Weak lensing cosmology beyond ΛCDM
International Nuclear Information System (INIS)
Das, Sudeep; Linder, Eric V.; Nakajima, Reiko; Putter, Roland de
2012-01-01
Weak gravitational lensing is one of the key probes of the cosmological model, dark energy, and dark matter, providing insight into both the cosmic expansion history and large scale structure growth history. Taking into account a broad spectrum of physics affecting growth — dynamical dark energy, extended gravity, neutrino masses, and spatial curvature — we analyze the cosmological constraints. Similarly we consider the effects of a range of systematic uncertainties, in shear measurement, photometric redshifts, intrinsic alignments, and the nonlinear power spectrum, on cosmological parameter extraction. We also investigate, and provide fitting formulas for, the influence of survey parameters such as redshift depth, galaxy number densities, and sky area on the cosmological constraints in the beyond-ΛCDM parameter space. Finally, we examine the robustness of results for different fiducial cosmologies
Λ CDM is Consistent with SPARC Radial Acceleration Relation
Energy Technology Data Exchange (ETDEWEB)
Keller, B. W.; Wadsley, J. W., E-mail: kellerbw@mcmaster.ca [Department of Physics and Astronomy, McMaster University, Hamilton, ON L8S 4M1 (Canada)
2017-01-20
Recent analysis of the Spitzer Photometry and Accurate Rotation Curve (SPARC) galaxy sample found a surprisingly tight relation between the radial acceleration inferred from the rotation curves and the acceleration due to the baryonic components of the disk. It has been suggested that this relation may be evidence for new physics, beyond Λ CDM . In this Letter, we show that 32 galaxies from the MUGS2 match the SPARC acceleration relation. These cosmological simulations of star-forming, rotationally supported disks were simulated with a WMAP3 Λ CDM cosmology, and match the SPARC acceleration relation with less scatter than the observational data. These results show that this acceleration relation is a consequence of dissipative collapse of baryons, rather than being evidence for exotic dark-sector physics or new dynamical laws.
Gamma-ray bursts as cosmological probes: ΛCDM vs. conformal gravity
International Nuclear Information System (INIS)
Diaferio, Antonaldo; Ostorero, Luisa; Cardone, Vincenzo
2011-01-01
ΛCDM, for the currently preferred cosmological density Ω 0 and cosmological constant Ω Λ , predicts that the Universe expansion decelerates from early times to redshift z ≈ 0.9 and accelerates at later times. On the contrary, the cosmological model based on conformal gravity predicts that the cosmic expansion has always been accelerating. To distinguish between these two very different cosmologies, we resort to gamma-ray bursts (GRBs), which have been suggested to probe the Universe expansion history at z > 1, where identified type Ia supernovae (SNe) are rare. We use the full Bayesian approach to infer the cosmological parameters and the additional parameters required to describe the GRB data available in the literature. For the first time, we use GRBs as cosmological probes without any prior information from other data. In addition, when we combine the GRB samples with SNe, our approach neatly avoids all the inconsistencies of most numerous previous methods that are plagued by the so-called circularity problem. In fact, when analyzed properly, current data are consistent with distance moduli of GRBs and SNe that can respectively be, in a variant of conformal gravity, ∼ 15 and ∼ 3 magnitudes fainter than in ΛCDM. Our results indicate that the currently available SN and GRB samples are accommodated equally well by both ΛCDM and conformal gravity and do not exclude a continuous accelerated expansion. We conclude that GRBs are currently far from being effective cosmological probes, as they are unable to distinguish between these two very different expansion histories
Simulating cosmologies beyond ΛCDM with PINOCCHIO
Energy Technology Data Exchange (ETDEWEB)
Rizzo, Luca A. [Institut de Physique Theorique, Universite Paris-Saclay CEA, CNRS, F-91191 Gif-sur-Yvette, Cedex (France); Villaescusa-Navarro, Francisco [Center for Computational Astrophysics, 160 5th Ave, New York, NY, 10010 (United States); Monaco, Pierluigi [Sezione di Astronomia, Dipartimento di Fisica, Università di Trieste, via G.B. Tiepolo 11, I-34143 Trieste (Italy); Munari, Emiliano [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Borgani, Stefano [INAF – Astronomical Observatory of Trieste, via G.B. Tiepolo 11, I-34143 Trieste (Italy); Castorina, Emanuele [Berkeley Center for Cosmological Physics, University of California, Berkeley, CA 94720 (United States); Sefusatti, Emiliano, E-mail: luca.rizzo@cea.fr, E-mail: fvillaescusa@simonsfoundation.org, E-mail: monaco@oats.inaf.it, E-mail: munari@dark-cosmology.dk, E-mail: borgani@oats.inaf.it, E-mail: ecastorina@berkeley.edu, E-mail: emiliano.sefusatti@brera.inaf.it [INAF, Osservatorio Astronomico di Brera, Via Bianchi 46, I-23807 Merate (Italy)
2017-01-01
We present a method that extends the capabilities of the PINpointing Orbit-Crossing Collapsed HIerarchical Objects (PINOCCHIO) code, allowing it to generate accurate dark matter halo mock catalogues in cosmological models where the linear growth factor and the growth rate depend on scale. Such cosmologies comprise, among others, models with massive neutrinos and some classes of modified gravity theories. We validate the code by comparing the halo properties from PINOCCHIO against N-body simulations, focusing on cosmologies with massive neutrinos: νΛCDM. We analyse the halo mass function, halo two-point correlation function and halo power spectrum, showing that PINOCCHIO reproduces the results from simulations with the same level of precision as the original code (∼ 5–10%). We demonstrate that the abundance of halos in cosmologies with massless and massive neutrinos from PINOCCHIO matches very well the outcome of simulations, and point out that PINOCCHIO can reproduce the Ω{sub ν}–σ{sub 8} degeneracy that affects the halo mass function. We finally show that the clustering properties of the halos from PINOCCHIO matches accurately those from simulations both in real and redshift-space, in the latter case up to k = 0.3 h Mpc{sup −1}. We emphasize that the computational time required by PINOCCHIO to generate mock halo catalogues is orders of magnitude lower than the one needed for N-body simulations. This makes this tool ideal for applications like covariance matrix studies within the standard ΛCDM model but also in cosmologies with massive neutrinos or some modified gravity theories.
Gravitational wave memory in ΛCDM cosmology
International Nuclear Information System (INIS)
Bieri, Lydia; Garfinkle, David; Yunes, Nicolás
2017-01-01
We examine gravitational wave memory in the case where sources and detector are in a ΛCDM cosmology. We consider the case where the Universe can be highly inhomogeneous, but gravitational radiation is treated in the short wavelength approximation. We find results very similar to those of gravitational wave memory in an asymptotically flat spacetime; however, the overall magnitude of the memory effect is enhanced by a redshift-dependent factor. In addition, we find the memory can be affected by lensing. (paper)
Top ten accelerating cosmological models
International Nuclear Information System (INIS)
Szydlowski, Marek; Kurek, Aleksandra; Krawiec, Adam
2006-01-01
Recent astronomical observations indicate that the Universe is presently almost flat and undergoing a period of accelerated expansion. Basing on Einstein's general relativity all these observations can be explained by the hypothesis of a dark energy component in addition to cold dark matter (CDM). Because the nature of this dark energy is unknown, it was proposed some alternative scenario to explain the current accelerating Universe. The key point of this scenario is to modify the standard FRW equation instead of mysterious dark energy component. The standard approach to constrain model parameters, based on the likelihood method, gives a best-fit model and confidence ranges for those parameters. We always arbitrary choose the set of parameters which define a model which we compare with observational data. Because in the generic case, the introducing of new parameters improves a fit to the data set, there appears the problem of elimination of model parameters which can play an insufficient role. The Bayesian information criteria of model selection (BIC) is dedicated to promotion a set of parameters which should be incorporated to the model. We divide class of all accelerating cosmological models into two groups according to the two types of explanation acceleration of the Universe. Then the Bayesian framework of model selection is used to determine the set of parameters which gives preferred fit to the SNIa data. We find a few of flat cosmological models which can be recommend by the Bayes factor. We show that models with dark energy as a new fluid are favoured over models featuring a modified FRW equation
Cosmological acceleration. Dark energy or modified gravity?
International Nuclear Information System (INIS)
Bludman, S.
2006-05-01
We review the evidence for recently accelerating cosmological expansion or ''dark energy'', either a negative pressure constituent in General Relativity (Dark Energy) or modified gravity (Dark Gravity), without any constituent Dark Energy. If constituent Dark Energy does not exist, so that our universe is now dominated by pressure-free matter, Einstein gravity must be modified at low curvature. The vacuum symmetry of any Robertson-Walker universe then characterizes Dark Gravity as low- or high-curvature modifications of Einstein gravity. The dynamics of either kind of ''dark energy'' cannot be derived from the homogeneous expansion history alone, but requires also observing the growth of inhomogeneities. Present and projected observations are all consistent with a small fine tuned cosmological constant, but also allow nearly static Dark Energy or gravity modified at cosmological scales. The growth of cosmological fluctuations will potentially distinguish between static and ''dynamic'' ''dark energy''. But, cosmologically distinguishing the Concordance Model ΛCDM from modified gravity will require a weak lensing shear survey more ambitious than any now projected. Dvali-Gabadadze-Porrati low-curvature modifications of Einstein gravity may also be detected in refined observations in the solar system (Lue and Starkman) or at the intermediate Vainstein scale (Iorio) in isolated galaxy clusters. Dark Energy's epicyclic character, failure to explain the original Cosmic Coincidence (''Why so small now?'') without fine tuning, inaccessibility to laboratory or solar system tests, along with braneworld theories, now motivate future precision solar system, Vainstein-scale and cosmological-scale studies of Dark Gravity. (Orig.)
Cosmological acceleration. Dark energy or modified gravity?
Energy Technology Data Exchange (ETDEWEB)
Bludman, S
2006-05-15
We review the evidence for recently accelerating cosmological expansion or ''dark energy'', either a negative pressure constituent in General Relativity (Dark Energy) or modified gravity (Dark Gravity), without any constituent Dark Energy. If constituent Dark Energy does not exist, so that our universe is now dominated by pressure-free matter, Einstein gravity must be modified at low curvature. The vacuum symmetry of any Robertson-Walker universe then characterizes Dark Gravity as low- or high-curvature modifications of Einstein gravity. The dynamics of either kind of ''dark energy'' cannot be derived from the homogeneous expansion history alone, but requires also observing the growth of inhomogeneities. Present and projected observations are all consistent with a small fine tuned cosmological constant, but also allow nearly static Dark Energy or gravity modified at cosmological scales. The growth of cosmological fluctuations will potentially distinguish between static and ''dynamic'' ''dark energy''. But, cosmologically distinguishing the Concordance Model {lambda}CDM from modified gravity will require a weak lensing shear survey more ambitious than any now projected. Dvali-Gabadadze-Porrati low-curvature modifications of Einstein gravity may also be detected in refined observations in the solar system (Lue and Starkman) or at the intermediate Vainstein scale (Iorio) in isolated galaxy clusters. Dark Energy's epicyclic character, failure to explain the original Cosmic Coincidence (''Why so small now?'') without fine tuning, inaccessibility to laboratory or solar system tests, along with braneworld theories, now motivate future precision solar system, Vainstein-scale and cosmological-scale studies of Dark Gravity. (Orig.)
Where the world stands still: turnaround as a strong test of ΛCDM cosmology
Energy Technology Data Exchange (ETDEWEB)
Pavlidou, V.; Tomaras, T.N., E-mail: pavlidou@physics.uoc.gr, E-mail: tomaras@physics.uoc.gr [Department of Physics and ITCP, University of Crete, 71003 Heraklion (Greece)
2014-09-01
Our intuitive understanding of cosmic structure formation works best in scales small enough so that isolated, bound, relaxed gravitating systems are no longer adjusting their radius; and large enough so that space and matter follow the average expansion of the Universe. Yet one of the most robust predictions of ΛCDM cosmology concerns the scale that separates these limits: the turnaround radius, which is the non-expanding shell furthest away from the center of a bound structure. We show that the maximum possible value of the turnaround radius within the framework of the ΛCDM model is, for a given mass M, equal to (3GM/Λ c{sup 2}){sup 1/3}, with G Newton's constant and c the speed of light, independently of cosmic epoch, exact nature of dark matter, or baryonic effects. We discuss the possible use of this prediction as an observational test for ΛCDM cosmology. Current data appear to favor ΛCDM over alternatives with local inhomogeneities and no Λ. However there exist several local-universe structures that have, within errors, reached their limiting size. With improved determinations of their turnaround radii and the enclosed mass, these objects may challenge the limit and ΛCDM cosmology.
Where the world stands still: turnaround as a strong test of ΛCDM cosmology
Pavlidou, V.; Tomaras, T. N.
2014-09-01
Our intuitive understanding of cosmic structure formation works best in scales small enough so that isolated, bound, relaxed gravitating systems are no longer adjusting their radius; and large enough so that space and matter follow the average expansion of the Universe. Yet one of the most robust predictions of ΛCDM cosmology concerns the scale that separates these limits: the turnaround radius, which is the non-expanding shell furthest away from the center of a bound structure. We show that the maximum possible value of the turnaround radius within the framework of the ΛCDM model is, for a given mass M, equal to (3GM/Λ c2)1/3, with G Newton's constant and c the speed of light, independently of cosmic epoch, exact nature of dark matter, or baryonic effects. We discuss the possible use of this prediction as an observational test for ΛCDM cosmology. Current data appear to favor ΛCDM over alternatives with local inhomogeneities and no Λ. However there exist several local-universe structures that have, within errors, reached their limiting size. With improved determinations of their turnaround radii and the enclosed mass, these objects may challenge the limit and ΛCDM cosmology.
Consistency of the Planck CMB data and ΛCDM cosmology
Energy Technology Data Exchange (ETDEWEB)
Shafieloo, Arman [Korea Astronomy and Space Science Institute, Daejeon, 34055 (Korea, Republic of); Hazra, Dhiraj Kumar, E-mail: shafieloo@kasi.re.kr, E-mail: dhiraj.kumar.hazra@apc.univ-paris7.fr [AstroParticule et Cosmologie (APC)/Paris Centre for Cosmological Physics, Université Paris Diderot, CNRS/IN2P3, CEA/lrfu, Observatoire de Paris, Sorbonne Paris Cité, 10, rue Alice Domon et Leonie Duquet, Paris Cedex 13, 75205 France (France)
2017-04-01
We test the consistency between Planck temperature and polarization power spectra and the concordance model of Λ Cold Dark Matter cosmology (ΛCDM) within the framework of Crossing statistics. We find that Planck TT best fit ΛCDM power spectrum is completely consistent with EE power spectrum data while EE best fit ΛCDM power spectrum is not consistent with TT data. However, this does not point to any systematic or model-data discrepancy since in the Planck EE data, uncertainties are much larger compared to the TT data. We also investigate the possibility of any deviation from ΛCDM model analyzing the Planck 2015 data. Results from TT, TE and EE data analysis indicate that no deviation is required beyond the flexibility of the concordance ΛCDM model. Our analysis thus rules out any strong evidence for beyond the concordance model in the Planck spectra data. We also report a mild amplitude difference comparing temperature and polarization data, where temperature data seems to have slightly lower amplitude than expected (consistently at all multiples), as we assume both temperature and polarization data are realizations of the same underlying cosmology.
DIRECTIONAL DEPENDENCE OF ΛCDM COSMOLOGICAL PARAMETERS
International Nuclear Information System (INIS)
Axelsson, M.; Fantaye, Y.; Hansen, F. K.; Eriksen, H. K.; Banday, A. J.; Gorski, K. M.
2013-01-01
We study hemispherical power asymmetry in the Wilkinson Microwave Anisotropy Probe 9 yr data. We analyze the combined V- and W-band sky maps, after application of the KQ85 mask, and find that the asymmetry is statistically significant at the 3.4σ confidence level for l = 2-600, where the data are signal-dominated, with a preferred asymmetry direction (l, b) = (227, –27). Individual asymmetry axes estimated from six independent multipole ranges are all consistent with this direction. Subsequently, we estimate cosmological parameters on different parts of the sky and show that the parameters A s , n s , and Ω b are the most sensitive to this power asymmetry. In particular, for the two opposite hemispheres aligned with the preferred asymmetry axis, we find n s = 0.959 ± 0.022 and n s = 0.989 ± 0.024, respectively
Accelerating cosmologies from exponential potentials
International Nuclear Information System (INIS)
Neupane, Ishwaree P.
2003-11-01
It is learnt that exponential potentials of the form V ∼ exp(-2cφ/M p ) arising from the hyperbolic or flux compactification of higher-dimensional theories are of interest for getting short periods of accelerated cosmological expansions. Using a similar potential but derived for the combined case of hyperbolic-flux compactification, we study a four-dimensional flat (or open) FRW cosmologies and give analytic (and numerical) solutions with exponential behavior of scale factors. We show that, for the M-theory motivated potentials, the cosmic acceleration of the universe can be eternal if the spatial curvature of the 4d spacetime is negative, while the acceleration is only transient for a spatially flat universe. We also briefly discuss about the mass of massive Kaluza-Klein modes and the dynamical stabilization of the compact hyperbolic extra dimensions. (author)
Particle accelerators test cosmological theory
International Nuclear Information System (INIS)
Schramm, D.N.; Steigman, G.
1988-01-01
Over the past decade two subfields of science, cosmology and elementary-particle physics, have become married in a symbiotic relationship that has produced a number of exciting offspring. These offspring are beginning to yield insights on the creation of spacetime and matter at epochs as early as 10 to the minus 43 to 10 to the minus 35 second after the birth of the universe in the primordial explosion known as the big bang. Important clues to the nature of the big bang itself may even come from a theory currently under development, known as the ultimate theory of everything (T.E.O.). A T.E.O. would describe all the interactions among the fundamental particles in a single bold stroke. Now that cosmology ahs begun to make predictions about elementary-particle physics, it has become conceivable that those cosmological predictions could be checked with carefully controlled accelerator experiments. It has taken more than 10 years for accelerators to reach the point where they can do the appropriate experiments, but the experiments are now in fact in progress. The preliminary results confirm the predictions of cosmology. The cosmological prediction the authors have been concerned with pertains to setting limits on the number of fundamental particles of matter. It appears that there are 12 fundamental particles, as well as their corresponding antiparticles. Six of the fundamental particles are quarks. The other six are leptons. The 12 particles are grouped in three families, each family consisting of four members. Cosmology suggests there must be a finite number of families and, further limits the possible range of to small values: only three or at most four families exist. 7 figs
Testing ΛCDM cosmology at turnaround: where to look for violations of the bound?
International Nuclear Information System (INIS)
Tanoglidis, D.; Pavlidou, V.; Tomaras, T.N.
2015-01-01
In ΛCDM cosmology, structure formation is halted shortly after dark energy dominates the mass/energy budget of the Universe. A manifestation of this effect is that in such a cosmology the turnaround radius—the non-expanding mass shell furthest away from the center of a structure— has an upper bound. Recently, a new, local, test for the existence of dark energy in the form of a cosmological constant was proposed based on this turnaround bound. Before designing an experiment that, through high-precision determination of masses and —independently— turnaround radii, will challenge ΛCDM cosmology, we have to answer two important questions: first, when turnaround-scale structures are predicted to be close enough to their maximum size, so that a possible violation of the bound may be observable. Second, which is the best mass scale to target for possible violations of the bound. These are the questions we address in the present work. Using the Press-Schechter formalism, we find that turnaround structures have in practice already stopped forming, and consequently, the turnaround radius of structures must be very close to the maximum value today. We also find that the mass scale of ∼ 10 13 M ⊙ characterizes the turnaround structures that start to form in a statistically important number density today —and even at an infinite time in the future, since structure formation has almost stopped. This mass scale also separates turnaround structures with qualitatively different cosmological evolution: smaller structures are no longer readjusting their mass distribution inside the turnaround scale, they asymptotically approach their ultimate abundance from higher values, and they are common enough to have, at some epoch, experienced major mergers with structures of comparable mass; larger structures exhibit the opposite behavior. We call this mass scale the transitional mass scale and we argue that it is the optimal for the purpose outlined above. As a corollary
Is cosmic acceleration proven by local cosmological probes?
Tutusaus, I.; Lamine, B.; Dupays, A.; Blanchard, A.
2017-06-01
Context. The cosmological concordance model (ΛCDM) matches the cosmological observations exceedingly well. This model has become the standard cosmological model with the evidence for an accelerated expansion provided by the type Ia supernovae (SNIa) Hubble diagram. However, the robustness of this evidence has been addressed recently with somewhat diverging conclusions. Aims: The purpose of this paper is to assess the robustness of the conclusion that the Universe is indeed accelerating if we rely only on low-redshift (z ≲ 2) observations, that is to say with SNIa, baryonic acoustic oscillations, measurements of the Hubble parameter at different redshifts, and measurements of the growth of matter perturbations. Methods: We used the standard statistical procedure of minimizing the χ2 function for the different probes to quantify the goodness of fit of a model for both ΛCDM and a simple nonaccelerated low-redshift power law model. In this analysis, we do not assume that supernovae intrinsic luminosity is independent of the redshift, which has been a fundamental assumption in most previous studies that cannot be tested. Results: We have found that, when SNIa intrinsic luminosity is not assumed to be redshift independent, a nonaccelerated low-redshift power law model is able to fit the low-redshift background data as well as, or even slightly better, than ΛCDM. When measurements of the growth of structures are added, a nonaccelerated low-redshift power law model still provides an excellent fit to the data for all the luminosity evolution models considered. Conclusions: Without the standard assumption that supernovae intrinsic luminosity is independent of the redshift, low-redshift probes are consistent with a nonaccelerated universe.
Is the continuous matter creation cosmology an alternative to ΛCDM?
International Nuclear Information System (INIS)
Fabris, J.C.; Pacheco, J.A. de Freitas; Piattella, O.F.
2014-01-01
The matter creation cosmology is revisited, including the evolution of baryons and dark matter particles. The creation process affects only dark matter and not baryons. The dynamics of the ΛCDM model can be reproduced only if two conditions are satisfied: 1) the entropy density production rate and the particle density variation rate are equal and 2) the (negative) pressure associated to the creation process is constant. However, the matter creation model predicts a present dark matter-to-baryon ratio much larger than that observed in massive X-ray clusters of galaxies, representing a potential difficulty for the model. In the linear regime, a fully relativistic treatment indicates that baryons are not affected by the creation process but this is not the case for dark matter. Both components evolve together at early phases but lately the dark matter density contrast decreases since the background tends to a constant value. This behaviour produces a negative growth factor, in disagreement with observations, being a further problem for this cosmology
International Nuclear Information System (INIS)
Astashenok, Artyom V.; Odintsov, Sergei D.
2013-01-01
We confront dark energy models which are currently similar to ΛCDM theory with observational data which include the SNe data, matter density perturbations and baryon acoustic oscillations data. DE cosmology under consideration may evolve to Big Rip, type II or type III future singularity, or to Little Rip or Pseudo-Rip universe. It is shown that matter perturbations data define more precisely the possible deviation from ΛCDM model than consideration of SNe data only. The combined data analysis proves that DE models under consideration are as consistent as ΛCDM model. We demonstrate that growth of matter density perturbations may occur at sufficiently small background density but still before the possible disintegration of bound objects (like clusters of galaxies, galaxies, etc.) in Big Rip, type III singularity, Little Rip or Pseudo-Rip universe. This new effect may bring the future universe to chaotic state well before disintegration or Rip.
Self-accelerating universe in Galileon cosmology
International Nuclear Information System (INIS)
Silva, Fabio P.; Koyama, Kazuya
2009-01-01
We present a cosmological model with a solution that self-accelerates at late times without signs of ghost instabilities on small scales. The model is a natural extension of the Brans-Dicke (BD) theory including a nonlinear derivative interaction, which appears in a theory with the Galilean shift symmetry. The existence of the self-accelerating universe requires a negative BD parameter but, thanks to the nonlinear term, small fluctuations around the solution are stable on small scales. General relativity is recovered at early times and on small scales by this nonlinear interaction via the Vainshtein mechanism. At late time, gravity is strongly modified and the background cosmology shows a phantomlike behavior and the growth rate of structure formation is enhanced. Thus this model leaves distinct signatures in cosmological observations and it can be distinguished from standard LCDM cosmology.
Learn-as-you-go acceleration of cosmological parameter estimates
International Nuclear Information System (INIS)
Aslanyan, Grigor; Easther, Richard; Price, Layne C.
2015-01-01
Cosmological analyses can be accelerated by approximating slow calculations using a training set, which is either precomputed or generated dynamically. However, this approach is only safe if the approximations are well understood and controlled. This paper surveys issues associated with the use of machine-learning based emulation strategies for accelerating cosmological parameter estimation. We describe a learn-as-you-go algorithm that is implemented in the Cosmo++ code and (1) trains the emulator while simultaneously estimating posterior probabilities; (2) identifies unreliable estimates, computing the exact numerical likelihoods if necessary; and (3) progressively learns and updates the error model as the calculation progresses. We explicitly describe and model the emulation error and show how this can be propagated into the posterior probabilities. We apply these techniques to the Planck likelihood and the calculation of ΛCDM posterior probabilities. The computation is significantly accelerated without a pre-defined training set and uncertainties in the posterior probabilities are subdominant to statistical fluctuations. We have obtained a speedup factor of 6.5 for Metropolis-Hastings and 3.5 for nested sampling. Finally, we discuss the general requirements for a credible error model and show how to update them on-the-fly
Conformal symmetries of FRW accelerating cosmologies
International Nuclear Information System (INIS)
Kehagias, A.; Riotto, A.
2014-01-01
We show that any accelerating Friedmann–Robertson–Walker (FRW) cosmology with equation of state w<−1/3 (and therefore not only a de Sitter stage with w=−1) exhibits three-dimensional conformal symmetry on future constant-time hypersurfaces if the bulk theory is invariant under bulk conformal Killing vectors. We also offer an alternative derivation of this result in terms of conformal Killing vectors and show that long wavelength comoving curvature perturbations of the perturbed FRW metric are just conformal Killing motions of the FRW background. We then extend the boundary conformal symmetry to the bulk for accelerating cosmologies. Our findings indicate that one can easily generate perturbations of scalar fields which are not only scale invariant, but also fully conformally invariant on super-Hubble scales. Measuring a scale-invariant power spectrum for the cosmological perturbation does not automatically imply that the universe went through a de Sitter stage
Cosmological evolution of vacuum and cosmic acceleration
International Nuclear Information System (INIS)
Kaya, Ali
2010-01-01
It is known that the unregularized expressions for the stress-energy tensor components corresponding to subhorizon and superhorizon vacuum fluctuations of a massless scalar field in a Friedmann-Robertson-Walker background are characterized by the equation of state parameters ω = 1/3 and ω = -1/3, which are not sufficient to produce cosmological acceleration. However, the form of the adiabatically regularized finite stress-energy tensor turns out to be completely different. By using the fact that vacuum subhorizon modes evolve nearly adiabatically and superhorizon modes have ω = -1/3, we approximately determine the regularized stress-energy tensor, whose conservation is utilized to fix the time dependence of the vacuum energy density. We then show that vacuum energy density grows from zero up to H 4 in about one Hubble time, vacuum fluctuations give positive acceleration of the order of H 4 /M 2 p and they can completely alter the cosmic evolution of the universe dominated otherwise by the cosmological constant, radiation or pressureless dust. Although the magnitude of the acceleration is tiny to explain the observed value today, our findings indicate that the cosmological backreaction of vacuum fluctuations must be taken into account in early stages of cosmic evolution.
Reconstructing matter profiles of spherically compensated cosmic regions in ΛCDM cosmology
de Fromont, Paul; Alimi, Jean-Michel
2018-02-01
The absence of a physically motivated model for large-scale profiles of cosmic voids limits our ability to extract valuable cosmological information from their study. In this paper, we address this problem by introducing the spherically compensated cosmic regions, named CoSpheres. Such cosmic regions are identified around local extrema in the density field and admit a unique compensation radius R1 where the internal spherical mass is exactly compensated. Their origin is studied by extending the standard peak model and implementing the compensation condition. Since the compensation radius evolves as the Universe itself, R1(t) ∝ a(t), CoSpheres behave as bubble Universes with fixed comoving volume. Using the spherical collapse model, we reconstruct their profiles with a very high accuracy until z = 0 in N-body simulations. CoSpheres are symmetrically defined and reconstructed for both central maximum (seeding haloes and galaxies) and minimum (identified with cosmic voids). We show that the full non-linear dynamics can be solved analytically around this particular compensation radius, providing useful predictions for cosmology. This formalism highlights original correlations between local extremum and their large-scale cosmic environment. The statistical properties of these spherically compensated cosmic regions and the possibilities to constrain efficiently both cosmology and gravity will be investigated in companion papers.
THE COSMOLOGICAL BULK FLOW: CONSISTENCY WITH ΛCDM AND z ∼ 0 CONSTRAINTS ON σ8 AND γ
International Nuclear Information System (INIS)
Nusser, Adi; Davis, Marc
2011-01-01
We derive estimates for the cosmological bulk flow from the SFI++ Tully-Fisher (TF) catalog. For a sphere of radius 40 h -1 Mpc centered on the Milky Way, we derive a bulk flow of 333 ± 38 km s -1 toward Galactic (l, b) = (276 deg., 14 deg.) within a 3 0 1σ error. Within a radius of 100h -1 Mpc we get 257 ± 44 km s -1 toward (l, b) = (279 deg., 10 deg.) within a 6 deg. error. These directions are at 40 deg. to the Supergalactic plane, close to the apex of the motion of the Local Group of galaxies after the Virgocentric infall correction. Our findings are consistent with the ΛCDM model with the latest Wilkinson Microwave Anisotropy Probe (WMAP) best-fit cosmological parameters, but the bulk flow allows independent constraints. For the WMAP-inferred Hubble parameter h = 0.71 and baryonic mean density parameter Ω b = 0.0449, the constraint from the bulk flow on the matter density, Ω m , the normalization of the density fluctuations, σ 8 , and the growth index, γ, can be expressed as σ 8 Ω γ-0.55 m (Ω m /0.266) 0.28 = 0.86 ± 0.11 (for Ω m ∼ 0.266). Fixing σ 8 = 0.8 and Ω m = 0.266 as favored by WMAP, we get γ = 0.495 ± 0.096. The constraint derived here rules out popular Dvali-Gabadadze-Porrati models at more than the 99% confidence level. Our results are based on the All Space Constrained Estimate (ACSE) model which reconstructs the bulk flow from an all space three-dimensional peculiar velocity field constrained to match the TF measurements. At large distances, ASCE generates a robust bulk flow from the SFI++ survey that is insensitive to the assumed prior. For comparison, a standard straightforward maximum likelihood estimate leads to very similar results.
Wetzel, Andrew R.; Hopkins, Philip F.; Kim, Ji-Hoon; Faucher-Giguère, Claude-André; Kereš, Dušan; Quataert, Eliot
2016-01-01
ï¿½ 2016. The American Astronomical Society. All rights reserved. Low-mass "dwarf" galaxies represent the most significant challenges to the cold dark matter (CDM) model of cosmological structure formation. Because these faint galaxies are (best) observed within the Local Group (LG) of the Milky Way (MW) and Andromeda (M31), understanding their formation in such an environment is critical. We present first results from the Latte Project: the Milky Way on Feedback in Realistic Environments (FI...
Alimi, Jean-Michel; de Fromont, Paul
2018-04-01
The statistical properties of cosmic structures are well known to be strong probes for cosmology. In particular, several studies tried to use the cosmic void counting number to obtain tight constrains on dark energy. In this paper, we model the statistical properties of these regions using the CoSphere formalism (de Fromont & Alimi) in both primordial and non-linearly evolved Universe in the standard Λ cold dark matter model. This formalism applies similarly for minima (voids) and maxima (such as DM haloes), which are here considered symmetrically. We first derive the full joint Gaussian distribution of CoSphere's parameters in the Gaussian random field. We recover the results of Bardeen et al. only in the limit where the compensation radius becomes very large, i.e. when the central extremum decouples from its cosmic environment. We compute the probability distribution of the compensation size in this primordial field. We show that this distribution is redshift independent and can be used to model cosmic voids size distribution. We also derive the statistical distribution of the peak parameters introduced by Bardeen et al. and discuss their correlation with the cosmic environment. We show that small central extrema with low density are associated with narrow compensation regions with deep compensation density, while higher central extrema are preferentially located in larger but smoother over/under massive regions.
A TWO-PHASE SCENARIO FOR BULGE ASSEMBLY IN {Lambda}CDM COSMOLOGIES
Energy Technology Data Exchange (ETDEWEB)
Obreja, A.; Dominguez-Tenreiro, R.; Brook, C. [Departamento de Fisica Teorica, Universidad Autonoma de Madrid, E-28049 Cantoblanco Madrid (Spain); Martinez-Serrano, F. J.; Domenech-Moral, M.; Serna, A. [Departamento de Fisica y Arquitectura de Computadores, Universidad Miguel Hernandez, E-03202 Elche (Spain); Molla, M. [Departamento de Investigacion Basica, CIEMAT, E-28040 Madrid (Spain); Stinson, G., E-mail: aura.obreja@uam.es [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117, Heidelberg (Germany)
2013-01-20
We analyze and compare the bulges of a sample of L {sub *} spiral galaxies in hydrodynamical simulations in a cosmological context, using two different codes, P-DEVA and GASOLINE. The codes regulate star formation in very different ways, with P-DEVA simulations inputting low star formation efficiency under the assumption that feedback occurs on subgrid scales, while the GASOLINE simulations have feedback that drives large-scale outflows. In all cases, the marked knee shape in mass aggregation tracks, corresponding to the transition from an early phase of rapid mass assembly to a later slower one, separates the properties of two populations within the simulated bulges. The bulges analyzed show an important early starburst resulting from the collapse-like fast phase of mass assembly, followed by a second phase with lower star formation, driven by a variety of processes such as disk instabilities and/or mergers. Classifying bulge stellar particles identified at z = 0 into old and young according to these two phases, we found bulge stellar sub-populations with distinct kinematics, shapes, stellar ages, and metal contents. The young components are more oblate, generally smaller, more rotationally supported, with higher metallicity and less alpha-element enhanced than the old ones. These results are consistent with the current observational status of bulges, and provide an explanation for some apparently paradoxical observations, such as bulge rejuvenation and metal-content gradients observed. Our results suggest that bulges of L {sub *} galaxies will generically have two bulge populations that can be likened to classical and pseudo-bulges, with differences being in the relative proportions of the two, which may vary due to galaxy mass and specific mass accretion and merger histories.
DISCOVERY OF A SUPERCLUSTER AT z ∼ 0.91 AND TESTING THE ΛCDM COSMOLOGICAL MODEL
Energy Technology Data Exchange (ETDEWEB)
Kim, Jae-Woo; Im, Myungshin; Lee, Seong-Kook; Hyun, Minhee; Kim, Dohyeong; Choi, Changsu; Hong, Jueun; Kim, Yongjung; Taak, Yoon Chan; Yoon, Yongmin [Center for the Exploration of the Origin of the universe, Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Edge, Alastair C. [Department of Physics, University of Durham, South Road, Durham DH1 3LE (United Kingdom); Jeon, Yiseul; Jun, Hyunsung David; Karouzos, Marios; Kim, Duho [Astronomy Program, FPRD, Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Ji Hoon [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A’ohoku Place, Hilo, HI 96720 (United States); Park, Won-Kee, E-mail: kjw0704@gmail.com, E-mail: mim@astro.snu.ac.kr [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of)
2016-04-10
The ΛCDM cosmological model successfully reproduces many aspects of the galaxy and structure formation of the universe. However, the growth of large-scale structures (LSSs) in the early universe is not well tested yet with observational data. Here, we have utilized wide and deep optical–near-infrared data in order to search for distant galaxy clusters and superclusters (0.8 < z < 1.2). From the spectroscopic observation with the Inamori Magellan Areal Camera and Spectrograph (IMACS) on the Magellan telescope, three massive clusters at z ∼ 0.91 are confirmed in the SSA22 field. Interestingly, all of them have similar redshifts within Δ z ∼ 0.01 with velocity dispersions ranging from 470 to 1300 km s{sup −1}. Moreover, as the maximum separation is ∼15 Mpc, they compose a supercluster at z ∼ 0.91, meaning that this is one of the most massive superclusters at this redshift to date. The galaxy density map implies that the confirmed clusters are embedded in a larger structure stretching over ∼100 Mpc. ΛCDM models predict about one supercluster like this in our surveyed volume, consistent with our finding so far. However, there are more supercluster candidates in this field, suggesting that additional studies are required to determine if the ΛCDM cosmological model can successfully reproduce the LSSs at high redshift.
Cosmological consistency tests of gravity theory and cosmic acceleration
Ishak-Boushaki, Mustapha B.
2017-01-01
Testing general relativity at cosmological scales and probing the cause of cosmic acceleration are among the important objectives targeted by incoming and future astronomical surveys and experiments. I present our recent results on consistency tests that can provide insights about the underlying gravity theory and cosmic acceleration using cosmological data sets. We use statistical measures, the rate of cosmic expansion, the growth rate of large scale structure, and the physical consistency of these probes with one another.
Cosmic acceleration in non-flat f( T) cosmology
Capozziello, Salvatore; Luongo, Orlando; Pincak, Richard; Ravanpak, Arvin
2018-05-01
We study f( T) cosmological models inserting a non-vanishing spatial curvature and discuss its consequences on cosmological dynamics. To figure this out, a polynomial f( T) model and a double torsion model are considered. We first analyze those models with cosmic data, employing the recent surveys of Union 2.1, baryonic acoustic oscillation and cosmic microwave background measurements. We then emphasize that the two popular f( T) models enable the crossing of the phantom divide line due to dark torsion. Afterwards, we compute numerical bounds up to 3-σ confidence level, emphasizing the fact that Ω _{k0} turns out to be non-compatible with zero at least at 1σ . Moreover, we underline that, even increasing the accuracy, one cannot remove the degeneracy between our models and the Λ CDM paradigm. So that, we show that our treatments contain the concordance paradigm and we analyze the equation of state behaviors at different redshift domains. We also take into account gamma ray bursts and we describe the evolution of both the f( T) models with high redshift data. We calibrate the gamma ray burst measurements through small redshift surveys of data and we thus compare the main differences between non-flat and flat f( T) cosmology at different redshift ranges. We finally match the corresponding outcomes with small redshift bounds provided by cosmography. To do so, we analyze the deceleration parameters and their variations, proportional to the jerk term. Even though the two models well fit late-time data, we notice that the polynomial f( T) approach provides an effective de-Sitter phase, whereas the second f( T) framework shows analogous results compared with the Λ CDM predictions.
Viscous cosmology in new holographic dark energy model and the cosmic acceleration
International Nuclear Information System (INIS)
Singh, C.P.; Srivastava, Milan
2018-01-01
In this work, we study a flat Friedmann-Robertson-Walker universe filled with dark matter and viscous new holographic dark energy. We present four possible solutions of the model depending on the choice of the viscous term. We obtain the evolution of the cosmological quantities such as scale factor, deceleration parameter and transition redshift to observe the effect of viscosity in the evolution. We also emphasis upon the two independent geometrical diagnostics for our model, namely the statefinder and the Om diagnostics. In the first case we study new holographic dark energy model without viscous and obtain power-law expansion of the universe which gives constant deceleration parameter and statefinder parameters. In the limit of the parameter, the model approaches to ΛCDM model. In new holographic dark energy model with viscous, the bulk viscous coefficient is assumed as ζ = ζ 0 + ζ 1 H, where ζ 0 and ζ 1 are constants, and H is the Hubble parameter. In this model, we obtain all possible solutions with viscous term and analyze the expansion history of the universe. We draw the evolution graphs of the scale factor and deceleration parameter. It is observed that the universe transits from deceleration to acceleration for small values of ζ in late time. However, it accelerates very fast from the beginning for large values of ζ. By illustrating the evolutionary trajectories in r - s and r - q planes, we find that our model behaves as an quintessence like for small values of viscous coefficient and a Chaplygin gas like for large values of bulk viscous coefficient at early stage. However, model has close resemblance to that of the ΛCDM cosmology in late time. The Om has positive and negative curvatures for phantom and quintessence models, respectively depending on ζ. Our study shows that the bulk viscosity plays very important role in the expansion history of the universe. (orig.)
Viscous cosmology in new holographic dark energy model and the cosmic acceleration
Singh, C. P.; Srivastava, Milan
2018-03-01
In this work, we study a flat Friedmann-Robertson-Walker universe filled with dark matter and viscous new holographic dark energy. We present four possible solutions of the model depending on the choice of the viscous term. We obtain the evolution of the cosmological quantities such as scale factor, deceleration parameter and transition redshift to observe the effect of viscosity in the evolution. We also emphasis upon the two independent geometrical diagnostics for our model, namely the statefinder and the Om diagnostics. In the first case we study new holographic dark energy model without viscous and obtain power-law expansion of the universe which gives constant deceleration parameter and statefinder parameters. In the limit of the parameter, the model approaches to Λ CDM model. In new holographic dark energy model with viscous, the bulk viscous coefficient is assumed as ζ =ζ 0+ζ 1H, where ζ 0 and ζ 1 are constants, and H is the Hubble parameter. In this model, we obtain all possible solutions with viscous term and analyze the expansion history of the universe. We draw the evolution graphs of the scale factor and deceleration parameter. It is observed that the universe transits from deceleration to acceleration for small values of ζ in late time. However, it accelerates very fast from the beginning for large values of ζ . By illustrating the evolutionary trajectories in r-s and r-q planes, we find that our model behaves as an quintessence like for small values of viscous coefficient and a Chaplygin gas like for large values of bulk viscous coefficient at early stage. However, model has close resemblance to that of the Λ CDM cosmology in late time. The Om has positive and negative curvatures for phantom and quintessence models, respectively depending on ζ . Our study shows that the bulk viscosity plays very important role in the expansion history of the universe.
Cosmic Rays Accelerated at Cosmological Shock Waves Renyi Ma1 ...
Indian Academy of Sciences (India)
Cosmic Rays Accelerated at Cosmological Shock Waves. Renyi Ma1,2,∗ ... ratio of CR to thermal energy in the ICM and WHIM based on numerical simulations and diffusive shock ... Hence, the nonthermal radiation of CRs may provide us a.
García-Bellido, J
2015-01-01
In these lectures I review the present status of the so-called Standard Cosmological Model, based on the hot Big Bang Theory and the Inflationary Paradigm. I will make special emphasis on the recent developments in observational cosmology, mainly the acceleration of the universe, the precise measurements of the microwave background anisotropies, and the formation of structure like galaxies and clusters of galaxies from tiny primordial fluctuations generated during inflation.
Cao, Shu-Lei; Duan, Xiao-Wei; Meng, Xiao-Lei; Zhang, Tong-Jie
2018-04-01
Aiming at exploring the nature of dark energy (DE), we use forty-three observational Hubble parameter data (OHD) in the redshift range 0 measurements. The binning methods turn out to be promising and considered to be robust. By applying the two-point diagnostic to the binned data, we find that although the best-fit values of Omh^2 fluctuate as the continuous redshift intervals change, on average, they are continuous with being constant within 1 σ confidence interval. Therefore, we conclude that the ΛCDM model cannot be ruled out.
Consistency of ΛCDM with geometric and dynamical probes
International Nuclear Information System (INIS)
Perivolaropoulos, L
2010-01-01
The ΛCDM cosmological model assumes the existence of a small cosmological constant in order to explain the observed accelerating cosmic expansion. Despite the dramatic improvement of the quality of cosmological data during the last decade it remains the simplest model that fits remarkably well (almost) all cosmological observations. In this talk I review the increasingly successful fits provided by ΛCDM on recent geometric probe data of the cosmic expansion. I also briefly discuss some emerging shortcomings of the model in attempting to fit specific classes of data (eg cosmic velocity dipole flows and cluster halo profiles). Finally, I summarize recent results on the theoretically predicted matter overdensity (δ m =(δρ m )/ρ m ) evolution (a dynamical probe of the cosmic expansion), emphasizing its scale and gauge dependence on large cosmological scales in the context of general relativity. A new scale dependent parametrization which describes accurately the growth rate of perturbations even on scales larger than 100h -1 Mpc is shown to be a straightforward generalization of the well known scale independent parametrization f(a) = Ω m (a) γ valid on smaller cosmological scales.
Can superhorizon cosmological perturbations explain the acceleration of the universe?
International Nuclear Information System (INIS)
Hirata, Christopher M.; Seljak, Uros
2005-01-01
We investigate the recent suggestions by Barausse et al. and Kolb et al. that the acceleration of the universe could be explained by large superhorizon fluctuations generated by inflation. We show that no acceleration can be produced by this mechanism. We begin by showing how the application of Raychaudhuri equation to inhomogeneous cosmologies results in several 'no go' theorems for accelerated expansion. Next we derive an exact solution for a specific case of initial perturbations, for which application of the Kolb et al. expressions leads to an acceleration, while the exact solution reveals that no acceleration is present. We show that the discrepancy can be traced to higher-order terms that were dropped in the Kolb et al. analysis. We proceed with the analysis of initial value formulation of general relativity to argue that causality severely limits what observable effects can be derived from superhorizon perturbations. By constructing a Riemann normal coordinate system on initial slice we show that no infrared divergence terms arise in this coordinate system. Thus any divergences found previously can be eliminated by a local rescaling of coordinates and are unobservable. We perform an explicit analysis of the variance of the deceleration parameter for the case of single-field inflation using usual coordinates and show that the infrared-divergent terms found by Barausse et al. and Kolb et al. cancel against several additional terms not considered in their analysis. Finally, we argue that introducing isocurvature perturbations does not alter our conclusion that the accelerating expansion of the universe cannot be explained by superhorizon modes
Simple cosmological model with inflation and late times acceleration
Szydłowski, Marek; Stachowski, Aleksander
2018-03-01
In the framework of polynomial Palatini cosmology, we investigate a simple cosmological homogeneous and isotropic model with matter in the Einstein frame. We show that in this model during cosmic evolution, early inflation appears and the accelerating phase of the expansion for the late times. In this frame we obtain the Friedmann equation with matter and dark energy in the form of a scalar field with a potential whose form is determined in a covariant way by the Ricci scalar of the FRW metric. The energy density of matter and dark energy are also parameterized through the Ricci scalar. Early inflation is obtained only for an infinitesimally small fraction of energy density of matter. Between the matter and dark energy, there exists an interaction because the dark energy is decaying. For the characterization of inflation we calculate the slow roll parameters and the constant roll parameter in terms of the Ricci scalar. We have found a characteristic behavior of the time dependence of density of dark energy on the cosmic time following the logistic-like curve which interpolates two almost constant value phases. From the required numbers of N-folds we have found a bound on the model parameter.
Caching and interpolated likelihoods: accelerating cosmological Monte Carlo Markov chains
Energy Technology Data Exchange (ETDEWEB)
Bouland, Adam; Easther, Richard; Rosenfeld, Katherine, E-mail: adam.bouland@aya.yale.edu, E-mail: richard.easther@yale.edu, E-mail: krosenfeld@cfa.harvard.edu [Department of Physics, Yale University, New Haven CT 06520 (United States)
2011-05-01
We describe a novel approach to accelerating Monte Carlo Markov Chains. Our focus is cosmological parameter estimation, but the algorithm is applicable to any problem for which the likelihood surface is a smooth function of the free parameters and computationally expensive to evaluate. We generate a high-order interpolating polynomial for the log-likelihood using the first points gathered by the Markov chains as a training set. This polynomial then accurately computes the majority of the likelihoods needed in the latter parts of the chains. We implement a simple version of this algorithm as a patch (InterpMC) to CosmoMC and show that it accelerates parameter estimatation by a factor of between two and four for well-converged chains. The current code is primarily intended as a ''proof of concept'', and we argue that there is considerable room for further performance gains. Unlike other approaches to accelerating parameter fits, we make no use of precomputed training sets or special choices of variables, and InterpMC is almost entirely transparent to the user.
Caching and interpolated likelihoods: accelerating cosmological Monte Carlo Markov chains
International Nuclear Information System (INIS)
Bouland, Adam; Easther, Richard; Rosenfeld, Katherine
2011-01-01
We describe a novel approach to accelerating Monte Carlo Markov Chains. Our focus is cosmological parameter estimation, but the algorithm is applicable to any problem for which the likelihood surface is a smooth function of the free parameters and computationally expensive to evaluate. We generate a high-order interpolating polynomial for the log-likelihood using the first points gathered by the Markov chains as a training set. This polynomial then accurately computes the majority of the likelihoods needed in the latter parts of the chains. We implement a simple version of this algorithm as a patch (InterpMC) to CosmoMC and show that it accelerates parameter estimatation by a factor of between two and four for well-converged chains. The current code is primarily intended as a ''proof of concept'', and we argue that there is considerable room for further performance gains. Unlike other approaches to accelerating parameter fits, we make no use of precomputed training sets or special choices of variables, and InterpMC is almost entirely transparent to the user
Accelerated and decelerated expansion in a causal dissipative cosmology
Cruz, Miguel; Cruz, Norman; Lepe, Samuel
2017-12-01
In this work we explore a new cosmological solution for an universe filled with one dissipative fluid, described by a barotropic equation of state (EoS) p =ω ρ , in the framework of the full Israel-Stewart theory. The form of the bulk viscosity has been assumed of the form ξ =ξ0ρ1 /2. The relaxation time is taken to be a function of the EoS, the bulk viscosity and the speed of bulk viscous perturbations, cb. The solution presents an initial singularity, where the curvature scalar diverges as the scale factor goes to zero. Depending on the values for ω , ξ0, cb accelerated and decelerated cosmic expansion can be obtained. In the case of accelerated expansion, the viscosity drives the effective EoS to be of quintessence type, for the single fluid with positive pressure. Nevertheless, we show that only the solution with decelerated expansion satisfies the thermodynamics conditions d S /d t >0 (growth of the entropy) and d2S /d t2<0 (convexity condition). We show that an exact stiff matter EoS is not allowed in the framework of the full causal thermodynamic approach; and in the case of a EoS very close to the stiff matter regime, we found that dissipative effects becomes negligible so the entropy remains constant. Finally, we show numerically that the solution is stable under small perturbations.
International Nuclear Information System (INIS)
Novikov, I.D.
1979-01-01
Progress made by this Commission over the period 1976-1978 is reviewed. Topics include the Hubble constant, deceleration parameter, large-scale distribution of matter in the universe, radio astronomy and cosmology, space astronomy and cosmology, formation of galaxies, physics near the cosmological singularity, and unconventional cosmological models. (C.F.)
Valogiannis, Georgios; Bean, Rachel
2017-05-01
We implement an adaptation of the cola approach, a hybrid scheme that combines Lagrangian perturbation theory with an N-body approach, to model nonlinear collapse in chameleon and symmetron modified gravity models. Gravitational screening is modeled effectively through the attachment of a suppression factor to the linearized Klein-Gordon equations. The adapted cola approach is benchmarked, with respect to an N-body code both for the Λ cold dark matter (Λ CDM ) scenario and for the modified gravity theories. It is found to perform well in the estimation of the dark matter power spectra, with consistency of 1% to k ˜2.5 h /Mpc . Redshift space distortions are shown to be effectively modeled through a Lorentzian parametrization with a velocity dispersion fit to the data. We find that cola performs less well in predicting the halo mass functions but has consistency, within 1 σ uncertainties of our simulations, in the relative changes to the mass function induced by the modified gravity models relative to Λ CDM . The results demonstrate that cola, proposed to enable accurate and efficient, nonlinear predictions for Λ CDM , can be effectively applied to a wider set of cosmological scenarios, with intriguing properties, for which clustering behavior needs to be understood for upcoming surveys such as LSST, DESI, Euclid, and WFIRST.
Proceedings of the 1st Workshop on Flavor Symmetries and Consequences in Accelerators and Cosmology
Meloni, D; Morisi, S; Pastor, S; Peinado, E; Valle, J W F; FLASY2011
2012-01-01
The main goals of the first "Workshop on FLAvor SYmmetries and consequences in accelerators and cosmology" (FLASY) was to summarize the theoretical status of flavor symmetries, bringing together young researchers in the field to stimulate discussions and new collaborations, with the aim of investigating possible new physics scenarios to be tested at the LHC, as well as in future neutrino, cosmology experiments and dark matter searches.
Energy Technology Data Exchange (ETDEWEB)
Zhai, Zhong-Xu; Liu, Wen-Biao [Department of Physics, Institute of Theoretical Physics, Beijing Normal University, Beijing, 100875 (China); Zhang, Tong-Jie, E-mail: zzx@mail.bnu.edu.cn, E-mail: tjzhang@bnu.edu.cn, E-mail: wbliu@bnu.edu.cn [Department of Astronomy, Beijing Normal University, Beijing, 100875 (China)
2011-08-01
The newly released observational H(z) data (OHD) is used to constrain Λ(t)CDM models as holographic and agegraphic dark energy. By the use of the length scale and time scale as the IR cut-off including Hubble horizon (HH), future event horizon (FEH), age of the universe (AU), and conformal time (CT), we achieve four different Λ(t)CDM models which can describe the present cosmological acceleration respectively. In order to get a comparison between such Λ(t)CDM models and standard ΛCDM model, we use the information criteria (IC), Om(z) diagnostic, and statefinder diagnostic to measure the deviations. Furthermore, by simulating a larger Hubble parameter data sample in the redshift range of 0.1 < z < 2.0, we get the improved constraints and more sufficient comparison. We show that OHD is not only able to play almost the same role in constraining cosmological parameters as SNe Ia does but also provides the effective measurement of the deviation of the DE models from standard ΛCDM model. In the holographic and agegraphic scenarios, the results indicate that the FEH is more preferable than HH scenario. However, both two time scenarios show better approximations to ΛCDM model than the length scenarios.
International Nuclear Information System (INIS)
Contopoulos, G.; Kotsakis, D.
1987-01-01
An extensive first part on a wealth of observational results relevant to cosmology lays the foundation for the second and central part of the book; the chapters on general relativity, the various cosmological theories, and the early universe. The authors present in a complete and almost non-mathematical way the ideas and theoretical concepts of modern cosmology including the exciting impact of high-energy particle physics, e.g. in the concept of the ''inflationary universe''. The final part addresses the deeper implications of cosmology, the arrow of time, the universality of physical laws, inflation and causality, and the anthropic principle
Vittorio, Nicola
2018-01-01
Modern cosmology has changed significantly over the years, from the discovery to the precision measurement era. The data now available provide a wealth of information, mostly consistent with a model where dark matter and dark energy are in a rough proportion of 3:7. The time is right for a fresh new textbook which captures the state-of-the art in cosmology. Written by one of the world's leading cosmologists, this brand new, thoroughly class-tested textbook provides graduate and undergraduate students with coverage of the very latest developments and experimental results in the field. Prof. Nicola Vittorio shows what is meant by precision cosmology, from both theoretical and observational perspectives.
Cosmological constraints on Lorentz violating dark energy
Energy Technology Data Exchange (ETDEWEB)
Audren, B.; Lesgourgues, J. [FSB/ITP/LPPC, École Polytechnique Fédérale de Lausanne, CH-1015, Lausanne (Switzerland); Blas, D. [Theory Group, Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); Sibiryakov, S., E-mail: Benjamin.Audren@epfl.ch, E-mail: Diego.Blas@cern.ch, E-mail: Julien.Lesgourgues@cern.ch, E-mail: Sergey.Sibiryakov@cern.ch [Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary Prospect, 7a, 117312 Moscow (Russian Federation)
2013-08-01
The role of Lorentz invariance as a fundamental symmetry of nature has been lately reconsidered in different approaches to quantum gravity. It is thus natural to study whether other puzzles of physics may be solved within these proposals. This may be the case for the cosmological constant problem. Indeed, it has been shown that breaking Lorentz invariance provides Lagrangians that can drive the current acceleration of the universe without experiencing large corrections from ultraviolet physics. In this work, we focus on the simplest model of this type, called ΘCDM, and study its cosmological implications in detail. At the background level, this model cannot be distinguished from ΛCDM. The differences appear at the level of perturbations. We show that in ΘCDM, the spectrum of CMB anisotropies and matter fluctuations may be affected by a rescaling of the gravitational constant in the Poisson equation, by the presence of extra contributions to the anisotropic stress, and finally by the existence of extra clustering degrees of freedom. To explore these modifications accurately, we modify the Boltzmann code class. We then use the parameter inference code Monte Python to confront ΘCDM with data from WMAP-7, SPT and WiggleZ. We obtain strong bounds on the parameters accounting for deviations from ΛCDM. In particular, we find that the discrepancy between the gravitational constants appearing in the Poisson and Friedmann equations is constrained at the level of 1.8%.
Can f(T) gravity theories mimic ΛCDM cosmic history
Energy Technology Data Exchange (ETDEWEB)
Setare, M.R.; Mohammadipour, N., E-mail: rezakord@ipm.ir, E-mail: N.Mohammadipour@uok.ac.ir [Department of Science, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)
2013-01-01
Recently the teleparallel Lagrangian density described by the torsion scalar T has been extended to a function of T. The f(T) modified teleparallel gravity has been proposed as the natural gravitational alternative for dark energy to explain the late time acceleration of the universe. In order to reconstruct the function f(T) by demanding a background ΛCDM cosmology we assume that, (i) the background cosmic history provided by the flat ΛCDM (the radiation ere with ω{sub eff} = (1/3), matter and de Sitter eras with ω{sub eff} = 0 and ω{sub eff} = −1, respectively) (ii) the radiation dominate in the radiation era with Ω{sub 0r} = 1 and the matter dominate during the matter phases when Ω{sub 0m} = 1. We find the cosmological dynamical system which can obey the ΛCDM cosmic history. In each era, we find a critical lines that, the radiation dominated and the matter dominated are one points of them in the radiation and matter phases, respectively. Also, we drive the cosmologically viability condition for these models. We investigate the stability condition with respect to the homogeneous scalar perturbations in each era and we obtain the stability conditions for the fixed points in each eras. Finally, we reconstruct the function f(T) which mimics cosmic expansion history.
Inflation and late-time acceleration in braneworld cosmological models with varying brane tension
International Nuclear Information System (INIS)
Wong, K.C.; Cheng, K.S.; Harko, T.
2010-01-01
Braneworld models with variable brane tension λ introduce a new degree of freedom that allows for evolving gravitational and cosmological constants, the latter being a natural candidate for dark energy. We consider a thermodynamic interpretation of the varying brane tension models, by showing that the field equations with variable λ can be interpreted as describing matter creation in a cosmological framework. The particle creation rate is determined by the variation rate of the brane tension, as well as by the brane-bulk energy-matter transfer rate. We investigate the effect of a variable brane tension on the cosmological evolution of the Universe, in the framework of a particular model in which the brane tension is an exponentially dependent function of the scale factor. The resulting cosmology shows the presence of an initial inflationary expansion, followed by a decelerating phase, and by a smooth transition towards a late accelerated de Sitter type expansion. The varying brane tension is also responsible for the generation of the matter in the Universe (reheating period). The physical constraints on the model parameters, resulting from the observational cosmological data, are also investigated. (orig.)
Acceleration-enlarged symmetries in nonrelativistic space-time with a cosmological constant TH1"-->
Lukierski, J.; Stichel, P. C.; Zakrzewski, W. J.
2008-05-01
By considering the nonrelativistic limit of de Sitter geometry one obtains the nonrelativistic space-time with a cosmological constant and Newton Hooke (NH) symmetries. We show that the NH symmetry algebra can be enlarged by the addition of the constant acceleration generators and endowed with central extensions (one in any dimension (D) and three in D=(2+1)). We present a classical Lagrangian and Hamiltonian framework for constructing models quasi-invariant under enlarged NH symmetries that depend on three parameters described by three nonvanishing central charges. The Hamiltonian dynamics then splits into external and internal sectors with new noncommutative structures of external and internal phase spaces. We show that in the limit of vanishing cosmological constant the system reduces to the one, which possesses acceleration-enlarged Galilean symmetries.
