a new role for HPV16 E5 and support a model in which complementary roles of the HPV16 oncogenes lead to the induction of carcinogenesis

  19. The effect of the temperature in the formation of sputter-induced surface topography

    International Nuclear Information System (INIS)

    Zhang Jiping; Wang Zhenxia; Tao Zhenlan; Pan Jisheng

    1992-01-01

    The formation of the ion-induced surface topography has been studied extensively, but we know little of how to control the formation of the surface topography. In order to study further the mechanism of the formation of the surface topography at different target temperatures, we have selected two samples of the metal indium (99.99% purity) for study. The samples were bombarded by 27 keV Ar + ions at normal incidence, and the temperature was kept at 25 or 70 o C. The Ar + beam current was about 0.7 μA and the total dose was 1.4 x 10 18 ions cm -2 for each sample. The examination of the bombarded surface for each sample was carried out on an S-570 scanning electron microscope (SEM). In the bombarded surface of sample A at 25 o C, there are some terraces surrounded by deep ditches and among them there exhibit pebble-or sand-like structures. The terraces respond to the lowest-index planes of specimens in which the channel effect can be seen. The ditches are originated from grain boundaries, and the other part is high-index planes. In sample B at 70 o C, there are the same pebble-or sand-like structures, but instead of terraces there are some craters whose size and distribution is similar to that of the terraces in sample A. The middle of the crater is cavitated a little and its edge is raised. Like sample A, there are some deep ditches surrounding the craters. Comparing samples A and B, it can be accepted that these terraces and craters originated from the plane of the same orientation of grain. An interpretation of these observations is offered. (author)

  20. Formation of plasma induced surface damage in silica glass etching for optical waveguides

    International Nuclear Information System (INIS)

    Choi, D.Y.; Lee, J.H.; Kim, D.S.; Jung, S.T.

    2004-01-01

    Ge, B, P-doped silica glass films are widely used as optical waveguides because of their low losses and inherent compatibility with silica optical fibers. These films were etched by ICP (inductively coupled plasma) with chrome etch masks, which were patterned by reactive ion etching (RIE) using chlorine-based gases. In some cases, the etched surfaces of silica glass were very rough (root-mean square roughness greater than 100 nm) and we call this phenomenon plasma induced surface damage (PISD). Rough surface cannot be used as a platform for hybrid integration because of difficulty in alignment and bonding of active devices. PISD reduces the etch rate of glass and it is very difficult to remove residues on a rough surface. The objective of this study is to elucidate the mechanism of PISD formation. To achieve this goal, PISD formation during different etching conditions of chrome etch mask and silica glass was investigated. In most cases, PISD sources are formed on a glass surface after chrome etching, and metal compounds are identified in theses sources. Water rinse after chrome etching reduces the PISD, due to the water solubility of metal chlorides. PISD is decreased or even disappeared at high power and/or low pressure in glass etching, even if PISD sources were present on the glass surface before etching. In conclusion, PISD sources come from the chrome etching process, and polymer deposition on these sources during the silica etching cause the PISD sources to grow. In the area close to the PISD source there is a higher ion flux, which causes an increase in the etch rate, and results in the formation of a pit

  1. Formation of tRNA granules in the nucleus of heat-induced human cells

    International Nuclear Information System (INIS)

    Miyagawa, Ryu; Mizuno, Rie; Watanabe, Kazunori; Ijiri, Kenichi

    2012-01-01

    Highlights: ► tRNAs are tranlocated into the nucleus in heat-induced HeLa cells. ► tRNAs form the unique granules in the nucleus. ► tRNA ganules overlap with nuclear stress granules. -- Abstract: The stress response, which can trigger various physiological phenomena, is important for living organisms. For instance, a number of stress-induced granules such as P-body and stress granule have been identified. These granules are formed in the cytoplasm under stress conditions and are associated with translational inhibition and mRNA decay. In the nucleus, there is a focus named nuclear stress body (nSB) that distinguishes these structures from cytoplasmic stress granules. Many splicing factors and long non-coding RNA species localize in nSBs as a result of stress. Indeed, tRNAs respond to several kinds of stress such as heat, oxidation or starvation. Although nuclear accumulation of tRNAs occurs in starved Saccharomyces cerevisiae, this phenomenon is not found in mammalian cells. We observed that initiator tRNA Met (Meti) is actively translocated into the nucleus of human cells under heat stress. During this study, we identified unique granules of Meti that overlapped with nSBs. Similarly, elongator tRNA Met was translocated into the nucleus and formed granules during heat stress. Formation of tRNA granules is closely related to the translocation ratio. Then, all tRNAs may form the specific granules.

  2. Polyploidization mechanisms: temperature environment can induce diploid gamete formation in Rosa sp.

    Science.gov (United States)

    Pécrix, Yann; Rallo, Géraldine; Folzer, Hélène; Cigna, Mireille; Gudin, Serge; Le Bris, Manuel

    2011-06-01

    Polyploidy is an important evolutionary phenomenon but the mechanisms by which polyploidy arises still remain underexplored. There may be an environmental component to polyploidization. This study aimed to clarify how temperature may promote diploid gamete formation considered an essential element for sexual polyploidization. First of all, a detailed cytological analysis of microsporogenesis and microgametogenesis was performed to target precisely the key developmental stages which are the most sensitive to temperature. Then, heat-induced modifications in sporad and pollen characteristics were analysed through an exposition of high temperature gradient. Rosa plants are sensitive to high temperatures with a developmental sensitivity window limited to meiosis. Moreover, the range of efficient temperatures is actually narrow. 36 °C at early meiosis led to a decrease in pollen viability, pollen ectexine defects but especially the appearance of numerous diploid pollen grains. They resulted from dyads or triads mainly formed following heat-induced spindle misorientations in telophase II. A high temperature environment has the potential to increase gamete ploidy level. The high frequencies of diplogametes obtained at some extreme temperatures support the hypothesis that polyploidization events could have occurred in adverse conditions and suggest polyploidization facilitating in a global change context.

  3. Formation and properties of radiation-induced defects and radiolysis products in lithium orthosilicate

    Energy Technology Data Exchange (ETDEWEB)

    Tiliks, J.E.; Kizane, G.K.; Supe, A.A.; Abramenkovs, A.A.; Tiliks, J.J. (Latvian Univ., Riga (Latvia)); Vasiljev, V.G. (Acad. A.A. Bochvar Inst. of Inorganic Materials, Moscow (USSR))

    1991-12-01

    Formation and properties of radiation-induced defects and radiolysis products in polycrystalline powders and ceramic pellets of Li{sub 4}SiO{sub 4} were studied under the effect of various types of ionizing irradiation ({gamma} quants, accelerated electrons, reactor irradiation), humidity, temperature, impurities in the samples, etc. The content of radiation defects and radiolysis products poorly depends on irradiation type, dose rate, admixture elements. The concentration of defects highly depends on the temperature of irradiation, humidity, granural size. Empirical dependence of radiolysis degree {alpha} on the dose was found: {alpha}=5x10{sup -2}xD{sup 0.5} for {gamma} and electron irradiation (T{sub rad}=300-350 K) and {alpha}=5x10{sup -3}xD{sup 0.5} for reactor radiation (T{sub rad}=700-800 K); {alpha} - matrix dissociation degree (in %); D - dose (in MGy). Colloidal lithium and silicon, lithium and silicon oxides, and O{sub 2} are the final products of radiolysis. Radiation-induced defects change tritium thermo-extraction parameters, deteriorate mechanical, thermo-physical and electric properties of ceramics. (orig.).

  4. Spectral Induced Polarization Response of Biofilm Formation in Hanford Vadose Zone Sediment

    Science.gov (United States)

    Garcia, A.; Katsenovich, Y.; Lee, B.; Whitman, D.

    2017-12-01

    As a result of the U.S. Nuclear weapons program during the second world war and the cold war, there now exists a significant amount of uranium contamination at the U.S. Department of Energy Hanford site located in Washington state. In-situ immobilization of mobile uranium via injections of a soluble sodium tripolyphosphate amendment may prove effective in the formation of insoluble uranyl phosphate mineral, autunite. However, the injected polyphosphate undergoes hydrolysis in aqueous solutions to form orthophosphate, which serves as a readily available nutrient for the various microorganisms in the sediment. Sediment-filled column experiments conducted under saturated oxygen restricted conditions using geophysical Spectral Induced Polarization technique have shown the impact of microbes on the dissolution of autunite, a calcium uranyl phosphate mineral. Spectral Induced Polarization may be an effective way to track changes indicative of bacterial activities on the surrounding environment. This method can be a cost-effective alternative to the drilling of boreholes at a field scale.

  5. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics.

    Science.gov (United States)

    Hoke, Eric T; Slotcavage, Daniel J; Dohner, Emma R; Bowring, Andrea R; Karunadasa, Hemamala I; McGehee, Michael D

    2015-01-01

    We report on reversible, light-induced transformations in (CH 3 NH 3 )Pb(Br x I 1- x ) 3 . Photoluminescence (PL) spectra of these perovskites develop a new, red-shifted peak at 1.68 eV that grows in intensity under constant, 1-sun illumination in less than a minute. This is accompanied by an increase in sub-bandgap absorption at ∼1.7 eV, indicating the formation of luminescent trap states. Light soaking causes a splitting of X-ray diffraction (XRD) peaks, suggesting segregation into two crystalline phases. Surprisingly, these photo-induced changes are fully reversible; the XRD patterns and the PL and absorption spectra revert to their initial states after the materials are left for a few minutes in the dark. We speculate that photoexcitation may cause halide segregation into iodide-rich minority and bromide-enriched majority domains, the former acting as a recombination center trap. This instability may limit achievable voltages from some mixed-halide perovskite solar cells and could have implications for the photostability of halide perovskites used in optoelectronics.

  6. Cell colony formation induced by Xenopus egg extract as a marker for improvement of cloned blastocyst formation in pig

    DEFF Research Database (Denmark)

    Liu, Ying; Østrup, Olga; Li, Juan

    2011-01-01

    method based on the colony formation of cells after extract treatment, and subsequent in vitro cloning efficiency using treated cells as chromatin donors. Porcine fetal fibroblasts were treated with each batch of extract, and cultured in embryonic stem cell (ES) medium for 12 days. The number of forming...

  7. Dasatinib inhibits both osteoclast activation and prostate cancer PC-3 cell-induced osteoclast formation

    Science.gov (United States)

    Araujo, John C.; Poblenz, Ann; Corn, Paul G.; Parikh, Nila U.; Starbuck, Michael W.; Thompson, Jerry T.; Lee, Francis; Logothetis, Christopher J.; Darnay, Bryant G.

    2013-01-01

    Purpose Therapies to target prostate cancer bone metastases have only limited effects. New treatments are focused on the interaction between cancer cells, bone marrow cells and the bone matrix. Osteoclasts play an important role in the development of bone tumors caused by prostate cancer. Since Src kinase has been shown to be necessary for osteoclast function, we hypothesized that dasatinib, a Src family kinase inhibitor, would reduce osteoclast activity and prostate cancer (PC-3) cell-induced osteoclast formation. Results Dasatinib inhibited RANKL-induced osteoclast differentiation of bone marrow-derived monocytes with an EC50 of 7.5 nM. PC-3 cells, a human prostate cancer cell line, were able to differentiate RAW 264.7 cells, a murine monocytic cell line, into osteoclasts and dasatinib inhibited this differentiation. In addition, conditioned medium from PC-3 cell cultures was able to differentiate RAW 264.7 cells into osteoclasts and this too, was inhibited by dasatinib. Even the lowest concentration of dasatinib, 1.25 nmol, inhibited osteoclast differentiation by 29%. Moreover, dasatinib inhibited osteoclast activity by 58% as measured by collagen 1 release. Experimental design We performed in vitro experiments utilizing the Src family kinase inhibitor dasatinib to target osteoclast activation as a means of inhibiting prostate cancer bone metastases. Conclusion Dasatinib inhibits osteoclast differentiation of mouse primary bone marrow-derived monocytes and PC-3 cell-induced osteoclast differentiation. Dasatinib also inhibits osteoclast degradation activity. Inhibiting osteoclast differentiation and activity may be an effective targeted therapy in patients with prostate cancer bone metastases. PMID:19855158

  8. Dietary emu oil supplementation suppresses 5-fluorouracil chemotherapy-induced inflammation, osteoclast formation, and bone loss.

    Science.gov (United States)

    Raghu Nadhanan, Rethi; Abimosleh, Suzanne M; Su, Yu-Wen; Scherer, Michaela A; Howarth, Gordon S; Xian, Cory J

    2012-06-01

    Cancer chemotherapy can cause osteopenia or osteoporosis, and yet the underlying mechanisms remain unclear, and currently, no preventative treatments are available. This study investigated damaging effects of 5-fluorouracil (5-FU) on histological, cellular, and molecular changes in the tibial metaphysis and potential protective benefits of emu oil (EO), which is known to possess a potent anti-inflammatory property. Female dark agouti rats were gavaged orally with EO or water (1 ml·day(-1)·rat(-1)) for 1 wk before a single ip injection of 5-FU (150 mg/kg) or saline (Sal) was given. The treatment groups were H(2)O + Sal, H(2)O + 5-FU, EO + 5-FU, and EO + Sal. Oral gavage was given throughout the whole period up to 1 day before euthanasia (days 3, 4, and 5 post-5-FU). Histological analysis showed that H(2)O + 5-FU significantly reduced heights of primary spongiosa on days 3 and 5 and trabecular bone volume of secondary spongiosa on days 3 and 4. It reduced density of osteoblasts slightly and caused an increase in the density of osteoclasts on trabecular bone surface on day 4. EO supplementation prevented reduction of osteoblasts and induction of osteoclasts and bone loss caused by 5-FU. Gene expression studies confirmed an inhibitory effect of EO on osteoclasts since it suppressed 5-FU-induced expression of proinflammatory and osteoclastogenic cytokine TNFα, osteoclast marker receptor activator of nuclear factor-κB, and osteoclast-associated receptor. Therefore, this study demonstrated that EO can counter 5-FU chemotherapy-induced inflammation in bone, preserve osteoblasts, suppress osteoclast formation, and potentially be useful in preventing 5-FU chemotherapy-induced bone loss.

  9. Formation of active inclusion bodies induced by hydrophobic self-assembling peptide GFIL8.

    Science.gov (United States)

    Wang, Xu; Zhou, Bihong; Hu, Weike; Zhao, Qing; Lin, Zhanglin

    2015-06-16

    In the last few decades, several groups have observed that proteins expressed as inclusion bodies (IBs) in bacteria could still be biologically active when terminally fused to an appropriate aggregation-prone partner such as pyruvate oxidase from Paenibacillus polymyxa (PoxB). More recently, we have demonstrated that three amphipathic self-assembling peptides, an alpha helical peptide 18A, a beta-strand peptide ELK16, and a surfactant-like peptide L6KD, have properties that induce target proteins into active IBs. We have developed an efficient protein expression and purification approach for these active IBs by introducing a self-cleavable intein molecule. In this study, the self-assembling peptide GFIL8 (GFILGFIL) with only hydrophobic residues was analyzed, and this peptide effectively induced the formation of cytoplasmic IBs in Escherichia coli when terminally attached to lipase A and amadoriase II. The protein aggregates in cells were confirmed by transmission electron microscopy analysis and retained ~50% of their specific activities relative to the native counterparts. We constructed an expression and separation coupled tag (ESCT) by incorporating an intein molecule, the Mxe GyrA intein. Soluble target proteins were successfully released from active IBs upon cleavage of the intein between the GFIL8 tag and the target protein, which was mediated by dithiothreitol. A variant of GFIL8, GFIL16 (GFILGFILGFILGFIL), improved the ESCT scheme by efficiently eliminating interference from the soluble intein-GFIL8 molecule. The yields of target proteins at the laboratory scale were 3.0-7.5 μg/mg wet cell pellet, which is comparable to the yields from similar ESCT constructs using 18A, ELK16, or the elastin-like peptide tag scheme. The all-hydrophobic self-assembling peptide GFIL8 induced the formation of active IBs in E. coli when terminally attached to target proteins. GFIL8 and its variant GFIL16 can act as a "pull-down" tag to produce purified soluble proteins with

  10. Merkel Cell Polyomavirus Small T Antigen Drives Cell Motility via Rho-GTPase-Induced Filopodium Formation.

    Science.gov (United States)

    Stakaitytė, Gabrielė; Nwogu, Nnenna; Dobson, Samuel J; Knight, Laura M; Wasson, Christopher W; Salguero, Francisco J; Blackbourn, David J; Blair, G Eric; Mankouri, Jamel; Macdonald, Andrew; Whitehouse, Adrian

    2018-01-15

    Cell motility and migration is a complex, multistep, and multicomponent process intrinsic to progression and metastasis. Motility is dependent on the activities of integrin receptors and Rho family GTPases, resulting in the remodeling of the actin cytoskeleton and formation of various motile actin-based protrusions. Merkel cell carcinoma (MCC) is an aggressive skin cancer with a high likelihood of recurrence and metastasis. Merkel cell polyomavirus (MCPyV) is associated with the majority of MCC cases, and MCPyV-induced tumorigenesis largely depends on the expression of the small tumor antigen (ST). Since the discovery of MCPyV, a number of mechanisms have been suggested to account for replication and tumorigenesis, but to date, little is known about potential links between MCPyV T antigen expression and the metastatic nature of MCC. Previously, we described the action of MCPyV ST on the microtubule network and how it impacts cell motility and migration. Here, we demonstrate that MCPyV ST affects the actin cytoskeleton to promote the formation of filopodia through a mechanism involving the catalytic subunit of protein phosphatase 4 (PP4C). We also show that MCPyV ST-induced cell motility is dependent upon the activities of the Rho family GTPases Cdc42 and RhoA. In addition, our results indicate that the MCPyV ST-PP4C interaction results in the dephosphorylation of β 1 integrin, likely driving the cell motility pathway. These findings describe a novel mechanism by which a tumor virus induces cell motility, which may ultimately lead to cancer metastasis, and provides opportunities and strategies for targeted interventions for disseminated MCC. IMPORTANCE Merkel cell polyomavirus (MCPyV) is the most recently discovered human tumor virus. It causes the majority of cases of Merkel cell carcinoma (MCC), an aggressive skin cancer. However, the molecular mechanisms implicating MCPyV-encoded proteins in cancer development are yet to be fully elucidated. This study builds

  11. Antigenotoxic potential of Asparagus racemosus root extract against electron beam radiation induced micronuclei formation in Swiss albino mice

    International Nuclear Information System (INIS)

    Bhandary, B. Satheesh Kumar; Sharmila, K.P.; Suchetha Kumari, N.; Bhat, Vadish S.; Shetty, Jayaram; Peter, Alex John; Jose, Jerish M.; Fernandes, Ronald

    2016-01-01

    To evaluate the antigenotoxic potential of Asparagus Racemosus Root ethanolic extract (ARE) against electron beam radiation induced micronuclei formation in Swiss albino mice. Micronucleus assay was performed in the bone marrow of Swiss albino mice according to the method of Hosseinimehr et al., 2003. The experimental animals were orally administered 200 mg/kg body weight of ARE once daily for 15 consecutive days. At the end of experimental period, the animals were euthanized and the bone marrow was collected from the femur. Control (C), Radiation control (RC) and drug control (DC) group was also maintained. The number of radiation induced Micronucleated Polychromatic Erythrocytes (MnPCE) and Micronucleated Normochromatic Erythrocytes were decreased in the ARE treated mice which was statistically significant (p<0.05) compared to radiation control group. Present findings demonstrate the antigenotoxic potential of ARE against electron beam radiation induced micronuclei formation which may be attributed to scavenging of radiation-induced free radicals

  12. Trifluoperazine inhibits acetaminophen-induced hepatotoxicity and hepatic reactive nitrogen formation in mice and in freshly isolated hepatocytes

    Directory of Open Access Journals (Sweden)

    Sudip Banerjee

    Full Text Available The hepatotoxicity of acetaminophen (APAP occurs by initial metabolism to N-acetyl-p-benzoquinone imine which depletes GSH and forms APAP-protein adducts. Subsequently, the reactive nitrogen species peroxynitrite is formed from nitric oxide (NO and superoxide leading to 3-nitrotyrosine in proteins. Toxicity occurs with inhibited mitochondrial function. We previously reported that in hepatocytes the nNOS (NOS1 inhibitor NANT inhibited APAP toxicity, reactive nitrogen and oxygen species formation, and mitochondrial dysfunction. In this work we examined the effect of trifluoperazine (TFP, a calmodulin antagonist that inhibits calcium induced nNOS activation, on APAP hepatotoxicity and reactive nitrogen formation in murine hepatocytes and in vivo. In freshly isolated hepatocytes TFP inhibited APAP induced toxicity, reactive nitrogen formation (NO, GSNO, and 3-nitrotyrosine in protein, reactive oxygen formation (superoxide, loss of mitochondrial membrane potential, decreased ATP production, decreased oxygen consumption rate, and increased NADH accumulation. TFP did not alter APAP induced GSH depletion in the hepatocytes or the formation of APAP protein adducts which indicated that reactive metabolite formation was not inhibited. Since we previously reported that TFP inhibits the hepatotoxicity of APAP in mice without altering hepatic APAP-protein adduct formation, we examined the APAP treated mouse livers for evidence of reactive nitrogen formation. 3-Nitrotyrosine in hepatic proteins and GSNO were significantly increased in APAP treated mouse livers and decreased in the livers of mice treated with APAP plus TFP. These data are consistent with a hypothesis that APAP hepatotoxicity occurs with altered calcium metabolism, activation of nNOS leading to increased reactive nitrogen formation, and mitochondrial dysfunction. Keywords: Acetaminophen, Neuronal nitric oxide, Oxidative stress, Mitochondria

  13. Flux threshold measurements of He-ion beam induced nanofuzz formation on hot tungsten surfaces

    International Nuclear Information System (INIS)

    Meyer, F W; Hijazi, H; Bannister, M E; Unocic, K A; Garrison, L M; Parish, C M

    2016-01-01

    We report measurements of the energy dependence of flux thresholds and incubation fluences for He-ion induced nano-fuzz formation on hot tungsten surfaces at UHV conditions over a wide energy range using real-time sample imaging of tungsten target emissivity change to monitor the spatial extent of nano-fuzz growth, corroborated by ex situ SEM and FIB/SEM analysis, in conjunction with accurate ion-flux profile measurements. The measurements were carried out at the multicharged ion research facility (MIRF) at energies from 218 eV to 8.5 keV, using a high-flux deceleration module and beam flux monitor for optimizing the decel optics on the low energy MIRF beamline. The measurements suggest that nano-fuzz formation proceeds only if a critical rate of change of trapped He density in the W target is exceeded. To understand the energy dependence of the observed flux thresholds, the energy dependence of three contributing factors: ion reflection, ion range and target damage creation, were determined using the SRIM simulation code. The observed energy dependence can be well reproduced by the combined energy dependences of these three factors. The incubation fluences deduced from first visual appearance of surface emissivity change were (2–4) × 10 23 m −2 at 218 eV, and roughly a factor of 10 less at the higher energies, which were all at or above the displacement energy threshold. The role of trapping at C impurity sites is discussed. (paper)

  14. Phase-Transition-Induced Pattern Formation Applied to Basic Research on Homeopathy: A Systematic Review.

    Science.gov (United States)

    Kokornaczyk, Maria Olga; Scherr, Claudia; Bodrova, Natalia Borisovna; Baumgartner, Stephan

    2018-05-16

     Methods based on phase-transition-induced pattern formation (PTPF) are increasingly used in medical research. Frequent application fields are medical diagnosis and basic research in homeopathy. Here, we present a systematic review of experimental studies concerning PTPF-based methods applied to homeopathy research. We also aimed at categorizing the PTPF methods included in this review.  Experimental studies were collected from scientific databases (PubMed, Web of Science, Russian eLibrary) and from experts in the research field in question, following the PRISMA guidelines. The studies were rated according to pre-defined scientific criteria.  The review included 15 experimental studies. We identified seven different PTPF methods applied in 12 experimental models. Among these methods, phase-transition was triggered through evaporation, freezing, or solution, and in most cases led to the formation of crystals. First experimental studies concerning the application of PTPF methods in homeopathic research were performed in the first half of the 20th century; however, they were not continued in the following years. Only in the last decade, different research groups re-launched the idea, introducing new experimental approaches and computerized pattern evaluation techniques. The here-identified PTPF methods are for the first time proposed to be classified as one group of methods based on the same basic physical phenomenon.  Although the number of experimental studies in the area is still rather limited, the long tradition in the application of PTPF methods and the dynamics of the present developments point out the high potential of these methods and indicate that they might meet the demand for scientific methods to study potentized preparations. The Faculty of Homeopathy.

  15. DNA radio-induced tandem lesions: formation, introduction in oligonucleotides and repair

    International Nuclear Information System (INIS)

    Bourdat, Anne-Gaelle

    2000-01-01

    Cell killing induced by excited photosensitizers, ionizing radiation or radiomimetic drugs can not be only explained by the formation of single DNA lesions. Thus, multiply damaged sites, are likely to have harmful biological consequences. One example of tandem base damage induced by ".OH radical in X-irradiated aqueous solution of DNA oligomers is N-(2-deoxy-β-D-erythro-pentofuranosyl)-formyl-amine (dβF)/8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo). In order to investigate the biological significance of such a tandem lesion, both 8-oxodGuo and dβF were introduced in synthetic oligonucleotides at vicinal positions using the solid phase phosphoramidite method with the 'Pac phosphoramidite' chemistry. The purity of the synthetic DNA fragments and the integrity of modified nucleosides was confirmed using different complementary techniques: HPLC, PAGE, ESI MS, MALDI-TOF MS and capillary electrophoresis. Using the above synthetic substrates, investigations were carried out in order to determine the substrate specificity and the excision mechanism of three glycosylases involved in the base excision repair pathway: endonuclease III, Fpg and yOggl. Both tandem lesions were substrates for the BER enzymes. However, the tandem lesion are not completely excised by the repair enzymes. The rates of excision as inferred from the determination of the ratios of Vm/Km Michaelis kinetics constants were not found to be significantly affected by the presence of the tandem lesions. MALDI-TOF mass spectrometry was used in order to gain insights into mechanistic aspects of oligonucleotide cleavage by the BER enzymes. During in vitro DNA synthesis by Taq DNA polymerase, Klenow fragment exo- and DNA polymerase β, tandem base damage were found to block the progression of the enzymes. Finally, the level of tandem base damage in the DNA exposed to γ-ray using the liquid chromatography coupled to electro-spray ionization tandem mass spectrometry was determined. Both dβF-8-oxodGuo and 8

  16. Formation of tRNA granules in the nucleus of heat-induced human cells

    Energy Technology Data Exchange (ETDEWEB)

    Miyagawa, Ryu [Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Department of Biological Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654 (Japan); Mizuno, Rie [Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Watanabe, Kazunori, E-mail: watanabe@ric.u-tokyo.ac.jp [Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Ijiri, Kenichi [Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Department of Biological Science, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654 (Japan)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer tRNAs are tranlocated into the nucleus in heat-induced HeLa cells. Black-Right-Pointing-Pointer tRNAs form the unique granules in the nucleus. Black-Right-Pointing-Pointer tRNA ganules overlap with nuclear stress granules. -- Abstract: The stress response, which can trigger various physiological phenomena, is important for living organisms. For instance, a number of stress-induced granules such as P-body and stress granule have been identified. These granules are formed in the cytoplasm under stress conditions and are associated with translational inhibition and mRNA decay. In the nucleus, there is a focus named nuclear stress body (nSB) that distinguishes these structures from cytoplasmic stress granules. Many splicing factors and long non-coding RNA species localize in nSBs as a result of stress. Indeed, tRNAs respond to several kinds of stress such as heat, oxidation or starvation. Although nuclear accumulation of tRNAs occurs in starved Saccharomyces cerevisiae, this phenomenon is not found in mammalian cells. We observed that initiator tRNA{sup Met} (Meti) is actively translocated into the nucleus of human cells under heat stress. During this study, we identified unique granules of Meti that overlapped with nSBs. Similarly, elongator tRNA{sup Met} was translocated into the nucleus and formed granules during heat stress. Formation of tRNA granules is closely related to the translocation ratio. Then, all tRNAs may form the specific granules.

  17. Formation, Accumulation, and Hydrolysis of Endogenous and Exogenous Formaldehyde-Induced DNA Damage

    Science.gov (United States)

    Yu, Rui; Lai, Yongquan; Hartwell, Hadley J.; Moeller, Benjamin C.; Doyle-Eisele, Melanie; Kracko, Dean; Bodnar, Wanda M.; Starr, Thomas B.; Swenberg, James A.

    2015-01-01

    Formaldehyde is not only a widely used chemical with well-known carcinogenicity but is also a normal metabolite of living cells. It thus poses unique challenges for understanding risks associated with exposure. N2-hydroxymethyl-dG (N2-HOMe-dG) is the main formaldehyde-induced DNA mono-adduct, which together with DNA-protein crosslinks (DPCs) and toxicity-induced cell proliferation, play important roles in a mutagenic mode of action for cancer. In this study, N2-HOMe-dG was shown to be an excellent biomarker for direct adduction of formaldehyde to DNA and the hydrolysis of DPCs. The use of inhaled [13CD2]-formaldehyde exposures of rats and primates coupled with ultrasensitive nano ultra performance liquid chromatography-tandem mass spectrometry permitted accurate determinations of endogenous and exogenous formaldehyde DNA damage. The results show that inhaled formaldehyde only reached rat and monkey noses, but not tissues distant to the site of initial contact. The amounts of exogenous adducts were remarkably lower than those of endogenous adducts in exposed nasal epithelium. Moreover, exogenous adducts accumulated in rat nasal epithelium over the 28-days exposure to reach steady-state concentrations, followed by elimination with a half-life (t1/2) of 7.1 days. Additionally, we examined artifact formation during DNA preparation to ensure the accuracy of nonlabeled N2-HOMe-dG measurements. These novel findings provide critical new data for understanding major issues identified by the National Research Council Review of the 2010 Environmental Protection Agency’s Draft Integrated Risk Information System Formaldehyde Risk Assessment. They support a data-driven need for reflection on whether risks have been overestimated for inhaled formaldehyde, whereas underappreciating endogenous formaldehyde as the primary source of exposure that results in bone marrow toxicity and leukemia in susceptible humans and rodents deficient in DNA repair. PMID:25904104

  18. Intermittent Hypoxia-Induced Carotid Body Chemosensory Potentiation and Hypertension Are Critically Dependent on Peroxynitrite Formation

    Directory of Open Access Journals (Sweden)

    Esteban A. Moya

    2016-01-01

    Full Text Available Oxidative stress is involved in the development of carotid body (CB chemosensory potentiation and systemic hypertension induced by chronic intermittent hypoxia (CIH, the main feature of obstructive sleep apnea. We tested whether peroxynitrite (ONOO−, a highly reactive nitrogen species, is involved in the enhanced CB oxygen chemosensitivity and the hypertension during CIH. Accordingly, we studied effects of Ebselen, an ONOO− scavenger, on 3-nitrotyrosine immunoreactivity (3-NT-ir in the CB, the CB chemosensory discharge, and arterial blood pressure (BP in rats exposed to CIH. Male Sprague-Dawley rats were exposed to CIH (5% O2, 12 times/h, 8 h/day for 7 days. Ebselen (10 mg/kg/day was administrated using osmotic minipumps and BP measured with radiotelemetry. Compared to the sham animals, CIH-treated rats showed increased 3-NT-ir within the CB, enhanced CB chemosensory responses to hypoxia, increased BP response to acute hypoxia, and hypertension. Rats treated with Ebselen and exposed to CIH displayed a significant reduction in 3-NT-ir levels (60.8 ± 14.9 versus 22.9 ± 4.2 a.u., reduced CB chemosensory response to 5% O2 (266.5 ± 13.4 versus 168.6 ± 16.8 Hz, and decreased mean BP (116.9 ± 13.2 versus 82.1 ± 5.1 mmHg. Our results suggest that CIH-induced CB chemosensory potentiation and hypertension are critically dependent on ONOO− formation.

  19. Process comparison for fracture-induced formation of surface structures on polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yueh-Ying [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Yang, Fuqian [Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506 (United States); Chen, Chia-Chieh [Institute of Nuclear Energy Research, Longtan, Taoyuan 32546, Taiwan (China); Lee, Sanboh, E-mail: sblee@mx.nthu.edu.tw [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2014-01-01

    Using three different splitting approaches such as point-load splitting, tension-splitting and peeling–splitting, different surface ripples were produced on poly(methyl methacrylate) (PMMA)-based polymer films. Independent of the splitting approaches, the spatial wavelength of the surface structures is a linear function of the film thickness with the approximately same differential ratio of the spatial wavelength to the film thickness. The apparent surface residual stress was calculated from the thickness dependence of the spatial frequency, and the magnitude of the apparent surface stress increased with the increase of the film thickness. After exposing the aged PMMA-based photoresist at liquid state to gamma-irradiation, the effects of aging and the gamma-irradiation were investigated on the splitting-induced formation of surface structures. For the peeling–splitting process, the differential ratio of the spatial wavelength to the film thickness for the aged samples is larger than that for non-aged samples. The point-load splitting could not produce any surface pattern on the gamma-irradiated films. None of the splitting approaches could form surface structures for polymer films exposed to irradiation of high dose. Both the spatial wavelength and the apparent surface stress increased with the film thickness for the irradiated polymer films. - Highlights: • Using splitting processes, surface ripples were formed on polymer films. • The surface ripples were induced by compressively apparent surface stress. • The spatial wavelength of the ripples is a linear function of the film thickness. • The spatial wavelength of the ripples is affected by gamma-ray irradiation. • The spatial wavelength of the ripples is affected by aging.

  20. Nitrosothiol formation and protection against Fenton chemistry by nitric oxide-induced dinitrosyliron complex formation from anoxia-initiated cellular chelatable iron increase.

    Science.gov (United States)

    Li, Qian; Li, Chuanyu; Mahtani, Harry K; Du, Jian; Patel, Aashka R; Lancaster, Jack R

    2014-07-18

    Dinitrosyliron complexes (DNIC) have been found in a variety of pathological settings associated with (•)NO. However, the iron source of cellular DNIC is unknown. Previous studies on this question using prolonged (•)NO exposure could be misleading due to the movement of intracellular iron among different sources. We here report that brief (•)NO exposure results in only barely detectable DNIC, but levels increase dramatically after 1-2 h of anoxia. This increase is similar quantitatively and temporally with increases in the chelatable iron, and brief (•)NO treatment prevents detection of this anoxia-induced increased chelatable iron by deferoxamine. DNIC formation is so rapid that it is limited by the availability of (•)NO and chelatable iron. We utilize this ability to selectively manipulate cellular chelatable iron levels and provide evidence for two cellular functions of endogenous DNIC formation, protection against anoxia-induced reactive oxygen chemistry from the Fenton reaction and formation by transnitrosation of protein nitrosothiols (RSNO). The levels of RSNO under these high chelatable iron levels are comparable with DNIC levels and suggest that under these conditions, both DNIC and RSNO are the most abundant cellular adducts of (•)NO. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Nitrosothiol Formation and Protection against Fenton Chemistry by Nitric Oxide-induced Dinitrosyliron Complex Formation from Anoxia-initiated Cellular Chelatable Iron Increase*

    Science.gov (United States)

    Li, Qian; Li, Chuanyu; Mahtani, Harry K.; Du, Jian; Patel, Aashka R.; Lancaster, Jack R.

    2014-01-01

    Dinitrosyliron complexes (DNIC) have been found in a variety of pathological settings associated with •NO. However, the iron source of cellular DNIC is unknown. Previous studies on this question using prolonged •NO exposure could be misleading due to the movement of intracellular iron among different sources. We here report that brief •NO exposure results in only barely detectable DNIC, but levels increase dramatically after 1–2 h of anoxia. This increase is similar quantitatively and temporally with increases in the chelatable iron, and brief •NO treatment prevents detection of this anoxia-induced increased chelatable iron by deferoxamine. DNIC formation is so rapid that it is limited by the availability of •NO and chelatable iron. We utilize this ability to selectively manipulate cellular chelatable iron levels and provide evidence for two cellular functions of endogenous DNIC formation, protection against anoxia-induced reactive oxygen chemistry from the Fenton reaction and formation by transnitrosation of protein nitrosothiols (RSNO). The levels of RSNO under these high chelatable iron levels are comparable with DNIC levels and suggest that under these conditions, both DNIC and RSNO are the most abundant cellular adducts of •NO. PMID:24891512

  2. The homing of bone marrow MSCs to non-osseous sites for ectopic bone formation induced by osteoinductive calcium phosphate.

    NARCIS (Netherlands)

    Song, G.; Habibovic, Pamela; Bao, Chongyun; Hu, J.; van Blitterswijk, Clemens; Yuan, Huipin; Chen, W.; Xu, H.H.K.

    2013-01-01

    Osteoinductive biomaterials are promising for bone repair. There is no direct proof that bone marrow mesenchymal stem cells (BMSCs) home to non-osseous sites and participate in ectopic bone formation induced by osteoinductive bioceramics. The objective of this study was to use a sex-mismatched

  3. The I kappa B kinase inhibitor ACHP strongly attenuates TGF beta 1-induced myofibroblast formation and collagen synthesis

    NARCIS (Netherlands)

    Mia, Masum M.; Bank, Ruud A.

    2015-01-01

    Excessive accumulation of a collagen-rich extracellular matrix (ECM) by myofibroblasts is a characteristic feature of fibrosis, a pathological state leading to serious organ dysfunction. Transforming growth factor beta1 (TGF beta 1) is a strong inducer of myofibroblast formation and subsequent

  4. Normal formation and repair of γ-radiation-induced single and double strand DNA breaks in Down syndrome fibroblasts

    International Nuclear Information System (INIS)

    Steiner, M.E.; Woods, W.G.

    1982-01-01

    Fibroblasts from patients with Down syndrome (Trisomy 21) were examined for repair capability of γ-radiation-induced single strand and double strand DNA breaks. Formation and repair of DNA breaks were determined by DNA alkaline and non-denaturing elution techniques. Down syndrome fibroblasts were found to repair single strand and double strand breaks as well as fibroblasts from normal controls. (orig.)

  5. Inflammation induced mTORC2-Akt-mTORC1 signaling promotes macrophage foam cell formation.

    Science.gov (United States)

    Banerjee, Dipanjan; Sinha, Archana; Saikia, Sudeshna; Gogoi, Bhaskarjyoti; Rathore, Arvind K; Das, Anindhya Sundar; Pal, Durba; Buragohain, Alak K; Dasgupta, Suman

    2018-06-05

    The transformation of macrophages into lipid loaded foam cells is a critical and early event in the pathogenesis of atherosclerosis. Several recent reports highlighted that induction of TLR4 signaling promotes macrophage foam cell formation; however, the underlying molecular mechanisms have not been clearly elucidated. Here, we found that the TLR4 mediated inflammatory signaling communicated with mTORC2-Akt-mTORC1 metabolic cascade in macrophage and thereby promoting lipid uptake and foam cell formation. Mechanistically, LPS treatment markedly upregulates TLR4 mediated inflammatory pathway which by activating mTORC2 induces Akt phosphorylation at serine 473 and that aggravate mTORC1 dependent scavenger receptors expression and consequent lipid accumulation in THP-1 macrophages. Inhibition of mTORC2 either by silencing Rictor expression or inhibiting its association with mTOR notably prevents LPS induced Akt activation, scavenger receptors expression and macrophage lipid accumulation. Although suppression of mTORC1 expression by genetic knockdown of Raptor did not produce any significant change in Akt S473 phosphorylation, however, incubation with Akt activator in Rictor silenced cells failed to promote scavenger receptors expression and macrophage foam cell formation. Thus, present research explored the signaling pathway involved in inflammation induced macrophage foam cells formation and therefore, targeting this pathway might be useful for preventing macrophage foam cell formation. Copyright © 2018 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  6. Influence of viscosity of the medium on the disposition of carbon nanotubes anisotropic structures formation induced by electric field

    International Nuclear Information System (INIS)

    Yakovenko, O.S.; Matsuj, L.Yu.; Zhuravkov, O.V.; Vovchenko, L.D.

    2014-01-01

    To obtain carbon nanotubes (CNT)-polymer composites with anisotropic physical properties an electric field application can be used. This investigation considers factors of CNT anisotropic distribution formation induced by electric field and consideration is supported with experimental results where some factors were varied. In the article an influence of magnitude and type of electric field and time of processing by electric field on CNT anisotropic structures formation in polymer mediums of different viscosities (oil, epoxy resins) is investigated. The aim of this work was to examine the CNT structuration process induced by electric field in viscous mediums and to find out the most optimal conditions of preparation of polymer/carbon composite materials (CM) with specified distribution of carbon filler induced by electric field. Scoping on polymer/carbon CM structuration was conducted by optical microscopy method. It was found that the main factors during CNT network formation are the type and viscosity of polymer binder and applied electric field parameters. It was observed that for high viscous polymer CNT network formation is unfeasible even at high applied electric field strength. But also for low viscous medium at relatively low electric field strength the CNT network formation is complicated too. And it was seen from optical observation that a type of the polymer variation causes different response of network form under the same experimental conditions. These distinctions are considered in the article

  7. The Role of Programmed Cell Death Regulator LSD1 in Nematode-Induced Syncytium Formation

    Science.gov (United States)

    Matuszkiewicz, Mateusz; Sobczak, Miroslaw; Cabrera, Javier; Escobar, Carolina; Karpiński, Stanislaw; Filipecki, Marcin

    2018-01-01

    Cyst-forming plant-parasitic nematodes are common pests of many crops. They inject secretions into host cells to induce the developmental and metabolic reprogramming that leads to the formation of a syncytium, which is the sole food source for growing nematodes. As in other host-parasite models, avirulence leads to rapid and local programmed cell death (PCD) known as the hypersensitive response (HR), whereas in the case of virulence, PCD is still observed but is limited to only some cells. Several regulators of PCD were analyzed to understand the role of PCD in compatible plant–nematode interactions. Thus, Arabidopsis plants carrying recessive mutations in LESION SIMULATING DISEASE1 (LSD1) family genes were subjected to nematode infection assays with juveniles of Heterodera schachtii. LSD1 is a negative and conditional regulator of PCD, and fewer and smaller syncytia were induced in the roots of lsd1 mutants than in wild-type Col-0 plants. Mutation in LSD ONE LIKE2 (LOL2) revealed a pattern of susceptibility to H. schachtii antagonistic to lsd1. Syncytia induced on lsd1 roots compared to Col0 showed significantly retarded growth, modified cell wall structure, increased vesiculation, and some myelin-like bodies present at 7 and 12 days post-infection. To place these data in a wider context, RNA-sequencing analysis of infected and uninfected roots was conducted. During nematode infection, the number of transcripts with changed expression in lsd1 was approximately three times smaller than in wild-type plants (1440 vs. 4206 differentially expressed genes, respectively). LSD1-dependent PCD in roots is thus a highly regulated process in compatible plant–nematode interactions. Two genes identified in this analysis, coding for AUTOPHAGY-RELATED PROTEIN 8F and 8H were down-regulated in syncytia in the presence of LSD1 and showed an increased susceptibility to nematode infection contrasting with lsd1 phenotype. Our data indicate that molecular regulators belonging to the

  8. The Role of Programmed Cell Death Regulator LSD1 in Nematode-Induced Syncytium Formation

    Directory of Open Access Journals (Sweden)

    Mateusz Matuszkiewicz

    2018-03-01

    Full Text Available Cyst-forming plant-parasitic nematodes are common pests of many crops. They inject secretions into host cells to induce the developmental and metabolic reprogramming that leads to the formation of a syncytium, which is the sole food source for growing nematodes. As in other host-parasite models, avirulence leads to rapid and local programmed cell death (PCD known as the hypersensitive response (HR, whereas in the case of virulence, PCD is still observed but is limited to only some cells. Several regulators of PCD were analyzed to understand the role of PCD in compatible plant–nematode interactions. Thus, Arabidopsis plants carrying recessive mutations in LESION SIMULATING DISEASE1 (LSD1 family genes were subjected to nematode infection assays with juveniles of Heterodera schachtii. LSD1 is a negative and conditional regulator of PCD, and fewer and smaller syncytia were induced in the roots of lsd1 mutants than in wild-type Col-0 plants. Mutation in LSD ONE LIKE2 (LOL2 revealed a pattern of susceptibility to H. schachtii antagonistic to lsd1. Syncytia induced on lsd1 roots compared to Col0 showed significantly retarded growth, modified cell wall structure, increased vesiculation, and some myelin-like bodies present at 7 and 12 days post-infection. To place these data in a wider context, RNA-sequencing analysis of infected and uninfected roots was conducted. During nematode infection, the number of transcripts with changed expression in lsd1 was approximately three times smaller than in wild-type plants (1440 vs. 4206 differentially expressed genes, respectively. LSD1-dependent PCD in roots is thus a highly regulated process in compatible plant–nematode interactions. Two genes identified in this analysis, coding for AUTOPHAGY-RELATED PROTEIN 8F and 8H were down-regulated in syncytia in the presence of LSD1 and showed an increased susceptibility to nematode infection contrasting with lsd1 phenotype. Our data indicate that molecular regulators

  9. Gold nanoparticle array formation on dimpled Ta templates using pulsed laser-induced thin film dewetting.

    Science.gov (United States)

    El-Sayed, Hany A; Horwood, Corie A; Owusu-Ansah, Ebenezer; Shi, Yujun J; Birss, Viola I

    2015-04-28

    Here we show that pulsed laser-induced dewetting (PLiD) of a thin Au metallic film on a nano-scale ordered dimpled tantalum (DT) surface results in the formation of a high quality Au nanoparticle (NP) array. In contrast to thermal dewetting, PLiD does not result in deformation of the substrate, even when the Au film is heated to above its melting point. PLiD causes local heating of only the metal film and thus thermal oxidation of the Ta substrate can be avoided, also because of the high vacuum (low pO2) environment employed. Therefore, this technique can potentially be used to fabricate NP arrays composed of high melting point metals, such as Pt, not previously possible using conventional thermal annealing methods. We also show that the Au NPs formed by PLiD are more spherical in shape than those formed by thermal dewetting, likely demonstrating a different dewetting mechanism in the two cases. As the metallic NPs formed on DT templates are electrochemically addressable, a longer-term objective of this work is to determine the effect of NP size and shape (formed by laser vs. thermal dewetting) on their electrocatalytic properties.

