WorldWideScience

Sample records for cdms ii fermi

  1. Advancing the Search for Dark Matter: from CDMS II to SuperCDMS

    Energy Technology Data Exchange (ETDEWEB)

    Hertel, Scott A. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2012-09-01

    An overwhelming proportion of the universe (83% by mass) is composed of particles we know next to nothing about. Detecting these dark matter particles directly, through hypothesized weak-force-mediated recoils with nuclear targets here on earth, could shed light on what these particles are, how they relate to the standard model, and how the standard model ts within a more fundamental understanding. This thesis describes two such experimental eorts: CDMS II (2007-2009) and SuperCDMS Soudan (ongoing). The general abilities and sensitivities of both experiments are laid out, placing a special emphasis on the detector technology, and how this technology has evolved from the rst to the second experiment. Some topics on which I spent signicant eorts are described here only in overview (in particular the details of the CDMS II analysis, which has been laid out many times before), and some topics which are not described elsewhere are given a somewhat deeper treatment. In particular, this thesis is hopefully a good reference for those interested in the annual modulation limits placed on the low-energy portion of the CDMS II exposure, the design of the detectors for SuperCDMS Soudan, and an overview of the extremely informative data these detectors produce. It is an exciting time. The technology I've had the honor to work on the past few years provides a wealth of information about each event, more so than any other direct detection experiment, and we are still learning how to optimally use all this information. Initial tests from the surface and now underground suggest this technology has the background rejection abilities necessary for a planned 200kg experiment or even ton-scale experiment, putting us on the threshold of probing parameter space orders of magnitude from where the eld currently stands.

  2. Search for lightly ionizing particles using CDMS-II data and fabrication of CDMS detectors with improved homogeneity in properties

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Kunj Bihari [Texas A & M Univ., College Station, TX (United States)

    2013-12-01

    Fundamental particles are always observed to carry charges which are integral multiples of one-third charge of electron, e/3. While this is a well established experimental fact, the theoretical understanding for the charge quantization phenomenon is lacking. On the other hand, there exist numerous theoretical models that naturally allow for existence of particles with fractional electromagnetic charge. These particles, if existing, hint towards existence of physics beyond the standard model. Multiple high energy, optical, cosmological and astrophysical considerations restrict the allowable mass-charge parameter space for these fractional charges. Still, a huge unexplored region remains. The Cryogenic Dark Matter Search (CDMS-II), located at Soudan mines in northern Minnesota, employs germanium and silicon crystals to perform direct searches for a leading candidate to dark matter called Weakly Interacting Massive Particles (WIMPs). Alternately, the low detection threshold allows search for fractional electromagnetic-charged particles, or Lightly Ionizing Particles (LIPs), moving at relativistic speed. Background rejection is obtained by requiring that the magnitude and location of energy deposited in each detector be consistent with corresponding \\signatures" resulting from the passage of a fractionally charged particle. In this dissertation, the CDMS-II data is analyzed to search for LIPs, with an expected background of 0.078 0.078 events. No candidate events are observed, allowing exclusion of new parameter space for charges between e/6 and e/200.

  3. Development of CDMS-II Surface Event Rejection Techniques and Their Extensions to Lower Energy Thresholds

    Energy Technology Data Exchange (ETDEWEB)

    Hofer, Thomas James [Univ. of Minnesota, Minneapolis, MN (United States)

    2014-12-01

    The CDMS-II phase of the Cryogenic Dark Matter Search, a dark matter direct-detection experiment, was operated at the Soudan Underground Laboratory from 2003 to 2008. The full payload consisted of 30 ZIP detectors, totaling approximately 1.1 kg of Si and 4.8 kg of Ge, operated at temperatures of 50 mK. The ZIP detectors read out both ionization and phonon pulses from scatters within the crystals; channel segmentation and analysis of pulse timing parameters allowed e ective ducialization of the crystal volumes and background rejection su cient to set world-leading limits at the times of their publications. A full re-analysis of the CDMS-II data was motivated by an improvement in the event reconstruction algorithms which improved the resolution of ionization energy and timing information. The Ge data were re-analyzed using three distinct background-rejection techniques; the Si data from runs 125 - 128 were analyzed for the rst time using the most successful of the techniques from the Ge re-analysis. The results of these analyses prompted a novel \\mid-threshold" analysis, wherein energy thresholds were lowered but background rejection using phonon timing information was still maintained. This technique proved to have signi cant discrimination power, maintaining adequate signal acceptance and minimizing background leakage. The primary background for CDMS-II analyses comes from surface events, whose poor ionization collection make them di cult to distinguish from true nuclear recoil events. The novel detector technology of SuperCDMS, the successor to CDMS-II, uses interleaved electrodes to achieve full ionization collection for events occurring at the top and bottom detector surfaces. This, along with dual-sided ionization and phonon instrumentation, allows for excellent ducialization and relegates the surface-event rejection techniques of CDMS-II to a secondary level of background discrimination. Current and future SuperCDMS results hold great promise for mid- to low

  4. Measurement of Nuclear Recoils in the CDMS II Dark Matter Search

    Energy Technology Data Exchange (ETDEWEB)

    Fallows, Scott Mathew [Univ. of Minnesota, Minneapolis, MN (United States)

    2014-12-01

    The Cryogenic Dark Matter Search (CDMS) experiment is designed to directly detect elastic scatters of weakly-interacting massive dark matter particles (WIMPs), on target nuclei in semiconductor crystals composed of Si and Ge. These scatters would occur very rarely, in an overwhelming background composed primarily of electron recoils from photons and electrons, as well as a smaller but non-negligible background of WIMP-like nuclear recoils from neutrons. The CDMS II generation of detectors simultaneously measure ionization and athermal phonon signals from each scatter, allowing discrimination against virtually all electron recoils in the detector bulk. Pulse-shape timing analysis allows discrimination against nearly all remaining electron recoils taking place near detector surfaces. Along with carefully limited neutron backgrounds, this experimental program allowed for \\background- free" operation of CDMS II at Soudan, with less than one background event expected in each WIMP-search analysis. As a result, exclusionary upper-limits on WIMP-nucleon interaction cross section were placed over a wide range of candidate WIMP masses, ruling out large new regions of parameter space.

  5. Background Characterization and Discrimination in the Final Analysis of the CDMS II Phase of the Cryogenic Dark Matter Search

    Energy Technology Data Exchange (ETDEWEB)

    Fritts, Matthew C. [Univ. of Minnesota, Minneapolis, MN (United States)

    2011-02-01

    The Cryogenic Dark Matter Search (CDMS) is designed to detectWeakly-Interacting Massive Particles (WIMPs) in the Milky Way halo. The phase known as CDMS II was performed in the Soudan Underground Laboratory. The final set of CDMS II data, collected in 2007-8 and referred to as Runs 125-8, represents the largest exposure to date for the experiment. We seek collisions between WIMPs and atomic nuclei in disk-shaped germanium and silicon detectors. A key design feature is to keep the rate of collisions from known particles producing WIMP-like signals very small. The largest category of such background is interactions with electrons in the detectors that occur very close to one of the faces of the detector. The next largest category is collisions between energetic neutrons that bypass the experimental shielding and nuclei in the detectors. Analytical efforts to discriminate these backgrounds and to estimate the rate at which such discrimination fails have been refined and improved throughout each phase of CDMS. Next-generation detectors for future phases of CDMS require testing at cryogenic test facilities. One such facility was developed at the University of Minnesota in 2007 and has been used continuously since then to test detectors for the next phase of the experiment, known as SuperCDMS.

  6. The Cryogenic Dark Matter Search (CDMS-II) Experiment: First Results from the Soudan Mine

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Clarence Leeder [Stanford Univ., CA (United States)

    2004-09-01

    There is an abundance of evidence that the majority of the mass of the universe is in the form of non-baryonic non-luminous matter that was non-relativistic at the time when matter began to dominate the energy density. Weakly Interacting Massive Particles, or WIMPs, are attractive cold dark matter candidates because they would have a relic abundance today of ~0.1 which is consistent with precision cosmological measurements. WIMPs are also well motivated theoretically. Many minimal supersymmetric extensions of the Standard Model have WIMPs in the form of the lightest supersymmetric partner, typically taken to be the neutralino. The CDMS II experiment searches for WIMPs via their elastic scattering off of nuclei. The experiment uses Ge and Si ZIP detectors, operated at <50 mK, which simultaneously measure the ionization and athermal phonons produced by the scattering of an external particle. The dominant background for the experiment comes from electromagnetic interactions taking place very close to the detector surface. Analysis of the phonon signal from these interactions makes it possible to discriminate them from interactions caused by WIMPs. This thesis presents the details of an important aspect of the phonon pulse shape analysis known as the ''Lookup Table Correction''. The Lookup Table Correction is a position dependent calibration of the ZIP phonon response which improves the rejection of events scattering near the detector surface. The CDMS collaboration has recently commissioned its experimental installation at the Soudan Mine. This thesis presents an analysis of the data from the first WIMP search at the Soudan Mine. The results of this analysis set the world's lowest exclusion limit making the CDMS II experiment at Soudan the most sensitive WIMP search to this date.

  7. Improved WIMP-search reach of the CDMS II germanium data

    Energy Technology Data Exchange (ETDEWEB)

    Agnese, R.; Anderson, A. J.; Asai, M.; Balakishiyeva, D.; Barker, D.; Basu Thakur, R.; Bauer, D. A.; Billard, J.; Borgland, A.; Bowles, M. A.; Brandt, D.; Brink, P. L.; Bunker, R.; Cabrera, B.; Caldwell, D. O.; Calkins, R.; Cerdeno, D. G.; Chagani, H.; Chen, Y.; Cooley, J.; Cornell, B.; Crewdson, C. H.; Cushman, Priscilla B.; Daal, M.; Di Stefano, P. C.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Godfrey, G. L.; Golwala, S. R.; Hall, Jeter C.; Harris, H. R.; Hertel, S. A.; Hofer, T.; Holmgren, D.; Hsu, L.; Huber, M. E.; Jardin, D. M.; Jastram, A.; Kamaev, O.; Kara, B.; Kelsey, M. H.; Kennedy, A.; Kiveni, M.; Koch, K.; Leder, A.; Loer, B.; Lopez Asamar, E.; Lukens, P.; Mahapatra, R.; Mandic, V.; McCarthy, K. A.; Mirabolfathi, N.; Moffatt, R. A.; Oser, S. M.; Page, K.; Page, W. A.; Partridge, R.; Pepin, M.; Phipps, A.; Prasad, K.; Pyle, M.; Qiu, H.; Rau, W.; Redl, P.; Reisetter, A.; Ricci, Y.; Rogers, H. E.; Saab, T.; Sadoulet, B.; Sander, J.; Schneck, K.; Schnee, R. W.; Scorza, S.; Serfass, B.; Shank, B.; Speller, D.; Toback, D.; Upadhyayula, S.; Villano, A. N.; Welliver, B.; Wilson, J. S.; Wright, D. H.; Yang, X.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, J.

    2015-10-31

    CDMS II data from the five-tower runs at the Soudan Underground Laboratory were reprocessed with an improved charge-pulse fitting algorithm. Two new analysis techniques to reject surface-event backgrounds were applied to the 612 kg days germanium-detector weakly interacting massive particle (WIMP)-search exposure. An extended analysis was also completed by decreasing the 10 keV analysis threshold to ~5 keV, to increase sensitivity near a WIMP mass of 8 GeV/c2. After unblinding, there were zero candidate events above a deposited energy of 10 keV and six events in the lower-threshold analysis. This yielded minimum WIMP-nucleon spin-independent scattering cross-section limits of 1.8×10-44 and 1.18×10-41 at 90% confidence for 60 and 8.6 GeV/c2 WIMPs, respectively. This improves the previous CDMS II result by a factor of 2.4 (2.7) for 60 (8.6) GeV/c2 WIMPs.

  8. A dark-matter search using the final CDMS II dataset and a novel detector of surface radiocontamination

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Zeeshan [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2012-01-01

    Substantial evidence from galaxies, galaxy clusters, and cosmological scales suggests that ~85% of the matter of our universe is invisible. The missing matter, or "dark matter" is likely composed of non-relativistic, non-baryonic particles, which have very rare interactions with baryonic matter and with one another. Among dark matter candidates, Weakly Interacting Massive Particles (WIMPs) are particularly well motivated. In the early universe, thermally produced particles with weak-scale mass and interactions would `freeze out’ at the correct density to be dark matter today. Extensions to the Standard Model of particle physics, such as Supersymmetry, which solve gauge hierarchy and coupling unification problems, naturally provide such particles. Interactions of WIMPs with baryons are expected to be rare, but might be detectable in low-noise detectors. The Cryogenic Dark Matter Search (CDMS) experiment uses ionization- and phonon- sensitive germanium particle detectors to search for such interactions. CDMS detectors are operated at the Soudan Underground Laboratory in Minnesota, within a shielded environment to lower cosmogenic and radioactive background. The combination of phonon and ionization signatures from the detectors provides excellent residual-background rejection. This dissertation presents improved techniques for phonon calibration of CDMS II detectors and the analysis of the final CDMS II dataset with 612 kg-days of exposure. We set a limit of 3.8x10$^{-}$44 cm$^{2}$ on WIMP-nucleon spin-independent scattering cross section for a WIMP mass of 70 GeV/c$^{2}$. At the time this analysis was published, these data presented the most stringent limits on WIMP scattering for WIMP masses over 42 GeV/c$^{2}$, ruling out previously unexplored parameter space. Next-generation rare-event searches such as SuperCDMS, COUPP, and CLEAN will be limited in sensitivity, unless they achieve stringent control of the surface radioactive contamination on their detectors. Low

  9. Cryogenic dark matter search (CDMS II): Application of neural networks and wavelets to event analysis

    Energy Technology Data Exchange (ETDEWEB)

    Attisha, Michael J. [Brown U.

    2006-01-01

    The Cryogenic Dark Matter Search (CDMS) experiment is designed to search for dark matter in the form of Weakly Interacting Massive Particles (WIMPs) via their elastic scattering interactions with nuclei. This dissertation presents the CDMS detector technology and the commissioning of two towers of detectors at the deep underground site in Soudan, Minnesota. CDMS detectors comprise crystals of Ge and Si at temperatures of 20 mK which provide ~keV energy resolution and the ability to perform particle identification on an event by event basis. Event identification is performed via a two-fold interaction signature; an ionization response and an athermal phonon response. Phonons and charged particles result in electron recoils in the crystal, while neutrons and WIMPs result in nuclear recoils. Since the ionization response is quenched by a factor ~ 3(2) in Ge(Si) for nuclear recoils compared to electron recoils, the relative amplitude of the two detector responses allows discrimination between recoil types. The primary source of background events in CDMS arises from electron recoils in the outer 50 µm of the detector surface which have a reduced ionization response. We develop a quantitative model of this ‘dead layer’ effect and successfully apply the model to Monte Carlo simulation of CDMS calibration data. Analysis of data from the two tower run March-August 2004 is performed, resulting in the world’s most sensitive limits on the spin-independent WIMP-nucleon cross-section, with a 90% C.L. upper limit of 1.6 × 10-43 cm2 on Ge for a 60 GeV WIMP. An approach to performing surface event discrimination using neural networks and wavelets is developed. A Bayesian methodology to classifying surface events using neural networks is found to provide an optimized method based on minimization of the expected dark matter limit. The discrete wavelet analysis of CDMS phonon pulses improves surface event discrimination in conjunction with the neural

  10. A Search for WIMP Dark Matter Using an Optimized Chi-square Technique on the Final Data from the Cryogenic Dark Matter Search Experiment (CDMS II)

    Energy Technology Data Exchange (ETDEWEB)

    Manungu Kiveni, Joseph [Syracuse Univ., NY (United States)

    2012-12-01

    This dissertation describes the results of a WIMP search using CDMS II data sets accumulated at the Soudan Underground Laboratory in Minnesota. Results from the original analysis of these data were published in 2009; two events were observed in the signal region with an expected leakage of 0.9 events. Further investigation revealed an issue with the ionization-pulse reconstruction algorithm leading to a software upgrade and a subsequent reanalysis of the data. As part of the reanalysis, I performed an advanced discrimination technique to better distinguish (potential) signal events from backgrounds using a 5-dimensional chi-square method. This dataanalysis technique combines the event information recorded for each WIMP-search event to derive a backgrounddiscrimination parameter capable of reducing the expected background to less than one event, while maintaining high efficiency for signal events. Furthermore, optimizing the cut positions of this 5-dimensional chi-square parameter for the 14 viable germanium detectors yields an improved expected sensitivity to WIMP interactions relative to previous CDMS results. This dissertation describes my improved (and optimized) discrimination technique and the results obtained from a blind application to the reanalyzed CDMS II WIMP-search data.

  11. Fermi

    Data.gov (United States)

    National Aeronautics and Space Administration — Fermi is a powerful space observatory that will open a wide window on the universe. Gamma rays are the highest-energy form of light, and the gamma-ray sky is...

  12. The unbearable lightness of being: CDMS versus XENON

    CERN Document Server

    Frandsen, Mads T; McCabe, Christopher; Sarkar, Subir; Schmidt-Hoberg, Kai

    2013-01-01

    The CDMS-II collaboration has reported 3 events in a Si detector, which are consistent with being nuclear recoils due to scattering of Galactic dark matter particles with a mass of about 8.6 GeV and a cross-section on neutrons of about 2 x 10^-41 cm^2. While a previous result from the XENON10 experiment has supposedly ruled out such particles as dark matter, we find by reanalysing the XENON10 data that this is not the case. Some tension remains however with the upper limit placed by the XENON100 experiment, independently of astrophysical uncertainties concerning the Galactic dark matter distribution. We explore possible ways of ameliorating this tension by altering the properties of dark matter interactions. Nevertheless, even with standard couplings, light dark matter is consistent with both CDMS and XENON10/100.

  13. A search for particle dark matter using cryogenic germanium and silicon detectors in the one- and two- tower runs of CDMS-II at Soudan

    Energy Technology Data Exchange (ETDEWEB)

    Ogburn, IV, Reuben Walter [Stanford Univ., CA (United States)

    2008-06-01

    Images of the Bullet Cluster of galaxies in visible light, X-rays, and through gravitational lensing confirm that most of the matter in the universe is not composed of any known form of matter. The combined evidence from the dynamics of galaxies and clusters of galaxies, the cosmic microwave background, big bang nucleosynthesis, and other observations indicates that 80% of the universe's matter is dark, nearly collisionless, and cold. The identify of the dar, matter remains unknown, but weakly interacting massive particles (WIMPs) are a very good candidate. They are a natural part of many supersymmetric extensions to the standard model, and could be produced as a nonrelativistic, thermal relic in the early universe with about the right density to account for the missing mass. The dark matter of a galaxy should exist as a spherical or ellipsoidal cloud, called a 'halo' because it extends well past the edge of the visible galaxy. The Cryogenic Dark Matter Search (CDMS) seeks to directly detect interactions between WIMPs in the Milky Way's galactic dark matter halo using crystals of germanium and silicon. Our Z-sensitive ionization and phonon ('ZIP') detectors simultaneously measure both phonons and ionization produced by particle interactions. In order to find very rare, low-energy WIMP interactions, they must identify and reject background events caused by environmental radioactivity, radioactive contaminants on the detector,s and cosmic rays. In particular, sophisticated analysis of the timing of phonon signals is needed to eliminate signals caused by beta decays at the detector surfaces. This thesis presents the firs two dark matter data sets from the deep underground experimental site at the Soudan Underground Laboratory in Minnesota. These are known as 'Run 118', with six detectors (1 kg Ge, 65.2 live days before cuts) and 'Run 119', with twelve detectors (1.5 kg Ge, 74.5 live days before cuts). They have

  14. Searching for γ-ray emission from Reticulum II by Fermi-LAT

    Science.gov (United States)

    Zhao, Yi; Bi, Xiao-Jun; Yin, Peng-Fei; Zhang, Xinmin

    2018-02-01

    Recently, many new dwarf spheroidal satellites (dSphs) have been discovered by the Dark Energy Survey (DES). These dSphs are ideal candidates for probing for gamma-ray emissions from dark matter (DM) annihilation. However, no significant signature has been found by the Fermi-LAT dSph observations. In this work, we reanalyze the Fermi-LAT Pass 8 data from the direction of Reticulum II, where a slight excess has been reported by some previous studies. We treat Reticulum II (DES J0335.6-5403) as a spatially extended source, and find that no significant gamma-ray signature is observed. Based on this result, we set upper-limits on the DM annihilation cross section. Supported by National Natural Science Foundation of China (11121092, 11033005, 11375202, 11475191, 11475189), the CAS pilot B program (XDB23020000) and the National Key Program for Research and Development (2016YFA0400200)

  15. SuperCDMS Underground Detector Fabrication Facility

    Energy Technology Data Exchange (ETDEWEB)

    Platt, M.; Mahapatra, R.; Bunker, Raymond A.; Orrell, John L.

    2018-03-01

    The SuperCDMS SNOLAB dark matter experiment processes Ge and Si crystals into fully tested phonon and ionization detectors at surface fabrication and test facilities. If not mitigated, it is anticipated that trace-level production of radioisotopes in the crystals due to exposure to cosmic rays at (or above) sea level will result in the dominant source of background events in future dark matter searches using the current SuperCDMS detector technology. Fabrication and testing of detectors in underground facilities shielded from cosmic radiation is one way to directly reduce production of trace levels of radioisotopes, thereby improving experimental sensitivity for the discovery of dark matter beyond the level of the current experiment. In this report, we investigate the cost and feasibility to establish a complete detector fabrication processing chain in an underground location to mitigate cosmogenic activation of the Ge and Si detector substrates. For a specific and concrete evaluation, we explore options for such a facility located at SNOLAB, an underground laboratory in Sudbury, Canada hosting the current and future experimental phases of SuperCDMS.

  16. Bulk Fermi surface of the Weyl type-II semimetallic candidate γ -MoTe2

    Science.gov (United States)

    Rhodes, D.; Schönemann, R.; Aryal, N.; Zhou, Q.; Zhang, Q. R.; Kampert, E.; Chiu, Y.-C.; Lai, Y.; Shimura, Y.; McCandless, G. T.; Chan, J. Y.; Paley, D. W.; Lee, J.; Finke, A. D.; Ruff, J. P. C.; Das, S.; Manousakis, E.; Balicas, L.

    2017-10-01

    The electronic structure of semimetallic transition-metal dichalcogenides, such as WTe2 and orthorhombic γ -MoTe2 , are claimed to contain pairs of Weyl points or linearly touching electron and hole pockets associated with a nontrivial Chern number. For this reason, these compounds were recently claimed to conform to a new class, deemed type-II, of Weyl semimetallic systems. A series of angle-resolved photoemission experiments (ARPES) claim a broad agreement with these predictions detecting, for example, Fermi arcs at the surface of these crystals. We synthesized single crystals of semimetallic MoTe2 through a Te flux method to validate these predictions through measurements of its bulk Fermi surface (FS) via quantum oscillatory phenomena. We find that the superconducting transition temperature of γ -MoTe2 depends on disorder as quantified by the ratio between the room- and low-temperature resistivities, suggesting the possibility of an unconventional superconducting pairing symmetry. Similarly to WTe2, the magnetoresistivity of γ -MoTe2 does not saturate at high magnetic fields and can easily surpass 106%. Remarkably, the analysis of the de Haas-van Alphen (dHvA) signal superimposed onto the magnetic torque indicates that the geometry of its FS is markedly distinct from the calculated one. The dHvA signal also reveals that the FS is affected by the Zeeman effect precluding the extraction of the Berry phase. A direct comparison between the previous ARPES studies and density-functional-theory (DFT) calculations reveals a disagreement in the position of the valence bands relative to the Fermi level ɛF. Here, we show that a shift of the DFT valence bands relative to ɛF, in order to match the ARPES observations, and of the DFT electron bands to explain some of the observed dHvA frequencies, leads to a good agreement between the calculations and the angular dependence of the FS cross-sectional areas observed experimentally. However, this relative displacement

  17. Search for Axions with the CDMS Experiment

    International Nuclear Information System (INIS)

    CDMS Collaboration

    2009-01-01

    We report on the first axion search results from the Cryogenic Dark Matter Search (CDMS) experiment at the Soudan Underground Laboratory. An energy threshold of 2 keV for electron-recoil events allows a search for possible solar axion conversion into photons or local Galactic axion conversion into electrons in the germanium crystal detectors. The solar axion search sets an upper limit on the Primakov coupling g aγγ of 2.4 x 10 ?9 GeV -1 at the 95% confidence level for an axion mass less than 0.1 keV/c 2 . This limit benefits from the first precise measurement of the absolute crystal plane orientations in this type of experiment. The Galactic axion search analysis sets a world-leading experimental upper limit on the axio-electric coupling g a# bar e# e of 1.4 x 10 -12 at the 90% confidence level for an axion mass of 2.5 keV/c 2 . This analysis excludes an interpretation of the DAMA annual modulation result in terms of Galactic axion interactions for axion masses above 1.4 keV/c 2

  18. CDMS: CAD data set system design description. Revision 1

    International Nuclear Information System (INIS)

    Gray, E.L.

    1994-01-01

    This document is intended to formalize the program design of the CAD Data Set Management System (CDMS) and to be the vehicle to communicate the design to the Engineering, Design Services, and Configuration Management organizations and the WHC IRM Analysts/Programmers. The SDD shows how the software system will be structured to satisfy the requirements identified in the WHC-SD-GN-CSRS-30005 CDMS Software Requirement Specification (SRS). It is a description of the software structure, software components, interfaces, and data that make up the CDMS System. The design descriptions contained within this document will describe in detail the software product that will be developed to assist the aforementioned organizations for the express purpose of managing CAD data sets associated with released drawings, replacing the existing locally developed system and laying the foundation for automating the configuration management

  19. Enrico Fermi

    Indian Academy of Sciences (India)

    IAS Admin

    (hereafter Fermi) – the first world war had ended, and Trieste and. Trento had been won back from Austria though at great human cost. Fermi completed his PhD at Pisa in 1922, just around the time the .... That year only two Nobel awards were given – to Pearl Buck for literature, to Fermi for physics. Fermi, Laura and their ...

  20. Prototyping an Active Neutron Veto for SuperCDMS

    Energy Technology Data Exchange (ETDEWEB)

    Calkins, Robert [Southern Methodist U.; Loer, Ben [Fermilab

    2015-08-17

    Neutrons, originating cosmogenically or from radioactive decays, can produce signals in dark matter detectors that are indistinguishable from Weakly Interacting Massive Particles (WIMPs). To combat this background for the SuperCDMS SNOLAB experiment, we are investigating designs for an active neutron veto within the constrained space of the compact SuperCDMS passive shielding. The current design employs an organic liquid scintillator mixed with an agent to enhance thermal neutron captures, with the scintillation light collected using wavelength-shifting fibers and read out by silicon photo-multipliers. We will describe the proposed veto and its predicted efficiency in detail and give some recent results from our R&D and prototyping efforts.

  1. Prototyping an active neutron veto for SuperCDMS

    Energy Technology Data Exchange (ETDEWEB)

    Calkins, Robert [Department of Physics, Southern Methodist University, Dallas, Texas 75275 (United States); Loer, Ben [Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States)

    2015-08-17

    Neutrons, originating cosmogenically or from radioactive decays, can produce signals in dark matter detectors that are indistinguishable from Weakly Interacting Massive Particles (WIMPs). To combat this background for the SuperCDMS SNOLAB experiment, we are investigating designs for an active neutron veto within the constrained space of the compact SuperCDMS passive shielding. The current design employs an organic liquid scintillator mixed with an agent to enhance thermal neutron captures, with the scintillation light collected using wavelength-shifting fibers and read out by silicon photo-multipliers. We will describe the proposed veto and its predicted efficiency in detail and give some recent results from our R&D and prototyping efforts.

  2. Testing and Characterization of SuperCDMS Dark Matter Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Shank, Benjamin [Stanford Univ., CA (United States)

    2014-05-01

    The Cryogenic Dark Matter Search (SuperCDMS) relies on collection of phonons and charge carriers in semiconductors held at tens of milliKelvin as handles for detection of Weakly Interacting Massive Particles (WIMPs). This thesis begins with a brief overview of the direct dark matter search (Chapter 1) and SuperCDMS detectors (Chapter 2). In Chapter 3, a 3He evaporative refrigerator facility is described. Results from experiments performed in-house at Stanford to measure carrier transport in high-purity germanium (HPGe) crystals operated at sub-Kelvin temperatures are presented in Chapter 4. Finally, in Chapter 5 a new numerical model and a time-domain optimal filtering technique are presented, both developed for use with superconducting Transition Edge Sensors (TESs), that provide excellent event reconstruction for single particle interactions in detectors read out with superconducting W-TESs coupled to energy-collecting films of Al. This thesis is not intended to be read straight through. For those new to CDMS or dark matter searches, the first two chapters are meant to be a gentle introduction for experimentalists. They are by no means exhaustive. The remaining chapters each stand alone, with different audiences.

  3. Geneva University: Dark matter Search with the CDMS experiment

    CERN Multimedia

    Université de Genève

    2011-01-01

    Geneva University Physics Department 24, quai Ernest-Ansermet CH-1211 Geneva 4 Tel: (022) 379 62 73 Fax: (022) 379 69 92   Wednesday 21 September 2011 PARTICLE PHYSICS SEMINAR at 17.00 hrs – Stückelberg Auditorium “ Dark matter Search with the CDMS experiment ” Par Dr. Sebastian Arrenberg, Université de Zürich The Cryogenic Dark Matter Search experiment (CDMS) employs a total of 30 germanium and silicon detectors at the Soudan Underground Laboratory to detect weakly interacting massive particles (WIMPs) via their scattering from the target nuclei. Previous CDMS results, released in December 2009, set the world leading limit on the spin-independent WIMP-nucleon cross section above WIMP masses of ~50 GeV/c2 assuming elastic scattering.  In a subsequent analysis we investigated the inelastic dark matter scenario which was proposed to reconcile the disagreement between the results of DAMA/LIBRA and other existing dark matter searc...

  4. Search for Low-Mass Dark Matter wtih SuperCDMS Soudan and Study of Shorted Electric Field Configurations in CDMS Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Schneck, Kristiana [Stanford Univ., CA (United States)

    2015-01-01

    The area of dark matter is one of the most interesting and exciting topics in physics today. Existing at the intersection of particle physics and astrophysics, the existence of a new dark matter particle can be used to explain many astrophysical and cosmological observations, as well as to reconcile outstanding issues in the standard model of particle physics. Experiments such as SuperCDMS are built to detect dark matter in the lab by looking for low-energy nuclear recoils produced by collisions between dark matter particles and atoms in terrestrial detectors. SuperCDMS Soudan is particularly well-suited to follow up on possible hints of low-mass dark matter seen by other recent experiments because of its low thresholds and excellent background discrimination. Analyzing SuperCDMS Soudan data to look for low-mass dark matter comes with particular challenges because of the low signal-to-noise very near threshold. However, with a detailed background model developed by scaling high-energy events down into the low-energy signal region, SuperCDMS Soudan produced worldleading limits on the existence of low-mass dark matter. In addition, a few SuperCDMS Soudan detectors experienced cold hardware problems that can affect the data collected. Of particular interest is one detector considered for the low-mass WIMP search that has one of its charge electrodes shorted to chassis ground. Three events were observed in this detector upon unblinding the SuperCDMS Soudan low-energy data, even though <1 event was expected based on pre-unblinding calulations. However, the data collected by the shorted detector may have been compromised since an electrode shorted to ground will modify the electric field in the detector. The SuperCDMS Detector Monte Carlo (DMC) provides an excellent way to model the effects of the modified electric field, so a new model of the expected backgrounds in the low-mass WIMP search is developed using the DMC to try to explain how the short may have affected the

  5. Fermi Transport

    Indian Academy of Sciences (India)

    IAS Admin

    geometric and topological aspects of physics including general relativity, the geometric phase in quantum mechanics and optics. Of late he has been pursuing ... Suggested Reading. [1]. E Fermi, Atti. Accad. Naz. Lincei. Cl. Sci. Fis. Mat. & Nat., Vol.31, No.184, p.306, 1922. [2]. S Weinberg, Gravitation and Cosmology, John ...

  6. Supersymmetric model for dark matter and baryogenesis motivated by the recent CDMS result.

    Science.gov (United States)

    Allahverdi, Rouzbeh; Dutta, Bhaskar; Mohapatra, Rabindra N; Sinha, Kuver

    2013-08-02

    We discuss a supersymmetric model for cogenesis of dark and baryonic matter where the dark matter (DM) has mass in the 8-10 GeV range as indicated by several direct detection searches, including most recently the CDMS experiment with the desired cross section. The DM candidate is a real scalar field. Two key distinguishing features of the model are the following: (i) in contrast with the conventional weakly interacting massive particle dark matter scenarios where thermal freeze-out is responsible for the observed relic density, our model uses nonthermal production of dark matter after reheating of the Universe caused by moduli decay at temperatures below the QCD phase transition, a feature which alleviates the relic overabundance problem caused by small annihilation cross section of light DM particles and (ii) baryogenesis occurs also at similar low temperatures from the decay of TeV scale mediator particles arising from moduli decay. A possible test of this model is the existence of colored particles with TeV masses accessible at the LHC.

  7. A low-threshold analysis of CDMS shallow-site data

    Energy Technology Data Exchange (ETDEWEB)

    Akerib, D.S.; /Case Western Reserve U.; Attisha, M.J.; /Brown U.; Baudis, L.; /Zurich-Irchel U.; Bauer, D.A.; /Fermilab; Bolozdynya, A.I.; /Case Western Reserve U.; Brink, P.L.; /SLAC; Bunker, R.; /UC, Santa Barbara; Cabrera, B.; /Stanford U., Phys. Dept.; Caldwell, D.O.; /UC, Santa Barbara; Chang, C.L.; /Stanford U., Phys. Dept.; Clarke, R.M.; /Stanford U., Phys. Dept. /Southern Methodist U.

    2010-10-01

    Data taken during the final shallow-site run of the first tower of the Cryogenic Dark Matter Search (CDMS II) detectors have been reanalyzed with improved sensitivity to small energy depositions. Four {approx}224 g germanium and two {approx}105 g silicon detectors were operated at the Stanford Underground Facility (SUF) between December 2001 and June 2002, yielding 118 live days of raw exposure. Three of the germanium and both silicon detectors were analyzed with a new low-threshold technique, making it possible to lower the germanium and silicon analysis thresholds down to the actual trigger thresholds of {approx}1 keV and {approx}2 keV, respectively. Limits on the spin-independent cross section for weakly interacting massive particles (WIMPs) to elastically scatter from nuclei based on these data exclude interesting parameter space for WIMPs with masses below 9 GeV/c{sup 2}. Under standard halo assumptions, these data partially exclude parameter space favored by interpretations of the DAMA/LIBRA and CoGeNT experiments data as WIMP signals, and exclude new parameter space for WIMP masses between 3 GeV/c{sup 2} and 4 GeV/c{sup 2}.

  8. A Low-threshold Analysis of CDMS Shallow-site Data

    Energy Technology Data Exchange (ETDEWEB)

    Akerib, D.S.; /Case Western Reserve U.; Attisha, M.J.; /Brown U.; Baudis, L.; /Zurich-Irchel U.; Bauer, D.A.; /Fermilab; Bolozdynya, A.I.; /Case Western Reserve U.; Brink, P.L.; /SLAC; Bunker, R.; /UC, Santa Barbara; Cabrera, B.; /Stanford U., Phys. Dept.; Caldwell, D.O.; /UC, Santa Barbara; Chang, C.L.; /Stanford U., Phys. Dept.; Clarke, R.M.; /Stanford U., Phys. Dept.; Cooley, J.; /Southern Methodist U.; Crisler, M.B.; /Fermilab; Cushman, P.; /Minnesota U.; DeJongh, F.; /Fermilab; Dixon, R.; /Fermilab; Driscoll, D.D.; /Case Western Reserve U.; Filippini, J.; /Caltech; Funkhouser, S.; /UC, Berkeley; Gaitskell, R.J.; /Brown U.; Golwala, S.R.; /Caltech /Fermilab /Fermilab /Colorado U., Denver /Case Western Reserve U. /Texas A-M /Minnesota U. /UC, Berkeley /UC, Berkeley /Caltech /Stanford U., Phys. Dept. /UC, Santa Barbara /Stanford U., Phys. Dept. /Minnesota U. /Queen' s U., Kingston /Minnesota U. /St. Olaf Coll. /Florida U. /LBL, Berkeley /UC, Berkeley /Texas A-M /UC, Santa Barbara /Syracuse U. /UC, Berkeley /Princeton U. /Case Western Reserve U. /Stanford U., Phys. Dept. /UC, Santa Barbara /Fermilab /Santa Clara U.

    2012-06-04

    Data taken during the final shallow-site run of the first tower of the Cryogenic Dark Matter Search (CDMS II) detectors have been reanalyzed with improved sensitivity to small energy depositions. Four {approx}224 g germanium and two {approx}105 g silicon detectors were operated at the Stanford Underground Facility (SUF) between December 2001 and June 2002, yielding 118 live days of raw exposure. Three of the germanium and both silicon detectors were analyzed with a new low-threshold technique, making it possible to lower the germanium and silicon analysis thresholds down to the actual trigger thresholds of {approx}1 and {approx}2 keV, respectively. Limits on the spin-independent cross section for weakly interacting massive particles (WIMPs) to elastically scatter from nuclei based on these data exclude interesting parameter space for WIMPs with masses below 9 GeV/c{sup 2}. Under standard halo assumptions, these data partially exclude parameter space favored by interpretations of the DAMA/LIBRA and CoGeNT experiments data as WIMP signals, and exclude new parameter space for WIMP masses between 3 and 4 GeV/c{sup 2}.

  9. The cryogenics design of the SuperCDMS SNOLAB experiment

    Science.gov (United States)

    Hollister, M. I.; Bauer, D. A.; Dhuley, R. C.; Lukens, P.; Martin, L. D.; Ruschman, M. K.; Schmitt, R. L.; Tatkowski, G. L.

    2017-12-01

    The Super Cryogenic Dark Matter Search (SuperCDMS) experiment is a direct detection dark matter experiment intended for deployment to the SNOLAB underground facility in Ontario, Canada. With a payload of up to 186 germanium and silicon crystal detectors operating below 15 mK, the cryogenic architecture of the experiment is complex. Further, the requirement that the cryostat presents a low radioactive background to the detectors limits the materials and techniques available for construction, and heavily influences the design of the cryogenics system. The resulting thermal architecture is a closed cycle (no liquid cryogen) system, with stages at 50 and 4 K cooled with gas and fluid circulation systems and stages at 1 K, 250 mK and 15 mK cooled by the lower temperature stages of a large, cryogen-free dilution refrigerator. This paper describes the thermal design of the experiment, including details of the cooling systems, mechanical designs and expected performance of the system under operational conditions.

  10. Comparison of CDMS [100] and [111] Oriented Germanium Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Leman, S.W.; Hertel, S.A.; /MIT, MKI; Kim, P.; /SLAC; Cabrera, B.; /Stanford U., Phys. Dept.; Do Couto E.Silva, E.; /SLAC; Figueroa-Feliciano, E.; McCarthy, K.A.; /MIT, MKI; Resch, R.; /SLAC; Sadoulet, B.; Sundqvist, K.M.; /UC, Berkeley

    2012-09-14

    The Cryogenic Dark Matter Search (CDMS) utilizes large mass, 3-inch diameter x 1-inch thick target masses as particle detectors. The target is instrumented with both phonon and ionization sensors and comparison of energy in each channel provides event-by-event classification of electron and nuclear recoils. Fiducial volume is determined by the ability to obtain good phonon and ionization signal at a particular location. Due to electronic band structure in germanium, electron mass is described by an anisotropic tensor with heavy mass aligned along the symmetry axis defined by the [111] Miller index (L valley), resulting in large lateral component to the transport. The spatial distribution of electrons varies significantly for detectors which have their longitudinal axis orientations described by either the [100] or [111] Miller indices. Electric fields with large fringing component at high detector radius also affect the spatial distribution of electrons and holes. Both effects are studied in a 3 dimensional Monte Carlo and the impact on fiducial volume is discussed.

  11. I.I. Rabi in Atomic, Molecular & Optical Physics Prize Talk: Strongly Interacting Fermi Gases of Atoms and Molecules

    Science.gov (United States)

    Zwierlein, Martin

    2017-04-01

    Strongly interacting fermions govern physics at all length scales, from nuclear matter to modern electronic materials and neutron stars. The interplay of the Pauli principle with strong interactions can give rise to exotic properties that we do not understand even at a qualitative level. In recent years, ultracold Fermi gases of atoms have emerged as a new type of strongly interacting fermionic matter that can be created and studied in the laboratory with exquisite control. Feshbach resonances allow for unitarity limited interactions, leading to scale invariance, universal thermodynamics and a superfluid phase transition already at 17 Trapped in optical lattices, fermionic atoms realize the Fermi-Hubbard model, believed to capture the essence of cuprate high-temperature superconductors. Here, a microscope allows for single-atom, single-site resolved detection of density and spin correlations, revealing the Pauli hole as well as anti-ferromagnetic and doublon-hole correlations. Novel states of matter are predicted for fermions interacting via long-range dipolar interactions. As an intriguing candidate we created stable fermionic molecules of NaK at ultralow temperatures featuring large dipole moments and second-long spin coherence times. In some of the above examples the experiment outperformed the most advanced computer simulations of many-fermion systems, giving hope for a new level of understanding of strongly interacting fermions.

  12. Enrico Fermi

    Science.gov (United States)

    Yang, Chen Ning

    2013-05-01

    Enrico Fermi was, of all the great physicists of the 20th century, among the most respected and admired. He was respected and admired because of his contributions to both theoretical and experimental physics, because of his leadership in discovering for mankind a powerful new source of energy, and above all, because of his personal character. He was always reliable and trustworthy. He had both of his feet on the ground all the time. He had great strength, but never threw his weight around. He did not play to the gallery. He did not practise one-up-manship. He exemplified, I always believe, the perfect Confucian gentleman...

  13. Projected sensitivity of the SuperCDMS SNOLAB experiment

    Energy Technology Data Exchange (ETDEWEB)

    Agnese, R.; Anderson, A. J.; Aramaki, T.; Arnquist, I.; Baker, W.; Barker, D.; Basu Thakur, R.; Bauer, D. A.; Borgland, A.; Bowles, M. A.; Brink, P. L.; Bunker, R.; Cabrera, B.; Caldwell, D. O.; Calkins, R.; Cartaro, C.; Cerdeño, D. G.; Chagani, H.; Chen, Y.; Cooley, J.; Cornell, B.; Cushman, P.; Daal, M.; Di Stefano, P. C. F.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Fritts, M.; Gerbier, G.; Ghaith, M.; Godfrey, G. L.; Golwala, S. R.; Hall, J.; Harris, H. R.; Hofer, T.; Holmgren, D.; Hong, Z.; Hoppe, E.; Hsu, L.; Huber, M. E.; Iyer, V.; Jardin, D.; Jastram, A.; Kelsey, M. H.; Kennedy, A.; Kubik, A.; Kurinsky, N. A.; Leder, A.; Loer, B.; Lopez Asamar, E.; Lukens, P.; Mahapatra, R.; Mandic, V.; Mast, N.; Mirabolfathi, N.; Moffatt, R. A.; Morales Mendoza, J. D.; Orrell, J. L.; Oser, S. M.; Page, K.; Page, W. A.; Partridge, R.; Pepin, M.; Phipps, A.; Poudel, S.; Pyle, M.; Qiu, H.; Rau, W.; Redl, P.; Reisetter, A.; Roberts, A.; Robinson, A. E.; Rogers, H. E.; Saab, T.; Sadoulet, B.; Sander, J.; Schneck, K.; Schnee, R. W.; Serfass, B.; Speller, D.; Stein, M.; Street, J.; Tanaka, H. A.; Toback, D.; Underwood, R.; Villano, A. N.; von Krosigk, B.; Welliver, B.; Wilson, J. S.; Wright, D. H.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, X.; Zhao, X.

    2017-04-07

    SuperCDMS SNOLAB will be a next-generation experiment aimed at directly detecting low-mass (< 10 GeV/c$^2$) particles that may constitute dark matter by using cryogenic detectors of two types (HV and iZIP) and two target materials (germanium and silicon). The experiment is being designed with an initial sensitivity to nuclear recoil cross sections ~ 1 x 10$^{-43}$ cm$^2$ for a dark matter particle mass of 1 GeV/c$^2$, and with capacity to continue exploration to both smaller masses and better sensitivities. The phonon sensitivity of the HV detectors will be sufficient to detect nuclear recoils from sub-GeV dark matter. A detailed calibration of the detector response to low energy recoils will be needed to optimize running conditions of the HV detectors and to interpret their data for dark matter searches. Low-activity shielding, and the depth of SNOLAB, will reduce most backgrounds, but cosmogenically produced $^{3}$H and naturally occurring $^{32}$Si will be present in the detectors at some level. Even if these backgrounds are x10 higher than expected, the science reach of the HV detectors would be over three orders of magnitude beyond current results for a dark matter mass of 1 GeV/c$^2$. The iZIP detectors are relatively insensitive to variations in detector response and backgrounds, and will provide better sensitivity for dark matter particle masses (> 5 GeV/c$^2$). The mix of detector types (HV and iZIP), and targets (germanium and silicon), planned for the experiment, as well as flexibility in how the detectors are operated, will allow us to maximize the low-mass reach, and understand the backgrounds that the experiment will encounter. Upgrades to the experiment, perhaps with a variety of ultra-low-background cryogenic detectors, will extend dark matter sensitivity down to the "neutrino floor", where coherent scatters of solar neutrinos become a limiting background.

  14. Projected sensitivity of the SuperCDMS SNOLAB experiment

    Energy Technology Data Exchange (ETDEWEB)

    Agnese, R.; Anderson, A. J.; Aramaki, T.; Arnquist, I.; Baker, W.; Barker, D.; Basu Thakur, R.; Bauer, D. A.; Borgland, A.; Bowles, M. A.; Brink, P. L.; Bunker, R.; Cabrera, B.; Caldwell, D. O.; Calkins, R.; Cartaro, C.; Cerdeño, D. G.; Chagani, H.; Chen, Y.; Cooley, J.; Cornell, B.; Cushman, P.; Daal, M.; Di Stefano, P. C. F.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Fritts, M.; Gerbier, G.; Ghaith, M.; Godfrey, G. L.; Golwala, S. R.; Hall, J.; Harris, H. R.; Hofer, T.; Holmgren, D.; Hong, Z.; Hoppe, E.; Hsu, L.; Huber, M. E.; Iyer, V.; Jardin, D.; Jastram, A.; Kelsey, M. H.; Kennedy, A.; Kubik, A.; Kurinsky, N. A.; Leder, A.; Loer, B.; Lopez Asamar, E.; Lukens, P.; Mahapatra, R.; Mandic, V.; Mast, N.; Mirabolfathi, N.; Moffatt, R. A.; Morales Mendoza, J. D.; Orrell, J. L.; Oser, S. M.; Page, K.; Page, W. A.; Partridge, R.; Pepin, M.; Phipps, A.; Poudel, S.; Pyle, M.; Qiu, H.; Rau, W.; Redl, P.; Reisetter, A.; Roberts, A.; Robinson, A. E.; Rogers, H. E.; Saab, T.; Sadoulet, B.; Sander, J.; Schneck, K.; Schnee, R. W.; Serfass, B.; Speller, D.; Stein, M.; Street, J.; Tanaka, H. A.; Toback, D.; Underwood, R.; Villano, A. N.; von Krosigk, B.; Welliver, B.; Wilson, J. S.; Wright, D. H.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, X.; Zhao, X.

    2017-04-01

    SuperCDMS SNOLAB will be a next-generation experiment aimed at directly detecting low-mass particles (with masses ≤ 10 GeV/c^2) that may constitute dark matter by using cryogenic detectors of two types (HV and iZIP) and two target materials (germanium and silicon). The experiment is being designed with an initial sensitivity to nuclear recoil cross sections ~1×10^-43 cm^2 for a dark matter particle mass of 1 GeV/c^2, and with capacity to continue exploration to both smaller masses and better sensitivities. The phonon sensitivity of the HV detectors will be sufficient to detect nuclear recoils from sub-GeV dark matter. A detailed calibration of the detector response to low-energy recoils will be needed to optimize running conditions of the HV detectors and to interpret their data for dark matter searches. Low-activity shielding, and the depth of SNOLAB, will reduce most backgrounds, but cosmogenically produced H-3 and naturally occurring Si-32 will be present in the detectors at some level. Even if these backgrounds are 10 times higher than expected, the science reach of the HV detectors would be over 3 orders of magnitude beyond current results for a dark matter mass of 1 GeV/c^2. The iZIP detectors are relatively insensitive to variations in detector response and backgrounds, and will provide better sensitivity for dark matter particles with masses ≳5 GeV/c^2. The mix of detector types (HV and iZIP), and targets (germanium and silicon), planned for the experiment, as well as flexibility in how the detectors are operated, will allow us to maximize the low-mass reach, and understand the backgrounds that the experiment will encounter. Upgrades to the experiment, perhaps with a variety of ultra-low-background cryogenic detectors, will extend dark matter sensitivity down to the “neutrino floor,” where coherent scatters of solar neutrinos become a limiting background.

  15. Optimizing SuperCDMS phonon energy sensitivity by studying quasiparticle transport in Al films

    Science.gov (United States)

    Yen, Jeffrey; Shank, Benjamin; Cabrera, Blas; Moffatt, Robert; Redl, Peter; Brink, Paul; Tomada, Astrid; Cherry, Matt; Young, Betty; Tortorici, Teddy; Kreikebaum, John Mark

    2014-03-01

    In order to further improve the phonon energy sensitivity of Cryogenic Dark Matter Search (CDMS) detectors, we studied quasiparticle transport at ~ 40 mK in superconducting Al films similar in geometry to those used for CDMS detectors. Test structures of Al were deposited and photolithographically patterned on Si wafers using the same production-line equipment used to fabricate kg-scale CDMS detectors. Three Al film lengths and two film thicknesses were used in this study. In the test experiments described here, an 55Fe source was used to excite a NaCl reflector, producing 2.6 keV x-rays that hit our test devices after passing through a collimator. The impinging x-rays broke Cooper pairs in the Al films, producing quasiparticles that propagated into W transition edge sensors (TESs) coupled to the ends of the Al films. In this talk, we will give the motivation behind these studies, describe our experimental setup, and compare our data to results obtained using signal processing models constructed from basic physical parameters. We show that a non-linear, non-stationary optimal filter applied to the data allows us to precisely measure quasiparticle diffusion and other aspects of energy transport in our thin-film Al-W test devices. These results are being used to further optimize next-generation CDMS detectors.

  16. Global analysis of the pMSSM in light of the Fermi GeV excess: prospects for the LHC Run-II and astroparticle experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bertone, Gianfranco; Calore, Francesca [GRAPPA, University of Amsterdam,Science Park 904, 1090 GL Amsterdam (Netherlands); Caron, Sascha [IMAPP, Radboud University Nijmegen,P.O. Box 9010, NL-6500 GL Nijmegen (Netherlands); Nikhef,Science Park 105, 1098XG Amsterdam (Netherlands); Ruiz, Roberto [Instituto de Física Corpuscular, IFIC-UV/CSIC, University of Valencia,Apartado 22085, E-46071 València (Spain); Kim, Jong Soo [Instituto de Física Teórica UAM/CSIC, Universidad Autónoma de Madrid,Cantoblanco, E-28049, Madrid (Spain); Trotta, Roberto [Imperial Centre for Inference and Cosmology,Imperial College London, Blackett Laboratory,Prince Consort Road, London SW7 2AZ (United Kingdom); Data Science Institute, William Penney Laboratory, Imperial College London,London SW7 2AZ (United Kingdom); Weniger, Christoph [GRAPPA, University of Amsterdam,Science Park 904, 1090 GL Amsterdam (Netherlands)

    2016-04-18

    We present a new global fit of the 19-dimensional phenomenological Minimal Supersymmetric Standard Model (pMSSM-19) that complies with all the latest experimental results from dark matter indirect, direct and accelerator dark matter searches. We show that the model provides a satisfactory explanation of the excess of gamma rays from the Galactic centre observed by the Fermi Large Area Telescope, assuming that it is produced by the annihilation of neutralinos in the Milky Way halo. We identify two regions that pass all the constraints: the first corresponds to neutralinos with a mass ∼80−100 GeV annihilating into WW with a branching ratio of 95%; the second to heavier neutralinos, with mass ∼180−200 GeV annihilating into t-bart with a branching ratio of 87%. We show that neutralinos compatible with the Galactic centre GeV excess will soon be within the reach of LHC run-II — notably through searches for charginos and neutralinos, squarks and light smuons — and of Xenon1T, thanks to its unprecedented sensitivity to spin-dependent cross-section off neutrons.

  17. CDMS Detector Fabrication Improvements and Low Energy Nuclear Recoil Measurements in Germanium

    Energy Technology Data Exchange (ETDEWEB)

    Jastram, Andrew [Texas A & M Univ., College Station, TX (United States)

    2015-12-01

    As the CDMS (Cryogenic Dark Matter Search) experiment is scaled up to tackle new dark matter parameter spaces (lower masses and cross-sections), detector production efficiency and repeatability becomes ever more important. A dedicated facility has been commissioned for SuperCDMS detector fabrication at Texas A&M University (TAMU). The fabrication process has been carefully tuned using this facility and its equipment. Production of successfully tested detectors has been demonstrated. Significant improvements in detector performance have been made using new fabrication methods, equipment, and tuning of process parameters. This work has demonstrated the capability for production of next generation CDMS SNOLAB detectors. Additionally, as the dark matter parameter space is probed further, careful calibrations of detector response to nuclear recoil interactions must be performed in order to extract useful information (in relation to dark matter particle characterzations) from experimental results. A neutron beam of tunable energy is used in conjunction with a commercial radiation detector to characterize ionization energy losses in germanium during nuclear recoil events. Data indicates agreement with values predicted by the Lindhard equation, providing a best-t k-value of 0.146.

  18. A modified detector concept for SuperCDMS: The HiZIP and its charge performance

    Energy Technology Data Exchange (ETDEWEB)

    Page, Kedar Mohan [Queen' s U.

    2013-01-01

    SuperCDMS (Super Cryogenic Dark Matter Search) is a leading direct dark mat-ter search experiment which uses solid state detectors (Ge crystals) at milliKelvintemperatures to look for nuclear recoils caused by dark matter interactions in the de-tector. `Weakly Interacting Massive Particles' (WIMPs) are the most favoured darkmatter candidate particles. SuperCDMS, like many other direct dark matter searchexperiments, primarily looks for WIMPs. The measurement of both the ionizationand the lattice vibration (phonon) signals from an interaction in the detector allow itto discriminate against electron recoils which are the main source of background forWIMP detection.SuperCDMS currently operates about 9 kg of Ge detectors at the Soudan under-ground lab in northern Minnesota. In its next phase, SuperCDMS SNOLAB plansto use 100-200 kg of target mass (Ge) which would allow it to probe more of theinteresting and and as of yet unexplored parameter space for WIMPs predicted bytheoretical models. The SuperCDMS Queen's Test Facility is a detector test facilitywhich is intended to serve as detector testing and detector research and developmentpurposes for the SuperCDMS experiment.A modifed detector called the HiZIP (Half-iZIP), which is reduced in complex-ity in comparison to the currently used iZIP (interleaved Z-sensitive Ionization and Phonon mediated) detectors, is studied in this thesis. The HiZIP detector designalso serves to discriminate against background from multiple scatter events occurringclose to the surfaces in a single detector. Studies carried out to compare the surfaceevent leakage in the HiZIP detector using limited information from iZIP data takenat SuperCDMS test facility at UC Berkley produce a highly conservative upper limitof 5 out of 10,000 events at 90% condence level. This upper limit is the best amongmany different HiZIP congurations that were investigated and is comparable to theupper limit calculated for an HiZIP detector in the same way

  19. Search for Low-Mass Weakly Interacting Massive Particles with SuperCDMS

    Energy Technology Data Exchange (ETDEWEB)

    Agnese, R.; Anderson, Alan J.; Asai, M.; balakishiyeva, D.; Basu Thakur, R.; Bauer, D. A.; Beaty, John; Billard, J.; Borgland, A.; Bowles, M. A.; Brandt, D.; Brink, P. L.; Bunker, R.; Cabrera, B.; Caldwell, D. O.; Cerdeno, D. G.; Chagani, H.; Chen, Y.; Cherry, M.; Cooley, J.; Cornell, B.; Crewdson, C. H.; Cushman, Priscilla B.; Daal, M.; DeVaney, D.; DeStefano, PC F.; Do Couto E Silva, E.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Godfrey, G. L.; Golwala, S. R.; Hall, Jeter C.; Hansen, S.; Harris, Harold R.; Hertel, S. A.; Hines, B. A.; Hofer, T.; Holmgren, D.; Hsu, L.; Huber, M. E.; Jastram, A.; Kamaev, O.; Kara, B.; Kelsey, M. H.; Kenany, S.; Kennedy, A.; Kiveni, M.; Koch, K.; Leder, A.; Loer, B.; Lopez Asamar, E.; Mahapatra, R.; Mandic, V.; Martinez, C.; McCarthy, K. A.; Mirabolfathi, M.; Moffatt, R. A.; Nelson, R. H.; Novak, L.; Page, K.; Partridge, R.; Pepin, M.; Phipps, A.; Platt, M.; Prasad, K.; Pyle, M.; Qiu, H.; Rau, W.; Redl, P.; Reisetter, A.; Resch, R. W.; Ricci, Y.; Ruschman, M.; Saab, T.; Sadoulet, B.; Sander, J.; Schmitt, R.; Schneck, K.; Schnee, Richard; Scorza, A.; Seitz, D.; Serfass, B.; Shank, B.; Speller, D.; Tomada, A.; Upadhyayula, S.; Villano, A. N.; Welliver, B.; Wright, D. H.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, J.

    2014-06-01

    We report a first search for weakly interacting massive particles (WIMPs) using the background rejection capabilities of SuperCDMS. An exposure of 577 kg-days was analyzed for WIMPs with mass < 30 GeV/c2, with the signal region blinded. Eleven events were observed after unblinding. We set an upper limit on the spin-independent WIMP-nucleon cross section of 1:2 10-42cm2 at 8 GeV/c2. This result is in tension with WIMP interpretations of recent experiments and probes new parameter space for WIMP-nucleon scattering for WIMP masses < 6 GeV/c2.

  20. Fermi liquid theory

    CERN Document Server

    Apostol, M

    2001-01-01

    sup 3 He liquefies at 3.2 K under normal pressure, where its mean inter-particle separation of a few angstroms, is comparable with the range of the interaction potential (and with the mean inter-particle separation in the corresponding ideal gas); its thermal wavelength is about 8 A, so that, under this conditions, sup 3 He is a quantum liquid of fermions, or a Fermi liquid (sometimes called a normal Fermi liquid too). The motion of the sup 3 He atoms in the (repulsive) self-consistent, meanfield potential is affected by inertial effects, i.e. the particles possess an effective mass, and consequently they obey the Fermi distribution, like an ideal Fermi gas. In this paper the Landau's theory of the Fermi liquid is reviewed. (author)

  1. Thermal conductance modeling and characterization of the SuperCDMS-SNOLAB sub-Kelvin cryogenic system

    Energy Technology Data Exchange (ETDEWEB)

    Dhuley, R. C. [Fermilab; Hollister, M. I. [Fermilab; Ruschman, M. K. [Fermilab; Martin, L. D. [Fermilab; Schmitt, R. L. [Fermilab; Tatkowski, Tatkowski,G.L. [Fermilab; Bauer, D. a. [Fermilab; Lukens, P. T. [Fermilab

    2017-09-13

    The detectors of the Super Cryogenic Dark Matter Search experiment at SNOLAB (SuperCDMS SNOLAB) will operate in a seven-layered cryostat with thermal stages between room temperature and the base temperature of 15 mK. The inner three layers of the cryostat, which are to be nominally maintained at 1 K, 250 mK, and 15 mK, will be cooled by a dilution refrigerator via conduction through long copper stems. Bolted and mechanically pressed contacts, at and cylindrical, as well as exible straps are the essential stem components that will facilitate assembly/dismantling of the cryostat. These will also allow for thermal contractions/movements during cooldown of the sub-Kelvin system. To ensure that these components and their contacts meet their design thermal conductance, prototypes were fabricated and cryogenically tested. The present paper gives an overview of the SuperCDMS SNOLAB sub-Kelvin architecture and its conductance requirements. Results from the conductance measurements tests and from sub-Kelvin thermal modeling are discussed.

  2. Fermi comes to CERN

    CERN Multimedia

    NASA

    2009-01-01

    1. This view from NASA's Fermi Gamma-ray Space Telescope is the deepest and best-resolved portrait of the gamma-ray sky to date. The image shows how the sky appears at energies more than 150 million times greater than that of visible light. Among the signatures of bright pulsars and active galaxies is something familiar -- a faint path traced by the sun. (Credit: NASA/DOE/Fermi LAT Collaboration) 2. The Large Area Telescope (LAT) on Fermi detects gamma-rays through matter (electrons) and antimatter (positrons) they produce after striking layers of tungsten. (Credit: NASA/Goddard Space Flight Center Conceptual Image Lab)

  3. Fermi GBM Trigger Catalog

    Data.gov (United States)

    National Aeronautics and Space Administration — Fermi is a powerful space observatory that will open a wide window on the universe. Gamma rays are the highest-energy form of light, and the gamma-ray sky is...

  4. Fermi LAT GRBs

    Data.gov (United States)

    National Aeronautics and Space Administration — All analysis results presented here are preliminary and are not intended as an official catalog of Fermi-LAT detected GRBs. Please consult the table's caveat page...

  5. Enrico Fermi centenary exhibition seminar

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Photo 01: Dr. Juan Antonio Rubio, Leader of the Education and Technology Transfer Division and CERN Director General, Prof. Luciano Maiani. Photo 03: Luciano Maiani, Welcome and Introduction Photo 09: Antonino Zichichi, The New 'Centro Enrico Fermi' at Via Panisperna Photos 10, 13: Ugo Amaldi, Fermi at Via Panisperna and the birth of Nuclear Medicine Photo 14: Jack Steinberger, Fermi in Chicago Photo 18: Valentin Telegdi, A close-up of Fermi Photo 21: Arnaldo Stefanini, Celebrating Fermi's Centenary in Documents and Pictures.

  6. Radon mitigation for the SuperCDMS SNOLAB dark matter experiment

    Science.gov (United States)

    Street, J.; Bunker, R.; Miller, E. H.; Schnee, R. W.; Snyder, S.; So, J.

    2018-01-01

    A potential background for the SuperCDMS SNOLAB dark matter experiment is from radon daughters that have plated out onto detector surfaces. To reach desired backgrounds, understanding plate-out rates during detector fabrication as well as mitigating radon in surrounding air is critical. A radon mitigated cleanroom planned at SNOLAB builds upon a system commissioned at the South Dakota School of Mines & Technology (SD Mines). The ultra-low radon cleanroom at SD Mines has air supplied by a vacuum-swing-adsorption radon mitigation system that has achieved >1000× reduction for a cleanroom activity consistent with zero and <0.067 Bq m-3 at 90% confidence. Our simulation of this system, validated against calibration data, provides opportunity for increased understanding and optimization for this and future systems.

  7. Enrico Fermi exhibition at CERN

    CERN Multimedia

    2002-01-01

    A touring exhibition celebrating the centenary of Enrico Fermi's birth in 1901 will be on display at CERN (Main Building, Mezzanine) from 12-27 September. You are cordially invited to the opening celebration on Thursday 12 September at 16:00 (Main Building, Council Chamber), which will include speechs from: Luciano Maiani Welcome and Introduction Arnaldo Stefanini Celebrating Fermi's Centenary in Documents and Pictures Antonino Zichichi The New 'Centro Enrico Fermi' at Via Panisperna Ugo Amaldi Fermi at Via Panisperna and the birth of Nuclear Medicine Jack Steinberger Fermi in Chicago Valentin Telegdi A Close-up of Fermi and the screening of a documentary video about Fermi: Scienziati a Pisa: Enrico Fermi (Scientists at Pisa: Enrico Fermi) created by Francesco Andreotti for La Limonaia from early film, photographs and sound recordings (In Italian, with English subtitles - c. 30 mins). This will be followed by an aperitif on the Mezz...

  8. Sharper Fermi LAT Images

    Science.gov (United States)

    Portillo, Stephen; Finkbeiner, Douglas P.

    2015-01-01

    The Large Area Telescope on the Fermi Gamma-ray Space Telescope has a point spread function with large tails, consisting of events affected by tracker ineffiencies, inactive volumes, and hard scattering; these tails can make source confusion a limiting factor. The parameter CTBCORE, available in the publicly available Extended Fermi LAT data, estimates the quality of each event's direction reconstruction; by implementing a cut in this parameter, the tails of the point spread function can be suppressed at the cost of losing effective area. We implement cuts on CTBCORE and present updated instrument response functions derived from the Fermi LAT data itself, along with all-sky maps generated with these cuts. Having shown the effectiveness of these cuts, especially at low energies, we encourage their use in analyses where angular resolution is more important than Poisson noise.