The possibility of an accelerating cosmology in Rastall's theory
International Nuclear Information System (INIS)
Capone, M; Cardone, V F; Ruggiero, M L
2010-01-01
In an attempt to look for a viable mechanism leading to a present day accelerated expansion, we investigate the possibility that the observed cosmic speed up may be recovered in the framework of the Rastall's theory, relying on the non-conservativity of the stress-energy tensor, i.e. T μ v;μ ≠ 0. We derive the modified Friedmann equations and show that they correspond to Cardassian-like equations. We also show that, under suitable assumptions on the equation of state of the matter term sourcing the gravitational field, it is indeed possible to get an accelerated expansion, in agreement with the Hubble diagram of both Type Ia Supernovae (SNeIa) and Gamma Ray Bursts (GRBs). Unfortunately, to achieve such a result one has to postulate a matter density parameter larger than the typical Ω M ≅ 0.3 value inferred from cluster gas mass fraction data. As a further issue, we discuss the possibility to retrieve the Rastall's theory from a Palatini variational principle approach to f(R) gravity. However, such an attempt turns out to be unsuccessful.
Anisotropic SD2 brane: accelerating cosmology and Kasner-like space-time from compactification
Energy Technology Data Exchange (ETDEWEB)
Nayek, Kuntal; Roy, Shibaji [Saha Institute of Nuclear Physics, Calcutta (India); Homi Bhabha National Institute, Mumbai (India)
2017-07-15
Starting from an anisotropic (in all directions including the time direction of the brane) non-SUSY D2 brane solution of type IIA string theory we construct an anisotropic space-like D2 brane (or SD2 brane, for short) solution by the standard trick of a double Wick rotation. This solution is characterized by five independent parameters. We show that compactification on six-dimensional hyperbolic space (H{sub 6}) of a time-dependent volume of this SD2 brane solution leads to accelerating cosmologies (for some time t ∝ t{sub 0}, with t{sub 0} some characteristic time) where both the expansions and the accelerations are different in three spatial directions of the resultant four-dimensional universe. On the other hand at early times (t << t{sub 0}) this four-dimensional space, in certain situations, leads to four-dimensional Kasner-like cosmology, with two additional scalars, namely, the dilaton and a volume scalar of H{sub 6}. Unlike in the standard four-dimensional Kasner cosmology here all three Kasner exponents could be positive definite, leading to expansions in all three directions. (orig.)
Anisotropic SD2 brane: accelerating cosmology and Kasner-like space-time from compactification
International Nuclear Information System (INIS)
Nayek, Kuntal; Roy, Shibaji
2017-01-01
Starting from an anisotropic (in all directions including the time direction of the brane) non-SUSY D2 brane solution of type IIA string theory we construct an anisotropic space-like D2 brane (or SD2 brane, for short) solution by the standard trick of a double Wick rotation. This solution is characterized by five independent parameters. We show that compactification on six-dimensional hyperbolic space (H_6) of a time-dependent volume of this SD2 brane solution leads to accelerating cosmologies (for some time t ∝ t_0, with t_0 some characteristic time) where both the expansions and the accelerations are different in three spatial directions of the resultant four-dimensional universe. On the other hand at early times (t << t_0) this four-dimensional space, in certain situations, leads to four-dimensional Kasner-like cosmology, with two additional scalars, namely, the dilaton and a volume scalar of H_6. Unlike in the standard four-dimensional Kasner cosmology here all three Kasner exponents could be positive definite, leading to expansions in all three directions. (orig.)
CDM Country Guide for Indonesia
International Nuclear Information System (INIS)
2005-01-01
Under the Integrated Capacity Strengthening for the CDM (ICS-CDM) programme, IGES presents the CDM Country Guides, a series of manuals on CDM project development for Cambodia, China, India, Indonesia, the Philippines, and Thailand. These guidebooks aim at facilitating CDM project developments in Asia by providing essential information to both project developers and potential investors. This volume is on Indonesia
International Nuclear Information System (INIS)
2005-01-01
Under the Integrated Capacity Strengthening for the CDM (ICS-CDM) programme, IGES presents the CDM Country Guides, a series of manuals on CDM project development for Cambodia, China, India, Indonesia, the Philippines, and Thailand. These guidebooks aim at facilitating CDM project developments in Asia by providing essential information to both project developers and potential investors. This volume is on China
International Nuclear Information System (INIS)
2005-01-01
Under the Integrated Capacity Strengthening for the CDM (ICS-CDM) programme, IGES presents the CDM Country Guides, a series of manuals on CDM project development for Cambodia, China, India, Indonesia, the Philippines, and Thailand. These guidebooks aim at facilitating CDM project developments in Asia by providing essential information to both project developers and potential investors. This volume is on India
CDM Country Guide for Thailand
International Nuclear Information System (INIS)
2006-01-01
Under the Integrated Capacity Strengthening for the CDM (ICS-CDM) programme, IGES presents the CDM Country Guides, a series of manuals on CDM project development for Cambodia, China, India, Indonesia, the Philippines, and Thailand. These guidebooks aim at facilitating CDM project developments in Asia by providing essential information to both project developers and potential investors. This volume is on Thailand
CDM Country Guide for Cambodia
International Nuclear Information System (INIS)
2005-01-01
Under the Integrated Capacity Strengthening for the CDM (ICS-CDM) programme, IGES presents the CDM Country Guides, a series of manuals on CDM project development for Cambodia, China, India, Indonesia, the Philippines, and Thailand. These guidebooks aim at facilitating CDM project developments in Asia by providing essential information to both project developers and potential investors. This volume is on Cambodia
The Turning Point for the Recent Acceleration of the Universe with a Cosmological Constant
Directory of Open Access Journals (Sweden)
Zhang T. X.
2012-04-01
Full Text Available The turning point and acceleration expansion of the universe are investigated according to the standard cosmological theory with a non-zero cosmological constant. Choosing the Hubble constant H 0 , the radius of the present universe R 0 , and the density parameter in matter Ω M , 0 as three independent parameters, we have analytically examined the other properties of the universe such as the density parameter in dark energy, the cosmologi- cal constant, the mass of the universe, the turning point redshift, the age of the present universe, and the time-dependent radius, expansion rate, velocity, and acceleration pa- rameter of the universe. It is shown that the turning point redshift is only dependent of the density parameter in matter, not explicitly on the Hubble constant and the radius of the present universe. The universe turned its expansion from past deceleration to recent acceleration at the moment when its size was about 3 / 5 of the present size if the density parameter in matter is about 0.3 (or the turning point redshift is 0.67. The expansion rate is very large in the early period and decreases with time to approach the Hubble constant at the present time. The expansion velocity exceeds the light speed in the early period. It decreases to the minimum at the turning point and then increases with time. The minimum and present expansion velocities are determined with the independent parameters. The solution of time-dependent radius shows the universe expands all the time. The universe with a larger present radius, smaller Hubble constant, and / or smaller density parameter in matter is elder. The universe with smaller density parameter in matter accelerates recently in a larger rate but less than unity.
International Nuclear Information System (INIS)
2005-01-01
Under the Integrated Capacity Strengthening for the Clean Development Mechanism (ICS-CDM) programme, IGES presents the CDM Country Guides, a series of manuals on CDM project development for Cambodia, China, India, Indonesia, the Philippines, and Thailand. These guidebooks aim at facilitating CDM project developments in Asia by providing essential information to both project developers and potential investors. Chapter 1, Introduction, is a summary of issues that developers and investors in CDM projects should be aware of. Includes tips for readers to effectively use the guidebook to find specific information. Chapter 2, Country Profile, comprises a profile that provides a broad picture of the country, including social, economic, and political information, as well as an overview of the country's energy situation, which is important for project development and investment. Chapter 3, The CDM Project Cycle, gives an explanation of the general CDM project cycle, which includes identifying a project, issuance of carbon credits, requirements, and stakeholders for each process. Chapter 4, Possible CDM Projects in the Country, is an overview of the country's potential resources and sectoral or project type categories that hold potential for CDM projects. Chapter 5, Government Authorities, gives a comprehensive picture of the CDM-related institutional framework and its inter-organisational relationships. Chapter 6, CDM Project Approval Procedures and Requirements Steps, informs about obtaining project approval and its requirements (e.g., country-specific provisions on additionality, sustainable development criteria, and environmental impact assessment) in the host country. Chapter 7, Laws and Regulations, is an overview of basic investment-related laws, environmental and property law, and sector-specific regulations relevant to CDM project activities. Chapter 8, Fiscal and Financing Issues, gives practical information on the financial market in the host country (both
Smoller, Joel; Temple, Blake; Vogler, Zeke
2017-11-01
We identify the condition for smoothness at the centre of spherically symmetric solutions of Einstein's original equations without the cosmological constant or dark energy. We use this to derive a universal phase portrait which describes general, smooth, spherically symmetric solutions near the centre of symmetry when the pressure p=0. In this phase portrait, the critical k=0 Friedmann space-time appears as a saddle rest point which is unstable to spherical perturbations. This raises the question as to whether the Friedmann space-time is observable by redshift versus luminosity measurements looking outwards from any point. The unstable manifold of the saddle rest point corresponding to Friedmann describes the evolution of local uniformly expanding space-times whose accelerations closely mimic the effects of dark energy. A unique simple wave perturbation from the radiation epoch is shown to trigger the instability, match the accelerations of dark energy up to second order and distinguish the theory from dark energy at third order. In this sense, anomalous accelerations are not only consistent with Einstein's original theory of general relativity, but are a prediction of it without the cosmological constant or dark energy.
Smoller, Joel; Temple, Blake; Vogler, Zeke
2017-11-01
We identify the condition for smoothness at the centre of spherically symmetric solutions of Einstein's original equations without the cosmological constant or dark energy. We use this to derive a universal phase portrait which describes general, smooth, spherically symmetric solutions near the centre of symmetry when the pressure p =0. In this phase portrait, the critical k =0 Friedmann space-time appears as a saddle rest point which is unstable to spherical perturbations. This raises the question as to whether the Friedmann space-time is observable by redshift versus luminosity measurements looking outwards from any point. The unstable manifold of the saddle rest point corresponding to Friedmann describes the evolution of local uniformly expanding space-times whose accelerations closely mimic the effects of dark energy. A unique simple wave perturbation from the radiation epoch is shown to trigger the instability, match the accelerations of dark energy up to second order and distinguish the theory from dark energy at third order. In this sense, anomalous accelerations are not only consistent with Einstein's original theory of general relativity, but are a prediction of it without the cosmological constant or dark energy.
International Nuclear Information System (INIS)
Rosen, S.P.
1990-01-01
I review the intrinsic properties of neutrinos as deduced from cosmological, astrophysical, and laboratory experiments. Bounds on magnetic moments and theoretical models which yield large moments but small masses are briefly discussed. The MSW solution to the solar neutrino problem is reviewed in light of the existing data from the 37 Cl and Kamiokande II experiments. The combined data disfavor the adiabatic solution and tend to support either the large angle solution or the nonadiabatic one. In the former case the 71 Ga signal will be suppressed by the same factor as for 37 Cl, and in the latter case the suppression factor could be as large as 10 or more. 41 refs
Cosmological tests of modified gravity.
Koyama, Kazuya
2016-04-01
We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein's theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard [Formula: see text]CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.
On the emergence of the ΛCDM model from self-interacting Brans-Dicke theory in d = 5
Energy Technology Data Exchange (ETDEWEB)
Reyes, Luz Marina [CUCEI, Universidad de Guadalajara, Departamento de Ciencias Computacionales, Guadalajara (Mexico); Perez Bergliaffa, Santiago Esteban [Universidade do Estado do Rio de Janeiro, Departamento de Fisica Teorica, Instituto de Fisica, Rio de Janeiro (Brazil)
2018-01-15
We investigate whether a self-interacting Brans-Dicke theory in d = 5 without matter and with a time-dependent metric can describe, after dimensional reduction to d = 4, the FLRW model with accelerated expansion and non-relativistic matter. By rewriting the effective 4-dimensional theory as an autonomous 3-dimensional dynamical system and studying its critical points, we show that the ΛCDM cosmology cannot emerge from such a model. This result suggests that a richer structure in d = 5 may be needed to obtain the accelerated expansion as well as the matter content of the 4-dimensional universe. (orig.)
On the emergence of the ΛCDM model from self-interacting Brans-Dicke theory in d= 5
Reyes, Luz Marina; Perez Bergliaffa, Santiago Esteban
2018-01-01
We investigate whether a self-interacting Brans-Dicke theory in d=5 without matter and with a time-dependent metric can describe, after dimensional reduction to d=4, the FLRW model with accelerated expansion and non-relativistic matter. By rewriting the effective 4-dimensional theory as an autonomous 3-dimensional dynamical system and studying its critical points, we show that the ΛCDM cosmology cannot emerge from such a model. This result suggests that a richer structure in d=5 may be needed to obtain the accelerated expansion as well as the matter content of the 4-dimensional universe.
Implications of an absolute simultaneity theory for cosmology and universe acceleration.
Kipreos, Edward T
2014-01-01
An alternate Lorentz transformation, Absolute Lorentz Transformation (ALT), has similar kinematics to special relativity yet maintains absolute simultaneity in the context of a preferred reference frame. In this study, it is shown that ALT is compatible with current experiments to test Lorentz invariance only if the proposed preferred reference frame is locally equivalent to the Earth-centered non-rotating inertial reference frame, with the inference that in an ALT framework, preferred reference frames are associated with centers of gravitational mass. Applying this theoretical framework to cosmological data produces a scenario of universal time contraction in the past. In this scenario, past time contraction would be associated with increased levels of blueshifted light emissions from cosmological objects when viewed from our current perspective. The observation that distant Type Ia supernovae are dimmer than predicted by linear Hubble expansion currently provides the most direct evidence for an accelerating universe. Adjusting for the effects of time contraction on a redshift-distance modulus diagram produces a linear distribution of supernovae over the full redshift spectrum that is consistent with a non-accelerating universe.
Kacprzak, T.; Herbel, J.; Amara, A.; Réfrégier, A.
2018-02-01
Approximate Bayesian Computation (ABC) is a method to obtain a posterior distribution without a likelihood function, using simulations and a set of distance metrics. For that reason, it has recently been gaining popularity as an analysis tool in cosmology and astrophysics. Its drawback, however, is a slow convergence rate. We propose a novel method, which we call qABC, to accelerate ABC with Quantile Regression. In this method, we create a model of quantiles of distance measure as a function of input parameters. This model is trained on a small number of simulations and estimates which regions of the prior space are likely to be accepted into the posterior. Other regions are then immediately rejected. This procedure is then repeated as more simulations are available. We apply it to the practical problem of estimation of redshift distribution of cosmological samples, using forward modelling developed in previous work. The qABC method converges to nearly same posterior as the basic ABC. It uses, however, only 20% of the number of simulations compared to basic ABC, achieving a fivefold gain in execution time for our problem. For other problems the acceleration rate may vary; it depends on how close the prior is to the final posterior. We discuss possible improvements and extensions to this method.
Implications of an absolute simultaneity theory for cosmology and universe acceleration.
Directory of Open Access Journals (Sweden)
Edward T Kipreos
Full Text Available An alternate Lorentz transformation, Absolute Lorentz Transformation (ALT, has similar kinematics to special relativity yet maintains absolute simultaneity in the context of a preferred reference frame. In this study, it is shown that ALT is compatible with current experiments to test Lorentz invariance only if the proposed preferred reference frame is locally equivalent to the Earth-centered non-rotating inertial reference frame, with the inference that in an ALT framework, preferred reference frames are associated with centers of gravitational mass. Applying this theoretical framework to cosmological data produces a scenario of universal time contraction in the past. In this scenario, past time contraction would be associated with increased levels of blueshifted light emissions from cosmological objects when viewed from our current perspective. The observation that distant Type Ia supernovae are dimmer than predicted by linear Hubble expansion currently provides the most direct evidence for an accelerating universe. Adjusting for the effects of time contraction on a redshift-distance modulus diagram produces a linear distribution of supernovae over the full redshift spectrum that is consistent with a non-accelerating universe.
Constraints on deviations from ΛCDM within Horndeski gravity
Energy Technology Data Exchange (ETDEWEB)
Bellini, Emilio; Cuesta, Antonio J. [ICCUB, University of Barcelona (IEEC-UB), Martí i Franquès 1, E08028 Barcelona (Spain); Jimenez, Raul; Verde, Licia, E-mail: emilio.bellini@icc.ub.edu, E-mail: ajcuesta@icc.ub.edu, E-mail: rauljimenez@g.harvard.edu, E-mail: liciaverde@icc.ub.edu [Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona (Spain)
2016-02-01
Recent anomalies found in cosmological datasets such as the low multipoles of the Cosmic Microwave Background or the low redshift amplitude and growth of clustering measured by e.g., abundance of galaxy clusters and redshift space distortions in galaxy surveys, have motivated explorations of models beyond standard ΛCDM. Of particular interest are models where general relativity (GR) is modified on large cosmological scales. Here we consider deviations from ΛCDM+GR within the context of Horndeski gravity, which is the most general theory of gravity with second derivatives in the equations of motion. We adopt a parametrization in which the four additional Horndeski functions of time α{sub i}(t) are proportional to the cosmological density of dark energy Ω{sub DE}(t). Constraints on this extended parameter space using a suite of state-of-the art cosmological observations are presented for the first time. Although the theory is able to accommodate the low multipoles of the Cosmic Microwave Background and the low amplitude of fluctuations from redshift space distortions, we find no significant tension with ΛCDM+GR when performing a global fit to recent cosmological data and thus there is no evidence against ΛCDM+GR from an analysis of the value of the Bayesian evidence ratio of the modified gravity models with respect to ΛCDM, despite introducing extra parameters. The posterior distribution of these extra parameters that we derive return strong constraints on any possible deviations from ΛCDM+GR in the context of Horndeski gravity. We illustrate how our results can be applied to a more general frameworks of modified gravity models.
Late time acceleration in a non-commutative model of modified cosmology
Energy Technology Data Exchange (ETDEWEB)
Malekolkalami, B., E-mail: b.malakolkalami@uok.ac.ir [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of); Atazadeh, K., E-mail: atazadeh@azaruniv.ac.ir [Department of Physics, Azarbaijan Shahid Madani University, 53714-161, Tabriz (Iran, Islamic Republic of); Vakili, B., E-mail: b-vakili@iauc.ac.ir [Department of Physics, Central Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)
2014-12-12
We investigate the effects of non-commutativity between the position–position, position–momentum and momentum–momentum of a phase space corresponding to a modified cosmological model. We show that the existence of such non-commutativity results in a Moyal Poisson algebra between the phase space variables in which the product law between the functions is of the kind of an α-deformed product. We then transform the variables in such a way that the Poisson brackets between the dynamical variables take the form of a usual Poisson bracket but this time with a noncommutative structure. For a power law expression for the function of the Ricci scalar with which the action of the gravity model is modified, the exact solutions in the commutative and noncommutative cases are presented and compared. In terms of these solutions we address the issue of the late time acceleration in cosmic evolution.
Late time acceleration in a non-commutative model of modified cosmology
International Nuclear Information System (INIS)
Malekolkalami, B.; Atazadeh, K.; Vakili, B.
2014-01-01
We investigate the effects of non-commutativity between the position–position, position–momentum and momentum–momentum of a phase space corresponding to a modified cosmological model. We show that the existence of such non-commutativity results in a Moyal Poisson algebra between the phase space variables in which the product law between the functions is of the kind of an α-deformed product. We then transform the variables in such a way that the Poisson brackets between the dynamical variables take the form of a usual Poisson bracket but this time with a noncommutative structure. For a power law expression for the function of the Ricci scalar with which the action of the gravity model is modified, the exact solutions in the commutative and noncommutative cases are presented and compared. In terms of these solutions we address the issue of the late time acceleration in cosmic evolution
Energy Technology Data Exchange (ETDEWEB)
Verde, Licia; Jimenez, Raul [Institute of Cosmos Sciences, University of Barcelona, IEEC-UB, Martí Franquès, 1, E08028 Barcelona (Spain); Bellini, Emilio [University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH (United Kingdom); Pigozzo, Cassio [Instituto de Física, Universidade Federal da Bahia, Salvador, BA (Brazil); Heavens, Alan F., E-mail: liciaverde@icc.ub.edu, E-mail: emilio.bellini@physics.ox.ac.uk, E-mail: cpigozzo@ufba.br, E-mail: a.heavens@imperial.ac.uk, E-mail: raul.jimenez@icc.ub.edu [Imperial Centre for Inference and Cosmology (ICIC), Imperial College, Blackett Laboratory, Prince Consort Road, London SW7 2AZ (United Kingdom)
2017-04-01
We investigate our knowledge of early universe cosmology by exploring how much additional energy density can be placed in different components beyond those in the ΛCDM model. To do this we use a method to separate early- and late-universe information enclosed in observational data, thus markedly reducing the model-dependency of the conclusions. We find that the 95% credibility regions for extra energy components of the early universe at recombination are: non-accelerating additional fluid density parameter Ω{sub MR} < 0.006 and extra radiation parameterised as extra effective neutrino species 2.3 < N {sub eff} < 3.2 when imposing flatness. Our constraints thus show that even when analyzing the data in this largely model-independent way, the possibility of hiding extra energy components beyond ΛCDM in the early universe is seriously constrained by current observations. We also find that the standard ruler, the sound horizon at radiation drag, can be well determined in a way that does not depend on late-time Universe assumptions, but depends strongly on early-time physics and in particular on additional components that behave like radiation. We find that the standard ruler length determined in this way is r {sub s} = 147.4 ± 0.7 Mpc if the radiation and neutrino components are standard, but the uncertainty increases by an order of magnitude when non-standard dark radiation components are allowed, to r {sub s} = 150 ± 5 Mpc.
Sanders, Robert H
2016-01-01
The advent of sensitive high-resolution observations of the cosmic microwave background radiation and their successful interpretation in terms of the standard cosmological model has led to great confidence in this model's reality. The prevailing attitude is that we now understand the Universe and need only work out the details. In this book, Sanders traces the development and successes of Lambda-CDM, and argues that this triumphalism may be premature. The model's two major components, dark energy and dark matter, have the character of the pre-twentieth-century luminiferous aether. While there is astronomical evidence for these hypothetical fluids, their enigmatic properties call into question our assumptions of the universality of locally determined physical law. Sanders explains how modified Newtonian dynamics (MOND) is a significant challenge for cold dark matter. Overall, the message is hopeful: the field of cosmology has not become frozen, and there is much fundamental work ahead for tomorrow's cosmologis...
Cosmological constraints on Lorentz violating dark energy
Audren, B; Lesgourgues, J; Sibiryakov, S
2013-01-01
The role of Lorentz invariance as a fundamental symmetry of nature has been lately reconsidered in different approaches to quantum gravity. It is thus natural to study whether other puzzles of physics may be solved within these proposals. This may be the case for the cosmological constant problem. Indeed, it has been shown that breaking Lorentz invariance provides Lagrangians that can drive the current acceleration of the universe without experiencing large corrections from ultraviolet physics. In this work, we focus on the simplest model of this type, called ThetaCDM, and study its cosmological implications in detail. At the background level, this model cannot be distinguished from LambdaCDM. The differences appear at the level of perturbations. We show that in ThetaCDM, the spectrum of CMB anisotropies and matter fluctuations may be affected by a rescaling of the gravitational constant in the Poisson equation, by the presence of extra contributions to the anisotropic stress, and finally by the existence of ...
International Nuclear Information System (INIS)
Leibundgut, B.
2005-01-01
Supernovae have developed into a versatile tool for cosmology. Their impact on the cosmological model has been profound and led to the discovery of the accelerated expansion. The current status of the cosmological model as perceived through supernova observations will be presented. Supernovae are currently the only astrophysical objects that can measure the dynamics of the cosmic expansion during the past eight billion years. Ongoing experiments are trying to determine the characteristics of the accelerated expansion and give insight into what might be the physical explanation for the acceleration. (author)
Λ(t)CDM model as a unified origin of holographic and agegraphic dark energy models
International Nuclear Information System (INIS)
Chen Yun; Zhu Zonghong; Xu Lixin; Alcaniz, J.S.
2011-01-01
Motivated by the fact that any nonzero Λ can introduce a length scale or a time scale into Einstein's theory, r Λ =ct Λ =√(3/|Λ|). Conversely, any cosmological length scale or time scale can introduce a Λ(t), Λ(t)=3/r Λ 2 (t)=3/(c 2 t Λ 2 (t)). In this Letter, we investigate the time varying Λ(t) corresponding to the length scales, including the Hubble horizon, the particle horizon and the future event horizon, and the time scales, including the age of the universe and the conformal time. It is found out that, in this scenario, the Λ(t)CDM model can be taken as the unified origin of the holographic and agegraphic dark energy models with interaction between the matter and the dark energy, where the interacting term is determined by Q=-ρ . Λ . We place observational constraints on the Λ(t)CDM models originating from different cosmological length scales and time scales with the recently compiled 'Union2 compilation' which consists of 557 Type Ia supernovae (SNIa) covering a redshift range 0.015≤z≤1.4. In conclusion, an accelerating expansion universe can be derived in the cases taking the Hubble horizon, the future event horizon, the age of the universe and the conformal time as the length scale or the time scale.
Conformal cosmological model and SNe Ia data
International Nuclear Information System (INIS)
Zakharov, A. F.; Pervushin, V. N.
2012-01-01
Now there is a huge scientific activity in astrophysical studies and cosmological ones in particular. Cosmology transforms from a pure theoretical branch of science into an observational one. All the cosmological models have to pass observational tests. The supernovae type Ia (SNe Ia) test is among the most important ones. If one applies the test to determine parameters of the standard Friedmann-Robertson-Walker cosmological model one can conclude that observations lead to the discovery of the dominance of the Λ term and as a result to an acceleration of the Universe. However, there are big mysteries connected with an origin and an essence of dark matter (DM) and the Λ term or dark energy (DE). Alternative theories of gravitation are treated as a possible solution of DM and DE puzzles. The conformal cosmological approach is one of possible alternatives to the standard ΛCDM model. As it was noted several years ago, in the framework of the conformal cosmological approach an introduction of a rigid matter can explain observational data without Λ term (or dark energy). We confirm the claim with much larger set of observational data.
Cosmology of modified Gauss-Bonnet gravity
International Nuclear Information System (INIS)
Li Baojiu; Barrow, John D.; Mota, David F.
2007-01-01
We consider the cosmology where some function f(G) of the Gauss-Bonnet term G is added to the gravitational action to account for the late-time accelerating expansion of the universe. The covariant and gauge invariant perturbation equations are derived with a method which could also be applied to general f(R,R ab R ab ,R abcd R abcd ) gravitational theories. It is pointed out that, despite their fourth-order character, such f(G) gravity models generally cannot reproduce arbitrary background cosmic evolutions; for example, the standard ΛCDM paradigm with Ω DE =0.76 cannot be realized in f(G) gravity theories unless f is a true cosmological constant because it imposes exclusionary constraints on the form of f(G). We analyze the perturbation equations and find that, as in the f(R) model, the stability of early-time perturbation growth puts some constraints on the functional form of f(G), in this case ∂ 2 f/∂G 2 <0. Furthermore, the stability of small-scale perturbations also requires that f not deviate significantly from a constant. These analyses are illustrated by numerically propagating the perturbation equations with a specific model reproducing a representative ΛCDM cosmic history. Our results show how the f(G) models are highly constrained by cosmological data
CDM Country Guide for The Philippines
International Nuclear Information System (INIS)
2006-01-01
Under the Integrated Capacity Strengthening for the CDM (ICS-CDM) programme, IGES presents the CDM Country Guides, a series of manuals on CDM project development for Cambodia, China, India, Indonesia, the Philippines, and Thailand. These guidebooks aim at facilitating CDM project developments in Asia by providing essential information to both project developers and potential investors. This volume is on The Philippines
Simulations of structure formation in interacting dark energy cosmologies
International Nuclear Information System (INIS)
Baldi, M.
2009-01-01
The evidence in favor of a dark energy component dominating the Universe, and driving its presently accelerated expansion, has progressively grown during the last decade of cosmological observations. If this dark energy is given by a dynamic scalar field, it may also have a direct interaction with other matter fields in the Universe, in particular with cold dark matter. Such interaction would imprint new features on the cosmological background evolution as well as on the growth of cosmic structure, like an additional long-range fifth-force between massive particles, or a variation in time of the dark matter particle mass. We present here the implementation of these new physical effects in the N-body code GADGET-2, and we discuss the outcomes of a series of high-resolution N-body simulations for a selected family of interacting dark energy models. We interestingly find, in contrast with previous claims, that the inner overdensity of dark matter halos decreases in these models with respect to ΛCDM, and consistently halo concentrations show a progressive reduction for increasing couplings. Furthermore, the coupling induces a bias in the overdensities of cold dark matter and baryons that determines a decrease of the halo baryon fraction below its cosmological value. These results go in the direction of alleviating tensions between astrophysical observations and the predictions of the ΛCDM model on small scales, thereby opening new room for coupled dark energy models as an alternative to the cosmological constant.
Guidebook to financing CDM projects
Energy Technology Data Exchange (ETDEWEB)
Kamel, S.
2007-07-01
One of the challenges facing Clean Development Mechanism (CDM) projects today is their limited ability to secure financing for the underlying greenhouse gas emission reduction activities, particularly in the least developed countries. Among the key reasons for this is the fact that most financial intermediaries in the CDM host countries have limited or no knowledge of the CDM Modalities and Procedures. Moreover, approaches, tools and skills for CDM project appraisal are lacking or are asymmetrical to the skills in comparable institutions in developed countries. Consequently, developing country financial institutions are unable to properly evaluate the risks and rewards associated with investing or lending to developers undertaking CDM projects, and therefore have, by-and-large, refrained from financing these projects. In addition, some potential project proponents lack experience in structuring arrangements for financing a project. This Guidebook - commissioned by the UNEP Risoe Centre as part of the activities of the Capacity Development for CDM (CD4CDM) project (http://www.cd4cdm.org) - addresses these barriers by providing information aimed at both developing country financial institutions and at CDM project proponents. It should be noted that while the Guidebook was developed particularly with the CDM in mind, most sections will also be relevant for Joint Implementation (JI) project activities. For more detailed information on JI modalities and procedures please consult: http://ji.unfccc.int The purpose of this Guidebook is two-fold: 1) To guide project developers on obtaining financing for the implementation of activities eligible under the CDM; and 2) To demonstrate to developing country financial institutions typical approaches and methods for appraising the viability of CDM projects and for optimally integrating carbon revenue into overall project financing. The target audiences for the Guidebook are therefore, primarily: 1) CDM project proponents in
International Nuclear Information System (INIS)
Gaisser, T.K.; Shafi, Q.; Barr, S.M.; Seckel, D.; Rusjan, E.; Fletcher, R.S.
1991-01-01
This report discusses research of professor at Bartol research institute in the following general areas: particle phenomenology and non-accelerator physics; particle physics and cosmology; theories with higher symmetry; and particle astrophysics and cosmology
ΛCDM model with dissipative nonextensive viscous dark matter
Gimenes, H. S.; Viswanathan, G. M.; Silva, R.
2018-03-01
Many models in cosmology typically assume the standard bulk viscosity. We study an alternative interpretation for the origin of the bulk viscosity. Using nonadditive statistics proposed by Tsallis, we propose a bulk viscosity component that can only exist by a nonextensive effect through the nonextensive/dissipative correspondence (NexDC). In this paper, we consider a ΛCDM model for a flat universe with a dissipative nonextensive viscous dark matter component, following the Eckart theory of bulk viscosity, without any perturbative approach. In order to analyze cosmological constraints, we use one of the most recent observations of Type Ia Supernova, baryon acoustic oscillations and cosmic microwave background data.
Temple, Blake; Smoller, Joel
2009-08-25
We derive a system of three coupled equations that implicitly defines a continuous one-parameter family of expanding wave solutions of the Einstein equations, such that the Friedmann universe associated with the pure radiation phase of the Standard Model of Cosmology is embedded as a single point in this family. By approximating solutions near the center to leading order in the Hubble length, the family reduces to an explicit one-parameter family of expanding spacetimes, given in closed form, that represents a perturbation of the Standard Model. By introducing a comoving coordinate system, we calculate the correction to the Hubble constant as well as the exact leading order quadratic correction to the redshift vs. luminosity relation for an observer at the center. The correction to redshift vs. luminosity entails an adjustable free parameter that introduces an anomalous acceleration. We conclude (by continuity) that corrections to the redshift vs. luminosity relation observed after the radiation phase of the Big Bang can be accounted for, at the leading order quadratic level, by adjustment of this free parameter. The next order correction is then a prediction. Since nonlinearities alone could actuate dissipation and decay in the conservation laws associated with the highly nonlinear radiation phase and since noninteracting expanding waves represent possible time-asymptotic wave patterns that could result, we propose to further investigate the possibility that these corrections to the Standard Model might be the source of the anomalous acceleration of the galaxies, an explanation not requiring the cosmological constant or dark energy.
Dossett, Jason Nicholas
Since its discovery more than a decade ago, the problem of cosmic acceleration has become one of the largest in cosmology and physics as a whole. An unknown dark energy component of the universe is often invoked to explain this observation. Mathematically, this works because inserting a cosmic fluid with a negative equation of state into Einstein's equations provides an accelerated expansion. There are, however, alternative explanations for the observed cosmic acceleration. Perhaps the most promising of the alternatives is that, on the very largest cosmological scales, general relativity needs to be extended or a new, modified gravity theory must be used. Indeed, many modified gravity models are not only able to replicate the observed accelerated expansion without dark energy, but are also more compatible with a unified theory of physics. Thus it is the goal of this dissertation to develop and study robust tests that will be able to distinguish between these alternative theories of gravity and the need for a dark energy component of the universe. We will study multiple approaches using the growth history of large-scale structure in the universe as a way to accomplish this task. These approaches include studying what is known as the growth index parameter, a parameter that describes the logarithmic growth rate of structure in the universe, which describes the rate of formation of clusters and superclusters of galaxies over the entire age of the universe. We will explore the effectiveness of this parameter to distinguish between general relativity and modifications to gravity physics given realistic expectations of results from future experiments. Next, we will explore the modified growth formalism wherein deviations from the growth expected in general relativity are parameterized via changes to the growth equations, i.e. the perturbed Einstein's equations. We will also explore the impact of spatial curvature on these tests. Finally, we will study how dark energy
CDM Convective Forecast Planning guidance
National Oceanic and Atmospheric Administration, Department of Commerce — The CDM Convective Forecast Planning (CCFP) guidance product provides a foreast of en-route aviation convective hazards. The forecasts are updated every 2 hours and...
Nonlocal gravity. Conceptual aspects and cosmological predictions
Belgacem, Enis; Dirian, Yves; Foffa, Stefano; Maggiore, Michele
2018-03-01
Even if the fundamental action of gravity is local, the corresponding quantum effective action, that includes the effect of quantum fluctuations, is a nonlocal object. These nonlocalities are well understood in the ultraviolet regime but much less in the infrared, where they could in principle give rise to important cosmological effects. Here we systematize and extend previous work of our group, in which it is assumed that a mass scale Λ is dynamically generated in the infrared, giving rise to nonlocal terms in the quantum effective action of gravity. We give a detailed discussion of conceptual aspects related to nonlocal gravity (including causality, degrees of freedom, ambiguities related to the boundary conditions of the nonlocal operator, scenarios for the emergence of a dynamical scale in the infrared) and of the cosmological consequences of these models. The requirement of providing a viable cosmological evolution severely restricts the form of the nonlocal terms, and selects a model (the so-called RR model) that corresponds to a dynamical mass generation for the conformal mode. For such a model: (1) there is a FRW background evolution, where the nonlocal term acts as an effective dark energy with a phantom equation of state, providing accelerated expansion without a cosmological constant. (2) Cosmological perturbations are well behaved. (3) Implementing the model in a Boltzmann code and comparing with observations we find that the RR model fits the CMB, BAO, SNe, structure formation data and local H0 measurements at a level statistically equivalent to ΛCDM. (4) Bayesian parameter estimation shows that the value of H0 obtained in the RR model is higher than in ΛCDM, reducing to 2.0σ the tension with the value from local measurements. (5) The RR model provides a prediction for the sum of neutrino masses that falls within the limits set by oscillation and terrestrial experiments (in contrast to ΛCDM, where letting the sum of neutrino masses vary as a free
Phantom cosmologies and fermions
International Nuclear Information System (INIS)
Chimento, Luis P; Forte, Monica; Devecchi, Fernando P; Kremer, Gilberto M
2008-01-01
Form invariance transformations can be used for constructing phantom cosmologies starting with conventional cosmological models. In this work we reconsider the scalar field case and extend the discussion to fermionic fields, where the 'phantomization' process exhibits a new class of possible accelerated regimes. As an application we analyze the cosmological constant group for a fermionic seed fluid
How to falsify the GR+ΛCDM model with galaxy redshift surveys
International Nuclear Information System (INIS)
Acquaviva, Viviana; Gawiser, Eric
2010-01-01
A wide range of models describing modifications to general relativity have been proposed, but no fundamental parameter set exists to describe them. Similarly, no fundamental theory exists for dark energy to parametrize its potential deviation from a cosmological constant. This motivates a model-independent search for deviations from the concordance GR+ΛCDM cosmological model in large galaxy redshift surveys. We describe two model-independent tests of the growth of cosmological structure, in the form of quantities that must equal one if GR+ΛCDM is correct. The first, ε, was introduced previously as a scale-independent consistency check between the expansion history and structure growth. The second, υ, is introduced here as a test of scale-dependence in the linear evolution of matter density perturbations. We show that the ongoing and near-future galaxy redshift surveys WiggleZ, BOSS, and HETDEX will constrain these quantities at the 5-10% level, representing a stringent test of concordance cosmology at different redshifts. When redshift space distortions are used to probe the growth of cosmological structure, galaxies at higher redshift with lower bias are found to be most powerful in detecting the presence of deviations from the GR+ΛCDM model. However, because many dark energy or modified gravity models predict consistency with GR+ΛCDM at high redshift, it is desirable to apply this approach to surveys covering a wide range of redshifts and spatial scales.
Smoller, Joel
2012-01-01
We prove that the Einstein equations in Standard Schwarzschild Coordinates close to form a system of three ordinary differential equations for a family of spherically symmetric, self-similar expansion waves, and the critical ($k=0$) Friedmann universe associated with the pure radiation phase of the Standard Model of Cosmology (FRW), is embedded as a single point in this family. Removing a scaling law and imposing regularity at the center, we prove that the family reduces to an implicitly defined one parameter family of distinct spacetimes determined by the value of a new {\\it acceleration parameter} $a$, such that $a=1$ corresponds to FRW. We prove that all self-similar spacetimes in the family are distinct from the non-critical $k\
Study of the possibility of solving cosmological lithium problem in an accelerator experiment
Energy Technology Data Exchange (ETDEWEB)
Bystritsky, V. M., E-mail: bystvm@jinr.ru [Joint Institute for Nuclear Research (Russian Federation); Varlachev, V. A.; Dudkin, G. N. [National Research Tomsk Polytechnic University (Russian Federation); Krylov, A. R. [Joint Institute for Nuclear Research (Russian Federation); Gazi, S.; Guran, J. [Slovak Academy of Sciences, Institute of Electrical Engineering (Slovakia); Nechaev, B. A.; Padalko, V. N. [National Research Tomsk Polytechnic University (Russian Federation); Sadovsky, A. B. [Joint Institute for Nuclear Research (Russian Federation); Tuleushev, Yu. Zh. [Ministry of Energy of the Republic of Kazakhstan, Nuclear Physics Institute (Kazakhstan); Filipowicz, M. [AGH University of Science and Technology, Faculty of Energy and Fuels (Poland); Philippov, A. V. [Joint Institute for Nuclear Research (Russian Federation)
2017-03-15
Within the standar dmodel of Big Bang Nucleosynthesis (BBN), there is a cosmological lithium problem, which consists in a substantial difference between calculated data on the abundances of the isotopes {sup 6}Li and {sup 7}Li and those that were found from observational astronomy. An attempt at measuring the cross section for the main 6Li production reaction {sup 2}H({sup 4}He, γ){sup 6}Li induced by the interaction of {sup 4}He{sup +} ions with deuterons at collision energies less than the lower boundary of the BBN energy range was made in the present study. Upper limits on the cross sections for the reaction in question were set.
DEFF Research Database (Denmark)
Brandt, Urs Steiner; Svendsen, Gert Tinggaard
2013-01-01
CDM projects have large potentials but also face significant obstacles that have so far limited their applicability. Two serious problems that an effective contracting faces are the presence of private information and the lack of sufficiently precise output measures. In a principal-agent framewor...
Stochastic backgrounds of relic gravitons, T$\\Lambda$CDM paradigm and the stiff ages
Giovannini, Massimo
2008-01-01
Absent any indirect tests on the thermal history of the Universe prior to the formation of light nuclear elements, it is legitimate to investigate situations where, before nucleosyntheis, the sound speed of the plasma was larger than $c/\\sqrt{3}$, at most equalling the speed of light $c$. In this plausible extension of the current cosmological paradigm, hereby dubbed Tensor-$\\Lambda$CDM (i.e. T$\\Lambda$CDM) scenario, high-frequency gravitons are copiously produced. Without conflicting with the bounds on the tensor to scalar ratio stemming from the combined analysis of the three standard cosmological data sets (i.e. cosmic microwave background anisotropies, large-scale structure and supenovae), the spectral energy density of the relic gravitons in the T$\\Lambda$CDM scenario can be potentially observable by wide-band interferometers (in their advanced version) operating in a frequency window which ranges between few Hz and few kHz.
Issues related to a programme of activities under the CDM
Energy Technology Data Exchange (ETDEWEB)
Ellis, J.
2006-05-15
Emissions of CO2 from the energy and land-use change and forestry sectors are responsible for the majority of emissions in non-Annex I Parties to the UNFCCC. Tackling greenhouse gas (GHG) emissions from these sectors is a key to slowing the growth in GHG emissions in non-Annex I countries. Implementing Clean Development Mechanism (CDM) projects can help achieve this aim, while also assisting non-Annex I countries to move towards sustainable development and Annex I countries achieve their emission commitments under the Kyoto Protocol. There has been rapid progress in the CDM over the last year - in terms of the number of projects in the pipeline and registered, and in terms of credits issued. However, some important sectors are notable by their small share in the CDM portfolio. Several countries have also called attention to the need to accelerate the process of approving CDM methodologies and projects. In order to improve the effectiveness of the CDM to achieve its dual objectives, the COP/MOP agreed a decision on 'further guidance relating to the clean development mechanism. This decision lays out guidance on how to improve the operation of the CDM, and includes provisions that allow: (1) Bundling of project activities; and (2) Project activities under a programme of activities, to be registered as a CDM project activity. At present, of the 172 currently registered CDM project activities, 27 involve programmes or bundles. These project activities can include more than one project type, be implemented in several locations, and/or occur in more than one sector. This paper assesses how project activities under a programme of activities under the CDM (referred to here as PCDM) could help to increase the effectiveness of the CDM by encouraging a wide spread of emission mitigation activities. This paper also explores the key issues that may need to be considered for the PCDM concept to be further implemented. The paper concludes that: (1) Key concepts and issues
Simultaneous falsification of ΛCDM and quintessence with massive, distant clusters
International Nuclear Information System (INIS)
Mortonson, Michael J.; Hu, Wayne; Huterer, Dragan
2011-01-01
Observation of even a single massive cluster, especially at high redshift, can falsify the standard cosmological framework consisting of a cosmological constant and cold dark matter (ΛCDM) with Gaussian initial conditions by exposing an inconsistency between the well-measured expansion history and the growth of structure it predicts. Through a likelihood analysis of current cosmological data that constrain the expansion history, we show that the ΛCDM upper limits on the expected number of massive, distant clusters are nearly identical to limits predicted by all quintessence models where dark energy is a minimally coupled scalar field with a canonical kinetic term. We provide convenient fitting formulas for the confidence level at which the observation of a cluster of mass M at redshift z can falsify ΛCDM and quintessence given cosmological parameter uncertainties and sample variance, as well as for the expected number of such clusters in the light cone and the Eddington bias factor that must be applied to observed masses. By our conservative confidence criteria, which equivalently require masses 3 times larger than typically expected in surveys of a few hundred square degrees, none of the presently known clusters falsify these models. Various systematic errors, including uncertainties in the form of the mass function and differences between supernova light curve fitters, typically shift the exclusion curves by less than 10% in mass, making current statistical and systematic uncertainties in cluster mass determination the most critical factor in assessing falsification of ΛCDM and quintessence.
ENTROPY AT THE OUTSKIRTS OF GALAXY CLUSTERS AS IMPLICATIONS FOR COSMOLOGICAL COSMIC-RAY ACCELERATION
International Nuclear Information System (INIS)
Fujita, Yutaka; Ohira, Yutaka; Yamazaki, Ryo
2013-01-01
Recently, gas entropy at the outskirts of galaxy clusters has attracted much attention. We propose that the entropy profiles could be used to study cosmic-ray (CR) acceleration around the clusters. If the CRs are effectively accelerated at the formation of clusters, the kinetic energy of infalling gas is consumed by the acceleration and the gas entropy should decrease. As a result, the entropy profiles become flat at the outskirts. If the acceleration is not efficient, the entropy should continue to increase outward. By comparing model predictions with X-ray observations with Suzaku, which show flat entropy profiles, we find that the CRs have carried ∼< 7% of the kinetic energy of the gas away from the clusters. Moreover, the CR pressure at the outskirts can be ∼< 40% of the total pressure. On the other hand, if the entropy profiles are not flat at the outskirts, as indicated by combined Plank and ROSAT observations, the carried energy and the CR pressure should be much smaller than the above estimations.
Gauging the cosmic acceleration with recent type Ia supernovae data sets
Velten, Hermano; Gomes, Syrios; Busti, Vinicius C.
2018-04-01
We revisit a model-independent estimator for cosmic acceleration based on type Ia supernovae distance measurements. This approach does not rely on any specific theory for gravity, energy content, nor parametrization for the scale factor or deceleration parameter and is based on falsifying the null hypothesis that the Universe never expanded in an accelerated way. By generating mock catalogs of known cosmologies, we test the robustness of this estimator, establishing its limits of applicability. We detail the pros and cons of such an approach. For example, we find that there are specific counterexamples in which the estimator wrongly provides evidence against acceleration in accelerating cosmologies. The dependence of the estimator on the H0 value is also discussed. Finally, we update the evidence for acceleration using the recent UNION2.1 and Joint Light-Curve Analysis samples. Contrary to recent claims, available data strongly favor an accelerated expansion of the Universe in complete agreement with the standard Λ CDM model.
Doolin, Ciaran; Neupane, Ishwaree P
2013-04-05
A late epoch cosmic acceleration may be naturally entangled with cosmic coincidence--the observation that at the onset of acceleration the vacuum energy density fraction nearly coincides with the matter density fraction. In this Letter we show that this is indeed the case with the cosmology of a Friedmann-Lamaître-Robertson-Walker (FLRW) 3-brane in a five-dimensional anti-de Sitter spacetime. We derive the four-dimensional effective action on a FLRW 3-brane, from which we obtain a mass-reduction formula, namely, M(P)(2) = ρ(b)/|Λ(5)|, where M(P) is the effective (normalized) Planck mass, Λ(5) is the five-dimensional cosmological constant, and ρ(b) is the sum of the 3-brane tension V and the matter density ρ. Although the range of variation in ρ(b) is strongly constrained, the big bang nucleosynthesis bound on the time variation of the effective Newton constant G(N) = (8πM(P)(2))(-1) is satisfied when the ratio V/ρ ≳ O(10(2)) on cosmological scales. The same bound leads to an effective equation of state close to -1 at late epochs in accordance with astrophysical and cosmological observations.
Dynamical Solution to the Problem of a Small Cosmological Constant and Late-Time Cosmic Acceleration
International Nuclear Information System (INIS)
Armendariz-Picon, C.; Mukhanov, V.; Steinhardt, Paul J.
2000-01-01
Increasing evidence suggests that most of the energy density of the universe consists of a dark energy component with negative pressure that causes the cosmic expansion to accelerate. We address why this component comes to dominate the universe only recently. We present a class of theories based on an evolving scalar field where the explanation is based entirely on internal dynamical properties of the solutions. In the theories we consider, the dynamics causes the scalar field to lock automatically into a negative pressure state at the onset of matter domination such that the present epoch is the earliest possible time consistent with nucleosynthesis restrictions when it can start to dominate
Directory of Open Access Journals (Sweden)
Lorenzo Iorio
2014-01-01
Full Text Available By phenomenologically assuming a slow temporal variation of the percent acceleration rate S̈S -1 of the cosmic scale factor S(t, it is shown that the orbit of a local binary undergoes a secular expansion. To first order in the power expansion of S̈S -1 around the present epoch t0, a non-vanishing shift per orbit (Δr of the two-body relative distance r occurs for eccentric trajectories. A general relativistic expression, which turns out to be cubic in the Hubble parameter H0 at the present epoch, is explicitly calculated for it in the case of matter-dominated epochs with Dark Energy. For a highly eccentric Oort comet orbit with period Pb ≈ 31 Myr, the general relativistic distance shift per orbit turns out to be of the order of (Δr ≈ 70 km. For the Large Magellanic Cloud, assumed on a bound elliptic orbit around the Milky Way, the shift per orbit is of the order of (Δr ≈ 2–4 pc. Our result has a general validity since it holds in any cosmological model admitting the Hubble law and a slowly varying S̈S-1(t. More generally, it is valid for an arbitrary Hooke-like extra-acceleration whose “elastic” parameter κ is slowly time-dependent, irrespectively of the physical mechanism which may lead to it. The coefficient κ1 of the first-order term of the power expansion of κ(t can be preliminarily constrained in a model-independent way down to a κ1 ≲ 2 x 10-13 year-3 level from latest Solar System’s planetary observations. The radial velocities of the double lined spectroscopic binary ALPHA Cen AB yield κ1 ≲ 10-8 year-3.
The possibility of an accelerating cosmology in Rastall's theory
Energy Technology Data Exchange (ETDEWEB)
Capone, M [Dipartimento di Matematica, Universita di Torino, Via Carlo Alberto 10, 10125 - Torino (Italy); Cardone, V F [Dipartimento di Fisica Generale ' Amedeo Avogadro' , Universita di Torino, Via Pietro Giuria 1, 10125 - Torino (Italy); Ruggiero, M L, E-mail: monica.capone@unito.i [UTIU, Universita Telematica Internazionale Uninettuno, Corso Vittorio Emanuele II 39, 00186 - Roma (Italy)
2010-04-01
In an attempt to look for a viable mechanism leading to a present day accelerated expansion, we investigate the possibility that the observed cosmic speed up may be recovered in the framework of the Rastall's theory, relying on the non-conservativity of the stress-energy tensor, i.e. T{sup {mu}}{sub v;{mu}} {ne} 0. We derive the modified Friedmann equations and show that they correspond to Cardassian-like equations. We also show that, under suitable assumptions on the equation of state of the matter term sourcing the gravitational field, it is indeed possible to get an accelerated expansion, in agreement with the Hubble diagram of both Type Ia Supernovae (SNeIa) and Gamma Ray Bursts (GRBs). Unfortunately, to achieve such a result one has to postulate a matter density parameter larger than the typical {Omega}{sub M} {approx_equal} 0.3 value inferred from cluster gas mass fraction data. As a further issue, we discuss the possibility to retrieve the Rastall's theory from a Palatini variational principle approach to f(R) gravity. However, such an attempt turns out to be unsuccessful.
Observational constraints on cosmological models with Chaplygin gas and quadratic equation of state
International Nuclear Information System (INIS)
Sharov, G.S.
2016-01-01
Observational manifestations of accelerated expansion of the universe, in particular, recent data for Type Ia supernovae, baryon acoustic oscillations, for the Hubble parameter H ( z ) and cosmic microwave background constraints are described with different cosmological models. We compare the ΛCDM, the models with generalized and modified Chaplygin gas and the model with quadratic equation of state. For these models we estimate optimal model parameters and their permissible errors with different approaches to calculation of sound horizon scale r s ( z d ). Among the considered models the best value of χ 2 is achieved for the model with quadratic equation of state, but it has 2 additional parameters in comparison with the ΛCDM and therefore is not favored by the Akaike information criterion.
Comparison of Cluster Lensing Profiles with Lambda CDM Predictions
Energy Technology Data Exchange (ETDEWEB)
Broadhurst, Tom; /Tel Aviv U.; Umetsu, Keiichi; /Taipei, Inst. Astron. Astrophys.; Medezinski, Elinor; /Tel Aviv U.; Oguri, Masamune; /KIPAC, Menlo Park; Rephaeli, Yoel; /Tel Aviv U. /San Diego, CASS
2008-05-21
We derive lens distortion and magnification profiles of four well known clusters observed with Subaru. Each cluster is very well fitted by the general form predicted for Cold Dark Matter (CDM) dominated halos, with good consistency found between the independent distortion and magnification measurements. The inferred level of mass concentration is surprisingly high, 8 < c{sub vir} < 15 (
Dynamical system approach to running Λ cosmological models
International Nuclear Information System (INIS)
Stachowski, Aleksander; Szydlowski, Marek
2016-01-01
We study the dynamics of cosmological models with a time dependent cosmological term. We consider five classes of models; two with the non-covariant parametrization of the cosmological term Λ: Λ(H)CDM cosmologies, Λ(a)CDM cosmologies, and three with the covariant parametrization of Λ: Λ(R)CDM cosmologies, where R(t) is the Ricci scalar, Λ(φ)-cosmologies with diffusion, Λ(X)-cosmologies, where X = (1)/(2)g"α"β∇_α∇_βφ is a kinetic part of the density of the scalar field. We also consider the case of an emergent Λ(a) relation obtained from the behaviour of trajectories in a neighbourhood of an invariant submanifold. In the study of the dynamics we used dynamical system methods for investigating how an evolutionary scenario can depend on the choice of special initial conditions. We show that the methods of dynamical systems allow one to investigate all admissible solutions of a running Λ cosmology for all initial conditions. We interpret Alcaniz and Lima's approach as a scaling cosmology. We formulate the idea of an emergent cosmological term derived directly from an approximation of the exact dynamics. We show that some non-covariant parametrization of the cosmological term like Λ(a), Λ(H) gives rise to the non-physical behaviour of trajectories in the phase space. This behaviour disappears if the term Λ(a) is emergent from the covariant parametrization. (orig.)
Cosmology based on f(R) gravity with O(1) eV sterile neutrino
Energy Technology Data Exchange (ETDEWEB)
Chudaykin, Anton S.; Gorbunov, Dmitry S. [Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary prospect 7a, Moscow 117312 (Russian Federation); Starobinsky, Alexei A. [L.D. Landau Institute for Theoretical Physics of the Russian Academy of Sciences, Moscow 119334 (Russian Federation); Burenin, Rodion A., E-mail: chudy@ms2.inr.ac.ru, E-mail: gorby@ms2.inr.ac.ru, E-mail: alstar@landau.ac.ru, E-mail: rodion@hea.iki.rssi.ru [Space Research Institute of the Russian Academy of Sciences (IKI), Moscow, ul. Profsoyuznaya, 84/32, 117997 (Russian Federation)
2015-05-01
We address the cosmological role of an additional O(1) eV sterile neutrino in modified gravity models. We confront the present cosmological data with predictions of the FLRW cosmological model based on a variant of f(R) modified gravity proposed by one of the authors previously. This viable cosmological model which deviation from general relativity with a cosmological constant Λ decreases as R{sup −2n} for large, but not too large values of the Ricci scalar R (while no Λ is introduced by hand at small R) provides an alternative explanation of present dark energy and the accelerated expansion of the Universe (the case n=2 is considered in the paper). Various up-to-date cosmological data sets exploited include measurements of the cosmic microwave background (CMB) anisotropy, the CMB lensing potential, the baryon acoustic oscillations (BAO), the cluster mass function and the Hubble constant. We find that the CMB+BAO constraints strongly restrict the sum of neutrino masses from above. This excludes values of the model parameter λ∼ 1 for which distinctive cosmological features of the model are mostly pronounced as compared to the ΛCDM model, since then free streaming damping of perturbations due to neutrino rest masses is not sufficient to compensate their extra growth occurring in f(R) modified gravity. Thus, in the gravity sector we obtain λ>8.2 (2σ) with the account of systematic uncertainties in galaxy cluster mass function measurements and λ>9.4 (2σ) without them. At the same time in the latter case we find for the sterile neutrino mass 0.47 eV < m{sub ν, sterile} < 1 eV (2σ) assuming that the sterile neutrinos are thermalized and the active neutrinos are massless, not significantly larger than in the standard ΛCDM with the same data set: 0.45 eV < m{sub ν, sterile} < 0.92 eV (2σ). However, a possible discovery of a sterile neutrino with the mass m{sub ν, sterile} ≈ 1.5 eV motivated by various anomalies in neutrino oscillation
Integrated cosmological probes: concordance quantified
Energy Technology Data Exchange (ETDEWEB)
Nicola, Andrina; Amara, Adam; Refregier, Alexandre, E-mail: andrina.nicola@phys.ethz.ch, E-mail: adam.amara@phys.ethz.ch, E-mail: alexandre.refregier@phys.ethz.ch [Department of Physics, ETH Zürich, Wolfgang-Pauli-Strasse 27, CH-8093 Zürich (Switzerland)
2017-10-01
Assessing the consistency of parameter constraints derived from different cosmological probes is an important way to test the validity of the underlying cosmological model. In an earlier work [1], we computed constraints on cosmological parameters for ΛCDM from an integrated analysis of CMB temperature anisotropies and CMB lensing from Planck, galaxy clustering and weak lensing from SDSS, weak lensing from DES SV as well as Type Ia supernovae and Hubble parameter measurements. In this work, we extend this analysis and quantify the concordance between the derived constraints and those derived by the Planck Collaboration as well as WMAP9, SPT and ACT. As a measure for consistency, we use the Surprise statistic [2], which is based on the relative entropy. In the framework of a flat ΛCDM cosmological model, we find all data sets to be consistent with one another at a level of less than 1σ. We highlight that the relative entropy is sensitive to inconsistencies in the models that are used in different parts of the analysis. In particular, inconsistent assumptions for the neutrino mass break its invariance on the parameter choice. When consistent model assumptions are used, the data sets considered in this work all agree with each other and ΛCDM, without evidence for tensions.
Primer on CDM programme of activities
Energy Technology Data Exchange (ETDEWEB)
Hinostroza, M. (UNEP Risoe Centre, Roskilde (Denmark)); Lescano, A.D. (A2G Carbon Partners (Peru)); Alvarez, J.M. (Ministerio del Ambiente del Peru (Peru)); Avendano, F.M. (EEA Fund Management Ltd. (United Kingdom)
2009-07-01
As an advanced modality introduced in 2005, the Programmatic CDM (POA) is expected to address asymmetries of participation, especially of very small-scale project activities in certain areas, key sectors and many countries with considerable potential for greenhouse gas emission reductions, not reached by the traditional single-project-based CDM. Latest experiences with POAs and the recently finalized official guidance governing the Programmatic CDM are the grassroots of this Primer, which has the purpose of supporting the fully understanding of rules and procedures of POAs by interpreting them and analyzing real POA cases. Professional and experts from the public and private entities have contributed to the development of this Primer, produced by the UNEP Risoe Centre, as part of knowledge support activities for the Capacity Development for the CDM (CD4CDM) project. The overall objective of the CD4CDM is to develop the capacities of host countries to identify, design, approve, finance, implement CDM projects and commercialize CERs in participating countries. The CDM4CDM is funded by the Netherlands Ministry of Foreign Affairs. (author)
The H II galaxy Hubble diagram strongly favours Rh = ct over ΛCDM
Wei, Jun-Jie; Wu, Xue-Feng; Melia, Fulvio
2016-12-01
We continue to build support for the proposal to use H II galaxies (HIIGx) and giant extragalactic H II regions (GEHR) as standard candles to construct the Hubble diagram at redshifts beyond the current reach of Type Ia supernovae. Using a sample of 25 high-redshift HIIGx, 107 local HIIGx, and 24 GEHR, we confirm that the correlation between the emission-line luminosity and ionized-gas velocity dispersion is a viable luminosity indicator, and use it to test and compare the standard model ΛCDM and the Rh = ct universe by optimizing the parameters in each cosmology using a maximization of the likelihood function. For the flat ΛCDM model, the best fit is obtained with Ω _m= 0.40_{-0.09}^{+0.09}. However, statistical tools, such as the Akaike (AIC), Kullback (KIC) and Bayes (BIC) Information Criteria favour Rh = ct over the standard model with a likelihood of ≈94.8-98.8 per cent versus only ≈1.2-5.2 per cent. For wCDM (the version of ΛCDM with a dark-energy equation of state wde ≡ pde/ρde rather than wde = wΛ = -1), a statistically acceptable fit is realized with Ω _m=0.22_{-0.14}^{+0.16} and w_de= -0.51_{-0.25}^{+0.15} which, however, are not fully consistent with their concordance values. In this case, wCDM has two more free parameters than Rh = ct, and is penalized more heavily by these criteria. We find that Rh = ct is strongly favoured over wCDM with a likelihood of ≈92.9-99.6 per cent versus only 0.4-7.1 per cent. The current HIIGx sample is already large enough for the BIC to rule out ΛCDM/wCDM in favour of Rh = ct at a confidence level approaching 3σ.