  10. Cholesterol is essential for mitosis progression and its deficiency induces polyploid cell formation

    International Nuclear Information System (INIS)

    Fernandez, Carlos; Lobo, Maria del Val T.; Gomez-Coronado, Diego; Lasuncion, Miguel A.

    2004-01-01

    As an essential component of mammalian cell membranes, cells require cholesterol for proliferation, which is either obtained from plasma lipoproteins or synthesized intracellularly from acetyl-CoA. In addition to cholesterol, other non-sterol mevalonate derivatives are necessary for DNA synthesis, such as the phosphorylated forms of isopentane, farnesol, geranylgeraniol, and dolichol. The aim of the present study was to elucidate the role of cholesterol in mitosis. For this, human leukemia cells (HL-60) were incubated in a cholesterol-free medium and treated with SKF 104976, which inhibits cholesterol biosynthesis by blocking sterol 14α-demethylase, and the expression of relevant cyclins in the different phases of the cell cycle was analyzed by flow cytometry. Prolonged cholesterol starvation induced the inhibition of cytokinesis and the formation of polyploid cells, which were multinucleated and had mitotic aberrations. Supplementing the medium with cholesterol completely abolished these effects, demonstrating they were specifically due to cholesterol deficiency. This is the first evidence that cholesterol is essential for mitosis completion and that, in the absence of cholesterol, the cells fail to undergo cytokinesis, entered G1 phase at higher DNA ploidy (tetraploidy), and then progressed through S (rereplication) into G2, generating polyploid cells

  11. Analysis on the formation condition of the algae-induced odorous black water agglomerate.

    Science.gov (United States)

    Wang, Guofang; Li, Xianning; Fang, Yang; Huang, Rui

    2014-12-01

    The algae-induced odorous black water agglomerate (OBWA) is a phenomenon in which water turns black and emits odorous gas. It is an ecological and environmental problem that has occurred several times in Taihu, a large eutrophic shallow lake in China. In this study, the collected eutrophic water with different algae densities was used to simulate OBWA. The results revealed that the massive accumulation and death of algae was the substrate source for OBWA. When the algae density reached 1.0 × 10(8) cells/L in the static and dark condition, at a constant high temperature (30 ± 2 °C), OBWA happened. There was a time difference between the water stinking and blackening with the stinking first. When the oxidation-reduction potential (ORP) value was between -250 and -50 mV, Dimethyl trisulfide (DMTS), the main contributor to the water stinking at the initial stage, and other odorous organics were produced. Water blackening was closely related to the increases of sulfide and dissolved Fe(2+) concentration. When the ORP value was between -350 and -300 mV, heavy metal containing sulfides such as FeS formed. Therefore, the condition when the water ORP value decreased to about -300 mV was considered the precursor for OBWA formation.

  12. Analysis of laser-induced evaporation of Al target under conditions of vapour plasma formation

    International Nuclear Information System (INIS)

    Mazhukin, V.I.; Nossov, V.V.; Smurov, I.

    2004-01-01

    The plasma-controlled evaporation of the Al target induced by the laser pulse with intensity of 10 9 W/cm 2 and wavelength of 1.06 μm is analysed with account for the two-dimensional effects. The self consistent model is applied, including the heat transfer equation in condensed medium, the equations of radiation gas dynamics in evaporated substance and the Knudsen layer model at the two media boundary. It is found that the phase transition at the target surface is controlled by the two factors: the surface temperature that depends on the transmitted radiation intensity, and the plasma pressure, governed by the expansion regime. The process comes through three characteristic stages, the sonic evaporation at the beginning, the condensation during the period of plasma formation and initial expansion, and finally, the re-start of evaporation in subsonic regime after the partial brightening of the plasma. During the subsonic evaporation stage the vapour flow and the mass removal rate are much higher near the beam boundaries than in the centre due to smaller plasma counter-pressure. The vapour plasma pattern is characterised by the dense hot zone near the surface where the absorption of laser energy occurs, and rapid decrease of density outside the zone due to three-dimensional expansion

  13. Morphology and formation mechanism in precipitation of calcite induced by Curvibacter lanceolatus strain HJ-1

    Science.gov (United States)

    Zhang, Chonghong; Li, Fuchun; Lv, Jiejie

    2017-11-01

    Precipitation of calcium carbobate induced by microbial activities is common occurrence in controlled solution, but the formation mechanism and morphology in precipitation of calcite in solution systems is unclear, and the role of microbes is disputed. Here, culture experiment was performed for 50 days using the Curvibacter lanceolatus strain HJ-1 in a M2 culture medium, and the phase composition and morphology of the precipitates were characterized by the X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and scanning electron microscopy (SEM) techniques. We show that the precipitation processes in our experiment lead to unusual morphologies of crystals corresponding to different growth stages, and the morphologies of the precipitated crystal aggregates ranging from the main rod-, cross-, star-, cauliflower-like morphologies to spherulitic structure. The complex and unusual morphologies of the precipitated calcite by strain HJ-1 may provide a reference point for better understanding the biomineralization mechanism of calcite, moreover, morphological transition of minerals revealed that the multi-ply crystals-aggregation mechanism for calcite growth in crystallisation media.

  14. Photo-induced formation of nitrous acid (HONO) on protein surfaces

    Science.gov (United States)

    Meusel, Hannah; Elshorbany, Yasin; Bartels-Rausch, Thorsten; Selzle, Kathrin; Lelieveld, Jos; Ammann, Markus; Pöschl, Ulrich; Su, Hang; Cheng, Yafang

    2014-05-01

    The study of nitrous acid (HONO) is of great interest, as the photolysis of HONO leads to the OH radical, which is the most important oxidant in the troposphere. HONO is directly emitted by combustion of fossil fuel and from soil biogenic nitrite (Su et al., 2011), and can also be formed by gas phase reactions of NO and OH and heterogeneous reactions of NO2. Previous atmospheric measurements have shown unexpectedly high HONO concentrations during daytime. Measured mixing ratios were about one order of magnitude higher than model simulations (Kleffmann et al. 2005, Vogel et al. 2003). The additional daytime source of HONO might be attributed to the photolysis of adsorbed nitric acid or heterogeneous photochemistry of NO2 on organic substrates, such as humic acids or polyphenolic compounds (Stemmler et al., 2006), or indirectly through nitration of phenols and subsequent photolysis of nitrophenols (Sosedova et al., 2011, Bejan et al., 2006). An important reactive surface for the heterogeneous formation of HONO could involve proteins, which are ubiquitous in the environment. They are part of coarse biological aerosol particles like pollen grains, fine particles (fragments of pollen, microorganism, plant debris) and dissolved in rainwater, soil and road dust (Miguel et al. 1999). In this project a thin film of bovine serum albumin (BSA), a model protein with 67 kDa and 21 tyrosine residues per molecule, is irradiated and exposed to nitrogen dioxide in humidified nitrogen. The formation of HONO is measured with long path absorption photometry (LOPAP). The generated HONO is in the range of 100 to 1100 ppt depending on light intensity, NO2 concentration and film thickness. Light induced HONO formation on protein surfaces is stable over the 20-hours experiment of irradiation and exposure. On the other hand, light activated proteins reacting with NO2 form nitrated proteins, as detected by liquid chromatography (LC-DAD). Our experiments on tetranitromethane (TNM) nitrated

  15. Gravity-induced differentiations and deficiency in flower formation observed on Columbus experiment WAICO1

    Science.gov (United States)

    Scherer, Günther; Pietrzyk, Peter

    formation. When mutants and wt only grown in the 1G centrifuge were compared the mutant leaves and cotyledons were smaller than in wt and hypocotyls were longer, but when the plants in µG for 12d were compared this difference was not found. Hence, gravity had an influence on leaf expansion and hypocotyl length in the mutant. The samples grown for 12d in 1G were kept in µG after 12d on due to a technical failure of the 1G centrifuge. They were retrieved about a year later. They had grown to full senescence and were preserved in a beautiful state as "straw". The observations on the root patterns by the astronaut photos at day 12 could be confirmed but plants had grown on and newer roots made coils just as the plants grown µG. Leaf sizes were different for wt and mutant. The most striking observation was that the mutants had developed small flower stems with a few flower buds but many flowers were incomplete, without the proper sepal or petal number or without gynaecium. The wild type plants had not developed any clear flower stem but only several malformed cell clumps shortly above the rosette. In ground laboratory experiments the mutants flower earlier which might explain why they developed flowers to some extent whereas the wt not at all. Microgravity might be a "stress" for flower formation. Taken together, several gravity-induced (or microgravity-induced) changes in differentiation occurred.

  16. IL-33 inhibits RANKL-induced osteoclast formation through the regulation of Blimp-1 and IRF-8 expression

    Energy Technology Data Exchange (ETDEWEB)

    Kiyomiya, Hiroyasu [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Division of Oral and Maxillofacial Surgery, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Ariyoshi, Wataru; Okinaga, Toshinori [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Kaneuji, Takeshi [Division of Oral Medicine, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Mitsugi, Sho [Division of Oral and Maxillofacial Surgery, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Sakurai, Takuma [Division of Infections and Molecular Biology, Department of Health Promotion, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Division of Oral and Maxillofacial Surgery, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Habu, Manabu [Division of Oral and Maxillofacial Surgery, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Yoshioka, Izumi [Division of Oral Medicine, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); Tominaga, Kazuhiro [Division of Oral and Maxillofacial Surgery, Department of Science of Physical Functions, Kyushu Dental University, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu, Fukuoka 803-8580 (Japan); and others

    2015-05-01

    Interleukin (IL)-33 is a recently discovered proinflammatory cytokine that belongs to the IL-1 family. Several studies have reported that IL-33 inhibits osteoclast differentiation. However, the mechanism of IL-33 regulation of osteoclastogenesis remains unclear. In the present study, we examined the effect of IL-33 on osteoclast formation in vitro. IL-33 suppressed osteoclast formation in both mouse bone marrow cells and monocyte/macrophage cell line RAW264.7 cells induced by receptor activator of NF-κB ligand (RANKL) and/or macrophage stimulating factor (M-CSF). IL-33 also inhibited the expression of RANKL-induced nuclear factor of activated T-cell cytoplasmic 1 (NFATc1), thereby decreasing the expression of osteoclastogenesis-related marker genes, including Cathepsin K, Osteoclast stimulatory transmembrane protein (Oc-stamp) and Tartrate-resistant acid phosphatase (Trap). Blockage of IL-33-ST2 binding suppressed the IL-33-mediated inhibition of NFATc1. RANKL-induced B-lymphocyte-induced maturation protein-1 (Blimp-1) expression was also suppressed by IL-33, which was followed by the stimulation of anti-osteoclastic genes such as interferon regulatory factor-8 (IRF-8). These results suggest that IL-33-ST2 interactions down-regulate both RANKL-induced NFATc1 activation and osteoclast differentiation via the regulation of Blimp-1 and IRF-8 expression. - Highlights: • IL-33 inhibits RANKL-induced osteoclast formation. • IL-33 has inhibitory effect on the RANKL-induced NFATc1 expression. • IL-33-induced NFATc1 suppression depends on the regulation of Blimp-1 and IRF-8.

  17. IL-33 inhibits RANKL-induced osteoclast formation through the regulation of Blimp-1 and IRF-8 expression

    International Nuclear Information System (INIS)

    Kiyomiya, Hiroyasu; Ariyoshi, Wataru; Okinaga, Toshinori; Kaneuji, Takeshi; Mitsugi, Sho; Sakurai, Takuma; Habu, Manabu; Yoshioka, Izumi; Tominaga, Kazuhiro

    2015-01-01

    Interleukin (IL)-33 is a recently discovered proinflammatory cytokine that belongs to the IL-1 family. Several studies have reported that IL-33 inhibits osteoclast differentiation. However, the mechanism of IL-33 regulation of osteoclastogenesis remains unclear. In the present study, we examined the effect of IL-33 on osteoclast formation in vitro. IL-33 suppressed osteoclast formation in both mouse bone marrow cells and monocyte/macrophage cell line RAW264.7 cells induced by receptor activator of NF-κB ligand (RANKL) and/or macrophage stimulating factor (M-CSF). IL-33 also inhibited the expression of RANKL-induced nuclear factor of activated T-cell cytoplasmic 1 (NFATc1), thereby decreasing the expression of osteoclastogenesis-related marker genes, including Cathepsin K, Osteoclast stimulatory transmembrane protein (Oc-stamp) and Tartrate-resistant acid phosphatase (Trap). Blockage of IL-33-ST2 binding suppressed the IL-33-mediated inhibition of NFATc1. RANKL-induced B-lymphocyte-induced maturation protein-1 (Blimp-1) expression was also suppressed by IL-33, which was followed by the stimulation of anti-osteoclastic genes such as interferon regulatory factor-8 (IRF-8). These results suggest that IL-33-ST2 interactions down-regulate both RANKL-induced NFATc1 activation and osteoclast differentiation via the regulation of Blimp-1 and IRF-8 expression. - Highlights: • IL-33 inhibits RANKL-induced osteoclast formation. • IL-33 has inhibitory effect on the RANKL-induced NFATc1 expression. • IL-33-induced NFATc1 suppression depends on the regulation of Blimp-1 and IRF-8

  18. Leukotriene B4 (LTB4) induces formation of inositol-phosphates (IP's) in rat peritoneal polymorphonuclear leukocytes (PMN's)

    International Nuclear Information System (INIS)

    Chi-Rosso, G.; Crooke, S.T.; Mong, S.

    1986-01-01

    LTB 4 induced rapid breakdown of prelabeled inositol-phospholipids (PI) in rat PMN. Formation of [ 3 H]-inositol-trisphosphate ([ 3 H]-IP 3 ) was rapid, with a peak of 250-300% of the control level, after 5-15 sec of stimulation with LTB 4 . Accumulation of [ 3 H]-inositol-bisphosphate ([ 3 H]-IP 2 ) was rapid, peaking after 30 sec of stimulation. [ 3 H]-inositol-monophosphate ([ 3 H]-IP 1 ) accumulated gradually in the presence of LiCl. The kinetics of [ 3 H]-IP 3 , [ 3 H]-IP 2 and [ 3 H]-IP 1 accumulation suggested that LTB 4 may interact with receptors in PMNs, activate phospholipase C which, in turn, induces hydrolysis of PI. The agonist activities of several LTB 4 analogs were employed to investigate the structure activity relationship of LTB 4 receptor mediated activation of PI hydrolysis. Increases in [ 3 H]-IP 3 formation were dependent upon the concentration of LTB 4 and the agonist analogs. The rank order potency of these analogs were equivalent to that of the pharmacological activity of LTB 4 agonists in the chemotaxis assay. Furthermore, the Islet activation protein (IAP) inhibited LTB 4 induced [ 3 H]-IP 3 formation. The tumor promoting phorbomyristate ester also inhibited LTB 4 induced [ 3 H]-IP 3 formation. These results suggest LTB 4 may interact with receptors in rat PMNs, activate G/sub i/ protein regulated phospholipase C and induce [ 3 H]-IP 3 formation

  19. Orientation dependence of stress-induced martensite formation during nanoindentation in NiTi shape memory alloys

    International Nuclear Information System (INIS)

    Laplanche, G.; Pfetzing-Micklich, J.; Eggeler, G.

    2014-01-01

    In the present work we used nanoindentation with a spherical indenter tip to study the formation of stress-induced martensite in NiTi shape memory alloys. Prior to nanoindentation, orientation imaging was performed to select austenite grains with specific crystallographic orientations, including the principal crystallographic directions [0 0 1], [1 0 1] and [1 1 1]. We studied a material where stress-induced martensite is stable at room temperature and found surface patterns with four-, two- and threefold symmetries for the [0 0 1], [1 0 1] and [1 1 1] crystallographic indentation directions, respectively. Atomic force microscopy investigations of the topography showed that the surface patterns were associated with sink-ins. The crystallographic sink-in patterns disappeared during heating, which proved their martensitic origin. Our results provide clear experimental evidence which shows that the crystallographic anisotropy of nanoindentation is governed by the crystallographic anisotropy of the stress-induced formation of martensite

  20. Porphyromonas gingivalis hydrogen sulfide enhances methyl mercaptan-induced pathogenicity in mouse abscess formation.

    Science.gov (United States)

    Nakamura, Suguru; Shioya, Koki; Hiraoka, B Yukihiro; Suzuki, Nao; Hoshino, Tomonori; Fujiwara, Taku; Yoshinari, Nobuo; Ansai, Toshihiro; Yoshida, Akihiro

    2018-04-01

    Porphyromonas gingivalis produces hydrogen sulfide (H2S) from l-cysteine. However, the role of H2S produced by P. gingivalis in periodontal inflammation is unclear. In this study, we identified the enzyme that catalyses H2S production from l-cysteine and analysed the role of H2S using a mouse abscess model. The enzyme identified was identical to methionine γ-lyase (PG0343), which produces methyl mercaptan (CH3SH) from l-methionine. Therefore, we analysed H2S and CH3SH production by P. gingivalis W83 and a PG0343-deletion mutant (ΔPG0343) with/without l-cysteine and/or l-methionine. The results indicated that CH3SH is produced constitutively irrespective of the presence of l-methionine, while H2S was greatly increased by both P. gingivalis W83 and ΔPG0343 in the presence of l-cysteine. In contrast, CH3SH production by ΔPG0343 was absent irrespective of the presence of l-methionine, and H2S production was eliminated in the absence of l-cysteine. Thus, CH3SH and H2S production involves different substrates, l-methionine or l-cysteine, respectively. Based on these characteristics, we analysed the roles of CH3SH and H2S in abscess formation in mice by P. gingivalis W83 and ΔPG0343. Abscess formation by P. gingivalis W83, but not ΔPG0343, differed significantly in the presence and absence of l-cysteine. In addition, the presence of l-methionine did not affect the size of abscesses generated by P. gingivalis W83 and ΔPG0343. Therefore, we conclude that H2S produced by P. gingivalis does not induce inflammation; however, H2S enhances inflammation caused by CH3SH. Thus, these results suggest the H2S produced by P. gingivalis plays a supportive role in inflammation caused by methionine γ-lyase.

  1. New Parameterizations for Neutral and Ion-Induced Sulfuric Acid-Water Particle Formation in Nucleation and Kinetic Regimes

    Science.gov (United States)

    Määttänen, Anni; Merikanto, Joonas; Henschel, Henning; Duplissy, Jonathan; Makkonen, Risto; Ortega, Ismael K.; Vehkamäki, Hanna

    2018-01-01

    We have developed new parameterizations of electrically neutral homogeneous and ion-induced sulfuric acid-water particle formation for large ranges of environmental conditions, based on an improved model that has been validated against a particle formation rate data set produced by Cosmics Leaving OUtdoor Droplets (CLOUD) experiments at European Organization for Nuclear Research (CERN). The model uses a thermodynamically consistent version of the Classical Nucleation Theory normalized using quantum chemical data. Unlike the earlier parameterizations for H2SO4-H2O nucleation, the model is applicable to extreme dry conditions where the one-component sulfuric acid limit is approached. Parameterizations are presented for the critical cluster sulfuric acid mole fraction, the critical cluster radius, the total number of molecules in the critical cluster, and the particle formation rate. If the critical cluster contains only one sulfuric acid molecule, a simple formula for kinetic particle formation can be used: this threshold has also been parameterized. The parameterization for electrically neutral particle formation is valid for the following ranges: temperatures 165-400 K, sulfuric acid concentrations 104-1013 cm-3, and relative humidities 0.001-100%. The ion-induced particle formation parameterization is valid for temperatures 195-400 K, sulfuric acid concentrations 104-1016 cm-3, and relative humidities 10-5-100%. The new parameterizations are thus applicable for the full range of conditions in the Earth's atmosphere relevant for binary sulfuric acid-water particle formation, including both tropospheric and stratospheric conditions. They are also suitable for describing particle formation in the atmosphere of Venus.

  2. Formation, Accumulation, and Hydrolysis of Endogenous and Exogenous Formaldehyde-Induced DNA Damage.

    Science.gov (United States)

    Yu, Rui; Lai, Yongquan; Hartwell, Hadley J; Moeller, Benjamin C; Doyle-Eisele, Melanie; Kracko, Dean; Bodnar, Wanda M; Starr, Thomas B; Swenberg, James A

    2015-07-01

    Formaldehyde is not only a widely used chemical with well-known carcinogenicity but is also a normal metabolite of living cells. It thus poses unique challenges for understanding risks associated with exposure. N(2-)hydroxymethyl-dG (N(2)-HOMe-dG) is the main formaldehyde-induced DNA mono-adduct, which together with DNA-protein crosslinks (DPCs) and toxicity-induced cell proliferation, play important roles in a mutagenic mode of action for cancer. In this study, N(2)-HOMe-dG was shown to be an excellent biomarker for direct adduction of formaldehyde to DNA and the hydrolysis of DPCs. The use of inhaled [(13)CD2]-formaldehyde exposures of rats and primates coupled with ultrasensitive nano ultra performance liquid chromatography-tandem mass spectrometry permitted accurate determinations of endogenous and exogenous formaldehyde DNA damage. The results show that inhaled formaldehyde only reached rat and monkey noses, but not tissues distant to the site of initial contact. The amounts of exogenous adducts were remarkably lower than those of endogenous adducts in exposed nasal epithelium. Moreover, exogenous adducts accumulated in rat nasal epithelium over the 28-days exposure to reach steady-state concentrations, followed by elimination with a half-life (t1/2) of 7.1 days. Additionally, we examined artifact formation during DNA preparation to ensure the accuracy of nonlabeled N(2)-HOMe-dG measurements. These novel findings provide critical new data for understanding major issues identified by the National Research Council Review of the 2010 Environmental Protection Agency's Draft Integrated Risk Information System Formaldehyde Risk Assessment. They support a data-driven need for reflection on whether risks have been overestimated for inhaled formaldehyde, whereas underappreciating endogenous formaldehyde as the primary source of exposure that results in bone marrow toxicity and leukemia in susceptible humans and rodents deficient in DNA repair. © The Author 2015

  3. Neurokinin 1 Receptor Mediates Membrane Blebbing and Sheer Stress-Induced Microparticle Formation in HEK293 Cells

    Science.gov (United States)

    Chen, Panpan; Douglas, Steven D.; Meshki, John; Tuluc, Florin

    2012-01-01

    Cell-derived microparticles participate in intercellular communication similar to the classical messenger systems of small and macro-molecules that bind to specialized membrane receptors. Microparticles have been implicated in the regulation of a variety of complex physiopathologic processes, such as thrombosis, the control of innate and adaptive immunity, and cancer. The neurokinin 1 receptor (NK1R) is a Gq-coupled receptor present on the membrane of a variety of tissues, including neurons in the central and peripheral nervous system, immune cells, endocrine and exocrine glands, and smooth muscle. The endogenous agonist of NK1R is the undecapeptide substance P (SP). We have previously described intracellular signaling mechanisms that regulate NK1R-mediated rapid cell shape changes in HEK293 cells and U373MG cells. In the present study, we show that the activation of NK1R in HEK293 cells, but not in U373MG cells, leads to formation of sheer-stress induced microparticles that stain positive with the membrane-selective fluorescent dye FM 2–10. SP-induced microparticle formation is independent of elevated intracellular calcium concentrations and activation of NK1R present on HEK293-derived microparticles triggers detectable calcium increase in SP-induced microparticles. The ROCK inhibitor Y27632 and the dynamin inhibitor dynasore inhibited membrane blebbing and microparticle formation in HEK293 cells, strongly suggesting that microparticle formation in this cell type is dependent on membrane blebbing. PMID:23024816

  4. Neurokinin 1 receptor mediates membrane blebbing and sheer stress-induced microparticle formation in HEK293 cells.

    Directory of Open Access Journals (Sweden)

    Panpan Chen

    Full Text Available Cell-derived microparticles participate in intercellular communication similar to the classical messenger systems of small and macro-molecules that bind to specialized membrane receptors. Microparticles have been implicated in the regulation of a variety of complex physiopathologic processes, such as thrombosis, the control of innate and adaptive immunity, and cancer. The neurokinin 1 receptor (NK1R is a Gq-coupled receptor present on the membrane of a variety of tissues, including neurons in the central and peripheral nervous system, immune cells, endocrine and exocrine glands, and smooth muscle. The endogenous agonist of NK1R is the undecapeptide substance P (SP. We have previously described intracellular signaling mechanisms that regulate NK1R-mediated rapid cell shape changes in HEK293 cells and U373MG cells. In the present study, we show that the activation of NK1R in HEK293 cells, but not in U373MG cells, leads to formation of sheer-stress induced microparticles that stain positive with the membrane-selective fluorescent dye FM 2-10. SP-induced microparticle formation is independent of elevated intracellular calcium concentrations and activation of NK1R present on HEK293-derived microparticles triggers detectable calcium increase in SP-induced microparticles. The ROCK inhibitor Y27632 and the dynamin inhibitor dynasore inhibited membrane blebbing and microparticle formation in HEK293 cells, strongly suggesting that microparticle formation in this cell type is dependent on membrane blebbing.

  5. Telomerase deficiency in bone marrow-derived cells attenuates angiotensin II-induced abdominal aortic aneurysm formation.

    Science.gov (United States)

    Findeisen, Hannes M; Gizard, Florence; Zhao, Yue; Cohn, Dianne; Heywood, Elizabeth B; Jones, Karrie L; Lovett, David H; Howatt, Deborah A; Daugherty, Alan; Bruemmer, Dennis

    2011-02-01

    Abdominal aortic aneurysms (AAA) are an age-related vascular disease and an important cause of morbidity and mortality. In this study, we sought to determine whether the catalytic component of telomerase, telomerase reverse transcriptase (TERT), modulates angiotensin (Ang) II-induced AAA formation. Low-density lipoprotein receptor-deficient (LDLr-/-) mice were lethally irradiated and reconstituted with bone marrow-derived cells from TERT-deficient (TERT-/-) mice or littermate wild-type mice. Mice were placed on a diet enriched in cholesterol, and AAA formation was quantified after 4 weeks of Ang II infusion. Repopulation of LDLr-/- mice with TERT-/- bone marrow-derived cells attenuated Ang II-induced AAA formation. TERT-deficient recipient mice revealed modest telomere attrition in circulating leukocytes at the study end point without any overt effect of the donor genotype on white blood cell counts. In mice repopulated with TERT-/- bone marrow, aortic matrix metalloproteinase-2 (MMP-2) activity was reduced, and TERT-/- macrophages exhibited decreased expression and activity of MMP-2 in response to stimulation with Ang II. Finally, we demonstrated in transient transfection studies that TERT overexpression activates the MMP-2 promoter in macrophages. TERT deficiency in bone marrow-derived macrophages attenuates Ang II-induced AAA formation in LDLr-/- mice and decreases MMP-2 expression. These results point to a previously unrecognized role of TERT in the pathogenesis of AAA.

  6. Rapid Myoglobin Aggregation through Glucosamine-Induced α-Dicarbonyl Formation.

    Science.gov (United States)

    Hrynets, Yuliya; Ndagijimana, Maurice; Betti, Mirko

    2015-01-01

    The extent of glycation and conformational changes of horse myoglobin (Mb) upon glycation with N-acetyl-glucosamine (GlcNAc), glucose (Glc) and glucosamine (GlcN) were investigated. Among tested sugars, the rate of glycation with GlcN was the most rapid as shown by MALDI and ESI mass spectrometries. Protein oxidation, as evaluated by the amount of carbonyl groups present on Mb, was found to increase exponentially in Mb-Glc conjugates over time, whereas in Mb-GlcN mixtures the carbonyl groups decreased significantly after maximum at 3 days of the reaction. The reaction between GlcN and Mb resulted in a significantly higher amount of α-dicarbonyl compounds, mostly glucosone and 3-deoxyglucosone, ranging from and 27 to 332 mg/L and from 14 to 304 mg/L, respectively. Already at 0.5 days, tertiary structural changes of Mb-GlcN conjugate were observed by altered tryptophan fluorescence. A reduction of metmyoglobin to deoxy-and oxymyoglobin forms was observed on the first day of reaction, coinciding with the greatest amount of glucosone produced. In contrast to native α-helical myoglobin, 41% of the glycated protein sequence was transformed into a β-sheet conformation, as determined by circular dichroism spectropolarimetry. Transmission electron microscopy demonstrated that Mb glycation with GlcN causes the formation of amorphous or fibrous aggregates, started already at 3 reaction days. These aggregates bind to an amyloid-specific dye thioflavin T. With the aid of α-dicarbonyl compounds and advanced products of reaction, this study suggests that the Mb glycation with GlcN induces the unfolding of an initially globular protein structure into amyloid fibrils comprised of a β-sheet structure.

  7. PLCζ Induced Ca2+ Oscillations in Mouse Eggs Involve a Positive Feedback Cycle of Ca2+ Induced InsP3 Formation From Cytoplasmic PIP2

    Science.gov (United States)

    Sanders, Jessica R.; Ashley, Bethany; Moon, Anna; Woolley, Thomas E.; Swann, Karl

    2018-01-01

    Egg activation at fertilization in mammalian eggs is caused by a series of transient increases in the cytosolic free Ca2+ concentration, referred to as Ca2+ oscillations. It is widely accepted that these Ca2+ oscillations are initiated by a sperm derived phospholipase C isoform, PLCζ that hydrolyses its substrate PIP2 to produce the Ca2+ releasing messenger InsP3. However, it is not clear whether PLCζ induced InsP3 formation is periodic or monotonic, and whether the PIP2 source for generating InsP3 from PLCζ is in the plasma membrane or the cytoplasm. In this study we have uncaged InsP3 at different points of the Ca2+ oscillation cycle to show that PLCζ causes Ca2+ oscillations by a mechanism which requires Ca2+ induced InsP3 formation. In contrast, incubation in Sr2+ media, which also induces Ca2+ oscillations in mouse eggs, sensitizes InsP3-induced Ca2+ release. We also show that the cytosolic level Ca2+ is a key factor in setting the frequency of Ca2+ oscillations since low concentrations of the Ca2+ pump inhibitor, thapsigargin, accelerates the frequency of PLCζ induced Ca2+ oscillations in eggs, even in Ca2+ free media. Given that Ca2+ induced InsP3 formation causes a rapid wave during each Ca2+ rise, we use a mathematical model to show that InsP3 generation, and hence PLCζ's substate PIP2, has to be finely distributed throughout the egg cytoplasm. Evidence for PIP2 distribution in vesicles throughout the egg cytoplasm is provided with a rhodamine-peptide probe, PBP10. The apparent level of PIP2 in such vesicles could be reduced by incubating eggs in the drug propranolol which also reversibly inhibited PLCζ induced, but not Sr2+ induced, Ca2+ oscillations. These data suggest that the cytosolic Ca2+ level, rather than Ca2+ store content, is a key variable in setting the pace of PLCζ induced Ca2+ oscillations in eggs, and they imply that InsP3 oscillates in synchrony with Ca2+ oscillations. Furthermore, they support the hypothesis that PLCζ and sperm

  8. Effect of Botulinum Toxin Type A on TGF-β/Smad Pathway Signaling: Implications for Silicone-Induced Capsule Formation.

    Science.gov (United States)

    Kim, Sena; Ahn, Moonsang; Piao, Yibo; Ha, Yooseok; Choi, Dae-Kyoung; Yi, Min-Hee; Shin, Nara; Kim, Dong Woon; Oh, Sang-Ha

    2016-11-01

    One of the most serious complications of breast surgery using implants is capsular contracture. Several preventive treatments have been introduced; however, the mechanism of capsule formation has not been resolved completely. The authors previously identified negative effects of botulinum toxin type A on capsule formation, expression of transforming growth factor (TGF)-β1, and differentiation of fibroblasts into myofibroblasts. Thus, the authors investigated how to prevent capsule formation by using botulinum toxin type A, particularly by means of TGF-β1 signaling, in human fibroblasts. In vitro, cultured human fibroblasts were treated with TGF-β1 and/or botulinum toxin type A. Expression of collagen, matrix metalloproteinase, and Smad was examined by Western blotting. The activation of matrix metalloproteinase was observed by gelatin zymography. In vivo, the effect of botulinum toxin type A on the phosphorylation of Smad2 in silicone-induced capsule formation was evaluated by immunocytochemistry. In vitro, the phosphorylation of Smad2 was inhibited by botulinum toxin type A treatment. The expression levels of collagen types 1 and 3 were inhibited by botulinum toxin type A treatment, whereas those of matrix metalloproteinase-2 and matrix metalloproteinase-9 were enhanced. Gelatin zymography experiments confirmed enhanced matrix metalloproteinase-2 activity in collagen degradation. In vivo, botulinum toxin type A treatment reduced capsule thickness and Smad2 phosphorylation in silicone-induced capsules. This study suggests that botulinum toxin type A plays an important role in the inhibition of capsule formation through the TGF-β/Smad signaling pathway. Therapeutic, V.

  9. Symbiodinium-Induced Formation of Microbialites: Mechanistic Insights From in Vitro Experiments and the Prospect of Its Occurrence in Nature

    Directory of Open Access Journals (Sweden)

    Jörg C. Frommlet

    2018-05-01

    Full Text Available Dinoflagellates in the genus Symbiodinium exhibit a variety of life styles, ranging from mutualistic endosymbioses with animal and protist hosts to free-living life styles. In culture, Symbiodinium spp. and naturally associated bacteria are known to form calcifying biofilms that produce so-called symbiolites, i.e., aragonitic microbialites that incorporate Symbiodinium as endolithic cells. In this study, we investigated (i how algal growth and the combined physiological activity of these bacterial-algal associations affect the physicochemical macroenvironment in culture and the microenvironment within bacterial-algal biofilms, and (ii how these interactions induce the formation of symbiolites. In batch culture, calcification typically commenced when Symbiodinium spp. growth approached stationary phase and when photosynthetic activity and its influence on pH and the carbonate system of the culture medium had already subsided, indicating that symbiolite formation is not simply a function of photosynthetic activity in the bulk medium. Physical disturbance of bacteria-algal biofilms, via repeated detaching and dispersing of the developing biofilm, generally impeded symbiolite formation, suggesting that the structural integrity of biofilms plays an important role in generating conditions conducive to calcification. Microsensor measurements of pH and O2 revealed a biofilm microenvironment characterized by high photosynthetic rates and by dynamic changes in photosynthesis and respiration with light intensity and culture age. Ca2+ microsensor measurements confirmed the significance of the biofilm microenvironment in inducing calcification, as photosynthesis within the biofilm induced calcification without the influence of batch culture medium and under environmentally relevant flow conditions. Furthermore, first quantitative data on calcification from 26 calcifying cultures enabled a first broad comparison of Symbiodinium-induced bacterial

  10. Formation and properties of metallic nanoparticles in lithium and sodium fluorides with radiation-induced color centers

    Science.gov (United States)

    Bryukvina, L. I.; Martynovich, E. F.

    2012-12-01

    The specific features of light- and temperature-induced formation of metallic nanoparticles in γ-irradiated LiF and NaF crystals have been investigated. Atomic force microscope images of nanoparticles of different sizes and in different locations have been presented. The relation between the crystal processing regimes and properties of the nanoparticles formed has been revealed. The optical properties of the processed crystals have been analyzed. The thermo- and light-stimulated processes underlying the formation of metallic nanoparticles in aggregation of the color centers and their decay due to the recovery of the crystal lattice have been studied.

  11. Electromagnetic particle-in-cell (PIC) method for modeling the formation of metal surface structures induced by femtosecond laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Djouder, M. [Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri de Tizi-ouzou, BP 17 RP, 15000 Tizi-Ouzou (Algeria); Lamrous, O., E-mail: omarlamrous@mail.ummto.dz [Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri de Tizi-ouzou, BP 17 RP, 15000 Tizi-Ouzou (Algeria); Mitiche, M.D. [Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri de Tizi-ouzou, BP 17 RP, 15000 Tizi-Ouzou (Algeria); Itina, T.E. [Laboratoire Hubert Curien, UMR CNRS 5516/Université Jean Monnet, 18 rue de Professeur Benoît Lauras, 42000 Saint-Etienne (France); Zemirli, M. [Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri de Tizi-ouzou, BP 17 RP, 15000 Tizi-Ouzou (Algeria)

    2013-09-01

    The particle in cell (PIC) method coupled to the finite-difference time-domain (FDTD) method is used to model the formation of laser induced periodic surface structures (LIPSS) at the early stage of femtosecond laser irradiation of smooth metal surface. The theoretical results were analyzed and compared with experimental data taken from the literature. It was shown that the optical properties of the target are not homogeneous and the ejection of electrons is such that ripples in the electron density were obtained. The Coulomb explosion mechanism was proposed to explain the ripples formation under the considered conditions.

  12. Electromagnetic particle-in-cell (PIC) method for modeling the formation of metal surface structures induced by femtosecond laser radiation

    International Nuclear Information System (INIS)

    Djouder, M.; Lamrous, O.; Mitiche, M.D.; Itina, T.E.; Zemirli, M.

    2013-01-01

    The particle in cell (PIC) method coupled to the finite-difference time-domain (FDTD) method is used to model the formation of laser induced periodic surface structures (LIPSS) at the early stage of femtosecond laser irradiation of smooth metal surface. The theoretical results were analyzed and compared with experimental data taken from the literature. It was shown that the optical properties of the target are not homogeneous and the ejection of electrons is such that ripples in the electron density were obtained. The Coulomb explosion mechanism was proposed to explain the ripples formation under the considered conditions.

  13. Activation of the inducible nitric oxide synthase pathway contributes to inflammation-induced osteoporosis by suppressing bone formation and causing osteoblast apoptosis.

    Science.gov (United States)

    Armour, K J; Armour, K E; van't Hof, R J; Reid, D M; Wei, X Q; Liew, F Y; Ralston, S H

    2001-12-01

    Osteoporosis is a major clinical problem in chronic inflammatory diseases such as rheumatoid arthritis. The mechanism of bone loss in this condition remains unclear, but previous studies have indicated that depressed bone formation plays a causal role. Since cytokine-induced nitric oxide (NO) production has been shown to inhibit osteoblast growth and differentiation in vitro, this study was undertaken to investigate the role of the inducible NO synthase (iNOS) pathway in the pathogenesis of inflammation-mediated osteoporosis (IMO) by studying mice with targeted inactivation of the iNOS gene (iNOS knockout [iNOS KO] mice). IMO was induced in wild-type (WT) and iNOS KO mice by subcutaneous injections of magnesium silicate. The skeletal response was assessed at the tibial metaphysis by measurements of bone mineral density (BMD), using peripheral quantitative computed tomography, by bone histomorphometry, and by measurements of bone cell apoptosis. NO production increased 2.5-fold (P < 0.005) in WT mice with IMO, but did not change significantly in iNOS KO mice. Total BMD values decreased by a mean +/- SEM of 14.4+/-2.0% in WT mice with IMO, compared with a decrease of 8.6+/-1.2% in iNOS KO mice with IMO (P < 0.01). Histomorphometric analysis confirmed that trabecular bone volume was lower in WT mice with IMO compared with iNOS KO mice with IMO (16.2+/-1.5% versus 23.4+/-2.6%; P < 0.05) and showed that IMO was associated with reduced bone formation and a 320% increase in osteoblast apoptosis (P < 0.005) in WT mice. In contrast, iNOS KO mice with IMO showed less inhibition of bone formation than WT mice and showed no significant increase in osteoblast apoptosis. Inducible NOS-mediated osteoblast apoptosis and depressed bone formation play important roles in the pathogenesis of IMO.

  14. Sirt1 overexpression suppresses fluoride-induced p53 acetylation to alleviate fluoride toxicity in ameloblasts responsible for enamel formation.

    Science.gov (United States)

    Suzuki, Maiko; Ikeda, Atsushi; Bartlett, John D

    2018-03-01

    Low-dose fluoride is an effective caries prophylactic, but high-dose fluoride is an environmental health hazard that causes skeletal and dental fluorosis. Treatments to prevent fluorosis and the molecular pathways responsive to fluoride exposure remain to be elucidated. Previously we showed that fluoride activates SIRT1 as an adaptive response to protect cells. Here, we demonstrate that fluoride induced p53 acetylation (Ac-p53) [Lys379], which is a SIRT1 deacetylation target, in ameloblast-derived LS8 cells in vitro and in enamel organ in vivo. Here we assessed SIRT1 function on fluoride-induced Ac-p53 formation using CRISPR/Cas9-mediated Sirt1 knockout (LS8 Sirt/KO ) cells or CRISPR/dCas9/SAM-mediated Sirt1 overexpressing (LS8 Sirt1/over ) cells. NaF (5 mM) induced Ac-p53 formation and increased cell cycle arrest via Cdkn1a/p21 expression in Wild-type (WT) cells. However, fluoride-induced Ac-p53 was suppressed by the SIRT1 activator resveratrol (50 µM). Without fluoride, Ac-p53 persisted in LS8 Sirt/KO cells, whereas it decreased in LS8 Sirt1/over . Fluoride-induced Ac-p53 formation was also suppressed in LS8 Sirt1/over cells. Compared to WT cells, fluoride-induced Cdkn1a/p21 expression was elevated in LS8 Sirt/KO and these cells were more susceptible to fluoride-induced growth inhibition. In contrast, LS8 Sirt1/over cells were significantly more resistant. In addition, fluoride-induced cytochrome-c release and caspase-3 activation were suppressed in LS8 Sirt1/over cells. Fluoride induced expression of the DNA double strand break marker γH2AX in WT cells and this was augmented in LS8 Sirt1/KO cells, but was attenuated in LS8 Sirt1/over cells. Our results suggest that SIRT1 deacetylates Ac-p53 to mitigate fluoride-induced cell growth inhibition, mitochondrial damage, DNA damage and apoptosis. This is the first report implicating Ac-p53 in fluoride toxicity.

  15. Trauma-induced heterotopic bone formation and the role of the immune system: A review.

    Science.gov (United States)

    Kraft, Casey T; Agarwal, Shailesh; Ranganathan, Kavitha; Wong, Victor W; Loder, Shawn; Li, John; Delano, Matthew J; Levi, Benjamin

    2016-01-01

    Extremity trauma, spinal cord injuries, head injuries, and burn injuries place patients at high risk of pathologic extraskeletal bone formation. This heterotopic bone causes severe pain, deformities, and joint contractures. The immune system has been increasingly implicated in this debilitating condition. This review summarizes the various roles immune cells and inflammation play in the formation of ectopic bone and highlights potential areas of future investigation and treatment. Cell types in both the innate and adaptive immune system such as neutrophils, macrophages, mast cells, B cells, and T cells have all been implicated as having a role in ectopic bone formation through various mechanisms. Many of these cell types are promising areas of therapeutic investigation for potential treatment. The immune system has also been known to also influence osteoclastogenesis, which is heavily involved in ectopic bone formation. Chronic inflammation is also known to have an inhibitory role in the formation of ectopic bone, whereas acute inflammation is necessary for ectopic bone formation.

  16. Laser-filamentation-induced water condensation and snow formation in a cloud chamber filled with different ambient gases.

    Science.gov (United States)

    Liu, Yonghong; Sun, Haiyi; Liu, Jiansheng; Liang, Hong; Ju, Jingjing; Wang, Tiejun; Tian, Ye; Wang, Cheng; Liu, Yi; Chin, See Leang; Li, Ruxin

    2016-04-04

    We investigated femtosecond laser-filamentation-induced airflow, water condensation and snow formation in a cloud chamber filled respectively with air, argon and helium. The mass of snow induced by laser filaments was found being the maximum when the chamber was filled with argon, followed by air and being the minimum with helium. We also discussed the mechanisms of water condensation in different gases. The results show that filaments with higher laser absorption efficiency, which result in higher plasma density, are beneficial for triggering intense airflow and thus more water condensation and precipitation.

  17. Insulin-like growth factor-1 receptor in mature osteoblasts is required for periosteal bone formation induced by reloading

    Science.gov (United States)

    Kubota, Takuo; Elalieh, Hashem Z.; Saless, Neema; Fong, Chak; Wang, Yongmei; Babey, Muriel; Cheng, Zhiqiang; Bikle, Daniel D.