  9. Fermi comes to CERN

    CERN Document Server

    2009-01-01

    In only 10 months of scientific activity, the Fermi space observatory has already collected an unprecedented wealth of information on some of the most amazing objects in the sky. In a recent talk at CERN, Luca Latronico, a member of the Fermi collaboration, explained some of their findings and emphasized the strong links between High Energy Physics (HEP) and High Energy Astrophysics (HEA). The Fermi gamma-ray telescope was launched by NASA in June 2008. After about two months of commissioning it started sending significant data back to the Earth. Since then, it has made observations that are changing our view of the sky: from discovering a whole new set of pulsars, the greatest total energy gamma-ray burst ever, to detecting an unexplained abundance of high-energy electrons that could be a signature of dark matter, to producing a uniquely rich and high definition sky map in gamma-rays. The high performance of the instrument comes as ...

  10. Fermi and nuclear security

    International Nuclear Information System (INIS)

    Alcober Bosch, V.

    2003-01-01

    Following the scientific life of Fermi the article reviews the historical evolution of nuclear security from the base of the first system foreseen for the CP-1 critical pile, which made it possible to demonstrate self-sustaining fission reaction, until the mid-fifties by which time the subsequent importance of this concept was perceived. Technological advances have gone hand in hand with the development of the concept of security, and have become a further point to be taken into account in any nuclear installation, and which Fermi always kept in mind during his professional life. (Author) 12 refs

  11. The Fermi Bubbles

    Science.gov (United States)

    Finkbeiner, Douglas P.

    2015-01-01

    The Fermi Bubbles are a pair of giant lobes at the heart of the Milky Way, extending roughly 50 degrees north and south of the Galactic Center, and emitting photons with energies up to 100 GeV. This previously unknown structure could be evidence for past activity of the central supermassive black hole, or enhanced star formation towards the inner Galaxy. We will describe the path to discovery of the Bubbles in multiwavelength data, from the first hints in microwave radiation measured by WMAP and X-rays from ROSAT, to the unveiling of their shape and spectrum using public gamma-ray data from the Fermi Gamma-ray Space Telescope, to more recent measurements by Planck and XMM-Newton. We will outline the current state of knowledge of the Bubbles' spectrum, morphology and internal structure, and discuss theoretical proposals and numerical simulations for their nature and origin.

  12. New Results from the Search for Low-Mass Weakly Interacting Massive Particles with the CDMS Low Ionization Threshold Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Agnese, R.; Anderson, A. J.; Aramaki, T.; Asai, M.; Baker, W.; Balakishiyeva, D.; Barker, D.; Basu Thakur, R.; Bauer, D. A.; Billard, J.; Borgland, A.; Bowles, M. A.; Brink, P. L.; Bunker, R.; Cabrera, B.; Caldwell, D. O.; Calkins, R.; Cerdeno, D. G.; Chagani, H.; Chen, Y.; Cooley, J.; Cornell, B.; Cushman, P.; Daal, M.; Di Stefano, P. C. F.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Ghaith, M.; Godfrey, G. L.; Golwala, S. R.; Hall, J.; Harris, H. R.; Hofer, T.; Holmgren, D.; Hsu, L.; Huber, M. E.; Jardin, D.; Jastram, A.; Kamaev, O.; Kara, B.; Kelsey, M. H.; Kennedy, A.; Leder, A.; Loer, B.; Lopez Asamar, E.; Lukens, P.; Mahapatra, R.; Mandic, V.; Mast, N.; Mirabolfathi, N.; Moffatt, R. A.; Morales Mendoza, J. D.; Oser, S. M.; Page, K.; Page, W. A.; Partridge, R.; Pepin, M.; Phipps, A.; Prasad, K.; Pyle, M.; Qiu, H.; Rau, W.; Redl, P.; Reisetter, A.; Ricci, Y.; Roberts, A.; Rogers, H. E.; Saab, T.; Sadoulet, B.; Sander, J.; Schneck, K.; Schnee, R. W.; Scorza, S.; Serfass, B.; Shank, B.; Speller, D.; Toback, D.; Underwood, R.; Upadhyayula, S.; Villano, A. N.; Welliver, B.; Wilson, J. S.; Wright, D. H.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, J.

    2016-02-01

    The CDMS low ionization threshold experiment (CDMSlite) uses cryogenic germanium detectors operated at a relatively high bias voltage to amplify the phonon signal in the search for weakly interacting massive particles (WIMPs). Results are presented from the second CDMSlite run with an exposure of 70 kg day, which reached an energy threshold for electron recoils as low as 56 eV. A fiducialization cut reduces backgrounds below those previously reported by CDMSlite. New parameter space for the WIMP-nucleon spin-independent cross section is excluded for WIMP masses between 1.6 and 5.5 GeV/c^2.

  13. Fermi centenary exhibition comes to CERN

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    A touring exhibition, "Enrico Fermi - immagini e documenti inediti" (Enrico Fermi - unpublished images and documents), celebrating the centenary of Enrico Fermi's birth in 1901 was on display at CERN from 12 to 27 September 2002.

  14. The many faces of Fermi

    Science.gov (United States)

    Delmastro, Marco

    2017-12-01

    When I settled down to read The Last Man Who Knew Everything by Davis Schwartz, I was asking myself whether there was any need for yet another Enrico Fermi biography. While navigating this ambitious book, I realized that maybe I knew less than I thought about Fermi, and that maybe there was still a lot I could learn.

  15. FERMI multi-chip module

    CERN Multimedia

    This FERMI multi-chip module contains five million transistors. 25 000 of these modules will handle the flood of information through parts of the ATLAS and CMS detectors at the LHC. To select interesting events for recording, crucial decisions are taken before the data leaves the detector. FERMI modules are being developed at CERN in partnership with European industry.

  16. Enrico Fermi Symposium at CERN : opening celebration

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit

    2002-01-01

    You are cordially invited to the opening celebration on Thursday 12 September at 16:00 (Main Building, Council Chamber), which will include speechs from: Luciano Maiani - Welcome and Introduction Antonino Zichichi - The New 'Centro Enrico Fermi' at Via Panisperna Ugo Amaldi - Fermi at Via Panisperna and the birth of Nuclear Medicine Jack Steinberger - Fermi in Chicago Valentin Telegdi - A Close-up of Fermi Arnaldo Stefanini - Celebrating Fermi's Centenary in Documents and Pictures and the screening of a documentary video about Fermi: Scienziati a Pisa: Enrico Fermi (Scientists at Pisa: Enrico Fermi) created by Francesco Andreotti for La Limonaia from early film, photographs and sound recordings (English version - c. 30 mins).

  17. Fermi, Heisenberg y Lawrence

    Directory of Open Access Journals (Sweden)

    Ynduráin, Francisco J.

    2002-01-01

    Full Text Available Not available

    Los azares de las onomásticas hacen coincidir en este año el centenario del nacimiento de tres de los más grandes físicos del siglo XX. Dos de ellos, Fermi y Heisenberg, dejaron una marca fundamental en la ciencia (ambos, pero sobre todo el segundo y, el primero, también en la tecnología. Lawrence, indudablemente de un nivel inferior al de los otros dos, estuvo sin embargo en el origen de uno de los desarrollos tecnológicos que han sido básicos para la exploración del universo subnuclear en la segunda mitad del siglo que ha terminado hace poco, el de los aceleradores de partículas.

  18. Anisotropic non-Fermi liquids

    Science.gov (United States)

    Sur, Shouvik; Lee, Sung-Sik

    2016-11-01

    We study non-Fermi-liquid states that arise at the quantum critical points associated with the spin density wave (SDW) and charge density wave (CDW) transitions in metals with twofold rotational symmetry. We use the dimensional regularization scheme, where a one-dimensional Fermi surface is embedded in (3 -ɛ ) -dimensional momentum space. In three dimensions, quasilocal marginal Fermi liquids arise both at the SDW and CDW critical points: the speed of the collective mode along the ordering wave vector is logarithmically renormalized to zero compared to that of Fermi velocity. Below three dimensions, however, the SDW and CDW critical points exhibit drastically different behaviors. At the SDW critical point, a stable anisotropic non-Fermi-liquid state is realized for small ɛ , where not only time but also different spatial coordinates develop distinct anomalous dimensions. The non-Fermi liquid exhibits an emergent algebraic nesting as the patches of Fermi surface are deformed into a universal power-law shape near the hot spots. Due to the anisotropic scaling, the energy of incoherent spin fluctuations disperse with different power laws in different momentum directions. At the CDW critical point, on the other hand, the perturbative expansion breaks down immediately below three dimensions as the interaction renormalizes the speed of charge fluctuations to zero within a finite renormalization group scale through a two-loop effect. The difference originates from the fact that the vertex correction antiscreens the coupling at the SDW critical point whereas it screens at the CDW critical point.

  19. Theory of Bose-Fermi Quantum Liquids

    International Nuclear Information System (INIS)

    Khalatnikov, I.M.

    1969-01-01

    A phenomenological theory of a mixture of Fermi and Bose liquids is presented here, similarly to Landau's procedure for Fermi liquids. We give a definition of the Fermi excitation energy in a superfluid liquid. An exact set of equations has been obtained which describes the properties of a Fermi-Bose liquid; the solutions in the acoustic range are discussed. (author)

  20. Enrico Fermi the obedient genius

    CERN Document Server

    Bruzzaniti, Giuseppe

    2016-01-01

    This biography explores the life and career of the Italian physicist Enrico Fermi, which is also the story of thirty years that transformed physics and forever changed our understanding of matter and the universe: nuclear physics and elementary particle physics were born, nuclear fission was discovered, the Manhattan Project was developed, the atomic bombs were dropped, and the era of “big science” began. It would be impossible to capture the full essence of this revolutionary period without first understanding Fermi, without whom it would not have been possible. Enrico Fermi: The Obedient Genius attempts to shed light on all aspects of Fermi’s life - his work, motivation, influences, achievements, and personal thoughts - beginning with the publication of his first paper in 1921 through his death in 1954. During this time, Fermi demonstrated that he was indeed following in the footsteps of Galileo, excelling in his work both theoretically and experimentally by deepening our understanding of the Pauli e...

  1. Dedicated Searches for Low and High Mass Wimps with the SuperCDMS Soudan iZIP Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Welliver, Bradford [Florida State Univ., Tallahassee, FL (United States)

    2016-01-01

    Recent cosmological evidence suggests most of the mass of the universe takes the form of a type of particle that we have not been able to directly detect. Nearly 80 years that have elapsed since the rst hints of this dark matter started to appear from astronomers without any direct detection. The high precision era of cosmology and unifying models of particle physics developed in the 20 th century have presented us with an exciting mystery at the intersection of these two elds that needs to be solved. SuperCDMS Soudan operates specialized germanium detectors (iZIPs) that are cooled to milliKelvin temperatures deep underground in the Soudan Underground Laboratory with the hope of detecting a rare collision between dark matter and a nucleus. A search for low-mass dark matter comes with multiple unique challenges since the background discrimination abilities of these detectors becomes less powerful at the low energies needed to probe low-mass dark matter since the signal to noise ratio deteriorates. Using a sophisticated background model via a pulse rescaling technique, SuperCDMS Soudan was able to produce a world leading exclusion limit on low-mass dark matter. Effort is to extend the analysis to higher masses require long running times during which many aspects of the detectors or the environment can change. Additional challenges are offered by the powerful background discrimination ability of the iZIP. The background distributions are well separated from the signal region, meaning most of the leakage arises from low-probability tails of the background distributions. In the absence of an enormous dataset, extrapolations from the bulk of the distribution are required. While attempting to obtain a model of gamma induced electron-recoils leaking into the signal region of the detector from high radius a curious asymmetry between the sides of the detectors was discovered potentially indicating an electronics or detector design problem. This thesis describes the physics

  2. Fermi acceleration in astrophysical jets

    OpenAIRE

    Rieger, Frank M.; Bosch-Ramon, Valenti; Duffy, Peter

    2006-01-01

    We consider the acceleration of energetic particles by Fermi processes (i.e., diffusive shock acceleration, second order Fermi acceleration, and gradual shear acceleration) in relativistic astrophysical jets, with particular attention given to recent progress in the field of viscous shear acceleration. We analyze the associated acceleration timescales and the resulting particle distributions, and discuss the relevance of these processes for the acceleration of charged particles in the jets of...

  3. A Search for Light Weakly-Interacting Massive Particles with SuperCDMS and Applications to Neutrino Physics

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Adam J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2015-01-01

    Cosmological and astrophysical evidence indicates that 85% of the matter content of the universe is in the form of non-baryonic dark matter. A large number of experiments are currently undertaking searches for weakly-interacting massive particles (WIMPs), the leading class of particle candidates for dark matter. This thesis describes the results of such a search with the SuperCDMS experiment, which uses Ge detectors cooled to 50 mK to detect ionization and phonons produced by particle interactions. We perform a blind analysis of 577 kg d of exposure on 7 detectors targeting WIMPs with masses < 30GeV/$c^{2}$, where anomalous results have been reported by previous experiments. No significant excess is observed and we set an upper limit on the spin-independent WIMP-nucleon cross section of 1.2 x 10$^{-42}$ cm2 at 8 GeV/$c^{2}$ We also set constraints on dark matter interactions independent of the dark matter halo physics, as well as on annual modulation of a dark matter signal. Cryogenic detectors similar to SuperCDMS also have potential applications in neutrino physics. We study several configurations in which dark matter detectors could be used with an intense neutrino source to detect an unmeasured Standard Model process called coherent neutrino scattering. This process may be useful, for example, as a calibration for next-generation dark matter detectors, and for constraining eV-scale sterile neutrinos. In addition, small cryogenic X-ray detectors on sounding rockets with large fields-of-view have the unique ability to constrain sterile neutrino dark matter. We set limits on sterile neutrino dark matter using an observation by the XQC instrument, and discuss prospects for a future observation of the galactic center using the Micro-X instrument.

  4. 7th International Fermi Symposium

    Science.gov (United States)

    2017-10-01

    The two Fermi instruments have been surveying the high-energy sky since August 2008. The Large Area Telescope (LAT) has discovered more than three thousand gamma-ray sources and many new source classes, bringing the importance of gamma-ray astrophysics to an ever-broadening community. The LAT catalog includes supernova remnants, pulsar wind nebulae, pulsars, binary systems, novae, several classes of active galaxies, starburst galaxies, normal galaxies, and a large number of unidentified sources. Continuous monitoring of the high-energy gamma-ray sky has uncovered numerous outbursts from a wide range of transients. Fermi LAT's study of diffuse gamma-ray emission in our Galaxy revealed giant bubbles, as well as an excess of gamma-rays from the Galactic center region, both observations have become exciting puzzles for the astrophysics community. The direct measurement of a harder-than- expected cosmic-ray electron spectrum may imply the presence of nearby cosmic-ray accelerators. LAT data have provided stringent constraints on new phenomena such as supersymmetric dark-matter annihilations as well as tests of fundamental physics. The full reprocessing of the entire mission dataset with Pass 8 includes improved event reconstruction, a wider energy range, better energy measurements, and significantly increased effective area, all them boosting the discovery potential and the ability to do precision observations with LAT. The Gamma-ray Burst Monitor (GBM) continues to be a prolific detector of gamma-ray transients: magnetars, solar flares, terrestrial gamma-ray flashes and gamma-ray bursts at keV to MeV energies, complementing the higher energy LAT observations of those sources in addition to providing valuable science return in their own right. All gamma-ray data are made immediately available at the Fermi Science Support Center (http://fermi.gsfc.nasa.gov/ssc). These publicly available data and Fermi analysis tools have enabled a large number of important studies. We

  5. The Fermiac or Fermi's Trolley

    Science.gov (United States)

    Coccetti, F.

    2016-03-01

    The Fermiac, known also as Fermi's trolley or Monte Carlo trolley, is an analog computer used to determine the change in time of the neutron population in a nuclear device, via the Monte Carlo method. It was invented by Enrico Fermi and constructed by Percy King at Los Alamos in 1947, and used for about two years. A replica of the Fermiac was built at INFN mechanical workshops of Bologna in 2015, on behalf of the Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", thanks to the original drawings made available by Los Alamos National Laboratory (LANL). This reproduction of the Fermiac was put in use, and a simulation was developed.

  6. Thomas-Fermi molecular dynamics

    International Nuclear Information System (INIS)

    Clerouin, J.; Pollock, E.L.; Zerah, G.

    1992-01-01

    A three-dimensional density-functional molecular-dynamics code is developed for the Thomas-Fermi density functional as a prototype for density functionals using only the density. Following Car and Parrinello [Phys. Rev. Lett. 55, 2471 (1985)], the electronic density is treated as a dynamical variable. The electronic densities are verified against a multi-ion Thomas-Fermi algorithm due to Parker [Phys. Rev. A 38, 2205 (1988)]. As an initial application, the effect of electronic polarization in enhancing ionic diffusion in strongly coupled plasmas is demonstrated

  7. Spin diffusion in Fermi gases

    DEFF Research Database (Denmark)

    Bruun, Georg

    2011-01-01

    We examine spin diffusion in a two-component homogeneous Fermi gas in the normal phase. Using a variational approach, analytical results are presented for the spin diffusion coefficient and the related spin relaxation time as a function of temperature and interaction strength. For low temperatures......, strong correlation effects are included through the Landau parameters which we extract from Monte Carlo results. We show that the spin diffusion coefficient has a minimum for a temperature somewhat below the Fermi temperature with a value that approaches the quantum limit ~/m in the unitarity regime...

  8. A microscope for Fermi gases

    International Nuclear Information System (INIS)

    Omran, Ahmed

    2016-01-01

    This thesis reports on a novel quantum gas microscope to investigate many-body systems of fermionic atoms in optical lattices. Single-site resolved imaging of ultracold lattice gases has enabled powerful studies of bosonic quantum many-body systems. The extension of this capability to Fermi gases offers new prospects to studying complex phenomena of strongly correlated systems, for which numerical simulations are often out of reach. Using standard techniques of laser cooling, optical trapping, and evaporative cooling, ultracold Fermi gases of 6 Li are prepared and loaded into a large-scale 2D optical lattice of flexible geometry. The atomic distribution is frozen using a second, short-scaled lattice, where we perform Raman sideband cooling to induce fluorescence on each atom while maintaining its position. Together with high-resolution imaging, the fluorescence signals allow for reconstructing the initial atom distribution with single-site sensitivity and high fidelity. Magnetically driven evaporative cooling in the plane allows for producing degenerate Fermi gases with almost unity filling in the initial lattice, allowing for the first microscopic studies of ultracold gases with clear signatures of Fermi statistics. By preparing an ensemble of spin-polarised Fermi gases, we detect a flattening of the density profile towards the centre of the cloud, which is a characteristic of a band-insulating state. In one set of experiments, we demonstrate that losses of atom pairs on a single lattice site due to light-assisted collisions are circumvented. The oversampling of the second lattice allows for deterministic separation of the atom pairs into different sites. Compressing a high-density sample in a trap before loading into the lattice leads to many double occupancies of atoms populating different bands, which we can image with no evidence for pairwise losses. We therefore gain direct access to the true number statistics on each lattice site. Using this feature, we can

  9. STEM education and Fermi problems

    Science.gov (United States)

    Holubova, Renata

    2017-01-01

    One of the research areas of Physics education is the study of the educational process. Investigations in this area are aimed for example on the teaching and learning process and its results. The conception of STEM education (Science, Technology, Engineering, and Mathematics) is discussed - it is one possible approach to the preparation of the curriculum and the focus on the educational process at basic and secondary schools. At schools in the Czech Republic STEM is much more realized by the application of interdisciplinary relations between subjects Physics-Nature-Technique. In both conceptions the aim is to support pupils' creativity, critical thinking, cross-curricular links. In this context the possibility of using Fermi problems in teaching Physics was discussed (as an interdisciplinary and constructivist activity). The aim of our research was the analysis of Fermi problems solving strategies, the ability of pupils to solve Fermi problems. The outcome of our analysis was to find out methods and teaching strategies which are important to use in teaching - how to solve qualitative and interdisciplinary tasks in physics. In this paper the theoretical basis of STEM education and Fermi problems will be presented. The outcome of our findings based on the research activities will be discussed so as our experiences from 10 years of Fermi problems competition that takes place at the Science Faculty, Palacky University in Olomouc. Changes in competencies of solving tasks by our students (from the point of view in terms of modern, activating teaching methods recommended by theory of Physics education and other science subjects) will be identified.

  10. Universal behavior of strongly correlated Fermi systems

    Energy Technology Data Exchange (ETDEWEB)

    Shaginyan, Vasilii R [B.P. Konstantinov St. Petersburg Institute of Nuclear Physics, Russian Academy of Sciences, Gatchina, Leningrad region, Rusian Federation (Russian Federation); Amusia, M Ya [A.F. Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg (Russian Federation); Popov, Konstantin G [Komi Scientific Center, Ural Branch of the Russian Academy of Sciences, Syktyvkar (Russian Federation)

    2007-06-30

    This review discusses the construction of a theory and the analysis of phenomena occurring in strongly correlated Fermi systems such as high-T{sub c} superconductors, heavy-fermion metals, and quasi-two-dimensional Fermi systems. It is shown that the basic properties and the universal behavior of strongly correlated Fermi systems can be described in the framework of the Fermi-condensate quantum phase transition and the well-known Landau paradigm of quasiparticles and the order parameter. The concept of fermion condensation may be fruitful in studying neutron stars, finite Fermi systems, ultra-cold gases in traps, and quark plasma. (reviews of topical problems)

  11. Universal behavior of strongly correlated Fermi systems

    International Nuclear Information System (INIS)

    Shaginyan, Vasilii R; Amusia, M Ya; Popov, Konstantin G

    2007-01-01

    This review discusses the construction of a theory and the analysis of phenomena occurring in strongly correlated Fermi systems such as high-T c superconductors, heavy-fermion metals, and quasi-two-dimensional Fermi systems. It is shown that the basic properties and the universal behavior of strongly correlated Fermi systems can be described in the framework of the Fermi-condensate quantum phase transition and the well-known Landau paradigm of quasiparticles and the order parameter. The concept of fermion condensation may be fruitful in studying neutron stars, finite Fermi systems, ultra-cold gases in traps, and quark plasma. (reviews of topical problems)

  12. Extending the Fermi-LAT Data Processing Pipeline to the Grid

    Science.gov (United States)

    Zimmer, S.; Arrabito, L.; Glanzman, T.; Johnson, T.; Lavalley, C.; Tsaregorodtsev, A.

    2012-12-01

    The Data Handling Pipeline (“Pipeline”) has been developed for the Fermi Gamma-Ray Space Telescope (Fermi) Large Area Telescope (LAT) which launched in June 2008. Since then it has been in use to completely automate the production of data quality monitoring quantities, reconstruction and routine analysis of all data received from the satellite and to deliver science products to the collaboration and the Fermi Science Support Center. Aside from the reconstruction of raw data from the satellite (Level 1), data reprocessing and various event-level analyses are also reasonably heavy loads on the pipeline and computing resources. These other loads, unlike Level 1, can run continuously for weeks or months at a time. In addition it receives heavy use in performing production Monte Carlo tasks. In daily use it receives a new data download every 3 hours and launches about 2000 jobs to process each download, typically completing the processing of the data before the next download arrives. The need for manual intervention has been reduced to less than 0.01% of submitted jobs. The Pipeline software is written almost entirely in Java and comprises several modules. The software comprises web-services that allow online monitoring and provides charts summarizing work flow aspects and performance information. The server supports communication with several batch systems such as LSF and BQS and recently also Sun Grid Engine and Condor. This is accomplished through dedicated job control services that for Fermi are running at SLAC and the other computing site involved in this large scale framework, the Lyon computing center of IN2P3. While being different in the logic of a task, we evaluate a separate interface to the Dirac system in order to communicate with EGI sites to utilize Grid resources, using dedicated Grid optimized systems rather than developing our own. More recently the Pipeline and its associated data catalog have been generalized for use by other experiments, and are

  13. Thermal gravitational radiation of Fermi gases and Fermi liquids

    International Nuclear Information System (INIS)

    Schafer, G.; Dehnen, H.

    1983-01-01

    In view of neutron stars the gravitational radiation power of the thermal ''zero-sound'' phonons of a Fermi liquid and the gravitational bremsstrahlung of a degenerate Fermi gas is calculated on the basis of a hard-sphere Fermi particle model. We find for the gravitational radiation power per unit volume P/sub( s/)approx. =[(9π)/sup 1/3//5] x GQ n/sup 5/3/(kT) 4 h 2 c 5 and P/sub( g/)approx. =(4 5 /5 3 )(3/π)/sup 2/3/ G a 2 n/sup 5/3/(kT) 4 /h 2 c 5 for the cases of ''zero sound'' and bremsstrahlung, respectively. Here Q = 4πa 2 is the total cross section of the hard-sphere fermions, where a represents the radius of their hard-core potential. The application to very young neutron stars results in a total gravitational luminosity of about 10 31 erg/sec

  14. Gamma-ray astronomy from the ground and the space: first analyses of the HESS-II hybrid array and search for blazar candidates among the unidentified Fermi-LAT sources

    International Nuclear Information System (INIS)

    Lefaucheur, Julien

    2015-01-01

    This manuscript is about high energy gamma-ray astronomy (between 30 GeV and 300 GeV) with the Fermi-LAT satellite and very high energy gamma-ray astronomy (above ∼100 GeV) via the H.E.S.S. experiment. The second phase of the H.E.S.S. experiment began in July 2012 with the inauguration of a fifth 28 m-diameter telescope added to the initial array composed of four 12 m-diameter imaging atmospheric Cherenkov telescopes. In the first part of this thesis, we present the development of an analysis in hybrid mode based on a multivariate method dedicated to detect and study sources with different spectral shapes and the first analysis results on real data. The second part is dedicated to the research of blazar candidates among the Fermi-LAT unidentified sources of the 2FGL catalog. A first development is based on a multivariate approach using discriminant parameters built with the 2FGL catalog parameters. A second development is done with the use of the WISE satellite catalog and a non-parametric technic in order to find the blazar-like infrared counterparts of the unidentified sources of the 2FGL catalog. (author)

  15. Emergent physics: Fermi point scenario

    OpenAIRE

    Volovik, G. E.

    2008-01-01

    The Fermi-point scenario of emergent gravity has the following consequences: gravity emerges together with fermionic and bosonic matter; emergent fermionic matter consists of massless Weyl fermions; emergent bosonic matter consists of gauge fields; Lorentz symmetry persists well above the Planck energy; space-time is naturally 4-dimensional; Universe is naturally flat; cosmological constant is naturally small or zero; underlying physics is based on discrete symmetries; `quantum gravity' canno...

  16. Thermodynamics of ultracold Fermi gases

    International Nuclear Information System (INIS)

    Nascimbene, Sylvain

    2010-01-01

    Complex Hamiltonians from condensed matter, such as the Fermi-Hubbard model, can be experimentally studied using ultracold gases. This thesis describes a new method for determining the equation of state of an ultracold gas, making the comparison with many-body theories straightforward. It is based on the measurement of the local pressure inside a trapped gas from the analysis of its in situ image. We first apply this method to the study of a Fermi gas with resonant interactions, a weakly-interacting 7 Li gas acting as a thermometer. Surprisingly, none of the existing many-body theories of the unitary gas accounts for the equation of state deduced from our study over its full range. The virial expansion extracted from the high-temperature data agrees with the resolution of the three-body problem. At low temperature, we observe, contrary to some previous studies, that the normal phase behaves as a Fermi liquid. Finally we obtain the critical temperature for superfluidity from a clear signature on the equation of state. We also measure the pressure of the ground state as a function of spin imbalance and interaction strength - measure directly relevant to describe the crust of neutron stars. Our data validate Monte-Carlo simulations and quantify the Lee-Huang-Yang corrections to mean-field interactions in low-density fermionic or bosonic superfluids. We show that, in most cases, the partially polarized normal phase can be described as a Fermi liquid of polarons. The polaron effective mass extracted from the equation of state is in agreement with a study of collective modes. (author)

  17. Enrico Fermi and the Dolomites

    Science.gov (United States)

    Battimelli, Giovanni; de Angelis, Alessandro

    2014-11-01

    Summer vacations in the Dolomites were a tradition among the professors of the Faculty of Mathematical and Physical Sciences at the University of Roma since the end of the XIX century. Beyond the academic walls, people like Tullio Levi-Civita, Federigo Enriques and Ugo Amaldi sr., together with their families, were meeting friends and colleagues in Cortina, San Vito, Dobbiaco, Vigo di Fassa and Selva, enjoying trekking together with scientific discussions. The tradition was transmitted to the next generations, in particular in the first half of the XX century, and the group of via Panisperna was directly connected: Edoardo Amaldi, the son of the mathematician Ugo sr., rented at least during two summers, in 1925 and in 1949, and in the winter of 1960, a house in San Vito di Cadore, and almost every year in the Dolomites; Enrico Fermi was a frequent guest. Many important steps in modern physics, in particular the development of the Fermi-Dirac statistics and the Fermi theory of beta decay, are related to scientific discussions held in the region of the Dolomites.

  18. Fermi Timing and Synchronization System

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, R.; Staples, J.; Doolittle, L.; Byrd, J.; Ratti, A.; Kaertner, F.X.; Kim, J.; Chen, J.; Ilday, F.O.; Ludwig, F.; Winter, A.; Ferianis, M.; Danailov, M.; D' Auria, G.

    2006-07-19

    The Fermi FEL will depend critically on precise timing of its RF, laser and diagnostic subsystems. The timing subsystem to coordinate these functions will need to reliably maintain sub-100fs synchronicity between distant points up to 300m apart in the Fermi facility. The technology to do this is not commercially available, and has not been experimentally demonstrated in a working facility. Therefore, new technology must be developed to meet these needs. Two approaches have been researched by different groups working with the Fermi staff. At MIT, a pulse transmission scheme has been developed for synchronization of RF and laser devices. And at LBL, a CW transmission scheme has been developed for RF and laser synchronization. These respective schemes have advantages and disadvantages that will become better understood in coming years. This document presents the work done by both teams, and suggests a possible system design which integrates them both. The integrated system design provides an example of how choices can be made between the different approaches without significantly changing the basic infrastructure of the system. Overall system issues common to any synchronization scheme are also discussed.

  19. Quantum critical fluctuations due to nested Fermi surface: The case of spinless fermions

    International Nuclear Information System (INIS)

    Schlottmann, P.

    2007-01-01

    A quantum critical point (QCP) can be obtained by tuning the critical temperature of a second-order phase transition to zero. A simple model of spinless fermions with nested Fermi surface leading to a charge density wave is considered. The QCP is obtained by tuning the nesting mismatch of the Fermi surface, which has the following consequences: (i) For the tuned QCP, the specific heat over T and the effective mass increase with the logarithm of the temperature as T is lowered. (ii) For the tuned QCP the linewidth of the quasi-particles is sublinear in T and ω. (iii) The specific heat and the linewidth display a crossover from non-Fermi liquid (∼T) to Fermi liquid (∼T 2 ) behavior with increasing nesting mismatch and decreasing temperature. (iv) For the tuned QCP, the dynamical charge susceptibility has a quasi-elastic peak with a linewidth proportional to T. (v) For non-critical Fermi vector mismatch the peak is inelastic. (vi) While the specific heat and the quasi-particle linewidth are only weakly dependent on the geometry of the nested Fermi surfaces, the momentum-dependent dynamical susceptibility is expected to be affected by the shape of the Fermi surface

  20. Strongly Interacting Fermi Gases in Two Dimensions

    Science.gov (United States)

    2012-07-17

    Phys. 82, 3045 (2010). [4] M. Inguscio, W. Ketterle, C. Salomon, eds., Ultracold Fermi gases, Proceedings of the International School of Physics Enrico ... Enrico Fermi ,” Course CLXIV, Varenna, 2006, edited by M. Inguscio, W. Ketterle, and C. Salomon (IOS, Amsterdam, 2008). [3] W. Ketterle and M...International School of Physics ‘‘ Enrico Fermi ,’’ Course CLXIV, edited by M. Inguscio, W. Ketterle, and C. Salomon (Elsevier, Amsterdam, 2008). [4] S

  1. First Light on GRBs with Fermi

    Science.gov (United States)

    2010-08-04

    two months later, in early August 2008, shortly before being renamed after Enrico Fermi . In these 16 months, <∼ 1 GRB per month was detected with the...ar X iv :1 00 8. 08 54 v1 [ as tr o- ph .H E ] 4 A ug 2 01 0 First Light on GRBs with Fermi Charles D. Dermer on behalf of the Fermi ...Collaboration Code 7653, Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375-5352 USA Abstract. Fermi LAT (Large Area Telescope) and GBM

  2. Phase diagram of strongly correlated Fermi systems

    International Nuclear Information System (INIS)

    Zverev, M.V.; Khodel', V.A.; Baldo, M.

    2000-01-01

    Phase transitions in uniform Fermi systems with repulsive forces between the particles caused by restructuring of quasiparticle filling n(p) are analyzed. It is found that in terms of variables, i.e. density ρ, nondimensional binding constant η, phase diagram of a strongly correlated Fermi system for rather a wide class of interactions reminds of a puff-pastry pie. Its upper part is filled with fermion condensate, the lower one - with normal Fermi-liquid. They are separated by a narrow interlayer - the Lifshits phase, characterized by the Fermi multibound surface [ru

  3. Enrico Fermi, flaws and all

    Science.gov (United States)

    Formato, Megan

    2018-01-01

    With the title The Last Man Who Knew Everything and a first chapter entitled “Prodigy,” a reader could be forgiven for ex­pecting David Schwartz’s new biography of Enrico Fermi to be a straightforward hagiography. Luckily, Schwartz’s ambitions are not as simple as providing yet another account of a great man of 20th-century physics. He has other, thornier questions in mind, some of which he credibly addresses and others that he handles less convincingly.

  4. Enrico Fermi significato di una scoperta

    CERN Document Server

    2001-01-01

    Questo volume è la riedizione, rinnovata ed ampliata, del volume "Enrico Fermi. Significato di una scoperta" edito dal FIEN (Forum Italiano dell'Energia Nucleare) nel 1982 e nel 1992 in occasione, rispettivamente, del 40mo e del 50mo anniversario della pila di Fermi.

  5. Fermi and the Art of Estimation

    Indian Academy of Sciences (India)

    IAS Admin

    Fermi and the Art of Estimation. Rajaram Nityananda. Keywords. Fermi estimate, order of magni- tude, dimensional analysis. Rajaram Nityananda worked at the Raman. Research Institute in. Bangalore and the. National Centre for. Radio Astrophysics in. Pune, and has now started teaching at the. Indian Institute for.

  6. Fermi Acceleration in driven relativistic billiards

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Rafael S., E-mail: rsoaresp@ifi.unicamp.br [Instituto de Fisica ' Gleb Wataghin' , Universidade Estadual de Campinas, 13083-970, Campinas, SP (Brazil); Letelier, Patricio S. [Departamento de Matematica Aplicada, Instituto de Matematica, Estatistica e Computacao Cientifica, Universidade Estadual de Campinas, 13083-859, Campinas, SP (Brazil)

    2011-08-29

    We show numerical experiments of driven billiards using special relativity. We have the remarkable fact that for the relativistic driven circular and annular concentric billiards, depending on initial conditions and parameters, we observe Fermi Acceleration, absent in the Newtonian case. The velocity for these cases tends to the speed of light very quickly. We find that for the annular eccentric billiard the initial velocity grows for a much longer time than the concentric annular billiard until it asymptotically reach c. -- Highlights: → Fermi Acceleration is studied for relativistic driven billiards. → We studied regular and chaotic billiards with different parameters. → Fermi Acceleration is present even for static regular billiards.

  7. 75 FR 76054 - Detroit Edison Company Fermi, Unit 2; Exemption

    Science.gov (United States)

    2010-12-07

    ... was published for the exemption which was granted in May 2010 for Enrico Fermi Atomic Power Plant Unit... COMMISSION Detroit Edison Company Fermi, Unit 2; Exemption 1.0 Background Detroit Edison Company (DECo) is the licensee and holder of Facility Operating License No. NFP-43 issued for Fermi, Unit 2 (Fermi- 2...

  8. Constraining hadronic models of the Fermi bubbles

    Science.gov (United States)

    Razzaque, Soebur

    2018-01-01

    The origin of sub-TeV gamma rays detected by Fermi-LAT from the Fermi bubbles at the Galactic center is unknown. In a hadronic model, acceleration of protons and/or nuclei and their subsequent interactions with gas in the bubble volume can produce observed gamma ray. Such interactions naturally produce high-energy neutrinos, and detection of those can discriminate between a hadronic and a leptonic origin of gamma rays. Additional constraints on the Fermi bubbles gamma-ray flux in the PeV range from recent HAWC observations restrict hadronic model parameters, which in turn disfavor Fermi bubbles as the origin of a large fraction of neutrino events detected by IceCube along the bubble directions. We revisit our hadronic model and discuss future constraints on parameters from observations in very high-energy gamma rays by CTA and in neutrinos.

  9. Gamma-Ray Astrophysics NSSTC Fermi GBM

    Data.gov (United States)

    National Aeronautics and Space Administration — The Fermi Gamma-Ray Burst Monitor (GBM) is not a pointed or imaging instrument. To determine fluxes for known sources, we measure the change in the count rate...

  10. Fermi: a physicist in the upheaval

    International Nuclear Information System (INIS)

    Maria, M. de

    2002-01-01

    This book summarizes the life, works and complex personality of the Italian physicist Enrico Fermi (1901-1954) whose myth is linked with the political upheaval of the 2. world war: the youth of an autodidact, the theorician and the quantum mechanics, his invention of a quantum statistics, the weak interaction theory, his works on artificial radioactivity, the end of the Fermi team and his exile in the USA, the secrete researches at the university of Columbia and the birth of the first atomic 'pile' (December 2, 1942), the building of Los Alamos center and the Alamogordo explosion test, the disagreements among the physicists of the Manhattan project and the position of Fermi, Fermi's contribution in the H-bomb construction, the creation of the physics school of Chicago, the Oppenheimer spying affair. (J.S.)

  11. Conoscere Fermi nel centenario della nascita : 29 settembre 1901 - 2001

    CERN Document Server

    Bonolis, Luisa

    2001-01-01

    Il lavoro scientifico di Fermi riguarda molti campi disparati, ciascuno dei quali ha avuto uno sviluppo peculiare in tempi successivi alla morte. In questo volume un certo numero di specialisti contemporanei di ciascun settore espone in forma semplice l'idea originaria e la sua successiva evoluzione. INDICE. Carlo Bernardini, "Introduzione"; Giorgio Salvini, "Enrico Fermi. La sua vita, ed un commento alla sua opera"; Edoardo Amaldi, "Commemorazione del Socio Enrico Fermi"; Enrico Persico, "Commemorazione di Enrico Fermi"; Franco Rasetti, "Enrico Fermi e la Fisica Italiana"; Franco Bassani, "Enrico Fermi e la Fisica dello Stato Solido"; Giorgio Parisi, "La statistica di Fermi"; Giovanni Gallavotti, "La meccanica classica e la rivoluzione quantistica nei lavori giovanili di Fermi"; Tullio Levi-Civita, "Sugli invarianti adiabatici"; Bruno Bertotti, "Le coordinate di Fermi e il Principio di Equivalenza"; Marcello Cini, "Fermi e l'elettrodinamica quantistica"; Nicola Cabibbo. "Le interazioni deboli"; Ugo Amaldi, "...

  12. First Light on GRBs with Fermi

    OpenAIRE

    Dermer, Charles D.

    2010-01-01

    Fermi LAT (Large Area Telescope) and GBM (Gamma ray Burst Monitor) observations of GRBs are briefly reviewed, keeping in mind EGRET expectations. Using gamma\\gamma constraints on outflow Lorentz factors, leptonic models are pitted against hadronic models, and found to be energetically favored. Interpretation of the Fermi data on GRBs helps establish whether GRBs accelerate cosmic rays, including those reaching $\\approx 10^{20}$ eV.

  13. Thomas Fermi model of finite nuclei

    International Nuclear Information System (INIS)

    Boguta, J.; Rafelski, J.

    1977-01-01

    A relativistic Thomas-Fermi model of finite-nuclei is considered. The effective nuclear interaction is mediated by exchanges of isoscalar scalar and vector mesons. The authors include also a self-interaction of the scalar meson field and the Coulomb repulsion of the protons. The parameters of the model are constrained by the average nuclear properties. The Thomas-Fermi equations are solved numerically for finite, stable nuclei. The particular case of 208 82 Pb is considered in more detail. (Auth.)

  14. Search for Low-Mass Weakly Interacting Massive Particles Using Voltage-Assisted Calorimetric Ionization Detection in the SuperCDMS Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Agnese, R.; Anderson, A. J.; Asai, M.; Balakishiyeva, D.; Basu Thakur, R.; Bauer, D. A.; Billard, J.; Borgland, A.; Bowles, M. A.; Brandt, D.; Brink, P. L.; Bunker, R.; Cabrera, B.; Caldwell, D. O.; Cerdeno, D. G.; Chagani, H.; Cooley, J.; Cornell, B.; Crewdson, C. H.; Cushman, P.; Daal, M.; Di Stefano, P. C. F.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Godfrey, G. L.; Golwala, S. R.; Hall, J.; Harris, H. R.; Hertel, S. A.; Hofer, T.; Holmgren, D.; Hsu, L.; Huber, M. E.; Jastram, A.; Kamaev, O.; Kara, B.; Kelsey, M. H.; Kennedy, A.; Kiveni, M.; Koch, K.; Loer, B.; Lopez Asamar, E.; Mahapatra, R.; Mandic, V.; Martinez, C.; McCarthy, K. A.; Mirabolfathi, N.; Moffatt, R. A.; Moore, D. C.; Nadeau, P.; Nelson, R. H.; Page, K.; Partridge, R.; Pepin, M.; Phipps, A.; Prasad, K.; Pyle, M.; Qiu, H.; Rau, W.; Redl, P.; Reisetter, A.; Ricci, Y.; Saab, T.; Sadoulet, B.; Sander, J.; Schneck, K.; Schnee, R. W.; Scorza, S.; Serfass, B.; Shank, B.; Speller, D.; Villano, A. N.; Welliver, B.; Wright, D. H.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, J.

    2014-01-01

    SuperCDMS is an experiment designed to directly detect Weakly Interacting Massive Particles (WIMPs), a favored candidate for dark matter ubiquitous in the Universe. In this paper, we present WIMP-search results using a calorimetric technique we call CDMSlite, which relies on voltage- assisted Luke-Neganov amplification of the ionization energy deposited by particle interactions. The data were collected with a single 0.6 kg germanium detector running for 10 live days at the Soudan Underground Laboratory. A low energy threshold of 170 eVee (electron equivalent) was obtained, which allows us to constrain new WIMP-nucleon spin-independent parameter space for WIMP masses below 6 GeV/c2.

  15. A Search for Low-Mass Weakly Interacting Massive Particles Using Voltage-Assisted Calorimetric Ionization Detection in the SuperCDMS Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Agnese, R.; Anderson, A. J.; Asai, M.; Balakishiyeva, D.; Basu Thakur, R.; Bauer, D. A.; Billard, J.; Borgland, A.; Bowles, M. A.; Brandt, D.; Brink, P. L.; Bunker, R.; Cabrera, B.; Caldwell, D. O.; Cerdeno, D. G.; Chagani, H.; Cooley, J.; Cornell, B.; Crewdson, C. H.; Cushman, Priscilla B.; Daal, M.; Di Stefano, P. C.; Doughty, T.; Esteban, L.; Fallows, S.; Figueroa-Feliciano, E.; Godfrey, G. L.; Golwala, S. R.; Hall, Jeter C.; Harris, H. R.; Hertel, S. A.; Hofer, T.; Holmgren, D.; Hsu, L.; Huber, M. E.; Jastram, A.; Kamaev, O.; Kara, B.; Kelsey, M. H.; Kennedy, A.; Kiveni, M.; Koch, K.; Loer, B.; Lopez Asamar, E.; Mahapatra, R.; Mandic, V.; Martinez, C.; McCarthy, K. A.; Mirabolfathi, N.; Moffatt, R. A.; Moore, D. C.; Nadeau, P.; Nelson, R. H.; Page, K.; Partridge, R.; Pepin, M.; Phipps, A.; Prasad, K.; Pyle, M.; Qiu, H.; Rau, W.; Redi, P.; Reisetter, A.; Ricci, Y.; Saab, T.; Sadoulet, B.; Sander, J.; Schneck, K.; Schnee, Richard; Scorza, S.; Serfass, B.; Shank, B.; Speller, D.; Villano, A. N.; Welliver, B.; Wright, D. H.; Yellin, S.; Yen, J. J.; Young, B. A.; Zhang, J.

    2014-01-27

    SuperCDMS is an experiment designed to directly detect weakly interacting massive particles (WIMPs), a favored candidate for dark matter ubiquitous in the Universe. In this Letter, we present WIMP-search results using a calorimetric technique we call CDMSlite, which relies on voltage-assisted Luke-Neganov amplification of the ionization energy deposited by particle interactions. The data were collected with a single 0.6 kg germanium detector running for ten live days at the Soudan Underground Laboratory. A low energy threshold of (electron equivalent) was obtained, which allows us to constrain new WIMP-nucleon spin-independent parameter space for WIMP masses below 6 GeV/c2.

  16. Exothermic dark matter with light mediator after LUX and PandaX-II in 2016

    Science.gov (United States)

    Geng, Chao-Qiang; Huang, Da; Lee, Chun-Hao

    2017-12-01

    Dark matter (DM) direct detections are investigated for models with the following properties: isospin-violating couplings, exothermic scatterings, and/or a light mediator, with the aim to reduce the tension between the CDMS-Si positive signals and other negative searches. In particular, we focus on the non-standard effective operators which could lead to the spin-independent DM-nucleus scatterings with non-trivial dependences on the transfer momentum or DM velocity. As a result, such effective operator choices have the very mild effects on the final fittings. Furthermore, by including the latest constraints from LUX, PandaX-II, XENON1T and PICO-60, we find that, for almost all the considered models, the predicted CDMS-Si signal regions are either severely constrained or completely excluded by the LUX, PandaX-II, XENON1T and PICO-60 data, including the most promising Xe-phobic exothermic DM models with/without a light mediator. Therefore, we conclude that it is very difficult for the present DM framework to explain the CDMS-Si excess.

  17. Composite Fermions with Tunable Fermi Contour Anisotropy

    Science.gov (United States)

    Kamburov, D.; Liu, Yang; Shayegan, M.; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.

    2013-05-01

    The composite fermion formalism elegantly describes some of the most fascinating behaviors of interacting two-dimensional carriers at low temperatures and in strong perpendicular magnetic fields. In this framework, carriers minimize their energy by attaching two flux quanta and forming new quasiparticles, the so-called composite fermions. Thanks to the flux attachment, when a Landau level is half-filled, the composite fermions feel a vanishing effective magnetic field and possess a Fermi surface with a well-defined Fermi contour. Our measurements in a high-quality two-dimensional hole system confined to a GaAs quantum well demonstrate that a parallel magnetic field can significantly distort the hole-flux composite fermion Fermi contour.

  18. Fermi-Walker transport and Thomas precession

    Science.gov (United States)

    Pastor Lambare, Justo

    2017-07-01

    An exact derivation of the Thomas precession formula is presented based on the Fermi-Walker transport equation. Given that the Thomas precession effect is not a particularly intuitive phenomenon, such that when discovered in 1925 it took by surprise even experts in relativity theory, Einstein included, an alternative perspective can be useful at an intermediate level for physics students. The existing literature linking the Thomas precession to Fermi-Walker transport use geometric algebra as mathematical tool. Here the mathematics is kept within the limits of the usual vector and tensor algebra commonly used in special relativity theory at a level appropriate for advanced undergraduate and beginning graduate students.

  19. Charge transport by holographic Fermi surfaces

    CERN Document Server

    Faulkner, Thomas; Liu, Hong; McGreevy, John; Vegh, David

    2013-01-01

    We compute the contribution to the conductivity from holographic Fermi surfaces obtained from probe fermions in an AdS charged black hole. This requires calculating a certain part of the one-loop correction to a vector propagator on the charged black hole geometry. We find that the current dissipation is as efficient as possible and the transport lifetime coincides with the single-particle lifetime. In particular, in the case where the spectral density is that of a marginal Fermi liquid, the resistivity is linear in temperature.

  20. Women in Physics in Fermi's Time

    OpenAIRE

    Byers, Nina

    2003-01-01

    Enrico Fermi lived from 1901 to 1954, a period of great progress in physics and a period in which opportunities for women to study and work in institutions of higher learning increased significantly in Europe and North America. Though there are a few examples of women who made important contributions to physics in the 18th century such as Emilie du Chatelet and Laura Bassi, it was only in Fermi's time that the number began to increase significantly. It is remarkable that almost immediately af...

  1. Supernova Remnants with Fermi Large Area Telescope

    Directory of Open Access Journals (Sweden)

    Caragiulo M.

    2017-01-01

    Full Text Available The Large Area Telescope (LAT, on-board the Fermi satellite, proved to be, after 8 years of data taking, an excellent instrument to detect and observe Supernova Remnants (SNRs in a range of energies running from few hundred MeV up to few hundred GeV. It provides essential information on physical processes that occur at the source, involving both accelerated leptons and hadrons, in order to understand the mechanisms responsible for the primary Cosmic Ray (CR acceleration. We show the latest results in the observation of Galactic SNRs by Fermi-LAT.

  2. Itinerant Ferromagnetism in Ultracold Fermi Gases

    DEFF Research Database (Denmark)

    Heiselberg, Henning

    2012-01-01

    Itinerant ferromagnetism in cold Fermi gases with repulsive interactions is studied applying the Jastrow-Slater approximation generalized to finite polarization and temperature. For two components at zero temperature a second order transition is found at akF ≃ 0.90 compatible with QMC. Thermodyna......Itinerant ferromagnetism in cold Fermi gases with repulsive interactions is studied applying the Jastrow-Slater approximation generalized to finite polarization and temperature. For two components at zero temperature a second order transition is found at akF ≃ 0.90 compatible with QMC...

  3. Enrico: Python package to simplify Fermi-LAT analysis

    Science.gov (United States)

    Sanchez, David; Deil, Christoph

    2015-01-01

    Enrico analyzes Fermi data. It produces spectra (model fit and flux points), maps and lightcurves for a target by editing a config file and running a python script which executes the Fermi science tool chain.

  4. FERMI LARGE AREA TELESCOPE SECOND SOURCE CATALOG

    International Nuclear Information System (INIS)

    Nolan, P. L.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Abdo, A. A.; Ackermann, M.; Antolini, E.; Bonamente, E.; Atwood, W. B.; Belfiore, A.; Axelsson, M.; Baldini, L.; Bellazzini, R.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bignami, G. F.

    2012-01-01

    We present the second catalog of high-energy γ-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), derived from data taken during the first 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24 month period. The second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, exponentially cutoff power-law, or log-normal forms. Also included are flux measurements in five energy bands and light curves on monthly intervals for each source. Twelve sources in the catalog are modeled as spatially extended. We provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we attach caution flags to 162 of the sources to indicate possible confusion with residual imperfections in the diffuse model. The 2FGL catalog contains 1873 sources detected and characterized in the 100 MeV to 100 GeV range of which we consider 127 as being firmly identified and 1171 as being reliably associated with counterparts of known or likely γ-ray-producing source classes.

  5. Fermi Large Area Telescope Second Source Catalog

    Science.gov (United States)

    Nolan, P. L.; Abdo, A. A.; Ackermann, M.; Ajello, M; Allafort, A.; Antolini, E; Bonnell, J.; Cannon, A.; Celik O.; Corbet, R.; hide

    2012-01-01

    We present the second catalog of high-energy gamma-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), derived from data taken during the first 24 months of the science phase of the mission, which began on 2008 August 4. Source detection is based on the average flux over the 24-month period. The Second Fermi-LAT catalog (2FGL) includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and spectral fits in terms of power-law, exponentially cutoff power-law, or log-normal forms. Also included are flux measurements in 5 energy bands and light curves on monthly intervals for each source. Twelve sources in the catalog are modeled as spatially extended. We provide a detailed comparison of the results from this catalog with those from the first Fermi-LAT catalog (1FGL). Although the diffuse Galactic and isotropic models used in the 2FGL analysis are improved compared to the 1FGL catalog, we attach caution flags to 162 of the sources to indicate possible confusion with residual imperfections in the diffuse model. The 2FGL catalog contains 1873 sources detected and characterized in the 100 11eV to 100 GeV range of which we consider 127 as being firmly identified and 1171 as being reliably associated with counterparts of known or likely gamma-ray-producing source classes.

  6. Vacuum alignment and radiatively induced Fermi scale

    DEFF Research Database (Denmark)

    Alanne, Tommi

    2017-01-01

    We extend the discussion about vacuum misalignment by quantum corrections in models with composite pseudo-Goldstone Higgs boson to renormalisable models with elementary scalars. As a concrete example, we propose a framework, where the hierarchy between the unification and the Fermi scale emerges...

  7. Fermi and the Theory of Weak Interactions

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 1. Fermi and the Theory of Weak Interactions. G Rajasekaran. General Article Volume 19 Issue 1 January 2014 pp 18-44. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/019/01/0018-0044 ...

  8. Fermi and the Art of Estimation

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 1. Fermi and the Art of Estimation. Rajaram Nityananda. General Article Volume 19 Issue 1 January 2014 pp 73-81. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/019/01/0073-0081. Keywords.

  9. Time Domain Astronomy with Swift and Fermi

    African Journals Online (AJOL)

    J.D. Myers

    Time Domain Astronomy with Swift and Fermi. N. Gehrels1, J. K. Cannizzo23. 1NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771, USA. 2CRESST and Astroparticle Physics Laboratory, NASA/GSFC, Greenbelt, MD 20771, USA. 3Department of Physics, University of Maryland, Baltimore County, ...

  10. Fermi Surface and Antiferromagnetism in Europium Metal

    DEFF Research Database (Denmark)

    Andersen, O. Krogh; Loucks, T. L.

    1968-01-01

    of the nearly cubical part of the hole surface at P, and we also discuss the effects of the electron surface at H. Since it is likely that barium and europium have similar Fermi surfaces, we have presented several extremal areas and the corresponding de Haas-van Alphen frequencies in the hope that experimental...

  11. Fermi and the Theory of Weak Interactions

    Indian Academy of Sciences (India)

    IAS Admin

    The history of weak interactions starting with. Fermi's creation of the beta decay theory and culminating in its modern avatar in the form of the electroweak gauge theory is described. Dis- coveries of parity violation, matter{antimatter asymmetry, W and Z bosons and neutrino mass are highlighted. Introduction. Sun gives us ...

  12. Automatic Cloud Bursting under FermiCloud

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hao [Fermilab; Shangping, Ren [IIT; Garzoglio, Gabriele [Fermilab; Timm, Steven [Fermilab; Bernabeu, Gerard [Fermilab; Kim, Hyun Woo; Chadwick, Keith; Jang, Haengjin [KISTI, Daejeon; Noh, Seo-Young [KISTI, Daejeon

    2013-01-01

    Cloud computing is changing the infrastructure upon which scientific computing depends from supercomputers and distributed computing clusters to a more elastic cloud-based structure. The service-oriented focus and elasticity of clouds can not only facilitate technology needs of emerging business but also shorten response time and reduce operational costs of traditional scientific applications. Fermi National Accelerator Laboratory (Fermilab) is currently in the process of building its own private cloud, FermiCloud, which allows the existing grid infrastructure to use dynamically provisioned resources on FermiCloud to accommodate increased but dynamic computation demand from scientists in the domains of High Energy Physics (HEP) and other research areas. Cloud infrastructure also allows to increase a private cloud’s resource capacity through “bursting” by borrowing or renting resources from other community or commercial clouds when needed. This paper introduces a joint project on building a cloud federation to support HEP applications between Fermi National Accelerator Laboratory and Korea Institution of Science and Technology Information, with technical contributions from the Illinois Institute of Technology. In particular, this paper presents two recent accomplishments of the joint project: (a) cloud bursting automation and (b) load balancer. Automatic cloud bursting allows computer resources to be dynamically reconfigured to meet users’ demands. The load balance algorithm which the cloud bursting depends on decides when and where new resources need to be allocated. Our preliminary prototyping and experiments have shown promising success, yet, they also have opened new challenges to be studied

  13. Enrico Fermi – The Complete Physicist

    Indian Academy of Sciences (India)

    ias

    Age' that ushered in the exploitation of nuclear energy both in its civil and military applications. He was hon- ..... much if not more of the labour and sweat in the experiments as his junior colleagues and students. In the period 1947–51, while the cyclotron was getting ready, a major component of Fermi's research was the-.

  14. Thomas-Fermi model of warm nuclei

    International Nuclear Information System (INIS)

    Buchler, J.R.; Epstein, R.I.

    1980-01-01

    The average nuclear level density of spherical nuclei is computed with a finite temperature Thomas-Fermi model. More than 80% of the low energy nuclear excitations can be accounted for in terms of this statistical model. The relevance for stellar collapse is discussed

  15. Enrico Fermi and the Old Quantum Physics

    OpenAIRE

    De Gregorio, Alberto; Sebastiani, Fabio

    2009-01-01

    We outline Fermi's early attitude towards old quantum physics. We sketch out the context from which his interest for quantum physics arose, and we deal with his work on quantum statistics. We also go through the first two courses on theoretical physics he held in Rome, and his 1928 book on atomic physics.

  16. Relativistic effects in the Thomas--Fermi atom

    International Nuclear Information System (INIS)

    Waber, J.T.; Canfield, J.M.

    1975-01-01

    Two methods of applying relativistic corrections to the Thomas--Fermi atom are considered, and numerical calculations are discussed. Radial charge distributions calculated from a relativistic Thomas--Fermi equation agree in gross form with those from more complicated self-consistent calculations. Energy eigenvalues for mercury, as determined from the relativistic Thomas--Fermi solution, are compared with other calculated and experimental values

  17. Seebeck effect on a weak link between Fermi and non-Fermi liquids

    Science.gov (United States)

    Nguyen, T. K. T.; Kiselev, M. N.

    2018-02-01

    We propose a model describing Seebeck effect on a weak link between two quantum systems with fine-tunable ground states of Fermi and non-Fermi liquid origin. The experimental realization of the model can be achieved by utilizing the quantum devices operating in the integer quantum Hall regime [Z. Iftikhar et al., Nature (London) 526, 233 (2015), 10.1038/nature15384] designed for detection of macroscopic quantum charged states in multichannel Kondo systems. We present a theory of thermoelectric transport through hybrid quantum devices constructed from quantum-dot-quantum-point-contact building blocks. We discuss pronounced effects in the temperature and gate voltage dependence of thermoelectric power associated with a competition between Fermi and non-Fermi liquid behaviors. High controllability of the device allows to fine tune the system to different regimes described by multichannel and multi-impurity Kondo models.

  18. Probing and Manipulating Ultracold Fermi Superfluids

    Science.gov (United States)

    Jiang, Lei

    Ultracold Fermi gas is an exciting field benefiting from atomic physics, optical physics and condensed matter physics. It covers many aspects of quantum mechanics. Here I introduce some of my work during my graduate study. We proposed an optical spectroscopic method based on electromagnetically-induced transparency (EIT) as a generic probing tool that provides valuable insights into the nature of Fermi paring in ultracold Fermi gases of two hyperfine states. This technique has the capability of allowing spectroscopic response to be determined in a nearly non-destructive manner and the whole spectrum may be obtained by scanning the probe laser frequency faster than the lifetime of the sample without re-preparing the atomic sample repeatedly. Both quasiparticle picture and pseudogap picture are constructed to facilitate the physical explanation of the pairing signature in the EIT spectra. Motivated by the prospect of realizing a Fermi gas of 40K atoms with a synthetic non-Abelian gauge field, we investigated theoretically BEC-HCS crossover physics in the presence of a Rashba spin-orbit coupling in a system of two-component Fermi gas with and without a Zeeman field that breaks the population balance. A new bound state (Rashba pair) emerges because of the spin-orbit interaction. We studied the properties of Rashba pairs using a standard pair fluctuation theory. As the two-fold spin degeneracy is lifted by spin-orbit interaction, bound pairs with mixed singlet and triplet pairings (referred to as rashbons) emerge, leading to an anisotropic superfluid. We discussed in detail the experimental signatures for observing the condensation of Rashba pairs by calculating various physical observables which characterize the properties of the system and can be measured in experiment. The role of impurities as experimental probes in the detection of quantum material properties is well appreciated. Here we studied the effect of a single classical impurity in trapped ultracold Fermi

  19. Expansions of Fermi and symmetrized Fermi integrals and applications in nuclear physics

    International Nuclear Information System (INIS)

    Grypeos, M.; Koutroulos, C.; Luk'yanov, V.; Shebeko, A.

    1998-01-01

    A detailed study is undertaken, using various techniques, in deriving expansions of integrals containing the Fermi or the symmetrized Fermi distributions. The results are presented in a mathematically compact form and consist of generalizations and extensions of previously known expansions. The relevance of the results to quantities of interest in nuclear physics is recalled and particular attention is paid to the so-called exponentially small terms which may play an essential role in certain cases

  20. Higher-spin charges in Hamiltonian form. II. Fermi fields

    Energy Technology Data Exchange (ETDEWEB)

    Campoleoni, A.; Henneaux, M. [Université Libre de Bruxelles, and International Solvay Institutes,ULB-Campus Plaine CP231, 1050 Brussels (Belgium); Hörtner, S. [Centro de Estudios Científicos (CECs), Casilla 1469, Valdivia (Chile); Leonard, A. [Université Libre de Bruxelles, and International Solvay Institutes,ULB-Campus Plaine CP231, 1050 Brussels (Belgium)

    2017-02-10

    We build the asymptotic higher-spin charges associated with “improper' gauge transformations for fermionic higher-spin gauge fields on Anti de Sitter backgrounds of arbitrary dimension. This is achieved within the canonical formalism. We consider massless fields of spin s+1/2, described by a symmetric spinor-tensor of rank s in the Fang-Fronsdal approach. We begin from a detailed analysis of the spin 5/2 example, for which we cast the Fang-Fronsdal action in Hamiltonian form, we derive the charges and we propose boundary conditions on the canonical variables that secure their finiteness. We then extend the computation of charges and the characterisation of boundary conditions to arbitrary half-integer spin. Our construction generalises to higher-spin fermionic gauge fields the known Hamiltonian derivation of supercharges in AdS supergravity.

  1. Fermi surface in the absence of a Fermi liquid in the Kondo insulator SmB6

    Science.gov (United States)

    Hartstein, M.; Toews, W. H.; Hsu, Y.-T.; Zeng, B.; Chen, X.; Hatnean, M. Ciomaga; Zhang, Q. R.; Nakamura, S.; Padgett, A. S.; Rodway-Gant, G.; Berk, J.; Kingston, M. K.; Zhang, G. H.; Chan, M. K.; Yamashita, S.; Sakakibara, T.; Takano, Y.; Park, J.-H.; Balicas, L.; Harrison, N.; Shitsevalova, N.; Balakrishnan, G.; Lonzarich, G. G.; Hill, R. W.; Sutherland, M.; Sebastian, Suchitra E.

    2018-02-01

    The search for a Fermi surface in the absence of a conventional Fermi liquid has thus far yielded very few potential candidates. Among promising materials are spin-frustrated Mott insulators near the insulator-metal transition, where theory predicts a Fermi surface associated with neutral low-energy excitations. Here we reveal another route to experimentally realize a Fermi surface in the absence of a Fermi liquid by the experimental study of a Kondo insulator SmB6 positioned close to the insulator-metal transition. We present experimental signatures down to low temperatures (thermal conductivity well below the charge gap energy scale. Thus, the weight of evidence indicates that despite an extreme instance of Fermi liquid breakdown in Kondo insulating SmB6, a Fermi surface arises from novel itinerant low-energy excitations that couple to magnetic fields, but not weak DC electric fields.

  2. High energy neutrinos from the Fermi bubbles.

    Science.gov (United States)

    Lunardini, Cecilia; Razzaque, Soebur

    2012-06-01

    Recently the Fermi-LAT data have revealed two gamma-ray emitting bubble-shaped structures at the Galactic center. If the observed gamma rays have hadronic origin (collisions of accelerated protons), the bubbles must emit high energy neutrinos as well. This new, Galactic, neutrino flux should trace the gamma-ray emission in spectrum and spatial extent. Its highest energy part, above 20-50 TeV, is observable at a kilometer-scale detector in the northern hemisphere, such as the planned KM3NeT, while interesting constraints on it could be obtained by the IceCube Neutrino Observatory at the South Pole. The detection or exclusion of neutrinos from the Fermi bubbles will discriminate between hadronic and leptonic models, thus bringing unique information on the still mysterious origin of these objects and on the time scale of their formation.