Energy Technology Data Exchange (ETDEWEB)
Curnow, P [Baker and McKenzie, London (United Kingdom); Hodes, G [UNEP Risoe Centre on Energy, Climate and Sustainable Development, DTU, Roskilde (Denmark)
2009-08-15
The Clean Development Mechanism (CDM) continues to evolve organically, and many legal issues remain to be addressed in order to maximise its effectiveness. This Guidebook explains through case studies how domestic laws and regulatory frameworks in CDM Host Countries interact with international rules on carbon trading, and how the former can be enhanced to facilitate the implementation and financing of CDM projects. (author)
Integrating ecological restoration into CDM forestry projects
International Nuclear Information System (INIS)
Ma, Maohua; Haapanen, Toni; Singh, Ram Babu; Hietala, Reija
2014-01-01
Highlights: • Concerns and issues in sustainability of CDM forestry projects are reviewed. • Ecological restoration is suggested to be integrated in the CDM framework. • As an ecosystem supporting service, soil restoration on degraded land is of primary importance. • Regenerating forests naturally rather than through monoculture plantations is suggested. • Potential social impacts of ecological restoration are discussed. - Abstract: The Clean Development Mechanism (CDM) is proposed to reduce greenhouse gas emissions and promote sustainable development. CDM forestry projects should contribute to mitigation of climate change through afforestation and reforestation (A/R) activities on degraded land in developing countries. However, like other types of CDM projects, the forestry projects have encountered a number of concerns and critiques. Appropriate approaches and concrete aims to achieve long-term sustainability have been lacking, and reforms have therefore been called for. The aims of this paper are to examine the published information relevant to these concerns, and frame appropriate approaches for a more sustainable CDM. In this review, as a first step to tackle some of these issues, ecological restoration is suggested for integration into the CDM framework. Essentially, this involves the restoration of ecosystem supporting service (soil restoration), upon which forests regenerate naturally rather than establishing monoculture plantations. In this way, forestry projects would bring cost-effective opportunities for multiple ecosystem services. Potential approaches, necessary additions to the monitoring plans, and social impacts of ecological restoration in CDM projects are discussed
International Nuclear Information System (INIS)
Chimento, L P; Forte, M; Devecchi, F P; Kremer, G M; Ribas, M O; Samojeden, L L
2011-01-01
In this work we review if fermionic sources could be responsible for accelerated periods during the evolution of a FRW universe. In a first attempt, besides the fermionic source, a matter constituent would answer for the decelerated periods. The coupled differential equations that emerge from the field equations are integrated numerically. The self-interaction potential of the fermionic field is considered as a function of the scalar and pseudo-scalar invariants. It is shown that the fermionic field could behave like an inflaton field in the early universe, giving place to a transition to a matter dominated (decelerated) period. In a second formulation we turn our attention to analytical results, specifically using the idea of form-invariance transformations. These transformations can be used for obtaining accelerated cosmologies starting with conventional cosmological models. Here we reconsider the scalar field case and extend the discussion to fermionic fields. Finally we investigate the role of a Dirac field in a Brans-Dicke (BD) context. The results show that this source, in combination with the BD scalar, promote a final eternal accelerated era, after a matter dominated period.
Bimetric gravity is cosmologically viable
Directory of Open Access Journals (Sweden)
Yashar Akrami
2015-09-01
Full Text Available Bimetric theory describes gravitational interactions in the presence of an extra spin-2 field. Previous work has suggested that its cosmological solutions are generically plagued by instabilities. We show that by taking the Planck mass for the second metric, Mf, to be small, these instabilities can be pushed back to unobservably early times. In this limit, the theory approaches general relativity with an effective cosmological constant which is, remarkably, determined by the spin-2 interaction scale. This provides a late-time expansion history which is extremely close to ΛCDM, but with a technically-natural value for the cosmological constant. We find Mf should be no larger than the electroweak scale in order for cosmological perturbations to be stable by big-bang nucleosynthesis. We further show that in this limit the helicity-0 mode is no longer strongly-coupled at low energy scales.
Cosmological dynamics of extended chameleons
International Nuclear Information System (INIS)
Tamanini, Nicola; Wright, Matthew
2016-01-01
We investigate the cosmological dynamics of the recently proposed extended chameleon models at both background and linear perturbation levels. Dynamical systems techniques are employed to fully characterize the evolution of the universe at the largest distances, while structure formation is analysed at sub-horizon scales within the quasi-static approximation. The late time dynamical transition from dark matter to dark energy domination can be well described by almost all extended chameleon models considered, with no deviations from ΛCDM results at both background and perturbation levels. The results obtained in this work confirm the cosmological viability of extended chameleons as alternative dark energy models.
Cosmological dynamics of extended chameleons
Energy Technology Data Exchange (ETDEWEB)
Tamanini, Nicola [Institut de Physique Théorique, CEA-Saclay, CNRS UMR 3681, Université Paris-Saclay, F-91191 Gif-sur-Yvette (France); Wright, Matthew, E-mail: nicola.tamanini@cea.fr, E-mail: matthew.wright.13@ucl.ac.uk [Department of Mathematics, University College London, Gower Street, London, WC1E 6BT (United Kingdom)
2016-04-01
We investigate the cosmological dynamics of the recently proposed extended chameleon models at both background and linear perturbation levels. Dynamical systems techniques are employed to fully characterize the evolution of the universe at the largest distances, while structure formation is analysed at sub-horizon scales within the quasi-static approximation. The late time dynamical transition from dark matter to dark energy domination can be well described by almost all extended chameleon models considered, with no deviations from ΛCDM results at both background and perturbation levels. The results obtained in this work confirm the cosmological viability of extended chameleons as alternative dark energy models.
Cosmology and Gravitation: the grand scheme for High-Energy Physics
Binétruy, P.
2014-12-10
These lectures describe how the Standard Model of cosmology ( Λ CDM) has developped, based on observational facts but also on ideas formed in the context of the theory of fundamental interactions, both gravitational and non-gravitational, the latter being described by the Standard Model of high energy physics. It focuses on the latest developments, in particular the precise knowledge of the early Universe provided by the observation of the Cosmic Microwave Background and the discovery of the present acceleration of the expansion of the Universe. While insisting on the successes of the Standard Model of cosmology, we will stress that it rests on three pillars which involve many open questions: the theory of inflation, the nature of dark matter and of dark energy. We will devote one chapter to each of these issues, describing in particular how this impacts our views on the theory of fundamental interactions. More technical parts are given in italics. They may be skipped altogether.
Cosmological tests of coupled Galileons
International Nuclear Information System (INIS)
Brax, Philippe; Burrage, Clare; Davis, Anne-Christine; Gubitosi, Giulia
2015-01-01
We investigate the cosmological properties of Galileon models which admit Minkowski space as a stable solution in vacuum. This is motivated by stable, positive tension brane world constructions that give rise to Galileons. We include both conformal and disformal couplings to matter and focus on constraints on the theory that arise because of these couplings. The disformal coupling to baryonic matter is extremely constrained by astrophysical and particle physics effects. The disformal coupling to photons induces a cosmological variation of the speed of light and therefore distorsions of the Cosmic Microwave Background spectrum which are known to be very small. The conformal coupling to baryons leads to a variation of particle masses since Big Bang Nucleosynthesis which is also tightly constrained. We consider the background cosmology of Galileon models coupled to Cold Dark Matter (CDM), photons and baryons and impose that the speed of light and particle masses respect the observational bounds on cosmological time scales. We find that requiring that the equation of state for the Galileon models must be close to -1 now restricts severely their parameter space and can only be achieved with a combination of the conformal and disformal couplings. This leads to large variations of particle masses and the speed of light which are not compatible with observations. As a result, we find that cosmological Galileon models are viable dark energy theories coupled to dark matter but their couplings, both disformal and conformal, to baryons and photons must be heavily suppressed making them only sensitive to CDM
Can the Clean Development Mechanism (CDM) deliver?
International Nuclear Information System (INIS)
Subbarao, Srikanth; Lloyd, Bob
2011-01-01
The paper investigates whether the Clean Development Mechanism (CDM) under the Kyoto Protocol has played a significant role in the development of rural communities, specifically investigating uptake of small-scale renewable energy projects. The investigation involved an assessment of 500 registered small-scale CDM projects under the Kyoto Protocol in terms of their potential impact on the envisaged sustainable development goals for rural communities. Five case studies from the Indian subcontinent were also examined. The paper concludes that the CDM in its current state and design has typically failed to deliver the promised benefits with regard to development objectives in rural areas. Successful projects were found to have had good community involvement and such projects were typically managed by cooperative ventures rather than money making corporations. The paper puts forward a new framework for the assessment of such benefits in the hope that future projects can be better assessed in this regard. The key problem, however, remains on how to deal with the inherent contradiction between development and sustainability. - Research Highlights: → Role of CDM towards sustainable development of rural communities. → Assessment of 500 registered small-scale CDM projects. → CDM in its current state and design has typically failed to deliver. → A new framework for sustainable development assessment of small-scale CDM projects. → Inherent contradiction between development and sustainability.
Distinguishing CDM dwarfs from SIDM dwarfs in baryonic simulations
Strickland, Emily; Fitts, Alex B.; Boylan-Kolchin, Michael
2017-06-01
Dwarf galaxies in the nearby Universe are the most dark-matter-dominated systems known. They are therefore natural probes of the nature of dark matter, which remains unknown. Our collaboration has performed several high-resolution cosmological zoom-in simulations of isolated dwarf galaxies. We simulate each galaxy in standard cold dark matter (ΛCDM) as well as self-interacting dark matter (SIDM, with a cross section of σ/m ~ 1 cm2/g), both with and without baryons, in order to identify distinguishing characteristics between the two. The simulations are run using GIZMO, a meshless-finite-mass hydrodynamical code, and are part of the Feedback in Realistic Environments (FIRE) project. By analyzing both the global properties and inner structure of the dwarfs in varying dark matter prescriptions, we provide a side-by-side comparison of isolated, dark-matter-dominated galaxies at the mass scale where differences in the two models of dark matter are thought to be the most obvious. We find that the edge of classical dwarfs and ultra-faint dwarfs (at stellar masses of ~105 solar masses) provides the clearest window for distinguishing between the two theories. At these low masses, our SIDM galaxies have a cored inner density profile, while their CDM counterparts have “cuspy” centers. The SIDM versions of each galaxy also have measurably lower stellar velocity dispersions than their CDM counterparts. Future observations of ultra faint dwarfs with JWST and 30-m telescopes will be able to discern whether such alternate theories of dark matter are viable.
Late-time acceleration with steep exponential potentials
Energy Technology Data Exchange (ETDEWEB)
Shahalam, M. [Zhejiang University of Technology, Institute for Advanced Physics and Mathematics, Hangzhou (China); Yang, Weiqiang [Liaoning Normal University, Department of Physics, Dalian (China); Myrzakulov, R. [Eurasian National University, Department of General and Theoretical Physics, Eurasian International Center for Theoretical Physics, Astana (Kazakhstan); Wang, Anzhong [Zhejiang University of Technology, Institute for Advanced Physics and Mathematics, Hangzhou (China); Baylor University, GCAP-CASPER, Department of Physics, Waco, TX (United States)
2017-12-15
In this letter, we study the cosmological dynamics of steeper potential than exponential. Our analysis shows that a simple extension of an exponential potential allows to capture late-time cosmic acceleration and retain the tracker behavior. We also perform statefinder and Om diagnostics to distinguish dark energy models among themselves and with ΛCDM. In addition, to put the observational constraints on the model parameters, we modify the publicly available CosmoMC code and use an integrated data base of baryon acoustic oscillation, latest Type Ia supernova from Joint Light Curves sample and the local Hubble constant value measured by the Hubble Space Telescope. (orig.)
Late-time acceleration with steep exponential potentials
International Nuclear Information System (INIS)
Shahalam, M.; Yang, Weiqiang; Myrzakulov, R.; Wang, Anzhong
2017-01-01
In this letter, we study the cosmological dynamics of steeper potential than exponential. Our analysis shows that a simple extension of an exponential potential allows to capture late-time cosmic acceleration and retain the tracker behavior. We also perform statefinder and Om diagnostics to distinguish dark energy models among themselves and with ΛCDM. In addition, to put the observational constraints on the model parameters, we modify the publicly available CosmoMC code and use an integrated data base of baryon acoustic oscillation, latest Type Ia supernova from Joint Light Curves sample and the local Hubble constant value measured by the Hubble Space Telescope. (orig.)
Dynamic CDM strategies in an EHR environment.
Bieker, Michael; Bailey, Spencer
2012-02-01
A dynamic charge description master (CDM) integrates information from clinical ancillary systems into the charge-capture process, so an organization can reduce its reliance on the patient accounting system as the sole source of billing information. By leveraging the information from electronic ancillary systems, providers can eliminate the need for paper charge-capture forms and see increased accuracy and efficiency in the maintenance of billing information. Before embarking on a dynamic CDM strategy, organizations should first determine their goals for implementing an EHR system, include revenue cycle leaders on the EHR implementation team, and carefully weigh the pros and cons of CDM design decisions.
Solar System constraints on a cosmologically viable f(R) theory
International Nuclear Information System (INIS)
Bisabr, Yousef
2010-01-01
Recently, a model f(R) theory is proposed (Miranda et al. (2009)) which is cosmologically viable and distinguishable from ΛCDM. We use chameleon mechanism to investigate viability of the model in terms of Solar System experiments.
Constraints on cosmological parameters in power-law cosmology
International Nuclear Information System (INIS)
Rani, Sarita; Singh, J.K.; Altaibayeva, A.; Myrzakulov, R.; Shahalam, M.
2015-01-01
In this paper, we examine observational constraints on the power law cosmology; essentially dependent on two parameters H 0 (Hubble constant) and q (deceleration parameter). We investigate the constraints on these parameters using the latest 28 points of H(z) data and 580 points of Union2.1 compilation data and, compare the results with the results of ΛCDM . We also forecast constraints using a simulated data set for the future JDEM, supernovae survey. Our studies give better insight into power law cosmology than the earlier done analysis by Kumar [arXiv:1109.6924] indicating it tuning well with Union2.1 compilation data but not with H(z) data. However, the constraints obtained on i.e. H 0 average and q average using the simulated data set for the future JDEM, supernovae survey are found to be inconsistent with the values obtained from the H(z) and Union2.1 compilation data. We also perform the statefinder analysis and find that the power-law cosmological models approach the standard ΛCDM model as q → −1. Finally, we observe that although the power law cosmology explains several prominent features of evolution of the Universe, it fails in details
Working group report: Cosmology and astroparticle physics
Indian Academy of Sciences (India)
This is the report of the cosmology and astroparticle physics working group ... origin of the accelerating Universe: Dark energy and particle cosmology by Y-Y Keum, .... Neutrino oscillations with two and three mass varying supernova neutrinos ...
Cosmological Reflection of Particle Symmetry
Directory of Open Access Journals (Sweden)
Maxim Khlopov
2016-08-01
Full Text Available The standard model involves particle symmetry and the mechanism of its breaking. Modern cosmology is based on inflationary models with baryosynthesis and dark matter/energy, which involves physics beyond the standard model. Studies of the physical basis of modern cosmology combine direct searches for new physics at accelerators with its indirect non-accelerator probes, in which cosmological consequences of particle models play an important role. The cosmological reflection of particle symmetry and the mechanisms of its breaking are the subject of the present review.
International Nuclear Information System (INIS)
Wainwright, J.
1990-01-01
The workshop on mathematical cosmology was devoted to four topics of current interest. This report contains a brief discussion of the historical background of each topic and a concise summary of the content of each talk. The topics were; the observational cosmology program, the cosmological perturbation program, isotropic singularities, and the evolution of Bianchi cosmologies. (author)
Cosmology and particle physics
Energy Technology Data Exchange (ETDEWEB)
Steigman, G [California Univ., Santa Barbara (USA). Inst. for Theoretical Physics; Bartol Research Foundation, Newark, Delaware (USA))
1982-01-29
The cosmic connections between physics on the very largest and very smallest scales are reviewed with an emphasis on the symbiotic relation between elementary particle physics and cosmology. After a review of the early Universe as a cosmic accelerator, various cosmological and astrophysical constraints on models of particle physics are outlined. To illustrate this approach to particle physics via cosmology, reference is made to several areas of current research: baryon non-conservation and baryon asymmetry; free quarks, heavy hadrons and other exotic relics; primordial nucleosynthesis and neutrino masses.
International Nuclear Information System (INIS)
Raychaudhuri, A.K.
1979-01-01
The subject is covered in chapters, entitled; introduction; Newtonian gravitation and cosmology; general relativity and relativistic cosmology; analysis of observational data; relativistic models not obeying the cosmological principle; microwave radiation background; thermal history of the universe and nucleosynthesis; singularity of cosmological models; gravitational constant as a field variable; cosmological models based on Einstein-Cartan theory; cosmological singularity in two recent theories; fate of perturbations of isotropic universes; formation of galaxies; baryon symmetric cosmology; assorted topics (including extragalactic radio sources; Mach principle). (U.K.)
Models of f(R) cosmic acceleration that evade solar system tests
International Nuclear Information System (INIS)
Hu, Wayne; Sawicki, Ignacy
2007-01-01
We study a class of metric-variation f(R) models that accelerates the expansion without a cosmological constant and satisfies both cosmological and solar-system tests in the small-field limit of the parameter space. Solar-system tests alone place only weak bounds on these models, since the additional scalar degree of freedom is locked to the high-curvature general-relativistic prediction across more than 25 orders of magnitude in density, out through the solar corona. This agreement requires that the galactic halo be of sufficient extent to maintain the galaxy at high curvature in the presence of the low-curvature cosmological background. If the galactic halo and local environment in f(R) models do not have substantially deeper potentials than expected in ΛCDM, then cosmological field amplitudes |f R | > or approx.10 -6 will cause the galactic interior to evolve to low curvature during the acceleration epoch. Viability of large-deviation models therefore rests on the structure and evolution of the galactic halo, requiring cosmological simulations of f(R) models, and not directly on solar-system tests. Even small deviations that conservatively satisfy both galactic and solar-system constraints can still be tested by future, percent-level measurements of the linear power spectrum, while they remain undetectable to cosmological-distance measures. Although we illustrate these effects in a specific class of models, the requirements on f(R) are phrased in a nearly model-independent manner
Potential impacts of CCS on the CDM
International Nuclear Information System (INIS)
Bakker, S; Mikunda, T.; Rivera Tinoco, R.
2011-02-01
CO2 capture and storage can ensure that stringent climate change mitigation targets are achieved more cost-effectively. However, in order to ensure a substantial role for CCS, deployment of CCS is required on a significant global scale by 2020. Currently, the CDM is the only international instrument that could provide a financial incentive for CCS in developing countries. In December 2010 it was decided that CCS could in principle be eligible under the CDM, provided a number of issues are resolved, including non-permanence, liability, monitoring and potential perverse outcomes. The latter issue relates to the concern that that CCS projects could flood the CDM market, thereby crowding out other technologies that could be considered more sustainable. This report, therefore, aims to quantify the possible impact of CCS on the CDM market, in order to assess the relevance of the CDM market objection. However, the analysis in the report is also valid for the role of CCS in other types of international support mechanisms. The first result of this study is a marginal abatement cost curve (MAC) for CCS in developing countries for 2020. Based on existing MAC studies, the IEA CCS Roadmap and an overview of ongoing and planned CCS activities, we compiled three scenarios for CCS in the power, industry and upstream sector, as shown below. The major part of the potential below $30/tCO2eq (70 - 100 MtCO2/yr) is in the natural gas processing sector. Using the MACs for the CDM market, we estimate the economic potential for CCS projects to be 4-19% of the CDM credit supply in 2020. The potential impact inclusion of CCS in the CDM may have is assessed by using several possible CER supply and demand scenarios, as well as scenarios related to market price responsiveness and the role of CDM in the post-2012 carbon market. The impact is estimated to be between $0 and $4 per tonne of CO2-eq, with three out of four scenarios indicating the lower part of this range.
CDM: Taking stock and looking forward
International Nuclear Information System (INIS)
Ellis, Jane; Winkler, Harald; Corfee-Morlot, Jan; Gagnon-Lebrun, Frederic
2007-01-01
The Kyoto Protocol's clean development mechanism (CDM) was established in 1997 with the dual purposes of assisting non-Annex I Parties in achieving sustainable development and assisting Annex I Parties in achieving compliance with their quantified greenhouse gas (GHG) emission commitments. This paper looks at the development of the CDM portfolio as well as achievements of the CDM to date in the context of wider private and public flows of investment into developing countries. These achievements include the development of 325 (by May 2005) proposed CDM projects which are together expected to generate more than 79 Mt CO 2 -eq credits/year during 2008-2012, increasing awareness of climate change mitigation options among possible investors and others that may facilitate transactions (i.e. governments), and the strengthening of climate-relevant institutions within countries. The paper also draws lessons from this experience to date, and outlines what changes may be needed to transform the CDM concept to a broader scale after the end of the first commitment period in 2012
Srivastava, S. K.
2008-01-01
Here, cosmology is obtained from the variable gravitational constant $ G \\propto \\phi^{-2}$ with $ \\phi(x) $ being a scalar and its fluctuations around the ground state. The gravitational action contains Einstein-Hilbert like term with variable $ G $, kinetic energy and self-interaction potential for $ \\phi(x) $. Two phase transitions take place in this model. The first one takes place at the GUT (grand unified theory) scale $ \\sim 2.45 \\times 10^{14}{\\rm GeV} $, when the early universe exits...
Exact Solution and Exotic Fluid in Cosmology
Directory of Open Access Journals (Sweden)
Phillial Oh
2012-09-01
Full Text Available We investigate cosmological consequences of nonlinear sigma model coupled with a cosmological fluid which satisfies the continuity equation. The target space action is of the de Sitter type and is composed of four scalar fields. The potential which is a function of only one of the scalar fields is also introduced. We perform a general analysis of the ensuing cosmological equations and give various critical points and their properties. Then, we show that the model exhibits an exact cosmological solution which yields a transition from matter domination into dark energy epoch and compare it with the Λ-CDM behavior. Especially, we calculate the age of the Universe and show that it is consistent with the observational value if the equation of the state ωf of the cosmological fluid is within the range of 0.13 < ωf < 0.22. Some implication of this result is also discussed.
Krioukov, Dmitri; Kitsak, Maksim; Sinkovits, Robert S; Rideout, David; Meyer, David; Boguñá, Marián
2012-01-01
Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology.
Small Scale Problems of the ΛCDM Model: A Short Review
Directory of Open Access Journals (Sweden)
Antonino Del Popolo
2017-02-01
Full Text Available The ΛCDM model, or concordance cosmology, as it is often called, is a paradigm at its maturity. It is clearly able to describe the universe at large scale, even if some issues remain open, such as the cosmological constant problem, the small-scale problems in galaxy formation, or the unexplained anomalies in the CMB. ΛCDM clearly shows difficulty at small scales, which could be related to our scant understanding, from the nature of dark matter to that of gravity; or to the role of baryon physics, which is not well understood and implemented in simulation codes or in semi-analytic models. At this stage, it is of fundamental importance to understand whether the problems encountered by the ΛDCM model are a sign of its limits or a sign of our failures in getting the finer details right. In the present paper, we will review the small-scale problems of the ΛCDM model, and we will discuss the proposed solutions and to what extent they are able to give us a theory accurately describing the phenomena in the complete range of scale of the observed universe.
Why the CDM can reduce carbon leakage
International Nuclear Information System (INIS)
Kallbekken, S.
2006-04-01
Carbon leakage is an important concern because it can reduce the environmental effectiveness of the Kyoto Protocol. The Clean Development Mechanism, one of the flexibility mechanisms allowed under the protocol, has the potential to reduce carbon leakage significantly because it reduces the relative competitive disadvantage to Annex B countries of restricting greenhouse gas emissions. The economic intuition behind this mechanism is explored in a theoretical analysis. It is then analyzed numerically using a CGE model. The results indicate that, assuming appropriate accounting for leakage and under realistic assumptions on CDM activity, the CDM has the potential to reduce the magnitude of carbon leakage by around three fifths
Cosmological effects of nonlinear electrodynamics
International Nuclear Information System (INIS)
Novello, M; Goulart, E; Salim, J M; Bergliaffa, S E Perez
2007-01-01
It will be shown that a given realization of nonlinear electrodynamics, used as a source of Einstein's equations, generates a cosmological model with interesting features, namely a phase of current cosmic acceleration, and the absence of an initial singularity, thus pointing to a way of solving two important problems in cosmology
Stakeholder participation in CDM and new climate mitigation mechanisms: China CDM case study
DEFF Research Database (Denmark)
Dong, Yan; Olsen, Karen Holm
2017-01-01
exists on how LSC is practised, and synergies between climate mechanisms are largely unexplored. This study explores how international LSC rules are practised at national and local levels. It aims to better shape future LSC in climate mechanisms by learning from the case of China. First, LSC policies...... in CDM, REDD +, and GCF are identified. Relevant rules in China’s local policies are analysed. To understand the interaction between CDM policies and China’s local LSC rules, a selection of Chinese CDM Projects Design Documents (PDDs) are analysed, providing an overall impression of the stakeholder...
Exact solutions for scalar field cosmology in f(R) gravity
Maharaj, S. D.; Goswami, R.; Chervon, S. V.; Nikolaev, A. V.
2017-09-01
We study scalar field FLRW cosmology in the content of f(R) gravity. Our consideration is restricted to the spatially flat Friedmann universe. We derived the general evolution equations of the model, and showed that the scalar field equation is automatically satisfied for any form of the f(R) function. We also derived representations for kinetic and potential energies, as well as for the acceleration in terms of the Hubble parameter and the form of the f(R) function. Next we found the exact cosmological solutions in modified gravity without specifying the f(R) function. With negligible acceleration of the scalar curvature, we found that the de Sitter inflationary solution is always attained. Also we obtained new solutions with special restrictions on the integration constants. These solutions contain oscillating, accelerating, decelerating and even contracting universes. For further investigation, we selected special cases which can be applied with early or late inflation. We also found exact solutions for the general case for the model with negligible acceleration of the scalar curvature in terms of special Airy functions. Using initial conditions which represent the universe at the present epoch, we determined the constants of integration. This allows for the comparison of the scale factor in the new solutions with that for current stage of the universe evolution in the ΛCDM model.
Ryden, Barbara
2017-01-01
This second edition of Introduction to Cosmology is an exciting update of an award-winning textbook. It is aimed primarily at advanced undergraduate students in physics and astronomy, but is also useful as a supplementary text at higher levels. It explains modern cosmological concepts, such as dark energy, in the context of the Big Bang theory. Its clear, lucid writing style, with a wealth of useful everyday analogies, makes it exceptionally engaging. Emphasis is placed on the links between theoretical concepts of cosmology and the observable properties of the universe, building deeper physical insights in the reader. The second edition includes recent observational results, fuller descriptions of special and general relativity, expanded discussions of dark energy, and a new chapter on baryonic matter that makes up stars and galaxies. It is an ideal textbook for the era of precision cosmology in the accelerating universe.
A non-parametric consistency test of the ΛCDM model with Planck CMB data
Energy Technology Data Exchange (ETDEWEB)
Aghamousa, Amir; Shafieloo, Arman [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Hamann, Jan, E-mail: amir@aghamousa.com, E-mail: jan.hamann@unsw.edu.au, E-mail: shafieloo@kasi.re.kr [School of Physics, The University of New South Wales, Sydney NSW 2052 (Australia)
2017-09-01
Non-parametric reconstruction methods, such as Gaussian process (GP) regression, provide a model-independent way of estimating an underlying function and its uncertainty from noisy data. We demonstrate how GP-reconstruction can be used as a consistency test between a given data set and a specific model by looking for structures in the residuals of the data with respect to the model's best-fit. Applying this formalism to the Planck temperature and polarisation power spectrum measurements, we test their global consistency with the predictions of the base ΛCDM model. Our results do not show any serious inconsistencies, lending further support to the interpretation of the base ΛCDM model as cosmology's gold standard.
Observational constraints on Visser's cosmological model
International Nuclear Information System (INIS)
Alves, M. E. S.; Araujo, J. C. N. de; Miranda, O. D.; Wuensche, C. A.; Carvalho, F. C.; Santos, E. M.
2010-01-01
Theories of gravity for which gravitons can be treated as massive particles have presently been studied as realistic modifications of general relativity, and can be tested with cosmological observations. In this work, we study the ability of a recently proposed theory with massive gravitons, the so-called Visser theory, to explain the measurements of luminosity distance from the Union2 compilation, the most recent Type-Ia Supernovae (SNe Ia) data set, adopting the current ratio of the total density of nonrelativistic matter to the critical density (Ω m ) as a free parameter. We also combine the SNe Ia data with constraints from baryon acoustic oscillations (BAO) and cosmic microwave background (CMB) measurements. We find that, for the allowed interval of values for Ω m , a model based on Visser's theory can produce an accelerated expansion period without any dark energy component, but the combined analysis (SNe Ia+BAO+CMB) shows that the model is disfavored when compared with the ΛCDM model.
A null test of the cosmological constant
International Nuclear Information System (INIS)
Chiba, Takeshi; Nakamura, Takashi
2007-01-01
We provide a consistency relation between cosmological observables in general relativity with the cosmological constant. Breaking of this relation at any redshift would imply the breakdown of the hypothesis of the cosmological constant as an explanation of the current acceleration of the universe. (author)
Understanding the CDM's contribution to technology transfer
International Nuclear Information System (INIS)
Schneider, Malte; Holzer, Andreas; Hoffmann, Volker H.
2008-01-01
Developing countries are increasingly contributing to global greenhouse gas emissions and, consequently, climate change as a result of their rapid economic growth. In order to reduce their impact, the private sector needs to be engaged in the transfer of low-carbon technology to those countries. The Clean Development Mechanism (CDM) is currently the only market mechanism aimed at triggering changes in the pattern of emissions-intensive activities in developing countries and is likely to play a role in future negotiations. In this paper, we analyse how the CDM contributes to technology transfer. We first develop a framework from the literature that delineates the main factors which characterise technology transfer. Second, we apply this framework to the CDM by assessing existing empirical studies and drawing on additional expert interviews. We find that the CDM does contribute to technology transfer by lowering several technology-transfer barriers and by raising the transfer quality. On the basis of this analysis, we give preliminary policy recommendations
Rupp, André A.; van Rijn, Peter W.
2018-01-01
We review the GIDNA and CDM packages in R for fitting cognitive diagnosis/diagnostic classification models. We first provide a summary of their core capabilities and then use both simulated and real data to compare their functionalities in practice. We found that the most relevant routines in the two packages appear to be more similar than…
Cosmological evidence for leptonic asymmetry after Planck
Energy Technology Data Exchange (ETDEWEB)
Caramete, A.; Popa, L.A., E-mail: acaramete@spacescience.ro, E-mail: lpopa@spacescience.ro [Institute of Space Science, 409 Atomistilor Street, Magurele, Ilfov 077125 (Romania)
2014-02-01
Recently, the PLANCK satellite found a larger and most precise value of the matter energy density, that impacts on the present values of other cosmological parameters such as the Hubble constant H{sub 0}, the present cluster abundances S{sub 8}, and the age of the Universe t{sub U}. The existing tension between PLANCK determination of these parameters in the frame of the base ΛCDM model and their determination from other measurements generated lively discussions, one possible interpretation being that some sources of systematic errors in cosmological measurements are not completely understood. An alternative interpretation is related to the fact that the CMB observations, that probe the high redshift Universe are interpreted in terms of cosmological parameters at present time by extrapolation within the base ΛCDM model that can be inadequate or incomplete. In this paper we quantify this tension by exploring several extensions of the base ΛCDM model that include the leptonic asymmetry. We set bounds on the radiation content of the Universe and neutrino properties by using the latest cosmological measurements, imposing also self-consistent BBN constraints on the primordial helium abundance. For all asymmetric cosmological models we find the preference of cosmological data for smaller values of active and sterile neutrino masses. This increases the tension between cosmological and short baseline neutrino oscillation data that favors a sterile neutrino with the mass of around 1 eV. For the case of degenerate massive neutrinos, we find that the discrepancies with the local determinations of H{sub 0}, and t{sub U} are alleviated at ∼ 1.3σ level while S{sub 8} is in agreement with its determination from CFHTLenS survey data at ∼ 1σ and with the prediction of cluster mass-observation relation at ∼ 0.5σ. We also find 2σ statistical preference of the cosmological data for the leptonic asymmetric models involving three massive neutrino species and neutrino direct
International Nuclear Information System (INIS)
Landsberg, P.T.; Evans, D.A.
1977-01-01
The subject is dealt with in chapters, entitled: cosmology -some fundamentals; Newtonian gravitation - some fundamentals; the cosmological differential equation - the particle model and the continuum model; some simple Friedmann models; the classification of the Friedmann models; the steady-state model; universe with pressure; optical effects of the expansion according to various theories of light; optical observations and cosmological models. (U.K.)
Host country attractiveness for CDM non-sink projects
International Nuclear Information System (INIS)
Jung, Martina
2006-01-01
In the present study, CDM host countries are classified according to their attractiveness for CDM non-sink projects by using cluster analysis. The attractiveness of host countries for CDM non-sink projects is described by three indicators: mitigation potential, institutional CDM capacity and general investment climate. The results suggest that only a small proportion of potential host countries will attract most of the CDM investment. The CDM (non-sink) stars are China, India, Brazil, Argentina, Mexico, South Africa, Indonesia and Thailand. They are followed by attractive countries like Costa Rica, Trinidad and Tobago, Mongolia, Panama, and Chile. While most of the promising CDM host countries are located in Latin America and Asia, the general attractiveness of African host countries is relatively low (with the exception of South Africa). Policy implications of this rather inequitable geographical distribution of CDM project activities are discussed briefly
Can the Stephani model be an alternative to FRW accelerating models?
International Nuclear Information System (INIS)
Godlowski, Wlodzimierz; Stelmach, Jerzy; Szydlowski, Marek
2004-01-01
A class of Stephani cosmological models as a prototype of a non-homogeneous universe is considered. The non-homogeneity can lead to accelerated evolution, which is now observed from the SNe Ia data. Three samples of type Ia supernovae obtained by Perlmutter et al, Tonry et al and Knop et al are taken into account. Different statistical methods (best fits as well as maximum likelihood method) to obtain estimation for the model parameters are used. The Stephani model is considered as an alternative to the ΛCDM model in the explanation of the present acceleration of the universe. The model explains the acceleration of the universe at the same level of accuracy as the ΛCDM model (χ 2 statistics are comparable). From the best fit analysis it follows that the Stephani model is characterized by a higher value of density parameter Ω m0 than the ΛCDM model. It is also shown that the model is consistent with the location of CMB peaks
CDM sustainable development impacts developed for the UNEP project 'CD4CDM'
Energy Technology Data Exchange (ETDEWEB)
Olhoff, Anne; Markandya, Anil; Halsnaes, Kirsten; Taylor, Tim
2004-07-01
The Clean Development Mechanism (CDM), an innovative cooperative mechanism under the Kyoto Protocol, is designed with the dual aim of assisting developing countries in achieving sustainable development (SD) and of assisting industrialised countries in achieving compliance with their greenhouse gas (GHG) emission reduction commitments. The SD dimension is not merely a requirement of the CDM; it should be seen as a main driver for developing country interest in participating in CDM projects. This is so, since apart from GHG emission reductions CDM projects will have a number of impacts in the host countries, including impacts on economic and social development and on the local environment. Furthermore, the selecting of the SD criteria and the assessment of the SD impacts are sovereign matters of the host countries in the current operationalisation of the Kyoto Protocol. National authorities can thus use the SD dimension to evaluate key linkages between national development goals and CDM projects, with the aim of selecting and designing CDM projects so that they create and maximise synergies with local development goals. (au)
Observable cosmology and cosmological models
International Nuclear Information System (INIS)
Kardashev, N.S.; Lukash, V.N.; Novikov, I.D.
1987-01-01
Modern state of observation cosmology is briefly discussed. Among other things, a problem, related to Hibble constant and slowdown constant determining is considered. Within ''pancake'' theory hot (neutrino) cosmological model explains well the large-scale structure of the Universe, but does not explain the galaxy formation. A cold cosmological model explains well light object formation, but contradicts data on large-scale structure
Indian Academy of Sciences (India)
This report is based on a recent work in collaboration with Bagla and Padmanabhan. [1]. In this paper, we construct cosmological models with homogeneous tachyon matter [2] to provide the dark energy component which drives acceleration of the universe (for a recent review of dark energy models, see [3]). We assume that.
Small scale structure formation in chameleon cosmology
International Nuclear Information System (INIS)
Brax, Ph.; Bruck, C. van de; Davis, A.C.; Green, A.M.
2006-01-01
Chameleon fields are scalar fields whose mass depends on the ambient matter density. We investigate the effects of these fields on the growth of density perturbations on sub-galactic scales and the formation of the first dark matter halos. Density perturbations on comoving scales R<1 pc go non-linear and collapse to form structure much earlier than in standard ΛCDM cosmology. The resulting mini-halos are hence more dense and resilient to disruption. We therefore expect (provided that the density perturbations on these scales have not been erased by damping processes) that the dark matter distribution on small scales would be more clumpy in chameleon cosmology than in the ΛCDM model
Dark interactions and cosmological fine-tuning
Energy Technology Data Exchange (ETDEWEB)
Quartin, Miguel; Calvao, Mauricio O; Joras, Sergio E; Reis, Ribamar R R; Waga, Ioav, E-mail: mquartin@if.ufrj.br, E-mail: orca@if.ufrj.br, E-mail: joras@if.ufrj.br, E-mail: ribamar@if.ufrj.br, E-mail: ioav@if.ufrj.br [Instituto de Fisica, Universidade Federal do Rio de Janeiro, CEP 21941-972, Rio de Janeiro, RJ (Brazil)
2008-05-15
Cosmological models involving an interaction between dark matter and dark energy have been proposed in order to solve the so-called coincidence problem. Different forms of coupling have been studied, but there have been claims that observational data seem to narrow (some of) them down to something annoyingly close to the {Lambda}CDM (CDM: cold dark matter) model, thus greatly reducing their ability to deal with the problem in the first place. The smallness problem of the initial energy density of dark energy has also been a target of cosmological models in recent years. Making use of a moderately general coupling scheme, this paper aims to unite these different approaches and shed some light on whether this class of models has any true perspective in suppressing the aforementioned issues that plague our current understanding of the universe, in a quantitative and unambiguous way.
Zhang Yuan Zhong
2002-01-01
This book is one of a series in the areas of high-energy physics, cosmology and gravitation published by the Institute of Physics. It includes courses given at a doctoral school on 'Relativistic Cosmology: Theory and Observation' held in Spring 2000 at the Centre for Scientific Culture 'Alessandro Volta', Italy, sponsored by SIGRAV-Societa Italiana di Relativita e Gravitazione (Italian Society of Relativity and Gravitation) and the University of Insubria. This book collects 15 review reports given by a number of outstanding scientists. They touch upon the main aspects of modern cosmology from observational matters to theoretical models, such as cosmological models, the early universe, dark matter and dark energy, modern observational cosmology, cosmic microwave background, gravitational lensing, and numerical simulations in cosmology. In particular, the introduction to the basics of cosmology includes the basic equations, covariant and tetrad descriptions, Friedmann models, observation and horizons, etc. The ...
Directory of Open Access Journals (Sweden)
Khan Mehbub
2018-01-01
Full Text Available Based on baryon charge conservation and a generalized Yang-Mills symmetry for Abelian (and non-Abelian groups, we discuss a new baryonic gauge field and its linear potential for two point-like baryon charges. The force between two point-like baryons is repulsive, extremely weak and independent of distance. However, for two extended baryonic systems, we have a dominant linear force α r. Thus, only in the later stage of the cosmic evolution, when two baryonic galaxies are separated by an extremely large distance, the new repulsive baryonic force can overcome the gravitational attractive force. Such a model provides a gauge-field-theoretic understanding of the late-time accelerated cosmic expansion. The baryonic force can be tested by measuring the accelerated Wu-Doppler frequency shifts of supernovae at different distances.
f(R,T,RμνTμν) gravity phenomenology and ΛCDM universe
International Nuclear Information System (INIS)
Odintsov, Sergei D.; Sáez-Gómez, Diego
2013-01-01
We propose general f(R,T,R μν T μν ) theory as generalization of covariant Hořava-like gravity with dynamical Lorentz symmetry breaking. FRLW cosmological dynamics for several versions of such theory is considered. The reconstruction of the above action is explicitly done, including the numerical reconstruction for the occurrence of ΛCDM universe. De Sitter universe solutions in the presence of non-constant fluid are also presented. The problem of matter instability in f(R,T,R μν T μν ) gravity is discussed
Delliou, Morgan Le; Mimoso, José Pedro
2010-01-01
We discuss the existence of a dividing shell separating expanding and collapsing regions in spherically symmetric solutions with pressure. We obtain gauge invariant conditions relating not only the intrinsic spatial curvature of the shells to the ADM mass, but also a function of the pressure which we introduce that generalises the Tolman-Oppenheimer-Volkoff equilibrium condition, in the framework of a 3+1 spacetime splitting. We consider the particular case of a Lema\\^itre-Tolman-Bondi dust models with a cosmological constant (a $\\Lambda$-CDM model) as an example of our results.
Planck 2015 results: XIII. Cosmological parameters
DEFF Research Database (Denmark)
Ade, P. A R; Aghanim, N.; Arnaud, M.
2016-01-01
is constrained to w =-1.006 ± 0.045, consistent with the expected value for a cosmological constant. The standard big bang nucleosynthesis predictions for the helium and deuterium abundances for the best-fit Planck base ΛCDM cosmology are in excellent agreement with observations. We also constraints...... of the theory; for example, combining Planck observations with other astrophysical data we find Neff = 3.15 ± 0.23 for the effective number of relativistic degrees of freedom, consistent with the value Neff = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to â'mν
CDM potential of bagasse cogeneration in India
International Nuclear Information System (INIS)
Purohit, Pallav; Michaelowa, Axel
2007-01-01
So far, the cumulative capacity of renewable energy systems such as bagasse cogeneration in India is far below their theoretical potential despite government subsidy programmes. One of the major barriers is the high investment cost of these systems. The Clean Development Mechanism (CDM) provides industrialized countries with an incentive to invest in emission reduction projects in developing countries to achieve a reduction in CO 2 emissions at lowest cost that also promotes sustainable development in the host country. Bagasse cogeneration projects could be of interest under the CDM because they directly displace greenhouse gas emissions while contributing to sustainable rural development. This study assesses the maximum theoretical as well as the realistically achievable CDM potential of bagasse cogeneration in India. Our estimates indicate that there is a vast theoretical potential of CO 2 mitigation by the use of bagasse for power generation through cogeneration process in India. The preliminary results indicate that the annual gross potential availability of bagasse in India is more than 67 million tonnes (MT). The potential of electricity generation through bagasse cogeneration in India is estimated to be around 34 TWh i.e. about 5575 MW in terms of the plant capacity. The annual CER potential of bagasse cogeneration in India could theoretically reach 28 MT. Under more realistic assumptions about diffusion of bagasse cogeneration based on past experiences with the government-run programmes, annual CER volumes by 2012 could reach 20-26 million. The projections based on the past diffusion trend indicate that in India, even with highly favorable assumptions, the dissemination of bagasse cogeneration for power generation is not likely to reach its maximum estimated potential in another 20 years. CDM could help to achieve the maximum utilization potential more rapidly as compared to the current diffusion trend if supportive policies are introduced
Manufacturing of nuclear power components in CDM
International Nuclear Information System (INIS)
Krishnan, J.; Jawale, S.B.
2002-01-01
Full text: In the nuclear research programme in India, Dr. H.J. Bhabha, the architecture of the Indian Nuclear programme felt a need for proto-type development and precision manufacturing facility to fulfill the requirements of mechanical components in establishing the manufacturing capability for the successful and self sustained nuclear programme. Centre for Design and Manufacture (CDM) hitherto known as CWS was established in 1964 to cater to the specific requirements of DAE and other associated units like ISRO, DRDO. Since then CDM has made multiple technological achievements and changes towards high quality products. The acquisition of up-to-date machines during High-Tech facility under VIII Plan project and Advance Precision Fabrication facility under IX Plan project has changed the capability of CDM towards CAD, CAM, CAE and CNC machining centres. Considering the rapid growth in the design and manufacturing, it was renamed as Centre for Design and Manufacture in March 2002, with the mission of quality output through group effort and team work
Cosmological parameters from pre-planck cosmic microwave background measurements
Calabrese, E.; Hlozek, R.; Battaglia, N.; Battistelli, E.; Bond, J.; Chluba, J.; Crichton, D.; Das, S.; Devlin, M.; Dunkley, J.; Dünner, R.; Farhang, M.; Gralla, M.; Hajian, A.; Halpern, M.; Hasselfield, M.; Hincks, A.; Irwin, K.; Kosowsky, A.; Louis, T.; Marriage, T.; Moodley, K.; Newburgh, L.; Niemack, M.; Nolta, M.; Page, L.; Sehgal, N.; Sherwin, B.; Sievers, J.; Sifon, Andalaft C.J.; Spergel, D.; Staggs, S.; Switzer, E.; Wollack, E.
2013-01-01
Recent data from the WMAP, ACT and SPT experiments provide precise measurements of the cosmic microwave background temperature power spectrum over a wide range of angular scales. The combination of these observations is well fit by the standard, spatially flat {$Lambda$}CDM cosmological model,
Tkachev, Igor
2017-01-01
This lecture course covers cosmology from the particle physicist perspective. Therefore, the emphasis will be on the evidence for the new physics in cosmological and astrophysical data together with minimal theoretical frameworks needed to understand and appreciate the evidence. I review the case for non-baryonic dark matter and describe popular models which incorporate it. In parallel, the story of dark energy will be developed, which includes accelerated expansion of the Universe today, the Universe origin in the Big Bang, and support for the Inflationary theory in CMBR data.
Jones, Bernard J. T.
2017-04-01
Preface; Notation and conventions; Part I. 100 Years of Cosmology: 1. Emerging cosmology; 2. The cosmic expansion; 3. The cosmic microwave background; 4. Recent cosmology; Part II. Newtonian Cosmology: 5. Newtonian cosmology; 6. Dark energy cosmological models; 7. The early universe; 8. The inhomogeneous universe; 9. The inflationary universe; Part III. Relativistic Cosmology: 10. Minkowski space; 11. The energy momentum tensor; 12. General relativity; 13. Space-time geometry and calculus; 14. The Einstein field equations; 15. Solutions of the Einstein equations; 16. The Robertson-Walker solution; 17. Congruences, curvature and Raychaudhuri; 18. Observing and measuring the universe; Part IV. The Physics of Matter and Radiation: 19. Physics of the CMB radiation; 20. Recombination of the primeval plasma; 21. CMB polarisation; 22. CMB anisotropy; Part V. Precision Tools for Precision Cosmology: 23. Likelihood; 24. Frequentist hypothesis testing; 25. Statistical inference: Bayesian; 26. CMB data processing; 27. Parametrising the universe; 28. Precision cosmology; 29. Epilogue; Appendix A. SI, CGS and Planck units; Appendix B. Magnitudes and distances; Appendix C. Representing vectors and tensors; Appendix D. The electromagnetic field; Appendix E. Statistical distributions; Appendix F. Functions on a sphere; Appendix G. Acknowledgements; References; Index.
Cosmological reconstruction of realistic modified F(R) gravities
International Nuclear Information System (INIS)
Nojiri, Shin'ichi; Odintsov, Sergei D.; Saez-Gomez, Diego
2009-01-01
The cosmological reconstruction scheme for modified F(R) gravity is developed in terms of e-folding (or, redshift). It is demonstrated how any FRW cosmology may emerge from specific F(R) theory. The specific examples of well-known cosmological evolution are reconstructed, including ΛCDM cosmology, deceleration with transition to phantom superacceleration era which may develop singularity or be transient. The application of this scheme to viable F(R) gravities unifying inflation with dark energy era is proposed. The additional reconstruction of such models leads to non-leading gravitational correction mainly relevant at the early/late universe and helping to pass the cosmological bounds (if necessary). It is also shown how cosmological reconstruction scheme may be generalized in the presence of scalar field.
International Nuclear Information System (INIS)
Elizalde, E.; Makarenko, A.N.; Obukhov, V.V.; Osetrin, K.E.; Filippov, A.E.
2007-01-01
Six-dimensional Einstein-Gauss-Bonnet gravity (with a linear Gauss-Bonnet term) is investigated. This theory is inspired by basic features of results coming from string and M-theory. Dynamical compactification is carried out and it is seen that a four-dimensional accelerating FRW universe is recovered, when the two-dimensional internal space radius shrinks. A non-perturbative structure of the corresponding theory is identified which has either three or one stable fixed points, depending on the Gauss-Bonnet coupling being positive or negative. A much richer structure than in the case of the perturbative regime of the dynamical compactification recently studied by Andrew, Bolen, and Middleton is exhibited
Conformal coupling associated with the Noether symmetry and its connection with the ΛCDM dynamics
International Nuclear Information System (INIS)
De Souza, Rudinei C; Kremer, Gilberto M
2013-01-01
The aim of this work is to investigate a non-minimally coupled scalar field model through the Noether symmetry approach, with the radiation, matter and cosmological constant eras being analyzed. The Noether symmetry condition allows a conformal coupling and by means of a change of coordinates in the configuration space the field equations can be reduced to a single equation, which is of the form of the Friedmann equation for the ΛCDM model. In this way, it is formally shown that the dynamical system can furnish solutions with the same form as those of the ΛCDM model, although the theory here considered is physically different from the former. The conserved quantity associated with the Noether symmetry can be related to the kinetic term of the scalar field and could constrain the possible deviations of the model from the ΛCDM picture. Observational constraints on the variation of the gravitational constant can be imposed on the model through the initial condition of the scalar field. (paper)
Sanders, RH; Papantonopoulos, E
2005-01-01
I discuss the classical cosmological tests, i.e., angular size-redshift, flux-redshift, and galaxy number counts, in the light of the cosmology prescribed by the interpretation of the CMB anisotropies. The discussion is somewhat of a primer for physicists, with emphasis upon the possible systematic
La abundancia de galaxias y halos de materia oscura en el universo CDM
Abadi, M. G.; Benítez-Llambay, A.; Ferrero, I.
A long-standing puzzle of CDM cosmological model concerns to the different shape of the galaxy stellar mass function and the halo mass function on dwarf galaxy scales. Dwarf galaxies are much less numerous than halos massive enough to host them; suggesting a complex non-linear relation between the mass of a galaxy and the mass of its surrounding halo. Usually; this is reconciled by appealing to baryonic processes that can reduce the efficiency of galaxy formation in low-mass halos. Recent work applying the abundance matching technique require that virtually no dwarf galaxies form in halos with virial mass below . We use rotation curves of dwarf galaxies compiled from the literature to explore whether their total enclosed mass is consistent with these constraints. Almost one-half of the dwarfs in our sample are at odds with this restriction; they are in halos with masses substantially below . Using a cosmological simulation of the formation of the Local Group of galaxies we found that ram-pressure stripping against the cosmic web removes baryons from low-mass halos without appealing to feedback or reionization. This mechanism may help to explain the scarcity of dwarf galaxies compared with the numerous low-mass halos expected in CDM and the large diversity of star formation histories and morphologies characteristic of faint galaxies. FULL TEXT IN SPANISH
Searching for sterile neutrinos in dynamical dark energy cosmologies
Feng, Lu; Zhang, Jing-Fei; Zhang, Xin
2018-05-01
We investigate how the dark energy properties change the cosmological limits on sterile neutrino parameters by using recent cosmological observations. We consider the simplest dynamical dark energy models, the wCDM model and the holographic dark energy (HDE) model, to make an analysis. The cosmological observations used in this work include the Planck 2015 CMB temperature and polarization data, the baryon acoustic oscillation data, the type Ia supernova data, the Hubble constant direct measurement data, and the Planck CMB lensing data. We find that, m v,terile ff energy properties could significantly influence the constraint limits of sterile neutrino parameters.
Do current cosmological observations rule out all covariant Galileons?
Peirone, Simone; Frusciante, Noemi; Hu, Bin; Raveri, Marco; Silvestri, Alessandra
2018-03-01
We revisit the cosmology of covariant Galileon gravity in view of the most recent cosmological data sets, including weak lensing. As a higher derivative theory, covariant Galileon models do not have a Λ CDM limit and predict a very different structure formation pattern compared with the standard Λ CDM scenario. Previous cosmological analyses suggest that this model is marginally disfavored, yet cannot be completely ruled out. In this work we use a more recent and extended combination of data, and we allow for more freedom in the cosmology, by including a massive neutrino sector with three different mass hierarchies. We use the Planck measurements of cosmic microwave background temperature and polarization; baryonic acoustic oscillations measurements by BOSS DR12; local measurements of H0; the joint light-curve analysis supernovae sample; and, for the first time, weak gravitational lensing from the KiDS Collaboration. We find, that in order to provide a reasonable fit, a nonzero neutrino mass is indeed necessary, but we do not report any sizable difference among the three neutrino hierarchies. Finally, the comparison of the Bayesian evidence to the Λ CDM one shows that in all the cases considered, covariant Galileon models are statistically ruled out by cosmological data.
Energy Technology Data Exchange (ETDEWEB)
2007-12-15
More than thirty months after the entry into force of the Kyoto Protocol, CDM transactions continue to gain momentum. By November 2007, 2,647 CDM projects are in the CDM pipeline. Of these, 827 are registered projects, and a further 154 are inthe registration process. The CDM Executive Board (CDM EB) has issued more than 82 million Certified Emissions Reductions (CER). In terms of number of projects by type of technology, renewables CDM projects are the leading type with 62% of the pipeline. However, N{sub 2}O, HFC and PFC projects have the biggest share (34%) of CERs expected to be generated by end of first commitment period. At the same time, more and more renewables and other non-industrial gases projects are going into the pipeline increasing their share of emissions reductions to be achieved. Geographically, the distribution of CDM projects has so far not been very equitable. A limited number of countries including China, India, Brazil and Mexico have captured the largest share of the global CDM project portfolio. Specific regions in the developing world, namely Sub-Saharan Africa, have been largely bypassed by the CDM market and are struggling to attract a decent number of CDM projects. In fact, of the total 2,647 projects, only 33 projects are in Sub-Saharan Africa where 21 of these are actually in South Africa, making the distribution even more skewed. (au)
The importance of local measurements for cosmology
Verde, Licia; Jimenez, Raul
2013-01-01
We explore how local, cosmology-independent measurements of the Hubble constant and the age of the Universe help to provide a powerful consistency check of the currently favored cosmological model (flat LambdaCDM) and model-independent constraints on cosmology. We use cosmic microwave background (CMB) data to define the model-dependent cosmological parameters, and add local measurements to assess consistency and determine whether extensions to the model are justified. At current precision, there is no significant tension between the locally measured Hubble constant and age of the Universe (with errors of 3% and 5% respectively) and the corresponding parameters derived from the CMB. However, if errors on the local measurements could be decreased by a factor of two, one could decisively conclude if there is tension or not. We also compare the local and CMB data assuming simple extensions of the flat, $\\Lambda$CDM model (including curvature, dark energy with a constant equation of state parameter not equal to -1...
Potential of CDM in renewable projects in Malaysia
International Nuclear Information System (INIS)
Kannan, K.S.
2006-01-01
The Clean Development Mechanism (CDM) is a market-based tool introduced under the Kyoto Protocol to assist developing countries achieve their sustainable development objectives and at the same time provide opportunities for developed countries to meet their greenhouse gas targets cost-effectively. Projects based on renewable sources are eligible under the CDM. Such projects are also in line with the development of the fifth fuel option in Malaysia. The paper assesses the potential of CDM in renewable energy projects in particular the grid-connected biomass power projects under the Small Renewable Energy Power (SREP) Programme. The criteria (both national and international) that have to be met for the renewable energy projects to obtain approval as a CDM projects is outlined. The additional CDM activities are elaborated. The methodology for the determination of reduction in carbon dioxide emissions is provided. The paper further investigates the impact of CDM in the promotion of renewable energy projects in Malaysia
Determination of the cosmological parameters and the nature of dark energy
International Nuclear Information System (INIS)
Linden, S.
2010-04-01
The measured properties of the dark energy component being consistent with a Cosmological Constant, Λ, this cosmological standard model is referred to as the Λ-Cold-Dark-Matter (ΛCDM) model. Despite its overall success, this model suffers from various problems. The existence of a Cosmological Constant raises fundamental questions. Attempts to describe it as the energy contribution from the vacuum as following from Quantum Field Theory failed quantitatively. In consequence, a large number of alternative models have been developed to describe the dark energy component: modified gravity, additional dimensions, Quintessence models. Also, astrophysical effects have been considered to mimic an accelerated expansion. The basics of the ΛCDM model and the various attempts of explaining dark energy are outlined in this thesis. Another major problem of the model comes from the dependencies of the fit results on a number of a priori assumptions and parameterization effects. Today, combined analyses of the various cosmological probes are performed to extract the parameters of the model. Due to a wrong model assumption or a bad parameterization of the real physics, one might end up measuring with high precision something which is not there. We show, that indeed due to the high precision of modern cosmological measurements, purely kinematic approaches to distance measurements no longer yield valid fit results except for accidental special cases, and that a fit of the exact (integral) redshift-distance relation is necessary. The main results of this work concern the use of the CPL parameterization of dark energy when coping with the dynamics of tracker solutions of Quintessence models, and the risk of introducing biases on the parameters due to the possibly prohibited extrapolation to arbitrary high redshifts of the SN type Ia magnitude calibration relation, which is obtained in the low-redshift regime. Whereas the risks of applying CPL shows up to be small for a wide range of
DGP cosmological model with generalized Ricci dark energy
Energy Technology Data Exchange (ETDEWEB)
Aguilera, Yeremy [Universidad de Santiago, Departamento de Matematicas y Ciencia de la Computacion, Santiago (Chile); Avelino, Arturo [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Cruz, Norman [Universidad de Santiago, Departamento de Fisica, Facultad de Ciencia, Santiago (Chile); Lepe, Samuel [Pontificia Universidad Catolica de Valparaiso, Facultad de Ciencias, Instituto de Fisica, Valparaiso (Chile); Pena, Francisco [Universidad de La Frontera, Departamento de Ciencias Fisicas, Facultad de Ingenieria y Ciencias, Temuco (Chile)
2014-11-15
The brane-world model proposed by Dvali, Gabadadze and Porrati (DGP) leads to an accelerated universe without cosmological constant or other form of dark energy for the positive branch (element of = +1). For the negative branch (element of = -1) we have investigated the behavior of a model with an holographic Ricci-like dark energy and dark matter, where the IR cutoff takes the form αH{sup 2} + βH, H being the Hubble parameter and α, β positive constants of the model. We perform an analytical study of the model in the late-time dark energy dominated epoch, where we obtain a solution for r{sub c}H(z), where r{sub c} is the leakage scale of gravity into the bulk, and conditions for the negative branch on the holographic parameters α and β, in order to hold the conditions of weak energy and accelerated universe. On the other hand, we compare the model versus the late-time cosmological data using the latest type Ia supernova sample of the Joint Light-curve Analysis (JLA), in order to constrain the holographic parameters in the negative branch, as well as r{sub c}H{sub 0} in the positive branch, where H{sub 0} is the Hubble constant. We find that the model has a good fit to the data and that the most likely values for (r{sub c}H{sub 0}, α, β) lie in the permitted region found from an analytical solution in a dark energy dominated universe. We give a justification to use a holographic cutoff in 4D for the dark energy in the 5-dimensional DGP model. Finally, using the Bayesian Information Criterion we find that this model is disfavored compared with the flat ΛCDM model. (orig.)