    2013-11-01

    Skeletal loading and unloading has a pronounced impact on bone remodeling, a process also regulated by insulin-like growth factor-1 (IGF-1) signaling. Skeletal unloading leads to resistance to the anabolic effect of IGF-1, while reloading after unloading restores responsiveness to IGF-1. However, a direct study of the importance of IGF-1 signaling in the skeletal response to mechanical loading remains to be tested. In this study, we assessed the skeletal response of osteoblast-specific Igf-1 receptor deficient (Igf-1r-/-) mice to unloading and reloading. The mice were hindlimb unloaded for 14 days and then reloaded for 16 days. Igf-1r-/- mice displayed smaller cortical bone and diminished periosteal and endosteal bone formation at baseline. Periosteal and endosteal bone formation decreased with unloading in Igf-1r+/+ mice. However, the recovery of periosteal bone formation with reloading was completely inhibited in Igf-1r-/- mice, although reloading-induced endosteal bone formation was not hampered. These changes in bone formation resulted in the abolishment of the expected increase in total cross-sectional area with reloading in Igf-1r-/- mice compared to the control mice. These results suggest that the Igf-1r in mature osteoblasts has a critical role in periosteal bone formation in the skeletal response to mechanical loading.

  18. A parametric study of AC electric field-induced toroidal vortex formation in laminar nonpremixed coflow flames

    KAUST Repository

    Xiong, Yuan

    2017-05-02

    This study presents an experimental work investigating the controlling parameters on the formation of an electrically-induced inner toroidal vortex (ITV) near a nozzle rim in small, laminar nonpremixed coflow flames, when an alternating current is applied to the nozzle. A systematic parametric study was conducted by varying the flow parameters of the fuel and coflowing-air velocities, and the nozzle diameter. The fuels tested were methane, ethylene, ethane, propane, n-butane, and i-butane, each representing different ion-generation characteristics and sooting tendencies. The results showed that the fluid dynamic effects on ITV formation were weak, causing only mild variation when altering flow velocities. However, increased fuel velocity resulted in increased polycyclic aromatic hydrocarbon (PAH) formation, which promoted ITV formation. When judging the ITV-formation tendency based on critical applied voltage and frequency, it was qualitatively well correlated with the PAH concentration and the relative location of PAHs to the nozzle rim. The sooting tendency of the fuels did not affect the results much. A change in the nozzle diameter highlighted the importance of the relative distance between the PAH zone and the nozzle rim, indicating the role of local electric-field intensity on ITV formation. Detailed onset conditions, characteristics of near-nozzle flow patterns, and PAH distributions are also discussed.

  19. The lasting effect of limonene-induced particle formation on air quality in a genuine indoor environment.

    Science.gov (United States)

    Rösch, Carolin; Wissenbach, Dirk K; von Bergen, Martin; Franck, Ulrich; Wendisch, Manfred; Schlink, Uwe

    2015-09-01

    Atmospheric ozone-terpene reactions, which form secondary organic aerosol (SOA) particles, can affect indoor air quality when outdoor air mixes with indoor air during ventilation. This study, conducted in Leipzig, Germany, focused on limonene-induced particle formation in a genuine indoor environment (24 m(3)). Particle number, limonene and ozone concentrations were monitored during the whole experimental period. After manual ventilation for 30 min, during which indoor ozone levels reached up to 22.7 ppb, limonene was introduced into the room at concentrations of approximately 180 to 250 μg m(-3). We observed strong particle formation and growth within a diameter range of 9 to 50 nm under real-room conditions. Larger particles with diameters above 100 nm were less affected by limonene introduction. The total particle number concentrations (TPNCs) after limonene introduction clearly exceed outdoor values by a factor of 4.5 to 41 reaching maximum concentrations of up to 267,000 particles cm(-3). The formation strength was influenced by background particles, which attenuated the formation of new SOA with increasing concentration, and by ozone levels, an increase of which by 10 ppb will result in a six times higher TPNC. This study emphasizes indoor environments to be preferred locations for particle formation and growth after ventilation events. As a consequence, SOA formation can produce significantly higher amounts of particles than transported by ventilation into the indoor air.

  20. Efficient electron-induced removal of oxalate ions and formation of copper nanoparticles from copper(II oxalate precursor layers

    Directory of Open Access Journals (Sweden)

    Kai Rückriem

    2016-06-01

    Full Text Available Copper(II oxalate grown on carboxy-terminated self-assembled monolayers (SAM using a step-by-step approach was used as precursor for the electron-induced synthesis of surface-supported copper nanoparticles. The precursor material was deposited by dipping the surfaces alternately in ethanolic solutions of copper(II acetate and oxalic acid with intermediate thorough rinsing steps. The deposition of copper(II oxalate and the efficient electron-induced removal of the oxalate ions was monitored by reflection absorption infrared spectroscopy (RAIRS. Helium ion microscopy (HIM reveals the formation of spherical nanoparticles with well-defined size and X-ray photoelectron spectroscopy (XPS confirms their metallic nature. Continued irradiation after depletion of oxalate does not lead to further particle growth giving evidence that nanoparticle formation is primarily controlled by the available amount of precursor.

  1. Resveratrol Improves Tube Formation in AGE-Induced Late Endothelial Progenitor Cells by Suppressing Syndecan-4 Shedding

    Directory of Open Access Journals (Sweden)

    Han Wu

    2018-01-01

    Full Text Available Dysfunction of endothelial progenitor cells (EPCs contributes to cardiovascular complications in diabetes, and resveratrol has been shown to improve EPC functions. Syndecan-4 (Synd4, a cell surface heparin sulfate proteoglycan, has been shown to promote neovascularization. Thus, the present study was performed to determine whether resveratrol promoted angiogenesis of EPCs by regulating Synd4. Late EPCs were isolated from human peripheral blood and stimulated with AGEs. Western blot showed that AGEs induced Synd4 shedding in a dose- and time-dependent manner. AGE-induced Synd4 shedding was partly reversed by NAC or resveratrol, along with normalized ROS production. Overexpression of Synd4 or pretreatment of resveratrol reversed AGE-impaired tube formation of EPCs and regulated the Akt/eNOS pathway. Furthermore, resveratrol suppressed Synd4 shedding via the inhibition of oxidative stress and improved tube formation of late EPCs via the regulation of the Synd4/Akt/eNOS pathway.

  2. TRPV4 calcium-permeable channel is a novel regulator of oxidized LDL-induced macrophage foam cell formation.

    Science.gov (United States)

    Goswami, Rishov; Merth, Michael; Sharma, Shweta; Alharbi, Mazen O; Aranda-Espinoza, Helim; Zhu, Xiaoping; Rahaman, Shaik O

    2017-09-01

    Cardiovascular disease is the number one cause of death in United States, and atherosclerosis, a chronic inflammatory arterial disease, is the most dominant underlying pathology. Macrophages are thought to orchestrate atherosclerosis by generating lipid-laden foam cells and by secreting inflammatory mediators. Emerging data support a role for a mechanical factor, e.g., matrix stiffness, in regulation of macrophage function, vascular elasticity, and atherogenesis. However, the identity of the plasma membrane mechanosensor and the mechanisms by which pro-atherogenic signals are transduced/maintained are unknown. We have obtained evidence that TRPV4, an ion channel in the transient receptor potential vanilloid family and a known mechanosensor, is the likely mediator of oxidized low-density lipoprotein (oxLDL)-dependent macrophage foam cell formation, a critical process in atherogenesis. Specifically, we found that: i) genetic ablation of TRPV4 or pharmacologic inhibition of TRPV4 activity by a specific antagonist blocked oxLDL-induced macrophage foam cell formation, and ii) TRPV4 deficiency prevented pathophysiological range matrix stiffness or scratch-induced exacerbation of oxLDL-induced foam cell formation. Mechanistically, we found that: i) plasma membrane localization of TRPV4 was sensitized to the increasing level of matrix stiffness, ii) lack of foam cell formation in TRPV4 null cells was not due to lack of expression of CD36, a major receptor for oxLDL, and iii) TRPV4 channel activity regulated oxLDL uptake but not its binding on macrophages. Altogether, these findings identify a novel role for TRPV4 in regulating macrophage foam cell formation by modulating uptake of oxLDL. These findings suggest that therapeutic targeting of TRPV4 may provide a selective approach to the treatment of atherosclerosis. Copyright © 2017. Published by Elsevier Inc.

  3. Competition between reaction-induced expansion and creep compaction during gypsum formation: Experimental and numerical investigation

    Science.gov (United States)

    Skarbek, R. M.; Savage, H. M.; Spiegelman, M. W.; Kelemen, P. B.; Yancopoulos, D.

    2017-12-01

    Deformation and cracking caused by reaction-driven volume increase is an important process in many geological settings, however the conditions controlling these processes are poorly understood. The interaction of rocks with reactive fluids can change permeability and reactive surface area, leading to a large variety of feedbacks. Gypsum is an ideal material to study these processes. It forms rapidly at room temperature via bassanite hydration, and is commonly used as an analogue for rocks in high-temperature, high-pressure conditions. We conducted uniaxial strain experiments to study the effects of applied axial load on deformation and fluid flow during the formation of gypsum from bassanite. While hydration of bassanite to gypsum involves a solid volume increase, gypsum exhibits significant creep compaction when in contact with water. These two volume changing processes occur simultaneously during fluid flow through bassanite. We cold-pressed bassanite powder to form cylinders 2.5 cm in height and 1.2 cm in diameter. Samples were compressed with a static axial load of 0.01 to 4 MPa. Water infiltrated initially unsaturated samples through the bottom face and the height of the samples was recorded as a measure of the total volume change. We also performed experiments on pure gypsum samples to constrain the amount of creep observed in tests on bassanite hydration. At axial loads 1 MPa, creep in the gypsum dominates and samples exhibit monotonic compaction. At intermediate loads, samples exhibit alternating phases of compaction and expansion due to the interplay of the two volume changing processes. We observed a change from net compaction to net expansion at an axial load of 0.250 MPa. We explain this behavior with a simple model that predicts the strain evolution, but does not take fluid flow into account. We also implement a 1D poro-visco-elastic model of the imbibition process that includes the reaction and gypsum creep. We use the results of these models, with

  4. Schedule of NMDA receptor subunit expression and functional channel formation in the course of in vitro-induced neurogenesis.

    Science.gov (United States)

    Varju, P; Schlett, K; Eisel, U; Madarász, E

    2001-06-01

    NE-7C2 neuroectodermal cells derived from forebrain vesicles of p53-deficient mouse embryos (E9) produce neurons and astrocytes in vitro if induced by all-trans retinoic acid. The reproducible morphological stages of neurogenesis were correlated with the expression of various NMDA receptor subunits. RT-PCR studies revealed that GluRepsilon1 and GluRepsilon4 subunit mRNAs were transcribed by both non-induced and neuronally differentiated cells. GluRepsilon3 subunit mRNAs were not synthesized by NE-7C2 cells and increased numbers of messages from the GluRepsilon2 gene were detected only after neural network formation. The presence of the GluRzeta1 protein was detected throughout neural induction, whereas retinoic acid-induced neuron formation elevated the amount of exon 21 (C1)- and exon 22 (C2)-containing GluRzeta1 mRNAs and resulted in the appearance of exon 5 (N1)-containing transcripts. NMDA-elicited Ca(2+)-signals were detected only in cells displaying neuronal morphology, but preceding the appearance of synapsin-I immunoreactivity. Our findings demonstrated that, in spite of the presence of subunits necessary for channel formation, functional channels were formed by NE-7C2 cells no sooner than the time of neurite maturation. The data show that the cell line provides a suitable model to analyse the mechanisms involved in NMDA receptor gene expression before the appearance of synaptic communication.

  5. Ultraviolet light inhibition of phytochrome-induced flavonoid biosynthesis and DNA photolyase formation in mustard cotyledons (Sinapis alba L.)

    International Nuclear Information System (INIS)

    Buchholz, G.; Ehmann, B.; Wellmann, E.

    1995-01-01

    In cotyledons of etiolated mustard (Sinapis alba L.) seedlings, phytochrome-far-red-absorbing form-induced flavonoid biosynthesis was found to be inhibited by short-term ultraviolet (UV) irradiations. UV inhibition was shown for the synthesis of quercetin, anthocyanin, and also for the accumulation of the mRNA for chalcone synthase, the key enzyme of this pathway. The UV effect was more pronounced on flavonoid biosynthesis, a process that selectively occurs in the epidermal layers, than on the synthesis of mRNA for chlorophyll a/b-binding protein localized in the mesophyll tissue. These UV inhibitory effects were accompanied by cyclobutane pyrimidine dimer (CPD) formation showing a linear fluence-response relationship. CPD formation and UV inhibition of flavonoid biosynthesis was found to be partially reversible by blue/UV-A light via DNA photolyase (PRE), allowing photoreactivation of the DNA by splitting of CPDs, which are the cause of the UV effect. Like flavonoid formation PRE was also induced by the far-red-absorbing form of phytochrome and induction was inhibited by UV. A potential risk of inhibition, in response to solar UV-B irradiation, was shown for anthocyanin formation. This inhibition, however, occurred only if photoreactivation was experimentally reduced. The PRE activity present in the etiolated seedlings (further increasing about 5-fold during light acclimatization) appears to be sufficient to prevent the persistence of CPDs even under conditions of high solar irradiation

  6. Pneumocystis-Driven Inducible Bronchus-Associated Lymphoid Tissue Formation Requires Th2 and Th17 Immunity.

    Science.gov (United States)

    Eddens, Taylor; Elsegeiny, Waleed; Garcia-Hernadez, Maria de la Luz; Castillo, Patricia; Trevejo-Nunez, Giraldina; Serody, Katelin; Campfield, Brian T; Khader, Shabaana A; Chen, Kong; Rangel-Moreno, Javier; Kolls, Jay K

    2017-03-28

    Inducible bronchus-associated lymphoid tissue (iBALT) is an ectopic lymphoid structure composed of highly organized T cell and B cell zones that forms in the lung in response to infectious or inflammatory stimuli. Here, we develop a model for fungal-mediated iBALT formation, using infection with Pneumocystis that induces development of pulmonary lymphoid follicles. Pneumocystis-dependent iBALT structure formation and organization required CXCL13 signaling. Cxcl13 expression was regulated by interleukin (IL)-17 family members, as Il17ra -/- , Il17rb -/- , and Il17rc -/- mice failed to develop iBALT. Interestingly, Il17rb -/- mice have intact Th17 responses, but failed to generate an anti-Pneumocystis Th2 response. Given a role for Th2 and Th17 immunity in iBALT formation, we demonstrated that primary pulmonary fibroblasts synergistically upregulated Cxcl13 transcription following dual stimulation with IL-13 and IL-17A in a STAT3/GATA3-dependent manner. Together, these findings uncover a role for Th2/Th17 cells in regulating Cxcl13 expression and provide an experimental model for fungal-driven iBALT formation. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. The role of γ-ray-induced fibroblast apoptosis in inhibiting biliary duct hypertrophic scar formation in dogs

    International Nuclear Information System (INIS)

    He Guijin; Zhang Hong; Gao Xinyi; Xu Shuhe; Gao Hong; Jiang Weiguo; Jiangtao; Dai Xianwei; Ma Kai

    2005-01-01

    Objective: To investigate the role of γ-ray-induced fibroblast apoptosis in the inhibition of biliary duct hypertrophic scar formation in dogs. Methods: γ-radiation-induced apoptotic fibroblast cells were analysed by using transmission electron microscopy and DNA from frozen biliary duct tissue was extracted with phenol chloroform. DNA ladder profile after extraction of RNA was observed, and apoptosis cells in paraffinem-bedded biliary duct tissue sections were examined used immuno-histochemical method. Dog biliary duct cross-sections were stained with hematoxylin-erosin, Masson's trichrome, and Verhoeff-van Giesen stains. Muscle formation area, lumen circumference, and stenosis degree were determined by a computer-assisted image analysis system. Results: 103 Pd radioactive stent significantly inhibited fibroblast proliferation. The features of fibroblast apoptosis (e.g, apoptic bodies, DNA ladder band) could be seen in the 103 Pd radioactive stent group. The fibroblast apoptotic rate was significantly increased in the 103 Pd radioactive stent group than in the control group (P 103 Pd radioactive stent significantly reduced biliary muscular formation. Conclusion: 103 Pd radioactive stent could have the effect of inhibiting the proliferation of scar-forming fibroblast, and thus could be used for treatment and (or) prevention of hypertrophic scar formation in biliary duct. (authors)

  8. Phosphoramide mustard exposure induces DNA adduct formation and the DNA damage repair response in rat ovarian granulosa cells

    Energy Technology Data Exchange (ETDEWEB)

    Ganesan, Shanthi, E-mail: shanthig@iastate.edu; Keating, Aileen F., E-mail: akeating@iastate.edu

    2015-02-01

    Phosphoramide mustard (PM), the ovotoxic metabolite of the anti-cancer agent cyclophosphamide (CPA), destroys rapidly dividing cells by forming NOR-G-OH, NOR-G and G-NOR-G adducts with DNA, potentially leading to DNA damage. A previous study demonstrated that PM induces ovarian DNA damage in rat ovaries. To investigate whether PM induces DNA adduct formation, DNA damage and induction of the DNA repair response, rat spontaneously immortalized granulosa cells (SIGCs) were treated with vehicle control (1% DMSO) or PM (3 or 6 μM) for 24 or 48 h. Cell viability was reduced (P < 0.05) after 48 h of exposure to 3 or 6 μM PM. The NOR-G-OH DNA adduct was detected after 24 h of 6 μM PM exposure, while the more cytotoxic G-NOR-G DNA adduct was formed after 48 h by exposure to both PM concentrations. Phosphorylated H2AX (γH2AX), a marker of DNA double stranded break occurrence, was also increased by PM exposure, coincident with DNA adduct formation. Additionally, induction of genes (Atm, Parp1, Prkdc, Xrcc6, and Brca1) and proteins (ATM, γH2AX, PARP-1, PRKDC, XRCC6, and BRCA1) involved in DNA repair were observed in both a time- and dose-dependent manner. These data support that PM induces DNA adduct formation in ovarian granulosa cells, induces DNA damage and elicits the ovarian DNA repair response. - Highlights: • PM forms ovarian DNA adducts. • DNA damage marker γH2AX increased by PM exposure. • PM induces ovarian DNA double strand break repair.

  9. Molecular Stress-inducing Compounds Increase Osteoclast Formation in a Heat Shock Factor 1 Protein-dependent Manner*

    Science.gov (United States)

    Chai, Ryan C.; Kouspou, Michelle M.; Lang, Benjamin J.; Nguyen, Chau H.; van der Kraan, A. Gabrielle J.; Vieusseux, Jessica L.; Lim, Reece C.; Gillespie, Matthew T.; Benjamin, Ivor J.; Quinn, Julian M. W.; Price, John T.

    2014-01-01

    Many anticancer therapeutic agents cause bone loss, which increases the risk of fractures that severely reduce quality of life. Thus, in drug development, it is critical to identify and understand such effects. Anticancer therapeutic and HSP90 inhibitor 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) causes bone loss by increasing osteoclast formation, but the mechanism underlying this is not understood. 17-AAG activates heat shock factor 1 (Hsf1), the master transcriptional regulator of heat shock/cell stress responses, which may be involved in this negative action of 17-AAG upon bone. Using mouse bone marrow and RAW264.7 osteoclast differentiation models we found that HSP90 inhibitors that induced a heat shock response also enhanced osteoclast formation, whereas HSP90 inhibitors that did not (including coumermycin A1 and novobiocin) did not affect osteoclast formation. Pharmacological inhibition or shRNAmir knockdown of Hsf1 in RAW264.7 cells as well as the use of Hsf1 null mouse bone marrow cells demonstrated that 17-AAG-enhanced osteoclast formation was Hsf1-dependent. Moreover, ectopic overexpression of Hsf1 enhanced 17-AAG effects upon osteoclast formation. Consistent with these findings, protein levels of the essential osteoclast transcription factor microphthalmia-associated transcription factor were increased by 17-AAG in an Hsf1-dependent manner. In addition to HSP90 inhibitors, we also identified that other agents that induced cellular stress, such as ethanol, doxorubicin, and methotrexate, also directly increased osteoclast formation, potentially in an Hsf1-dependent manner. These results, therefore, indicate that cellular stress can enhance osteoclast differentiation via Hsf1-dependent mechanisms and may significantly contribute to pathological and therapeutic related bone loss. PMID:24692538

  10. Molecular stress-inducing compounds increase osteoclast formation in a heat shock factor 1 protein-dependent manner.

    Science.gov (United States)

    Chai, Ryan C; Kouspou, Michelle M; Lang, Benjamin J; Nguyen, Chau H; van der Kraan, A Gabrielle J; Vieusseux, Jessica L; Lim, Reece C; Gillespie, Matthew T; Benjamin, Ivor J; Quinn, Julian M W; Price, John T

    2014-05-09

    Many anticancer therapeutic agents cause bone loss, which increases the risk of fractures that severely reduce quality of life. Thus, in drug development, it is critical to identify and understand such effects. Anticancer therapeutic and HSP90 inhibitor 17-(allylamino)-17-demethoxygeldanamycin (17-AAG) causes bone loss by increasing osteoclast formation, but the mechanism underlying this is not understood. 17-AAG activates heat shock factor 1 (Hsf1), the master transcriptional regulator of heat shock/cell stress responses, which may be involved in this negative action of 17-AAG upon bone. Using mouse bone marrow and RAW264.7 osteoclast differentiation models we found that HSP90 inhibitors that induced a heat shock response also enhanced osteoclast formation, whereas HSP90 inhibitors that did not (including coumermycin A1 and novobiocin) did not affect osteoclast formation. Pharmacological inhibition or shRNAmir knockdown of Hsf1 in RAW264.7 cells as well as the use of Hsf1 null mouse bone marrow cells demonstrated that 17-AAG-enhanced osteoclast formation was Hsf1-dependent. Moreover, ectopic overexpression of Hsf1 enhanced 17-AAG effects upon osteoclast formation. Consistent with these findings, protein levels of the essential osteoclast transcription factor microphthalmia-associated transcription factor were increased by 17-AAG in an Hsf1-dependent manner. In addition to HSP90 inhibitors, we also identified that other agents that induced cellular stress, such as ethanol, doxorubicin, and methotrexate, also directly increased osteoclast formation, potentially in an Hsf1-dependent manner. These results, therefore, indicate that cellular stress can enhance osteoclast differentiation via Hsf1-dependent mechanisms and may significantly contribute to pathological and therapeutic related bone loss.

  11. Losartan prevents from the formation and interferes with the development of calcium chloride-induced abdominal aortic aneurysms

    International Nuclear Information System (INIS)

    Yan Huimin; Cui Bing; Yang Hongzhen; Hu Zhuowei; Chen Zhong; Tang Xiaobin

    2010-01-01

    Objective: Abdominal aortic aneurysm (AAA), a chronic inflammatory vascular disorder, results in progressive expansion and rupture of the aorta with high mortality among the elderly. Multiple factors contribute to the pathogenesis of AAA that somehow induces aneurysmal manifestations. There are no effective drugs available currently. This study aims to find out whether losartan, an angiotensin II type 1 receptor (AT1) antagonist, can prevent and treat the CaCl 2 -induced AAA. Methods: We chose periaortic application of 0.5 mol/L CaCl 2 -induced mouse AAA model. Ultrasonographic and histological studies were conducted to evaluate the formation of AAA in mice. Results: Losartan not only protected against the formation of AAA, but also hindered the development of AAA. Losartan reduced aortic expansion and elastic lamina degradation. Conclusion: The prophylactic and therapeutic effects of losartan are associated with the regulation of vascular fibrosis and inflammation. Losartan inhibits the infiltration of inflammatory cells and decreases the expression of several cytokines in the vascular tissue of AAA. Our studies will provide insight into the pathogenesis of AAA induced by CaCl 2 and offer more evidence that losartan has a great potential for the development of therapeutic agents against AAA. (authors)

  12. Dopamine inhibits lipopolysaccharide-induced nitric oxide production through the formation of dopamine quinone in murine microglia BV-2 cells

    Directory of Open Access Journals (Sweden)

    Yasuhiro Yoshioka

    2016-02-01

    Full Text Available Dopamine (DA has been suggested to modulate functions of glial cells including microglial cells. To reveal the regulatory role of DA in microglial function, in the present study, we investigated the effect of DA on lipopolysaccharide (LPS-induced nitric oxide (NO production in murine microglial cell line BV-2. Pretreatment with DA for 24 h concentration-dependently attenuated LPS-induced NO production in BV-2 cells. The inhibitory effect of DA on LPS-induced NO production was not inhibited by SCH-23390 and sulpiride, D1-like and D2-like DA receptor antagonists, respectively. In addition, pretreatment with (−-(6aR,12bR-4,6,6a,7,8,12b-Hexahydro-7-methylindolo[4,3-a]phenanthridin (CY 208–243 and bromocriptine, D1-like and D2-like DA receptor agonists, respectively, did not affect the LPS-induced NO production. N-Acetylcysteine, which inhibits DA oxidation, completely inhibited the effect of DA. Tyrosinase, which catalyzes the oxidation of DA to DA quionone (DAQ, accelerated the inhibitory effect of DA on LPS-induced NO production. These results suggest that DA attenuates LPS-induced NO production through the formation of DAQ in BV-2 cells.

  13. Ultraviolet-induced formation of micronuclei and sister chromatid exchange in cultured fibroblasts of patients with cutaneous malignant melanoma

    International Nuclear Information System (INIS)

    Roser, M.; Boehm, A.O.; Oldigs, M.; Weichenthal, M.; Reimers, U.; Schmidt-Preuss, U.; Breitbart, E.W.; Ruediger, H.W.

    1989-01-01

    Genetically enhanced sensitivity to ultraviolet (UV) radiation may play an important role in the development of cutaneous malignant melanoma (CMM). This was studied in cultured fibroblasts of 26 CMM patients and controls by micronucleus (MN) test and sister chromatid exchange (SCE) after UV irradiation (375 J/m2). Sister chromatid exchange and MN formation were used as parameters to detect the UV-induced genotoxic damage in the individual cell strains. We found that the UV-induced level of MN was significantly increased in CMM patients (p = 0.0005), being most pronounced in the familial cases (p = 0.0001). Ultraviolet-induced SCE was also elevated in CMM patients (p = 0.001), but there was no difference between familial and nonfamilial cases. The present findings indicate that genetic predisposition contributes to the development of CMM in a subset of CMM patients and may be due to an enhanced susceptibility to UV light

  14. Solvent Induced Disulfide Bond Formation in 2,5-dimercapto-1,3,4-thiadiazole

    OpenAIRE

    Palanisamy Kalimuthu; Palraj Kalimuthu; S. Abraham John

    2007-01-01

    Disulfide bond formation is the decisive event in the protein folding to determine the conformation and stability of protein. To achieve this disulfide bond formation in vitro, we took 2,5-dimercapto-1,3,4-thiadiazole (DMcT) as a model compound. We found that disulfide bond formation takes place between two sulfhydryl groups of DMcT molecules in methanol. UV-Vis, FT-IR and mass spectroscopic as well as cyclic voltammetry were used to monitor the course of reaction. We proposed a mechanism for...

  15. Detecção dos genes codificantes da toxina CDT, e pesquisa de fatores que influenciam na produção de hemolisinas em amostras de Campylobacter jejuni de origem avícola

    Directory of Open Access Journals (Sweden)

    Michele M. Trindade

    2015-08-01

    Full Text Available Resumo: Membros termofílicos do gênero Campylobacter são reconhecidos como importantes enteropatógenos para o ser humano e animais. A grande diversidade ecológica destes micro-organismos em diferentes habitats tais como água, animais e alimentos predispõem ao aparecimento de novos fatores de virulência. Este trabalho teve por objetivo detectar os genes codificantes da Toxina Distensiva Citoletal (CDT por meio da técnica de PCR, pesquisar a atividade de hemolisinas e a influência de soluções quelantes e de íons nesta atividade. Foram utilizadas 45 amostras de Campylobacter jejuni de origem avícola para pesquisa de atividade hemolítica, cultivadas em Caldo Triptona de Soja (TSB. Após o crescimento bacteriano, as amostras foram semeadas em Ágar tríptico de soja (TSA contendo 5% de sangue de ovino. Para verificar a influência de agentes quelantes e solução de íons na atividade hemolítica, as amostras de C. jejuni foram cultivadas em TSB contendo separadamente os quelantes EDTA, ácido acético, soluções de íons CaCl2, MgCl2 e FeCl3, em atmosfera de microaerofilia. Quanto à atividade de hemolisina de C. jejuni em placas de TSA - sangue ovino foi possível observar que houve hemólise em 40% das amostras analisadas apenas com caldo TSB. Somente o ácido acético apresentou ação quelante sobre a atividade de hemolisinas em amostras de C. jejuni semeadas em placas de TSA - sangue ovino. Para detecção dos genes cdtA, cdtB e cdtC através da técnica da Reação em Cadeia da Polimerase (PCR foram utilizadas 119 amostras de C. jejuni de origem avícola. Foi possível observar que 37,8% possuíam o perfil de genes cdtABC. Os resultados demonstraram em amostras avícolas a presença de cepas de C. jejuni com potencial virulento, devido à presença dos genes da toxina CDT e potencial hemolítico, que apresentou ação reduzida in vitro com ácido acético.

  16. Hybrid simulation research on formation mechanism of tungsten nanostructure induced by helium plasma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Atsushi M., E-mail: ito.atsushi@nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Takayama, Arimichi; Oda, Yasuhiro [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Tamura, Tomoyuki; Kobayashi, Ryo; Hattori, Tatsunori; Ogata, Shuji [Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555 (Japan); Ohno, Noriyasu; Kajita, Shin [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Yajima, Miyuki [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Noiri, Yasuyuki [Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Yoshimoto, Yoshihide [University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Saito, Seiki [Kushiro National College of Technology, Kushiro, Hokkaido 084-0916 (Japan); Takamura, Shuichi [Aichi Institute of Technology, 1247 Yachigusa, Yakusa-cho, Toyota 470-0392 (Japan); Murashima, Takahiro [Tohoku University, 6-3, Aramaki-Aza-Aoba, Aoba-Ward, Sendai 980-8578 (Japan); Miyamoto, Mitsutaka [Shimane University, Matsue, Shimane 690-8504 (Japan); Nakamura, Hiroaki [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2015-08-15

    The generation of tungsten fuzzy nanostructure by exposure to helium plasma is one of the important problems for the use of tungsten material as divertor plates in nuclear fusion reactors. In the present paper, the formation mechanisms of the helium bubble and the tungsten fuzzy nanostructure were investigated by using several simulation methods. We proposed the four-step process which is composed of penetration step, diffusion and agglomeration step, helium bubble growth step, and fuzzy nanostructure formation step. As the fourth step, the formation of the tungsten fuzzy nanostructure was successfully reproduced by newly developed hybrid simulation combining between molecular dynamics and Monte-Carlo method. The formation mechanism of tungsten fuzzy nanostructure observed by the hybrid simulation is that concavity and convexity of the surface are enhanced by the bursting of helium bubbles in the region around the concavity.

  17. Multivalent-Counterion-Induced Surfactant Multilayer Formation at Hydrophobic and Hydrophilic Solid-Solution Interfaces.

    Science.gov (United States)

    Penfold, Jeffrey; Thomas, Robert K; Li, Peixun; Xu, Hui; Tucker, Ian M; Petkov, Jordan T; Sivia, Devinderjit S

    2015-06-23

    Surface multilayer formation from the anionic-nonionic surfactant mixture of sodium dodecyl dioxyethylene sulfate, SLES, and monododecyl dodecaethylene glycol, C12E12, by the addition of multivalent Al(3+) counterions at the solid-solution interface is observed and characterized by neutron reflectivity, NR. The ability to form surface multilayer structures on hydrophobic and hydrophilic silica and cellulose surfaces is demonstrated. The surface multilayer formation is more pronounced and more well developed on the hydrophilic and hydrophobic silica surfaces than on the hydrophilic and hydrophobic cellulose surfaces. The less well developed multilayer formation on the cellulose surfaces is attributed to the greater surface inhomogeneities of the cellulose surface which partially inhibit lateral coherence and growth of the multilayer domains at the surface. The surface multilayer formation is associated with extreme wetting properties and offers the potential for the manipulation of the solid surfaces for enhanced adsorption and control of the wetting behavior.

  18. The homing of bone marrow MSCs to non-osseous sites for ectopic bone formation induced by osteoinductive calcium phosphate

    Science.gov (United States)

    Song, Guodong; Habibovic, Pamela; Bao, Chongyun; Hu, Jing; van Blitterswijk, Clemens A.; Yuan, Huipin; Chen, Wenchuan; Xu, Hockin H.K.

    2013-01-01

    Osteoinductive biomaterials are promising for bone repair. There is no direct proof that bone marrow mesenchymal stem cells (BMSCs) home to non-osseous sites and participate in ectopic bone formation induced by osteoinductive bioceramics. The objective of this study was to use a sex-mismatched beagle dog model to investigate BMSC homing via blood circulation to participate in ectopic bone formation via osteoinductive biomaterial. BMSCs of male dogs were injected into female femoral marrow cavity. The survival and stable chimerism of donor BMSCs in recipients were confirmed with polymerase chain reaction (PCR) and fluorescence in situ hybridization (FISH). Biphasic calcium phosphate (BCP) granules were implanted in dorsal muscles of female dogs. Y chromosomes were detected in samples harvested from female dogs which had received male BMSCs. At 4 weeks, cells with Y-chromosomes were distributed in the new bone matrix throughout the BCP granule implant. At 6 weeks, cells with Y chromosomes were present in newly mineralized woven bone. TRAP positive osteoclast-like cells were observed in 4-week implants, and the number of such cells decreased from 4 to 6 weeks. These results show that osteoprogenitors were recruited from bone marrow and homed to ectopic site to serve as a cell source for calcium phosphate-induced bone formation. In conclusion, BMSCs were demonstrated to migrate from bone marrow through blood circulation to non-osseous bioceramic implant site to contribute to ectopic bone formation in a canine model. BCP induced new bone in muscles without growth factor delivery, showing excellent osteoinductivity that could be useful for bone tissue engineering. PMID:23298780

  19. Life cycle stage and water depth affect flooding-induced adventitious root formation in the terrestrial species Solanum dulcamara.

    Science.gov (United States)

    Zhang, Qian; Visser, Eric J W; de Kroon, Hans; Huber, Heidrun

    2015-08-01

    Flooding can occur at any stage of the life cycle of a plant, but often adaptive responses of plants are only studied at a single developmental stage. It may be anticipated that juvenile plants may respond differently from mature plants, as the amount of stored resources may differ and morphological changes can be constrained. Moreover, different water depths may require different strategies to cope with the flooding stress, the expression of which may also depend on developmental stage. This study investigated whether flooding-induced adventitious root formation and plant growth were affected by flooding depth in Solanum dulcamara plants at different developmental stages. Juvenile plants without pre-formed adventitious root primordia and mature plants with primordia were subjected to shallow flooding or deep flooding for 5 weeks. Plant growth and the timing of adventitious root formation were monitored during the flooding treatments. Adventitious root formation in response to shallow flooding was significantly constrained in juvenile S. dulcamara plants compared with mature plants, and was delayed by deep flooding compared with shallow flooding. Complete submergence suppressed adventitious root formation until up to 2 weeks after shoots restored contact with the atmosphere. Independent of developmental stage, a strong positive correlation was found between adventitious root formation and total biomass accumulation during shallow flooding. The potential to deploy an escape strategy (i.e. adventitious root formation) may change throughout a plant's life cycle, and is largely dependent on flooding depth. Adaptive responses at a given stage of the life cycle thus do not necessarily predict how the plant responds to flooding in another growth stage. As variation in adventitious root formation also correlates with finally attained biomass, this variation may form the basis for variation in resistance to shallow flooding among plants. © The Author 2015. Published by

  20. Deletion of epidermal Rac1 inhibits HPV-8 induced skin papilloma formation and facilitates HPV-8- and UV-light induced skin carcinogenesis.

    Science.gov (United States)

    Deshmukh, Jayesh; Pofahl, Ruth; Pfister, Herbert; Haase, Ingo

    2016-09-06

    Overexpression and increased activity of the small Rho GTPase Rac1 has been linked to squamous cell carcinoma of the epidermis and mucosa in humans. Targeted deletion of Rac1 or inhibition of Rac1 activity in epidermal keratinocytes reduced papilloma formation in a chemical skin carcinogenesis mouse model. However, a potential role of Rac1 in HPV- and UV-light induced skin carcinogenesis has not been investigated so far, solar UV radiation being an important carcinogen to the skin.To investigate this, we deleted Rac1 or modulated its activity in mice with transgenic expression of Human papilloma virus type-8 (HPV-8) in epidermal keratinocytes. Our data show that inhibition or deletion of Rac1 results in reduced papilloma formation upon UV-irradiation with a single dose, whereas constitutive activation of Rac1 strongly increases papilloma frequency in these mice. Surprisingly, we observed that, upon chronic UV-irradiation, the majority of mice with transgenic expression of HPV-8 and epidermis specific Rac1 deletion developed squamous cell carcinomas. Taken together, our data show that Rac1 exerts a dual role in skin carcinogenesis: its activation is, on one hand, required for HPV-8- and UV-light induced papilloma formation but, on the other, suppresses the development of squamous cell carcinomas.

  1. Nucleation in mesoscopic systems under transient conditions: Peptide-induced pore formation in vesicles

    Science.gov (United States)

    Zhdanov, Vladimir P.; Höök, Fredrik

    2013-04-01

    Attachment of lytic peptides to the lipid membrane of virions or bacteria is often accompanied by their aggregation and pore formation, resulting eventually in membrane rupture and pathogen neutralization. The membrane rupture may occur gradually via formation of many pores or abruptly after the formation of the first pore. In academic studies, this process is observed during interaction of peptides with lipid vesicles. We present an analytical model and the corresponding Monte Carlo simulations focused on the pore formation in such situations. Specifically, we calculate the time of the first nucleation-limited pore-formation event and show the distribution of this time in the regime when the fluctuations of the number of peptides attached to a vesicle are appreciable. The results obtained are used to clarify the mechanism of the pore formation and membrane destabilization observed recently during interaction of highly active α-helical peptide with sub-100-nm lipid vesicles that mimic enveloped viruses with nanoscale membrane curvature. The model proposed and the analysis presented are generic and may be applicable to other meso- and nanosystems.

  2. Sulfite-induced protein radical formation in LPS aerosol-challenged mice: Implications for sulfite sensitivity in human lung disease

    Directory of Open Access Journals (Sweden)

    Ashutosh Kumar

    2018-05-01

    Full Text Available Exposure to (bisulfite (HSO3– and sulfite (SO32– has been shown to induce a wide range of adverse reactions in sensitive individuals. Studies have shown that peroxidase-catalyzed oxidation of (bisulfite leads to formation of several reactive free radicals, such as sulfur trioxide anion (.SO3–, peroxymonosulfate (–O3SOO., and especially the sulfate (SO4. – anion radicals. One such peroxidase in neutrophils is myeloperoxidase (MPO, which has been shown to form protein radicals. Although formation of (bisulfite-derived protein radicals is documented in isolated neutrophils, its involvement and role in in vivo inflammatory processes, has not been demonstrated. Therefore, we aimed to investigate (bisulfite-derived protein radical formation and its mechanism in LPS aerosol-challenged mice, a model of non-atopic asthma. Using immuno-spin trapping to detect protein radical formation, we show that, in the presence of (bisulfite, neutrophils present in bronchoalveolar lavage and in the lung parenchyma exhibit, MPO-catalyzed oxidation of MPO to a protein radical. The absence of radical formation in LPS-challenged MPO- or NADPH oxidase-knockout mice indicates that sulfite-derived radical formation is dependent on both MPO and NADPH oxidase activity. In addition to its oxidation by the MPO-catalyzed pathway, (bisulfite is efficiently detoxified to sulfate by the sulfite oxidase (SOX pathway, which forms sulfate in a two-electron oxidation reaction. Since SOX activity in rodents is much higher than in humans, to better model sulfite toxicity in humans, we induced SOX deficiency in mice by feeding them a low molybdenum diet with tungstate. We found that mice treated with the SOX deficiency diet prior to exposure to (bisulfite had much higher protein radical formation than mice with normal SOX activity. Altogether, these results demonstrate the role of MPO and NADPH oxidase in (bisulfite-derived protein radical formation and show the involvement of

  3. NMDA Receptor Signaling Is Important for Neural Tube Formation and for Preventing Antiepileptic Drug-Induced Neural Tube Defects.

    Science.gov (United States)

    Sequerra, Eduardo B; Goyal, Raman; Castro, Patricio A; Levin, Jacqueline B; Borodinsky, Laura N

    2018-05-16

    Failure of neural tube closure leads to neural tube defects (NTDs), which can have serious neurological consequences or be lethal. Use of antiepileptic drugs (AEDs) during pregnancy increases the incidence of NTDs in offspring by unknown mechanisms. Here we show that during Xenopus laevis neural tube formation, neural plate cells exhibit spontaneous calcium dynamics that are partially mediated by glutamate signaling. We demonstrate that NMDA receptors are important for the formation of the neural tube and that the loss of their function induces an increase in neural plate cell proliferation and impairs neural cell migration, which result in NTDs. We present evidence that the AED valproic acid perturbs glutamate signaling, leading to NTDs that are rescued with varied efficacy by preventing DNA synthesis, activating NMDA receptors, or recruiting the NMDA receptor target ERK1/2. These findings may prompt mechanistic identification of AEDs that do not interfere with neural tube formation. SIGNIFICANCE STATEMENT Neural tube defects are one of the most common birth defects. Clinical investigations have determined that the use of antiepileptic drugs during pregnancy increases the incidence of these defects in the offspring by unknown mechanisms. This study discovers that glutamate signaling regulates neural plate cell proliferation and oriented migration and is necessary for neural tube formation. We demonstrate that the widely used antiepileptic drug valproic acid interferes with glutamate signaling and consequently induces neural tube defects, challenging the current hypotheses arguing that they are side effects of this antiepileptic drug that cause the increased incidence of these defects. Understanding the mechanisms of neurotransmitter signaling during neural tube formation may contribute to the identification and development of antiepileptic drugs that are safer during pregnancy. Copyright © 2018 the authors 0270-6474/18/384762-12$15.00/0.

  4. Electron induced formation and stability of molecular and cluster ions in gas phase and superfluid helium nanodroplets

    International Nuclear Information System (INIS)

    Aleem, M. A.

    2010-01-01

    The present PhD thesis represents a broad range study of electron induced formation and stability of positive and negative ions in gas phase and superfluid helium nanodroplets. The molecules studied are of industrial, environmental, plasma and biological relevance. The knowledge obtained from the study provides new insight for the proper understanding and control on energetics and dynamics of the reactions involved in the formation and fragmentation processes of the studied molecules and clusters. The experiments are accomplished and investigated using mass spectrometric techniques for the formation of molecular and cluster ions using different mass spectrometers available in our laboratory. One part of the work is focused on electron-induced reactions of the molecules in gas phase. Especially focus is laid to electron attachment to the isomers of mononitrotolouene used as an additive to explosives. The fragile nature and high internal energy of these molecules has lead to extensive fragmentation following the ionisation process. Dissociative electron attachment to the three different isomers has shown different resonances and therefore this process can be utilized to explicitly distinguish these isomers. Anion efficiency curves of the isomers have been studied using effusive molecular beam source in combination with a hemispherical electron monochromator as well as a Nier-type ion source attached to a sector field mass spectrometer. The outcome of the experiment is a reliable and effective detection method highly desirable for environmental and security reasons. Secondly, dissociative electron ionization of acetylene and propene is studied and their data is directly related to the plasma modelling for plasma fusion and processing reactors. Temperature effects for dissociative electron attachment to halo-hydrocarbons are also measured using a trochoidal electron monochromator. The second part of the work is concerned with the investigation of electron-induced

  5. TCR triggering induces the formation of Lck-RACK1-actinin-1 multiprotein network affecting Lck redistribution

    Directory of Open Access Journals (Sweden)

    Ondrej Ballek

    2016-10-01

    Full Text Available The initiation of T-cell signaling is critically dependent on the function of the member of Src family tyrosine kinases (SFKs, Lck. Upon TCR triggering, Lck kinase activity induces the nucleation of signal-transducing hubs that regulate the formation of complex signaling network and cytoskeletal rearrangement. In addition, the delivery of Lck function requires rapid and targeted membrane redistribution, but the mechanism underpinning this process is largely unknown. To gain insight into this process, we considered previously described proteins that could assist in this process via their capacity to interact with kinases and regulate their intracellular translocations. An adaptor protein, Receptor for Activated C Kinase 1 (RACK1, was chosen as a viable option and its capacity to bind Lck and aid the process of activation-induced redistribution of Lck was assessed. Our microscopic observation showed that T-cell activation induces a rapid, concomitant and transient co-redistribution of Lck and RACK1 into the forming immunological synapse. Consistent with this observation, the formation of transient RACK1-Lck complexes were detectable in primary CD4+ T-cells with their maximum levels peaking 10 seconds after TCR-CD4 co-aggregation. Moreover, RACK1 preferentially binds to a pool of kinase active pY394Lck which co-purifies with high molecular weight cellular fractions. The formation of RACK1-Lck complexes depends on functional SH2 and SH3 domains of Lck and includes several other signaling and cytoskeletal elements that transiently bind the complex. Notably, the F-actin-crosslinking protein, α-actinin-1, binds to RACK1 only in the presence of kinase active Lck suggesting that the formation of RACK1-pY394Lck-α-actinin-1 complex serves as a signal module coupling actin cytoskeleton bundling with productive TCR/CD4 triggering. In addition, the treatment of CD4+ T-cells with nocodazole, which disrupts the microtubular network, also blocked the formation

  6. SIRT6 reduces macrophage foam cell formation by inducing autophagy and cholesterol efflux under ox-LDL condition.

    Science.gov (United States)

    He, Jiangping; Zhang, Guangya; Pang, Qi; Yu, Cong; Xiong, Jie; Zhu, Jing; Chen, Fengling

    2017-05-01

    SIRT6 is a pivotal regulator of lipid metabolism. It is also closely connected to cardiovascular diseases, which are the main cause of death in diabetic patients. We observed a decrease in the expression of SIRT6 and key autophagy effectors (ATG5, LC3B, and LAMP1) in ox-LDL-induced foam cells, a special form of lipid-laden macrophages. In these cells, SIRT6 WT but not SIRT6 H133Y overexpression markedly reduced foam cell formation, as shown by Oil Red O staining, while inducing autophagy flux, as determined by both mRFP-GFP-LC3 labeling and transmission electron microscopy. Silencing the key autophagy initiation gene ATG5, reversed the autophagy-promoting effect of SIRT6 in ox-LDL-treated THP1 cells, as evidenced by an increase in foam cells. Cholesterol efflux assays indicated that SIRT6 overexpression in foam cells promoted cholesterol efflux, increased the levels of ABCA1 and ABCG1, and reduced miR-33 levels. By transfecting miR-33 into cells overexpressing SIRT6, we observed that reduced foam cell formation and autophagy flux induction were largely reversed. These data imply that SIRT6 plays an essential role in protecting against atherosclerosis by reducing foam cell formation through an autophagy-dependent pathway. © 2017 Federation of European Biochemical Societies.