  3. Unconventional Fermi surface in an insulating state

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Neil [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tan, B. S. [Cambridge Univ., Cambridge (United Kingdom); Hsu, Y. -T. [Cambridge Univ., Cambridge (United Kingdom); Zeng, B. [National High Magnetic Field Lab., Tallahassee, FL (United States); Hatnean, M. Ciomaga [Univ. of Warwick, Coventry (United Kingdom); Zhu, Z. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hartstein, M. [Cambridge Univ., Cambridge (United Kingdom); Kiourlappou, M. [Cambridge Univ., Cambridge (United Kingdom); Srivastava, A. [Cambridge Univ., Cambridge (United Kingdom); Johannes, M. D. [Center for Computational Materials Science, Washington, DC (United States); Murphy, T. P. [National High Magnetic Field Lab., Tallahassee, FL (United States); Park, J. -H. [National High Magnetic Field Lab., Tallahassee, FL (United States); Balicas, L. [National High Magnetic Field Lab., Tallahassee, FL (United States); Lonzarich, G. G. [Cambridge Univ., Cambridge (United Kingdom); Balakrishnan, G. [Univ. of Warwick, Coventry (United Kingdom); Sebastian, Suchitra E. [Cambridge Univ., Cambridge (United Kingdom)

    2015-07-17

    Insulators occur in more than one guise; a recent finding was a class of topological insulators, which host a conducting surface juxtaposed with an insulating bulk. Here, we report the observation of an unusual insulating state with an electrically insulating bulk that simultaneously yields bulk quantum oscillations with characteristics of an unconventional Fermi liquid. We present quantum oscillation measurements of magnetic torque in high-purity single crystals of the Kondo insulator SmB6, which reveal quantum oscillation frequencies characteristic of a large three-dimensional conduction electron Fermi surface similar to the metallic rare earth hexaborides such as PrB6 and LaB6. As a result, the quantum oscillation amplitude strongly increases at low temperatures, appearing strikingly at variance with conventional metallic behavior.

  4. Scattering resonances in a degenerate Fermi gas

    DEFF Research Database (Denmark)

    Challis, Katharine; Nygaard, Nicolai; Mølmer, Klaus

    2009-01-01

    We consider elastic single-particle scattering from a one-dimensional trapped two-component superfluid Fermi gas when the incoming projectile particle is identical to one of the confined species. Our theoretical treatment is based on the Hartree-Fock ground state of the trapped gas and a configur......We consider elastic single-particle scattering from a one-dimensional trapped two-component superfluid Fermi gas when the incoming projectile particle is identical to one of the confined species. Our theoretical treatment is based on the Hartree-Fock ground state of the trapped gas...... and a configuration-interaction description of the excitations. We determine the scattering phase shifts for the system and predict Fano-type scattering resonances that are a direct consequence of interatomic pairing. We describe the main characteristics of the scattering resonances and make a comparison...... with the results of BCS mean-field theory....

  5. Statistical mechanics of magnetized pair Fermi gas

    International Nuclear Information System (INIS)

    Daicic, J.; Frankel, N.E.; Kowalenko, V.

    1993-01-01

    Following previous work on the magnetized pair Bose gas this contribution presents the statistical mechanics of the charged relativistic Fermi gas with pair creation in d spatial dimensions. Initially, the gas in no external fields is studied. As a result, expansions for the various thermodynamic functions are obtained in both the μ/m→0 (neutrino) limit, and about the point μ/m =1, where μ is the chemical potential. The thermodynamics of a gas of quantum-number conserving massless fermions is also discussed. Then a complete study of the pair Fermi gas in a homogeneous magnetic field, is presented investigating the behavior of the magnetization over a wide range of field strengths. The inclusion of pairs leads to new results for the net magnetization due to the paramagnetic moment of the spins and the diamagnetic Landau orbits. 20 refs

  6. Excited Dark Matter versus PAMELA/Fermi

    CERN Document Server

    Cline, James M

    2010-01-01

    Excitation of multicomponent dark matter in the galactic center has been proposed as the source of low-energy positrons that produce the excess 511 keV gamma rays that have been observed by INTEGRAL. Such models have also been promoted to explain excess high-energy electrons/positrons observed by the PAMELA, Fermi/LAT and H.E.S.S. experiments. We investigate whether one model can simultaneously fit all three anomalies, in addition to further constraints from inverse Compton scattering by the high-energy leptons. We find models that fit both the 511 keV and PAMELA excesses at dark matter masses M < 400 GeV, but not the Fermi lepton excess. The conflict arises because a more cuspy DM halo profile is needed to match the observed 511 keV signal than is compatible with inverse Compton constraints at larger DM masses.

  7. Spin Transport in a Unitary Fermi Gas

    Science.gov (United States)

    Thywissen, Joseph

    2015-03-01

    We study spin transport in a quantum degenerate Fermi gas of 40K near an s-wave interaction resonance. The starting point of our measurements is a transversely spin-polarized gas, where each atom is in a superposition of the lowest two Zeeman eigenstates. In the presence of an external gradient, a spin texture develops across the cloud, which drives diffusive spin currents. Spin transport is described with two coefficients: D0⊥, the transverse spin diffusivity, and γ, the Leggett-Rice parameter. Diffusion is a dissipative effect that increases the entropy of the gas, eventually creating a mixture of spin states. γ parameterizes the rate at which spin current precesses around the local magnetization. Using a spin-echo sequence, we measure these transport parameters for a range of interaction strengths and temperatures. At unitarity, for a normal-state gas initially at one fifth of the Fermi temperature, we find D0⊥ = 2 . 3 (4) ℏ / m and γ = 1 . 08 (9) , where m is the atomic mass. In the limit of zero temperature, γ and D0⊥ are scale-invariant universal parameters of the unitary Fermi gas. The value of D0⊥ reveals strong scattering and is near its proposed quantum limit, such that the inferred value of the transport lifetime τ⊥ is comparable to ℏ /ɛF . This raises the possibility that incoherent transport may play a role. The nonzero value of γ tells us that spin waves in unitary Fermi gas are dispersive, or in other words, that the gas has a spin stiffness in the long-wavelength limit. Time permitting, we will also discuss a time-resolved measurement of the contact, through which we observe the microscopic transformation of the gas from ideal to strongly correlated.

  8. Strongly correlated Fermi-systems: Non-Fermi liquid behavior, quasiparticle effective mass and their interplay

    Energy Technology Data Exchange (ETDEWEB)

    Shaginyan, V.R. [Petersburg Nuclear Physics Institute, RAS, Gatchina 188300 (Russian Federation); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)], E-mail: vrshag@thd.pnpi.spb.ru; Amusia, M.Ya. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Popov, K.G. [Komi Science Center, Ural Division, RAS, Syktyvkar 167982 (Russian Federation)

    2009-06-15

    Basing on the density functional theory of fermion condensation, we analyze the non-Fermi liquid behavior of strongly correlated Fermi-systems such as heavy-fermion metals. When deriving equations for the effective mass of quasiparticles, we consider solids with a lattice and homogeneous systems. We show that the low-temperature thermodynamic and transport properties are formed by quasiparticles, while the dependence of the effective mass on temperature, number density, magnetic fields, etc., gives rise to the non-Fermi liquid behavior. Our theoretical study of the heat capacity, magnetization, energy scales, the longitudinal magnetoresistance and magnetic entropy are in good agreement with the remarkable recent facts collected on the heavy-fermion metal YbRh{sub 2}Si{sub 2}.

  9. Strongly correlated Fermi-systems: Non-Fermi liquid behavior, quasiparticle effective mass and their interplay

    International Nuclear Information System (INIS)

    Shaginyan, V.R.; Amusia, M.Ya.; Popov, K.G.

    2009-01-01

    Basing on the density functional theory of fermion condensation, we analyze the non-Fermi liquid behavior of strongly correlated Fermi-systems such as heavy-fermion metals. When deriving equations for the effective mass of quasiparticles, we consider solids with a lattice and homogeneous systems. We show that the low-temperature thermodynamic and transport properties are formed by quasiparticles, while the dependence of the effective mass on temperature, number density, magnetic fields, etc., gives rise to the non-Fermi liquid behavior. Our theoretical study of the heat capacity, magnetization, energy scales, the longitudinal magnetoresistance and magnetic entropy are in good agreement with the remarkable recent facts collected on the heavy-fermion metal YbRh 2 Si 2 .

  10. Fermi wave vector for the partially spin-polarized composite-fermion Fermi sea

    Science.gov (United States)

    Balram, Ajit C.; Jain, J. K.

    2017-12-01

    The fully spin-polarized composite-fermion (CF) Fermi sea at the half-filled lowest Landau level has a Fermi wave vector kF*=√{4 π ρe } , where ρe is the density of electrons or composite fermions, supporting the notion that the interaction between composite fermions can be treated perturbatively. Away from ν =1 /2 , the area is seen to be consistent with kF*=√{4 π ρe } for ν 1 /2 , where ρh is the density of holes in the lowest Landau level. This result is consistent with particle-hole symmetry in the lowest Landau level. We investigate in this article the Fermi wave vector of the spin-singlet CF Fermi sea (CFFS) at ν =1 /2 , for which particle-hole symmetry is not a consideration. Using the microscopic CF theory, we find that for the spin-singlet CFFS the Fermi wave vectors for up- and down-spin CFFSs at ν =1 /2 are consistent with kF*↑,↓=√{4 π ρe↑,↓ } , where ρe↑=ρe↓=ρe/2 , which implies that the residual interactions between composite fermions do not cause a nonperturbative correction for spin-singlet CFFS either. Our results suggest the natural conjecture that for arbitrary spin polarization the CF Fermi wave vectors are given by kF*↑=√{4 π ρe↑ } and kF*↓=√{4 π ρe↓ } .

  11. Induced interactions in a superfluid Bose-Fermi mixture

    DEFF Research Database (Denmark)

    Kinnunen, Jami; Bruun, Georg

    2015-01-01

    We analyze a Bose-Einstein condensate (BEC) mixed with a superfluid two-component Fermi gas in the whole BCS-BEC crossover. Using a quasiparticle random-phase approximation combined with Beliaev theory to describe the Fermi superfluid and the BEC, respectively, we show that the single-particle an......We analyze a Bose-Einstein condensate (BEC) mixed with a superfluid two-component Fermi gas in the whole BCS-BEC crossover. Using a quasiparticle random-phase approximation combined with Beliaev theory to describe the Fermi superfluid and the BEC, respectively, we show that the single......-particle and collective excitations of the Fermi gas give rise to an induced interaction between the bosons, which varies strongly with momentum and frequency. It diverges at the sound mode of the Fermi superfluid, resulting in a sharp avoided crossing feature and a corresponding sign change of the interaction energy...

  12. Zeeman-induced gapless superconductivity with a partial Fermi surface

    Science.gov (United States)

    Yuan, Noah F. Q.; Fu, Liang

    2018-03-01

    We show that an in-plane magnetic field can drive two-dimensional spin-orbit-coupled systems under the superconducting proximity effect into a gapless phase where parts of the normal state Fermi surface are gapped, and the ungapped parts are reconstructed into a small Fermi surface of Bogoliubov quasiparticles at zero energy. The charge distribution, spin texture, and density of states of such a "partial Fermi surface" are discussed. Material platforms for its physical realization are proposed.

  13. Fermi surfaces of rare-earth nickel borocarbides

    Energy Technology Data Exchange (ETDEWEB)

    Dugdale, S B; Utfeld, C; Wilkinson, I; Laverock, J; Major, Zs; Alam, M A [H H Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Canfield, P C [Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States)], E-mail: s.b.dugdale@bristol.ac.uk

    2009-01-15

    A full three-dimensional study of the Fermi surface of LuNi{sub 2}B{sub 2}C is presented, using positron annihilation. The previously identified nesting feature, part of a complex multiply connected Fermi surface sheet, is clearly revealed and observed to extend across approximately 20% of the Brillouin zone. A cuboidal Fermi surface sheet is also found, in agreement with de Haas-van Alphen observations. The Fermi surface topology of the rare-earth nickel borocarbides is shown to vary little for rare-earth elements such as Er, Tm and Yb, suggesting that this topology is broadly common.

  14. FERMI LARGE AREA TELESCOPE FIRST SOURCE CATALOG

    International Nuclear Information System (INIS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Antolini, E.; Bonamente, E.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Bellazzini, R.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bisello, D.; Baughman, B. M.; Belli, F.

    2010-01-01

    We present a catalog of high-energy gamma-ray sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi), during the first 11 months of the science phase of the mission, which began on 2008 August 4. The First Fermi-LAT catalog (1FGL) contains 1451 sources detected and characterized in the 100 MeV to 100 GeV range. Source detection was based on the average flux over the 11 month period, and the threshold likelihood Test Statistic is 25, corresponding to a significance of just over 4σ. The 1FGL catalog includes source location regions, defined in terms of elliptical fits to the 95% confidence regions and power-law spectral fits as well as flux measurements in five energy bands for each source. In addition, monthly light curves are provided. Using a protocol defined before launch we have tested for several populations of gamma-ray sources among the sources in the catalog. For individual LAT-detected sources we provide firm identifications or plausible associations with sources in other astronomical catalogs. Identifications are based on correlated variability with counterparts at other wavelengths, or on spin or orbital periodicity. For the catalogs and association criteria that we have selected, 630 of the sources are unassociated. Care was taken to characterize the sensitivity of the results to the model of interstellar diffuse gamma-ray emission used to model the bright foreground, with the result that 161 sources at low Galactic latitudes and toward bright local interstellar clouds are flagged as having properties that are strongly dependent on the model or as potentially being due to incorrectly modeled structure in the Galactic diffuse emission.

  15. The Mirage of the Fermi Scale

    DEFF Research Database (Denmark)

    Antipin, Oleg; Sannino, Francesco; Tuominen, Kimmo

    2013-01-01

    The discovery of a light Higgs boson at LHC may be suggesting that we need to revise our model building paradigms to understand the origin of the weak scale. We explore the possibility that the Fermi scale is not fundamental but rather a derived one, i.e. a low energy mirage. We show that this sc......\\sim 10^{10}$ GeV and the other around $M_{\\rm U} \\sim 10^{16}$ GeV, although other values are also possible....

  16. Emergent physics: Fermi-point scenario.

    Science.gov (United States)

    Volovik, Grigory

    2008-08-28

    The Fermi-point scenario of emergent gravity has the following consequences: gravity emerges together with fermionic and bosonic matter; emergent fermionic matter consists of massless Weyl fermions; emergent bosonic matter consists of gauge fields; Lorentz symmetry persists well above the Planck energy; space-time is naturally four dimensional; the Universe is naturally flat; the cosmological constant is naturally small or zero; the underlying physics is based on discrete symmetries; 'quantum gravity' cannot be obtained by quantization of Einstein equations; and there is no contradiction between quantum mechanics and gravity, etc.

  17. Atomic Fermi-Bose mixtures in inhomogeneous and random lattices: From Fermi glass to quantum spin glass and quantum percolation

    International Nuclear Information System (INIS)

    Sanpera, A.; Lewenstein, M.; Kantian, A.; Sanchez-Palencia, L.; Zakrzewski, J.

    2004-01-01

    We investigate strongly interacting atomic Fermi-Bose mixtures in inhomogeneous and random optical lattices. We derive an effective Hamiltonian for the system and discuss its low temperature physics. We demonstrate the possibility of controlling the interactions at local level in inhomogeneous but regular lattices. Such a control leads to the achievement of Fermi glass, quantum Fermi spin-glass, and quantum percolation regimes involving bare and/or composite fermions in random lattices

  18. Transport phenomena in correlated quantum liquids: Ultracold Fermi gases and F/N junctions

    Science.gov (United States)

    Li, Hua

    Landau Fermi-liquid theory was first introduced by L. D. Landau in the effort of understanding the normal state of Fermi systems, where the application of the concept of elementary excitations to the Fermi systems has proved very fruitful in clarifying the physics of strongly correlated quantum systems at low temperatures. In this thesis, I use Landau Fermi-liquid theory to study the transport phenomena of two different correlated quantum liquids: the strongly interacting ultracold Fermi gases and the ferromagnet/normal-metal (F/N) junctions. The detailed work is presented in chapter II and chapter III of this thesis, respectively. Chapter I holds the introductory part and the background knowledge of this thesis. In chapter II, I study the transport properties of a Fermi gas with strong attractive interactions close to the unitary limit. In particular, I compute the transport lifetimes of the Fermi gas due to superfluid fluctuations above the BCS transition temperature Tc. To calculate the transport lifetimes I need the scattering amplitudes. The scattering amplitudes are dominated by the superfluid fluctuations at temperatures just above Tc. The normal scattering amplitudes are calculated from the Landau parameters. These Landau parameters are obtained from the local version of the induced interaction model for computing Landau parameters. I also calculate the leading order finite temperature corrections to the various transport lifetimes. A calculation of the spin diffusion coefficient is presented in comparison to the experimental findings. Upon choosing a proper value of F0a, I am able to present a good match between the theoretical result and the experimental measurement, which indicates the presence of the superfluid fluctuations near Tc. Calculations of the viscosity, the viscosity/entropy ratio and the thermal conductivity are also shown in support of the appearance of the superfluid fluctuations. In chapter III, I study the spin transport in the low

  19. Fermi's paradox: The last challenge for copernicanism?

    Directory of Open Access Journals (Sweden)

    Ćirković M.M.

    2009-01-01

    Full Text Available We review Fermi's paradox (or the 'Great Silence' problem, not only arguably the oldest and crucial problem for the Search for ExtraTerrestrial Intelligence (SETI, but also a conundrum of profound scientific, philosophical and cultural importance. By a simple analysis of observation selection effects, the correct resolution of Fermi's paradox is certain to tell us something about the future of humanity. Already more than three quarters of century old puzzle and a quarter of century since the last major review paper in the field by G. David Brin has generated many ingenious discussions and hypotheses. We analyze the often tacit methodological assumptions built in various answers to this puzzle and attempt a new classification of the numerous solutions proposed in an already huge literature on the subject. Finally, we consider the ramifications of various classes of hypotheses for the practical SETI projects. Somewhat paradoxically, it seems that the class of (neocatastrophic hypotheses gives, on the balance, the strongest justification to optimism regarding our current and near-future SETI efforts.

  20. Bosonic Analogue of Dirac Composite Fermi Liquid

    Science.gov (United States)

    Mross, David; Alicea, Jason; Motrunich, Olexei

    The status of particle-hole symmetry has long posed a challenge to the theory of the quantum Hall effect. It is expected to be present in the half-filled Landau level, but is absent in the conventional field theory, i.e., the composite Fermi liquid. Recently, Son proposed an alternative, explicitly particle-hole symmetric theory which features composite fermions that exhibit a Dirac dispersion. In my talk, I will introduce an analogous particle-hole-symmetric metallic state of bosons at odd-integer filling. This state hosts composite fermions whose energy dispersion features a quadratic band touching and corresponding 2 Ï Berry flux, protected by particle-hole and discrete rotation symmetries. As in the Dirac composite Fermi liquid introduced by Son, breaking particle-hole symmetry recovers the familiar Chern-Simons theory. I will discuss realizations of this phase both in 2D and on bosonic topological insulator surfaces, as well as its signatures in experiments and simulations.

  1. Fermi Liquid Instabilities in the Spin Channel

    International Nuclear Information System (INIS)

    Wu, Congjun

    2010-01-01

    We study the Fermi surface instabilities of the Pomeranchuk type in the spin triplet channel with high orbital partial waves (F l a (l > 0)). The ordered phases are classified into two classes, dubbed the α and β-phases by analogy to the superfluid 3 He-A and B-phases. The Fermi surfaces in the α-phases exhibit spontaneous anisotropic distortions, while those in the β-phases remain circular or spherical with topologically non-trivial spin configurations in momentum space. In the α-phase, the Goldstone modes in the density channel exhibit anisotropic overdamping. The Goldstone modes in the spin channel have nearly isotropic underdamped dispersion relation at small propagating wavevectors. Due to the coupling to the Goldstone modes, the spin wave spectrum develops resonance peaks in both the α and β-phases, which can be detected in inelastic neutron scattering experiments. In the p-wave channel β-phase, a chiral ground state inhomogeneity is spontaneously generated due to a Lifshitz-like instability in the originally nonchiral systems. Possible experiments to detect these phases are discussed.

  2. Fermi LAT Observations of LS 5039

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, A.A.; /Naval Research Lab, Wash., D.C. /Federal City Coll.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Ajello, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M.; /Stockholm U. /Stockholm U., OKC; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, G.; /INFN, Trieste /Trieste U.; Bastieri, D.; /INFN, Padua /Padua U.; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Blandford, R.D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, E.D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique /Washington U., Seattle /Padua U. /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /Milan Polytechnic /DAPNIA, Saclay /ASDC, Frascati /INFN, Perugia /Perugia U. /NASA, Goddard /NASA, Goddard /CSST, Baltimore /DAPNIA, Saclay /Naval Research Lab, Wash., D.C. /George Mason U. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /Sonoma State U. /Stockholm U. /Stockholm U., OKC /DAPNIA, Saclay /NASA, Goddard /CSST, Baltimore /SLAC /ASDC, Frascati /Naval Research Lab, Wash., D.C. /INFN, Trieste /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /SLAC /Grenoble Observ. /CENBG, Gradignan /CENBG, Gradignan /Montpellier U.; /more authors..

    2012-03-29

    The first results from observations of the high-mass X-ray binary LS 5039 using the Fermi Gamma-ray Space Telescope data between 2008 August and 2009 June are presented. Our results indicate variability that is consistent with the binary period, with the emission being modulated with a period of 3.903 {+-} 0.005 days; the first detection of this modulation at GeV energies. The light curve is characterized by a broad peak around superior conjunction in agreement with inverse Compton scattering models. The spectrum is represented by a power law with an exponential cutoff, yielding an overall flux (100 MeV-300 GeV) of 4.9 {+-} 0.5(stat) {+-} 1.8(syst) x 10{sup -7} photon cm{sup -2} s{sup -1}, with a cutoff at 2.1 {+-} 0.3(stat) {+-} 1.1(syst) GeV and photon index {Gamma} = 1.9 {+-} 0.1(stat) {+-} 0.3(syst). The spectrum is observed to vary with orbital phase, specifically between inferior and superior conjunction. We suggest that the presence of a cutoff in the spectrum may be indicative of magnetospheric emission similar to the emission seen in many pulsars by Fermi.

  3. FERMI/LAT OBSERVATIONS OF LS 5039

    International Nuclear Information System (INIS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B. M.; Bonamente, E.; Brigida, M.

    2009-01-01

    The first results from observations of the high-mass X-ray binary LS 5039 using the Fermi Gamma-ray Space Telescope data between 2008 August and 2009 June are presented. Our results indicate variability that is consistent with the binary period, with the emission being modulated with a period of 3.903 ± 0.005 days; the first detection of this modulation at GeV energies. The light curve is characterized by a broad peak around superior conjunction in agreement with inverse Compton scattering models. The spectrum is represented by a power law with an exponential cutoff, yielding an overall flux (100 MeV-300 GeV) of 4.9 ± 0.5(stat) ± 1.8(syst) x10 -7 photon cm -2 s -1 , with a cutoff at 2.1 ± 0.3(stat) ± 1.1(syst) GeV and photon index Γ = 1.9 ± 0.1(stat) ± 0.3(syst). The spectrum is observed to vary with orbital phase, specifically between inferior and superior conjunction. We suggest that the presence of a cutoff in the spectrum may be indicative of magnetospheric emission similar to the emission seen in many pulsars by Fermi.

  4. Fermi Liquid Instabilities in the Spin Channel

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Congjun; /Santa Barbara, KITP; Sun, Kai; Fradkin, Eduardo; /Illinois U., Urbana; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-03-16

    We study the Fermi surface instabilities of the Pomeranchuk type in the spin triplet channel with high orbital partial waves (F{sub l}{sup a} (l > 0)). The ordered phases are classified into two classes, dubbed the {alpha} and {beta}-phases by analogy to the superfluid {sup 3}He-A and B-phases. The Fermi surfaces in the {alpha}-phases exhibit spontaneous anisotropic distortions, while those in the {beta}-phases remain circular or spherical with topologically non-trivial spin configurations in momentum space. In the {alpha}-phase, the Goldstone modes in the density channel exhibit anisotropic overdamping. The Goldstone modes in the spin channel have nearly isotropic underdamped dispersion relation at small propagating wavevectors. Due to the coupling to the Goldstone modes, the spin wave spectrum develops resonance peaks in both the {alpha} and {beta}-phases, which can be detected in inelastic neutron scattering experiments. In the p-wave channel {beta}-phase, a chiral ground state inhomogeneity is spontaneously generated due to a Lifshitz-like instability in the originally nonchiral systems. Possible experiments to detect these phases are discussed.

  5. Fermi level stabilization energy in cadmium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Speaks, D. T.; Mayer, M. A.; Yu, K. M.; Mao, S. S.; Haller, E. E.; Walukiewicz, W.

    2010-04-08

    We have studied the effects of high concentrations of native point defects on the electrical and optical properties of CdO. The defects were introduced by irradiation with high energy He+, Ne+, Ar+ and C+ ions. Increasing the irradiation damage with particles heavier than He+ increases the electron concentration until a saturation level of 5x1020 cm-3 is reached. In contrast, due to the ionic character and hence strong dynamic annealing of CdO, irradiation with much lighter He+ stabilizes the electron concentration at a much lower level of 1.7x1020 cm-3. A large shift of the optical absorption edge with increasing electron concentration in irradiated samples is explained by the Burstein-Moss shift corrected for electron-electron and electron-ion interactions. The saturation of the electron concentration and the optical absorption edge energy are consistent with a defect induced stabilization of the Fermi energy at 1 eV above the conduction band edge. The result is in a good agreement with previously determined Fermi level pinning energies on CdO surfaces. The results indicate that CdO shares many similarities with InN, as both materials exhibit extremely large electron affinities and an unprecedented propensity for n-type conductivity.

  6. Fermi's Paradox - The Last Challenge For Copernicanism?

    Directory of Open Access Journals (Sweden)

    Ćirković, M. M.

    2009-06-01

    Full Text Available We review Fermi's paradox (or the "Great Silence" problem, not only arguably the oldest and crucial problem for the Search for ExtraTerrestrial Intelligence (SETI, but also a conundrum of profound scientific, philosophical and cultural importance. By a simple analysis of observation selection effects, the correct resolution of Fermi's paradox is certain to tell us something about the future of humanity. Already more than three quarters of century old puzzle -- and a quarter of century since the last major review paper in the field by G. David Brin -- has generated many ingenious discussions and hypotheses. We analyze the often tacit methodological assumptions built in various answers to this puzzle and attempt a new classification of the numerous solutions proposed in an already huge literatureon the subject. Finally, we consider the ramifications of variousclasses of hypotheses for the practical SETI projects. Somewhatparadoxically, it seems that the class of (neocatastrophichypotheses gives, on the balance, the strongest justification tooptimism regarding our current and near-future SETI efforts.

  7. THE FIRST FERMI LAT SUPERNOVA REMNANT CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Acero, F.; Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d’Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Ackermann, M.; Buehler, R. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M. [Department of Physics and Astronomy, Clemson University, Kinard Lab of Physics, Clemson, SC 29634-0978 (United States); Baldini, L. [Università di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa I-56127 Pisa (Italy); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D.; Buson, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bellazzini, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bissaldi, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Blandford, R. D.; Bloom, E. D.; Bottacini, E.; Caliandro, G. A.; Cameron, R. A. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Bonino, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, I-10125 Torino (Italy); Brandt, T. J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Bregeon, J. [Laboratoire Univers et Particules de Montpellier, Université Montpellier, CNRS/IN2P3, Montpellier (France); Bruel, P., E-mail: francesco.depalma@ba.infn.it, E-mail: t.j.brandt@nasa.gov, E-mail: john.w.hewitt@unf.edu [Laboratoire Leprince-Ringuet, École polytechnique, CNRS/IN2P3, Palaiseau (France); and others

    2016-05-01

    To uniformly determine the properties of supernova remnants (SNRs) at high energies, we have developed the first systematic survey at energies from 1 to 100 GeV using data from the Fermi Large Area Telescope (LAT). Based on the spatial overlap of sources detected at GeV energies with SNRs known from radio surveys, we classify 30 sources as likely GeV SNRs. We also report 14 marginal associations and 245 flux upper limits. A mock catalog in which the positions of known remnants are scrambled in Galactic longitude allows us to determine an upper limit of 22% on the number of GeV candidates falsely identified as SNRs. We have also developed a method to estimate spectral and spatial systematic errors arising from the diffuse interstellar emission model, a key component of all Galactic Fermi LAT analyses. By studying remnants uniformly in aggregate, we measure the GeV properties common to these objects and provide a crucial context for the detailed modeling of individual SNRs. Combining our GeV results with multiwavelength (MW) data, including radio, X-ray, and TeV, we demonstrate the need for improvements to previously sufficient, simple models describing the GeV and radio emission from these objects. We model the GeV and MW emission from SNRs in aggregate to constrain their maximal contribution to observed Galactic cosmic rays.

  8. Induced interactions in a superfluid Bose-Fermi mixture

    DEFF Research Database (Denmark)

    Kinnunen, Jami; Bruun, Georg

    2015-01-01

    We analyze a Bose-Einstein condensate (BEC) mixed with a superfluid two-component Fermi gas in the whole BCS-BEC crossover. Using a quasiparticle random-phase approximation combined with Beliaev theory to describe the Fermi superfluid and the BEC, respectively, we show that the single...

  9. Time domain astronomy with Swift and Fermi | Gehrels | Rwanda ...

    African Journals Online (AJOL)

    Swift and Fermi are unveiling an unexpectedly rich tapestry of behavior in the transient γ−ray sky. Sources which were already known to be transient − such as pulsars, gamma-ray bursts, and blazars − have been studied in ever-increasing detail. For example, Fermi/LAT has detected 117 pulsars of which 56 are new.

  10. "Where is Everybody?" An Account of Fermi's Question

    Science.gov (United States)

    Jones, E. M.

    1985-03-01

    Enrico Fermi's famous question, now central to debates about the prevalence of extraterrestrial civilizations, arose during a luncheon conversation with Emil Konopinski, Edward Teller, and Herbert York in the summer of 1950. Fermi's companions on that day have provided accounts of the incident.

  11. LETTERS AND COMMENTS: Enrico Fermi: a great teacher

    Science.gov (United States)

    Lan, Boon Leong

    2002-09-01

    Enrico Fermi was not only a great theoretical and experimental physicist but a great teacher as well. This article highlights Fermi's approaches in both his formal and informal teaching, and as a thesis advisor. The great teacher inspires - William Arthur Ward

  12. Fermi liquid description of relativistic high density matter

    Science.gov (United States)

    Pal, K.; Dutt-Mazumder, A. K.

    2011-06-01

    We calculate pionic contribution to the relativistic Fermi Liquid parameters (RFLPs) using Chiral Effective Lagrangian. The RFLPs so determined are then used to calculate chemical potential, exchange energy due to πN interaction. We also compare the results of exchange energy from two loop ring diagrams involving σ, ω and π meson with what one obtains from the relativistic Fermi Liquid theory (RFLT).

  13. Magnetoplasmons in gapless graphene superlattices with the different Fermi velocity

    Science.gov (United States)

    Ratnikov, Pavel V.

    2018-03-01

    Planar superlattices consisted of gapless graphenes with identical work functions and different Fermi velocities were studied. The dispersion relation of magnetoplasmons is determined for the case of small charge carriers concentrations when the Fermi level is located within the first miniband.

  14. Fermi liquid and non-Fermi liquid in M-channel N fold degenerate anderson lattice

    International Nuclear Information System (INIS)

    Tsuruta, Atsushi; Ono, Yoshiaki; Matsuura, Tamifusa; Kuroda, Yoshihiro; Kobayashi, Akito; Deguchi, Ken

    1999-01-01

    We investigate Fermi liquid in the single-channel U-infinite N fold degenerate Anderson lattice with use of the expansion from the large limit of the spin-orbital degeneracy N. By collecting all diagrams up to O(N -2 ) of the imaginary part of the self-energy of the conduction electrons, the sum of those is shown to be given by a form proportional to ω 2 + π 2 T 2 up to O(N -2 ) in the single-channel model. On the other hand, the imaginary part of the self-energy of O(N -1 ) in the multichannel model has more singular frequency-/temperature-dependence, so the system is regarded as non-Fermi liquid. (author)

  15. Entanglement rules for holographic Fermi surfaces

    Directory of Open Access Journals (Sweden)

    Dibakar Roychowdhury

    2016-08-01

    Full Text Available In this paper, based on the notion of Gauge/Gravity duality, we explore the laws of entanglement thermodynamics for most generic classes of Quantum Field Theories with hyperscaling violation. In our analysis, we note that for Quantum Field Theories with compressible quark like excitation, the first law of entanglement thermodynamics gets modified due to the presence of an additional term that could be identified as the entanglement chemical potential associated with hidden Fermi surfaces of the boundary theory. Most notably, we find that the so called entanglement chemical potential does not depend on the size of the entangling region and is purely determined by the quark d.o.f. encoded within the entangling region.

  16. Momentum sharing in imbalanced Fermi systems

    Energy Technology Data Exchange (ETDEWEB)

    Hen, O.; Sargsian, M.; Weinstein, L. B.; Piasetzky, E.; Hakobyan, H.; Higinbotham, D. W.; Braverman, M.; Brooks, W. K.; Gilad, S.; Adhikari, K. P.; Arrington, J.; Asryan, G.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Beck, A.; Beck, S. M. -T.; Bedlinskiy, I.; Bertozzi, W.; Biselli, A.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Colaneri, L.; Cole, P. L.; Crede, V.; D' Angelo, A.; De Vita, R.; Deur, A.; Djalali, C.; Doughty, D.; Dugger, M.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Forest, T.; Garillon, B.; Garcon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Girod, F. X.; Goetz, J. T.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Hicks, K.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkanov, B. I.; Isupov, E. L.; Jiang, H.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Koirala, S.; Korover, I.; Kuhn, S. E.; Kubarovsky, V.; Lenisa, P.; Levine, W. I.; Livingston, K.; Lowry, M.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mokeev, V.; Movsisyan, A.; Camacho, C. M.; Mustapha, B.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Rimal, D.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Roy, P.; Rossi, P.; Sabatie, F.; Schott, D.; Schumacher, R. A.; Sharabian, Y. G.; Smith, G. D.; Shneor, R.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Stoler, P.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tkachenko, S.; Ungaro, M.; Vlassov, A. V.; Voutier, E.; Walford, N. K.; Wei, X.; Wood, M. H.; Wood, S. A.; Zachariou, N.; Zana, L.; Zhao, Z. W.; Zheng, X.; Zonta, I.

    2014-10-16

    The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using C-12, Al-27, Fe-56, and Pb-208 targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems.

  17. Theory of Fermi Liquid with Flat Bands

    Science.gov (United States)

    Khodel, V. A.

    2018-04-01

    A self-consistent theory of Fermi systems hosting flat bands is developed. Compared with an original model of fermion condensation, its key point consists in proper accounting for mixing between condensate and non-condensate degrees of freedom that leads to formation of a non-BCS gap Υ (p) in the single-particle spectrum. The results obtained explain: (1) the two-gap structure of spectra of single-particle excitations of electron systems of copper oxides, revealed in ARPES studies, (2) the role of violation of the topological stability of the Landau state in the arrangement of the T-x phase diagram of this family of high-T_c superconductors, (3) the topological nature of a metal-insulator transition, discovered in homogeneous two-dimensional low-density electron liquid of MOSFETs more than 20 years ago.

  18. Polarization Observations of the Fermi blazars

    Science.gov (United States)

    Rani, Bindu; S. Jorstad, A. P. Marscher (BU, USA), K. Sokolovsky (IAASARS, Greece), I. Agudo (CSIC, Spain)

    2018-01-01

    Ever since the revolutionary discovery by the Fermi mission that active galactic nuclei (AGN) produce copious amounts of high-energy emission, its origin has remained elusive. Using high-frequency radio interferometry (VLBI) polarization imaging, we could probe the magnetic field topology of the compact high-energy emission regions in blazars. A case study for blazar 3C 279 reveals presence of multiple gamma-ray emission regions. The observed anti-correlation between gamma-ray flux and percentage polarization at optical bands challenges the current high-energy emission models. In addition to the turbulent component responsible for gamma-ray flares, our analysis suggests the presence of a steady polarized component having with its polarization direction aligned along the jet axis. The steady polarized component could possibly be the toroidal component of the helical magnetic field. To better understand the acceleration processes in jets, high-energy polarization missions are of great importance.

  19. The Gamma-ray Universe through Fermi

    Science.gov (United States)

    Thompson, David J.

    2012-01-01

    Gamma rays, the most powerful form of light, reveal extreme conditions in the Universe. The Fermi Gamma-ray Space Telescope and its smaller cousin AGILE have been exploring the gamma-ray sky for several years, enabling a search for powerful transients like gamma-ray bursts, novae, solar flares, and flaring active galactic nuclei, as well as long-term studies including pulsars, binary systems, supernova remnants, and searches for predicted sources of gamma rays such as dark matter annihilation. Some results include a stringent limit on Lorentz invariance derived from a gamma-ray burst, unexpected gamma-ray variability from the Crab Nebula, a huge ga.nuna-ray structure associated with the center of our galaxy, surprising behavior from some gamma-ray binary systems, and a possible constraint on some WIMP models for dark matter.

  20. Fermi Bubbles: Formation Scenarios and Substructure

    Science.gov (United States)

    Finkbeiner, Douglas P.

    2013-04-01

    The Milky Way has gamma-ray lobes extending several kpc above and below the Galactic center, known as the "Fermi Bubbles." Although the Galactic center is quiet today, these bubbles are a hint of past AGN activity, a burst of star formation, or some other dramatic energy injection. In the three years since their discovery, they have been modeled analytically and numerically, and additional radio and x-ray data have been obtained, leading to a number of ideas about their origins. I will review the latest data and report on some possible formation scenarios. I will also give an update on our tentative claim last year of a linear jet-like structure within the bubbles (arXiv:1205.5852).

  1. Theory of Fermi Liquid with Flat Bands

    Science.gov (United States)

    Khodel, V. A.

    2017-11-01

    A self-consistent theory of Fermi systems hosting flat bands is developed. Compared with an original model of fermion condensation, its key point consists in proper accounting for mixing between condensate and non-condensate degrees of freedom that leads to formation of a non-BCS gap Υ (p) in the single-particle spectrum. The results obtained explain: (1) the two-gap structure of spectra of single-particle excitations of electron systems of copper oxides, revealed in ARPES studies, (2) the role of violation of the topological stability of the Landau state in the arrangement of the T-x phase diagram of this family of high-T_c superconductors, (3) the topological nature of a metal-insulator transition, discovered in homogeneous two-dimensional low-density electron liquid of MOSFETs more than 20 years ago.

  2. Generalization of the Fermi-Segre formula

    International Nuclear Information System (INIS)

    Froeman, N.; Froeman, P.O.

    1981-01-01

    A generalization of the non-relativistic Fermi-Segre formula into a formula which is valid also for angular momentum quantum numbers l different from zero, is derived by means of a phase-integral method. The formula thus obtained, which gives an expression for the limit of u(r)/rsup(l+1) as r→0, where u(r) is a normalized bound-state radial wavefunction, in terms of the derivative of the energy level Esub(n'), with respect to the radial quantum number n', is an improvement and generalization of a formula which has been obtained by M.A. Bouchiat and C. Bouchiat. It reduces to their formula for a particular class of potentials and highly excited states with not too large values of l, and it reduces to the Fermi-Segre formula when l=0. The accuracy of our formula, as well as that of the Bouchiat-Bouchiat formula, is investigated by application to an exactly soluble model. The formula obtained can also be written in another form by replacing dEsub(n')/dn' by an expression involving a closed-loop integral in the complex r-plane (around the generalized classical turning points), the integrand being a phase-integral quantity expressed in terms of the potential in which the particle moves. It is also shown that the exact value of the limit of u(r)/rsup(l+1) as r→0 can be expressed as an expectation value of a certain function depending on the physical potential V(r) and r a swell as on l and Esub(n')

  3. Gapless Fermi surfaces in superconducting CeCoIn5

    Science.gov (United States)

    Barzykin, Victor; Gor'Kov, L. P.

    2007-07-01

    According to Tanatar [Phys. Rev. Lett. 95, 067002 (2005)], the low-temperature thermal conductivity in Ce1-xLaxCoIn5 , a multiband d -wave superconductor, reveals unexpected dependence on the concentration of defects as if one or more Fermi surface sheets remained ungapped below superconducting transition. The interior gap superfluidity mechanism, or unbalanced pairing, recently proposed by Liu and Wilczek [Phys. Rev. Lett. 90, 047002 (2003)] has been invoked as a possible origin of gaplessness. We indicate that the Fermi surface anisotropy in the real CeCoIn5 makes this explanation highly implausible. We emphasize the fundamental difference between unbalanced pairing of different Fermi entities and the formation of superconducting gaps on Fermi surfaces belonging to different bands. We also argue that interband interactions between electrons always induce a finite order parameter on all Fermi surfaces below the temperature of a superconducting transition. We calculate specific heat and thermal conductivity in a two-band model for a d -wave superconductor in the presence of defects. In our simple model, superconductivity originates on one Fermi surface, inducing a smaller gap on the other one. Impurities diminish the induced gap and increase the density of states, restoring rapidly the Wiedemann-Franz law for this Fermi surface. Our calculations are in agreement with experiment.

  4. Sub-saturation matter in compact stars: Nuclear modelling in the framework of the extended Thomas-Fermi theory

    Energy Technology Data Exchange (ETDEWEB)

    Aymard, François; Gulminelli, Francesca [CNRS and ENSICAEN, UMR6534, LPC, 14050 Caen cédex (France); Margueron, Jérôme [Institut de Physique Nucléaire de Lyon, Université Claude Bernard Lyon 1, IN2P3-CNRS, F-69622 Villeurbanne Cedex (France)

    2015-02-24

    A recently introduced analytical model for the nuclear density profile [1] is implemented in the Extended Thomas-Fermi (ETF) energy density functional. This allows to (i) shed a new light on the issue of the sign of surface symmetry energy in nuclear mass formulas, as well as to (ii) show the importance of the in-medium corrections to the nuclear cluster energies in thermodynamic conditions relevant for the description of core-collapse supernovae and (proto)-neutron star crust.

  5. Enrico Fermi and Ettore Majorana: So Strong, So Different

    Science.gov (United States)

    Guerra, Francesco; Robotti, Nadia

    By exploiting primary sources we will analyze some of the aspects of the very complex relationship between Enrico Fermi and Ettore Majorana, from 1927 (first contacts of Majorana with the Institute of Physics of Rome, and with Fermi) until 1938 (disappearance of Majorana). The relationship between Fermi and Majorana can not be interpreted in the simple scheme Teacher-Student. Majorana, indeed, played an important role in the development of research in Rome in the field of the statistical model for the atom and in nuclear physics.

  6. X.509 Authentication/Authorization in FermiCloud

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyunwoo [Fermilab; Timm, Steven [Fermilab

    2014-11-11

    We present a summary of how X.509 authentication and authorization are used with OpenNebula in FermiCloud. We also describe a history of why the X.509 authentication was needed in FermiCloud, and review X.509 authorization options, both internal and external to OpenNebula. We show how these options can be and have been used to successfully run scientific workflows on federated clouds, which include OpenNebula on FermiCloud and Amazon Web Services as well as other community clouds. We also outline federation options being used by other commercial and open-source clouds and cloud research projects.

  7. Neutron physics for nuclear reactors unpublished writings by Enrico Fermi

    CERN Document Server

    Fermi, Enrico; Pisanti, O

    2010-01-01

    This unique volume gives an accurate and very detailed description of the functioning and operation of basic nuclear reactors, as emerging from yet unpublished papers by Nobel Laureate Enrico Fermi. In the first part, the entire course of lectures on Neutron Physics delivered by Fermi at Los Alamos is reported, according to the version made by Anthony P French. Here, the fundamental physical phenomena are described very clearly and comprehensively, giving the appropriate physics grounds for the functioning of nuclear piles. In the second part, all the patents issued by Fermi (and coworkers) on

  8. Fermi Large Area Telescope Bright Gamma-ray Source List

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /KIPAC, Menlo Park /SLAC; Ajello, M.; /KIPAC, Menlo Park /SLAC; Atwood, W.B.; /UC, Santa Cruz; Axelsson, M.; /Stockholm U., OKC /Stockholm U.; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Band, D.L.; /NASA, Goddard /NASA, Goddard; Barbiellini, Guido; /INFN, Trieste /Trieste U.; Bastieri, Denis; /INFN, Padua /Padua U.; Bechtol, K.; /KIPAC, Menlo Park /SLAC; Bellazzini, R.; /INFN, Pisa; Berenji, B.; /KIPAC, Menlo Park /SLAC; Bignami, G.F.; /Pavia U.; Bloom, Elliott D.; /KIPAC, Menlo Park /SLAC; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /KIPAC, Menlo Park /SLAC; Bregeon, J.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Burnett, Thompson H.; /Washington U., Seattle /Bari U. /INFN, Bari /KIPAC, Menlo Park /SLAC /IASF, Milan /IASF, Milan /DAPNIA, Saclay /ASDC, Frascati /INFN, Perugia /Perugia U. /KIPAC, Menlo Park /SLAC /George Mason U. /Naval Research Lab, Wash., D.C. /NASA, Goddard /KIPAC, Menlo Park /SLAC /INFN, Perugia /Perugia U. /KIPAC, Menlo Park /SLAC /Montpellier U. /Sonoma State U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /Stockholm U. /KIPAC, Menlo Park /SLAC /ASDC, Frascati /NASA, Goddard /Maryland U. /Naval Research Lab, Wash., D.C. /INFN, Trieste /Pavia U. /Bari U. /INFN, Bari /KIPAC, Menlo Park /SLAC /UC, Santa Cruz /KIPAC, Menlo Park /SLAC /KIPAC, Menlo Park /SLAC /KIPAC, Menlo Park /SLAC /Montpellier U. /Bari U. /INFN, Bari /Ecole Polytechnique /NASA, Goddard; /more authors..

    2009-05-15

    Following its launch in 2008 June, the Fermi Gamma-ray Space Telescope (Fermi) began a sky survey in August. The Large Area Telescope (LAT) on Fermi in three months produced a deeper and better resolved map of the {gamma}-ray sky than any previous space mission. We present here initial results for energies above 100 MeV for the 205 most significant (statistical significance greater than {approx}10{sigma}) {gamma}-ray sources in these data. These are the best characterized and best localized point-like (i.e., spatially unresolved) {gamma}-ray sources in the early mission data.

  9. Oscillating Casimir force between two slabs in a Fermi sea

    DEFF Research Database (Denmark)

    Li-Wei, Chen; Guo-Zhen, Su; Jin-Can, Chen

    2012-01-01

    The Casimir effect for two parallel slabs immersed in an ideal Fermi sea is investigated at both zero and nonzero temperatures. It is found that the Casimir effect in a Fermi gas is distinctly different from that in an electromagnetic field or a massive Bose gas. In contrast to the familiar result...... that the Casimir force decreases monotonically with the increase of the separation L between two slabs in an electromagnetic field and a massive Bose gas, the Casimir force in a Fermi gas oscillates as a function of L. The Casimir force can be either attractive or repulsive, depending sensitively on the magnitude...... of L. In addition, it is found that the amplitude of the Casimir force in a Fermi gas decreases with the increase of the temperature, which also is contrary to the case in a Bose gas, since the bosonic Casimir force increases linearly with the increase of the temperature in the region T

  10. Controlling resonant tunneling in graphene via Fermi velocity engineering

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Jonas R. F., E-mail: jonas.lima@ufrpe.br [Departamento de Física, Universidade Federal Rural de Pernambuco, 52171-900 Recife, PE (Brazil); Pereira, Luiz Felipe C.; Bezerra, C. G. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, 59078-970 Natal, RN (Brazil)

    2016-06-28

    We investigate the resonant tunneling in a single layer graphene superlattice with modulated energy gap and Fermi velocity via an effective Dirac-like Hamiltonian. We calculate the transmission coefficient with the transfer matrix method and analyze the effect of a Fermi velocity modulation on the electronic transmission, in the case of normal and oblique incidence. We find it is possible to manipulate the electronic transmission in graphene by Fermi velocity engineering, and show that it is possible to tune the transmitivity from 0 to 1. We also analyze how a Fermi velocity modulation influences the total conductance and the Fano factor. Our results are relevant for the development of novel graphene-based electronic devices.

  11. Fermi surface of underdoped high-Tc superconducting cuprates

    International Nuclear Information System (INIS)

    Dai, X.; Su, Z.; Yu, L.

    1997-01-01

    The coexistence of a π-flux state and a d-wave resonant-valance-bond (RVB) state is considered in this paper within the slave-boson approach. A critical value of doping concentration δ c is found, below which the coexisting π-flux and d-wave RVB state is favored in energy. The pseudo-Fermi surface of spinons and the physical electron spectral function are calculated. A clear Fermi-level crossing is found along the (0,0) to (π, π) direction, but no such crossing is detected along the (π, 0) to (π, π) direction. Also, an energy gap of d-wave symmetry appears at the Fermi level in our calculation. The above results are in agreement with the angle-resolved photoemission experiments which indicate at a d-wave pseudogap and a half-pocket-like Fermi surface in underdoped cuprates. copyright 1997 The American Physical Society

  12. Treatment Method for Fermi Barrel Sodium Metal Residues

    Energy Technology Data Exchange (ETDEWEB)

    Steven R. Sherman; Collin J. Knight

    2005-06-01

    Fermi barrels are 55-gallon drums that once contained bulk sodium metal from the shutdown Fermi 1 breeder reactor facility, and now contain residual sodium metal and other sodium/air reaction products. This report provides a residual sodium treatment method and proposed quality assurance steps that will ensure that all residual sodium is deactivated and removed from the Fermi barrels before disposal. The treatment method is the application of humidified carbon dioxide to the residual sodium followed by a water wash. The experimental application of the treatment method to six Fermi barrels is discussed, and recommendations are provided for further testing and evaluation of the method. Though more testing would allow for a greater refinement of the treatment technique, enough data has been gathered from the tests already performed to prove that 100% compliance with stated waste criteria can be achieved.

  13. Vortex Lattices in the Bose-Fermi Superfluid Mixture.

    Science.gov (United States)

    Jiang, Yuzhu; Qi, Ran; Shi, Zhe-Yu; Zhai, Hui

    2017-02-24

    In this Letter we show that the vortex lattice structure in the Bose-Fermi superfluid mixture can undergo a sequence of structure transitions when the Fermi superfluid is tuned from the BCS regime to the BEC regime. This is due to the difference in the vortex core structure of a Fermi superfluid in the BCS regime and in the BEC regime. In the BCS regime the vortex core is nearly filled, while the density at the vortex core gradually decreases until it empties out in the BEC regime. Therefore, with the density-density interaction between the Bose and the Fermi superfluids, interaction between the two sets of vortex lattices gets stronger in the BEC regime, which yields the structure transition of vortex lattices. In view of the recent realization of this superfluid mixture and vortices therein, our theoretical predication can be verified experimentally in the near future.

  14. Chandra and Swift Observations of Unidentified Fermi-LAT Objects

    Science.gov (United States)

    Donato, Davide; Cheung, T.; Gehrels, N.

    2010-03-01

    In the last year we targeted some of the unidentified Fermi-LAT objects (UFOs) at high Galactic latitude with Chandra and Swift in order to determine the basic properties (positions, fluxes, hardness ratios) of all X-ray sources within the Fermi-LAT localization circles. These satellites enable us to detect the X-ray conterparts with a flux limit that is at least an order of magnitude lower than achieved in extant RASS data and to further follow-up at other wavelengths, with the ultimate goal to reveal the nature of these enigmatic gamma-ray sources. Here we present the results obtained with 5 Chandra pointings of high Galactic latitude UFOs in the Fermi-LAT 3-months bright source list. The association of detected X-ray sources within the improved 11-months Fermi-LAT localization circles with available optical and radio observations is discussed.

  15. GRBs in the Era of Swift and Fermi

    Science.gov (United States)

    Racusin, Judy

    2011-01-01

    Utilizing both Swift and Fermi to study GRBs provides us with a unique broad spectral and temporal window into both prompt emission and afterglow studies. Swift has provided key information from GRB follow-up of LAT detected bursts) that has led to ground-based redshift measurements and afterglow broadband light curves and SEDs. We study the X-ray and optical afterglows of Fermi-LAT detected bursts in the context of the hundreds of GRBs discovered by Swift over the last 7 years) in order to better understand the origin of the high-energy gamma-rays. We also briefly describe the efforts to best facilitate joint Swift-Fermi observations. These initial results demonstrate the synergy between Swift and Fermi) and hint at the many interesting discoveries to come.

  16. A Probabilistic Catalogue of Unresolved High Latitude Fermi LAT Sources

    Science.gov (United States)

    Portillo, Stephen; Daylan, Tansu; Finkbeiner, Douglas P.

    2016-01-01

    Several groups have identified a highly significant and spatially extended excess of GeV gamma-rays in the Inner Galaxy using data from the Fermi LAT. While this signal's properties are consistent with those expected from dark matter annihilation, another interpretation is that it is the emission from a population of unresolved point sources. Motivated by the point source interpretation, we implement a Bayesian method for producing probabilistic catalogues to constrain the population of point sources below the Fermi LAT detection limit. To validate our method, we apply it to the high latitude Fermi LAT data to confirm that the probabilistic catalogue recovers the resolved sources in the Fermi Collaboration's 3FGL catalogue. Then, we compare our constraints on the unresolved point source population at high latitude to those obtained using non-Poissonian template fitting.

  17. Concerning the Baker Solution of the Thomas-Fermi Equation

    International Nuclear Information System (INIS)

    Sabirov, R.Kh.

    1993-01-01

    A simple proof is founded that Baker's expansion is the exact solution of the Thomas-Fermi equation in the region very close to the nucleus. An alternative form of the basis equation of the Thomas-Fermi statistical theory of atom is derived. The recurrence relation for Baker's coefficients is found on the basis of this form. The non-trivial mathematical convergent series were summed up on the basis of our consideration

  18. Diatomic molecules in ultracold Fermi gases - Novel composite bosons

    OpenAIRE

    Petrov, D. S.; Salomon, C.; Shlyapnikov, G. V.

    2005-01-01

    We give a brief overview of recent studies of weakly bound homonuclear molecules in ultracold two-component Fermi gases. It is emphasized that they represent novel composite bosons, which exhibit features of Fermi statistics at short intermolecular distances. In particular, Pauli exclusion principle for identical fermionic atoms provides a strong suppression of collisional relaxation of such molecules into deep bound states. We then analyze heteronuclear molecules which are expected to be for...

  19. Theory of two-dimensional fermi liquids: Pt. 3

    International Nuclear Information System (INIS)

    Cui Shimin; Cai Jianhua

    1990-01-01

    The transport properties and sound propagation of 2-D Fermi liquids are discussed. Microscopic expressions for the coefficients of diffusion, viscosity and thermal conductivity are derived using Resibois method. Velocities of the zeroth and first sounds are calculated. Based on an analysis of collision integral, it is shown that a series of relaxtion time parameters is necessary to define precisely the sound propagation properties in 2-D Fermi liquids in contrast to the 3-D case

  20. Fermi liquid description of relativistic high density matter

    International Nuclear Information System (INIS)

    Pal, K.; Dutt-Mazumder, A.K.

    2011-01-01

    We calculate pionic contribution to the relativistic Fermi Liquid parameters (RFLPs) using Chiral Effective Lagrangian. The RFLPs so determined are then used to calculate chemical potential, exchange energy due to πN interaction. We also compare the results of exchange energy from two loop ring diagrams involving σ, ω and π meson with what one obtains from the relativistic Fermi Liquid theory (RFLT). (author)

  1. Fermi surface mapping: Techniques and visualization

    Energy Technology Data Exchange (ETDEWEB)

    Rotenberg, E. [Univ. of Oregon, Eugene, OR (United States). Dept. of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS); Denlinger, J. D. [Univ. of Wisconsin, Milwaukee, WI (United States); Kevan, S. D. [Univ. of Oregon, Eugene, OR (United States). Dept. of Physics; Goodman, K. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tobin, J. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mankey, G. J. [Louisiana State Univ., Baton Rouge, LA (United States). Dept. of Physics

    1997-04-01

    Angle-resolved photoemission (ARP) of valence bands is a mature technique that has achieved spectacular success in band-mapping metals, semiconductors, and insulators. The purpose of the present study was the development of experimental and analytical techniques in ARP which take advantage of third generation light sources. Here the authors studied the relatively simple Cu surface in preparation for other metals. Copper and related metals themselves are of current interest, especially due to its role as an interlayer in spin valves and other magnetic heterostructures. A major goal of this study was the development of a systematic technique to quickly (i.e. in a few hours of synchrotron beamtime) measure the FS and separate it into bulk and surface FS`s. Often, one needs to avoid bulk features altogether, which one can achieve by carefully mapping their locations in k-space. The authors will also show how they systematically map Fermi surfaces throughout large volumes of k-space, and, by processing the resulting volume data sets, provide intuitive pictures of FS`s, both bulk and surface.

  2. Dark matter at the Fermi scale

    International Nuclear Information System (INIS)

    Feng, Jonathan L

    2006-01-01

    Recent breakthroughs in cosmology reveal that a quarter of the Universe is composed of dark matter, but the microscopic identity of dark matter remains a deep mystery. I review recent progress in resolving this puzzle, focusing on two well-motivated classes of dark matter candidates: weakly interacting massive particles (WIMPs) and superWIMPs. These possibilities have similar motivations: they exist in the same well-motivated particle physics models, the observed dark matter relic density emerges naturally and dark matter particles have mass around 100 GeV, the energy scale identified as interesting over 70 years ago by Fermi. At the same time, they have widely varying implications for direct and indirect dark matter searches, particle colliders, Big Bang nucleosynthesis, the cosmic microwave background, and halo profiles and structure formation. If WIMPs or superWIMPs are a significant component of dark matter, we will soon be entering a golden era in which dark matter will be studied through diverse probes at the interface of particle physics, astroparticle physics and cosmology. I outline a programme of dark matter studies for each of these scenarios and discuss the prospects for identifying dark matter in the coming years. (topical review)

  3. The nuclear Thomas-Fermi model

    International Nuclear Information System (INIS)

    Myers, W.D.; Swiatecki, W.J.

    1994-08-01

    The statistical Thomas-Fermi model is applied to a comprehensive survey of macroscopic nuclear properties. The model uses a Seyler-Blanchard effective nucleon-nucleon interaction, generalized by the addition of one momentum-dependent and one density-dependent term. The adjustable parameters of the interaction were fitted to shell-corrected masses of 1654 nuclei, to the diffuseness of the nuclear surface and to the measured depths of the optical model potential. With these parameters nuclear sizes are well reproduced, and only relatively minor deviations between measured and calculated fission barriers of 36 nuclei are found. The model determines the principal bulk and surface properties of nuclear matter and provides estimates for the more subtle, Droplet Model, properties. The predicted energy vs density relation for neutron matter is in striking correspondence with the 1981 theoretical estimate of Friedman and Pandharipande. Other extreme situations to which the model is applied are a study of Sn isotopes from 82 Sn to 170 Sn, and the rupture into a bubble configuration of a nucleus (constrained to spherical symmetry) which takes place when Z 2 /A exceeds about 100

  4. The Nuclear Thomas-Fermi Model

    Science.gov (United States)

    Myers, W. D.; Swiatecki, W. J.

    1994-08-01

    The statistical Thomas-Fermi model is applied to a comprehensive survey of macroscopic nuclear properties. The model uses a Seyler-Blanchard effective nucleon-nucleon interaction, generalized by the addition of one momentum-dependent and one density-dependent term. The adjustable parameters of the interaction were fitted to shell-corrected masses of 1654 nuclei, to the diffuseness of the nuclear surface and to the measured depths of the optical model potential. With these parameters nuclear sizes are well reproduced, and only relatively minor deviations between measured and calculated fission barriers of 36 nuclei are found. The model determines the principal bulk and surface properties of nuclear matter and provides estimates for the more subtle, Droplet Model, properties. The predicted energy vs density relation for neutron matter is in striking correspondence with the 1981 theoretical estimate of Friedman and Pandharipande. Other extreme situations to which the model is applied are a study of Sn isotopes from {sup 82}Sn to {sup 170}Sn, and the rupture into a bubble configuration of a nucleus (constrained to spherical symmetry) which takes place when Z{sup 2}/A exceeds about 100.

  5. Fermi Large Area Telescope Operations: Progress Over 4 Years

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, Robert A.; /SLAC

    2012-06-28

    The Fermi Gamma-ray Space Telescope was launched into orbit in June 2008, and is conducting a multi-year gamma-ray all-sky survey, using the main instrument on Fermi, the Large Area Telescope (LAT). Fermi began its science mission in August 2008, and has now been operating for almost 4 years. The SLAC National Accelerator Laboratory hosts the LAT Instrument Science Operations Center (ISOC), which supports the operation of the LAT in conjunction with the Mission Operations Center (MOC) and the Fermi Science Support Center (FSSC), both at NASA's Goddard Space Flight Center. The LAT has a continuous output data rate of about 1.5 Mbits per second, and data from the LAT are stored on Fermi and transmitted to the ground through TDRS and the MOC to the ISOC about 10 times per day. Several hundred computers at SLAC are used to process LAT data to perform event reconstruction, and gamma-ray photon data are subsequently delivered to the FSSC for public release with a few hours of being detected by the LAT. We summarize the current status of the LAT, and the evolution of the data processing and monitoring performed by the ISOC during the first 4 years of the Fermi mission, together with future plans for further changes to detected event data processing and instrument operations and monitoring.

  6. Relativistic finite-temperature Thomas-Fermi model

    Science.gov (United States)

    Faussurier, Gérald

    2017-11-01

    We investigate the relativistic finite-temperature Thomas-Fermi model, which has been proposed recently in an astrophysical context. Assuming a constant distribution of protons inside the nucleus of finite size avoids severe divergence of the electron density with respect to a point-like nucleus. A formula for the nuclear radius is chosen to treat any element. The relativistic finite-temperature Thomas-Fermi model matches the two asymptotic regimes, i.e., the non-relativistic and the ultra-relativistic finite-temperature Thomas-Fermi models. The equation of state is considered in detail. For each version of the finite-temperature Thomas-Fermi model, the pressure, the kinetic energy, and the entropy are calculated. The internal energy and free energy are also considered. The thermodynamic consistency of the three models is considered by working from the free energy. The virial question is also studied in the three cases as well as the relationship with the density functional theory. The relativistic finite-temperature Thomas-Fermi model is far more involved than the non-relativistic and ultra-relativistic finite-temperature Thomas-Fermi models that are very close to each other from a mathematical point of view.

  7. Quantum Phase Transitions in the Bose Hubbard Model and in a Bose-Fermi Mixture

    Science.gov (United States)

    Duchon, Eric Nicholas

    with equal population, as a function of increasing attraction between bosons and fermions. The variational wave function captures the weak and the strong coupling limits and at intermediate coupling we make two predictions using zero temperature quantum Monte Carlo methods: (I) a complete destruction of the atomic Fermi surface and emergence of a molecular Fermi sea that coexists with a remnant of the Bose-Einstein condensate, and (II) evidence for enhanced short-ranged fermion-fermion correlations mediated by bosons.

  8. Peltier heat measurements at a junction between materials exhibiting Fermi gas and Fermi liquid behaviour

    International Nuclear Information System (INIS)

    Kuznetsov, V L; Kuznetsova, L A; Rowe, D M

    2003-01-01

    The feasibility of improving the conversion efficiency of a thermoelectric converter by employing interfaces between materials exhibiting Fermi gas (FG) and Fermi liquid (FL) behaviour has been studied. Thermocouples consisting of a semiconductor and a strongly correlated material have been fabricated and the Peltier heat measured over the temperature range 15 deg 330 K. A number of materials possessing different types of strong electron correlation have been synthesized including the heavy fermion compound YbAl 3 , manganite La 0.7 Ca 0.3 MnO 3 and high-T c superconductor YBa 2 Cu 3 O 7δ . n- and p-Bi 2 Te 3 -based solid solutions as well as n-Bi 0.85 Sb 0.15 solid solution have also been synthesized and used as materials exhibiting FG properties. Experimental measurements of the Peltier heat were compared to the results of calculations based on preliminary measured thermoelectric properties of materials and electrical contact resistance at the interfaces. The potential of employing FG/FL interfaces in thermoelectric energy conversion is discussed

  9. Statistical properties of Fermi GBM GRBs' spectra

    Science.gov (United States)

    Rácz, István I.; Balázs, Lajos G.; Horvath, Istvan; Tóth, L. Viktor; Bagoly, Zsolt

    2018-03-01

    Statistical studies of gamma-ray burst (GRB) spectra may result in important information on the physics of GRBs. The Fermi GBM catalogue contains GRB parameters (peak energy, spectral indices, and intensity) estimated fitting the gamma-ray spectral energy distribution of the total emission (fluence, flnc), and during the time of the peak flux (pflx). Using contingency tables, we studied the relationship of the models best-fitting pflx and flnc time intervals. Our analysis revealed an ordering of the spectra into a power law - Comptonized - smoothly broken power law - Band series. This result was further supported by a correspondence analysis of the pflx and flnc spectra categorical variables. We performed a linear discriminant analysis (LDA) to find a relationship between categorical (spectral) and model independent physical data. LDA resulted in highly significant physical differences among the spectral types, that is more pronounced in the case of the pflx spectra, than for the flnc spectra. We interpreted this difference as caused by the temporal variation of the spectrum during the outburst. This spectral variability is confirmed by the differences in the low-energy spectral index and peak energy, between the pflx and flnc spectra. We found that the synchrotron radiation is significant in GBM spectra. The mean low-energy spectral index is close to the canonical value of α = -2/3 during the peak flux. However, α is ˜ -0.9 for the spectra of the fluences. We interpret this difference as showing that the effect of cooling is important only for the fluence spectra.