Analysis of CDM projects’ potential benefits
Directory of Open Access Journals (Sweden)
José Affonso dos Reis Junior
2015-11-01
Full Text Available Objective – The main goal of this study is to identify and assess, within sustainability reports, information concerning potential carbon credits obtained through projects carried out under Clean Development Mechanism (CDM assumptions, as well as to assess CDM project experts’ perceptions of obstacles to entering carbon credit markets. Design/methodology/approach – exploratory, descriptive, bibliographical and documental research, and interviews. Theoretical basis - Research was based on the concepts of sustainability, especially as to environmental responsibility (CSR; cost-benefit analysis was also considered, since selling carbon credits can be a way of mitigating the trade off between immediate shareholder satisfaction and investment in CSR. Findings – The perceptions of representatives from carbon credit projects’ certifying companies was examined by means of a series of interviews – concluding that savings in costs, business marketing and certifications are even greater motivators than carbon credits themselves. We estimated that, through energy efficiency, the projects discussed in 2011 sustainability reports would be capable of saving approximately 538 million reais in costs. In addition, 40 million reais, considering the rate of the euro and of securities on December 31, 2014, would be gained through the sale of carbon credits. Practical implications – Thus, this research helps to demonstrate the significant potential for further financial gains that companies may obtain through energy efficiency and habitat restructuring, whether by taking advantage of CO2 reduction brought about by such projects, or by developing new projects that continue to benefit economy, society and the environment.
International Nuclear Information System (INIS)
Sahni, Varun; Sen, Anjan A.
2017-01-01
It is well known that a canonical scalar field is able to describe either dark matter or dark energy but not both. We demonstrate that a non-canonical scalar field can describe both dark matter and dark energy within a unified setting. We consider the simplest extension of the canonical Lagrangian L ∝ X"α - V(φ) where α ≥ 1 and V is a sufficiently flat potential. In this case the kinetic term in the Lagrangian behaves just like a perfect fluid, whereas the potential term mimicks dark energy. For very large values, α >> 1, the equation of state of the kinetic term drops to zero and the universe expands as if filled with a mixture of dark matter and dark energy. The velocity of sound in this model and the associated gravitational clustering are sensitive to the value of α. For very large values of α the clustering properties of our model resemble those of cold dark matter (CDM). But for smaller values of α, gravitational clustering on small scales is suppressed, and our model has properties resembling those of warm dark matter (WDM). Therefore our non-canonical model has an interesting new property: its expansion history resembles Λ CDM, while its clustering properties are akin to those of either cold or warm dark matter. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Sahni, Varun [Inter-University Centre for Astronomy and Astrophysics, Pune (India); Sen, Anjan A. [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India)
2017-04-15
It is well known that a canonical scalar field is able to describe either dark matter or dark energy but not both. We demonstrate that a non-canonical scalar field can describe both dark matter and dark energy within a unified setting. We consider the simplest extension of the canonical Lagrangian L ∝ X{sup α} - V(φ) where α ≥ 1 and V is a sufficiently flat potential. In this case the kinetic term in the Lagrangian behaves just like a perfect fluid, whereas the potential term mimicks dark energy. For very large values, α >> 1, the equation of state of the kinetic term drops to zero and the universe expands as if filled with a mixture of dark matter and dark energy. The velocity of sound in this model and the associated gravitational clustering are sensitive to the value of α. For very large values of α the clustering properties of our model resemble those of cold dark matter (CDM). But for smaller values of α, gravitational clustering on small scales is suppressed, and our model has properties resembling those of warm dark matter (WDM). Therefore our non-canonical model has an interesting new property: its expansion history resembles Λ CDM, while its clustering properties are akin to those of either cold or warm dark matter. (orig.)
International Nuclear Information System (INIS)
Wang Bo
2010-01-01
China has undertaken the greatest number of projects and reported the largest emission reductions on the global clean development mechanism (CDM) market. As technology transfer (TT) was designed to play a key role for Annex II countries in achieving greenhouse gas emission reductions, this study examines various factors that have affected CDM and TT in China. The proportion of total income derived from the certified emissions reductions (CER) plays a key role in the project owners' decision to adopt foreign technology. Incompatibility of CDM procedures with Chinese domestic procedures, technology diffusion (TD) effects, Chinese government policy and the role of carbon traders and CDM project consultants all contribute to the different degrees and forms of TT. International carbon traders and CDM consultants could play a larger role in TT in China's CDM projects as investors and brokers in the future.
Energy Technology Data Exchange (ETDEWEB)
NONE
2012-11-01
The Swedish Energy Agency is responsible for the Swedish government program for the Clean Development Mechanism (CDM) and Joint Implementation (JI). CDM and JI is the Kyoto Protocol's two project-based flexible mechanisms. This program focuses on participation in individual CDM- and JI-projects and on participation in multilateral CDM- and JI- funds. In the report the Swedish Energy Agency, on behalf of the Government, presents a proposal for developed reporting for the CDM- and JI-program. Furthermore, issues related to how CDM and JI can assist in meeting the Swedish climate objective by 2020 are discussed. Also, the role for potential new flexible mechanisms under UN Climate Convention is mentioned.
Cosmology in Poincaré gauge gravity with a pseudoscalar torsion
Energy Technology Data Exchange (ETDEWEB)
Lu, Jianbo; Chee, Guoying [Department of Physics, Liaoning Normal University,Dalian 116029 (China)
2016-05-04
A cosmology of Poincare{sup ´} gauge theory is developed, where several properties of universe corresponding to the cosmological equations with the pseudoscalar torsion function are investigated. The cosmological constant is found to be the intrinsic torsion and curvature of the vacuum universe and is derived from the theory naturally rather than added artificially, i.e. the dark energy originates from geometry and includes the cosmological constant but differs from it. The cosmological constant puzzle, the coincidence and fine tuning problem are relieved naturally at the same time. By solving the cosmological equations, the analytic cosmological solution is obtained and can be compared with the ΛCDM model. In addition, the expressions of density parameters of the matter and the geometric dark energy are derived, and it is shown that the evolution of state equations for the geometric dark energy agrees with the current observational data. At last, the full equations of linear cosmological perturbations and the solutions are obtained.
International Nuclear Information System (INIS)
Berstein, J.
1984-01-01
These lectures offer a self-contained review of the role of neutrinos in cosmology. The first part deals with the question 'What is a neutrino.' and describes in a historical context the theoretical ideas and experimental discoveries related to the different types of neutrinos and their properties. The basic differences between the Dirac neutrino and the Majorana neutrino are pointed out and the evidence for different neutrino 'flavours', neutrino mass, and neutrino oscillations is discussed. The second part summarizes current views on cosmology, particularly as they are affected by recent theoretical and experimental advances in high-energy particle physics. Finally, the close relationship between neutrino physics and cosmology is brought out in more detail, to show how cosmological constraints can limit the various theoretical possibilities for neutrinos and, more particularly, how increasing knowledge of neutrino properties can contribute to our understanding of the origin, history, and future of the Universe. The level is that of the beginning graduate student. (orig.)
International Nuclear Information System (INIS)
Khalatnikov, I.M.; Belinskij, V.A.
1984-01-01
Application of the qualitative theory of dynamic systems to analysis of homogeneous cosmological models is described. Together with the well-known cases, requiring ideal liquid, the properties of cosmological evolution of matter with dissipative processes due to viscosity are considered. New cosmological effects occur, when viscosity terms being one and the same order with the rest terms in the equations of gravitation or even exceeding them. In these cases the description of the dissipative process by means of only two viscosity coefficients (volume and shift) may become inapplicable because all the rest decomposition terms of dissipative addition to the energy-momentum in velocity gradient can be large application of equations with hydrodynamic viscosty should be considered as a model of dissipative effects in cosmology
Lesgourgues, Julien; Miele, Gennaro; Pastor, Sergio
2013-01-01
The role that neutrinos have played in the evolution of the Universe is the focus of one of the most fascinating research areas that has stemmed from the interplay between cosmology, astrophysics and particle physics. In this self-contained book, the authors bring together all aspects of the role of neutrinos in cosmology, spanning from leptogenesis to primordial nucleosynthesis, their role in CMB and structure formation, to the problem of their direct detection. The book starts by guiding the reader through aspects of fundamental neutrino physics, such as the standard cosmological model and the statistical mechanics in the expanding Universe, before discussing the history of neutrinos in chronological order from the very early stages until today. This timely book will interest graduate students and researchers in astrophysics, cosmology and particle physics, who work with either a theoretical or experimental focus.
International Nuclear Information System (INIS)
Zeldovich, Y.B.
1983-01-01
This paper fives a general review of modern cosmology. The following subjects are discussed: hot big bang and periodization of the evolution; Hubble expansion; the structure of the universe (pancake theory); baryon asymmetry; inflatory universe. (Auth.)
The Hubble Constant to 1%: Physics beyond LambdaCDM
Riess, Adam
2017-08-01
By steadily advancing the precision and accuracy of the Hubble constant, we now see 3.4-sigma evidence for a deviation from the standard LambdaCDM model and thus the exciting chance of discovering new fundamental physics such as exotic dark energy, a new relativistic particle, dark matter interactions, or a small curvature, to name a few possibilities. We propose a coordinated program to accomplish three goals with one set of observations: (1) improve the precision of the best route to H_0 with HST observations of Cepheids in the hosts of 11 SNe Ia, lowering the uncertainty to 1.3% to reach the discovery threshold of 5-sigma and begin resolving the underlying source of the deviation; (2) continue testing the quality of Cepheid distances, so far the most accurate and reliable indicators in the near Universe, using the tip of the red giant branch (TRGB); and (3) use oxygen-rich Miras to confirm the present tension with the CMB and establish a future route available to JWST. We can achieve all three goals with one dataset and take the penultimate step to reach 1% precision in H_0 after Gaia. With its long-pass filter and NIR capability, we can collect these data with WFC3 many times faster than previously possible while overcoming the extinction and metallicity effects that challenged the first generation of H_0 measurements. Our results will complement the leverage available at high redshift from other cosmological tools such as BAO, the CMB, and SNe Ia, and will provide a 40% improvement on the WFIRST measurements of dark energy. Reaching this precision will be a fitting legacy for the telescope charged to resolve decades of uncertainty regarding the Hubble constant.
Energy Technology Data Exchange (ETDEWEB)
Zhang Yuanzhong
2002-06-21
This book is one of a series in the areas of high-energy physics, cosmology and gravitation published by the Institute of Physics. It includes courses given at a doctoral school on 'Relativistic Cosmology: Theory and Observation' held in Spring 2000 at the Centre for Scientific Culture 'Alessandro Volta', Italy, sponsored by SIGRAV-Societa Italiana di Relativita e Gravitazione (Italian Society of Relativity and Gravitation) and the University of Insubria. This book collects 15 review reports given by a number of outstanding scientists. They touch upon the main aspects of modern cosmology from observational matters to theoretical models, such as cosmological models, the early universe, dark matter and dark energy, modern observational cosmology, cosmic microwave background, gravitational lensing, and numerical simulations in cosmology. In particular, the introduction to the basics of cosmology includes the basic equations, covariant and tetrad descriptions, Friedmann models, observation and horizons, etc. The chapters on the early universe involve inflationary theories, particle physics in the early universe, and the creation of matter in the universe. The chapters on dark matter (DM) deal with experimental evidence of DM, neutrino oscillations, DM candidates in supersymmetry models and supergravity, structure formation in the universe, dark-matter search with innovative techniques, and dark energy (cosmological constant), etc. The chapters about structure in the universe consist of the basis for structure formation, quantifying large-scale structure, cosmic background fluctuation, galaxy space distribution, and the clustering of galaxies. In the field of modern observational cosmology, galaxy surveys and cluster surveys are given. The chapter on gravitational lensing describes the lens basics and models, galactic microlensing and galaxy clusters as lenses. The last chapter, 'Numerical simulations in cosmology', deals with spatial and
International Nuclear Information System (INIS)
Zeldovich, Ya.
1984-01-01
The knowledge is summed up of contemporary cosmology on the universe and its development resulting from a great number of highly sensitive observations and the application of contemporary physical theories to the entire universe. The questions are assessed of mass density in the universe, the structure and origin of the universe, its baryon asymmetry and the quantum explanation of the origin of the universe. Physical problems are presented which should be resolved for the future development of cosmology. (Ha)
CERN. Geneva
2007-01-01
The understanding of the Universe at the largest and smallest scales traditionally has been the subject of cosmology and particle physics, respectively. Studying the evolution of the Universe connects today's large scales with the tiny scales in the very early Universe and provides the link between the physics of particles and of the cosmos. This series of five lectures aims at a modern and critical presentation of the basic ideas, methods, models and observations in today's particle cosmology.
Universal subhalo accretion in cold and warm dark matter cosmologies
Kubik, Bogna; Libeskind, Noam I.; Knebe, Alexander; Courtois, Hélène; Yepes, Gustavo; Gottlöber, Stefan; Hoffman, Yehuda
2017-12-01
The influence of the large-scale structure on host haloes may be studied by examining the angular infall pattern of subhaloes. In particular, since warm dark matter (WDM) and cold dark matter (CDM) cosmologies predict different abundances and internal properties for haloes at the low-mass end of the mass function, it is interesting to examine if there are differences in how these low-mass haloes are accreted. The accretion events are defined as the moment a halo becomes a substructure, namely when it crosses its host's virial radius. We quantify the cosmic web at each point by the shear tensor and examine where, with respect to its eigenvectors, such accretion events occur in ΛCDM and ΛWDM (1 keV sterile neutrino) cosmological models. We find that the CDM and WDM subhaloes are preferentially accreted along the principal axis of the shear tensor corresponding to the direction of weakest collapse. The beaming strength is modulated by the host and subhalo masses and by the redshift at which the accretion event occurs. Although strongest for the most massive hosts and subhaloes at high redshift, the preferential infall is found to be always aligned with the axis of weakest collapse, thus we say that it has universal nature. We compare the strength of beaming in the ΛWDM cosmology with the one found in the ΛCDM scenario. While the main findings remain the same, the accretion in the ΛWDM model for the most massive host haloes appears more beamed than in ΛCDM cosmology across all the redshifts.
A viable CDM model for solar water heaters; CDM-Clean Development Mechanism
Energy Technology Data Exchange (ETDEWEB)
2008-09-15
It is a well known fact that solar water Heaters (SWH) replace fossil fuels and they do not represent business as usual scenario. Therefore use of this appliance can qualify to be considered as Clean Development Mechanism (CDM) project. However a single solar water heater is a very small unit to be able to generate sufficient Certified Emission Reductions (CERs) to pursue it as a CDM project. Even if the project is considered at the level of local venders or at the level of a company engaged in manufacturing SWH, the CERs still remain very small. The study examines the size of the project from the perspective of its viability as a CDM project and also explores other related issues such as additionality requirement, selection of methodology, baseline calculations, approach for stakeholders' comments, potential bundlers, monitoring and verification, and required policy interventions. Bank of Maharashtra (BOM), a commercial bank in India engaged in financing Solar Water Heaters (SWH), was considered as the base for the study. The CERs were calculated considering Electricity and LPG as the baseline. For the purpose of sensitivity analysis, various price bands for CERs (between US$ 15-25/CER) were considered. The analysis was carried out with bundling of SWH at BOM level, and at the Association of Banks (AOB) / Ministry level (in which case SWH financed by several banks are bundled). Recently approved Programme of Activities (PoA) approach was also considered in the analysis. The analysis clearly indicated that: 1) The CDM project with bundling at an individual bank level with about 8600 installations, though cash surplus, would generate the cash just to meet its own sustainability. But it is a very small project. 2) Bundling of installations by various banks, through an entity such as Association of Banks, would be a viable and sustainable CDM project due to benefits arising out of scale of economy. 3) The profitability of the CDM project would improve further if
Cosmic acceleration in a dust only universe via energy-momentum powered gravity
Akarsu, Özgür; Katırcı, Nihan; Kumar, Suresh
2018-01-01
We propose a modified theory of gravitation constructed by the addition of the term f (Tμ νTμ ν) to the Einstein-Hilbert action, and elaborate a particular case f (Tμ νTμ ν)=α (Tμ νTμ ν)η, where α and η are real constants, dubbed energy-momentum powered gravity (EMPG). We search for viable cosmologies arising from EMPG, especially in the context of the late-time accelerated expansion of the Universe. We investigate the ranges of the EMPG parameters (α ,η ) on theoretical as well as observational grounds leading to the late-time acceleration of the Universe with pressureless matter only, while keeping the successes of standard general relativity at early times. We find that η =0 corresponds to the Λ CDM model, whereas η ≠0 leads to a w CDM -type model. However, the underlying physics of the EMPG model is entirely different in the sense that the energy in the EMPG Universe is sourced by pressureless matter only. Moreover, the energy of the pressureless matter is not conserved, namely, in general it does not dilute as ρ ∝a-3 with the expansion of the Universe. Finally, we constrain the parameters of an EMPG-based cosmology with a recent compilation of 28 Hubble parameter measurements, and find that this model describes an evolution of the Universe similar to that in the Λ CDM model. We briefly discuss that EMPG can be unified with Starobinsky gravity to describe the complete history of the Universe including the inflationary era.
CDM and JI in View of the Sustainability Debate
Schoot Uiterkamp, A.J.M.
2001-01-01
Clean Development Mechanism (CDM), Joint Implementation (JI) and emissions trading are the three flexible instruments incorporated in the Kyoto Protocol. This paper presents a critical assessment of the sustainability of energy-related technology innovation and transfer in the context of CDM and JI.
Employment impacts of CDM projects in China's power sector
International Nuclear Information System (INIS)
Wang, Can; Zhang, Weishi; Cai, Wenjia; Xie, Xi
2013-01-01
There are continuous debates around the question of whether CDM really contributes to sustainable development (SD) in host countries. Employment impact is an essential indicator of SD. Based on an input-out approach this research builds a quantitative assessment model to evaluate the employment impacts of CDM. Both direct and indirect jobs creation and job losses of CDM projects in the power sector registered by the end of 2011 are calculated by project types and power grids where the project is located. Results of this study show that, although the above mentioned CDM projects causes about 99,000 net direct job losses, they also create about 3.08 million indirect jobs, resulting in the gross employment of CDM to be about 2.98 million. Thereof, hydro projects induce both direct and indirect job losses, which comes to approximately 0.89 million. Solar projects have the most potential since they own the highest indirect jobs created by one GWh generation, about 104 jobs/GWh. - Highlights: • An input–output model was built for assessment of CDM projects' employment impact; • CDM projects create direct and indirect jobs while cause some losses in short. • Significant indirect job gains of CDM projects were found; • Solar projects cause 104 jobs/GWh in average, ranking as the highest contributor
Averaging Robertson-Walker cosmologies
International Nuclear Information System (INIS)
Brown, Iain A.; Robbers, Georg; Behrend, Juliane
2009-01-01
The cosmological backreaction arises when one directly averages the Einstein equations to recover an effective Robertson-Walker cosmology, rather than assuming a background a priori. While usually discussed in the context of dark energy, strictly speaking any cosmological model should be recovered from such a procedure. We apply the scalar spatial averaging formalism for the first time to linear Robertson-Walker universes containing matter, radiation and dark energy. The formalism employed is general and incorporates systems of multiple fluids with ease, allowing us to consider quantitatively the universe from deep radiation domination up to the present day in a natural, unified manner. Employing modified Boltzmann codes we evaluate numerically the discrepancies between the assumed and the averaged behaviour arising from the quadratic terms, finding the largest deviations for an Einstein-de Sitter universe, increasing rapidly with Hubble rate to a 0.01% effect for h = 0.701. For the ΛCDM concordance model, the backreaction is of the order of Ω eff 0 ≈ 4 × 10 −6 , with those for dark energy models being within a factor of two or three. The impacts at recombination are of the order of 10 −8 and those in deep radiation domination asymptote to a constant value. While the effective equations of state of the backreactions in Einstein-de Sitter, concordance and quintessence models are generally dust-like, a backreaction with an equation of state w eff < −1/3 can be found for strongly phantom models
CERN. Geneva
2001-01-01
The talk summarizes the principles of particle acceleration and addresses problems related to storage rings like LEP and LHC. Special emphasis will be given to orbit stability, long term stability of the particle motion, collective effects and synchrotron radiation.
Brane cosmology with curvature corrections
International Nuclear Information System (INIS)
Kofinas, Georgios; Maartens, Roy; Papantonopoulos, Eleftherios
2003-01-01
We study the cosmology of the Randall-Sundrum brane-world where the Einstein-Hilbert action is modified by curvature correction terms: a four-dimensional scalar curvature from induced gravity on the brane, and a five-dimensional Gauss-Bonnet curvature term. The combined effect of these curvature corrections to the action removes the infinite-density big bang singularity, although the curvature can still diverge for some parameter values. A radiation brane undergoes accelerated expansion near the minimal scale factor, for a range of parameters. This acceleration is driven by the geometric effects, without an inflation field or negative pressures. At late times, conventional cosmology is recovered. (author)
Modified geodetic brane cosmology
International Nuclear Information System (INIS)
Cordero, Rubén; Cruz, Miguel; Molgado, Alberto; Rojas, Efraín
2012-01-01
We explore the cosmological implications provided by the geodetic brane gravity action corrected by an extrinsic curvature brane term, describing a codimension-1 brane embedded in a 5D fixed Minkowski spacetime. In the geodetic brane gravity action, we accommodate the correction term through a linear term in the extrinsic curvature swept out by the brane. We study the resulting geodetic-type equation of motion. Within a Friedmann–Robertson–Walker metric, we obtain a generalized Friedmann equation describing the associated cosmological evolution. We observe that, when the radiation-like energy contribution from the extra dimension is vanishing, this effective model leads to a self-(non-self)-accelerated expansion of the brane-like universe in dependence on the nature of the concomitant parameter β associated with the correction, which resembles an analogous behaviour in the DGP brane cosmology. Several possibilities in the description for the cosmic evolution of this model are embodied and characterized by the involved density parameters related in turn to the cosmological constant, the geometry characterizing the model, the introduced β parameter as well as the dark-like energy and the matter content on the brane. (paper)
Bulk viscous cosmology with causal transport theory
International Nuclear Information System (INIS)
Piattella, Oliver F.; Fabris, Júlio C.; Zimdahl, Winfried
2011-01-01
We consider cosmological scenarios originating from a single imperfect fluid with bulk viscosity and apply Eckart's and both the full and the truncated Müller-Israel-Stewart's theories as descriptions of the non-equilibrium processes. Our principal objective is to investigate if the dynamical properties of Dark Matter and Dark Energy can be described by a single viscous fluid and how such description changes when a causal theory (Müller-Israel-Stewart's, both in its full and truncated forms) is taken into account instead of Eckart's non-causal one. To this purpose, we find numerical solutions for the gravitational potential and compare its behaviour with the corresponding ΛCDM case. Eckart's and the full causal theory seem to be disfavoured, whereas the truncated theory leads to results similar to those of the ΛCDM model for a bulk viscous speed in the interval 10 −11 || cb 2 ∼ −8
Update of axion CDM energy density
International Nuclear Information System (INIS)
Huh, Ji-Haeng
2008-01-01
We update cosmological bound on axion model. The contribution from the anharmonic effect and the newly introduced initial overshoot correction are considered. We present an explicit formula for the axion relic density in terms of the QCD scale Λ QCD , the current quark masses m q 's and the Peccei-Quinn scale F a , including firstly introduced 1.85 factor which is from the initial overshoot.
Carbon quota price and CDM potentials after Marrakesh
International Nuclear Information System (INIS)
Wenying Chen
2003-01-01
The Kyoto Protocol sets quantified GHG emission reduction commitments for Annex I Parties. But their emission reduction requirements related to BAU projections, one of the key factors to effect on future carbon market, are uncertain. Both the decisions made in Bonn and Marrakesh would have further consequences for how the future carbon market will take shape. This paper, with application of the carbon emission reduction trading model, evaluates future carbon quota price and Clean Development Mechanism (CDM) potentials under different BAU projections, and does sensitivity analysis on carry-over of AAUs, CERs and ERUs, implementation rate, transaction cost, holding of CERs in Non-Annex I Parties, etc. to assess the impacts of relevant decisions of COP6-bis and COP7 on the carbon market. Under different BAU projections, future carbon quota price and CDM potentials could vary widely. Carry over of AAUs, CERs, ERUs, and holding of CERs in Non-Annex I Parties could raise both quota price and total CDM potentials considerably. Implementation rate could have big impacts on both carbon quota price and CDM potentials, especially for the cases formerly with relatively high CDM potentials, and it could also change the regional distribution of CDM potentials. Transaction cost's effect on the carbon market would be comparatively low, but would become unignorable in the market whose quota price is low. It would lead to a downward trend in price while upward in CDM potentials when increasing the implementation rate or lowering transaction cost. Withdrawal of USA would dramatically shrink carbon price and credit amount, and large numbers of hot air and sink credits would further greatly crowd out the CDM projects; carry over of AAUs, CERs and ERUs, holding of CERs in Non-Annex I Parties, prompt start of CDM projects, etc., would, however, enhance the total CDM credits to ensure more investment and technology flow to developing countries to promote their sustainable development
Carbon quota price and CDM potentials after Marrakesh
International Nuclear Information System (INIS)
Chen Wenying
2003-01-01
The Kyoto Protocol sets quantified GHG emission reduction commitments for Annex I Parties. But their emission reduction requirements related to BAU projections, one of the key factors to effect on future carbon market, are uncertain. Both the decisions made in Bonn and Marrakesh would have further consequences for how the future carbon market will take shape. This paper, with application of the carbon emission reduction trading model, evaluates future carbon quota price and Clean Development Mechanism (CDM) potentials under different BAU projections, and does sensitivity analysis on carry-over of AAUs, CERs and ERUs, implementation rate, transaction cost, holding of CERs in Non-Annex I Parties, etc. to assess the impacts of relevant decisions of COP6-bis and COP7 on the carbon market. Under different BAU projections, future carbon quota price and CDM potentials could vary widely. Carry over of AAUs, CERs, ERUs, and holding of CERs in Non-Annex I Parties could raise both quota price and total CDM potentials considerably. Implementation rate could have big impacts on both carbon quota price and CDM potentials, especially for the cases formerly with relatively high CDM potentials, and it could also change the regional distribution of CDM potentials. Transaction cost's effect on the carbon market would be comparatively low, but would become unignorable in the market whose quota price is low. It would lead to a downward trend in price while upward in CDM potentials when increasing the implementation rate or lowering transaction cost. Withdrawal of USA would dramatically shrink carbon price and credit amount, and large numbers of hot air and sink credits would further greatly crowd out the CDM projects; carry over of AAUs, CERs and ERUs, holding of CERs in Non-Annex I Parties, prompt start of CDM projects, etc., would, however, enhance the total CDM credits to ensure more investment and technology flow to developing countries to promote their sustainable development
International Nuclear Information System (INIS)
Moresco, Michele; Cimatti, Andrea; Citro, Annalisa; Pozzetti, Lucia; Jimenez, Raul; Verde, Licia; Maraston, Claudia; Thomas, Daniel; Wilkinson, David; Tojeiro, Rita
2016-01-01
Deriving the expansion history of the Universe is a major goal of modern cosmology. To date, the most accurate measurements have been obtained with Type Ia Supernovae (SNe) and Baryon Acoustic Oscillations (BAO), providing evidence for the existence of a transition epoch at which the expansion rate changes from decelerated to accelerated. However, these results have been obtained within the framework of specific cosmological models that must be implicitly or explicitly assumed in the measurement. It is therefore crucial to obtain measurements of the accelerated expansion of the Universe independently of assumptions on cosmological models. Here we exploit the unprecedented statistics provided by the Baryon Oscillation Spectroscopic Survey (BOSS, [1-3]) Data Release 9 to provide new constraints on the Hubble parameter H ( z ) using the cosmic chronometers approach. We extract a sample of more than 130000 of the most massive and passively evolving galaxies, obtaining five new cosmology-independent H ( z ) measurements in the redshift range 0.3 < z < 0.5, with an accuracy of ∼11–16% incorporating both statistical and systematic errors. Once combined, these measurements yield a 6% accuracy constraint of H ( z = 0.4293) = 91.8 ± 5.3 km/s/Mpc. The new data are crucial to provide the first cosmology-independent determination of the transition redshift at high statistical significance, measuring z t = 0.4 ± 0.1, and to significantly disfavor the null hypothesis of no transition between decelerated and accelerated expansion at 99.9% confidence level. This analysis highlights the wide potential of the cosmic chronometers approach: it permits to derive constraints on the expansion history of the Universe with results competitive with standard probes, and most importantly, being the estimates independent of the cosmological model, it can constrain cosmologies beyond—and including—the ΛCDM model.
Energy Technology Data Exchange (ETDEWEB)
Moresco, Michele; Cimatti, Andrea; Citro, Annalisa [Dipartimento di Fisica e Astronomia, Università di Bologna, V.le Berti Pichat, 6/2, 40127, Bologna (Italy); Pozzetti, Lucia [INAF—Osservatorio Astronomico di Bologna, via Ranzani 1, 40127 Bologna (Italy); Jimenez, Raul; Verde, Licia [ICREA and ICC, University of Barcelona (IEEC-UB), Barcelona 08028 (Spain); Maraston, Claudia; Thomas, Daniel; Wilkinson, David [Institute of Cosmology and Gravitation, Dennis Sciama Building, University of Portsmouth, Burnaby Road, Portsmouth, PO1 3FX (United Kingdom); Tojeiro, Rita, E-mail: michele.moresco@unibo.it, E-mail: lucia.pozzetti@oabo.inaf.it, E-mail: a.cimatti@unibo.it, E-mail: rauljimenez@g.harvard.edu, E-mail: claudia.maraston@port.ac.uk, E-mail: liciaverde@icc.ub.edu, E-mail: daniel.thomas@port.ac.uk, E-mail: annalisa.citro@unibo.it, E-mail: rmftr@st-andrews.ac.uk, E-mail: david.wilkinson@port.ac.uk [School of Physics and Astronomy, University of St. Andrews, Saint Andrews, KY16 9SS (United Kingdom)
2016-05-01
Deriving the expansion history of the Universe is a major goal of modern cosmology. To date, the most accurate measurements have been obtained with Type Ia Supernovae (SNe) and Baryon Acoustic Oscillations (BAO), providing evidence for the existence of a transition epoch at which the expansion rate changes from decelerated to accelerated. However, these results have been obtained within the framework of specific cosmological models that must be implicitly or explicitly assumed in the measurement. It is therefore crucial to obtain measurements of the accelerated expansion of the Universe independently of assumptions on cosmological models. Here we exploit the unprecedented statistics provided by the Baryon Oscillation Spectroscopic Survey (BOSS, [1-3]) Data Release 9 to provide new constraints on the Hubble parameter H ( z ) using the cosmic chronometers approach. We extract a sample of more than 130000 of the most massive and passively evolving galaxies, obtaining five new cosmology-independent H ( z ) measurements in the redshift range 0.3 < z < 0.5, with an accuracy of ∼11–16% incorporating both statistical and systematic errors. Once combined, these measurements yield a 6% accuracy constraint of H ( z = 0.4293) = 91.8 ± 5.3 km/s/Mpc. The new data are crucial to provide the first cosmology-independent determination of the transition redshift at high statistical significance, measuring z {sub t} = 0.4 ± 0.1, and to significantly disfavor the null hypothesis of no transition between decelerated and accelerated expansion at 99.9% confidence level. This analysis highlights the wide potential of the cosmic chronometers approach: it permits to derive constraints on the expansion history of the Universe with results competitive with standard probes, and most importantly, being the estimates independent of the cosmological model, it can constrain cosmologies beyond—and including—the ΛCDM model.
Rajantie, Arttu
2018-03-06
The discovery of the Higgs boson in 2012 and other results from the Large Hadron Collider have confirmed the standard model of particle physics as the correct theory of elementary particles and their interactions up to energies of several TeV. Remarkably, the theory may even remain valid all the way to the Planck scale of quantum gravity, and therefore it provides a solid theoretical basis for describing the early Universe. Furthermore, the Higgs field itself has unique properties that may have allowed it to play a central role in the evolution of the Universe, from inflation to cosmological phase transitions and the origin of both baryonic and dark matter, and possibly to determine its ultimate fate through the electroweak vacuum instability. These connections between particle physics and cosmology have given rise to a new and growing field of Higgs cosmology, which promises to shed new light on some of the most puzzling questions about the Universe as new data from particle physics experiments and cosmological observations become available.This article is part of the Theo Murphy meeting issue 'Higgs cosmology'. © 2018 The Author(s).
International Nuclear Information System (INIS)
Wesson, P.S.
1979-01-01
The Cosmological Principle states: the universe looks the same to all observers regardless of where they are located. To most astronomers today the Cosmological Principle means the universe looks the same to all observers because density of the galaxies is the same in all places. A new Cosmological Principle is proposed. It is called the Dimensional Cosmological Principle. It uses the properties of matter in the universe: density (rho), pressure (p), and mass (m) within some region of space of length (l). The laws of physics require incorporation of constants for gravity (G) and the speed of light (C). After combining the six parameters into dimensionless numbers, the best choices are: 8πGl 2 rho/c 2 , 8πGl 2 rho/c 4 , and 2 Gm/c 2 l (the Schwarzchild factor). The Dimensional Cosmological Principal came about because old ideas conflicted with the rapidly-growing body of observational evidence indicating that galaxies in the universe have a clumpy rather than uniform distribution
Rajantie, Arttu
2018-01-01
The discovery of the Higgs boson in 2012 and other results from the Large Hadron Collider have confirmed the standard model of particle physics as the correct theory of elementary particles and their interactions up to energies of several TeV. Remarkably, the theory may even remain valid all the way to the Planck scale of quantum gravity, and therefore it provides a solid theoretical basis for describing the early Universe. Furthermore, the Higgs field itself has unique properties that may have allowed it to play a central role in the evolution of the Universe, from inflation to cosmological phase transitions and the origin of both baryonic and dark matter, and possibly to determine its ultimate fate through the electroweak vacuum instability. These connections between particle physics and cosmology have given rise to a new and growing field of Higgs cosmology, which promises to shed new light on some of the most puzzling questions about the Universe as new data from particle physics experiments and cosmological observations become available. This article is part of the Theo Murphy meeting issue `Higgs cosmology'.
International Nuclear Information System (INIS)
Parnphumeesup, Piya; Kerr, Sandy A.
2011-01-01
This research applies both quantitative and qualitative methods to investigate stakeholder preferences towards sustainable development (SD) priorities in Clean Development Mechanism (CDM) projects. The CDM's contribution to SD is explored in the context of a biomass (rice husk) case study conducted in Thailand. Quantitative analysis ranks increasing the usage of renewable energy as the highest priority, followed by employment and technology transfer. Air pollution (dust) is ranked as the most important problem. Preference weights expressed by experts and local resident are statistically different in the cases of: employment generation; emission reductions; dust; waste disposal; and noise. Qualitative results, suggest that rice husk CDM projects contribute significantly to SD in terms of employment generation, an increase in usage of renewable energy, and transfer of knowledge. However, rice husk biomass projects create a potential negative impact on air quality. In order to ensure the environmental sustainability of CDM projects, stakeholders suggest that Thailand should cancel an Environmental Impact Assessment (EIA) exemption for CDM projects with an installed capacity below 10 MW and apply it to all CDM projects. - Highlights: → Stakeholders rank increasing the usage of renewable energy as the highest priority. → Biomass (rice husk) CDM projects create a potential negative impact on air quality. → Rice husk CDM projects cannot give an extra income to farmers. → Preference weights expressed by experts and local residents are statistically different.
CDM. Information and guidebook - Developed for the UNEP project 'CD4CDM'[Clean development nedianism
Energy Technology Data Exchange (ETDEWEB)
Lee, M.K. (ed.)
2003-12-01
Since the Clean Development Mechanism (CDM) was defined at Conference of the Parties 3 in Kyoto 1997, it took the international community another 4 years to reach the Marrakesh Accords in which the modalities and procedures to implement the CDM was elaborated. Even if more detailed rules, procedures and modalities have to be further developed a general framework to implement the CDM and other Kyoto mechanisms are now in place. This guidebook is produced to support the UNEP project 'Capacity Development for the Clean Development Mechanism'. Focus is on the CDM project cycle, the Project Design Document (PDD), and related issues such as sustainable development goals, financing and market intelligence. The appendices present frequently asked questions and answers, a short overview of existing guidelines and a possible future list of eligible CDM projects categories. (BA)
Relativistic numerical cosmology with silent universes
Bolejko, Krzysztof
2018-01-01
Relativistic numerical cosmology is most often based either on the exact solutions of the Einstein equations, or perturbation theory, or weak-field limit, or the BSSN formalism. The silent universe provides an alternative approach to investigate relativistic evolution of cosmological systems. The silent universe is based on the solution of the Einstein equations in 1 + 3 comoving coordinates with additional constraints imposed. These constraints include: the gravitational field is sourced by dust and cosmological constant only, both rotation and magnetic part of the Weyl tensor vanish, and the shear is diagnosable. This paper describes the code simsilun (free software distributed under the terms of the reposi General Public License), which implements the equations of the silent universe. The paper also discusses applications of the silent universe and it uses the Millennium simulation to set up the initial conditions for the code simsilun. The simulation obtained this way consists of 16 777 216 worldlines, which are evolved from z = 80 to z = 0. Initially, the mean evolution (averaged over the whole domain) follows the evolution of the background ΛCDM model. However, once the evolution of cosmic structures becomes nonlinear, the spatial curvature evolves from ΩK =0 to ΩK ≈ 0.1 at the present day. The emergence of the spatial curvature is associated with ΩM and Ω_Λ being smaller by approximately 0.05 compared to the ΛCDM.
International Nuclear Information System (INIS)
Dickau, Jonathan J.
2009-01-01
The use of fractals and fractal-like forms to describe or model the universe has had a long and varied history, which begins long before the word fractal was actually coined. Since the introduction of mathematical rigor to the subject of fractals, by Mandelbrot and others, there have been numerous cosmological theories and analyses of astronomical observations which suggest that the universe exhibits fractality or is by nature fractal. In recent years, the term fractal cosmology has come into usage, as a description for those theories and methods of analysis whereby a fractal nature of the cosmos is shown.
How does pressure gravitate? Cosmological constant problem confronts observational cosmology
Narimani, Ali; Afshordi, Niayesh; Scott, Douglas
2014-08-01
An important and long-standing puzzle in the history of modern physics is the gross inconsistency between theoretical expectations and cosmological observations of the vacuum energy density, by at least 60 orders of magnitude, otherwise known as the cosmological constant problem. A characteristic feature of vacuum energy is that it has a pressure with the same amplitude, but opposite sign to its energy density, while all the precision tests of General Relativity are either in vacuum, or for media with negligible pressure. Therefore, one may wonder whether an anomalous coupling to pressure might be responsible for decoupling vacuum from gravity. We test this possibility in the context of the Gravitational Aether proposal, using current cosmological observations, which probe the gravity of relativistic pressure in the radiation era. Interestingly, we find that the best fit for anomalous pressure coupling is about half-way between General Relativity (GR), and Gravitational Aether (GA), if we include Planck together with WMAP and BICEP2 polarization cosmic microwave background (CMB) observations. Taken at face value, this data combination excludes both GR and GA at around the 3 σ level. However, including higher resolution CMB observations (``highL'') or baryonic acoustic oscillations (BAO) pushes the best fit closer to GR, excluding the Gravitational Aether solution to the cosmological constant problem at the 4- 5 σ level. This constraint effectively places a limit on the anomalous coupling to pressure in the parametrized post-Newtonian (PPN) expansion, ζ4 = 0.105 ± 0.049 (+highL CMB), or ζ4 = 0.066 ± 0.039 (+BAO). These represent the most precise measurement of this parameter to date, indicating a mild tension with GR (for ΛCDM including tensors, with 0ζ4=), and also among different data sets.
How does pressure gravitate? Cosmological constant problem confronts observational cosmology
International Nuclear Information System (INIS)
Narimani, Ali; Scott, Douglas; Afshordi, Niayesh
2014-01-01
An important and long-standing puzzle in the history of modern physics is the gross inconsistency between theoretical expectations and cosmological observations of the vacuum energy density, by at least 60 orders of magnitude, otherwise known as the cosmological constant problem. A characteristic feature of vacuum energy is that it has a pressure with the same amplitude, but opposite sign to its energy density, while all the precision tests of General Relativity are either in vacuum, or for media with negligible pressure. Therefore, one may wonder whether an anomalous coupling to pressure might be responsible for decoupling vacuum from gravity. We test this possibility in the context of the Gravitational Aether proposal, using current cosmological observations, which probe the gravity of relativistic pressure in the radiation era. Interestingly, we find that the best fit for anomalous pressure coupling is about half-way between General Relativity (GR), and Gravitational Aether (GA), if we include Planck together with WMAP and BICEP2 polarization cosmic microwave background (CMB) observations. Taken at face value, this data combination excludes both GR and GA at around the 3 σ level. However, including higher resolution CMB observations (''highL'') or baryonic acoustic oscillations (BAO) pushes the best fit closer to GR, excluding the Gravitational Aether solution to the cosmological constant problem at the 4- 5 σ level. This constraint effectively places a limit on the anomalous coupling to pressure in the parametrized post-Newtonian (PPN) expansion, ζ 4 = 0.105 ± 0.049 (+highL CMB), or ζ 4 = 0.066 ± 0.039 (+BAO). These represent the most precise measurement of this parameter to date, indicating a mild tension with GR (for ΛCDM including tensors, with 0ζ 4 =), and also among different data sets
CERN. Geneva
2017-01-01
Extensions of Einstein’s theory of General Relativity are under investigation as a potential explanation of the accelerating expansion rate of the universe. I’ll present a cosmologist’s overview of attempts to test these ideas in an efficient and unbiased manner. I’ll start by introducing the bestiary of alternative gravity theories that have been put forwards. This proliferation of models motivates us to develop model-independent, agnostic tools for comparing the theory space to cosmological data. I’ll introduce the effective field theory for cosmological perturbations, a framework designed to unify modified gravity theories in terms of a manageable set of parameters. Having outlined the formalism, I’ll talk about the current constraints on this framework, and the improvements expected from the next generation of large galaxy clustering, weak lensing and intensity mapping experiments.
Elementary particles and cosmology
International Nuclear Information System (INIS)
Audouze, J.; Paty, M.
2000-01-01
The universe is the most efficient laboratory of particle physics and the understanding of cosmological processes implies the knowledge of how elementary particles interact. This article recalls the mutual influences between on the one hand: astrophysics and cosmology and on the other hand: nuclear physics and particle physics. The big-bang theory relies on nuclear physics to explain the successive stages of nucleo-synthesis and the study of solar neutrinos has led to discover new aspects of this particle: it is likely that neutrinos undergo oscillations from one neutrino type to another. In some universe events such as the bursting of a super-nova, particles are released with a kinetic energy that would be impossible to reach on earth with a particle accelerator. These events are become common points of interest between astrophysicists and particle physicists and have promoted a deeper cooperation between astrophysics and elementary particle physics. (A.C.)
Beyond the Standard Model of Cosmology
International Nuclear Information System (INIS)
Ellis, John; Nanopoulos, D. V.
2004-01-01
Recent cosmological observations of unprecented accuracy, by WMAP in particular, have established a 'Standard Model' of cosmology, just as LEP established the Standard Model of particle physics. Both Standard Models raise open questions whose answers are likely to be linked. The most fundamental problems in both particle physics and cosmology will be resolved only within a framework for Quantum Gravity, for which the only game in town is string theory. We discuss novel ways to model cosmological inflation and late acceleration in a non-critical string approach, and discuss possible astrophysical tests
Quantum Gravity and Cosmology: an intimate interplay
Sakellariadou, Mairi
2017-08-01
I will briefly discuss three cosmological models built upon three distinct quantum gravity proposals. I will first highlight the cosmological rôle of a vector field in the framework of a string/brane cosmological model. I will then present the resolution of the big bang singularity and the occurrence of an early era of accelerated expansion of a geometric origin, in the framework of group field theory condensate cosmology. I will then summarise results from an extended gravitational model based on non-commutative spectral geometry, a model that offers a purely geometric explanation for the standard model of particle physics.
Kaluza-Klein cosmological model in f(R, T) gravity with Λ(T)
Sahoo, P. K.; Mishra, B.; Tripathy, S. K.
2016-04-01
A class of Kaluza-Klein cosmological models in $f(R,T)$ theory of gravity have been investigated. In the work, we have considered the functional $f(R,T)$ to be in the form $f(R,T)=f(R)+f(T)$ with $f(R)=\\lambda R$ and $f(T)=\\lambda T$. Such a choice of the functional $f(R,T)$ leads to an evolving effective cosmological constant $\\Lambda$ which depends on the stress energy tensor. The source of the matter field is taken to be a perfect cosmic fluid. The exact solutions of the field equations are obtained by considering a constant deceleration parameter which leads two different aspects of the volumetric expansion namely a power law and an exponential volumetric expansion. Keeping an eye on the accelerating nature of the universe in the present epoch, the dynamics and physical behaviour of the models have been discussed. From statefinder diagnostic pair we found that the model with exponential volumetric expansion behaves more like a $\\Lambda$CDM model.
Dutta, Jibitesh; Khyllep, Wompherdeiki; Tamanini, Nicola
2018-01-01
We consider scalar field models of dark energy interacting with dark matter through a coupling proportional to the contraction of the four-derivative of the scalar field with the four-velocity of the dark matter fluid. The coupling is realized at the Lagrangian level employing the formalism of Scalar-Fluid theories, which use a consistent Lagrangian approach for relativistic fluid to describe dark matter. This framework produces fully covariant field equations, from which we can derive unequivocal cosmological equations at both background and linear perturbations levels. The background evolution is analyzed in detail applying dynamical systems techniques, which allow us to find the complete asymptotic behavior of the universe given any set of model parameters and initial conditions. Furthermore we study linear cosmological perturbations investigating the growth of cosmic structures within the quasi-static approximation. We find that these interacting dark energy models give rise to interesting phenomenological dynamics, including late-time transitions from dark matter to dark energy domination, matter and accelerated scaling solutions and dynamical crossing of the phantom barrier. Moreover we obtain possible deviations from standard ΛCDM behavior at the linear perturbations level, which have an impact on the dynamics of structure formation and might provide characteristic observational signatures.
Dolgov, A. D.
2017-09-01
Recent astronomical discoveries of supermassive black holes (quasars), gamma-bursters, super-novae, and dust at high redshifts, z = (5-10), are reviewed. Such a dense population of the early universe is at odds with the conventional mechanisms of its possible origin. Similar data from the contemporary universe, which are also in conflict with natural expectations, are considered too. Two possible mechanisms are suggested, at least one of which can potentially solve all these problems. As a by-product of the last model, an abundant cosmological antimatter may be created.
Cosmological and astrophysical neutrino mass measurements
DEFF Research Database (Denmark)
Abazajian, K.N.; Calabrese, E.; Cooray, A.
2011-01-01
Cosmological and astrophysical measurements provide powerful constraints on neutrino masses complementary to those from accelerators and reactors. Here we provide a guide to these different probes, for each explaining its physical basis, underlying assumptions, current and future reach.......Cosmological and astrophysical measurements provide powerful constraints on neutrino masses complementary to those from accelerators and reactors. Here we provide a guide to these different probes, for each explaining its physical basis, underlying assumptions, current and future reach....
Enqvist, K
2012-01-01
The very basics of cosmological inflation are discussed. We derive the equations of motion for the inflaton field, introduce the slow-roll parameters, and present the computation of the inflationary perturbations and their connection to the temperature fluctuations of the cosmic microwave background.
Ellis, G F R
1993-01-01
Many topics were covered in the submitted papers, showing much life in this subject at present. They ranged from conventional calculations in specific cosmological models to provocatively speculative work. Space and time restrictions required selecting from them, for summarisation here; the book of Abstracts should be consulted for a full overview.
International Nuclear Information System (INIS)
Chow, Nathan; Khoury, Justin
2009-01-01
We study the cosmology of a galileon scalar-tensor theory, obtained by covariantizing the decoupling Lagrangian of the Dvali-Gabadadze-Poratti (DGP) model. Despite being local in 3+1 dimensions, the resulting cosmological evolution is remarkably similar to that of the full 4+1-dimensional DGP framework, both for the expansion history and the evolution of density perturbations. As in the DGP model, the covariant galileon theory yields two branches of solutions, depending on the sign of the galileon velocity. Perturbations are stable on one branch and ghostlike on the other. An interesting effect uncovered in our analysis is a cosmological version of the Vainshtein screening mechanism: at early times, the galileon dynamics are dominated by self-interaction terms, resulting in its energy density being suppressed compared to matter or radiation; once the matter density has redshifted sufficiently, the galileon becomes an important component of the energy density and contributes to dark energy. We estimate conservatively that the resulting expansion history is consistent with the observed late-time cosmology, provided that the scale of modification satisfies r c > or approx. 15 Gpc.
Inflationary cosmologies from compactification?
International Nuclear Information System (INIS)
Wohlfarth, Mattias N.R.
2004-01-01
We consider the compactification of (d+n)-dimensional pure gravity and of superstring or M-theory on an n-dimensional internal space to a d-dimensional Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmology, with a spatial curvature k=0,±1, in the Einstein conformal frame. The internal space is taken to be a product of Einstein spaces, each of which is allowed to have arbitrary curvature and a time-dependent volume. By investigating the effective d-dimensional scalar potential, which is a sum of exponentials, it is shown that such compactifications, in the k=0,+1 cases, do not lead to large amounts of accelerating expansion of the scale factor of the resulting FLRW universe, and, in particular, do not lead to inflation. The case k=-1 admits solutions with eternal accelerating expansion for which the acceleration, however, tends to zero at late times
Cosmological measurements with forthcoming radio continuum surveys
CSIR Research Space (South Africa)
Raccanelli, A
2012-08-01
Full Text Available is to measure the cosmo- logical parameters of particular current interest. Among the biggest challenges in cosmology is to determine whether the standard � cold dark matter (CDM) model and its general relativity (GR) con- text are correct, or whether we need a... as a function of redshift and the bias of different source populations as a function of red- shift. These are required in order to make predictions for cosmo- logical probes, such as the autocorrelation function and the cross- correlation of radio...
Multi-dimensional cosmology and GUP
Energy Technology Data Exchange (ETDEWEB)
Zeynali, K.; Motavalli, H. [Department of Theoretical Physics and Astrophysics, University of Tabriz, 51666-16471, Tabriz (Iran, Islamic Republic of); Darabi, F., E-mail: k.zeinali@arums.ac.ir, E-mail: f.darabi@azaruniv.edu, E-mail: motavalli@tabrizu.ac.ir [Department of Physics, Azarbaijan Shahid Madani University, 53714-161, Tabriz (Iran, Islamic Republic of)
2012-12-01
We consider a multidimensional cosmological model with FRW type metric having 4-dimensional space-time and d-dimensional Ricci-flat internal space sectors with a higher dimensional cosmological constant. We study the classical cosmology in commutative and GUP cases and obtain the corresponding exact solutions for negative and positive cosmological constants. It is shown that for negative cosmological constant, the commutative and GUP cases result in finite size universes with smaller size and longer ages, and larger size and shorter age, respectively. For positive cosmological constant, the commutative and GUP cases result in infinite size universes having late time accelerating behavior in good agreement with current observations. The accelerating phase starts in the GUP case sooner than the commutative case. In both commutative and GUP cases, and for both negative and positive cosmological constants, the internal space is stabilized to the sub-Planck size, at least within the present age of the universe. Then, we study the quantum cosmology by deriving the Wheeler-DeWitt equation, and obtain the exact solutions in the commutative case and the perturbative solutions in GUP case, to first order in the GUP small parameter, for both negative and positive cosmological constants. It is shown that good correspondence exists between the classical and quantum solutions.
Multi-dimensional cosmology and GUP
International Nuclear Information System (INIS)
Zeynali, K.; Motavalli, H.; Darabi, F.
2012-01-01
We consider a multidimensional cosmological model with FRW type metric having 4-dimensional space-time and d-dimensional Ricci-flat internal space sectors with a higher dimensional cosmological constant. We study the classical cosmology in commutative and GUP cases and obtain the corresponding exact solutions for negative and positive cosmological constants. It is shown that for negative cosmological constant, the commutative and GUP cases result in finite size universes with smaller size and longer ages, and larger size and shorter age, respectively. For positive cosmological constant, the commutative and GUP cases result in infinite size universes having late time accelerating behavior in good agreement with current observations. The accelerating phase starts in the GUP case sooner than the commutative case. In both commutative and GUP cases, and for both negative and positive cosmological constants, the internal space is stabilized to the sub-Planck size, at least within the present age of the universe. Then, we study the quantum cosmology by deriving the Wheeler-DeWitt equation, and obtain the exact solutions in the commutative case and the perturbative solutions in GUP case, to first order in the GUP small parameter, for both negative and positive cosmological constants. It is shown that good correspondence exists between the classical and quantum solutions
Constraining holographic cosmology using Planck data
Afshordi, Niayesh; Gould, Elizabeth; Skenderis, Kostas
2017-06-01
Holographic cosmology offers a novel framework for describing the very early Universe in which cosmological predictions are expressed in terms of the observables of a three-dimensional quantum field theory (QFT). This framework includes conventional slow-roll inflation, which is described in terms of a strongly coupled QFT, but it also allows for qualitatively new models for the very early Universe, where the dual QFT may be weakly coupled. The new models describe a universe which is nongeometric at early times. While standard slow-roll inflation leads to a (near-) power-law primordial power spectrum, perturbative super-renormalizable QFTs yield a new holographic spectral shape. Here, we compare the two predictions against cosmological observations. We use CosmoMC to determine the best fit parameters, and MultiNest for Bayesian evidence, comparing the likelihoods. We find that the dual QFT should be nonperturbative at the very low multipoles (l ≲30 ), while for higher multipoles (l ≳30 ) the new holographic model, based on perturbative QFT, fits the data just as well as the standard power-law spectrum assumed in Λ CDM cosmology. This finding opens the door to applications of nonperturbative QFT techniques, such as lattice simulations, to observational cosmology on gigaparsec scales and beyond.
Experiences of project developers around CDM projects in South Africa
International Nuclear Information System (INIS)
Thurner, Thomas W.; Varughese, Arun
2013-01-01
Project developers in South Africa are puzzled with the long process of evaluating and registering their CDM projects. In addition to other obstacles, we find that South African big businesses are rather reluctant to engage in any new business activities such as CDM projects and municipalities often lack the necessary flexibility. This offers opportunities for small-scale project developers who spot the opportunities and find creative solutions to overcome these difficulties. - Highlights: • First paper analysing the experience of small project developers in South Africa. • Project developers in South Africa are puzzled with the long process. • South African big businesses are reluctant to engage in CDM projects. • Small-scale project developers spot opportunities and find creative solutions to overcome difficulties. • Also, we saw learning processes of South African administration in support of CDM projects
Testing averaged cosmology with type Ia supernovae and BAO data
Energy Technology Data Exchange (ETDEWEB)
Santos, B.; Alcaniz, J.S. [Departamento de Astronomia, Observatório Nacional, 20921-400, Rio de Janeiro – RJ (Brazil); Coley, A.A. [Department of Mathematics and Statistics, Dalhousie University, Halifax, B3H 3J5 Canada (Canada); Devi, N. Chandrachani, E-mail: thoven@on.br, E-mail: aac@mathstat.dal.ca, E-mail: chandrachaniningombam@astro.unam.mx, E-mail: alcaniz@on.br [Instituto de Astronomía, Universidad Nacional Autónoma de México, Box 70-264, México City, México (Mexico)
2017-02-01
An important problem in precision cosmology is the determination of the effects of averaging and backreaction on observational predictions, particularly in view of the wealth of new observational data and improved statistical techniques. In this paper, we discuss the observational viability of a class of averaged cosmologies which consist of a simple parametrized phenomenological two-scale backreaction model with decoupled spatial curvature parameters. We perform a Bayesian model selection analysis and find that this class of averaged phenomenological cosmological models is favored with respect to the standard ΛCDM cosmological scenario when a joint analysis of current SNe Ia and BAO data is performed. In particular, the analysis provides observational evidence for non-trivial spatial curvature.
Anisotropic cosmological constant and the CMB quadrupole anomaly
International Nuclear Information System (INIS)
Rodrigues, Davi C.
2008-01-01
There are evidences that the cosmic microwave background (CMB) large-angle anomalies imply a departure from statistical isotropy and hence from the standard cosmological model. We propose a ΛCDM model extension whose dark energy component preserves its nondynamical character but wields anisotropic vacuum pressure. Exact solutions for the cosmological scale factors are presented, upper bounds for the deformation parameter are evaluated and its value is estimated considering the elliptical universe proposal to solve the quadrupole anomaly. This model can be constructed from a Bianchi I cosmology with a cosmological constant from two different ways: (i) a straightforward anisotropic modification of the vacuum pressure consistently with energy-momentum conservation; (ii) a Poisson structure deformation between canonical momenta such that the dynamics remain invariant under scale factors rescalings
Testing averaged cosmology with type Ia supernovae and BAO data
International Nuclear Information System (INIS)
Santos, B.; Alcaniz, J.S.; Coley, A.A.; Devi, N. Chandrachani
2017-01-01
An important problem in precision cosmology is the determination of the effects of averaging and backreaction on observational predictions, particularly in view of the wealth of new observational data and improved statistical techniques. In this paper, we discuss the observational viability of a class of averaged cosmologies which consist of a simple parametrized phenomenological two-scale backreaction model with decoupled spatial curvature parameters. We perform a Bayesian model selection analysis and find that this class of averaged phenomenological cosmological models is favored with respect to the standard ΛCDM cosmological scenario when a joint analysis of current SNe Ia and BAO data is performed. In particular, the analysis provides observational evidence for non-trivial spatial curvature.
Cosmological simulations using a static scalar-tensor theory
Energy Technology Data Exchange (ETDEWEB)
RodrIguez-Meza, M A [Depto. de Fisica, Instituto Nacional de Investigaciones Nucleares, Col. Escandon, Apdo. Postal 18-1027, 11801 Mexico D.F (Mexico); Gonzalez-Morales, A X [Departamento Ingenierias, Universidad Iberoamericana, Prol. Paseo de la Reforma 880 Lomas de Santa Fe, Mexico D.F. Mexico (Mexico); Gabbasov, R F [Depto. de Fisica, Instituto Nacional de Investigaciones Nucleares, Col. Escandon, Apdo. Postal 18-1027, 11801 Mexico D.F (Mexico); Cervantes-Cota, Jorge L [Depto. de Fisica, Instituto Nacional de Investigaciones Nucleares, Col. Escandon, Apdo. Postal 18-1027, 11801 Mexico D.F (Mexico)
2007-11-15
We present {lambda}CDM N-body cosmological simulations in the framework of of a static general scalar-tensor theory of gravity. Due to the influence of the non-minimally coupled scalar field, the gravitational potential is modified by a Yukawa type term, yielding a new structure formation dynamics. We present some preliminary results and, in particular, we compute the density and velocity profiles of the most massive group.
Gravitino/axino as decaying dark matter and cosmological tensions
Directory of Open Access Journals (Sweden)
Koichi Hamaguchi
2017-09-01
Full Text Available In supersymmetric axion models, if the gravitino or axino is the lightest SUSY particle (LSP, the other is often the next-to-LSP (NLSP. We investigate the cosmology of such a scenario and point out that the lifetime of the NLSP naturally becomes comparable to the present age of the universe in a viable parameter region. This is a well-motivated example of the so-called decaying dark matter model, which is recently considered as an extension of the ΛCDM model to relax some cosmological tensions.
CDM and JI in View of the Sustainability Debate
Schoot Uiterkamp, A.J.M.
2001-01-01
Clean Development Mechanism (CDM), Joint Implementation (JI) and emissions trading are the three flexible instruments incorporated in the Kyoto Protocol. This paper presents a critical assessment of the sustainability of energy-related technology innovation and transfer in the context of CDM and JI. The rebound effect is discussed by comparing intended and unintended project and process outcomes. Attention is given to the role of nations and key actors like multinationals in achieving sustain...