  7. Osteoclast TGF-β Receptor Signaling Induces Wnt1 Secretion and Couples Bone Resorption to Bone Formation

    Science.gov (United States)

    Weivoda, Megan M; Ruan, Ming; Pederson, Larry; Hachfeld, Christine; Davey, Rachel A; Zajac, Jeffrey D; Westendorf, Jennifer J; Khosla, Sundeep; Oursler, Merry Jo

    2016-01-01

    Osteoblast-mediated bone formation is coupled to osteoclast-mediated bone resorption. These processes become uncoupled with age, leading to increased risk for debilitating fractures. Therefore, understanding how osteoblasts are recruited to sites of resorption is vital to treating age-related bone loss. Osteoclasts release and activate TGF-β from the bone matrix. Here we show that osteoclastspecific inhibition of TGF-β receptor signaling in mice results in osteopenia due to reduced osteoblast numbers with no significant impact on osteoclast numbers or activity. TGF-β induced osteoclast expression of Wnt1, a protein crucial to normal bone formation, and this response was blocked by impaired TGF-β receptor signaling. Osteoclasts in aged murine bones had lower TGF-β signaling and Wnt1 expression in vivo. Ex vivo stimulation of osteoclasts derived from young or old mouse bone marrow macrophages showed no difference in TGF-β–induced Wnt1 expression. However, young osteoclasts expressed reduced Wnt1 when cultured on aged mouse bone chips compared to young mouse bone chips, consistent with decreased skeletal TGF-β availability with age. Therefore, osteoclast responses to TGF-β are essential for coupling bone resorption to bone formation, and modulating this pathway may provide opportunities to treat age-related bone loss. PMID:26108893

  8. Formation and Stabilization of Environmentally Persistent Free Radicals Induced by the Interaction of Anthracene with Fe(III)-Modified Clays.

    Science.gov (United States)

    Jia, Hanzhong; Nulaji, Gulimire; Gao, Hongwei; Wang, Fu; Zhu, Yunqing; Wang, Chuanyi

    2016-06-21

    Environmentally persistent free radicals (EPFRs) are occasionally detected in Superfund sites but the formation of EPFRs induced by polycyclic aromatic hydrocarbons (PAHs) is not well understood. In the present work, the formation of EPFRs on anthracene-contaminated clay minerals was quantitatively monitored via electron paramagnetic resonance (EPR) spectroscopy, and surface/interface-related environmental influential factors were systematically explored. The obtained results suggest that EPFRs are more readily formed on anthracene-contaminated Fe(III)-montmorillonite than in other tested systems. Depending on the reaction condition, more than one type of organic radicals including anthracene-based radical cations with g-factors of 2.0028-2.0030 and oxygenic carbon-centered radicals featured by g-factors of 2.0032-2.0038 were identified. The formed EPFRs are stabilized by their interaction with interlayer surfaces, and such surface-bound EPFRs exhibit slow decay with 1/e-lifetime of 38.46 days. Transformation pathway and possible mechanism are proposed on the basis of experimental results and quantum mechanical simulations. Overall, the formation of EPFRs involves single-electron-transfer from anthracene to Fe(III) initially, followed by H2O addition on formed aromatic radical cation. Because of their potential exposure in soil and atmosphere, such clay surface-associated EPFRs might induce more serious toxicity than PAHs and exerts significant impacts on human health.

  9. Gravity-induced buds formation from protonemata apical cells in the mosses

    Science.gov (United States)

    Kyyak, Natalia; Khorkavtsiv, Yaroslava

    The acceleration of moss protonemata development after the exit it to light from darkness is important gravidependent morphogenetic manifestation of the moss protonemata. The accelerated development of mosses shows in transformation of apical protonemata cells into the gametophores buds (Ripetskyj et al., 1999). In order to establish, that such reaction on gravitation is general property of gravisensity species, or its typical only for single moss species, experiments with the following moss species - Bryum intermedium (Ludw.) Brig., Bryum caespiticium Hedw., Bryum argenteum Hedw., Dicranodontium denudatum (Brid.) Britt. were carried out. All these species in response to influence of gravitation were capable to form rich bunches of gravitropical protonemata in darkness, that testified to their gravisensity. After the transference of Petri dishes with gravitropical protonemata from darkness on light was revealed, that in 3 of the investigated species the gametophores buds were absent. Only B. argenteum has reacted to action of gravitation by buds formation from apical cells of the gravitropical protonemata. With the purpose of strengthening of buds formation process, the experiments with action of exogenous kinetin (in concentration of 10 (-6) M) were carried out. Kinetin essentially stimulated apical buds formation of B. argenteum. The quantity of apical buds has increased almost in three times in comparison with the control. Besides, on separate stolons a few (3-4) buds from one apical cell were formed. Experimentally was established, that the gametophores buds formation in mosses is controlled by phytohormones (Bopp, 1985; Demkiv et al., 1991). In conditions of gravity influence its essentially accelerated. Probably, gravity essentially strengthened acropetal transport of phytohormones and formation of attractive center in the protonemata apical cell. Our investigations have allowed to make the conclusion, that gravi-dependent formation of the apical buds is

  10. Dotted collar placed around carotid artery induces asymmetric neointimal lesion formation in rabbits without intravascular manipulations

    Directory of Open Access Journals (Sweden)

    Kivelä Antti

    2012-10-01

    Full Text Available Abstract Background Neointimal formation in atherosclerosis has been subject for intense research. However, good animal models mimicking asymmetrical lesion formation in human subjects have been difficult to establish. The aim of this study was to develop a model which would lead to the formation of eccentric lesions under macroscopically intact non-denuded endothelium. Methods We have developed a new collar model where we placed two cushions or dots inside the collar. Arterial lesions were characterized using histology and ultrasound methods. Results When this dotted collar was placed around carotid and femoral arteries it produced asymmetrical pressure on adventitia and a mild flow disturbance, and hence a change in shear stress. Our hypothesis was that this simple procedure would reproducibly produce asymmetrical lesions without any intraluminal manipulations. Intima/media ratio increased towards the distal end of the collar with the direction of blood flow under macroscopically intact endothelium. Macrophages preferentially accumulated in areas of the thickest neointima thus resembling early steps in human atherosclerotic plaque formation. Proliferating cells in these lesions and underlying media were scarce at eight weeks time point. Conclusion The improved dotted collar model produces asymmetrical human-like atherosclerotic lesions in rabbits. This model should be useful in studies regarding the pathogenesis and formation of eccentric atherosclerotic lesions.

  11. Risk factors for granuloma formation in children induced by tracheobronchial foreign bodies.

    Science.gov (United States)

    Huang, Zhenghua; Zhou, Ai; Zhang, Jianya; Xie, Lisheng; Li, Qi

    2015-12-01

    The aim of this study was to analyze the risk factors for granuloma formation caused by plant-based tracheobronchial foreign bodies in children, and investigate the underlying pathogenesis. In this retrospective analysis of 153 cases with tracheobronchial foreign bodies (peanuts and watermelon seeds), 35 cases of granuloma formation as granulation group (G), and 118 cases of no granuloma formation as non-granulation group (NG) were studied. Clinical data pertaining to sex (S), age (A), foreign body surface smoothness (SF), foreign body shape (SH), foreign body oil release state (O), the location of foreign bodies (L), and foreign body retention time (T) were collected for statistical analysis. Univariate analysis showed no significant difference between the two groups (G and NG) with respect to S, A, SH and L. Significant factors based on univariate analysis included SF, O and T. Multivariate logistic regression analysis revealed that SF and T were independent risk factors associated with development of granuloma. SF, O and T had relationship with the granuloma formation. Local trauma caused by an irregular and sharp foreign body, and extended period of time represent the main factors causing granuloma formation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. ResDE Two-Component Regulatory System Mediates Oxygen Limitation-Induced Biofilm Formation by Bacillus amyloliquefaciens SQR9.

    Science.gov (United States)

    Zhou, Xuan; Zhang, Nan; Xia, Liming; Li, Qing; Shao, Jiahui; Shen, Qirong; Zhang, Ruifu

    2018-04-15

    Efficient biofilm formation and root colonization capabilities facilitate the ability of beneficial plant rhizobacteria to promote plant growth and antagonize soilborne pathogens. Biofilm formation by plant-beneficial Bacillus strains is triggered by environmental cues, including oxygen deficiency, but the pathways that sense these environmental signals and regulate biofilm formation have not been thoroughly elucidated. In this study, we showed that the ResDE two-component regulatory system in the plant growth-promoting rhizobacterium Bacillus amyloliquefaciens strain SQR9 senses the oxygen deficiency signal and regulates biofilm formation. ResE is activated by sensing the oxygen limitation-induced reduction of the NAD + /NADH pool through its PAS domain, stimulating its kinase activity, and resulting in the transfer of a phosphoryl group to ResD. The phosphorylated ResD directly binds to the promoter regions of the qoxABCD and ctaCDEF operons to improve the biosynthesis of terminal oxidases, which can interact with KinB to activate biofilm formation. These results not only revealed the novel regulatory function of the ResDE two-component system but also contributed to the understanding of the complicated regulatory network governing Bacillus biofilm formation. This research may help to enhance the root colonization and the plant-beneficial efficiency of SQR9 and other Bacillus rhizobacteria used in agriculture. IMPORTANCE Bacillus spp. are widely used as bioinoculants for plant growth promotion and disease suppression. The exertion of their plant-beneficial functions is largely dependent on their root colonization, which is closely related to their biofilm formation capabilities. On the other hand, Bacillus is the model bacterium for biofilm study, and the process and molecular network of biofilm formation are well characterized (B. Mielich-Süss and D. Lopez, Environ Microbiol 17:555-565, 2015, https://doi.org/10.1111/1462-2920.12527; L. S. Cairns, L. Hobley, and

  13. Delayed cell death, giant cell formation and chromosome instability induced by X-irradiation in human embryo cells

    International Nuclear Information System (INIS)

    Roy, K.; Kodama, Seiji; Suzuki, Keiji; Watanabe, Masami

    1999-01-01

    We studied X-ray-induced delayed cell death, delayed giant cell formation and delayed chromosome aberrations in normal human embryo cells to explore the relationship between initial radiation damage and delayed effect appeared at 14 to 55 population doubling numbers (PDNs) after X-irradiation. The delayed effect was induced in the progeny of X-ray survivors in a dose-dependent manner and recovered with increasing PDNs after X-irradiation. Delayed plating for 24 h post-irradiation reduced both acute and delayed lethal damage, suggesting that potentially lethal damage repair (PLDR) can be effective for relieving the delayed cell death. The chromosome analysis revealed that most of the dicentrics (more than 90%) observed in the progeny of X-ray survivors were not accompanied with fragments, in contrast with those observed in the first mitosis after X-irradiation. The present results indicate that the potentiality of genetic instability is determined during the repair process of initial radiation damage and suggest that the mechanism for formation of delayed chromosome aberrations by radiation might be different from that of direct radiation-induced chromosome aberrations. (author)

  14. Streptococcus sanguinis induces foam cell formation and cell death of macrophages in association with production of reactive oxygen species.

    Science.gov (United States)

    Okahashi, Nobuo; Okinaga, Toshinori; Sakurai, Atsuo; Terao, Yutaka; Nakata, Masanobu; Nakashima, Keisuke; Shintani, Seikou; Kawabata, Shigetada; Ooshima, Takashi; Nishihara, Tatsuji

    2011-10-01

    Streptococcus sanguinis, a normal inhabitant of the human oral cavity, is a common streptococcal species implicated in infective endocarditis. Herein, we investigated the effects of infection with S. sanguinis on foam cell formation and cell death of macrophages. Infection with S. sanguinis stimulated foam cell formation of THP-1, a human macrophage cell line. At a multiplicity of infection >100, S. sanguinis-induced cell death of the macrophages. Viable bacterial infection was required to trigger cell death because heat-inactivated S. sanguinis did not induce cell death. The production of cytokines interleukin-1β and tumor necrosis factor-α from macrophages was also stimulated during bacterial infection. Inhibition of the production of reactive oxygen species (ROS) resulted in reduced cell death, suggesting an association of ROS with cell death. Furthermore, S. sanguinis-induced cell death appeared to be independent of activation of inflammasomes, because cleavage of procaspase-1 was not evident in infected macrophages. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  15. The Phospholipid:Diacylglycerol Acyltransferase Lro1 Is Responsible for Hepatitis C Virus Core-Induced Lipid Droplet Formation in a Yeast Model System.

    Directory of Open Access Journals (Sweden)

    Shingo Iwasa

    Full Text Available Chronic infection with the hepatitis C virus frequently induces steatosis, which is a significant risk factor for liver pathogenesis. Steatosis is characterized by the accumulation of lipid droplets in hepatocytes. The structural protein core of the virus induces lipid droplet formation and localizes on the surface of the lipid droplets. However, the precise molecular mechanisms for the core-induced formation of lipid droplets remain elusive. Recently, we showed that the expression of the core protein in yeast as a model system could induce lipid droplet formation. In this study, we probed the cellular factors responsible for the formation of core-induced lipid-droplets in yeast cells. We demonstrated that one of the enzymes responsible for triglyceride synthesis, a phospholipid:diacylglycerol acyltransferase (Lro1, is required for the core-induced lipid droplet formation. While core proteins inhibit Lro1 degradation and alter Lro1 localization, the characteristic localization of Lro1 adjacent to the lipid droplets appeared to be responsible for the core-induced lipid droplet formation. RNA virus genomes have evolved using high mutation rates to maintain their ability to replicate. Our observations suggest a functional relationship between the core protein with hepatocytes and yeast cells. The possible interactions between core proteins and the endoplasmic reticulum membrane affect the mobilization of specific proteins.

  16. Germ Cell-less Promotes Centrosome Segregation to Induce Germ Cell Formation

    Directory of Open Access Journals (Sweden)

    Dorothy A. Lerit

    2017-01-01

    Full Text Available The primordial germ cells (PGCs specified during embryogenesis serve as progenitors to the adult germline stem cells. In Drosophila, the proper specification and formation of PGCs require both centrosomes and germ plasm, which contains the germline determinants. Centrosomes are microtubule (MT-organizing centers that ensure the faithful segregation of germ plasm into PGCs. To date, mechanisms that modulate centrosome behavior to engineer PGC development have remained elusive. Only one germ plasm component, Germ cell-less (Gcl, is known to play a role in PGC formation. Here, we show that Gcl engineers PGC formation by regulating centrosome dynamics. Loss of gcl leads to aberrant centrosome separation and elaboration of the astral MT network, resulting in inefficient germ plasm segregation and aborted PGC cellularization. Importantly, compromising centrosome separation alone is sufficient to mimic the gcl loss-of-function phenotypes. We conclude Gcl functions as a key regulator of centrosome separation required for proper PGC development.

  17. Biofilm Formation and Heat Stress Induce Pyomelanin Production in Deep-Sea Pseudoalteromonas sp. SM9913.

    Science.gov (United States)

    Zeng, Zhenshun; Cai, Xingsheng; Wang, Pengxia; Guo, Yunxue; Liu, Xiaoxiao; Li, Baiyuan; Wang, Xiaoxue

    2017-01-01

    Pseudoalteromonas is an important bacterial genus present in various marine habitats. Many strains of this genus are found to be surface colonizers on marine eukaryotes and produce a wide range of pigments. However, the exact physiological role and mechanism of pigmentation were less studied. Pseudoalteromonas sp. SM9913 (SM9913), an non-pigmented strain isolated from the deep-sea sediment, formed attached biofilm at the solid-liquid interface and pellicles at the liquid-air interface at a wide range of temperatures. Lower temperatures and lower nutrient levels promoted the formation of attached biofilm, while higher nutrient levels promoted pellicle formation of SM9913. Notably, after prolonged incubation at higher temperatures growing planktonically or at the later stage of the biofilm formation, we found that SM9913 released a brownish pigment. By comparing the protein profile at different temperatures followed by qRT-PCR, we found that the production of pigment at higher temperatures was due to the induction of melA gene which is responsible for the synthesis of homogentisic acid (HGA). The auto-oxidation of HGA can lead to the formation of pyomelanin, which has been shown in other bacteria. Fourier Transform Infrared Spectrometer analysis confirmed that the pigment produced in SM9913 was pyomelanin-like compound. Furthermore, we demonstrated that, during heat stress and during biofilm formation, the induction level of melA gene was significantly higher than that of the hmgA gene which is responsible for the degradation of HGA in the L-tyrosine catabolism pathway. Collectively, our results suggest that the production of pyomelanin of SM9913 at elevated temperatures or during biofilm formation might be one of the adaptive responses of marine bacteria to environmental cues.

  18. Biofilm Formation and Heat Stress Induce Pyomelanin Production in Deep-Sea Pseudoalteromonas sp. SM9913

    Directory of Open Access Journals (Sweden)

    Zhenshun Zeng

    2017-09-01

    Full Text Available Pseudoalteromonas is an important bacterial genus present in various marine habitats. Many strains of this genus are found to be surface colonizers on marine eukaryotes and produce a wide range of pigments. However, the exact physiological role and mechanism of pigmentation were less studied. Pseudoalteromonas sp. SM9913 (SM9913, an non-pigmented strain isolated from the deep-sea sediment, formed attached biofilm at the solid–liquid interface and pellicles at the liquid–air interface at a wide range of temperatures. Lower temperatures and lower nutrient levels promoted the formation of attached biofilm, while higher nutrient levels promoted pellicle formation of SM9913. Notably, after prolonged incubation at higher temperatures growing planktonically or at the later stage of the biofilm formation, we found that SM9913 released a brownish pigment. By comparing the protein profile at different temperatures followed by qRT-PCR, we found that the production of pigment at higher temperatures was due to the induction of melA gene which is responsible for the synthesis of homogentisic acid (HGA. The auto-oxidation of HGA can lead to the formation of pyomelanin, which has been shown in other bacteria. Fourier Transform Infrared Spectrometer analysis confirmed that the pigment produced in SM9913 was pyomelanin-like compound. Furthermore, we demonstrated that, during heat stress and during biofilm formation, the induction level of melA gene was significantly higher than that of the hmgA gene which is responsible for the degradation of HGA in the L-tyrosine catabolism pathway. Collectively, our results suggest that the production of pyomelanin of SM9913 at elevated temperatures or during biofilm formation might be one of the adaptive responses of marine bacteria to environmental cues.

  19. Star formation induced by cloud-cloud collisions and galactic giant molecular cloud evolution

    Science.gov (United States)

    Kobayashi, Masato I. N.; Kobayashi, Hiroshi; Inutsuka, Shu-ichiro; Fukui, Yasuo

    2018-05-01

    Recent millimeter/submillimeter observations towards nearby galaxies have started to map the whole disk and to identify giant molecular clouds (GMCs) even in the regions between galactic spiral structures. Observed variations of GMC mass functions in different galactic environments indicates that massive GMCs preferentially reside along galactic spiral structures whereas inter-arm regions have many small GMCs. Based on the phase transition dynamics from magnetized warm neutral medium to molecular clouds, Kobayashi et al. (2017, ApJ, 836, 175) proposes a semi-analytical evolutionary description for GMC mass functions including a cloud-cloud collision (CCC) process. Their results show that CCC is less dominant in shaping the mass function of GMCs than the accretion of dense H I gas driven by the propagation of supersonic shock waves. However, their formulation does not take into account the possible enhancement of star formation by CCC. Millimeter/submillimeter observations within the Milky Way indicate the importance of CCC in the formation of star clusters and massive stars. In this article, we reformulate the time-evolution equation largely modified from Kobayashi et al. (2017, ApJ, 836, 175) so that we additionally compute star formation subsequently taking place in CCC clouds. Our results suggest that, although CCC events between smaller clouds are more frequent than the ones between massive GMCs, CCC-driven star formation is mostly driven by massive GMCs ≳ 10^{5.5} M_{⊙} (where M⊙ is the solar mass). The resultant cumulative CCC-driven star formation may amount to a few 10 percent of the total star formation in the Milky Way and nearby galaxies.

  20. Pattern formation induced by cross-diffusion in a predator–prey system

    International Nuclear Information System (INIS)

    Sun Guiquan; Jin Zhen; Liu Quanxing; Li Li

    2008-01-01

    This paper considers the Holling–Tanner model for predator–prey with self and cross-diffusion. From the Turing theory, it is believed that there is no Turing pattern formation for the equal self-diffusion coefficients. However, combined with cross-diffusion, it shows that the system will exhibit spotted pattern by both mathematical analysis and numerical simulations. Furthermore, asynchrony of the predator and the prey in the space. The obtained results show that cross-diffusion plays an important role on the pattern formation of the predator–prey system. (general)

  1. Formation of gaseous hydrogen induced by the effect of gamma rays on clayey materials

    International Nuclear Information System (INIS)

    Fattahi, M.; Grambow, B.; Houee-Levin, Ch.

    1999-01-01

    The irradiation (mainly gamma) of compact clayey materials, like those that would be used as engineered safety barriers for vitrified waste packages, can lead to hydrogen formation because of their water content. The radiolytic formation of gaseous hydrogen has been studied and the radiolytic efficiency of H 2 production with respect to the total initial mass of water in the clay is about 0.45 x 10 -7 mol.J -1 . This production is comparable to the one obtained at the primary stage of pure water radiolysis. (J.S.)

  2. Salinity-Induced Palmella Formation Mechanism in Halotolerant Algae Dunaliella salina Revealed by Quantitative Proteomics and Phosphoproteomics

    Directory of Open Access Journals (Sweden)

    Sijia Wei

    2017-05-01

    Full Text Available Palmella stage is critical for some unicellular algae to survive in extreme environments. The halotolerant algae Dunaliella salina is a good single-cell model for studying plant adaptation to high salinity. To investigate the molecular adaptation mechanism in salinity shock-induced palmella formation, we performed a comprehensive physiological, proteomics and phosphoproteomics study upon palmella formation of D. salina using dimethyl labeling and Ti4+-immobilized metal ion affinity chromatography (IMAC proteomic approaches. We found that 151 salinity-responsive proteins and 35 salinity-responsive phosphoproteins were involved in multiple signaling and metabolic pathways upon palmella formation. Taken together with photosynthetic parameters and enzyme activity analyses, the patterns of protein accumulation and phosphorylation level exhibited the mechanisms upon palmella formation, including dynamics of cytoskeleton and cell membrane curvature, accumulation and transport of exopolysaccharides, photosynthesis and energy supplying (i.e., photosystem II stability and activity, cyclic electron transport, and C4 pathway, nuclear/chloroplastic gene expression regulation and protein processing, reactive oxygen species homeostasis, and salt signaling transduction. The salinity-responsive protein–protein interaction (PPI networks implied that signaling and protein synthesis and fate are crucial for modulation of these processes. Importantly, the 3D structure of phosphoprotein clearly indicated that the phosphorylation sites of eight proteins were localized in the region of function domain.

  3. Bone morphogenetic protein-induced heterotopic bone formation: What have we learned from the history of a half century?

    Directory of Open Access Journals (Sweden)

    Takenobu Katagiri, PhD

    2015-05-01

    Full Text Available Bone morphogenetic protein (BMP was originally discovered by Marshall Urist a half century ago following the observation of a unique activity that induced heterotopic bone formation in skeletal muscle tissue. The molecular mechanisms underlying the induction of heterotopic bone formation in skeletal muscle by BMPs were elucidated through the purification and molecular cloning of BMPs and identification of their functional receptors and downstream effectors, as well as from genetic disorders related to BMP activity. BMPs are important regulators of not only skeletal development and regeneration but also the homeostasis of normal skeletal muscle mass. There is still much to learn about the physiology and pathology at the interface of BMPs and skeletal muscle.

  4. Radiation and chemotherapy bystander effects induce early genomic instability events: telomere shortening and bridge formation coupled with mitochondrial dysfunction.

    LENUS (Irish Health Repository)

    Gorman, Sheeona

    2012-02-01

    The bridge breakage fusion cycle is a chromosomal instability mechanism responsible for genomic changes. Radiation bystander effects induce genomic instability; however, the mechanism driving this instability is unknown. We examined if radiation and chemotherapy bystander effects induce early genomic instability events such as telomere shortening and bridge formation using a human colon cancer explant model. We assessed telomere lengths, bridge formations, mitochondrial membrane potential and levels of reactive oxygen species in bystander cells exposed to medium from irradiated and chemotherapy-treated explant tissues. Bystander cells exposed to media from 2Gy, 5Gy, FOLFOX treated tumor and matching normal tissue showed a significant reduction in telomere lengths (all p values <0.018) and an increase in bridge formations (all p values <0.017) compared to bystander cells treated with media from unirradiated tissue (0Gy) at 24h. There was no significant difference between 2Gy and 5Gy treatments, or between effects elicited by tumor versus matched normal tissue. Bystander cells exposed to media from 2Gy irradiated tumor tissue showed significant depolarisation of the mitochondrial membrane potential (p=0.012) and an increase in reactive oxygen species levels. We also used bystander cells overexpressing a mitochondrial antioxidant manganese superoxide dismutase (MnSOD) to examine if this antioxidant could rescue the mitochondrial changes and subsequently influence nuclear instability events. In MnSOD cells, ROS levels were reduced (p=0.02) and mitochondrial membrane potential increased (p=0.04). These events were coupled with a decrease in percentage of cells with anaphase bridges and a decrease in the number of cells undergoing telomere length shortening (p values 0.01 and 0.028 respectively). We demonstrate that radiation and chemotherapy bystander responses induce early genomic instability coupled with defects in mitochondrial function. Restoring mitochondrial

  5. Zinc oxide nanoparticles induce migration and adhesion of monocytes to endothelial cells and accelerate foam cell formation

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yuka; Tada-Oikawa, Saeko [Graduate School of Regional Innovation Studies, Mie University, Tsu (Japan); Ichihara, Gaku [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya (Japan); Yabata, Masayuki; Izuoka, Kiyora [Graduate School of Regional Innovation Studies, Mie University, Tsu (Japan); Suzuki, Masako; Sakai, Kiyoshi [Nagoya City Public Health Research Institute, Nagoya (Japan); Ichihara, Sahoko, E-mail: saho@gene.mie-u.ac.jp [Graduate School of Regional Innovation Studies, Mie University, Tsu (Japan)

    2014-07-01

    Metal oxide nanoparticles are widely used in industry, cosmetics, and biomedicine. However, the effects of exposure to these nanoparticles on the cardiovascular system remain unknown. The present study investigated the effects of nanosized TiO{sub 2} and ZnO particles on the migration and adhesion of monocytes, which are essential processes in atherosclerogenesis, using an in vitro set-up of human umbilical vein endothelial cells (HUVECs) and human monocytic leukemia cells (THP-1). We also examined the effects of exposure to nanosized metal oxide particles on macrophage cholesterol uptake and foam cell formation. The 16-hour exposure to ZnO particles increased the level of monocyte chemotactic protein-1 (MCP-1) and induced the migration of THP-1 monocyte mediated by increased MCP-1. Exposure to ZnO particles also induced adhesion of THP-1 cells to HUVECs. Moreover, exposure to ZnO particles, but not TiO{sub 2} particles, upregulated the expression of membrane scavenger receptors of modified LDL and increased cholesterol uptake in THP-1 monocytes/macrophages. In the present study, we found that exposure to ZnO particles increased macrophage cholesterol uptake, which was mediated by an upregulation of membrane scavenger receptors of modified LDL. These results suggest that nanosized ZnO particles could potentially enhance atherosclerogenesis and accelerate foam cell formation. - Highlights: • Effects of metal oxide nanoparticles on foam cell formation were investigated. • Exposure to ZnO nanoparticles induced migration and adhesion of monocytes. • Exposure to ZnO nanoparticles increased macrophage cholesterol uptake. • Expression of membrane scavenger receptors of modified LDL was also increased. • These effects were not observed after exposure to TiO{sub 2} nanoparticles.

  6. Rab5 induces Rac-independent lamellipodia formation and cell migration

    NARCIS (Netherlands)

    Spaargaren, M.; Bos, J. L.

    1999-01-01

    Rab5 is a regulatory GTPase of vesicle docking and fusion that is involved in receptor-mediated endocytosis and pinocytosis. Introduction of active Rab5 in cells stimulates the rate of endocytosis and vesicle fusion, resulting in the formation of large endocytic vesicles, whereas dominant negative

  7. Aggregate formation in a freshwater bacterial strain induced by growth state and conspecific chemical cues

    Czech Academy of Sciences Publication Activity Database

    Blom, J. F.; Horňák, Karel; Šimek, Karel; Pernthaler, J.

    2010-01-01

    Roč. 12, č. 9 (2010), s. 2486-2495 ISSN 1462-2912 R&D Projects: GA ČR(CZ) GA206/08/0015 Institutional research plan: CEZ:AV0Z60170517 Keywords : aggregate formation * Sphingobium sp. * chemical cues * growth state Subject RIV: EE - Microbiology, Virology Impact factor: 5.537, year: 2010

  8. Modelling the formation of heat-induced contaminants during thermal processing of food

    NARCIS (Netherlands)

    Nguyen, H.T.

    2015-01-01

    Many of our food products have undergone a heat-treatment before consumption, either at home or at the food industry. Heat treatments not only bring out desired characteristics of the food products such as flavour, texture, taste and safety aspects but also leads to the formation of undesired

  9. Automobile diesel exhaust particles induce lipid droplet formation in macrophages in vitro

    DEFF Research Database (Denmark)

    Cao, Yi; Jantzen, Kim; Gouveia, Ana Cecilia Damiao

    2015-01-01

    Exposure to diesel exhaust particles (DEP) has been associated with adverse cardiopulmonary health effects, which may be related to dysregulation of lipid metabolism and formation of macrophage foam cells. In this study, THP-1 derived macrophages were exposed to an automobile generated DEP (A...

  10. The effect of inducing uniform Cu growth on formation of electroless Cu seed layer

    International Nuclear Information System (INIS)

    Lim, Taeho; Kim, Myung Jun; Park, Kyung Ju; Kim, Kwang Hwan; Choe, Seunghoe; Lee, Young-Soo; Kim, Jae Jeong

    2014-01-01

    The uniformity of Cu growth on Pd nanocatalysts was controlled by using organic additives in the formation of electroless Cu seed layers. Polyethylene glycol (PEG, Mw. 8000) not only reduced the deposition rate but also improved the uniformity of Cu growth on each Pd nanocatalyst during the seed layer formation. The stronger suppression effect of PEG on Cu than on Pd reduced the difference in the deposition rate between the two surfaces, resulting in the uniform deposition. Meanwhile, bis(3-sulfopropyl) disulfide degraded the uniformity by strong and nonselective suppression. The sheet resistance measurement and atomic force microscopy imaging revealed that the uniform Cu growth by PEG was more advantageous for the formation of a thin and smooth Cu seed layer than the non-uniform growth. The uniform Cu growth also had a positive influence on the subsequent Cu electrodeposition: the 60-nm-thick electrodeposited Cu film on the Cu seed layer showed low resistivity (2.70 μΩ·cm), low surface roughness (6.98 nm), and good adhesion strength. - Highlights: • Uniform Cu growth on Pd was achieved in formation of electroless Cu seed layer. • PEG addition to electroless bath improved the uniformity of Cu growth on Pd. • A thin, smooth and continuous Cu seed layer was obtained with PEG. • Adhesion strength of the Cu seed layer was also improved with PEG. • The uniformity improvement positively affected subsequent Cu electrodeposition

  11. Keyhole formation and thermal fluid flow-induced porosity during laser fusion welding in titanium alloys: Experimental and modelling

    International Nuclear Information System (INIS)

    Panwisawas, Chinnapat; Perumal, Bama; Ward, R. Mark; Turner, Nathanael; Turner, Richard P.; Brooks, Jeffery W.; Basoalto, Hector C.

    2017-01-01

    High energy-density beam welding, such as electron beam or laser welding, has found a number of industrial applications for clean, high-integrity welds. The deeply penetrating nature of the joints is enabled by the formation of metal vapour which creates a narrow fusion zone known as a “keyhole”. However the formation of the keyhole and the associated keyhole dynamics, when using a moving laser heat source, requires further research as they are not fully understood. Porosity, which is one of a number of process induced phenomena related to the thermal fluid dynamics, can form during beam welding processes. The presence of porosity within a welded structure, inherited from the fusion welding operation, degrades the mechanical properties of components during service such as fatigue life. In this study, a physics-based model for keyhole welding including heat transfer, fluid flow and interfacial interactions has been used to simulate keyhole and porosity formation during laser welding of Ti-6Al-4V titanium alloy. The modelling suggests that keyhole formation and the time taken to achieve keyhole penetration can be predicted, and it is important to consider the thermal fluid flow at the melting front as this dictates the evolution of the fusion zone. Processing induced porosity is significant when the fusion zone is only partially penetrating through the thickness of the material. The modelling results are compared with high speed camera imaging and measurements of porosity from welded samples using X-ray computed tomography, radiography and optical micrographs. These are used to provide a better understanding of the relationship between process parameters, component microstructure and weld integrity.

  12. Menadione-Induced DNA Damage Leads to Mitochondrial Dysfunction and Fragmentation During Rosette Formation in Fuchs Endothelial Corneal Dystrophy.

    Science.gov (United States)

    Halilovic, Adna; Schmedt, Thore; Benischke, Anne-Sophie; Hamill, Cecily; Chen, Yuming; Santos, Janine Hertzog; Jurkunas, Ula V

    2016-06-20

    Fuchs endothelial corneal dystrophy (FECD), a leading cause of age-related corneal edema requiring transplantation, is characterized by rosette formation of corneal endothelium with ensuing apoptosis. We sought to determine whether excess of mitochondrial reactive oxygen species leads to chronic accumulation of oxidative DNA damage and mitochondrial dysfunction, instigating cell death. We modeled the pathognomonic rosette formation of postmitotic corneal cells by increasing endogenous cellular oxidative stress with menadione (MN) and performed a temporal analysis of its effect in normal (HCEnC, HCECi) and FECD (FECDi) cells and ex vivo specimens. FECDi and FECD ex vivo specimens exhibited extensive mtDNA and nDNA damage as detected by quantitative PCR. Exposure to MN triggered an increase in mitochondrial superoxide levels and led to mtDNA and nDNA damage, while DNA amplification was restored with NAC pretreatment. Furthermore, MN exposure led to a decrease in ΔΨm and adenosine triphosphate levels in normal cells, while FECDi exhibited mitochondrial dysfunction at baseline. Mitochondrial fragmentation and cytochrome c release were detected in FECD tissue and after MN treatment of HCEnCs. Furthermore, cleavage of caspase-9 and caspase-3 followed MN-induced cytochrome c release in HCEnCs. This study provides the first line of evidence that accumulation of oxidative DNA damage leads to rosette formation, loss of functionally intact mitochondria via fragmentation, and subsequent cell death during postmitotic cell degeneration of ocular tissue. MN induced rosette formation, along with mtDNA and nDNA damage, mitochondrial dysfunction, and fragmentation, leading to activation of the intrinsic apoptosis via caspase cleavage and cytochrome c release. Antioxid. Redox Signal. 24, 1072-1083.

  13. PKA activity exacerbates hypoxia-induced ROS formation and hypoxic injury in PC-12 cells.

    Science.gov (United States)

    Gozal, Evelyne; Metz, Cynthia J; Dematteis, Maurice; Sachleben, Leroy R; Schurr, Avital; Rane, Madhavi J

    2017-09-05

    Hypoxia is a primary factor in many pathological conditions. Hypoxic cell death is commonly attributed to metabolic failure and oxidative injury. cAMP-dependent protein kinase A (PKA) is activated in hypoxia and regulates multiple enzymes of the mitochondrial electron transport chain, thus may be implicated in cellular energy depletion and hypoxia-induced cell death. Wild type (WT) PC-12 cells and PKA activity-deficient 123.7 PC-12 cells were exposed to 3, 6, 12 and 24h hypoxia (0.1% or 5% O 2 ). Hypoxia, at 24h 0.1% O 2 , induced cell death and increased reactive oxygen species (ROS) in WT PC-12 cells. Despite lower ATP levels in normoxic 123.7 cells than in WT cells, hypoxia only decreased ATP levels in WT cells. However, menadione-induced oxidative stress similarly affected both cell types. While mitochondrial COX IV expression remained consistently higher in 123.7 cells, hypoxia decreased COX IV expression in both cell types. N-acetyl cysteine antioxidant treatment blocked hypoxia-induced WT cell death without preventing ATP depletion. Transient PKA catα expression in 123.7 cells partially restored hypoxia-induced ROS but did not alter ATP levels or COX IV expression. We conclude that PKA signaling contributes to hypoxic injury, by regulating oxidative stress rather than by depleting ATP levels. Therapeutic strategies targeting PKA signaling may improve cellular adaptation and recovery in hypoxic pathologies. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Formation of radiation-induced point defects in silicon doped thin films upon ion implantation and activating annealing

    International Nuclear Information System (INIS)

    Bublik, V.T.; Shcherbachev, K.D.; Komarnitskaya, E.A.; Parkhomenko, Yu.N.; Vygovskaya, E.A.; Evgen'ev, S.B.

    1999-01-01

    The formation and relaxation processes for radiation-induced defects in the implantation of 50 keV Si + ions into gallium arsenide and subsequent 10-min annealing in arsine at 850 deg. C have been studied by the triple-crystal X-ray diffractometry and secondary-ion mass spectroscopy techniques. It is shown that the existence of the vacancy-enriched layer stimulating diffusion of introduced dopants into the substrate surface can significantly affect the distribution profile of the dopant in the course of preparation of thin implanted layers

  15. Evolution towards and beyond accretion-induced collapse of massive white dwarfs and formation of millisecond pulsars

    OpenAIRE

    Tauris, Thomas M.; Sanyal, Debashis; Yoon, Sung-Chul; Langer, Norbert

    2013-01-01

    Millisecond pulsars (MSPs) are generally believed to be old neutron stars (NSs), formed via type Ib/c core-collapse supernovae (SNe), which have been spun up to high rotation rates via accretion from a companion star in a low-mass X-ray binary (LMXB). In an alternative formation channel, NSs are produced via the accretion-induced collapse (AIC) of a massive white dwarf (WD) in a close binary. Here we investigate binary evolution leading to AIC and examine if NSs formed in this way can subsequ...

  16. Host–Guest Chirality Interplay: A Mutually Induced Formation of a Chiral ZMOF and Its Double-Helix Polymer Guests

    KAUST Repository

    Luo, Xiaolong

    2016-01-12

    A novel homochiral zeolite-like metal-organic framework (ZMOF), [(Cu4I4) (dabco)2]·[Cu2(bbimb)]·3DMF (JLU-Liu23, dabco =1,4-diazabicyclo[2.2.2]-octane, H2bbimb =1,3-bis(2-benzimidazol)benzene, DMF = N,N-dimethylformamide), has been successfully constructed to host unprecedented DNA-like [Cu2(bbimb)]n polymers with double-helicity. The host-guest chirality interplay permitted the induced formation of an unusual gyroid MOF with homochirality and helical channels in the framework for the first time, JLU-Liu23. Importantly, the enantiomeric pairs (23P, 23M) can be promoted and isolated in the presence of appropriate chiral inducing agents, affording enantioselective separation of chiral molecules as well as small gas molecules. © 2016 American Chemical Society.

  17. Radiation induced asymmetries in mitotic recombination: evidence for a directional bias in the formation of asymmetric hybrid DNA in yeast

    International Nuclear Information System (INIS)

    Friedman, L.R.; Sobell, H.M.

    We have examined radiation-induced mitotic recombination using two alleles (his1-36, his1-49) in the his1 gene. When the haploid containing his1-36 is irradiated with varying doses of γ rays and then mated with the unirradiated strain containing his1-49, analyses of the selected prototrophs show them to be primarily + +/+ 49. If, on the other hand, the haploid strain containing his1-49 is the irradiated parent, the prototrophic diploids are primarily + +/36 +. In control experiments, where either both strains are irradiated or not irradiated, no such asymmetries are found. These data indicate that the irradiated haploid chromosome tends to be the recipient of genetic information. We interpret these results as indicating a directional bias in the formation of hybrid DNA in radiation-induced mitotic recombination, and discuss these results in terms of current models of genetic recombination

  18. The nanostructure formation on muscovite mica surface induced by intermediate-energy ions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, P.; Zhang, HQ., E-mail: zhanghq@lzu.edu.cn; Zhang, Q.; Liu, Z.; Guan, S.; Wang, G.; Zhou, C.; Jia, J.; Lv, X.; Shao, J.; Cui, Y.; Chen, L.; Chen, X., E-mail: chenxm@lzu.edu.cn

    2013-07-15

    Muscovite mica sheets were bombarded by lithium, carbon and oxygen ions in the energy range from several hundred keV to several MeV. The induced surface structures were measured in the air with atomic force microscopy (AFM) in the tapping mode. The hillock-like structure on the mica surface was observed. The height of the hillock increases linearly when the energy loss is above 1.2 keV/nm. The induced structures are similar with the similar electronic stopping powers but different projectiles for muscovite mica.

  19. Stress-induced formation mechanism of stacking fault tetrahedra in nano-cutting of single crystal copper

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Quanlong [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China); Bai, Qingshun [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Chen, Jiaxuan, E-mail: wangquanlong0@hit.edu.cn [Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China); Guo, Yongbo [Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China); Xie, Wenkun [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-11-15

    Graphical abstract: In this paper, molecular dynamics simulation is performed to study the distribution of dislocation defects and local atomic crystal structure of single crystal copper. The stress distribution is investigated which is calculated by virial stress and analyzed by static pressure. The results are shown in (a)–(d). It is indicated that the compressive stress mainly spreads over the shear-slip zone, and the tensile stress is consisted in flank friction zone, shown in (a). The high tensile stress in subsurface is the source of stress, shown in (b). By the driven action of the stress source, the initial stair-rod dislocation nucleates. Then the dislocation climbs along four {1 1 1} planes under the stress driven action, shown in (d). Finally, the SFT is formed by the interaction of the compressive stress and the tensile stress which come from the shear-slip zone and friction zone, respectively. Besides, stair-rod dislocation, stacking faults and dislocation loop are also nucleated in the subsurface, shown in (c). Dislocation distribution, local atomic crystal structure state and stress-induced formation process of SFT by atomic. - Highlights: • A novel defect structure “stress-induced stacking fault tetrahedra” is revealed. • Atomic structural evolution and stress state distribution of the SFT are studied. • The stress-induced formation mechanism of the SFT is proposed. - Abstract: Stacking fault tetrahedra commonly existed in subsurface of deformed face center cubic metals, has great influence on machining precision and surface roughness in nano-cutting. Here we report, a stacking fault tetrahedra is formed in subsurface of workpiece during nano-cutting. The variation of cutting force and subsurface defects distribution are studied by using molecular dynamics simulation. The stress distribution is investigated which is calculated by virial stress and analyzed by static compression. The result shows that the cutting force has a rapidly

  20. Stress-induced formation mechanism of stacking fault tetrahedra in nano-cutting of single crystal copper

    International Nuclear Information System (INIS)

    Wang, Quanlong; Bai, Qingshun; Chen, Jiaxuan; Guo, Yongbo; Xie, Wenkun

    2015-01-01

    Graphical abstract: In this paper, molecular dynamics simulation is performed to study the distribution of dislocation defects and local atomic crystal structure of single crystal copper. The stress distribution is investigated which is calculated by virial stress and analyzed by static pressure. The results are shown in (a)–(d). It is indicated that the compressive stress mainly spreads over the shear-slip zone, and the tensile stress is consisted in flank friction zone, shown in (a). The high tensile stress in subsurface is the source of stress, shown in (b). By the driven action of the stress source, the initial stair-rod dislocation nucleates. Then the dislocation climbs along four {1 1 1} planes under the stress driven action, shown in (d). Finally, the SFT is formed by the interaction of the compressive stress and the tensile stress which come from the shear-slip zone and friction zone, respectively. Besides, stair-rod dislocation, stacking faults and dislocation loop are also nucleated in the subsurface, shown in (c). Dislocation distribution, local atomic crystal structure state and stress-induced formation process of SFT by atomic. - Highlights: • A novel defect structure “stress-induced stacking fault tetrahedra” is revealed. • Atomic structural evolution and stress state distribution of the SFT are studied. • The stress-induced formation mechanism of the SFT is proposed. - Abstract: Stacking fault tetrahedra commonly existed in subsurface of deformed face center cubic metals, has great influence on machining precision and surface roughness in nano-cutting. Here we report, a stacking fault tetrahedra is formed in subsurface of workpiece during nano-cutting. The variation of cutting force and subsurface defects distribution are studied by using molecular dynamics simulation. The stress distribution is investigated which is calculated by virial stress and analyzed by static compression. The result shows that the cutting force has a rapidly

  1. Glucose Modulation Induces Lysosome Formation and Increases Lysosomotropic Drug Sequestration via the P-Glycoprotein Drug Transporter.