  10. No indications of axionlike particles from Fermi

    Science.gov (United States)

    Belikov, Alexander V.; Goodenough, Lisa; Hooper, Dan

    2011-03-01

    As very high energy (≳100GeV) gamma rays travel over cosmological distances, their flux is attenuated through interactions with the extragalactic background light. Observations of distant gamma ray sources at energies between ˜200GeV and a few TeV by ground-based gamma-ray telescopes such as HESS, however, have motivated the possibility that the universe is more transparent to very high energy photons than had been anticipated. One proposed explanation for this is the existence of axionlike particles (ALPs) which gamma rays can efficiently oscillate into, enabling them to travel cosmological distances without attenuation. In this article, we use a state-of-the-art model for the extragalactic background light (which is somewhat lower at ˜μm wavelengths than in previous models) and data from the Fermi Gamma Ray Space Telescope to calculate the spectra at 1-100 GeV of two gamma-ray sources, 1ES1101-232 at redshift z=0.186 and H2356-309 at z=0.165, in conjunction with the measurements of ground-based telescopes, to test the ALP hypothesis. We find that these observations can be well fit by an intrinsic power-law source spectrum with indices of -1.72 and -2.1 for 1ES1101-232 and H2356-309, respectively, and that no ALPs or other exotic physics is necessary to explain the observed degree of attenuation. While this does not exclude the possibility that ALPs are involved in the cosmological propagation of gamma rays, it does reduce the motivation for such new physics.

  11. Tuning the Fano factor of graphene via Fermi velocity modulation

    Science.gov (United States)

    Lima, Jonas R. F.; Barbosa, Anderson L. R.; Bezerra, C. G.; Pereira, Luiz Felipe C.

    2018-03-01

    In this work we investigate the influence of a Fermi velocity modulation on the Fano factor of periodic and quasi-periodic graphene superlattices. We consider the continuum model and use the transfer matrix method to solve the Dirac-like equation for graphene where the electrostatic potential, energy gap and Fermi velocity are piecewise constant functions of the position x. We found that in the presence of an energy gap, it is possible to tune the energy of the Fano factor peak and consequently the location of the Dirac point, by a modulation in the Fermi velocity. Hence, the peak of the Fano factor can be used experimentally to identify the Dirac point. We show that for higher values of the Fermi velocity the Fano factor goes below 1/3 at the Dirac point. Furthermore, we show that in periodic superlattices the location of Fano factor peaks is symmetric when the Fermi velocity vA and vB is exchanged, however by introducing quasi-periodicity the symmetry is lost. The Fano factor usually holds a universal value for a specific transport regime, which reveals that the possibility of controlling it in graphene is a notable result.

  12. Solar System Gamma Ray observations using Fermi-LAT detector

    International Nuclear Information System (INIS)

    Giglietto, N.

    2009-01-01

    The Fermi Gamma-ray Space Telescope, launched in June 2008, is an international space mission dedicated to the study of the high-energy gamma rays from the Universe. The main instrument aboard Fermi is the Large Area Telescope (LAT), a pair conversion telescope equipped with the state-of-the art in gamma-ray detectors technology, and operating at energies >30 MeV. During first two months of data taking, Fermi has detected high-energy gamma rays from the quiet Sun and the Moon. This emission is produced by interactions of cosmic rays; by nucleons with the solar and lunar surface, and electrons with solar photons in the heliosphere. While the Moon was detected by EGRET on CGRO with low statistics, Fermi provides high-sensitivity measurements on a daily basis allowing both short- and long-term variability to be studied. Since Galactic cosmic rays are at their maximum flux at solar minimum we expect that the quiescent solar and lunar emission to be a maximum during the period covered by this report. Fermi is the only mission capable of monitoring the Sun at energies above several hundred MeV over the full 24th solar cycle. We present first analysis showing images of Moon and the quiet emission of the solar disk, giving a description of the analysis tools used.

  13. Fermi and the Art of Estimation

    Indian Academy of Sciences (India)

    IAS Admin

    Science Education and. Research, Pune. He has worked on problems in optics, dynamics, and statistical physics, often ... von Neumann in the US, Taylor in the UK, and Sedov in the USSR arrived at this solution, independently of each other because of World War II secrecy and lack of communication in the following era.

  14. A new look at Thomas–Fermi theory

    DEFF Research Database (Denmark)

    Solovej, Jan Philip

    2016-01-01

    In this short note, we argue that Thomas–Fermi theory, the simplest of all density functional theories, although failing to explain features such as molecular binding or stability of negative ions, is surprisingly accurate in estimating sizes of atoms. We give both numerical, experimental and rig...... and rigorous mathematical evidence for this claim. Motivated by this, we formulate two new mathematical conjectures on the exactness of Thomas–Fermi theory.......In this short note, we argue that Thomas–Fermi theory, the simplest of all density functional theories, although failing to explain features such as molecular binding or stability of negative ions, is surprisingly accurate in estimating sizes of atoms. We give both numerical, experimental...

  15. FERMI(at)Elettra FEL Design Technical Optimization Final Report

    International Nuclear Information System (INIS)

    Fawley, William; Penn, Gregory; Allaria, Enrico; De Ninno, Giovanni; Graves, William

    2006-01-01

    This is the final report of the FEL Design Group for the Technical Optimization Study for the FERMI(at)ELETTRA project. The FERMI(at)ELETTRA project is based on the principle of harmonic upshifting of an initial ''seed'' signal in a single pass, FEL amplifier employing multiple undulators. There are a number of FEL physics principles which underlie this approach to obtaining short wavelength output: (1) the energy modulation of the electron beam via the resonant interaction with an external laser seed (2) the use of a chromatic dispersive section to then develop a strong density modulation with large harmonic overtones (3) the production of coherent radiation by the microbunched beam in a downstream radiator. Within the context of the FERMI project, we discuss each of these elements in turn

  16. Constrain the SED Type of Unidentified Fermi Objects

    Directory of Open Access Journals (Sweden)

    An-Li Tsai

    2013-09-01

    Full Text Available 2FGL J1823.8+4312 and 2FGL J1304.1-2415 are two unidentified Fermi objects which are associated with cluster of galaxies. In order to exam the possibility of cluster of galaxies as gamma-ray emitters, we search for counterpart of these two unidentified Fermi objects in other wavebands. However, we find other candidate to be more likely the counterpart of the unidentified Fermi object for both sources. We compare their light curves and SEDs in order to identify their source types. However, data at millimeter and sub-millimeter wavebands, which is important for us to constrain the SED at synchrotron peak, is lacking of measurement. Therefore, we proposed to SMA observation for these two sources. We have got data and are doing further analysis.

  17. The great silence science and philosophy of Fermi's paradox

    CERN Document Server

    Cirkovic, Milan M

    2018-01-01

    The Great Silence explores the multifaceted problem named after the great Italian physicist Enrico Fermi and his legendary 1950 lunchtime question "Where is everybody?" In many respects, Fermi's paradox is the richest and the most challenging problem for the entire field of astrobiology and the Search for ExtraTerrestrial Intelligence (SETI) studies. This book shows how Fermi's paradox is intricately connected with many fields of learning, technology, arts, and even everyday life. It aims to establish the strongest possible version of the problem, to dispel many related confusions, obfuscations, and prejudices, as well as to offer a novel point of entry to the many solutions proposed in existing literature. Cirkovic argues that any evolutionary worldview cannot avoid resolving the Great Silence problem in one guise or another.

  18. Dissolution of topological Fermi arcs in a dirty Weyl semimetal

    Science.gov (United States)

    Slager, Robert-Jan; Juričić, Vladimir; Roy, Bitan

    2017-11-01

    Weyl semimetals (WSMs) have recently attracted a great deal of attention as they provide a condensed matter realization of chiral anomaly, feature topologically protected Fermi arc surface states, and sustain sharp chiral Weyl quasiparticles up to a critical disorder at which a continuous quantum phase transition (QPT) drives the system into a metallic phase. We here numerically demonstrate that with increasing strength of disorder, the Fermi arc gradually loses its sharpness, and close to the WSM-metal QPT it completely dissolves into the metallic bath of the bulk. The predicted topological nature of the WSM-metal QPT and the resulting bulk-boundary correspondence across this transition can be directly observed in angle-resolved photoemission spectroscopy (ARPES) and Fourier transformed scanning tunneling microscopy (STM) measurements by following the continuous deformation of the Fermi arcs with increasing disorder in recently discovered Weyl materials.

  19. String theory, quantum phase transitions, and the emergent Fermi liquid.

    Science.gov (United States)

    Cubrović, Mihailo; Zaanen, Jan; Schalm, Koenraad

    2009-07-24

    A central problem in quantum condensed matter physics is the critical theory governing the zero-temperature quantum phase transition between strongly renormalized Fermi liquids as found in heavy fermion intermetallics and possibly in high-critical temperature superconductors. We found that the mathematics of string theory is capable of describing such fermionic quantum critical states. Using the anti-de Sitter/conformal field theory correspondence to relate fermionic quantum critical fields to a gravitational problem, we computed the spectral functions of fermions in the field theory. By increasing the fermion density away from the relativistic quantum critical point, a state emerges with all the features of the Fermi liquid.

  20. Full scope upgrade project for the Fermi 2 simulator

    International Nuclear Information System (INIS)

    Bollacasa, D.; Gonsalves, J.B.; Newcomb, P.C.

    1994-01-01

    The Detroit Edison company (DECO) concentrated the Simulation Division of Asea Brown Boveri (ABB) to perform a full scope upgrade of the Fermi 2 simulator. The Fermi 2 plant is a BWR 6 generation Nuclear Steam Supply System (NSSS). The project included the complete replacement of the existing simulation model sofware with ABB's high fidelity BWR models, addition of an advanced instructor station facility and new simulation computers. Also provided on the project were ABB's advanced simulation environment (CETRAN), a comprehensive configuration management system based on a modern relational database system and a new computer interface to the input/output system. (8 refs., 2 figs.)

  1. Magnetic moments and non-Fermi-liquid behavior in quasicrystals

    Science.gov (United States)

    Andrade, Eric

    Motivated by the intrinsic non-Fermi-liquid behavior observed in the heavy-fermion quasicrystal Au51Al34Yb15, we study the low-temperature behavior of dilute magnetic impurities placed in metallic quasicrystals. We find that a large fraction of the magnetic moments are not quenched down to very low temperatures, leading to a power-law distribution of Kondo temperatures, accompanied by a non-Fermi-liquid behavior, in a remarkable similarity to the Kondo-disorder scenario found in disordered heavy-fermion metals. This work was supported by FAPESP (Brazil) Grant No. 2013/00681-8.

  2. The radio-γ-ray connection in Fermi blazars

    Science.gov (United States)

    Ghirlanda, G.; Ghisellini, G.; Tavecchio, F.; Foschini, L.; Bonnoli, G.

    2011-05-01

    We study the correlation between the γ-ray flux (Fγ), averaged over the first 11 months of the Fermi survey and integrated above 100 MeV, and the radio flux density (Fr at 20 GHz) of Fermi sources associated with a radio counterpart in the 20-GHz Australia Telescope Compact Array (AT20G) survey. Considering the blazars detected in both bands, the correlation is highly significant and has the form Fγ∝F0.85±0.04r, similar to BL Lacertae objects and flat-spectrum radio quasars. However, only a small fraction (˜1/15) of the AT20G radio sources with flat radio spectra are detected by Fermi. To understand if this correlation is real, we examine the selection effects introduced by the flux limits of both the radio and the γ-ray surveys, and the importance of variability of the γ-ray flux. After accounting for these effects, we find that the radio-γ-ray flux correlation is real, but its slope is steeper than the observed one, that is, Fγ∝Fδr with δ in the range 1.25-1.5. The observed Fγ-Fr correlation and the fraction of radio sources detected by Fermi are reproduced assuming a long-term γ-ray flux variability, following a lognormal probability distribution with standard deviation σ≥ 0.5 (corresponding to Fγ varying by at least a factor of 3). Such a variability is compatible, even if not necessarily equal, with what is observed when comparing, for the sources in common, the EGRET and the Fermi γ-ray fluxes (even if the Fermi fluxes are averaged over ˜1 yr). Another indication of variability is the non-detection of 12 out of 66 EGRET blazars by Fermi, despite its higher sensitivity. We also study the strong linear correlation between the γ-ray and the radio luminosity of the 144 AT20G-Fermi associations with known redshift and show, through partial correlation analysis, that it is statistically robust. Two possible implications of these correlations are discussed: the contribution of blazars to the extragalactic γ-ray background and the prediction

  3. White Noise and Heating of Open Quantum Field Fermi Systems

    CERN Document Server

    Abrikosov, A A

    1993-01-01

    I study the time evolution of the density matrices of quantum Fermi systems interacting with classic external Fermi fields. This interaction either changes the temperature of the system or it affects the density of particles. For relativistic Dirac fermions, variations of temperature lead to creation (annihilation) of particle - antiparticle pairs. The change of the density (or of the chemical potential) indicates the existence of the incoming (outgoing) flux of fermions from (to) the bath. These changes are independent for the different modes and in order to model the thermalization one should adjust the spectrum of the noise. The linear time dependences of the densities of particles are characteristic for all the processes.

  4. Anomalous Nernst effect in type-II Weyl semimetals

    Science.gov (United States)

    Saha, Subhodip; Tewari, Sumanta

    2018-01-01

    Topological Weyl semimetals (WSM), a new state of quantum matter with gapless nodal bulk spectrum and open Fermi arc surface states, have recently sparked enormous interest in condensed matter physics. Based on the symmetry and fermiology, it has been proposed that WSMs can be broadly classified into two types, type-I and type-II Weyl semimetals. While the undoped, conventional, type-I WSMs have point like Fermi surface and vanishing density of states (DOS) at the Fermi energy, the type-II Weyl semimetals break Lorentz symmetry explicitly and have tilted conical spectra with electron and hole pockets producing finite DOS at the Fermi level. The tilted conical spectrum and finite DOS at Fermi level in type-II WSMs have recently been shown to produce interesting effects such as a chiral anomaly induced longitudinal magnetoresistance that is strongly anisotropic in direction and a novel anomalous Hall effect. In this work, we consider the anomalous Nernst effect in type-II WSMs in the absence of an external magnetic field using the framework of semi-classical Boltzmann theory. Based on both a linearized model of time-reversal breaking WSM with a higher energy cut-off and a more realistic lattice model, we show that the anomalous Nernst response in these systems is strongly anisotropic in space, and can serve as a reliable signature of type-II Weyl semimetals in a host of magnetic systems with spontaneously broken time reversal symmetry.

  5. Fermi Solar Flare X-Ray and Gamma-Ray Observations

    Data.gov (United States)

    National Aeronautics and Space Administration — The Fermi Gamma-ray Space Telescope was launched in June 2008 to explore high-energy phenomena in the Universe. This GI program is targeted specifically at Fermi...

  6. Search for a neutrino emission from the Fermi Bubbles with the ANTARES telescope

    CERN Multimedia

    BIAGI, S

    2012-01-01

    The first search for neutrinos from the Fermi Bubbles is presented using data collected by the ANTARES telescope. No evidence of a neutrino signal from the Fermi Bubbles region was found, hence upper limits were calculated for different energy cutoffs.

  7. Analysis of super-allowed Fermi beta-decay

    International Nuclear Information System (INIS)

    Wilkinson, D.H.

    1994-11-01

    Analysis of tile Jπ = 0 + → 0 + super-allowed Fermi transitions within isospin triplets is limited in the precision of its outcome not by the accuracy of the experimental input data nor by the confidence with which the radiative corrections can be applied but by knowledge of the nuclear mismatch: the subversion of the isospin symmetry along the multiplets by the charge-dependence of the forces, both Coulomb and specifically nuclear. Theoretical estimates of the mismatch differ considerably from author to author, their direct application results in clear violation of tile hypothesis of conservation of the vector current and clear inconsistency with unitarity of the Cabibbo-Kobayashi-Maskawa matrix. This paper pursues and elaborates the previous suggestion that, in these unsatisfactory circumstances, the best procedure is to look to the experimental data themselves to determine and eliminate the mismatch by appropriate extrapolation to Z=O. This is done: (i) without any prior correction for mismatch; (ii) after correction for the full theoretical mismatch; (iii) after correction for case-to-case fluctuations in the theoretical mismatch. These three procedures are individually statistically satisfactory and mutually consistent in their extrapolation to Z = 0 despite the variety of the theoretical mismatches on which, in varying degrees, they are based. The resultant unitarity test for the CKM matrix is IV ud I 2 + IV us I 2 + IV ub I 2 = 1.0003 ± 0.0014. The associated value for the operational vector coupling constant is: G v * / (hc) 3 = (1.15155±0.00064) x 10 -5 GeV -2 . If unitarity of the CKM matrix is alternatively assumed one may conclude, from a similar analysis, that the mean charge of the fermionic fields between which beta-decay takes place is Q-bar = 0.172±0.060 and that, at the 90% confidence level, b F -3 were b F is the relative effective scalar coupling constant. Neutron decay is also discussed, with the provisional recommendations: G A * /(hc) 3

  8. Life on the edge: a beginner’s guide to the Fermi surface

    International Nuclear Information System (INIS)

    Dugdale, S B

    2016-01-01

    The concept of the Fermi surface is at the very heart of our understanding of the metallic state. Displaying intricate and often complicated shapes, the Fermi surfaces of real metals are both aesthetically beautiful and subtly powerful. A range of examples is presented of the startling array of physical phenomena whose origin can be traced to the shape of the Fermi surface, together with experimental observations of the particular Fermi surface features. (invited comment)

  9. Application of the Thomas-Fermi statistical model to the thermodynamics of high density matter

    International Nuclear Information System (INIS)

    Martin, R.

    1977-01-01

    The Thomas-Fermi statistical model, from the N-body point of view is used in order to have systematic corrections to the T-Fermis equation. Approximate calculus methods are found from analytic study of the T-Fermis equation for non zero temperature. T-Fermis equation is solved with the code GOLEM written in FORTRAN V (UNIVAC). It also provides the thermodynamical quantities and a new method to calculate several isothermal tables. (Author) 24 refs

  10. Application of the Thomas-Fermi statistical model to the thermodynamics of high density matter

    International Nuclear Information System (INIS)

    Martin, R.

    1977-01-01

    The Thomas-Fermi statistical model, from the N-body point of view is used in order to have systematic corrections to the T-Fermi's equation. Approximate calculus methods are found from analytic study of the T-Fermi's equation for non zero temperature. T-Fermi's equation is solved with the code ''Golem''written in Fortran V (Univac). It also provides the thermodynamical quantities and a new method to calculate several isothermal tables. (author) [es

  11. Rotational dependence of Fermi-type resonance interactions in molecules

    Science.gov (United States)

    Mikhailov, Vladimir M.; Smirnov, M. A.

    1997-03-01

    In Pasadena, (Milliken Lab., USA, 1930) F. Rossetti has observed in Raman spectrum of carbon-dioxide molecule the full symmetric vibration of carbon dioxide appeared as the group of four near lying lines instead of the waited single line. The true interpretation of this enigmatic effect (in that time) was given by E. Fermi -- accidental degeneration of the first excited state of the full symmetric vibration in carbon dioxide. It was the first example of the event observed later in various organic molecules. This event was named as resonance Fermi. The rotational dependence of Fermi type resonance interactions in quasirigid molecules in dominant approximation can be selected in an expansion of the effective vibration-rotation Hamiltonian Hvib- roteff by the operator H(g)(Fermi) equals H30 plus (Sigma) nH3n(g). Let us consider in detail the problem of the construction of the effective vibration-rotational Hamiltonian HVR yields Heff from the point of view of various ordering schemes (grouping) of the vibrational-rotational interactions with sequential analysis of the choice of the convenient grouping adequate to the spectroscopic problem.

  12. Three scientists to receive presidential Enrico Fermi award

    CERN Multimedia

    2003-01-01

    "Secretary of Energy Spencer Abraham today named John Bahcall, Raymond Davis, Jr. and Seymour Sack as winners of the Enrico Fermi Award. ... Drs. Bahcall and Davis will receive the award for their research in neutrino physics. Dr. Sack will receive the award for his contributions to national security" (1 page).

  13. Working with Fermi at Chicago and Los Alamos

    Science.gov (United States)

    Garwin, Richard L.

    2010-02-01

    I discuss my experience with Enrico Fermi as student and fellow faculty member at Chicago and with him as consultants to the Los Alamos Scientific Laboratory in 1950-1952. The talk shares observations about this great physicist and exemplary human being. )

  14. Constraining decaying dark matter with Fermi LAT gamma-rays

    International Nuclear Information System (INIS)

    Zhang, Le; Sigl, Günter; Weniger, Christoph; Maccione, Luca; Redondo, Javier

    2010-01-01

    High energy electrons and positrons from decaying dark matter can produce a significant flux of gamma rays by inverse Compton off low energy photons in the interstellar radiation field. This possibility is inevitably related with the dark matter interpretation of the observed PAMELA and FERMI excesses. The aim of this paper is providing a simple and universal method to constrain dark matter models which produce electrons and positrons in their decay by using the Fermi LAT gamma-ray observations in the energy range between 0.5 GeV and 300 GeV. We provide a set of universal response functions that, once convolved with a specific dark matter model produce the desired constraints. Our response functions contain all the astrophysical inputs such as the electron propagation in the galaxy, the dark matter profile, the gamma-ray fluxes of known origin, and the Fermi LAT data. We study the uncertainties in the determination of the response functions and apply them to place constraints on some specific dark matter decay models that can well fit the positron and electron fluxes observed by PAMELA and Fermi LAT. To this end we also take into account prompt radiation from the dark matter decay. We find that with the available data decaying dark matter cannot be excluded as source of the PAMELA positron excess

  15. On the Dynamics of the Fermi-Bose model

    DEFF Research Database (Denmark)

    Ögren, Magnus

    In this talk we formulate and prove results for the exponential matrix representing the dynamics of the Fermi-Bose model in an undepleted bosonic field approximation. A recent application of this model is molecular dimmers dissociating into its atomic compounds. The problem is solved in D spatial...... molecular Bose-Einstein condensate....

  16. On the semiclassical description of nuclear Fermi liquid drops

    International Nuclear Information System (INIS)

    Schuck, P.

    1983-11-01

    In this series of lectures we aimed at presenting a self-contained semiclassical theory entirely based on the extended Thomas-Fermi or Wigner-Kirkwood h expansion in phase space. We saw that not only the Wigner transform of the single particle density matrix can be understood and very accurately represented in this way but that also generalisations to correlation functions are straightforward. First, we demonstrated a generalisation to superfluid nuclei and to superfluid nuclei in slow rotation. The latter involves already the (static) particle-hole correlation function and we saw how e.g. the reduction of the moment of inertia by roughly a factor of two could be explained very easily in an analytic way. We very clearly pointed out the necessity to treat particles (holes) individually in Thomas Fermi approximation. A further very promising result is that the linear response function for transferred momenta q>0.6 fm -1 can be very accurately represented in our p-h-Thomas Fermi approach. In the last paragraph we give somewhat speculative arguments that say the 2 + states of quasi macroscopic Fermi Liquid Drops could be well calculated in expanding the time dependent density matrix on a set of coherent states and a simple example for nearly harmonic potentials is given

  17. Repulsive polarons and itinerant ferromagnetism in strongly polarized Fermi gases

    DEFF Research Database (Denmark)

    Massignan, Pietro; Bruun, Georg

    2011-01-01

    We analyze the properties of a single impurity immersed in a Fermi sea. At positive energy and scattering lengths, we show that the system possesses a well-defined but metastable excitation, the repulsive polaron, and we calculate its energy, quasiparticle residue and effective mass. From a therm...

  18. The First Fermi-LAT Gamma-Ray Burst Catalog

    NARCIS (Netherlands)

    Ackermann, M.; et al., [Unknown; van der Horst, A.J.

    2013-01-01

    In three years of observations since the beginning of nominal science operations in 2008 August, the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope has observed high-energy (gsim 20 MeV) γ-ray emission from 35 gamma-ray bursts (GRBs). Among these, 28 GRBs have been detected

  19. Unidentified EGRET sources and their possible Fermi counterparts

    International Nuclear Information System (INIS)

    Lyapin, A R; Arkhangelskaja, I V; Larin, D S

    2017-01-01

    Unidentified EGRET sources from 3EG catalog have been analyzed. Preliminary data analysis has shown at least 23 of these sources coincide with those in 3FGL Fermi catalogue within 1, 2 and 3 sigma error intervals of the coordinates and fluxes. Their properties are discussed in the presented work. Even 3-sigma difference allows supposing sources similarity because of more than 3-sigma distinctions in values of fluxes between identified EGRET sources and their Fermi counterparts. For instance, the coincidence between 3EG J1255-0549 and 3FGL J1256.1-0547 was reported in Fermi catalogues 1FGL, 2FGL, 3FGL. However, these sources fluxes (in units of 10 −8 photons × cm −2 × s −1 ) in the energy band E > 100 MeV were 179.7 ± 6.7 (3EG), 44.711 ± 0.724 (3FGL), 53.611 ± 0.997 (2FGL) and 67.939 ± 1.861 (1FGL). Such effect was observed for sufficient portion of identified EGRET sources. It could cause by troubles of particles identification by Fermi/LAT trigger system. Very often charged particles recognized as gamma-quanta because of wrong backsplash analysis. Nevertheless, gammas counts as charged particles due analogous reason and rejected during ground data processing. For example, it appears as geomagnetic modulation presence on gamma-quanta count rate latitudinal profiles in energy band E > 20 MeV. (paper)

  20. Metastability in spin polarised Fermi gases and quasiparticle decays

    DEFF Research Database (Denmark)

    Sadeghzadeh, Kayvan; Bruun, Georg; Lobo, Carlos

    2011-01-01

    We investigate the metastability associated with the first order transition from normal to superfluid phases in the phase diagram of two-component polarised Fermi gases.We begin by detailing the dominant decay processes of single quasiparticles.Having determined the momentum thresholds of each pr...

  1. Surface effects on the propagation of sound in Fermi liquids

    International Nuclear Information System (INIS)

    Nagai, K.; Woelfle, P.

    1981-01-01

    The propagation of sound in a resonator is discussed in both the normal and superfluid Fermi liquids. A set of model hydrodynamic equations is developed for describing the transition from the hydrodynamic regime to the collisionless regime. Surface effects are incorporated by using a slip boundary condition. The resonance condition for the sound propagation in a cylindrical resonator is derived

  2. Multi-Band Spectral Properties of Fermi Blazars Benzhong Dai ...

    Indian Academy of Sciences (India)

    Galaxies: active—BL Lacertae objects—general—gamma rays—observations. 1. Introduction. The First Fermi-LAT Catalogue (1LAC) of AGN, corresponding to 11 months of data collected in scientific operation mode, includes 709 AGNs, comprising 300 BL. Lacs, 296 FSRQs, 41 AGNs of other types and 72 AGNs of ...

  3. Cold pasta phase in the extended Thomas–Fermi approximation

    International Nuclear Information System (INIS)

    Avancini, S.S.; Bertolino, B.P.

    2015-01-01

    In this paper, we aim to obtain more accurate values for the transition density to the homogenous phase in the nuclear pasta that occurs in the inner crust of neutron stars. To that end, we use the nonlinear Walecka model at zero temperature and an approach based on the extended Thomas–Fermi (ETF) approximation. (author)

  4. Potential motion for Thomas-Fermi non-topological solitons

    International Nuclear Information System (INIS)

    Bahcall, S.

    1992-04-01

    In the Thomas-Fermi approximation to theories of coupled fermions and scalars, the equations for spherically-symmetric non-topological solitons have the form of potential motion. This gives a straightforward method for proving the existence of non-topological solitons in a given theory and for finding the constant-density, saturating solutions

  5. Multi-Band Spectral Properties of Fermi Blazars Benzhong Dai ...

    Indian Academy of Sciences (India)

    ... FSRQs, 41 AGNs of other types and 72 AGNs of unknown type (Abdo et al. 2010a). This large sample enable us to investigate the spectral shapes of blazars from optical to X-ray to γ-ray in more detail than has been done before. For this purpose, we collected data for all Fermi blazars having available spectral information.

  6. Domain-averaged Fermi-hole Analysis for Solids

    Czech Academy of Sciences Publication Activity Database

    Baranov, A.; Ponec, Robert; Kohout, M.

    2012-01-01

    Roč. 137, č. 21 (2012), s. 214109 ISSN 0021-9606 R&D Projects: GA ČR GA203/09/0118 Institutional support: RVO:67985858 Keywords : bonding in solids * domain averaged fermi hole * natural orbitals Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.164, year: 2012

  7. Current correlation functions of ideal Fermi gas at finite temperature

    Indian Academy of Sciences (India)

    The diamagnetic susceptibility as a function of temperature has also been obtained from transverse current correlation function as its long wave- length and static limit, which smoothly cross over from known quantum values to the classical limit with increase in temperature. Keywords. Fermi gas; diamagnetic susceptibility; ...

  8. On the Dynamics of the Fermi-Bose Model

    DEFF Research Database (Denmark)

    Ögren, Magnus; Carlsson, M.

    2013-01-01

    We consider the exponential matrix representing the dynamics of the Fermi-Bose model in an undepleted bosonic field approximation. A recent application of this model is molecular dimers dissociating into its atomic compounds. The problem is solved in D spatial dimensions by dividing the system...

  9. Moon and quiet Sun detection with Fermi-LAT observatory

    International Nuclear Information System (INIS)

    Brigida, M.

    2011-01-01

    The Fermi gamma-ray space telescope is an international mission supporting two science instruments, the Gamma-Ray Burst Monitor (GBM), covering the energy range from few keV to 30 MeV, and the Large Area Telescope (LAT), a pair-conversion detector operating at energies from 30 MeV to 300 GeV. The Fermi telescope was successfully launched on June 11, 2008 and has been surveying the sky in gamma rays since August 2008. During the first months of the mission, Fermi has detected high-energy gamma rays from the Moon and quiet Sun since the first weeks of data taking. This emission is produced by interactions of cosmic rays; by nucleons with the solar and lunar surface (albedo), and electrons with solar photons in the heliosphere. The heliospheric emission is produced by inverse-Compton scattering and is predicted to be extended. Both Moon and the quiet Sun was detecte d by EGRET on CGRO with low statistics, but Fermi is the only gamma-ray mission capable of detecting the Moon and the quiet Sun and monitoring it over the full 24th solar cycle. Here we present the analysis relative to the first months including the observation of the Moon and the Sun, the spectral analysis, the fluxes measurements and finally a comparison with models and previous detections.

  10. Fermi liquid of two-dimensional polar molecules

    NARCIS (Netherlands)

    Lu, Z.K; Shlyapnikov, G.V.

    2012-01-01

    We study Fermi-liquid properties of a weakly interacting two-dimensional gas of single-component fermionic polar molecules with dipole moments d oriented perpendicularly to the plane of their translational motion. This geometry allows the minimization of inelastic losses due to chemical reactions

  11. The early period of the universal Fermi interaction

    International Nuclear Information System (INIS)

    Tiomno, J.

    1984-01-01

    A critical analysis of the contributions which lead, in the early period, to the discovery of the universality of Fermi-type weak interactions is made. In particular the current references to this universality as 'Puppi's triangle' are shown to be incorrect. (Author) [pt

  12. A search for neutrino emission from the Fermi bubbles with the ANTARES telescope

    NARCIS (Netherlands)

    Adrian-Martinez, S.; Albert, A.; Al Samarai, I.; Andre, M.; Anton, G.; Anvar, S.; Ardid, M.; Astraatmadja, T.; Aubert, J.J.; Baret, B.; Barrios-Marti, J.; Basa, S.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bogazzi, C.; Bouhou, B.; Bouwhuis, M.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carloganu, C.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, P.; Chiarusi, T.; Circella, M.; Classen, F.; Coniglione, R.; Core, L.; Costantini, H.; Coyle, P.; Creusot, A.; Curtil, C.; De Bonis, G.; Dekeyser, I.; Deschamps, A.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Dumas, A.; Eberl, T.; Emanuele, U.; Enzenhofer, A.; Ernenwein, J.P.; Escoffier, S.; Fehn, K.; Fermani, P.; Flaminio, V.; Folger, F.; Fritsch, U.; Fusco, L.; Galata, S.; Gay, P.; Geisselsoder, S.; Geyer, K.; Giacomelli, G.; Giordano, V.; Gleixner, A.; Gomez-Gonzalez, J.P.; Graf, K.; Guillard, G.; van Haren, H.; Heijboer, A.; Hello, Y.; Hernandez-Rey, J.; Herold, B.; Hossl, J.; Hugon, C.; James, C.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kooijman, P.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lambard, E.; Lambard, G.; Larosa, G.; Lattuada, D.; Lefevre, D.; Leonora, E.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J.; Martini, S.; Michael, T.; Montaruli, T.; Morganti, M.; Muller, C.; Neff, M.; Nezri, E.; Palioselitis, D.; Pavalas, G.E.; Perrina, C.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Richter, R.; Riviere, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Samtleben, D.; Sanguineti, M.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schulte, S.; Schussler, F.; Seitz, T.; Shanidze, R.; Sieger, C.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J.; Stolarczyk, T.; Sanchez-Losa, A.; Taiuti, M.; Tamburini, C.; Tayalati, Y.; Trovato, A.; Vallage, B.; Vallee, C.; Van Elewyck, V.; Vecchi, M.; Vernin, P.; Visser, E.; Wagner, S.; Wilms, J.; de Wolf, E.; Yatkin, K.; Yepes, H.; Zornoza, J.; Zuniga, J.; the ANTARES Collaboration

    2014-01-01

    Analysis of the Fermi-LAT data has revealed two extended structures above and below the Galactic Centre emitting gamma rays with a hard spectrum, the so-called Fermi bubbles. Hadronic models attempting to explain the origin of the Fermi bubbles predict the emission of high-energy neutrinos and gamma

  13. 75 FR 81316 - Detroit Edison Company; FERMI 2; Environmental Assessment and Finding of No Significant Impact

    Science.gov (United States)

    2010-12-27

    ... the Final Environmental Statement for the Enrico Fermi Atomic Power Plant, Unit 2, NUREG-0769, dated... COMMISSION Detroit Edison Company; FERMI 2; Environmental Assessment and Finding of No Significant Impact The... Edison Company (the licensee), for operation of Fermi 2, located in Monroe County, Michigan. Therefore...

  14. Quantum nonlocal theory of topological Fermi arc plasmons in Weyl semimetals

    Science.gov (United States)

    Andolina, Gian Marcello; Pellegrino, Francesco M. D.; Koppens, Frank H. L.; Polini, Marco

    2018-03-01

    The surface of a Weyl semimetal (WSM) displays Fermi arcs, i.e., disjoint segments of a two-dimensional Fermi contour. We present a quantum-mechanical nonlocal theory of chiral Fermi arc plasmons in WSMs with broken time-reversal symmetry. These are collective excitations constructed from topological Fermi arc and bulk electron states and arising from electron-electron interactions, which are treated in the realm of the random phase approximation. Our theory includes quantum effects associated with the penetration of the Fermi arc surface states into the bulk and dissipation, which is intrinsically nonlocal in nature and arises from decay processes mainly involving bulk electron-hole pair excitations.

  15. 75 FR 63867 - DTE Energy; Enrico Fermi Atomic Power Plant Unit 1, Exemption From Certain Security Requirements

    Science.gov (United States)

    2010-10-18

    ... COMMISSION [Docket No. 50-16; NRC-2010-0328 DTE Energy; Enrico Fermi Atomic Power Plant Unit 1, Exemption... Facility Operating License No. DPR-9 issued for Enrico Fermi Atomic Power Plant, Unit 1 (Fermi 1), located in Monroe County, Michigan. Fermi 1 is a permanently shutdown nuclear reactor facility. The license...

  16. Small metal particles and the ideal Fermi gas

    International Nuclear Information System (INIS)

    Barma, Mustanpir

    1991-01-01

    Kubo's theoretical model of a small metal particle consists of a number of noninteraction electrons (an ideal Fermi gas) confined to a finite volume. By 'small' it meant that the size of the particle is intermediate between that of a few atoms cluster and the bulk solid, the radius of the particle being 5 to 50 Angstroms. The model is discussed and size dependence of various energy scales is studied. For a fermi gas confined in a sphere or a cube, two size-dependent energy scales are important. The inner scale δ is the mean spacing between successive energy levels. It governs the very low temperature behaviour. The outer scale Δ is associated with the shell structure when δ ≤T<Δ, thermodynamic properties show an oscillatory fluctuations around a smooth background as the size or energy is varied. (M.G.B.) 23 refs

  17. MSSM in view of PAMELA and Fermi-LAT

    CERN Document Server

    Bajc, Borut; Ghosh, Dilip Kumar; Senjanovic, Goran; Zhang, Yue

    2010-01-01

    We take the MSSM as a complete theory of low energy phenomena, including neutrino masses and mixings. This immediately implies that the gravitino is the only possible dark matter candidate. We study the implications of the astrophysical experiments such as PAMELA and Fermi-LAT, on this scenario. The theory can account for both the realistic neutrino masses and mixings, and the PAMELA data as long as the slepton masses lie in the $500-10^6 $TeV range. The squarks can be either light or heavy, depending on their contribution to radiative neutrino masses. On the other hand, the Fermi-LAT data imply heavy superpartners, all out of LHC reach, simply on the grounds of the energy scale involved, for the gravitino must weigh more than 2 TeV. The perturbativity of the theory also implies an upper bound on its mass, approximately $6-7 $TeV.

  18. Controllable friction of dark solitons in Bose-Fermi mixtures

    Science.gov (United States)

    Hurst, Hilary; Efimkin, Dmitry; Galitski, Victor

    We study controllable friction in a system consisting of a dark soliton in a one-dimensional Bose gas and a non-interacting, degenerate Fermi gas. The fermions act as impurity atoms, not part of the original condensate, that scatter off of the soliton. We study semi-classical dynamics of the dark soliton by treating it as a particle with negative mass, and calculate its friction coefficient. Surprisingly, the amount of friction depends on the ratio of interspecies (impurity-condensate) to intraspecies (condensate-condensate) interaction strengths. By tuning this ratio, one can access a regime where the friction coefficient vanishes. We compare our results to experimental regimes and conclude that tunable friction has measurable physical consquences in experiments with Bose-Fermi mixtures.

  19. Gapless Fermi Surfaces in anisotropic multiband superconductors in magnetic field.

    Science.gov (United States)

    Barzykin, Victor; Gor'kov, Lev P.

    2007-03-01

    We propose that a new state with a fully gapless Fermi surface appears in quasi-2D multiband superconductors in magnetic field applied parallel to the plane. It is characterized by a paramagnetic moment caused by a finite density of states on the open Fermi surface. We calculate thermodynamic and magnetic properties of the gapless state for both s-wave and d-wave cases, and discuss the details of the 1-st order metamagnetic phase transition that accompanies the appearance of the new phase in s-wave superconductors. We suggest possible experiments to detect this state both in the s-wave (2-H NbSe2) and d-wave (CeCoIn5) superconductors.

  20. Poisson-Fermi Formulation of Nonlocal Electrostatics in Electrolyte Solutions

    Directory of Open Access Journals (Sweden)

    Liu Jinn-Liang

    2017-10-01

    Full Text Available We present a nonlocal electrostatic formulation of nonuniform ions and water molecules with interstitial voids that uses a Fermi-like distribution to account for steric and correlation efects in electrolyte solutions. The formulation is based on the volume exclusion of hard spheres leading to a steric potential and Maxwell’s displacement field with Yukawa-type interactions resulting in a nonlocal electric potential. The classical Poisson-Boltzmann model fails to describe steric and correlation effects important in a variety of chemical and biological systems, especially in high field or large concentration conditions found in and near binding sites, ion channels, and electrodes. Steric effects and correlations are apparent when we compare nonlocal Poisson-Fermi results to Poisson-Boltzmann calculations in electric double layer and to experimental measurements on the selectivity of potassium channels for K+ over Na+.

  1. Effective-range dependence of two-dimensional Fermi gases

    Science.gov (United States)

    Schonenberg, L. M.; Verpoort, P. C.; Conduit, G. J.

    2017-08-01

    The Feshbach resonance provides precise control over the scattering length and effective range of interactions between ultracold atoms. We propose the ultratransferable pseudopotential to model effective interaction ranges -1.5 ≤kF2Reff2≤0 , where Reff is the effective range and kF is the Fermi wave vector, describing narrow to broad Feshbach resonances. We develop a mean-field treatment and exploit the pseudopotential to perform a variational and diffusion Monte Carlo study of the ground state of the two-dimensional Fermi gas, reporting on the ground-state energy, contact, condensate fraction, momentum distribution, and pair-correlation functions as a function of the effective interaction range across the BEC-BCS crossover. The limit kF2Reff2→-∞ is a gas of bosons with zero binding energy, whereas ln(kFa )→-∞ corresponds to noninteracting bosons with infinite binding energy.

  2. The peculiarities of particle dynamics in the Fermi acceleration scheme

    International Nuclear Information System (INIS)

    Buts, V.A.

    2015-01-01

    With examples of discrete and distributed mathematical models of the Fermi acceleration mechanism, a usefulness, or even necessity, of taking into account of singular solutions is demonstrated. Also the role is shown of those parts of phase space where the uniqueness theorem conditions to form the dynamics of physical systems are broken. It was found that the dynamics of particles in discrete and distributed mathematical schemes of Fermi acceleration can be significantly different. The difference is due to the fact that the distributed model takes into account the effects of phase space where conditions do not correspond to those necessary for application of the uniqueness theorem. The role of singular solutions is under discussion as well.

  3. Weyl states and Fermi arcs in parabolic bands

    Science.gov (United States)

    Doria, Mauro M.; Perali, Andrea

    2017-07-01

    Weyl fermions are shown to exist inside a parabolic band in a single electronic layer, where the kinetic energy of carriers is given by the non-relativistic Schroedinger equation. There are Fermi arcs as a direct consequence of the folding of a ring-shaped Fermi surface inside the first Brillouin zone. Our results stem from the decomposition of the kinetic energy into the sum of the square of the Weyl state, the coupling to the local magnetic field and the Rashba interaction. The Weyl fermions break the space and time reflection symmetries present in the kinetic energy, thus allowing for the onset of a weak three-dimensional magnetic field around the layer. This field brings topological stability to the current-carrying states through a Chern number. In the special limit for which the Weyl state becomes gapless, this magnetic interaction is shown to be purely attractive, thus suggesting the onset of a superconducting condensate of zero helicity states.

  4. Thermal conductivity and sound attenuation in dilute atomic Fermi gases

    International Nuclear Information System (INIS)

    Braby, Matt; Chao Jingyi; Schaefer, Thomas

    2010-01-01

    We compute the thermal conductivity and sound attenuation length of a dilute atomic Fermi gas in the framework of kinetic theory. Above the critical temperature for superfluidity, T c , the quasiparticles are fermions, whereas below T c , the dominant excitations are phonons. We calculate the thermal conductivity in both cases. We find that at unitarity the thermal conductivity κ in the normal phase scales as κ∝T 3/2 . In the superfluid phase we find κ∝T 2 . At high temperature the Prandtl number, the ratio of the momentum and thermal diffusion constants, is 2/3. The ratio increases as the temperature is lowered. As a consequence we expect sound attenuation in the normal phase just above T c to be dominated by shear viscosity. We comment on the possibility of extracting the shear viscosity of the dilute Fermi gas at unitarity using measurements of the sound absorption length.

  5. Degenerate Fermi gas in a combined harmonic-lattice potential

    International Nuclear Information System (INIS)

    Blakie, P. B.; Bezett, A.; Buonsante, P.

    2007-01-01

    In this paper we derive an analytic approximation to the density of states for atoms in a combined optical lattice and harmonic trap potential as used in current experiments with quantum degenerate gases. We compare this analytic density of states to numerical solutions and demonstrate its validity regime. Our work explicitly considers the role of higher bands and when they are important in quantitative analysis of this system. Applying our density of states to a degenerate Fermi gas, we consider how adiabatic loading from a harmonic trap into the combined harmonic-lattice potential affects the degeneracy temperature. Our results suggest that occupation of excited bands during loading should lead to more favorable conditions for realizing degenerate Fermi gases in optical lattices

  6. Instanton effects in ABJM theory from Fermi gas approach

    Energy Technology Data Exchange (ETDEWEB)

    Hatsuda, Yasuyuki [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie; Tokyo Institute of Technology (Japan). Dept. of Physics; Moriyama, Sanefumi [Nagoya Univ. (Japan). Kobayashi Maskawa Inst.; Nagoya Univ. (Japan). Graduate School of Mathematics; Okuyama, Kazumi [Shinshu Univ., Matsumoto, Nagano (Japan). Dept. of Physics

    2012-11-19

    We study the instanton effects of the ABJM partition function using the Fermi gas formalism. We compute the exact values of the partition function at the Chern-Simons levels k=1, 2, 3, 4, 6 up to N=44, 20, 18, 16, 14 respectively, and extract non-perturbative corrections from these exact results. Fitting the resulting non-perturbative corrections by their expected forms from the Fermi gas, we determine unknown parameters in them. After separating the oscillating behavior of the grand potential, which originates in the periodicity of the grand partition function, and the worldsheet instanton contribution, which is computed from the topological string theory, we succeed in proposing an analytical expression for the leading D2-instanton correction. Just as the perturbative result, the instanton corrections to the partition function are expressed in terms of the Airy function.

  7. The Fermi Science Support Center Data Servers and Archive

    Science.gov (United States)

    Reustle, Alexander; Fermi Science Support Center

    2018-01-01

    The Fermi Science Support Center (FSSC) provides the scientific community with access to Fermi data and other products. The Gamma-Ray Burst Monitor (GBM) data is stored at NASA's High Energy Astrophysics Science Archive Research Center (HEASARC) and is accessible through their searchable Browse web interface. The Large Area Telescope (LAT) data is distributed through a custom FSSC interface where users can request all photons detected from a region on the sky over a specified time and energy range. Through its website the FSSC also provides planning and scheduling products, such as long and short term observing timelines, spacecraft position and attitude histories, and exposure maps. We present an overview of the different data products provided by the FSSC, how they can be accessed, and statistics on the archive usage since launch.

  8. Particles with small violations of Fermi or Bose statistics

    International Nuclear Information System (INIS)

    Greenberg, O.W.

    1991-01-01

    I discuss the statistics of ''quons'' (pronounced to rhyme with muons), particles whose annihilation and creation operators obey the q-deformed commutation relation (the quon algebra or q-mutator) which interpolates between fermions and bosons. Topics discussed include representations of the quon algebra, proof of the TCP theorem, violation of the usual locality properties, and experimental constraints on violations of the Pauli exclusion principle (i.e., Fermi statistics) and of Bose statistics

  9. Propagative Landau states and Fermi level pinning in carbon nanotubes.

    Science.gov (United States)

    Nanot, Sébastien; Avriller, Rémi; Escoffier, Walter; Broto, Jean-Marc; Roche, Stephan; Raquet, Bertrand

    2009-12-18

    We present strong evidence of Landau states formation in multiwalled carbon nanotubes with metallic or semiconducting outer shells, under magnetic fields as high as 60 T. Magnetoconductance data are found to converge to a gate-independent value for semiconducting shells, whereas for metallic shells, the Landau states introduce a strong reintroduction of backscattering and Fermi level pinning close to the charge neutrality point. Electronic band structure and transport calculations provide a consistent interpretation of the experimental data.

  10. IceCube Constraints on the Fermi Bubbles

    Science.gov (United States)

    Sherf, Nimrod; Keshet, Uri; Gurwich, Ilya

    2017-10-01

    We analyze the IceCube four-year neutrino data in search of a signal from the Fermi bubbles. No signal is found from the bubbles or from their dense shell, even when taking into account the softer background. This imposes a conservative ξ I IceCube neutrinos increases by ˜an order of magnitude, unless there is a

  11. Localization of interacting Fermi gases in quasiperiodic potentials

    OpenAIRE

    Pilati, Sebastiano; Varma, Vipin Kerala

    2016-01-01

    We investigate the zero-temperature metal-insulator transition in a one-dimensional two-component Fermi gas in the presence of a quasi-periodic potential resulting from the superposition of two optical lattices of equal intensity but incommensurate periods. A mobility edge separating (low energy) Anderson localized and (high energy) extended single-particle states appears in this continuous-space model beyond a critical intensity of the quasi-periodic potential. In order to discern the metall...

  12. Diagnosing alternative conceptions of Fermi energy among undergraduate students

    International Nuclear Information System (INIS)

    Sharma, Sapna; Ahluwalia, Pardeep Kumar

    2012-01-01

    Physics education researchers have scientifically established the fact that the understanding of new concepts and interpretation of incoming information are strongly influenced by the preexisting knowledge and beliefs of students, called epistemological beliefs. This can lead to a gap between what students actually learn and what the teacher expects them to learn. In a classroom, as a teacher, it is desirable that one tries to bridge this gap at least on the key concepts of a particular field which is being taught. One such key concept which crops up in statistical physics/solid-state physics courses, and around which the behaviour of materials is described, is Fermi energy (ε F ). In this paper, we present the results which emerged about misconceptions on Fermi energy in the process of administering a diagnostic tool called the Statistical Physics Concept Survey developed by the authors. It deals with eight themes of basic importance in learning undergraduate solid-state physics and statistical physics. The question items of the tool were put through well-established sequential processes: definition of themes, Delphi study, interview with students, drafting questions, administration, validity and reliability of the tool. The tool was administered to a group of undergraduate students and postgraduate students, in a pre-test and post-test design. In this paper, we have taken one of the themes i.e. Fermi energy of the diagnostic tool for our analysis and discussion. Students’ responses and reasoning comments given during interview were analysed. This analysis helped us to identify prevailing misconceptions/learning gaps among students on this topic. How spreadsheets can be effectively used to remove the identified misconceptions and help appreciate the finer nuances while visualizing the behaviour of the system around Fermi energy, normally sidestepped both by the teachers and learners, is also presented in this paper. (paper)

  13. Current correlation functions of ideal Fermi gas at finite temperature

    Indian Academy of Sciences (India)

    wave vector k. ω and q are the transferred energy and momentum in scattering, respec- tively, and nk =1/(1+e´ ωk µµ kBT ) is the Fermi function with µ and kB as the chemical potential and the Boltzmann constant, respectively. On the other hand, using Green's function theory [14] the transverse current correlation function of ...

  14. Traffic modifications on Routes Rutherford, Democrite and Fermi

    CERN Multimedia

    2015-01-01

    The GS Department would like to inform you that until the end of December, the construction of Building 245 will result in the following traffic modifications: Traffic on Route Rutherford will be partially restricted in front of the construction site, Traffic on Route Democrite will be one-way towards Route Rutherford. Also, please note that due to construction work in front of Building 377, Route Fermi will be closed from Wednesday, 10 June until Friday, 7 August. Thank you for your understanding.

  15. Bose and Fermi walk configurations on planar graphs

    International Nuclear Information System (INIS)

    Arrowsmith, D K; Bhatti, F M; Essam, J W

    2012-01-01

    The number, f C n (H), of n-walk configurations of type C is investigated on certain two-rooted directed planar graphs H which will be always realized as plane graphs in R 2 . C may be Bose or Fermi as defined by Inui and Katori. Both types of configuration are collections of non-crossing walks which follow the directed paths between the roots of the plane graph H. In the case of configurations of Fermi type each walk may be included only once. The number f Bose n (H) is shown to be a polynomial in n of degree n max − 1 where n max is the maximum number of walks in a Fermi configuration. The coefficient of the highest power of n in this polynomial is simply related to the number of maximal Fermi walk configurations. It is also shown that n max = c(H) + 1 where c(H) is the number of finite faces on H. Extension of these results to multi-rooted graphs is also discussed. When H is the union of paths between two sites of the directed square lattice subject to various boundary conditions Kreweras showed that the number of Bose configurations is equal to the number of n-element multi-chains on segments of Young’s lattice. He expressed this number as a determinant the elements of which are polynomials in n. We evaluate this determinant by the method of LU decomposition in the case of ‘watermelon’ configurations above a wall. In this case the polynomial is a product of linear factors but on introducing a second wall the polynomial does not completely factorize but has a factor which is the number of watermelon configurations on the largest rectangular subgraph. The number of two-rooted ‘star’ configurations is found to be the product of the numbers of watermelon configurations on the three rectangular subgraphs into which it may be partitioned. (paper)

  16. Search for Gravitational Wave Counterparts with Fermi GBM

    Science.gov (United States)

    Hui, C. M.

    2017-01-01

    The progenitor of short gamma-ray bursts (GRBs) is believed to be the merger of two compact objects. This type of events will also produce gravitational waves. Since the gravitational waves discovery by LIGO, the search for a joint detection with an electromagnetic counterpart has been ongoing. Fermi GBM detects approximately 40 short GRBs per year, and we have been expanding our search looking for faint events in the GBM data that did not trigger onboard.

  17. Thomas-Fermi theory for atomic nuclei revisited

    International Nuclear Information System (INIS)

    Centelles, M.; Schuck, P.; Vinas, X.

    2007-01-01

    The recently developed semiclassical variational Wigner-Kirkwood (VWK) approach is applied to finite nuclei using external potentials and self-consistent mean fields derived from Skyrme interactions and from relativistic mean field theory. VWK consists of the Thomas-Fermi part plus a pure, perturbative h 2 correction. In external potentials, VWK passes through the average of the quantal values of the accumulated level density and total energy as a function of the Fermi energy. However, there is a problem of overbinding when the energy per particle is displayed as a function of the particle number. The situation is analyzed comparing spherical and deformed harmonic oscillator potentials. In the self-consistent case, we show for Skyrme forces that VWK binding energies are very close to those obtained from extended Thomas-Fermi functionals of h 4 order, pointing to the rapid convergence of the VWK theory. This satisfying result, however, does not cure the overbinding problem, i.e., the semiclassical energies show more binding than they should. This feature is more pronounced in the case of Skyrme forces than with the relativistic mean field approach. However, even in the latter case the shell correction energy for e.g., 208 Pb turns out to be only ∼-6 MeV what is about a factor two or three off the generally accepted value. As an ad hoc remedy, increasing the kinetic energy by 2.5%, leads to shell correction energies well acceptable throughout the periodic table. The general importance of the present studies for other finite Fermi systems, self-bound or in external potentials, is pointed out

  18. Rational Chebyshev pseudospectral approach for solving Thomas-Fermi equation

    Energy Technology Data Exchange (ETDEWEB)

    Parand, K. [Department of Computer Sciences, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)], E-mail: k_parand@sbu.ac.ir; Shahini, M. [Department of Computer Sciences, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)], E-mail: m.shahini@mail.sbu.ac.ir

    2009-01-05

    In this Letter we propose a pseudospectral method for solving Thomas-Fermi equation which is a nonlinear ordinary differential equation on semi-infinite interval. This approach is based on rational Chebyshev pseudospectral method. This method reduces the solution of this problem to the solution of a system of algebraic equations. Comparison with some numerical solutions shows that the present solution is highly accurate.

  19. Diboson Signals via Fermi Scale Spin-One States

    DEFF Research Database (Denmark)

    Franzosi, Diogo Buarque; Frandsen, Mads T.; Sannino, Francesco

    2015-01-01

    ATLAS and CMS observe deviations from the expected background in diboson invariant mass searches of new resonances around 2 TeV. We provide a general analysis of the results in terms of spin-one resonances and find that Fermi scale composite dynamics can be the culprit. The analysis and methodolo...... can be employed for future searches at run two of the Large Hadron Collider....

  20. Strongly-Interacting Fermi Gases in Reduced Dimensions

    Science.gov (United States)

    2015-11-16

    superconductivity), nuclear physics (nuclear matter), high - energy physics (effective theories of the strong interactions ), astrophysics (compact stellar objects...strongly- interacting Fermi gases confined in a standing- wave CO2 laser trap. This trap produces a periodic quasi-two-dimensional pancake geometry...predictions of the phase diagram and high temperature superfluidity. Our recent measurements reveal that pairing energy and cloud profiles can be

  1. Observation of the Efimovian Expansion in Scale Invariant Fermi Gases

    OpenAIRE

    Deng, Shujin; Shi, Zhe-Yu; Diao, Pengpeng; Yu, Qianli; Zhai, Hui; Qi, Ran; Wu, Haibin

    2015-01-01

    Scale invariance emerges and plays an important role in strongly correlated many-body systems such as critical regimes nearby phase transitions and the unitary Fermi gases. Discrete scaling symmetry also manifests itself in quantum few-body systems such as the Efimov effect. Here we report both theoretical predication and experimental observation of a novel type expansion dynamics for scale invariant quantum gases. When the frequency of the harmonic trap holding the gas decreases continuously...

  2. Fermi-LAT: 4+ Years Out and Just Getting Started!

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The Fermi mission was launched into low Earth orbit in June, 2008. Now in its 5th year of data taking, the primary instrument, the Large Area Telescope (LAT), is now beginning to have a sufficient exposure to probe such fundamental issues as signals from Dark Matter. The achievements of the mission so far will be reviewed and a look towards what the next years could reveal will be presented.

  3. The First FERMI-LAT Gamma-Ray Burst Catalog

    Science.gov (United States)

    Ackermann, M.; Ajello, M.; Asano, K.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; hide

    2013-01-01

    In three years of observations since the beginning of nominal science operations in 2008 August, the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope has observed high-energy great than (20 MeV) gamma-ray emission from 35 gamma-ray bursts (GRBs). Among these, 28 GRBs have been detected above 100 MeV and 7 GRBs above approximately 20 MeV. The first Fermi-LAT catalog of GRBs is a compilation of these detections and provides a systematic study of high-energy emission from GRBs for the first time. To generate the catalog, we examined 733 GRBs detected by the Gamma-Ray Burst Monitor (GBM) on Fermi and processed each of them using the same analysis sequence. Details of the methodology followed by the LAT collaboration for the GRB analysis are provided. We summarize the temporal and spectral properties of the LAT-detected GRBs. We also discuss characteristics of LAT-detected emission such as its delayed onset and longer duration compared with emission detected by the GBM, its power-law temporal decay at late times, and the fact that it is dominated by a power-law spectral component that appears in addition to the usual Band model.

  4. A Mobile Data Application for the Fermi Mission

    Science.gov (United States)

    Stephens, Thomas E.; Science Support Center, Fermi

    2014-01-01

    With the ever increasing use of smartphones and tablets among scientists and the world at large, it becomes increasingly important for projects and missions to have mobile friendly access to their data. This access could come in the form of mobile friendly websites and/or native mobile applications that allow the users to explore or access the data. The Fermi Gamma-ray Space Telescope mission has begun work along the latter path. In this poster I present the current version of the Fermi Data Portal, a native mobile application for both Android and iOS devices that allows access to various high level public data products from the Fermi Science Support Center (FSSC), the Gamma-ray Coordinate Network (GCN), and other sources. While network access is required to download data, most of the data served by the app are stored locally and are available even when a network connection is not available. This poster discusses the application's features as well as the development experience and lessons learned so far along the way.

  5. Ugo Fano, Enrico Fermi, and spectral line shapes

    Science.gov (United States)

    Clark, Charles W.

    2005-03-01

    Ugo Fano's 1961 paper on spectral line shapes^1 was recently ranked as the third highest in citation impact of all papers published in the entire Physical Review series.^2 In the course of preparing an article for a NIST Centennial volume,^3 I became interested in the history of the results presented in Fano’s seminal paper, and will present my findings in this talk. An amusing sidelight concerns the role played by Enrico Fermi in the development of the famous ``Fano profile'' formula. I had been told this story by Fano when I was his graduate student, but uncertain of my recollection of the details, I did not publish it in his obituary.^4 I later learned that the archives of the Royal Society of London contain Fano's own written version of the tale, which will be presented in this talk. The story sheds light on the nature of Enrico Fermi's interactions with his students, and confirms accounts concerning the way in which he did his theoretical work.^5 ^1 U. Fano,``Effects of Configuration Interaction on Intensities and Phase Shifts,'' Phys. Rev. 124, 1866-1878 (1961)^2 S. Redner, physics/0407137 (2004)^3 http://nvl.nist.gov/pub/nistpubs/sp958-lide/116-119.pdf^4 C. W. Clark, Nature 410, 164 (2001)^5 F. Rasetti, in Collected Papers, vol. I, E. Fermi (University of Chicago Press, 1962), p. 178

  6. Dark Matter Searches with the Fermi Large Area Telescope

    International Nuclear Information System (INIS)

    Meurer, Christine

    2008-01-01

    The Fermi Gamma-Ray Space Telescope, successfully launched on June 11th, 2008, is the next generation satellite experiment for high-energy gamma-ray astronomy. The main instrument, the Fermi Large Area Telescope (LAT), with a wide field of view (>2 sr), a large effective area (>8000 cm 2 at 1 GeV), sub-arcminute source localization, a large energy range (20 MeV-300 GeV) and a good energy resolution (close to 8% at 1 GeV), has excellent potential to either discover or to constrain a Dark Matter signal. The Fermi LAT team pursues complementary searches for signatures of particle Dark Matter in different search regions such as the galactic center, galactic satellites and subhalos, the milky way halo, extragalactic regions as well as the search for spectral lines. In these proceedings we examine the potential of the LAT to detect gamma-rays coming from Weakly Interacting Massive Particle annihilations in these regions with special focus on the galactic center region.

  7. RADIO-WEAK BL LAC OBJECTS IN THE FERMI ERA

    Energy Technology Data Exchange (ETDEWEB)

    Massaro, F.; Marchesini, E. J. [Dipartimento di Fisica, Università degli Studi di Torino (UniTO), via Pietro Giuria 1, I-10125 Torino (Italy); D’Abrusco, R.; Smith, Howard A. [Smithsonian Astrophysical Observatory, 60 Garden Street, 02138 Cambridge, MA (United States); Masetti, N. [INAF—Istituto di Astrofisica Spaziale e Fisica Cosmica di Bologna, via Gobetti 101, I-40129, Bologna (Italy); Andruchow, I. [Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque, B1900FWA, La Plata (Argentina)

    2017-01-10

    The existence of “radio-weak BL Lac objects” (RWBLs) has been an open question, and has remained unsolved since the discovery that quasars could be radio-quiet or radio-loud. Recently, several groups identified RWBL candidates, mostly found while searching for low-energy counterparts of the unidentified or unassociated gamma-ray sources listed in the Fermi catalogs. Confirming RWBLs is a challenging task since they could be confused with white dwarfs (WDs) or weak emission line quasars (WELQs) when there are not sufficient data to precisely draw their broadband spectral energy distribution, and their classification is mainly based on a featureless optical spectra. Motivated by the recent discovery that Fermi BL Lacs appear to have very peculiar mid-IR emission, we show that it is possible to distinguish between WDs, WELQs, and BL Lacs using the [3.4]–[4.6]–[12] μ m color–color plot built using the WISE magnitudes when the optical spectrum is available. On the basis of this analysis, we identify WISE J064459.38+603131 and WISE J141046.00+740511.2 as the first two genuine RWBLs, both potentially associated with Fermi sources. Finally, to strengthen our identification of these objects as true RWBLs, we present multifrequency observations for these two candidates to show that their spectral behavior is indeed consistent with that of the BL Lac population.

  8. THE FIRST FERMI-LAT GAMMA-RAY BURST CATALOG

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M. [Space Sciences Laboratory, 7 Gauss Way, University of California, Berkeley, CA 94720-7450 (United States); Asano, K. [Interactive Research Center of Science, Tokyo Institute of Technology, Meguro City, Tokyo 152-8551 (Japan); Axelsson, M. [Department of Astronomy, Stockholm University, SE-106 91 Stockholm (Sweden); Baldini, L. [Università di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d' Astrophysique, CEA Saclay, 91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bechtol, K.; Bloom, E. D. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Bellazzini, R.; Bregeon, J. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bhat, P. N. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Bissaldi, E. [Institut für Astro- und Teilchenphysik and Institut für Theoretische Physik, Leopold-Franzens-Universität Innsbruck, A-6020 Innsbruck (Austria); Bonamente, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); Bonnell, J.; Brandt, T. J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Bouvier, A., E-mail: nicola.omodei@stanford.edu, E-mail: giacomov@slac.stanford.edu [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); and others

    2013-11-01

    In three years of observations since the beginning of nominal science operations in 2008 August, the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope has observed high-energy (∼> 20 MeV) γ-ray emission from 35 gamma-ray bursts (GRBs). Among these, 28 GRBs have been detected above 100 MeV and 7 GRBs above ∼20 MeV. The first Fermi-LAT catalog of GRBs is a compilation of these detections and provides a systematic study of high-energy emission from GRBs for the first time. To generate the catalog, we examined 733 GRBs detected by the Gamma-Ray Burst Monitor (GBM) on Fermi and processed each of them using the same analysis sequence. Details of the methodology followed by the LAT collaboration for the GRB analysis are provided. We summarize the temporal and spectral properties of the LAT-detected GRBs. We also discuss characteristics of LAT-detected emission such as its delayed onset and longer duration compared with emission detected by the GBM, its power-law temporal decay at late times, and the fact that it is dominated by a power-law spectral component that appears in addition to the usual Band model.

  9. THE FIRST FERMI-LAT GAMMA-RAY BURST CATALOG

    International Nuclear Information System (INIS)

    Ackermann, M.; Ajello, M.; Asano, K.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bloom, E. D.; Bellazzini, R.; Bregeon, J.; Bhat, P. N.; Bissaldi, E.; Bonamente, E.; Bonnell, J.; Brandt, T. J.; Bouvier, A.