Was Newtonian cosmology really inconsistent?
Vickers, Peter
This paper follows up a debate as to the consistency of Newtonian cosmology. Whereas Malament [(1995). Is Newtonian cosmology really inconsistent? Philosophy of Science 62, 489-510] has shown that Newtonian cosmology is not inconsistent, to date there has been no analysis of Norton's claim [(1995). The force of Newtonian cosmology: Acceleration is relative. Philosophy of Science 62, 511-522.] that Newtonian cosmology was inconsistent prior to certain advances in the 1930s, and in particular prior to Seeliger's seminal paper of Seeliger [(1895). Über das Newton'sche Gravitationsgesetz. Astronomische Nachrichten 137 (3273), 129-136.] In this paper I agree that there are assumptions, Newtonian and cosmological in character, and relevant to the real history of science, which are inconsistent. But there are some important corrections to make to Norton's account. Here I display for the first time the inconsistencies-four in total-in all their detail. Although this extra detail shows there to be several different inconsistencies, it also goes some way towards explaining why they went unnoticed for 200 years.
International Nuclear Information System (INIS)
Kleinschmidt, Axel; Nicolai, Hermann
2006-01-01
We construct simple exact solutions to the E 10 /K(E 10 ) coset model by exploiting its integrability. Using the known correspondences with the bosonic sectors of maximal supergravity theories, these exact solutions translate into exact cosmological solutions. In this way, we are able to recover some recently discovered solutions of M-theory exhibiting phases of accelerated expansion, or, equivalently, S-brane solutions, and thereby accommodate such solutions within the E 10 /K(E 10 ) model. We also discuss the situation regarding solutions with non-vanishing (constant) curvature of the internal manifold
Quintessential brane cosmology
International Nuclear Information System (INIS)
Kunze, K.E.; Vazquez-Mozo, M.A.
2002-01-01
We study a class of braneworlds where the cosmological evolution arises as the result of the movement of a three-brane in a five-dimensional static dilatonic bulk, with and without reflection symmetry. The resulting four-dimensional Friedmann equation includes a term which, for a certain range of the parameters, effectively works as a quintessence component, producing an acceleration of the universe at late times. Using current observations and bounds derived from big-bang nucleosynthesis, we estimate the parameters that characterize the model
Analysis of registered CDM projects: potential removal of evidenced bottlenecks
Energy Technology Data Exchange (ETDEWEB)
Agosto, D.; Bombard, P.; Gostinelli, F.
2007-07-01
The Clean Development Mechanism (CDM) has developed during its first period of implementation, a distinctive set of patterns. The authors thought of concentrating on the CDM analysis in order to highlight potential remedies or reasons for given bottlenecks. In order to establish a sort of extensive SWOT analysis for CDMs, all the 356 projects actually (November 2006) registered at UNFCCC were examined, together with all the about 1000 PDDs presented to the UNFCCC but not registered yet. The CDM projects have been studied trying to cluster projects according to relevant characteristics, both from a technical and an economic point of view. Chosen indicators are meant to identify: more convenient/more diffused energy system for a CDM; reasons for a geographical distribution of different types of projects; potentials for a future exploitation of lower used technologies in CDM. Conclusions are drawn and appropriate tables and graphs presented. (1) the Baseline Emission Factor, combined to economic patterns, is the pivotal factor that characterizes both choices of host country and technology; (2) some technologies can exploit appropriately CDM scheme, whilst other technologies, are constrained by it. (3) there are still some important weak points: grouping of non Annex I countries; crediting period; criteria for the evaluation of sustainable development. (auth)
International Nuclear Information System (INIS)
Desert, F.-Xavier
2004-01-01
After an introduction comprising some definitions, an historical overview, and a discussion of the paradoxical Universe, this course proposes a presentation of fundamental notions and theories, i.e. the restrained relativity and the universal gravitation. The next part addresses the general relativity with the following notions: space-time metrics and principle of generalised covariance, basics of tensor analysis, geodesics, energy-pulse tensor, curvature, Einstein equations, Newtonian limit, Schwarzschild metrics, gravitational waves, gravitational redshift. The next part addresses the standard cosmology with the Friedmann-Robertson-Walker metrics and the Friedmann-Lemaitre equations of the evolution of the Universe. The Universe expansion is then addressed: distances and horizons, Hubble law, determination of the Hubble constant. The next chapter deals with the constituents of the Universe: light matter, baryonic dark matter, black matter, supernovae, Universe acceleration and black energy. Then comes the nuclear evolution of the Universe: thermodynamics of the primordial Universe, the matter-antimatter asymmetry, from quarks to atoms, cosmic abundance, neutron cosmological background, matter-radiation equality, cosmo-chronology or the age of the Universe. The next chapter addresses the cosmological background at 3 K: sky electromagnetic spectrum, measurement of CMB anisotropies, interpretation of anisotropies, growth of perturbations. The last chapter addresses the quantum field theory and inflation: paradoxes of the standard Big Bang, the simple inflation, noticeable consequences
International Nuclear Information System (INIS)
Anchordoqui, Luis; Nawata, Satoshi; Goldberg, Haim; Nunez, Carlos
2007-01-01
We explore the cosmological content of Salam-Sezgin six-dimensional supergravity, and find a solution to the field equations in qualitative agreement with observation of distant supernovae, primordial nucleosynthesis abundances, and recent measurements of the cosmic microwave background. The carrier of the acceleration in the present de Sitter epoch is a quintessence field slowly rolling down its exponential potential. Intrinsic to this model is a second modulus which is automatically stabilized and acts as a source of cold dark matter, with a mass proportional to an exponential function of the quintessence field (hence realizing varying mass particle models within a string context). However, any attempt to saturate the present cold dark matter component in this manner leads to unacceptable deviations from cosmological data--a numerical study reveals that this source can account for up to about 7% of the total cold dark matter budget. We also show that (1) the model will support a de Sitter energy in agreement with observation at the expense of a miniscule breaking of supersymmetry in the compact space; (2) variations in the fine structure constant are controlled by the stabilized modulus and are negligible; (3) ''fifth'' forces are carried by the stabilized modulus and are short range; (4) the long time behavior of the model in four dimensions is that of a Robertson-Walker universe with a constant expansion rate (w=-1/3). Finally, we present a string theory background by lifting our six-dimensional cosmological solution to ten dimensions
Grant, E.; Murdin, P.
2000-11-01
During the early Middle Ages (ca 500 to ca 1130) scholars with an interest in cosmology had little useful and dependable literature. They relied heavily on a partial Latin translation of PLATO's Timaeus by Chalcidius (4th century AD), and on a series of encyclopedic treatises associated with the names of Pliny the Elder (ca AD 23-79), Seneca (4 BC-AD 65), Macrobius (fl 5th century AD), Martianus ...
International Nuclear Information System (INIS)
Partridge, R.B.
1977-01-01
Some sixty years after the development of relativistic cosmology by Einstein and his colleagues, observations are finally beginning to have an important impact on our views of the Universe. The available evidence seems to support one of the simplest cosmological models, the hot Big Bang model. The aim of this paper is to assess the observational support for certain assumptions underlying the hot Big Bang model. These are that the Universe is isobaric and homogeneous on a large scale; that it is expanding from an initial state of high density and temperature; and that the proper theory to describe the dynamics of the Universe is unmodified General Relativity. The properties of the cosmic microwave background radiation and recent observations of the abundance of light elements, in particular, support these assumptions. Also examined here are the data bearing on the related questions of the geometry and the future of the Universe (is it ever-expanding, or fated to recollapse). Finally, some difficulties and faults of the standard model are discussed, particularly various aspects of the 'initial condition' problem. It appears that the simplest Big Bang cosmological model calls for a highly specific set of initial conditions to produce the presently observed properties of the Universe. (Auth.)
the Universe About Cosmology Planck Satellite Launched Cosmology Videos Professor George Smoot's group conducts research on the early universe (cosmology) using the Cosmic Microwave Background radiation (CMB science goals regarding cosmology. George Smoot named Director of Korean Cosmology Institute The GRB
Relaxing a large cosmological constant
International Nuclear Information System (INIS)
Bauer, Florian; Sola, Joan; Stefancic, Hrvoje
2009-01-01
The cosmological constant (CC) problem is the biggest enigma of theoretical physics ever. In recent times, it has been rephrased as the dark energy (DE) problem in order to encompass a wider spectrum of possibilities. It is, in any case, a polyhedric puzzle with many faces, including the cosmic coincidence problem, i.e. why the density of matter ρ m is presently so close to the CC density ρ Λ . However, the oldest, toughest and most intriguing face of this polyhedron is the big CC problem, namely why the measured value of ρ Λ at present is so small as compared to any typical density scale existing in high energy physics, especially taking into account the many phase transitions that our Universe has undergone since the early times, including inflation. In this Letter, we propose to extend the field equations of General Relativity by including a class of invariant terms that automatically relax the value of the CC irrespective of the initial size of the vacuum energy in the early epochs. We show that, at late times, the Universe enters an eternal de Sitter stage mimicking a tiny positive cosmological constant. Thus, these models could be able to solve the big CC problem without fine-tuning and have also a bearing on the cosmic coincidence problem. Remarkably, they mimic the ΛCDM model to a large extent, but they still leave some characteristic imprints that should be testable in the next generation of experiments.
Long-term prospects of CDM and JI; Langfristige Perspektiven von CDM und JI
Energy Technology Data Exchange (ETDEWEB)
Cames, Martin; Anger, Niels; Boehringer, Christoph; Harthan, Ralph O.; Schneider, Lambert [Oeko-Institut, Berlin (Germany)
2007-07-15
This study analyses whether Germany should use the flexible mechanisms under the Kyoto protocol or whether it should continue to achieve its greenhouse gas reduction targets by dint of domestic policies and measures. It estimates the future potential of the project-based Kyoto mechanisms (CDM and JI) and the impacts of its use on the German and the global economy, using an integrated-assessment model. In a Delphi survey, the expectations of international experts on the future prospects of the project-based Kyoto mechanisms are assessed. The study finishes with an analysis of options for promoting the use of the flexible mechanisms in Germany and concludes that the Federal Government of Germany should establish a project-based mechanisms fund of 25 to 50 million Kyoto units to cover the compliance uncertainties due to unexpected temperature or business cycle variations. (orig.) [German] Diese Studie untersucht, ob Deutschland die flexiblen Mechanismen unter dem Kyoto-Protokoll nutzen sollte oder weiterhin seine Treibhausgasreduktionsziele durch inlaendische Politiken und Massnahmen erreichen sollte. Das kuenftige Potenzial der projektbezogenen Kyoto-Mechanismen (CDM und JI) wird untersucht und die Auswirkungen von deren Nutzung auf die deutsche und globale Wirtschaft werden mit einem Integrated-Assessment-Modell abgeschaetzt. In einer Delphi-Befragung werden die Erwartungen internationaler Experten in Hinblick auf die kuenftigen Perspektiven der projektbezogenen Kyoto- Mechanismen ermittelt. Abschliessend werden Moeglichkeiten zur Foerderung der Nutzung der flexiblen Mechanismen in Deutschland analysiert, mit der Schlussfolgerung, dass die Bundesregierung einen 25 bis 50 Millionen Kyoto-Einheiten umfassenden Fonds fuer projektbezogene Mechanismen einrichten sollte, um die Unsicherheiten bei der Erfuellung des Kyoto-Ziels infolge unerwarteter Temperaturschwankungen oder einer Aenderung der Konjunkturentwicklung abzudecken. (orig.)
A COMPARATIVE ANALYSIS OF THE SUPERNOVA LEGACY SURVEY SAMPLE WITH ΛCDM AND THE Rh=ct UNIVERSE
International Nuclear Information System (INIS)
Wei, Jun-Jie; Wu, Xue-Feng; Melia, Fulvio; Maier, Robert S.
2015-01-01
The use of Type Ia supernovae (SNe Ia) has thus far produced the most reliable measurement of the expansion history of the universe, suggesting that ΛCDM offers the best explanation for the redshift–luminosity distribution observed in these events. However, analysis of other kinds of sources, such as cosmic chronometers, gamma-ray bursts, and high-z quasars, conflicts with this conclusion, indicating instead that the constant expansion rate implied by the R h = ct universe is a better fit to the data. The central difficulty with the use of SNe Ia as standard candles is that one must optimize three or four nuisance parameters characterizing supernova (SN) luminosities simultaneously with the parameters of an expansion model. Hence, in comparing competing models, one must reduce the data independently for each. We carry out such a comparison of ΛCDM and the R h = ct universe using the SN Legacy Survey sample of 252 SN events, and show that each model fits its individually reduced data very well. However, since R h = ct has only one free parameter (the Hubble constant), it follows from a standard model selection technique that it is to be preferred over ΛCDM, the minimalist version of which has three (the Hubble constant, the scaled matter density, and either the spatial curvature constant or the dark energy equation-of-state parameter). We estimate using the Bayes Information Criterion that in a pairwise comparison, the likelihood of R h = ct is ∼90%, compared with only ∼10% for a minimalist form of ΛCDM, in which dark energy is simply a cosmological constant. Compared to R h = ct, versions of the standard model with more elaborate parametrizations of dark energy are judged to be even less likely
Brandenberger, Robert H.
2008-01-01
String gas cosmology is a string theory-based approach to early universe cosmology which is based on making use of robust features of string theory such as the existence of new states and new symmetries. A first goal of string gas cosmology is to understand how string theory can effect the earliest moments of cosmology before the effective field theory approach which underlies standard and inflationary cosmology becomes valid. String gas cosmology may also provide an alternative to the curren...
International Nuclear Information System (INIS)
Gong Yungui; Wang Anzhong; Wu Qiang
2008-01-01
Orbifold branes are studied in the framework of the 11-dimensional Horava-Witten heterotic M-theory. It is found that the effective cosmological constant can be easily lowered to its current observational value by the mechanism of large extra dimensions. The domination of this constant over the evolution of the universe is only temporary. Due to the interaction of the bulk and the branes, the universe will be in its decelerating expansion phase again in the future, whereby all problems connected with a far future de Sitter universe are resolved
CERN. Geneva
2015-01-01
Lecture review, question collection: accelerators, detectors, particle and heavy ion physics, cosmology / Az előadások megbeszélése, kérdések összegyűjtése: gyorsítók, detektorok, részecske- és nehézion-fizika, kozmológia
Magnetohydrodynamic cosmologies
International Nuclear Information System (INIS)
Portugal, R.; Soares, I.D.
1991-01-01
We analyse a class of cosmological models in magnetohydrodynamic regime extending and completing the results of a previous paper. The material content of the models is a perfect fluid plus electromagnetic fields. The fluid is neutral in average but admits an electrical current which satisfies Ohm's law. All models fulfil the physical requirements of near equilibrium thermodynamics and can be favourably used as a more realistic description of the interior of a collapsing star in a magnetohydrodynamic regime with or without a magnetic field. (author)
Bardeen, J. M.
The last several years have seen a tremendous ferment of activity in astrophysical cosmology. Much of the theoretical impetus has come from particle physics theories of the early universe and candidates for dark matter, but what promise to be even more significant are improved direct observations of high z galaxies and intergalactic matter, deeper and more comprehensive redshift surveys, and the increasing power of computer simulations of the dynamical evolution of large scale structure. Upper limits on the anisotropy of the microwave background radiation are gradually getting tighter and constraining more severely theoretical scenarios for the evolution of the universe.
International Nuclear Information System (INIS)
Bardeen, J.M.
1986-01-01
The last several years have seen a tremendous ferment of activity in astrophysical cosmology. Much of the theoretical impetus has come from particle physics theories of the early universe and candidates for dark matter, but what promise to be even more significant are improved direct observations of high z galaxies and intergalactic matter, deeper and more comprehensive redshift surveys, and the increasing power of computer simulations of the dynamical evolution of large scale structure. Upper limits on the anisotropy of the microwave background radiation are gradually getting tighter and constraining more severely theoretical scenarios for the evolution of the universe. 47 refs
Boeyens, Jan CA
2010-01-01
The composition of the most remote objects brought into view by the Hubble telescope can no longer be reconciled with the nucleogenesis of standard cosmology and the alternative explanation, in terms of the LAMBDA-Cold-Dark-Matter model, has no recognizable chemical basis. A more rational scheme, based on the chemistry and periodicity of atomic matter, opens up an exciting new interpretation of the cosmos in terms of projective geometry and general relativity. The response of atomic structure to environmental pressure predicts non-Doppler cosmical redshifts and equilibrium nucleogenesis by alp
Page, Don N.
2006-01-01
A complete model of the universe needs at least three parts: (1) a complete set of physical variables and dynamical laws for them, (2) the correct solution of the dynamical laws, and (3) the connection with conscious experience. In quantum cosmology, item (2) is the quantum state of the cosmos. Hartle and Hawking have made the `no-boundary' proposal, that the wavefunction of the universe is given by a path integral over all compact Euclidean 4-dimensional geometries and matter fields that hav...
Religion, theology and cosmology
Directory of Open Access Journals (Sweden)
John T. Fitzgerald
2013-10-01
Full Text Available Cosmology is one of the predominant research areas of the contemporary world. Advances in modern cosmology have prompted renewed interest in the intersections between religion, theology and cosmology. This article, which is intended as a brief introduction to the series of studies on theological cosmology in this journal, identifies three general areas of theological interest stemming from the modern scientific study of cosmology: contemporary theology and ethics; cosmology and world religions; and ancient cosmologies. These intersections raise important questions about the relationship of religion and cosmology, which has recently been addressed by William Scott Green and is the focus of the final portion of the article.
Cosmological implications of primordial black holes
Energy Technology Data Exchange (ETDEWEB)
Luis Bernal, José; Bellomo, Nicola; Raccanelli, Alvise; Verde, Licia, E-mail: joseluis.bernal@icc.ub.edu, E-mail: nicola.bellomo@icc.ub.edu, E-mail: alvise@icc.ub.edu, E-mail: liciaverde@icc.ub.edu [ICC, University of Barcelona, IEEC-UB, Martí i Franquès, 1, E08028 Barcelona (Spain)
2017-10-01
The possibility that a relevant fraction of the dark matter might be comprised of Primordial Black Holes (PBHs) has been seriously reconsidered after LIGO's detection of a ∼ 30 M {sub ⊙} binary black holes merger. Despite the strong interest in the model, there is a lack of studies on possible cosmological implications and effects on cosmological parameters inference. We investigate correlations with the other standard cosmological parameters using cosmic microwave background observations, finding significant degeneracies, especially with the tilt of the primordial power spectrum and the sound horizon at radiation drag. However, these degeneracies can be greatly reduced with the inclusion of small scale polarization data. We also explore if PBHs as dark matter in simple extensions of the standard ΛCDM cosmological model induces extra degeneracies, especially between the additional parameters and the PBH's ones. Finally, we present cosmic microwave background constraints on the fraction of dark matter in PBHs, not only for monochromatic PBH mass distributions but also for popular extended mass distributions. Our results show that extended mass distribution's constraints are tighter, but also that a considerable amount of constraining power comes from the high-ℓ polarization data. Moreover, we constrain the shape of such mass distributions in terms of the correspondent constraints on the PBH mass fraction.
A Guide to Bundling Small-scale CDM Projects
International Nuclear Information System (INIS)
Mariyappan, J.; Bhardwaj, N.; De Coninck, H.; Van der Linden, N.
2005-07-01
Small-scale renewable energy and energy efficiency projects that fit the development needs of many developing countries, can potentially be supported via the Clean Development Mechanism (CDM), one of the Kyoto Protocol's flexible mechanisms for tackling climate change. However, there is concern that due to high transaction costs, as well as many existing barriers, very few investments will be made in small-scale projects, which are often the most suitable development option in countries such as India. In view of this, the 'bundling' together of appropriate small-scale projects on a regional basis has been proposed as a way in which funding can be leveraged from international sources and transaction costs reduced. IT Power, IT Power India and the Energy research Centre of the Netherlands (ECN) are carrying out a 2-year project to establish the capacity within India to enable individual small scale projects to be bundled as a single CDM project. Overall objectives are to develop the necessary institutional capabilities to formulate and implement small scale CDM projects in India; to provide a guide on how to bundle small scale projects under the CDM in developing countries; and to raise the awareness of the potential for investment in small scale energy projects which can gain funding through the CDM
Sterile neutrinos with eV masses in cosmology — How disfavoured exactly?
DEFF Research Database (Denmark)
Hamann, Jan; Hannestad, Steen; Raffelt, G.G.
2011-01-01
We study cosmological models that contain sterile neutrinos with eV-range masses as suggested by reactor and short-baseline oscillation data. We confront these models with both precision cosmological data (probing the CMB decoupling epoch) and light-element abundances (probing the BBN epoch...... be circumvented by a small νe degeneracy. Any model containing eV-mass sterile neutrinos implies also strong modifications of other cosmological parameters. Notably, the inferred cold dark matter density can shift up by 20-75% relative to the standard ΛCDM value....
THE CHALLENGE OF THE LARGEST STRUCTURES IN THE UNIVERSE TO COSMOLOGY
International Nuclear Information System (INIS)
Park, Changbom; Choi, Yun-Young; Kim, Sungsoo S.; Kim, Kap-Sung; Kim, Juhan; Gott III, J. Richard
2012-01-01
Large galaxy redshift surveys have long been used to constrain cosmological models and structure formation scenarios. In particular, the largest structures discovered observationally are thought to carry critical information on the amplitude of large-scale density fluctuations or homogeneity of the universe, and have often challenged the standard cosmological framework. The Sloan Great Wall (SGW) recently found in the Sloan Digital Sky Survey (SDSS) region casts doubt on the concordance cosmological model with a cosmological constant (i.e., the flat ΛCDM model). Here we show that the existence of the SGW is perfectly consistent with the ΛCDM model, a result that only our very large cosmological N-body simulation (the Horizon Run 2, HR2) could supply. In addition, we report on the discovery of a void complex in the SDSS much larger than the SGW, and show that such size of the largest void is also predicted in the ΛCDM paradigm. Our results demonstrate that an initially homogeneous isotropic universe with primordial Gaussian random phase density fluctuations growing in accordance with the general relativity can explain the richness and size of the observed large-scale structures in the SDSS. Using the HR2 simulation we predict that a future galaxy redshift survey about four times deeper or with 3 mag fainter limit than the SDSS should reveal a largest structure of bright galaxies about twice as big as the SGW.
International Nuclear Information System (INIS)
Tkachev, Igor
1993-01-01
When the common ground between particle physics, astrophysics and cosmology started to become a developing area, the Institute for Nuclear Research (INR) of the Russian Academy of Sciences had the foresight in 1981 to institute the Baksan Schools on Particles and Cosmology. This now traditional event, held biannually in the Baksan Valley, has gone on to attract international participation. The site is close to the INR Baksan Neutrino Observatory with its underground and surface installations, including the SAGE gallium solar neutrino detector, the Underground Scintillation Telescope, and the 'Carpet' extensive air shower array. Participation is mainly from experimentalists working in non accelerator particle physics and particle astrophysics. The most recent School, held from April 21 to 28, began with an opening address by INR Director V. A. Matveev. J.Frieman reviewed standard big bang cosmology, emphasizing how the recent COBE results and the observations of large scale galaxy clustering fit into a standard cosmology framework. For inflationary cosmology, he showed how different models may be tested through their predictions for large-scale galactic structure and for cosmic microwave background anisotropy. A.Stebbins presented details of the large scale distribution of galaxies which, combined with velocity information and microwave background anisotropy data, provide strong constraints on theories of the origin of primordial inhomogeneities. Inflation requires, and theories of the large scale structure strongly favour the critical value for the cosmic mass density, while, as D.Seckel explained in his lecture on nucleosynthesis and abundances of the light elements, the baryon contribution to this density has to be tens of times smaller. A general review on the observational evidence for dark matter, dark matter particle candidates and the strategy of dark matter searches was given by I. Tkachev, who stressed the gravitational microlensing MACHO
A comparison of cosmological models using time delay lenses
Energy Technology Data Exchange (ETDEWEB)
Wei, Jun-Jie; Wu, Xue-Feng; Melia, Fulvio, E-mail: jjwei@pmo.ac.cn, E-mail: xfwu@pmo.ac.cn, E-mail: fmelia@email.arizona.edu [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)
2014-06-20
The use of time-delay gravitational lenses to examine the cosmological expansion introduces a new standard ruler with which to test theoretical models. The sample suitable for this kind of work now includes 12 lens systems, which have thus far been used solely for optimizing the parameters of ΛCDM. In this paper, we broaden the base of support for this new, important cosmic probe by using these observations to carry out a one-on-one comparison between competing models. The currently available sample indicates a likelihood of ∼70%-80% that the R {sub h} = ct universe is the correct cosmology versus ∼20%-30% for the standard model. This possibly interesting result reinforces the need to greatly expand the sample of time-delay lenses, e.g., with the successful implementation of the Dark Energy Survey, the VST ATLAS survey, and the Large Synoptic Survey Telescope. In anticipation of a greatly expanded catalog of time-delay lenses identified with these surveys, we have produced synthetic samples to estimate how large they would have to be in order to rule out either model at a ∼99.7% confidence level. We find that if the real cosmology is ΛCDM, a sample of ∼150 time-delay lenses would be sufficient to rule out R {sub h} = ct at this level of accuracy, while ∼1000 time-delay lenses would be required to rule out ΛCDM if the real universe is instead R {sub h} = ct. This difference in required sample size reflects the greater number of free parameters available to fit the data with ΛCDM.
A comparison of cosmological models using time delay lenses
International Nuclear Information System (INIS)
Wei, Jun-Jie; Wu, Xue-Feng; Melia, Fulvio
2014-01-01
The use of time-delay gravitational lenses to examine the cosmological expansion introduces a new standard ruler with which to test theoretical models. The sample suitable for this kind of work now includes 12 lens systems, which have thus far been used solely for optimizing the parameters of ΛCDM. In this paper, we broaden the base of support for this new, important cosmic probe by using these observations to carry out a one-on-one comparison between competing models. The currently available sample indicates a likelihood of ∼70%-80% that the R h = ct universe is the correct cosmology versus ∼20%-30% for the standard model. This possibly interesting result reinforces the need to greatly expand the sample of time-delay lenses, e.g., with the successful implementation of the Dark Energy Survey, the VST ATLAS survey, and the Large Synoptic Survey Telescope. In anticipation of a greatly expanded catalog of time-delay lenses identified with these surveys, we have produced synthetic samples to estimate how large they would have to be in order to rule out either model at a ∼99.7% confidence level. We find that if the real cosmology is ΛCDM, a sample of ∼150 time-delay lenses would be sufficient to rule out R h = ct at this level of accuracy, while ∼1000 time-delay lenses would be required to rule out ΛCDM if the real universe is instead R h = ct. This difference in required sample size reflects the greater number of free parameters available to fit the data with ΛCDM.
A method of predicting the reliability of CDM coil insulation
International Nuclear Information System (INIS)
Kytasty, A.; Ogle, C.; Arrendale, H.
1992-01-01
This paper presents a method of predicting the reliability of the Collider Dipole Magnet (CDM) coil insulation design. The method proposes a probabilistic treatment of electrical test data, stress analysis, material properties variability and loading uncertainties to give the reliability estimate. The approach taken to predict reliability of design related failure modes of the CDM is to form analytical models of the various possible failure modes and their related mechanisms or causes, and then statistically assess the contributions of the various contributing variables. The probability of the failure mode occurring is interpreted as the number of times one would expect certain extreme situations to combine and randomly occur. One of the more complex failure modes of the CDM will be used to illustrate this methodology
Options for utilizing the CDM for global emission reductions
Energy Technology Data Exchange (ETDEWEB)
Butzengeiger-Geyer, Sonja; Castro, Paula; Harthan, Ralph O.; Hayashi, Daisuke; Healy, Sean; Maribu, Karl Magnus; Michaelowa, Axel; Okubo, Yuri; Schneider, Lambert; Storroe, Ingunn [Zuerich Univ. (Switzerland); Oeko-Institut e.V., Berlin (Germany); Perspectives GmbH, Hamburg (Germany); Point Carbon A/S, Oslo (Norway)
2010-11-15
The study describes and discusses in detail how four CDM reform alternatives, namely discounting of emission reductions, ambitious baselines, purchase and cancellation of CERs and reinvestment of CER levies, could be integrated in a Post-2012 climate regime. The study assesses these alternatives, according to their impacts on GHG emission reductions, contribution to sustainable development, cost-efficiency, technical feasibility, incentives and distributional effects as well as negotiability. The study shows that the introduction of discounting and ambitious baselines is technically feasible but politically a massive challenge. With the help of an economic model the study shows that the introduction of reform alternatives increases the amount of emission reductions but in comparison to the current CDM the impact is rather limited. But a CDM reform can in any case increase the credibility and improve the environmental integrity of the mechanism. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Linden, S.
2010-04-15
The measured properties of the dark energy component being consistent with a Cosmological Constant, {Lambda}, this cosmological standard model is referred to as the {Lambda}-Cold-Dark-Matter ({Lambda}CDM) model. Despite its overall success, this model suffers from various problems. The existence of a Cosmological Constant raises fundamental questions. Attempts to describe it as the energy contribution from the vacuum as following from Quantum Field Theory failed quantitatively. In consequence, a large number of alternative models have been developed to describe the dark energy component: modified gravity, additional dimensions, Quintessence models. Also, astrophysical effects have been considered to mimic an accelerated expansion. The basics of the {Lambda}CDM model and the various attempts of explaining dark energy are outlined in this thesis. Another major problem of the model comes from the dependencies of the fit results on a number of a priori assumptions and parameterization effects. Today, combined analyses of the various cosmological probes are performed to extract the parameters of the model. Due to a wrong model assumption or a bad parameterization of the real physics, one might end up measuring with high precision something which is not there. We show, that indeed due to the high precision of modern cosmological measurements, purely kinematic approaches to distance measurements no longer yield valid fit results except for accidental special cases, and that a fit of the exact (integral) redshift-distance relation is necessary. The main results of this work concern the use of the CPL parameterization of dark energy when coping with the dynamics of tracker solutions of Quintessence models, and the risk of introducing biases on the parameters due to the possibly prohibited extrapolation to arbitrary high redshifts of the SN type Ia magnitude calibration relation, which is obtained in the low-redshift regime. Whereas the risks of applying CPL shows up to be
How to Improve the Likelihood of CDM Approval?
DEFF Research Database (Denmark)
Brandt, Urs Steiner; Svendsen, Gert Tinggaard
2014-01-01
How can the likelihood of Clean Development Mechanism (CDM) approval be improved in the face of institutional shortcomings? To answer this question, we focus on the three institutional shortcomings of income sharing, risk sharing and corruption prevention concerning afforestation/reforestation (A....../R). Furthermore, three main stakeholders are identified, namely investors, governments and agents in a principal-agent model regarding monitoring and enforcement capacity. Developing countries such as West Africa have, despite huge potentials, not been integrated in A/R CDM projects yet. Remote sensing, however...
International Nuclear Information System (INIS)
Xu, Lixin
2012-01-01
As so far, the redshift of Gamma-ray bursts (GRBs) can extend to z ∼ 8 which makes it as a complementary probe of dark energy to supernova Ia (SN Ia). However, the calibration of GRBs is still a big challenge when they are used to constrain cosmological models. Though, the absolute magnitude of GRBs is still unknown, the slopes of GRBs correlations can be used as a useful constraint to dark energy in a completely cosmological model independent way. In this paper, we follow Wang's model-independent distance measurement method and calculate their values by using 109 GRBs events via the so-called Amati relation. Then, we use the obtained model-independent distances to constrain ΛCDM model as an example
Scalar-tensor cosmology with cosmological constant
International Nuclear Information System (INIS)
Maslanka, K.
1983-01-01
The equations of scalar-tensor theory of gravitation with cosmological constant in the case of homogeneous and isotropic cosmological model can be reduced to dynamical system of three differential equations with unknown functions H=R/R, THETA=phi/phi, S=e/phi. When new variables are introduced the system becomes more symmetrical and cosmological solutions R(t), phi(t), e(t) are found. It is shown that when cosmological constant is introduced large class of solutions which depend also on Dicke-Brans parameter can be obtained. Investigations of these solutions give general limits for cosmological constant and mean density of matter in plane model. (author)
Energy Technology Data Exchange (ETDEWEB)
Heitmann, Katrin [Los Alamos National Laboratory; Habib, Salman [Los Alamos National Laboratory; Higdon, David [Los Alamos National Laboratory; Williams, Brian J [Los Alamos National Laboratory; White, Martin [Los Alamos National Laboratory; Wagner, Christian [Los Alamos National Laboratory
2008-01-01
The power spectrum of density fluctuations is a foundational source of cosmological information. Precision cosmological probes targeted primarily at investigations of dark energy require accurate theoretical determinations of the power spectrum in the nonlinear regime. To exploit the observational power of future cosmological surveys, accuracy demands on the theory are at the one percent level or better. Numerical simulations are currently the only way to produce sufficiently error-controlled predictions for the power spectrum. The very high computational cost of (precision) N-body simulations is a major obstacle to obtaining predictions in the nonlinear regime, while scanning over cosmological parameters. Near-future observations, however, are likely to provide a meaningful constraint only on constant dark energy equation of state 'wCDM' cosmologies. In this paper we demonstrate that a limited set of only 37 cosmological models -- the 'Coyote Universe' suite -- can be used to predict the nonlinear matter power spectrum at the required accuracy over a prior parameter range set by cosmic microwave background observations. This paper is the second in a series of three, with the final aim to provide a high-accuracy prediction scheme for the nonlinear matter power spectrum for wCDM cosmologies.
Cosmological perturbations in the ΛCDM-like limit of a polytropic dark matter model
Kleidis, K.; Spyrou, N. K.
2017-10-01
It has recently been proposed that both dark matter (DM) and dark energy (DE) can be treated as a single component when they are considered in the context of a polytropic DM fluid with thermodynamical content. Depending on only one free parameter, that is, the polytropic exponent, - 0.103 law of conventional statistical physics. As a consequence, peculiar velocities in this model slightly increase instead of being redshifted away by cosmic expansion. This result might comprise a convenient probe of the polytropic DM model with Γ = 0. Even more importantly, however, upon consideration of scale-invariant metric perturbations, the spectrum of their rest-mass density counterparts exhibits an effective power-law dependence on the (physical) wavenumber, kph, of the form kph3+nseff, with the associated scalar spectral index, nseff, being equal to nseff = 0.970. This theoretical value reproduces the corresponding observational Planck result, that is, nsobs = 0.968 ± 0.006.
International Nuclear Information System (INIS)
Hawking, S.W.
1984-01-01
The subject of these lectures is quantum effects in cosmology. The author deals first with situations in which the gravitational field can be treated as a classical, unquantized background on which the quantum matter fields propagate. This is the case with inflation at the GUT era. Nevertheless the curvature of spacetime can have important effects on the behaviour of the quantum fields and on the development of long-range correlations. He then turns to the question of the quantization of the gravitational field itself. The plan of these lectures is as follows: Euclidean approach to quantum field theory in flat space; the extension of techniques to quantum fields on a curved background with the four-sphere, the Euclidean version of De Sitter space as a particular example; the GUT era; quantization of the gravitational field by Euclidean path integrals; mini superspace model. (Auth.)
Cosmological bound from the neutron star merger GW170817 in scalar–tensor and F(R gravity theories
Directory of Open Access Journals (Sweden)
Shin'ichi Nojiri
2018-04-01
Full Text Available We consider the evolution of cosmological gravitational waves in scalar–tensor theory and F(R gravity theory as typical models of the modified gravity. Although the propagation speed is not changed from the speed of light, the propagation phase changes when we compare the propagation in these modified gravity theories with the propagation in the ΛCDM model. The phase change might be detected in future observations. Keywords: Gravitational waves, Alternative theories of gravity, Cosmology
Narlikar, Jayant Vishnu
2002-01-01
The third edition of this successful textbook is fully updated and includes important recent developments in cosmology. It begins with an introduction to cosmology and general relativity, and goes on to cover the mathematical models of standard cosmology. The physical aspects of cosmology, including primordial nucleosynthesis, the astroparticle physics of inflation, and the current ideas on structure formation are discussed. Alternative models of cosmology are reviewed, including the model of Quasi-Steady State Cosmology, which has recently been proposed as an alternative to Big Bang Cosmology.
Testing ΛCDM at the lowest redshifts with SN Ia and galaxy velocities
Energy Technology Data Exchange (ETDEWEB)
Huterer, Dragan; Shafer, Daniel L. [Department of Physics, University of Michigan, 450 Church Street, Ann Arbor, MI 48109 (United States); Scolnic, Daniel M. [University of Chicago, Kavli Institute for Cosmological Physics, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Schmidt, Fabian, E-mail: huterer@umich.edu, E-mail: dshafer2@jhu.edu, E-mail: dscolnic@kicp.uchicago.edu, E-mail: fabians@mpa-garching.mpg.de [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching (Germany)
2017-05-01
Peculiar velocities of objects in the nearby universe are correlated due to the gravitational pull of large-scale structure. By measuring these velocities, we have a unique opportunity to test the cosmological model at the lowest redshifts. We perform this test, using current data to constrain the amplitude of the ''signal'' covariance matrix describing the velocities and their correlations. We consider a new, well-calibrated ''Supercal'' set of low-redshift SNe Ia as well as a set of distances derived from the fundamental plane relation of 6dFGS galaxies. Analyzing the SN and galaxy data separately, both results are consistent with the peculiar velocity signal of our fiducial ΛCDM model, ruling out the noise-only model with zero peculiar velocities at greater than 7σ (SNe) and 8σ (galaxies). When the two data sets are combined appropriately, the precision of the test increases slightly, resulting in a constraint on the signal amplitude of A = 1.05{sub −0.21}{sup +0.25}, where A = 1 corresponds to our fiducial model. Equivalently, we report an 11% measurement of the product of the growth rate and amplitude of mass fluctuations evaluated at z {sub eff} = 0.02, f σ{sub 8} = 0.428{sub −0.045}{sup +0.048}, valid for our fiducial ΛCDM model. We explore the robustness of the results to a number of conceivable variations in the analysis and find that individual variations shift the preferred signal amplitude by less than ∼0.5σ. We briefly discuss our Supercal SN Ia results in comparison with our previous results using the JLA compilation.
Is LambdaCDM consistent with the Tully-Fisher relation?
Reyes, Reinabelle; Gunn, J. E.; Mandelbaum, R.
2013-07-01
We consider the question of the origin of the Tully-Fisher relation in LambdaCDM cosmology. Reproducing the observed tight relation between stellar masses and rotation velocities of disk galaxies presents a challenge for semi-analytical models and hydrodynamic simulations of galaxy formation. Here, our goal is to construct a suite of galaxy mass models that is fully consistent with observations, and that also reproduces the observed Tully-Fisher relation. We take advantage of a well-defined sample of disk galaxies in SDSS with measured rotation velocities (from long-slit spectroscopy of H-alpha), stellar bulge and disk profiles (from fits to SDSS images), and average dark matter halo masses (from stacked weak lensing of a larger, similarly-selected sample). The primary remaining freedom in the mass models come from the final dark matter halo profile (after contraction from baryon infall and, possibly, feedback) and the stellar IMF. We find that the observed velocities are reproduced by models with Kroupa IMF and NFW (i.e., unmodified) dark matter haloes for galaxies with stellar masses 10^9-10^10 M_sun. For higher stellar masses, models with contracted NFW haloes are favored. A scenario in which the amount of halo contraction varies with stellar mass is able to reproduce the observed Tully-Fisher relation over the full stellar mass range of our sample from 10^9 to 10^11 M_sun. We present this as a proof-of-concept for consistency between LambdaCDM and the Tully-Fisher relation.
An introduction to cosmological inflation
International Nuclear Information System (INIS)
Liddle, A.R.
1999-01-01
An introductory account is given of the inflationary cosmology, which postulates a period of accelerated expansion during the Universe's earliest stages. The historical motivation is briefly outlined, and the modelling of the inflationary epoch explained. The most important aspect of inflation is that it provides a possible model for the origin of structure in the Universe, and key results are reviewed, along with a discussion of the current observational situation and outlook. (author)
Observational constraints on undulant cosmologies
Energy Technology Data Exchange (ETDEWEB)
Barenboim, Gabriela; /Valencia U.; Mena Requejo, Olga; Quigg, Chris; /Fermilab
2005-10-01
In an undulant universe, cosmic expansion is characterized by alternating periods of acceleration and deceleration. We examine cosmologies in which the dark-energy equation of state varies periodically with the number of e-foldings of the scale factor of the universe, and use observations to constrain the frequency of oscillation. We find a tension between a forceful response to the cosmic coincidence problem and the standard treatment of structure formation.
Energy Technology Data Exchange (ETDEWEB)
NONE
2012-11-01
The report is an annual report of the Swedish CDM [Clean Development Mechanism] and JI [Joint Implementation]program for 2011. The report shows aims and goals of the business and the work of individual CDM and JI projects and multilateral funds which have been performed over the entire duration of life and especially during 2011. The report presents volume orders, deliveries of emission reduction units as well as the volumes expected to be needed for the fulfillment of the national target by 2020. The report also includes information about the average price for the emission reductions as well as alternative costs.
A Comparative Analysis of the Supernova Legacy Survey Sample With ΛCDM and the Rh=ct Universe
Wei, Jun-Jie; Wu, Xue-Feng; Melia, Fulvio; Maier, Robert S.
2015-03-01
The use of Type Ia supernovae (SNe Ia) has thus far produced the most reliable measurement of the expansion history of the universe, suggesting that ΛCDM offers the best explanation for the redshift-luminosity distribution observed in these events. However, analysis of other kinds of sources, such as cosmic chronometers, gamma-ray bursts, and high-z quasars, conflicts with this conclusion, indicating instead that the constant expansion rate implied by the Rh = ct universe is a better fit to the data. The central difficulty with the use of SNe Ia as standard candles is that one must optimize three or four nuisance parameters characterizing supernova (SN) luminosities simultaneously with the parameters of an expansion model. Hence, in comparing competing models, one must reduce the data independently for each. We carry out such a comparison of ΛCDM and the Rh = ct universe using the SN Legacy Survey sample of 252 SN events, and show that each model fits its individually reduced data very well. However, since Rh = ct has only one free parameter (the Hubble constant), it follows from a standard model selection technique that it is to be preferred over ΛCDM, the minimalist version of which has three (the Hubble constant, the scaled matter density, and either the spatial curvature constant or the dark energy equation-of-state parameter). We estimate using the Bayes Information Criterion that in a pairwise comparison, the likelihood of Rh = ct is ˜90%, compared with only ˜10% for a minimalist form of ΛCDM, in which dark energy is simply a cosmological constant. Compared to Rh = ct, versions of the standard model with more elaborate parametrizations of dark energy are judged to be even less likely. This work is dedicated to the memory of Prof. Tan Lu, who sadly passed away 2014 December 3. Among his many achievements, he is considered to be one of the founders of high-energy astrophysics, and a pioneer in modern cosmology, in China.
How to attribute market leakage to CDM projects
Vöhringer, F.; Kuosmanen, T.K.; Dellink, R.B.
2006-01-01
Economic studies suggest that market leakage rates of greenhouse gas abatement can reach the two-digit percentage range. Although the Marrakesh Accords require Clean Development Mechanism (CDM) projects to account for leakage, most projects neglect market leakage. Insufficient leakage accounting is
Local involvement in CDM biogas projects: Argentine experiences
Serna Martín, A.; Dietz, T.
2008-01-01
Mitigating climate change and contributing to the sustainable development of host countries are the goals of the CDM. In order to achieve these goals, projects follow an implementation chain, which starts with the design and ends with the issuance of Certified Emission Reductions (CERs). During the
CDM using a Cross-Country Micro Moments Database
Bartelsman, E.J.; van Leeuwen, G.; Polder, M.
2017-01-01
This note starts with a retrospective view of the CDM model [Crépon, Bruno, Emmanuel Duguet, and Jacques Mairesse. 1998. “Research, Innovation and Productivity: An Econometric Analysis at the Firm Level.” Economics of Innovation and New Technology 7 (2): 115–158.] as an econometric framework for
A Reformed CDM - including new mechanisms for sustainable development
Energy Technology Data Exchange (ETDEWEB)
Holm Olsen, K; Fenhann, J
2009-07-01
The annual CD4CDM Perspectives Series features a topic of pivotal importance to the global carbon market. The series seeks to communicate the diverse insights and visions of leading actors in the carbon market to better inform the decisions of professionals and policymakers in developing countries. The second theme of the series focuses on how the CDM can be reformed in a post-2012 climate regime, including new mechanism for sustainable development. Seventeen contributors from the private sector, Designated National Authorities, the Executive Board, research, and development agencies present their perspective on meeting challenges such as the unequal regional distribution of CDM projects, concerns about environmental integrity and technology transfer, complex governance procedures, and questions about the CDM's contribution to sustainable development. The new ideas and solutions to these challenges proposed by the authors in this edition of Perspectives have been solicited to help professionals and policy makers make the best decisions in the lead-up to COP 15 in Copenhagen and beyond. (au)
Wind farm investment risks under uncertain CDM benefit in China
International Nuclear Information System (INIS)
Yang, Ming; Nguyen, Francois; T'Serclaes, Philippine de; Buchner, Barbara
2010-01-01
China has set an ambitious target to increase its wind power capacity by 35 GW from 2007 to 2020. The country's hunger for clean power provides great opportunities for wind energy investors. However, risks from China's uncertain electricity market regulation and an uncertain energy policy framework, mainly due to uncertain Clean Development Mechanism (CDM) benefits, prevent foreign investors from investing in China's wind energy. The objectives of this paper are to: (1) quantify wind energy investment risk premiums in an uncertain international energy policy context and (2) evaluate the impact of uncertain CDM benefits on the net present values of wind power projects. With four scenarios, this study simulates possible prices of certified emissions reductions (CERs) from wind power projects. Project net present values (NPVs) have been calculated. The project risk premiums are drawn from different and uncertain CER prices. Our key findings show that uncertain CDM benefits will significantly affect the project NPVs. This paper concludes that the Chinese government needs revising its tariff incentives, most likely by introducing fixed feed-in tariffs (FITs), and re-examining its CDM-granting policy and its wind project tax rates, to facilitate wind power development and enable China to achieve its wind energy target. (author)
A Reformed CDM - including new mechanisms for sustainable development
Energy Technology Data Exchange (ETDEWEB)
Holm Olsen, K.; Fenhann, J.
2009-07-01
The annual CD4CDM Perspectives Series features a topic of pivotal importance to the global carbon market. The series seeks to communicate the diverse insights and visions of leading actors in the carbon market to better inform the decisions of professionals and policymakers in developing countries. The second theme of the series focuses on how the CDM can be reformed in a post-2012 climate regime, including new mechanism for sustainable development. Seventeen contributors from the private sector, Designated National Authorities, the Executive Board, research, and development agencies present their perspective on meeting challenges such as the unequal regional distribution of CDM projects, concerns about environmental integrity and technology transfer, complex governance procedures, and questions about the CDM's contribution to sustainable development. The new ideas and solutions to these challenges proposed by the authors in this edition of Perspectives have been solicited to help professionals and policy makers make the best decisions in the lead-up to COP 15 in Copenhagen and beyond. (au)
CDM: Teaching Discrete Mathematics to Computer Science Majors
Sutner, Klaus
2005-01-01
CDM, for computational discrete mathematics, is a course that attempts to teach a number of topics in discrete mathematics to computer science majors. The course abandons the classical definition-theorem-proof model, and instead relies heavily on computation as a source of motivation and also for experimentation and illustration. The emphasis on…
The Abacus Cosmos: A Suite of Cosmological N-body Simulations
Garrison, Lehman H.; Eisenstein, Daniel J.; Ferrer, Douglas; Tinker, Jeremy L.; Pinto, Philip A.; Weinberg, David H.
2018-06-01
We present a public data release of halo catalogs from a suite of 125 cosmological N-body simulations from the ABACUS project. The simulations span 40 wCDM cosmologies centered on the Planck 2015 cosmology at two mass resolutions, 4 × 1010 h ‑1 M ⊙ and 1 × 1010 h ‑1 M ⊙, in 1.1 h ‑1 Gpc and 720 h ‑1 Mpc boxes, respectively. The boxes are phase-matched to suppress sample variance and isolate cosmology dependence. Additional volume is available via 16 boxes of fixed cosmology and varied phase; a few boxes of single-parameter excursions from Planck 2015 are also provided. Catalogs spanning z = 1.5 to 0.1 are available for friends-of-friends and ROCKSTAR halo finders and include particle subsamples. All data products are available at https://lgarrison.github.io/AbacusCosmos.
Averaging in spherically symmetric cosmology
International Nuclear Information System (INIS)
Coley, A. A.; Pelavas, N.
2007-01-01
The averaging problem in cosmology is of fundamental importance. When applied to study cosmological evolution, the theory of macroscopic gravity (MG) can be regarded as a long-distance modification of general relativity. In the MG approach to the averaging problem in cosmology, the Einstein field equations on cosmological scales are modified by appropriate gravitational correlation terms. We study the averaging problem within the class of spherically symmetric cosmological models. That is, we shall take the microscopic equations and effect the averaging procedure to determine the precise form of the correlation tensor in this case. In particular, by working in volume-preserving coordinates, we calculate the form of the correlation tensor under some reasonable assumptions on the form for the inhomogeneous gravitational field and matter distribution. We find that the correlation tensor in a Friedmann-Lemaitre-Robertson-Walker (FLRW) background must be of the form of a spatial curvature. Inhomogeneities and spatial averaging, through this spatial curvature correction term, can have a very significant dynamical effect on the dynamics of the Universe and cosmological observations; in particular, we discuss whether spatial averaging might lead to a more conservative explanation of the observed acceleration of the Universe (without the introduction of exotic dark matter fields). We also find that the correlation tensor for a non-FLRW background can be interpreted as the sum of a spatial curvature and an anisotropic fluid. This may lead to interesting effects of averaging on astrophysical scales. We also discuss the results of averaging an inhomogeneous Lemaitre-Tolman-Bondi solution as well as calculations of linear perturbations (that is, the backreaction) in an FLRW background, which support the main conclusions of the analysis
Cosmology with exponential potentials
International Nuclear Information System (INIS)
Kehagias, Alex; Kofinas, Georgios
2004-01-01
We examine in the context of general relativity the dynamics of a spatially flat Robertson-Walker universe filled with a classical minimally coupled scalar field φ of exponential potential V(φ) ∼ exp(-μφ) plus pressureless baryonic matter. This system is reduced to a first-order ordinary differential equation for Ω φ (w φ ) or q(w φ ), providing direct evidence on the acceleration/deceleration properties of the system. As a consequence, for positive potentials, passage into acceleration not at late times is generically a feature of the system for any value of μ, even when the late-times attractors are decelerating. Furthermore, the structure formation bound, together with the constraints Ω m0 ∼ 0.25 - 0.3, -1 ≤ w φ0 ≤ -0.6, provides, independently of initial conditions and other parameters, the necessary condition 0 N , while the less conservative constraint -1 ≤ w φ ≤ -0.93 gives 0 N . Special solutions are found to possess intervals of acceleration. For the almost cosmological constant case w φ ∼ -1, the general relation Ω φ (w φ ) is obtained. The generic (nonlinearized) late-times solution of the system in the plane (w φ , Ω φ ) or (w φ , q) is also derived
Addressing the need for a Clean Development Mechanism (CDM) specific project management strategy
CSIR Research Space (South Africa)
Lotz, M
2009-01-01
Full Text Available Clean Development Mechanism (CDM) projects have additional technical, financial and regulatory requirements that are not fully addressed by classic project management approaches. Research has been done on individual novel concepts of the CDM, like...
Holographic dark energy with cosmological constant
Hu, Yazhou; Li, Miao; Li, Nan; Zhang, Zhenhui
2015-08-01
Inspired by the multiverse scenario, we study a heterotic dark energy model in which there are two parts, the first being the cosmological constant and the second being the holographic dark energy, thus this model is named the ΛHDE model. By studying the ΛHDE model theoretically, we find that the parameters d and Ωhde are divided into a few domains in which the fate of the universe is quite different. We investigate dynamical behaviors of this model, and especially the future evolution of the universe. We perform fitting analysis on the cosmological parameters in the ΛHDE model by using the recent observational data. We find the model yields χ2min=426.27 when constrained by Planck+SNLS3+BAO+HST, comparable to the results of the HDE model (428.20) and the concordant ΛCDM model (431.35). At 68.3% CL, we obtain -0.07<ΩΛ0<0.68 and correspondingly 0.04<Ωhde0<0.79, implying at present there is considerable degeneracy between the holographic dark energy and cosmological constant components in the ΛHDE model.
Holographic dark energy with cosmological constant
Energy Technology Data Exchange (ETDEWEB)
Hu, Yazhou; Li, Nan; Zhang, Zhenhui [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190 (China); Li, Miao, E-mail: asiahu@itp.ac.cn, E-mail: mli@itp.ac.cn, E-mail: linan@itp.ac.cn, E-mail: zhangzhh@mail.ustc.edu.cn [School of Astronomy and Space Science, Sun Yat-Sen University, Guangzhou 510275 (China)
2015-08-01
Inspired by the multiverse scenario, we study a heterotic dark energy model in which there are two parts, the first being the cosmological constant and the second being the holographic dark energy, thus this model is named the ΛHDE model. By studying the ΛHDE model theoretically, we find that the parameters d and Ω{sub hde} are divided into a few domains in which the fate of the universe is quite different. We investigate dynamical behaviors of this model, and especially the future evolution of the universe. We perform fitting analysis on the cosmological parameters in the ΛHDE model by using the recent observational data. We find the model yields χ{sup 2}{sub min}=426.27 when constrained by Planck+SNLS3+BAO+HST, comparable to the results of the HDE model (428.20) and the concordant ΛCDM model (431.35). At 68.3% CL, we obtain −0.07<Ω{sub Λ0}<0.68 and correspondingly 0.04<Ω{sub hde0}<0.79, implying at present there is considerable degeneracy between the holographic dark energy and cosmological constant components in the ΛHDE model.
Holographic dark energy with cosmological constant
International Nuclear Information System (INIS)
Hu, Yazhou; Li, Nan; Zhang, Zhenhui; Li, Miao
2015-01-01
Inspired by the multiverse scenario, we study a heterotic dark energy model in which there are two parts, the first being the cosmological constant and the second being the holographic dark energy, thus this model is named the ΛHDE model. By studying the ΛHDE model theoretically, we find that the parameters d and Ω hde are divided into a few domains in which the fate of the universe is quite different. We investigate dynamical behaviors of this model, and especially the future evolution of the universe. We perform fitting analysis on the cosmological parameters in the ΛHDE model by using the recent observational data. We find the model yields χ 2 min =426.27 when constrained by Planck+SNLS3+BAO+HST, comparable to the results of the HDE model (428.20) and the concordant ΛCDM model (431.35). At 68.3% CL, we obtain −0.07<Ω Λ0 <0.68 and correspondingly 0.04<Ω hde0 <0.79, implying at present there is considerable degeneracy between the holographic dark energy and cosmological constant components in the ΛHDE model
Sehgal, Neelima; Trac, Hy; Acquaviva, Viviana; Ade, Peter A. R.; Aguirre, Paula; Amiri, Mandana; Appel, John W.; Barrientos, L. Felipe; Battistelli, Elia S.; Bond, J. Richard;
2010-01-01
We present constraints on cosmological parameters based on a sample of Sunyaev-Zel'dovich-selected galaxy clusters detected in a millimeter-wave survey by the Atacama Cosmology Telescope. The cluster sample used in this analysis consists of 9 optically-confirmed high-mass clusters comprising the high-significance end of the total cluster sample identified in 455 square degrees of sky surveyed during 2008 at 148 GHz. We focus on the most massive systems to reduce the degeneracy between unknown cluster astrophysics and cosmology derived from SZ surveys. We describe the scaling relation between cluster mass and SZ signal with a 4-parameter fit. Marginalizing over the values of the parameters in this fit with conservative priors gives (sigma)8 = 0.851 +/- 0.115 and w = -1.14 +/- 0.35 for a spatially-flat wCDM cosmological model with WMAP 7-year priors on cosmological parameters. This gives a modest improvement in statistical uncertainty over WMAP 7-year constraints alone. Fixing the scaling relation between cluster mass and SZ signal to a fiducial relation obtained from numerical simulations and calibrated by X-ray observations, we find (sigma)8 + 0.821 +/- 0.044 and w = -1.05 +/- 0.20. These results are consistent with constraints from WMAP 7 plus baryon acoustic oscillations plus type Ia supernova which give (sigma)8 = 0.802 +/- 0.038 and w = -0.98 +/- 0.053. A stacking analysis of the clusters in this sample compared to clusters simulated assuming the fiducial model also shows good agreement. These results suggest that, given the sample of clusters used here, both the astrophysics of massive clusters and the cosmological parameters derived from them are broadly consistent with current models.
The Atacama Cosmology Telescope: Cosmology from Galaxy Clusters Detected via the Sunyaev-Zeldovich Effect
International Nuclear Information System (INIS)
Sehgal, N.
2011-01-01
We present constraints on cosmological parameters based on a sample of Sunyaev-Zeldovich-selected galaxy clusters detected in a millimeter-wave survey by the Atacama Cosmology Telescope. The cluster sample used in this analysis consists of 9 optically-confirmed high-mass clusters comprising the high-significance end of the total cluster sample identified in 455 square degrees of sky surveyed during 2008 at 148GHz. We focus on the most massive systems to reduce the degeneracy between unknown cluster astrophysics and cosmology derived from SZ surveys. We describe the scaling relation between cluster mass and SZ signal with a 4-parameter fit. Marginalizing over the values of the parameters in this fit with conservative priors gives σ 8 = 0.851 ± 0.115 and w = -1.14 ± 0.35 for a spatially-flat wCDM cosmological model with WMAP 7-year priors on cosmological parameters. This gives a modest improvement in statistical uncertainty over WMAP 7-year constraints alone. Fixing the scaling relation between cluster mass and SZ signal to a fiducial relation obtained from numerical simulations and calibrated by X-ray observations, we find σ 8 = 0.821 ± 0.044 and w = -1.05 ± 0.20. These results are consistent with constraints from WMAP 7 plus baryon acoustic oscillations plus type Ia supernoava which give σ 8 = 0.802 ± 0.038 and w = -0.98 ± 0.053. A stacking analysis of the clusters in this sample compared to clusters simulated assuming the fiducial model also shows good agreement. These results suggest that, given the sample of clusters used here, both the astrophysics of massive clusters and the cosmological parameters derived from them are broadly consistent with current models.
Dimensional cosmological principles
International Nuclear Information System (INIS)
Chi, L.K.
1985-01-01
The dimensional cosmological principles proposed by Wesson require that the density, pressure, and mass of cosmological models be functions of the dimensionless variables which are themselves combinations of the gravitational constant, the speed of light, and the spacetime coordinates. The space coordinate is not the comoving coordinate. In this paper, the dimensional cosmological principle and the dimensional perfect cosmological principle are reformulated by using the comoving coordinate. The dimensional perfect cosmological principle is further modified to allow the possibility that mass creation may occur. Self-similar spacetimes are found to be models obeying the new dimensional cosmological principle
Cosmology and particle physics
International Nuclear Information System (INIS)
Turner, M.S.
1985-01-01
The author reviews the standard cosmology, focusing on primordial nucleosynthesis, and discusses how the standard cosmology has been used to place constraints on the properties of various particles. Baryogenesis is examined in which the B, C, CP violating interactions in GUTs provide a dynamical explanation for the predominance of matter over antimatter and the present baryon-to-baryon ratio. Monoposes, cosmology and astrophysics are reviewed. The author also discusses supersymmetry/supergravity and cosmology, superstrings and cosmology in extra dimensions, and axions, astrophics, and cosmology
78 FR 32250 - CDM Smith and Dynamac Corp; Transfer of Data
2013-05-29
... ENVIRONMENTAL PROTECTION AGENCY [EPA-HQ-OPP-2013-0036; FRL-9387-5] CDM Smith and Dynamac Corp... the submitter, will be transferred to CDM Smith and its subcontractor, Dynamac Corp, in accordance with 40 CFR 2.307(h)(3) and 2.308(i)(2). CDM Smith and its subcontractor, Dynamac Corp, have been...