    Science.gov (United States)

    Seebacher, Nicole A; Lane, Darius J R; Jansson, Patric J; Richardson, Des R

    2016-02-19

    Pgp is functional on the plasma membrane and lysosomal membrane. Lysosomal-Pgp can pump substrates into the organelle, thereby trapping certain chemotherapeutics (e.g. doxorubicin; DOX). This mechanism serves as a "safe house" to protect cells against cytotoxic drugs. Interestingly, in contrast to DOX, lysosomal sequestration of the novel anti-tumor agent and P-glycoprotein (Pgp) substrate, di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT), induces lysosomal membrane permeabilization. This mechanism of lysosomal-Pgp utilization enhances cytotoxicity to multidrug-resistant cells. Consequently, Dp44mT has greater anti-tumor activity in drug-resistant relative to non-Pgp-expressing tumors. Interestingly, stressors in the tumor microenvironment trigger endocytosis for cell signaling to assist cell survival. Hence, this investigation examined how glucose variation-induced stress regulated early endosome and lysosome formation via endocytosis of the plasma membrane. Furthermore, the impact of glucose variation-induced stress on resistance to DOX was compared with Dp44mT and its structurally related analogue, di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC). These studies showed that glucose variation-induced stress-stimulated formation of early endosomes and lysosomes. In fact, through the process of fluid-phase endocytosis, Pgp was redistributed from the plasma membrane to the lysosomal membrane via early endosome formation. This lysosomal-Pgp actively transported the Pgp substrate, DOX, into the lysosome where it became trapped as a result of protonation at pH 5. Due to increased lysosomal DOX trapping, Pgp-expressing cells became more resistant to DOX. In contrast, cytotoxicity of Dp44mT and DpC was potentiated due to more lysosomes containing functional Pgp under glucose-induced stress. These thiosemicarbazones increased lysosomal membrane permeabilization and cell death. This mechanism has critical implications for drug-targeting in

  2. Importance of ERK activation in As2O3-induced differentiation and promyelocytic leukemia nuclear bodies formation in neuroblastoma cells.

    Science.gov (United States)

    Petit, A; Delaune, A; Falluel-Morel, A; Goullé, J-P; Vannier, J-P; Dubus, I; Vasse, M

    2013-11-01

    Neuroblastoma malignant cell growth is dependent on their undifferentiated status. Arsenic trioxide (As2O3) induces neuroblastoma cell differentiation in vitro, but its mechanisms still remains unknown. We used three human neuroblastoma cell lines (SH-SY5Y, IGR-N-91, LAN-1) that differ from their MYCN and p53 status to explore the intracellular events activated by As2O3 and involved in neurite outgrowth, a morphological marker of differentiation. As2O3 (2μM) induced neurite outgrowth in all cell lines, which was dependent on ERK activation but independent on MYCN status. This process was induced either by a sustained (3 days) or a transient (2h) incubation with As2O3, indicating that very early events trigger the induction of differentiation. In parallel, As2O3 induced a rapid assembly of promyelocytic leukemia nuclear bodies (PML-NB) in an ERK-dependent manner. In conclusion, mechanisms leading to neuroblastoma cell differentiation in response to As2O3 appear to involve the ERK pathway activation and PML-NB formation, which are observed in response to other differentiating molecules such as retinoic acid derivates. This open new perspectives based on the use of treatment combinations to potentiate the differentiating effects of each drug alone and reduce their adverse side effects. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Saponin-based adjuvants induce cross-presentation in dendritic cells by intracellular lipid body formation

    NARCIS (Netherlands)

    Brok, M.H. den; Bull, C.; Wassink, M.; Graaf, A.M.A. de; Wagenaars, J.A.L.; Minderman, M.; Thakur, M.; Amigorena, S.; Rijke, E.O.; Schrier, C.C.; Adema, G.J.

    2016-01-01

    Saponin-based adjuvants (SBAs) are being used in animal and human (cancer) vaccines, as they induce protective cellular immunity. Their adjuvant potency is a factor of inflammasome activation and enhanced antigen cross-presentation by dendritic cells (DCs), but how antigen cross-presentation is

  4. Curcumol suppresses RANKL-induced osteoclast formation by attenuating the JNK signaling pathway

    International Nuclear Information System (INIS)

    Yu, Mingxiang; Chen, Xianying; Lv, Chaoyang; Yi, Xilu; Zhang, Yao; Xue, Mengjuan; He, Shunmei; Zhu, Guoying; Wang, Hongfu

    2014-01-01

    Highlights: • Curcumol suppresses osteoclasts differentiation in vitro. • Curcumol impairs JNK/AP-1 signaling pathway. • Curcumol may be used for treating osteoclast related diseases. - Abstract: Osteoclasts, derived from hemopoietic progenitors of the monocyte/macrophage lineage, have a unique role in bone resorption, and are considered a potential therapeutic target in the treatment of such pathologic bone diseases as osteoporosis, rheumatoid arthritis, and periodontitis. In the present study, we demonstrate that curcumol, one of the major components of the essential oil of Rhizoma Curcumae, exhibits an inhibitory effect on receptor activator of nuclear factor kappaB ligand (RANKL)-induced osteoclast differentiation with both bone marrow-derived macrophages and RAW264.7 cells in a dose-dependent manner. In addition, RANKL-induced mRNA expression of osteoclast-specific genes, such as tartrate-resistant acid phosphatase, calcitonin receptor, and cathepsin K, is prominently reduced in the presence of curcumol. Furthermore, the molecular mechanism of action was investigated, and curcumol inhibited osteoclastogenesis by specifically impairing RANKL-induced c-Jun N-terminal kinase (JNK)/activator protein-1 (AP-1) signaling, which was further identified in rescue studies by means of anisomycin, a JNK signaling-specific activator. Taken together, these findings suggest that curcumol suppresses RANKL-induced osteoclast differentiation through the JNK/AP-1 signaling pathway, and may be useful as a therapeutic treatment for bone resorption-associated diseases

  5. Curcumol suppresses RANKL-induced osteoclast formation by attenuating the JNK signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Mingxiang, E-mail: yu.mingxiang@zs-hospital.sh.cn [Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai (China); Chen, Xianying [Department of Endocrinology and Metabolism, Hainan Provincial Nong Ken Hospital, Hainan (China); Lv, Chaoyang [Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai (China); Yi, Xilu [Department of Endocrinology and Metabolism, Shanghai Songjiang District Central Hospital, Shanghai (China); Zhang, Yao; Xue, Mengjuan; He, Shunmei [Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai (China); Zhu, Guoying [Institute of Radiation Medicine, Fudan University, Shanghai (China); Wang, Hongfu, E-mail: hfwang@shmu.edu.cn [Institute of Radiation Medicine, Fudan University, Shanghai (China)

    2014-05-02

    Highlights: • Curcumol suppresses osteoclasts differentiation in vitro. • Curcumol impairs JNK/AP-1 signaling pathway. • Curcumol may be used for treating osteoclast related diseases. - Abstract: Osteoclasts, derived from hemopoietic progenitors of the monocyte/macrophage lineage, have a unique role in bone resorption, and are considered a potential therapeutic target in the treatment of such pathologic bone diseases as osteoporosis, rheumatoid arthritis, and periodontitis. In the present study, we demonstrate that curcumol, one of the major components of the essential oil of Rhizoma Curcumae, exhibits an inhibitory effect on receptor activator of nuclear factor kappaB ligand (RANKL)-induced osteoclast differentiation with both bone marrow-derived macrophages and RAW264.7 cells in a dose-dependent manner. In addition, RANKL-induced mRNA expression of osteoclast-specific genes, such as tartrate-resistant acid phosphatase, calcitonin receptor, and cathepsin K, is prominently reduced in the presence of curcumol. Furthermore, the molecular mechanism of action was investigated, and curcumol inhibited osteoclastogenesis by specifically impairing RANKL-induced c-Jun N-terminal kinase (JNK)/activator protein-1 (AP-1) signaling, which was further identified in rescue studies by means of anisomycin, a JNK signaling-specific activator. Taken together, these findings suggest that curcumol suppresses RANKL-induced osteoclast differentiation through the JNK/AP-1 signaling pathway, and may be useful as a therapeutic treatment for bone resorption-associated diseases.

  6. Polyurethane scaffold formation via a combination of salt leaching and thermally induced phase separation

    NARCIS (Netherlands)

    Heijkants, R. G. J. C.; van Calck, R. V.; van Tienen, T. G.; de Groot, J. H.; Pennings, A. J.; Buma, P.; Veth, R. P. H.; Schouten, A. J.

    2008-01-01

    Porous scaffolds have been made from two polyurethanes based on thermally induced phase separation of polymer dissolved in a DMSO/water mixture in combination with salt leaching. It is possible to obtain very porous foams with a very high interconnectivity. A major advantage of this method is that

  7. Ceramide formation is involved in Lactobacillus acidophilus-induced IFN-beta response in dendritic cells

    DEFF Research Database (Denmark)

    Fuglsang, Eva; Henningsen, Louise; Frøkiær, Hanne

    of sphingomyelin to ceramide by acid sphingomyelinase (ASMase) at the outer leaflet of the PM is a key event in endocytosis of gram-positive Lactobacillus acidophilus (L. acidophilus) and the subsequent induction of IFN-beta in DCs and, as the gram-negative Escherichia coli (E. coli) does not induce appreciable...

  8. Formation of nitric oxide in an industrial burner measured by 2-D laser induced fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, A; Bombach, R; Kaeppeli, B [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    We have performed two-dimensional Laser Induced Fluorescence (2-D LIF) measurements of nitric oxide and hydroxyl radical distributions in an industrial burner at atmospheric pressure. The relative 2-D LIF data of NO were set to an absolute scale by calibration with probe sampling combined with gas analysis. (author) 3 figs., 7 refs.

  9. Axonal lesion-induced microglial proliferation and microglial cluster formation in the mouse

    DEFF Research Database (Denmark)

    Dissing-Olesen, L; Ladeby, R; Nielsen, Helle Hvilsted

    2007-01-01

    Microglia are innate immune cells and form the first line of defense of the CNS. Proliferation is a key event in the activation of microglia in acute pathology, and has been extensively characterized in rats, but not in mice. In this study we investigated axonal-lesion-induced microglial prolifer...

  10. UV-Induced prevention of biofilm formation inside medical tubes and catheters

    DEFF Research Database (Denmark)

    Pedersen, Jens Kristian Mølgaard; Nielsen, Kristian; Bang, Ole

    2014-01-01

    Biofilm formation inside medical tubes and catheters may often cause unwanted infections, illness andimpaired wound healing during medical treatment, resulting in extended hospitalization and - in worst case– life threatening conditions of the patients. In fact, it is estimated, that the infection...... of multi resistant bacteriacultures. Prevention of biofilm formation inside the tube or catheter, without risk of developing multiresistance, may be achieved by creating a UV-exposed environment in the interior. This may be realized bytransforming the tube itself into an optical waveguide supporting UV...... risk connected withthe use of medical tubes and catheters is the direct cause of more than 60% of all infections acquired inEuropean hospitals. Once formed, the biofilm is generally very tough to suppress by either the body’simmunity system or by use of antibiotics, which may even favor the population...

  11. Non-spherical particle formation induced by repulsive hydration forces during spray drying

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Yong Jae; Lee, Jin-Woo; Chang, Hankwon; Jang, Hee-Dong, E-mail: hdjang@kigam.re.kr; Cho, Kuk, E-mail: kukcho@pusan.ac.kr [Korea Institute of Geoscience and Mineral Resources (Korea, Republic of)

    2013-09-15

    Non-spherical particles were produced during a spray-drying process, but the exact mechanism of their formation was unknown. The non-spherical particles form when the strength of the colloidal droplets is exceeded by external stress stemming from drag in the velocity gradient. Here, we show that repulsive hydration forces reduce the mechanical strength of the droplets; this is critical to the formation of non-spherical particles. Toroidal or ellipsoidal particles were prepared from low-concentration hydrophilic SiO{sub 2}, TiO{sub 2}, and CuO colloidal solutions, but not from hydrophobic ZnO colloidal solutions. The surface properties of the solid particulates are crucial for the morphology of particles formed during spray drying.

  12. Non-spherical particle formation induced by repulsive hydration forces during spray drying

    International Nuclear Information System (INIS)

    Suh, Yong Jae; Lee, Jin-Woo; Chang, Hankwon; Jang, Hee-Dong; Cho, Kuk

    2013-01-01

    Non-spherical particles were produced during a spray-drying process, but the exact mechanism of their formation was unknown. The non-spherical particles form when the strength of the colloidal droplets is exceeded by external stress stemming from drag in the velocity gradient. Here, we show that repulsive hydration forces reduce the mechanical strength of the droplets; this is critical to the formation of non-spherical particles. Toroidal or ellipsoidal particles were prepared from low-concentration hydrophilic SiO 2 , TiO 2 , and CuO colloidal solutions, but not from hydrophobic ZnO colloidal solutions. The surface properties of the solid particulates are crucial for the morphology of particles formed during spray drying

  13. Intensive aggregate formation with low vertical flux during an upwelling-induced diatom bloom

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Tiselius, P.; Mitchell-Innes, B.

    1998-01-01

    of turbulent shear in the ocean such stickiness coefficients predict very high specific coagulation rates (0.3 d(-1)). In situ video observation demonstrated the occurrence of abundant diatom aggregates with surface water concentrations between 1,000 and 3,000 ppm. Despite the very high concentration......The surfaces of most pelagic diatoms are sticky at times and may therefore form rapidly settling aggregates by physical coagulation. Stickiness and aggregate formation may be particularly adaptive in upwelling systems by allowing the retention of diatom populations in the vicinity of the upwelling...... center. We therefore hypothesized that upwelling diatom blooms are terminated by aggregate formation and rapid sedimentation. We monitored the development of a maturing diatom (mainly Chaetoceros spp.) bloom in the Benguela upwelling current during 7 d in February. Chlorophyll concentrations remained...

  14. iTRAQ-Based Proteomic Analysis Reveals Potential Regulation Networks of IBA-Induced Adventitious Root Formation in Apple

    Directory of Open Access Journals (Sweden)

    Chao Lei

    2018-02-01

    Full Text Available Adventitious root (AR formation, which is controlled by endogenous and environmental factors, is indispensable for vegetative asexual propagation. However, comprehensive proteomic data on AR formation are still lacking. The aim of this work was to study indole-3-butyric acid (IBA-induced AR formation in the dwarf apple rootstock ‘T337’. In this study, the effect of IBA on AR formation was analysed. Subsequent to treatment with IBA, both the rooting rate and root length of ‘T337’ increased significantly. An assessment of hormone levels in basal stem cuttings suggested that auxin, abscisic acid, and brassinolide were higher in basal stem cuttings that received the exogenous IBA application; while zeatin riboside, gibberellins, and jasmonic acid were lower than non-treated basal stem cuttings. To explore the underlying molecular mechanism, an isobaric tags for relative and absolute quantification (iTRAQ-based proteomic technique was employed to identify the expression profiles of proteins at a key period of adventitious root induction (three days after IBA treatment. In total, 3355 differentially expressed proteins (DEPs were identified. Many DEPs were closely related to carbohydrate metabolism and energy production, protein homeostasis, reactive oxygen and nitric oxide signaling, and cell wall remodeling biological processes; as well as the phytohormone signaling, which was the most critical process in response to IBA treatment. Further, RT-qPCR analysis was used to evaluate the expression level of nine genes that are involved in phytohormone signaling and their transcriptional levels were mostly in accordance with the protein patterns. Finally, a putative work model was proposed. Our study establishes a foundation for further research and sheds light on IBA-mediated AR formation in apple as well as other fruit rootstock cuttings.

  15. Inhibition of Ribosome Recruitment Induces Stress Granule Formation Independently of Eukaryotic Initiation Factor 2α Phosphorylation

    OpenAIRE

    Mazroui, Rachid; Sukarieh, Rami; Bordeleau, Marie-Eve; Kaufman, Randal J.; Northcote, Peter; Tanaka, Junichi; Gallouzi, Imed; Pelletier, Jerry

    2006-01-01

    Cytoplasmic aggregates known as stress granules (SGs) arise as a consequence of cellular stress and contain stalled translation preinitiation complexes. These foci are thought to serve as sites of mRNA storage or triage during the cell stress response. SG formation has been shown to require induction of eukaryotic initiation factor (eIF)2α phosphorylation. Herein, we investigate the potential role of other initiation factors in this process and demonstrate that interfering with eIF4A activity...

  16. Low Po2 conditions induce reactive oxygen species formation during contractions in single skeletal muscle fibers

    OpenAIRE

    Zuo, Li; Shiah, Amy; Roberts, William J.; Chien, Michael T.; Wagner, Peter D.; Hogan, Michael C.

    2013-01-01

    Contractions in whole skeletal muscle during hypoxia are known to generate reactive oxygen species (ROS); however, identification of real-time ROS formation within isolated single skeletal muscle fibers has been challenging. Consequently, there is no convincing evidence showing increased ROS production in intact contracting fibers under low Po2 conditions. Therefore, we hypothesized that intracellular ROS generation in single contracting skeletal myofibers increases during low Po2 compared wi...

  17. Nitrogen remobilisation facilitates adventitious root formation on reversible dark-induced carbohydrate depletion in Petunia hybrida

    OpenAIRE

    Zerche, Siegfried; Haensch, Klaus-Thomas; Druege, Uwe; Hajirezaei, Mohammad-Reza

    2016-01-01

    Background Adventitious root (AR) formation in axillary shoot tip cuttings is a crucial physiological process for ornamental propagation that is utilised in global production chains for young plants. In this process, the nitrogen and carbohydrate metabolisms of a cutting are regulated by its total nitrogen content (Nt), dark exposure during transport and irradiance levels at distinct production sites and phases through a specific plasticity to readjust metabolite pools. Here, we examined how ...

  18. Model for UV induced formation of gold nanoparticles in solid polymeric matrices

    Science.gov (United States)

    Sapogova, N.; Bityurin, N.

    2009-09-01

    UV irradiation of polymeric PMMA films containing HAuCl 4 followed by annealing at 60-80 °C forms gold nanoparticles directly within the bulk material. The kinetics of nanoparticle formation was traced by extinction spectra of nanocomposite film changes vs annealing time. We propose that UV irradiation causes HAuCl 4 dissociation and thus provides a polymeric matrix with atomic gold. The presence of an oversaturated solid solution of atomic gold in the polymeric matrix leads to Au nanoparticle formation during annealing. This process can be understood as a phase transition of the first order. In this paper we apply several common kinetic models of the phase transition for describing Au nanoparticle formation inside the solid polymer matrix. We compare predictions of these models with the experimental data and show that these models cannot describe the process. We propose that the stabilization effect of the matrix on the growing gold nanoparticles is important. The simplest model introducing some probability for the transition from growing nanoparticle to the non-growing, stabilized form is suggested. It is shown that this model satisfactorily describes the experimentally observed evolution of the extinction spectrum of Au nanoparticles forming in a polymer matrix.

  19. Single step, pH induced gold nanoparticle chain formation in lecithin/water system.

    Science.gov (United States)

    Sharma, Damyanti

    2013-07-01

    Gold nanoparticle (AuNP) chains have been formed by a single step method in a lecithin/water system where lecithin itself plays the role of a reductant and a template for AuNP chain formation. Two preparative strategies were explored: (1) evaporating lecithin solution with aqueous gold chloride (HAuCl4) at different pHs and (2) dispersing lecithin vesicles in aqueous HAuCl4 solutions of various pHs in the range of 2.5-11.3. In method 1, at initial pH 2.5, 20-50 nm AuNPs are found attached to lecithin vesicles. When pH is raised to 5.5 there are no vesicles present and 20 nm monodisperse particles are found aggregating. Chain formation of fine nanoparticles (3-5 nm) is observed from neutral to basic pH, between 6.5-10.3 The chains formed are hundreds of nanometers to micrometer long and are usually 2-3 nanoparticles wide. On further increasing pH to 11.3, particles form disk-like or raft-like structures. When method (ii) was used a little chain formation was observed. Most of the nanoparticles formed were found either sitting together as raft like structures or scattered on lecithin structures. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Probiotic Lactobacillus sp. inhibit growth, biofilm formation and gene expression of caries-inducing Streptococcus mutans.

    Science.gov (United States)

    Wasfi, Reham; Abd El-Rahman, Ola A; Zafer, Mai M; Ashour, Hossam M

    2018-03-01

    Streptococcus mutans contributes significantly to dental caries, which arises from homoeostasic imbalance between host and microbiota. We hypothesized that Lactobacillus sp. inhibits growth, biofilm formation and gene expression of Streptococcus mutans. Antibacterial (agar diffusion method) and antibiofilm (crystal violet assay) characteristics of probiotic Lactobacillus sp. against Streptococcus mutans (ATCC 25175) were evaluated. We investigated whether Lactobacillus casei (ATCC 393), Lactobacillus reuteri (ATCC 23272), Lactobacillus plantarum (ATCC 14917) or Lactobacillus salivarius (ATCC 11741) inhibit expression of Streptococcus mutans genes involved in biofilm formation, quorum sensing or stress survival using quantitative real-time polymerase chain reaction (qPCR). Growth changes (OD600) in the presence of pH-neutralized, catalase-treated or trypsin-treated Lactobacillus sp. supernatants were assessed to identify roles of organic acids, peroxides and bacteriocin. Susceptibility testing indicated antibacterial (pH-dependent) and antibiofilm activities of Lactobacillus sp. against Streptococcus mutans. Scanning electron microscopy revealed reduction in microcolony formation and exopolysaccharide structural changes. Of the oral normal flora, L. salivarius exhibited the highest antibiofilm and peroxide-dependent antimicrobial activities. All biofilm-forming cells treated with Lactobacillus sp. supernatants showed reduced expression of genes involved in exopolysaccharide production, acid tolerance and quorum sensing. Thus, Lactobacillus sp. can inhibit tooth decay by limiting growth and virulence properties of Streptococcus mutans. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  1. Entrainment of prefrontal beta oscillations induces an endogenous echo and impairs memory formation.

    Science.gov (United States)

    Hanslmayr, Simon; Matuschek, Jonas; Fellner, Marie-Christin

    2014-04-14

    Brain oscillations across all frequency bands play a key role for memory formation. Specifically, desynchronization of local neuronal assemblies in the left inferior prefrontal cortex (PFC) in the beta frequency (∼18 Hz) has been shown to be central for encoding of verbal memories. However, it remains elusive whether prefrontal beta desynchronization is causally relevant for memory formation and whether these endogenous beta oscillations can be entrained by external stimulation. By using combined EEG-TMS (transcranial magnetic stimulation), we here address these fundamental questions in human participants performing a word-list learning task. Confirming our predictions, memory encoding was selectively impaired when the left inferior frontal gyrus (IFG) was driven at beta (18.7 Hz) compared to stimulation at other frequencies (6.8 Hz and 10.7 Hz) and to ineffective sham stimulation (18.7 Hz). Furthermore, a sustained oscillatory "echo" in the left IFG, which outlasted the stimulation period by approximately 1.5 s, was observed solely after beta stimulation. The strength of this beta echo was related to memory impairment on a between-subjects level. These results show endogenous oscillatory entrainment effects and behavioral impairment selectively in beta frequency for stimulation of the left IFG, demonstrating an intimate causal relationship between prefrontal beta desynchronization and memory formation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Gut microbiota induce IGF-1 and promote bone formation and growth

    Science.gov (United States)

    Yan, Jing; Herzog, Jeremy W.; Tsang, Kelly; Brennan, Caitlin A.; Bower, Maureen A.; Garrett, Wendy S.; Sartor, Balfour R.; Charles, Julia F.

    2016-01-01

    Appreciation of the role of the gut microbiome in regulating vertebrate metabolism has exploded recently. However, the effects of gut microbiota on skeletal growth and homeostasis have only recently begun to be explored. Here, we report that colonization of sexually mature germ-free (GF) mice with conventional specific pathogen-free (SPF) gut microbiota increases both bone formation and resorption, with the net effect of colonization varying with the duration of colonization. Although colonization of adult mice acutely reduces bone mass, in long-term colonized mice, an increase in bone formation and growth plate activity predominates, resulting in equalization of bone mass and increased longitudinal and radial bone growth. Serum levels of insulin-like growth factor 1 (IGF-1), a hormone with known actions on skeletal growth, are substantially increased in response to microbial colonization, with significant increases in liver and adipose tissue IGF-1 production. Antibiotic treatment of conventional mice, in contrast, decreases serum IGF-1 and inhibits bone formation. Supplementation of antibiotic-treated mice with short-chain fatty acids (SCFAs), products of microbial metabolism, restores IGF-1 and bone mass to levels seen in nonantibiotic-treated mice. Thus, SCFA production may be one mechanism by which microbiota increase serum IGF-1. Our study demonstrates that gut microbiota provide a net anabolic stimulus to the skeleton, which is likely mediated by IGF-1. Manipulation of the microbiome or its metabolites may afford opportunities to optimize bone health and growth. PMID:27821775

  3. Salt stress induces the formation of a novel type of 'pressure wood' in two Populus species.

    Science.gov (United States)

    Janz, Dennis; Lautner, Silke; Wildhagen, Henning; Behnke, Katja; Schnitzler, Jörg-Peter; Rennenberg, Heinz; Fromm, Jörg; Polle, Andrea

    2012-04-01

    • Salinity causes osmotic stress and limits biomass production of plants. The goal of this study was to investigate mechanisms underlying hydraulic adaptation to salinity. • Anatomical, ecophysiological and transcriptional responses to salinity were investigated in the xylem of a salt-sensitive (Populus × canescens) and a salt-tolerant species (Populus euphratica). • Moderate salt stress, which suppressed but did not abolish photosynthesis and radial growth in P. × canescens, resulted in hydraulic adaptation by increased vessel frequencies and decreased vessel lumina. Transcript abundances of a suite of genes (FLA, COB-like, BAM, XET, etc.) previously shown to be activated during tension wood formation, were collectively suppressed in developing xylem, whereas those for stress and defense-related genes increased. A subset of cell wall-related genes was also suppressed in salt-exposed P. euphratica, although this species largely excluded sodium and showed no anatomical alterations. Salt exposure influenced cell wall composition involving increases in the lignin : carbohydrate ratio in both species. • In conclusion, hydraulic stress adaptation involves cell wall modifications reciprocal to tension wood formation that result in the formation of a novel type of reaction wood in upright stems named 'pressure wood'. Our data suggest that transcriptional co-regulation of a core set of genes determines reaction wood composition. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  4. Anxiety-induced plasma norepinephrine augmentation increases reactive oxygen species formation by monocytes in essential hypertension.

    Science.gov (United States)

    Yasunari, Kenichi; Matsui, Tokuzo; Maeda, Kensaku; Nakamura, Munehiro; Watanabe, Takanori; Kiriike, Nobuo

    2006-06-01

    An association between anxiety and depression and increased blood pressure (BP) and cardiovascular disease risk has not been firmly established. We examined the hypothesis that anxiety and depression lead to increased plasma catecholamines and to production of reactive oxygen species (ROS) by mononuclear cells (MNC) in hypertensive individuals. We also studied the role of BP in this effect. In Protocol 1, a cross-sectional study was performed in 146 hypertensive patients to evaluate whether anxiety and depression affect BP and ROS formation by MNC through increasing plasma catecholamines. In Protocol 2, a 6-month randomized controlled trial using a subtherapeutic dose of the alpha(1)-adrenergic receptor antagonist doxazosin (1 mg/day) versus placebo in 86 patients with essential hypertension was performed to determine whether the increase in ROS formation by MNC was independent of BP. In Protocol 1, a significant relationship was observed between the following: trait anxiety and plasma norepinephrine (r = 0.32, P anxiety may increase plasma norepinephrine and increase ROS formation by MNC independent of BP in hypertensive patients.

  5. Formation of precise 2D Au particle arrays via thermally induced dewetting on pre-patterned substrates

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2011-06-01

    Full Text Available The fabrication of precise 2D Au nanoparticle arrays over a large area is presented. The technique was based on pre-patterning of the substrate before the deposition of a thin Au film, and the creation of periodic particle arrays by subsequent dewetting induced by annealing. Two types of pre-patterned substrates were used: The first comprised an array of pyramidal pits and the second an array of circular holes. For the dewetting of Au films on the pyramidal pit substrate, the structural curvature-driven diffusion cooperates with capillarity-driven diffusion, resulting in the formation of precise 2D particle arrays for films within a structure dependent thickness-window. For the dewetting of Au films on the circular hole substrate, the periodic discontinuities in the films, induced by the deposition, can limit the diffusion paths and lead to the formation of one particle per individual separated region (holes or mesas between holes, and thus, result in the evolution of precise 2D particle arrays. The influence of the pre-patterned structures and the film thickness is analyzed and discussed. For both types of pre-patterned substrate, the Au film thickness had to be adjusted in a certain thickness-window in order to achieve the precise 2D particle arrays.

  6. Formation of precise 2D Au particle arrays via thermally induced dewetting on pre-patterned substrates

    Science.gov (United States)

    Ji, Ran

    2011-01-01

    Summary The fabrication of precise 2D Au nanoparticle arrays over a large area is presented. The technique was based on pre-patterning of the substrate before the deposition of a thin Au film, and the creation of periodic particle arrays by subsequent dewetting induced by annealing. Two types of pre-patterned substrates were used: The first comprised an array of pyramidal pits and the second an array of circular holes. For the dewetting of Au films on the pyramidal pit substrate, the structural curvature-driven diffusion cooperates with capillarity-driven diffusion, resulting in the formation of precise 2D particle arrays for films within a structure dependent thickness-window. For the dewetting of Au films on the circular hole substrate, the periodic discontinuities in the films, induced by the deposition, can limit the diffusion paths and lead to the formation of one particle per individual separated region (holes or mesas between holes), and thus, result in the evolution of precise 2D particle arrays. The influence of the pre-patterned structures and the film thickness is analyzed and discussed. For both types of pre-patterned substrate, the Au film thickness had to be adjusted in a certain thickness-window in order to achieve the precise 2D particle arrays. PMID:21977445

  7. Nrp2 is sufficient to instruct circuit formation of mitral-cells to mediate odour-induced attractive social responses.

    Science.gov (United States)

    Inokuchi, Kasumi; Imamura, Fumiaki; Takeuchi, Haruki; Kim, Ryang; Okuno, Hiroyuki; Nishizumi, Hirofumi; Bito, Haruhiko; Kikusui, Takefumi; Sakano, Hitoshi

    2017-07-21

    Odour information induces various innate responses that are critical to the survival of the individual and for the species. An axon guidance molecule, Neuropilin 2 (Nrp2), is known to mediate targeting of olfactory sensory neurons (primary neurons), to the posteroventral main olfactory bulb (PV MOB) in mice. Here we report that Nrp2-positive (Nrp2 + ) mitral cells (MCs, second-order neurons) play crucial roles in transmitting attractive social signals from the PV MOB to the anterior part of medial amygdala (MeA). Semaphorin 3F, a repulsive ligand to Nrp2, regulates both migration of Nrp2 + MCs to the PV MOB and their axonal projection to the anterior MeA. In the MC-specific Nrp2 knockout mice, circuit formation of Nrp2 + MCs and odour-induced attractive social responses are impaired. In utero, electroporation demonstrates that activation of the Nrp2 gene in MCs is sufficient to instruct their circuit formation from the PV MOB to the anterior MeA.

  8. Optical chirality in AgCl-Ag thin films through formation of laser-induced planar crossed-chain nanostructures

    Science.gov (United States)

    Nahal, Arashmid; Kashani, Somayeh

    2017-09-01

    Irradiation of AgCl-Ag thin films by a linearly polarized He-Ne laser beam results in the formation of self-organized periodic nanostructures. As a result of secondary irradiation of the initially exposed sample by the same linearly polarized He-Ne laser beam, but with different orientations of polarization, a complex crossed-chain nanostructure forms. We found that such a complex nanostructure has noticeable chirality and increased optical anisotropy, resulting in optical activity of the sample. Double exposure produces two gratings, crossing each other with angle α, which leads to the formation of crossed building blocks with chiroptical effects. It is established that the amount and the sign of the angle between the two laser-induced gratings (±α) determine the amount and the direction of rotation of the linearly polarized probe beam, respectively. We have also observed an induced anisotropy-dependent ellipticity for the probe light, which is passed through the sample. It is shown that the amount of ellipticity depends on the angle α.

  9. Modulation of VEGF-induced migration and network formation by lymphatic endothelial cells: Roles of platelets and podoplanin.

    Science.gov (United States)

    Langan, Stacey A; Navarro-Núñez, Leyre; Watson, Steve P; Nash, Gerard B

    2017-07-20

    Lymphatic endothelial cells (LEC) express the transmembrane receptor podoplanin whose only known endogenous ligand CLEC-2 is found on platelets. Both podoplanin and CLEC-2 are required for normal lymphangiogenesis as mice lacking either protein develop a blood-lymphatic mixing phenotype. We investigated the roles of podoplanin and its interaction with platelets in migration and tube formation by LEC. Addition of platelets or antibody-mediated crosslinking of podoplanin inhibited LEC migration induced by vascular endothelial growth factors (VEGF-A or VEGF-C), but did not modify basal migration or the response to basic fibroblast growth factor or epidermal growth factor. In addition, platelets and podoplanin crosslinking disrupted networks of LEC formed in co-culture with fibroblasts. Depletion of podoplanin in LEC using siRNA negated the pro-migratory effect of VEGF-A and VEGF-C. Inhibition of RhoA or Rho-kinase reduced LEC migration induced by VEGF-C, but had no further effect after crosslinking of podoplanin, suggesting that podoplanin is required for signaling downstream of VEGF-receptors but upstream of RhoA. Together, these data reveal for the first time that podoplanin is an intrinsic specific regulator of VEGF-mediated migration and network formation in LEC and identify crosslinking of podoplanin by platelets or antibodies as mechanisms to modulate this pathway.

  10. Formation of Shc-Grb2 complexes is necessary to induce neoplastic transformation by overexpression of Shc proteins

    DEFF Research Database (Denmark)

    Salcini, A E; McGlade, J; Pelicci, G

    1994-01-01

    The mammalian SHC gene encodes three overlapping proteins which all contain a carboxy-terminal SH2 domain. Shc proteins are phosphorylated on tyrosine by a variety of receptor and cytoplasmic tyrosine kinases. Phosphorylated Shc proteins form a complex with the SH2-SH3 containing Grb2 protein which...... of Grb2 to Shc proteins requires phosphorylation of Shc at Tyr317, which lies within the high affinity binding motif for the Grb2 SH2 domain, pYVNV, where Asn at the +2 position is crucial for complex formation. In vivo, Tyr317 is the major, but not the only, site for Shc phosphorylation, and is the sole...... aminoterminal deletion, but retain the Tyr317 site and the SH2 domain conserve the capacity to be phosphorylated, to bind to Grb2 and to induce cell transformation. These data indicate that the formation of the Shc-Grb2 complex is a crucial event in the transformation induced by overexpression of Shc...

  11. [The role of Smads and related transcription factors in the signal transduction of bone morphogenetic protein inducing bone formation].

    Science.gov (United States)

    Xu, Xiao-liang; Dai, Ke-rong; Tang, Ting-ting

    2003-09-01

    To clarify the mechanisms of the signal transduction of bone morphogenetic proteins (BMPs) inducing bone formation and to provide theoretical basis for basic and applying research of BMPs. We looked up the literature of the role of Smads and related transcription factors in the signal transduction of BMPs inducing bone formation. The signal transduction processes of BMPs included: 1. BMPs combined with type II and type I receptors; 2. the type I receptor phosphorylated Smads; and 3. Smads entered the cell nucleus, interacted with transcription factors and influenced the transcription of related proteins. Smads could be divided into receptor-regulated Smads (R-Smads: Smad1, Smad2, Smad3, Smad5, Smad8 and Smad9), common-mediator Smad (co-Smad: Smad4), and inhibitory Smads (I-Smads: Smad6 and Smad7). Smad1, Smad5, Smad8, and probable Smad9 were involved in the signal transduction of BMPs. Multiple kinases, such as focal adhesion kinase (FAK), Ras-extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (PI3K), and Akt serine/threonine kinase were related to Smads signal transduction. Smad1 and Smad5 related with transcription factors included core binding factor A1 (CBFA1), smad-interacting protein 1 (SIP1), ornithine decarboxylase antizyme (OAZ), activating protein-1 (AP-1), xenopus ventralizing homeobox protein-2 (Xvent-2), sandostatin (Ski), antiproliferative proteins (Tob), and homeodomain-containing transcriptian factor-8 (Hoxc-8), et al. CBFA1 could interact with Smad1, Smad2, Smad3, and Smad5, so it was involved in TGF-beta and BMP-2 signal transduction, and played an important role in the bone formation. Cleidocranial dysplasia (CCD) was thought to be caused by heterozygous mutations in CBFA1. The CBFA1 knockout mice showed no osteogenesis and had maturational disturbance of chondrocytes. Smads and related transcription factors, especially Smad1, Smad5, Smad8 and CBFA1, play an important role in the signal transduction of BMPs inducing bone

  12. Mechanism of solid-state plasma-induced dewetting for formation of copper and gold nanoparticles.

    Science.gov (United States)

    Kwon, Soon-Ho; Choe, Han Joo; Lee, Hyo-Chang; Chung, Chin-Wook; Lee, Jung-Joong

    2013-09-01

    Cu and Au nanoparticles were fabricated by plasma treatment on Cu and Au films at 653 K. The nanoparticles were formed by dewetting the metallic films using plasma. Scanning electron microscopy and transmission electron microscopy investigations showed that the plasma-induced dewetting of the Cu and Au films proceeded through heterogeneous hole nucleation and growth along the grain boundaries to lower the surface energy. The amount of energy transferred to surface atoms by one Ar ion was calculated to be 16.1 eV, which was sufficient for displacing Cu and Au atoms. Compared to thermally activated dewetting, more uniform particles could be obtained by plasma-induced dewetting because a much larger number of holes with smaller sizes was generated. The plasma dewetting process is less sensitive to the oxidation of metallic films compared to the annealing process. As a result, Cu nanoparticles could be fabricated at 653 K, whereas the thermally activated dewetting was not possible.

  13. Kinetics of microstructure formation of high-pressure induced gel from a whey protein isolate

    Science.gov (United States)

    He, Jin-Song; Yang, Hongwei; Zhu, Wanpeng; Mu, Tai-Hua

    2010-03-01

    The kinetic process of pressure-induced gelation of whey protein isolate (WPI) solutions was studied using in situ light scattering. The relationship of the logarithm of scattered light intensity (I) versus time (t) was linear after the induced time and could be described by the Cahn-Hilliard linear theory. With increasing time, the scattered intensity deviated from the exponential relationship, and the time evolution of the scattered light intensity maximum Im and the corresponding wavenumber qm could be described in terms of the power-law relationship as Im~fβ and qm~f-α, respectively. These results indicated that phase separation occurred during the gelation of WPI solutions under high pressure.

  14. Kinetics of microstructure formation of high-pressure induced gel from a whey protein isolate

    International Nuclear Information System (INIS)

    He Jinsong; Yang Hongwei; Zhu Wanpeng; Mu Taihua

    2010-01-01

    The kinetic process of pressure-induced gelation of whey protein isolate (WPI) solutions was studied using in situ light scattering. The relationship of the logarithm of scattered light intensity (I) versus time (t) was linear after the induced time and could be described by the Cahn-Hilliard linear theory. With increasing time, the scattered intensity deviated from the exponential relationship, and the time evolution of the scattered light intensity maximum I m and the corresponding wavenumber q m could be described in terms of the power-law relationship as I m ∼f β and q m ∼f -α , respectively. These results indicated that phase separation occurred during the gelation of WPI solutions under high pressure.

  15. Kinetics of microstructure formation of high-pressure induced gel from a whey protein isolate

    Energy Technology Data Exchange (ETDEWEB)

    He Jinsong; Yang Hongwei; Zhu Wanpeng [Department of Environmental Science and Engineering, Tsinghua University, Beijing 100084 (China); Mu Taihua, E-mail: mutaihuacaas@126.co [Institute of Agro-Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100094 (China)

    2010-03-01

    The kinetic process of pressure-induced gelation of whey protein isolate (WPI) solutions was studied using in situ light scattering. The relationship of the logarithm of scattered light intensity (I) versus time (t) was linear after the induced time and could be described by the Cahn-Hilliard linear theory. With increasing time, the scattered intensity deviated from the exponential relationship, and the time evolution of the scattered light intensity maximum I{sub m} and the corresponding wavenumber q{sub m} could be described in terms of the power-law relationship as I{sub m}{approx}f{sup {beta}} and q{sub m}{approx}f{sup -}{alpha}, respectively. These results indicated that phase separation occurred during the gelation of WPI solutions under high pressure.

  16. Shiga toxin induces membrane reorganization and formation of long range lipid order

    DEFF Research Database (Denmark)

    Solovyeva, Vita; Johannes, Ludger; Simonsen, Adam Cohen

    2015-01-01

    membrane reordering. When Shiga toxin was added above the lipid chain melting temperature, the toxin interaction with the membrane induced rearrangement and clustering of Gb3 lipids that resulted in the long range order and alignment of lipids in gel domains. The toxin induced redistribution of Gb3 lipids...... inside gel domains is governed by the temperature at which Shiga toxin was added to the membrane: above or below the phase transition. The temperature is thus one of the critical factors controlling lipid organization and texture in the presence of Shiga toxin. Lipid chain ordering imposed by Shiga toxin...... binding can be another factor driving the reconstruction of lipid organization and crystallization of lipids inside gel domains....

  17. Matrix metalloproteinases regulate the formation of dendritic spine head protrusions during chemically induced long-term potentiation.

    Directory of Open Access Journals (Sweden)

    Zsuzsanna Szepesi

    Full Text Available Dendritic spines are are small membranous protrusions that extend from neuronal dendrites and harbor the majority of excitatory synapses. Increasing evidence has shown that matrix metalloproteinases (MMPs, a family of extracellularly acting and Zn(2+-dependent endopeptidases, are able to rapidly modulate dendritic spine morphology. Spine head protrusions (SHPs are filopodia-like processes that extend from the dendritic spine head, representing a form of postsynaptic structural remodeling in response to altered neuronal activity. Herein, we show that chemically induced long-term potentiation (cLTP in dissociated hippocampal cultures upregulates MMP-9 activity that controls the formation of SHPs. Blocking of MMPs activity or microtubule dynamics abolishes the emergence of SHPs. In addition, autoactive recombinant MMP-9, promotes the formation of SHPs in organotypic hippocampal slices. Furthermore, spines with SHPs gained postsynaptic α-amino-3-hydroxyl-5-methyl-4-isoxazole propionic acid (AMPA receptors upon cLTP and the synaptic delivery of AMPA receptors was controlled by MMPs. The present results strongly imply that MMP-9 is functionally involved in the formation of SHPs and the control of postsynaptic receptor distribution upon cLTP.

  18. Amelioration of cold injury-induced cortical brain edema formation by selective endothelin ETB receptor antagonists in mice.