    2013-01-01

    In three years of observations since the beginning of nominal science operations in 2008 August, the Large Area Telescope (LAT) on board the Fermi Gamma-Ray Space Telescope has observed high-energy (∼> 20 MeV) γ-ray emission from 35 gamma-ray bursts (GRBs). Among these, 28 GRBs have been detected above 100 MeV and 7 GRBs above ∼20 MeV. The first Fermi-LAT catalog of GRBs is a compilation of these detections and provides a systematic study of high-energy emission from GRBs for the first time. To generate the catalog, we examined 733 GRBs detected by the Gamma-Ray Burst Monitor (GBM) on Fermi and processed each of them using the same analysis sequence. Details of the methodology followed by the LAT collaboration for the GRB analysis are provided. We summarize the temporal and spectral properties of the LAT-detected GRBs. We also discuss characteristics of LAT-detected emission such as its delayed onset and longer duration compared with emission detected by the GBM, its power-law temporal decay at late times, and the fact that it is dominated by a power-law spectral component that appears in addition to the usual Band model

  10. Criteria for Directly Detecting Topological Fermi Arcs in Weyl Semimetals.

    Science.gov (United States)

    Belopolski, Ilya; Xu, Su-Yang; Sanchez, Daniel S; Chang, Guoqing; Guo, Cheng; Neupane, Madhab; Zheng, Hao; Lee, Chi-Cheng; Huang, Shin-Ming; Bian, Guang; Alidoust, Nasser; Chang, Tay-Rong; Wang, BaoKai; Zhang, Xiao; Bansil, Arun; Jeng, Horng-Tay; Lin, Hsin; Jia, Shuang; Hasan, M Zahid

    2016-02-12

    The recent discovery of the first Weyl semimetal in TaAs provides the first observation of a Weyl fermion in nature and demonstrates a novel type of anomalous surface state, the Fermi arc. Like topological insulators, the bulk topological invariants of a Weyl semimetal are uniquely fixed by the surface states of a bulk sample. Here we present a set of distinct conditions, accessible by angle-resolved photoemission spectroscopy (ARPES), each of which demonstrates topological Fermi arcs in a surface state band structure, with minimal reliance on calculation. We apply these results to TaAs and NbP. For the first time, we rigorously demonstrate a nonzero Chern number in TaAs by counting chiral edge modes on a closed loop. We further show that it is unreasonable to directly observe Fermi arcs in NbP by ARPES within available experimental resolution and spectral linewidth. Our results are general and apply to any new material to demonstrate a Weyl semimetal.

  11. Constraining decaying dark matter with FERMI-LAT gamma rays

    International Nuclear Information System (INIS)

    Maccione, L.

    2011-01-01

    High energy electron sand positrons from decaying dark matter can produce a significant flux of gamma rays by inverse Compton of low energy photons in the interstellar radiation field. This possibility is inevitably related with the dark matter interpretation of the observed PAMELA and FERMI excesses. We will describe a simple and universal method to constrain dark matter models which produce electrons and positrons in their decay by using the FERMI-LAT gamma-ray observations in the energy range between 0.5 GeV and 300 GeV, by exploiting universal response functions that, once convolved with a specific dark matter model, produce the desired constraint. The response functions contain all the astrophysical inputs. Here is discussed the uncertainties in the determination of the response functions and apply them to place constraints on some specific dark matter decay models that can well fit the positron and electron fluxes observed by PAMELA and FERMI LAT, also taking into account prompt radiation from the dark matter decay. With the available data decaying dark matter can not be excluded as source of the PAMELA positron excess.

  12. SU (2) lattice gauge theory simulations on Fermi GPUs

    International Nuclear Information System (INIS)

    Cardoso, Nuno; Bicudo, Pedro

    2011-01-01

    In this work we explore the performance of CUDA in quenched lattice SU (2) simulations. CUDA, NVIDIA Compute Unified Device Architecture, is a hardware and software architecture developed by NVIDIA for computing on the GPU. We present an analysis and performance comparison between the GPU and CPU in single and double precision. Analyses with multiple GPUs and two different architectures (G200 and Fermi architectures) are also presented. In order to obtain a high performance, the code must be optimized for the GPU architecture, i.e., an implementation that exploits the memory hierarchy of the CUDA programming model. We produce codes for the Monte Carlo generation of SU (2) lattice gauge configurations, for the mean plaquette, for the Polyakov Loop at finite T and for the Wilson loop. We also present results for the potential using many configurations (50,000) without smearing and almost 2000 configurations with APE smearing. With two Fermi GPUs we have achieved an excellent performance of 200x the speed over one CPU, in single precision, around 110 Gflops/s. We also find that, using the Fermi architecture, double precision computations for the static quark-antiquark potential are not much slower (less than 2x slower) than single precision computations.

  13. Anomalous transport phenomena in Fermi liquids with strong magnetic fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Kontani, Hiroshi [Department of Physics, Nagoya University, Nagoya 464-8602 (Japan)

    2008-02-15

    In this paper, we present recent developments in the theory of transport phenomena based on the Fermi liquid theory. In conventional metals, various transport coefficients are scaled according to the quasiparticles relaxation time, {tau}, which implies that the relaxation time approximation (RTA) holds well. However, such a simple scaling does not hold in many strongly correlated electron systems. The most famous example would be high-T{sub c} superconductors (HTSCs), where almost all the transport coefficients exhibit a significant deviation from the RTA results. This issue has been one of the most significant unresolved problems in HTSCs for a long time. Similar anomalous transport phenomena have been observed in metals near their antiferromagnetic (AF) quantum critical point (QCP). The main goal of this study is to demonstrate whether the anomalous transport phenomena in HTSC is evidence of a non-Fermi liquid ground state, or just RTA violation in strongly correlated Fermi liquids. Another goal is to establish a unified theory of anomalous transport phenomena in metals with strong magnetic fluctuations. For these purposes, we develop a method for calculating various transport coefficients beyond the RTA by employing field theoretical techniques. In a Fermi liquid, an excited quasiparticle induces other excited quasiparticles by collision, and current due to these excitations is called a current vertex correction (CVC). Landau noticed the existence of CVC first, which is indispensable for calculating transport coefficients in accord with the conservation laws. Here, we develop a transport theory involving resistivity and the Hall coefficient on the basis of the microscopic Fermi liquid theory, by considering the CVC. In nearly AF Fermi liquids, we find that the strong backward scattering due to AF fluctuations induces the CVC with prominent momentum dependence. This feature of the CVC can account for the significant enhancement in the Hall coefficient

  14. Anomalous transport phenomena in Fermi liquids with strong magnetic fluctuations

    International Nuclear Information System (INIS)

    Kontani, Hiroshi

    2008-01-01

    In this paper, we present recent developments in the theory of transport phenomena based on the Fermi liquid theory. In conventional metals, various transport coefficients are scaled according to the quasiparticles relaxation time, τ, which implies that the relaxation time approximation (RTA) holds well. However, such a simple scaling does not hold in many strongly correlated electron systems. The most famous example would be high-T c superconductors (HTSCs), where almost all the transport coefficients exhibit a significant deviation from the RTA results. This issue has been one of the most significant unresolved problems in HTSCs for a long time. Similar anomalous transport phenomena have been observed in metals near their antiferromagnetic (AF) quantum critical point (QCP). The main goal of this study is to demonstrate whether the anomalous transport phenomena in HTSC is evidence of a non-Fermi liquid ground state, or just RTA violation in strongly correlated Fermi liquids. Another goal is to establish a unified theory of anomalous transport phenomena in metals with strong magnetic fluctuations. For these purposes, we develop a method for calculating various transport coefficients beyond the RTA by employing field theoretical techniques. In a Fermi liquid, an excited quasiparticle induces other excited quasiparticles by collision, and current due to these excitations is called a current vertex correction (CVC). Landau noticed the existence of CVC first, which is indispensable for calculating transport coefficients in accord with the conservation laws. Here, we develop a transport theory involving resistivity and the Hall coefficient on the basis of the microscopic Fermi liquid theory, by considering the CVC. In nearly AF Fermi liquids, we find that the strong backward scattering due to AF fluctuations induces the CVC with prominent momentum dependence. This feature of the CVC can account for the significant enhancement in the Hall coefficient, magnetoresistance

  15. cobalt (ii), nickel (ii)

    African Journals Online (AJOL)

    DR. AMINU

    ABSTRACT. The manganese (II), cobalt (II), nickel (II) and copper (II) complexes of N, N' – bis(benzoin)ethylenediiminato have been prepared and characterized by infrared, elemental analysis, conductivity measurements and solubility. The potentiometric, and elemental analyses studies of the complexes revealed 1:1 ...

  16. An algorithm for computing geometric relative velocities through Fermi and observational coordinates

    Science.gov (United States)

    Bolós, Vicente J.

    2014-01-01

    We present a numerical method for computing the Fermi and observational coordinates of a distant test particle with respect to an observer. We apply this method for computing some previously introduced concepts of relative velocity: kinematic, Fermi, spectroscopic and astrometric relative velocities. We also extend these concepts to non-convex normal neighborhoods and we make some convergence tests, studying some fundamental examples in Schwarzschild and Kerr spacetimes. Finally, we show an alternative method for computing the Fermi and astrometric relative velocities.

  17. Competition Between Pairing and Ferromagnetic Instabilities in Ultracold Fermi Gases Near Feshbach Resonances

    Science.gov (United States)

    2010-05-13

    In- ternational School of Physics “ Enrico Fermi ”, Course CLXIV, 5 Varenna, 20-30 June 2006, edited by M. Inguscio, W. Ketterle, and C. Salomon (IOS...Competition between pairing and ferromagnetic instabilities in ultracold Fermi gases near Feshbach resonances David Pekker1, Mehrtash Babadi1...MA 02139, USA We study the quench dynamics of a two-component ultracold Fermi gas from the weak into the strong inter- action regime, where the

  18. Teaching theoretical physics: The cases of Enrico Fermi and Ettore Majorana

    Science.gov (United States)

    De Gregorio, Alberto; Esposito, Salvatore

    2007-09-01

    We report on theoretical courses by Enrico Fermi and Ettore Majorana, which give evidence of the first appearance and further development of quantum mechanics teaching in Italy. On the basis of original documents, we compare Fermi and Majorana's approaches. A detailed analysis is made of Fermi's course on theoretical physics attended by Majorana in 1927-28. Three (previously unknown) programs on advanced physics courses submitted by Majorana to the University of Rome between 1933 and 1936 and the course he taught in Naples in 1938 complete our analysis. Fermi's phenomenological approach resounded in Majorana, who combined it with a deeper theoretical approach, closer to the contemporary way of presenting quantum mechanics.

  19. The Spectrum and Morphology of the Fermi Bubbles

    Science.gov (United States)

    Ackermann, M.; Albert, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazini, R.; Bissaldi, E.; Brandt, T. J.; hide

    2014-01-01

    The Fermi bubbles are two large structures in the gamma-ray sky extending to 55 deg above and below the Galactic center. We analyze 50 months of Fermi Large Area Telescope data between 100 MeV and 500 GeV above 10 deg in Galactic latitude to derive the spectrum and morphology of the Fermi bubbles. We thoroughly explore the systematic uncertainties that arise when modeling the Galactic diffuse emission through two separate approaches. The gamma-ray spectrum is well described by either a log parabola or a power law with an exponential cutoff. We exclude a simple power law with more than 7 sigma significance. The power law with an exponential cutoff has an index of 1.90+/-0.2 and a cutoff energy of 110+/- 50 GeV. We find that the gamma-ray luminosity of the bubbles is 4.4(+)2.4(-0.9 ) 10(exp 37) erg s-1. We confirm a significant enhancement of gamma-ray emission in the south-eastern part of the bubbles, but we do not find significant evidence for a jet. No significant variation of the spectrum across the bubbles is detected. The width of the boundary of the bubbles is estimated to be 3.4(+)3.7(-)2.6 deg. Both inverse Compton (IC) models and hadronic models including IC emission from secondary leptons t the gamma-ray data well. In the IC scenario, the synchrotron emission from the same population of electrons can also explain the WMAP and Planck microwave haze with a magnetic field between 5 and 20 micro-G.

  20. The spectrum and morphology of the Fermi bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M.; Buehler, R. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Albert, A.; Blandford, R. D.; Bloom, E. D.; Bottacini, E.; Caliandro, G. A.; Cameron, R. A. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Atwood, W. B. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Baldini, L.; Bellazzini, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d' Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D.; Buson, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bissaldi, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, and Università di Trieste, I-34127 Trieste (Italy); Brandt, T. J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Bregeon, J. [Laboratoire Univers et Particules de Montpellier, Université Montpellier 2, CNRS/IN2P3, Montpellier (France); Bruel, P. [Laboratoire Leprince-Ringuet, École polytechnique, CNRS/IN2P3, Palaiseau (France); Caragiulo, M., E-mail: afrancko@slac.stanford.edu, E-mail: malyshev@stanford.edu, E-mail: vahep@stanford.edu [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); and others

    2014-09-20

    The Fermi bubbles are two large structures in the gamma-ray sky extending to 55° above and below the Galactic center. We analyze 50 months of Fermi Large Area Telescope data between 100 MeV and 500 GeV above 10° in Galactic latitude to derive the spectrum and morphology of the Fermi bubbles. We thoroughly explore the systematic uncertainties that arise when modeling the Galactic diffuse emission through two separate approaches. The gamma-ray spectrum is well described by either a log parabola or a power law with an exponential cutoff. We exclude a simple power law with more than 7σ significance. The power law with an exponential cutoff has an index of 1.9 ± 0.2 and a cutoff energy of 110 ± 50 GeV. We find that the gamma-ray luminosity of the bubbles is 4.4{sub −0.9}{sup +2.4}×10{sup 37} erg s{sup –1}. We confirm a significant enhancement of gamma-ray emission in the southeastern part of the bubbles, but we do not find significant evidence for a jet. No significant variation of the spectrum across the bubbles is detected. The width of the boundary of the bubbles is estimated to be 3.4{sub −2.6}{sup +3.7} deg. Both inverse Compton (IC) models and hadronic models including IC emission from secondary leptons fit the gamma-ray data well. In the IC scenario, synchrotron emission from the same population of electrons can also explain the WMAP and Planck microwave haze with a magnetic field between 5 and 20 μG.

  1. The isospin mixing and the superallowed Fermi beta decay

    Indian Academy of Sciences (India)

    Superallowed β decays; isospin mixing; isobar analog resonance. ... The superallowed Fermi β decay is one of the few processes to calculate the amplitude ..... 34 17. Cl→. 34 16. S. 0.177. 0.193. 99.102. 98.543. 0.528. 0.570. 0.370. 0.887. 38 19. K. →. 38 18. Ar. 0.231. 0.230. 99.004. 98.116. 0.686. 0.678. 0.310. 1.206.

  2. The 1st Fermi Lat Supernova Remnant Catalog

    OpenAIRE

    Acero, Fabio; Ackermann, Markus; Ajello, Marco; Baldini, Luca; Ballet, Jean; Barbiellini, Guido; Bastieri, Denis; Bellazzini, Ronaldo; Bissaldi, E.; Blandford, Roger; Bloom, E. D.; Bonino, Raffaella; Bottacini, Eugenio; Bregeon, J.; Bruel, Philippe

    2015-01-01

    To uniformly determine the properties of supernova remnants (SNRs) at high energies, we have developed the first systematic survey at energies from 1 to 100 GeV using data from the Fermi Large Area Telescope. Based on the spatial overlap of sources detected at GeV energies with SNRs known from radio surveys, we classify 30 sources as likely GeV SNRs. We also report 14 marginal associations and 245 flux upper limits. A mock catalog in which the positions of known remnants are scrambled in Gala...

  3. Traffic modifications on Routes Rutherford, Democrite and Fermi

    CERN Multimedia

    2015-01-01

    The GS Department would like to inform you that, until the end of December, the construction of Building 245 will result in the following traffic modifications: Traffic on Route Rutherford will be partially restricted in front of the construction site, Traffic on Route Democrite will be one-way towards Route Rutherford. Also, please note that due to construction work in front of Building 377, Route Fermi will be closed from Wednesday, 10 June until Friday, 7 August. Thank you for your understanding.

  4. Higher-dimensional bosonization and its application to Fermi liquids

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Hendrik

    2012-06-28

    The bosonization scheme presented in this thesis allows to map models of interacting fermions onto equivalent models describing collective bosonic excitations. For simple systems that do not require plenty computational power and optimized algorithms, the positivity of the weight function in the bosonic frame has been confirmed - in particular also for those configurations in which the fermionic representation shows the minus-sign problem. The numerical tests are absolutely elementary and based on the simplest possible regularization scheme. The second part of this thesis presented an analytical study about the non-analytic corrections to thermodynamic quantities in a two-dimensional Fermi liquid. The perturbation theory developed for the exact formulation is by no means more convenient than the well-established fermionic diagram technique. The effective low-energy theory for studying the anomalous contributions to the Fermi liquid was derived focussing on the relevant soft modes of the interaction only. The final effective model took the form of a field theory for a bosonic superfield Ψ interacting in quadratic, cubic, and quartic terms in the action. This field theory turned out nontrivial and was shown to lead to logarithmic divergencies in both spin and charge channels. By means of a combined scheme of ladder diagram summations and renormalization group equations, the logarithmic terms were summed up in the first-loop order, thus yielding the renormalized effective coupling constants of the theory at low temperatures. The fully renormalized action then allowed to conveniently compute the low-temperature limit behavior of the non-analytic corrections to the Fermi-liquid thermodynamic response functions such as the low temperature non-analytic correction δc to the specific heat. The explicit formula for δc is the sum of two contributions - one due to the spin singlet and one due to the spin triplet superconducting excitations. Depending on the values of the

  5. Preparing a highly degenerate Fermi gas in an optical lattice

    International Nuclear Information System (INIS)

    Williams, J. R.; Huckans, J. H.; Stites, R. W.; Hazlett, E. L.; O'Hara, K. M.

    2010-01-01

    We propose a method to prepare fermionic atoms in a three-dimensional optical lattice at unprecedentedly low temperatures and uniform filling factors. The process involves adiabatic loading of degenerate atoms into multiple energy bands of an optical lattice followed by a filtering stage whereby atoms from all but the lowest band are removed. Of critical importance is the use of a nonharmonic trapping potential to provide external confinement for the atoms. For realistic experimental parameters, this procedure will produce a Fermi gas in a lattice with a reduced temperature T/T F ∼0.003 and an entropy per particle of s∼0.02 k B .

  6. Domain averaged Fermi hole analysis for open-shell systems.

    Science.gov (United States)

    Ponec, Robert; Feixas, Ferran

    2009-05-14

    The Article reports the extension of the new original methodology for the analysis and visualization of the bonding interactions, known as the analysis of domain averaged Fermi holes (DAFH), to open-shell systems. The proposed generalization is based on straightforward reformulation of the original approach within the framework of unrestricted Hartree-Fock (UHF) and/or Kohn-Sham (UKS) levels of the theory. The application of the new methodology is demonstrated on the detailed analysis of the picture of the bonding in several simple systems involving the doublet state of radical cation NH(3)((+)) and the triplet ground state of the O(2) molecule.

  7. In-medium effects around the Fermi energy

    Directory of Open Access Journals (Sweden)

    Lopez O.

    2015-01-01

    Full Text Available We study nuclear stopping in central collisions for heavy-ion induced reactions in the Fermi energy domain (15-100 AMeV. Using the large dataset provided by the 4π array INDRA, we determine that stopping can be directly related to the transport properties in the nuclear medium. By looking specifically at protons, we present a comprehensive body of experimental results concerning the mean free path, the nucleon-nucleon cross-section and in-medium effects in nuclear matter.

  8. Metals: Phonon states, electron states and Fermi surfaces. Subvolume a

    International Nuclear Information System (INIS)

    Dederichs, P.H.; Schober, H.; Sellmyer, D.J.

    1981-01-01

    This collection of tables and diagrams is the first contribution to a larger programme aiming at a complete and critical tabulation of reliable data relevant to metal physics. No such complete collection exists at present, and these tables should fill a long felt need of both experimentalists and theoreticians. Group III in the New Series of the Landolt-Boernstein tables deals with Crystal and Solid State Physics. Volume III/13 to which this subvolume 13a belongs will cover all data published up to 1980 on phonon and electron states and Fermi surfaces in metals. Both experimental and theoretical results are included. (orig./WL)

  9. Strongly correlated Fermi-Bose mixtures in disordered optical lattices

    International Nuclear Information System (INIS)

    Sanchez-Palencia, L; Ahufinger, V; Kantian, A; Zakrzewski, J; Sanpera, A; Lewenstein, M

    2006-01-01

    We investigate theoretically the low-temperature physics of a two-component ultracold mixture of bosons and fermions in disordered optical lattices. We focus on the strongly correlated regime. We show that, under specific conditions, composite fermions, made of one fermion plus one bosonic hole, form. The composite picture is used to derive an effective Hamiltonian whose parameters can be controlled via the boson-boson and the boson-fermion interactions, the tunnelling terms and the inhomogeneities. We finally investigate the quantum phase diagram of the composite fermions and show that it corresponds to the formation of Fermi glasses, spin glasses and quantum percolation regimes

  10. Strongly correlated Fermi-Bose mixtures in disordered optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Palencia, L [Laboratoire Charles Fabry de l' Institut d' Optique, CNRS and Universite Paris-Sud XI, Bat 503, Centre scientifique, F-91403 Orsay Cedex (France); Ahufinger, V [ICREA and Grup d' optica, Departament de FIsica, Universitat Autonoma de Barcelona, E-08193 Belaterra (Barcelona) (Spain); Kantian, A [Institut fuer Theoretische Physik, Universitaet Innsbruck, A-6020 Innsbruck (Austria); Zakrzewski, J [Instytut Fizyki imienia Mariana Smoluchowskiego i Centrum Badan Ukladow Zlozonych imienia Marka Kaca, Uniwersytet Jagiellonski, ulica Reymonta 4, PL-30-059 Krakow (Poland); Sanpera, A [ICREA and Grup de FIsica Teorica, Departament de FIsica, Universitat Autonoma de Barcelona, E-08193 Belaterra (Barcelona) (Spain); Lewenstein, M [ICREA and ICFO-Institut de Ciencies Fotoniques, Parc Mediterrani de la TecnologIa, E-08860 Castelldefels (Barcelona) (Spain); Institut fuer Theoretische Physik, Universitaet Hannover, D-30167 Hannover (Germany)

    2006-05-28

    We investigate theoretically the low-temperature physics of a two-component ultracold mixture of bosons and fermions in disordered optical lattices. We focus on the strongly correlated regime. We show that, under specific conditions, composite fermions, made of one fermion plus one bosonic hole, form. The composite picture is used to derive an effective Hamiltonian whose parameters can be controlled via the boson-boson and the boson-fermion interactions, the tunnelling terms and the inhomogeneities. We finally investigate the quantum phase diagram of the composite fermions and show that it corresponds to the formation of Fermi glasses, spin glasses and quantum percolation regimes.

  11. Hund's Induced Fermi-Liquid Instabilities and Enhanced Quasiparticle Interactions

    Science.gov (United States)

    de'Medici, Luca

    2017-04-01

    Hund's coupling is shown to generally favor, in a doped half-filled Mott insulator, an increase in the compressibility culminating in a Fermi-liquid instability towards phase separation. The largest effect is found near the frontier between an ordinary and an orbitally decoupled ("Hund's") metal. The increased compressibility implies an enhancement of quasiparticle scattering, thus favoring other possible symmetry breakings. This physics is shown to happen in simulations of the 122 Fe-based superconductors, possibly implying the relevance of this mechanism in the enhancement of the critical temperature for superconductivity.

  12. Two-dimensional Bose and Fermi gases beyond weak coupling

    Science.gov (United States)

    França, Guilherme; LeClair, André; Squires, Joshua

    2017-07-01

    Using a formalism based on the two-body S-matrix we study two-dimensional Bose and Fermi gases with both attractive and repulsive interactions. Approximate analytic expressions, valid at weak coupling and beyond, are developed and applied to the Berezinskii-Kosterlitz-Thouless (BKT) transition. We successfully recover the correct logarithmic functional form of the critical chemical potential and density for the Bose gas. For fermions, the BKT critical temperature is calculated in BCS and BEC regimes through consideration of Tan’s contact.

  13. Evidence for topological type-II Weyl semimetal WTe2

    KAUST Repository

    Li, Peng

    2017-12-11

    Recently, a type-II Weyl fermion was theoretically predicted to appear at the contact of electron and hole Fermi surface pockets. A distinguishing feature of the surfaces of type-II Weyl semimetals is the existence of topological surface states, so-called Fermi arcs. Although WTe2 was the first material suggested as a type-II Weyl semimetal, the direct observation of its tilting Weyl cone and Fermi arc has not yet been successful. Here, we show strong evidence that WTe2 is a type-II Weyl semimetal by observing two unique transport properties simultaneously in one WTe2 nanoribbon. The negative magnetoresistance induced by a chiral anomaly is quite anisotropic in WTe2 nanoribbons, which is present in b-axis ribbon, but is absent in a-axis ribbon. An extra-quantum oscillation, arising from a Weyl orbit formed by the Fermi arc and bulk Landau levels, displays a two dimensional feature and decays as the thickness increases in WTe2 nanoribbon.

  14. Correlations in the low-density Fermi gas: Fermi-liquid state, dimerization, and Bardeen-Cooper-Schrieffer pairing

    Science.gov (United States)

    Fan, H. H.; Krotscheck, E.; Lichtenegger, T.; Mateo, D.; Zillich, R. E.

    2015-08-01

    We present ground-state calculations for low-density Fermi gases described by two model interactions, an attractive square-well potential and a Lennard-Jones potential, of varying strength. We use the optimized Fermi-hypernetted chain integral equation method, which has been proved to provide, in the density regimes of interest here, an accuracy of better than 1%. We first examine the low-density expansion of the energy and compare it with the exact answer of H. Huang and C. N. Yang [Phys. Rev. 105, 767 (1957), 10.1103/PhysRev.105.767]. It is shown that a locally correlated wave function of the Jastrow-Feenberg type does not recover the quadratic term in the expansion of the energy in powers of a0kF , where a0 is the vacuum s -wave scattering length and kF the Fermi wave number. The problem is cured by adding second-order perturbation corrections in a correlated basis. Going to higher densities and/or more strongly coupled systems, we encounter an instability of the normal state of the system which is characterized by a divergence of the in-medium scattering length. We interpret this divergence as a phonon-exchange-driven dimerization of the system, similar to what occurs at zero density when the vacuum scattering length a0 diverges. We then study, in the stable regime, the superfluid gap and its dependence on the density and the interaction strength. We identify two corrections to low-density expansions: One is medium corrections to the pairing interaction, and the other is finite-range corrections. We show that the most important finite-range corrections are a direct manifestation of the many-body nature of the system.

  15. Advanced Electron Beam Diagnostics for the FERMI FEL

    CERN Document Server

    Ferianis, M; D'Auria, G; Di Mitri, S

    2005-01-01

    Fermi is the fourth generation light source currently under design at ELETTRA: based on the Harmonic Generation (HG) scheme it will generate FEL radiation in the 100-10nm range. The successful implementation of the HG scheme calls also for precise knowledge of electron beam emittances and energy spread as well as for very accurate control on the photon to electron interaction, in the Undulator sections. In this paper we present our design for two fundamental Diagnostics foreseen for the new FERMI LINAC: the Beam Position Monitors (BPM) and the Transverse Deflecting cavity set-up. Sensitivity studies on transverse beam displacement effects on global stability of FEL output radiation dictate the ultimate performance to be provided by the BPM system. Due to non negligible longitudinal occupancy of a cavity type BPM, some efforts have been put to study compact cavity BPM configuration. A proper set-up of RF deflecting cavity combined with the vertical ramp foreseen at the end of the LINAC provide a powerful tool ...

  16. Conductors with small Fermi energies and small gap energies

    International Nuclear Information System (INIS)

    Thorn, R.J.

    1993-01-01

    If the Fermi energy is of the order of meV's, the usual treatment of the density of free electrons is not valid, but use can be made of an averaged density of states that depends weakly on temperature, so that the temperature variation of the conductivity can be expressed by the equation: σ congruent CT (1-s) 1n{[(exp(βE f ) + 1)/2][exp(-β(E g - E f )) + 1)]} in which E f is the Fermi energy, E g is the top of the energy gap for thermal activation, s is the exponent of the temperature-dependent scattering. This equation serves to define a class of solids consisting of a microcomposite with a narrow conduction band for which E f of the order of ceV's or less and a thermal activated conduction for which E g is of the order of ceV's. It describes quantitatively the conductivity, σ(T;Δ, for YBa 2 Cu 3 O 7-Δ and σ(T;p) as the hydrostatic pressure p is varied for κ-(BEDT-TTF) 2 CuN(CN) 2 Br

  17. Fermi and Swift Gamma-Ray Burst Afterglow Population Studies

    Science.gov (United States)

    Racusin, Judith L.; Oates, S. R.; Schady, P.; Burrows, D. N.; dePasquale, M.; Donato, D.; Gehrels, N.; Koch, S.; McEnery, J.; Piran, T.; hide

    2011-01-01

    The new and extreme population of GRBs detected by Fermi -LAT shows several new features in high energy gamma-rays that are providing interesting and unexpected clues into GRB prompt and afterglow emission mechanisms. Over the last 6 years, it has been Swift that has provided the robust dataset of UV/optical and X-ray afterglow observations that opened many windows into components of GRB emission structure. The relationship between the LAT detected GRBs and the well studied, fainter, less energetic GRBs detected by Swift -BAT is only beginning to be explored by multi-wavelength studies. We explore the large sample of GRBs detected by BAT only, BAT and Fermi -GBM, and GBM and LAT, focusing on these samples separately in order to search for statistically significant differences between the populations, using only those GRBs with measured redshifts in order to physically characterize these objects. We disentangle which differences are instrumental selection effects versus intrinsic properties, in order to better understand the nature of the special characteristics of the LAT bursts.

  18. Neutron Matter as a Composite Bose-Fermi Superfluid

    Science.gov (United States)

    Arbanas, Goran; Kerman, Arthur; Nam, Hai Ah; Stone, Jirina

    2011-10-01

    We model infinite neutron matter as an interacting Bose-Fermi superfluid consisting of superconducting neutrons and a Bose-Einstein condensate of a six-quark Feshbach state. The interaction term in the many-body grand canonical Hamiltonian is defined by a coupling form-factor and a coupling strength that are determined by fitting an expression for neutron-neutron scattering (via the same Feshbach state) to the 1S0 phase shift. Extremization of the expectation value of the grand canonical Hamiltonian in the ground state yields an equation of state for infinite neutron matter that we numerically solve for particle-number densities between 10-7 and 0.5 fm-3. In the unitary limit (i.e., infinite scattering length and a zero effective range), we find the energy per particle to be 0.6 that of a free Fermi gas. The effect of random-phase-approximation corrections to our equation of state is addressed. This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of Energy.

  19. Contribution to the theory of ultracold highly polarized Fermi gases

    International Nuclear Information System (INIS)

    Giraud, Sebastien

    2010-01-01

    This thesis deals with the N+1 body problem in highly polarized Fermi gases. This is the situation where a single atom of one spin species is immersed in a Fermi sea of atoms of the other species. The first part uses a Hamiltonian approach based on a general expansion for the wave function of the system with any number of particle-hole pairs. We show that the constructed series of successive approximations converges very rapidly and thus we get an essentially exact solution for the energy and the effective mass of the polaron. In one dimension, for two particular cases, this problem can be solved analytically. The excellent agreement with our series of approximations provides a further check of the reliability of this expansion. Finally, we consider more specifically various limiting cases, as well as the effect of the mass ratio between the two spin species. In the second part, we use the Feynman diagrams formalism to describe both the polaron and the bound state. For the polaron, we develop a theory which is equivalent to the Hamiltonian approach. For the bound state, we get again a series of successive approximations whose fast convergence is perfectly understood. Therefore, this approach provides an essentially exact solution to the problem along the whole BEC-BCS crossover. Finally, by comparing the energies of the two quasi-particles, we study the position of the polaron to bound state transition. (author)

  20. Dimensional BCS-BEC crossover in ultracold Fermi gases

    Energy Technology Data Exchange (ETDEWEB)

    Boettcher, Igor

    2014-12-10

    We investigate thermodynamics and phase structure of ultracold Fermi gases, which can be realized and measured in the laboratory with modern trapping techniques. We approach the subject from a both theoretical and experimental perspective. Central to the analysis is the systematic comparison of the BCS-BEC crossover of two-component fermions in both three and two dimensions. A dimensional reduction can be achieved in experiments by means of highly anisotropic traps. The Functional Renormalization Group (FRG) allows for a description of both cases in a unified theoretical framework. In three dimensions we discuss with the FRG the influence of high momentum particles onto the density, extend previous approaches to the Unitary Fermi Gas to reach quantitative precision, and study the breakdown of superfluidity due to an asymmetry in the population of the two fermion components. In this context we also investigate the stability of the Sarma phase. For the two-dimensional system scattering theory in reduced dimension plays an important role. We present both the theoretically as well as experimentally relevant aspects thereof. After a qualitative analysis of the phase diagram and the equation of state in two dimensions with the FRG we describe the experimental determination of the phase diagram of the two-dimensional BCS-BEC crossover in collaboration with the group of S. Jochim at PI Heidelberg.

  1. Signature of Fermi surface jumps in positron spectroscopy data

    International Nuclear Information System (INIS)

    Adam, G.; Adam, S.

    1998-12-01

    A subtractionless method for solving Fermi surface sheets (FSS), from measured n-axis-projected momentum distribution histograms by two-dimensional angular correlation of the positron-electron annihilation radiation (2D-ACAR) technique, is discussed. The window least squares statistical noise smoothing filter described in Adam et al., NIM A, 337 (1993) 188, is first refined such that the window free radial parameters (WRP) are optimally adapted to the data. In an ideal single crystal, the specific jumps induced in the WRP distribution by the existing Fermi surface jumps yield straightforward information on the resolved FSS. In a real crystal, the smearing of the derived WRP optimal values, which originates from positron annihilations with electrons at crystal imperfections, is ruled out by median smoothing of the obtained distribution, over symmetry defined stars of bins. The analysis of a gigacount 2D-ACAR spectrum, measured on the archetypal high-T c compound Y Ba 2 Cu 3 O 7-δ at room temperature, illustrates the method. Both electronic FSS, the ridge along Γ Χ direction and the pillbox centered at the S point of the first Brillouin zone, are resolved. (author)

  2. An efficient and accurate decomposition of the Fermi operator.

    Science.gov (United States)

    Ceriotti, Michele; Kühne, Thomas D; Parrinello, Michele

    2008-07-14

    We present a method to compute the Fermi function of the Hamiltonian for a system of independent fermions based on an exact decomposition of the grand-canonical potential. This scheme does not rely on the localization of the orbitals and is insensitive to ill-conditioned Hamiltonians. It lends itself naturally to linear scaling as soon as the sparsity of the system's density matrix is exploited. By using a combination of polynomial expansion and Newton-like iterative techniques, an arbitrarily large number of terms can be employed in the expansion, overcoming some of the difficulties encountered in previous papers. Moreover, this hybrid approach allows us to obtain a very favorable scaling of the computational cost with increasing inverse temperature, which makes the method competitive with other Fermi operator expansion techniques. After performing an in-depth theoretical analysis of computational cost and accuracy, we test our approach on the density functional theory Hamiltonian for the metallic phase of the LiAl alloy.

  3. FERMI LARGE AREA TELESCOPE OBSERVATIONS OF THE VELA PULSAR

    International Nuclear Information System (INIS)

    Abdo, A. A.; Ackermann, M.; Bartelt, J.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bogart, J. R.; Atwood, W. B.; Bagagli, R.; Baldini, L.; Bellardi, F.; Bellazzini, R.; Ballet, J.; Band, D. L.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Bisello, D.; Baughman, B. M.

    2009-01-01

    The Vela pulsar is the brightest persistent source in the GeV sky and thus is the traditional first target for new γ-ray observatories. We report here on initial Fermi Large Area Telescope observations during verification phase pointed exposure and early sky survey scanning. We have used the Vela signal to verify Fermi timing and angular resolution. The high-quality pulse profile, with some 32,400 pulsed photons at E ≥ 0.03 GeV, shows new features, including pulse structure as fine as 0.3 ms and a distinct third peak, which shifts in phase with energy. We examine the high-energy behavior of the pulsed emission; initial spectra suggest a phase-averaged power-law index of Γ = 1.51 +0.05 -0.04 with an exponential cutoff at E c = 2.9 ± 0.1 GeV. Spectral fits with generalized cutoffs of the form e -(E/E c ) b require b ≤ 1, which is inconsistent with magnetic pair attenuation, and thus favor outer-magnetosphere emission models. Finally, we report on upper limits to any unpulsed component, as might be associated with a surrounding pulsar wind nebula.

  4. An improved Thomas--Fermi treatment of nuclei

    International Nuclear Information System (INIS)

    Swiatecki, W.J.

    1992-01-01

    I want to tell you about an improved Thomas-Fermi method for calculating shell-averaged nuclear properties, such as density distributions, binding energies, etc. A shell-averaged statistical theory is useful as the macroscopic component of microscopic-macroscopic theories of nuclei, such as the Strutinsky method, as well as in theories of nuclear matter in the bulk, relevant in astrophysical applications. In nuclear physics, as well as in atomic and molecular problems, the following question often has to be answered: you are given a potential well, say a deformed Woods-Saxon potential, into which you put N quantized fermions into the lowest N eigenstates, up to a ''Fermi energy'' To. You square the wave functions of the particles and add them up to get the total density ρ( r → ) = Σ i N |ψ i | 2 . Is there some simple way of estimating ρ( r → ) without going through the misery of numerically solving N partial differential Schroedinger equations for the N particles?

  5. Quantum Monte Carlo studies of superfluid Fermi gases

    International Nuclear Information System (INIS)

    Chang, S.Y.; Pandharipande, V.R.; Carlson, J.; Schmidt, K.E.

    2004-01-01

    We report results of quantum Monte Carlo calculations of the ground state of dilute Fermi gases with attractive short-range two-body interactions. The strength of the interaction is varied to study different pairing regimes which are characterized by the product of the s-wave scattering length and the Fermi wave vector, ak F . We report results for the ground-state energy, the pairing gap Δ, and the quasiparticle spectrum. In the weak-coupling regime, 1/ak F FG . When a>0, the interaction is strong enough to form bound molecules with energy E mol . For 1/ak F > or approx. 0.5, we find that weakly interacting composite bosons are formed in the superfluid gas with Δ and gas energy per particle approaching E mol /2. In this region, we seem to have Bose-Einstein condensation (BEC) of molecules. The behavior of the energy and the gap in the BCS-to-BEC transition region, -0.5 F <0.5, is discussed

  6. The Istituto Fisico on Via Panisperna the new Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi" di Roma

    CERN Document Server

    Carbonari, Luca

    2003-01-01

    We trace Fermi's working years in Rome at the Istituto Fisico ("Physics Institute") on Via Panisperna and describe the new Centro Studi e Ricerche 'Enrico Fermi' (Enrico Fermi Centre for Study and Research) established to honour his memory and achievements.

  7. 3D Quantum Hall Effect of Fermi Arc in Topological Semimetals

    Science.gov (United States)

    Wang, C. M.; Sun, Hai-Peng; Lu, Hai-Zhou; Xie, X. C.

    2017-09-01

    The quantum Hall effect is usually observed in 2D systems. We show that the Fermi arcs can give rise to a distinctive 3D quantum Hall effect in topological semimetals. Because of the topological constraint, the Fermi arc at a single surface has an open Fermi surface, which cannot host the quantum Hall effect. Via a "wormhole" tunneling assisted by the Weyl nodes, the Fermi arcs at opposite surfaces can form a complete Fermi loop and support the quantum Hall effect. The edge states of the Fermi arcs show a unique 3D distribution, giving an example of (d -2 )-dimensional boundary states. This is distinctly different from the surface-state quantum Hall effect from a single surface of topological insulator. As the Fermi energy sweeps through the Weyl nodes, the sheet Hall conductivity evolves from the 1 /B dependence to quantized plateaus at the Weyl nodes. This behavior can be realized by tuning gate voltages in a slab of topological semimetal, such as the TaAs family, Cd3 As2 , or Na3Bi . This work will be instructive not only for searching transport signatures of the Fermi arcs but also for exploring novel electron gases in other topological phases of matter.

  8. Ground state of charged Base and Fermi fluids in strong coupling

    International Nuclear Information System (INIS)

    Mazighi, R.

    1982-03-01

    The ground state and excited states of the charged Bose gas were studied (wave function, equation of state, thermodynamics, application of Feynman theory). The ground state of the charged Fermi gas was also investigated together with the miscibility of charged Bose and Fermi gases at 0 deg K (bosons-bosons, fermions-bosons and fermions-fermions) [fr

  9. On the interrelation between bulk and thin-film Fermi surfaces

    KAUST Repository

    Schwingenschlögl, Udo

    2010-12-01

    A general scheme for inferring the Fermi surface of a finite slab from ab initio electronic-structure calculations for the parent bulk system is introduced. The simple cubic ReO 3 oxide is studied as an example system. We show that our scheme provides an accurate approximation of the Fermi surface even for very thin slabs. © 2010 Europhysics Letters Association.

  10. Prediction of Fermi-Surface Pressure Dependence in Rb and Cs

    DEFF Research Database (Denmark)

    Jan, J. P.; MacDonald, A. H.; Skriver, Hans Lomholt

    1980-01-01

    The linear muffin-tin orbitals method of band-structure calculation, combined with a Gaussian integration technique using special directions in the Brillouin zone, has been used to calculate Fermi radii and extremal cross-sectional areas of the Fermi surface in rubidium and cesium. Band shifts we...

  11. 3D Quantum Hall Effect of Fermi Arcs in Topological Semimetals.

    Science.gov (United States)

    Wang, C M; Sun, Hai-Peng; Lu, Hai-Zhou; Xie, X C

    2017-09-29

    The quantum Hall effect is usually observed in 2D systems. We show that the Fermi arcs can give rise to a distinctive 3D quantum Hall effect in topological semimetals. Because of the topological constraint, the Fermi arc at a single surface has an open Fermi surface, which cannot host the quantum Hall effect. Via a "wormhole" tunneling assisted by the Weyl nodes, the Fermi arcs at opposite surfaces can form a complete Fermi loop and support the quantum Hall effect. The edge states of the Fermi arcs show a unique 3D distribution, giving an example of (d-2)-dimensional boundary states. This is distinctly different from the surface-state quantum Hall effect from a single surface of topological insulator. As the Fermi energy sweeps through the Weyl nodes, the sheet Hall conductivity evolves from the 1/B dependence to quantized plateaus at the Weyl nodes. This behavior can be realized by tuning gate voltages in a slab of topological semimetal, such as the TaAs family, Cd_{3}As_{2}, or Na_{3}Bi. This work will be instructive not only for searching transport signatures of the Fermi arcs but also for exploring novel electron gases in other topological phases of matter.

  12. A theorem on the single particle energy in a Fermi gas with interaction

    NARCIS (Netherlands)

    Hugenholtz, N.M.; Hove, Léon van

    1958-01-01

    This paper investigates single particle properties in a Fermi gas with interaction at the absolute zero of temperature. In such a system a single particle energy has only a meaning for particles of momentum k close to the Fermi momentum kF. These single particle states are metastable with a

  13. Propagation of few cycle optical pulses in marginal Fermi liquid and ADS/CFT correspondence

    International Nuclear Information System (INIS)

    Konobeeva, N.N.; Belonenko, M.B.

    2015-01-01

    Absract: The paper considers features of few cycle optical pulse propagation in marginal Fermi liquid. The Green functions whose poles are responsible for the dispersion law excitation states of the liquid have been derived within the framework of ADS/CFT correspondence. Marginal Fermi liquid parameters influence on the pulse shape was defined.

  14. Application of the Thomas-Fermi statistical model to the thermodynamics of high density matter; Aplicacion del modelo estadistico de Thomas-Fermi a la termodinamica de medios ultradensos

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R.

    1977-07-01

    The Thomas-Fermi statistical model, from the N-body point of view is used in order to have systematic corrections to the T-Fermis equation. Approximate calculus methods are found from analytic study of the T-Fermis equation for non zero temperature. T-Fermis equation is solved with the code GOLEM written in FORTRAN V (UNIVAC). It also provides the thermodynamical quantities and a new method to calculate several isothermal tables. (Author) 24 refs.

  15. A search for neutrino emission from the Fermi bubbles with the ANTARES telescope

    Energy Technology Data Exchange (ETDEWEB)

    Adrian-Martinez, S.; Ardid, M.; Larosa, G.; Martinez-Mora, J.A. [Universitat Politecnica de Valencia, Institut d' Investigacio per a la Gestio Integrada de les Zones Costaneres (IGIC), Gandia (Spain); Albert, A.; Drouhin, D.; Racca, C. [GRPHE, Institut Universitaire de Technologie de Colmar, 34 rue du Grillenbreit, BP 50568, Colmar (France); Al Samarai, I.; Aubert, J.J.; Bertin, V.; Brunner, J.; Busto, J.; Carr, J.; Charif, Z.; Core, L.; Costantini, H.; Coyle, P.; Curtil, C.; Dornic, D.; Ernenwein, J.P.; Escoffier, S.; Lambard, E.; Riviere, C.; Vallee, C.; Vecchi, M.; Yatkin, K. [CPPM, Aix-Marseille Universite, CNRS/IN2P3, Marseille (France); Andre, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Vilanova i la Geltru, Barcelona (Spain); Anton, G.; Classen, F.; Eberl, T.; Enzenhoefer, A.; Fehn, K.; Folger, F.; Fritsch, U.; Geisselsoeder, S.; Geyer, K.; Gleixner, A.; Graf, K.; Herold, B.; Hoessl, J.; James, C.W.; Kalekin, O.; Kappes, A.; Katz, U.; Lahmann, R.; Neff, M.; Richter, R.; Roensch, K.; Schmid, J.; Schnabel, J.; Seitz, T.; Shanidze, R.; Sieger, C.; Spies, A.; Wagner, S. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Anvar, S.; Louis, F.; Schuessler, F.; Stolarczyk, T.; Vallage, B.; Vernin, P. [Institut de recherche sur les lois fondamentales de l' Univers, Service d' Electronique des Detecteurs et d' Informatique, CEA Saclay, Direction des Sciences de la Matiere, Gif-sur-Yvette Cedex (France); Astraatmadja, T.; Bogazzi, C.; Heijboer, A.J.; Jong, M. de; Michael, T.; Palioselitis, D.; Schulte, S.; Steijger, J.J.M.; Visser, E. [Nikhef, Science Park, Amsterdam (Netherlands); Baret, B.; Bouhou, B.; Creusot, A.; Galata, S.; Kouchner, A.; Elewyck, V. van [APC, Universite Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cite, Paris (France); Barrios-Marti, J.; Bigongiari, C.; Bouwhuis, M.C.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Lambard, G.; Mangano, S.; Sanchez-Losa, A.; Yepes, H.; Zornoza, J.D.; Zuniga, J. [Universitat de Valencia, IFIC, Instituto de Fisica Corpuscular, Edificios Investigacion de Paterna, CSIC, Valencia (Spain); Basa, S.; Marcelin, M.; Nezri, E. [Pole de l' Etoile Site de Chateau-Gombert, LAM, Laboratoire d' Astrophysique de Marseille, Marseille Cedex 13 (France); Biagi, S.; Fusco, L.A.; Giacomelli, G.; Margiotta, A.; Spurio, M. [INFN, Sezione di Bologna, Bologna (Italy); Dipartimento di Fisica dell' Universita, Bologna (Italy); Capone, A.; De Bonis, G.; Fermani, P.; Perrina, C.; Simeone, F. [INFN, Sezione di Roma, Rome (Italy); Dipartimento di Fisica dell' Universita La Sapienza, Rome (Italy); Caramete, L.; Pavalas, G.E.; Popa, V. [Institute for Space Sciences, Bucharest, Magurele (Romania); Carloganu, C.; Dumas, A.; Gay, P.; Guillard, G. [Clermont Universite, Universite Blaise Pascal, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, Clermont-Ferrand (France); Cecchini, S.; Chiarusi, T. [INFN, Sezione di Bologna, Bologna (Italy); Charvis, P.; Deschamps, A.; Hello, Y. [Geoazur, Universite Nice Sophia-Antipolis, CNRS/INSU, IRD, Observatoire de la Cote d' Azur, Sophia Antipolis (France); Circella, M. [INFN, Sezione di Bari, Bari (Italy); Coniglione, R.; Lattuada, D.; Riccobene, G.; Sapienza, P.; Trovato, A. [INFN, Laboratori Nazionali del Sud (LNS), Catania (Italy); Dekeyser, I.; Lefevre, D.; Martini, S.; Robert, A.; Tamburini, C. [Mediterranean Institute of Oceanography (MIO), Aix-Marseille University, Marseille Cedex 9 (France); Universit du Sud Toulon-Var, CNRS-INSU/IRD UM 110, La Garde Cedex (France); Donzaud, C. [APC, Universite Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cite, Paris (France); Universite Paris-Sud, Orsay Cedex (France); Dorosti, Q.; Loehner, H. [University of Groningen, Kernfysisch Versneller Instituut (KVI), Groningen (Netherlands); Flaminio, V. [INFN, Sezione di Pisa, Pisa (Italy); Dipartimento di Fisica dell' Universita, Pisa (Italy); Giordano, V. [INFN, Sezione di Catania, Catania (Italy); Haren, H. van [Royal Netherlands Institute for Sea Research (NIOZ), ' t Horntje (Texel) (Netherlands); Hugon, C.; Sanguineti, M. [INFN, Sezione di Genova, Genoa (Italy); Kadler, M. [Universitaet Wuerzburg, Institut fuer Theoretische Physik und Astrophysik, Wuerzburg (Germany); Kooijman, P. [Nikhef, Science Park, Amsterdam (Netherlands); Universiteit Utrecht, Faculteit Betawetenschappen, Utrecht (Netherlands); Universiteit van Amsterdam, Instituut voor Hoge-Energie Fysica, Amsterdam (Netherlands); Kreykenbohm, I.; Mueller, C.; Wilms, J. [Universitaet Erlangen-Nuernberg, Dr. Remeis-Sternwarte and ECAP, Bamberg (Germany); Kulikovskiy, V. [INFN, Sezione di Genova, Genoa (Italy); Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); Leonora, E.; Lo Presti, D. [INFN, Sezione di Catania, Catania (Italy); Dipartimento di Fisica ed Astronomia dell' Universita, Catania (Italy); Loucatos, S. [Institut de recherche sur les lois fondamentales de l' Univers, Service d' Electronique des Detecteurs et d' Informatique, CEA Saclay, Direction des Sciences de la Matiere, Gif-sur-Yvette Cedex (France); APC, Universite Paris Diderot, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cite, Paris (France); Montaruli, T. [Mediterranean Institute of Oceanography (MIO), Aix-Marseille University, Marseille Cedex 9 (France); Universite de Geneve, Departement de Physique Nucleaire et Corpusculaire, Geneva (Switzerland); Morganti, M. [INFN, Sezione di Pisa, Pisa (Italy); Pradier, T. [Universite de Strasbourg et CNRS/IN2P3, IPHC-Institut Pluridisciplinaire Hubert Curien, 23 rue du Loess, BP 28, Strasbourg Cedex 2 (France); Rostovtsev, A. [ITEP, Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Samtleben, D.F.E. [Nikhef, Science Park, Amsterdam (Netherlands); Universiteit Leiden, Leids Instituut voor Onderzoek in Natuurkunde, Leiden (Netherlands); Taiuti, M. [Technical University of Catalonia, Laboratory of Applied Bioacoustics, Vilanova i la Geltru, Barcelona (Spain); Dipartimento di Fisica dell' Universita, Genoa (IT); Tayalati, Y. [University Mohammed I, Laboratory of Physics of Matter and Radiations, B.P.717, Oujda (MA); Wolf, E. de [Nikhef, Science Park, Amsterdam (NL); Universiteit van Amsterdam, Instituut voor Hoge-Energie Fysica, Amsterdam (NL); Collaboration: The ANTARES Collaboration

    2014-02-15

    Analysis of the Fermi-LAT data has revealed two extended structures above and below the Galactic Centre emitting gamma rays with a hard spectrum, the so-called Fermi bubbles. Hadronic models attempting to explain the origin of the Fermi bubbles predict the emission of high-energy neutrinos and gamma rays with similar fluxes. The ANTARES detector, a neutrino telescope located in the Mediterranean Sea, has a good visibility to the Fermi bubble regions. Using data collected from 2008 to 2011 no statistically significant excess of events is observed and therefore upper limits on the neutrino flux in TeV range from the Fermi bubbles are derived for various assumed energy cutoffs of the source. (orig.)

  16. Fulde-Ferrell-Like Molecular States in Spin-Orbit Coupled Ultracold Fermi Gases

    Science.gov (United States)

    Ye, Chong; Fu, Li-Bin

    2017-08-01

    We study the molecular state in three-component Fermi gases with a single impurity of 6 Li immersing in a no-interacting Fermi sea of 40 K in the presence of an equal weight combination of Rashba-type and Dresselhaus-type spin-orbit coupling. In the region where the Fermi sea has two disjointed Fermi surfaces, we find that there are two Fulde-Ferrell-like molecular states with dominating contributions from the lower helicity branch. Decreasing the scattering length or the spin-orbit coupled Fermi energy, we find the Fulde-Ferrell-like molecular state with small center-of-mass momentum is always energy favored and the other one will suddenly disappear. Supported by the National Basic Research Program of China (973 Program) under Grant Nos. 2013CBA01502, 2013CB834100, and the National Natural Science Foundation of China under Grant Nos. 11374040, 11475027, 11575027, 11274051, and 11075020

  17. A search for neutrino emission from the Fermi bubbles with the ANTARES telescope

    Science.gov (United States)

    Adrián-Martínez, S.; Albert, A.; Al Samarai, I.; André, M.; Anton, G.; Anvar, S.; Ardid, M.; Astraatmadja, T.; Aubert, J.-J.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bogazzi, C.; Bouhou, B.; Bouwhuis, M. C.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Cârloganu, C.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Classen, F.; Coniglione, R.; Core, L.; Costantini, H.; Coyle, P.; Creusot, A.; Curtil, C.; De Bonis, G.; Dekeyser, I.; Deschamps, A.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Dumas, A.; Eberl, T.; Emanuele, U.; Enzenhöfer, A.; Ernenwein, J.-P.; Escoffier, S.; Fehn, K.; Fermani, P.; Flaminio, V.; Folger, F.; Fritsch, U.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giacomelli, G.; Giordano, V.; Gleixner, A.; Gómez-González, J. P.; Graf, K.; Guillard, G.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hugon, C.; James, C. W.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kooijman, P.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lambard, E.; Lambard, G.; Larosa, G.; Lattuada, D.; Lefèvre, D.; Leonora, E.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martínez-Mora, J. A.; Martini, S.; Michael, T.; Montaruli, T.; Morganti, M.; Müller, C.; Neff, M.; Nezri, E.; Palioselitis, D.; Păvălaş, G. E.; Perrina, C.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Richter, R.; Rivière, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Samtleben, D. F. E.; Sanguineti, M.; Sapienza, P.; Schmid, J.; Schnabel, J.; Schulte, S.; Schüssler, F.; Seitz, T.; Shanidze, R.; Sieger, C.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Sánchez-Losa, A.; Taiuti, M.; Tamburini, C.; Tayalati, Y.; Trovato, A.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Vecchi, M.; Vernin, P.; Visser, E.; Wagner, S.; Wilms, J.; de Wolf, E.; Yatkin, K.; Yepes, H.; Zornoza, J. D.; Zúñiga, J.

    2014-02-01

    Analysis of the Fermi-LAT data has revealed two extended structures above and below the Galactic Centre emitting gamma rays with a hard spectrum, the so-called Fermi bubbles. Hadronic models attempting to explain the origin of the Fermi bubbles predict the emission of high-energy neutrinos and gamma rays with similar fluxes. The ANTARES detector, a neutrino telescope located in the Mediterranean Sea, has a good visibility to the Fermi bubble regions. Using data collected from 2008 to 2011 no statistically significant excess of events is observed and therefore upper limits on the neutrino flux in TeV range from the Fermi bubbles are derived for various assumed energy cutoffs of the source.

  18. A search for neutrino emission from the Fermi bubbles with the ANTARES telescope

    International Nuclear Information System (INIS)

    Adrian-Martinez, S.; Ardid, M.; Larosa, G.; Martinez-Mora, J.A.; Albert, A.; Drouhin, D.; Racca, C.; Al Samarai, I.; Aubert, J.J.; Bertin, V.; Brunner, J.; Busto, J.; Carr, J.; Charif, Z.; Core, L.; Costantini, H.; Coyle, P.; Curtil, C.; Dornic, D.; Ernenwein, J.P.; Escoffier, S.; Lambard, E.; Riviere, C.; Vallee, C.; Vecchi, M.; Yatkin, K.; Andre, M.; Anton, G.; Classen, F.; Eberl, T.; Enzenhoefer, A.; Fehn, K.; Folger, F.; Fritsch, U.; Geisselsoeder, S.; Geyer, K.; Gleixner, A.; Graf, K.; Herold, B.; Hoessl, J.; James, C.W.; Kalekin, O.; Kappes, A.; Katz, U.; Lahmann, R.; Neff, M.; Richter, R.; Roensch, K.; Schmid, J.; Schnabel, J.; Seitz, T.; Shanidze, R.; Sieger, C.; Spies, A.; Wagner, S.; Anvar, S.; Louis, F.; Schuessler, F.; Stolarczyk, T.; Vallage, B.; Vernin, P.; Astraatmadja, T.; Bogazzi, C.; Heijboer, A.J.; Jong, M. de; Michael, T.; Palioselitis, D.; Schulte, S.; Steijger, J.J.M.; Visser, E.; Baret, B.; Bouhou, B.; Creusot, A.; Galata, S.; Kouchner, A.; Elewyck, V. van; Barrios-Marti, J.; Bigongiari, C.; Bouwhuis, M.C.; Emanuele, U.; Gomez-Gonzalez, J.P.; Hernandez-Rey, J.J.; Lambard, G.; Mangano, S.; Sanchez-Losa, A.; Yepes, H.; Zornoza, J.D.; Zuniga, J.; Basa, S.; Marcelin, M.; Nezri, E.; Biagi, S.; Fusco, L.A.; Giacomelli, G.; Margiotta, A.; Spurio, M.; Capone, A.; De Bonis, G.; Fermani, P.; Perrina, C.; Simeone, F.; Caramete, L.; Pavalas, G.E.; Popa, V.; Carloganu, C.; Dumas, A.; Gay, P.; Guillard, G.; Cecchini, S.; Chiarusi, T.; Charvis, P.; Deschamps, A.; Hello, Y.; Circella, M.; Coniglione, R.; Lattuada, D.; Riccobene, G.; Sapienza, P.; Trovato, A.; Dekeyser, I.; Lefevre, D.; Martini, S.; Robert, A.; Tamburini, C.; Donzaud, C.; Dorosti, Q.; Loehner, H.; Flaminio, V.; Giordano, V.; Haren, H. van; Hugon, C.; Sanguineti, M.; Kadler, M.; Kooijman, P.; Kreykenbohm, I.; Mueller, C.; Wilms, J.; Kulikovskiy, V.; Leonora, E.; Lo Presti, D.; Loucatos, S.; Montaruli, T.; Morganti, M.; Pradier, T.; Rostovtsev, A.; Samtleben, D.F.E.; Taiuti, M.; Tayalati, Y.; Wolf, E. de

    2014-01-01

    Analysis of the Fermi-LAT data has revealed two extended structures above and below the Galactic Centre emitting gamma rays with a hard spectrum, the so-called Fermi bubbles. Hadronic models attempting to explain the origin of the Fermi bubbles predict the emission of high-energy neutrinos and gamma rays with similar fluxes. The ANTARES detector, a neutrino telescope located in the Mediterranean Sea, has a good visibility to the Fermi bubble regions. Using data collected from 2008 to 2011 no statistically significant excess of events is observed and therefore upper limits on the neutrino flux in TeV range from the Fermi bubbles are derived for various assumed energy cutoffs of the source. (orig.)

  19. Nuclear physics. Momentum sharing in imbalanced Fermi systems.

    Science.gov (United States)

    Hen, O; Sargsian, M; Weinstein, L B; Piasetzky, E; Hakobyan, H; Higinbotham, D W; Braverman, M; Brooks, W K; Gilad, S; Adhikari, K P; Arrington, J; Asryan, G; Avakian, H; Ball, J; Baltzell, N A; Battaglieri, M; Beck, A; May-Tal Beck, S; Bedlinskiy, I; Bertozzi, W; Biselli, A; Burkert, V D; Cao, T; Carman, D S; Celentano, A; Chandavar, S; Colaneri, L; Cole, P L; Crede, V; D'Angelo, A; De Vita, R; Deur, A; Djalali, C; Doughty, D; Dugger, M; Dupre, R; Egiyan, H; El Alaoui, A; El Fassi, L; Elouadrhiri, L; Fedotov, G; Fegan, S; Forest, T; Garillon, B; Garcon, M; Gevorgyan, N; Ghandilyan, Y; Gilfoyle, G P; Girod, F X; Goetz, J T; Gothe, R W; Griffioen, K A; Guidal, M; Guo, L; Hafidi, K; Hanretty, C; Hattawy, M; Hicks, K; Holtrop, M; Hyde, C E; Ilieva, Y; Ireland, D G; Ishkanov, B I; Isupov, E L; Jiang, H; Jo, H S; Joo, K; Keller, D; Khandaker, M; Kim, A; Kim, W; Klein, F J; Koirala, S; Korover, I; Kuhn, S E; Kubarovsky, V; Lenisa, P; Levine, W I; Livingston, K; Lowry, M; Lu, H Y; MacGregor, I J D; Markov, N; Mayer, M; McKinnon, B; Mineeva, T; Mokeev, V; Movsisyan, A; Munoz Camacho, C; Mustapha, B; Nadel-Turonski, P; Niccolai, S; Niculescu, G; Niculescu, I; Osipenko, M; Pappalardo, L L; Paremuzyan, R; Park, K; Pasyuk, E; Phelps, W; Pisano, S; Pogorelko, O; Price, J W; Procureur, S; Prok, Y; Protopopescu, D; Puckett, A J R; Rimal, D; Ripani, M; Ritchie, B G; Rizzo, A; Rosner, G; Roy, P; Rossi, P; Sabatié, F; Schott, D; Schumacher, R A; Sharabian, Y G; Smith, G D; Shneor, R; Sokhan, D; Stepanyan, S S; Stepanyan, S; Stoler, P; Strauch, S; Sytnik, V; Taiuti, M; Tkachenko, S; Ungaro, M; Vlassov, A V; Voutier, E; Walford, N K; Wei, X; Wood, M H; Wood, S A; Zachariou, N; Zana, L; Zhao, Z W; Zheng, X; Zonta, I

    2014-10-31

    The atomic nucleus is composed of two different kinds of fermions: protons and neutrons. If the protons and neutrons did not interact, the Pauli exclusion principle would force the majority of fermions (usually neutrons) to have a higher average momentum. Our high-energy electron-scattering measurements using (12)C, (27)Al, (56)Fe, and (208)Pb targets show that even in heavy, neutron-rich nuclei, short-range interactions between the fermions form correlated high-momentum neutron-proton pairs. Thus, in neutron-rich nuclei, protons have a greater probability than neutrons to have momentum greater than the Fermi momentum. This finding has implications ranging from nuclear few-body systems to neutron stars and may also be observable experimentally in two-spin-state, ultracold atomic gas systems. Copyright © 2014, American Association for the Advancement of Science.

  20. Environmental Survey preliminary report, Fermi National Accelerator Laboratory, Batavia, Illinois

    International Nuclear Information System (INIS)

    1988-10-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the US Department of Energy (DOE) Fermi National Accelerator Laboratory (Fermilab), conducted September 14 through 25, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual participants for the Survey team are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with Fermilab. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations performed at Fermilab, and interviews with site personnel. 110 refs., 26 figs., 41 tabs

  1. Pair Fermi contour and high-temperature superconductivity

    CERN Document Server

    Belyavsky, V I

    2002-01-01

    The holes superconducting coupling with the pair high summarized pulse and the relative motion low pulses is considered with an account of the quasi-two-dimensional electron structure of the HTSC-cuprates with the clearly-pronounced nesting of the Fermi contour. The superconducting energy gap and the condensation energy are determined and their dependences on the doping level are qualitatively studied. It is shown that the energy gap takes place in some holes concentration area, limited on both sides. The superconducting state, whereby the condensation energy is positive, originates in the more narrower doping interval inside this area. The hole pair redistribution in the pulse space constitutes the cause of the superconducting state origination by the holes repulsive screened Coulomb interaction. The coupling mechanism discussed hereby, males it possible to explain qualitatively not only the phase diagram basic peculiarities but also the key experimental facts, related to the cuprate HTSC-materials

  2. Stability of the two-dimensional Fermi polaron

    Science.gov (United States)

    Griesemer, Marcel; Linden, Ulrich

    2018-02-01

    A system composed of an ideal gas of N fermions interacting with an impurity particle in two space dimensions is considered. The interaction between impurity and fermions is given in terms of two-body point interactions whose strength is determined by the two-body binding energy, which is a free parameter of the model. If the mass of the impurity is 1.225 times larger than the mass of a fermion, it is shown that the energy is bounded below uniformly in the number N of fermions. This result improves previous, N-dependent lower bounds, and it complements a recent, similar bound for the Fermi polaron in three space dimensions.