The Learning Process and Technological Change in Wind Power: Evidence from China's CDM Wind Projects
Tang, Tian; Popp, David
2016-01-01
The Clean Development Mechanism (CDM) is a project-based carbon trade mechanism that subsidizes the users of climate-friendly technologies and encourages technology transfer. The CDM has provided financial support for a large share of Chinese wind projects since 2002. Using pooled cross-sectional data of 486 registered CDM wind projects in China…
CDM in sub-Saharan Africa and the prospects of the Nairobi Framework Initiative
Byigero, Alfred D.; Clancy, Joy S.; Skutsch, Margaret
2010-01-01
To what extent can capacity-building activities under the Nairobi Framework (NF) Initiative overcome barriers to the Clean Development Mechanism (CDM) in sub-Saharan Africa and, in particular, the East African region? The level of CDM penetration into sub-Saharan Africa is compared with CDM market
Latin America-Alberta-Canada CDM Conference: Conference Summary
International Nuclear Information System (INIS)
Anon
2000-01-01
Proposals for joint initiatives put forward by participants at the Clean Development Mechanisms Conference included (1) the development of regional guidelines to assist governments in setting regulatory framework for projects to qualify as CDMs, (2) development of regional baselines and regional performance indicators for social benefit and sustainable development, (3) a specific project in Mexico to test the CDM framework and eligibility criteria, (4) development of bilateral agreements between governments, (5) staff exchanges between associations and governments, (6) government recognition for private sector actions such as a letter affirming that certified emission reductions would be accepted for commitments, (7) sharing of information on websites, and (8) capacity building, training programs and workshops. The Conference also identified common ground and shared interest in CDM initiatives among participants, and readiness to explore joint ventures and technology transfer opportunities. There is wide-spread agreement on the need to resolve uncertainties of CDM, such as baseline and additionality; monitoring, reporting, certification; buyer/seller liability; adaptation levy for international emissions trading, joint implementation and clean development mechanism transactions. Significant consensus exists regarding benefits of 'learning by doing' and the need for minimizing transaction costs and risks. Baseline and Additionality are recognized as the critical issues, with social benefits, sustainable development aspects of projects, and the critical nature of integrity, technical expertise, and track record of both partners as close seconds. The importance of framework arrangements, host country approval, clear designation of responsibility and authority to approve projects, the need for specific guidelines and specific approval procedures, country-to-country agreements and national crediting arrangement are recognized by all participants. With regard to issues
f(R,T,R{sub μν}T{sup μν}) gravity phenomenology and ΛCDM universe
Energy Technology Data Exchange (ETDEWEB)
Odintsov, Sergei D., E-mail: odintsov@ieec.uab.es [Instituciò Catalana de Recerca i Estudis Avançats (ICREA), Barcelona (Spain); Institut de Ciències de l' Espai ICE (CSIC-IEEC), Campus UAB Facultat de Ciències, Torre C5-Parell-2a pl, E-08193 Bellaterra (Barcelona) (Spain); Sáez-Gómez, Diego, E-mail: diego.saezgomez@uct.ac.za [Astrophysics, Cosmology and Gravity Centre (ACGC) and Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, Cape Town (South Africa); Fisika Teorikoaren eta Zientziaren Historia Saila, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea, 644 Posta Kutxatila, 48080 Bilbao (Spain)
2013-10-01
We propose general f(R,T,R{sub μν}T{sup μν}) theory as generalization of covariant Hořava-like gravity with dynamical Lorentz symmetry breaking. FRLW cosmological dynamics for several versions of such theory is considered. The reconstruction of the above action is explicitly done, including the numerical reconstruction for the occurrence of ΛCDM universe. De Sitter universe solutions in the presence of non-constant fluid are also presented. The problem of matter instability in f(R,T,R{sub μν}T{sup μν}) gravity is discussed.
Simple inhomogeneous cosmological (toy) models
International Nuclear Information System (INIS)
Isidro, Eddy G. Chirinos; Zimdahl, Winfried; Vargas, Cristofher Zuñiga
2016-01-01
Based on the Lemaître-Tolman-Bondi (LTB) metric we consider two flat inhomogeneous big-bang models. We aim at clarifying, as far as possible analytically, basic features of the dynamics of the simplest inhomogeneous models and to point out the potential usefulness of exact inhomogeneous solutions as generalizations of the homogeneous configurations of the cosmological standard model. We discuss explicitly partial successes but also potential pitfalls of these simplest models. Although primarily seen as toy models, the relevant free parameters are fixed by best-fit values using the Joint Light-curve Analysis (JLA)-sample data. On the basis of a likelihood analysis we find that a local hump with an extension of almost 2 Gpc provides a better description of the observations than a local void for which we obtain a best-fit scale of about 30 Mpc. Future redshift-drift measurements are discussed as a promising tool to discriminate between inhomogeneous configurations and the ΛCDM model.
Bulk viscous matter and recent acceleration of the universe
Energy Technology Data Exchange (ETDEWEB)
Sasidharan, Athira; Mathew, Titus K. [Cochin University of Science and Technology, Department of Physics, Kochi (India)
2015-07-15
We consider a cosmological model dominated by bulk viscous matter with a total bulk viscosity coefficient proportional to the velocity and acceleration of the expansion of the universe in such a way that ζ = ζ{sub 0} + ζ{sub 1}(a)/(a) + ζ{sub 2}(a)/(a). We show that there exist two limiting conditions in the bulk viscous coefficients (ζ{sub 0}, ζ{sub 1}, ζ{sub 2}) which correspond to a universe having a Big Bang at the origin, followed by an early decelerated epoch and then making a smooth transition into an accelerating epoch. We have constrained the model using the type Ia Supernovae data, evaluated the best estimated values of all the bulk viscous parameters and the Hubble parameter corresponding to the two limiting conditions. We found that even though the evolution of the cosmological parameters are in general different for the two limiting cases, they show identical behavior for the best estimated values of the parameters from both limiting conditions. A recent acceleration would occur if ζ{sub 0} + ζ{sub 1} > 1 for the first limiting conditions and if ζ{sub 0} + ζ{sub 1} < 1 for the second limiting conditions. The age of the universe predicted by this model is found to be less than that predicted from the oldest galactic globular clusters. The total bulk viscosity seems to be negative in the past and becomes positive when z ≤ 0.8. So the model violates the local second law of thermodynamics. However, the model satisfies the generalized second law of thermodynamics at the apparent horizon throughout the evolution of the universe. We also made a statefinder analysis of the model and found that it is distinguishably different from the standard ΛCDM model at present, but it shows a de Sitter type behavior in the far future of the evolution. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Lu, Jianbo; Wu, Yabo; Wang, Yan; Yang, Weiqiang [Liaoning Normal University, Department of Physics, Dalian (China); Liu, Molin [Xinyang Normal University, Department of Physics, Xinyang (China)
2016-12-15
Tensions between several cosmic observations were found recently, such as the inconsistent values of H{sub 0} (or σ{sub 8}) were indicated by the different cosmic observations. Introducing the massive neutrinos in ΛCDM could potentially solve the tensions. Viable f(R) gravity producing ΛCDM background expansion with massive neutrinos is investigated in this paper. We fit the current observational data: Planck-2015 CMB, RSD, BAO, and SNIa to constrain the mass of neutrinos in viable f(R) theory. The constraint results at 95% confidence level are: Σm{sub ν} < 0.202 eV for the active-neutrino case, m{sub ν,sterile}{sup eff} < 0.757 eV with N{sub eff} < 3.22 for the sterile neutrino case. For the effects due to the mass of the neutrinos, the constraint results on model parameter at 95% confidence level become f{sub R0} x 10{sup -6} > -1.89 and f{sub R0} x 10{sup -6} > -2.02 for two cases, respectively. It is also shown that the fitting values of several parameters much depend on the neutrino properties, such as the cold dark matter density, the cosmological quantities at matter-radiation equality, the neutrino density and the fraction of baryonic mass in helium. Finally, the constraint result shows that the tension between direct and CMB measurements of H{sub 0} gets slightly weaker in the viable f(R) model than that in the base ΛCDM model. (orig.)
COSMOLOGY FROM GRAVITATIONAL LENS TIME DELAYS AND PLANCK DATA
International Nuclear Information System (INIS)
Suyu, S. H.; Treu, T.; Sonnenfeld, A.; Hilbert, S.; Spiniello, C.; Auger, M. W.; Collett, T.; Blandford, R. D.; Marshall, P. J.; Courbin, F.; Meylan, G.; Tewes, M.; Fassnacht, C. D.; Koopmans, L. V. E.
2014-01-01
Under the assumption of a flat ΛCDM cosmology, recent data from the Planck satellite point toward a Hubble constant that is in tension with that measured by gravitational lens time delays and by the local distance ladder. Prosaically, this difference could arise from unknown systematic uncertainties in some of the measurements. More interestingly—if systematics were ruled out—resolving the tension would require a departure from the flat ΛCDM cosmology, introducing, for example, a modest amount of spatial curvature, or a non-trivial dark energy equation of state. To begin to address these issues, we present an analysis of the gravitational lens RXJ1131–1231 that is improved in one particular regard: we examine the issue of systematic error introduced by an assumed lens model density profile. We use more flexible gravitational lens models with baryonic and dark matter components, and find that the exquisite Hubble Space Telescope image with thousands of intensity pixels in the Einstein ring and the stellar velocity dispersion of the lens contain sufficient information to constrain these more flexible models. The total uncertainty on the time-delay distance is 6.6% for a single system. We proceed to combine our improved time-delay distance measurement with the WMAP9 and Planck posteriors. In an open ΛCDM model, the data for RXJ1131–1231 in combination with Planck favor a flat universe with Ω k =0.00 −0.02 +0.01 (68% credible interval (CI)). In a flat wCDM model, the combination of RXJ1131–1231 and Planck yields w=−1.52 −0.20 +0.19 (68% CI)
Spherical collapse model in time varying vacuum cosmologies
International Nuclear Information System (INIS)
Basilakos, Spyros; Plionis, Manolis; Sola, Joan
2010-01-01
We investigate the virialization of cosmic structures in the framework of flat Friedmann-Lemaitre-Robertson-Walker cosmological models, in which the vacuum energy density evolves with time. In particular, our analysis focuses on the study of spherical matter perturbations, as they decouple from the background expansion, 'turn around', and finally collapse. We generalize the spherical collapse model in the case when the vacuum energy is a running function of the Hubble rate, Λ=Λ(H). A particularly well-motivated model of this type is the so-called quantum field vacuum, in which Λ(H) is a quadratic function, Λ(H)=n 0 +n 2 H 2 , with n 0 ≠0. This model was previously studied by our team using the latest high quality cosmological data to constrain its free parameters, as well as the predicted cluster formation rate. It turns out that the corresponding Hubble expansion history resembles that of the traditional ΛCDM cosmology. We use this Λ(t)CDM framework to illustrate the fact that the properties of the spherical collapse model (virial density, collapse factor, etc.) depend on the choice of the considered vacuum energy (homogeneous or clustered). In particular, if the distribution of the vacuum energy is clustered, then, under specific conditions, we can produce more concentrated structures with respect to the homogeneous vacuum energy case.
New Cosmological Model and Its Implications on Observational Data Interpretation
Directory of Open Access Journals (Sweden)
Vlahovic Branislav
2013-09-01
Full Text Available The paradigm of ΛCDM cosmology works impressively well and with the concept of inflation it explains the universe after the time of decoupling. However there are still a few concerns; after much effort there is no detection of dark matter and there are significant problems in the theoretical description of dark energy. We will consider a variant of the cosmological spherical shell model, within FRW formalism and will compare it with the standard ΛCDM model. We will show that our new topological model satisfies cosmological principles and is consistent with all observable data, but that it may require new interpretation for some data. Considered will be constraints imposed on the model, as for instance the range for the size and allowed thickness of the shell, by the supernovae luminosity distance and CMB data. In this model propagation of the light is confined along the shell, which has as a consequence that observed CMB originated from one point or a limited space region. It allows to interpret the uniformity of the CMB without inflation scenario. In addition this removes any constraints on the uniformity of the universe at the early stage and opens a possibility that the universe was not uniform and that creation of galaxies and large structures is due to the inhomogeneities that originated in the Big Bang.
The Age of Precision Cosmology
Chuss, David T.
2012-01-01
In the past two decades, our understanding of the evolution and fate of the universe has increased dramatically. This "Age of Precision Cosmology" has been ushered in by measurements that have both elucidated the details of the Big Bang cosmology and set the direction for future lines of inquiry. Our universe appears to consist of 5% baryonic matter; 23% of the universe's energy content is dark matter which is responsible for the observed structure in the universe; and 72% of the energy density is so-called "dark energy" that is currently accelerating the expansion of the universe. In addition, our universe has been measured to be geometrically flat to 1 %. These observations and related details of the Big Bang paradigm have hinted that the universe underwent an epoch of accelerated expansion known as Uinflation" early in its history. In this talk, I will review the highlights of modern cosmology, focusing on the contributions made by measurements of the cosmic microwave background, the faint afterglow of the Big Bang. I will also describe new instruments designed to measure the polarization of the cosmic microwave background in order to search for evidence of cosmic inflation.
How fabulous is Fab 5 cosmology?
International Nuclear Information System (INIS)
Linder, Eric V.
2013-01-01
Extended gravity origins for cosmic acceleration can solve some fine tuning issues and have useful characteristics, but generally have little to say regarding the cosmological constant problem. Fab 5 gravity can be ghost free and stable, have attractor solutions in the past and future, and possess self tuning that solves the original cosmological constant problem. Here we show however it does not possess all these qualities at the same time. We also demonstrate that the self tuning is so powerful that it not only cancels the cosmological constant but also all other energy density, and we derive the scalings of its approach to a renormalized de Sitter cosmology. While this strong cancellation is bad for the late universe, it greatly eases early universe inflation
How fabulous is Fab 5 cosmology?
Energy Technology Data Exchange (ETDEWEB)
Linder, Eric V., E-mail: evlinder@lbl.gov [Berkeley Center for Cosmological Physics and Berkeley Lab, University of California, Berkeley, CA, 94720 (United States)
2013-12-01
Extended gravity origins for cosmic acceleration can solve some fine tuning issues and have useful characteristics, but generally have little to say regarding the cosmological constant problem. Fab 5 gravity can be ghost free and stable, have attractor solutions in the past and future, and possess self tuning that solves the original cosmological constant problem. Here we show however it does not possess all these qualities at the same time. We also demonstrate that the self tuning is so powerful that it not only cancels the cosmological constant but also all other energy density, and we derive the scalings of its approach to a renormalized de Sitter cosmology. While this strong cancellation is bad for the late universe, it greatly eases early universe inflation.
Development of the Universe and New Cosmology
Sakharov, Alexander S
2003-01-01
Cosmology is undergoing an explosive period of activity, fueled both by new, accurate astrophysical data and by innovative theoretical developments. Cosmological parameters such as the total density of the Universe and the rate of cosmological expansion are being precisely measured for the first time, and a consistent standard picture of the Universe is beginning to emerge. Recent developments in cosmology give rise the intriguing possibility that all structures in the Universe, from superclusters to planets, had a quantum-mechanical origin in its earliest moments. Furthermore, these ideas are not idle theorizing, but predictive, and subject to meaningful experimental test. We review the concordance model of the development of the Universe, as well as evidence for the observational revolution that this field is going through. This already provides us with important information on particle physics, which is inaccessible to accelerators.
International Nuclear Information System (INIS)
Heller, M.
1985-01-01
Two Friedman's cosmological papers (1922, 1924) and his own interpretation of the obtained results are briefly reviewed. Discussion follows of Friedman's role in the early development of relativistic cosmology. 18 refs. (author)
Kunze, Kerstin E.
2016-12-20
Cosmology is becoming an important tool to test particle physics models. We provide an overview of the standard model of cosmology with an emphasis on the observations relevant for testing fundamental physics.
International Nuclear Information System (INIS)
Nelson, Kaylea; Nagai, Daisuke; Yu, Liang; Lau, Erwin T.; Rudd, Douglas H.
2014-01-01
The use of galaxy clusters as cosmological probes hinges on our ability to measure their masses accurately and with high precision. Hydrostatic mass is one of the most common methods for estimating the masses of individual galaxy clusters, which suffer from biases due to departures from hydrostatic equilibrium. Using a large, mass-limited sample of massive galaxy clusters from a high-resolution hydrodynamical cosmological simulation, in this work we show that in addition to turbulent and bulk gas velocities, acceleration of gas introduces biases in the hydrostatic mass estimate of galaxy clusters. In unrelaxed clusters, the acceleration bias is comparable to the bias due to non-thermal pressure associated with merger-induced turbulent and bulk gas motions. In relaxed clusters, the mean mass bias due to acceleration is small (≲ 3%), but the scatter in the mass bias can be reduced by accounting for gas acceleration. Additionally, this acceleration bias is greater in the outskirts of higher redshift clusters where mergers are more frequent and clusters are accreting more rapidly. Since gas acceleration cannot be observed directly, it introduces an irreducible bias for hydrostatic mass estimates. This acceleration bias places limits on how well we can recover cluster masses from future X-ray and microwave observations. We discuss implications for cluster mass estimates based on X-ray, Sunyaev-Zel'dovich effect, and gravitational lensing observations and their impact on cluster cosmology.
Defining Investment Additionality for CDM projects - practical approaches
International Nuclear Information System (INIS)
Greiner, Sandra; Michaelowa, Axel
2003-01-01
The environmental integrity of the CDM under the Kyoto Protocol depends on the possibility to avoid giving emission credits to projects that would have happened anyway. Whether and how 'Investment Additionality' of CDM projects has to be determined is currently a part of climate negotiations. We discuss the rationale of companies to invest in projects and analyse possible criteria to determine Investment Additionality from a theoretical point of view. Differences in the type of investment call for the application of different criteria. Although some criteria are better than others, no single criterion can outweigh the others in all respects. We therefore suggest a scheme for additionality testing that aims at matching types of investment and criteria in a sensible way. Criteria are evaluated on the grounds of robustness to manipulation, degree of coverage and appropriateness for testing the investment decision under consideration
Sustainable waste management in Africa through CDM projects.
Couth, R; Trois, C
2012-11-01
Only few Clean Development Mechanism (CDM) projects (traditionally focussed on landfill gas combustion) have been registered in Africa if compared to similar developing countries. The waste hierarchy adopted by many African countries clearly shows that waste recycling and composting projects are generally the most sustainable. This paper undertakes a sustainability assessment for practical waste treatment and disposal scenarios for Africa and makes recommendations for consideration. The appraisal in this paper demonstrates that mechanical biological treatment of waste becomes more financially attractive if established through the CDM process. Waste will continue to be dumped in Africa with increasing greenhouse gas emissions produced, unless industrialised countries (Annex 1) fund carbon emission reduction schemes through a replacement to the Kyoto Protocol. Such a replacement should calculate all of the direct and indirect carbon emission savings and seek to promote public-private partnerships through a concerted support of the informal sector. Copyright © 2012 Elsevier Ltd. All rights reserved.
Roos, Matts
2015-01-01
The Fourth Edition of Introduction to Cosmology provides a concise, authoritative study of cosmology at an introductory level. Starting from elementary principles and the early history of cosmology, the text carefully guides the student on to curved spacetimes, special and general relativity, gravitational lensing, the thermal history of the Universe, and cosmological models, including extended gravity models, black holes and Hawking's recent conjectures on the not-so-black holes.
Particle physics and cosmology
International Nuclear Information System (INIS)
Turner, M.S.; Schramm, D.N.
1985-01-01
During the past year, the research of the members of our group has spanned virtually all the topics at the interface of cosmology and particle physics: inflationary Universe scenarios, astrophysical and cosmological constraints on particle properties, ultra-high energy cosmic ray physics, quantum field theory in curved space-time, cosmology with extra dimensions, superstring cosmology, neutrino astronomy with large, underground detectors, and the formation of structure in the Universe
Technology transfer to Africa: constraints for CDM operations
International Nuclear Information System (INIS)
Karani, Patrick
2002-01-01
It is practically difficult to design, implement and manage Clean Development Mechanism (CDM) projects in Africa without a provision for capacity building that will enable the application of modern technologies and techniques. Existing institutions need strengthening, human capacity needs to be developed and new markets need to be promoted. The author outlines institutional and market constraints in relation to technology transfer (e.g renewable energy technologies) and development in Africa. (Author)
Around the Way: Testing ΛCDM with Milky Way Stellar Stream Constraints
Dai, Biwei; Robertson, Brant E.; Madau, Piero
2018-05-01
Recent analyses of the Pal 5 and GD-1 tidal streams suggest that the inner dark matter halo of the Milky Way is close to spherical, in tension with predictions from collisionless N-body simulations of cosmological structure formation. We use the Eris simulation to test whether the combination of dissipative physics and hierarchical structure formation can produce Milky Way–like galaxies whose dark matter halos match the tidal stream constraints from the GD-1 and Pal 5 clusters. We use a dynamical model of the simulated Eris galaxy to generate many realizations of the GD-1 and Pal 5 tidal streams, marginalize over observational uncertainties in the cluster galactocentric positions and velocities, and compare with the observational constraints. We find that the total density and potential of Eris contributed by baryons and dark matter satisfies constraints from the existing Milky Way stellar stream data, as the baryons both round and redistribute the dark matter during the dissipative formation of the galaxy, and provide a centrally concentrated mass distribution that rounds the inner potential. The Eris dark matter halo or a spherical Navarro–Frenk–White dark matter work comparably well in modeling the stream data. In contrast, the equivalent dark matter–only ErisDark simulation produces a prolate halo that cannot reproduce the observed stream data. The ongoing Gaia mission will provide decisive tests of the consistency between {{Λ }}{CDM} and Milky Way streams, and should distinguish between models like Eris and more spherical halos.
Addressing carbon Offsetters’ Paradox: Lessons from Chinese wind CDM
International Nuclear Information System (INIS)
He, Gang; Morse, Richard
2013-01-01
The clean development mechanism (CDM) has been a leading international carbon market and a driving force for sustainable development. But the eruption of controversy over offsets from Chinese wind power in 2009 exposed cracks at the core of how carbon credits are verified in the developing economies. The Chinese wind controversy therefore has direct implications for the design and negotiation of any successor to the Kyoto Protocol or future market-based carbon regimes. In order for carbon markets to avoid controversy and function effectively, the lessons from the Chinese wind controversy should be used to implement key reforms in current and future carbon policy design. The paper examines the application of additionality in the Chinese wind power market and draws implications for the design of effective global carbon offset policy. It demonstrates the causes of the wind power controversy, highlights underlying structural flaws, in how additionality is applied in China, the Offsetters' Paradox, and charts a reform path that can strengthen the credibility of global carbon markets. - Highlights: • We investigated 143 Chinese wind CDM projects by the eruption of the additionality controversy. • We examined the application of additionality in the Chinese wind power market. • We drew implications for the design of effective global carbon offset policy. • The underlying structural flaws of CDM, the Offsetters′ Paradox, was discussed. • We charted a reform path that can strengthen the credibility of global carbon markets
Economic Impact of CDM Implementation through Alternate Energy Resource Substitution
Directory of Open Access Journals (Sweden)
K.J. Sreekanth
2013-02-01
Full Text Available Since the Kyoto protocol agreement, Clean Development Mechanism (CDM hasgarnered large emphasis in terms of certified emission reductions (CER not only amidst the globalcarbon market but also in India. This paper attempts to assess the impact of CDM towardssustainable development particularly in rural domestic utility sector that mainly includes lightingand cooking applications, with electricity as the source of energy. A detailed survey has undertakenin the state of Kerala, in southern part of India to study the rural domestic energy consumptionpattern. The data collected was analyzed that throws insight into the interrelationships of thevarious parameters that influence domestic utility sector pertaining to energy consumption byusing electricity as the source of energy. The interrelationships between the different parameterswere modeled that optimizes the contribution of electricity on domestic utility sector. The resultswere used to estimate the feasible extent of CO2 emission reduction through use of electricity as theenergy resources, vis-à-vis its economic viability through cost effectiveness. The analysis alsoprovides a platform for implementing CDM projects in the sector and related prospects withrespects to the Indian scenario.
Particle physics and cosmology
International Nuclear Information System (INIS)
Schramm, D.N.; Turner, M.S.
1982-06-01
work is described in these areas: cosmological baryon production; cosmological production of free quarks and other exotic particle species; the quark-hadron transition in the early universe; astrophysical and cosmological constraints on particle properties; massive neutrinos; phase transitions in the early universe; and astrophysical implications of an axion-like particle
International Nuclear Information System (INIS)
Weinberg, S.
1989-01-01
Cosmological constant problem is discussed. History of the problem is briefly considered. Five different approaches to solution of the problem are described: supersymmetry, supergravity, superstring; anthropic approach; mechamism of lagrangian alignment; modification of gravitation theory and quantum cosmology. It is noted that approach, based on quantum cosmology is the most promising one
. ______________________________________________________________________________________ Nobelist George Smoot to Direct Korean Cosmology Institute Nobel Laureate George Smoot has been appointed director of a new cosmology institute in South Korea that will work closely with the year-old Berkeley the Early Universe (IEU) at EWHA Womans University in Seoul, Korea will provide cosmology education
International Nuclear Information System (INIS)
Davies, P.
1991-01-01
The main concepts of cosmology are discussed, and some of the misconceptions are clarified. The features of big bang cosmology are examined, and it is noted that the existence of the cosmic background radiation provides welcome confirmation of the big bang theory. Calculations of relative abundances of the elements conform with observations, further strengthening the confidence in the basic ideas of big bang cosmology
CERN. Geneva. Audiovisual Unit
2001-01-01
Cosmology and particle physics have enjoyed a useful relationship over the entire histories of both subjects. Today, ideas and techniques in cosmology are frequently used to elucidate and constrain theories of elementary particles. These lectures give an elementary overview of the essential elements of cosmology, which is necessary to understand this relationship.
CERN. Geneva
1999-01-01
Cosmology and particle physics have enjoyed a useful relationship over the entire histories of both subjects. Today, ideas and techniques in cosmology are frequently used to elucidate and constrain theories of elementary particles. These lectures give an elementary overview of the essential elements of cosmology, which is necessary to understand this relationship.
International Nuclear Information System (INIS)
Langer, M.
2007-01-01
This is a very concise introductory lecture to Cosmology. We start by reviewing the basics of homogeneous and isotropic cosmology. We then spend some time on the description of the Cosmic Microwave Background. Finally, a small section is devoted to the discussion of the cosmological constant and of some of the related problems
Attractor behaviour in ELKO cosmology
International Nuclear Information System (INIS)
Basak, Abhishek; Bhatt, Jitesh R.; Shankaranarayanan, S.; Varma, K.V. Prasantha
2013-01-01
We study the dynamics of ELKO in the context of accelerated phase of our universe. To avoid the fine tuning problem associated with the initial conditions, it is required that the dynamical equations lead to an early-time attractor. In the earlier works, it was shown that the dynamical equations containing ELKO fields do not lead to early-time stable fixed points. In this work, using redefinition of variables, we show that ELKO cosmology admits early-time stable fixed points. More interestingly, we show that ELKO cosmology admit two sets of attractor points corresponding to slow and fast-roll inflation. The fast-roll inflation attractor point is unique for ELKO as it is independent of the form of the potential. We also discuss the plausible choice of interaction terms in these two sets of attractor points and constraints on the coupling constant
International Nuclear Information System (INIS)
2004-08-01
This paper addresses activity a) an analysis of international CDM experiences and its potential contribution to the LAC region. The paper begins with a section describing the basic principles of the CDM and retrieves the lessons learned from the first two years of the CDM operation. This is followed by a more detailed review in section 2 of the on-going baseline and monitoring methodology approval process. In section 3, the development value of the CDM is explored. Section 4 describes the current CDM markets, while section 5 reviews the response of host countries to the CDM outside the LAC region. Section 6 describes the various capacity building programs established by Annex 1 countries to support the CDM. In each of the first 6 sections, implications for the LAC region are identified. Section 7 brings these conclusions together into a concise summary. (The author)
Sinha, Manodeep; Berlind, Andreas A.; McBride, Cameron K.; Scoccimarro, Roman; Piscionere, Jennifer A.; Wibking, Benjamin D.
2018-04-01
Interpreting the small-scale clustering of galaxies with halo models can elucidate the connection between galaxies and dark matter halos. Unfortunately, the modelling is typically not sufficiently accurate for ruling out models statistically. It is thus difficult to use the information encoded in small scales to test cosmological models or probe subtle features of the galaxy-halo connection. In this paper, we attempt to push halo modelling into the "accurate" regime with a fully numerical mock-based methodology and careful treatment of statistical and systematic errors. With our forward-modelling approach, we can incorporate clustering statistics beyond the traditional two-point statistics. We use this modelling methodology to test the standard ΛCDM + halo model against the clustering of SDSS DR7 galaxies. Specifically, we use the projected correlation function, group multiplicity function and galaxy number density as constraints. We find that while the model fits each statistic separately, it struggles to fit them simultaneously. Adding group statistics leads to a more stringent test of the model and significantly tighter constraints on model parameters. We explore the impact of varying the adopted halo definition and cosmological model and find that changing the cosmology makes a significant difference. The most successful model we tried (Planck cosmology with Mvir halos) matches the clustering of low luminosity galaxies, but exhibits a 2.3σ tension with the clustering of luminous galaxies, thus providing evidence that the "standard" halo model needs to be extended. This work opens the door to adding interesting freedom to the halo model and including additional clustering statistics as constraints.
The cosmological constant in theories with finite spacetime
International Nuclear Information System (INIS)
Kummer, Janis
2014-08-01
We study the role of the cosmological constant in different theories with finite spacetime. The cosmological constant appears both as an initial condition and as a constant of integration. In the context of the cosmological constant problem a new model will be presented. This modification of general relativity generates a small, non-vanishing cosmological constant, which is radiatively stable. The dynamics of the expansion of the universe in this model will be analyzed. Eventually, we try to solve the emergent problems concerning the generation of accelerated expansion using a quintessence model of dark energy.
Cosmological evolution of p-brane networks
International Nuclear Information System (INIS)
Sousa, L.; Avelino, P. P.
2011-01-01
In this paper we derive, directly from the Nambu-Goto action, the relevant components of the acceleration of cosmological featureless p-branes, extending previous analysis based on the field theory equations in the thin-brane limit. The component of the acceleration parallel to the velocity is at the core of the velocity-dependent one-scale model for the evolution of p-brane networks. We use this model to show that, in a decelerating expanding universe in which the p-branes are relevant cosmologically, interactions cannot lead to frustration, except for fine-tuned nonrelativistic networks with a dimensionless curvature parameter k<<1. We discuss the implications of our findings for the cosmological evolution of p-brane networks.
Combination and interpretation of observables in Cosmology
Directory of Open Access Journals (Sweden)
Virey Jean-Marc
2010-04-01
Full Text Available The standard cosmological model has deep theoretical foundations but need the introduction of two major unknown components, dark matter and dark energy, to be in agreement with various observations. Dark matter describes a non-relativistic collisionless fluid of (non baryonic matter which amount to 25% of the total density of the universe. Dark energy is a new kind of fluid not of matter type, representing 70% of the total density which should explain the recent acceleration of the expansion of the universe. Alternatively, one can reject this idea of adding one or two new components but argue that the equations used to make the interpretation should be modified consmological scales. Instead of dark matter one can invoke a failure of Newton's laws. Instead of dark energy, two approaches are proposed : general relativity (in term of the Einstein equation should be modified, or the cosmological principle which fixes the metric used for cosmology should be abandonned. One of the main objective of the community is to find the path of the relevant interpretations thanks to the next generation of experiments which should provide large statistics of observationnal data. Unfortunately, cosmological in formations are difficult to pin down directly fromt he measurements, and it is mandatory to combine the various observables to get the cosmological parameters. This is not problematic from the statistical point of view, but assumptions and approximations made for the analysis may bias our interprettion of the data. Consequently, a strong attention should be paied to the statistical methods used to make parameters estimation and for model testing. After a review of the basics of cosmology where the cosmological parameters are introduced, we discuss the various cosmological probes and their associated observables used to extract cosmological informations. We present the results obtained from several statistical analyses combining data of diferent nature but
Chamcham, Khalil; Silk, Joseph; Barrow, John D.; Saunders, Simon
2017-04-01
Part I. Issues in the Philosophy of Cosmology: 1. Cosmology, cosmologia and the testing of cosmological theories George F. R. Ellis; 2. Black holes, cosmology and the passage of time: three problems at the limits of science Bernard Carr; 3. Moving boundaries? - comments on the relationship between philosophy and cosmology Claus Beisbart; 4. On the question why there exists something rather than nothing Roderich Tumulka; Part II. Structures in the Universe and the Structure of Modern Cosmology: 5. Some generalities about generality John D. Barrow; 6. Emergent structures of effective field theories Jean-Philippe Uzan; 7. Cosmological structure formation Joel R. Primack; 8. Formation of galaxies Joseph Silk; Part III. Foundations of Cosmology: Gravity and the Quantum: 9. The observer strikes back James Hartle and Thomas Hertog; 10. Testing inflation Chris Smeenk; 11. Why Boltzmann brains do not fluctuate into existence from the de Sitter vacuum Kimberly K. Boddy, Sean M. Carroll and Jason Pollack; 12. Holographic inflation revised Tom Banks; 13. Progress and gravity: overcoming divisions between general relativity and particle physics and between physics and HPS J. Brian Pitts; Part IV. Quantum Foundations and Quantum Gravity: 14. Is time's arrow perspectival? Carlo Rovelli; 15. Relational quantum cosmology Francesca Vidotto; 16. Cosmological ontology and epistemology Don N. Page; 17. Quantum origin of cosmological structure and dynamical reduction theories Daniel Sudarsky; 18. Towards a novel approach to semi-classical gravity Ward Struyve; Part V. Methodological and Philosophical Issues: 19. Limits of time in cosmology Svend E. Rugh and Henrik Zinkernagel; 20. Self-locating priors and cosmological measures Cian Dorr and Frank Arntzenius; 21. On probability and cosmology: inference beyond data? Martin Sahlén; 22. Testing the multiverse: Bayes, fine-tuning and typicality Luke A. Barnes; 23. A new perspective on Einstein's philosophy of cosmology Cormac O
Philosophical Roots of Cosmology
Ivanovic, M.
2008-10-01
We shall consider the philosophical roots of cosmology in the earlier Greek philosophy. Our goal is to answer the question: Are earlier Greek theories of pure philosophical-mythological character, as often philosophers cited it, or they have scientific character. On the bases of methodological criteria, we shall contend that the latter is the case. In order to answer the question about contemporary situation of the relation philosophy-cosmology, we shall consider the next question: Is contemporary cosmology completely independent of philosophical conjectures? The answer demands consideration of methodological character about scientific status of contemporary cosmology. We also consider some aspects of the relation contemporary philosophy-cosmology.
Tachyon cosmology, supernovae data, and the big brake singularity
International Nuclear Information System (INIS)
Keresztes, Z.; Gergely, L. A.; Gorini, V.; Moschella, U.; Kamenshchik, A. Yu.
2009-01-01
We compare the existing observational data on type Ia supernovae with the evolutions of the Universe predicted by a one-parameter family of tachyon models which we have introduced recently [Phys. Rev. D 69, 123512 (2004)]. Among the set of the trajectories of the model which are compatible with the data there is a consistent subset for which the Universe ends up in a new type of soft cosmological singularity dubbed big brake. This opens up yet another scenario for the future history of the Universe besides the one predicted by the standard ΛCDM model.
Large Scale Cosmological Anomalies and Inhomogeneous Dark Energy
Directory of Open Access Journals (Sweden)
Leandros Perivolaropoulos
2014-01-01
Full Text Available A wide range of large scale observations hint towards possible modifications on the standard cosmological model which is based on a homogeneous and isotropic universe with a small cosmological constant and matter. These observations, also known as “cosmic anomalies” include unexpected Cosmic Microwave Background perturbations on large angular scales, large dipolar peculiar velocity flows of galaxies (“bulk flows”, the measurement of inhomogenous values of the fine structure constant on cosmological scales (“alpha dipole” and other effects. The presence of the observational anomalies could either be a large statistical fluctuation in the context of ΛCDM or it could indicate a non-trivial departure from the cosmological principle on Hubble scales. Such a departure is very much constrained by cosmological observations for matter. For dark energy however there are no significant observational constraints for Hubble scale inhomogeneities. In this brief review I discuss some of the theoretical models that can naturally lead to inhomogeneous dark energy, their observational constraints and their potential to explain the large scale cosmic anomalies.
Duality gives rise to Chaplygin cosmologies with a big rip
International Nuclear Information System (INIS)
Chimento, Luis P; Lazkoz, Ruth
2006-01-01
We consider modifications to the Friedmann equation motivated by recent proposals along these lines pursuing an explanation to the observed late time acceleration. Here we show that these approaches can be framed within a theory with modified gravity, and we discuss the construction of the duals of the cosmologies generated within that framework. We then investigate the modifications required to generate extended, generalized and modified Chaplygin cosmologies, and then show that their duals belong to a larger family of cosmologies we call enlarged Chaplygin cosmologies. Finally, by letting the parameters of these models take values not earlier considered in the literature we show that some representatives of that family of cosmologies display sudden future singularities. This fact indicates that the behaviour of these spacetimes is rather different from that of generalized or modified Chaplygin gas cosmologies. This reinforces the idea that modifications of gravity can be responsible for unexpected evolutionary features in the universe
Cosmological models in energy-momentum-squared gravity
Board, Charles V. R.; Barrow, John D.
2017-12-01
We study the cosmological effects of adding terms of higher order in the usual energy-momentum tensor to the matter Lagrangian of general relativity. This is in contrast to most studies of higher-order gravity which focus on generalizing the Einstein-Hilbert curvature contribution to the Lagrangian. The resulting cosmological theories give rise to field equations of similar form to several particular theories with different fundamental bases, including bulk viscous cosmology, loop quantum gravity, k -essence, and brane-world cosmologies. We find a range of exact solutions for isotropic universes, discuss their behaviors with reference to the early- and late-time evolution, accelerated expansion, and the occurrence or avoidance of singularities. We briefly discuss extensions to anisotropic cosmologies and delineate the situations where the higher-order matter terms will dominate over anisotropies on approach to cosmological singularities.
Disentangling interacting dark energy cosmologies with the three-point correlation function
Moresco, Michele; Marulli, Federico; Baldi, Marco; Moscardini, Lauro; Cimatti, Andrea
2014-10-01
We investigate the possibility of constraining coupled dark energy (cDE) cosmologies using the three-point correlation function (3PCF). Making use of the CODECS N-body simulations, we study the statistical properties of cold dark matter (CDM) haloes for a variety of models, including a fiducial ΛCDM scenario and five models in which dark energy (DE) and CDM mutually interact. We measure both the halo 3PCF, ζ(θ), and the reduced 3PCF, Q(θ), at different scales (2 values of the halo 3PCF for perpendicular (elongated) configurations. The effect is also scale-dependent, with differences between ΛCDM and cDE models that increase at large scales. We made use of these measurements to estimate the halo bias, that results in fair agreement with the one computed from the two-point correlation function (2PCF). The main advantage of using both the 2PCF and 3PCF is to break the bias-σ8 degeneracy. Moreover, we find that our bias estimates are approximately independent of the assumed strength of DE coupling. This study demonstrates the power of a higher order clustering analysis in discriminating between alternative cosmological scenarios, for both present and forthcoming galaxy surveys, such as e.g. Baryon Oscillation Spectroscopic Survey and Euclid.
Higgs-dilaton cosmology: An inflation-dark-energy connection and forecasts for future galaxy surveys
Casas, Santiago; Pauly, Martin; Rubio, Javier
2018-02-01
The Higgs-dilaton model is a scale-invariant extension of the Standard Model nonminimally coupled to gravity and containing just one additional degree of freedom on top of the Standard Model particle content. This minimalistic scenario predicts a set of measurable consistency relations between the inflationary observables and the dark-energy equation-of-state parameter. We present an alternative derivation of these consistency relations that highlights the connections and differences with the α -attractor scenario. We study how far these constraints allow one to distinguish the Higgs-dilaton model from Λ CDM and w CDM cosmologies. To this end we first analyze existing data sets using a Markov chain Monte Carlo approach. Second, we perform forecasts for future galaxy surveys using a Fisher matrix approach, both for galaxy clustering and weak lensing probes. Assuming that the best fit values in the different models remain comparable to the present ones, we show that both Euclid- and SKA2-like missions will be able to discriminate a Higgs-dilaton cosmology from Λ CDM and w CDM .
Cosmological perturbation theory using the FFTLog: formalism and connection to QFT loop integrals
Simonović, Marko; Baldauf, Tobias; Zaldarriaga, Matias; Carrasco, John Joseph; Kollmeier, Juna A.
2018-04-01
We present a new method for calculating loops in cosmological perturbation theory. This method is based on approximating a ΛCDM-like cosmology as a finite sum of complex power-law universes. The decomposition is naturally achieved using an FFTLog algorithm. For power-law cosmologies, all loop integrals are formally equivalent to loop integrals of massless quantum field theory. These integrals have analytic solutions in terms of generalized hypergeometric functions. We provide explicit formulae for the one-loop and the two-loop power spectrum and the one-loop bispectrum. A chief advantage of our approach is that the difficult part of the calculation is cosmology independent, need be done only once, and can be recycled for any relevant predictions. Evaluation of standard loop diagrams then boils down to a simple matrix multiplication. We demonstrate the promise of this method for applications to higher multiplicity/loop correlation functions.
Extracting the resource rent from the CDM projects: Can the Chinese Government do better?
International Nuclear Information System (INIS)
Liu Xuemei
2010-01-01
The revenue generated from a CDM project in China will be shared by the government and the project owner, and is also subject to the corporate income tax. This paper studies the impacts of the revenue sharing policy and income tax on the CDM market. The economic model presented in this paper shows that higher-cost CDM projects will be more affected by the CDM policies than lower-cost projects. In addition, the majority of CERs will be generated from lower-cost projects. This kind of distribution of CERs across different types of CDM projects, which is in line with the current picture of the CDM market in China, is not consistent with the goal of sustainable development. A simulation shows that a type-by-type tax/fee scheme would be more effective in assisting sustainable development than the current CDM policies. The study also suggests the government use negative tax/fee with the type-by-type scheme to subsidize the CDM projects that generate large sustainability benefits but would otherwise not be developed due to high costs. If all of the revenue from the CDM is recycled, it is estimated that CERs generation will increase by 98.28 MtC, mainly from the CDM projects that have substantial sustainability benefits for the host country.
Unveiling ν secrets with cosmological data: Neutrino masses and mass hierarchy
Vagnozzi, Sunny; Giusarma, Elena; Mena, Olga; Freese, Katherine; Gerbino, Martina; Ho, Shirley; Lattanzi, Massimiliano
2017-12-01
Using some of the latest cosmological data sets publicly available, we derive the strongest bounds in the literature on the sum of the three active neutrino masses, Mν, within the assumption of a background flat Λ CDM cosmology. In the most conservative scheme, combining Planck cosmic microwave background temperature anisotropies and baryon acoustic oscillations (BAO) data, as well as the up-to-date constraint on the optical depth to reionization (τ ), the tightest 95% confidence level upper bound we find is Mν0.06 eV from oscillations data would raise the quoted upper bounds by O (0.1 σ ) and would not affect our conclusions.
Second-order Cosmological Perturbations Engendered by Point-like Masses
Energy Technology Data Exchange (ETDEWEB)
Brilenkov, Ruslan [Institute for Astro- and Particle Physics, University of Innsbruck, Technikerstrasse 25/8, A‐6020 Innsbruck (Austria); Eingorn, Maxim, E-mail: ruslan.brilenkov@gmail.com, E-mail: maxim.eingorn@gmail.com [North Carolina Central University, CREST and NASA Research Centers, 1801 Fayetteville St., Durham, NC 27707 (United States)
2017-08-20
In the ΛCDM framework, presenting nonrelativistic matter inhomogeneities as discrete massive particles, we develop the second‐order cosmological perturbation theory. Our approach relies on the weak gravitational field limit. The derived equations for the second‐order scalar, vector, and tensor metric corrections are suitable at arbitrary distances, including regions with nonlinear contrasts of the matter density. We thoroughly verify fulfillment of all Einstein equations, as well as self‐consistency of order assignments. In addition, we achieve logical positive results in the Minkowski background limit. Feasible investigations of the cosmological back-reaction manifestations by means of relativistic simulations are also outlined.
Testing and selecting cosmological models with ultra-compact radio quasars
Energy Technology Data Exchange (ETDEWEB)
Li, Xiaolei [Beijing Normal University, Department of Astronomy, Beijing (China); University of Michigan, Department of Physics, Ann Arbor, MI (United States); Cao, Shuo; Qi, Jingzhao; Zhu, Zong-Hong [Beijing Normal University, Department of Astronomy, Beijing (China); Zheng, Xiaogang; Biesiada, Marek [Beijing Normal University, Department of Astronomy, Beijing (China); University of Silesia, Department of Astrophysics and Cosmology, Institute of Phyisics, Katowice (Poland)
2017-10-15
In this paper, we place constraints on four alternative cosmological models under the assumption of the spatial flatness of the Universe: CPL, EDE, GCG and MPC. A new compilation of 120 compact radio quasars observed by very-long-baseline interferometry, which represents a type of new cosmological standard rulers, are used to test these cosmological models. Our results show that the fits on CPL obtained from the quasar sample are well consistent with those obtained from BAO. For other cosmological models considered, quasars provide constraints in agreement with those derived with other standard probes at 1σ confidence level. Moreover, the results obtained from other statistical methods including figure of merit, Om(z) and statefinder diagnostics indicate that: (1) Radio quasar standard ruler could provide better statistical constraints than BAO for all cosmological models considered, which suggests its potential to act as a powerful complementary probe to BAO and galaxy clusters. (2) Turning to Om(z) diagnostics, CPL, GCG and EDE models cannot be distinguished from each other at the present epoch. (3) In the framework of statefinder diagnostics, MPC and EDE will deviate from the ΛCDM model in the near future, while GCG model cannot be distinguished from the ΛCDM model unless much higher precision observations are available. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Chen, Lu; Wang, Ke [Institute of Theoretical Physics, Chinese Academy of Sciences, CAS Key Laboratory of Theoretical Physics, Beijing (China); University of Chinese Academy of Sciences, School of Physical Sciences, Beijing (China); Huang, Qing-Guo [Institute of Theoretical Physics, Chinese Academy of Sciences, CAS Key Laboratory of Theoretical Physics, Beijing (China); University of Chinese Academy of Sciences, School of Physical Sciences, Beijing (China); Hunan Normal University, Synergetic Innovation Center for Quantum Effects and Applications, Changsha (China)
2017-11-15
We update the constraints on the cosmological parameters by adopting the Planck data released in 2015 and baryon acoustic oscillation (BAO) measurements including the new DR14 quasar sample measurement at redshift z = 1.52, and we conclude that the six-parameter ΛCDM model is preferred. Exploring some extensions to the ΛCDM model, we find that the equation of state of dark energy reads w = -1.036 ± 0.056 in the wCDM model, the effective number of relativistic degrees of freedom in the Universe is N{sub eff} = 3.09{sub -0.20}{sup +0.18} in the N{sub eff} + ΛCDM model and the spatial curvature parameter is Ω{sub k} = (1.8 ± 1.9) x 10{sup -3} in the Ω{sub k} + ΛCDM model at 68% confidence level (C.L.), and the 95% C.L. upper bounds on the sum of three active neutrinos masses are sum m{sub ν} < 0.16 eV for the normal hierarchy (NH) and sum m{sub ν} < 0.19 eV for the inverted hierarchy (IH) with Δχ{sup 2} ≡ χ{sup 2}{sub NH} - χ{sup 2}{sub IH} = -1.25. (orig.)
Review of monitoring uncertainty requirements in the CDM
International Nuclear Information System (INIS)
Shishlov, Igor; Bellassen, Valentin
2014-10-01
In order to ensure the environmental integrity of carbon offset projects, emission reductions certified under the Clean Development Mechanism (CDM) have to be 'real, measurable and additional', which is ensured through the monitoring, reporting and verification (MRV) process. MRV, however, comes at a cost that ranges from several cents to EUR1.20 and above per ton of CO 2 e depending on the project type. This article analyzes monitoring uncertainty requirements for carbon offset projects with a particular focus on the trade-off between monitoring stringency and cost. To this end, we review existing literature, scrutinize both overarching monitoring guidelines and the 10 most-used methodologies, and finally we analyze four case studies. We find that there is indeed a natural trade-off between the stringency and the cost of monitoring, which if not addressed properly may become a major barrier for the implementation of offset projects in some sectors. We demonstrate that this trade-off has not been systematically addressed in the overarching CDM guidelines and that there are only limited incentives to reduce monitoring uncertainty. Some methodologies and calculation tools as well as some other offset standards, however, do incorporate provisions for a trade-off between monitoring costs and stringency. These provisions may take the form of discounting emissions reductions based on the level of monitoring uncertainty - or more implicitly through allowing a project developer to choose between monitoring a given parameter and using a conservative default value. Our findings support the introduction of an uncertainty standard under the CDM for more comprehensive, yet cost-efficient, accounting for monitoring uncertainty in carbon offset projects. (authors)
16. Paris Cosmology Colloquium 2012 - Slides of the presentations
International Nuclear Information System (INIS)
Lasenby, A.; Page, L.; Vega, H.J. de; Biermann, P.L.; Ma, E.; Laveder, M.; Kormendy, J.; Weinheimer, C.; Freeman, K.; Walker, M.; Conselice, C.J.; Rebolo, R.; Wehus, K.; Mirabel, F.; Serenelli, A.; Das, S.; Cooray, A.; Burigana, C.; Sanchez, N.G.; Mather, J.C.; Smoot, G.F.; Schmidt, B.P.; Tognini, M.A.
2014-01-01
Recently, Warm (keV scale) Dark Matter emerged impressively over CDM (Cold Dark Matter) as the leading Dark Matter candidate. In the context of this new Dark Matter situation, which implies novelties in the astrophysical, cosmological and keV particle physics context, this 16. Paris Colloquium 2012 is devoted to the LambdaWDM Standard Model of the Universe. The topics of the colloquium are as follows: -) observational and theoretical progress on the nature of dark matter: keV scale warm dark matter, -) large and small scale structure formation in agreement with observations at large scales and small galactic scales, and -) neutrinos in astrophysics and cosmology. This document gathers the slides of the presentations.
From Planck Data to Planck Era: Observational Tests of Holographic Cosmology.
Afshordi, Niayesh; Corianò, Claudio; Delle Rose, Luigi; Gould, Elizabeth; Skenderis, Kostas
2017-01-27
We test a class of holographic models for the very early Universe against cosmological observations and find that they are competitive to the standard cold dark matter model with a cosmological constant (ΛCDM) of cosmology. These models are based on three-dimensional perturbative superrenormalizable quantum field theory (QFT), and, while they predict a different power spectrum from the standard power law used in ΛCDM, they still provide an excellent fit to the data (within their regime of validity). By comparing the Bayesian evidence for the models, we find that ΛCDM does a better job globally, while the holographic models provide a (marginally) better fit to the data without very low multipoles (i.e., l≲30), where the QFT becomes nonperturbative. Observations can be used to exclude some QFT models, while we also find models satisfying all phenomenological constraints: The data rule out the dual theory being a Yang-Mills theory coupled to fermions only but allow for a Yang-Mills theory coupled to nonminimal scalars with quartic interactions. Lattice simulations of 3D QFTs can provide nonperturbative predictions for large-angle statistics of the cosmic microwave background and potentially explain its apparent anomalies.
The Principles of Self Creation Cosmology and its Comparison with General Relativity
Barber, G. A.
2002-01-01
There are, at present, several gravitational and cosmological anomalies; the dark energy problem, the lambda problem, accelerating cosmological expansion, the anomalous Pioneer spacecraft acceleration, a spin-up of the Earth and an apparent variation of G observed from analysis of the evolution of planetary longitudes. These conundrums may be resolved in the theory of Self Creation Cosmology, in which the Principle of Mutual Interaction subsumes both Mach's Principle and the Local Conservatio...
Accelerating the implementation of the clean development mechanism in South African industry
Directory of Open Access Journals (Sweden)
G Little
2014-05-01
Full Text Available One of the responses to the threat of global warming is the Kyoto Protocol and the associated Clean Development Mechanism (CDM to reduce greenhouse gases. South Africa is an ideal country for the implementation of industrial CDM projects, yet lags behind many other countries. This qualitative research determines the factors that cause South Africa to lag other developing countries in the implementation of industrial CDM projects and the interventions that will have the most impact on accelerating implementation. The research involved interviews with 30 experts involved in the South African CDM process. The results identify the factors perceived to be facilitating and inhibiting the use of CDM opportunities and a framework for CDM practitioners to develop an implementation strategy within South African industry is established.
Extending cosmology: the metric approach
Mendoza, S.
2012-01-01
Comment: 2012, Extending Cosmology: The Metric Approach, Open Questions in Cosmology; Review article for an Intech "Open questions in cosmology" book chapter (19 pages, 3 figures). Available from: http://www.intechopen.com/books/open-questions-in-cosmology/extending-cosmology-the-metric-approach
Linking renewable energy CDM projects and TGC schemes: An analysis of different options
Energy Technology Data Exchange (ETDEWEB)
Del Rio, Pablo [Department of Economics and Business, Facultad de Ciencias Juridicas y Sociales, Universidad de Castilla-La Mancha, C/ Cobertizo de S. Pedro Martir s/n., Toledo-45071 (Spain)]. E-mail: pablo.rio@uclm.es
2006-11-15
Renewable energy CDM (RE-CDM) projects encourage cost-effective GHG mitigation and enhanced sustainable development opportunities for the host countries. CERs from CDM projects include the value of the former benefits (i.e., 'climate change benefits'), whereas the second can be given value through the issuing and trading of tradable green certificates (TGCs). Countries could agree to trade these TGCs, leading to additional revenues for the investors in renewable energy projects and, therefore, further encouraging the deployment of CDM projects, currently facing significant barriers. However, the design of a combination of CDM projects and TGC schemes raises several conflicting issues and leads to trade-offs. This paper analyses these issues, identifies the alternatives that may exist to link TGC schemes with RE-CDM projects and analyses the impacts of those options on different variables and actors.
Linking renewable energy CDM projects and TGC schemes: An analysis of different options
International Nuclear Information System (INIS)
Del Rio, Pablo
2006-01-01
Renewable energy CDM (RE-CDM) projects encourage cost-effective GHG mitigation and enhanced sustainable development opportunities for the host countries. CERs from CDM projects include the value of the former benefits (i.e., 'climate change benefits'), whereas the second can be given value through the issuing and trading of tradable green certificates (TGCs). Countries could agree to trade these TGCs, leading to additional revenues for the investors in renewable energy projects and, therefore, further encouraging the deployment of CDM projects, currently facing significant barriers. However, the design of a combination of CDM projects and TGC schemes raises several conflicting issues and leads to trade-offs. This paper analyses these issues, identifies the alternatives that may exist to link TGC schemes with RE-CDM projects and analyses the impacts of those options on different variables and actors
General very special relativity in Finsler cosmology
International Nuclear Information System (INIS)
Kouretsis, A. P.; Stathakopoulos, M.; Stavrinos, P. C.
2009-01-01
General very special relativity (GVSR) is the curved space-time of very special relativity (VSR) proposed by Cohen and Glashow. The geometry of general very special relativity possesses a line element of Finsler geometry introduced by Bogoslovsky. We calculate the Einstein field equations and derive a modified Friedmann-Robertson-Walker cosmology for an osculating Riemannian space. The Friedmann equation of motion leads to an explanation of the cosmological acceleration in terms of an alternative non-Lorentz invariant theory. A first order approach for a primordial-spurionic vector field introduced into the metric gives back an estimation of the energy evolution and inflation.
Cosmology of a covariant Galilean field.
De Felice, Antonio; Tsujikawa, Shinji
2010-09-10
We study the cosmology of a covariant scalar field respecting a Galilean symmetry in flat space-time. We show the existence of a tracker solution that finally approaches a de Sitter fixed point responsible for cosmic acceleration today. The viable region of model parameters is clarified by deriving conditions under which ghosts and Laplacian instabilities of scalar and tensor perturbations are absent. The field equation of state exhibits a peculiar phantomlike behavior along the tracker, which allows a possibility to observationally distinguish the Galileon gravity from the cold dark matter model with a cosmological constant.
Directory of Open Access Journals (Sweden)
Balbi Amedeo
2013-09-01
Full Text Available Time has always played a crucial role in cosmology. I review some of the aspects of the present cosmological model which are more directly related to time, such as: the definition of a cosmic time; the existence of typical timescales and epochs in an expanding universe; the problem of the initial singularity and the origin of time; the cosmological arrow of time.
Inflation and quantum cosmology
International Nuclear Information System (INIS)
Linde, A.
1991-01-01
In this article a review of the present status of inflationary cosmology is given. We start with a discussion of the simplest version of the chaotic inflation scenario. Then we discuss some recent develoments in the inflationary cosmology, including the theory of a self-reproducing inflationary universe (eternal chaotic inflation). We do it with the help of stochastic approach to inflation. The results obtained within this approach are compared with the results obtained in the context of Euclidean quantum cosmology. (WL)
International Nuclear Information System (INIS)
Surdin, M.
1980-01-01
It is shown that viewed from the 'outside', our universe is a black hole. Hence the 'inside' cosmology considered is termed as the Bright Universe Cosmology. The model proposed avoids the singularities of cosmologies of the Big Bang variety, it gives a good account of the redshifts, the cosmic background radiation, the number counts; it also gives a satisfactory explanation of the 'large numbers coincidence' and of the variation in time of fundamental constants. (Auth.)
Energy Technology Data Exchange (ETDEWEB)
Schramm, D.N.
1992-03-01
The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ``cold`` and ``hot`` non-baryonic candidates is shown to depend on the assumed ``seeds`` that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.
Energy Technology Data Exchange (ETDEWEB)
Schramm, D.N.
1992-03-01
The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the {Omega} = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between cold'' and hot'' non-baryonic candidates is shown to depend on the assumed seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed.
International Nuclear Information System (INIS)
Schramm, D.N.
1992-03-01
The cosmological dark matter problem is reviewed. The Big Bang Nucleosynthesis constraints on the baryon density are compared with the densities implied by visible matter, dark halos, dynamics of clusters, gravitational lenses, large-scale velocity flows, and the Ω = 1 flatness/inflation argument. It is shown that (1) the majority of baryons are dark; and (2) non-baryonic dark matter is probably required on large scales. It is also noted that halo dark matter could be either baryonic or non-baryonic. Descrimination between ''cold'' and ''hot'' non-baryonic candidates is shown to depend on the assumed ''seeds'' that stimulate structure formation. Gaussian density fluctuations, such as those induced by quantum fluctuations, favor cold dark matter, whereas topological defects such as strings, textures or domain walls may work equally or better with hot dark matter. A possible connection between cold dark matter, globular cluster ages and the Hubble constant is mentioned. Recent large-scale structure measurements, coupled with microwave anisotropy limits, are shown to raise some questions for the previously favored density fluctuation picture. Accelerator and underground limits on dark matter candidates are also reviewed
Cosmological tests on Visser's massive graviton dark matter cosmology
Energy Technology Data Exchange (ETDEWEB)
Hu, Xin-Yun; Liu, Xian-Ming [Hubei University for Nationalities, Department of Physics, Enshi, Hubei (China); Zeng, Xiao-Xiong [Chongqing Jiaotong University, School of Science, Nanan (China)
2013-06-15
We present the constraints on the Massive Graviton Dark Matter scenario (MGCDM) using the cosmological observations, including type Ia supernovae (SNe Ia), Gamma Ray Bursts (GRB), Observational Hubble Parameter Data (OHD), Cosmic Microwave Background shift parameter, and the Radial Baryon Acoustic Oscillation. In order to compare the goodness of the data samples and their combinations, we adopt the Fisher matrix analysis and the figure of merit (FoM) diagnostic. Based on the constraint results, we further discuss the cosmic age problem in MGCDM. The calculation shows that the universe in MGCDM frame is older than that in standard {Lambda}CDM model, but the cosmic age crisis is still unresolved with just an alleviation. (orig.)