    Science.gov (United States)

    Michinaga, Shotaro; Nagase, Marina; Matsuyama, Emi; Yamanaka, Daisuke; Seno, Naoki; Fuka, Mayu; Yamamoto, Yui; Koyama, Yutaka

    2014-01-01

    Brain edema is a potentially fatal pathological condition that often occurs in stroke and head trauma. Following brain insults, endothelins (ETs) are increased and promote several pathophysiological responses. This study examined the effects of ETB antagonists on brain edema formation and disruption of the blood-brain barrier in a mouse cold injury model (Five- to six-week-old male ddY mice). Cold injury increased the water content of the injured cerebrum, and promoted extravasation of both Evans blue and endogenous albumin. In the injury area, expression of prepro-ET-1 mRNA and ET-1 peptide increased. Intracerebroventricular (ICV) administration of BQ788 (ETB antagonist), IRL-2500 (ETB antagonist), or FR139317 (ETA antagonist) prior to cold injury significantly attenuated the increase in brain water content. Bolus administration of BQ788, IRL-2500, or FR139317 also inhibited the cold injury-induced extravasation of Evans blue and albumin. Repeated administration of BQ788 and IRL-2500 beginning at 24 h after cold injury attenuated both the increase in brain water content and extravasation of markers. In contrast, FR139317 had no effect on edema formation when administrated after cold injury. Cold injury stimulated induction of glial fibrillary acidic protein-positive reactive astrocytes in the injured cerebrum. Induction of reactive astrocytes after cold injury was attenuated by ICV administration of BQ788 or IRL-2500. These results suggest that ETB receptor antagonists may be an effective approach to ameliorate brain edema formation following brain insults.

  19. Characterization of glutamate-induced formation of N- acylphosphatidylethanolamine and N-acylethanolamine in cultured neocortical neurons

    DEFF Research Database (Denmark)

    Hansen, Harald S.; Lauritzen, L.; Strand, A.M.

    1997-01-01

    ) assay). The increase in NAPE and NAE could be detected earlier than the neuronal death. Neither cyclic AMP, cyclic GMP, nitric oxide, protein kinase C, nor peroxidation appears to be involved in the formation of NAPE and NAE, as assessed by the use of different pharmacological agents. Exposure to 5 m...... receptors as seen by the inhibitory action of the NMDA-selective receptor antagonists D(-)-2-amino-5-phosphonovalerate and N- (1-(2-thienyl)-cyclohexyl)piperidine and the lack of effect of the a-amino- 3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)/kainate-receptor antagonist 6-cyano-7-nitro......-quinoxaline-2,3-dione (CNQX). In 6-day-old cultures, exposure to NMDA (100 µM for 24 h) induced a linear increase in the formation of NAPE and NAE as well as a 40-50% neuronal death, as measured by a decrease in cellular formazan formation [3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide (MTT...

  20. Anhydride-functional silane immobilized onto titanium surfaces induces osteoblast cell differentiation and reduces bacterial adhesion and biofilm formation

    Energy Technology Data Exchange (ETDEWEB)

    Godoy-Gallardo, Maria, E-mail: maria.godoy.gallardo@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Guillem-Marti, Jordi, E-mail: jordi.guillem.marti@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Sevilla, Pablo, E-mail: psevilla@euss.es [Department of Mechanics, Escola Universitària Salesiana de Sarrià (EUSS), C/ Passeig de Sant Bosco, 42, 08017 Barcelona (Spain); Manero, José M., E-mail: jose.maria.manero@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); Gil, Francisco J., E-mail: francesc.xavier.gil@upc.edu [Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Metallurgy, Technical University of Catalonia (UPC), ETSEIB, Av. Diagonal 647, 08028 Barcelona (Spain); Centre for Research in NanoEngineering (CRNE) — UPC, C/ Pascual i Vila 15, 08028 Barcelona (Spain); and others

    2016-02-01

    Bacterial infection in dental implants along with osseointegration failure usually leads to loss of the device. Bioactive molecules with antibacterial properties can be attached to titanium surfaces with anchoring molecules such as silanes, preventing biofilm formation and improving osseointegration. Properties of silanes as molecular binders have been thoroughly studied, but research on the biological effects of these coatings is scarce. The aim of the present study was to determine the in vitro cell response and antibacterial effects of triethoxysilypropyl succinic anhydride (TESPSA) silane anchored on titanium surfaces. X-ray photoelectron spectroscopy confirmed a successful silanization. The silanized surfaces showed no cytotoxic effects. Gene expression analyses of Sarcoma Osteogenic (SaOS-2) osteoblast-like cells cultured on TESPSA silanized surfaces reported a remarkable increase of biochemical markers related to induction of osteoblastic cell differentiation. A manifest decrease of bacterial adhesion and biofilm formation at early stages was observed on treated substrates, while favoring cell adhesion and spreading in bacteria–cell co-cultures. Surfaces treated with TESPSA could enhance a biological sealing on implant surfaces against bacteria colonization of underlying tissues. Furthermore, it can be an effective anchoring platform of biomolecules on titanium surfaces with improved osteoblastic differentiation and antibacterial properties. - Highlights: • TESPSA silane induces osteoblast differentiation. • TESPSA reduces bacterial adhesion and biofilm formation. • TESPSA is a promising anchoring platform of biomolecules onto titanium.

  1. Red mud (RM)-Induced enhancement of iron plaque formation reduces arsenic and metal accumulation in two wetland plant species.

    Science.gov (United States)

    Yang, J X; Guo, Q J; Yang, J; Zhou, X Y; Ren, H Y; Zhang, H Z; Xu, R X; Wang, X D; Peters, M; Zhu, G X; Wei, R F; Tian, L Y; Han, X K

    2016-01-01

    Human activities have resulted in arsenic (As) and heavy metals accumulation in paddy soils in China. Phytoremediation has been suggested as an effective and low-cost method to clean up contaminated soils. A combined soil-sand pot experiment was conducted to investigate the influence of red mud (RM) supply on iron plaque formation and As and heavy metal accumulation in two wetland plant species (Cyperus alternifolius Rottb., Echinodorus amazonicus Rataj), using As and heavy metals polluted paddy soil combined with three rates of RM application (0, 2%, 5%). The results showed that RM supply significantly decreased As and heavy metals accumulation in shoots of the two plants due to the decrease of As and heavy metal availability and the enhancement of the formation of iron plaque on the root surface and in the rhizosphere. Both wetland plants supplied with RM tended to have more Fe plaque, higher As and heavy metals on roots and in their rhizospheres, and were more tolerant of As and heavy metal toxicity. The results suggest that RM-induced enhancement of the formation of iron plaque on the root surface and in the rhizosphere of wetland plants may be significant for remediation of soils contaminated with As and heavy metals.

  2. Anhydride-functional silane immobilized onto titanium surfaces induces osteoblast cell differentiation and reduces bacterial adhesion and biofilm formation

    International Nuclear Information System (INIS)

    Godoy-Gallardo, Maria; Guillem-Marti, Jordi; Sevilla, Pablo; Manero, José M.; Gil, Francisco J.

    2016-01-01

    Bacterial infection in dental implants along with osseointegration failure usually leads to loss of the device. Bioactive molecules with antibacterial properties can be attached to titanium surfaces with anchoring molecules such as silanes, preventing biofilm formation and improving osseointegration. Properties of silanes as molecular binders have been thoroughly studied, but research on the biological effects of these coatings is scarce. The aim of the present study was to determine the in vitro cell response and antibacterial effects of triethoxysilypropyl succinic anhydride (TESPSA) silane anchored on titanium surfaces. X-ray photoelectron spectroscopy confirmed a successful silanization. The silanized surfaces showed no cytotoxic effects. Gene expression analyses of Sarcoma Osteogenic (SaOS-2) osteoblast-like cells cultured on TESPSA silanized surfaces reported a remarkable increase of biochemical markers related to induction of osteoblastic cell differentiation. A manifest decrease of bacterial adhesion and biofilm formation at early stages was observed on treated substrates, while favoring cell adhesion and spreading in bacteria–cell co-cultures. Surfaces treated with TESPSA could enhance a biological sealing on implant surfaces against bacteria colonization of underlying tissues. Furthermore, it can be an effective anchoring platform of biomolecules on titanium surfaces with improved osteoblastic differentiation and antibacterial properties. - Highlights: • TESPSA silane induces osteoblast differentiation. • TESPSA reduces bacterial adhesion and biofilm formation. • TESPSA is a promising anchoring platform of biomolecules onto titanium.

  3. Amelioration of cold injury-induced cortical brain edema formation by selective endothelin ETB receptor antagonists in mice.

    Directory of Open Access Journals (Sweden)

    Shotaro Michinaga

    Full Text Available Brain edema is a potentially fatal pathological condition that often occurs in stroke and head trauma. Following brain insults, endothelins (ETs are increased and promote several pathophysiological responses. This study examined the effects of ETB antagonists on brain edema formation and disruption of the blood-brain barrier in a mouse cold injury model (Five- to six-week-old male ddY mice. Cold injury increased the water content of the injured cerebrum, and promoted extravasation of both Evans blue and endogenous albumin. In the injury area, expression of prepro-ET-1 mRNA and ET-1 peptide increased. Intracerebroventricular (ICV administration of BQ788 (ETB antagonist, IRL-2500 (ETB antagonist, or FR139317 (ETA antagonist prior to cold injury significantly attenuated the increase in brain water content. Bolus administration of BQ788, IRL-2500, or FR139317 also inhibited the cold injury-induced extravasation of Evans blue and albumin. Repeated administration of BQ788 and IRL-2500 beginning at 24 h after cold injury attenuated both the increase in brain water content and extravasation of markers. In contrast, FR139317 had no effect on edema formation when administrated after cold injury. Cold injury stimulated induction of glial fibrillary acidic protein-positive reactive astrocytes in the injured cerebrum. Induction of reactive astrocytes after cold injury was attenuated by ICV administration of BQ788 or IRL-2500. These results suggest that ETB receptor antagonists may be an effective approach to ameliorate brain edema formation following brain insults.

  4. Inactivation of the small GTP binding protein Rho induces multinucleate cell formation and apoptosis in murine T lymphoma EL4.

    Science.gov (United States)

    Moorman, J P; Bobak, D A; Hahn, C S

    1996-06-01

    The small G-protein Rho regulates the actin microfilament-dependent cytoskeleton. Exoenzyme C3 of Clostridium botulinum ADP-ribosylates Rho at Asn41, a modification that functionally inactivates Rho. Using a Sindbis virus-based transient gene expression system, we studied the role of Rho in murine EL4 T lymphoma cells. We generated a double subgenomic infectious Sindbis virus (dsSIN:C3) recombinant which expressed C3 in >95% of EL4 cells. This intracellular C3 resulted in modification and inactivation of virtually all endogenous Rho. dsSIN:C3 infection led to the formation of multinucleate cells, likely by inhibiting the actin microfilament-dependent step of cytokinesis. Intriguingly, in spite of the inhibition of cytokinesis, karyokinesis continued, with the result that cells containing a nuclear DNA content as high as 16N (eight nuclei) were observed. In addition, dsSIN:C3-mediated inactivation of Rho was a potent activator of apoptosis in EL4 cells. To discern whether the formation of multinucleate cells was responsible for the activation of apoptosis, 5-fluorouracil (5-FUra) was used to induce cell cycle arrest. As expected, EL4 cells treated with 5-FUra were prevented from forming multinucleate cells upon infection with dsSIN:C3. dsSIN:C3 infection, however, still caused marked apoptosis in 5-FUra-treated cells, indicating that this activation of apoptosis was independent of multinucleate cell formation.

  5. Starting mechanisms and dynamics of bubble formation induced by a Ho:Yttrium aluminum garnet laser in water

    Science.gov (United States)

    Frenz, Martin; Könz, Flurin; Pratisto, Hans; Weber, Heinz P.; Silenok, Alexander S.; Konov, Vitaly I.

    1998-12-01

    The starting mechanisms and dynamics of laser-induced bubble formation at a submerged fiber tip in distilled water were experimentally investigated using pressure measurements and fast flash videography. A fiber guided Ho:YAG laser operating in the free running (τ=200 μs) and Q-switched (τ=45 ns) mode at a wavelength of λ=2.12 μm was used as a light source. It is shown that the beam profile at the distal fiber tip (multimode fiber d=300 μm) exhibits hot spots that result in an inhomogeneous temperature distribution in the heated water volume. Depending on the laser irradiance, three different bubble formation processes are distinguished: bubble formation by heating, by rarefraction (cavitation), and by a combination of these two processes. For laser irradiances of less than 0.5 MW/ cm2 bubble formation takes place at temperatures near the critical point of water (T=280 °C). A rapid decrease in the threshold temperature for bubble formation was found for laser irradiances between 0.5 and 1 MW/cm 2. At laser irradiances higher than 3 MW/cm2, microbubbles with radii of up to 20 μm were formed at the front of the laser pulse even though the average water temperature was far below 100 °C. The water temperature distribution during the laser pulse was determined by numerical simulation. Simultaneous pressure measurements revealed that each subablative laser spike induces a bipolar pressure transient. The onset of the bubble expansion was found to be correlated with a characteristic pressure increase that can be used for on-line monitoring of the ablation process. The distortion of the temporal profile of the pressure wave is shown to be an effect of diffraction. The reduction of pressure by the negative part of the bipolar pressure transients leads to a lowering of the evaporation pressure and therefore to the initiation of bubbles by cavitation. With increasing irradiance this mechanism becomes more efficient.

  6. Low Po2 conditions induce reactive oxygen species formation during contractions in single skeletal muscle fibers

    Science.gov (United States)

    Shiah, Amy; Roberts, William J.; Chien, Michael T.; Wagner, Peter D.; Hogan, Michael C.

    2013-01-01

    Contractions in whole skeletal muscle during hypoxia are known to generate reactive oxygen species (ROS); however, identification of real-time ROS formation within isolated single skeletal muscle fibers has been challenging. Consequently, there is no convincing evidence showing increased ROS production in intact contracting fibers under low Po2 conditions. Therefore, we hypothesized that intracellular ROS generation in single contracting skeletal myofibers increases during low Po2 compared with a value approximating normal resting Po2. Dihydrofluorescein was loaded into single frog (Xenopus) fibers, and fluorescence was used to monitor ROS using confocal microscopy. Myofibers were exposed to two maximal tetanic contractile periods (1 contraction/3 s for 2 min, separated by a 60-min rest period), each consisting of one of the following treatments: high Po2 (30 Torr), low Po2 (3–5 Torr), high Po2 with ebselen (antioxidant), or low Po2 with ebselen. Ebselen (10 μM) was administered before the designated contractile period. ROS formation during low Po2 treatment was greater than during high Po2 treatment, and ebselen decreased ROS generation in both low- and high-Po2 conditions (P Po2. Force was reduced >30% for each condition except low Po2 with ebselen, which only decreased ∼15%. We concluded that single myofibers under low Po2 conditions develop accelerated and more oxidative stress than at Po2 = 30 Torr (normal human resting Po2). Ebselen decreases ROS formation in both low and high Po2, but only mitigates skeletal muscle fatigue during reduced Po2 conditions. PMID:23576612

  7. GISAXS modelling of helium-induced nano-bubble formation in tungsten and comparison with TEM

    International Nuclear Information System (INIS)

    Thompson, Matt; Sakamoto, Ryuichi; Bernard, Elodie; Kirby, Nigel; Kluth, Patrick; Riley, Daniel; Corr, Cormac

    2016-01-01

    Grazing-incidence small angle x-ray scattering (GISAXS) is a powerful non-destructive technique for the measurement of nano-bubble formation in tungsten under helium plasma exposure. Here, we present a comparative study between transmission electron microscopy (TEM) and GISAXS measurements of nano-bubble formation in tungsten exposed to helium plasma in the Large Helical Device (LHD) fusion experiment. Both techniques are in excellent agreement, suggesting that nano-bubbles range from spheroidal to ellipsoidal, displaying exponential diameter distributions with mean diameters μ=0.68 ± 0.04 nm and μ=0.6 ± 0.1 nm measured by TEM and GISAXS respectively. Depth distributions were also computed, with calculated exponential depth distributions with mean depths of 8.4 ± 0.5 nm and 9.1 ± 0.4 nm for TEM and GISAXS. In GISAXS modelling, spheroidal particles were fitted with an aspect ratio ε=0.7 ± 0.1. The GISAXS model used is described in detail. - Highlights: • GISAXS and TEM were used to measure nano-bubble formation in W exposed to He plasma in the large helical device. • Nano-bubbles had an exponential diameter distributions with averages 0.6 ± 0.1 nm and 0.68 ± 0.04 nm measured by GISAXS and TEM. • Nano-bubbles had an exponential depth distributions with average depths of 9.1 ± 0.4 nm and 8.4 ± 0.5 nm for GISAXS and TEM. • The GISAXS model used to analyse diffraction patterns is explained in detail.

  8. A Drosophila genetic model of nephrolithiasis: transcriptional changes in response to diet induced stone formation.

    Science.gov (United States)

    Chung, Vera Y; Turney, Benjamin W

    2017-11-28

    Urolithiasis is a significant healthcare issue but the pathophysiology of stone disease remains poorly understood. Drosophila Malpighian tubules were known to share similar physiological function to human renal tubules. We have used Drosophila as a genetic model to study the transcriptional response to stone formation secondary to dietary manipulation. Wild-type male flies were raised on standard medium supplemented with lithogenic agents: control, sodium oxalate (NaOx) and ethylene glycol (EG). At 2 weeks, Malpighian tubules were dissected under polarized microscope to visualize crystals. The parallel group was dissected for RNA extraction and subsequent next-generation RNA sequencing. Crystal formation was visualized in 20%(±2.2) of flies on control diet, 73%(±3.6) on NaOx diet and 84%(±2.2) on EG diet. Differentially expressed genes were identified in flies fed with NaOx and EG diet comparing with the control group. Fifty-eight genes were differentially expressed (FDR <0.05, p < 0.05) in NaOx diet and 20 genes in EG diet. The molecular function of differentially expressed genes were assessed. Among these, Nervana 3, Eaat1 (Excitatory amino acid transporter 1), CG7912, CG5404, CG3036 worked as ion transmembrane transporters, which were possibly involved in stone pathogenesis. We have shown that by dietary modification, stone formation can be manipulated and visualized in Drosophila Malpighian tubules. This genetic model could be potentially used to identify the candidate genes that influence stone risk hence providing more insight to the pathogenesis of human stone disease.

  9. GISAXS modelling of helium-induced nano-bubble formation in tungsten and comparison with TEM

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Matt, E-mail: matt.a.thompson@anu.edu.au [Research School of Physics and Engineering, Australian National University, Mills Road, Acton, ACT 2601 (Australia); Sakamoto, Ryuichi [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Bernard, Elodie [Aix-Marseille University, Marseille 13288 (France); Kirby, Nigel [SAXS/WAXS Beamline, Australian Synchrotron, 800 Blackburn Rd, Clayton, VIC, 3168 (Australia); Kluth, Patrick [Research School of Physics and Engineering, Australian National University, Mills Road, Acton, ACT 2601 (Australia); Riley, Daniel [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW, 2232 (Australia); Corr, Cormac [Research School of Physics and Engineering, Australian National University, Mills Road, Acton, ACT 2601 (Australia)

    2016-05-15

    Grazing-incidence small angle x-ray scattering (GISAXS) is a powerful non-destructive technique for the measurement of nano-bubble formation in tungsten under helium plasma exposure. Here, we present a comparative study between transmission electron microscopy (TEM) and GISAXS measurements of nano-bubble formation in tungsten exposed to helium plasma in the Large Helical Device (LHD) fusion experiment. Both techniques are in excellent agreement, suggesting that nano-bubbles range from spheroidal to ellipsoidal, displaying exponential diameter distributions with mean diameters μ=0.68 ± 0.04 nm and μ=0.6 ± 0.1 nm measured by TEM and GISAXS respectively. Depth distributions were also computed, with calculated exponential depth distributions with mean depths of 8.4 ± 0.5 nm and 9.1 ± 0.4 nm for TEM and GISAXS. In GISAXS modelling, spheroidal particles were fitted with an aspect ratio ε=0.7 ± 0.1. The GISAXS model used is described in detail. - Highlights: • GISAXS and TEM were used to measure nano-bubble formation in W exposed to He plasma in the large helical device. • Nano-bubbles had an exponential diameter distributions with averages 0.6 ± 0.1 nm and 0.68 ± 0.04 nm measured by GISAXS and TEM. • Nano-bubbles had an exponential depth distributions with average depths of 9.1 ± 0.4 nm and 8.4 ± 0.5 nm for GISAXS and TEM. • The GISAXS model used to analyse diffraction patterns is explained in detail.

  10. Titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation but not DNA-breakage in human lung cells

    Directory of Open Access Journals (Sweden)

    Schins Roel PF

    2009-06-01

    Full Text Available Abstract Titanium dioxide (TiO2, also known as titanium (IV oxide or anatase, is the naturally occurring oxide of titanium. It is also one of the most commercially used form. To date, no parameter has been set for the average ambient air concentration of TiO2 nanoparticles (NP by any regulatory agency. Previously conducted studies had established these nanoparticles to be mainly non-cyto- and -genotoxic, although they had been found to generate free radicals both acellularly (specially through photocatalytic activity and intracellularly. The present study determines the role of TiO2-NP (anatase, ∅ in vitro. For comparison, iron containing nanoparticles (hematite, Fe2O3, ∅ 2-NP did not induce DNA-breakage measured by the Comet-assay in both cell types. Generation of reactive oxygen species (ROS was measured acellularly (without any photocatalytic activity as well as intracellularly for both types of particles, however, the iron-containing NP needed special reducing conditions before pronounced radical generation. A high level of DNA adduct formation (8-OHdG was observed in IMR-90 cells exposed to TiO2-NP, but not in cells exposed to hematite NP. Our study demonstrates different modes of action for TiO2- and Fe2O3-NP. Whereas TiO2-NP were able to generate elevated amounts of free radicals, which induced indirect genotoxicity mainly by DNA-adduct formation, Fe2O3-NP were clastogenic (induction of DNA-breakage and required reducing conditions for radical formation.

  11. Osteoblast Differentiation and Bone Formation Gene Expression in Strontium-inducing Bone Marrow Mesenchymal Stem Cell

    OpenAIRE

    SILA-ASNA, MONNIPHA; BUNYARATVEJ, AHNOND; Maeda, Sakan; Kitaguchi, Hiromichi; BUNYARATAVEJ, NARONG

    2007-01-01

    Osteoblastic differentiation from human mesenchymal stem cell (hMSCs) is animportant step of bone formation. We studied the in vitro induction of hMSCs byusing strontium ranelate, a natural trace amount in water, food and human skeleton.The mRNA synthesis of various osteoblast specific genes was assessed by means ofreverse transcription polymerase chain reaction (RT-PCR). In the hMSCs culture,strontium ranelate could enhance the induction of hMSCs to differentiate intoosteoblasts. Cbfa1 gene ...

  12. Combined computational and experimental study of Ar beam induced defect formation in graphite

    International Nuclear Information System (INIS)

    Pregler, Sharon K.; Hayakawa, Tetsuichiro; Yasumatsu, Hisato; Kondow, Tamotsu; Sinnott, Susan B.

    2007-01-01

    Irradiation of graphite, commonly used in nuclear power plants, is known to produce structural damage. Here, experimental and computational methods are used to study defect formation in graphite during Ar irradiation at incident energies of 50 eV. The experimental samples are analyzed with scanning tunneling microscopy to quantify the size distribution of the defects that form. The computational approach is classical molecular dynamic simulations that illustrate the mechanisms by which the defects are produced. The results indicate that defects in graphite grow in concentrated areas and are nucleated by the presence of existing defects

  13. Modelling the formation of nanostructures on metal surface induced by femtosecond laser ablation

    International Nuclear Information System (INIS)

    Djouder, M.; Itina, T.E.; Deghiche, D.; Lamrous, O.

    2012-01-01

    We employ the particle-in-cell method to simulate the mechanisms of femtosecond (fs) laser interactions with a metallic target. The theoretical approach considers the solid as a gas of free electrons in a lattice of immobile ions and the laser fluences close to the ablation threshold. At first moments of the interaction, our simulations mapped out different nanostructures. We carefully characterized the rippling phase and found that its morphology is dependent on the distribution of the electron density and the period of the ripples depends on the laser intensity. The simulation method provides new insights into the mechanisms that are responsible for surface grating formation.

  14. Modelling the formation of nanostructures on metal surface induced by femtosecond laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Djouder, M. [Laboratoire de Physique et Chimie Quantique, Universite Mouloud Mammeri de Tizi-ouzou, BP 17 RP, 15000 Tizi-Ouzou (Algeria); Itina, T.E. [Laboratoire Hubert Curien, UMR CNRS 5516/Universite Jean Monnet, 18 rue de Professeur Benoit Lauras, 42000 Saint-Etienne (France); Deghiche, D. [Laboratoire de Physique et Chimie Quantique, Universite Mouloud Mammeri de Tizi-ouzou, BP 17 RP, 15000 Tizi-Ouzou (Algeria); Lamrous, O., E-mail: omarlamrous@mail.ummto.dz [Laboratoire de Physique et Chimie Quantique, Universite Mouloud Mammeri de Tizi-ouzou, BP 17 RP, 15000 Tizi-Ouzou (Algeria)

    2012-01-15

    We employ the particle-in-cell method to simulate the mechanisms of femtosecond (fs) laser interactions with a metallic target. The theoretical approach considers the solid as a gas of free electrons in a lattice of immobile ions and the laser fluences close to the ablation threshold. At first moments of the interaction, our simulations mapped out different nanostructures. We carefully characterized the rippling phase and found that its morphology is dependent on the distribution of the electron density and the period of the ripples depends on the laser intensity. The simulation method provides new insights into the mechanisms that are responsible for surface grating formation.

  15. Gel Formation in Polymers Undergoing Radiation-Induced Crosslinking and Scission

    DEFF Research Database (Denmark)

    Handlos, V. N.; Singer, Klaus Albert Julius

    1976-01-01

    A study was made of the solubility of irradiated polyethylene. The experimental data were treated according to the Saito-Inokuti theory for gel formation in polymers exposed to ionizing radiation. Among other things, this theory is based upon the molecular weight distribution of the unirradiated...... polymer; in the present work, the actual distributions were determined by high-temperature gel permeation chromatography and corrected for long-chain branching. Under these circumstances, good agreement between theory and experimental data was obtained, which allowed the determination of the radiation...

  16. Radiation-induced formation of 8-hydroxy-2'-deoxyguanosine and its prevention by scavengers

    DEFF Research Database (Denmark)

    Fischer-Nielsen, A; Jeding, I B; Loft, S

    1994-01-01

    measured 8-OHdG formation in calf thymus DNA exposed to ionizing radiation under conditions generating either hydroxyl radicals (OH.), superoxide anions (O2-) or both. Additionally, we investigated the relationship between the scavenger effect of the drug 5-aminosalicylic acid (5-ASA) and increasing OH...... and 100 Gy radiation, i.e. within a wide range of OH. exposure, which is useful information considering clinical applications where the exact amount of ROS formed is unknown. Both 5-ASA and ascorbate at low concentrations (

  17. [Ultrasound induced the formation of nitric oxide and nitrosonium ions in water and aqueous solutions].

    Science.gov (United States)

    Stepuro, I I; Adamchuk, R I; Stepuro, V I

    2004-01-01

    Nitric oxide, nitrosonium ions, nitrites, and nitrates are formed in water saturated with air under the action of ultrasound. Nitrosonium ions react with water and hydrogen peroxide to form nitrites and nitrates in sonicated solution, correspondingly. Nitric oxide is practically completely released from sonicated water into the atmosphere and reacts with air oxygen, forming NOx compounds. The oxidation of nitric oxide in aqueous medium by hydroxyl radicals and dissolved oxygen is a minor route of the formation of nitrites and nitrates in ultrasonic field.

  18. Charge-exchange-induced formation of hollow atoms in high-intensity laser-produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rosmej, F.B. [TU-Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); Faenov, A.Ya.; Pikuz, T.A.; Magunov, A.I.; Skobelev, I.Yu. [Multicharged Ions Spectra Data Center of VNIIFTRI, Mendeleevo (Russian Federation); Auguste, T.; D' Oliveira, P.; Hulin, S.; Monot, P. [Commissariat a lEnergie Atomique DSM/DRECAM/SPAM, Gif-Sur-Yvette Cedex (France); Andreev, N.E.; Chegotov, M.V.; Veisman, M.E. [High Energy Density Research Centre, Institute of High Temperatures of Russian Academy of Sciences, Moscow (Russian Federation)

    1999-03-14

    For the first time registration of high-resolution soft x-ray emission and atomic data calculations of hollow-atom dielectronic satellite spectra of highly charged nitrogen have been performed. Double-electron charge-exchange processes from excited states are proposed for the formation of autoionizing levels nln'l' in high-intensity laser-produced plasmas, when field-ionized ions penetrate into the residual gas. Good agreement is found between theory and experiment. Plasma spectroscopy with hollow ions is proposed and a temperature diagnostic for laser-produced plasmas in the long-lasting recombining regime is developed. (author). Letter-to-the-editor.

  19. Effect of homogenisation in formation of thermally induced aggregates in a non- and low- fat milk model system with microparticulated whey proteins

    DEFF Research Database (Denmark)

    Celigueta Torres, Isabel; Nieto, Gema; Nylander, Tommy

    2017-01-01

    in the formation of protein aggregates were studied by polyacrylamide gel electrophoresis and the final complexes visualised by darkfield microscopy. Homogenisation of non-fat milk systems led to partial adsorption of caseins onto microparticles, independently of the type of microparticle. On the contrary...... are responsible for the formation of heat-induced aggregates that influence the texture and sensory characteristics of the final product. The formation of heat-induced complexes was studied in non- and low-fat milk model systems, where microparticulated whey protein (MWP) was used as fat replacer. Five MWP types......, homogenisation of low-fat milk resulted in preferential adsorption of caseins onto fat globules, rather than onto microparticles. Further heating of the milk, led to the formation of heat induced complexes with different sizes and characteristics depending on the type of MWP and the presence or not of fat...

  20. PEG and mPEG-anthracene induce DNA condensation and particle formation.

    Science.gov (United States)

    Froehlich, E; Mandeville, J S; Arnold, D; Kreplak, L; Tajmir-Riahi, H A

    2011-08-18

    In this study, we investigated the binding of DNA with poly(ethylene glycol) (PEG) of different sizes and compositions such as PEG 3350, PEG 6000, and mPEG-anthracene in aqueous solution at physiological conditions. The effects of size and composition on DNA aggregation and condensation as well as conformation were determined using Fourier transform infrared (FTIR), UV-visible, CD, fluorescence spectroscopic methods and atomic force microscopy (AFM). Structural analysis showed moderate complex formation for PEG 3350 and PEG 6000 and weaker interaction for mPE-anthracene-DNA adducts with both hydrophilic and hydrophobic contacts. The order of ± stability of the complexes formed is K(PEG 6000) = 1.5 (±0.4) × 10(4) M(-1) > K(PEG 3350) = 7.9 (±1) × 10(3) M(-1) > K(m(PEG-anthracene))= 3.6 (±0.8) × 10(3) M(-1) with nearly 1 bound PEG molecule per DNA. No B-DNA conformational changes were observed, while DNA condensation and particle formation occurred at high PEG concentration.

  1. Ionic strength-induced formation of smectite quasicrystals enhances nitroaromatic compound sorption.

    Science.gov (United States)

    Li, Hui; Pereira, Tanya R; Teppen, Brian J; Laird, David A; Johnston, Cliff T; Boyd, Stephen A

    2007-02-15

    Sorption of organic contaminants by soils is a determinant controlling their transport and fate in the environment. The influence of ionic strength on nitroaromatic compound sorption by K+- and Ca2+ -saturated smectite was examined. Sorption of 1,3-dinitrobenzene by K-smectite increased as KCl ionic strength increased from 0.01 to 0.30 M. In contrast, sorption by Ca-smectite at CaCl2 ionic strengths of 0.015 and 0.15 M remained essentially the same. The "salting-out" effect on the decrease of 1,3-dinitrobenzene aqueous solubility within this ionic strength range was smectite with increasing KCl ionic strength. X-ray diffraction patterns and light absorbance of K-clay suspensions indicated the aggregation of clay particles and the formation of quasicrystal structures as KCI ionic strength increased. Sorption enhancement is attributed to the formation of better-ordered K-clay quasicrystals with reduced interlayer distances rather than to the salting-out effect. Dehydration of 1,3-dinitrobenzene is apparently a significant driving force for sorption, and we show for the first time that sorption of small, planar, neutral organic molecules, namely, 1,3-dinitrobenzene, causes previously expanded clay interlayers to dehydrate and collapse in aqueous suspension.

  2. GISAXS modelling of helium-induced nano-bubble formation in tungsten and comparison with TEM

    Science.gov (United States)

    Thompson, Matt; Sakamoto, Ryuichi; Bernard, Elodie; Kirby, Nigel; Kluth, Patrick; Riley, Daniel; Corr, Cormac

    2016-05-01

    Grazing-incidence small angle x-ray scattering (GISAXS) is a powerful non-destructive technique for the measurement of nano-bubble formation in tungsten under helium plasma exposure. Here, we present a comparative study between transmission electron microscopy (TEM) and GISAXS measurements of nano-bubble formation in tungsten exposed to helium plasma in the Large Helical Device (LHD) fusion experiment. Both techniques are in excellent agreement, suggesting that nano-bubbles range from spheroidal to ellipsoidal, displaying exponential diameter distributions with mean diameters μ=0.68 ± 0.04 nm and μ=0.6 ± 0.1 nm measured by TEM and GISAXS respectively. Depth distributions were also computed, with calculated exponential depth distributions with mean depths of 8.4 ± 0.5 nm and 9.1 ± 0.4 nm for TEM and GISAXS. In GISAXS modelling, spheroidal particles were fitted with an aspect ratio ε=0.7 ± 0.1. The GISAXS model used is described in detail.

  3. Acute fish liver intoxication induced blisters formation and generalized skin peeling.

    Science.gov (United States)

    Chang, Chih-Hao; Lu, Chun-Wei; Chung, Wen-Hung; Ho, Hsin-Chun

    2018-02-01

    Acute fish liver intoxication, including hypervitaminosis A and hypervitaminosis D, may result from the ingestion of certain fish livers. The typical symptoms of hypervitaminosis A include nausea, headache, blurred vision, and cutaneous manifestations, such as flushing, vesicles formation, and desquamation. Hypervitaminosis D may result in hypercalcemia. We report a case of acute fish liver intoxication with systemic and cutaneous manifestations. A 63-year-old male presented to the clinic with generalized desquamation and multiple clear-fluid filled flaccid vesicles after eating approximately two fist-sized portions (about 300-400 g) of cooked seerfish (Scomberomorus spp.) liver. Laboratory examination showed a high serum level of vitamin A and D, and hypercalcemia. Fish liver consumption from particular fish may result in acute hypervitaminosis A and D. In patients with skin detachment or blister formation, headache, drowsiness, and other symptoms and signs consistent with hypervitaminosis A and/or hypercalcemia, a history of fish intake should be sought, and a serum level of vitamin A and D should be measured.

  4. Compound danshen tablet ameliorated aβ25-35-induced spatial memory impairment in mice via rescuing imbalance between cytokines and neurotrophins.

    Science.gov (United States)

    Teng, Yan; Zhang, Meng-Qi; Wang, Wen; Liu, Li-Tao; Zhou, Li-Ming; Miao, Shi-Kun; Wan, Li-Hong

    2014-01-14

    Compound Danshen Tablet (CDT), a Traditional Chinese Medicine, has recently been reported to improve spatial cognition in a rat model of Alzheimer's disease. However, in vivo neuroprotective mechanism of the CDT in models of spatial memory impairment is not yet evaluated. The present study is aimed to elucidate the cellular mechanism of CDT on Aβ25-35-induced cognitive impairment in mice. Mice were randomly divided into 5 groups: the control group (sham operated), the Aβ25-35 treated group, the positive drug group, and large and small dosage of the CDT groups, respectively. CDT was administered at a dose of 0.81 g/kg and 0.405 g/kg for 3 weeks. The mice in the positive drug group were treated with 0.4 mg/kg of Huperzine A, whereas the mice of the control and Aβ25-35 treated groups were administrated orally with equivalent saline. After 7 days of preventive treatment, mice were subjected to lateral ventricle injection of Aβ25-35 to establish the mice model of Alzheimer's disease. Spatial memory impairment was evaluated by Morris water maze test. Choline acetyltransferase (ChAT) contents in hippocampus and cortex were quantified by ELISA. The levels of cytokines, receptor of activated protein kinase C1 (RACK1) and brain-derived neurotrophic factor (BDNF) in hippocampus were measured by RT-PCR and ELISA. The results showed that Aβ25-35 caused spatial memory impairment as demonstrated by performance in the Morris water maze test. CDT was able to confer a significant improvement in spatial memory, and protect mice from Aβ25-35-induced neurotoxicity. Additionally, CDT also inhibited the increase of TNF-α and IL-6 level, and increased the expression of choline acetyltransferase (ChAT), receptor of activated protein kinase C1 (RACK1) and brain-derived neurotrophic factor (BDNF) in brain as compared to model mice. These findings strongly implicate that CDT may be a useful treatment against learning and memory deficits in mice by rescuing imbalance between cytokines

  5. Development of a prototype chest digital tomosynthesis (CDT) R/F system with fast image reconstruction using graphics processing unit (GPU) programming

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sunghoon, E-mail: choi.sh@yonsei.ac.kr [Department of Radiological Science, College of Health Science, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 220-710 (Korea, Republic of); Lee, Seungwan [Department of Radiological Science, College of Medical Science, Konyang University, 158 Gwanjeodong-ro, Daejeon, 308-812 (Korea, Republic of); Lee, Haenghwa [Department of Radiological Science, College of Health Science, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 220-710 (Korea, Republic of); Lee, Donghoon; Choi, Seungyeon [Department of Radiation Convergence Engineering, College of Health Science, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 220-710 (Korea, Republic of); Shin, Jungwook [LISTEM Corporation, 94 Donghwagongdan-ro, Munmak-eup, Wonju (Korea, Republic of); Seo, Chang-Woo [Department of Radiological Science, College of Health Science, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 220-710 (Korea, Republic of); Kim, Hee-Joung, E-mail: hjk1@yonsei.ac.kr [Department of Radiological Science, College of Health Science, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 220-710 (Korea, Republic of); Department of Radiation Convergence Engineering, College of Health Science, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do 220-710 (Korea, Republic of)

    2017-03-11

    Digital tomosynthesis offers the advantage of low radiation doses compared to conventional computed tomography (CT) by utilizing small numbers of projections (~80) acquired over a limited angular range. It produces 3D volumetric data, although there are artifacts due to incomplete sampling. Based upon these characteristics, we developed a prototype digital tomosynthesis R/F system for applications in chest imaging. Our prototype chest digital tomosynthesis (CDT) R/F system contains an X-ray tube with high power R/F pulse generator, flat-panel detector, R/F table, electromechanical radiographic subsystems including a precise motor controller, and a reconstruction server. For image reconstruction, users select between analytic and iterative reconstruction methods. Our reconstructed images of Catphan700 and LUNGMAN phantoms clearly and rapidly described the internal structures of phantoms using graphics processing unit (GPU) programming. Contrast-to-noise ratio (CNR) values of the CTP682 module of Catphan700 were higher in images using a simultaneous algebraic reconstruction technique (SART) than in those using filtered back-projection (FBP) for all materials by factors of 2.60, 3.78, 5.50, 2.30, 3.70, and 2.52 for air, lung foam, low density polyethylene (LDPE), Delrin{sup ®} (acetal homopolymer resin), bone 50% (hydroxyapatite), and Teflon, respectively. Total elapsed times for producing 3D volume were 2.92 s and 86.29 s on average for FBP and SART (20 iterations), respectively. The times required for reconstruction were clinically feasible. Moreover, the total radiation dose from our system (5.68 mGy) was lower than that of conventional chest CT scan. Consequently, our prototype tomosynthesis R/F system represents an important advance in digital tomosynthesis applications.

  6. Deep levels induced by low energy B+ implantation into Ge-preamorphised silicon in correlation with end of range formation

    International Nuclear Information System (INIS)

    Benzohra, Mohamed; Olivie, Francois; Idrissi-Benzohra, Malika; Ketata, Kaouther; Ketata, Mohamed

    2002-01-01

    It is well established that low energy B + ion implantation into Ge- (or Si) implantation pre-amorphised silicon allows ultra-shallow p + n junctions formation. However, this process is known to generate defects such as dislocation loops, vacancies and interstitials which can act as vehicles to different mechanisms inducing electrically active levels into the silicon bulk. The junctions studied have been obtained using 3 keV/10 15 cm -2 B + implantation into Ge-implantation pre-amorphised substrates and into a reference crystalline substrate. Accurate measurements using deep level transient spectroscopy (DLTS) and isothermal transient capacitance ΔC(t,T) were performed to characterise these levels. Such knowledge is crucial to improve the device characteristics. In order to sweep the silicon band gap, various experimental conditions were considered. The analysis of DLTS spectra have first showed three deep levels associated to secondary induced defects. Their concentration profiles were derived from isothermal transient capacitance at depths up to 3.5 μm into the silicon bulk and allowed us to detect a new deep level. The evolution of such defect distribution in correlation with the technological steps is discussed. The end of range (EOR) defect influence on electrical activity of secondary induced defects in ultra-shallow p + n diodes is clearly demonstrated

  7. The Genetic Basis of Constitutive and Herbivore-Induced ESP-Independent Nitrile Formation in Arabidopsis1[W][OA

    Science.gov (United States)

    Burow, Meike; Losansky, Anja; Müller, René; Plock, Antje; Kliebenstein, Daniel J.; Wittstock, Ute

    2009-01-01

    Glucosinolates are a group of thioglucosides that are components of an activated chemical defense found in the Brassicales. Plant tissue damage results in hydrolysis of glucosinolates by endogenous thioglucosidases known as myrosinases. Spontaneous rearrangement of the aglucone yields reactive isothiocyanates that are toxic to many organisms. In the presence of specifier proteins, alternative products, namely epithionitriles, simple nitriles, and thiocyanates with different biological activities, are formed at the expense of isothiocyanates. Recently, simple nitriles were recognized to serve distinct functions in plant-insect interactions. Here, we show that simple nitrile formation in Arabidopsis (Arabidopsis thaliana) ecotype Columbia-0 rosette leaves increases in response to herbivory and that this increase is independent of the known epithiospecifier protein (ESP). We combined phylogenetic analysis, a screen of Arabidopsis mutants, recombinant protein characterization, and expression quantitative trait locus mapping to identify a gene encoding a nitrile-specifier protein (NSP) responsible for constitutive and herbivore-induced simple nitrile formation in Columbia-0 rosette leaves. AtNSP1 is one of five Arabidopsis ESP homologues that promote simple nitrile, but not epithionitrile or thiocyanate, formation. Four of these homologues possess one or two lectin-like jacalin domains, which share a common ancestry with the jacalin domains of the putative Arabidopsis myrosinase-binding proteins MBP1 and MBP2. A sixth ESP homologue lacked specifier activity and likely represents the ancestor of the gene family with a different biochemical function. By illuminating the genetic and biochemical bases of simple nitrile formation, our study provides new insights into the evolution of metabolic diversity in a complex plant defense system. PMID:18987211

  8. Outer capsid proteins induce the formation of pores in epithelial cells

    International Nuclear Information System (INIS)

    Ruiz, M; Abad M; Michelangely, F; Charpilienne, A; Cohen, J

    1995-01-01

    Two mechanisms of entrance in cell of the rotavirus, during the infection, were proposed: a direct entrance through the plasmatic membrane or by means of endocytosis. In the two cases, a permeabilization mechanism of the membrane (cellular or of the endocytic vesicle, respectively) should occur. It has been shown that the rotavirus induces permeabilization of liposomes and of membrane vesicles. In this work, are studied the changes of intact cells permeability, measuring the entrance of e tide bromides. Viral particles of double capsid of the RF stump produce an increase of the cells membrane MA104 permeability, while the simple capsid ones don't induce effect. This phenomenon requires the particles trypsinization, and occurs in a means where the concentration of free Ca is lower to 1 micromolar. The temporary course of the fluorescence increase is sigmoid. The latency, the speed and the width depend on the relationship of virus / cell, and it can be observed up to 100% of permeabilization in relation to the effect of digitonin. The pores induced in the membrane by the rotavirus are irreversible. The permeabilizer effect of the rotavirus on the membrane was observed in other cellular lines as Hela and HT29, but not in the L929 ones. These results suggest that one or more proteins of the external capsid are responsible s of the effect. These could be involved in the penetration process of the virus towards the cytoplasm and could be one of the restrictive factor of the cell infection by means of the virus [es

  9. Participation of oxygen and carbon in formation of oxidation-induced stacking faults in monocrystalline silicon

    Directory of Open Access Journals (Sweden)

    Иван Федорович Червоный

    2015-11-01

    Full Text Available It is experimentally established, that density of oxidation-induced stacking faults (OISF in the boron doped monocrystalline silicon plates, that above, than it is more relation of oxygen atoms concentration to carbon atoms concentration in them.On research results of geometry of OISF rings in the different sections of single-crystal geometry of areas is reconstructed with their different closeness. At adjustment of the growing modes of single-crystals of silicon the increase of output of suitable product is observed

  10. NF-kB activity-dependent P-selectin involved in ox-LDL-induced foam cell formation in U937 cell

    International Nuclear Information System (INIS)

    Wang, Yi; Wang, Xiang; Sun, Minghui; Zhang, Zhenyu; Cao, Heng; Chen, Xiaoqing

    2011-01-01

    Highlights: → Ox-LDL induced foam cell formation in the human U937 promonocytic cell line in a dose- and time-dependent manner. → Ox-LDL induced expression of P-selectin through degradation of IkBa and augment of NF-kB activity and protein level during macrophage-derived foam cell formation. → P-selectin and NF-kB may be identified as pivotal regulators of ox-LDL-induced foam cell formation. → Therapy based on the inhibition of P-selectin and NF-kB may complement conventional treatments to prevent atherosclerosis. -- Abstract: Oxidized low-density lipoprotein (ox-LDL) plays a critical role in regulation of atherosclerosis. However, little is known about the role of Nuclear factor kB (NF-kB) activity-dependent P-selectin in ox-LDL-induced foam cell formation during atherosclerosis. In this study, we first investigated ox-LDL induced foam cell formation in the human U937 promonocytic cell line in a dose- and time-dependent manner. Treatment of U937 cells with ox-LDL increased lipid accumulation as well as intracellular cholesterol content. Next, a comparative analysis of gene expression profiling using cDNA microarray and Real-time-PCR indicated that ox-LDL exposure induced, in three treated groups, an extremely marked increase in the mRNA level of P-selectin. Protein levels of P-selectin and its upstream regulators IkBa and NF-kB showed that NF-kB pathway is involved in the ox-LDL-induced foam cell formation. Finally, overexpression of NF-kB significantly accelerated, whereas, inhibition of NF-kB with siRNA remarkably attenuated ox-LDL-induced macrophage-derived foam cell formation. It was concluded that the activity of NF-kB is augmented during macrophage-derived foam cell formation. Activation of NF-kB increased, whereas, inhibition of NF-kB decreased ox-LDL-induced P-selectin expression and lipid accumulation in macrophages, suggesting ox-LDL induced expression of P-selectin through degradation of IkBa and activation of NF-kB in the regulation of foam

  11. NF-kB activity-dependent P-selectin involved in ox-LDL-induced foam cell formation in U937 cell

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi, E-mail: wangyi2004a@126.com [Department of Cardiology, Shanghai First People' s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080 (China); Wang, Xiang; Sun, Minghui; Zhang, Zhenyu; Cao, Heng; Chen, Xiaoqing [Department of Cardiology, Shanghai First People' s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080 (China)

    2011-08-05

    Highlights: {yields} Ox-LDL induced foam cell formation in the human U937 promonocytic cell line in a dose- and time-dependent manner. {yields} Ox-LDL induced expression of P-selectin through degradation of IkBa and augment of NF-kB activity and protein level during macrophage-derived foam cell formation. {yields} P-selectin and NF-kB may be identified as pivotal regulators of ox-LDL-induced foam cell formation. {yields} Therapy based on the inhibition of P-selectin and NF-kB may complement conventional treatments to prevent atherosclerosis. -- Abstract: Oxidized low-density lipoprotein (ox-LDL) plays a critical role in regulation of atherosclerosis. However, little is known about the role of Nuclear factor kB (NF-kB) activity-dependent P-selectin in ox-LDL-induced foam cell formation during atherosclerosis. In this study, we first investigated ox-LDL induced foam cell formation in the human U937 promonocytic cell line in a dose- and time-dependent manner. Treatment of U937 cells with ox-LDL increased lipid accumulation as well as intracellular cholesterol content. Next, a comparative analysis of gene expression profiling using cDNA microarray and Real-time-PCR indicated that ox-LDL exposure induced, in three treated groups, an extremely marked increase in the mRNA level of P-selectin. Protein levels of P-selectin and its upstream regulators IkBa and NF-kB showed that NF-kB pathway is involved in the ox-LDL-induced foam cell formation. Finally, overexpression of NF-kB significantly accelerated, whereas, inhibition of NF-kB with siRNA remarkably attenuated ox-LDL-induced macrophage-derived foam cell formation. It was concluded that the activity of NF-kB is augmented during macrophage-derived foam cell formation. Activation of NF-kB increased, whereas, inhibition of NF-kB decreased ox-LDL-induced P-selectin expression and lipid accumulation in macrophages, suggesting ox-LDL induced expression of P-selectin through degradation of IkBa and activation of NF-kB in the

  12. Effects of the background environment on formation, evolution and emission spectra of laser-induced plasmas

    International Nuclear Information System (INIS)

    De Giacomo, A.; Dell'Aglio, M.; Gaudiuso, R.; Amoruso, S.; De Pascale, O.