  3. Probing gravitino dark matter with PAMELA and Fermi

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, Wilfried; Takayama, Fumihiro [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ibarra, Alejandro; Tran, David [Technische Univ. Muenchen, Garching (Germany). Physik-Dept.; Shindou, Tetsuo [Kogakuin Univ., Tokyo (Japan)

    2009-06-15

    We analyse the cosmic-ray signatures of decaying gravitino dark matter in a model-independent way based on an operator analysis. Thermal leptogenesis and universal boundary conditions at the GUT scale restrict the gravitino mass to be below 600 GeV. Electron and positron fluxes from gravitino decays, together with the standard GALPROP background, cannot explain both, the PAMELA positron fraction and the electron + positron flux recently measured by Fermi LAT. For gravitino dark matter, the observed fluxes require astrophysical sources. The measured antiproton flux allows for a sizable contribution of decaying gravitinos to the gamma-ray spectrum, in particular a line at an energy below 300 GeV. Future measurements of the gamma-ray flux will provide important constraints on possible signatures of decaying gravitino dark matter at the LHC. (orig.)

  4. Fermi interaction. Conservation of vector current and modified perturbation theory

    International Nuclear Information System (INIS)

    Rochev, V.E.

    1983-01-01

    The Fermi interaction (anti psi ysub(n) psi)sup(2) is investigated with the method of auxilary field. The analogues of the Ward-Takahashi electrodynamical identities and the gauge transformations of Green functions, that are the consequence of the conservation of vector current, have been obtained. The gauge function for the spinor propagator is the exponential superpropagator. The arguments are given in favour of the existence of a modified perturbation theory, which is finite in every order and non-analytical over its coupling constant, for the four-fermion interaction. The non-analytical part is defined unambiguously, and the analytical part contains a set of finite dimensionless constants to define which non-perturbative information is needed. The simplest model (the chain approximation) for the non-stable vector bound state is considered

  5. Intermittent Fermi-Pasta-Ulam Dynamics at Equilibrium

    Science.gov (United States)

    Campbell, David; Danieli, Carlo; Flach, Sergej

    The equilibrium value of an observable defines a manifold in the phase space of an ergodic and equipartitioned many-body syste. A typical trajectory pierces that manifold infinitely often as time goes to infinity. We use these piercings to measure both the relaxation time of the lowest frequency eigenmode of the Fermi-Pasta-Ulam chain, as well as the fluctuations of the subsequent dynamics in equilibrium. We show that previously obtained scaling laws for equipartition times are modified at low energy density due to an unexpected slowing down of the relaxation. The dynamics in equilibrium is characterized by a power-law distribution of excursion times far off equilibrium, with diverging variance. The long excursions arise from sticky dynamics close to regular orbits in the phase space. Our method is generalizable to large classes of many-body systems. The authors acknowledge financial support from IBS (Project Code IBS-R024-D1).

  6. Cryogenic distribution box for Fermi National Accelerator Laboratory

    Science.gov (United States)

    Svehla, M. R.; Bonnema, E. C.; Cunningham, E. K.

    2017-12-01

    Meyer Tool & Mfg., Inc (Meyer Tool) of Oak Lawn, Illinois is manufacturing a cryogenic distribution box for Fermi National Accelerator Laboratory (FNAL). The distribution box will be used for the Muon-to-electron conversion (Mu2e) experiment. The box includes twenty-seven cryogenic valves, two heat exchangers, a thermal shield, and an internal nitrogen separator vessel, all contained within a six-foot diameter ASME coded vacuum vessel. This paper discusses the design and manufacturing processes that were implemented to meet the unique fabrication requirements of this distribution box. Design and manufacturing features discussed include: 1) Thermal strap design and fabrication, 2) Evolution of piping connections to heat exchangers, 3) Nitrogen phase separator design, 4) ASME code design of vacuum vessel, and 5) Cryogenic valve installation.

  7. Cosmic Ray Nuclei in the Fermi-LAT ACD

    Science.gov (United States)

    Green, David; Hays, E. A.; Brandt, T. J.

    2014-01-01

    The Anti-Coincidence Detector (ACD) of the Fermi Large Area Telescope (LAT) serves to identify charged particles, which cross the LAT at a rate orders of magnitude higher than that of the gamma-ray signal. We have developed a method that uses cosmic-ray nuclei, Z > 3, as a calibration source to improve charge resolution of the light deposit measurement in the ACD at high light levels. Improving the charge resolution of the ACD gives the LAT an additional tool for cosmic-ray nuclei charge discrimination and therefore enhances the LAT's capability for analysis of cosmic-ray nuclei. In this analysis, we are able to distinguish eight cosmic-ray nuclei: boron, carbon, nitrogen, oxygen, neon, magnesium, silicon and iron in the LAT ACD's data. We present the results of our method, and demonstrate improved charge resolution for cosmic-ray nuclei in the ACD.

  8. Proposed Casey's Pond Improvement Project, Fermi National Accelerator Laboratory

    International Nuclear Information System (INIS)

    1995-05-01

    The U.S. Department of Energy (DOE) has prepared an Environmental Assessment (EA), evaluating the impacts associated with the proposed Casey's Pond Improvement Project at the Fermi National Accelerator Laboratory (Fermilab) in Batavia, Illinois. The improvement project would maximize the efficiency of the Fermilab Industrial Cooling Water (ICW) distribution system, which removes (via evaporation) the thermal load from experimental and other support equipment supporting the high energy physics program at Fermilab. The project would eliminate the risk of overheating during fixed target experiments, ensure that the Illinois Water Quality Standards are consistently achieved and provide needed additional water storage for fire protection. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement is not required

  9. International School of Physics "Enrico Fermi" : Summer Courses 2014

    CERN Document Server

    Betev, L; Grigoras, A; Course 192 : Grid and Cloud Computing : Concepts and Practical Applications

    2016-01-01

    The distributed computing infrastructure known as ‘the Grid’ has undoubtedly been one of the most successful science-oriented large- scale IT projects of the past 20 years. It is now a fully operational international entity, encompassing several hundred computing sites on all continents and giving access to hundreds of thousands of CPU (central processing unit) cores and hundreds of petabytes of storage, all connected by robust national and international scientific networks. It has evolved to become the main computational platform many scientific communities. This book presents lectures from the Enrico Fermi International School of Physics summer school Grid and Cloud computing: Concepts and Practical Applications, held in Varenna, Italy, in July 2014. The school aimed to cover the conceptual and practical aspects of both the Grid and Cloud computing. The proceedings included here are divided into eight chapters, with chapters 1, 2, 3 and 8 covering general applications of Grid and Cloud computing in var...

  10. Environmental Survey preliminary report, Fermi National Accelerator Laboratory, Batavia, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    1988-10-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the US Department of Energy (DOE) Fermi National Accelerator Laboratory (Fermilab), conducted September 14 through 25, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual participants for the Survey team are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with Fermilab. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations performed at Fermilab, and interviews with site personnel. 110 refs., 26 figs., 41 tabs.

  11. Collective Modes of a Soliton Train in a Fermi Superfluid.

    Science.gov (United States)

    Dutta, Shovan; Mueller, Erich J

    2017-06-30

    We characterize the collective modes of a soliton train in a quasi-one-dimensional Fermi superfluid, using a mean-field formalism. In addition to the expected Goldstone and Higgs modes, we find novel long-lived gapped modes associated with oscillations of the soliton cores. The soliton train has an instability that depends strongly on the interaction strength and the spacing of solitons. It can be stabilized by filling each soliton with an unpaired fermion, thus forming a commensurate Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase. We find that such a state is always dynamically stable, which paves the way for realizing long-lived FFLO states in experiments via phase imprinting.

  12. Fermi Observations of the LIGO Event GW170104

    Science.gov (United States)

    Goldstein, A.; Veres, P.; Burns, E.; Blackburn, L.; Briggs, M. S.; Christensen, N.; Cleveland, W. H.; Connaughton, V.; Dal Canton, T.; Hamburg, R.; Hui, C. M.; Jenke, P. A.; Kocevski, D.; Preece, R. D.; Siellez, K.; Veitch, J.; Wilson-Hodge, C. A.; Bhat, N.; Bissaldi, E.; Gibby, M. H.; Giles, M. M.; von Kienlin, A.; Mailyan, B.; Meegan, C. A.; Paciesas, W. S.; Roberts, O. J.; Stanbro, M.; (Fermi-LAT Collaboration; Ackermann, M.; Ajello, M.; Atwood, W. B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Bruel, P.; Buehler, R.; Burnett, T. H.; Buson, S.; Cameron, R. A.; Caraveo, P. A.; Cavazzuti, E.; Cecchi, C.; Charles, E.; Chekhtman, A.; Chiang, J.; Chiaro, G.; Ciprini, S.; Cominsky, L. R.; Costantin, D.; Cutini, S.; D'Ammando, F.; de Palma, F.; Desiante, R.; Digel, S. W.; Di Lalla, N.; Di Mauro, M.; Di Venere, L.; Favuzzi, C.; Ferrara, E. C.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giomi, M.; Giordano, F.; Giroletti, M.; Glanzman, T.; Green, D.; Grenier, I. A.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Harding, A. K.; Hays, E.; Horan, D.; Jóhannesson, G.; Kamae, T.; Kensei, S.; Kuss, M.; La Mura, G.; Larsson, S.; Latronico, L.; Li, J.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Magill, J. D.; Maldera, S.; Manfreda, A.; Mazziotta, M. N.; McEnery, J. E.; Meyer, M.; Michelson, P. F.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Negro, M.; Nuss, E.; Ohsugi, T.; Omodei, N.; Orienti, M.; Orlando, E.; Ormes, J. F.; Palatiello, M.; Paliya, V. S.; Paneque, D.; Perkins, J. S.; Persic, M.; Pesce-Rollins, M.; Petrosian, V.; Piron, F.; Porter, T. A.; Principe, G.; Racusin, J. L.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Reposeur, T.; Saz Parkinson, P. M.; Sgrò, C.; Siskind, E. J.; Spada, F.; Spandre, G.; Spinelli, P.; Suson, D. J.; Thayer, J. G.; Thayer, J. B.; Torres, D. F.; Troja, E.; Vianello, G.; Wood, K.; Wood, M.

    2017-09-01

    We present the Fermi Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) observations of the LIGO binary black hole merger (BBH) event GW170104. No candidate electromagnetic counterpart was detected by either GBM or LAT. A detailed analysis of the GBM and LAT data over timescales from seconds to days covering the Laser Interferometer Gravitational-wave Observatory (LIGO) localization region is presented. The resulting flux upper bound from the GBM is (5.2-9.4) × 10-7 erg cm-2 s-1 in the 10-1000 keV range and from the LAT is (0.2-90) × 10-9 erg cm-2 s-1 in the 0.1-1 GeV range. We also describe the improvements to our automated pipelines and analysis techniques for searching for and characterizing the potential electromagnetic counterparts for future gravitational-wave events from Advanced LIGO/Virgo.

  13. The Extragalactic Background Light in the Fermi Era

    Science.gov (United States)

    Desai, Abhishek A.; Ajello, Marco; Paliya, Vaidehi; Dominguez, Alberto; Finke, Justin; Helgason, Kari; Hartmann, Dieter; Fermi LAT Collaboration

    2018-01-01

    The extragalactic background light (EBL), from ultra-violet to infrared, that encodes the emission from all stars, galaxies and actively accreting black holes in the observable Universe is critically important to probe models of star formation and galaxy evolution, but remains at present poorly constrained. The Large Area Telescope (LAT), on board Fermi, produced an unprecedented measurement (relying on 750 blazars and the first 9 years of Pass 8 data) of the EBL optical depth at 12 different epochs from redshift 0 up to a redshift of 3. In this talk, we will present the measurement and how it constrains the EBL energy density and its evolution with cosmic time. We will also discuss how this paves the road to the first point-source-independent determinations of the star-formation history of the Universe.

  14. Violent heavy ion collisions around the Fermi energy

    International Nuclear Information System (INIS)

    Borderie, B.

    1985-01-01

    Experimental results on central collisions will be presented and it will be shown that a fusion process still occurs; deexcitation of the hot fused systems formed will be discussed. Then, from the qualitative evolution of central collision products from different reactions studied in the E/A range 20-84 MeV, the vanishing of fusion processes will be inferred; it will be discussed in terms of critical energy deposit and maximum excitation energy per nucleon that nuclei can carry. Finally results concerning the large production of light fragments (3 < approximately Z < approximately 12) experimentally observed in the Fermi energy domain will be presented and discussed in terms of a multifragmentation of the whole nuclear system or of part of it for intermediate impact parameter collisions (109 refs, 49 fig)

  15. Time-Domain Astronomy with the Fermi GBM

    Science.gov (United States)

    Hui, C. M.

    2017-01-01

    The Fermi Gamma-ray Burst Monitor (GBM) is an all-sky monitoring instrument sensitive to energies from 8 keV to 40 MeV. Over the past 8 years of operation, the GBM has detected over 240 gamma-ray bursts per year and provided timely GCN notices with localization to few-degree accuracy for follow-up observations. In addition to GRBs, Galactic transients, solar flares, and terrestrial gamma-ray flashes have also been observed. In recent years we have also been searching the continuous GBM data for electromagnetic counterpart to astrophysical neutrinos and gravitational wave events, as these are believed to be associated with gamma-ray bursts. With continuous data downlink every few hours and a temporal resolution of 2 microseconds, GBM is well suited for observing transients and supporting EM follow-up in the era of multi-messenger astronomy.

  16. A mathematical model for the Fermi weak interaction

    CERN Document Server

    Amour, L; Guillot, J C

    2006-01-01

    We consider a mathematical model of the Fermi theory of weak interactions as patterned according to the well-known current-current coupling of quantum electrodynamics. We focuss on the example of the decay of the muons into electrons, positrons and neutrinos but other examples are considered in the same way. We prove that the Hamiltonian describing this model has a ground state in the fermionic Fock space for a sufficiently small coupling constant. Furthermore we determine the absolutely continuous spectrum of the Hamiltonian and by commutator estimates we prove that the spectrum is absolutely continuous away from a small neighborhood of the thresholds of the free Hamiltonian. For all these results we do not use any infrared cutoff or infrared regularization even if fermions with zero mass are involved.

  17. Global topology of Weyl semimetals and Fermi arcs

    Science.gov (United States)

    Mathai, Varghese; Thiang, Guo Chuan

    2017-03-01

    We provide a manifestly topological classification scheme for generalised Weyl semimetals, in any spatial dimension and with arbitrary Weyl surfaces which may be non-trivially linked. The classification naturally incorporates that of Chern insulators. Our analysis refines, in a mathematically precise sense, some well-known 3D constructions to account for subtle but important global aspects of the topology of semimetals. Using a fundamental locality principle, we derive a generalized charge cancellation condition for the Weyl surface components. We analyse the bulk-boundary correspondence under a duality transformation, which reveals explicitly the topological nature of the resulting surface Fermi arcs. We also analyse the effect of moving Weyl points on the bulk and boundary topological semimetal invariants.

  18. 152nd International School of Physics "Enrico Fermi": Neutrino Physics

    CERN Document Server

    Declais, Y; Strolin, P; Zanotti, L; Società Italiana di Fisica. Bologna. Scuola internazionale di fisica "Enrico Fermi"; International School of Physics "Enrico Fermi": Neutrino Physics; Scuola Internazionale di Fisica "Enrico Fermi" : Phisica dei neutrini

    2003-01-01

    Neutrino physics contributed in an fundamental way to the progress of science, opening important windows of knowledge in elementary particle physics, as well in astrophysics and cosmology. Substantial experimental efforts are presently dedicated to improve our knowledge on neutrino properties as, in fact, we don't know yet some of the basic ones. Although very significant steps forward have been done, neutrino masses and mixings still remain largely unknown and constitute an important field for future research. Are neutrinos Majorana or Dirac particles? Have they a magnetic moment? Historically, studies on weak processes and, therefore, on neutrino physics, provided first the Fermi theory of weak interactions and then the V-A theory. Finally, the observation of weak neutral currents provided the first experimental evidence for unification of weak and electromagnetic interactions by the so called "Standard Model' of elementary particles. In addition to the results obtained from the measurement of the solar neu...

  19. The Fermiac or Fermi's Trolley

    International Nuclear Information System (INIS)

    Coccetti, F.

    2016-01-01

    The Fermiac, known also as Fermi’s trolley or Monte Carlo trolley, is an analog computer used to determine the change in time of the neutron population in a nuclear device, via the Monte Carlo method. It was invented by Enrico Fermi and constructed by Percy King at Los Alamos in 1947, and used for about two years. A replica of the Fermiac was built at INFN mechanical workshops of Bologna in 2015, on behalf of the 'Museo Storico della Fisica e Centro Studi e Ricerche' “Enrico Fermi”, thanks to the original drawings made available by Los Alamos National Laboratory (LANL). This reproduction of the Fermiac was put in use, and a simulation was developed.

  20. 3FHL: The Third Catalog of Hard Fermi -LAT Sources

    International Nuclear Information System (INIS)

    Ajello, M.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Bregeon, J.; Britto, R. J.; Bruel, P.

    2017-01-01

    We present a catalog of sources detected above 10 GeV by the Fermi Large Area Telescope (LAT) in the first 7 years of data using the Pass 8 event-level analysis. This is the Third Catalog of Hard Fermi -LAT Sources (3FHL), containing 1556 objects characterized in the 10 GeV–2 TeV energy range. The sensitivity and angular resolution are improved by factors of 3 and 2 relative to the previous LAT catalog at the same energies (1FHL). The vast majority of detected sources (79%) are associated with extragalactic counterparts at other wavelengths, including 16 sources located at very high redshift ( z > 2). Of the sources, 8% have Galactic counterparts and 13% are unassociated (or associated with a source of unknown nature). The high-latitude sky and the Galactic plane are observed with a flux sensitivity of 4.4 to 9.5 × 10 −11  ph cm −2  s −1 , respectively (this is approximately 0.5% and 1% of the Crab Nebula flux above 10 GeV). The catalog includes 214 new γ -ray sources. The substantial increase in the number of photons (more than 4 times relative to 1FHL and 10 times to 2FHL) also allows us to measure significant spectral curvature for 32 sources and find flux variability for 163 of them. Furthermore, we estimate that for the same flux limit of 10 −12  erg cm −2  s −1 , the energy range above 10 GeV has twice as many sources as the range above 50 GeV, highlighting the importance, for future Cherenkov telescopes, of lowering the energy threshold as much as possible.

  1. Bose-fermi symmetries and SUSY in nuclei

    International Nuclear Information System (INIS)

    Casten, R.F.

    1986-01-01

    Most of the comparison with theory has compared energy levels and we have seen many beautiful examples of one-to-one level correspondences, sometimes supported with a few B(E2) values. However, what we really need to check, the author thinks, is the structural correspondence, to make sure these levels really correspond to each other, and that the energy level agreement is not just accidental; for that we need to look at transfer reactions, and more B(E2)'s. This brings up the very important question of the transfer operator. The author hopes that its importance can be seen in recent cases where a few B(E2)'s for a few transfer strengths have substantially changed the correspondence between theoretical and experimental levels even though the overall energy level agreement is neither better or worse. So it's clearly sensitive to that question. Also cases have been seen now where several different supergroups have been applied to the same regions, U(6/4) and U(6/20) for example, to the mass 130 region, and so the question of the single-particle spaces and the single-particle energies is an important one. The question of microscopic understanding of the parameters and the interactions, these bose-fermi symmetries is important since it probes the underlying physical basis. And finally there have be some very interesting, what the author calls ''exotic'' extensions of bose-fermi symmetry ideas presented at this meeting. One is the extension to odd-odd nuclei, another is the generalized SUSY extension that can apply to transition regions, and this is the interesting beta decay calculations of Dobes that were reported yesterday, and probably some others the author has missed

  2. Conditions for l =1 Pomeranchuk instability in a Fermi liquid

    Science.gov (United States)

    Wu, Yi-Ming; Klein, Avraham; Chubukov, Andrey V.

    2018-04-01

    We perform a microscopic analysis of how the constraints imposed by conservation laws affect q =0 Pomeranchuk instabilities in a Fermi liquid. The conventional view is that these instabilities are determined by the static interaction between low-energy quasiparticles near the Fermi surface, in the limit of vanishing momentum transfer q . The condition for a Pomeranchuk instability is set by Flc (s )=-1 , where Flc (s ) (a Landau parameter) is a properly normalized partial component of the antisymmetrized static interaction F (k ,k +q ;p ,p -q ) in a charge (c) or spin (s) subchannel with angular momentum l . However, it is known that conservation laws for total spin and charge prevent Pomeranchuk instabilities for l =1 spin- and charge-current order parameters. Our study aims to understand whether this holds only for these special forms of l =1 order parameters or is a more generic result. To this end we perform a diagrammatic analysis of spin and charge susceptibilities for charge and spin density order parameters, as well as perturbative calculations to second order in the Hubbard U . We argue that for l =1 spin-current and charge-current order parameters, certain vertex functions, which are determined by high-energy fermions, vanish at Fl=1 c (s )=-1 , preventing a Pomeranchuk instability from taking place. For an order parameter with a generic l =1 form factor, the vertex function is not expressed in terms of Fl=1 c (s ), and a Pomeranchuk instability may occur when F1c (s )=-1 . We argue that for other values of l , a Pomeranchuk instability may occur at Flc (s )=-1 for an order parameter with any form factor.

  3. Detections of millisecond pulsars with the FERMI Large Area Telescope

    International Nuclear Information System (INIS)

    Guillemot, L.

    2009-09-01

    The Fermi observatory was launched on June 11, 2008. It hosts the Large Area Telescope (LAT), sensitive to gamma-ray photons from 20 MeV to over 300 GeV. When the LAT began its activity, nine young and energetic pulsars were known in gamma ray range. At least several tens of pulsar detections by the LAT were predicted before launch. The LAT also allowed the study of millisecond pulsars (MSPs), never firmly detected in gamma ray range before Fermi. This thesis first presents the pulsar timing campaign for the LAT, in collaboration with large radio telescopes and X-ray telescopes, allowing for high sensitivity pulsed searches. Furthermore, it lead to quasi-homogeneous coverage of the galactic MSPs, so that the search for pulsations in LAT data for this population of stars was not affected by an a-priori bias. We present a search for pulsations from these objects in LAT data. For the first time, eight galactic MSPs have been detected as sources of pulsed gamma-ray emission over 100 MeV. In addition, a couple of good candidates for future detection are seen. A similar search for globular cluster MSPs was not successful so far. Comparison of the phase-aligned gamma-ray and radio light curves, as well as the spectral shapes, leads to the conclusion that their gamma-ray emission is similar to that of normal pulsars, and is probably produced in the outer-magnetosphere. This discovery suggests that many unresolved gamma-ray sources are unknown MSPs. (author)

  4. 3FHL: The Third Catalog of Hard Fermi -LAT Sources

    Energy Technology Data Exchange (ETDEWEB)

    Ajello, M. [Department of Physics and Astronomy, Clemson University, Kinard Lab of Physics, Clemson, SC 29634-0978 (United States); Atwood, W. B. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Baldini, L. [Università di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d’Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bellazzini, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bissaldi, E. [Dipartimento di Fisica “M. Merlin” dell’Università e del Politecnico di Bari, I-70126 Bari (Italy); Blandford, R. D.; Bloom, E. D. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Bonino, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, I-10125 Torino (Italy); Bregeon, J. [Laboratoire Univers et Particules de Montpellier, Université Montpellier, CNRS/IN2P3, F-34095 Montpellier (France); Britto, R. J. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein 9300 (South Africa); Bruel, P., E-mail: majello@slac.stanford.edu [Laboratoire Leprince-Ringuet, École polytechnique, CNRS/IN2P3, F-91128 Palaiseau (France); and others

    2017-10-01

    We present a catalog of sources detected above 10 GeV by the Fermi Large Area Telescope (LAT) in the first 7 years of data using the Pass 8 event-level analysis. This is the Third Catalog of Hard Fermi -LAT Sources (3FHL), containing 1556 objects characterized in the 10 GeV–2 TeV energy range. The sensitivity and angular resolution are improved by factors of 3 and 2 relative to the previous LAT catalog at the same energies (1FHL). The vast majority of detected sources (79%) are associated with extragalactic counterparts at other wavelengths, including 16 sources located at very high redshift ( z > 2). Of the sources, 8% have Galactic counterparts and 13% are unassociated (or associated with a source of unknown nature). The high-latitude sky and the Galactic plane are observed with a flux sensitivity of 4.4 to 9.5 × 10{sup −11} ph cm{sup −2} s{sup −1}, respectively (this is approximately 0.5% and 1% of the Crab Nebula flux above 10 GeV). The catalog includes 214 new γ -ray sources. The substantial increase in the number of photons (more than 4 times relative to 1FHL and 10 times to 2FHL) also allows us to measure significant spectral curvature for 32 sources and find flux variability for 163 of them. Furthermore, we estimate that for the same flux limit of 10{sup −12} erg cm{sup −2} s{sup −1}, the energy range above 10 GeV has twice as many sources as the range above 50 GeV, highlighting the importance, for future Cherenkov telescopes, of lowering the energy threshold as much as possible.

  5. Waves and particles in the Fermi accelerator model. Numerical simulation

    International Nuclear Information System (INIS)

    Meplan, O.

    1996-01-01

    This thesis is devoted to a numerical study of the quantum dynamics of the Fermi accelerator which is classically chaotic: it is particle in a one dimensional box with a oscillating wall. First, we study the classical dynamics: we show that the time of impact of the particle with the moving wall and its energy in the wall frame are conjugated variables and that Poincare surface of sections in these variables are more understandable than the usual stroboscopic sections. Then, the quantum dynamics of this systems is studied by the means of two numerical methods. The first one is a generalization of the KKR method in the space-time; it is enough to solve an integral equation on the boundary of a space-time billiard. The second method is faster and is based on successive free propagations and kicks of potential. This allows us to obtain Floquet states which we can on one hand, compare to the classical dynamics with the help of Husimi distributions and on the other hand, study as a function of parameters of the system. This study leads us to nice illustrations of phenomenons such as spatial localizations of a wave packet in a vibrating well or tunnel effects. In the adiabatic situation, we give a formula for quasi-energies which exhibits a phase term independent of states. In this regime, there exist some particular situations where the quasi-energy spectrum presents a total quasi-degeneracy. Then, the wave packet energy can increase significantly. This phenomenon is quite surprising for smooth motion of the wall. The third part deals with the evolution of a classical wave in the Fermi accelerator. Using generalized KKR method, we show a surprising phenomenon: in most of situations (so long as the wall motion is periodic), a wave is localized exponentially in the well and its energy increases in a geometric way. (author). 107 refs., 66 figs., 5 tabs. 2 appends

  6. FERMI LAT DISCOVERY OF EXTENDED GAMMA-RAY EMISSIONS IN THE VICINITY OF THE HB 3 SUPERNOVA REMNANT

    Energy Technology Data Exchange (ETDEWEB)

    Katagiri, H.; Yoshida, K. [College of Science, Ibaraki University, 2-1-1, Bunkyo, Mito 310-8512 (Japan); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Université Paris Diderot, Service d’Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Grondin, M.-H.; Lemoine-Goumard, M. [Centre d’Études Nucléaires de Bordeaux Gradignan, IN2P3/CNRS, Université Bordeaux 1, BP120, F-33175 Gradignan Cedex (France); Hanabata, Y. [Institute for Cosmic-Ray Research, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8582 (Japan); Hewitt, J. W. [Department of Physics and Center for Space Sciences and Technology, University of Maryland Baltimore County, Baltimore, MD 21250 (United States); Kubo, H., E-mail: hideaki.katagiri.sci@vc.ibaraki.ac.jp, E-mail: 13nm169s@gmail.com [Department of Physics, Graduate School of Science, Kyoto University, Kyoto (Japan)

    2016-02-20

    We report the discovery of extended gamma-ray emission measured by the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope in the region of the supernova remnant (SNR) HB 3 (G132.7+1.3) and the W3 II complex adjacent to the southeast of the remnant. W3 is spatially associated with bright {sup 12}CO (J = 1–0) emission. The gamma-ray emission is spatially correlated with this gas and the SNR. We discuss the possibility that gamma rays originate in interactions between particles accelerated in the SNR and interstellar gas or radiation fields. The decay of neutral pions produced in nucleon–nucleon interactions between accelerated hadrons and interstellar gas provides a reasonable explanation for the gamma-ray emission. The emission from W3 is consistent with irradiation of the CO clouds by the cosmic rays accelerated in HB 3.

  7. Observations of V0332+53 during the 2015 outburst using Fermi/GBM, MAXI, Swift and INTEGRAL

    Science.gov (United States)

    Baum, Zachary A.; Cherry, Michael L.; Rodi, James

    2017-06-01

    We present the light curves, spectra and hardness-intensity diagram (HID) of the high-mass X-ray binary V0332+53 using Fermi/GBM, MAXI, Swift/BAT and INTEGRAL through its 2015 Type II outburst. We observe characteristic features in the X-ray emission (2-50 keV) due to periastron passages, the dynamical time-scale of the accretion disc, and changes within the accretion column between a radiation-dominated flow and a flow dominated by Coulomb interactions. Based on the HID and the light curves, the critical luminosity is observed to decrease by ˜5 per cent to 7 per cent during the outburst, signalling a decrease in the magnetic field.

  8. One-dimensional Fermi accelerator model with moving wall described by a nonlinear van der Pol oscillator.

    Science.gov (United States)

    Botari, Tiago; Leonel, Edson D

    2013-01-01

    A modification of the one-dimensional Fermi accelerator model is considered in this work. The dynamics of a classical particle of mass m, confined to bounce elastically between two rigid walls where one is described by a nonlinear van der Pol type oscillator while the other one is fixed, working as a reinjection mechanism of the particle for a next collision, is carefully made by the use of a two-dimensional nonlinear mapping. Two cases are considered: (i) the situation where the particle has mass negligible as compared to the mass of the moving wall and does not affect the motion of it; and (ii) the case where collisions of the particle do affect the movement of the moving wall. For case (i) the phase space is of mixed type leading us to observe a scaling of the average velocity as a function of the parameter (χ) controlling the nonlinearity of the moving wall. For large χ, a diffusion on the velocity is observed leading to the conclusion that Fermi acceleration is taking place. On the other hand, for case (ii), the motion of the moving wall is affected by collisions with the particle. However, due to the properties of the van der Pol oscillator, the moving wall relaxes again to a limit cycle. Such kind of motion absorbs part of the energy of the particle leading to a suppression of the unlimited energy gain as observed in case (i). The phase space shows a set of attractors of different periods whose basin of attraction has a complicated organization.

  9. The Cryogenic Dark Matter Search (CDMS)

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, P.D., Jr. [UC, Berkeley

    1996-01-01

    A substantial body of observational evidence indicates that the universe contains much more material than we observe directly via photons of any wavelength. The existence of this "missing" mass or "dark" matter is inferred by its gravitational effects on the luminous material. Accepting the existence of dark matter has profoundly shaken our understanding in most areas of cosmology. If it exists at the lowest densities measured it is hard to understand in detail the creation of the elements in the early universe. If moderate density values are correct, then we have trouble understanding how the universe came to have so much structure on large scales. If the largest densities are correct, then dark matter is not ordinary matter, but must be something exotic like a new fundamental particle. We would like to measure the properties of the dark matter directly. Supposing that the dark matter consists of a WIMP, that was in thermal equilibrium in the early universe, we have built an experiment to detect dark matter directly by elastic scattering with germanium or silicon nuclei. Our detectors are large (~ 200 g) calorimeters that can discriminate between interactions with the electrons, due to background photons and beta particles, and interactions with the nuclei, due to WIMPs and background neutrons. The detectors operate at low temperatures (~ 20 mK) in a specially constructed cryostat. To reduce the rate of background events to a manageable level, the detectors and cryostat have been constructed out of selected materials and properly shielded. This dissertation discusses the properties of the hypothetical WIMPs, the detectors, cryostat, and shielding system, and finally, the analysis methods.new fundamental particle, a

  10. First order and second order fermi acceleration of energetic charged particles by shock waves

    International Nuclear Information System (INIS)

    Webb, G.M.

    1983-01-01

    Steady state solutions of the cosmic ray transport equation describing first order Fermi acceleration of energetic charged particles at a plane shock (without losses) and second order Fermi acceleration in the downstream region of the shock are derived. The solutions for the isotropic part of the phase space distribution function are expressible as eigenfunction expansions, being superpositions of series of power law momentum spectra, with the power law indices being the roots of an eigenvalue equation. The above exact analytic solutions are for the case where the spatial diffusion coefficient kappa is independent of momentum. The solutions in general depend on the shock compression ratio, the modulation parameters V 1 L/kappa 1 , V 2 L/kappa 2 (V is the plasma velocity, kappa is the energetic particle diffusion coefficient, and L a characteristic length over which second order Fermi acceleration is effective) in the upstream and downstream regions of the shock, respectively, and also on a further dimensionless parameter, zeta, characterizing second order Fermi acceleration. In the limit as zeta→0 (no second order Fermi acceleration) the power law momentum spectrum characteristic of first order Fermi acceleration (depending only on the shock compression ratio) obtained previously is recovered. Perturbation solutions for the case where second order Fermi effects are small, and for realistic diffusion coefficients (kappainfinityp/sup a/, a>0, p = particle momentum), applicable at high momenta, are also obtained

  11. Gravitation and universal Fermi coupling in general relativity. [Lagrangian density, Fermi constant, Christoffel symbols, spinor field transport rule

    Energy Technology Data Exchange (ETDEWEB)

    Treder, H.J.

    1976-10-01

    The generally covariant Lagrangian density G = R + 2kappaL/sub matter/ of the Hamiltonian principle in general relativity, formulated by Einstein and Hilbert, can be interpreted as a functional of the potentials g/sub ik/ and Phi of the gravitational and matter fields. In this general relativistic interpretation, the Riemann-Christoffel form Gamma/sub kl//sup i/ = (/sub kl//sup i/) for the coefficients Gamma/sub kl//sup i/ of the affine connections is postulated a priori. Alternatively, one can interpret the Lagrangian G as a functional of Phi, g/sub ik/, and the coefficients Gamma/sub kl//sup i/. Then the Gamma/sub kl//sup i/ are determined by the Palatini equations. From these equations and from the symmetry Gamma/sub kl//sup i/ = Gamma/sub kl//sup i/ for all matter fields with deltaL/deltaGamma = 0 the Christoffel symbols again result. However, for Dirac's bispinor fields, deltaL/deltaGamma becomes dependent on the Dirac current, essentially with a coupling factor approx.kappadirac constant. In this case, the Palatini equations define a new transport rule for the spinor fields, according to which a second universal interaction results for the Dirac spinors, besides Einstein's gravitation. The generally covariant Dirac wave equations become the general relativistic nonlinear Heisenberg wave equations, and the second universal interaction is given by a Fermi-like interaction term of the V-A type. The geometrically induced Fermi constant is, however, very small and of the order 10/sup -81/erg cm/sup 3/.

  12. Twelve Years of Education and Public Outreach with the Fermi Gamma-ray Space Telescope

    Science.gov (United States)

    Cominsky, Lynn R.; McLin, K. M.; Simonnet, A.; Fermi E/PO Team

    2013-04-01

    During the past twelve years, NASA's Fermi Gamma-ray Space Telescope has supported a wide range of Education and Public Outreach (E/PO) activities, targeting K-14 students and the general public. The purpose of the Fermi E/PO program is to increase student and public understanding of the science of the high-energy Universe, through inspiring, engaging and educational activities linked to the mission’s science objectives. The E/PO program has additional more general goals, including increasing the diversity of students in the Science, Technology, Engineering and Mathematics (STEM) pipeline, and increasing public awareness and understanding of Fermi science and technology. Fermi's multi-faceted E/PO program includes elements in each major outcome category: ● Higher Education: Fermi E/PO promotes STEM careers through the use of NASA data including research experiences for students and teachers (Global Telescope Network), education through STEM curriculum development projects (Cosmology curriculum) and through enrichment activities (Large Area Telescope simulator). ● Elementary and Secondary education: Fermi E/PO links the science objectives of the Fermi mission to well-tested, customer-focused and NASA-approved standards-aligned classroom materials (Black Hole Resources, Active Galaxy Education Unit and Pop-up book, TOPS guides, Supernova Education Unit). These materials have been distributed through (Educator Ambassador and on-line) teacher training workshops and through programs involving under-represented students (after-school clubs and Astro 4 Girls). ● Informal education and public outreach: Fermi E/PO engages the public in sharing the experience of exploration and discovery through high-leverage multi-media experiences (Black Holes planetarium and PBS NOVA shows), through popular websites (Gamma-ray Burst Skymap, Epo's Chronicles), social media (Facebook, MySpace), interactive web-based activities (Space Mysteries, Einstein@Home) and activities by

  13. Observation of hidden Fermi surface nesting in a two dimensional conductor

    International Nuclear Information System (INIS)

    Breuer, K.; Stagerescu, C.; Smith, K.E.; Greenblatt, M.; Ramanujachary, K.

    1996-01-01

    We report the first direct measurement of hidden Fermi surface nesting in a two dimensional conductor. The system studied was Na 0.9 Mo 6 O 17 , and the measured Fermi surface consists of electron and hole pockets that can be combined to form sets of pseudo-one-dimensional Fermi surfaces, exhibiting the nesting necessary to drive a Peierls transition to a charge density wave state. The observed nesting vector is shown to be in excellent agreement with theory. copyright 1996 The American Physical Society

  14. Fermi surface and quantum well states of V(110) films on W(110)

    Energy Technology Data Exchange (ETDEWEB)

    Krupin, Oleg [MS 6-2100, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Rotenberg, Eli [MS 6-2100, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Kevan, S D [Department of Physics, University of Oregon, Eugene, OR 97403 (United States)

    2007-09-05

    Using angle-resolved photoemission spectroscopy, we have measured the Fermi surface of V(110) films epitaxially grown on a W(110) substrate. We compare our results for thicker films to existing calculations and measurements for bulk vanadium and find generally very good agreement. For thinner films, we observe and analyse a diverse array of quantum well states that split and distort the Fermi surface segments. We have searched unsuccessfully for a thickness-induced topological transition associated with contact between the zone-centre jungle gym and zone-boundary hole ellipsoid Fermi surface segments. We also find no evidence for ferromagnetic splitting of any bands on this surface.

  15. FERMI/LARGE AREA TELESCOPE BRIGHT GAMMA-RAY SOURCE LIST

    International Nuclear Information System (INIS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Atwood, W. B.; Axelsson, M.; Battelino, M.; Baldini, L.; Bellazzini, R.; Ballet, J.; Band, D. L.; Barbiellini, G.; Bastieri, D.; Baughman, B. M.; Bignami, G. F.; Bonamente, E.

    2009-01-01

    Following its launch in 2008 June, the Fermi Gamma-ray Space Telescope (Fermi) began a sky survey in August. The Large Area Telescope (LAT) on Fermi in three months produced a deeper and better resolved map of the γ-ray sky than any previous space mission. We present here initial results for energies above 100 MeV for the 205 most significant (statistical significance greater than ∼10σ) γ-ray sources in these data. These are the best characterized and best localized point-like (i.e., spatially unresolved) γ-ray sources in the early mission data.

  16. Band Structure and Fermi Surface of Cu2Sb by the LMTO Method

    DEFF Research Database (Denmark)

    Jan, J. P.; Skriver, Hans Lomholt

    1977-01-01

    The linear muffin-tin orbital (LMTO) method of bandstructure calculation has been applied to the simple tetragonal compound Cu2Sb. The d bands of Cu lie substantially below the Fermi level, and the Fermi surface is a recognizable distortion of the free-electron model. The Fermi surface has sheets......-orbit splitting, and of another closed sheet. Earlier de Haas-van Alphen results are explained semiquantitatively by the model, which also accounts for open orbits seen in high-field magnetoresistance experiments....

  17. Evaluation of Fermi Read-out of the ATLAS Tilecal Prototype

    CERN Document Server

    Agnvall, S; Albiol, F; Alifanov, A; Amaral, P; Amelin, D V; Amorim, A; Anderson, K J; Angelini, C; Antola, A; Astesan, F; Astvatsaturov, A R; Autiero, D; Badaud, F; Barreira, G; Benetta, R; Berglund, S R; Blanchot, G; Blucher, E; Blaj, C; Bodö, P; Bogush, A A; Bohm, C; Boldea, V; Borisov, O N; Bosman, M; Bouhemaid, N; Brette, P; Breveglieri, L; Bromberg, C; Brossard, M; Budagov, Yu A; Calôba, L P; Carvalho, J; Casado, M P; Castera, A; Cattaneo, Paolo Walter; Cavalli-Sforza, M; Cavasinni, V; Chadelas, R; Chevaleyre, J C; Chirikov-Zorin, I E; Chlachidze, G; Cobal, M; Cogswell, F; Colaço, F; Constantinescu, S; Costanzo, D; Crouau, M; Dadda, L; Daudon, F; David, J; David, M; Davidek, T; Dawson, J; De, K; Del Prete, T; De Santo, A; Di Girolamo, B; Dita, S; Dolejsi, J; Dolezal, Z; Downing, R; Dugne, J J; Efthymiopoulos, I; Engström, M; Errede, D; Errede, S; Evans, H; Fenyuk, A; Ferrer, A; Flaminio, Vincenzo; Fristedt, A; Gallas, E J; Gaspar, M; Gildemeister, O; Givoletto, M; Glagolev, V V; Goggi, Giorgio V; Gómez, A; Gong, S; Guz, Yu; Grabskii, V; Grieco, M; Hakopian, H H; Haney, M W; Hansen, M; Hellman, S; Henriques, A; Hentzell, H; Holmberg, T; Holmgren, S O; Honoré, P F; Huston, J; Ivanyushenkov, Yu M; Jon-And, K; Juste, A; Kakurin, S; Karapetian, G V; Karyukhin, A N; Kérek, A; Khokhlov, Yu A; Kopikov, S V; Kostrikov, M E; Kostyukhin, V; Kukhtin, V V; Kulchitskii, Yu A; Kurzbauer, W; Lami, S; Landi, G; Lapin, V; Lazzeroni, C; Lebedev, A; Leitner, R; Li, J; Lippi, M; Le Dortz, O; Löfstedt, B; Lomakin, Yu F; Lomakina, O V; Lokajícek, M; Lund-Jensen, B; Maio, A; Malyukov, S N; Mariani, R; Marroquin, F; Martins, J P; Mazzoni, E; Merritt, F S; Michel, B; Miller, R; Minashvili, I A; Miralles, L; Mnatzakanian, E A; Montarou, G; Motto, S; Muanza, G S; Némécek, S; Nessi, Marzio; Ödmark, A; Onofre, A; Orteu, S; Padilla, C; Pallin, D; Pantea, D; Patriarca, J; Pereira, A; Perlas, J A; Persson, S T; Petit, P; Pilcher, J E; Pinhão, J; Poggioli, Luc; Poirot, S; Polesello, G; Price, L E; Proudfoot, J; Pukhov, O; Reinmuth, G; Renzoni, G; Richards, R; Riu, I; Romanov, V; Ronceux, B; Rumyantsev, V; Rusakovitch, N A; Sami, M; Sanders, H; Santos, J; Savoy-Navarro, Aurore; Sawyer, L; Says, L P; Schwemling, P; Seixas, J M; Selldén, B; Semenov, A A; Shchelchkov, A S; Shochet, M J; Simaitis, V J; Sissakian, A N; Solodkov, A A; Solovyanov, O; Sonderegger, P; Soustruznik, K; Stanek, R; Starchenko, E A; Stefanelli, R; Stephens, R; Suk, M; Sundblad, R; Svensson, C; Tang, F; Tardell, S; Tas, P; Teubert, F; Thaler, J J; Tokár, S; Topilin, N D; Trka, Z; Turcot, A S; Turcotte, M; Valkár, S; Varanda, M J; Vartapetian, A H; Vazeille, F; Vinogradov, V; Vivaldi, F; Vorozhtsov, S B; Wagner, D; White, A; Wolters, H; Yamdagni, N; Yarygin, G; Yosef, C; Yuan, J; Zaitsev, A; Zdrazil, M

    1998-01-01

    Prototypes of the \\fermi{} system have been used to read out a prototype of the \\atlas{} hadron calorimeter in a beam test at the CERN SPS. The \\fermi{} read-out system, using a compressor and a 40 MHz sampling ADC, is compared to a standard charge integrating read-out by measuring the energy resolution of the calorimeter separately with the two systems on the same events. Signal processing techniques have been designed to optimize the treatment of \\fermi{} data. The resulting energy resolution is better than the one obtained with the standard read-out.

  18. Search for Spatially Extended Fermi-LAT Sources Using Two Years of Data

    Energy Technology Data Exchange (ETDEWEB)

    Lande, Joshua; Ackermann, Markus; Allafort, Alice; Ballet, Jean; Bechtol, Keith; Burnett, Toby; Cohen-Tanugi, Johann; Drlica-Wagner, Alex; Funk, Stefan; Giordano, Francesco; Grondin, Marie-Helene; Kerr, Matthew; Lemoine-Goumard, Marianne

    2012-07-13

    Spatial extension is an important characteristic for correctly associating {gamma}-ray-emitting sources with their counterparts at other wavelengths and for obtaining an unbiased model of their spectra. We present a new method for quantifying the spatial extension of sources detected by the Large Area Telescope (LAT), the primary science instrument on the Fermi Gamma-ray Space Telescope (Fermi). We perform a series of Monte Carlo simulations to validate this tool and calculate the LAT threshold for detecting the spatial extension of sources. We then test all sources in the second Fermi -LAT catalog (2FGL) for extension. We report the detection of seven new spatially extended sources.

  19. High-energy transients with Fermi/GBM

    International Nuclear Information System (INIS)

    Gruber, David

    2012-01-01

    For most of mankind's history, astronomy was performed on-ground in the optical energy range. It was only when space-based missions, built more than 50 years ago, detected photons with mind-boggling energies that the exploration of the violent Universe really began. These γ-ray photons still provide us with an unprecedented wealth of information for the most energetic processes taking place in the cosmos. Faithful to the olympic slogan ''higher, faster, further'', an increasing armada of γ-ray satellites was built and launched over the last couple of decades with Fermi being the youngest of its kind. In this thesis, I use data from the Gamma-Ray Burst Monitor (GBM) onboard the Fermi satellite. The focus of this work lies on three very different classes of high-energy astrophysical transients: Gamma-Ray Bursts (GRBs), solar flares and Soft Gamma Repeaters (SGRs). In Chapter 2, I present GRB 091024A, a burst of very long duration in γ-rays where optical data could be acquired well during its active phase. The optical light curve shows very intriguing features which I subsequently interpret as the so called ''optical flash'', a fundamental property of the ''fireball'' model. Although predicted by the latter model, only a handful of GRBs show such a behavior, making them interesting transients to study. Furthermore, I present the fundamental temporal and spectral properties of 47 GBM-detected GRBs with known redshifts. As GRBs explode at cosmological distances it is of uttermost importance to study them in their restframe to get a better understanding of their emission mechanisms. I confirm several correlations already found in the past together with an intriguing connection between redshift and the peak energy (E peak ) of GRBs. Although this correlation is heavily influenced by instrumental effects, it is not unexpected from other experimental results, giving it more credibility. Finally, I present the results of the search for untriggered GRBs in GBM data. This

  20. Background model systematics for the Fermi GeV excess

    Energy Technology Data Exchange (ETDEWEB)

    Calore, Francesca; Cholis, Ilias; Weniger, Christoph

    2015-03-01

    The possible gamma-ray excess in the inner Galaxy and the Galactic center (GC) suggested by Fermi-LAT observations has triggered a large number of studies. It has been interpreted as a variety of different phenomena such as a signal from WIMP dark matter annihilation, gamma-ray emission from a population of millisecond pulsars, or emission from cosmic rays injected in a sequence of burst-like events or continuously at the GC. We present the first comprehensive study of model systematics coming from the Galactic diffuse emission in the inner part of our Galaxy and their impact on the inferred properties of the excess emission at Galactic latitudes 2° < |b| < 20° and 300 MeV to 500 GeV. We study both theoretical and empirical model systematics, which we deduce from a large range of Galactic diffuse emission models and a principal component analysis of residuals in numerous test regions along the Galactic plane. We show that the hypothesis of an extended spherical excess emission with a uniform energy spectrum is compatible with the Fermi-LAT data in our region of interest at 95% CL. Assuming that this excess is the extended counterpart of the one seen in the inner few degrees of the Galaxy, we derive a lower limit of 10.0° (95% CL) on its extension away from the GC. We show that, in light of the large correlated uncertainties that affect the subtraction of the Galactic diffuse emission in the relevant regions, the energy spectrum of the excess is equally compatible with both a simple broken power-law of break energy E(break) = 2.1 ± 0.2 GeV, and with spectra predicted by the self-annihilation of dark matter, implying in the case of bar bb final states a dark matter mass of m(χ)=49(+6.4)(-)(5.4)  GeV.

  1. Realization of effective super Tonks-Girardeau gases via strongly attractive one-dimensional Fermi gases

    International Nuclear Information System (INIS)

    Chen Shu; Yin Xiangguo; Guan Liming; Guan Xiwen; Batchelor, M. T.

    2010-01-01

    A significant feature of the one-dimensional super Tonks-Girardeau gas is its metastable gas-like state with a stronger Fermi-like pressure than for free fermions which prevents a collapse of atoms. This naturally suggests a way to search for such strongly correlated behavior in systems of interacting fermions in one dimension. We thus show that the strongly attractive Fermi gas without polarization can be effectively described by a super Tonks-Girardeau gas composed of bosonic Fermi pairs with attractive pair-pair interaction. A natural description of such super Tonks-Girardeau gases is provided by Haldane generalized exclusion statistics. In particular, they are equivalent to ideal particles obeying more exclusive statistics than Fermi-Dirac statistics.

  2. Fermi Coordinates of an Observer Moving in a Circle in Minkowski Space: Apparent Behavior of Clocks

    National Research Council Canada - National Science Library

    Bahder, Thomas

    2000-01-01

    Space-time coordinate transformations valid for arbitrarily long coordinate time are derived from global Minkowski coordinates to the Fermi coordinates of an observer moving in a circle in three-dimensional space...

  3. Radioactivity induced by neutrons: Enrico Fermi and a thermodynamic approach to radiative capture

    Science.gov (United States)

    De Gregorio, Alberto

    2006-07-01

    When Fermi learned that slow neutrons are much more effective than fast ones in inducing radioactivity, he explained this phenomenon by mentioning the well-known scattering cross section between neutrons and protons. At this early stage, he did not refer to the capture cross section by target nuclei. At the same time a thermodynamic approach to neutron-proton capture was being discussed by physicists: neutron capture was interpretated as the reverse of deuteron photodissociation and detailed balance among neutrons, protons, deuterons, and radiation was invoked. This thermodynamic approach might underlie Fermi's early explanation of the great efficiency of slow neutrons. Fermi repeatedly used a thermodynamic approach that had been used in describing some of the physical properties of conductors by Richardson and had been influential in Fermi's youth.

  4. Point Measurements of Fermi Velocities by a Time-of-Flight Method

    DEFF Research Database (Denmark)

    Falk, David S.; Henningsen, J. O.; Skriver, Hans Lomholt

    1972-01-01

    The present paper describes in detail a new method of obtaining information about the Fermi velocity of electrons in metals, point by point, along certain contours on the Fermi surface. It is based on transmission of microwaves through thin metal slabs in the presence of a static magnetic field...... applied parallel to the surface. The electrons carry the signal across the slab and arrive at the second surface with a phase delay which is measured relative to a reference signal; the velocities are derived by analyzing the magnetic field dependence of the phase delay. For silver we have in this way...... obtained one component of the velocity along half the circumference of the centrally symmetric orbit for B→∥[100]. The results are in agreement with current models for the Fermi surface. For B→∥[011], the electrons involved are not moving in a symmetry plane of the Fermi surface. In such cases one cannot...

  5. Theoretical reconsideration of antiferromagnetic Fermi surfaces in URu{sub 2}Si{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Yamagami, Hiroshi, E-mail: yamagami@cc.kyoto-su.ac.jp [Department of Physics, Faculty of Science, Kyoto Sangyo University, Kyoto 603-8555 (Japan)

    2011-01-01

    In an itinerant 5f-band model, the antiferromagnetic (AFM) Fermi surfaces of URu{sub 2}Si{sub 2} are reconsidered using a relativistic LAPW method within a local spin-density approximation, especially taking into account the lattice parameters dependent on pressures. The reduction of the z-coordinate of the Si sites results in the effect of flattening the Ru-Si layers of URu{sub 2}Si{sub 2} crystal structure, thus weakening a hybridization/mixing between the U-5f and Ru-4d states in the band structure. Consequently the 5f bands around the Fermi level are more flat in the dispersion with decreasing the z-coordinate, thus producing three closed Fermi surfaces like 'curing-stone', 'rugby-ball' and 'ball'. The origins of de Haas-van Alphen branches can be qualitatively interpreted from the obtained AFM Fermi surfaces.

  6. Theoretical reconsideration of antiferromagnetic Fermi surfaces in URu2Si2

    International Nuclear Information System (INIS)

    Yamagami, Hiroshi

    2011-01-01

    In an itinerant 5f-band model, the antiferromagnetic (AFM) Fermi surfaces of URu 2 Si 2 are reconsidered using a relativistic LAPW method within a local spin-density approximation, especially taking into account the lattice parameters dependent on pressures. The reduction of the z-coordinate of the Si sites results in the effect of flattening the Ru-Si layers of URu 2 Si 2 crystal structure, thus weakening a hybridization/mixing between the U-5f and Ru-4d states in the band structure. Consequently the 5f bands around the Fermi level are more flat in the dispersion with decreasing the z-coordinate, thus producing three closed Fermi surfaces like 'curing-stone', 'rugby-ball' and 'ball'. The origins of de Haas-van Alphen branches can be qualitatively interpreted from the obtained AFM Fermi surfaces.

  7. Fermi surfaces of YRu2Si2 and LaRu2Si2

    International Nuclear Information System (INIS)

    Settai, R.; Ikezawa, H.; Toshima, H.; Takashita, M.; Ebihara, T.; Sugawara, H.; Kimura, T.; Motoki, K.; Onuki, Y.

    1995-01-01

    We have measured the de Haas-van Alphen effect of YRu 2 Si 2 and LaRu 2 Si 2 to clarify the Fermi surfaces and cyclotron masses. Main hole-Fermi surfaces of both compounds with a distorted ellipsoid shape are similar, occupying about half of the Brillouin zone. The small hole-Fermi surfaces with the shape of a rugby ball are three in number for LaRu 2 Si 2 , and one for YRu 2 Si 2 . An electron-Fermi surface consists of a doughnut like shape for LaRu 2 Si 2 , while a cylinder along the [001] direction and a multiply-connected shape exist for YRu 2 Si 2 . The cyclotron masses of YRu 2 Si 2 are a little larger than those of LaRu 2 Si 2 . ((orig.))

  8. Breakdown of the Fermi arcs in underdoped cuprates by incommensurate charge density waves

    Science.gov (United States)

    Gor'kov, L. P.

    2014-11-01

    Interactions between the coherent excitations on disconnected arcs along a "bare" Fermi surface (the socalled Fermi arcs FAs) seen by angle-resolved photo emission spectroscopy (ARPES) in several underdoped (UD) cuprates and incommensurate charge density wave (IC CDW) ordering at lowering of the temperature have been studied. The carriers on FAs scatter strongly on the short-wavelength potential of CDW. The large momentum transfer relates FAs with the electronic states lying deeply under the chemical potential thus involving into consideration the Fermi liquid interactions. At low temperatures IC CDW may fully destroy low lying excitations on the Fermi arcs, leaving electrons on the pocket at the Γ point as the only charged elementary excitations in the CDW phase in UD cuprates. The results infer competition between superconducting and CDW order parameters.

  9. Atom optics and space physics: A summary of an 'Enrico Fermi' summer school

    Science.gov (United States)

    Arimondo, Ennio; Ertmer, Wolfgang; Rasel, Ernst M.; Schleich, Wolfgang P.

    2008-03-01

    We describe the scientific content of the International School of Physics 'Enrico Fermi' on atom optics and space physics, organized by the Italian Physical Society in Varenna at Lake Como, Italy, 2-13 July 2007.

  10. Sharper Fermi LAT Images: Instrument Response Functions for an Improved Event Selection

    Science.gov (United States)

    Portillo, Stephen K. N.; Finkbeiner, Douglas P.

    2014-11-01

    The Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope has a point-spread function (PSF) with large tails, consisting of events affected by tracker inefficiencies, inactive volumes, and hard scattering; these tails can make source confusion a limiting factor. The parameter CTBCORE, available in the publicly available Extended Fermi LAT data (available at http://fermi.gsfc.nasa.gov/ssc/data/access/), estimates the quality of each event's direction reconstruction; by implementing a cut in this parameter, the tails of the PSF can be suppressed at the cost of losing effective area. We implement cuts on CTBCORE and present updated instrument response functions derived from the Fermi LAT data itself, along with all-sky maps generated with these cuts. Having shown the effectiveness of these cuts, especially at low energies, we encourage their use in analyses where angular resolution is more important than Poisson noise.

  11. Sharper Fermi LAT images: instrument response functions for an improved event selection

    Energy Technology Data Exchange (ETDEWEB)

    Portillo, Stephen K. N.; Finkbeiner, Douglas P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51, Cambridge, MA 02138 (United States)

    2014-11-20

    The Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope has a point-spread function (PSF) with large tails, consisting of events affected by tracker inefficiencies, inactive volumes, and hard scattering; these tails can make source confusion a limiting factor. The parameter CTBCORE, available in the publicly available Extended Fermi LAT data (available at http://fermi.gsfc.nasa.gov/ssc/data/access/), estimates the quality of each event's direction reconstruction; by implementing a cut in this parameter, the tails of the PSF can be suppressed at the cost of losing effective area. We implement cuts on CTBCORE and present updated instrument response functions derived from the Fermi LAT data itself, along with all-sky maps generated with these cuts. Having shown the effectiveness of these cuts, especially at low energies, we encourage their use in analyses where angular resolution is more important than Poisson noise.

  12. FERMI OBSERVATIONS OF HIGH-ENERGY GAMMA-RAY EMISSION FROM GRB 080825C

    International Nuclear Information System (INIS)

    Abdo, A. A.; Ackermann, M.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Asano, K.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Ballet, J.; Band, D. L.; Barbiellini, G.; Bastieri, D.; Bhat, P. N.; Bissaldi, E.; Bonamente, E.

    2009-01-01

    The Fermi Gamma-ray Space Telescope has opened a new high-energy window in the study of gamma-ray bursts (GRBs). Here we present a thorough analysis of GRB 080825C, which triggered the Fermi Gamma-ray Burst Monitor (GBM), and was the first firm detection of a GRB by the Fermi Large Area Telescope (LAT). We discuss the LAT event selections, background estimation, significance calculations, and localization for Fermi GRBs in general and GRB 080825C in particular. We show the results of temporal and time-resolved spectral analysis of the GBM and LAT data. We also present some theoretical interpretation of GRB 080825C observations as well as some common features observed in other LAT GRBs.

  13. Conjugate Fermi holes and its manifestation in He-like systems

    Energy Technology Data Exchange (ETDEWEB)

    Sako, Tokuei, E-mail: sako@phys.ge.cst.nihon-u.ac.jp [Laboratory of Physics, College of Science and Technology, Nihon University, 7-24-1 Narashinodai, Funabashi, 274-8501 Chiba (Japan)

    2015-12-31

    The structure of genuine and conjugate Fermi holes in two-electron atomic systems, namely He and He-like atomic ions, has been studied relying on accurate full configuration interaction wave functions. The standard Fermi hole exists in the vicinity of region in the two-electron coordinate space satisfying the well-known condition, r{sub 1} = r{sub 2}, while the conjugate Fermi hole exists in the vicinity of region close to this genuine Fermi hole but satisfying r{sub 1} ≠ r{sub 2} instead of r{sub 1} = r{sub 2}. Existence of these holes has shown to give an insightful interpretation of the origin of the first Hund rule and of the anomalously strong angular correlation manifested in the series of the singlet-triplet pair of singly-excited states of the aforementioned systems.

  14. Chicago-area poll finds support for bigger Fermi National Accelerator lab.

    CERN Multimedia

    Grady, W

    2001-01-01

    A survey among residents living near the Fermi National Accelerator laboratory suggests that there would be some support for the facility to expand beyond the current boundaries of its nearly 7000 acre site.

  15. Wilson loops in 3d {N} = 4 SQCD from Fermi gas

    Science.gov (United States)

    Okuyama, Kazumi

    2016-11-01

    We study 1/2 BPS Wilson loops in 3d {N} = 4 U( N ) Yang-Mills theory with one adjoint and N f fundamental hypermultiplets from the Fermi gas approach. By numerical fitting, we find the first few worldsheet instanton corrections to the Wilson loops with winding numbers 1, 2 and 3. We verify that our Fermi gas results are consistent with the matrix model results in the planar limit.

  16. Characterizing the Optical Variability of Bright Blazars: Variability-Based Selection of Fermi Active Galactic Nuclei

    Science.gov (United States)

    2012-11-20

    radio to TeV energies (Ulrich et al. 1997). The central engine is believed to be accretion onto a supermassive black hole , driving relativistic...in the Fermi 2FGL catalog. Despite the extreme stellar contamination at the shallow depth of the LINEAR survey, we are able to recover previously...of γ -ray sources in the Fermi 2FGL catalog. Despite the extreme stellar contamination at the shallow depth of the LINEAR survey, we are able to

  17. The Fermi Gamma-Ray Space Telescope, Exploding Stars, Neutron Stars, and Black Holes

    Science.gov (United States)

    Thompson, David J.

    2010-01-01

    Since August, 2008, the Fermi Gamma-ray Space Telescope has been scanning the sky, producing a full-sky image every three hours. These cosmic gamma-rays come from extreme astrophysical phenomena, many related to exploding stars (supernovae) or what these explosions leave behind: supernova remnants, neutron stars, and black holes. This talk uses sample Fermi results, plus simple demonstrations, to illustrate the exotic properties of these endpoints of stellar evolution.

  18. Band Structure and Fermi-Surface Properties of Ordered beta-Brass

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Christensen, N. E.

    1973-01-01

    , but that their position relative to the Fermi level is correct. The derived Fermi-surface model allows a detailed interpretation of the de Hass-van Alphen (dHvA) data. The present model has no open orbit along for B→∥ 〈110〉. This agrees with dHvA as well as magnetoresistance measurements. Four new extremal cross sections...

  19. Bethe, Oppenheimer, Teller and the Fermi Award: Norris Bradbury Speaks

    Energy Technology Data Exchange (ETDEWEB)

    Meade, Roger Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-04-28

    In 1956 the Enrico Fermi Presidential Award was established to recognize scientists, engineers, and science policymakers who gave unstintingly over their careers to advance energy science and technology. The first recipient was John von Neumann. .1 Among those scientists who were thought eligible for the award were Hans Bethe, J. Robert Oppenheimer, and Edward Teller. In 1959 Norris Bradbury was asked to comment on the relative merits of each these three men, whom he knew well from their affiliation with Los Alamos. Below is a reproduction of the letter Bradbury sent to Dr. Warren C. Johnson of the AEC’s General Advisory Committee(GAC) containing his evaluation of each man. The letter might surprise those not accustomed to Bradbury’s modus operandi of providing very detailed and forthright answers to the AEC. The letter, itself, was found in cache of old microfilm. Whether because of the age of the microfilm or the quality of the filming process, portions of the letter are not legible. Where empty brackets appear, the word or words could not be read or deduced. Words appearing in brackets are guesses that appear, from the image, to be what was written. These guesses, of course, are just that – guesses.

  20. Tiger Team Assessment of the Fermi National Accelerator Laboratory

    International Nuclear Information System (INIS)

    1992-06-01

    This draft report documents the Tiger Team Assessment of the Fermi National Accelerator Laboratory (Fermilab) located in Batavia, Illinois. Fermilab is a program-dedicated national laboratory managed by the Universities Research Association, Inc. (URA) for the US Department of Energy (DOE). The Tiger Team Assessment was conducted from May 11 to June 8, 1992, under the auspices of DOE's Office of Special Projects (OSP) under the Office of the Assistant Secretary for Environment, Safety and Health (EH). The assessment was comprehensive, encompassing environmental, safety and health (ES ampersand H), and quality assurance (QA) disciplines; site remediation; facilities management; and waste management operations. Compliance with applicable Federal , State of Illinois, and local regulations; applicable DOE Orders; best management practices; and internal Fermilab requirements was addressed. In addition, an evaluation of the effectiveness of DOE and Fermilab management of the ES ampersand H/QA and self-assessment programs was conducted. The Fermilab Tiger Team Assessment is part a larger, comprehensive DOE Tiger Team Independent Assessment Program planned for DOE facilities. The objective of the initiative is to provide the Secretary of Energy with information on the compliance status of DOE facilities with regard to ES ampersand H requirements, root causes for noncompliance, adequacy of DOE and contractor ES ampersand H management programs, response actions to address the identified problem areas, and DOE-wide ES ampersand H compliance trends and root causes

  1. Fermi-LAT Observations of the LIGO Event GW150914

    Science.gov (United States)

    Ackermann, M.; Ajello, M.; Albert, A.; Anderson, B.; Arimoto, M.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; hide

    2016-01-01

    The Fermi Large Area Telescope (LAT) has an instantaneous field of view (FoV) covering 1 5 of the sky and it completes a survey of the entire sky in high-energy gamma-rays every 3 hr. It enables searches for transient phenomena over timescales from milliseconds to years. Among these phenomena could be electromagnetic counterparts to gravitational wave (GW) sources. In this paper, we present a detailed study of the LAT observations relevant to Laser Interferometer Gravitational-wave Observatory (LIGO) event GW150914, which is the first direct detection of gravitational waves and has been interpreted as being due to the coalescence of two stellar-mass black holes. The localization region for GW150914 was outside the LAT FoV at the time of the GW signal. However, as part of routine survey observations, the LAT observed the entire LIGO localization region within approx. 70 minutes of the trigger and thus enabled a comprehensive search for a gamma-ray counterpart to GW150914.The study of the LAT data presented here did not find any potential counterparts to GW150914, but it did provide limits on the presence of a transient counterpart above 100 MeV on timescales of hours to days over the entire GW150914 localization region.