International Nuclear Information System (INIS)
Feng, Jonathan L.
2005-01-01
Cosmology now provides unambiguous, quantitative evidence for new particle physics. I discuss the implications of cosmology for supersymmetry and vice versa. Topics include: motivations for supersymmetry; supersymmetry breaking; dark energy; freeze out and WIMPs; neutralino dark matter; cosmologically preferred regions of minimal supergravity; direct and indirect detection of neutralinos; the DAMA and HEAT signals; inflation and reheating; gravitino dark matter; Big Bang nucleosynthesis; and the cosmic microwave background. I conclude with speculations about the prospects for a microscopic description of the dark universe, stressing the necessity of diverse experiments on both sides of the particle physics/cosmology interface
International Nuclear Information System (INIS)
Sasaki, Misao
1983-01-01
We review the recent status of the inflationary cosmology. After exhibiting the essence of difficulties associated with the horizon, flatness and baryon number problems in the standard big-bang cosmology, we discuss that the inflationary universe scenario is one of the most plausible solutions to these fundamental cosmological problems. Since there are two qualitatively different versions of the inflationary universe scenario, we review each of them separately and discuss merits and demerits of each version. The Hawking radiation in de Sitter space is also reviewed since it may play an essential role in the inflationary cosmology. (author)
Roos, Matts
2003-01-01
The Third Edition of the hugely successful Introduction to Cosmology provides a concise, authoritative study of cosmology at an introductory level. Starting from elementary principles and the history of cosmology, the text carefully guides the student on to curved spacetimes, general relativity, black holes, cosmological models, particles and symmetries, and phase transitions. Extensively revised, this latest edition includes broader and updated coverage of distance measures, gravitational lensing and waves, dark energy and quintessence, the thermal history of the Universe, inflation,
Axions in inflationary cosmology
International Nuclear Information System (INIS)
Linde, A.
1991-01-01
The problem of the cosmological constraints on the axion mass is re-examined. It is argued that in the context of inflationary cosmology the constraint m a > or approx.10 -5 eV can be avoided even when the axion perturbations produced during inflation are taken into account. It is shown also that in most axion models the effective parameter f a rapidly changes during inflation. This modifies some earlier statements concerning isothermal perturbations in the axion cosmology. A hybrid inflation scenario is proposed which combines some advantages of chaotic inflation with specific features of new and/or extended inflation. Its implications for the axion cosmology are discussed. (orig.)
A nonlinear CDM based damage growth law for ductile materials
Gautam, Abhinav; Priya Ajit, K.; Sarkar, Prabir Kumar
2018-02-01
A nonlinear ductile damage growth criterion is proposed based on continuum damage mechanics (CDM) approach. The model is derived in the framework of thermodynamically consistent CDM assuming damage to be isotropic. In this study, the damage dissipation potential is also derived to be a function of varying strain hardening exponent in addition to damage strain energy release rate density. Uniaxial tensile tests and load-unload-cyclic tensile tests for AISI 1020 steel, AISI 1030 steel and Al 2024 aluminum alloy are considered for the determination of their respective damage variable D and other parameters required for the model(s). The experimental results are very closely predicted, with a deviation of 0%-3%, by the proposed model for each of the materials. The model is also tested with predictabilities of damage growth by other models in the literature. Present model detects the state of damage quantitatively at any level of plastic strain and uses simpler material tests to find the parameters of the model. So, it should be useful in metal forming industries to assess the damage growth for the desired deformation level a priori. The superiority of the new model is clarified by the deviations in the predictability of test results by other models.
Sustainable waste management in Africa through CDM projects
Energy Technology Data Exchange (ETDEWEB)
Couth, R. [CRECHE, Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Engineering, University of KwaZulu-Natal, Durban 4041 (South Africa); Trois, C., E-mail: troisc@ukzn.ac.za [CRECHE, Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Engineering, University of KwaZulu-Natal, Durban 4041 (South Africa)
2012-11-15
Highlights: Black-Right-Pointing-Pointer This is a compendium on GHG reductions via improved waste strategies in Africa. Black-Right-Pointing-Pointer This note provides a strategic framework for Local Authorities in Africa. Black-Right-Pointing-Pointer Assists LAs to select Zero Waste scenarios and achieve sustained GHG reduction. - Abstract: Only few Clean Development Mechanism (CDM) projects (traditionally focussed on landfill gas combustion) have been registered in Africa if compared to similar developing countries. The waste hierarchy adopted by many African countries clearly shows that waste recycling and composting projects are generally the most sustainable. This paper undertakes a sustainability assessment for practical waste treatment and disposal scenarios for Africa and makes recommendations for consideration. The appraisal in this paper demonstrates that mechanical biological treatment of waste becomes more financially attractive if established through the CDM process. Waste will continue to be dumped in Africa with increasing greenhouse gas emissions produced, unless industrialised countries (Annex 1) fund carbon emission reduction schemes through a replacement to the Kyoto Protocol. Such a replacement should calculate all of the direct and indirect carbon emission savings and seek to promote public-private partnerships through a concerted support of the informal sector.
Carbon market risks and rewards: Firm perceptions of CDM investment decisions in Brazil and India
International Nuclear Information System (INIS)
Hultman, Nathan E.; Pulver, Simone; Guimarães, Leticia; Deshmukh, Ranjit; Kane, Jennifer
2012-01-01
The carbon market experiences of Brazil and India represent policy success stories under several criteria. A careful evaluation, however, reveals challenges to market development that should be addressed in order to make the rollout of a post-2012 CDM more effective. We conducted firm-level interviews covering 82 CDM plants in the sugar and cement sectors in Brazil and India, focusing on how individual managers understood the potential benefits and risks of undertaking clean development mechanism (CDM) investments. Our results indicate that the CDM operates in a far more complex way in practice than that of simply adding a marginal increment to a project's internal rate of return. Our results indicate the following: first, although anticipated revenue played a central role in most managers' decisions to pursue CDM investments, there was no standard practice to account for financial benefits of CDM investments; second, some managers identified non-financial reputational factors as their primary motivation for pursuing CDM projects; and third, under fluctuating regulatory regimes with real immediate costs and uncertain CDM revenue, managers favored projects that often did not require carbon revenue to be viable. The post-2012 CDM architecture can benefit from incorporating these insights, and in particular reassess goals for strict additionality and mechanisms for achieving it.
International Nuclear Information System (INIS)
Hamann, Jan; Hannestad, Steen; Melchiorri, Alessandro; Wong, Yvonne Y Y
2008-01-01
We explore and compare the performances of two non-linear correction and scale-dependent biasing models for the extraction of cosmological information from galaxy power spectrum data, especially in the context of beyond-ΛCDM (CDM: cold dark matter) cosmologies. The first model is the well known Q model, first applied in the analysis of Two-degree Field Galaxy Redshift Survey data. The second, the P model, is inspired by the halo model, in which non-linear evolution and scale-dependent biasing are encapsulated in a single non-Poisson shot noise term. We find that while the two models perform equally well in providing adequate correction for a range of galaxy clustering data in standard ΛCDM cosmology and in extensions with massive neutrinos, the Q model can give unphysical results in cosmologies containing a subdominant free-streaming dark matter whose temperature depends on the particle mass, e.g., relic thermal axions, unless a suitable prior is imposed on the correction parameter. This last case also exposes the danger of analytic marginalization, a technique sometimes used in the marginalization of nuisance parameters. In contrast, the P model suffers no undesirable effects, and is the recommended non-linear correction model also because of its physical transparency
Hamann, Jan; Hannestad, Steen; Melchiorri, Alessandro; Wong, Yvonne Y. Y.
2008-07-01
We explore and compare the performances of two non-linear correction and scale-dependent biasing models for the extraction of cosmological information from galaxy power spectrum data, especially in the context of beyond-ΛCDM (CDM: cold dark matter) cosmologies. The first model is the well known Q model, first applied in the analysis of Two-degree Field Galaxy Redshift Survey data. The second, the P model, is inspired by the halo model, in which non-linear evolution and scale-dependent biasing are encapsulated in a single non-Poisson shot noise term. We find that while the two models perform equally well in providing adequate correction for a range of galaxy clustering data in standard ΛCDM cosmology and in extensions with massive neutrinos, the Q model can give unphysical results in cosmologies containing a subdominant free-streaming dark matter whose temperature depends on the particle mass, e.g., relic thermal axions, unless a suitable prior is imposed on the correction parameter. This last case also exposes the danger of analytic marginalization, a technique sometimes used in the marginalization of nuisance parameters. In contrast, the P model suffers no undesirable effects, and is the recommended non-linear correction model also because of its physical transparency.
Dark Energy Survey Year 1 Results: Cosmological Constraints from Galaxy Clustering and Weak Lensing
Energy Technology Data Exchange (ETDEWEB)
Abbott, T.M.C.; et al.
2017-08-04
We present cosmological results from a combined analysis of galaxy clustering and weak gravitational lensing, using 1321 deg$^2$ of $griz$ imaging data from the first year of the Dark Energy Survey (DES Y1). We combine three two-point functions: (i) the cosmic shear correlation function of 26 million source galaxies in four redshift bins, (ii) the galaxy angular autocorrelation function of 650,000 luminous red galaxies in five redshift bins, and (iii) the galaxy-shear cross-correlation of luminous red galaxy positions and source galaxy shears. To demonstrate the robustness of these results, we use independent pairs of galaxy shape, photometric redshift estimation and validation, and likelihood analysis pipelines. To prevent confirmation bias, the bulk of the analysis was carried out while blind to the true results; we describe an extensive suite of systematics checks performed and passed during this blinded phase. The data are modeled in flat $\\Lambda$CDM and $w$CDM cosmologies, marginalizing over 20 nuisance parameters, varying 6 (for $\\Lambda$CDM) or 7 (for $w$CDM) cosmological parameters including the neutrino mass density and including the 457 $\\times$ 457 element analytic covariance matrix. We find consistent cosmological results from these three two-point functions, and from their combination obtain $S_8 \\equiv \\sigma_8 (\\Omega_m/0.3)^{0.5} = 0.783^{+0.021}_{-0.025}$ and $\\Omega_m = 0.264^{+0.032}_{-0.019}$ for $\\Lambda$CDM for $w$CDM, we find $S_8 = 0.794^{+0.029}_{-0.027}$, $\\Omega_m = 0.279^{+0.043}_{-0.022}$, and $w=-0.80^{+0.20}_{-0.22}$ at 68% CL. The precision of these DES Y1 results rivals that from the Planck cosmic microwave background measurements, allowing a comparison of structure in the very early and late Universe on equal terms. Although the DES Y1 best-fit values for $S_8$ and $\\Omega_m$ are lower than the central values from Planck ...
A Solution to the Cosmological Problem of Relativity Theory
Janzen, Daryl
After nearly a century of scientific investigation, the standard cosmological theory continues to have many unexplained problems, which invariably amount to one troubling statement: we know of no good reason for the Universe to appear just as it does, which is described extremely well by the flat ΛCDM cosmological model. Therefore, the problem is not that the physical model is at all incompatible with observation, but that, as our empirical results have been increasingly constrained, it has also become increasingly obvious that the Universe does not meet our prior expectations; e.g., the evidence suggests that the Universe began from a singularity of the theory that is used to describe it, and with space expanding thereafter in cosmic time, even though relativity theory is thought to imply that no such objective foliation of the spacetime continuum should reasonably exist. Furthermore, the expanding Universe is well-described as being flat, isotropic, and homogeneous, even though its shape and expansion rate are everywhere supposed to be the products of local energy-content---and the necessary prior uniform distribution, of just the right amount of matter for all three of these conditions to be met, could not have been causally determined to begin with. And finally, the empirically constrained density parameters now indicate that all of the matter that we directly observe should make up only four percent of the total, so that the dominant forms of energy in the Universe should be dark energy in the form of a cosmological constant, Λ, and cold dark matter (CDM). The most common ways of attacking these problems have been: to apply modifications to the basic physical model, e.g. as in the inflation and quintessence theories which strive to resolve the horizon, flatness, and cosmological constant problems; to use particle physics techniques in order to formulate the description of dark matter candidates that might fit with observations; and, in the case of the Big
No Evidence for Extensions to the Standard Cosmological Model
Heavens, Alan; Fantaye, Yabebal; Sellentin, Elena; Eggers, Hans; Hosenie, Zafiirah; Kroon, Steve; Mootoovaloo, Arrykrishna
2017-09-01
We compute the Bayesian evidence for models considered in the main analysis of Planck cosmic microwave background data. By utilizing carefully defined nearest-neighbor distances in parameter space, we reuse the Monte Carlo Markov chains already produced for parameter inference to compute Bayes factors B for many different model-data set combinations. The standard 6-parameter flat cold dark matter model with a cosmological constant (Λ CDM ) is favored over all other models considered, with curvature being mildly favored only when cosmic microwave background lensing is not included. Many alternative models are strongly disfavored by the data, including primordial correlated isocurvature models (ln B =-7.8 ), nonzero scalar-to-tensor ratio (ln B =-4.3 ), running of the spectral index (ln B =-4.7 ), curvature (ln B =-3.6 ), nonstandard numbers of neutrinos (ln B =-3.1 ), nonstandard neutrino masses (ln B =-3.2 ), nonstandard lensing potential (ln B =-4.6 ), evolving dark energy (ln B =-3.2 ), sterile neutrinos (ln B =-6.9 ), and extra sterile neutrinos with a nonzero scalar-to-tensor ratio (ln B =-10.8 ). Other models are less strongly disfavored with respect to flat Λ CDM . As with all analyses based on Bayesian evidence, the final numbers depend on the widths of the parameter priors. We adopt the priors used in the Planck analysis, while performing a prior sensitivity analysis. Our quantitative conclusion is that extensions beyond the standard cosmological model are disfavored by Planck data. Only when newer Hubble constant measurements are included does Λ CDM become disfavored, and only mildly, compared with a dynamical dark energy model (ln B ˜+2 ).
A search for sterile neutrinos with the latest cosmological observations
Energy Technology Data Exchange (ETDEWEB)
Feng, Lu; Zhang, Jing-Fei [Northeastern University, Department of Physics, College of Sciences, Shenyang (China); Zhang, Xin [Northeastern University, Department of Physics, College of Sciences, Shenyang (China); Peking University, Center for High Energy Physics, Beijing (China)
2017-06-15
We report the result of a search for sterile neutrinos with the latest cosmological observations. Both cases of massless and massive sterile neutrinos are considered in the ΛCDM cosmology. The cosmological observations used in this work include the Planck 2015 temperature and polarization data, the baryon acoustic oscillation data, the Hubble constant direct measurement data, the Planck Sunyaev-Zeldovich cluster counts data, the Planck lensing data, and the cosmic shear data. We find that the current observational data give a hint of the existence of massless sterile neutrino (as dark radiation) at the 1.44σ level, and the consideration of an extra massless sterile neutrino can indeed relieve the tension between observations and improve the cosmological fit. For the case of massive sterile neutrino, the observations give a rather tight upper limit on the mass, which implies that actually a massless sterile neutrino is more favored. Our result is consistent with the recent result of neutrino oscillation experiment done by the Daya Bay and MINOS collaborations, as well as the recent result of cosmic ray experiment done by the IceCube collaboration. (orig.)
Cosmological Constraints from the SDSS maxBCG Cluster Catalog
Energy Technology Data Exchange (ETDEWEB)
Rozo, Eduardo; /CCAPP; Wechsler, Risa H.; /KIPAC, Menlo Park /SLAC; Rykoff, Eli S.; /UC, Santa Barbara; Annis, James T.; /Fermilab; Becker, Matthew R.; /Chicago U. /KICP, Chicago; Evrard, August E.; /Michigan U. /Michigan U., MCTP; Frieman, Joshua A.; /Fermilab /KICP, Chicago /Chicago U.; Hansen, Sarah M.; /UC, Santa Cruz; Hao, Jia; /Michigan U.; Johnston, David E.; /Northwestern U.; Koester, Benjamin P.; /KICP, Chicago /Chicago U.; McKay, Timothy A.; /Michigan U. /Michigan U., MCTP; Sheldon, Erin S.; /Brookhaven; Weinberg, David H.; /CCAPP /Ohio State U.
2009-08-03
We use the abundance and weak lensing mass measurements of the SDSS maxBCG cluster catalog to simultaneously constrain cosmology and the richness-mass relation of the clusters. Assuming a flat {Lambda}CDM cosmology, we find {sigma}{sub 8}({Omega}{sub m}/0.25){sup 0.41} = 0.832 {+-} 0.033 after marginalization over all systematics. In common with previous studies, our error budget is dominated by systematic uncertainties, the primary two being the absolute mass scale of the weak lensing masses of the maxBCG clusters, and uncertainty in the scatter of the richness-mass relation. Our constraints are fully consistent with the WMAP five-year data, and in a joint analysis we find {sigma}{sub 8} = 0.807 {+-} 0.020 and {Omega}{sub m} = 0.265 {+-} 0.016, an improvement of nearly a factor of two relative to WMAP5 alone. Our results are also in excellent agreement with and comparable in precision to the latest cosmological constraints from X-ray cluster abundances. The remarkable consistency among these results demonstrates that cluster abundance constraints are not only tight but also robust, and highlight the power of optically-selected cluster samples to produce precision constraints on cosmological parameters.
International Nuclear Information System (INIS)
Klebanov, I.; Susskind, L.
1988-10-01
We review Coleman's wormhole mechanism for the vanishing of the cosmological constant. We find a discouraging result that wormholes much bigger than the Planck size are generated. We also consider the implications of the wormhole theory for cosmology. 7 refs., 2 figs
Particle physics and cosmology
International Nuclear Information System (INIS)
Ellis, J.; Nanopoulos, D.
1983-01-01
The authors describe the connection between cosmology and particle physics in an introductory way. In this connection the big bang theory and unified gauge models of strong, electromagnetic, and weak interactions are considered. Furthermore cosmological nucleosynthesis is discussed in this framework, and the problem of cosmic neutrinos is considered with special regards to its rest mass. (HSI).
Cosmology and particle physics
International Nuclear Information System (INIS)
Turner, M.S.
1986-01-01
Progress in cosmology has become linked to progress in elementary particle physics. In these six lectures, the author illustrates the two-way nature of the interplay between these fields by focusing on a few selected topics. In the next section the author reviews the standard cosmology, especially concentrating on primordial nucleosynthesis and discusses how the standard cosmology has been used to place constraints on the properties of various particles. Grand Unification makes two striking predictions: (i) B non-conservation; (ii) the existence of stable, superheavy magnetic monopoles. Both have had great cosmological impact. In the following section the author discusses baryogenesis, the very attractive scenario in which the B,C,CP violating interactions in GUTs provide a dynamical explanation for the predominance of matter over antimatter and the present baryon-to-photon ratio. Monopoles are a cosmological disaster and an astrophysicist's delight. In Section 4 discusses monopoles, cosmology, and astrophysics. In the fourth lecture the author discusses how a very early (t≤10/sup -34/ sec) phase transition associated with spontaneous symmetry breaking (SSB) has the potential to explain a handful of very fundamental cosmological facts, facts which can be accommodated by the standard cosmology, but which are not ''explained'' by it. The fifth lecture is devoted to a discussion of structure formation in the universe
van de Weygaert, Rien; van Albada, Tjeerd S.
1996-01-01
A detailed account of the ways in which a square kilometer array could further cosmological research. Observational and theoretical studies of the large scale structure and morphology of the local universe are reviewed against the potential capabilities of a new generation telescope. Cosmological
Barkana, Rennan; Tsujikawa, Shinji; Kim, Jihn E; Nagamine, Kentaro
2018-01-01
The Encyclopedia of Cosmology, in four volumes, is a major, long-lasting, seminal reference at the graduate student level, laid out by the most prominent, respected researchers in the general field of Cosmology. These volumes will be a comprehensive review of the most important concepts and current status in the field, covering both theory and observation.
Astroparticle physics and cosmology
International Nuclear Information System (INIS)
Senjanovic, G.; Smirnov, A.Yu.; Thompson, G.
2001-01-01
In this volume a wide spectrum of topics of modern astroparticle physics, such as neutrino astrophysics, dark matter of the universe, high energy cosmic rays, topological defects in cosmology, γ-ray bursts, phase transitions at high temperatures, is covered. The articles written by top level experts in the field give a comprehensive view of the state-of-the-art of modern cosmology
Energy Technology Data Exchange (ETDEWEB)
Vilenkin, Alexander, E-mail: vilenkin@cosmos.phy.tufts.ed [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States)
2010-01-01
The 'new standard cosmology', based on the theory of inflation, has very impressive observational support. I review some outstanding problems of the new cosmology and the global view of the universe - the multiverse - that it suggests. I focus in particular on prospects for further observational tests of inflation and of the multiverse.
International Nuclear Information System (INIS)
Vilenkin, Alexander
2010-01-01
The n ew standard cosmology , based on the theory of inflation, has very impressive observational support. I review some outstanding problems of the new cosmology and the global view of the universe - the multiverse - that it suggests. I focus in particular on prospects for further observational tests of inflation and of the multiverse.
Astroparticle physics and cosmology
Energy Technology Data Exchange (ETDEWEB)
Senjanovic, G; Smirnov, A Yu; Thompson, G [eds.
2001-11-15
In this volume a wide spectrum of topics of modern astroparticle physics, such as neutrino astrophysics, dark matter of the universe, high energy cosmic rays, topological defects in cosmology, {gamma}-ray bursts, phase transitions at high temperatures, is covered. The articles written by top level experts in the field give a comprehensive view of the state-of-the-art of modern cosmology.
International Nuclear Information System (INIS)
Stecker, F.W.
1989-01-01
This paper discusses two aspects of antimatter and cosmology: 1. the fundamental cosmological question as to whether antimatter plays an equally important role as matter in the universe (overall baryon symmetry), and 2. cosmic-ray antimatter tests for the nature of the dark matter in the universe. (orig.)
Dark Energy and the Cosmological Constant: A Brief Introduction
Harvey, Alex
2009-01-01
The recently observed acceleration of the expansion of the universe is a topic of intense interest. The favoured causes are the "cosmological constant" or "dark energy". The former, which appears in the Einstein equations as the term [lambda]g[subscript [mu]v], provides an extremely simple, well-defined mechanism for the acceleration. However,…
Lesgourgues, Julien
2012-01-01
Neutrinos can play an important role in the evolution of the Universe, modifying some of the cosmological observables. In this contribution we summarize the main aspects of cosmological relic neutrinos and we describe how the precision of present cosmological data can be used to learn about neutrino properties, in particular their mass, providing complementary information to beta decay and neutrinoless double-beta decay experiments. We show how the analysis of current cosmological observations, such as the anisotropies of the cosmic microwave background or the distribution of large-scale structure, provides an upper bound on the sum of neutrino masses of order 1 eV or less, with very good perspectives from future cosmological measurements which are expected to be sensitive to neutrino masses well into the sub-eV range.
International Nuclear Information System (INIS)
Verde, L.
2011-01-01
This is the summary of two lectures that aim to give an overview of cosmology. I will not try to be toa rigorous in derivations, nor to give a full historical overview. The idea is to provide a 'taste' of cosmology and some of the interesting topics it covers. The standard cosmological model is presented and I highlight the successes of cosmology over the past decade or so. Keys to the development of the standard cosmological model are observations of the cosmic microwave background and of large-scale structure, which are introduced. Inflation and dark energy and the outlook for the future are also discussed. Slides from the lectures are available from the school web site: physicschool.web.cern.ch/PhysicSchool/CLASHEP/CLASHEP2011/. (author)
Classical and quantum cosmology
Calcagni, Gianluca
2017-01-01
This comprehensive textbook is devoted to classical and quantum cosmology, with particular emphasis on modern approaches to quantum gravity and string theory and on their observational imprint. It covers major challenges in theoretical physics such as the big bang and the cosmological constant problem. An extensive review of standard cosmology, the cosmic microwave background, inflation and dark energy sets the scene for the phenomenological application of all the main quantum-gravity and string-theory models of cosmology. Born of the author's teaching experience and commitment to bridging the gap between cosmologists and theoreticians working beyond the established laws of particle physics and general relativity, this is a unique text where quantum-gravity approaches and string theory are treated on an equal footing. As well as introducing cosmology to undergraduate and graduate students with its pedagogical presentation and the help of 45 solved exercises, this book, which includes an ambitious bibliography...
Verde, L.
2013-06-27
This is the summary of two lectures that aim to give an overview of cosmology. I will not try to be too rigorous in derivations, nor to give a full historical overview. The idea is to provide a "taste" of cosmology and some of the interesting topics it covers. The standard cosmological model is presented and I highlight the successes of cosmology over the past decade or so. Keys to the development of the standard cosmological model are observations of the cosmic microwave background and of large-scale structure, which are introduced. Inflation and dark energy and the outlook for the future are also discussed. Slides from the lectures are available from the school website: physicschool.web.cern.ch/PhysicSchool/CLASHEP/CLASHEP2011/.
International Nuclear Information System (INIS)
Gekman, O.
1982-01-01
The brief essay of the development of the main ideas of relativistic cosmology is presented. The Einstein's cosmological work about the Universe - ''Cosmological considerations in connection with the general relativity theory'' - gave the basis to all further treatments in this field. In 1922 A. Friedman's work appeared, in which the first expanding Universe model was proposed as a solution of the Einstein field equations. The model was spherically closed, but its curvature radius was a function of time. About 1955 the searches for anisotropic homogeneous solutions to Einstein field equation began. It turned out that isotropic cosmological models are unstable in general. The predominant part of them transform to anisotropic at insignificant breaking of isotropy. The discovery of isotropic background cosmic radiation in 1965, along with the Hubble low of the Universe expansion, served as the direct confirmation of cosmology based on the Einstein theory
Cosmology with a decaying vacuum energy parametrization derived from quantum mechanics
International Nuclear Information System (INIS)
Szydłowski, M; Stachowski, A; Urbanowski, K
2015-01-01
Within the quantum mechanical treatment of the decay problem one finds that at late times tthe survival probability of an unstable state cannot have the form of an exponentially decreasing function of time t but it has an inverse power-like form. This is a general property of unstable states following from basic principles of quantum theory. The consequence of this property is that in the case of false vacuum states the cosmological constant becomes dependent on time: Λ — Λ bare ≡ Λ(t) — Λ bare ∼ 1/t 2 . We construct the cosmological model with decaying vacuum energy density and matter for solving the cosmological constant problem and the coincidence problem. We show the equivalence of the proposed decaying false vacuum cosmology with the Λ(t) cosmologies (the Λ(t)CDM models). The cosmological implications of the model of decaying vacuum energy (dark energy) are discussed. We constrain the parameters of the model with decaying vacuum using astronomical data. For this aim we use the observation of distant supernovae of type Ia, measurements of H(z), BAO, CMB and others. The model analyzed is in good agreement with observation data and explain a small value of the cosmological constant today. (paper)
Narrowing down the possible explanations of cosmic acceleration with geometric probes
Energy Technology Data Exchange (ETDEWEB)
Dhawan, Suhail; Goobar, Ariel; Mörtsell, Edvard; Amanullah, Rahman; Feindt, Ulrich, E-mail: suhail.dhawan@fysik.su.se, E-mail: ariel@fysik.su.se, E-mail: edvard@fysik.su.se, E-mail: rahman@fysik.su.se, E-mail: ulrich.feindt@fysik.su.se [Oskar Klein Centre, Department of Physics, Stockholm University, Roslagstullbacken 21, SE 106 91 Stockholm (Sweden)
2017-07-01
Recent re-calibration of the Type Ia supernova (SNe Ia) magnitude-redshift relation combined with cosmic microwave background (CMB) and baryon acoustic oscillation (BAO) data have provided excellent constraints on the standard cosmological model. Here, we examine particular classes of alternative cosmologies, motivated by various physical mechanisms, e.g. scalar fields, modified gravity and phase transitions to test their consistency with observations of SNe Ia and the ratio of the angular diameter distances from the CMB and BAO. Using a model selection criterion for a relative comparison of the models (the Bayes Factor), we find moderate to strong evidence that the data prefer flat ΛCDM over models invoking a thawing behaviour of the quintessence scalar field. However, some exotic models like the growing neutrino mass cosmology and vacuum metamorphosis still present acceptable evidence values. The bimetric gravity model with only the linear interaction term as well as a simplified Galileon model can be ruled out by the combination of SNe Ia and CMB/BAO datasets whereas the model with linear and quadratic interaction terms has a comparable evidence value to standard ΛCDM. Thawing models are found to have significantly poorer evidence compared to flat ΛCDM cosmology under the assumption that the CMB compressed likelihood provides an adequate description for these non-standard cosmologies. We also present estimates for constraints from future data and find that geometric probes from oncoming surveys can put severe limits on non-standard cosmological models.
Jeans that fit: weighing the mass of the Milky Way analogues in the ΛCDM universe
Kafle, Prajwal R.; Sharma, Sanjib; Robotham, Aaron S. G.; Elahi, Pascal J.; Driver, Simon P.
2018-04-01
The spherical Jeans equation is a widely used tool for dynamical study of gravitating systems in astronomy. Here, we test its efficacy in robustly weighing the mass of Milky Way analogues, given they need not be in equilibrium or even spherical. Utilizing Milky Way stellar haloes simulated in accordance with Λ cold dark matter (ΛCDM) cosmology by Bullock and Johnston and analysing them under the Jeans formalism, we recover the underlying mass distribution of the parent galaxy, within distance r/kpc ∈ [10, 100], with a bias of ˜ 12 per cent and a dispersion of ˜ 14 per cent. Additionally, the mass profiles of triaxial dark matter haloes taken from the SURFS simulation, within scaled radius 0.2 < r/rmax < 3, are measured with a bias of ˜ - 2.4 per cent and a dispersion of ˜ 10 per cent. The obtained dispersion is not because of Poisson noise due to small particle numbers as it is twice the later. We interpret the dispersion to be due to the inherent nature of the ΛCDM haloes, for example being aspherical and out-of-equilibrium. Hence, the dispersion obtained for stellar haloes sets a limit of about 12 per cent (after adjusting for random uncertainty) on the accuracy with which the mass profiles of the Milky Way-like galaxies can be reconstructed using the spherical Jeans equation. This limit is independent of the quantity and quality of the observational data. The reason for a non-zero bias is not clear, hence its interpretation is not obvious at this stage.
Waste management CDM projects barriers NVivo 10® qualitative dataset.
Bufoni, André Luiz; de Sousa Ferreira, Aracéli Cristina; Oliveira, Luciano Basto
2017-12-01
This article contains one NVivo 10® file with the complete 432 projects design documents (PDD) of seven waste management sector industries registered as Clean Development Mechanism (CDM) under United Nations Framework Convention on Climate Change (UNFCCC) Kyoto Protocol Initiative from 2004 to 2014. All data analyses and sample statistics made during the research remain in the file. We coded PDDs in 890 fragments of text, classified in five categories of barriers (nodes): technological, financial, human resources, regulatory, socio-political. The data supports the findings of author thesis [1] and other two indexed publication in Waste Management Journal: "The financial attractiveness assessment of large waste management projects registered as clean development mechanism" and "The declared barriers of the large developing countries waste management projects: The STAR model" [2], [3]. The data allows any computer assisted qualitative content analysis (CAQCA) on the sector and it is available at Mendeley [4].
Magnetized $\\Lambda$CDM inhomogeneities and the cosmic dark ages
Giovannini, Massimo
2011-01-01
Exact solutions of the perturbations equations in the magnetized LambdaCDM scenario are presented. They apply during the dark ages and, more specifically, after the baryons are freed from the drag of the photons. The magnetized growth rate of matter perturbations is compared with the growth index obtained in the concordance paradigm and under the assumption that dark energy does not cluster for a redshift window ranging from the epoch of reionization to the stage of dark-energy dominance. The constraints derived from this analysis are shown to be qualitatively complementary and quantitatively competitive with the bounds stemming from the analysis of the distortion patterns induced by the magnetized adiabatic mode on the temperature and polarization anisotropies of the Cosmic Microwave Background.
Woerdman, E.
The Kyoto protocol allows developed countries to achieve cost-effective greenhouse gas emission reductions abroad by means of international emissions trading (IET), joint implementation (JI) and the clean development mechanism (CDM). The article argues that JI and CDM projects will be more
Improving the attractiveness of CDM projects through allowing and incorporating options
International Nuclear Information System (INIS)
Carmichael, David G.; Ballouz, Joseph J.; Balatbat, Maria C.A.
2015-01-01
The paper puts forward a proposal that, within Clean Development Mechanism (CDM) projects, investors be allowed to benefit from options; this will require a CDM rule change. Through the presence of options, the downside risk resulting from low carbon prices and/or low achieved emission reductions on projects can be limited, while any upside resulting from high carbon prices and/or high achieved emission reductions can be taken advantage of. It is demonstrated that the presence of options improves the financial attractiveness of CDM projects, and this is at no detriment to any stakeholder. The flow-on from the proposal is that more CDM projects should be realisable if options are available, and this in turn will lead to reduced global emissions and improved sustainability. The proposal is supported by the necessary theory and is demonstrated on two registered CDM projects, one on hydropower and one on wind power. - Highlights: • The paper proposes that options be allowed within CDM projects. • Introducing options will require a CDM rule change. • Options improve the financial attractiveness of CDM projects. • Allowing options comes at no cost or detriment to any party. • Allowing options is a win–win situation to both society and the project proponent.
International Nuclear Information System (INIS)
Mok, Ken L.; Han, Seung H.; Choi, Seokjin
2014-01-01
Greenhouse gas emissions due to human activities are the main contributors to global climate change, a problem that should not be ignored. Through the clean development mechanism (CDM) introduced under the Kyoto Protocol, developing countries are able to earn certified emission reduction (CER) credits through a myriad of emission reduction projects. This study aims to explore the potential of implementing CDM projects in the construction and built environment (C and BE) industry, which has been criticized for not only consuming an enormous amount of resources, but also for contributing to adverse environmental health. In this research, we limit the boundary of the C and BE industry to include the planning, procurement, construction, occupation and refurbishment/demolition phases of a project's life cycle. Surveys and in-depth follow-up interviews with experts have generated useful insights pertaining to CDM potential and its adaptation into the C and BE industry. From this foundation, this paper evaluates the current obstacles to CDM and presents feasible suggestions to increase CDM projects related to the C and BE industry. - Highlights: • We review the development and limitation of CDM relates to the construction and built environment (C and BE) industry. • We obtain experts' opinions on the feasibility of CDM in the C and BE industry. • Validation, monitoring, verification and additionality of CDM projects are crucial. • Experts agreed that most of our suggestions are feasible in principle
Colliders as a simultaneous probe of supersymmetric dark matter and Terascale cosmology
Energy Technology Data Exchange (ETDEWEB)
Barenboim, Gabriela; /Valencia U.; Lykken, Joseph D.; /Fermilab
2006-08-01
Terascale supersymmetry has the potential to provide a natural explanation of the dominant dark matter component of the standard {Lambda}CDM cosmology. However once we impose the constraints on minimal supersymmetry parameters from current particle physics data, a satisfactory dark matter abundance is no longer prima facie natural. This Neutralino Tuning Problem could be a hint of nonstandard cosmology during and/or after the Terascale era. To quantify this possibility, we introduce an alternative cosmological benchmark based upon a simple model of quintessential inflation. This benchmark has no free parameters, so for a given supersymmetry model it allows an unambiguous prediction of the dark matter relic density. As a example, we scan over the parameter space of the CMSSM, comparing the neutralino relic density predictions with the bounds from WMAP. We find that the WMAP-allowed regions of the CMSSM are an order of magnitude larger if we use the alternative cosmological benchmark, as opposed to {Lambda}CDM. Initial results from the CERN Large Hadron Collider will distinguish between the two allowed regions.
Sterile neutrinos with eV masses in cosmology — How disfavoured exactly?
International Nuclear Information System (INIS)
Hamann, Jan; Hannestad, Steen; Raffelt, Georg G.; Wong, Yvonne Y.Y.
2011-01-01
We study cosmological models that contain sterile neutrinos with eV-range masses as suggested by reactor and short-baseline oscillation data. We confront these models with both precision cosmological data (probing the CMB decoupling epoch) and light-element abundances (probing the BBN epoch). In the minimal ΛCDM model, such sterile neutrinos are strongly disfavoured by current data because they contribute too much hot dark matter. However, if the cosmological framework is extended to include also additional relativistic degrees of freedom beyond the three standard neutrinos and the putative sterile neutrinos, then the hot dark matter constraint on the sterile states is considerably relaxed. A further improvement is achieved by allowing a dark energy equation of state parameter w e degeneracy. Any model containing eV-mass sterile neutrinos implies also strong modifications of other cosmological parameters. Notably, the inferred cold dark matter density can shift up by 20–75% relative to the standard ΛCDM value
Colliders as a simultaneous probe of supersymmetric dark matter and Terascale cosmology
International Nuclear Information System (INIS)
Barenboim, Gabriela; Valencia U.; Lykken, Joseph D.; Fermilab
2006-01-01
Terascale supersymmetry has the potential to provide a natural explanation of the dominant dark matter component of the standard ΛCDM cosmology. However once we impose the constraints on minimal supersymmetry parameters from current particle physics data, a satisfactory dark matter abundance is no longer prima facie natural. This Neutralino Tuning Problem could be a hint of nonstandard cosmology during and/or after the Terascale era. To quantify this possibility, we introduce an alternative cosmological benchmark based upon a simple model of quintessential inflation. This benchmark has no free parameters, so for a given supersymmetry model it allows an unambiguous prediction of the dark matter relic density. As a example, we scan over the parameter space of the CMSSM, comparing the neutralino relic density predictions with the bounds from WMAP. We find that the WMAP-allowed regions of the CMSSM are an order of magnitude larger if we use the alternative cosmological benchmark, as opposed to ΛCDM. Initial results from the CERN Large Hadron Collider will distinguish between the two allowed regions
Colliders as a simultaneous probe of supersymmetric dark matter and Terascale cosmology
Energy Technology Data Exchange (ETDEWEB)
Barenboim, Gabriela [Departament de Fisica Teorica, Universitat de Valencia, Carrer Dr. Moliner 50, E-46100 Burjassot (Valencia) (Spain); Lykken, Joseph D. [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States)
2006-12-15
Terascale supersymmetry has the potential to provide a natural explanation of the dominant dark matter component of the standard {lambda}CDM cosmology. However once we impose the constraints on minimal supersymmetry parameters from current particle physics data, a satisfactory dark matter abundance is no longer prima facie natural. This Neutralino Tuning Problem could be a hint of nonstandard cosmology during and/or after the Terascale era. To quantify this possibility, we introduce an alternative cosmological benchmark based upon a simple model of quintessential inflation. This benchmark has no free parameters, so for a given supersymmetry model it allows an unambiguous prediction of the dark matter relic density. As a example, we scan over the parameter space of the CMSSM, comparing the neutralino relic density predictions with the bounds from WMAP. We find that the WMAP-allowed regions of the CMSSM are an order of magnitude larger if we use the alternative cosmological benchmark, as opposed to {lambda}CDM. Initial results from the CERN Large Hadron Collider will distinguish between the two allowed regions.
International Nuclear Information System (INIS)
Zhai Zhongxu; Wan Haoyi; Zhang Tongjie
2010-01-01
We use the Radial Baryon Acoustic Oscillation (RBAO) measurements, distant type Ia supernovae (SNe Ia), the observational H(z) data (OHD) and the Cosmic Microwave Background (CMB) shift parameter data to constrain cosmological parameters of ΛCDM and XCDM cosmologies and further examine the role of OHD and SNe Ia data in cosmological constraints. We marginalize the likelihood function over h by integrating the probability density P∝e -χ 2 /2 to obtain the best fitting results and the confidence regions in the Ω m -Ω Λ plane. With the combination analysis for both of the ΛCDM and XCDM models, we find that the confidence regions of 68.3%, 95.4% and 99.7% levels using OHD+RBAO+CMB data are in good agreement with that of SNe Ia+RBAO+CMB data which is consistent with the result of Lin et al.'s (2009) work. With more data of OHD, we can probably constrain the cosmological parameters using OHD data instead of SNe Ia data in the future.
Cosmological models in the generalized Einstein action
International Nuclear Information System (INIS)
Arbab, A.I.
2007-12-01
We have studied the evolution of the Universe in the generalized Einstein action of the form R + β R 2 , where R is the scalar curvature and β = const. We have found exact cosmological solutions that predict the present cosmic acceleration. These models predict an inflationary de-Sitter era occurring in the early Universe. The cosmological constant (Λ) is found to decay with the Hubble constant (H) as, Λ ∝ H 4 . In this scenario the cosmological constant varies quadratically with the energy density (ρ), i.e., Λ ∝ ρ 2 . Such a variation is found to describe a two-component cosmic fluid in the Universe. One of the components accelerated the Universe in the early era, and the other in the present era. The scale factor of the Universe varies as a ∼ t n = 1/2 in the radiation era. The cosmological constant vanishes when n = 4/3 and n =1/2. We have found that the inclusion of the term R 2 mimics a cosmic matter that could substitute the ordinary matter. (author)
Energy Technology Data Exchange (ETDEWEB)
Sehgal, Neelima; Trac, Hy; Acquaviva, Viviana; Ade, Peter A.R.; Aguirre, Paula; Amiri, Mandana; Appel, John W.; Barrientos, L.Felipe; Battistelli, Elia S.; Bond, J.Richard; Brown, Ben; Burger, Bryce; Chervenak, Jay; Das, Sudeep; Devlin, Mark J.; Dicker, Simon R.; Doriese, W.Bertrand; Dunkley, Joanna; Dunner, Rolando; Essinger-Hileman, Thomas; Fisher, Ryan P.
2011-08-18
We present constraints on cosmological parameters based on a sample of Sunyaev-Zeldovich-selected galaxy clusters detected in a millimeter-wave survey by the Atacama Cosmology Telescope. The cluster sample used in this analysis consists of 9 optically-confirmed high-mass clusters comprising the high-significance end of the total cluster sample identified in 455 square degrees of sky surveyed during 2008 at 148GHz. We focus on the most massive systems to reduce the degeneracy between unknown cluster astrophysics and cosmology derived from SZ surveys. We describe the scaling relation between cluster mass and SZ signal with a 4-parameter fit. Marginalizing over the values of the parameters in this fit with conservative priors gives {sigma}{sub 8} = 0.851 {+-} 0.115 and w = -1.14 {+-} 0.35 for a spatially-flat wCDM cosmological model with WMAP 7-year priors on cosmological parameters. This gives a modest improvement in statistical uncertainty over WMAP 7-year constraints alone. Fixing the scaling relation between cluster mass and SZ signal to a fiducial relation obtained from numerical simulations and calibrated by X-ray observations, we find {sigma}{sub 8} = 0.821 {+-} 0.044 and w = -1.05 {+-} 0.20. These results are consistent with constraints from WMAP 7 plus baryon acoustic oscillations plus type Ia supernoava which give {sigma}{sub 8} = 0.802 {+-} 0.038 and w = -0.98 {+-} 0.053. A stacking analysis of the clusters in this sample compared to clusters simulated assuming the fiducial model also shows good agreement. These results suggest that, given the sample of clusters used here, both the astrophysics of massive clusters and the cosmological parameters derived from them are broadly consistent with current models.
Cosmological perturbations on the phantom brane
Energy Technology Data Exchange (ETDEWEB)
Bag, Satadru; Sahni, Varun [Inter-University Centre for Astronomy and Astrophysics, Pune (India); Viznyuk, Alexander; Shtanov, Yuri, E-mail: satadru@iucaa.in, E-mail: viznyuk@bitp.kiev.ua, E-mail: shtanov@bitp.kiev.ua, E-mail: varun@iucaa.in [Bogolyubov Institute for Theoretical Physics, Kiev 03680 (Ukraine)
2016-07-01
We obtain a closed system of equations for scalar perturbations in a multi-component braneworld. Our braneworld possesses a phantom-like equation of state at late times, w {sub eff} < −1, but no big-rip future singularity. In addition to matter and radiation, the braneworld possesses a new effective degree of freedom—the 'Weyl fluid' or 'dark radiation'. Setting initial conditions on super-Hubble spatial scales at the epoch of radiation domination, we evolve perturbations of radiation, pressureless matter and the Weyl fluid until the present epoch. We observe a gradual decrease in the amplitude of the Weyl-fluid perturbations after Hubble-radius crossing, which results in a negligible effect of the Weyl fluid on the evolution of matter perturbations on spatial scales relevant for structure formation. Consequently, the quasi-static approximation of Koyama and Maartens provides a good fit to the exact results during the matter-dominated epoch. We find that the late-time growth of density perturbations on the brane proceeds at a faster rate than in ΛCDM. Additionally, the gravitational potentials Φ and Ψ evolve differently on the brane than in ΛCDM, for which Φ = Ψ. On the brane, by contrast, the ratio Φ/Ψ exceeds unity during the late matter-dominated epoch ( z ∼< 50). These features emerge as smoking gun tests of phantom brane cosmology and allow predictions of this scenario to be tested against observations of galaxy clustering and large-scale structure.
Exploring cosmic origins with CORE: Cosmological parameters
Di Valentino, E.; Brinckmann, T.; Gerbino, M.; Poulin, V.; Bouchet, F. R.; Lesgourgues, J.; Melchiorri, A.; Chluba, J.; Clesse, S.; Delabrouille, J.; Dvorkin, C.; Forastieri, F.; Galli, S.; Hooper, D. C.; Lattanzi, M.; Martins, C. J. A. P.; Salvati, L.; Cabass, G.; Caputo, A.; Giusarma, E.; Hivon, E.; Natoli, P.; Pagano, L.; Paradiso, S.; Rubiño-Martin, J. A.; Achúcarro, A.; Ade, P.; Allison, R.; Arroja, F.; Ashdown, M.; Ballardini, M.; Banday, A. J.; Banerji, R.; Bartolo, N.; Bartlett, J. G.; Basak, S.; Baumann, D.; de Bernardis, P.; Bersanelli, M.; Bonaldi, A.; Bonato, M.; Borrill, J.; Boulanger, F.; Bucher, M.; Burigana, C.; Buzzelli, A.; Cai, Z.-Y.; Calvo, M.; Carvalho, C. S.; Castellano, G.; Challinor, A.; Charles, I.; Colantoni, I.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; De Petris, M.; De Zotti, G.; Diego, J. M.; Errard, J.; Feeney, S.; Fernandez-Cobos, R.; Ferraro, S.; Finelli, F.; de Gasperis, G.; Génova-Santos, R. T.; González-Nuevo, J.; Grandis, S.; Greenslade, J.; Hagstotz, S.; Hanany, S.; Handley, W.; Hazra, D. K.; Hernández-Monteagudo, C.; Hervias-Caimapo, C.; Hills, M.; Kiiveri, K.; Kisner, T.; Kitching, T.; Kunz, M.; Kurki-Suonio, H.; Lamagna, L.; Lasenby, A.; Lewis, A.; Liguori, M.; Lindholm, V.; Lopez-Caniego, M.; Luzzi, G.; Maffei, B.; Martin, S.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; McCarthy, D.; Melin, J.-B.; Mohr, J. J.; Molinari, D.; Monfardini, A.; Negrello, M.; Notari, A.; Paiella, A.; Paoletti, D.; Patanchon, G.; Piacentini, F.; Piat, M.; Pisano, G.; Polastri, L.; Polenta, G.; Pollo, A.; Quartin, M.; Remazeilles, M.; Roman, M.; Ringeval, C.; Tartari, A.; Tomasi, M.; Tramonte, D.; Trappe, N.; Trombetti, T.; Tucker, C.; Väliviita, J.; van de Weygaert, R.; Van Tent, B.; Vennin, V.; Vermeulen, G.; Vielva, P.; Vittorio, N.; Young, K.; Zannoni, M.
2018-04-01
We forecast the main cosmological parameter constraints achievable with the CORE space mission which is dedicated to mapping the polarisation of the Cosmic Microwave Background (CMB). CORE was recently submitted in response to ESA's fifth call for medium-sized mission proposals (M5). Here we report the results from our pre-submission study of the impact of various instrumental options, in particular the telescope size and sensitivity level, and review the great, transformative potential of the mission as proposed. Specifically, we assess the impact on a broad range of fundamental parameters of our Universe as a function of the expected CMB characteristics, with other papers in the series focusing on controlling astrophysical and instrumental residual systematics. In this paper, we assume that only a few central CORE frequency channels are usable for our purpose, all others being devoted to the cleaning of astrophysical contaminants. On the theoretical side, we assume ΛCDM as our general framework and quantify the improvement provided by CORE over the current constraints from the Planck 2015 release. We also study the joint sensitivity of CORE and of future Baryon Acoustic Oscillation and Large Scale Structure experiments like DESI and Euclid. Specific constraints on the physics of inflation are presented in another paper of the series. In addition to the six parameters of the base ΛCDM, which describe the matter content of a spatially flat universe with adiabatic and scalar primordial fluctuations from inflation, we derive the precision achievable on parameters like those describing curvature, neutrino physics, extra light relics, primordial helium abundance, dark matter annihilation, recombination physics, variation of fundamental constants, dark energy, modified gravity, reionization and cosmic birefringence. In addition to assessing the improvement on the precision of individual parameters, we also forecast the post-CORE overall reduction of the allowed
EU-MENA energy technology transfer under the CDM: Israel as a frontrunner?
International Nuclear Information System (INIS)
Karakosta, Charikleia; Doukas, Haris; John, Psarras
2010-01-01
The majority of the Middle East and North Africa (MENA) countries possess substantial potential for the implementation of CDM projects. Abatement of Greenhouse Gas (GHG) emissions can mainly be achieved through utilizing the abundant Renewable Energy Sources (RES) in the region and the implementation of Energy Efficiency (ENEF) measures. However, most of the MENA countries have a limited track record as regards CDM projects in the pipeline comparing to the major CDM-players, like Asia-Pacific regions and Latin America. In the above framework, this paper investigates the current status of CDM in the MENA region and the related perspectives for further diffusion of the CDM though the elaboration of a Strengths-Weaknesses-Opportunities and Threats (SWOT) Analysis. Particular emphasis is laid on the case of Israel, which seems to make an exception to the rule, since it hosts most projects in the region and dominates among the MENA countries.
International Nuclear Information System (INIS)
Kehagias, A.; Riotto, A.
2016-01-01
Symmetries play an interesting role in cosmology. They are useful in characterizing the cosmological perturbations generated during inflation and lead to consistency relations involving the soft limit of the statistical correlators of large-scale structure dark matter and galaxies overdensities. On the other hand, in observational cosmology the carriers of the information about these large-scale statistical distributions are light rays traveling on null geodesics. Motivated by this simple consideration, we study the structure of null infinity and the associated BMS symmetry in a cosmological setting. For decelerating Friedmann-Robertson-Walker backgrounds, for which future null infinity exists, we find that the BMS transformations which leaves the asymptotic metric invariant to leading order. Contrary to the asymptotic flat case, the BMS transformations in cosmology generate Goldstone modes corresponding to scalar, vector and tensor degrees of freedom which may exist at null infinity and perturb the asymptotic data. Therefore, BMS transformations generate physically inequivalent vacua as they populate the universe at null infinity with these physical degrees of freedom. We also discuss the gravitational memory effect when cosmological expansion is taken into account. In this case, there are extra contribution to the gravitational memory due to the tail of the retarded Green functions which are supported not only on the light-cone, but also in its interior. The gravitational memory effect can be understood also from an asymptotic point of view as a transition among cosmological BMS-related vacua.
International Nuclear Information System (INIS)
Nojiri, S; Odintsov, S D; Oikonomou, V K
2016-01-01
We combine the unimodular gravity and mimetic gravity theories into a unified theoretical framework, which is proposed to provide a suggestive proposal for a framework that may assist in the discussion and search for a solution to the cosmological constant problem and the dark matter issue. After providing the formulation of the unimodular mimetic gravity and investigating all the new features that the vacuum unimodular gravity implies, by using the underlying reconstruction method, we realize some well known cosmological evolutions, with some of these being exotic for the ordinary Einstein–Hilbert gravity. Specifically we provide the vacuum unimodular mimetic gravity description of the de Sitter cosmology and of the perfect fluid with constant equation of state cosmology. As we demonstrate, these cosmologies can be realized by vacuum mimetic unimodular gravity, without the existence of any matter fluid source. Moreover, we investigate how cosmologically viable cosmologies, which are compatible with the recent observational data, can be realized by the vacuum unimodular mimetic gravity. Since in some cases, a graceful exit from inflation problem might exist, we provide a qualitative description of the mechanism that can potentially generate the graceful exit from inflation in these theories, by searching for the unstable de Sitter solutions in the context of unimodular mimetic theories of gravity. (paper)
Energy Technology Data Exchange (ETDEWEB)
Kehagias, A. [Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens (Greece); Riotto, A. [Department of Theoretical Physics,24 quai E. Ansermet, CH-1211 Geneva 4 (Switzerland); Center for Astroparticle Physics (CAP),24 quai E. Ansermet, CH-1211 Geneva 4 (Switzerland)
2016-05-25
Symmetries play an interesting role in cosmology. They are useful in characterizing the cosmological perturbations generated during inflation and lead to consistency relations involving the soft limit of the statistical correlators of large-scale structure dark matter and galaxies overdensities. On the other hand, in observational cosmology the carriers of the information about these large-scale statistical distributions are light rays traveling on null geodesics. Motivated by this simple consideration, we study the structure of null infinity and the associated BMS symmetry in a cosmological setting. For decelerating Friedmann-Robertson-Walker backgrounds, for which future null infinity exists, we find that the BMS transformations which leaves the asymptotic metric invariant to leading order. Contrary to the asymptotic flat case, the BMS transformations in cosmology generate Goldstone modes corresponding to scalar, vector and tensor degrees of freedom which may exist at null infinity and perturb the asymptotic data. Therefore, BMS transformations generate physically inequivalent vacua as they populate the universe at null infinity with these physical degrees of freedom. We also discuss the gravitational memory effect when cosmological expansion is taken into account. In this case, there are extra contribution to the gravitational memory due to the tail of the retarded Green functions which are supported not only on the light-cone, but also in its interior. The gravitational memory effect can be understood also from an asymptotic point of view as a transition among cosmological BMS-related vacua.
Origin of a small cosmological constant in a brane world
International Nuclear Information System (INIS)
Ghoroku, Kazuo; Yahiro, Masanobu
2002-01-01
We address the relation between the parameters of an accelerating brane universe embedded in five-dimensional bulk space. It is pointed out that the tiny cosmological constant of our world can be obtained as quantum corrections around a given brane solution in the bulk theory or in the field theory on the boundary from a holographic viewpoint. Some implications to the cosmology and constraints on the parameters are also given
Neutrino properties from cosmology
DEFF Research Database (Denmark)
Hannestad, S.
2013-01-01
In recent years precision cosmology has become an increasingly powerful probe of particle physics. Perhaps the prime example of this is the very stringent cosmological upper bound on the neutrino mass. However, other aspects of neutrino physics, such as their decoupling history and possible non......-standard interactions, can also be probed using observations of cosmic structure. Here, I review the current status of cosmological bounds on neutrino properties and discuss the potential of future observations, for example by the recently approved EUCLID mission, to precisely measure neutrino properties....
Cosmology and particle physics
International Nuclear Information System (INIS)
Barrow, J.D.
1982-01-01
A brief overview is given of recent work that integrates cosmology and particle physics. The observational data regarding the abundance of matter and radiation in the Universe is described. The manner in which the cosmological survival density of stable massive particles can be calculated is discussed along with the process of cosmological nucleosynthesis. Several applications of these general arguments are given with reference to the survival density of nucleons, neutrinos and unconfined fractionally charge particles. The use of nucleosynthesis to limit the number of lepton generations is described together with the implications of a small neutrino mass for the origin of galaxies and clusters. (Auth.)
Neutrino properties from cosmology
CERN. Geneva
2013-01-01
Future, massive large-scale structure survey have been presented and approved.On the theory side, a significant effort has bene devoted to achieve better modeling of small scale clustering that is of cosmological non-linearities. As a result it has become clear that forthcoming cosmological data have enough statitsical power to detect the effect of non-zero neutrino mass (even at the lower mass scale limit imposed by oscillations) and to constrain the absolute neutrino mass scale.Cosmological data can also constrain the numb...
International Nuclear Information System (INIS)
Nussbaumer, Patrick
2009-01-01
The Clean Development Mechanism (CDM) has a twofold objective, to offset greenhouse gas emissions and to contribute to sustainable development in the host country. The contribution to the latter objective seems marginal in most CDM activities. Also, CDM activities are unevenly spread among developing countries. In response to these concerns, initiatives with the objective of promoting CDM projects with broad local sustainable development dividends have been launched, such as the Gold Standard and the Community Development Carbon Fund. The Gold Standard label rewards best-practice CDM projects while the Community Development Carbon Fund focuses on promoting CDM activities in underprivileged communities. Using a multi-criteria method, the potential contribution to local sustainable development of those CDM projects with particular attributes is compared with ordinary ones. This evaluation suggests that labelled CDM activities tend to slightly outperform comparable projects, although not unequivocally
Doranova, A.; Costa, I.; Duysters, G.M.
2011-01-01
Technology transfer in Clean Development Mechanism (CDM) projects of the Kyoto Protocol has acquired increasing attention of policy makers and academia. This study is an effort to investigate CDM projects' related technology transfer process from the organisational learning and technological
Doranova, A.; Costa, I.; Duijsters, G.M.
2011-01-01
Technology transfer in Clean Development Mechanism (CDM) projects of the Kyoto Protocol has acquired increasing attention of policy makers and academia. This study is an effort to investigate CDM projects' related technology transfer process from the organisational learning and technological
Stability analysis in tachyonic potential chameleon cosmology
International Nuclear Information System (INIS)
Farajollahi, H.; Salehi, A.; Tayebi, F.; Ravanpak, A.
2011-01-01
We study general properties of attractors for tachyonic potential chameleon scalar-field model which possess cosmological scaling solutions. An analytic formulation is given to obtain fixed points with a discussion on their stability. The model predicts a dynamical equation of state parameter with phantom crossing behavior for an accelerating universe. We constrain the parameters of the model by best fitting with the recent data-sets from supernovae and simulated data points for redshift drift experiment generated by Monte Carlo simulations
Stability analysis in tachyonic potential chameleon cosmology
Energy Technology Data Exchange (ETDEWEB)
Farajollahi, H.; Salehi, A.; Tayebi, F.; Ravanpak, A., E-mail: hosseinf@guilan.ac.ir, E-mail: a.salehi@guilan.ac.ir, E-mail: ftayebi@guilan.ac.ir, E-mail: aravanpak@guilan.ac.ir [Department of Physics, University of Guilan, Rasht (Iran, Islamic Republic of)
2011-05-01
We study general properties of attractors for tachyonic potential chameleon scalar-field model which possess cosmological scaling solutions. An analytic formulation is given to obtain fixed points with a discussion on their stability. The model predicts a dynamical equation of state parameter with phantom crossing behavior for an accelerating universe. We constrain the parameters of the model by best fitting with the recent data-sets from supernovae and simulated data points for redshift drift experiment generated by Monte Carlo simulations.
Cosmological bound from the neutron star merger GW170817 in scalar-tensor and F(R) gravity theories
Nojiri, Shin'ichi; Odintsov, Sergei D.
2018-04-01
We consider the evolution of cosmological gravitational waves in scalar-tensor theory and F (R) gravity theory as typical models of the modified gravity. Although the propagation speed is not changed from the speed of light, the propagation phase changes when we compare the propagation in these modified gravity theories with the propagation in the ΛCDM model. The phase change might be detected in future observations.