    2012-01-01

    In this paper the most important features of Laser Induced Plasma (LIP) evolution were analyzed from the fundamental point of view, in order to point out the effects of background environment on the plasma emission spectra. In particular, the main differences between air and vacuum Laser-Induced Breakdown (LIBS) are discussed, as well as those arising in high-pressure gases and in liquid environment. As can be expected, the dynamics of the plasma is strongly dependent on the environment where the plasma itself expands, which can be exploited for several different applications, ranging from chemical analysis and process diagnostics to materials science. The effect of other experimental conditions, such as the state of aggregation of the irradiated target, and the effect of laser pulse duration are also briefly reviewed. - Highlights: ► General processes involved in laser ablation and plasma generation were reported. ► Effect of number density in the plasma on the spectra features was discussed. ► LIP in gases at different pressures, in liquids and in DP techniques was discussed. ► LIBS spectra in various environments and correlated applications were discussed.

  13. Anaerobic bacteria grow within Candida albicans biofilms and induce biofilm formation in suspension cultures.

    Science.gov (United States)

    Fox, Emily P; Cowley, Elise S; Nobile, Clarissa J; Hartooni, Nairi; Newman, Dianne K; Johnson, Alexander D

    2014-10-20

    The human microbiome contains diverse microorganisms, which share and compete for the same environmental niches. A major microbial growth form in the human body is the biofilm state, where tightly packed bacterial, archaeal, and fungal cells must cooperate and/or compete for resources in order to survive. We examined mixed biofilms composed of the major fungal species of the gut microbiome, Candida albicans, and each of five prevalent bacterial gastrointestinal inhabitants: Bacteroides fragilis, Clostridium perfringens, Escherichia coli, Klebsiella pneumoniae, and Enterococcus faecalis. We observed that biofilms formed by C. albicans provide a hypoxic microenvironment that supports the growth of two anaerobic bacteria, even when cultured in ambient oxic conditions that are normally toxic to the bacteria. We also found that coculture with bacteria in biofilms induces massive gene expression changes in C. albicans, including upregulation of WOR1, which encodes a transcription regulator that controls a phenotypic switch in C. albicans, from the "white" cell type to the "opaque" cell type. Finally, we observed that in suspension cultures, C. perfringens induces aggregation of C. albicans into "mini-biofilms," which allow C. perfringens cells to survive in a normally toxic environment. This work indicates that bacteria and C. albicans interactions modulate the local chemistry of their environment in multiple ways to create niches favorable to their growth and survival. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Laser-induced hydrodynamic instability and pattern formation in metallic nanofilms

    Science.gov (United States)

    Sureshkumar, R.; Trice, J.; Favazza, C.; Kalyanaraman, R.

    2007-11-01

    Cost effective methodologies for the robust generation of nanoscale patterns in thin films and at interfaces are crucial in photonic, opto-electronic and solar energy harvesting applications. When ultrathin metal films are exposed to a series of short (ns) laser pulses, spontaneous pattern formation results with spatio-temporal scales that depend on the film height and thermo-physical properties of the film/substrate bilayer. Various self-organization mechanisms have been identified, including a dewetting instability due to a competition between surface tension and dispersion forces, and intrinsic and/or extrinsic thermocapillary effects. We will discuss these mechanisms as well as the evolution of surface perturbations which have been explored using experiments, linear stability analysis and nonlinear dynamical simulations (Trice et al. Phys. Rev. B, 75, 235439 (2007); Favazza et al. Appl. Phys. Lett., 91, 043105 (2007); 88, 153118 (2006)).

  15. Surface crack formation on rails at grinding induced martensite white etching layers

    DEFF Research Database (Denmark)

    Rasmussen, Carsten Jørn; Fæster, Søren; Dhar, Somrita

    2017-01-01

    The connection between profile grinding of rails, martensite surface layers and crack initiation has been investigated using visual inspection, optical microscopy and 3D X-ray computerized tomography. Newly grinded rails were extracted and found to be covered by a continuous surface layer...... of martensite with varying thickness formed by the grinding process. Worn R350HT and R200 rails were extracted from the Danish rail network as they had transverse bands resembling grinding marks on the running surface. The transverse bands were shown to consist of martensite which had extensive crack formation...... at the martensite/pearlite interface. The cracks in R350HT propagated down into the rail while those in the soft R200 returned to the surface causing only very small shallow spallation. The transverse bands had the same shape, size, orientation, location and periodicity which would be expected from grinding marks...

  16. Dichotomous-noise-induced pattern formation in a reaction-diffusion system

    Science.gov (United States)

    Das, Debojyoti; Ray, Deb Shankar

    2013-06-01

    We consider a generic reaction-diffusion system in which one of the parameters is subjected to dichotomous noise by controlling the flow of one of the reacting species in a continuous-flow-stirred-tank reactor (CSTR) -membrane reactor. The linear stability analysis in an extended phase space is carried out by invoking Furutzu-Novikov procedure for exponentially correlated multiplicative noise to derive the instability condition in the plane of the noise parameters (correlation time and strength of the noise). We demonstrate that depending on the correlation time an optimal strength of noise governs the self-organization. Our theoretical analysis is corroborated by numerical simulations on pattern formation in a chlorine-dioxide-iodine-malonic acid reaction-diffusion system.

  17. Strain-induced formation of fourfold symmetric SiGe quantum dot molecules.

    Science.gov (United States)

    Zinovyev, V A; Dvurechenskii, A V; Kuchinskaya, P A; Armbrister, V A

    2013-12-27

    The strain field distribution at the surface of a multilayer structure with disklike SiGe nanomounds formed by heteroepitaxy is exploited to arrange the symmetric quantum dot molecules typically consisting of four elongated quantum dots ordered along the [010] and [100] directions. The morphological transition from fourfold quantum dot molecules to continuous fortresslike quantum rings with an increasing amount of deposited Ge is revealed. We examine key mechanisms underlying the formation of lateral quantum dot molecules by using scanning tunneling microscopy and numerical calculations of the strain energy distribution on the top of disklike SiGe nanomounds. Experimental data are well described by a simple thermodynamic model based on the accurate evaluation of the strain dependent part of the surface chemical potential. The spatial arrangement of quantum dots inside molecules is attributed to the effect of elastic property anisotropy.

  18. Bioprinting by laser-induced forward transfer for tissue engineering applications: jet formation modeling

    Energy Technology Data Exchange (ETDEWEB)

    Mezel, C; Hallo, L [Centre Lasers Intenses et Applications, UMR 5107 Universite Bordeaux 1-CNRS-CEA, 33405 Talence, Cedex (France); Souquet, A; Guillemot, F, E-mail: mezel@celia.u-bordeaux1.f [Institut National de la Sante et de la Recherche Medicale, Universite Bordeaux 2 - UMR 577, 146 Rue Leo Saignat, 33076 Bordeaux Cedex (France)

    2010-03-15

    In this paper, a nanosecond LIFT process is analyzed both from experimental and modeling points of view. Experimental results are first presented and compared to simple estimates obtained from physical analysis, i.e. energy balance, jump relations and analytical pocket dynamics. Then a self-consistent 2D axisymmetric modeling strategy is presented. It is shown that data accessible from experiments, i.e. jet diameter and velocity, can be reproduced. Moreover, some specific mechanisms involved in the rear-surface deformation and jet formation may be described by some scales of hydrodynamic process, i.e. shock waves propagation and expansion waves, as a consequence of the laser heating. It shows that the LIFT process is essentially driven by hydrodynamics and thermal transfer, and that a coupled approach including self-consistent laser energy deposition, heating by thermal conduction and specific models for matter is required.

  19. Bioprinting by laser-induced forward transfer for tissue engineering applications: jet formation modeling

    International Nuclear Information System (INIS)

    Mezel, C; Hallo, L; Souquet, A; Guillemot, F

    2010-01-01

    In this paper, a nanosecond LIFT process is analyzed both from experimental and modeling points of view. Experimental results are first presented and compared to simple estimates obtained from physical analysis, i.e. energy balance, jump relations and analytical pocket dynamics. Then a self-consistent 2D axisymmetric modeling strategy is presented. It is shown that data accessible from experiments, i.e. jet diameter and velocity, can be reproduced. Moreover, some specific mechanisms involved in the rear-surface deformation and jet formation may be described by some scales of hydrodynamic process, i.e. shock waves propagation and expansion waves, as a consequence of the laser heating. It shows that the LIFT process is essentially driven by hydrodynamics and thermal transfer, and that a coupled approach including self-consistent laser energy deposition, heating by thermal conduction and specific models for matter is required.

  20. Deuterium-induced nanostructure formation on tungsten exposed to high-flux plasma

    Energy Technology Data Exchange (ETDEWEB)

    Xu, H.Y., E-mail: donaxu@163.com [Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang, Sichuan 621907 (China); De Temmerman, G. [FOM Institute DIFFER, Dutch Institute For Fundamental Energy Research, Ass. EURATOM-FOM, Trilateral Euregio Cluster, Postbus 1207, 3430BE Nieuwegein (Netherlands); ITER Organization, Route de Vinon-sur-Verdon CS 90046-13067, St Paul Lez Durance Cedex (France); Luo, G.-N. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Jia, Y.Z.; Yuan, Y.; Fu, B.Q.; Godfrey, A. [Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Liu, W., E-mail: liuw@mail.tsinghua.edu.cn [Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2015-08-15

    Surface topography of polycrystalline tungsten (W) have been examined after exposure to a low-energy (38 eV/D), high-flux (∼1.1–1.5 × 10{sup 24} m{sup −2} s{sup −1}) deuterium plasma in the Pilot-PSI linear plasma device. The methods used were scanning electron microscopy (SEM), transmission electron microscopy (TEM), positron annihilation Doppler broadening (PADB) and grazing incident X-ray diffraction (GI-XRD). After exposure to high flux D plasma, blisters and nanostructures are formed on the W surface. Generation of defects was evidenced by PADB, while high stress and mixture of phases were detected in depth of 50 nm by GI-XRD. TEM observation revealed fluctuations and disordered microstructure on the outmost surface layer. Based on these results, surface reconstruction is considered as a possible mechanism for the formation of defects and nanostructures.

  1. Bioprinting by laser-induced forward transfer for tissue engineering applications: jet formation modeling.

    Science.gov (United States)

    Mézel, C; Souquet, A; Hallo, L; Guillemot, F

    2010-03-01

    In this paper, a nanosecond LIFT process is analyzed both from experimental and modeling points of view. Experimental results are first presented and compared to simple estimates obtained from physical analysis, i.e. energy balance, jump relations and analytical pocket dynamics. Then a self-consistent 2D axisymmetric modeling strategy is presented. It is shown that data accessible from experiments, i.e. jet diameter and velocity, can be reproduced. Moreover, some specific mechanisms involved in the rear-surface deformation and jet formation may be described by some scales of hydrodynamic process, i.e. shock waves propagation and expansion waves, as a consequence of the laser heating. It shows that the LIFT process is essentially driven by hydrodynamics and thermal transfer, and that a coupled approach including self-consistent laser energy deposition, heating by thermal conduction and specific models for matter is required.

  2. Experimental characterization of plasma formation and shockwave propagation induced by high power pulsed underwater electrical discharge.

    Science.gov (United States)

    Claverie, A; Deroy, J; Boustie, M; Avrillaud, G; Chuvatin, A; Mazanchenko, E; Demol, G; Dramane, B

    2014-06-01

    High power pulsed electrical discharges into liquids are investigated for new industrial applications based on the efficiency of controlled shock waves. We present here new experimental data obtained by combination of detailed high speed imaging equipments. It allows the visualization of the very first instants of plasma discharge formation, and then the pulsations of the gaseous bubble with an accurate timing of events. The time history of the expansion/compression of this bubble leads to an estimation of the energy effectively transferred to water during the discharge. Finally, the consecutive shock generation driven by this pulsating bubble is optically monitored by shadowgraphs and schlieren setup. These data provide essential information about the geometrical pattern and chronometry associated with the shock wave generation and propagation.

  3. Formation of cigarette smoke-induced DNA adducts in the rat lung and nasal mucosa

    International Nuclear Information System (INIS)

    Gupta, R.C.; Sopori, M.L.; Gairola, C.G.

    1989-01-01

    The formation of DNA adducts in the nasal, lung, and liver tissues of rats exposed daily to fresh smoke from a University of Kentucky reference cigarette (2R1) for up to 40 weeks was examined. The amount of smoke total particulate matter (TPM) inhaled and the blood carboxyhemoglobin (COHb) values averaged 5-5.5 mg smoke TPM/day/rat and 5.5%, respectively. The pulmonary AHH activity measured at the termination of each experiment showed an average increase of about two- to threefold in smoke-exposed groups. These observations suggested that animals effectively inhaled both gaseous and particulate phase constituents of cigarette smoke. DNAs from nasal, lung, and liver tissue were extracted and analyzed by an improved 32 P-postlabeling procedure. The data demonstrate the DNA-damaging potential of long term fresh cigarette smoke exposure and suggest the ability of the tissue to partially recover from such damage following cessation of the exposure

  4. Formation of S-type planets in close binaries: scattering induced tidal capture of circumbinary planets

    Science.gov (United States)

    Gong, Yan-Xiang; Ji, Jianghui

    2018-05-01

    Although several S-type and P-type planets in binary systems were discovered in past years, S-type planets have not yet been found in close binaries with an orbital separation not more than 5 au. Recent studies suggest that S-type planets in close binaries may be detected through high-accuracy observations. However, nowadays planet formation theories imply that it is difficult for S-type planets in close binaries systems to form in situ. In this work, we extensively perform numerical simulations to explore scenarios of planet-planet scattering among circumbinary planets and subsequent tidal capture in various binary configurations, to examine whether the mechanism can play a part in producing such kind of planets. Our results show that this mechanism is robust. The maximum capture probability is ˜10%, which can be comparable to the tidal capture probability of hot Jupiters in single star systems. The capture probability is related to binary configurations, where a smaller eccentricity or a low mass ratio of the binary will lead to a larger probability of capture, and vice versa. Furthermore, we find that S-type planets with retrograde orbits can be naturally produced via capture process. These planets on retrograde orbits can help us distinguish in situ formation and post-capture origin for S-type planet in close binaries systems. The forthcoming missions (PLATO) will provide the opportunity and feasibility to detect such planets. Our work provides several suggestions for selecting target binaries in search for S-type planets in the near future.

  5. Shear-Induced Amyloid Formation in the Brain: I. Potential Vascular and Parenchymal Processes.

    Science.gov (United States)

    Trumbore, Conrad N

    2016-09-06

    Shear distortion of amyloid-beta (Aβ) solutions accelerates amyloid cascade reactions that may yield different toxic oligomers than those formed in quiescent solutions. Recent experiments indicate that cerebrospinal fluid (CSF) and interstitial fluid (ISF) containing Aβ flow through narrow brain perivascular pathways and brain parenchyma. This paper suggests that such flow causes shear distortion of Aβ molecules involving conformation changes that may be one of the initiating events in the etiology of Alzheimer's disease. Aβ shearing can occur in or around brain arteries and arterioles and is suggested as the origin of cerebral amyloid angiopathy deposits in cerebrovascular walls. Comparatively low flow rates of ISF within the narrow extracellular spaces (ECS) of the brain parenchyma are suggested as a possible initiating factor in both the formation of neurotoxic Aβ42 oligomers and amyloid fibrils. Aβ42 in slow-flowing ISF can gain significant shear energy at or near the walls of tortuous brain ECS flow paths, promoting the formation of a shear-distorted, excited state hydrophobic Aβ42* conformation. This Aβ42* molecule could possibly be involved in one of two paths, one involving rapid adsorption to a brain membrane surface, ultimately forming neurotoxic oligomers on membranes, and the other ultimately forming plaque within the ECS flow pathways. Rising Aβ concentrations combined with shear at or near critical brain membranes are proposed as contributing factors to Alzheimer's disease neurotoxicity. These hypotheses may be applicable in other neurodegenerative diseases, including tauopathies and alpha-synucleinopathies, in which shear-distorted proteins also may form in the brain ECS.

  6. Cadmium-induced formation of multinucleated osteoclast-like cells in vitro

    International Nuclear Information System (INIS)

    Konz, R.P.; Choi, T.T.; Seed, T.M.

    1990-01-01

    Mononuclear, progenitor-enriched bone marrow cells fuse into multinucleated osteoclast-like (MN-OS) cells during 10 to 20 days of culture. As cadmium (Cd) exposure has been linked to increased bone resorption, we asked if Cd would increase (1) MN-OS cell formation and (2) 45 Ca release from bone, when marrow cells were cultured in the presence of 45 Ca-prelabeled dog femur slices. Results show that, on day 21, the percentage of MN-OS cells (≥3 nuclei/cell) was 1.4 ± 0.1% (mean ± SE, n=4) for control cultures (medium + bone slice + cells), 3.6 ± 0.1% for cultures with 10 nM parathyroid hormone (PTH) added, and 7.1 ± 1.5% with 10 nM Cd added. Starting on day 10, we found MN-OS cells with centrally located nuclei, a clear zone, and ruffled borders typical of activated osteoclasts; these activated cells appeared almost exclusively in the +Cd and +PTH cultures. During 21 days, 256 ± 9 CPM 45 Ca was released per well from the bone slices in cultures with cells, compared to 209 ± 11 CPM 45 Ca was released in cultures without cells (mean ± SE, n=16). However, neither Cd nor PTH significantly increased the cell-mediated release of 45 Ca. Thus, both Cd and PTH at 10 nM stimulated the formation of MN-OS cells; however, another factor may have been required to cause MN-OS cells of resorb bone

  7. Preventive effect of chemical peeling on ultraviolet induced skin tumor formation.

    Science.gov (United States)

    Abdel-Daim, Mohamed; Funasaka, Yoko; Kamo, Tsuneyoshi; Ooe, Masahiko; Matsunaka, Hiroshi; Yanagita, Emmy; Itoh, Tomoo; Nishigori, Chikako

    2010-10-01

    Chemical peeling is one of the dermatological treatments available for certain cutaneous diseases and conditions or improvement of cosmetic appearance of photoaged skin. We assessed the photochemopreventive effect of several clinically used chemical peeling agents on the ultraviolet (UV)-irradiated skin of hairless mice. Chemical peeling was done using 35% glycolic acid dissolved in distilled water, 30% salicylic acid in ethanol, 10% or 35% trichloroacetic acid (TCA) in distilled water at the right back of UV-irradiated hairless mice every 2 weeks in case of glycolic acid, salicylic acid, and 10% TCA and every 4 weeks in case of 35% TCA for totally 18 weeks after the establishment of photoaged mice by irradiation with UVA+B range light three times a week for 10 weeks at a total dose of 420 J/cm(2) at UVA and 9.6 J/cm(2) at UVB. Tumor formation was assessed every week. Skin specimens were taken from treated and non-treated area for evaluation under microscopy, evaluation of P53 expression, and mRNA expression of cyclooxygenase (COX)-2. Serum level of prostaglandin E(2) was also evaluated. All types of chemical peeling reduced tumor formation in treated mice, mostly in the treated area but also non-treated area. Peeling suppressed clonal retention of p53 positive abnormal cells and reduced mRNA expression of COX-2 in treated skin. Further, serum prostaglandin E(2) level was decreased in chemical peeling treated mice. These results indicate that chemical peeling with glycolic acid, salicylic acid, and TCA could serve tumor prevention by removing photodamaged cells. Copyright © 2010 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Erosive arthritis and hepatic granuloma formation induced by peptidoglycan polysaccharide in rats is aggravated by prasugrel treatment.

    Science.gov (United States)

    Garcia, Analia E; Rico, Mario C; Liverani, Elisabetta; DeLa Cadena, Raul A; Bray, Paul F; Kunapuli, Satya P

    2013-01-01

    Administration of the thienopyridine P2Y12 receptor antagonist, clopidogrel, increased the erosive arthritis induced by peptidoglycan polysaccharide (PG-PS) in rats or by injection of the arthritogenic K/BxN serum in mice. To determine if the detrimental effects are caused exclusively by clopidogrel, we evaluated prasugrel, a third-generation thienopyridine pro-drug, that contrary to clopidogrel is mostly metabolized into its active metabolite in the intestine. Prasugrel effects were examined on the PG-PS-induced arthritis rat model. Erosive arthritis was induced in Lewis rats followed by treatment with prasugrel for 21 days. Prasugrel treated arthritic animals showed a significant increase in the inflammatory response, compared with untreated arthritic rats, in terms of augmented macroscopic joint diameter associated with significant signs of inflammation, histomorphometric measurements of the hind joints and elevated platelet number. Moreover, fibrosis at the pannus, assessed by immunofluorescence of connective tissue growth factor, was increased in arthritic rats treated with prasugrel. In addition to the arthritic manifestations, hepatomegaly, liver granulomas and giant cell formation were observed after PG-PS induction and even more after prasugrel exposure. Cytokine plasma levels of IL-1 beta, IL-6, MIP1 alpha, MCP1, IL-17 and RANTES were increased in arthritis-induced animals. IL-10 plasma levels were significantly decreased in animals treated with prasugrel. Overall, prasugrel enhances inflammation in joints and liver of this animal model. Since prasugrel metabolites inhibit neutrophil function ex-vivo and the effects of both clopidogrel and prasugrel metabolites on platelets are identical, we conclude that the thienopyridines metabolites might exert non-platelet effects on other immune cells to aggravate inflammation.

  9. Erosive arthritis and hepatic granuloma formation induced by peptidoglycan polysaccharide in rats is aggravated by prasugrel treatment.

    Directory of Open Access Journals (Sweden)

    Analia E Garcia

    Full Text Available Administration of the thienopyridine P2Y12 receptor antagonist, clopidogrel, increased the erosive arthritis induced by peptidoglycan polysaccharide (PG-PS in rats or by injection of the arthritogenic K/BxN serum in mice. To determine if the detrimental effects are caused exclusively by clopidogrel, we evaluated prasugrel, a third-generation thienopyridine pro-drug, that contrary to clopidogrel is mostly metabolized into its active metabolite in the intestine. Prasugrel effects were examined on the PG-PS-induced arthritis rat model. Erosive arthritis was induced in Lewis rats followed by treatment with prasugrel for 21 days. Prasugrel treated arthritic animals showed a significant increase in the inflammatory response, compared with untreated arthritic rats, in terms of augmented macroscopic joint diameter associated with significant signs of inflammation, histomorphometric measurements of the hind joints and elevated platelet number. Moreover, fibrosis at the pannus, assessed by immunofluorescence of connective tissue growth factor, was increased in arthritic rats treated with prasugrel. In addition to the arthritic manifestations, hepatomegaly, liver granulomas and giant cell formation were observed after PG-PS induction and even more after prasugrel exposure. Cytokine plasma levels of IL-1 beta, IL-6, MIP1 alpha, MCP1, IL-17 and RANTES were increased in arthritis-induced animals. IL-10 plasma levels were significantly decreased in animals treated with prasugrel. Overall, prasugrel enhances inflammation in joints and liver of this animal model. Since prasugrel metabolites inhibit neutrophil function ex-vivo and the effects of both clopidogrel and prasugrel metabolites on platelets are identical, we conclude that the thienopyridines metabolites might exert non-platelet effects on other immune cells to aggravate inflammation.

  10. Targeting Germinal Matrix Hemorrhage-Induced Overexpression of Sodium-Coupled Bicarbonate Exchanger Reduces Posthemorrhagic Hydrocephalus Formation in Neonatal Rats.

    Science.gov (United States)

    Li, Qian; Ding, Yan; Krafft, Paul; Wan, Weifeng; Yan, Feng; Wu, Guangyong; Zhang, Yixin; Zhan, Qunling; Zhang, John H

    2018-01-31

    Germinal matrix hemorrhage (GMH) is a leading cause of mortality and lifelong morbidity in preterm infants. Posthemorrhagic hydrocephalus (PHH) is a common complication of GMH. A sodium-coupled bicarbonate exchanger (NCBE) encoded by solute carrier family 4 member 10 gene is expressed on the choroid plexus basolateral membrane and may play a role in cerebrospinal fluid production and the development of PHH. Following GMH, iron degraded from hemoglobin has been linked to PHH. Choroid plexus epithelial cells also contain iron-responsive element-binding proteins (IRPs), IRP1, and IRP2 that bind to mRNA iron-responsive elements. The present study aims to resolve the following issues: (1) whether the expression of NCBE is regulated by IRPs; (2) whether NCBE regulates the formation of GMH-induced hydrocephalus; and (3) whether inhibition of NCBE reduces PHH development. GMH model was established in P7 rat pups by injecting bacterial collagenase into the right ganglionic eminence. Another group received iron trichloride injections instead of collagenase. Deferoxamine was administered intraperitoneally for 3 consecutive days after GMH/iron trichloride. Solute carrier family 4 member 10 small interfering RNA or scrambled small interfering RNA was administered by intracerebroventricular injection 24 hours before GMH and followed with an injection every 7 days over 21 days. NCBE expression increased while IRP2 expression decreased after GMH/iron trichloride. Deferoxamine ameliorated both the GMH-induced and iron trichloride-induced decrease of IRP2 and decreased NCBE expressions. Deferoxamine and solute carrier family 4 member 10 small interfering RNA improved cognitive and motor functions at 21 to 28 days post GMH and reduced cerebrospinal fluid production as well as the degree of hydrocephalus at 28 days after GMH. Targeting iron-induced overexpression of NCBE may be a translatable therapeutic strategy for the treatment of PHH following GMH. © 2018 The Authors

  11. Cytolethal Distending Toxin Enhances Radiosensitivity in Prostate Cancer Cells by Regulating Autophagy

    Directory of Open Access Journals (Sweden)

    Hwai-Jeng Lin

    2017-06-01

    Full Text Available Cytolethal distending toxin (CDT produced by Campylobacter jejuni contains three subunits: CdtA, CdtB, and CdtC. Among these three toxin subunits, CdtB is the toxic moiety of CDT with DNase I activity, resulting in DNA double-strand breaks (DSB and, consequently, cell cycle arrest at the G2/M stage and apoptosis. Radiation therapy is an effective modality for the treatment of localized prostate cancer (PCa. However, patients often develop radioresistance. Owing to its particular biochemical properties, we previously employed CdtB as a therapeutic agent for sensitizing radioresistant PCa cells to ionizing radiation (IR. In this study, we further demonstrated that CDT suppresses the IR-induced autophagy pathway in PCa cells by attenuating c-Myc expression and therefore sensitizes PCa cells to radiation. We further showed that CDT prevents the formation of autophagosomes via decreased high-mobility group box 1 (HMGB1 expression and the inhibition of acidic vesicular organelle (AVO formation, which are associated with enhanced radiosensitivity in PCa cells. The results of this study reveal the detailed mechanism of CDT for the treatment of radioresistant PCa.

  12. Extraskeletal and intraskeletal new bone formation induced by demineralized bone matrix combined with bone marrow cells

    International Nuclear Information System (INIS)

    Lindholm, T.S.; Nilsson, O.S.; Lindholm, T.C.

    1982-01-01

    Dilutions of fresh autogenous bone marrow cells in combination with allogeneic demineralized cortical bone matrix were tested extraskeletally in rats using roentgenographic, histologic, and 45 Ca techniques. Suspensions of bone marrow cells (especially diluted 1:2 with culture media) combined with demineralized cortical bone seemed to induce significantly more new bone than did demineralized bone, bone marrow, or composite grafts with whole bone marrow, respectively. In a short-term spinal fusion experiment, demineralized cortical bone combined with fresh bone marrow produced new bone and bridged the interspace between the spinous processes faster than other transplantation procedures. The induction of undifferentiated host cells by demineralized bone matrix is further complemented by addition of autogenous, especially slightly diluted, bone marrow cells

  13. Metal Chloride Induced Formation of Porous Polyhydroxybutyrate (PHB) Films: Morphology, Thermal Properties and Crystallinity

    Science.gov (United States)

    Tan, W. L.; Yaakob, N. N.; Zainal Abidin, A.; Abu Bakar, M.; Abu Bakar, N. H. H.

    2016-06-01

    Polyhydroxybutyrate (PHB) films with highly porous structures were synthesized using a one phase system comprising of metal chloride/methanol/PHB/chloroform (MCl2/CH3OH/PHB/CHCl3). SEM analyses confirmed that the MCl2 (where M = Cu2+ or Ni2+) induced porous structures with pore sizes ranging from 0.3 - 2.0 μm. The average pore size increased with the increasing MCl2 content. There existed weak physical interactions between the PHB chains and MCl2 as revealed by FTIR and NMR spectroscopies. The residue of MCl2 in the porous PHB film does not exert significant influence on the thermal stability of PHB. Nevertheless, the crystallinity of the prepared film is enhanced, as MCl2 acts as the nucleation sites to promote the growth of spherullites.

  14. Femtosecond Laser-Induced Formation of Wurtzite Phase ZnSe Nanoparticles in Air

    Directory of Open Access Journals (Sweden)

    Hsuan I Wang

    2012-01-01

    Full Text Available We demonstrate an effective method to prepare wurtzite phase ZnSe nanoparticles from zincblende ZnSe single crystal using femtosecond pulse laser ablation. The fabricated ZnSe nanoparticles are in spherical shape and uncontaminated while synthesized under ambient environment. By controlling the laser fluences, the average size of ZnSe nanoparticles can be varied from ~16 nm to ~22 nm in diameter. In Raman spectra, the surface phonon mode becomes dominant in the smaller average particle size with uniform size distribution. The interesting phase transition from the zinc blende structure of ZnSe single crystal to wurtzite structure of ZnSe nanoparticles may have been induced by the ultrahigh ablation pressure at the local area due to the sudden injection of high energy leading to solid-solid transition.

  15. Hyaline cartilage formation and tumorigenesis of implanted tissues derived from human induced pluripotent stem cells.

    Science.gov (United States)

    Saito, Taku; Yano, Fumiko; Mori, Daisuke; Kawata, Manabu; Hoshi, Kazuto; Takato, Tsuyoshi; Masaki, Hideki; Otsu, Makoto; Eto, Koji; Nakauchi, Hiromitsu; Chung, Ung-il; Tanaka, Sakae

    2015-01-01

    Induced pluripotent stem cells (iPSCs) are a promising cell source for cartilage regenerative medicine. Meanwhile, the risk of tumorigenesis should be considered in the clinical application of human iPSCs (hiPSCs). Here, we report in vitro chondrogenic differentiation of hiPSCs and maturation of the differentiated hiPSCs through transplantation into mouse knee joints. Three hiPSC clones showed efficient chondrogenic differentiation using an established protocol for human embryonic stem cells. The differentiated hiPSCs formed hyaline cartilage tissues at 8 weeks after transplantation into the articular cartilage of NOD/SCID mouse knee joints. Although tumors were not observed during the 8 weeks after transplantation, an immature teratoma had developed in one mouse at 16 weeks. In conclusion, hiPSCs are a potent cell source for regeneration of hyaline articular cartilage. However, the risk of tumorigenesis should be managed for clinical application in the future.

  16. Formation of rutile fasciculate zone induced by sunlight irradiation at room temperature and its hemocompatibility

    International Nuclear Information System (INIS)

    Zhang, Xuan-Hui; Zheng, Xiang; Cheng, Yuan; Li, Guo-Hua; Chen, Xiao-Ping; Zheng, Jian-Hui

    2013-01-01

    The fasciculate zone of phase pure rutile was fabricated under sunlight irradiation at room temperature, using titanium tetrachloride as a sole precursor. The crystal phase, morphology and microstructure, and optical absorption behavior of the samples were characterized by X-ray Diffraction, High-Resolution Transmission Electron Microscope (HRTEM) and UV–vis Diffuse Reflectance Spectra (DRS), respectively. XRD results show that the crystal phase of the sample is composed of rutile only, and a lattice distortion displays in the crystallite of the sample. HRTEM results show that the morphology of rutile particle is fasciculate zone constituted of nanoparticles with a diameter of 4–7 nm, and these particles grow one by one and step by step. The pattern of the selected area electron diffraction of the sample is Kikuchi type, which can be attributed to the predominant orientation growth of rutile nanoparticles along [001] induced by sunlight irradiation. DRS results show that the absorption threshold of the sample is 415 nm, corresponding to the band gap energy of 2.99 eV, which is lower than the band gap energy of rutile, 3.03 eV. Blood compatibility measurement shows that the sample has no remarkable effect on hemolytic and coagulation activity. The percent hemolysis of red blood cells is less than 5% even treated with a big dosage of the fasciculate rutile and under UV irradiation, and there are no obvious changes of plasma recalcification time after the rutile treatment. Thus, the novel structure of rutile fasciculate has low potential toxicity for blood and is hemocompatibility safe. Highlights: • A novel approach to fabricate the fasciculate zone of phase pure rutile • The fasciculate grows from a particle to nanorod and to fasciculate, step by step. • A preferred orientation growth induced by sunlight irradiation in the fasciculate • The rutile fasciculate is low toxicity for blood and is hemocompatibility safe

  17. Formation of organic layer on femtosecond laser-induced periodic surface structures

    Energy Technology Data Exchange (ETDEWEB)

    Yasumaru, Naoki, E-mail: yasuma@fukui-nct.ac.jp [National Institute of Technology, Fukui College, Sabae, Fukui 916-8507 (Japan); Sentoku, Eisuke [National Institute of Technology, Fukui College, Sabae, Fukui 916-8507 (Japan); Kiuchi, Junsuke [Eyetec Co., Ltd., Sabae, Fukui 916-0016 (Japan)

    2017-05-31

    Highlights: • Surface analyses of two types of femtosecond laser-induced periodic surface structures (LIPSS) on titanium were conducted. • The parallel-oriented ultrafine LIPSS showed the almost same roughness and chemical states as the non-irradiated Ti surface. • The well-known perpendicular-oriented LIPSS were typically covered with an organic layer similar to a cellulose derivative. - Abstract: Two types of laser-induced periodic surface structures (LIPSS) formed on titanium by femtosecond (fs) laser pulses (λ = 800 nm, τ = 180 fs, ν = 1 kHz) in air were investigated experimentally. At a laser fluence F above the ablation threshold, LIPSS with a minimum mean spacing of D < λ⁄2 were observed perpendicular to the laser polarization direction. In contrast, for F slightly below than the ablation threshold, ultrafine LIPSS with a minimum value of D < λ/10 were formed parallel to the polarization direction. The surface roughness of the parallel-oriented LIPSS was almost the same as that of the non-irradiated surface, unlike the high roughness of the perpendicular-oriented LIPSS. In addition, although the surface state of the parallel-oriented LIPSS was the same as that of the non-irradiated surface, the perpendicular-oriented LIPSS were covered with an organic thin film similar to a cellulose derivative that cannot be easily formed by conventional chemical synthesis. The results of these surface analyses indicate that these two types of LIPSS are formed through different mechanisms. This fs-laser processing technique may become a new technology for the artificial synthesis of cellulose derivatives.

  18. Radiation induced Maillard reactions (the kinetic of colour formation during heating)

    International Nuclear Information System (INIS)

    Tegota, A.; Bachman, S.

    1998-01-01

    The results are presented of the investigation of the effect of ionizing radiation from 60 Co on the acceleration of the Maillard reactions in a model system containing an aqueous solution of fructose (F) at 0.03 mol/dm 3 and alanine (Ala) at 0.01 mol/dm 3 . Solutions of F/Ala irradiated with 5 to 30 kGy at a dose rate 1.4 Gy/s were then heated for a few hours at different temperatures: 400, 600, 800, and 1000 deg C. The colour intensity of the solutions was measured via their absorbance at 450 nm. The reaction constant estimates increased with increasing radiation dose and temperature. The activation energy of colour development determined over the range of 600 deg C to 1000 deg C decreased with dose from 70.6 kJ/mol for 5 kGy to 60.7 kJ/mol for 30 kGy. The results confirmed the formation of carbonyl products from fructose radiolysis and their participation in the acceleration of the non-enzymatic browning reactions. The aldehyde products formed from the amino acids as a result of the Strecker degradation are responsible for the formation of odour typical of the Maillard reaction during heating. The changes in the F and Ala concentrations during irradiation of the solutions were proportional to the radiation dose. The radiation yield of fructose and alanine decomposition was G = 2.6 and 0.22, respectively. In the irradiated solutions of F/Ala, serine has been found, which has not been mentioned so far as a product of alanine radiolysis. The study demonstrates the influence of radiation and acceleration of the Maillard reaction during subsequent heating at 400 deg C up to 1000 deg C of systems containing reducing sugars and amino acids. It should be taken under consideration in the studies on introducing radiation technology of food products preservation connected with further thermal treatment

  19. OH-radical induced degradation of hydroxybenzoic- and hydroxycinnamic acids and formation of aromatic products-A gamma radiolysis study

    Energy Technology Data Exchange (ETDEWEB)

    Krimmel, Birgit; Swoboda, Friederike [University of Vienna, Department of Nutritional Sciences, Section Radiation Biology (Austria); Solar, Sonja, E-mail: sonja.solar@univie.ac.a [University of Vienna, Department of Nutritional Sciences, Section Radiation Biology (Austria); Reznicek, Gottfried [Department of Pharmacognosy, Althanstrasse 14, A-1090 Vienna (Austria)

    2010-12-15

    The OH-radical induced degradation of hydroxybenzoic acids (HBA), hydroxycinnamic acids (HCiA) and methoxylated derivatives, as well as of chlorogenic acid and rosmarinic acid was studied by gamma radiolysis in aerated aqueous solutions. Primary aromatic products resulting from an OH-radical attachment to the ring (hydroxylation), to the position occupied by the methoxyl group (replacement -OCH{sub 3} by -OH) as well as to the propenoic acid side chain of the cinnamic acids (benzaldehyde formations) were analysed by HPLC-UV and LC-ESI-MS. A comparison of the extent of these processes is given for 3,4-dihydroxybenzoic acid, vanillic acid, isovanillic acid, syringic acid, cinnamic acid, 4-hydroxycinnamic acid, caffeic acid, ferulic acid, isoferulic acid, chlorogenic acid, and rosmarinic acid. For all cinnamic acids and derivatives benzaldehydes were significant oxidation products. With the release of caffeic acid from chlorogenic acid the cleavage of a phenolic glycoside could be demonstrated. Reaction mechanisms are discussed.

  20. Hypoxia compounds exercise-induced free radical formation in humans; partitioning contributions from the cerebral and femoral circulation

    DEFF Research Database (Denmark)

    Bailey, Damian M; Rasmussen, Peter; Evans, Kevin A

    2018-01-01

    This study examined to what extent the human cerebral and femoral circulation contribute to free radical formation during basal and exercise-induced responses to hypoxia. Healthy participants (5♂, 5♀) were randomly assigned single-blinded to normoxic (21% O2) and hypoxic (10% O2) trials...... hypoxia (P free radical-mediated lipid peroxidation subsequent to inadequate antioxidant defense. This was pronounced during exercise across the femoral circulation in proportion to the increase in local O2 uptake (r = -0.397 to -0.459, P = 0.037 to 0...... with measurements taken at rest and 30min after cycling at 70% of maximal power output in hypoxia and equivalent relative and absolute intensities in normoxia. Blood was sampled from the brachial artery (a), internal jugular and femoral veins (v) for non-enzymatic antioxidants (HPLC), ascorbate radical (A...

  1. Research on Formation Mechanism of Dynamic Response and Residual Stress of Sheet Metal Induced by Laser Shock Wave

    Science.gov (United States)

    Feng, Aixin; Cao, Yupeng; Wang, Heng; Zhang, Zhengang

    2018-01-01

    In order to reveal the quantitative control of the residual stress on the surface of metal materials, the relevant theoretical and experimental studies were carried out to investigate the dynamic response of metal thin plates and the formation mechanism of residual stress induced by laser shock wave. In this paper, the latest research trends on the surface residual stress of laser shock processing technology were elaborated. The main progress of laser shock wave propagation mechanism and dynamic response, laser shock, and surface residual stress were discussed. It is pointed out that the multi-scale characterization of laser and material, surface residual stress and microstructure change is a new hotspot in laser shock strengthening technology.

  2. Sitagliptin, An Anti-diabetic Drug, Suppresses Estrogen Deficiency-Induced OsteoporosisIn Vivo and Inhibits RANKL-Induced Osteoclast Formation and Bone Resorption In Vitro

    Directory of Open Access Journals (Sweden)

    Chuandong Wang

    2017-06-01

    Full Text Available Postmenopausal osteoporosis is a disease characterized by excessive osteoclastic bone resorption. Some anti-diabetic drugs were demonstrated for anti-osteoclastic bone-loss effects. The present study investigated the skeletal effects of chronic administration of sitagliptin, a dipeptidyl peptidase IV (DPP IV inhibitor that is increasingly used for type 2 diabetes treatments, in an estrogen deficiency-induced osteoporosis and elucidated the associated mechanisms. This study indicated that sitagliptin effectively prevented ovariectomy-induced bone loss and reduced osteoclast numbers in vivo. It was also indicated that sitagliptin suppressed receptor activator of nuclear factor-κB ligand (RANKL-mediated osteoclast differentiation, bone resorption, and F-actin ring formation in a manner of dose-dependence. In addition, sitagliptin significantly reduced the expression of osteoclast-specific markers in mouse bone-marrow-derived macrophages, including calcitonin receptor (Calcr, dendrite cell-specific transmembrane protein (Dc-stamp, c-Fos, and nuclear factor of activated T-cells cytoplasmic 1 (Nfatc1. Further study indicated that sitagliptin inhibited osteoclastogenesis by suppressing AKT and ERK signaling pathways, scavenging ROS activity, and suppressing the Ca2+ oscillation that consequently affects the expression and/or activity of the osteoclast-specific transcription factors, c-Fos and NFATc1. Collectively, these findings suggest that sitagliptin possesses beneficial effects on bone and the suppression of osteoclast number implies that the effect is exerted directly on osteoclastogenesis.