  2. Quantum oscillations in insulators with neutral Fermi surfaces

    Science.gov (United States)

    Sodemann, Inti; Chowdhury, Debanjan; Senthil, T.

    2018-02-01

    We develop a theory of quantum oscillations in insulators with an emergent Fermi sea of neutral fermions minimally coupled to an emergent U(1 ) gauge field. As pointed out by Motrunich [Phys. Rev. B 73, 155115 (2006), 10.1103/PhysRevB.73.155115], in the presence of a physical magnetic field the emergent magnetic field develops a nonzero value leading to Landau quantization for the neutral fermions. We focus on the magnetic field and temperature dependence of the analog of the de Haas-van Alphen effect in two and three dimensions. At temperatures above the effective cyclotron energy, the magnetization oscillations behave similarly to those of an ordinary metal, albeit in a field of a strength that differs from the physical magnetic field. At low temperatures, the oscillations evolve into a series of phase transitions. We provide analytical expressions for the amplitude and period of the oscillations in both of these regimes and simple extrapolations that capture well their crossover. We also describe oscillations in the electrical resistivity of these systems that are expected to be superimposed with the activated temperature behavior characteristic of their insulating nature and discuss suitable experimental conditions for the observation of these effects in mixed-valence insulators and triangular lattice organic materials.

  3. Fermi Observations of the LIGO Event GW170104

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, A.; Cleveland, W. H.; Connaughton, V. [Science and Technology Institute, Universities Space Research Association, Huntsville, AL 35805 (United States); Veres, P.; Briggs, M. S.; Hamburg, R.; Jenke, P. A.; Bhat, N. [Center for Space Plasma and Aeronomic Research, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35899 (United States); Burns, E.; Canton, T. Dal [NASA Postdoctoral Program Fellow, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Blackburn, L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Christensen, N. [Physics and Astronomy, Carleton College, MN, 55057 (United States); Hui, C. M.; Kocevski, D.; Wilson-Hodge, C. A. [Astrophysics Office, ST12, NASA/Marshall Space Flight Center, Huntsville, AL 35812 (United States); Preece, R. D. [Department of Space Science, University of Alabama in Huntsville, 320 Sparkman Drive, Huntsville, AL 35899 (United States); Siellez, K. [Center for Relativistic Astrophysics and School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Veitch, J. [University of Birmingham, Birmingham B15 2TT (United Kingdom); Bissaldi, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Gibby, M. H., E-mail: kocevski@slac.stanford.edu, E-mail: melissa.pesce.rollins@pi.infn.it, E-mail: nicola.omodei@stanford.edu, E-mail: giacomov@slac.stanford.edu [Jacobs Technology, Inc., Huntsville, AL (United States); Collaboration: (Fermi-LAT Collaboration); and others

    2017-09-01

    We present the Fermi Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) observations of the LIGO binary black hole merger (BBH) event GW170104. No candidate electromagnetic counterpart was detected by either GBM or LAT. A detailed analysis of the GBM and LAT data over timescales from seconds to days covering the Laser Interferometer Gravitational-wave Observatory (LIGO) localization region is presented. The resulting flux upper bound from the GBM is (5.2–9.4) × 10{sup −7} erg cm{sup −2} s{sup −1} in the 10–1000 keV range and from the LAT is (0.2–90) × 10{sup −9} erg cm{sup −2} s{sup −1} in the 0.1–1 GeV range. We also describe the improvements to our automated pipelines and analysis techniques for searching for and characterizing the potential electromagnetic counterparts for future gravitational-wave events from Advanced LIGO/Virgo.

  4. Fermi energy anomaly in the nucleon-nucleus potential

    International Nuclear Information System (INIS)

    Finlay, R.W.

    1988-01-01

    Careful comparisons of the parameters of the nucleon-nucleus optical potential at energy (E 20 MeV) have revealed discrepancies. Commonly used ''global optical models'' tend to fail in one energy region or the other. Improved agreement with the data can be restored in phenomenological models in which certain geometrical parameters of the model are allowed to depend explicitly on neutron energy. The origin of this effect in the n+ 208 Pb system has been explained in terms of the dispersion correction to the real part of the standard local optical potential. In dispersion theory, the magnitude of this correction is obtained from the energy dependence of the phenomenological imaginary potential. The phenomenological parameters for n and p on 208 Pb are re-examined. The dispersion theory explanation of the low energy behaviour of the neutron potential is supported by the present analysis, but no similar analyses suggest that the Fermi energy anomaly for the p+ 208 Pb potential is located at energies well below the Coulomb barrier

  5. Fermi-LAT Observation of Supernova Remnant S147

    Energy Technology Data Exchange (ETDEWEB)

    Katsuta, J.; Uchiyama, Y.; Tanaka, T.; /SLAC /KIPAC, Menlo Park; Tajima, H.; /SLAC /KIPAC, Menlo Park /Nagoya U., Solar-Terrestrial Environ. Lab.; Bechtol, K.; Funk, S.; Lande, J.; /SLAC /KIPAC, Menlo Park; Ballet, J.; /AIM, Saclay; Hanabata, Y.; /Hiroshima U.; Lemoine-Goumard, M.; /CENBG, Gradignan; Takahashi, T.; /JAXA, Sagamihara

    2012-08-17

    We present an analysis of gamma-ray data obtained with the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope in the region around SNR S147 (G180.0-1.7). A spatially extended gamma-ray source detected in an energy range of 0.2-10 GeV is found to coincide with SNR S147. We confirm its spatial extension at >5{sigma} confidence level. The gamma-ray flux is (3.8 {+-} 0.6) x 10{sup -8} photons cm{sup -2} s{sup -1}, corresponding to a luminosity of 1.3 x 10{sup 34} (d/1.3 kpc){sup 2} erg s{sup -1} in this energy range. The gamma-ray emission exhibits a possible spatial correlation with prominent H{alpha} filaments of S147. There is no indication that the gamma-ray emission comes from the associated pulsar PSR J0538+2817. The gamma-ray spectrum integrated over the remnant is likely dominated by the decay of neutral {pi} mesons produced through the proton-proton collisions in the filaments. Reacceleration of pre-existing CRs and subsequent adiabatic compression in the filaments is sufficient to provide the required energy density of high-energy protons.

  6. FERMI LARGE AREA TELESCOPE OBSERVATION OF SUPERNOVA REMNANT S147

    Energy Technology Data Exchange (ETDEWEB)

    Katsuta, J.; Uchiyama, Y.; Tanaka, T.; Tajima, H.; Bechtol, K.; Funk, S.; Lande, J. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Universite Paris Diderot, Service d' Astrophysique, CEA Saclay, 91191 Gif sur Yvette (France); Hanabata, Y. [Department of Physical Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Lemoine-Goumard, M. [Universite Bordeaux 1, CNRS/IN2p3, Centre d' Etudes Nucleaires de Bordeaux Gradignan, 33175 Gradignan (France); Takahashi, T., E-mail: katsuta@slac.stanford.edu, E-mail: uchiyama@slac.stanford.edu [Institute of Space and Astronautical Science, Japanese Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan)

    2012-06-20

    We present an analysis of gamma-ray data obtained with the Large Area Telescope on board the Fermi Gamma-ray Space Telescope in the region around supernova remnant (SNR) S147 (G180.0-1.7). A spatially extended gamma-ray source detected in an energy range of 0.2-10 GeV is found to coincide with SNR S147. We confirm its spatial extension at >5{sigma} confidence level. The gamma-ray flux is (3.8 {+-} 0.6) Multiplication-Sign 10{sup -8} photons cm{sup -2} s{sup -1}, corresponding to a luminosity of 1.3 Multiplication-Sign 10{sup 34} (d/1.3 kpc){sup 2} erg s{sup -1} in this energy range. The gamma-ray emission exhibits a possible spatial correlation with the prominent H{alpha} filaments of SNR S147. There is no indication that the gamma-ray emission comes from the associated pulsar PSR J0538+2817. The gamma-ray spectrum integrated over the remnant is likely dominated by the decay of neutral {pi} mesons produced through the proton-proton collisions in the filaments. The reacceleration of the pre-existing cosmic rays and subsequent adiabatic compression in the filaments is sufficient to provide the energy density required of high-energy protons.

  7. Searches for Dark Matter with the Fermi Large Area Telescope

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The nature of dark matter is a longstanding enigma of physics; it may consist of particles beyond the Standard Model that are still elusive to experiments. Among indirect search techniques, which look for stable products from the annihilation or decay of dark matter particles, or from axions coupling to high-energy photons, observations of the gamma-ray sky have come to prominence over the last few years, because of the excellent sensitivity and full-sky coverage of the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope mission. The LAT energy range from 20 MeV to above 300 GeV is particularly well suited for searching for products of the interactions of dark matter particles. In this talk I will describe targets studied for evidence of dark matter with the LAT, and review the status of searches performed with up to six years of LAT data. I will also discuss the factors that determine the sensitivities of these searches, including the magnitudes of the signals and the relevant backgrounds, c...

  8. Final state effects in photoemission studies of Fermi surfaces

    International Nuclear Information System (INIS)

    Kurtz, Richard L; Browne, Dana A; Mankey, Gary J

    2007-01-01

    Photoelectron spectroscopy is one of the most important methods for extracting information about the Fermi surface (FS) of materials. An electron photoexcited from the FS is emitted from the crystal conserving the parallel momentum, k parallel , while the perpendicular momentum k perpendicular is reduced due to the surface potential barrier. A simple interpretation of the process assumes the final state is free-electron-like allowing one to 'map' the detected photoelectron back to its initial k momentum. There are multiple final state effects that can complicate the interpretation of photoelectron data and these effects are reviewed here. These can involve both energy and k broadening, which can give rise to shadow or ghost FS contours, scattering and final state diffraction effects that modify intensities, and matrix element effects which reflect the symmetries of the states involved and can be highly dependent on photon polarization. These matrix elements result in contours of photoelectron intensity that follow the dispersion in k-space of the initial state, the FS, and the final state. Locations where intensities go to zero due to matrix element and symmetry effects can result in gaps where FS contours 'disappear'. Recognition that these effects can play a significant role in determining the measured angular distributions is crucial in developing an informed model of where the FS contours actually lie in relation to measured intensity contours

  9. A modified Thomas-Fermi treatment of nuclei

    International Nuclear Information System (INIS)

    Swiatecki, W.J.

    1992-01-01

    An improved nuclear Thomas-Fermi theory is studied in which, rather than adding density-gradient corrections to the standard expression for the kinetic energy density (proportional to ρ 5/3 , where ρ is the density) one simply modifies this ρ 5/3 function to reflect the fact that the kinetic energy density becomes negative for small values of ρ when, in a typical nuclear problem, one is dealing with the outer fringes of the surface region. The net result of this study is simply stated: In order to find the density associated with a given nuclear potential, one exponentiates this potential instead of raising its depth with respect to the chemical potential to the three-halves power, as in the standard treatment. An improved description of the nuclear surface profile is obtained, including the quantal halo in the classically forbidden region. But since density derivatives are not involved, there is no need to solve a partial differential equation in order to find the density. (orig.)

  10. Faraday instability and Faraday patterns in a superfluid Fermi gas

    International Nuclear Information System (INIS)

    Tang Rongan; Xue Jukui; Li Haocai

    2011-01-01

    With the consideration of the coupling between the transverse width and the longitudinal density, the parametric excitations related to Faraday waves in a cigar-shaped superfluid Fermi gas are studied. A Mathieu equation is obtained, and it is demonstrated firstly that the excited actual 3D Faraday pattern is the combination of the longitudinal Faraday density wave and the corresponding transverse width fluctuation in the longitudinal direction. The Faraday instability growth index and the kinematic equations of the Faraday density wave and the width fluctuation along the Bose-Einstein condensate (BEC)-Bardeen-Cooper-Schrieffer (BCS) crossover are also given for the first time. It is found that the 3D Faraday pattern presents quite different behaviours (such as the excitations and the motions) when the system crosses from the BEC side to the BCS side. The coupling not only plays an important role in the parametric excitation, but also determines the dominant wavelength of the spatial structure. Along the crossover, the coupling effects are more significant in the BCS side. The final numerical investigation verifies these results and gives a detailed study of the parametric excitations (i.e. Faraday instability) and the 3D pattern formation.

  11. Modeling High-Energy Gamma-Rays from the Fermi Bubbles - Oral Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Splettstoesser, Megan [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-25

    In 2010, the Fermi Bubbles were discovered at the galactic center of the Milky Way. These giant gamma-ray structures, extending 50 degrees in galactic latitude and 20-30 degrees in galactic longitude, were not predicted. We wish to develop a model for the gamma-ray emission of the Fermi Bubbles. To do so, we assume that second order Fermi acceleration is responsible for the high-energy emission of the bubbles. Second order Fermi acceleration requires charged particles and irregular magnetic fields—both of which are present in the disk of the Milky Way galaxy. I use the assumption of second order Fermi acceleration in the transport equation, which describes the diffusion of particles. By solving the steady-state case of the transport equation, I compute the proton spectrum due to Fermi second order acceleration and compare this analytical solution to a numerical solution provided by Dr. P. Mertsch. Analytical solutions to the transport equation are taken from Becker, Le, & Dermer and are used to further test the numerical solution. I find that the numerical solution converges to the analytical solution in all cases. Thus, we know the numerical solution accurately calculates the proton spectrum. The gamma-ray spectrum follows the proton spectrum, and will be computed in the future.

  12. Transport Through Luttinger Liquids: The Role of Fermi-Liquid Reservoirs

    Science.gov (United States)

    Maslov, Dmitrii L.

    1996-03-01

    The conductance G of one-dimensional Luttinger liquids (LLs) has commonly been believed to exhibit two features: (i) in a perfect LL, the electron-electron interactions renormalize G to the value of Ke^2/h, where K depends on the sign and the strength of interactions; (ii) in the presence of weak disorder, G exhibits characteristic temperature- or length-scalings. However, a recent experiment on ultra-clean GaAs quantum wires(S. Tarucha, T. Honda, and T. Saku, Solid State Comm. 94), 413 (1995). has revealed only the LL-like temperature dependence of G, but no renormalization of G in the ballistic limit (i.e., K=1). In this work, we explore the consequences of the fact that in a typical experiment a LL quantum wire is attached to the wide Fermi-liquid (FL) leads. In particular, it is shown that the dc conductance of a LL wire with FL leads is given by e^2/h, regardless of the interactions in the wire.(D. L. Maslov and M. Stone, Phys. Rev. B52), R5539 (1995). On the other hand, the temperature- and length-dependent corrections are determined by the interactions in the wire.(D. L. Maslov, Phys. Rev. B52), R14368 (1995). These results suggest that the experimental observations by Tarucha et al. can indeed be considered as an indication of the Luttinger-liquid state in GaAs quantum wires. The recently observed crossover from the LL- to the FL-behavior as the number of propagating channels is increased(S. Tarucha, T. Honda, T. Saku, and Y. Tokura (unpublished).) is also discussed. Parts of this work were performed in collaboration with Michael Stone and Nancy Sandler. This work was supported by the National Science Foundation through grants DMR94-24511 and DMR89-20538.

  13. Fermi Transient J1544–0649: A Flaring Radio-weak BL Lac

    Science.gov (United States)

    Bruni, Gabriele; Panessa, Francesca; Ghisellini, Gabriele; Chavushyan, Vahram; Peña-Herazo, Harold A.; Hernández-García, Lorena; Bazzano, Angela; Ubertini, Pietro; Kraus, Alex

    2018-02-01

    On 2017 May 15, the FERMI/LAT gamma-ray telescope observed a transient source not present in any previous high-energy catalog: J1544–0649. It was visible for two consecutive weeks, with a flux peak on May 21. Subsequently observed by a Swift/XRT follow-up starting on May 26, the X-ray counterpart position was coincident with the optical transient ASASSN-17gs = AT2017egv, detected on May 25, with a potential host galaxy at z = 0.171. We conducted a 4-month follow-up in radio (Effelsberg-100 m) and optical (San Pedro Mártir, 2.1 m) bands, in order to build the overall Spectral Energy Distribution (SED) of this object. The radio data from 5 to 15 GHz confirmed the flat spectrum of the source, favoring a line of sight close to the jet axis, not showing significant variability in the explored post-burst time window. The Rx ratio, a common indicator of radio loudness, gives a value at the border between the radio-loud and radio-quiet active galactic nuclei (AGNs) populations. The CaII H&K break value (0.29 ± 0.05) is compatible with the range expected for the long-sought intermediate population between BL Lacs and FRI radio galaxies. An overall SED fitting from the radio to gamma-ray band shows properties typical of a low-power BL Lac. As a whole, these results suggest that this transient could be a new example of the recently discovered class of radio-weak BL Lac, showing for the first time a flare in the gamma/X-ray bands.

  14. Laboratorio Nacional Fermi Batavia Ilinois – (EE.UU.

    Directory of Open Access Journals (Sweden)

    Daniel, Phillip J.

    1976-09-01

    Full Text Available Near Batavia, Illinois, are situated the installations of the Fermi National Accelerator Laboratory, a scientific complex designed for peaceful use. It was constructed on a 2,750 Ha plain site, after treating the ground in the same way as is done in urban development. The complete programme comprised the construction of a 6.5 km long testing tunnel experimental zones and a building for the Central Laboratory. This building consists of a reinforced concrete structure made up by two twin blocks, between which a space for the public was designed in the shape of a garden-atrium, closed from the outside by glass walls. The 15 storey building houses a staff of 1,500 scientists and technicians. Further it holds an auditorium, meeting rooms and conference rooms, in addition to the offices with their laboratories, and recreation areas, such as the coffee shop and the dining room. Everything in this structure is designed to integrate the people working in this laboratory with each other and with the environment. It is like a functional and symbolic focus of the greatest and most powerful installation in the world, in the field of high energy physics.Cerca de Batavia, en Illinois, se encuentran las instalaciones del Fermi National Accelerator Laboratory, complejo científico destinado para usos pacíficos. Se construyó en un solar de 2.750 Ha de tierra llana, después de llevar a cabo un plan de tratamiento del suelo, de forma similar a como se hace en un desarrollo urbano. El programa completo comprendía la construcción de un túnel de vacío de 6,5 km de longitud, áreas experimentales y un edificio para Laboratorio Central, que consiste en una estructura de hormigón armado formada por dos bloques gemelos, entre los que se proyectó un espacio público, a modo de atrio ajardinado, cerrado al exterior por muros acristalados. El edificio, de 15 plantas, alberga a más de 1.500 científicos y personal técnico, que ven favorecidas sus

  15. Fermi acceleration along the orbit of η Carinae

    Science.gov (United States)

    Balbo, M.; Walter, R.

    2017-07-01

    Context. The η Carinae binary system hosts one of the most massive stars, which features the highest known mass-loss rate. This dense wind encounters the much faster wind expelled by the stellar companion, dissipating mechanical energy in the shock, where particles can be accelerated up to relativistic energies and subsequently produce very-high-energy γ-rays. Aims: We aim at comparing the variability of the γ-ray emission of η Carinae along the binary orbit with the predictions of simulations to establish the nature of the emission and of the seed particles. Methods: We have used data from the Fermi Large Area Telescope obtained during its first seven years of observations and spanning two passages of η Carinae at periastron. We performed the analysis using the new PASS8 pipeline and its improved instrument response function, extracting low and high-energy light curves as well as spectra in different orbital phase bins. We also introduced particle acceleration in hydrodynamic simulations of the system, assuming a dipolar magnetic field generated by the most massive star, and compared the γ-ray observations with the predictions of diffuse shock acceleration in a multi-cell geometry. Results: The main source of the γ-ray emission originates from a position compatible with η Carinae and located within the Homunculus Nebula. Two emission components can be distinguished. The low-energy component cuts off below 10 GeV and its flux, modulated by the orbital motion, varies by a factor less than 2. Short-term variability occurs at periastron. The flux of the high-energy component varies by a factor 3-4 but is different during the two periastrons. The variabilities observed at low energy, including some details of them, and those observed at high energy during the first half of the observations, match the prediction of the simulation, assuming a surface magnetic field of 500 G. The high-energy component and the thermal X-ray emission were weaker than expected around

  16. The Fermi-Pasta-Ulam problem: Simulation and modern dynamics

    International Nuclear Information System (INIS)

    Weissert, T.P.

    1992-01-01

    In 1952, Enrico Fermi, John Pasta and Stanislaw Ulam (FPU) simulated the loaded string model, perturbed with small, nonlinear interaction terms. Because Poincare's theorem guarantees the non-existence of a complete set of integrals for three-body problem, they expected to see the diffusion of energy from its single-mode initial condition to all other modes of the string. But for every combination of initial conditions, the energy remained bounded within the lowest few modes. No theoretical explanation existed for this failure of the underlying hypothesis that erogidicity follows from the lack of a complete set of integrals of the motion in a Hamiltonian model. The author traces the history of this problem from the FPU simulation to the point that a consensus was reached concerning its solution twenty years later. During this period, the simulation of nonlinearly-perturbed integral models became the methodology for a new era in dynamics. Through the use of simulation, dynamicists discovered deterministic chaos, in which the exponential separation of pair orbits generate randomness in deterministic macroscopic systems, and a new kind of structure-related to the KAM theorem-that provides limited order in the absence of analytic integrals of the motions. The author maps the set of conceptually-related journal articles into a chronological inference topology that tracks the understanding of this problem of dynamics. Simulating non-integrable models on a digital computer requires the discretization of time and space. These approximations affect what the simulation can reveal about the model, and the model about reality. Simulations play the role of experiments on mathematical models. A discussion is presented of the issues that emerge with the use of simulation as a heuristic device and the groundwork is laid for an epistemology of simulation

  17. FERMI and Elettra Accelerator Technical Optimization Final Report

    International Nuclear Information System (INIS)

    Cornacchia, M.; Craievich, P.; Di Mitri, S.; Pogorelov, I.; Qiang, J.; Venturini, M.; Zholents, A.; Wang, D.; Warnock, R.

    2006-01-01

    This report describes the accelerator physics aspects, the engineering considerations and the choice of parameters that led to the accelerator design of the FERMI Free-Electron-Laser. The accelerator (also called the ''electron beam delivery system'') covers the region from the exit of the injector to the entrance of the first FEL undulator. The considerations that led to the proposed configuration were made on the basis of a study that explored various options and performance limits. This work follows previous studies of x-ray FEL facilities (SLAC LCLS[1], DESY XFEL [2], PAL XFEL [3], MIT [4], BESSY FEL[5], LBNL LUX [6], Daresbury 4GLS [7]) and integrates many of the ideas that were developed there. Several issues specific to harmonic cascade FELs, and that had not yet been comprehensively studied, were also encountered and tackled. A particularly difficult issue was the need to meet the requirement for high peak current and small slice energy spread, as the specification for the ratio of these two parameters (that defines the peak brightness of the electron beam) is almost a factor of two higher than that of the LCLS's SASE FEL. Another challenging aspect was the demand to produce an electron beam with as uniform as possible peak current and energy distributions along the bunch, a condition that was met by introducing novel beam dynamics techniques. Part of the challenge was due to the fact that there were no readily available computational tools to carry out reliable calculations, and these had to be developed. Most of the information reported in this study is available in the form of scientific publications, and is partly reproduced here for the convenience of the reader

  18. FERMI LAT STACKING ANALYSIS OF SWIFT LOCALIZED GRBs

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M.; Buehler, R. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M. [Department of Physics and Astronomy, Clemson University, Kinard Lab of Physics, Clemson, SC 29634-0978 (United States); Atwood, W. B. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Axelsson, M. [Department of Physics, KTH Royal Institute of Technology, AlbaNova, SE-106 91 Stockholm (Sweden); Baldini, L. [Università di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa I-56127 Pisa (Italy); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D.; Buson, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bellazzini, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bhat, P. N. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Bissaldi, E. [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70126 Bari (Italy); Bonino, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, I-10125 Torino (Italy); Bottacini, E.; Caliandro, G. A.; Cameron, R. A. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Brandt, T. J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Bregeon, J. [Laboratoire Univers et Particules de Montpellier, Université Montpellier, CNRS/IN2P3, Montpellier (France); Bruel, P. [Laboratoire Leprince-Ringuet, École polytechnique, CNRS/IN2P3, Palaiseau (France); Anderson, B., E-mail: jchiang@slac.stanford.edu; and others

    2016-05-10

    We perform a comprehensive stacking analysis of data collected by the Fermi Large Area Telescope (LAT) of γ -ray bursts (GRBs) localized by the Swift spacecraft, which were not detected by the LAT but which fell within the instrument’s field of view at the time of trigger. We examine a total of 79 GRBs by comparing the observed counts over a range of time intervals to that expected from designated background orbits, as well as by using a joint likelihood technique to model the expected distribution of stacked counts. We find strong evidence for subthreshold emission at MeV to GeV energies using both techniques. This observed excess is detected during intervals that include and exceed the durations typically characterizing the prompt emission observed at keV energies and lasts at least 2700 s after the co-aligned burst trigger. By utilizing a novel cumulative likelihood analysis, we find that although a burst’s prompt γ -ray and afterglow X-ray flux both correlate with the strength of the subthreshold emission, the X-ray afterglow flux measured by Swift ’ s X-ray Telescope at 11 hr post trigger correlates far more significantly. Overall, the extended nature of the subthreshold emission and its connection to the burst’s afterglow brightness lend further support to the external forward shock origin of the late-time emission detected by the LAT. These results suggest that the extended high-energy emission observed by the LAT may be a relatively common feature but remains undetected in a majority of bursts owing to instrumental threshold effects.

  19. FERMI DISCOVERY OF GAMMA-RAY EMISSION FROM NGC 1275

    International Nuclear Information System (INIS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Bechtol, K.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Asano, K.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B. M.; Bonamente, E.; Brigida, M.; Bruel, P.; Burnett, T. H.

    2009-01-01

    We report the discovery of high-energy (E > 100 MeV) γ-ray emission from NGC 1275, a giant elliptical galaxy lying at the center of the Perseus cluster of galaxies, based on observations made with the Large Area Telescope (LAT) of the Fermi Gamma-ray Space Telescope. The positional center of the γ-ray source is only ∼3' away from the NGC 1275 nucleus, well within the 95% LAT error circle of ∼5'. The spatial distribution of γ-ray photons is consistent with a point source. The average flux and power-law photon index measured with the LAT from 2008 August 4 to 2008 December 5 are F γ = (2.10 ± 0.23) x 10 -7 ph (>100 MeV) cm -2 s -1 and Γ = 2.17 ± 0.05, respectively. The measurements are statistically consistent with constant flux during the four-month LAT observing period. Previous EGRET observations gave an upper limit of F γ -8 ph (>100 MeV) cm -2 s -1 to the γ-ray flux from NGC 1275. This indicates that the source is variable on timescales of years to decades, and therefore restricts the fraction of emission that can be produced in extended regions of the galaxy cluster. Contemporaneous and historical radio observations are also reported. The broadband spectrum of NGC 1275 is modeled with a simple one-zone synchrotron/synchrotron self-Compton model and a model with a decelerating jet flow.

  20. Fermi Discovery of Gamma-Ray Emission from NGC 1275

    International Nuclear Information System (INIS)

    Abdo, Aous A.; Ackermann, M.; Ajello, M.; Asano, K.; Baldini, L.; Ballet, J.; Barbiellini, Guido; Bastieri, Denis; Baughman, B.M.; Bechtol, K.; Bellazzini, R.; Blandford, R.D.; Bloom, Elliott D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Burnett, Thompson H.; Caliandro, G.A.

    2009-01-01

    We report the discovery of high-energy (E > 100 MeV) γ-ray emission from NGC 1275, a giant elliptical galaxy lying at the center of the Perseus cluster of galaxies, based on observations made with the Large Area Telescope (LAT) of the Fermi Gamma-ray Space Telescope. The positional center of the γ-ray source is only ∼3(prime) away from the NGC 1275 nucleus, well within the 95% LAT error circle of ∼5(prime). The spatial distribution of γ-ray photons is consistent with a point source. The average flux and power-law photon index measured with the LAT from 2008 August 4 to 2008 December 5 are F γ = (2.10 ± 0.23) x 10 -7 ph (>100 MeV) cm -2 s -1 and Γ = 2.17 ± 0.05, respectively. The measurements are statistically consistent with constant flux during the four-month LAT observing period. Previous EGRET observations gave an upper limit of F γ -8 ph (>100 MeV) cm -2 s -1 to the γ-ray flux from NGC 1275. This indicates that the source is variable on timescales of years to decades, and therefore restricts the fraction of emission that can be produced in extended regions of the galaxy cluster. Contemporaneous and historical radio observations are also reported. The broadband spectrum of NGC 1275 is modeled with a simple one-zone synchrotron/synchrotron self-Compton model and a model with a decelerating jet flow.

  1. Temperature equilibration rate with Fermi-Dirac statistics

    International Nuclear Information System (INIS)

    Brown, Lowell S.; Singleton, Robert L. Jr.

    2007-01-01

    We calculate analytically the electron-ion temperature equilibration rate in a fully ionized, weakly to moderately coupled plasma, using an exact treatment of the Fermi-Dirac electrons. The temperature is sufficiently high so that the quantum-mechanical Born approximation to the scattering is valid. It should be emphasized that we do not build a model of the energy exchange mechanism, but rather, we perform a systematic first principles calculation of the energy exchange. At the heart of this calculation lies the method of dimensional continuation, a technique that we borrow from quantum field theory and use in a different fashion to regulate the kinetic equations in a consistent manner. We can then perform a systematic perturbation expansion and thereby obtain a finite first-principles result to leading and next-to-leading order. Unlike model building, this systematic calculation yields an estimate of its own error and thus prescribes its domain of applicability. The calculational error is small for a weakly to moderately coupled plasma, for which our result is nearly exact. It should also be emphasized that our calculation becomes unreliable for a strongly coupled plasma, where the perturbative expansion that we employ breaks down, and one must then utilize model building and computer simulations. Besides providing different and potentially useful results, we use this calculation as an opportunity to explain the method of dimensional continuation in a pedagogical fashion. Interestingly, in the regime of relevance for many inertial confinement fusion experiments, the degeneracy corrections are comparable in size to the subleading quantum correction below the Born approximation. For consistency, we therefore present this subleading quantum-to-classical transition correction in addition to the degeneracy correction

  2. Nuclear Fermi Dynamics: physical content versus theoretical approach

    International Nuclear Information System (INIS)

    Griffin, J.J.

    1977-01-01

    Those qualitative properties of nuclei, and of their energetic collisions, which seem of most importance for the flow of nuclear matter are listed and briefly discussed. It is suggested that nuclear matter flow is novel among fluid dynamical problems. The name, Nuclear Fermi Dynamics, is proposed as an appropriate unambiguous label. The Principle of Commensurability, which suggests the measurement of the theoretical content of an approach against its expected predictive range is set forth and discussed. Several of the current approaches to the nuclear matter flow problem are listed and subjected to such a test. It is found that the Time-Dependent Hartree-Fock (TDHF) description, alone of all the major theoretical approaches currently in vogue, incorporates each of the major qualitative features within its very concise single mathematical assumption. Some limitations of the conventional TDHF method are noted, and one particular defect is discussed in detail: the Spurious Cross Channel Correlations which arise whenever several asymptotic reaction channels must be simultaneously described by a single determinant. A reformulated Time-Dependent-S-Matrix Hartree-Fock Theory is proposed, which obviates this difficulty. It is noted that the structure of TD-S-HF can be applied to a more general class of non-linear wave mechanical problems than simple TDHF. Physical requirements minimal to assure that TD-S-HF represents a sensible reaction theory are utilized to prescribe the definition of acceptable asymptotic channels. That definition, in turn, defines the physical range of the TD-S-HF theory as the description of collisions of certain mathematically well-defined objects of mixed quantal and classical character, the ''TDHF droplets.''

  3. Atom loss maximum in ultra-cold Fermi gases

    International Nuclear Information System (INIS)

    Zhang Shizhong; Ho Tinlun

    2011-01-01

    Recent experiments on atom loss in ultra-cold Fermi gases all show a maximum at a magnetic field below Feshbach resonance, where the s-wave scattering length is large (comparable to inter-particle distance) and positive. These experiments have been performed over a wide range of conditions, with temperatures and trap depths spanning three decades. Different groups have come up with different explanations, including the emergence of Stoner ferromagnetism. Here, we show that this maximum is a consequence of two major steps. The first is the establishment of a population of shallow dimers, which is the combined effect of dimer formation through three-body recombination, and the dissociation of shallow dimers back to atoms through collisions. The dissociation process will be temperature dependent and is affected by Pauli blocking at low temperatures. The second is the relaxation of shallow dimers into tightly bound dimers through atom-dimer and dimer-dimer collisions. In these collisions, a significant amount of energy is released. The reaction products leave the trap, leading to trap loss. We have constructed a simple set of rate equations describing these processes. Remarkably, even with only a few parameters, these equations reproduce the loss rate observed in all recent experiments, despite their widely different experimental conditions. Our studies show that the location of the maximum loss rate depends crucially on experimental parameters such as trap depth and temperature. These extrinsic characters show that this maximum is not a reliable probe of the nature of the underlying quantum states. The physics of our equations also explains some general trends found in current experiments.

  4. Fermi Discovery of Gamma-Ray Emission from NGC 1275

    Energy Technology Data Exchange (ETDEWEB)

    Abdo, Aous A.; /Naval Research Lab, Wash., D.C.; Ackermann, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Ajello, M.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Asano, K.; /Tokyo Inst. Tech.; Baldini, L.; /INFN, Pisa; Ballet, J.; /DAPNIA, Saclay; Barbiellini, Guido; /INFN, Trieste /Trieste U.; Bastieri, Denis; /INFN, Padua /Padua U.; Baughman, B.M.; /Ohio State U.; Bechtol, K.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bellazzini, R.; /INFN, Pisa; Blandford, R.D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bloom, Elliott D.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bonamente, E.; /INFN, Perugia /Perugia U.; Borgland, A.W.; /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept.; Bregeon, J.; /INFN, Pisa; Brez, A.; /INFN, Pisa; Brigida, M.; /Bari U. /INFN, Bari; Bruel, P.; /Ecole Polytechnique; Burnett, Thompson H.; /Washington U., Seattle; Caliandro, G.A.; /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /IASF, Milan /IASF, Milan /DAPNIA, Saclay /ASDC, Frascati /INFN, Perugia /Perugia U. /SISSA, Trieste /George Mason U. /Naval Research Lab, Wash., D.C. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Perugia /Perugia U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Montpellier U. /ASDC, Frascati /Sonoma State U. /Stockholm U., OKC /Royal Inst. Tech., Stockholm /Stockholm U. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Naval Research Lab, Wash., D.C. /INFN, Trieste /Bari U. /INFN, Bari /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /NASA, Goddard /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /CENBG, Gradignan /CENBG, Gradignan /Montpellier U. /Bari U. /INFN, Bari /Naval Research Lab, Wash., D.C. /Stanford U., HEPL /KIPAC, Menlo Park /Stanford U., Phys. Dept. /INFN, Trieste /Hiroshima U.; /more authors..

    2009-05-15

    We report the discovery of high-energy (E > 100 MeV) {gamma}-ray emission from NGC 1275, a giant elliptical galaxy lying at the center of the Perseus cluster of galaxies, based on observations made with the Large Area Telescope (LAT) of the Fermi Gamma-ray Space Telescope. The positional center of the {gamma}-ray source is only {approx}3{prime} away from the NGC 1275 nucleus, well within the 95% LAT error circle of {approx}5{prime}. The spatial distribution of {gamma}-ray photons is consistent with a point source. The average flux and power-law photon index measured with the LAT from 2008 August 4 to 2008 December 5 are F{sub {gamma}} = (2.10 {+-} 0.23) x 10{sup -7} ph (>100 MeV) cm{sup -2} s{sup -1} and {Gamma} = 2.17 {+-} 0.05, respectively. The measurements are statistically consistent with constant flux during the four-month LAT observing period. Previous EGRET observations gave an upper limit of F{sub {gamma}} < 3.72 x 10{sup -8} ph (>100 MeV) cm{sup -2} s{sup -1} to the {gamma}-ray flux from NGC 1275. This indicates that the source is variable on timescales of years to decades, and therefore restricts the fraction of emission that can be produced in extended regions of the galaxy cluster. Contemporaneous and historical radio observations are also reported. The broadband spectrum of NGC 1275 is modeled with a simple one-zone synchrotron/synchrotron self-Compton model and a model with a decelerating jet flow.

  5. High-energy transients with Fermi/GBM

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, David

    2012-10-09

    For most of mankind's history, astronomy was performed on-ground in the optical energy range. It was only when space-based missions, built more than 50 years ago, detected photons with mind-boggling energies that the exploration of the violent Universe really began. These {gamma}-ray photons still provide us with an unprecedented wealth of information for the most energetic processes taking place in the cosmos. Faithful to the olympic slogan ''higher, faster, further'', an increasing armada of {gamma}-ray satellites was built and launched over the last couple of decades with Fermi being the youngest of its kind. In this thesis, I use data from the Gamma-Ray Burst Monitor (GBM) onboard the Fermi satellite. The focus of this work lies on three very different classes of high-energy astrophysical transients: Gamma-Ray Bursts (GRBs), solar flares and Soft Gamma Repeaters (SGRs). In Chapter 2, I present GRB 091024A, a burst of very long duration in {gamma}-rays where optical data could be acquired well during its active phase. The optical light curve shows very intriguing features which I subsequently interpret as the so called ''optical flash'', a fundamental property of the ''fireball'' model. Although predicted by the latter model, only a handful of GRBs show such a behavior, making them interesting transients to study. Furthermore, I present the fundamental temporal and spectral properties of 47 GBM-detected GRBs with known redshifts. As GRBs explode at cosmological distances it is of uttermost importance to study them in their restframe to get a better understanding of their emission mechanisms. I confirm several correlations already found in the past together with an intriguing connection between redshift and the peak energy (E{sub peak}) of GRBs. Although this correlation is heavily influenced by instrumental effects, it is not unexpected from other experimental results, giving it more credibility

  6. Fluctuations of Imbalanced Fermionic Superfluids in Two Dimensions Induce Continuous Quantum Phase Transitions and Non-Fermi-Liquid Behavior

    Directory of Open Access Journals (Sweden)

    Philipp Strack

    2014-04-01

    Full Text Available We study the nature of superfluid pairing in imbalanced Fermi mixtures in two spatial dimensions. We present evidence that the combined effect of Fermi surface mismatch and order parameter fluctuations of the superfluid condensate can lead to continuous quantum phase transitions from a normal Fermi mixture to an intermediate Sarma-Liu-Wilczek superfluid with two gapless Fermi surfaces—even when mean-field theory (incorrectly predicts a first-order transition to a phase-separated “Bardeen-Cooper-Schrieffer plus excess fermions” ground state. We propose a mechanism for non-Fermi-liquid behavior from repeated scattering processes between the two Fermi surfaces and fluctuating Cooper pairs. Prospects for experimental observation with ultracold atoms are discussed.

  7. Modeling the instability behavior of thin film devices: Fermi Level Pinning

    Science.gov (United States)

    Moeini, Iman; Ahmadpour, Mohammad; Gorji, Nima E.

    2018-05-01

    We investigate the underlying physics of degradation/recovery of a metal/n-CdTe Schottcky junction under reverse or forward bias stressing conditions. We used Sah-Noyce-Shockley (SNS) theory to investigate if the swept of Fermi level pinning at different levels (under forward/reverse bias) is the origin of change in current-voltage characteristics of the device. This theory is based on Shockley-Read-Hall recombination within the depletion width and takes into account the interface defect levels. Fermi Level Pinning theory was primarily introduced by Ponpon and developed to thin film solar cells by Dharmadasa's group in Sheffield University-UK. The theory suggests that Fermi level pinning at multiple levels occurs due to high concentration of electron-traps or acceptor-like defects at the interface of a Schottky or pn junction and this re-arranges the recombination rate and charage collection. Shift of these levels under stress conditions determines the change in current-voltage characteristics of the cell. This theory was suggested for several device such as metal/n-CdTe, CdS/CdTe, CIGS/CdS or even GaAs solar cells without a modeling approach to clearly explain it's physics. We have applied the strong SNS modeling approach to shed light on Fermi Level Pinning theory. The modeling confirms that change in position of Fermi Level and it's pining in a lower level close to Valence band increases the recombination and reduces the open-circuit voltage. In contrast, Fermi Level pinning close to conduction band strengthens the electric field at the junction which amplifies the carrier collection and boosts the open-circuit voltage. This theory can well explain the stress effect on device characteristics of various solar cells or Schottky junctions by simply finding the right Fermi level pinning position at every specific stress condition.

  8. IceCube and HAWC constraints on very-high-energy emission from the Fermi bubbles

    Science.gov (United States)

    Fang, Ke; Su, Meng; Linden, Tim; Murase, Kohta

    2017-12-01

    The nature of the γ -ray emission from the Fermi bubbles is unknown. Both hadronic and leptonic models have been formulated to explain the peculiar γ -ray signal observed by the Fermi-LAT between 0.1-500 GeV. If this emission continues above ˜30 TeV , hadronic models of the Fermi bubbles would provide a significant contribution to the high-energy neutrino flux detected by the IceCube observatory. Even in models where leptonic γ -rays produce the Fermi bubbles flux at GeV energies, a hadronic component may be observable at very high energies. The combination of IceCube and HAWC measurements have the ability to distinguish these scenarios through a comparison of the neutrino and γ -ray fluxes at a similar energy scale. We examine the most recent four-year data set produced by the IceCube Collaboration and find no evidence for neutrino emission originating from the Fermi bubbles. In particular, we find that previously suggested excesses are consistent with the diffuse astrophysical background with a p-value of 0.22 (0.05 in an extreme scenario that all the IceCube events that overlap with the bubbles come from them). Moreover, we show that existing and upcoming HAWC observations provide independent constraints on any neutrino emission from the Fermi bubbles due to the close correlation between the γ -ray and neutrino fluxes in hadronic interactions. The combination of these results disfavors a significant contribution from the Fermi bubbles to the IceCube neutrino flux.

  9. Modeling high-energy gamma-rays from the Fermi Bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Splettstoesser, Megan

    2015-09-17

    In 2010, the Fermi Bubbles were discovered at the galactic center of the Milky Way. These giant gamma-ray structures, extending 55° in galactic latitude and 20°-30° in galactic longitude, were not predicted. We wish to develop a model for the gamma-ray emission of the Fermi Bubbles. To do so, we assume that second order Fermi acceleration requires charged particles and irregular magnetic fields- both of which are present in the disk of the Milky Way galaxy. By solving the steady-state case of the transport equation, I compute the proton spectrum due to second order Fermi acceleration. I compare the analytical solutions of the proton spectrum to a numerical solution. I find that the numerical solution to the transport equation converges to the analytical solution in all cases. The gamma-ray spectrum due to proton-proton interaction is compared to Fermi Bubble data (from Ackermann et al. 2014), and I find that second order Fermi acceleration is a good fit for the gamma-ray spectrum of the Fermi Bubbles at low energies with an injection source term of S = 1.5 x 10⁻¹⁰ GeV⁻¹cm⁻³yr⁻¹. I find that a non-steady-state solution to the gamma-ray spectrum with an injection source term of S = 2 x 10⁻¹⁰ GeV⁻¹cm⁻³yr⁻¹ matches the bubble data at high energies.

  10. Anomalous transport phenomena in Weyl metal beyond the Drude model for Landau's Fermi liquids.

    Science.gov (United States)

    Kim, Ki-Seok; Kim, Heon-Jung; Sasaki, M; Wang, J-F; Li, L

    2014-12-01

    Landau's Fermi-liquid theory is the standard model for metals, characterized by the existence of electron quasiparticles near a Fermi surface as long as Landau's interaction parameters lie below critical values for instabilities. Recently this fundamental paradigm has been challenged by the physics of strong spin-orbit coupling, although the concept of electron quasiparticles remains valid near the Fermi surface, where Landau's Fermi-liquid theory fails to describe the electromagnetic properties of this novel metallic state, referred to as Weyl metal. A novel ingredient is that such a Fermi surface encloses a Weyl point with definite chirality, referred to as a chiral Fermi surface, which can arise from breaking of either time reversal or inversion symmetry in systems with strong spin-orbit coupling, responsible for both the Berry curvature and the chiral anomaly. As a result, electromagnetic properties of the Weyl metallic state are described not by conventional Maxwell equations but by axion electrodynamics, where Maxwell equations are modified with a topological-in-origin spatially modulated [Formula: see text] term. This novel metallic state was realized recently in Bi[Formula: see text]Sb x around [Formula: see text] under magnetic fields, where the Dirac spectrum appears around the critical point between the normal semiconducting ([Formula: see text]) and topological semiconducting phases ([Formula: see text]) and the time reversal symmetry breaking perturbation causes the Dirac point to split into a pair of Weyl points along the direction of the applied magnetic field for a very strong spin-orbit coupled system. In this review article, we discuss how the topological structure of both the Berry curvature and the chiral anomaly (axion electrodynamics) gives rise to anomalous transport phenomena in [Formula: see text]Sb x around [Formula: see text] under magnetic fields, thus modifying the Drude model of Landau's Fermi liquids.

  11. Suppressing Fermi acceleration in two-dimensional driven billiards.

    Science.gov (United States)

    Leonel, Edson D; Bunimovich, Leonid A

    2010-07-01

    We consider a dissipative oval-like shaped billiard with a periodically moving boundary. The dissipation considered is proportional to a power of the velocity V of the particle. The three specific types of power laws used are: (i) F∝-V ; (ii) F∝-V(2) and (iii) F∝-V(δ) with 1unlimited energy gain for cases (ii) and (iii). The critical exponents obtained for the phase transition in the case (ii) are the same as those obtained for the dissipative bouncer model. Therefore near this phase transition, these two rather different models belong to the same class of universality. For all types of dissipation, the results obtained allow us to conclude that suppression of the unlimited energy growth is indeed observed.

  12. Comparing Galactic Center MSSM dark matter solutions to the Reticulum II gamma-ray data

    NARCIS (Netherlands)

    Achterberg, A.; van Beekveld, M.; Beenakker, W.; Caron, S.; Hendriks, L.

    2015-01-01

    Observations with the Fermi Large Area Telescope (LAT) indicate a possible small photon signal originating from the dwarf galaxy Reticulum II that exceeds the expected background between 2 GeV and 10 GeV . We have investigated two specific scenarios for annihilating WIMP dark matter within the

  13. Fermi bubbles as sources of cosmic rays above 1 PeV

    Directory of Open Access Journals (Sweden)

    Chernyshov Dmitry

    2017-01-01

    Full Text Available Fermi bubbles are giant gamma-ray structures extended north and south of the Galactic center with characteristic sizes of the order of 10 kpc discovered by the Fermi Large Area Telescope. Good correlation between radio and gamma-ray emission in the region covered by Fermi bubbles implies the presence of high-energy electrons in this area. Due to high energy losses it is rather problematic to transfer relativistic electrons from the Galactic disk toward the Fermi bubbles. Therefore it is natural to assume that these electrons are accelerated in-situ. Additionally this acceleration mechanism should also affect protons. In particular it may re-accelerate Galactic cosmic rays produced by supernova remnants. Unlike electrons, protons have huge life-times and therefore re-acceleration should not be a local effect but affect the whole Galaxy. The effect may even be observed near the Earth. In our model we propose that hadronic cosmic rays (CR below the “knee” of the observed CR spectrum are produced by Galactic supernova remnants distributed in the Galactic disk. Re-acceleration of these particles in Fermi Bubbles produces CRs above the knee. This model provides a natural explanation of the observed CR flux, spectral indices, and matching of spectra at the knee.

  14. Fermi energy dependence of the optical emission in core/shell InAs nanowire homostructures

    Science.gov (United States)

    Möller, M.; Oliveira, D. S.; Sahoo, P. K.; Cotta, M. A.; Iikawa, F.; Motisuke, P.; Molina-Sánchez, A.; de Lima, M. M., Jr.; García-Cristóbal, A.; Cantarero, A.

    2017-07-01

    InAs nanowires grown by vapor-liquid-solid (VLS) method are investigated by photoluminescence. We observe that the Fermi energy of all samples is reduced by ˜20 meV when the size of the Au nanoparticle used for catalysis is increased from 5 to 20 nm. Additional capping with a thin InP shell enhances the optical emission and does not affect the Fermi energy. The unexpected behavior of the Fermi energy is attributed to the differences in the residual donor (likely carbon) incorporation in the axial (low) and lateral (high incorporation) growth in the VLS and vapor-solid (VS) methods, respectively. The different impurity incorporation rate in these two regions leads to a core/shell InAs homostructure. In this case, the minority carriers (holes) diffuse to the core due to the built-in electric field created by the radial impurity distribution. As a result, the optical emission is dominated by the core region rather than by the more heavily doped InAs shell. Thus, the photoluminescence spectra and the Fermi energy become sensitive to the core diameter. These results are corroborated by a theoretical model using a self-consistent method to calculate the radial carrier distribution and Fermi energy for distinct diameters of Au nanoparticles.

  15. Unconventional Fermi surface associated with novel quasiparticles in the Kondo insulator SmB6

    Science.gov (United States)

    Sebastian, Suchitra

    The search for a Fermi surface in the absence of a Fermi liquid has endured for decades. We present evidence for the realisation of such a state in the Kondo Insulator SmB6, which is an extreme example of Fermi liquid breakdown. Experimental results are presented from complementary techniques including quantum oscillations, specific heat capacity, thermal conductivity, and oscillatory entropy down to low temperatures. An experimental comparison is made with alternative theoretical models that associate novel quasiparticles with the unconventional Fermi surface we uncover in SmB6. A new paradigm for the realisation of a Fermi surface in the absence of conventional quasiparticles is proposed in the vicinity of a Kondo insulator transition. This work was performed in collaboration with M. Hartstein, W. H. Toews, Y.-T. Hsu, B. Zeng, X. Chen, M. Ciomaga Hatnean, Q. R. Zhang, S. Nakamura, A. S. Padgett, G. Rodway-Gant, J. Berk, M. K. Kingston, G. H. Zhang, M. K. Chan, S. Yamashita, T. Sakakibara, Y. Takano, J. -H. Park, L. Balicas, N. Harrison, N. Shitsevalova, G. Balakrishnan, G. G. Lonzarich, R. W. Hill, and M. Sutherland.

  16. Fermi Level Pinning at Electrical Metal Contacts of Monolayer Molybdenum Dichalcogenides.

    Science.gov (United States)

    Kim, Changsik; Moon, Inyong; Lee, Daeyeong; Choi, Min Sup; Ahmed, Faisal; Nam, Seunggeol; Cho, Yeonchoo; Shin, Hyeon-Jin; Park, Seongjun; Yoo, Won Jong

    2017-02-28

    Electrical metal contacts to two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDCs) are found to be the key bottleneck to the realization of high device performance due to strong Fermi level pinning and high contact resistances (R c ). Until now, Fermi level pinning of monolayer TMDCs has been reported only theoretically, although that of bulk TMDCs has been reported experimentally. Here, we report the experimental study on Fermi level pinning of monolayer MoS 2 and MoTe 2 by interpreting the thermionic emission results. We also quantitatively compared our results with the theoretical simulation results of the monolayer structure as well as the experimental results of the bulk structure. We measured the pinning factor S to be 0.11 and -0.07 for monolayer MoS 2 and MoTe 2 , respectively, suggesting a much stronger Fermi level pinning effect, a Schottky barrier height (SBH) lower than that by theoretical prediction, and interestingly similar pinning energy levels between monolayer and bulk MoS 2 . Our results further imply that metal work functions have very little influence on contact properties of 2D-material-based devices. Moreover, we found that R c is exponentially proportional to SBH, and these processing parameters can be controlled sensitively upon chemical doping into the 2D materials. These findings provide a practical guideline for depinning Fermi level at the 2D interfaces so that polarity control of TMDC-based semiconductors can be achieved efficiently.

  17. Fermi level dependent native defect formation: Consequences for metal-semiconductor and semiconductor-semiconductor interfaces

    International Nuclear Information System (INIS)

    Walukiewicz, W.

    1988-02-01

    The amphoteric native defect model of the Schottky barrier formation is used to analyze the Fermi level pinning at metal/semiconductor interfaces for submonolayer metal coverages. It is assumed that the energy required for defect generation is released in the process of surface back-relaxation. Model calculations for metal/GaAs interfaces show a weak dependence of the Fermi level pinning on the thickness of metal deposited at room temperature. This weak dependence indicates a strong dependence of the defect formation energy on the Fermi level, a unique feature of amphoteric native defects. This result is in very good agreement with experimental data. It is shown that a very distinct asymmetry in the Fermi level pinning on p- and n-type GaAs observed at liquid nitrogen temperatures can be understood in terms of much different recombination rates for amphoteric native defects in those two types of materials. Also, it is demonstrated that the Fermi level stabilization energy, a central concept of the amphoteric defect system, plays a fundamental role in other phenomena in semiconductors such as semiconductor/semiconductor heterointerface intermixing and saturation of free carrier concentration. 33 refs., 6 figs

  18. Microscopy of 2D Fermi gases. Exploring excitations and thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Morgener, Kai Henning

    2014-12-08

    This thesis presents experiments on three-dimensional (3D) and two-dimensional (2D) ultracold fermionic {sup 6}Li gases providing local access to microscopic quantum many-body physics. A broad magnetic Feshbach resonance is used to tune the interparticle interaction strength freely to address the entire crossover between the Bose-Einstein-Condensate (BEC) and Bardeen-Cooper-Schrieffer (BCS) regime. We map out the critical velocity in the crossover from BEC to BCS superfluidity by moving a small attractive potential through the 3D cloud. We compare the results with theoretical predictions and achieve quantitative understanding in the BEC regime by performing numerical simulations. Of particular interest is the regime of strong correlations, where no theoretical predictions exist. In the BEC regime, the critical velocity should be closely related to the speed of sound, according to the Landau criterion and Bogolyubov theory. We measure the sound velocity by exciting a density wave and tracking its propagation. The focus of this thesis is on our first experiments on general properties of quasi-2D Fermi gases. We realize strong vertical confinement by generating a 1D optical lattice by intersecting two blue-detuned laser beams under a steep angle. The large resulting lattice spacing enables us to prepare a single planar quantum gas deeply in the 2D regime. The first measurements of the speed of sound in quasi-2D gases in the BEC-BCS crossover are presented. In addition, we present preliminary results on the pressure equation of state, which is extracted from in-situ density profiles. Since the sound velocity is directly connected to the equation of state, the results provide a crosscheck of the speed of sound. Moreover, we benchmark the derived sound from available equation of state predictions, find very good agreement with recent numerical calculations, and disprove a sophisticated mean field approach. These studies are carried out with a novel apparatus which has

  19. Should Fermi Have Secured his Water Heater Against Earthquakes?

    Science.gov (United States)

    Brooks, E. M.; Diggory, M.; Gomez, E.; Salaree, A.; Schmid, M.; Saloor, N.; Stein, S. A.

    2015-12-01

    A common student response to quantitative questions in science with no obvious answer is "I have no idea." Often these questions can be addressed by Fermi estimation, in which an apparently difficult-to-estimate quantity for which one has little intuitive sense can be sensibly estimated by combining order of magnitude estimates of easier-to-estimate quantities. Although this approach is most commonly used for numerical estimates, it can also be applied to issues combining both science and policy. Either application involves dividing an issue into tractable components and addressing them separately. To learn this method, our natural hazard policy seminar considered a statement by the Illinois Emergency Management Agency that homeowners should secure water heaters to prevent them from being damaged by earthquakes. We divided this question into subtopics, researched each, and discussed them weekly to reach a synthesis. We used a simple model to estimate the net benefit, the difference between the expected value of damage and the cost of securing a water heater. This benefit is positive, indicating that securing is worthwhile, only if the probability of damage during the heater's life is relatively large, approximately 1 - 10%. To assess whether the actual probability is likely to be this high, we assume that major water heater damage is likely only for shaking with MMI intensity VIII ("heavy furniture overturned") or greater. Intensity data for the past 200 years of Illinois earthquakes show that this level was reached only in the very southernmost part of the state for the 1811-1812 New Madrid earthquakes. As expected, the highest known shaking generally decreases northward toward Chicago. This history is consistent with the fact that we find no known cases of earthquake-toppled water heaters in Illinois. We compared the rate of return on securing a water heater in Chicago to buying a lottery ticket when the jackpot is large, and found that the latter would be a

  20. A novel non-Fermi-liquid state in the iron-pnictide FeCrAs

    Science.gov (United States)

    Wu, W.; McCollam, A.; Swainson, I.; Rourke, P. M. C.; Rancourt, D. G.; Julian, S. R.

    2009-01-01

    We report transport and thermodynamic properties of stoichiometric single crystals of the hexagonal iron-pnictide FeCrAs. The in-plane resistivity shows an unusual "non-metallic" dependence on temperature T, rising continuously with decreasing T from ~800 K to below 100 mK. The c-axis resistivity is similar, except for a sharp drop upon entry into an antiferromagnetic state at TN~125 K. Below 10 K the resistivity follows a non-Fermi-liquid power law, ρ(T)=ρ0-ATx with x<1, while the specific heat shows Fermi-liquid behaviour with a large Sommerfeld coefficient, γ~30 mJ/mol K2. The high-temperature properties are reminiscent of those of the parent compounds of the new layered iron-pnictide superconductors, however the T→0 K properties suggest a new class of non-Fermi liquid.

  1. Energy Bands and Fermi Surface for beta-MgMh and beta-MgTl

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt

    1977-01-01

    surfaces are found to be sp-like but there are narrow 5d bands far below—and wide 3d and 6d bands far above—the Fermi levels. For β′-MgHg the calculated angular variation of extremal cross sections of the Fermi surface agrees very well with de Haas-van Alphen data and thereby provide an interpretation......The energy bands of ordered β′-MgHg and β′-MgTl have been calculated by the relativistic linear-muffintin-orbital method. We show how the gross features of the energy bands may be estimated from Wigner-Seitz rules. The densities of states are calculated and the heat capacities derived. The Fermi...

  2. The effect of Fermi energy on reaction of water with oxide surfaces

    Science.gov (United States)

    Mullins, W. M.

    1989-07-01

    The experimental relationship found between oxide Fermi level and aqueous point of zero charge (pzc) is modeled by the generalized Lewis acid-base theory. This model describes a nearly linear relationship between the position of the Fermi level in the band gap and the net charge transferred in a surface acid-base reaction. The situation of a water molecule adsorbed onto an uncharged, insulator (alumina) surface is examined. The charge in the reaction is assumed to shift the dissociation equilibrium of the water molecule, resulting in a net surface charge on the insulator. The pzc of the surface is calculated as a function of insulator Fermi level from these equilibria. This model predicts very strong effects of doping, surface states and surface space charges on pzc of insulators but possibly small effects of structure and stoichiometry.

  3. Non-Fermi Liquids as Highly Active Oxygen Evolution Reaction Catalysts.

    Science.gov (United States)

    Hirai, Shigeto; Yagi, Shunsuke; Chen, Wei-Tin; Chou, Fang-Cheng; Okazaki, Noriyasu; Ohno, Tomoya; Suzuki, Hisao; Matsuda, Takeshi

    2017-10-01

    The oxygen evolution reaction (OER) plays a key role in emerging energy conversion technologies such as rechargeable metal-air batteries, and direct solar water splitting. Herein, a remarkably low overpotential of ≈150 mV at 10 mA cm -2 disk in alkaline solutions using one of the non-Fermi liquids, Hg 2 Ru 2 O 7 , is reported. Hg 2 Ru 2 O 7 displays a rapid increase in current density and excellent durability as an OER catalyst. This outstanding catalytic performance is realized through the coexistence of localized d-bands with the metallic state that is unique to non-Fermi liquids. The findings indicate that non-Fermi liquids could greatly improve the design of highly active OER catalysts.

  4. The pope of physics Enrico Fermi and the birth of the atomic age

    CERN Document Server

    Segre, Gino

    2016-01-01

    Enrico Fermi is unquestionably among the greats of the world's physicists, the most famous Italian scientist since Galileo. Called the Pope by his peers, he was regarded as infallible in his instincts and research. His discoveries changed our world; they led to weapons of mass destruction and conversely to life-saving medical interventions. This unassuming man struggled with issues relevant today, such as the threat of nuclear annihilation and the relationship of science to politics. Fleeing Fascism and anti-Semitism, Fermi became a leading figure in America's most secret project: building the atomic bomb. The last physicist who mastered all branches of the discipline, Fermi was a rare mixture of theorist and experimentalist. His rich legacy encompasses key advances in fields as diverse as comic rays, nuclear technology, and early computers. In their revealing book, The Pope of Physics, Gino Segré and Bettina Hoerlin bring this scientific visionary to life. An examination of the human dramas that touched F...

  5. The Fermi LAT Very Important Project (VIP) List of Active Galactic Nuclei

    Science.gov (United States)

    Thompson, David J.; Fermi Large Area Telescope Collaboration

    2018-01-01

    Using nine years of Fermi Gamma-ray Space Telescope Large Area Telescope (LAT) observations, we have identified 30 projects for Active Galactic Nuclei (AGN) that appear to provide strong prospects for significant scientific advances. This Very Important Project (VIP) AGN list includes AGNs that have good multiwavelength coverage, are regularly detected by the Fermi LAT, and offer scientifically interesting timing or spectral properties. Each project has one or more LAT scientists identified who are actively monitoring the source. They will be regularly updating the LAT results for these VIP AGNs, working together with multiwavelength observers and theorists to maximize the scientific return during the coming years of the Fermi mission. See https://confluence.slac.stanford.edu/display/GLAMCOG/VIP+List+of+AGNs+for+Continued+Study

  6. Fingerprints of a position-dependent Fermi velocity on scanning tunnelling spectra of strained graphene

    Science.gov (United States)

    Oliva-Leyva, M.; Barrios-Vargas, J. E.; Wang, Chumin

    2018-02-01

    Nonuniform strain in graphene induces a position dependence of the Fermi velocity, as recently demonstrated by scanning tunnelling spectroscopy experiments. In this work, we study the effects of a position-dependent Fermi velocity on the local density of states (LDOS) of strained graphene, with and without the presence of a uniform magnetic field. The variation of LDOS obtained from tight-binding calculations is successfully explained by analytical expressions derived within the Dirac approach. These expressions also rectify a rough Fermi velocity substitution used in the literature that neglects the strain-induced anisotropy. The reported analytical results could be useful for understanding the nonuniform strain effects on scanning tunnelling spectra of graphene, as well as when it is exposed to an external magnetic field.

  7. Origin of Fermi-level pinning at GaAs surfaces and interfaces

    Science.gov (United States)

    Colleoni, Davide; Miceli, Giacomo; Pasquarello, Alfredo

    2014-12-01

    Through first-principles simulation methods, we assign the origin of Fermi-level pinning at GaAs surfaces and interfaces to the bistability between the As-As dimer and two As dangling bonds, which transform into each other upon charge trapping. This defect is shown to be naturally formed both at GaAs surfaces upon oxygen deposition and in the near-interface substoichiometric oxide. Using electron-counting arguments, we infer that the identified defect occurs in opposite charge states. The Fermi-level pinning then results from the amphoteric nature of this defect which drives the Fermi level to its defect level. These results account for the experimental characterization at both GaAs surfaces and interfaces within a unified picture, wherein the role of As antisites is elucidated.

  8. Shear viscosity and spin-diffusion coefficient of a two-dimensional Fermi gas

    DEFF Research Database (Denmark)

    Bruun, Georg

    2012-01-01

    Using kinetic theory, we calculate the shear viscosity and the spin-diffusion coefficient as well as the associated relaxation times for a two-component Fermi gas in two dimensions, as a function of temperature, coupling strength, polarization, and mass ratio of the two components. It is demonstr......Using kinetic theory, we calculate the shear viscosity and the spin-diffusion coefficient as well as the associated relaxation times for a two-component Fermi gas in two dimensions, as a function of temperature, coupling strength, polarization, and mass ratio of the two components....... It is demonstrated that the minimum value of the viscosity decreases with the mass ratio, since Fermi blocking becomes less efficient. We furthermore analyze recent experimental results for the quadrupole mode of a two-dimensional gas in terms of viscous damping, obtaining a qualitative agreement using no fitting...