Constraint on neutrino masses from SDSS-III/BOSS Ly$\\alpha$ forest and other cosmological probes
Palanque-Delabrouille, Nathalie; Lesgourgues, Julien; Rossi, Graziano; Borde, Arnaud; Viel, Matteo; Aubourg, Eric; Kirkby, David; LeGoff, Jean-Marc; Rich, James; Roe, Natalie; Ross, Nicholas P.; Schneider, Donald P.; Weinberg, David
2015-02-27
We present constraints on the parameters of the $\\Lambda$CDM cosmological model in the presence of massive neutrinos, using the one-dimensional Ly$\\alpha$ forest power spectrum obtained with the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey (SDSS) by Palanque-Delabrouille et al. (2013), complemented by additional cosmological probes. The interpretation of the measured Ly$\\alpha$ spectrum is done using a second-order Taylor expansion of the simulated power spectrum. BOSS Ly$\\alpha$ data alone provide better bounds than previous Ly$\\alpha$ results, but are still poorly constraining, especially for the sum of neutrino masses $\\sum m_\
Directory of Open Access Journals (Sweden)
Laszlo A. Marosi
2013-01-01
Full Text Available We present a new redshift (RS versus photon travel time ( test including 171 supernovae RS data points. We extended the Hubble diagram to a range of z = 0,0141–8.1 in the hope that at high RSs, the fitting of the calculated RS/ diagrams to the observed RS data would, as predicted by different cosmological models, set constraints on alternative cosmological models. The Lambda cold dark matter (ΛCDM, the static universe model, and the case for a slowly expanding flat universe (SEU are considered. We show that on the basis of the Hubble diagram test, the static and the slowly expanding models are favored.
The cosmological constant problem
International Nuclear Information System (INIS)
Dolgov, A.D.
1989-05-01
A review of the cosmological term problem is presented. Baby universe model and the compensating field model are discussed. The importance of more accurate data on the Hubble constant and the Universe age is stressed. 18 refs
Time in contemporary cosmology
International Nuclear Information System (INIS)
Mavrides, Stamatia
1980-01-01
Cosmological time is defined, as is coordinated universal time against local times of special relativity. The problems of time and matter, age of the universe, Goedel models, arrow of time, are also discussed [fr
International Nuclear Information System (INIS)
Coule, D H
2005-01-01
We contrast the initial condition requirements of various contemporary cosmological models including inflationary and bouncing cosmologies. Canonical quantization of general relativity is used, as a first approximation to full quantum gravity, to determine whether suitable initial conditions are present. Various proposals such as Hartle-Hawking's 'no boundary' or tunnelling boundary conditions are assessed on grounds of naturalness and fine tuning. Alternatively, a quiescent initial state or an initial closed timelike curve 'time machine' is considered. Possible extensions to brane models are also addressed. Further ideas about universe creation from a meta-universe are outlined. Semiclassical and time asymmetry requirements of cosmology are briefly discussed and contrasted with the black-hole final-state proposal. We compare the recent loop quantum cosmology of Bojowald and co-workers with these earlier schemes. A number of possible difficulties and limitations are outlined. (topical review)
Cosmological Probes for Supersymmetry
Directory of Open Access Journals (Sweden)
Maxim Khlopov
2015-05-01
Full Text Available The multi-parameter character of supersymmetric dark-matter models implies the combination of their experimental studies with astrophysical and cosmological probes. The physics of the early Universe provides nontrivial effects of non-equilibrium particles and primordial cosmological structures. Primordial black holes (PBHs are a profound signature of such structures that may arise as a cosmological consequence of supersymmetric (SUSY models. SUSY-based mechanisms of baryosynthesis can lead to the possibility of antimatter domains in a baryon asymmetric Universe. In the context of cosmoparticle physics, which studies the fundamental relationship of the micro- and macro-worlds, the development of SUSY illustrates the main principles of this approach, as the physical basis of the modern cosmology provides cross-disciplinary tests in physical and astronomical studies.
International Nuclear Information System (INIS)
Turner, Michael S.
1999-01-01
For two decades the hot big-bang model as been referred to as the standard cosmology - and for good reason. For just as long cosmologists have known that there are fundamental questions that are not answered by the standard cosmology and point to a grander theory. The best candidate for that grander theory is inflation + cold dark matter. It holds that the Universe is flat, that slowly moving elementary particles left over from the earliest moments provide the cosmic infrastructure, and that the primeval density inhomogeneities that seed all the structure arose from quantum fluctuations. There is now prima facie evidence that supports two basic tenets of this paradigm. An avalanche of high-quality cosmological observations will soon make this case stronger or will break it. Key questions remain to be answered; foremost among them are: identification and detection of the cold dark matter particles and elucidation of the dark-energy component. These are exciting times in cosmology!
International Nuclear Information System (INIS)
Senjanovic, G.; Virginia Polytechnic Inst. and State Univ., Blacksburg
1984-07-01
Extended supersymmetry, Kaluza-Klein theory and family unification all suggest the existence of mirror fermions, with same quantum numbers but opposite helicities from ordinary fermions. The laboratory and especially cosmological implications of such particles are reviewed and summarized. (author)
Lachieze-Rey, Marc
This book delivers a quantitative account of the science of cosmology, designed for a non-specialist audience. The basic principles are outlined using simple maths and physics, while still providing rigorous models of the Universe. It offers an ideal introduction to the key ideas in cosmology, without going into technical details. The approach used is based on the fundamental ideas of general relativity such as the spacetime interval, comoving coordinates, and spacetime curvature. It provides an up-to-date and thoughtful discussion of the big bang, and the crucial questions of structure and galaxy formation. Questions of method and philosophical approaches in cosmology are also briefly discussed. Advanced undergraduates in either physics or mathematics would benefit greatly from use either as a course text or as a supplementary guide to cosmology courses.
Tensors, relativity, and cosmology
Dalarsson, Mirjana
2015-01-01
Tensors, Relativity, and Cosmology, Second Edition, combines relativity, astrophysics, and cosmology in a single volume, providing a simplified introduction to each subject that is followed by detailed mathematical derivations. The book includes a section on general relativity that gives the case for a curved space-time, presents the mathematical background (tensor calculus, Riemannian geometry), discusses the Einstein equation and its solutions (including black holes and Penrose processes), and considers the energy-momentum tensor for various solutions. In addition, a section on relativistic astrophysics discusses stellar contraction and collapse, neutron stars and their equations of state, black holes, and accretion onto collapsed objects, with a final section on cosmology discussing cosmological models, observational tests, and scenarios for the early universe. This fully revised and updated second edition includes new material on relativistic effects, such as the behavior of clocks and measuring rods in m...
New observational constraints on f(T) cosmology from radio quasars
Energy Technology Data Exchange (ETDEWEB)
Qi, Jing-Zhao; Cao, Shuo; Zhu, Zong-Hong [Beijing Normal University, Department of Astronomy, Beijing (China); Biesiada, Marek; Zheng, Xiaogang [Beijing Normal University, Department of Astronomy, Beijing (China); University of Silesia, Department of Astrophysics and Cosmology, Institute of Physics, Katowice (Poland)
2017-08-15
Using a new recently compiled milliarcsecond compact radio data set of 120 intermediate-luminosity quasars in the redshift range 0.46 < z < 2.76, whose statistical linear sizes show negligible dependence on redshifts and intrinsic luminosity and thus represent standard rulers in cosmology, we constrain three viable and most popular f(T) gravity models, where T is the torsion scalar in teleparallel gravity. Our analysis reveals that constraining power of the quasars data (N = 120) is comparable to the Union2.1 SN Ia data (N = 580) for all three f(T) models. Together with other standard ruler probes such as cosmic microwave background and baryon acoustic oscillation distance measurements, the present value of the matter density parameter Ω{sub m} obtained by quasars is much larger than that derived from other observations. For one of the models considered (f{sub 1}CDM) a small but noticeable deviation from ΛCDM cosmology is present, while in the framework of f{sub 3}CDM the effective equation of state may cross the phantom divide line at lower redshifts. These results indicate that intermediate-luminosity quasars could provide an effective observational probe comparable to SN Ia at much higher redshifts, and f(T) gravity is a reasonable candidate for the modified gravity theory. (orig.)
Particle physics and inflationary cosmology
Linde, Andrei D
1990-01-01
This is the LaTeX version of my book "Particle Physics and Inflationary Cosmology'' (Harwood, Chur, Switzerland, 1990). I decided to put it to hep-th, to make it easily available. Many things happened during the 15 years since the time when it was written. In particular, we have learned a lot about the high temperature behavior in the electroweak theory and about baryogenesis. A discovery of the acceleration of the universe has changed the way we are thinking about the problem of the vacuum energy: Instead of trying to explain why it is zero, we are trying to understand why it is anomalously small. Recent cosmological observations have shown that the universe is flat, or almost exactly flat, and confirmed many other predictions of inflationary theory. Many new versions of this theory have been developed, including hybrid inflation and inflationary models based on string theory. There was a substantial progress in the theory of reheating of the universe after inflation, and in the theory of eternal inflation. ...
Arguments concerning Relativity and Cosmology.
Klein, O
1971-01-29
In the first place I have reviewed the true foundation of Einstein's theory of general relativity, the so-called principle of equivalence, according to which there is no essential difference between "genuine" gravitation and inertial forces, well known from accelerated vehicles. By means of a comparison with Gaussian geometry of curved surfaces-the background of Riemannian geometry, the tool used by Einstein for the mathematical formulation of his theory-it is made clear that this principle is incompatible with the idea proposed by Mach and accepted by Einstein as an incitement to his attempt to describe the main situation in the universe as an analogy in three dimensions to the closed surface of a sphere. In the later attempts toward a mathematical description of the universe, where Einstein's cosmology was adapted to the discovery by Hubble that its observed part is expanding, the socalled cosmological postulate has been used as a kind of axiomatic background which, when analyzed, makes it probable that this expansion is shared by a very big, but still bounded system. This implies that our expanding metagalaxy is probably just one of a type of stellar objects in different phases of evolution, some expanding and some contracting. Some attempts toward the description of this evolution are sketched in the article with the hope that further investigation, theoretical and observational, may lead to an interesting advance in this part of astrophysics.
Magnetohydrodynamics and Plasma Cosmology
Kleidis, Kostas; Kuiroukidis, Apostolos; Papadopoulos, Demetrios; Vlahos, Loukas
2007-09-01
We study the linear magnetohydrodynamic (MHD) equations, both in the Newtonian and the general-relativistic limit, as regards a viscous magnetized fluid of finite conductivity and discuss instability criteria. In addition, we explore the excitation of cosmological perturbations in anisotropic spacetimes, in the presence of an ambient magnetic field. Acoustic, electromagnetic (e/m) and fast-magnetosonic modes, propagating normal to the magnetic field, can be excited, resulting in several implications of cosmological significance.
International Nuclear Information System (INIS)
Novikov, I.D.
1999-01-01
In this talk a brief survey has been carried out on the development of cosmology from the days Leopold Infeld was active in the field up to the present. Attention in particular is paid to the history of our knowledge of Hubble's expansion, of the cosmological constant, of the average density of matter and its distribution, and of the related issue of possible types of matter in the Universe. (author)
Cosmological phase transitions
International Nuclear Information System (INIS)
Kolb, E.W.
1993-10-01
If modern ideas about the role of spontaneous symmetry breaking in fundamental physics are correct, then the Universe should have undergone a series of phase transitions early in its history. The study of cosmological phase transitions has become an important aspect of early-Universe cosmology. In this lecture I review some very recent work on three aspects of phase transitions: the electroweak transition, texture, and axions
Directory of Open Access Journals (Sweden)
Daywitt W. C.
2009-04-01
Full Text Available Both the big-bang and the quasi-steady-state cosmologies originate in some type of Planck state. This paper presents a new cosmological theory based on the Planck- vacuum negative-energy state, a state consisting of a degenerate collection of negative- energy Planck particles. A heuristic look at the Einstein field equation provides a con- vincing argument that such a vacuum state could provide a theoretical explanation for the visible universe.
Preliminary assessment of potential CDM early start projects in Brazil
Energy Technology Data Exchange (ETDEWEB)
Meyers, S.; Sathaye, J.; Lehman, B.; Schumacher, K.; van Vliet, O.; Moreira, J.R.
2000-11-01
The Brazil/US Aspen Global Forum on Climate Change Policies and Programs has facilitated a dialogue between key Brazil and US public and private sector leaders on the subject of the Clean Development Mechanism (CDM). With support from the US government, a cooperative effort between Lawrence Berkeley National Laboratory and the University of Sao Paulo conducted an assessment of a number of projects put forth by Brazilian sponsors. Initially, we gathered information and conducted a screening assessment for ten projects in the energy sector and six projects in the forestry sector. Some of the projects appeared to offer greater potential to be attractive for CDM, or had better information available. We then conducted a more detailed assessment of 12 of these projects, and two other projects that were submitted after the initial screening. An important goal was to assess the potential impact of Certified Emission Reductions (CERs) on the financial performance of projects. With the exception of the two forestry-based fuel displacement projects, the impact of CERs on the internal rate of return (IRR) is fairly small. This is true for both the projects that displace grid electricity and those that displace local (diesel-based) electricity production. The relative effect of CERs is greater for projects whose IRR without CERs is low. CERs have a substantial effect on the IRR of the two short-rotation forestry energy substitution projects. One reason is that the biofuel displaces coke and oil, both of which are carbon-intensive. Another factor is that the product of these projects (charcoal and woodfuel, respectively) is relatively low value, so the revenue from carbon credits has a strong relative impact. CERs also have a substantial effect on the NPV of the carbon sequestration projects. Financial and other barriers pose a challenge for implementation of most of the projects. In most cases, the sponsor lacks sufficient capital, and loans are available only at high interest
Acceleration parameters for fluid physics with accelerating bodies
CSIR Research Space (South Africa)
Gledhill, Irvy MA
2016-06-01
Full Text Available to an acceleration parameter that appears to be new in fluid physics, but is known in cosmology. A selection of cases for rectilinear acceleration has been chosen to illustrate the point that this parameter alone does not govern regimes of flow about significantly...
Modelling the impacts of CDM incentives for the Thai electricity sector
International Nuclear Information System (INIS)
Weiss, Philipp; Lefevre, Thierry; Moest, Dominik
2008-01-01
The CDM Executive Board recently took a positive decision on programmatic CDM, also known as a CDM Programme of Activities. This prompts the author to present a new tool that has been developed recently for the Thai electricity market. The Renewable Energy Development (RED) Model, initially developed in the framework of the DANIDA funded project: Promotion of Renewable Energy in Thailand (PRET), at the Ministry of Energy of Thailand, was designed for the modelling of different incentive schemes and their effects on the Thai power system for the promotion of renewable energy technologies (RETs). Within this article, an extension of the existing RED model, including the CDM as additional incentive measure, is presented (RED-CDM). Along with the project-based approach, also a sectoral and programmatic approach is included as well. Several scenarios developed with the RED-CDM model show the influence of different incentive mechanisms on the Thai power market and their potentials for reaching the policy targets stated in the Energy Strategy of Thailand for Competitiveness. The main results show that reaching the policy targets is possible, while the price can be extremely high if the targets are to be achieved on schedule. Another important result is that a sectoral CDM approach could help financing about 20% of the incentives needed for a shift towards a more sustainable power grid, if the certified emission reductions (CERs) are sold at a price of 15 Euro/ton
Cosmological Models and Stability
Andersson, Lars
Principles in the form of heuristic guidelines or generally accepted dogma play an important role in the development of physical theories. In particular, philosophical considerations and principles figure prominently in the work of Albert Einstein. As mentioned in the talk by Jiří Bičák at this conference, Einstein formulated the equivalence principle, an essential step on the road to general relativity, during his time in Prague 1911-1912. In this talk, I would like to discuss some aspects of cosmological models. As cosmology is an area of physics where "principles" such as the "cosmological principle" or the "Copernican principle" play a prominent role in motivating the class of models which form part of the current standard model, I will start by comparing the role of the equivalence principle to that of the principles used in cosmology. I will then briefly describe the standard model of cosmology to give a perspective on some mathematical problems and conjectures on cosmological models, which are discussed in the later part of this paper.
Growth of matter perturbation in quintessence cosmology
Mulki, Fargiza A. M.; Wulandari, Hesti R. T.
2017-01-01
Big bang theory states that universe emerged from singularity with very high temperature and density, then expands homogeneously and isotropically. This theory gives rise standard cosmological principle which declares that universe is homogeneous and isotropic on large scales. However, universe is not perfectly homogeneous and isotropic on small scales. There exist structures starting from clusters, galaxies even to stars and planetary system scales. Cosmological perturbation theory is a fundamental theory that explains the origin of structures. According to this theory, the structures can be regarded as small perturbations in the early universe, which evolves as the universe expands. In addition to the problem of inhomogeneities of the universe, observations of supernovae Ia suggest that our universe is being accelerated. Various models of dark energy have been proposed to explain cosmic acceleration, one of them is cosmological constant. Because of several problems arise from cosmological constant, the alternative models have been proposed, one of these models is quintessence. We reconstruct growth of structure model following quintessence scenario at several epochs of the universe, which is specified by the effective equation of state parameters for each stage. Discussion begins with the dynamics of quintessence, in which exponential potential is analytically derived, which leads to various conditions of the universe. We then focus on scaling and quintessence dominated solutions. Subsequently, we review the basics of cosmological perturbation theory and derive formulas to investigate how matter perturbation evolves with time in subhorizon scales which leads to structure formation, and also analyze the influence of quintessence to the structure formation. From analytical exploration, we obtain the growth rate of matter perturbation and the existence of quintessence as a dark energy that slows down the growth of structure formation of the universe.
Quintom cosmology: Theoretical implications and observations
International Nuclear Information System (INIS)
Cai Yifu; Saridakis, Emmanuel N.; Setare, Mohammad R.; Xia Junqing
2010-01-01
We review the paradigm of quintom cosmology. This scenario is motivated by the observational indications that the equation-of-state of dark energy across the cosmological constant boundary is mildly favored, although the data are still far from being conclusive. As a theoretical setup we introduce a no-go theorem existing in quintom cosmology, and based on it we discuss the conditions for the equation-of-state of dark energy realizing the quintom scenario. The simplest quintom model can be achieved by introducing two scalar fields with one being quintessence and the other phantom. Based on the double-field quintom model we perform a detailed analysis of dark energy perturbations and we discuss their effects on current observations. This type of scenario usually suffers from a manifest problem due to the existence of a ghost degree-of-freedom, and thus we review various alternative realizations of the quintom paradigm. The developments in particle physics and string theory provide potential clues indicating that a quintom scenario may be obtained from scalar systems with higher derivative terms, as well as from non-scalar systems. Additionally, we construct a quintom realization in the framework of braneworld cosmology, where the cosmic acceleration and the phantom divide crossing result from the combined effects of the field evolution on the brane and the competition between four- and five-dimensional gravity. Finally, we study the outsets and fates of a universe in quintom cosmology. In a scenario with null energy condition violation one may obtain a bouncing solution at early times and therefore avoid the Big Bang singularity. Furthermore, if this occurs periodically, we obtain a realization of an oscillating universe. Lastly, we comment on several open issues in quintom cosmology and their connection to future investigations.
Trojan horse or horn of plenty? Reflections on allowing CCS in the CDM
International Nuclear Information System (INIS)
Coninck, Heleen de
2008-01-01
The discussion around allowing CO 2 capture and geological storage (CCS) into the Kyoto Protocol's Clean Development Mechanism (CDM) is important, as the CDM is currently the only structural incentive for reducing greenhouse gas emissions in the developing world. Without the potential incentives given by the CDM, CCS in developing countries will only take place sporadically in niche sectors. The debate around CCS in the CDM has developed into a highly polarised discussion, with a deep divide between proponents and opponents and no view on reconciliation between the various perspectives. Environmental organisations and several developing-country parties in the climate negotiations are increasingly vehemently opposed against CCS in the CDM, and industrialised countries, several large fossil-fuel-dependent developing countries and industry view CCS as a natural option under the CDM, provided some surmountable technical and procedural barriers are taken care of. This paper argues that the efforts of those trying to bring the discussion to a close by solving technical and procedural issues around CCS in the CDM will not lead to agreement because of underlying convictions of all stakeholders. Six convictions are identified and discussed. Based on the discussion of the convictions of both opponents and proponents, research needs and a potential negotiation package are suggested. The research needs are primarily in the field of the CDM market impacts of CCS, the issue of enhanced oil emission accounting, and sustainable development aspects, and particularly whether developing countries could actually benefit from technological leadership in the field of CCS, or whether they will be worse off. Devoting attention to the identified convictions could provide information for a more acceptable negotiation package on CCS in the CDM. (author)
Arbitrary scalar-field and quintessence cosmological models
International Nuclear Information System (INIS)
Harko, Tiberiu; Lobo, Francisco S.N.; Mak, M.K.
2014-01-01
The mechanism of the initial inflationary scenario of the Universe and of its late-time acceleration can be described by assuming the existence of some gravitationally coupled scalar fields φ, with the inflaton field generating inflation and the quintessence field being responsible for the late accelerated expansion. Various inflationary and late-time accelerated scenarios are distinguished by the choice of an effective self-interaction potential V(φ), which simulates a temporarily non-vanishing cosmological term. In this work, we present a new formalism for the analysis of scalar fields in flat isotropic and homogeneous cosmological models. The basic evolution equation of the models can be reduced to a first-order non-linear differential equation. Approximate solutions of this equation can be constructed in the limiting cases of the scalar-field kinetic energy and potential energy dominance, respectively, as well as in the intermediate regime. Moreover, we present several new accelerating and decelerating exact cosmological solutions, based on the exact integration of the basic evolution equation for scalar-field cosmologies. More specifically, exact solutions are obtained for exponential, generalized cosine hyperbolic, and power-law potentials, respectively. Cosmological models with power-law scalar field potentials are also analyzed in detail. (orig.)
Cosmological attractors in massive gravity
Dubovsky, S; Tkachev, I I
2005-01-01
We study Lorentz-violating models of massive gravity which preserve rotations and are invariant under time-dependent shifts of the spatial coordinates. In the linear approximation the Newtonian potential in these models has an extra ``confining'' term proportional to the distance from the source. We argue that during cosmological expansion the Universe may be driven to an attractor point with larger symmetry which includes particular simultaneous dilatations of time and space coordinates. The confining term in the potential vanishes as one approaches the attractor. In the vicinity of the attractor the extra contribution is present in the Friedmann equation which, in a certain range of parameters, gives rise to the cosmic acceleration.
BOOK REVIEW: Observational Cosmology Observational Cosmology
Howell, Dale Andrew
2013-04-01
Observational Cosmology by Stephen Serjeant fills a niche that was underserved in the textbook market: an up-to-date, thorough cosmology textbook focused on observations, aimed at advanced undergraduates. Not everything about the book is perfect - some subjects get short shrift, in some cases jargon dominates, and there are too few exercises. Still, on the whole, the book is a welcome addition. For decades, the classic textbooks of cosmology have focused on theory. But for every Sunyaev-Zel'dovich effect there is a Butcher-Oemler effect; there are as many cosmological phenomena established by observations, and only explained later by theory, as there were predicted by theory and confirmed by observations. In fact, in the last decade, there has been an explosion of new cosmological findings driven by observations. Some are so new that you won't find them mentioned in books just a few years old. So it is not just refreshing to see a book that reflects the new realities of cosmology, it is vital, if students are to truly stay up on a field that has widened in scope considerably. Observational Cosmology is filled with full-color images, and graphs from the latest experiments. How exciting it is that we live in an era where satellites and large experiments have gathered so much data to reveal astounding details about the origin of the universe and its evolution. To have all the latest data gathered together and explained in one book will be a revelation to students. In fact, at times it was to me. I've picked up modern cosmological knowledge through a patchwork of reading papers, going to colloquia, and serving on grant and telescope allocation panels. To go back and see them explained from square one, and summarized succinctly, filled in quite a few gaps in my own knowledge and corrected a few misconceptions I'd acquired along the way. To make room for all these graphs and observational details, a few things had to be left out. For one, there are few derivations
Constraining cosmological parameters with observational data including weak lensing effects
Energy Technology Data Exchange (ETDEWEB)
Li Hong [Institute of High Energy Physics, Chinese Academy of Science, PO Box 918-4, Beijing 100049 (China); Theoretical Physics Center for Science Facilities (TPCSF), Chinese Academy of Science (China)], E-mail: hongli@mail.ihep.ac.cn; Liu Jie [Institute of High Energy Physics, Chinese Academy of Science, PO Box 918-4, Beijing 100049 (China); Xia Junqing [Scuola Internazionale Superiore di Studi Avanzati, Via Beirut 2-4, I-34014 Trieste (Italy); Sun Lei; Fan Zuhui [Department of Astronomy, School of Physics, Peking University, Beijing 100871 (China); Tao Charling; Tilquin, Andre [Centre de Physique des Particules de Marseille, CNRS/IN2P3-Luminy and Universite de la Mediterranee, Case 907, F-13288 Marseille Cedex 9 (France); Zhang Xinmin [Institute of High Energy Physics, Chinese Academy of Science, PO Box 918-4, Beijing 100049 (China); Theoretical Physics Center for Science Facilities (TPCSF), Chinese Academy of Science (China)
2009-05-11
In this Letter, we study the cosmological implications of the 100 square degree Weak Lensing survey (the CFHTLS-Wide, RCS, VIRMOS-DESCART and GaBoDS surveys). We combine these weak lensing data with the cosmic microwave background (CMB) measurements from the WMAP5, BOOMERanG, CBI, VSA, ACBAR, the SDSS LRG matter power spectrum and the Type Ia Supernoave (SNIa) data with the 'Union' compilation (307 sample), using the Markov Chain Monte Carlo method to determine the cosmological parameters, such as the equation-of-state (EoS) of dark energy w, the density fluctuation amplitude {sigma}{sub 8}, the total neutrino mass {sigma}m{sub {nu}} and the parameters associated with the power spectrum of the primordial fluctuations. Our results show that the {lambda}CDM model remains a good fit to all of these data. In a flat universe, we obtain a tight limit on the constant EoS of dark energy, w=-0.97{+-}0.041 (1{sigma}). For the dynamical dark energy model with time evolving EoS parameterized as w{sub de}(a)=w{sub 0}+w{sub a}(1-a), we find that the best-fit values are w{sub 0}=-1.064 and w{sub a}=0.375, implying the mildly preference of Quintom model whose EoS gets across the cosmological constant boundary during evolution. Regarding the total neutrino mass limit, we obtain the upper limit, {sigma}m{sub {nu}}<0.471 eV (95% C.L.) within the framework of the flat {lambda}CDM model. Due to the obvious degeneracies between the neutrino mass and the EoS of dark energy model, this upper limit will be relaxed by a factor of 2 in the framework of dynamical dark energy models. Assuming that the primordial fluctuations are adiabatic with a power law spectrum, within the {lambda}CDM model, we find that the upper limit on the ratio of the tensor to scalar is r<0.35 (95% C.L.) and the inflationary models with the slope n{sub s}{>=}1 are excluded at more than 2{sigma} confidence level. In this Letter we pay particular attention to the contribution from the weak lensing data and
Energy Technology Data Exchange (ETDEWEB)
NONE
1996-03-01
Study was made on promotion of CDM (clean development mechanism) project through technology transfer with plant exports. Although CDM system was provided in COP3 on climate change held in Kyoto in 1997, its detailed rules including project approval are yet undecided, and only the schedule to provide the detailed rules until COP6 in 2000 was decided in COP4 in 1998. The common recognition that the CDM project with plant exports produces various merits for both Japan and the partner country is increasing. However, from the viewpoint of forming concrete CDM projects, most Japanese enterprises are passive in approach to the CDM project because of no detailed design of CDM, uncertain profitability and procedures, and avoidance of additional burdens. Plant export is also difficult because of the fact that assessment of a new project is difficult. Enterprises' deeper recognition on the CDM project, and a governmental integrated support system are desirable. (NEDO)
Future Cosmological Constraints From Fast Radio Bursts
Walters, Anthony; Weltman, Amanda; Gaensler, B. M.; Ma, Yin-Zhe; Witzemann, Amadeus
2018-03-01
We consider the possible observation of fast radio bursts (FRBs) with planned future radio telescopes, and investigate how well the dispersions and redshifts of these signals might constrain cosmological parameters. We construct mock catalogs of FRB dispersion measure (DM) data and employ Markov Chain Monte Carlo analysis, with which we forecast and compare with existing constraints in the flat ΛCDM model, as well as some popular extensions that include dark energy equation of state and curvature parameters. We find that the scatter in DM observations caused by inhomogeneities in the intergalactic medium (IGM) poses a big challenge to the utility of FRBs as a cosmic probe. Only in the most optimistic case, with a high number of events and low IGM variance, do FRBs aid in improving current constraints. In particular, when FRBs are combined with CMB+BAO+SNe+H 0 data, we find the biggest improvement comes in the {{{Ω }}}{{b}}{h}2 constraint. Also, we find that the dark energy equation of state is poorly constrained, while the constraint on the curvature parameter, Ω k , shows some improvement when combined with current constraints. When FRBs are combined with future baryon acoustic oscillation (BAO) data from 21 cm Intensity Mapping, we find little improvement over the constraints from BAOs alone. However, the inclusion of FRBs introduces an additional parameter constraint, {{{Ω }}}{{b}}{h}2, which turns out to be comparable to existing constraints. This suggests that FRBs provide valuable information about the cosmological baryon density in the intermediate redshift universe, independent of high-redshift CMB data.
How universe evolves with cosmological and gravitational constants
Directory of Open Access Journals (Sweden)
She-Sheng Xue
2015-08-01
Full Text Available With a basic varying space–time cutoff ℓ˜, we study a regularized and quantized Einstein–Cartan gravitational field theory and its domains of ultraviolet-unstable fixed point gir≳0 and ultraviolet-stable fixed point guv≈4/3 of the gravitational gauge coupling g=(4/3G/GNewton. Because the fundamental operators of quantum gravitational field theory are dimension-2 area operators, the cosmological constant is inversely proportional to the squared correlation length Λ∝ξ−2. The correlation length ξ characterizes an infrared size of a causally correlate patch of the universe. The cosmological constant Λ and the gravitational constant G are related by a generalized Bianchi identity. As the basic space–time cutoff ℓ˜ decreases and approaches to the Planck length ℓpl, the universe undergoes inflation in the domain of the ultraviolet-unstable fixed point gir, then evolves to the low-redshift universe in the domain of ultraviolet-stable fixed point guv. We give the quantitative description of the low-redshift universe in the scaling-invariant domain of the ultraviolet-stable fixed point guv, and its deviation from the ΛCDM can be examined by low-redshift (z≲1 cosmological observations, such as supernova Type Ia.
Thermodynamics and cosmological reconstruction in f(T , B) gravity
Bahamonde, Sebastian; Zubair, M.; Abbas, G.
2018-03-01
Recently, it was formulated a teleparallel theory called f(T , B) gravity which connects both f(T) and f(R) under suitable limits. In this theory, the function in the action is assumed to depend on the torsion scalar T and also on a boundary term related with the divergence of torsion, B = 2∇μTμ. In this work, we study different features of a flat Friedmann-Lemaître-Robertson-Walker (FLRW) cosmology in this theory. First, we show that the FLRW equations can be transformed to the form of Clausius relation TˆhSeff = - dE + WdV, where Tˆh is the horizon temperature and Seff is the entropy which contains contributions both from horizon entropy and an additional entropy term introduced due to the non-equilibrium. We also formulate the constraint for the validity of the generalised second law of thermodynamics (GSLT). Additionally, using a cosmological reconstruction technique, we show that both f(T , B) and - T + F(B) gravity can mimic power-law, de-Sitter and ΛCDM models. Finally, we formulate the perturbed evolution equations and analyse the stability of some important cosmological solutions.
Conservative constraints on early cosmology with MONTE PYTHON
International Nuclear Information System (INIS)
Audren, Benjamin; Lesgourgues, Julien; Benabed, Karim; Prunet, Simon
2013-01-01
Models for the latest stages of the cosmological evolution rely on a less solid theoretical and observational ground than the description of earlier stages like BBN and recombination. As suggested in a previous work by Vonlanthen et al., it is possible to tweak the analysis of CMB data in such way to avoid making assumptions on the late evolution, and obtain robust constraints on ''early cosmology parameters''. We extend this method in order to marginalise the results over CMB lensing contamination, and present updated results based on recent CMB data. Our constraints on the minimal early cosmology model are weaker than in a standard ΛCDM analysis, but do not conflict with this model. Besides, we obtain conservative bounds on the effective neutrino number and neutrino mass, showing no hints for extra relativistic degrees of freedom, and proving in a robust way that neutrinos experienced their non-relativistic transition after the time of photon decoupling. This analysis is also an occasion to describe the main features of the new parameter inference code MONTE PYTHON, that we release together with this paper. MONTE PYTHON is a user-friendly alternative to other public codes like COSMOMC, interfaced with the Boltzmann code CLASS
Cosmology with cosmic shear observations: a review.
Kilbinger, Martin
2015-07-01
Cosmic shear is the distortion of images of distant galaxies due to weak gravitational lensing by the large-scale structure in the Universe. Such images are coherently deformed by the tidal field of matter inhomogeneities along the line of sight. By measuring galaxy shape correlations, we can study the properties and evolution of structure on large scales as well as the geometry of the Universe. Thus, cosmic shear has become a powerful probe into the nature of dark matter and the origin of the current accelerated expansion of the Universe. Over the last years, cosmic shear has evolved into a reliable and robust cosmological probe, providing measurements of the expansion history of the Universe and the growth of its structure. We review here the principles of weak gravitational lensing and show how cosmic shear is interpreted in a cosmological context. Then we give an overview of weak-lensing measurements, and present the main observational cosmic-shear results since it was discovered 15 years ago, as well as the implications for cosmology. We then conclude with an outlook on the various future surveys and missions, for which cosmic shear is one of the main science drivers, and discuss promising new weak cosmological lensing techniques for future observations.
Cen, R. Y.; Ostriker, J. P.; Spergel, D. N.; Turok, N.
1991-01-01
Hydrodynamical simulations of galaxy formation in a texture-seeded cosmology are presented, with attention given to Omega = 1 galaxies dominated by both hot dark matter (HDM) and cold dark matter (CDM). The simulations include both gravitational and hydrodynamical physics with a detailed treatment of collisional and radiative thermal processes, and use a cooling criterion to estimate galaxy formation. Background radiation fields and Zel'dovich-Sunyaev fluctuations are explicitly computed. The derived galaxy mass function is well fitted by the observed Schechter luminosity function for a baryonic M/L of 3 and total M/L of 60 in galaxies. In both HDM and CDM texture scenarios, the 'galaxies' and 'clusters' are significantly more strongly correlated than the dark matter due to physical bias processes. The slope of the correlation function in both cases is consistent with observations. In contrast to Gaussian models, peaks in the dark matter density distributrion are less correlated than average.
On the cosmological gravitational waves and cosmological distances
Belinski, V. A.; Vereshchagin, G. V.
2018-03-01
We show that solitonic cosmological gravitational waves propagated through the Friedmann universe and generated by the inhomogeneities of the gravitational field near the Big Bang can be responsible for increase of cosmological distances.
Angular momentum-large-scale structure alignments in ΛCDM models and the SDSS
Paz, Dante J.; Stasyszyn, Federico; Padilla, Nelson D.
2008-09-01
We study the alignments between the angular momentum of individual objects and the large-scale structure in cosmological numerical simulations and real data from the Sloan Digital Sky Survey, Data Release 6 (SDSS-DR6). To this end, we measure anisotropies in the two point cross-correlation function around simulated haloes and observed galaxies, studying separately the one- and two-halo regimes. The alignment of the angular momentum of dark-matter haloes in Λ cold dark matter (ΛCDM) simulations is found to be dependent on scale and halo mass. At large distances (two-halo regime), the spins of high-mass haloes are preferentially oriented in the direction perpendicular to the distribution of matter; lower mass systems show a weaker trend that may even reverse to show an angular momentum in the plane of the matter distribution. In the one-halo term regime, the angular momentum is aligned in the direction perpendicular to the matter distribution; the effect is stronger than for the one-halo term and increases for higher mass systems. On the observational side, we focus our study on galaxies in the SDSS-DR6 with elongated apparent shapes, and study alignments with respect to the major semi-axis. We study five samples of edge-on galaxies; the full SDSS-DR6 edge-on sample, bright galaxies, faint galaxies, red galaxies and blue galaxies (the latter two consisting mainly of ellipticals and spirals, respectively). Using the two-halo term of the projected correlation function, we find an excess of structure in the direction of the major semi-axis for all samples; the red sample shows the highest alignment (2.7 +/- 0.8per cent) and indicates that the angular momentum of flattened spheroidals tends to be perpendicular to the large-scale structure. These results are in qualitative agreement with the numerical simulation results indicating that the angular momentum of galaxies could be built up as in the Tidal Torque scenario. The one-halo term only shows a significant alignment
A Time-Dependent Λ and G Cosmological Model Consistent with Cosmological Constraints
Directory of Open Access Journals (Sweden)
L. Kantha
2016-01-01
Full Text Available The prevailing constant Λ-G cosmological model agrees with observational evidence including the observed red shift, Big Bang Nucleosynthesis (BBN, and the current rate of acceleration. It assumes that matter contributes 27% to the current density of the universe, with the rest (73% coming from dark energy represented by the Einstein cosmological parameter Λ in the governing Friedmann-Robertson-Walker equations, derived from Einstein’s equations of general relativity. However, the principal problem is the extremely small value of the cosmological parameter (~10−52 m2. Moreover, the dark energy density represented by Λ is presumed to have remained unchanged as the universe expanded by 26 orders of magnitude. Attempts to overcome this deficiency often invoke a variable Λ-G model. Cosmic constraints from action principles require that either both G and Λ remain time-invariant or both vary in time. Here, we propose a variable Λ-G cosmological model consistent with the latest red shift data, the current acceleration rate, and BBN, provided the split between matter and dark energy is 18% and 82%. Λ decreases (Λ~τ-2, where τ is the normalized cosmic time and G increases (G~τn with cosmic time. The model results depend only on the chosen value of Λ at present and in the far future and not directly on G.
Etude Climat no. 37 '10 lessons from 10 years of the CDM'
International Nuclear Information System (INIS)
Shishlov, Igor; Bellassen, Valentin
2012-01-01
Among the publications of CDC Climat Research, 'Climate Reports' offer in-depth analyses on a given subject. This issue addresses the following points: The Clean Development Mechanism (CDM) is the first and by far the largest carbon offset instrument in the world. To date, it is the only market based on an environmental commodity which managed to attract several billions of euros of private capital on an annual basis. Being the first-of-a-kind climate change mitigation instrument, the CDM followed a 'learning by doing' pattern undergoing numerous reforms throughout its more than 10-year history. Although the post-2012 fate of the mechanism remains uncertain, one should not 'throw out the baby with the bath water' as the lessons from the CDM experience may be useful not only for the CDM reform but also for new market instruments
DEFF Research Database (Denmark)
Ringius, L.; Grohnheit, Poul Erik; Nielsen, Lars Henrik
2002-01-01
and implications of the various methodologies and approaches in a concrete context, Africa's largest wind farm-namely the 60 MW wind farm located in Zafarana,Egypt is examined as a hypothetical CDM wind power project The report shows that for the present case example there is a difference of about 25% between......The report is intended to be a guidance document for project developers, investors, lenders, and CDM host countries involved in wind power projects in the CDM. The report explores in particular those issues that are important in CDM project assessment anddevelopment - that is, baseline development......, carbon financing, and environmental sustainability. It does not deal in detail with those issues that are routinely covered in a standard wind power project assessment. The report tests, compares, andrecommends methodologies for and approaches to baseline development. To present the application...
International Nuclear Information System (INIS)
Schramm, D.N.; Fields, B.; Thomas, D.
1992-01-01
The possible implications of the quark-hadron transition for cosmology are explored. Possible surviving signatures are discussed. In particular, the possibility of generating a dark matter candidate such as strange nuggets or planetary mass black holes is noted. Much discussion is devoted to the possible role of the transition for cosmological nucleosynthesis. It is emphasized that even an optimized first order phase transition will not significantly alter the nucleosynthesis constraints on the cosmological baryon density nor on neutrino counting. However, it is noted that Be and B observations in old stars may eventually be able to be a signature of a cosmologically significant quark-hadron transition. It is pointed out that the critical point in this regard is whether the observed B/Be ratio can be produced by spallation processes or requires cosmological input. Spallation cannot produce a B/Be ratio below 7.6. A supporting signature would be Be and B ratios to oxygen that greatly exceed galactic values. At present, all data is still consistent with a spallagenic origin
Inhomogeneous anisotropic cosmology
International Nuclear Information System (INIS)
Kleban, Matthew; Senatore, Leonardo
2016-01-01
In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with “flat” (including toroidal) and “open” (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are “flat” or “open”. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with “flat” or “open” topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.
The Hubble IR cutoff in holographic ellipsoidal cosmologies
Energy Technology Data Exchange (ETDEWEB)
Cataldo, Mauricio [Universidad del Bio-Bio, Departamento de Fisica, Facultad de Ciencias, Concepcion (Chile); Cruz, Norman [Grupo de Cosmologia y Gravitacion-UBB, Concepcion (Chile)
2018-01-15
It is well known that for spatially flat FRW cosmologies, the holographic dark energy disfavors the Hubble parameter as a candidate for the IR cutoff. For overcoming this problem, we explore the use of this cutoff in holographic ellipsoidal cosmological models, and derive the general ellipsoidal metric induced by a such holographic energy density. Despite the drawbacks that this cutoff presents in homogeneous and isotropic universes, based on this general metric, we developed a suitable ellipsoidal holographic cosmological model, filled with a dark matter and a dark energy components. At late time stages, the cosmic evolution is dominated by a holographic anisotropic dark energy with barotropic equations of state. The cosmologies expand in all directions in accelerated manner. Since the ellipsoidal cosmologies given here are not asymptotically FRW, the deviation from homogeneity and isotropy of the universe on large cosmological scales remains constant during all cosmic evolution. This feature allows the studied holographic ellipsoidal cosmologies to be ruled by an equation of state ω = p/ρ, whose range belongs to quintessence or even phantom matter. (orig.)
Cosmology in time asymmetric extensions of general relativity
International Nuclear Information System (INIS)
Leon, Genly; Saridakis, Emmanuel N.
2015-01-01
We investigate the cosmological behavior in a universe governed by time asymmetric extensions of general relativity, which is a novel modified gravity based on the addition of new, time-asymmetric, terms on the Hamiltonian framework, in a way that the algebra of constraints and local physics remain unchanged. Nevertheless, at cosmological scales these new terms can have significant effects that can alter the universe evolution, both at early and late times, and the freedom in the choice of the involved modification function makes the scenario able to produce a huge class of cosmological behaviors. For basic ansatzes of modification, we perform a detailed dynamical analysis, extracting the stable late-time solutions. Amongst others, we find that the universe can result in dark-energy dominated, accelerating solutions, even in the absence of an explicit cosmological constant, in which the dark energy can be quintessence-like, phantom-like, or behave as an effective cosmological constant. Moreover, it can result to matter-domination, or to a Big Rip, or experience the sequence from matter to dark energy domination. Additionally, in the case of closed curvature, the universe may experience a cosmological bounce or turnaround, or even cyclic behavior. Finally, these scenarios can easily satisfy the observational and phenomenological requirements. Hence, time asymmetric cosmology can be a good candidate for the description of the universe
CDM criticisms: don't throw the baby out with the bathwater
Energy Technology Data Exchange (ETDEWEB)
Buen, Joerund
2012-07-01
CDM has delivered greater offset volumes than anticipated, mainly with money from the private sector in host countries (underlying project investment) and investor countries (carbon offset purchasing) and has built considerable institutional capacity. Criticisms have focused on high transaction costs and lack of scalability; additionality challenges and lack of net mitigation impact; preventing more ambitious targets and changes in emissions paths in developed and developing countries alike; excessive rents and perverse incentives; unbalanced regional distribution; low local sustainable development benefits; corruption and lack of transparency; and lack of technology transfer. While some of these criticisms are justified, others are outdated. Transaction costs have been drastically reduced. Excessive rents and perverse incentives in the CDM will be substantially reduced post-2012. Unbalanced regional distribution will be reduced by new rules; moreover, this is probably less of a problem than commonly thought. Some criticisms are erroneously founded. There is no evidence of CDM preventing more ambitious targets in developing countries while it could prevent changes in emissions paths in developed countries. Few CDM projects have serious known problems as regards sustainable development. Corruption and fraud seem limited; and technology transfer has never been a core CDM concern. Ironically, critics often neglect the elements that need to be improved. To ensure additionality, CDM rules must be tightened to exclude common practice projects and prevent host countries from changing their policies to cater for CDM projects. CDM's scalability and additionality challenges could be substantially reduced by discounting emission reductions. There could still be some non-additional projects, but the volume of the overall portfolio of projects would be additional.(Author)
Krey, Matthias; Michaelowa, Axel; Deodhar, Vinay
2003-01-01
The Clean Development Mechanism (CDM) under the Kyoto Protocol to the UN Framework Convention on Climate Change (UNFCCC) enables industrialized countries to meet a part of their emission reduction requirements through purchase of emission reduction credits from projects in developing countries. Various studies have concluded that India is likely to be one of the major countries supplying such projects. However, in order that a large number of high-quality CDM projects is developed and result ...
Combined cosmological tests of a bivalent tachyonic dark energy scalar field model
International Nuclear Information System (INIS)
Keresztes, Zoltán; Gergely, László Á.
2014-01-01
A recently investigated tachyonic scalar field dark energy dominated universe exhibits a bivalent future: depending on initial parameters can run either into a de Sitter exponential expansion or into a traversable future soft singularity followed by a contraction phase. We also include in the model (i) a tiny amount of radiation, (ii) baryonic matter (Ω b h 2 = 0.022161, where the Hubble constant is fixed as h = 0.706) and (iii) cold dark matter (CDM). Out of a variety of six types of evolutions arising in a more subtle classification, we identify two in which in the past the scalar field effectively degenerates into a dust (its pressure drops to an insignificantly low negative value). These are the evolutions of type IIb converging to de Sitter and type III hitting the future soft singularity. We confront these background evolutions with various cosmological tests, including the supernova type Ia Union 2.1 data, baryon acoustic oscillation distance ratios, Hubble parameter-redshift relation and the cosmic microwave background (CMB) acoustic scale. We determine a subset of the evolutions of both types which at 1σ confidence level are consistent with all of these cosmological tests. At perturbative level we derive the CMB temperature power spectrum to find the best agreement with the Planck data for Ω CDM = 0.22. The fit is as good as for the ΛCDM model at high multipoles, but the power remains slightly overestimated at low multipoles, for both types of evolutions. The rest of the CDM is effectively generated by the tachyonic field, which in this sense acts as a combined dark energy and dark matter model
THE ABUNDANCE OF BULLET GROUPS IN ΛCDM
Energy Technology Data Exchange (ETDEWEB)
Fernández-Trincado, J. G.; Forero-Romero, J. E. [Departamento de Física, Universidad de los Andes, Cra. 1 No. 18A-10, Edificio Ip, Bogotá (Colombia); Foex, G.; Motta, V. [Instituto de Física y Astronomía, Universidad de Valparaíso, Avda. Gran Bretaña 1111, Playa Ancha, Valparaíso 2360102 (Chile); Verdugo, T., E-mail: jfernandez@obs-besancon.fr, E-mail: je.forero@uniandes.edu.co [Centro de Investigaciones de Astronomía, AP 264, Mérida 5101-A (Venezuela, Bolivarian Republic of)
2014-06-01
We estimate the expected distribution of displacements between the two dominant dark matter (DM) peaks (DM-DM displacements) and between the DM and gaseous baryon peak (DM-gas displacements) in DM halos with masses larger than 10{sup 13} h {sup –1} M {sub ☉}. As a benchmark, we use the observation of SL2S J08544–0121, which is the lowest mass system (1.0 × 10{sup 14} h {sup –1} M {sub ☉}) observed so far, featuring a bi-modal DM distribution with a dislocated gas component. We find that (50 ± 10)% of the DM halos with circular velocities in the range 300-700 km s{sup –1} (groups) show DM-DM displacements equal to or larger than 186 ± 30 h {sup –1} kpc as observed in SL2S J08544–0121. For DM halos with circular velocities larger than 700 km s{sup –1} (clusters) this fraction rises to (70 ± 10)%. Using the same simulation, we estimate the DM-gas displacements and find that 0.1%-1.0% of the groups should present separations equal to or larger than 87 ± 14 h {sup –1} kpc, corresponding to our observational benchmark; for clusters, this fraction rises to (7 ± 3)%, consistent with previous studies of DM to baryon separations. Considering both constraints on the DM-DM and DM-gas displacements, we find that the number density of groups similar to SL2S J08544–0121 is ∼6.0 × 10{sup –7} Mpc{sup –3}, three times larger than the estimated value for clusters. These results open up the possibility for a new statistical test of ΛCDM by looking for DM-gas displacements in low mass clusters and groups.
The Relation between Cosmological Redshift and Scale Factor for Photons
Energy Technology Data Exchange (ETDEWEB)
Tian, Shuxun, E-mail: tshuxun@mail.bnu.edu.cn [Department of Astronomy, Beijing Normal University, Beijing 100875 (China); Department of Physics, Wuhan University, Wuhan 430072 (China)
2017-09-10
The cosmological constant problem has become one of the most important ones in modern cosmology. In this paper, we try to construct a model that can avoid the cosmological constant problem and have the potential to explain the apparent late-time accelerating expansion of the universe in both luminosity distance and angular diameter distance measurement channels. In our model, the core is to modify the relation between cosmological redshift and scale factor for photons. We point out three ways to test our hypothesis: the supernova time dilation; the gravitational waves and its electromagnetic counterparts emitted by the binary neutron star systems; and the Sandage–Loeb effect. All of this method is feasible now or in the near future.
Implications of the Cosmological Constant for Spherically Symmetric Mass Distributions
Zubairi, Omair; Weber, Fridolin
2013-04-01
In recent years, scientists have made the discovery that the expansion rate of the Universe is increasing rather than decreasing. This acceleration leads to an additional term in Albert Einstein's field equations which describe general relativity and is known as the cosmological constant. This work explores the aftermath of a non-vanishing cosmological constant for relativistic spherically symmetric mass distributions, which are susceptible to change against Einstein's field equations. We introduce a stellar structure equation known as the Tolman-Oppenhiemer-Volkoff (TOV) equation modified for a cosmological constant, which is derived from Einstein's modified field equations. We solve this modified TOV equation for these spherically symmetric mass distributions and obtain stellar properties such as mass and radius and investigate changes that may occur depending on the value of the cosmological constant.
Belinski, Vladimir
2018-01-01
Written for researchers focusing on general relativity, supergravity, and cosmology, this is a self-contained exposition of the structure of the cosmological singularity in generic solutions of the Einstein equations, and an up-to-date mathematical derivation of the theory underlying the Belinski–Khalatnikov–Lifshitz (BKL) conjecture on this field. Part I provides a comprehensive review of the theory underlying the BKL conjecture. The generic asymptotic behavior near the cosmological singularity of the gravitational field, and fields describing other kinds of matter, is explained in detail. Part II focuses on the billiard reformulation of the BKL behavior. Taking a general approach, this section does not assume any simplifying symmetry conditions and applies to theories involving a range of matter fields and space-time dimensions, including supergravities. Overall, this book will equip theoretical and mathematical physicists with the theoretical fundamentals of the Big Bang, Big Crunch, Black Hole singula...
Tomaschitz, R
1994-01-01
Spinor fields are studied in infinite, topologically multiply connected Robertson-Walker cosmologies. Unitary spinor representations for the discrete covering groups of the spacelike slices are constructed. The spectral resolution of Dirac's equation is given in terms of horospherical elementary waves, on which the treatment of spin and energy is based in these cosmologies. The meaning of the energy and the particle-antiparticle concept is explained in the context of this varying cosmic background. Discrete symmetries, in particular inversions of the multiply connected spacelike slices, are studied. The violation of the unitarity of the parity operator, due to self-interference of P-reflected wave packets, is discussed. The violation of the CP and CPT invariance - already on the level of the free Dirac equation on this cosmological background - is pointed out.
DEFF Research Database (Denmark)
Skaanes, Thea
2015-01-01
Abstract: This article concerns Hadza cosmology examined through objects, rituals and the Hadza concept of epeme. A brief background to the Hadza and the eldwork that informs this study is followed by a close analysis of three key objects that are central to the argument presented. The objects...... are intimately linked to women and to aspects of the social and cosmological identity of the individual makers. one object is a materi- alisation of the woman’s name and it leads to an examination by interview of naming practices more generally. Naming a child gives it a spirit and places the child in a strong...... of ethnographic research indicating the potential and need for further examination of the power and role of objects in Hadza society. Keywords: Hadza, epeme, ritual, cosmology, power objects...
Silk, Joseph; Barrow, John D; Saunders, Simon
2017-01-01
Following a long-term international collaboration between leaders in cosmology and the philosophy of science, this volume addresses foundational questions at the limit of science across these disciplines, questions raised by observational and theoretical progress in modern cosmology. Space missions have mapped the Universe up to its early instants, opening up questions on what came before the Big Bang, the nature of space and time, and the quantum origin of the Universe. As the foundational volume of an emerging academic discipline, experts from relevant fields lay out the fundamental problems of contemporary cosmology and explore the routes toward finding possible solutions. Written for graduates and researchers in physics and philosophy, particular efforts are made to inform academics from other fields, as well as the educated public, who wish to understand our modern vision of the Universe, related philosophical questions, and the significant impacts on scientific methodology.
International Nuclear Information System (INIS)
Shishlov, Igor; Bellassen, Valentin
2012-01-01
Among the publications of CDC Climat Research, 'Climate Briefs' presents, in a few pages, hot topics in climate change policy. This issue addresses the following points: As the Clean Development Mechanism (CDM) reached the milestone billionth CER issued and the secondary CER price tipped below 2 euros, the recommendations of the High Level Panel on the CDM Policy Dialogue published on 11 September 2012 could not be timelier. By focusing on the current supply-demand disequilibrium that threatens the very survival of the CDM, the Panel extended its recommendations beyond the traditional scope of CDM reform. The Panel's ambition to pro-actively engage with other climate initiatives such as the Green Fund and regional markets is also innovative. Indeed, the CDM toolbox enriched by 10-years of experience stands to apply to or be partly recycled through new mechanisms. Along the 51 recommendations from the Policy Dialogue, there are calls for further standardization and streamlining, together with both old and new ideas on governance and contribution of the CDM to sustainable development
Cosmology and the early universe
Di Bari, Pasquale
2018-01-01
This book discusses cosmology from both an observational and a strong theoretical perspective. The first part focuses on gravitation, notably the expansion of the universe and determination of cosmological parameters, before moving onto the main emphasis of the book, the physics of the early universe, and the connections between cosmological models and particle physics. Readers will gain a comprehensive account of cosmology and the latest observational results, without requiring prior knowledge of relativistic theories, making the text ideal for students.
Non equilibrium relativistic cosmology
International Nuclear Information System (INIS)
Novello, M.; Salim, J.M.
1982-01-01
A certain systematization through the discussion of results already known on cosmology and the presentation of new ones is given. In section 2 a brief review of the necessary mathematical background is also given. The theory of perturbation of Friedmann-like Universes is presented in section 3. The reduction of Einstein's equations for homogeneous Universes to an autonomous planar system of differential equations is done in section 4. Finally in section 5 the alternative gravitational non-minimal coupling and its consequences to cosmology are discussed. (Author) [pt
CERN. Geneva
2000-01-01
Most of the puzzles with standard big bang cosmology can be avoided if the big bang is NOT identified with the beginning of time. The short-distance cutoff and duality symmetries of superstring theory suggest a new (so-called pre-big bang) cosmology in which the birth of our Universe is the result of a long classical evolution characterized by a gravitational instability. I will motivate and describe this heretical scenario and compare its phenomenological implications with those of ortodox (post-big bang) inflation.
Exploring Cosmology with Supernovae
DEFF Research Database (Denmark)
Li, Xue
distribution of strong gravitational lensing is developed. For Type Ia supernova (SNe Ia), the rate is lower than core-collapse supernovae (CC SNe). The rate of SNe Ia declines beyond z 1:5. Based on these reasons, we investigate a potential candidate to measure cosmological distance: GRB......-SNe. They are a subclass of CC SNe. Light curves of GRB-SNe are obtained and their properties are studied. We ascertain that the properties of GRB-SNe make them another candidate for standardizable candles in measuring the cosmic distance. Cosmological parameters M and are constrained with the help of GRB-SNe. The first...
2012-01-01
This volume tells of the quest for cosmology as seen by some of the finest cosmologists in the world. It starts with "Galaxy Formation from Start to Finish" and ends with "The First Supermassive Black Holes in the Universe," exploring in between the grand themes of galaxies, the early universe, expansion of the universe, dark matter and dark energy. This up-to-date collection of review articles offers a general introduction to cosmology and is intended for all probing into the profound questions on where we came from and where we are going.
Silk, Joseph
2011-01-01
Horizons of Cosmology: Exploring Worlds Seen and Unseen is the fourth title published in the Templeton Science and Religion Series, in which scientists from a wide range of fields distill their experience and knowledge into brief tours of their respective specialties. In this volume, highly esteemed astrophysicist Joseph Silk explores the vast mysteries and speculations of the field of cosmology in a way that balances an accessible style for the general reader and enough technical detail for advanced students and professionals. Indeed, while the p
Relativistic Cosmology Revisited
Directory of Open Access Journals (Sweden)
Crothers S. J.
2007-04-01
Full Text Available In a previous paper the writer treated of particular classes of cosmological solutions for certain Einstein spaces and claimed that no such solutions exist in relation thereto. In that paper the assumption that the proper radius is zero when the line-element is singular was generally applied. This general assumption is unjustified and must be dropped. Consequently, solutions do exist in relation to the aforementioned types, and are explored herein. The concept of the Big Bang cosmology is found to be inconsistent with General Relativity
International Nuclear Information System (INIS)
Stabell, R.
1979-01-01
Einstein applied his gravitation theory to a universe model with positively curved space in 1917. In order to maintain a static universe he introduced the cosmological constant, which in the light of later nonstatic universe models, he described as his life's greatest mistake. The best known such model is the Einstein-de Sitter model, which is here discussed in some detail. The 'big bang' theory is also discussed leading to the cosmic background radiation. The early phase of the 'big bang' cosmology, the first ten seconds, and the first minutes are discussed, leading to the transparent stage. (JIW)
Cosmological models without singularities
International Nuclear Information System (INIS)
Petry, W.
1981-01-01
A previously studied theory of gravitation in flat space-time is applied to homogeneous and isotropic cosmological models. There exist two different classes of models without singularities: (i) ever-expanding models, (ii) oscillating models. The first class contains models with hot big bang. For these models there exist at the beginning of the universe-in contrast to Einstein's theory-very high but finite densities of matter and radiation with a big bang of very short duration. After short time these models pass into the homogeneous and isotropic models of Einstein's theory with spatial curvature equal to zero and cosmological constant ALPHA >= O. (author)
Difficulties with inflationary cosmology
International Nuclear Information System (INIS)
Penrose, R.
1989-01-01
According to the author, the idea of inflationary cosmology is an ingenious attempt to solve some of the major puzzles of cosmology, most notably the flatness problem, the homogeneity (horizon) problem, and the monopole problem. The homogeneity problem, in particular, is intimately connected with a largely unappreciated, but profound puzzle presented by the second law of thermodynamics. The author argues that the mechanism of inflation does not, by itself, come to terms with this and consequently, comes nowhere close to providing an understanding of the large-scale homogeneity of the universe
International Nuclear Information System (INIS)
Marrakchi, A.E.L.; Tapia, V.
1992-05-01
Some cosmological implications of the recently proposed fourth-rank theory of gravitation are studied. The model exhibits the possibility of being free from the horizon and flatness problems at the price of introducing a negative pressure. The field equations we obtain are compatible with k obs =0 and Ω obs t clas approx. 10 20 t Planck approx. 10 -23 s. When interpreted at the light of General Relativity the treatment is shown to be almost equivalent to that of the standard model of cosmology combined with the inflationary scenario. Hence, an interpretation of the negative pressure hypothesis is provided. (author). 8 refs
Cosmological constants and variations
International Nuclear Information System (INIS)
Barrow, John D
2005-01-01
We review properties of theories for the variation of the gravitation and fine structure 'constants'. We highlight some general features of the cosmological models that exist in these theories with reference to recent quasar data that is consistent with time-variation in the fine structure 'constant' since a redshift of 3.5. The behaviour of a simple class of varying alpha cosmologies is outlined in the light of all the observational constraints. We also discuss some of the consequences of varying 'constants' for oscillating universes and show by means of exact solutions that they appear to evolve monotonically in time even though the scale factor of the universe oscillates