  3. Temozolomide-Induced Myelodysplasia

    Directory of Open Access Journals (Sweden)

    Ethan A. Natelson

    2010-01-01

    Full Text Available A patient who had received temozolomide (TMZ as a single agent in treatment of malignant glioma developed therapy-induced myelodysplasia (T-MDS. TMZ is an orally active imidazotetrazine which methylates guanine residues in DNA, ultimately causing single and double-strand DNA breaks leading to apoptotic cell death. TMZ does not chemically cross-link DNA and is considered a nonclassical alkylating agent, similar in structure and activity to dacarbazine. Observations on this patient, and on similarly treated others, suggest that the cumulative dose threshold (CDT for TMZ that predisposes to T-MDS and which may potentially lead to acute myeloid leukemia (T-AML is around 18000 to 20000 mg/sq m. Although the incidence of T-MDS and the predisposing CDT of TMZ may differ from that of other potentially leukemogenic compounds currently and formerly used as chemotherapeutic agents, all alkylating agents, including TMZ, should be considered potentially leukemogenic when administered long term.

  4. Secondary cell wall formation in Cryptococcus neoformans as a rescue mechanism against acid-induced autolysis.

    Science.gov (United States)

    Farkas, Vladimír; Takeo, Kanji; Maceková, Danka; Ohkusu, Misako; Yoshida, Soichi; Sipiczki, Matthias

    2009-03-01

    Growth of the opportunistic yeast pathogen Cryptococcus neoformans in a synthetic medium containing yeast nitrogen base and 1.0-3.0% glucose is accompanied by spontaneous acidification of the medium, with its pH decreasing from the initial 5.5 to around 2.5 in the stationary phase. During the transition from the late exponential to the stationary phase of growth, many cells died as a consequence of autolytic erosion of their cell walls. Simultaneously, there was an increase in an ecto-glucanase active towards beta-1,3-glucan and having a pH optimum between pH 3.0 and 3.5. As a response to cell wall degradation, some cells developed an unusual survival strategy by forming 'secondary' cell walls underneath the original ones. Electron microscopy revealed that the secondary cell walls were thicker than the primary ones, exposing bundles of polysaccharide microfibrils only partially masked by an amorphous cell wall matrix on their surfaces. The cells bearing secondary cell walls had a three to five times higher content of the alkali-insoluble cell wall polysaccharides glucan and chitin, and their chitin/glucan ratio was about twofold higher than in cells from the logarithmic phase of growth. The cell lysis and the formation of the secondary cell walls could be suppressed by buffering the growth medium between pH 4.5 and 6.5.

  5. Gene expression changes during short day induced terminal bud formation in Norway spruce.

    Science.gov (United States)

    Asante, Daniel K A; Yakovlev, Igor A; Fossdal, Carl Gunnar; Holefors, Anna; Opseth, Lars; Olsen, Jorunn E; Junttila, Olavi; Johnsen, Øystein

    2011-02-01

    The molecular basis for terminal bud formation in autumn is not well understood in conifers. By combining suppression subtractive hybridization and monitoring of gene expression by qRT-PCR analysis, we aimed to identify genes involved in photoperiodic control of growth cessation and bud set in Norway spruce. Close to 1400 ESTs were generated and their functional distribution differed between short day (SD-12 h photoperiod) and long day (LD-24 h photoperiod) libraries. Many genes with putative roles in protection against stress appeared differentially regulated under SD and LD, and also differed in transcript levels between 6 and 20 SDs. Of these, PaTFL1(TERMINAL FLOWER LIKE 1) showed strongly increased transcript levels at 6 SDs. PaCCCH(CCCH-TYPE ZINC FINGER) and PaCBF2&3(C-REPEAT BINDING FACTOR 2&3) showed a later response at 20 SDs, with increased and decreased transcript levels, respectively. For rhythmically expressed genes such as CBFs, such differences might represent a phase shift in peak expression, but might also suggest a putative role in response to SD. Multivariate analyses revealed strong differences in gene expression between LD, 6 SD and 20 SD. The robustness of the gene expression patterns was verified in 6 families differing in bud-set timing under natural light with gradually decreasing photoperiod. © 2010 Blackwell Publishing Ltd.

  6. Hydroxyl radical formation and oxidative DNA damage induced by areca quid in vivo.

    Science.gov (United States)

    Chen, Chiu-Lan; Chi, Chin-Wen; Liu, Tsung-Yun

    2002-02-01

    Chewing areca quid (AQ) has been implicated as a major risk factor for the development of oral squamous-cell carcinoma (OSCC). Recent studies have suggested that AQ-generated reactive oxygen species (ROS) is one of the contributing factors for oral carcinogenesis. However, the AQ used in Taiwan is different from that used in other countries. This study is designed to test whether ROS are generated and the consequent effects in locally prepared AQ in vivo. We measured the hydroxyl radical formation, as represented by the presence of o- and m-tyrosine in saliva from volunteers who chewed AQ containing 20 mg phenylalanine. Their saliva contained significantly higher amounts (p betel leaf. We further tested the oxidative DNA damaging effect of the reconstituted AQ, as evidenced by the elevation of 8-hydroxy-2'-deoxyguanosine (8-OH-dG) levels, in hamster buccal pouch. Following daily painting for 14 d, the 8-OH-dG level in hamster buccal pouch is significantly elevated (p < .05) in the AQ-treated group versus the controls. These findings demonstrate that ROS, such as hydroxyl radical, are formed in the human oral cavity during AQ chewing, and chewing such prepared AQ might cause oxidative DNA damage to the surrounding tissues.

  7. The formation of green rust induced by tropical river biofilm components

    International Nuclear Information System (INIS)

    Jorand, F.; Zegeye, A.; Ghanbaja, J.; Abdelmoula, M.

    2011-01-01

    In the Sinnamary Estuary (French Guiana), a dense red biofilm grows on flooded surfaces. In order to characterize the iron oxides in this biofilm and to establish the nature of secondary minerals formed after anaerobic incubation, we conducted solid analysis and performed batch incubations. Elemental analysis indicated a major amount of iron as inorganic compartment along with organic matter. Solid analysis showed the presence of two ferric oxides ferrihydrite and lepidocrocite. Bacteria were abundant and represented more than 10 11 cells g -1 of dry weight among which iron reducers were revealed. Optical and electronic microscopy analysis revealed than the bacteria were in close vicinity of the iron oxides. After anaerobic incubations with exogenous electron donors, the biofilm's ferric material was reduced into green rust, a Fe II -Fe III layered double hydroxide. This green rust remained stable for several years. From this study and previous reports, we suggest that ferruginous biofilms should be considered as a favorable location for GR biomineralization when redox conditions and electron donors availability are gathered. - Research highlights: → Characterization of ferruginous biofilm components by solid analysis methods. → Lepidocrocite and ferrihydrite were the main iron oxides. → Anaerobic incubation of biofilm with electron donors produced green rust. → Biofilm components promote the formation of the green rust. → Ferruginous biofilm could contribute to the natural mercury attenuation.

  8. The formation of green rust induced by tropical river biofilm components

    Energy Technology Data Exchange (ETDEWEB)

    Jorand, F., E-mail: jorand@pharma.uhp-nancy.fr [Laboratoire de Chimie Physique et Microbiologie pour l' Environnement (LCPME) UMR 7564, CNRS-Nancy-Universite, Institut Jean Barriol, 405 rue de Vandoeuvre, F-54600 Villers-les Nancy (France); Zegeye, A. [Laboratoire de Chimie Physique et Microbiologie pour l' Environnement (LCPME) UMR 7564, CNRS-Nancy-Universite, Institut Jean Barriol, 405 rue de Vandoeuvre, F-54600 Villers-les Nancy (France); Ghanbaja, J. [Service Commun de Microscopies Electroniques et Microanalyses X (SCMEM), Nancy-Universite, Bvd des Aiguillettes, BP 239, 54506, Vandoeuvre-les-Nancy (France); Abdelmoula, M. [Laboratoire de Chimie Physique et Microbiologie pour l' Environnement (LCPME) UMR 7564, CNRS-Nancy-Universite, Institut Jean Barriol, 405 rue de Vandoeuvre, F-54600 Villers-les Nancy (France)

    2011-06-01

    In the Sinnamary Estuary (French Guiana), a dense red biofilm grows on flooded surfaces. In order to characterize the iron oxides in this biofilm and to establish the nature of secondary minerals formed after anaerobic incubation, we conducted solid analysis and performed batch incubations. Elemental analysis indicated a major amount of iron as inorganic compartment along with organic matter. Solid analysis showed the presence of two ferric oxides ferrihydrite and lepidocrocite. Bacteria were abundant and represented more than 10{sup 11} cells g{sup -1} of dry weight among which iron reducers were revealed. Optical and electronic microscopy analysis revealed than the bacteria were in close vicinity of the iron oxides. After anaerobic incubations with exogenous electron donors, the biofilm's ferric material was reduced into green rust, a Fe{sup II}-Fe{sup III} layered double hydroxide. This green rust remained stable for several years. From this study and previous reports, we suggest that ferruginous biofilms should be considered as a favorable location for GR biomineralization when redox conditions and electron donors availability are gathered. - Research highlights: {yields} Characterization of ferruginous biofilm components by solid analysis methods. {yields} Lepidocrocite and ferrihydrite were the main iron oxides. {yields} Anaerobic incubation of biofilm with electron donors produced green rust. {yields} Biofilm components promote the formation of the green rust. {yields} Ferruginous biofilm could contribute to the natural mercury attenuation.

  9. Formation of local nanocrystalline structure in a boron steel induced by electropulsing

    International Nuclear Information System (INIS)

    Ma, Bingdong; Zhao, Yuguang; Ma, Jun; Guo, Haichao; Yang, Qing

    2013-01-01

    Highlights: ► The local NC structures in the uniform size of ∼15 nm were obtained by electropulsing. ► The NC structures were made up of γ-Fe without any other phases coexisting. ► The reduction in nucleation barrier of the γ-Fe helped form the local γ-Fe NC structure. ► The steel consisting of the lath martensitic and the γ-Fe nanocrystalline structure exhibits high mechanical properties. - Abstract: Nanocrystalline γ-Fe was obtained locally in a cold-rolled boron steel as a result of transient high-energy electropulsing. The nano-grains of γ-Fe were uniformly about 15 nm in size. No phases other than γ-Fe have been found in the nanocrystalline structure. It is believed that the pulse current enhances the nucleation rate of γ-Fe phase during the phase transformation from α-Fe to γ-Fe, resulting in the formation of local nanostructure. Moreover, in this study the steel consisting of the lath martensitic and the γ-Fe nanocrystalline structure exhibits high mechanical properties.

  10. Hyperthermia-induced micronucleus formation in a human keratinocyte cell line

    International Nuclear Information System (INIS)

    Hintzsche, Henning; Riese, Thorsten; Stopper, Helga

    2012-01-01

    Elevated temperature can cause biological effects in vitro and in vivo. Many studies on effects of hypo- and hyperthermia have been conducted, but only few studies systematically investigated the formation of genomic damage in the micronucleus test in human cells in vitro as a consequence of different temperatures. In the present study, HaCaT human keratinocytes were exposed to different temperatures from 37 °C to 42 °C for 24 h in a regular cell culture incubator. Micronucleus frequency as a marker of genomic damage was elevated in a temperature-dependent and statistically significant manner. Apoptosis occurred at temperatures of 39 °C or higher. Cell proliferation was unaffected up to 40 °C and decreased at 41 °C and 42 °C. Expression of the heat shock protein Hsp70 was elevated, particularly at temperatures of 40 °C and higher. These findings are in agreement with several in vivo studies and some in vitro studies looking at single, specific temperatures, but a systematically investigated temperature-dependent increase of genomic damage in human keratinocytes in vitro is demonstrated for the first time here.

  11. Boride Formation Induced by pcBN Tool Wear in Friction-Stir-Welded Stainless Steels

    Science.gov (United States)

    Park, Seung Hwan C.; Sato, Yutaka S.; Kokawa, Hiroyuki; Okamoto, Kazutaka; Hirano, Satoshi; Inagaki, Masahisa

    2009-03-01

    The wear of polycrystalline cubic boron nitride (pcBN) tool and its effect on second phase formation were investigated in stainless steel friction-stir (FS) welds. The nitrogen content and the flow stress were analyzed in these welds to examine pcBN tool wear. The nitrogen content in stir zone (SZ) was found to be higher in the austenitic stainless steel FS welds than in the ferritic and duplex stainless steel welds. The flow stress of austenitic stainless steels was almost 1.5 times larger than that of ferritic and duplex stainless steels. These results suggest that the higher flow stress causes the severe tool wear in austenitic stainless steels, which results in greater nitrogen pickup in austenitic stainless steel FS welds. From the microstructural observation, a possibility was suggested that Cr-rich borides with a crystallographic structure of Cr2B and Cr5B3 formed through the reaction between the increased boron and nitrogen and the matrix during FS welding (FSW).

  12. Different inflammatory responses are associated with Ureaplasma parvum-induced UTI and urolith formation.

    Science.gov (United States)

    Reyes, Leticia; Reinhard, Mary; Brown, Mary B

    2009-01-26

    Epidemiologic studies show a strong association between Ureaplasmas and urogenital tract disease in humans. Since healthy humans can be colonized with Ureaplasmas, its role as a pathogen remains controversial. In order to begin to define the role of the host in disease, we developed a rodent model of urinary tract infection (UTI) using Fischer 344 (F344) rats. Animals were inoculated with sterile broth, 10(1), 10(3), 10(5), 10(7), or 10(9) log CFU of a rat-adapted strain of Ureaplasma parvum. Infected animals exhibited two distinct profiles, asymptomatic UTI and UTI complicated with struvite urolithiasis. Inoculum dose of U. parvum affected the incidence of UTI, and 50% to 57% of animals inoculated with >or= 10(7) CFU of U. parvum remained infected (p UTI was characterized by a minimal immune response that was predominantly monocytic and lymphocytic, with limited lesions, and elevated urinary levels of IFN-gamma, IL-18 and MCP-1 (P UTI complicated with struvite formation was characterized by an exaggerated immune response that was mostly neutrophilic (P UTI also had a significantly high rate of kidney infection (P UTI and disease.

  13. Induced Abortion

    Science.gov (United States)

    ... Education & Events Advocacy For Patients About ACOG Induced Abortion Home For Patients Search FAQs Induced Abortion Page ... Induced Abortion FAQ043, May 2015 PDF Format Induced Abortion Special Procedures What is an induced abortion? What ...

  14. Subthreshold UV radiation-induced peroxide formation in cultured corneal epithelial cells: the protective effects of lactoferrin

    International Nuclear Information System (INIS)

    Shimmura, Shigeto; Suematsu, Makoto; Shimoyama, Masaru; Oguchi, Yoshihisa; Ishimura, Yuzuru

    1996-01-01

    Acute exposure to suprathreshold ultraviolet B radiation (UV-B) is known to cause photokeratitis resulting from the necrosis and shedding of corneal epithelial cells. However, the corneal effects of low dose UV-B in the environmental range is less clear. In this study, subthreshold UV-B was demonstrated to cause non-necrotic peroxide formation in cultured corneal epithelial cells, which was attenuated by the major tear protein lactoferrin. Intracellular oxidative insults and cell viability of rabbit corneal epithelial cells (RCEC) were assessed by dual-color digital microfluorography using carboxydichlorofluorescin (CDCFH) diacetate bis (acetoxymethyl) ester, a hydroperoxide-sensitive fluoroprobe, and propidium iodode (PI) respectively. The magnitude of UV-induced oxidative insults was calibrated by concentrations of exogenously applied H 2 O 2 which evoke compatible levels of CDCFH oxidation. Exposure of RCEC to low-dose UV-B (2.0 mJ cm -2 at 313 nm, 10.0 mJ cm -2 total UV-B) caused intracellular oxidative changes which were equivalent to those elicited by 240 μM hydrogen peroxide under the conditions of the study. The changes were dose dependent, non-necrotic, and were partially inhibited by lactoferrin ( 1 mg ml -1 ) but not by iron-saturated lactoferrin. Pretreatment with deferoxamine (2 mΜ) or catalase (100 U ml -1 ) also attenuated the UV-induced oxidative stress. The results indicate that UV-B comparable to solar irradiation levels causes significant intracellular peroxide formation in corneal epithelial cells, and that lactoferrin in tears may have a physiological role in protecting the corneal epithelium from solar UV irradiation. (Author)

  15. Hydroxylated polychlorinated biphenyls increase reactive oxygen species formation and induce cell death in cultured cerebellar granule cells

    International Nuclear Information System (INIS)

    Dreiem, Anne; Rykken, Sidsel; Lehmler, Hans-Joachim; Robertson, Larry W.; Fonnum, Frode

    2009-01-01

    Polychlorinated biphenyls (PCBs) are persistent organic pollutants that bioaccumulate in the body, however, they can be metabolized to more water-soluble products. Although they are more readily excreted than the parent compounds, some of the metabolites are still hydrophobic and may be more available to target tissues, such as the brain. They can also cross the placenta and reach a developing foetus. Much less is known about the toxicity of PCB metabolites than about the parent compounds. In the present study, we have investigated the effects of eight hydroxylated (OH) PCB congeners (2'-OH PCB 3, 4-OH PCB 14, 4-OH PCB 34, 4'-OH PCB 35, 4-OH PCB 36, 4'-OH PCB 36, 4-OH PCB 39, and 4'-OH PCB 68) on reactive oxygen species (ROS) formation and cell viability in rat cerebellar granule cells. We found that, similar to their parent compounds, OH-PCBs are potent ROS inducers with potency 4-OH PCB 14 < 4-OH PCB 36 < 4-OH PCB 34 < 4'-OH PCB 36 < 4'-OH PCB 68 < 4-OH PCB 39 < 4'-OH PCB 35. 4-OH PCB 36 was the most potent cell death inducer, and caused apoptotic or necrotic morphology depending on concentration. Inhibition of ERK1/2 kinase with U0126 reduced both cell death and ROS formation, suggesting that ERK1/2 activation is involved in OH-PCB toxicity. The results indicate that the hydroxylation of PCBs may not constitute a detoxification reaction. Since OH-PCBs like their parent compounds are retained in the body and may be more widely distributed to sensitive tissues, it is important that not only the levels of the parent compounds but also the levels of their metabolites are taken into account during risk assessment of PCBs and related compounds.

  16. Competition in size-structured populations: mechanisms inducing cohort formation and population cycles.

    Science.gov (United States)

    de Roos, André M; Persson, Lennart

    2003-02-01

    In this paper we investigate the consequences of size-dependent competition among the individuals of a consumer population by analyzing the dynamic properties of a physiologically structured population model. Only 2 size-classes of individuals are distinguished: juveniles and adults. Juveniles and adults both feed on one and the same resource and hence interact by means of exploitative competition. Juvenile individuals allocate all assimilated energy into development and mature on reaching a fixed developmental threshold. The combination of this fixed threshold and the resource-dependent developmental rate, implies that the juvenile delay between birth and the onset of reproduction may vary in time. Adult individuals allocate all assimilated energy to reproduction. Mortality of both juveniles and adults is assumed to be inversely proportional to the amount of energy assimilated. In this setting we study how the dynamics of the population are influenced by the relative foraging capabilities of juveniles and adults. In line with results that we previously obtained in size-structured consumer-resource models with pulsed reproduction, population cycles primarily occur when either juveniles or adults have a distinct competitive advantage. When adults have a larger per capita feeding rate and are hence competitively superior to juveniles, population oscillations occur that are primarily induced by the fact that the duration of the juvenile period changes with changing food conditions. These cycles do not occur when the juvenile delay is a fixed parameter. When juveniles are competitively superior, two different types of population fluctuations can occur: (1) rapid, low-amplitude fluctuations having a period of half the juvenile delay and (2) slow, large-amplitude fluctuations characterized by a period, which is roughly equal to the juvenile delay. The analysis of simplified versions of the structured model indicates that these two types of oscillations also occur if

  17. Nanosecond pulsed electric fields induce poly(ADP-ribose) formation and non-apoptotic cell death in HeLa S3 cells.

    Science.gov (United States)

    Morotomi-Yano, Keiko; Akiyama, Hidenori; Yano, Ken-ichi

    2013-08-30

    Nanosecond pulsed electric fields (nsPEFs) have recently gained attention as effective cancer therapy owing to their potency for cell death induction. Previous studies have shown that apoptosis is a predominant mode of nsPEF-induced cell death in several cell lines, such as Jurkat cells. In this study, we analyzed molecular mechanisms for cell death induced by nsPEFs. When nsPEFs were applied to Jurkat cells, apoptosis was readily induced. Next, we used HeLa S3 cells and analyzed apoptotic events. Contrary to our expectation, nsPEF-exposed HeLa S3 cells exhibited no molecular signs of apoptosis execution. Instead, nsPEFs induced the formation of poly(ADP-ribose) (PAR), a hallmark of necrosis. PAR formation occurred concurrently with a decrease in cell viability, supporting implications of nsPEF-induced PAR formation for cell death. Necrotic PAR formation is known to be catalyzed by poly(ADP-ribose) polymerase-1 (PARP-1), and PARP-1 in apoptotic cells is inactivated by caspase-mediated proteolysis. Consistently, we observed intact and cleaved forms of PARP-1 in nsPEF-exposed and UV-irradiated cells, respectively. Taken together, nsPEFs induce two distinct modes of cell death in a cell type-specific manner, and HeLa S3 cells show PAR-associated non-apoptotic cell death in response to nsPEFs. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Biomass conversion inhibitors furfural and 5-hydroxymethylfurfural induce formation of messenger RNP granules and attenuate translation activity in Saccharomyces cerevisiae.

    Science.gov (United States)

    Iwaki, Aya; Kawai, Takao; Yamamoto, Yosuke; Izawa, Shingo

    2013-03-01

    Various forms of stress can cause an attenuation of bulk translation activity and the accumulation of nontranslating mRNAs into cytoplasmic messenger RNP (mRNP) granules termed processing bodies (P-bodies) and stress granules (SGs) in eukaryotic cells. Furfural and 5-hydroxymethylfurfural (HMF), derived from lignocellulosic biomass, inhibit yeast growth and fermentation as stressors. Since there is no report regarding their effects on the formation of cytoplasmic mRNP granules, here we investigated whether furfural and HMF cause the assembly of yeast P-bodies and SGs accompanied by translational repression. We found that furfural and HMF cause the attenuation of bulk translation activity and the assembly of cytoplasmic mRNP granules in Saccharomyces cerevisiae. Notably, a combination of furfural and HMF induced the remarkable repression of translation initiation and SG formation. These findings provide new information about the physiological effects of furfural and HMF on yeast cells, and also suggest the potential usefulness of cytoplasmic mRNP granules as a warning sign or index of the deterioration of cellular physiological status in the fermentation of lignocellulosic hydrolysates.

  19. Ozone Formation Induced by the Impact of Reactive Bromine and Iodine Species on Photochemistry in a Polluted Marine Environment.

    Science.gov (United States)

    Shechner, M; Tas, E

    2017-12-19

    Reactive iodine and bromine species (RIS and RBS, respectively) are known for altering atmospheric chemistry and causing sharp tropospheric ozone (O 3 ) depletion in polar regions and significant O 3 reduction in the marine boundary layer (MBL). Here we use measurement-based modeling to show that, unexpectedly, both RIS and RBS can lead to enhanced O 3 formation in a polluted marine environment under volatile organic compound (VOC)-limited conditions associated with high nitrogen oxide (NO X = [NO] + [NO 2 ]) concentrations. Under these conditions, the daily average O 3 mixing ratio increased to ∼44 and ∼28% for BrO and IO mixing ratios of up to ∼6.8 and 4.7 ppt, respectively. The increase in the level of O 3 was partially induced by enhanced ClNO 3 formation for higher Br 2 and I 2 emission flux. The increase in the level of O 3 was associated with an increased mixing ratio of hydroperoxyl radical to hydroxyl radical ([HO 2 ]/[OH]) and increased [NO 2 ]/[NO] with higher levels of RBS and/or RIS. NO X -rich conditions are typical of the polluted MBL, near coastlines and ship plumes. Considering that O 3 is toxic to humans, plants, and animals and is a greenhouse gas, our findings call for adequate updating of local and regional air-quality models with the effects of activities of RBS and RIS on O 3 mixing ratios in the polluted MBL.

  20. Effects of Extensive Beetle-Induced Forest Mortality on Aromatic Organic Carbon Loading and Disinfection Byproduct Formation Potential

    Science.gov (United States)

    Brouillard, B.; Mikkelson, K. M.; Dickenson, E.; Sharp, J.

    2015-12-01

    Recent drought and warmer temperatures associated with climate change have caused increased pest-induced forest mortality with impacts on biogeochemical and hydrologic processes. To better understand the seasonal impacts of bark beetle infestation on water quality, samples were collected regularly over two overlapping snow free seasons at surface water intakes of six water treatment facilities in the Rocky Mountain region of Colorado displaying varying levels of bark beetle infestation (high >40%, moderate 20-40%, and low <20%). Organic carbon concentrations were typically 3 to 6 times higher in waters sourced from high beetle-impacted watersheds compared to moderate and low impact watersheds, revealing elevated specific ultraviolet absorbance, fluorescence, and humic-like intensity indicative of elevated aromatic carbon signatures. Accordingly, an increase in disinfection byproduct (DBP) formation potential of 400 to 600% was quantified when contrasted with watersheds containing less tree mortality. Beetle impact exasperated seasonal increases in carbon loading and DBP formation potential following both runoff and precipitation events indicating windows when enhanced water treatment may be utilized by water providers in highly infested regions. Additionally, elevated carbon concentrations throughout the summer and fall along with peaks following precipitation events provide evidence of shifting hydrologic flow paths in areas experiencing high forest mortality from decreased tree water uptake and interception. Collectively, these results demonstrate the need for continued watershed protection and monitoring with a changing climate as the resultant perturbations can have adverse effects on biogeochemistry and water quality in heavily impacted areas.

  1. DNase I and proteinase K impair Listeria monocytogenes biofilm formation and induce dispersal of pre-existing biofilms.

    Science.gov (United States)

    Nguyen, Uyen T; Burrows, Lori L

    2014-09-18

    Current sanitation methods in the food industry are not always sufficient for prevention or dispersal of Listeria monocytogenes biofilms. Here, we determined if prevention of adherence or dispersal of existing biofilms could occur if biofilm matrix components were disrupted enzymatically. Addition of DNase during biofilm formation reduced attachment (biofilms with 100μg/ml of DNase for 24h induced incomplete biofilm dispersal, with biofilm remaining compared to control. In contrast, addition of proteinase K completely inhibited biofilm formation, and 72h biofilms-including those grown under stimulatory conditions-were completely dispersed with 100μg/ml proteinase K. Generally-regarded-as-safe proteases bromelain and papain were less effective dispersants than proteinase K. In a time course assay, complete dispersal of L. monocytogenes biofilms from both polystyrene and type 304H food-grade stainless steel occurred within 5min at proteinase K concentrations above 25μg/ml. These data confirm that both DNA and proteins are required for L. monocytogenes biofilm development and maintenance, and that these components of the biofilm matrix can be targeted for effective prevention and removal of biofilms. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Enhanced activity of ADP glucose pyrophosphorylase and formation of starch induced by Azospirillum brasilense in Chlorella vulgaris.

    Science.gov (United States)

    Choix, Francisco J; Bashan, Yoav; Mendoza, Alberto; de-Bashan, Luz E

    2014-05-10

    ADP-glucose pyrophosphorylase (AGPase) regulates starch biosynthesis in higher plants and microalgae. This study measured the effect of the bacterium Azospirillum brasilense on AGPase activity in the freshwater microalga Chlorella vulgaris and formation of starch. This was done by immobilizing both microorganisms in alginate beads, either replete with or deprived of nitrogen or phosphorus and all under heterotrophic conditions, using d-glucose or Na-acetate as the carbon source. AGPase activity during the first 72h of incubation was higher in C. vulgaris when immobilized with A. brasilense. This happened simultaneously with higher starch accumulation and higher carbon uptake by the microalgae. Either carbon source had similar effects on enzyme activity and starch accumulation. Starvation either by N or P had the same pattern on AGPase activity and starch accumulation. Under replete conditions, the population of C. vulgaris immobilized alone was higher than when immobilized together, but under starvation conditions A. brasilense induced a larger population of C. vulgaris. In summary, adding A. brasilense enhanced AGPase activity, starch formation, and mitigation of stress in C. vulgaris. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. c-Myc Enhances Sonic Hedgehog-Induced Medulloblastoma Formation from Nestin-Expressing Neural Progenitors in Mice

    Directory of Open Access Journals (Sweden)

    Ganesh Rao

    2003-05-01

    Full Text Available Medulloblastomas are malignant brain tumors that arise in the cerebella of children. The presumed cellsof-origin are undifferentiated precursors of granule neurons that occupy the external granule layer (EGL of the developing cerebellum. The overexpression of proteins that normally stimulate proliferation of neural progenitor cells may initiate medulloblastoma formation. Two known mitogens for neural progenitors are the c-Myc oncoprotein and Sonic hedgehog (Shh, a crucial determinant of embryonic pattern formation in the central nervous system. We modeled the ability of c-Myc and Shh to induce medulloblastoma in mice using the RCAS/tv-a system, which allows postnatal gene transfer and expression in a cell type-specific manner. We targeted the expression of Shh and c-Myc to nestin-expressing neural progenitor cells by injecting replication-competent ALV splice acceptor (RCAS vectors into the cerebella of newborn mice. Following injection with RCAS-Shh alone, 3/32 (9% mice developed medulloblastomas and 5/32 showed multifocal hyperproliferation of the EGL, possibly a precursor stage of medulloblastoma. Following injection with RCAS-Shh plus RCAS-Myc, 9/39 (23% mice developed medulloblastomas. We conclude that nestin-expressing neural progenitors, present in the cerebellum at birth, can act as the cells-of-origin for medulloblastoma, and that c-Myc cooperates with Shh to enhance tumorigenicity.

  4. Macrophage conditioned medium induced cellular network formation in MCF-7 cells through enhanced tunneling nanotube formation and tunneling nanotube mediated release of viable cytoplasmic fragments

    International Nuclear Information System (INIS)

    Patheja, Pooja; Sahu, Khageswar

    2017-01-01

    Infiltrating macrophages in tumor microenvironment, through their secreted cytokines and growth factors, regulate several processes of cancer progression such as cancer cell survival, proliferation, invasion, metastasis and angiogenesis. Recently, intercellular cytoplasmic bridges between cancer cells referred as tunneling nanotubes (TNTs) have been recognized as novel mode of intercellular communication between cancer cells. In this study, we investigated the effect of inflammatory mediators present in conditioned medium derived from macrophages on the formation of TNTs in breast adenocarcinoma cells MCF-7. Results show that treatment with macrophage conditioned medium (MφCM) not only enhanced TNT formation between cells but also stimulated the release of independently migrating viable cytoplasmic fragments, referred to as microplasts, from MCF-7 cells. Time lapse microscopy revealed that microplasts were released from parent cancer cells in extracellular space through formation of TNT-like structures. Mitochondria, vesicles and cytoplasm could be transferred from parent cell body to microplasts through connecting TNTs. The microplasts could also be resorbed into the parent cell body by retraction of the connecting TNTs. Microplast formation inhibited in presence cell migration inhibitor, cytochalasin-B. Notably by utilizing migratory machinery within microplasts, distantly located MCF-7 cells formed several TNT based intercellular connections, leading to formation of physically connected network of cells. Together, these results demonstrate novel role of TNTs in microplast formation, novel modes of TNT formation mediated by microplasts and stimulatory effect of MφCM on cellular network formation in MCF-7 cells mediated through enhanced TNT and microplast formation.

  5. Macrophage conditioned medium induced cellular network formation in MCF-7 cells through enhanced tunneling nanotube formation and tunneling nanotube mediated release of viable cytoplasmic fragments

    Energy Technology Data Exchange (ETDEWEB)

    Patheja, Pooja, E-mail: pooja.patheja8@gmail.com [Laser Biomedical Applications Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, Madhya Pradesh (India); Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, Maharashtra (India); Sahu, Khageswar [Laser Biomedical Applications Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, Madhya Pradesh (India)

    2017-06-15

    Infiltrating macrophages in tumor microenvironment, through their secreted cytokines and growth factors, regulate several processes of cancer progression such as cancer cell survival, proliferation, invasion, metastasis and angiogenesis. Recently, intercellular cytoplasmic bridges between cancer cells referred as tunneling nanotubes (TNTs) have been recognized as novel mode of intercellular communication between cancer cells. In this study, we investigated the effect of inflammatory mediators present in conditioned medium derived from macrophages on the formation of TNTs in breast adenocarcinoma cells MCF-7. Results show that treatment with macrophage conditioned medium (MφCM) not only enhanced TNT formation between cells but also stimulated the release of independently migrating viable cytoplasmic fragments, referred to as microplasts, from MCF-7 cells. Time lapse microscopy revealed that microplasts were released from parent cancer cells in extracellular space through formation of TNT-like structures. Mitochondria, vesicles and cytoplasm could be transferred from parent cell body to microplasts through connecting TNTs. The microplasts could also be resorbed into the parent cell body by retraction of the connecting TNTs. Microplast formation inhibited in presence cell migration inhibitor, cytochalasin-B. Notably by utilizing migratory machinery within microplasts, distantly located MCF-7 cells formed several TNT based intercellular connections, leading to formation of physically connected network of cells. Together, these results demonstrate novel role of TNTs in microplast formation, novel modes of TNT formation mediated by microplasts and stimulatory effect of MφCM on cellular network formation in MCF-7 cells mediated through enhanced TNT and microplast formation.

  6. Heavy-ion-induced luminescence of amorphous SiO2 during nanoparticle formation

    International Nuclear Information System (INIS)

    Bandourko, Vassili; Umeda, Naoki; Plaksin, Oleg; Kishimoto, Naoki

    2005-01-01

    Silica glass was implanted with negative 60 keV Cu ions at an ion flux from 5 to 75 μA/cm 2 up to a fluence of 1 x 10 17 ions/cm 2 at initial sample temperatures of 300, 573 and 773 K. Spectra of ion-induced photon emission (IIPE) were collected in situ in the range from 250 to 850 nm. Optical absorption spectra of implanted specimens were ex situ measured in the range from 190 to 2500 nm. IIPE spectra showed a broad band centered around 560 nm (2.2 eV) that was assigned to Cu + solutes. The band appeared at the onset of irradiation, increased in intensity up to a fluence of about 5 x 10 15 ions/cm 2 and then gradually decreased indicating three stage of the ion beam synthesis of nanoclusters: accumulation of implants, nucleation and growth nanoclusters. The IIPE intensity normalized on the ion flux is independent on the ion flux below 20 μA/cm 2 at higher fluences. The intensity of the band increased with increasing samples temperature, when optical absorption spectra reveal the increase of Cu nanoparticles size

  7. Formation of laser-induced periodic surface structures on niobium by femtosecond laser irradiation

    International Nuclear Information System (INIS)

    Pan, A.; Dias, A.; Gomez-Aranzadi, M.; Olaizola, S. M.; Rodriguez, A.

    2014-01-01

    The surface morphology of a Niobium sample, irradiated in air by a femtosecond laser with a wavelength of 800 nm and pulse duration of 100 fs, was examined. The period of the micro/nanostructures, parallel and perpendicularly oriented to the linearly polarized fs-laser beam, was studied by means of 2D Fast Fourier Transform analysis. The observed Laser-Induced Periodic Surface Structures (LIPSS) were classified as Low Spatial Frequency LIPSS (periods about 600 nm) and High Spatial Frequency LIPSS, showing a periodicity around 300 nm, both of them perpendicularly oriented to the polarization of the incident laser wave. Moreover, parallel high spatial frequency LIPSS were observed with periods around 100 nm located at the peripheral areas of the laser fingerprint and overwritten on the perpendicular periodic gratings. The results indicate that this method of micro/nanostructuring allows controlling the Niobium grating period by the number of pulses applied, so the scan speed and not the fluence is the key parameter of control. A discussion on the mechanism of the surface topology evolution was also introduced

  8. Formation of laser-induced periodic surface structures on niobium by femtosecond laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Pan, A.; Dias, A.; Gomez-Aranzadi, M.; Olaizola, S. M. [CIC microGUNE, Goiru Kalea 9 Polo Innovación Garaia, 20500 Arrasate-Mondragón (Spain); CEIT-IK4 and Tecnun, University of Navarra, Manuel Lardizábal 15, 20018 San Sebastián (Spain); Rodriguez, A. [CIC microGUNE, Goiru Kalea 9 Polo Innovación Garaia, 20500 Arrasate-Mondragón (Spain)

    2014-05-07

    The surface morphology of a Niobium sample, irradiated in air by a femtosecond laser with a wavelength of 800 nm and pulse duration of 100 fs, was examined. The period of the micro/nanostructures, parallel and perpendicularly oriented to the linearly polarized fs-laser beam, was studied by means of 2D Fast Fourier Transform analysis. The observed Laser-Induced Periodic Surface Structures (LIPSS) were classified as Low Spatial Frequency LIPSS (periods about 600 nm) and High Spatial Frequency LIPSS, showing a periodicity around 300 nm, both of them perpendicularly oriented to the polarization of the incident laser wave. Moreover, parallel high spatial frequency LIPSS were observed with periods around 100 nm located at the peripheral areas of the laser fingerprint and overwritten on the perpendicular periodic gratings. The results indicate that this method of micro/nanostructuring allows controlling the Niobium grating period by the number of pulses applied, so the scan speed and not the fluence is the key parameter of control. A discussion on the mechanism of the surface topology evolution was also introduced.

  9. Nocardia brasiliensis induces formation of foamy macrophages and dendritic cells in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Irene Meester

    Full Text Available Foamy cells have been described in various infectious diseases, for example in actinomycetoma induced by Nocardia brasiliensis. These cells are generally considered to be macrophages, although they present dendritic cell (DC-specific surface markers. In this study, we determined and confirmed the lineage of possible precursors of foamy cells in vitro and in vivo using an experimental actinomycetoma model in BALB/c mice. Bone marrow-derived macrophages (BMDM or DC (BMDC were infected in vitro with N. brasiliensis or labeled with carboxyfluorescein diacetate succinimidyl ester (CFSE. Both, macrophages and DC, differentiated into foamy cells after in vitro infection. CFSE-labeled BMDM or BMDC were tested for phagocytosis and CD11c/CD11b receptors markers expression before being transferred into the actinomycetoma lesion site of infected mice. In vivo studies showed that BMDM and BMDC were traced at the site where foamy cells are present in the experimental actinomycetoma. Interestingly, many of the transferred BMDM and BMDC were stained with the lipid-droplet fluorophore Nile Red. In conclusion, macrophages and DC cells can be differentiated into foamy cells in vitro and in vivo during N. brasiliensis infection.

  10. Nocardia brasiliensis induces formation of foamy macrophages and dendritic cells in vitro and in vivo.

    Science.gov (United States)

    Meester, Irene; Rosas-Taraco, Adrian Geovanni; Salinas-Carmona, Mario Cesar

    2014-01-01

    Foamy cells have been described in various infectious diseases, for example in actinomycetoma induced by Nocardia brasiliensis. These cells are generally considered to be macrophages, although they present dendritic cell (DC)-specific surface markers. In this study, we determined and confirmed the lineage of possible precursors of foamy cells in vitro and in vivo using an experimental actinomycetoma model in BALB/c mice. Bone marrow-derived macrophages (BMDM) or DC (BMDC) were infected in vitro with N. brasiliensis or labeled with carboxyfluorescein diacetate succinimidyl ester (CFSE). Both, macrophages and DC, differentiated into foamy cells after in vitro infection. CFSE-labeled BMDM or BMDC were tested for phagocytosis and CD11c/CD11b receptors markers expression before being transferred into the actinomycetoma lesion site of infected mice. In vivo studies showed that BMDM and BMDC were traced at the site where foamy cells are present in the experimental actinomycetoma. Interestingly, many of the transferred BMDM and BMDC were stained with the lipid-droplet fluorophore Nile Red. In conclusion, macrophages and DC cells can be differentiated into foamy cells in vitro and in vivo during N. brasiliensis infection.

  11. Inorganic-Macroion-Induced Formation of Bicontinuous Block Copolymer Nanocomposites with Enhanced Conductivity and Modulus.

    Science.gov (United States)

    Zhang, Liying; Cui, Tingting; Cao, Xiao; Zhao, Chengji; Chen, Quan; Wu, Lixin; Li, Haolong

    2017-07-24

    A facile and electrostatically driven approach has been developed to prepare bicontinuous polymer nanocomposites that is based on the polyoxometalate (POM) macroion induced phase transition of PS-b-P2VP from an initial lamellar phase to a stable bicontinuous phase. The multi-charged POMs can electrostatically cross-link P2VP blocks and give rise to bicontinuous phases in which the POM hybrid conductive domains occupy a large volume fraction of more than 50 %. Furthermore, the POMs can give rise to high proton conductivity and serve as nanoenhancers, endowing the bicontinuous nanocomposites with a conductivity of 0.1 mS cm -1 and a Young's modulus of 7.4 GPa at room temperature; these values are greater than those of pristine PS-b-P2VP by two orders of magnitude and a factor of 1.8, respectively. This approach can provide a new concept based on electrostatic control to design functional bicontinuous polymer materials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Vibration-induced particle formation during yogurt fermentation-Effect of frequency and amplitude.

    Science.gov (United States)

    Körzendörfer, Adrian; Temme, Philipp; Schlücker, Eberhard; Hinrichs, Jörg; Nöbel, Stefan

    2018-05-01

    Machinery such as pumps used for the commercial production of fermented milk products cause vibrations that can spread to the fermentation tanks. During fermentation, such vibrations can disturb the gelation of milk proteins by causing texture defects including lumpiness and syneresis. To study the effect of vibrations on yogurt structure systematically, an experimental setup was developed consisting of a vibration exciter to generate defined vibrational states and accelerometers for monitoring. During the fermentation of skim milk, vibrations (frequency sweep: 25 to 1,005 Hz) were introduced at different pH (5.7 to 5.1, step width 0.1 units) for 200 s. Physical properties of set gels (syneresis, firmness) and resultant stirred yogurts (visible particles, rheology, laser diffraction) were analyzed. Vibrational treatments at pH 5.5 to 5.2 increased syneresis, gel firmness, and the number of large particles (d > 0.9 mm); hence, this period was considered critical. The particle number increased from 34 ± 5 to 242 ± 16 particles per 100 g of yogurt due to vibrations at pH 5.4. In further experiments, yogurts were excited with fixed frequencies (30, 300, and 1,000 Hz). All treatments increased syneresis, firmness, and particle formation. As the strongest effect was observed by applying 30 Hz, the amplitude was set to vibration accelerations of a = 5, 10, 15, 20, and 25 m/s 2 in the final experiments. The number of large particles was increased due to each treatment and a positive correlation with the amplitude was found. We concluded that vibrations during gelation increase the collision probability of aggregating milk proteins, resulting in a compressed set gel with syneresis. Resultant stirred yogurts exhibit large particles with a compact structure leading to a reduced water-holding capacity and product viscosity. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Plasma-induced formation of flower-like Ag2O nanostructures

    International Nuclear Information System (INIS)

    Yang, Zen-Hung; Ho, Chun-Hsien; Lee, Szetsen

    2015-01-01

    Graphical abstract: Flower-like Ag 2 O nanostructures. - Highlights: • Flower-like Ag 2 O nanostructures were synthesized from Ag colloids using plasma. • XPS was used to monitor plasma treatment effect on Ag colloids. • SERS of methyl orange was used to monitor the plasma oxidation–reduction processes. • Photocatalytic degradation of methylene blue was performed using Ag 2 O. • Ag 2 O is a more efficient visible light photocatalyst than Ag colloids. - Abstract: Plasma treatment effect on Ag colloids was investigated using X-ray photoelectron spectroscopy (XPS) and surface-enhanced Raman scattering (SERS) techniques. XPS showed that O 2 plasma was critical in removing organic residues in Ag colloids synthesized using citric acid as a reducing agent. With O 2 plasma treatment, Ag colloids were also oxidized to form flower-like Ag 2 O nanostructures. The formation mechanism is proposed. The SERS spectral intensity of methyl orange (MO) adsorbed on Ag surface became deteriorated with O 2 plasma treatment. Followed by H 2 plasma treatment, the SERS intensity of MO on Ag regained, which indicated that Ag 2 O has been reduced to Ag. Nonetheless, the reduction by H 2 plasma could not bring Ag back to the original as-synthesized nanoparticle morphology. The flower-like nanostructure morphology still remained. The photocatalytic degradation reactions of methylene blue (MB) aqueous solutions were carried out using Ag colloids and Ag 2 O nanostructures. The results show that Ag 2 O is more efficient than Ag colloids and many other metal oxi