  9. Extending the Fermi-LAT data processing pipeline to the grid

    Energy Technology Data Exchange (ETDEWEB)

    Zimmer, S. [Stockholm Univ., Stockholm (Sweden); The Oskar Klein Centre for Cosmoparticle Physics, Stockholm (Sweden); Arrabito, L. [Univ. Montpellier 2, Montpellier (France); Glanzman, T. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Johnson, T. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Lavalley, C. [Univ. Montpellier 2, Montpellier (France); Tsaregorodtsev, A. [Centre de Physique des Particules de Marseille, Marseille (France)

    2015-05-12

    The Data Handling Pipeline ("Pipeline") has been developed for the Fermi Gamma-Ray Space Telescope (Fermi) Large Area Telescope (LAT) which launched in June 2008. Since then it has been in use to completely automate the production of data quality monitoring quantities, reconstruction and routine analysis of all data received from the satellite and to deliver science products to the collaboration and the Fermi Science Support Center. Aside from the reconstruction of raw data from the satellite (Level 1), data reprocessing and various event-level analyses are also reasonably heavy loads on the pipeline and computing resources. These other loads, unlike Level 1, can run continuously for weeks or months at a time. Additionally, it receives heavy use in performing production Monte Carlo tasks.

  10. A low Fermi scale from a simple gaugino-scalar mass relation

    Energy Technology Data Exchange (ETDEWEB)

    Bruemmer, F. [International School for Advanced Studies, Trieste (Italy); Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Buchmueller, W. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-11-15

    In supersymmetric extensions of the Standard Model, the Fermi scale of electroweak symmetry breaking is determined by the pattern of supersymmetry breaking. We present an example, motivated by a higher-dimensional GUT model, where a particular mass relation between the gauginos, third-generation squarks and Higgs fields of the MSSM leads to a Fermi scale smaller than the soft mass scale. This is in agreement with the measured Higgs boson mass. The {mu} parameter is generated independently of supersymmetry breaking, however the {mu} problem becomes less acute due to the little hierarchy between the soft mass scale and the Fermi scale as we argue. The resulting superparticle mass spectra depend on the localization of quark and lepton fields in higher dimensions. In one case, the squarks of the first two generations as well as the gauginos and higgsinos can be in the range of the LHC. Alternatively, only the higgsinos may be accessible at colliders. The lightest superparticle is the gravitino.

  11. Fermi surfaces and electronic structure of the Heusler alloy Co2TiSn

    International Nuclear Information System (INIS)

    Hickey, M C; Husmann, A; Holmes, S N; Jones, G A C

    2006-01-01

    The electronic structure of the Heusler alloy Co 2 TiSn is investigated here, with particular attention paid to its potential as a half-metallic ferromagnet. Ab initio calculations are performed using a plane wave pseudopotential code in the framework of density functional theory. These accurate calculations are done with convergence tolerances of 10 -5 and 10 -4 eV on the total energy and Fermi energy, respectively. The alloy is found not to be a half-metal. Minority spin electrons undergo distinctly hole-like dispersion at the Γ point in k space while the majority spin bands are metallic with a multiply connected tube-like Fermi surface. Further, the computed minority band gap and spin polarization at the Fermi level are larger when the calculation is performed using the generalized gradient approximation

  12. Spin-Peierls instability of three-dimensional Kitaev spin liquids with Majorana Fermi surface

    Science.gov (United States)

    Hermanns, Maria; Trebst, Simon; Rosch, Achim

    The Kitaev honeycomb model is one of the paradigmatic examples of a frustrated spin system exhibiting a quantum spin liquid ground state. The emergent low-energy degrees of freedom are Majorana fermions that can form various different (semi-)metallic states. Three-dimensional variants of this model can, in particular, harbor gapless quantum spin liquids with a Majorana Fermi surface. In this talk, we discuss Fermi surface instabilities arising from additional spin exchange terms (such as a Heisenberg coupling), which induce interactions between the emergent Majorana fermion degrees of freedom. We show that independent of the details of the interactions, the Majorana Fermi surface is always unstable. Generically, the system spontaneously dimerizes at exponentially small temperatures and forms a quantum spin liquid with nodal lines. Depending on the microscopic details, further symmetries of the system may be broken at this transition. These spin-Peierls instabilities of a 3D spin liquid are closely related to BCS instabilities of fermions.

  13. A relativistic extended Fermi-Thomas-like equation for a self-gravitating system of fermions

    International Nuclear Information System (INIS)

    Merloni, A.; Ruffini, R.; Torroni, V.

    1998-01-01

    The authors extend previous results of a Fermi-Thomas model, describing self-gravitating fermions in their ground state, to a relativistic gravitational theory in Minkowski space. In such a theory the source term of the gravitational potential depends both on the pressure and the density of the fluid. It is shown that, in correspondence of this relativistic treatment, still a Fermi-Thomas-like equation can be derived for the self-gravitating system, though the non-linearities are much more complex. No Fermi-Thomas-like equation can be obtained in the General Relativistic treatment. The canonical results for neutron stars and white dwarfs are recovered and also some erroneous statements in the scientific literature are corrected

  14. Hidden Fermi liquid, scattering rate saturation, and Nernst effect: a dynamical mean-field theory perspective.

    Science.gov (United States)

    Xu, Wenhu; Haule, Kristjan; Kotliar, Gabriel

    2013-07-19

    We investigate the transport properties of a correlated metal within dynamical mean-field theory. Canonical Fermi liquid behavior emerges only below a very low temperature scale T(FL). Surprisingly the quasiparticle scattering rate follows a quadratic temperature dependence up to much higher temperatures and crosses over to saturated behavior around a temperature scale T(sat). We identify these quasiparticles as constituents of the hidden Fermi liquid. The non-Fermi-liquid transport above T(FL), in particular the linear-in-T resistivity, is shown to be a result of a strongly temperature dependent band dispersion. We derive simple expressions for the resistivity, Hall angle, thermoelectric power and Nernst coefficient in terms of a temperature dependent renormalized band structure and the quasiparticle scattering rate. We discuss possible tests of the dynamical mean-field theory picture of transport using ac measurements.

  15. Observation of spatial charge and spin correlations in the 2D Fermi-Hubbard model.

    Science.gov (United States)

    Cheuk, Lawrence W; Nichols, Matthew A; Lawrence, Katherine R; Okan, Melih; Zhang, Hao; Khatami, Ehsan; Trivedi, Nandini; Paiva, Thereza; Rigol, Marcos; Zwierlein, Martin W

    2016-09-16

    Strong electron correlations lie at the origin of high-temperature superconductivity. Its essence is believed to be captured by the Fermi-Hubbard model of repulsively interacting fermions on a lattice. Here we report on the site-resolved observation of charge and spin correlations in the two-dimensional (2D) Fermi-Hubbard model realized with ultracold atoms. Antiferromagnetic spin correlations are maximal at half-filling and weaken monotonically upon doping. At large doping, nearest-neighbor correlations between singly charged sites are negative, revealing the formation of a correlation hole, the suppressed probability of finding two fermions near each other. As the doping is reduced, the correlations become positive, signaling strong bunching of doublons and holes, in agreement with numerical calculations. The dynamics of the doublon-hole correlations should play an important role for transport in the Fermi-Hubbard model. Copyright © 2016, American Association for the Advancement of Science.

  16. Second sound, osmotic pressure, and Fermi-liquid parameters in 3He-4He solutions

    International Nuclear Information System (INIS)

    Corruccini, L.R.

    1984-01-01

    Second-sound velocities and osmotic pressures are analyzed to obtain the first experimental values for the Landau compressibility parameter F 0 /sup s/ in 3 He- 4 He solutions. Data are presented as a function of pressure and 3 He concentration, and are compared to theoretical predictions. The square of the second-sound velocity at finite temperature is found to be accurately proportional to the internal energy of a perfect Fermi gas. Using inertial effective masses given by the Landau-Pomeranchuk theory, the square of the velocity is found to separate into two parts: a temperature-dependent part characterized completely by ideal Fermi-gas behavior and a temperature-independent part containing all the Fermi-liquid corrections. This is related to a similar separation found in the osmotic pressure

  17. Theory of heavy-fermion compounds theory of strongly correlated Fermi-systems

    CERN Document Server

    Amusia, Miron Ya; Shaginyan, Vasily R; Stephanovich, Vladimir A

    2015-01-01

    This book explains modern and interesting physics in heavy-fermion (HF) compounds to graduate students and researchers in condensed matter physics. It presents a theory of heavy-fermion (HF) compounds such as HF metals, quantum spin liquids, quasicrystals and two-dimensional Fermi systems. The basic low-temperature properties and the scaling behavior of the compounds are described within the framework of the theory of fermion condensation quantum phase transition (FCQPT). Upon reading the book, the reader finds that HF compounds with quite different microscopic nature exhibit the same non-Fermi liquid behavior, while the data collected on very different HF systems have a universal scaling behavior, and these compounds are unexpectedly uniform despite their diversity. For the reader's convenience, the analysis of compounds is carried out in the context of salient experimental results. The numerous calculations of the non-Fermi liquid behavior, thermodynamic, relaxation and transport properties, being in good...

  18. Calculated Fermi surface properties of LaSn3 and YSn3 under pressure

    International Nuclear Information System (INIS)

    Kanchana, V.

    2012-01-01

    The electronic structure, Fermi surface and elastic properties of the iso-structural and iso-electronic LaSn 3 and YSn 3 intermetallic compounds are studied under pressure within the frame work of density functional theory including spin-orbit coupling. The LaSn 3 Fermi surface consists of two sheets, of which the second is very complex. Under pressure a third sheet appears around compression V/V 0 =0.94, while a small topology changes in the second sheet is seen at compression V/V 0 =0.90. This may be in accordance with the anomalous behavior in the superconducting transition temperature observed in LaSn 3 , which has been suggested to reflect a Fermi surface topological transition, along with a non-monotonic pressure dependence of the density of states at the Fermi level. The similar behavior is not observed in YSn 3 for which the Fermi surface includes three sheets already at ambient conditions, and the topology remains unchanged under pressure. The reason for the difference in behavior between LaSn 3 and YSn 3 is the role of spin-orbit coupling and the hybridization of La-4f state with the Sn-p state in the vicinity of the Fermi level, which is well explained using the band structure calculation. The elastic constants and related mechanical properties are calculated at ambient as well as at elevated pressures. The elastic constants increase with pressure for both compounds and satisfy the conditions for mechanical stability under pressure. (author)

  19. Thomas-Fermi-von Weizsäcker theory for a harmonically trapped, two-dimensional, spin-polarized dipolar Fermi gas

    Science.gov (United States)

    van Zyl, B. P.; Zaremba, E.; Pisarski, P.

    2013-04-01

    We systematically develop a density functional description for the equilibrium properties of a two-dimensional, harmonically trapped, spin-polarized dipolar Fermi gas based on the Thomas-Fermi-von Weizsäcker approximation. We pay particular attention to the construction of the two-dimensional kinetic energy functional, where corrections beyond the local density approximation must be motivated with care. We also present an intuitive derivation of the interaction energy functional associated with the dipolar interactions and provide physical insight into why it can be represented as a local functional. Finally, a simple and highly efficient self-consistent numerical procedure is developed to determine the equilibrium density of the system for a range of dipole interaction strengths.

  20. Some statistical aspects of the spinor field Fermi-Bose duality

    Directory of Open Access Journals (Sweden)

    V.M. Simulik

    2012-12-01

    Full Text Available The structure of 29-dimensional extended real Clifford-Dirac algebra, which has been introduced in our paper Phys. Lett. A, 2011, Vol. 375, 2479, is considered in brief. Using this algebra, the property of Fermi-Bose duality of the Dirac equation with nonzero mass is proved. It means that Dirac equation can describe not only the fermionic but also the bosonic states. The proof of our assertion based on the examples of bosonic symmetries, solutions and conservation laws is given. Some statistical aspects of the spinor field Fermi-Bose duality are discussed.

  1. Size of shell universe in light of Fermi GBM transient associated with GW150914

    Directory of Open Access Journals (Sweden)

    Merab Gogberashvili

    2016-12-01

    Full Text Available The possible burst occurred in location and temporal consistence with gravitational wave event GW150914, as reported by Fermi GBM, offers a new way of constraining models with extra dimensions. Using the time delay in arrival of the gamma ray transient observed by Fermi Gamma-ray Burst Monitor (GMB relative to the gravitational waves event triggered by the LIGO detectors we investigate the size of the spherical brane-universe expanding in multi-dimensional space–time. It is shown that a joint observation of gravitational waves in association with gamma ray burst can provide a very stringent bound on the spatial curvature of the brain.

  2. Size of shell universe in light of Fermi GBM transient associated with GW150914

    Energy Technology Data Exchange (ETDEWEB)

    Gogberashvili, Merab, E-mail: gogber@gmail.com [Department of Exact and Natural Sciences, Javakhishvili Tbilisi State University, Tbilisi 0179, Georgia (United States); Department of High Energy Physics, Andronikashvili Institute of Physics, Tbilisi 0177, Georgia (United States); Sakharov, Alexander S., E-mail: Alexandre.Sakharov@cern.ch [Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Physics Department, Manhattan College, 4513 Manhattan College Parkway, Riverdale, NY 10471 (United States); Experimental Physics Department, CERN, CH-1211 Genève 23 (Switzerland); Sarkisyan-Grinbaum, Edward K., E-mail: sedward@cern.ch [Experimental Physics Department, CERN, CH-1211 Genève 23 (Switzerland); Department of Physics, The University of Texas at Arlington, 502 Yates Street, Box 19059, Arlington, TX 76019 (United States)

    2016-12-10

    The possible burst occurred in location and temporal consistence with gravitational wave event GW150914, as reported by Fermi GBM, offers a new way of constraining models with extra dimensions. Using the time delay in arrival of the gamma ray transient observed by Fermi Gamma-ray Burst Monitor (GMB) relative to the gravitational waves event triggered by the LIGO detectors we investigate the size of the spherical brane-universe expanding in multi-dimensional space–time. It is shown that a joint observation of gravitational waves in association with gamma ray burst can provide a very stringent bound on the spatial curvature of the brain.

  3. Superconducting transition temperature: Interacting Fermi gas and phonon mechanisms in the nonadiabatic regime

    Science.gov (United States)

    Gor'kov, Lev P.

    2016-02-01

    We analyze the mathematical structure of equations for temperature TC of the superconductivity transition in a gas of interacting Fermi particles or at the phonon-mediated pairing in a metal in the case of nonadiabatic conditions ω0≥EF , i.e., when the characteristic phonon frequency ω0 is comparable or larger than the Fermi energy EF. As the methods of calculating TC in common superconductors are not applicable in the nonadiabatic regime, the integral equations for TC are derived in the logarithmic approximation. The new equations contain no divergent terms in the antiadiabatic limit. The results can be immediately generalized to anisotropic band superconductors.

  4. VizieR Online Data Catalog: Fermi unassociated sources ATCA observations (Petrov+, 2013)

    Science.gov (United States)

    Petrov, L.; Mahony, E. K.; Edwards, P. G.; Sadler, E. M.; Schinzel, F. K.; McConnell, D.

    2014-07-01

    Table S1: catalogue of 146 objects detected at both 5 and 9GHz sub-bands of 2FGL sources marked as unassociated within the ellipse of 99% probability of their localization Table S2: catalogue of 229 objects detected only at 5GHz sub-band within the ellipses of 99% probability of localisation of Fermi sources marked as unassociated in 2FGL catalogue. Table S3: catalogue of 49 objects detected at sidelobes of either 5 or 9GHz beam within the ellipses of 99% probability of localisation of Fermi sources marked as unassociated in 2FGL catalogue. (3 data files).

  5. VizieR Online Data Catalog: Short GRBs with Fermi GBM and Swift BAT (Burns+, 2016)

    Science.gov (United States)

    Burns, E.; Connaughton, V.; Zhang, B.-B.; Lien, A.; Briggs, M. S.; Goldstein, A.; Pelassa, V.; Troja, E.

    2018-01-01

    Compact binary system mergers are expected to generate gravitational radiation detectable by ground-based interferometers. A subset of these, the merger of a neutron star with another neutron star or a black hole, are also the most popular model for the production of short gamma-ray bursts (GRBs). The Swift Burst Alert Telescope (BAT) and the Fermi Gamma-ray Burst Monitor (GBM) trigger on short GRBs (SGRBs) at rates that reflect their relative sky exposures, with the BAT detecting 10 per year compared to about 45 for GBM. We examine the SGRB populations detected by Swift BAT and Fermi GBM. (4 data files).

  6. Semiclassical approach to Regge poles trajectories calculations for nonsingular potentials: Thomas-Fermi type

    International Nuclear Information System (INIS)

    Belov, S M; Avdonina, N B; Felfli, Z; Marletta, M; Msezane, A Z; Naboko, S N

    2004-01-01

    A simple semiclassical approach, based on the investigation of anti-Stokes line topology, is presented for calculating Regge poles for nonsingular (Thomas-Fermi type) potentials, namely potentials with singularities at the origin weaker than order -2. The anti-Stokes lines for Thomas-Fermi potentials have a more complicated structure than those of singular potentials and require careful application of complex analysis. The explicit solution of the Bohr-Sommerfeld quantization condition is used to obtain approximate Regge poles. We introduce and employ three hypotheses to obtain several terms of the Regge pole approximation

  7. Magnetic-Field Dependence of Raman Coupling Strength in Ultracold 40K Atomic Fermi Gas

    International Nuclear Information System (INIS)

    Huang Liang-Hui; Wang Peng-Jun; Meng Zeng-Ming; Peng Peng; Chen Liang-Chao; Li Dong-Hao; Zhang Jing

    2016-01-01

    We experimentally demonstrate the relation of Raman coupling strength with the external bias magnetic field in degenerate Fermi gas of 40 K atoms. Two Raman lasers couple two Zeeman energy levels, whose energy splitting depends on the external bias magnetic field. The Raman coupling strength is determined by measuring the Rabi oscillation frequency. The characteristics of the Rabi oscillation is to be damped after several periods due to Fermi atoms in different momentum states oscillating with different Rabi frequencies. The experimental results show that the Raman coupling strength will decrease as the external bias magnetic field increases, which is in good agreement with the theoretical prediction. (paper)

  8. Strain-induced fermi contour anisotropy of GaAs 2D holes.

    Science.gov (United States)

    Shabani, J; Shayegan, M; Winkler, R

    2008-03-07

    We report measurements of magnetoresistance commensurability peaks, induced by a square array of antidots, in GaAs (311)A two-dimensional holes as a function of applied in-plane strain. The data directly probe the shapes of the Fermi contours of the two spin subbands that are split thanks to the spin-orbit interaction and strain. The experimental results are in quantitative agreement with the predictions of accurate energy band calculations, and reveal that the majority spin subband has a severely distorted Fermi contour whose anisotropy can be tuned with strain.

  9. Fermi Potential across Working Solid Oxide Cells with Zirconia or Ceria Electrolytes

    DEFF Research Database (Denmark)

    Jacobsen, Torben; Chatzichristodoulou, Christodoulos; Mogensen, Mogens Bjerg

    2014-01-01

    A solid electrolyte will always possess a finite electronic conductivity, in particular electrolytes like doped ceria that easily get reduced and become mixed ionic and electronic conductors. This given rise too high leak currents through the solid oxide cell (SOC). Especially, problems have been...... driving the O2-ions is not the Fermi potential, which is the potential of the electrons, but the Galvani potential (or inner potential) (1). The concepts of potentials describing the electrical situation of a solid electrolyte is shown i Fig. 1, and an example of the Fermi potential (π) and Galvani...

  10. Using of new possibilities of Fermi architecture by development og GPGPU programs

    International Nuclear Information System (INIS)

    Dudnik, V.A.; Kudryavtsev, V.I.; Us, S.A.; Shestakov, M.V.

    2013-01-01

    Description of additional functions of hardware and software, which are presented in the structure of new architecture of FERMI graphic processors made by company NVIDIA, was given. Recommendations of their use within the realization of algorithms of scientific and technical calculations by means of the graphic processors were given. Application of the new possibilities of FERMI architecture and CUDA technologies (Compute Unified Device Architecture - unified hardware-software decision for parallel calculations on GPU) of NVIDIA Company was described. It was done for time reduction of applications' development which is using possibilities of GPGPU for acceleration of data processing

  11. Solution of Thomas-Fermi-Dirac equation of statistical model of atom at small distances from nucleus

    International Nuclear Information System (INIS)

    Sabirov, R.Kh.

    1993-01-01

    Nontraditional form of the Thomas-Fermi-Dirac equation is proposed. On the base of the form is obtained a solution of the equation at small distances from a nucleus. The solution represents inself generalization of the Baker solution of the Thomas-Fermi equation accounting for the exchange interaction. For determining the Baker generalized series coefficients is obtained a recursion relation

  12. A new estimate of the Khirzhnits corrections to the zero temperature Thomas-Fermi equation-of-state

    International Nuclear Information System (INIS)

    Szichman, H.; Krumbein, A.D.; Eliezer, S.

    1984-09-01

    A method is proposed for estimating the zero temperature limit of the Khirzhnits corrections to the Thomas-Fermi equation-of-state by extrapolation of the finite-temperature results. The cold curves so obtained for Ti, Fe, Cu and Ta are compared with experimental results as well as with those calculated using other variations of the Thomas-Fermi model

  13. Pb II

    African Journals Online (AJOL)

    Windows User

    ., 2009) biomaterials. However, the ..... reported for various microorganisms by various researchers (Gong et al., 2005). At biomass ... the increase in initial Pb (II) was also observed for removal of Pb (II) by loofa sponge immobilized Aspergillus.

  14. (II) complexes

    African Journals Online (AJOL)

    activities of Schiff base tin (II) complexes. Neelofar1 ... Conclusion: All synthesized Schiff bases and their Tin (II) complexes showed high antimicrobial and ...... Singh HL. Synthesis and characterization of tin (II) complexes of fluorinated Schiff bases derived from amino acids. Spectrochim Acta Part A: Molec Biomolec.

  15. 2FHL- The Second Catalog of Hard Fermi-LAT Sources

    Science.gov (United States)

    Ackermann, M.; Ajello, M.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Gonzalez, J. Becerra; Bellazzini, R.; Bissaldi, E.; hide

    2016-01-01

    We present a catalog of sources detected above 50 GeV by the Fermi-Large Area Telescope (LAT) in 80 months of data. The newly delivered Pass8 event-level analysis allows the detection and characterization of sources in the 50 GeV-2 TeV energy range. In this energy band, Fermi-LAT has detected 360 sources, which constitute the second catalog of hard Fermi-LAT sources (2FHL). The improved angular resolution enables the precise localization of point sources (1.7 radius at 68% C.L.) and the detection and characterization of spatially extended sources. We find that 86% of the sources can be associated with counterparts at other wavelengths, of which the majority (75%) are active galactic nuclei and the rest (11%) are Galactic sources. Only 25% of the 2FHLsources have been previously detected by Cherenkov telescopes, implying that the 2FHL provides a reservoir of candidates to be followed up at very high energies. This work closes the energy gap between the observations performed at GeV energies by Fermi-LAT on orbit and the observations performed at higher energies byCherenkov telescopes from the ground.

  16. Radio Observation of the 11-Month Fermi-AGN at Urumqi ...

    Indian Academy of Sciences (India)

    Abstract. We carry out flux observation at 5 GHz for 124 sources from the 'clean' sample of Fermi catalog 1LAC (The First LAT AGN Catalog) with Urumqi 25 m telescope. We find that it is obvious that there is a correlation between the γ-ray and the radio flux density for blazars. For the subclasses, the correlation for FSRQs is ...

  17. Crossover Temperature of Bose-Einstein Condensation in an Atomic Fermi Gas

    NARCIS (Netherlands)

    Falco, G.M.; Stoof, H.T.C.

    2004-01-01

    We show that in an atomic Fermi gas near a Feshbach resonance the crossover between a Bose-Einstein condensate of diatomic molecules and a Bose-Einstein condensate of Cooper pairs occurs at positive detuning, i.e., when the molecular energy level lies in the two-atom continuum. We determine the

  18. Atom-molecule equilibration in a degenerate Fermi gas with resonant interactions

    DEFF Research Database (Denmark)

    Williams, J. E.; Nikuni, T.; Nygaard, Nicolai

    2004-01-01

    We present a nonequilibrium kinetic theory describing atom-molecule population dynamics in a two-component Fermi gas with a Feshbach resonance. Key collision integrals emerge that govern the relaxation of the atom-molecule mixture to chemical and thermal equilibrium. Our focus is on the pseudogap...

  19. Fermi Observations of High-Energy Gamma-Ray Emission from GRB 080916C

    NARCIS (Netherlands)

    Abdo, A. A.; Ackermann, M.; Arimoto, M.; Asano, K.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Band, D. L.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Battelino, M.; Baughman, B. M.; Bechtol, K.; Bellardi, F.; Bellazzini, R.; Berenji, B.; Bhat, P. N.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bogaert, G.; Bogart, J. R.; Bonamente, E.; Bonnell, J.; Borgland, A. W.; Bouvier, A.; Bregeon, J.; Brez, A.; Briggs, M. S.; Brigida, M.; Bruel, P.; Burnett, T. H.; Burrows, D.; Busetto, G.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Casandjian, J. M.; Ceccanti, M.; Cecchi, C.; Celotti, A.; Charles, E.; Chekhtman, A.; Cheung, C. C.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Cominsky, L. R.; Connaughton, V.; Conrad, J.; Costamante, L.; Cutini, S.; DeKlotz, M.; Dermer, C. D.; de Angelis, A.; de Palma, F.; Digel, S. W.; Dingus, B. L.; do Couto e Silva, E.; Drell, P. S.; Dubois, R.; Dumora, D.; Edmonds, Y.; Evans, P. A.; Fabiani, D.; Farnier, C.; Favuzzi, C.; Finke, J.; Fishman, G.; Focke, W. B.; Frailis, M.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Germani, S.; Giebels, B.; Giglietto, N.; Giommi, P.; Giordano, F.; Glanzman, T.; Godfrey, G.; Goldstein, A.; Granot, J.; Greiner, J.; Grenier, I. A.; Grondin, M. -H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Haller, G.; Hanabata, Y.; Harding, A. K.; Hayashida, M.; Hays, E.; Morata, J. A. Hernando; Hoover, A.; Hughes, R. E.; Johannesson, G.; Johnson, A. S.; Johnson, R. P.; Johnson, T. J.; Johnson, W. N.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kavelaars, A.; Kawai, N.; Kelly, H.; Kennea, J.; Kerr, M.; Kippen, R. M.; Knoedlseder, J.; Kocevski, D.; Kocian, M. L.; Komin, N.; Kouveliotou, C.; Kuehn, F.; Kuss, M.; Lande, J.; Landriu, D.; Larsson, S.; Latronico, L.; Lavalley, C.; Lee, B.; Lee, S. -H.; Lemoine-Goumard, M.; Lichti, G. G.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Makeev, A.; Marangelli, B.; Mazziotta, M. N.; McBreen, S.; McEnery, J. E.; McGlynn, S.; Meegan, C.; Meszaros, P.; Meurer, C.; Michelson, P. F.; Minuti, M.; Mirizzi, N.; Mitthumsiri, W.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Nelson, D.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohno, M.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paciesas, W. S.; Paneque, D.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pepe, M.; Perri, M.; Pesce-Rollins, M.; Petrosian, V.; Pinchera, M.; Piron, F.; Porter, T. A.; Preece, R.; Raino, S.; Ramirez-Ruiz, E.; Rando, R.; Rapposelli, E.; Razzano, M.; Razzaque, S.; Rea, N.; Reimer, A.; Reimer, O.; Reposeur, T.; Reyes, L. C.; Ritz, S.; Rochester, L. S.; Rodriguez, A. Y.; Roth, M.; Ryde, F.; Sadrozinski, H. F. -W.; Sanchez, D.; Sander, A.; Parkinson, P. M. Saz; Scargle, J. D.; Schalk, T. L.; Segal, K. N.; Sgro, C.; Shimokawabe, T.; Siskind, E. J.; Smith, D. A.; Smith, P. D.; Spandre, G.; Spinelli, P.; Stamatikos, M.; Starck, J. -L.; Stecker, F. W.; Steinle, H.; Stephens, T. E.; Strickman, M. S.; Suson, D. J.; Tagliaferri, G.; Tajima, H.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Tenze, A.; Thayer, J. B.; Thayer, J. G.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Tramacere, A.; Turri, M.; Tuvi, S.; Usher, T. L.; van der Horst, A. J.; Vigiani, L.; Vilchez, N.; Vitale, V.; von Kienlin, A.; Waite, A. P.; Williams, D. A.; Wilson-Hodge, C.; Winer, B. L.; Wood, K. S.; Wu, X. F.; Yamazaki, R.; Ylinen, T.; Ziegler, M.

    2009-01-01

    Gamma-ray bursts (GRBs) are highly energetic explosions signaling the death of massive stars in distant galaxies. The Gamma-ray Burst Monitor and Large Area Telescope onboard the Fermi Observatory together record GRBs over a broad energy range spanning about 7 decades of gamma-ray energy. In

  20. THE FERMI LARGE AREA TELESCOPE ON ORBIT: EVENT CLASSIFICATION, INSTRUMENT RESPONSE FUNCTIONS, AND CALIBRATION

    International Nuclear Information System (INIS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Blandford, R. D.; Bloom, E. D.; Bogart, J. R.; Borgland, A. W.; Bottacini, E.; Albert, A.; Atwood, W. B.; Bouvier, A.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Bonamente, E.

    2012-01-01

    The Fermi Large Area Telescope (Fermi-LAT, hereafter LAT), the primary instrument on the Fermi Gamma-ray Space Telescope (Fermi) mission, is an imaging, wide field-of-view, high-energy γ-ray telescope, covering the energy range from 20 MeV to more than 300 GeV. During the first years of the mission, the LAT team has gained considerable insight into the in-flight performance of the instrument. Accordingly, we have updated the analysis used to reduce LAT data for public release as well as the instrument response functions (IRFs), the description of the instrument performance provided for data analysis. In this paper, we describe the effects that motivated these updates. Furthermore, we discuss how we originally derived IRFs from Monte Carlo simulations and later corrected those IRFs for discrepancies observed between flight and simulated data. We also give details of the validations performed using flight data and quantify the residual uncertainties in the IRFs. Finally, we describe techniques the LAT team has developed to propagate those uncertainties into estimates of the systematic errors on common measurements such as fluxes and spectra of astrophysical sources.

  1. Fermi surface changes in dilute magnesium alloys: a pseudopotential band structure model

    International Nuclear Information System (INIS)

    Fung, W.K.

    1976-01-01

    The de Haas-van Alphen effect has been used to study the Fermi surface of pure magnesium and its dilute alloys containing lithium and indium. The quantum oscillations in magnetization were detected by means of a torque magnetometer in magnetic field up to 36 kilogauss and temperature range of 4.2 0 to 1.7 0 K. The results provide information on the effects of lithium and indium solutes on the Fermi surface of magnesium in changes of extremal cross sections and effective masses as well as the relaxation times associated with the orbits. The nonlocal pseudopotential model proposed by Kimball, Stark and Mueller has been fitted to the Fermi surface of magnesium and extended to include the dilute alloys, fitting all the observed de Haas-van Alphen frequencies with an accuracy of better than 1 percent. A modified rigid band interpretation including both Fermi energy and local band edge changes computed from the model, gives an overall satisfactory description of the observed frequency shifts. With the pseudo-wavefunctions provided by the nonlocal model, the relaxation times in terms of Dingle temperatures for several orbits have been predicted using Sorbello's multiple-plane-wave phase shift model. The calculation with phase shifts obtained from a model potential yields a greater anisotropy than has been observed experimentally, while a two-parameter phase shift model provides a good fit to the experimental results

  2. The Fermi Gamma-ray Burst Monitor (GBM) Terrestrial Gamma-ray Flash (TGF) Catalog

    Science.gov (United States)

    Briggs, M. S.; Roberts, O.; Fitzpatrick, G.; Stanbro, M.; Cramer, E.; Mailyan, B. G.; McBreen, S.; Connaughton, V.; Grove, J. E.; Chekhtman, A.; Holzworth, R.

    2017-12-01

    The revised Second Fermi GBM TGF catalog includes data on 4144 TGFs detected by the Fermi Gamma-ray Burst Monitor through 2016 July 31. The catalog includes 686 bright TGFs there were detected in orbit and 4135 TGFs that were discovered by ground analysis of GBM data (the two samples overlap). Thirty of the events may have been detected as electrons and positrons rather than gamma-rays: Terrestrial Electron Beams (TEBs). We also provide results from correlating the GBM TGFs with VLF radio detections of the World Wide Lightning Location Network (WWLLN). TGFs with WWLLN associations have their localization uncertainties improved from 800 to 10 km, making it possible to identify specific thunderstorms responsible for the TGFs and opening up new types of scientific investigations. There are 1544 TGFs with WWLLN associations; maps are provided for these and the other TGFs of the catalog. The data tables of the catalog are available for use by the scientific community at the Fermi Science Support Center, at https://fermi.gsfc.nasa.gov/ssc/data/access/gbm/tgf/.

  3. Symmetry energy of the nucleus in the relativistic Thomas–Fermi ...

    Indian Academy of Sciences (India)

    S HADDAD

    2017-10-26

    Oct 26, 2017 ... Abstract. The symmetry energy of a nucleus is determined in a local density approximation and integrating over the entire density distribution of the nucleus, calculated utilizing the relativistic density-dependent Thomas-Fermi approach. The symmetry energy is found to decrease with increasing neutron ...

  4. Thermoelectric Properties in Fermi Level Tuned Topological Materials (Bi1-xSnx)2Te3

    Science.gov (United States)

    Lin, Chan-Chieh; Shon, Won Hyuk; Rathnam, Lydia; Rhyee, Jong-Soo

    2018-03-01

    We investigated the thermoelectric properties of Sn-doped (Bi1-xSnx)2Te3 (x = 0, 0.1, 0.3, 0.5, and 0.7%) compounds, which is known as topological insulators. Fermi level tuning by Sn-doping can be justified by the n- to p-type transition with increasing Sn-doping concentration, as confirmed by Seebeck coefficient and Hall coefficient. Near x = 0.3 and 0.5%, the Fermi level resides inside the bulk band gap, resulting in a low Seebeck coefficient and increase of electrical resistivity. The magnetoconductivity with applying magnetic field showed weak antilocalization (WAL) effect for pristine Bi2Te3 while Sn-doped compounds do not follow the WAL behavior of magneto-conductivity, implying that the topological surface Dirac band contribution in magneto-conductivity is suppressed with decreasing the Fermi level by Sn-doping. This research can be applied to the topological composite of p-type/n-type topological materials by Fermi level tuning via Sn-doping in Bi2Te3 compounds.

  5. Quantum critical scaling at the edge of Fermi liquid stability in a cuprate superconductor.

    Science.gov (United States)

    Butch, Nicholas P; Jin, Kui; Kirshenbaum, Kevin; Greene, Richard L; Paglione, Johnpierre

    2012-05-29

    In the high-temperature cuprate superconductors, the pervasiveness of anomalous electronic transport properties suggests that violation of conventional Fermi liquid behavior is closely tied to superconductivity. In other classes of unconventional superconductors, atypical transport is well correlated with proximity to a quantum critical point, but the relative importance of quantum criticality in the cuprates remains uncertain. Here, we identify quantum critical scaling in the electron-doped cuprate material La(2-x)Ce(x)CuO(4) with a line of quantum critical points that surrounds the superconducting phase as a function of magnetic field and charge doping. This zero-temperature phase boundary, which delineates a metallic Fermi liquid regime from an extended non-Fermi liquid ground state, closely follows the upper critical field of the overdoped superconducting phase and gives rise to an expanse of distinct non-Fermi liquid behavior at finite temperatures. Together with signatures of two distinct flavors of quantum fluctuations, these facts suggest that quantum criticality plays a significant role in shaping the anomalous properties of the cuprate phase diagram.

  6. Kinetics of excitations on the Fermi arcs in underdoped cuprates at low temperatures

    Science.gov (United States)

    Gor'kov, Lev P.

    2013-07-01

    The Fermi-liquid-like (FL) resistivity recently observed in clean Hg1201 below the pseudogap temperature was related to carriers at the nodal points on the Fermi surface (FS) (N. Barišić , arXiv:1207.1504, doi:10.1073/pnas.13019891109). We show that this has important implications for the electronic spectrum of underdoped (UD) cuprates as a whole. Photoemission experiments (angle-resolved photoemission spectroscopy) in other cuprates picture the spectrum as “metallic arcs” separated from each other by regions with large energy gaps. We rigorously solve the kinetic equation in such a model. The Fermi arcs' carriers contribute to the FL resistivity, if scattering between the opposite nodal points admits the umklapp processes. The Hall coefficient defines the effective number of carriers on the arcs and at weak magnetic fields it has a positive sign. All parameters that determine the arcs' widths are measurable experimentally. We conclude that the T2 resistivity gives support to the Fermi arcs' concept and argue that the idea of a reconstructed FS in UD cuprates is not consistent with the latter.

  7. Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array

    Science.gov (United States)

    Hensgens, T.; Fujita, T.; Janssen, L.; Li, Xiao; van Diepen, C. J.; Reichl, C.; Wegscheider, W.; Das Sarma, S.; Vandersypen, L. M. K.

    2017-08-01

    Interacting fermions on a lattice can develop strong quantum correlations, which are the cause of the classical intractability of many exotic phases of matter. Current efforts are directed towards the control of artificial quantum systems that can be made to emulate the underlying Fermi-Hubbard models. Electrostatically confined conduction-band electrons define interacting quantum coherent spin and charge degrees of freedom that allow all-electrical initialization of low-entropy states and readily adhere to the Fermi-Hubbard Hamiltonian. Until now, however, the substantial electrostatic disorder of the solid state has meant that only a few attempts at emulating Fermi-Hubbard physics on solid-state platforms have been made. Here we show that for gate-defined quantum dots this disorder can be suppressed in a controlled manner. Using a semi-automated and scalable set of experimental tools, we homogeneously and independently set up the electron filling and nearest-neighbour tunnel coupling in a semiconductor quantum dot array so as to simulate a Fermi-Hubbard system. With this set-up, we realize a detailed characterization of the collective Coulomb blockade transition, which is the finite-size analogue of the interaction-driven Mott metal-to-insulator transition. As automation and device fabrication of semiconductor quantum dots continue to improve, the ideas presented here will enable the investigation of the physics of ever more complex many-body states using quantum dots.

  8. Establishing Site X: Letter, Arthur H. Compton to Enrico Fermi, September 14, 1942

    Science.gov (United States)

    Compton, A. H.

    1942-09-01

    This letter from Compton to Fermi describes developments bearing on the establishment of site X (which, as of the letter date, is definitely determined as at the Tennessee Valley) for the construction of a pile and associated pilot plant buildings, describes the situation as of the letter date, and offers counsel as to how to proceed.

  9. Fermi's ansatz and Bohm's quantum potential

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, Glen, E-mail: gdennis502@gmail.com [TPRU, Birkbeck College, University of London, London, WC1E 7HX (United Kingdom); Gosson, Maurice A. de, E-mail: maurice.de.gosson@univie.ac.at [University of Vienna, Faculty of Mathematics, NuHAG, Oskar-Morgenstern-Platz 1, 1090 Vienna (Austria); Hiley, Basil J., E-mail: b.hiley@bbk.ac.uk [TPRU, Birkbeck College, University of London, London, WC1E 7HX (United Kingdom)

    2014-06-27

    In this paper we address the following simple question: Given a wavefunction ψ(x,t) in a one-dimensional configuration space, is it possible to give a unique two-dimensional representation ρ(x,p,t) in a position-momentum phase plane? If so, can we find the general condition that makes this possible? We will show that this is indeed possible by using an idea introduced originally by Fermi provided the boundary of the phase space area is a closed curve satisfying a certain exact quantum condition. - Highlights: • We review “Fermi's trick” which allows one to view an arbitrary wavefunction as a stationary state for some Hamiltonian operator H{sub F}. This Hamiltonian contains the quantum potential. • We study the relation between Fermi's trick and an exact quantization condition which reduces to the familiar EBK condition in the limit ħ→0. • This allows us to relate the Fermi set H{sub F}(x,p)=0 to the notion of quantum blob introduced by one of us in previous work. Quantum blobs are phase space regions corresponding to minimum uncertainty. • We discuss our results from the point of view of the quantum theory of motion.

  10. A One-Electron Approximation to Domain Averaged Fermi hole Analysis

    Czech Academy of Sciences Publication Activity Database

    Cooper, D.L.; Ponec, Robert

    2008-01-01

    Roč. 10, č. 9 (2008), s. 1319-1329 ISSN 1463-9076 R&D Projects: GA AV ČR(CZ) IAA4072403 Institutional research plan: CEZ:AV0Z40720504 Keywords : domain-averaged fermi hole * comparisons Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.064, year: 2008

  11. Application of nuclear theory methods to new family of fermi systems

    International Nuclear Information System (INIS)

    Nesterenko, V.O.

    1995-01-01

    Application of nuclear theory methods to the description of the properties of the new family of small Fermi systems (metal clusters, fullerenes, helium clusters and quantum dots) is briefly reviewed. The main attention is paid to giant resonances in these systems. 52 refs., 7 figs

  12. Non-Fermi liquid behaviour in UCoAl: Pressure variations

    Czech Academy of Sciences Publication Activity Database

    Havela, L.; Honda, F.; Griveau, J.C.; Andreev, Alexander V.; Kolomiets, A.; Sechovský, V.

    408-412, - (2006), s. 1316-1319 ISSN 0925-8388 R&D Projects: GA ČR(CZ) GA202/04/1103; GA MŠk(CZ) ME 512 Institutional research plan: CEZ:AV0Z10100520 Keywords : non-Fermi liquid * band metamagnetism Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.250, year: 2006

  13. WISE Infrared Properties of Fermi AGNs JJ Qiu1, JS Zhang1,∗ & Q ...

    Indian Academy of Sciences (India)

    Abstract. The infrared properties of Fermi AGNs were investigated using the survey data of the Wide-field Infrared Survey Explorer (WISE). The results showed: (1) BL Lacs tend to be brighter than FSRQs at. 3.4μm. However, with increase of wavelength, FSRQs tend to be brighter than BL Lacs. (2) FSRQs colours are redder ...

  14. Galactic exploration by directed self-replicating probes, and its implications for the Fermi paradox

    Science.gov (United States)

    Barlow, Martin T.

    2013-01-01

    This paper proposes a long-term scheme for robotic exploration of the galaxy, and then considers the implications in terms of the `Fermi paradox' and our search for extraterrestrial intelligence (ETI). We discuss the `Galactic ecology' of civilizations in terms of the parameters T (time between ET civilizations arising) and L, the lifetime of these civilizations. Six different regions are described.

  15. The Correlation between γ-Ray and Radio Emissions for the Fermi ...

    Indian Academy of Sciences (India)

    Abstract. Based upon the Fermi blazars sample, the radio and γ-ray emissions are compiled for a sample of 74 γ-ray loud blazars to calculate the radio to γ-ray effective spectrum index αRγ . The correlations between. αRγ and γ-ray luminosity, and between radio and γ-ray luminosity are also investigated. Key words.

  16. Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array.

    Science.gov (United States)

    Hensgens, T; Fujita, T; Janssen, L; Li, Xiao; Van Diepen, C J; Reichl, C; Wegscheider, W; Das Sarma, S; Vandersypen, L M K

    2017-08-02

    Interacting fermions on a lattice can develop strong quantum correlations, which are the cause of the classical intractability of many exotic phases of matter. Current efforts are directed towards the control of artificial quantum systems that can be made to emulate the underlying Fermi-Hubbard models. Electrostatically confined conduction-band electrons define interacting quantum coherent spin and charge degrees of freedom that allow all-electrical initialization of low-entropy states and readily adhere to the Fermi-Hubbard Hamiltonian. Until now, however, the substantial electrostatic disorder of the solid state has meant that only a few attempts at emulating Fermi-Hubbard physics on solid-state platforms have been made. Here we show that for gate-defined quantum dots this disorder can be suppressed in a controlled manner. Using a semi-automated and scalable set of experimental tools, we homogeneously and independently set up the electron filling and nearest-neighbour tunnel coupling in a semiconductor quantum dot array so as to simulate a Fermi-Hubbard system. With this set-up, we realize a detailed characterization of the collective Coulomb blockade transition, which is the finite-size analogue of the interaction-driven Mott metal-to-insulator transition. As automation and device fabrication of semiconductor quantum dots continue to improve, the ideas presented here will enable the investigation of the physics of ever more complex many-body states using quantum dots.

  17. The 3-Dimensional Fermi Liquid Description for the Iron-Based Superconductors

    Science.gov (United States)

    Misawa, Setsuo

    2018-01-01

    The quasiparticles in the normal state of iron-based superconductors have been shown to behave universally as a 3-dimensional Fermi liquid. Because of interactions and the presence of sharp Fermi surfaces, the quasiparticle energy contains, as a function of the momentum \\varvec{p}, a term of the form ( p - p_0)^3 ln {( |p-p_0|/p_0)} , where p = | \\varvec{p} | and p_0 is the Fermi momentum. The electronic specific heat coefficient, magnetic susceptibility (Knight shift), electrical resistivity, Hall coefficient and thermoelectric power divided by temperature follow, as functions of temperature T, the logarithmic formula a-b T^2 ln {(T/T^*)}, a, b and T^* being constant; these formulae have been shown to explain the observed data for all iron-based superconductors. It is shown that the concept of non-Fermi liquids or anomalous metals which appears in the literature is not needed for descriptions of the present systems. When the superconducting transition temperature TC and the b / a value for the resistivity are plotted as functions of the doping content x, there appear various characteristic diagrams in which regions of positive correlation and those of negative correlation between TC and b / a are interconnected; from these diagrams, we may make speculations about the types of superconductivity and the crossover between them.

  18. Interaction-induced singular Fermi surface in a high-temperature oxypnictide superconductor.

    Science.gov (United States)

    Charnukha, A; Thirupathaiah, S; Zabolotnyy, V B; Büchner, B; Zhigadlo, N D; Batlogg, B; Yaresko, A N; Borisenko, S V

    2015-05-21

    In the family of iron-based superconductors, LaFeAsO-type materials possess the simplest electronic structure due to their pronounced two-dimensionality. And yet they host superconductivity with the highest transition temperature Tc ≈ 55K. Early theoretical predictions of their electronic structure revealed multiple large circular portions of the Fermi surface with a very good geometrical overlap (nesting), believed to enhance the pairing interaction and thus superconductivity. The prevalence of such large circular features in the Fermi surface has since been associated with many other iron-based compounds and has grown to be generally accepted in the field. In this work we show that a prototypical compound of the 1111-type, SmFe(0.92)Co(0.08)AsO , is at odds with this description and possesses a distinctly different Fermi surface, which consists of two singular constructs formed by the edges of several bands, pulled to the Fermi level from the depths of the theoretically predicted band structure by strong electronic interactions. Such singularities dramatically affect the low-energy electronic properties of the material, including superconductivity. We further argue that occurrence of these singularities correlates with the maximum superconducting transition temperature attainable in each material class over the entire family of iron-based superconductors.

  19. 75 FR 20867 - DTE Energy; Enrico Fermi Atomic Power Plant, Unit 1

    Science.gov (United States)

    2010-04-21

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 050-16; NRC-2010-0159] DTE Energy; Enrico Fermi Atomic... waste disposal facility operated by Energy Solutions in Clive, Utah. The licensee's request to extend... Certain Control and Tracking Requirements in 10 CFR Part 20 Appendix G Section III.E The U.S. Nuclear...

  20. Partial order in the non-Fermi-liquid phase of MnSi.

    Science.gov (United States)

    Pfleiderer, C; Reznik, D; Pintschovius, L; Löhneysen, H V; Garst, M; Rosch, A

    2004-01-15

    Only a few metallic phases have been identified in pure crystalline materials. These include normal, ferromagnetic and antiferromagnetic metals, systems with spin and charge density wave order, and superconductors. Fermi-liquid theory provides a basis for the description of all of these phases. It has been suggested that non-Fermi-liquid phases of metals may exist in some heavy-fermion compounds and oxide materials, but the discovery of a characteristic microscopic signature of such phases presents a major challenge. The transition-metal compound MnSi above a certain pressure (p(c) = 14.6 kbar) provides what may be the cleanest example of an extended non-Fermi-liquid phase in a three-dimensional metal. The bulk properties of MnSi suggest that long-range magnetic order is suppressed at p(c) (refs 7-12). Here we report neutron diffraction measurements of MnSi, revealing that sizeable quasi-static magnetic moments survive far into the non-Fermi-liquid phase. These moments are organized in an unusual pattern with partial long-range order. Our observation supports the existence of novel metallic phases with partial ordering of the conduction electrons (reminiscent of liquid crystals), as proposed for the high-temperature superconductors and heavy-fermion compounds.

  1. THE FERMI LARGE AREA TELESCOPE ON ORBIT: EVENT CLASSIFICATION, INSTRUMENT RESPONSE FUNCTIONS, AND CALIBRATION

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M. [Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen (Germany); Ajello, M.; Allafort, A.; Bechtol, K.; Blandford, R. D.; Bloom, E. D.; Bogart, J. R.; Borgland, A. W.; Bottacini, E. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Albert, A. [Department of Physics, Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210 (United States); Atwood, W. B.; Bouvier, A. [Santa Cruz Institute for Particle Physics, Department of Physics and Department of Astronomy and Astrophysics, University of California at Santa Cruz, Santa Cruz, CA 95064 (United States); Axelsson, M. [Department of Astronomy, Stockholm University, SE-106 91 Stockholm (Sweden); Baldini, L. [Universita di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Ballet, J. [Laboratoire AIM, CEA-IRFU/CNRS/Universite Paris Diderot, Service d' Astrophysique, CEA Saclay, F-91191 Gif sur Yvette (France); Barbiellini, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Trieste, I-34127 Trieste (Italy); Bastieri, D. [Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova (Italy); Bellazzini, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy); Bissaldi, E. [Institut fuer Astro- und Teilchenphysik and Institut fuer Theoretische Physik, Leopold-Franzens-Universitaet Innsbruck, A-6020 Innsbruck (Austria); Bonamente, E., E-mail: echarles@slac.stanford.edu, E-mail: luca.baldini@pi.infn.it, E-mail: rando@pd.infn.it [Istituto Nazionale di Fisica Nucleare, Sezione di Perugia, I-06123 Perugia (Italy); and others

    2012-11-15

    The Fermi Large Area Telescope (Fermi-LAT, hereafter LAT), the primary instrument on the Fermi Gamma-ray Space Telescope (Fermi) mission, is an imaging, wide field-of-view, high-energy {gamma}-ray telescope, covering the energy range from 20 MeV to more than 300 GeV. During the first years of the mission, the LAT team has gained considerable insight into the in-flight performance of the instrument. Accordingly, we have updated the analysis used to reduce LAT data for public release as well as the instrument response functions (IRFs), the description of the instrument performance provided for data analysis. In this paper, we describe the effects that motivated these updates. Furthermore, we discuss how we originally derived IRFs from Monte Carlo simulations and later corrected those IRFs for discrepancies observed between flight and simulated data. We also give details of the validations performed using flight data and quantify the residual uncertainties in the IRFs. Finally, we describe techniques the LAT team has developed to propagate those uncertainties into estimates of the systematic errors on common measurements such as fluxes and spectra of astrophysical sources.

  2. Thermal response of a Fermi-Pasta-Ulam chain with Andersen thermostats

    NARCIS (Netherlands)

    D'Ambrosio, Federico; Baiesi, Marco

    2017-01-01

    The linear response to temperature variations is well characterised for equilibrium systems but a similar theory is not available, for example, for inertial heat conducting systems, whose paradigm is the Fermi-Pasta-Ulam (FPU) model driven by two different boundary temperatures. For models of

  3. Internal flood analysis at Fermi 2 using a component-based frequency calculation approach

    International Nuclear Information System (INIS)

    Lin, J.C.; Hou, Y.M.; Ramirez, J.V.; Page, E.M.

    2004-01-01

    An analysis to identify potential accident sequences involving internal floods at Fermi Unit 2 was completed to fulfill the individual plant examination requirements. Floods can be significant core damage scenarios if they cause an initiating event and a common mode failure of critical systems. (author)

  4. γ-Rays Radiation of High Redshift Fermi Blazars WG Liu1, SH Fu2 ...

    Indian Academy of Sciences (India)

    γ-Rays Radiation of High Redshift Fermi Blazars. W. G. Liu1, S. H. Fu2, X. Zhang1, L. Ma1,∗. , Y. B. Li1 & D. R. Xiong1. 1Department of Physics, Yunnan Normal University, Kunming 650500, China. 2Yunnan Entry-Exit Inspection and Quarantine Bureau, Kunming 650228, China. ∗ e-mail: astromali@126.com. Abstract.

  5. Ultracold Fermi and Bose gases and Spinless Bose Charged Sound Particles

    Directory of Open Access Journals (Sweden)

    Minasyan V.

    2011-10-01

    Full Text Available We propose a novel approach for investigation of the motion of Bose or Fermi liquid (or gas which consists of decoupled electrons and ions in the uppermost hyperfine state. Hence, we use such a concept as the fluctuation motion of “charged fluid particles” or “charged fluid points” representing a charged longitudinal elastic wave. In turn, this elastic wave is quantized by spinless longitudinal Bose charged sound particles with the rest mass m and charge e 0 . The existence of spinless Bose charged sound particles allows us to present a new model for description of Bose or Fermi liquid via a non-ideal Bose gas of charged sound particles . In this respect, we introduce a new postulation for the superfluid component of Bose or Fermi liquid determined by means of charged sound particles in the condensate, which may explain the results of experiments connected with ultra-cold Fermi gases of spin-polarized hydrogen, 6 Li and 40 K, and such a Bose gas as 87 Rb in the uppermost hyperfine state, where the Bose- Einstein condensation of charged sound particles is realized by tuning the magnetic field.

  6. Equations of State of Elements Based on the Generalized Fermi-Thomas Theory

    Science.gov (United States)

    Feynman, R. P.; Metropolis, N.; Teller, E.

    1947-04-28

    The Fermi-Thomas model has been used to derive the equation of state of matter at high pressures and at various temperatures. Calculations have been carried out both without and with the exchange terms. Discussion of similarity transformations lead to the virial theorem and to correlation of solutions for different Z-values.

  7. The perturbation of the condensed medium in the Thomas-Fermi model

    Science.gov (United States)

    Kyarov, A. Kh; Savintsev, A. P.

    2018-01-01

    The research presented in this work is the continuation of the previous studies, which gave a qualitative estimating solution of the problem. The aim of this work is the calculation of static perturbation of condensed medium in the Thomas-Fermi approximation.

  8. Spherical time dependent Thomas-Fermi calculation of the dynamical evolution of hot and compressed nuclei

    International Nuclear Information System (INIS)

    Nemeth, J.; Barranco, M.; Ngo, C.; Tomasi, E.

    1985-01-01

    We have used a self-consistent time dependent Thomas-Fermi model at finite temperature to calculate the dynamical evolution of hot and compressed nuclei. It has been found that nuclei can accomodate more thermal energy than compressional energy before they break. (orig.)

  9. Strongly interacting Fermi systems in 1/N expansion: From cold atoms to color superconductivity

    Czech Academy of Sciences Publication Activity Database

    Abuki, H.; Brauner, Tomáš

    2008-01-01

    Roč. 78, č. 12 (2008), 125010/1-125010/13 ISSN 1550-7998 R&D Projects: GA ČR GA202/06/0734 Institutional research plan: CEZ:AV0Z10480505 Keywords : BCS-BEC crossover * Unitary Fermi gas * Quark matter Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 5.050, year: 2008

  10. Illumination-induced changes of the Fermi surface topology in three-dimensional superlattices

    Czech Academy of Sciences Publication Activity Database

    Goncharuk, Natalya; Smrčka, Ludvík; Svoboda, Pavel; Vašek, Petr; Kučera, Jan; Krupko, Yu.; Wegscheider, W.

    2007-01-01

    Roč. 75, č. 24 (2007), 245322/1-245322/7 ISSN 1098-0121 R&D Projects: GA MŠk LC510; GA AV ČR KAN400100652 Institutional research plan: CEZ:AV0Z10100521 Keywords : persistent photoconductivity * superlattice * Fermi surface Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.172, year: 2007

  11. Molecular Quantum Similarity Measures from Fermi hole Densities: Modeling Hammett Sigma Constants

    Czech Academy of Sciences Publication Activity Database

    Girónes, X.; Ponec, Robert

    2006-01-01

    Roč. 46, č. 3 (2006), s. 1388-1393 ISSN 1549-9596 Grant - others:SMCT(ES) SAF2000/0223/C03/01 Institutional research plan: CEZ:AV0Z40720504 Keywords : molecula quantum similarity measures * fermi hole densities * substituent effect Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.423, year: 2006

  12. 76 FR 56820 - Detroit Edison Company, Fermi 2; Environmental Assessment and Finding of No Significant Impact

    Science.gov (United States)

    2011-09-14

    ... will be made to plant buildings or the site property. Therefore, no changes or different types of.... Consequently, personnel that respond to the site have encountered more delays than when the plant was first... been made to equipment, procedures, and training since initial approval of the Fermi 2 EP that have...

  13. Efimov three-body states on top of a Fermi sea

    DEFF Research Database (Denmark)

    Nygaard, Nicolai Gayle; Zinner, Nikolaj Thomas

    2014-01-01

    unexpected scaling relations among a tower of universal states. These seemingly unrelated problems can now be studied in the same setup thanks to the success of ultracold atomic gas experiments. In light of the tremendous effect of a background Fermi sea on two-body properties, a natural question is whether...

  14. Fermi integral and density-of-states functions in a parabolic band ...

    Indian Academy of Sciences (India)

    B K Chaudhuri

    2018-01-03

    Jan 3, 2018 ... complex functions, containing both real and imaginary terms of different FI functions. Their moduli possess an oscillatory function of η (reduced Fermi energy = Ef/kBT, kB is the Boltzmann constant and T is the absolute temperature) and ηe (impurity screening potential), having a series solutions of confluent ...

  15. Origin of inertia in large-amplitude collective motion in finite Fermi ...

    Indian Academy of Sciences (India)

    Origin of inertia in large-amplitude collective motion in finite Fermi systems. SUDHIR R JAIN. Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India. E-mail: srjain@barc.gov.in. MS received 6 January 2011; revised 27 July 2011; accepted 26 August 2011. Abstract. We argue that mass ...

  16. sea-boson theory of Landau-Fermi liquids, Luttinger liquids and ...

    Indian Academy of Sciences (India)

    . The operator in eq. (1) is not an exact boson but we may treat it as such and impose canonical boson commutation rules (this time we include spin for the sake .... pate that these are responsible for breaking Fermi liquid behavior. Here S(q) =.

  17. Fermi-LAT constraints on dark matter annihilation cross section from observations of the Fornax cluster

    NARCIS (Netherlands)

    Ando, S.; Nagai, D.

    2012-01-01

    We analyze 2.8-yr data of 1-100 GeV photons for clusters of galaxies, collected with the Large Area Telescope onboard the Fermi satellite. By analyzing 49 nearby massive clusters located at high Galactic latitudes, we find no excess gamma-ray emission towards directions of the galaxy clusters. Using

  18. CHARACTERIZING THE OPTICAL VARIABILITY OF BRIGHT BLAZARS: VARIABILITY-BASED SELECTION OF FERMI ACTIVE GALACTIC NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Ruan, John J.; Anderson, Scott F.; MacLeod, Chelsea L.; Becker, Andrew C.; Davenport, James R. A.; Ivezic, Zeljko [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Burnett, T. H. [Department of Physics, University of Washington, Seattle, WA 98195-1560 (United States); Kochanek, Christopher S. [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Plotkin, Richard M. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Sesar, Branimir [Division of Physics, Mathematics and Astronomy, Caltech, Pasadena, CA 91125 (United States); Stuart, J. Scott, E-mail: jruan@astro.washington.edu [Lincoln Laboratory, Massachusetts Institute of Technology, 244 Wood Street, Lexington, MA 02420-9108 (United States)

    2012-11-20

    We investigate the use of optical photometric variability to select and identify blazars in large-scale time-domain surveys, in part to aid in the identification of blazar counterparts to the {approx}30% of {gamma}-ray sources in the Fermi 2FGL catalog still lacking reliable associations. Using data from the optical LINEAR asteroid survey, we characterize the optical variability of blazars by fitting a damped random walk model to individual light curves with two main model parameters, the characteristic timescales of variability {tau}, and driving amplitudes on short timescales {sigma}-circumflex. Imposing cuts on minimum {tau} and {sigma}-circumflex allows for blazar selection with high efficiency E and completeness C. To test the efficacy of this approach, we apply this method to optically variable LINEAR objects that fall within the several-arcminute error ellipses of {gamma}-ray sources in the Fermi 2FGL catalog. Despite the extreme stellar contamination at the shallow depth of the LINEAR survey, we are able to recover previously associated optical counterparts to Fermi active galactic nuclei with E {>=} 88% and C = 88% in Fermi 95% confidence error ellipses having semimajor axis r < 8'. We find that the suggested radio counterpart to Fermi source 2FGL J1649.6+5238 has optical variability consistent with other {gamma}-ray blazars and is likely to be the {gamma}-ray source. Our results suggest that the variability of the non-thermal jet emission in blazars is stochastic in nature, with unique variability properties due to the effects of relativistic beaming. After correcting for beaming, we estimate that the characteristic timescale of blazar variability is {approx}3 years in the rest frame of the jet, in contrast with the {approx}320 day disk flux timescale observed in quasars. The variability-based selection method presented will be useful for blazar identification in time-domain optical surveys and is also a probe of jet physics.

  19. Theoretical Interpretation of Pass 8 Fermi -LAT e {sup +} + e {sup −} Data

    Energy Technology Data Exchange (ETDEWEB)

    Di Mauro, M. [W. W. Hansen Experimental Physics Laboratory, Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305 (United States); Manconi, S.; Donato, F.; Fornengo, N.; Bonino, R.; Negro, M. [Department of Physics, University of Torino, via P. Giuria 1, I-10125 Torino (Italy); Vittino, A. [Physik-Department T30D, Technische Universität München, James-Franck Straße 1, D-85748 Garching (Germany); Baldini, L.; Di Lalla, N.; Manfreda, A. [Università di Pisa and Istituto Nazionale di Fisica Nucleare, Sezione di Pisa I-56127 Pisa (Italy); Latronico, L.; Maldera, S. [Istituto Nazionale di Fisica Nucleare, via P. Giuria 1, I-10125 Torino (Italy); Pesce-Rollins, M.; Sgrò, C.; Spada, F. [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, I-56127 Pisa (Italy)

    2017-08-20

    The flux of positrons and electrons ( e {sup +} + e {sup −}) has been measured by the Fermi Large Area Telescope (LAT) in the energy range between 7 GeV and 2 TeV. We discuss a number of interpretations of Pass 8 Fermi -LAT e {sup +} + e {sup −} spectrum, combining electron and positron emission from supernova remnants (SNRs) and pulsar wind nebulae (PWNe), or produced by the collision of cosmic rays (CRs) with the interstellar medium. We find that the Fermi -LAT spectrum is compatible with the sum of electrons from a smooth SNR population, positrons from cataloged PWNe, and a secondary component. If we include in our analysis constraints from the AMS-02 positron spectrum, we obtain a slightly worse fit to the e {sup +} + e {sup −} Fermi -LAT spectrum, depending on the propagation model. As an additional scenario, we replace the smooth SNR component within 0.7 kpc with the individual sources found in Green’s catalog of Galactic SNRs. We find that separate consideration of far and near sources helps to reproduce the e {sup +} + e {sup −} Fermi -LAT spectrum. However, we show that the fit degrades when the radio constraints on the positron emission from Vela SNR (which is the main contributor at high energies) are taken into account. We find that a break in the power-law injection spectrum at about 100 GeV can also reproduce the measured e {sup +} + e {sup −} spectrum and, among the CR propagation models that we consider, no reasonable break of the power-law dependence of the diffusion coefficient can modify the electron flux enough to reproduce the observed shape.

  20. Stochastic modeling of the Fermi/LAT γ-ray blazar variability

    Energy Technology Data Exchange (ETDEWEB)

    Sobolewska, M. A.; Siemiginowska, A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kelly, B. C. [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93107 (United States); Nalewajko, K., E-mail: malgosia@camk.edu.pl [JILA, University of Colorado and National Institute of Standards and Technology, 440 UCB, Boulder, CO 80309 (United States)

    2014-05-10

    We study the γ-ray variability of 13 blazars observed with the Fermi/Large Area Telescope (LAT). These blazars have the most complete light curves collected during the first four years of the Fermi sky survey. We model them with the Ornstein-Uhlenbeck (OU) process or a mixture of the OU processes. The OU process has power spectral density (PSD) proportional to 1/f {sup α} with α changing at a characteristic timescale, τ{sub 0}, from 0 (τ >> τ{sub 0}) to 2 (τ << τ{sub 0}). The PSD of the mixed OU process has two characteristic timescales and an additional intermediate region with 0 < α < 2. We show that the OU model provides a good description of the Fermi/LAT light curves of three blazars in our sample. For the first time, we constrain a characteristic γ-ray timescale of variability in two BL Lac sources, 3C 66A and PKS 2155-304 (τ{sub 0} ≅ 25 days and τ{sub 0} ≅ 43 days, respectively, in the observer's frame), which are longer than the soft X-ray timescales detected in blazars and Seyfert galaxies. We find that the mixed OU process approximates the light curves of the remaining 10 blazars better than the OU process. We derive limits on their long and short characteristic timescales, and infer that their Fermi/LAT PSD resemble power-law functions. We constrain the PSD slopes for all but one source in the sample. We find hints for sub-hour Fermi/LAT variability in four flat spectrum radio quasars. We discuss the implications of our results for theoretical models of blazar variability.